Expert
Spring MVC
and Web Flows

Seth Ladd and Keith Donald

Expert Spring MVC
and Web Flow

Seth Ladd
with Darren Davison,
Steven Devijver and Colin Yates

Apress*

Expert Spring MVC and Web Flow
Copyright © 2006 by Seth Ladd, Darren Davison, Steven Devijver, and Colin Yates

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-59059-584-8
ISBN-10 (pbk): 1-59059-584-X
Printed and bound in the United States of America987654321

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Steve Anglin

Technical Reviewers: Rob Harrop, Keith Donald

Editorial Board: Steve Anglin, Dan Appleman, Ewan Buckingham, Gary Cornell, Jason Gilmore,
Jonathan Hassell, James Huddleston, Chris Mills, Matthew Moodie, Dominic Shakeshaft,
Jim Sumser, Matt Wade

Project Manager: Sofia Marchant

Copy Edit Manager: Nicole LeClerc

Copy Editor: Stephanie Provines

Assistant Production Director: Kari Brooks-Copony

Production Editor: Katie Stence

Compositor and Artist: Van Winkle Design Group

Proofreader: Nancy Sixsmith

Indexer: Broccoli Information Management

Cover Designer: Kurt Krames

Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley,
CA 94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in this work.

The source code for this book is available to readers at http://www.apress.comin the Source Code section.

To my father, who brought home
that old 1200-baud modem from work and
kick-started this crazy journey.
—Seth Ladd

To Mum and Dad, for always encouraging my curiosity.
And to my wife, Lisa, for being my wife.
—Darren Davison

For Beeky and the wriggler for putting up
with the late evenings, and Bruce and Jessie
for missing out on the walks.
—Colin Yates

For Filiz.
—Steven Devijver

To my wonderful wife, Keri,
and our little bundle of joy, Annabelle.
—Keith Donald

Contents at a Glance

About the AUthOrs XV
About the Technical Reviewers Xvii
ACKNOWIBdgMENTS Xxviii
CHAPTER 1 Introduction........... 1
CHAPTER 2 Spring Fundamentals .. 7
CHAPTER 3 Spring MVC Application Architecture 21
CHAPTER 4 JumpintoSpringMVC 41
CHAPTER 5 The Processing Pipeline 77
CHAPTER 6 The Controller Menagerie 115
CHAPTER7 TheViewlLayer i, 201
CHAPTER 8 SupportedViewTypes ..., 223
CHAPTER 9 Validation i, 265
CHAPTER 10 Testing Spring MVC Applications 283
CHAPTER 11 Introduction to SpringWeb Flow 309
CHAPTER 12 Advanced SpringWebFlow 335
APPENDIX A Documenting Your MVC Application 371
APPENDIX B AjaxandDWR, 377

Contents

Aboutthe AUthOrs XV
About the Technical ReVIEWEISo e Xvii
ACKNOWIBdgMENTS Xxviii
CHAPTER 1 Introduction... 1
Skipping Ahead 2
HowtoViewThisBook 2

Roadmap ... 2

Target Audience 4

For More Information 4

Sample Applications 5

Spring 2.0 .. 5

SUMMANY ... 6

CHAPTER 2 Spring Fundamentals 7
Inversionof Controll 7

loCExample o 8

SUMMANY ... 10

Dependency Injection 11

ServiceLocator 12

Dependency Injection 14

Spring ApplicationContexts 17

TheReturnofthe POJO 18

Impact on Web Applications 19

SUMMANY ... 19

CHAPTER 3 Spring MVC Application Architecture 21
Layers of Abstractions 21

Layerlsolation 23

Java Interface As Layer Contract 23

Layers in a Spring MVC Application 24

Options: There’s More Than One Way toDolt 38

SUMMArY 39

vii

viii CONTENTS

CHAPTER 4

CHAPTER 5

CHAPTER 6

JumpintoSpringMVC 41
USE CaSES ..o\ttt 41
ServicelInterface 42
Use Case #1o 42
Use Case #2ot 45
SUMMANY ... 50
Web Components 50
JAR DependencCiesc.ouiiiii i 50
Controllers oo 52
VWS 52
ModelAndView ... i 53
Building the Home Page Use Case 53
Spring MVC Components i, 53
Web Application Configuration 58
Startthe Application 63
Request Handling Sequence 63
SUMMANY ... 64
Building the Search for FlightsUse Case 65
SimpleFormController, 65
SearchFlightsControlleriiiiii... 67
FormView 69
SpringJSPTags ... 72
SUCCESSVIEW o 73
SUMMANY ... 74
Now Let’s LearnHowtoSwim 75
The Processing Pipeline 77
ProcessingRequests i 77
RequestWork Flow 77
Functionality Overview ...t 78
PiecesofthePuzzle 79
SUMMArY 114
The Controller Menagerie 115
Introduction 115
The Controller Interface and Implementations 116
ALookatDesign ... 116
AbstractController i 118

SUMMANY ... 122

CHAPTER 7

CONTENTS
BaseCommandController 122
BindingaFormtoaBeanl 124
SUMMANY ... 148
SimpleFormController and Handling Forms 149
Redirect After Submit Pattern 164
MultiActionControllero 168
AbstractWizardFormController 176
ThrowawayController i, 193
ValidatableThrowawayController 196
Handlerinterceptors 196
Handlerinterceptor Example 197
SUMMANY ... 198
Controllers Summary i 199
The View Layer ... 201
What’'sinaView i 201
Treating Views inlsolation 202
Spring’s View Interfacel 202
ImplementingView 203
Views and Controllers: Happily Divorced 207
VieWRESOIVEIS 208
Putting View Resolutionin Context 209
Types of ViewResolver i, 210
Making ViewResolvers Known to the Dispatcher 213
AWordon Redirecting 215
ThemMES .. 216
ThemeSources ..., 217
ThemeResOIVers ... 218
Internationalization in the View Layer 218
Locale Resolution 218
MessageSource Beans 219
ViewResolution 220
ThemeResolution 221
Bind Support 221
Recap of Binding and Validation Sequence 221
Bind SupportinViewTemplates 221

SUMMANY .. 222

ix

X

CONTENTS

CHAPTER 8

Supported View Types 223
JSPand JSTL ... 223
Exposing the Model As Request Attributes 224
Displayingthe Model 225
JSPTag Librariesco i 227
FOrms 228
TileS 233
SUMMANY ... 235
Velocity and FreeMarker 235
TemplatingProsand Conscooviiiinin.s. 235
Basic Configuring for Template Engines 236
Exposingthe Model L. 238
The Template Languageccooviiiiiiinin... 238
Advanced Configuration Options 239
Forms and the SpringBind Macros 241
Numberand DateTools 247
Additional Velocity Views 249
SUMMANY ... 249
XMLand XSLTo 250
Definingan XSLTView ..., 250
Transforming the XML Source 252
Returning XML intheRaw 254
Other Noteworthy XSLT Features 254
SUMMANY ... 255
PDF . 256
Configuring the Application to Use aPDFView 257
Template PDFswith FOP 257
EXCel ..o 258
Creatingthe Template, 258
CodingtheView i 259
Configuring the Application 260
JasperReports 260
MultiformatView 261
Populatingthe Report, 262
SUMMANY ... 263
Creating New Views i, 263

SUMMArY ... 264

CHAPTER 9

CHAPTER 10

CHAPTER 11

CONTENTS
Validation 265
Programmatic Validatorsl 265
Declarative Validatorsl 267
MeSSaQge SOUICES\ttt 278
Validators and Business Logicl 279
ErrorsInterface 279
TestingValidatorsl 281
SUMMANY ... 282
Testing Spring MVC Applications 283
OVBIVIBW ..o 283
UNItTeStS ... 283
UnitTestSummaryc it 302
Integration Tests i 302
TestingSummary 308
Introduction to SpringWeb Flow 309
What Itch Does Spring Web Flow Scratch? 309
The Problem with the Servlet Specification 310
TheSolution ... 311
Nota Golden Hammer i, 314
The BigPicture ... 314
Architectural Qverview, 315
Inside the Spring Web Flow System 315
Different Scopes ... 316
BuildingBlocks 316
YourFirst Flow 319
Installing SpringWeb Flow 319
Proposed Flow Directory Structure 319
The Purchase Product Flow Definition 320
Implementing the First Step: View States 320
Transitions ... 320
ACtIONS 321
Action Bean Definitions 322
Testing the Flow Execution 324
Extending AbstractFlowExecutionTests 324

Decision States ... 326

Xi

Xii

CONTENTS

CHAPTER 12

ActionStates 327
EndStates 328
The Purchase Product Flow: What'sNext 329
Spring MVC Deployment 330
The FlowController 330
FlowRegistry ... 330
Additional Configuration 331
View Template Resolution 331
View Template Requirements 331
Launching the Flow from the Browser 332
SUMMArY 333
Model Conversationscoiiiiiiriiiin... 333
Allows for Extension 334
Testable 334
Identifying Flows (Easy, Natural Language) 334
Advanced Spring Web Flow 335
Business Logicand Flows, 335
Business LOQiC 335
Flow Granularity o 337
Subflows 337
Inline Flows 343
SUMMANY ... 345
Managing FlowExecutionsl 346
Integration with Web Frameworks 346
The FlowExecutionManager 347
FlowExecutions i 348
FlowExecutionListener, 351
FlowExecution Repositories, 353
Continuations i 354
FlowExecutionRepository Implementations 356
Stateful FlowExecution Repositories 356
Stateless FlowExecution Repositories 357
Conversation Invalidation After Completion 358
States and Transitions Revisited 358
ActionStates 359
POJOACtioNs 362
Exposing POJO Method ReturnValues 363

Customizing View Selection with View States and End States ... 363
DecisionStatescoi i 365

APPENDIX A

APPENDIX B

CONTENTS

ExceptionHandling 367
State Scoped ExceptionHandlers 369
Exception Handling Summary 369
SUMMaArY .. 369
Documenting Your MVC Application 371
BeanDocC 371
Installing and BuildingBeanDoc 372
Running BeanDoc on Your Configuration Files 373
Other Options ... i 374
Controllingthe Qutput it 374
SUMMArY 375
AjaxandDWRl 377
Springand DWR 377
APractical Example 378
Configuration and Code Changes 378
Presentation FileChanges 381
Accessibility 387
SUMMArY ... 388
.. 389

Xiii

About the Authors

SETH LADD is a software engineer and professional Spring Framework
trainer and mentor specializing in object-oriented and testable web appli-
cations. He started his own company building websites at age 17, but now
enjoys having a real job. Currently working for Camber Corporation, Seth
has built and deployed systems for NEC, Rochester Institute of Technol-
ogy, Brivo Systems, and National Information Consortium. He has

AR architected and developed enterprise applications in Java and C for both
the server and remotely connected embedded devices. He enjoys speaking and teaching, and
is a frequent presenter at local Java user groups and at corporate developer conferences. Seth
is very thankful for living and working in Kailua, Hawaii, with his wife.

DARREN DAVISON is a principal consultant for UPCO, specializing in J2EE
and open source Java technologies. He has been involved with Spring since
the summer of 2003, well before its 1.0 release, and he used the framework
to underpin a global intranet site for an investment bank. Darren has previ-
ously worked for multinational manufacturing and engineering companies
on e-business, infrastructure, and many web-based projects.

Away from work, Darren enjoys the never-ending journey of discovery
that is GNU/Linux. When not in front of a computer screen, he likes reading and any form of
live entertainment.

STEVEN DEVIJVER is an experienced Java developer who started developing J2EE applications in
2000. In 2003 he discovered the Spring Framework, and since then he has been one of its most
enthusiastic users. Steven is a senior consultant at Interface21, teaching hundreds of students
every year about the Spring Framework.

COLIN YATES is a J2EE principal architect who specializes in web-based
development. He has been a freelance consultant for the past three years
and has worked in a number of environments, both structured and
chaotic. Since graduating with a software engineering degree in 1997, he
has held a number of positions, including development lead, principal
systems engineer, mentor, and professional trainer. His principal skill set
includes mentoring others, architecting complex problems into manage-
able solutions, and optimizing development processes.

Colin was first introduced to the Spring Framework in January 2003 by his mentors, Peter
Den Haan and David Hewitt, and he has never looked back. After a couple of years using the
Spring and Hibernate technology stack to good effect, in May 2005 he became one of the early
adopters of Spring Web Flow, finally finding the missing item in the web development toolbox.

Xv

XVi

ABOUT THE AUTHORS

A self-confessed addict of the green bar that comes from following test-driven develop-
ment and XP, Colin regularly frustrates new team members by introducing a continuous
build environment.

When not hanging around the Spring support forums (http://forum.springframework.org),
Colin can be found out walking with his wife and two dogs, practicing martial arts, attending his
local church, or preparing for the arrival of his first child.

About the
Technical Reviewers

KEITH DONALD is a software consultant specializing in delivering customer-driven, enterprise-
class Java applications. An experienced developer and mentor, Keith has built applications for
customers spanning a diverse set of industries, including network management, information
assurance, food services, education, and retail. He has extensive experience translating busi-
ness requirements into technical solutions.

Keith has been involved with the Spring Framework as a user and core contributor since
July 2003. He is the founder of the Spring Rich Client Project, an emerging module built on
core Spring that substantially reduces the time and effort required to build a well-architected,
enterprise-ready Java desktop application. He is also the colead of the Spring Web Flow mod-
ule, a core Spring web offering that lets developers model business processes that span many
screens in a logical manner.

Keith enjoys speaking and teaching on technical and business software-related topics,
and has a career-oriented weblog where he frequently posts articles. Contact Keith at
keith@interface21.com.

ROB HARROP is a software consultant specializing in delivering high-performance, highly scalable
enterprise applications. He is an experienced architect with a particular flair for understanding
and solving complex design issues. With a thorough knowledge of both Java and .NET, Rob has
successfully deployed projects across both platforms. He has extensive experience across a variety
of sectors, in particular retail and government.

Rob has been a core developer of the Spring Framework since June 2004 and currently leads
the JMX and AOP efforts. In addition to his work on the Spring core, Rob leads the Spring Mod-
ules project, which is working to provide Spring integration for a variety of popular useful open
source tools. He cofounded UK-based software company Cake Solutions Limited in May 2001,
having spent the previous two years working as the lead developer for a successful dot-com
startup.

Rob is the author of five books, including Pro Spring, a widely acclaimed, comprehensive
resource on the Spring Framework. He is a member of the JCP and is involved in the JSR-255
Expert Group for JMX 2.0.

Xvii

xviii

Acknowledgments

A book is never written by the authors alone. It is the product of many people’s expertise and
hard work, time, and superhuman efforts. This book belongs to everyone who had a hand in
producing it.

I'd like to first thank my wife, who has the patience of an angel. Her love and support has
been monumental through this endeavor.

My coauthors deserve huge thanks, as they have added their unique and invaluable
knowledge and insight to make this a stronger book than I could have ever produced alone.
Thanks Darren, Steven, Keith, and Colin!

No one would be reading this book if it weren't for the talent and professionalism at Apress.
Specifically, I owe my heartfelt appreciation to Sofia Marchant and Beckie Brand for coordinat-
ing the many moving parts and making sure the book is the best it can be. A huge shout-out is
owed to Stephanie Provines, without whom we would have capitalized Spring MVC 12 different
ways. Her attention to detail was impressive and extremely valued. I specifically want to thank
Steve Anglin as well, for giving me this opportunity. And to all the people behind the scenes, I
am forever indebted to you.

I'had the pleasure of having Rob Harrop perform the technical review for the book. His
advice was always accurate, helpful, and professional. Thank you, Rob, I was honored to have
you as part of the team.

Thanks to Erwin Vervaet, Dan Leuck, and Colin Sampaleanu for their expert opinions
while reviewing the book. Thanks to Kathleen Fitzgerald for the photo shoot. And finally,
thanks to the Spring Framework developers and community, from whom I have learned an
incredible amount about software development.

Seth Ladd

I thank Seth Ladd for the opportunity to coauthor this book and for writing this excellent book
in the first place. I also thank Rob Harrop for sharing his insights of Spring Web MVC and for
doing the technical review of this book. Many thanks to the core Spring developers for creating
and constantly extending this amazing framework. Thanks also go to Erwin Vervaet and Keith
Donald for creating Spring Web Flow. I also thank my family for supporting me. I especially
thank my girlfriend, Filiz, for her support, for proofreading, and for the warmth and energy
she gives to me. Thank you all.

Steven Devijver

CHAPTER 1

Introduction

I can still remember the time I first realized what the Spring Framework was and how it could
help me. I was tasked with building a web application that will register new businesses with
the local government, and being a Java shop this meant the standard set of frameworks at the
time: Struts, JavaServer Pages (JSP), and Hibernate. Having built many applications with these
technologies, we dove right into development.

When beginning a new application, I always want to improve a few things from the last
product development cycle. This time around, it was time to get serious about two things, unit
testing and good object-oriented design. Sure, I had written plenty of unit tests before, but I
had never begun a project by writing tests first. And although I've been studying and develop-
ing with OOP for many years now, I continue to learn new techniques that help the design of
the application retain sustainability in the face of change.

So, off we went developing the application, writing tests for the domain model, creating a
service layer (a facade for the web layer to integrate with), and beginning the build-out of the
Struts layer. Each layer in the system seemed to progress nicely, but that’s exactly when we ran
into trouble.

As integration between layers began, we noticed that it became harder and harder to write
good tests for the system. The application was using the Service Locator pattern to integrate the
service layer and the web layers together. This pattern was implemented using a static lookup,
which proved impossible to change for our unit tests. The question soon became, “How do we
integrate these components such that both writing tests and running in production is simple
and efficient?”

Enter the Spring Framework.

More precisely, enter an introduction article about the Spring Framework, posted to
TheServerSide (http://www.theserverside.com). The original article has since been updated:
http://www.theserverside.com/articles/article.tss?1=SpringFramework. I still remember
printing it out, stapling it together, and sitting back down to my desk to see what all the fuss
was about. Could it really help me create easily testable applications? Could it really bring
OOP back to web development? There was only one way to find out.

I passed the article off to the boss, and I still remember his Aha moment after reading it.
We decided to go for it and use the framework to integrate the components through the new-
fangled Dependency Injection. This led to easily testing the components, which led to better
code, which led to happier clients. We then replaced our in-house Data Access Object (DAO)
framework, one thing led to another, and we had a highly tested, full-blown Spring MVC
application.

CHAPTER 1 © INTRODUCTION

Of course, ripping out all of the Struts code and in-house cruft took time and energy, but
we found we could do it in stages, lowering the risk of the integration. We made some mistakes
and wrote lots of code, and in the end we had a better product—with a better design and a
clear vision of how we wanted to write web applications from that point onward. In other
words, we found what we were looking for in Spring MVC for our Java web applications.

My hope is that you can use this book to peer deeper into Spring MVC and learn new and
interesting ways to use the framework to enhance your applications. We found that Spring
MVC makes doing the right thing easier, and sometimes simply possible, and we hope you’'ll
find as much joy using it as we do.

—Seth Ladd

Skipping Ahead

If you are the impatient type, you've probably skipped this chapter altogether and headed for
the code. If you're still here, we have a recommendation for you. If you want to jump ahead
and start with building a Spring MVC application, feel free to check out Chapter 4. There you
will find elementary details on how to start building your first Spring MVC application.

We also recommend that you return to the previous chapters to learn about the theory
and background of web application creation with Spring MVC. It will help to provide the
context for the rest of the book.

How to View This Book

You should look at this book as your in-depth guide to the many features and functions of Spring
MVC, including tips and tricks to get the most out of this flexible framework. This book also con-
tains some best practices for developing well-designed and decoupled web applications.

This book is part guidebook, part tutorial, part web development manual. This book works
best as a companion to Pro Spring by Rob Harrop and Jan Machacek (Apress, 2005), because it
does not cover the Spring Framework in a general sense. It is dedicated to and focused on the
best ways to write web applications using the Spring Framework and Spring MVC.

Roadmap

This book covers a lot of ground. Use this roadmap and chapter outline for a quick overview of
what you will find inside and where.

e Chapter 1 is, well, this chapter you're reading now. It contains an overview of the book
and its target audience, as well as where to go for more information and support.

e Chapter 2 is a refresher on the Spring Framework. If you are new to Spring, this can help
paint the picture of why the framework exists and what problems it is trying to solve.
Entire books are devoted to Spring, but this chapter can kick-start your discovery of the
framework. If you are brand-new to the framework, you should purchase a full book on
Spring, such as Pro Spring.

CHAPTER 1 " INTRODUCTION

Chapter 3 covers the architecture and design of typical Spring MVC applications. Light
on code but heavy on design, this chapter presents details on the common layers found
in web applications and some simple guidelines to build applications that take full
advantage of the Spring Framework.

Chapter 4 shows you the goods, with a jump start on Spring MVC. The impatient will
find this a good starting point to get the feel of a real application. This chapter doesn’t
go into much detail, but it does take what you've learned from Chapter 3 to build some
real functionality.

Chapter 5 goes into detail about the real workhorse of Spring MVC: the Dispatch-
erServlet. In this chapter you'll find all the ancillary services that all web applications
require and how they can be configured and extended. Services like multipart file
upload support and Locale resolution are covered here.

Chapter 6 outlines and explains all of the different Controller options found in the
framework. Controllers are written by you to handle incoming web requests, much like
servlets or Struts Actions. Spring MVC provides a rich menagerie of Controllers to help
with many different use cases and requirements.

Chapter 7 introduces the view layer. Here you will find a tour of how views are managed
and how they are integrated into a full Spring MVC application. Darren Davison, com-
mitter on Spring’s view technologies, contributed both Chapters 7 and 8.

Chapter 8 builds upon its predecessor and informs you how to integrate the popular
view technologies with Spring MVC. JSP, Velocity, FreeMarker, and XSLT are just a few of
your options for rendering the view, all covered in this chapter.

Chapter 9 covers the Validation Framework. It also introduces Valang, a new and exciting
validation system to make writing custom validation rules quick and easy. Steven Devijver,
the author of Valang and Spring Framework committer, contributed Chapter 9.

Chapter 10 provides examples of and discussion on testing your Spring MVC applica-
tions, including Spring’s handy mocks and stubs for the Servlet API. We take the view
that testing should be quick and painless, so we use a combination of simple unit tests
and mock objects to write tests that run inside your IDE (and outside of your container).

Chapters 11 and 12 cover the cutting-edge Spring Web Flow, a framework for writing
conversational use cases on the web. This project, originally developed by Erwin Vervaet
and brought into the Spring Framework fold by Keith Donald, allows you to declaratively
build use cases that span multiple requests. Colin Yates provided these chapters.

Appendix A introduces an excellent tool for documenting your Spring applications. The
BeanDoc tool, written and maintained by Darren Davison, is like Javadoc for your bean
definition XML files. This handy and easy tool integrates with your build to produce
HTML documentation complete with images of the dependencies between beans.

This appendix was contributed by Darren Davison, author of BeanDoc.

Appendix B provides a bit of a sidebar; it introduces one way to integrate AJAX tech-
nologies into your Spring-powered web application. Darren Davison explains how to
integrate DWR, or Direct Web Remoting (http://getahead.1td.uk/dwr), with your
Spring MVC applications.

CHAPTER 1 © INTRODUCTION

Target Audience

Even though this book’s title contains the word expert, you don’t need to be an expert in Java
or Spring to take advantage of it. However, to get the most out of this book, you should be
familiar with Java and have created at least one web application with it.

You won't find discussions on basic Servlet API constructs or how to set up and configure
your favorite servlet container. Many great books and resources—including countless web
resources—already exist for this. We assume that you have at least a passing knowledge of
what the Servlet API provides and how to deploy a Java web application. We also assume you
are a competent Java developer, familiar with the language and its APIs.

Although you need not be a Spring Framework expert, it helps if you have investigated it
to get a feel for what it is and what it brings to the table. We merely provide an introduction to
the framework in this book. We recommend that you have a reference resource handy to turn
to when we mention a Spring concept that you might not be familiar with.

If you are familiar with Java web programming and curious how Spring MVC stacks up
against other request/response web frameworks, then this book will certainly help you deter-
mine that.

If you have built a few web applications with Spring MVC, we believe this book can still
offer you great value. We provide many little tips and tricks, including some best practices
for making the most from the web architecture in general. This book also covers some of the
motivations for the designs of the components of Spring MVC, providing valuable insight into
why the elements were built that way and how they connect.

For More Information

When you run into a situation that this book can’t cover, you'll find that the Spring Framework
has a vibrant and supportive community ready to help you out. The Spring community is
made up of Java developers who take OOP, testability, and good design seriously, so you'll be
in good company.

* The Spring Framework’s home page, http://www.springframework.org, is the place to
get news about the framework and links to many resources found on the web. Use this
as a jumping-off point to downloads, forums, CVS, and issue tracker services.

e The Spring Framework Support Forums, http://forum. springframework.org, are your
first choice when you want to ask a question or have a problem. Here you can choose
from many forums, including those dedicated to Spring MVC and Spring Web Flow, and
even one on architectural issues. These forums are active and helpful.

e The user mailing list is largely deprecated in favor of the support forums. However, you
can access the archives via Spring’s SourceForge page, http://sourceforge.net/projects/
springframework. There you will also find the developers’ mailing list, useful if you want
to track development issues.

* You will find that the excellent Reference Manual, available from
http://www.springframework.org/documentation, is up-to-date and quite full of content.
Spring is one open-source project that does not skimp on its bundled documentation.

CHAPTER 1 " INTRODUCTION

* Spring uses JIRA for its issue and bug tracking, found at http://opensource2.
atlassian.com/projects/spring/secure/Dashboard. jspa. You can use this site to
register new bugs you have found or to check whether someone else has discovered
the issue first. This site also has the roadmap for future versions of the framework.

» For more on Spring Web Flow, that project has a very active Wiki page found at http://
opensource2.atlassian.com/confluence/spring/display/WEBFLOW/Home. There you will
find more tutorials, documentation, and links to articles on this up-and-coming project.

With the Spring Framework, there is no shortage of support options available, including
many other books and professional consulting organizations and individuals.

Sample Applications

Sometimes looking at raw code is the only way to make the light bulb go off. If you're stuck
and want to see how others might do it, Spring comes with many sample applications with full
source code. These are excellent opportunities to investigate real working apps to see exam-
ples of Spring MVC and its integration with the rest of the application.

The sample applications can be found in the samples directory of the Spring Framework
distribution or CVS repository.

Table 1-1. Sample Web Applications

Name Description

countries Demonstrates paged list navigation, locale and theme switching, localized
view definitions, page composition through view definitions, and
generation of PDF and Excel views.

imagedb Demonstrates BLOB/CLOB handling, native JDBC connection handling,
multipart file uploads, and Velocity integration.

jasperdemo Demonstrates using JasperReports as the view technology.

JPetStore Full application with all layers, using either Spring MVC or Struts for the

web layers. Also demonstrates different remoting options.

PetClinic Demonstrates integration with JDBC, Hibernate, Apache OJB, and Oracle
TopLink. Also demonstrates JMX integration.

webapp-minimal Minimal web application structure, including build scripts.

Spring 2.0
This book was written while Spring 2.0 was under development, so everything mentioned here
will work with 2.0 or earlier. Nothing is 2.0 specific, so don't worry if you are using an earlier
version of the framework.

The biggest addition to Spring’s web capabilities with Spring 2.0 is the formal bundling
of Spring Web Flow and Spring Portlet support. Spring MVC stays largely the same as previous
versions, but does gain a few helpful simplifications and shortcuts. The changelog for the lat-
est version is currently found at http://static.springframework.org/spring/docs/current/
changelog. txt.

CHAPTER 1 © INTRODUCTION

Summary

With so many options available for web frameworks, many of them perfectly fine solutions, it
might come down to which framework is simply more enjoyable to work with. We believe that
using Spring MVC will not only lead you to better designs and code, but also inspire fun devel-
oping with it. It really is a joy to apply good OOP design techniques and to write applications
that are easily tested.

We have found that using Spring MVC has enhanced our ability to develop and deliver
quality applications, and we want you to have the same level of success that we have enjoyed.
So go forth, use Spring MVC, and bring OOP back to web programming!

CHAPTER 2

Spring Fundamentals

The Spring Framework has pumped new life into Java development. In the period immedi-
ately following the dot com bubble burst, Java applications were facing an uncertain future.
The initial promises of J2EE had been thoroughly debunked, .NET was poised to offer a strong
alternative, and the industry was generally sobering. Companies began to expect more appli-
cation for less money and effort, and it wasn't certain that the J2EE platform would be able to
deliver.

After the release of Rod Johnson’s Expert One-on-One J2EE Design and Development (Pro-
grammer to Programmer) (Wrox, 2002) and its eventual evolution into the Spring Framework,
the Java landscape had a new beacon of hope. The Spring Framework encapsulates a refresh-
ing new beginning to Java development. First and foremost, it has enabled the return of the
plain old Java object (POJO) to enterprise development. The framework combines best prac-
tices learned from actual deployments, with best-of-breed third-party utilities, to deliver a
complete package.

Before we dive into Spring MVC and Web Flow, we feel it important to touch on a few very
important concepts from the Spring Framework that we will rely on for the rest of the book.
The Spring Framework has a unique, lightweight/full-featured duality, and we won't attempt
to glance over the framework in this chapter. That job has been performed quite successfully
by other works such as Pro Spring, or the Spring documentation. We wish to reintroduce only
the core principles we believe to be important. If you are new to Spring, or need a refresher,
there are many great resources available. Refer to Pro Spring, by Harrop and Machacek (Apress,
2005), or the online Spring Framework documentation (http://www.springframework.org).

Inversion of Control

You might hear the terms Inversion of Control and Dependency Injection used interchangeably,
but in fact they are not the same thing. Inversion of Control is a much more general concept,
and it can be expressed in many different ways. Dependency Injection is merely one concrete
example of Inversion of Control.

Inversion of Control (or IoC) covers a broad range of techniques that allow an object to
become a passive participant in the system. When the IoC technique is applied, an object will
relinquish control over some feature or aspect to the framework or environment. Some exam-
ples of control include the creation of objects or the delegation to dependent objects. IoC can
remove these concerns from objects with Dependency Injection and aspect-oriented pro-
gramming, respectively.

CHAPTER 2 = SPRING FUNDAMENTALS

IoC Example

Many systems of medium to large scale require some sort of a security system. Performing
authorization, authentication, and accounting is a concern of the application that typically
cuts across the entire object model.

A first attempt at implementing security might place the authorization calls directly
inside the domain object, effectively forcing the object to control security itself. This can lead
to a bloated object model implementation, because now the security code has become inter-
laced across the system, obscuring the business logic (Listing 2-1).

Listing 2-1. Simple POJO with Control of Security

public class BankAccount {
public void transfer(BigDecimal amount, BankAccount recipient) {
SecurityManager.hasPermission(this, Permission.TRANSFER,
SecurityContext.getCurrentUser());
recipient.deposit(this.withdraw(amount));

}

public void closeOut() {
SecurityManager.hasPermission(this, Permission.CLOSE OUT,
SecurityContext.getCurrentUser());
this.open = false;

}

public void changeRates(BigDecimal newRate) {
SecurityManager.hasPermission(this, Permission.CHANGE RATES,
SecurityContext.getCurrentUser());
this.rate = newRate;

Listing 2-1 shows a simple BankAccount class with typical business logic methods
(transfer, closeout, changeRates). These method implementations are cluttered with nearly
duplicate security-related checks, obscuring the original intent of the business logic. In addi-
tion, the SecurityManager calls add a dependency that will be difficult to work with when we
unit test this class.

To remove the clutter and simplify the implementation, the BankAccount should let go of
this security responsibility altogether (Listing 2-2). In effect, the control over security should
be turned inside out from the object to the surrounding framework.

CHAPTER 2 © SPRING FUNDAMENTALS

Listing 2-2. Simple POJO with Security Concerns Relinquished

public class BankAccount {
public void transfer(BigDecimal amount, BankAccount recipient) {
recipient.deposit(this.withdraw(amount));

}

public void closeOut() {
this.open = false;

}

public void changeRates(BigDecimal newRate) {
this.rate = newRate;

}

This Inversion of Control has freed the object from the cross-cutting constraint of security
authorization. The end result is a removal of duplicate code and a simplified class that is
focused on its core business logic.

So how do we get the security checks back into the system? You can add the authorization
mechanism into the execution path with a type of IoC implementation called aspect-oriented
programming (AOP). Aspects are concerns of the application that apply themselves across the
entire system. The SecurityManager is one example of a system-wide aspect, as its hasPermission
methods are used by many methods. Other typical aspects include logging, auditing, and trans-
action management. These types of concerns are best left to the framework hosting the
application, allowing developers to focus more on business logic.

An AOP framework, such as Spring AOP, will interject (also called weaving) aspect code
transparently into your domain model at runtime or compile time. This means that while we
may have removed calls to the SecurityManager from the BankAccount, the deleted code will
still be executed in the AOP framework. The beauty of this technique is that both the domain
model (the BankAccount) and any client of the code are unaware of this enhancement to the
code.

To explain a little more, it helps to talk about a concrete implementation of AOP
as applied by Spring. The Spring Framework uses what is called proxy-based AOP. These
proxies essentially wrap a target object (the BankAccount instance) in order to apply aspects
(SecurityManager calls) before and after delegation to the target object. The proxies appear as
the class of the target object to any client, making the proxies simple drop-in replacements
anywhere the original target is used.

Note Spring also supports AspectJ, which is implemented not with proxies but with compile-time
weaving. Weaving is a more capable AOP implementation and a nice alternative to the more simple proxy
solution.

10

CHAPTER 2 © SPRING FUNDAMENTALS

Figure 2-1 illustrates the sequence of calls when a BankAccount is closed out, using proxy-

based AOP to perform the security checks.
Implements
BankAccount

-

-

| BankTeller | | BankAccountF;roxy | | SecurityManager | | Bank Account
1

: close account

2: closeQut

3: hasPermission

»

4: closeQut

— v

Figure 2-1. Call sequence with AOP SecurityManager

Asyou can see from the preceding diagram, the SecurityManager calls are handled by the
proxy before it delegates to the real BankAccount class.

For more information on aspect-oriented programming, we recommend Ramnivas
Laddad’s Aspect] in Action (Manning Publications, 2003) or Adrian Colyer’s Eclipse Aspect]:
Aspect-Oriented Programming with Aspect] and the Eclipse Aspect] Development Tools (Eclipse/
Addison-Wesley, 2004). For more information on how Spring supports and implements AOP,
consult Pro Spring.

Summary

When you apply an AOP solution to your system, you are actually applying a form of IoC. For
instance, introducing security aspects to your object model is merely inverting the responsi-
bility from the object layer to the framework layer.

The Spring Framework provides a robust implementation of AOP. Every time you use the
declarative transaction management, you are using AOP. Thus, you are using another form of
IoC. In this form, the object model becomes a passive participant in transaction management,
relinquishing control over when to commit or roll back to the framework.

To summarize, Inversion of Control is the broad concept of giving control back to the
framework. This control can be control over creating new objects, control over transactions, or
control over the security implementation. Aspect-oriented programming is one technique to

CHAPTER 2 © SPRING FUNDAMENTALS

implement IoC. Dependency Injection is another technique to implement, which we will dis-
cuss in the following section.

Dependency Injection

The concept of Dependency Injection is core to the Spring Framework. A specialization of Inver-
sion of Control, Dependency Injection is a technique that frameworks use to wire together an
application. The framework performs the work of connecting an application’s dependencies
together, removing the wiring logic and object creation from the application code completely.

We will contrast Dependency Injection with an older technique named the Service Loca-
tor pattern. We will show how the Service Locator pattern harms the testability and flexibility
of an application. We then show how Dependency Injection, and Spring’s implementation, fix
this issue.

In nearly all applications there are at least two participants, and these two participants
are required to somehow collaborate. The trick is to connect these two objects without locking
in the connection or requiring a certain environment to even exist for the connection to be
made.

For our example, we will consider the following use case. A cash register must obtain up-
to-date prices for items being purchased. The prices are stored and calculated inside a large
legacy system, but the cash register is physically located at the point of sale. The CashRegister
object must have a reference to the price database to perform its work.

We begin by defining the interface to represent the cash register. It has one method,
calculateTotalPrice, which takes a shopping cart and returns the total price for all items
in the cart.

public interface CashRegister {
public BigDecimal calculateTotalPrice(ShoppingCart cart);

}

Next, we define the interface for the service that will provide the real time price lookup.
This interface has one method, lookupPrice, to return the price for an item.

public interface PriceMatrix {
public BigDecimal lookupPrice(Item item);

}

Finally, we will create the implementation of the CashRegister interface. It simply creates
its own dependency, an instance of PriceMatrix.

public class CashRegisterImpl implements CashRegister {
private PriceMatrix priceMatrix = new PriceMatrixImpl();

public BigDecimal calculateTotalPrice(ShoppingCart cart) {
BigDecimal total = new BigDecimal("0.0");
for (Item item : cart.getItems()) {
total.add(priceMatrix.lookupPrice(item));
}

return total;

11

CHAPTER 2 = SPRING FUNDAMENTALS

There are three major issues with the preceding implementation. The first is that every
instance of CashRegisterImpl has a separate instance of PriceMatrixImpl. If it is costly to cre-
ate or maintain that object, then this is a waste of system resources. With heavy services (those
that are remote or those that require connections to external resources such as databases) it is
preferable to share a single instance across multiple clients.

The second and most important issue is that the CashRegisterImpl now has concrete
knowledge of the implementation of PriceMatrix. The CashRegisterImpl class should not
know the details of the implementation of its dependency interfaces. By explicitly creating
the instance of PriceMatrixImpl, the CashRegisterImpl has tightly coupled itself to the con-
crete implementation class.

The third issue with the preceding implementation is a direct result of the tight
coupling to the implementation class. By explicitly creating its own dependent objects, the
CashRegisterImpl creates a difficult test situation. One of the most important tenets of writing
unit tests is to divorce them from any environment requirements. The unit test itself should
run without connecting to outside resources. If we were to test the calculateTotalPrice
method as is, we would have no choice but to require a fully functioning PriceMatrixImpl.
Not only would this slow down our unit test runs, it would now couple our tests to resources
we can't control. What if the price returned by lookupPrice changes over time? Our unit tests
would have to stay in sync with the physical resource, increasing the burden of maintaining
the tests.

If we can’t interact with a real PriceMatrix, how do we test our calculateTotalPrice
method? We will create a stub instance of PriceMatrix, one where we can control the condi-
tions and outcomes of the method calls. This technique is called a mock, and it is very useful
in unit tests. For a full explanation of mock objects and their uses, refer to JUnit in Action by
Husted and Massol (Manning Publications, 2003). In the meantime, it is sufficient to think
about a mock object as a fake object that looks like a particular class, but whose behavior is
controlled by the test author.

As you can see, we have noticed three deficiencies of the above implementation. The
responsibility of creating the object is left to the method, prohibiting the use of a shared
PriceMatrixImpl. The method is also difficult to test, as we need to somehow insert a mock
object in place of the real thing. Most importantly, the client code is now aware of implemen-
tation details of its dependency, creating two tightly coupled classes.

To address the first issue, we will remove the explicit instantiation of the PriceMatrix
dependency. This frees the CashRegisterImpl from the burden of object creation and from the
knowledge of any physical implementation details. More importantly, the PriceMatrixImpl is
no longer located inside the CashRegisterImpl instance. By moving the dependency out of the
client object, it is no longer solely owned by CashRegisterImpl, and can now easily be shared
among all classes. The question then becomes, how do we now locate the dependency?

Service Locator

Enter the Service Locator pattern, our first attempt at fixing the method. The Service Locator
pattern encapsulates the actions taken to obtain a reference to the object required. This
shields the client from knowing how, or even where, to obtain a reference to the object.

This pattern emerged as a workaround from using Java Naming and Directory Interface
(JNDI) to obtain references to other Enterprise JavaBeans (EJBs) in a J2EE application. Using
JNDI to obtain a simple object reference can be cumbersome and can require a lot of defen-

CHAPTER 2 © SPRING FUNDAMENTALS

sive programming. To protect the client, and to reduce code duplication, the Service Locator
pattern was born. It usually manifests itself as a static method, returning a single instance of
the requested object.

We can now change our initial code to the following:

public class CashRegisterImpl implements CashRegister {
private PriceMatrix priceMatrix;

public CashRegisterImpl() {
priceMatrix = Servicelocator.getPriceMatrix();

}

public BigDecimal calculateTotalPrice(ShoppingCart cart) {
BigDecimal total = new BigDecimal("0.0");
for (Item item : cart.getItems()) {
total.add(priceMatrix.lookupPrice(item));

}

return total;

Using this Service Locator, the class no longer has to manage object creation. The location
of the actual instance of PriceMatrix is now independent of the client class. In a managed
environment, such as J2EE servers, this point is critical. The act of obtaining the resource is
now hidden from the client so that it may get on with the work at hand. The first problem we
had with the original implementation has been solved.

The other benefit of using this Service Locator is that our client has no knowledge of the
concrete implementation of PriceMatrix. This shields the client, allowing the implementation
of PriceMatrix to evolve independently of CashRegisterImpl.

The third problem, the lack of testability, is unfortunately still with us, even after the change
to the Service Locator. Creating a unit test for the preceding method is extremely difficult, because
the implementation relies on a functioning PriceMatrix object. The test should be written with a
mock PriceMatrix, but there is no way to insert the mock object during testing.

The Service Locator pattern, implemented here as a static method, falls down in a test
scenario. The static Servicelocator.getPriceMatrix is difficult to change during a test run.
The locator method has to be told to return a mock PriceMatrix during the test, and a real
PriceMatrix during deployment.

This situation has illustrated the need to swap different implementations of
PriceMatrix without affecting the client. To effectively do this, the client (in this case, the
calculateTotalPrice method) must not actively participate in the construction or retrieval of
the resource. The resource must be given to the client.

13

14

CHAPTER 2 " SPRING FUNDAMENTALS

Dependency Injection

Instead of the lookup call to the Service Locator, the framework can provide a reference of
type PriceMatrix to the CashRegisterImpl class. This reduces the active work the client has
to do to obtain a reference to zero, making it a passive client of the framework.
The responsibility for object creation and object location has been inverted, from the
class to the framework. This wiring of dependencies is Dependency Injection in action.
Spring supports Dependency Injection in two main ways, and both are extremely simple.
In fact, both use plain old Java idioms.

Tip There is a third way, called method-based injection, which takes advantage of Spring’s AOP support.
It's more complicated, however no less useful, so it is not mentioned here. Consult the documentation or
Pro Spring for more information on method-based injection.

The first type of Dependency Injection we will cover is constructor-based injection. This
concept merely means the dependency is provided via the constructor at object creation time.
For instance, to use constructor-based injection on our CashRegisterImpl object, the class
would look as shown in Listing 2-3.

Listing 2-3. Constructor-Based Dependency Injection

public class CashRegisterImpl implements CashRegister {
private PriceMatrix priceMatrix;

public CashRegisterImpl(PriceMatrix priceMatrix) {
this.priceMatrix = priceMatrix;

}

public BigDecimal calculateTotalPrice(ShoppingCart cart) {
BigDecimal total = new BigDecimal("0.0");
for (Item item : cart.getItems()) {
total.add(priceMatrix.lookupPrice(item));
}

return total;

That'’s it! The framework is responsible for obtaining the reference to a PriceMatrix object
and then calling the constructor of the CashRegisterImpl and providing the PriceMatrix
object.

The class is obeying what is commonly called the Hollywood Principle. In other words,
the framework’s contract is “Don’t call me; I'll call you.” Even more technically, the contract is
“Don’t ask for the resource; I'll give it to you.”

CHAPTER 2 © SPRING FUNDAMENTALS

Another type of Dependency Injection that's more popular with Spring is setter-based injec-
tion; just what it sounds like, it uses setter methods to inject the dependency. To use setter-based
injection, the constructor will be removed and replaced with a simple JavaBean-compliant setter,
as shown in Listing 2-4.

Listing 2-4. Setter-Based Dependency Injection

public class CashRegisterImpl implements CashRegister {
private PriceMatrix priceMatrix;

public setPriceMatrix(PriceMatrix priceMatrix) {
this.priceMatrix = priceMatrix;

}

public BigDecimal calculateTotalPrice(ShoppingCart cart) {
BigDecimal total = new BigDecimal("0.0");
for (Item item : cart.getItems()) {
total.add(priceMatrix.lookupPrice(item));
}

return total;

The framework simply calls the setter with the PriceMatrix instance, and now CashRegister
has everything it needs. By not using the constructor, the CashRegister object can now be cre-
ated without the immediate availability of a PriceMatrix, making its life cycle a bit more flexible.

Which type should you use, constructor-based injection or setter-based injection? This
is purely a matter of taste. The Spring Framework does not mandate one method or the other.
In fact, you may even use both methods on the same bean. Those who prefer constructor-
based injection claim that it enforces a correctly initialized object due to the intrinsically
self-validating nature of constructors. A potential downside to constructor-based injection is
the risk of a proliferation of constructors to accommodate different use cases. As use cases
grow, each requiring different sets of dependencies, so shall grow the number of constructors.

Those who prefer setter-based injection argue that it is more flexible (able to mix and
match for different situations) or that it is self-documenting. For instance, compare the fol-
lowing two bean definition examples in Listings 2-5 and 2-6, and consider which tells you
more about the relationship between the object and its dependencies.

Listing 2-5. Example A

<bean id="addressService" class="org.example.addr.AddressServiceImpl">
<constructor-arg ref="zipCodeService" />
<constructor-arg ref="uspsValidator" />
<constructor-arg ref="googleMapService" />

</bean>

15

16

CHAPTER 2 = SPRING FUNDAMENTALS

Listing 2-6. Example B

<bean id="addressService" class="org.example.addr.AddressServiceImpl">
<property name="zipCodeService" ref="zipCodeService" />
<property name="postalServiceValidator" ref="uspsValidator" />
<property name="mappingService" ref="googleMapService" />

</bean>

You don’t have to know how to read Spring’s bean definition XML format to tell which
configuration exposes more information. Example B uses setter-based injection, clearly
indicating which properties have which value.

The choice of Dependency Injection methods is yours; feel free to mix and match the two
approaches in your application.

The main point is that the framework is responsible for wiring the application together,
before the application starts. Dependencies are injected into objects without those objects
actively requesting anything. Another benefit of Dependency Injection is the client doesn’t
know the details of the physical implementation of the dependency. In other words, the client
code is not coupled to any concrete implementation. As long as the dependency implements
the interface requested, the contract is fulfilled.

Unit Testing Benefits

Dependency Injection easily solves our concern of testability. By using a setter method and
removing the Service Locator (potentially removing tremendous amounts of JNDI code), we've
divorced our CashRegisterImpl object from any sort of environment prerequisite. This means
we can easily run CashRegisterImpl outside of any container and even independently of the
framework itself.

The following JUnit test example illustrates how easy it is to test a method that doesn’t use
a Service Locator. The code creates a mock to stand in for a real PriceMatrix. The mock then is
set into the CashRegisterImpl class we are testing. This isolates our class so that the only code
that is being tested is the CashRegisterImpl. All dependencies are under our control, through
their mock replacements.

public void testCalculateTotalPrice() {
Mock mockPriceMatrix = mock(PriceMatrix.class);
PriceMatrix priceMatrix = (PriceMatrix) mockPriceMatrix.proxy();
cashRegister.setPriceMatrix(PriceMatrix);
// mock object expectations set..
assertEquals(42.00, cashRegister.calculateTotalPrice(cart));

In the context of a unit test, the framework itself is absent. There’s no mention of Spring.
That’s what we call lightweight.

Summary

Dependency Injection is a technique to wire an application together without any participation
by the code that requires the dependency. The client usually exposes setter methods so that
the framework may inject any needed dependencies. The client now allows others to manage

CHAPTER 2 © SPRING FUNDAMENTALS

the life cycle of the dependencies. The client also becomes much more testable. The client has
no environment-specific code to tie it to a particular framework.

Dependency Injection is a core concept of the Spring Framework, and we will take advan-
tage of it throughout all the code that appears in this book. This has been a high-level overview
of the capabilities of IoC. You may find more helpful information in Pro Spring or via Martin
Fowler’s Dependency Injection article (http://www.martinfowler.com/articles/injection.html).

Spring ApplicationContexts

Looking specifically to the Spring Framework, we now turn our attention to the
ApplicationContext. It is this object that actually forms the heart and soul of a Spring
application. It is inside the ApplicationContext that the actual Dependency Injection is per-
formed. If Dependency Injection is the core concept of Spring, then the ApplicationContext is
its core object.

The ApplicationContext is a specialization of a BeanFactory, which is the registry of all the
objects managed by Spring. Under normal circumstances, the BeanFactory is responsible for
creating the beans, wiring them with any dependencies, and providing a convenient lookup
facility for the beans. The BeanFactory is also aware of some Spring-specific interfaces, such as
BeanNameAware and InitializingBean. These interfaces, along with others, help to define the
life cycle of beans managed by the BeanFactory.

The ApplicationContext can be thought of as a full-service BeanFactory. Applications
typically interact with an ApplicationContext instead of a BeanFactory. Web applications, for
instance, have their own specialized WebApplicationContext.

ApplicationContexts add additional features to a BeanFactory. They can automatically
process the BeanFactory after initialization by running BeanFactoryPostProcessors. They
provide internationalization (i18n) facilities for resolving messages, an event-routing mecha-
nism for loosely coupled producers and consumers, and support life cycle interfaces such as
ApplicationContextAware.

The ApplicationContext is normally configured via an XML file. This file uses a simple
DTD that sacrifices brevity for readability. A simple Spring applicationContext.xml looks
like this:

<?xml version="1.0"?>
<IDOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN"
"http://www.springframework.org/dtd/spring-beans.dtd">
<beans>

<bean id="cashRegister" class="org.example.CashRegisterImpl">

<property name="priceMatrix" ref="priceMatrixBean" />

</bean>

<bean id="priceMatrixBean" class="org.example.PriceMatrixImpl" />
</beans>

The previous configuration specified two beans for the ApplicationContext to create and
manage. The first is the CashRegister instance, the second being an instance of PriceMatrix.
The <property> tag defines a property for Dependency Injection. In this case, we want the
ApplicationContext to find a bean inside its context with the name of priceMatrixBean, and
use it when calling the setPriceMatrix method on the cashRegister instance.

17

18

CHAPTER 2 = SPRING FUNDAMENTALS

The preceding example can be roughly translated into the following Java code:

CashRegister cashRegister = new CashRegisterImpl();
PriceMatrix priceMatrixBean = new PriceMatrixImpl();
cashRegister.setPriceMatrix(priceMatrixBean);

Following the tenets of zero impact of the framework on your code, you usually won’t
interact with the ApplicationContext directly. To keep your system lightweight, avoid interact-
ing directly with the ApplicationContext. We'll cover suggested application design later,
showing how to use the ApplicationContext without embedding it into your object model.

The ApplicationContext has alot of features and is very powerful. If you are not already
comfortable with this object, we recommend you review the capabilities of the BeanFactory
and the ApplicationContext using Pro Spring. It covers the capabilities, features, and configu-
ration of these core Spring objects in great detail. We will also use the XML file format
tremendously, so we encourage you to become familiar with it.

The Return of the P0JO

We've covered Dependency Injection and the Spring ApplicationContext, the two most central
concepts in the Spring Framework. They are but tools, created only to enable applications
(yes, even web applications) to be written entirely with plain old Java objects (POJOs). You can
now develop web applications that are object oriented and without a trace of the framework
in your core business logic. The Spring Framework and, by extension, Spring MVC go out of
their way to get out of your way. This applies to the whole range of applications you might
write, from simple web applications to large enterprise web applications.

One of the most important topics this book covers is that your web applications can be built
using strong OO principles. You will find yourself focusing on the business logic embedded in
your object model, instead of inside framework-specific code. This opens up the door to all of
the design patterns, principles, and practices for effective object-oriented development. We will
show you how to build out the domain object model first, and then the framework will enhance
it and expose it as a web application.

The POJO has come full circle and regained its place at the top of the food chain. You
can now take advantage of all those concepts you learned about when studying OOP, such as
inheritance, encapsulation, and polymorphism. The Spring Framework is all about transpar-
ently serving and enhancing your business domain objects. You no longer have to sacrifice a
design principle just to fit into the framework.

For example, instead of subclassing a framework abstract class (and destroying your
one chance at inheritance) you are free to subclass whatever class makes sense. The Spring
Framework is considered lightweight because it doesn't weigh down your application code by
imposing intrusive restrictions. Your POJOs remain POJOs and your domain object model
remains independent of any framework or environment.

We will take advantage of Spring’s acceptance of POJOs throughout our coverage of Spring
MVC. Developing systems with POJOs allows us to concentrate on business logic and solid OO
design principles.

CHAPTER 2 © SPRING FUNDAMENTALS

Impact on Web Applications

What does all this mean for developing web applications, specifically Spring MVC? Simply put,
you will find that your web applications will become simpler as your business logic is unen-
cumbered by the framework. The web framework’s role in your application will be minimized
to providing translation layer between the HTTP world and your business domain world.

You will write more POJOs, and you will build more successful object hierarchies and
domain models. You will write more tests because it will be easier to isolate pieces of code.
This will increase the quality of your code, and thus the application. Having a strong test suite
will increase the confidence you have in the application functioning correctly. This confidence
will allow you to refactor more, take risks, and react to evolving business requirements faster.

Summary

We reintroduced the Spring Framework and pointed out the three concepts we consider most
important to understand.

Dependency Injection, a type of Inversion of Control, is a mechanism to insert dependen-
cies into application code. The application code is a passive participant, allowing it to remain
free of framework-specific code. By relying on Dependency Injection, the application does not
manage dependency creation or have to actively locate it. The application code becomes very
testable.

The ApplicationContext is Spring’s main object registry and integration point. It is
usually configured via an XML file in which beans and their dependencies are declared. The
ApplicationContext has many features, but its central role is object creation and Dependency
Injection. In most cases, the ApplicationContext will be a transparent piece of our applica-
tions, freeing our application logic from Spring-specific integration.

Finally, all of this has been leading up to an emphasis on developing systems with plain
old Java objects. The POJO is a simple concept with powerful repercussions. Using strong
object-oriented development techniques, systems developed with POJOs are testable and
flexible. Most importantly, they allow the developer to concentrate on business logic and the
problem domain instead of how to deal with the framework.

In the next chapter, we will cover principles for web application design, including typical
layers and where the Spring Framework fits in.

19

CHAPTER 3

Spring MVC Application
Architecture

Before we begin our exploration of the internals of Spring MVC, it is important to discuss
how a typical Spring MVC is built. In this chapter, we will answer such questions as, “Where
should the business logic live?” and “What are the correct levels of abstractions?” We will pres-
ent the entire picture of a Spring MVC web application to better explain the individual roles
that Spring MVC plays and where it fits in the overall architecture.

Mastering a new framework requires more than studying its APIs. Examining and under-
standing the architecture of a complete Spring MVC web application provides you with clues
and motivations for the design of the framework itself. This allows for a higher level of under-
standing, allowing you to make more contextually sound choices when building your
application.

Layers of Abstractions

Spring MVC applications are broken down into a series of layers. We consider a layer to be a
discrete, orthogonal area of concern within an application. For instance, all of the persistence
code is considered a separate layer from the view rendering code. Layers are abstractions
within an application, and interfaces provide the contract by which layers interact. Some lay-
ers might be well hidden, used only by the layer immediately above it. In contrast, the most
important layer (the domain model itself) spans nearly all the other layers in the system.

Layers are conceptual boundaries and are not necessarily physically isolated. More often
than not, all of the layers will be located within the same virtual machine for a web applica-
tion. For a good discussion on application distribution, consult Rod Johnson’s Expert
One-on-One J2EE Design and Development (Wrox, 2002).

Note Are layers the same thing as tiers? Many people use the two terms interchangeably, but separating
the two helps when discussing the application and its deployment. A /ayer is a logical abstraction within an
application. A tieris best thought of as a physical deployment of the layers. Thinking in layers can help the

software developer, while thinking in tiers can assist the system administrator. Layers are mapped onto tiers.

21

22

CHAPTER 3 © SPRING MVC APPLICATION ARCHITECTURE

Thinking in layers can help conceptualize the flow through an application. Visualizing
the application’s layers as a cake (layers of cake stacked one on another) is a common and
convenient way to illustrate how the application is organized. Typical metaphors such as
“down into persistence” and “back up to the user interface” refer to a cake, and denote a sense
of vertical direction, reinforcing the metaphor. Figure 3-1 illustrates the common, highly gen-
eralized layers for web applications.

Top Layer
(User Interface, Web)

Middle Layer
(Service, Domain Model)

Bottom Layer (Persistence)

Figure 3-1. General, high-level layers in a web application

Typically, any persistence functionality is at the bottom of the cake, while the user inter-
face is at the top. What is found in the middle, and how it is organized, is the subject of this
chapter. We will use this metaphor when explaining our architecture.

Breaking it down further, typical Spring MVC applications have at least five layers of
abstraction that you as a developer will code to. The layers are

e user interface
e web

* service

domain object model
* persistence

You might notice that common applications elements, such as transaction management
or security, are not in the preceding list. If you are familiar with the Spring Framework and its
extensive use of aspect-oriented programming (AOP), this won’t come as a surprise. Transac-
tion management, for instance, is considered a transparent aspect of a system, not a full layer.

Figure 3-2 more specifically illustrates the relative placement of the different layers.

User Interface

2
o Web
=
f=
g Service
(=]
Persistence

Figure 3-2. Spring MVC application layers

CHAPTER 3 © SPRING MVC APPLICATION ARCHITECTURE

You will notice that the domain model vertically spans all the other layers. This is because all
the other layers have a dependency on the domain model. It is the only layer that crosscuts
all the rest.

Layer Isolation

Isolating problem domains, such as persistence, web navigation, and user interface, into sepa-
rate layers creates a flexible and testable application. Implementations of each layer will vary
independently, increasing the flexibility of the application. Decreasing the coupling between
areas of the application will increase the testability, making it easier to test each part of the
application in isolation.

This isolation is accomplished by minimizing the amounts of dependencies between the
layers. The fewer dependencies a layer has upon itself, the less costly it is to change that layer.
It is a best practice to ensure that a layer is required only by one or two other layers. Avoid hav-
ing one single layer required by many different parts of the application.!

You can avoid dependency explosion in at least two ways. If a layer begins to employ too
many layers, consider creating a new layer of abstraction wrapping all the previous interac-
tions. On the other hand, if you find that a layer has permeated throughout many layers,
consider if that layer is itself an aspect of the system. If the functionality can be applied across
great swaths of the system transparently, use Spring’s AOP functionality to remove the explicit
dependency from your code.

The important point to remember is that one of the great benefits of layering an applica-
tion is it creates a decoupled design. When you discover a layer or facet of the application that
is too intrusive, refactor it to another abstraction or through AOP. This will keep your applica-
tion flexible and testable.

Java Interface As Layer Contract

The Java interface is the key enabler to building an application with layers. The interface is a
contract for a layer, making it easy to keep implementations and their details hidden while
enforcing correct layer usage.

The benefits of low coupling provided by interfaces have been well known for some time.
Their full benefits have been hindered because the instantiation of concrete types was still
required. The promise of implementation abstraction wasn’t quite realized—this is, before
Spring and other Dependency Injection frameworks. Spring helps interfaces truly shine,
because it handles the creation of the objects instead of your application code.

Treating an interface as a contract between layers is very helpful in large team settings.
Coordinating the many resources often required by large projects is difficult, and it is rare that
integration between layers happens precisely. Interfaces help to speed development between
teams because of their lightweight nature. Developers program against the interface, while its
implementation continues to be built and tested.

On a practical level, the Spring Framework works especially well with interfaces. Its AOP
facilities are built around JDK proxies,2 making it easy to extend an implementation of an
interface with additional services.

1. Exception to this rule is the domain model, which typically spans many layers.

2. Spring can weave aspects into classes without interfaces, but a few caveats are involved. For one, the
use of cglib (http://cglib.sourceforge.net) is required.

23

24

CHAPTER 3 = SPRING MVC APPLICATION ARCHITECTURE

Using interfaces to define interactions between components makes unit testing much
simpler. By using frameworks such as EasyMock (http://www.easymock.org) or jMock (http://
www. jmock.org) you can easily create mock implementations of your interfaces with just a
few lines of code and use these mocks when testing an object and its interactions with its
collaborators. Although both EasyMock and jMock can create mocks of classes rather than
interfaces, they require runtime bytecode generation and have some caveats that are not
present with interface-based mocks.

Note We will provide extensive coverage of testing a Spring MVC application later in the book. You will
learn how to use a mock objects library to help test individual layers of your application.

Connecting layers with interfaces also has an added benefit of reducing compile times
and creating more modular builds. Concrete implementation classes can now change without
requiring a recompile of any clients dependent on it (because the clients don’'t have a physical
dependency on any concrete classes). For large systems, this can be very helpful at build and
deploy time.

Using interfaces also enables systems to be so flexible that their implementations can be
chosen at startup, or even while the application is runtime. Because the client is compiled
against the interface, the implementation class can be swapped in and out at runtime. This
creates a highly dynamic system, further increasing flexibility and decreasing coupling. Many
systems take advantage of this ability, such as Spring itself.

In summary, each layer is exposed as an interface. The interface provides a layer of
abstraction, making it easy to change the implementation of the layer without affecting the
rest of the application.

Layers in a Spring MVC Application

This section contains discussions of each major layer in a typical Spring MVC application.
We will also cover some potential deviations from this design. A few discussions will touch on
Spring MVC interfaces or classes. Do not fear; we explain each subject in detail in following
chapters.

User Interface Layer

The user interface layer is responsible for presenting the application to the end user. This layer
renders the response generated by the web layer into the form requested by the client. For
instance, cell phones usually require WML or at least specializations of XHTML. Other clients
may want PDFs for their user interface. And, of course, browsers want the response rendered
as XHTML. We keep the user interface rendering layer separate from the web layer (discussed
next) so that we can reuse the web layer as much as possible.

CHAPTER 3 © SPRING MVC APPLICATION ARCHITECTURE

Note From the perspective of a web developer, the user interface layer is a very important level of
abstraction. It's easy to consider the user interface as a sublayer below the full web layer, and this view is
not incorrect. For the purposes of this book, specializing in web applications, we’ve elevated the user inter-
face to a formal layer because it has its own set of concerns and implementation details.

The user interface layer is typically the top layer. Conceptually, this means it is the last
layer in the processing chain before the bytes are sent to the client. By this point, all the busi-
ness logic has been performed, all transactions are committed, and all resources have been
released.

Being last, in this case, is a good thing. The user interface layer is responsible for rendering
the bytes that are sent to the client. The client, in a web application, is remote and connected via
an unreliable network.3 The transfer of bytes can slow down, be repeated, or even stop. The Ul
layer is kept separate from the other layers because we want the system to continue to process
other requests, with valuable resources such as database connections, without having to wait on
network connections. In other words, the act of rendering a response for a client is separate from
the act of gathering the response.

Another reason for isolating the user interface into its own layer is the practical reality that
there are many toolkits for rendering the user interface. Some examples include JSPB, Velocity,
FreeMarker, and XSLT (all of which are well supported by Spring). Putting the UI concerns
behind its own layer allows the rendering technology to change without affecting the other lay-
ers. The other layers of the system should be hidden from the choice of the rendering toolkit.
There are simply too many options, each with its own pros and cons, to tie a particular toolkit
directly into the system.

Teams with a dedicated UI specialist benefit greatly by separating this layer. UI designers
typically work with a different toolset and are focused on a different set of concerns than the
developers. Providing them with a layer dedicated to their needs shields them from the inter-
nal details of much of the system. This is especially important during the prototyping and
interface design stages of development.

Spring MVC’s User Interface Layer

Spring MVC does a nice job of isolating the UI concerns into a few key interfaces. The
org.springframework.web.servlet.View interface represents a view, or page, of the web
application. It is responsible for converting the result of the client requested operation (the
response model) into a form viewable by the client.

Note The model is a collection of named objects. Any object that is to be rendered by the View is placed
into the model. The model is purposely generic so that it may work with any view rendering technology. The
view rendering toolkit is responsible for rendering each object in the model.

3. See fallacy number one, “The network is reliable,” in The Eight Fallacies of Distributed Computing by
Peter Deutsch (http://today.java.net/jag/Fallacies.html).

25

26

CHAPTER 3 " SPRING MVC APPLICATION ARCHITECTURE

The View interface is completely generic and has no specific view rendering dependen-
cies. Each view technology will provide an implementation of this interface. Spring MVC
natively supports JSP, FreeMarker, Velocity, XSLT, JasperReports, Excel, and PDE

The org.springframework.web.servlet.ViewResolver provides a helpful layer of indirec-
tion. The ViewResolver provides a map between view instances and their logical names. For
instance, a JSP page with a filename of /WEB-INF/jsp/onSuccess.jsp can be referred to via the
name “success”. This decouples the actual View instance from the code referencing it. It’s even
possible to chain multiple ViewResolvers together to further create a flexible configuration.

Dependencies

The view layer typically has a dependency on the domain model (see the following discus-
sion). This is not always the case, but often it is very convenient to directly expose and render
the domain model. Much of the convenience of using Spring MVC for form processing comes
from the fact that the view is working directly with a domain object.

For example, the model is typically filled with instances from the domain model. The view
technology will then render the pages by directly querying the domain model instances.

Some may argue this creates an unnecessary coupling in the system. We believe that the
alternatives create such an inconvenience that it outweighs any benefits of divorcing the two
layers. For example, Struts promotes a class hierarchy for its model beans that is completely
separate from the domain model. This creates an odd parallel class hierarchy, with much
duplicated effort. Often the system isn’t that decoupled because the view-specific classes are
nearly one-to-one reflections on the domain classes.

To keep things simple, Spring MVC promotes integrating the domain classes to the view.
We consider this acceptable, but in no way is it enforced or required.

Summary

The user interface layer (also known as the view) is responsible for rendering output for
the client. Typically, this means XHTML for a web application, but Spring MVC supports
many different view rendering technologies for both text and binary output. The key
interfaces are org.springframework.web.servlet.View (representing a single page) and
org.springframework.web.servlet.ViewResolver (providing a mapping between views
and logical names). We cover Spring MVC'’s view technology in Chapter 7 and 8.

Web Layer

Navigation logic is one of two important functions handled by the web layer. It is responsible
for driving the user through the correct page views in the correct order. This can be as simple
as mapping a single URL to a single page or as complex as a full work flow engine.

Managing the user experience and travels through the site is a unique responsibility of
the web layer. Many of the layers throughout this chapter assume much more of a stateless
role. The web layer, however, typically does contain some state to help guide the user through
the correct path.

There typically isn’t any navigation logic in the domain model or service layer; it is the
sole domain of the web layer. This creates a more flexible design, because the individual func-
tions of the domain model can be combined in many different ways to create many different
user experiences.

CHAPTER 3 © SPRING MVC APPLICATION ARCHITECTURE

The web layer’s second main function is to provide the glue between the service layer and
the world of HTTP. It becomes a thin layer, delegating to the service layer for all coordination
of the business logic. The web layer is concerned with request parameters, HTTP session han-
dling, HTTP response codes, and generally interacting with the Servlet APL.

The HTTP world is populated with request parameters, HTTP headers, and cookies. These
aspects are not business logic-specific, and thus are kept isolated from the service layer. The
web layer hides the details of the web world from the business logic.

Moving the web concerns out of the business logic makes the core logic very easy to test.
You won't be worrying about setting request variables, session variables, HTTP response
codes, or the like when testing the business layer. Likewise, when testing the web layer, you
can easily mock the business layer and worry only about issues such as request parameters.
Chapter 10 offers a more detailed discussion on testing the web layer.

Divorcing the web concerns from the service layer also means the system can export
the same business logic via multiple methods. This reduces code duplication and allows the
system to easily add connection mechanisms, such as HTTPB, SOAP, or XML-RPC, quickly and
easily. The web layer becomes just another client connection mechanism, providing access to
core business functionality, but never implementing the functionality directly.

The web layer can be implemented as simply as servlets, for instance. These servlets will
perform the work of turning request parameters into meaningful objects for the service layer,
and then calling a method on a service interface. The web layer is also responsible, among
other things, for turning any business exceptions into appropriate error messages for end
users.

Higher-level frameworks, such as Spring MVC and Tapestry, offer sophisticated mecha-
nisms for this translation between the raw request parameters and the business logic layer.
For instance, Spring MVC will map request parameters onto plain old Java objects (POJOs)
that the business logic can operate on directly. Spring MVC also implements sophisticated
work flows for processing requests, structuring the way the request is handled and making
extension easy.

There are two main types of web layer implementations: request/response frameworks
and component frameworks. A request/response framework is built to interact directly with
the Servlet API and the HttpServletRequest and the HttpServletResponse. These types of
frameworks are considered to have a push model, because the user code will compile a result
and then push it out to be rendered. Spring MVC is considered a request/response framework.

Other frameworks have adopted different approaches to processing a web request. Some
frameworks, such as Tapestry and JavaServer Faces (JSF), are considered component-based.
Those frameworks attempt to not only hide the Servlet API from you, but also make program-
ming for the web feel like programming a Swing application. Those frameworks are essentially
event-driven, as the components respond to events originally coming from the web layer.

Both types of programming models have their advantages and disadvantages. We believe
Spring MVC is a good balance. It provides a rich hierarchy of implementations for handling
requests, from the very basic to the very complex. You can choose how tightly you wish to couple
yourself to the Servlet API. Using the base Spring MVC classes does expose you to the Servlet
API. On the other hand, you will see that with Spring Web Flow or the ThrowawayController, the
Servlet API can be hidden completely. As with many things in the Spring Framework, the devel-
oper is left to choose what is best for that particular situation.

27

28

CHAPTER 3 " SPRING MVC APPLICATION ARCHITECTURE

Dependencies

The web layer is dependent on the service layer and the domain model. The web layer will del-
egate its processing to the service layer, and it is responsible for converting information sent
in from the web to domain objects sufficient for calls into the service layer.

Spring MVC Web Layer

Spring MVC provides an org.springframework.web.servlet.mvc.Controller interface and a
very rich class hierarchy below it for its web layer contract. Put very simply, the Controller is
responsible for accepting the HttpServletRequest and the HttpServletResponse, performing
some unit of work, and passing off control to a View. At first glance, the Controller looks a lot
like a standard servlet. On closer inspection, the Controller interface has many rich imple-
mentations and a more complete life cycle.

Out of the box, Spring MVC provides many Controller implementations, each varying in
its complexity. For instance, the Controller interface simply provides a method analogous to
the servlet’s doService method, assisting very little in the way of navigation logic. On the other
hand, the SimpleFormController implements a full single-form work flow, from initial view of
the form, to validation, to form submission. For very complex work flows and user experi-
ences, Spring Web Flow provides a declarative means to navigate a user through a set of
actions. Spring Web Flow contains a full-featured state machine so that all of the logic for a
user’s path through the system is moved out of the Controllers. This simplifies the wiring and
configuration of complex work flows.

When a Controller wants to return information to the client, it populates a ModelAndView.
The ModelAndView encapsulates two pieces of information. It contains the model for the
response, which is merely a Map of all the data that makes up the response. It also contains a
View reference, or the reference name for a View (to be looked up by a ViewResolver).

Summary

The web layer manages the user’s navigation through the site. It also acts as the glue between
the service layer and the details of the Servlet API.

Spring MVC provides a rich library of implementations of the Controller interface. For
very complex user work flows, Spring Web Flow builds a powerful state machine to manage a
user’s navigation.

Service Layer

The service layer plays very important roles for the both the client and the system. For the
client, it exposes and encapsulates coarse-grained system functionality (use cases) for easy
client usage. A method is coarse grained when it is very high level, encapsulating a broad work
flow and shielding the client from many small interactions with the system. The service layer
should be the only way a client can interact with the system, keeping coupling low because
the client is shielded from all the POJO interactions that implement the use case.

For the system, the service layer’s methods represent transactional units of work. This
means with one method call, many POJOs and their interactions will be performed under a
single transaction. Performing all the work inside the service layer keeps communication
between the client and the system to a minimum (in fact, down to one single call). In a highly

CHAPTER 3 © SPRING MVC APPLICATION ARCHITECTURE 29

transactional system, this is important to keep transaction life span to a minimum. As an
added benefit, moving the transactions to a single layer makes it easy to centralize the trans-
action configurations.

Each method in the service layer should be stateless. That is, each call to a service method
creates no state on the object implementing the service interface. No single method call on a
service object should assume any previous method calls to itself. Any state across method
calls is kept in the domain model.

In a typical Spring MVC application, a single service layer object will handle many concur-
rent threads of execution, so remaining stateless is the only way to avoid one thread clobbering
another. This actually leads to a much more simple design, because it eliminates the need to
pool the service objects. This design performs much better than a pool of instances, because
there is no management of checking the object in and out of the pool. Using a singleton for
each service object keeps memory usage to a minimum as well.

This layer attempts to provide encapsulations of all the use cases of the system. A single
use case is often one transactional unit of work, and so it makes sense these two aspects are
found in the service layer. It also makes it easy to refer to one layer for all the high-level system
functionality.

Consolidating the units of work behind a service layer creates a single point of entry into
the system for end users and clients. It now becomes trivial to attach multiple client commu-
nication mechanisms to a single service interface. For instance, with Spring’s remoting
capabilities, you can expose the same service via SOAP, RM], Java serialization over HTTP,
and, of course, standard XHTML. This promotes code reuse and the all-important DRY (Don’t
Repeat Yourself) principle by decoupling the transactional unit of work from the transport or
user interface. For more information on Spring’s remoting capabilities, refer to Pro Spring by
Rob Harrop (Apress, 2005) or to the online documentation
(http://www.springframework.org/documentation).

Example

As just mentioned, the service layer provides an interface for clients. A typical interface has
very coarse-grained methods and usually looks something like Listing 3-1.

Listing 3-1. Coarse-Grained Service Layer Interface

public interface AccountManager {
void activateAccount(String accountId);

void deactivateAccount(String accountId);

Account findAccountByUsername(String username);

}

You can see why these methods are considered coarse grained. It takes one simple call for
the client to achieve completion of a single use case. Contrast this to a fine-grained interface
(see Listing 3-2), where it would take many calls, to potentially many different objects, to
accomplish a use case.

30 CHAPTER 3 " SPRING MVC APPLICATION ARCHITECTURE

Listing 3-2. Fine-Grained Service Layer Interface

public interface FineGrainedAccountManager {
Account findAccountByUsername(String username);

void setAccountToActive(Account account);
boolean accountAbleToBeActivated(Account account);

void sendActivationEmail(Account account, Mailer mailer);

}

With the preceding example, too much responsibility is given to the client. What is the
correct order of the method calls? What happens if there is a failure? There’s no way to guaran-
tee that the same account instance is used for every call. This fine-grained interface couples
the client too closely to how the use case is implemented.

In environments where the client is remote, a coarse-grained interface is an important
design element. Serialization is not a cheap operation, so it is important to serialize at most
once per call into the service layer. Even in systems where the client is in the same virtual
machine, this layer plays a crucial role when separating the concerns of the system and mak-
ing it easier to decouple and test.

Dependencies

The service layer is dependent upon the domain model and the persistence layer, which we
discuss in the following sections. It combines and coordinates calls to both the data access
objects and the domain model objects. The service layer should never have a dependency on
the view or web layers.

It is important to note that it is usually unnecessary for this layer to have any dependen-
cies on framework-specific code, or infrastructure code such as transaction management. The
Spring Framework does a good job of transparently introducing system aspects so that your
code remains highly decoupled.

Spring’s Support for the Service Layer

The Spring Framework does provide any interfaces or classes for implementing the business
aspects of the service layer. This should not be surprising, because the service layer is specific
to the application.

Instead of defining your business interfaces, Spring will help with the programming model.
Typically, the Spring Framework’s ApplicationContext will inject instances of the service into
the web Controllers. Spring will also enhance your service layer with services such as transac-
tion management, performance monitoring, and even pooling if you decide you need it.

Summary

The service layer provides a stateless, coarse-grained interface for clients to use for system
interaction. Each method in the service layer typically represents one use case. Each method
is also one transactional unit of work.

CHAPTER 3 © SPRING MVC APPLICATION ARCHITECTURE

Using a service layer also keeps coupling low between the system and the client. It
reduces the amount of calls required for a use case, making the system simpler to use. In a
remote environment, this dramatically improves performance.

Domain Model Layer

The domain object model is the most important layer in the system. This layer contains the
business logic of the system, and thus, the true implementation of the use cases. The domain
model is the collection of nouns in the system, implemented as POJOs. These nouns, such as
User, Address, and ShoppingCart, contain both state (user’s first name, user’s last name) and
behavior (shoppingCart.purchase()). Centralizing the business logic inside POJOs makes it
possible to take advantage of core object-oriented principles and practices, such as polymor-
phism and inheritance.

Note We've talked a lot about interfaces and how they provide good contracts for layer interaction. Inter-
faces are used tremendously with the service layer but aren’t as common inside the domain model. The use
of interfaces inside the domain model should be driven by pure object-oriented design considerations. Add
them into the domain model when it makes sense, but don’t feel obligated to add interfaces merely to put
interfaces in front of everything.

When we say business logic, what do we mean? Any logic the system performs to satisfy
some rule or constraint dictated by the customer is considered business logic. This can
include anything from complex state verification to simple validation rules. Even a seemingly
simple CRUD (create, read, update, and delete) application will have some level of business
logic in the form of database constraints.

You might have noticed a contradiction just now. Can you spot it? Earlier, we advocated
that the domain model should encapsulate the business logic of the system. Yet we have
acknowledged that there are some business rules that live in the database, in the form of con-
straints such as UNIQUE or NOT NULL. While you should strive to put all your business logic
inside your domain model, there are cases where the logic will live in other places. We con-
sider this split to be acceptable, because the database does a good job at enforcing these
constraints. You can, however, continue to express the business rule found in the database in
your domain model. This way, the rule won't be hidden.

For example, let’s say that all emails must be unique in the system. We could code this
logic into the domain model by loading up all the users and the searching through each one.
The performance on this type of operation, however, would be horrible. The database can
handle this sort of data integrity requirement with ease. The moral of the story is that the
domain model should contain most of the business logic, but place the logic outside the
model when there is a good reason.

It’s important to note that business logic does not mean just a strong set of relationships
between objects. A domain model that contains only state and relationships to other models
is what Martin Fowler would call an Anemic Domain Model (http://www.martinfowler.com/
bliki/AnemicDomainModel.html). This anti-pattern is found when there is a rich domain model
that doesn’t seem to perform any work. It might be tempting to place all your business logic

31

32

CHAPTER 3 © SPRING MVC APPLICATION ARCHITECTURE

into the service layer or even the web layer, but this will negate any benefits of an object-
oriented system. Remember, objects have state and behavior.

Dependencies

The domain model, or business object model, is a good example of a layer that largely perme-
ates the other layers. It may be helpful to think of the domain model as a vertical layer. In
other words, many other layers have dependencies on the domain model. It is important to
note, however, that the object has no dependencies on any other layer.

The domain model should never have any dependencies on the framework, so that it can
decouple itself from the environment it will be hosted in. First and foremost, this means the
business logic can be tested outside of the container and independently of the framework.
This speeds up development tremendously, as no deployments are required for testing. Unit
tests become very simple to create, as they are testing simple Java code, without any reliance
on database connections, web frameworks, or the other layers in the system.

All of the other layers have a dependency on the domain model. For instance, the service
layer typically combines multiple methods from the domain model together to run under one
transaction. The user interface layer might serialize the domain model for a client into XML or
XHTML. The data access layer is responsible for persisting and retrieving instances of the
objects from the model.

As you can see, each layer is responsible for their problem domains, but they all live to
service the domain model. The domain model is the first-class citizen of the system, and
frameworks like Spring and Spring MVC support this notion. Developing web applications
with Spring MVC is refreshing, because there is so much true object-oriented development.

Spring’s Support for the Domain Layer

Just like the service layer, Spring does not provide any base interfaces for your object model.
Doing so would be completely against the ideologies of a lightweight container such as Spring.
However, Spring does provide certain convenience interfaces one might choose to use when
needing to integrate tightly with the framework. The need to do so is rare, and we caution
against introducing any framework-specific interfaces into your base object model.

Spring can also enhance your domain model via AOB, just like it will with the service layer.
To Spring, both the service layer and domain model are simply a set of POJOs.

If you decide to, Spring will perform Dependency Injection on your domain model as
well. This is an advanced technique, but it is recommended for advanced object-oriented
domain models.

Tip Two ways of Dependency Injecting your domain model objects include an AspectJ approach
(http://www.aspectprogrammer.org/blogs/adrian/2005/03/hacking with_ha.html)
and a Hibernate Interceptor approach (org.springframework.orm.hibernate.support.
DependencyInjectionInterceptorFactoryBean, currently in the sandbox).

CHAPTER 3 © SPRING MVC APPLICATION ARCHITECTURE

Dependency Injection for the Domain Model

As you probably know, Spring does an excellent job of creating POJOs and wiring them
together. This works well when the object is actually created and initialized by Spring, but
this isn't always the case with objects in the domain model. These instances can come from
outside the ApplicationContext, for instance loaded directly by the database. How do we
inject these objects with their dependencies before they enter the application?

If you have an object instance already constructed, but you would like Spring to wire that
object with any dependencies, you will need an instance of a AutowireCapableBeanFactory.
Luckily, Xm1BeanFactory happens to implement that interface. Listing 3-3 illustrates how to
wire an existing POJO with dependencies.

Listing 3-3. Bean Definition for Wiring an Existing POJO

<?xml version="1.0"?>
<IDOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN"
"http://www.springframework.org/dtd/spring-beans.dtd">

<beans>

<bean id="account" abstract="true"
class="com.apress.expertspringmvc.chap3.Account">
<property name="mailSender" ref="mailSender" />
</bean>

<bean id="mailSender"
class="org.springframework.mail.javamail.JavaMailSenderImpl">
<property name="host" value="mail.example.com" />
</bean>

</beans>

The preceding bean definition specifies one abstract bean definition for an Account
object. An Account has aMailSender as a property. We then define the MailSender as the sec-
ond bean in this bean definition. Note we use abstract="true" to ensure it will never be
created inside the container.

Listing 3-4. Simple POJO Requiring an External Resource

package com.apress.expertspringmvc.chap3;

import org.springframework.mail.MailSender;
import org.springframework.mail.SimpleMailMessage;

public class Account {
private String email;

private MailSender mailSender;

33

34 CHAPTER 3 " SPRING MVC APPLICATION ARCHITECTURE

private boolean active = false;

public String getEmail() {
return email;

}

public void setEmail(String email) {
this.email = email;

}

public void setMailSender(MailSender mailSender) {
this.mailSender = mailSender;

}

public void activate() {
if (active) {
throw new IllegalStateException("Already active");
}
active = true;
sendActivationEmail();

}

private void sendActivationEmail() {
SimpleMailMessage msg = new SimpleMailMessage();
msg.setTo(email);
msg.setSubject("Congrats!");
msg.setText("You're the best.");
mailSender.send(msg);

The Account POJO in Listing 3-4 has a method called activate() that sets the account
instance as active and then sends an activation email. Clearly it needs an instance of
MailSender, as it doesn't create one itself. We will use the code in Listing 3-5 to ask Spring
to inject this dependency, based on the previous abstract account definition.

Listing 3-5. Example Dependency Injection of Existing POJO

package com.apress.expertspringmvc.chap3;

import org.springframework.beans.factory.BeanFactory;

import org.springframework.beans.factory.config.AutowireCapableBeanFactory;
import org.springframework.beans.factory.xml.XmlBeanFactory;

import org.springframework.core.io.ClassPathResource;

public class DependencyInjectionExistingPojo {

public static void main(String[] args) throws Exception {

CHAPTER 3 © SPRING MVC APPLICATION ARCHITECTURE

BeanFactory beanFactory = new XmlBeanFactory(
new ClassPathResource("chapter3.xml"));

Account account = new Account();
account.setEmail("email@example.com");

((AutowireCapableBeanFactory)beanFactory).applyBeanPropertyValues(
account, "accountPrototype");

account.activate();

The code in Listing 3-5 uses the applyBeanPropertyValues() method on AutowireCapable-
BeanFactory to apply a bean definition’s properties to an existing bean. We are linking the
accountPrototype bean definition from the XML file to the account instance. The activate()
method now will work, because the Account object has its MailSender dependency.

The AutowireCapableBeanFactory interface also defines an autowireBeanProperties()
method if you don’t want to specify an abstract bean definition. This method will use an
autowire strategy of your choice to satisfy any dependencies of the object.

Although this is a good example, most applications aren’t quite this simple. The biggest
issue will be the account instance, as it will most likely come from the database. Depending on
what persistence mechanism you choose, you will want to see if it’s possible to intercept the
object after it is loaded from the database, but before it is sent back into the application. You
can then apply this technique to inject the object with any extra dependencies.

Tip If you are using Hibernate, there is a DependencyInjectionInterceptorFactoryBean in Spring’s
sandbox that will wire objects loaded from Hibernate automatically. It provides a very nice way to transpar-
ently inject dependencies into your Hibernate objects as they come out of persistence. You can find this class
in the org. springframework.orm.hibernate.support package.

Using this technique, you can build a very strong domain model that can support com-
plex business logic. Be careful what you inject into your domain model; you don’t want to
increase the amount of dependencies the domain model has. For example, the domain model
shouldn’t know anything about the persistence layer. Let the service layer handle that coordi-
nation. You should only be injecting objects that help to implement business logic and rules.

Data Access Layer

The data access layer is responsible for interfacing with the persistence mechanism to store
and retrieve instances of the object model. The typical CRUD methods are implemented by
this layer.

35

36

CHAPTER 3 " SPRING MVC APPLICATION ARCHITECTURE

The data access functionality gets its own layer for two reasons. Delegating the persist-
ence functionality into its own layer protects the system from change and keeps tests quick to
run and easy to write.

One of the primary reasons for abstraction in object-oriented systems is to isolate sec-
tions of the applications from change. The data access functionality is no different, and it is
designed to isolate the system from changes in the persistence mechanisms.

As an example, a business requirement change might force all user accounts to be stored
inside an LDAP-compliant directory instead of a relational database. While this might happen
rarely, abstracting the persistence operations behind a single interface makes this a low-impact
change for the system.

A more likely scenario is a change in the data access layer’s implementation and libraries.
Many different types of implementations are available, ranging from straight Java Database
Connectivity (JDBC) to full-fledged object relational mapping frameworks such as Hibernate.
Each offers its own distinct advantages, but they function in significantly different ways. When
all data access is delegated to its own layer, changing from one persistence mechanism to
another becomes possible. Again, it’s unlikely that the persistence framework will be swapped
out in a production system, but it’s certainly possible.

Building the system to cope with change is important, for they say that we are building
tomorrow’s legacy software today. Recognizing a discrete problem domain of the system, such
as data access, is important. Isolating those problem domains in their own interfaces and lay-
ers helps to keep the system adaptable in the face of change.

Keeping the time to run the system tests low is the other key reason the data access layer
is isolated. Any unit test that requires more than the method being tested ceases to be a unit
test and becomes an integration test. Unit tests are meant to test very small units of code. If
the tests had to rely on an external database, then the code under test would not be isolated.
If a problem would arise, both the external database and the actual code would have to be
checked for problems.

Database connections are expensive resources to create and maintain. Unit tests should
be very quick to run, and they will slow down tremendously if they require connections to the
RDBMS. Isolating all persistence operations to one layer makes it easy to mock those opera-
tions, keeping test runs fast.

The system is built on a solid object model, and therefore the bulk of the unit tests will
be against the object model. The data access features are in their own layer to keep the object
model from having to manage a concern that is primarily orthogonal to the concern of imple-
menting business logic.

Dependencies

It is important to note that, typically, only the service layer has a dependency on the data
access layer. This means that there is typically only one layer that knows anything about the
data access layer. There are two reasons for this.

The service layer implements transactional boundaries. The data access layer is concerned
only with interacting with the persistence mechanism, and the persistence mechanism is typi-
cally transactional. Performing the data access operations within the scope of the service facade
means that the current transaction is easily propagated to the data access layer.

CHAPTER 3 © SPRING MVC APPLICATION ARCHITECTURE

Also, the service layer encapsulates many little operations from the POJOs, thus shielding
the client from the inner workings of the system. Those POJOs have to be loaded from persist-
ence. From a practical standpoint, the service layer coordinates the data access layer and the
POJO layer such that the appropriate POJOs are loaded and persisted for the use case.

It’s important to note that the persistence layer does not have to be accessed behind the
service layer. The persistence code is just another set of JavaBeans. For very simple applica-
tions, directly accessing the Data Access Objects (DAOs) is not necessarily a bad thing. Be
aware of handling transactional boundaries correctly, and be sure your domain model does
not have any references to the DAOs.

Spring Framework Data Access Layer

The Spring Framework really shines when providing data access interfaces. The framework
doesn't have a single common interface for all data access operations, because each toolkit
(Hibernate, JDBC, iBATIS, and so on) is so varied. Your business needs will usually dictate the
interface design. However, Spring does provide common patterns for interacting with the data
access layer. For example, the template pattern is often used by data access operations to shield
the implementer from common initialization and cleanup code. You will find template imple-
mentations for Hibernate (HibernateTemplate), JDBC (JdbcTemplate), iBATIS (SqlMapTemplate),
and others inside the org. springframework. jdbc and org.springframework.orm packages.

One of the main benefits of Spring is its very rich and deep data access exception hierarchy.
The framework can convert all of your database server’s specific exceptions into a semantically
rich exception, common across all database implementations. For instance, your database
server’s cryptic “Error 223—Foreign Key Not Found” will be converted to a strongly typed
DataIntegrityViolationException. All of the exceptions in the DataAccessException hierarchy
are of type RuntimeException to help keep code clean. These exceptions are commonly mapped
across both database servers as well as persistence mechanisms. That is, HibernateTemplate,
JdbcTemplate, and the others will throw the same set of exceptions. This helps tremendously
with any potential porting required in the future.

For a full discussion of Spring’s support for persistence, refer to Rob Harrop’s Pro Spring
(Apress, 2005), or the online documentation. This is a very valuable and powerful aspect of the
framework.

For your application-specific code, typically you will first design a data access layer inter-
face independently of any implementation or even the framework. For example, one such
DAO interface might look like this:

public interface AccountDao {
public Account findById(String accountId);
public void deleteAccount(Account account);
public void saveAccount(Account account);

The operations in this interface do not mention any persistence technology. This keeps
coupling low, because clients of the data access layer will be interacting through this interface.
The clients don’t care how the data is persisted or retrieved, and the interface shields them
from any underlying technologies.

37

38

CHAPTER 3 " SPRING MVC APPLICATION ARCHITECTURE

Once you have defined your DAO interface, it is easy to choose one of Spring’s conven-
ience classes, such as HibernateDaoSupport, to subclass and implement. This way, your class
takes advantage of Spring’s data access support, while implementing your system’s specific
DAO contract.

Options: There’s More Than One Way to Do It

Is this the only way to construct a Spring MVC application? Are all those layers needed all the
time? It is important to note that the preceding discussions are suggestions and guidelines.
Many successful web applications don’t follow this same pattern.

When choosing the architecture of the system, it’s important to recognize what type of
application is being built. Will the application live for a long time? Is the application for inter-
nal or external use? How many developers will be maintaining the application? Understanding
what the initial investment will be will help to dictate the application architecture. You must
correctly balance the needs of today with the inevitable needs of tomorrow’s growth and
maintenance.

We understand that if the web application starts its life as a single page with a single SQL
query, implementing all the layers would be overkill. We also understand that applications
have a tendency to grow in scope and size. The important steps during development are
refactoring constantly and writing unit tests consistently. Although you may not start out
with an n-layer application, you should refactor toward that goal.

Spring MVC applications certainly encourage your applications to head a certain direc-
tion, but they by no means require it. Letting the developer choose what is best for the
application is what the Spring Framework and Spring MVC is all about.

No matter how your web application is implemented, it’s important to take a few points
to heart. Consider using layers in your application to help isolate separate areas of concern.
For instance, do not put JDBC code directly in your servlets. This will increase coupling in your
application. Separating into layers will structure your application, making it easier to learn
and read.

Use interfaces as a means to hide clients from implementations at layer boundaries. This
also reduces coupling and increases testability. You can accomplish this very simply these
days, because modern IDEs support refactoring techniques such as Extract Interface. Inter-
faces are especially helpful when used at integration points.

Most importantly, you should put business logic inside POJOs. This exposes the full power
of OOP for your domain model. For instance, encapsulate all the business rules and logic to
activate an account inside an activate() method on the Account class (as we did in the
“Domain Model Layer” section of this chapter). Think about how to apply common OO fea-
tures such as polymorphism and inheritance to help solve the business problems. Focus first
on the domain model, and accurately reflect the problem domain by building classes with
state and behavior. Also, don'’t let system-wide, non-business-specific concerns like transac-
tion management or logging creep into the domain model. Let the Spring Framework
introduce those aspects via AOP.

CHAPTER 3 © SPRING MVC APPLICATION ARCHITECTURE

These principles are not new, and they have been preached for a long time in the object-
oriented world. Until the arrival of Inversion of Control containers, with strong Dependency
Injection support, these principles were very difficult to implement in medium to large sys-
tems. If you have built systems before and had to throw out many of your hard-learned OOP
practices, you will soon breathe a welcome sigh of relief. The Spring Framework makes it
possible to integrate and develop loosely coupled web application systems.

Summary

We’ve shown that a typical Spring MVC application has many layers. You will write code to
handle the user interface, the web navigation, the service layer, the domain model, and the
persistence layer. Each layer is isolated in such a way to reduce coupling and increase testabil-
ity. The layers use interfaces as their contracts, shielding other layers from implementation
details. This allows the layers to change independent of the rest of the system. The system
becomes more testable, as each layer can be tested in isolation. The other layers are mocked
in the unit tests, keeping test runs quick and focused on testing only the target code.

We've also shown that the most important layer is the object model. The object model
contains the business logic of the system. All the other layers play supporting roles and handle
orthogonal system concerns such as persistence or transactions. The web layer is kept thin,
implementing no business logic and providing a bridge between the world of the web and the
object model.

A main goal has been to keep the framework out of our code as much as possible. By using
the Spring Framework, we are able to keep framework-specific code out of our object model
completely. The interfaces to our data access layer are unaware of any framework. The service
facade layer’s interfaces are also devoid of any framework code. The Spring Framework binds
our layers together transparently, without dictating application design or implementation.

39

CHAPTER 4

Jump into Spring MVC

There’s no better way to fully understand Spring MVC than to dive right in and build an appli-
cation with it. We'll skip over the typical “Hello, world!” demo and instead build something a bit
more substantial. For the rest of the chapter, we will build a simple web application for an air-
line travel site. This application will allow us to highlight some of the most important aspects
about Spring MVC so that you can get a cohesive picture of typical system configuration and
execution.

Use Cases

Our airline travel site will begin with two simple use cases. We will use the customer’s require-
ments to help drive the design of both the service layer and the web layer. As we design and
build this system, we are keeping a close eye on where we place our business logic. We wish to
keep the web layer free of any business logic, instead focusing on web navigation and provid-
ing the glue between the service layer and the user experience.

Initially, we will cover the following two use cases for our demo application.

1. Alist of current special deals must appear on the home page. Each special deal must
display the departure city, the arrival city, and the cost. These special deals are set up
by the marketing department and change during the day, so it can’t be static. Special
deals are only good for a limited amount of time.

2. A user may search for flights, given a departure city and time and an arrival city. The
results must display the departure city, the arrival city, the total cost, and how many
legs the flight will have.

Certainly these initial use cases do not warrant a complicated work flow or user experi-
ence. Use case #1 is a read-only page with dynamic content. The second use case will manifest
itself as a typical form submission with the resulting page full of dynamic content. For more
complicated work flows, such as multipage flows, you should consider using Spring Web Flow,
as it can handle complex page flows more elegantly than straight Spring MVC.

4

42

CHAPTER 4 = JUMP INTO SPRING MVC

Service Interface

As mentioned before, Spring MVC applications are typically layered with the service layer
encapsulating the actual use cases. Therefore, we start by creating the service layer interface,
helping us keep the business logic out of the web layer. Because the Spring Framework does
such a good job at managing plain old Java objects (POJOs) and beans, we're not afraid of cre-
ating many well-defined and orthogonal Java objects that together form the entire system.

Creating the interface first also allows development work to begin on the web layer,
before the actual interface implementation is complete.

Use Case #1

The first use case doesn't specify any type of uniqueness to the special deals. That is, every
user will see the same special deals when they view the home page. For now, the most simple
thing to do is create a getSpecialDeals() method on the service interface (Listing 4-6) return-
ing a list of SpecialDeal objects.

The SpecialDeal class (Listing 4-2) is defined by the use case to include three parameters:
the departure airport, the arrival airport, and the total cost. The airports will be instances of
the Airport class (see Listing 4-1), so that we can encapsulate both the name and airport code.

Listing 4-1. Airport Class

public class Airport {

private String name;
private String airportCode;

public Airport(String name, String airportCode) {
this.name = name;
this.airportCode = airportCode;

}

public String getAirportCode() {
return airportCode;

}

public String getName() {
return name;

}

public String toString() {
return name + " (" + airportCode + ")";

}

Like the Airport class, we have made the SpecialDeal class (Listing 4-2) immutable, to
make it easier and safer to use. As it stands now, the only use of this class is to return read-only
data, so in this case it is justified.

CHAPTER 4 © JUMP INTO SPRING MVC

Tip For more notes on immutability for objects, consult Joshua Bloch’s excellent book Effective Java
Programming Language Guide (Addison-Wesley Professional, 2001). See ltem 13, “Favor immutability.”

Listing 4-2. SpecialDeal Class

public class SpecialDeal {

private Airport departFrom;
private Airport arriveAt;
private BigDecimal cost;
private Date beginOn;
private Date endOn;

public SpecialDeal(Airport arriveAt, Airport departFrom, BigDecimal cost,
Date beginOn, Date endOn) {
this.arriveAt = arriveAt;
this.departFrom = departFrom;
this.cost = cost;
this.beginOn = new Date(beginOn.getTime());
this.endOn = new Date(endOn.getTime());
}

public BigDecimal getCost() {
return cost;

}

public Airport getDepartFrom() {
return departFrom;

}

public Airport getArriveAt() {
return arriveAt;

}

public boolean isValidNow() {
return isValidOn(new Date());

}

public boolean isValidOn(Date date) {
Assert.notNull(date, "Date must not be null");
Date dateCopy = new Date(date.getTime());
return ((dateCopy.equals(beginOn) || dateCopy.after(beginOn)) 8&
(dateCopy.equals(endOn) || dateCopy.before(endOn)));

44

CHAPTER 4 = JUMP INTO SPRING MVC

For lack of a proper Money type, we use BigDecimal for all monetary values. Why not simply
use double type? The short answer is that double’s value isn't exact, and there’s no absolute
control over rounding. With BigDecimal you get precise control over rounding, exact decimal
values, and immutability. If you find this class inconvenient to use, consider using int or long
to represent pennies (or your smallest unit of money). For applications where rounding impre-
cisely can cause problems, such as interest calculations, use BigDecimal. For our purposes, using
long to represent the number of pennies would have sufficed, but then we wouldn’t have been
able to bring you the next plug for Effective Java.

Tip For more information on why you should avoid float and double when exact answers matter,
consult Item 31 from Effective Java.

Notice how we have also made defensive copies of all java.util.Date objects passed into
the object. For objects that are not immutable, like Date, it’s a best practice to make your own
copies of the arguments before storing in the class or using with some business logic. By using
this technique, you are protecting your class, as the client could change the internal value of
the argument after passing in the object, potentially creating odd or inconsistent states. We
did not make copies of the Airport instances, because they are immutable, as you'll see
shortly.

The use case also mentions that special deals are good only for a limited time, which
sounds like business logic to our ears. To encapsulate this logic, we've added beginOn and
endOn properties along with isValidOn() and isValidNow() methods. Even inside isValidOn()
we make a defensive copy of the Date argument to ensure its consistency during the validity
calculation.

Design Decisions

Although we'd much like to believe the opposite, it’s not entirely possible to design layers in
total isolation. For example, the choice of persistence framework can govern the design deci-
sions we make when building the domain model. A little foresight can alleviate many
frustrations later.

Case in point is Listing 4-2’s SpecialDeal class. We chose to make the class immutable—
for safety reasons, and because it models more correctly an immutable concept (a special deal
can’t change, but it can be deleted and a new one can take its place). However, will the persist-
ence framework of choice be able to populate the fields on load or use classes without a
default constructor?

Tip If using Hibernate, set the access type to “field” in order to use reflection to set the fields instead of
property access, which uses setters. Also, you can tell Hibernate that the class is immutable by setting muta-
ble to false, in which case Hibernate will perform small optimizations.

CHAPTER 4 © JUMP INTO SPRING MVC

Use Case #2

The second use case is more complicated because it returns a list of flights based on the user’s
search conditions. For this service method, we will encapsulate the search criteria inside a
FlightSearchCriteria class. We will call the method findFlights() (Listing 4-6), and it will
return a list of F1ight objects.

The use case in Listing 4-3 defines the parameters for the FlightSearchCriteria class,
mentioning that the user can search by arrival and departure information.

Listing 4-3. SearchFlights Class

public class FlightSearchCriteria {

private String departFrom;
private Date departOn;
private String arriveAt;
private Date returnOn;

public Date getReturnOn() {
return returnOn;

}

public void setReturnOn(Date arriveOn) {
this.returnOn = arriveOn;

}

public Date getDepartOn() {
return departOn;

}

public void setDepartOn(Date departOn) {
this.departOn = departOn;

}

public String getArriveAt() {
return arriveAt;

}

public void setArriveAt(String arriveAt) {
this.arriveAt = arriveAt;

}

public String getDepartFrom() {
return departFrom;

}

public void setDepartFrom(String departFrom) {
this.departFrom = departFrom;

}

We've made a conscious decision not to use the Airport class for the departFrom and
arriveAt fields. This class represents search criteria, and searching for arrival cities isn't always
an exact science. A user might misspell the city name or forget the airport code, for example.

45

46

CHAPTER 4 = JUMP INTO SPRING MVC

For this reason, we are flexible with the search criteria with the knowledge that the business
logic of the system will do the right thing and return the best matches available.

Additionally, we are big fans of creating types to encapsulate concepts, even simple ones.
Asyou'll see, Spring MVC isn't restricted to working with only String classes and primitive
types. The classes that encapsulate form submissions can be full of rich types, so don’t hesitate
to encapsulate types when appropriate.

With all the talk about building immutable classes, you might wonder why we decided to
add all these setters for this class. This class is not immutable (it includes public setters) for
two reasons: (1) the search criteria can change over time as the user refines his search to find
the best deals; and (2) we will take advantage of Spring MVC’s flexible usage of POJOs in order
to share this class across both the domain model (modeling the search criteria themselves)
and web requests. As you'll see shortly, this class will be shared with the web layer to encapsu-
late the XHTML form submission data. It will be populated automatically by Spring MVC from
a form submission, so it must provide both getters and setters (Spring’s data binding can bind
only properties that follow JavaBean syntax and semantics).

Did we just allow advanced knowledge of the requirements of the web framework to influ-
ence the design of our domain model, but enforcing the existence of setters on any object that
will encapsulate forms? In this case we did, but we didn’t cross any dependency boundaries. In
fact, Spring MVC easily allows for domain objects to be used by the web tier, in order to cut
down on the amount of classes needed by the system.

As with issues brought up by the choice of your persistence framework, designing your
application by considering all the layers is a smart way to create a more cohesive architecture.
The domain model doesn’t have any compile-time dependencies on any other layers, so we're
still safe.

The Flight class (Listing 4-4) encapsulates an airline trip between two cities with zero or
more stops. Each stop along the way is an instance of a FlightlLeg (Listing 4-5). A nonstop
flight, for instance, has only one FlightlLeg. This class can also report the total amount of
travel time, via the getTotalTravelTime() method.

Along with getTotalTravelTime(), this class includes another business logic method named
isNonStop(). Not all business logic has to be big and complicated, but it is important to keep it
all in the object model (as much as you can, but be pragmatic about it). Calculated values (e.g.,
total travel time) or derived answers (e.g., is this flight nonstop?) should be answered by the
object you are talking about. Classes contain state and behavior, so don't forget to take advan-
tage of that.

Listing 4-4. Flight Class
public class Flight {

private List<Flightleg> legs;
private BigDecimal totalCost;

public Flight(List<FlightlLeg> legs, BigDecimal totalCost) {
Assert.notNull(legs);
Assert.isTrue(legs.size() >= 1, "Flights must have at least one leg");

CHAPTER 4

this.legs = legs;
this.totalCost = totalCost;
}

public BigDecimal getTotalCost() {
return totalCost;

}

public boolean isNonStop() {
return (legs.size() == 1);

}

public Airport getDepartFrom() {
return getFirstleg().getDepartFrom();

}

private Flightleg getFirstleg() {
return legs.get(0);
}

private Flightleg getlastleg() {
return legs.get(legs.size()-1);

}

public Airport getArrivalAt() {
return getlastleg().getArriveAt();

}

public int getNumberOfLegs() {
return legs.size();

}

/**
* @return number of milliseconds for total travel time
*/
public long getTotalTravelTime() {
Date start = getFirstleg().getDepartOn();
Date end = getlastleg().getArriveOn();
Assert.isTrue(end.compareTo(start) > 0,
"Start date must be before end date");

return (end.getTime() - start.getTime());

JUMP INTO SPRING MVC

47

48 CHAPTER 4 = JUMP INTO SPRING MVC

Listing 4-5. FlightLeg Class

public class Flightleg {

private Airport departFrom;
private Date departOn;
private Airport arriveAt;
private Date arriveOn;

public FlightlLeg(Airport departFrom, Date departOn, Airport arriveAt,
Date arriveOn) {
this.arriveAt = arriveAt;
this.arriveOn = arriveOn;
this.departFrom = departFrom;
this.departOn = departOn;

}

public Airport getArriveAt() {
return arriveAt;

}

public Date getArriveOn() {
return arriveOn;

}

public Date getDepartOn() {
return departOn;

}

public Airport getDepartFrom() {
return departFrom;

}

Service Interface

Once the domain model is flushed out, it is now time to define the service interface (see List-
ing 4-6). This interface provides easy access to the use cases through the facade pattern. These
methods are coarse grained and stateless (i.e., multiple calls into the methods may happen
concurrently without side effects). We say they are coarse grained to indicate that a single
method call will accomplish the use case, instead of many small calls.

CHAPTER 4 © JUMP INTO SPRING MVC

Listing 4-6. FlightService Interface

public interface FlightService {
List<SpecialDeal> getSpecialDeals();

List<Flight> findFlights(SearchFlights search);

For the purposes of our example, we won't concern ourselves with how this interface
is implemented. We want to show off Spring MVC, so in the meantime we will create a
DummyFlightService implementation of FlightService that returns simple preset values.

In the real world, you would most likely create a Data Access Object (DAO) layer for deal-
ing with persistence. The service implementation would delegate to the DAOs, perform any
extra processing necessary, and return the results. The Spring Framework contains many
example projects that illustrate this architecture, and we recommend browsing through the
source code. For a more in-depth discussion of the implementation of a Spring Framework
application, consult the book Pro Spring by Rob Harrop and Jan Machacek (Apress, 2005).

ApplicationContext

The FlightService implementation is defined inside this example’s main applicationContext.xml.
Normally, Dependency Injection would play a role in configuring your services, but for this
simple example it is enough to simply define the bean. Later the web components of the
application will be injected with this service, so it is important that the FlightService be
accessible as a Spring bean.

We are making a deliberate effort to separate our application beans from any web compo-
nents by creating separate ApplicationContexts. This ensures an obvious separation between
the different areas of the application.

For instance, in Listing 4-7, we are defining the DummyFlightService bean in an
ApplicationContext that is separate from any web components.

Listing 4-7. applicationContext.xml

<?xml version="1.0"?>
<!DOCTYPE beans PUBLIC
"-//SPRING//DTD BEAN//EN"
"http://www.springframework.org/dtd/spring-beans.dtd">
<beans>

<bean id="flightService"
class="com.apress.expertspringmvc.flight.service.DummyFlightService" />

</beans>

49

50

CHAPTER 4 © JUMP INTO SPRING MVC

Summary

Before any work was done on the web layer, we first analyzed the use cases to develop both a
domain object model and a service layer. Focusing first on these layers forces us to design the
core of the system without dependencies on the web layer. We also are forced into keeping all
of the core business logic in the object model.

The two use cases influenced the FlightService interface, supporting both a read-only
method (getSpecialDeals()) and a query-and-response method (findFlights()).

As the last step, the FlightService implementation is defined as a Spring bean inside the
applicationContext.xml so that it may be easily injected into our web components.

Web Components

With the service layer built, it is now time to expose the use cases to the web. In this section we
will both create the classes and configure the web application to initialize and host the code.

JAR Dependencies

The Spring Framework ships with a main spring.jar containing everything you will need.
This book and all of its examples will work with version 1.2 or later. You may obtain this JAR,
along with the source code, from http://www.springframework.org.

If for some reason disk space is a real issue, you may prefer to use the smaller JAR files
also packaged with the distribution. These JAR files package each section of the framework
individually, offering you the ability to pick and choose which features of the Spring Frame-
work you wish to bundle with the application. If you choose to use the smaller individual JARs,
refer to Table 4-1 for the minimum required.

Table 4-1. Minimum Module-Specific Required Spring JARs

JAR Contents Dependencies
spring-core Core utilities commons-logging
spring-beans JavaBeans support, bean container spring-core
spring-context ApplicationContext, validation, spring-beans

JNDI, UI context support

spring-web WebApplicationContext, MultipartResolver, spring-context, servlet
web utilities, third-party framework support

spring-webmvc Framework servlets, Web mvc framework, web spring-web
controllers, web views

Caution The upcoming release of Spring 2.0 will have a different JAR packaging strategy. To be safe,
continue to use the full spring.jar, and monitor the release notes, which is the safest option for future
upgrades.

CHAPTER 4 © JUMP INTO SPRING MVC

Table 4-1 is represented graphically in Figure 4-1.

<<artifact>> D <<artifact>> D
. R > -
spring-core.jar commons-logging.jar
N

I
|
1

<<artifact>> D
spring-beans.jar
N

|
1

<<artifact>>
spring-context.jar

1
1

<<artifact>> D <<artifact>> D
spring-webjar | > servlet-api.jar

\
\

<<artifact>> D
spring-webmvc.jar

Figure 4-1. Module-specific JAR dependencies for Spring 1.2.x and earlier

Tip Because Spring MVC requires so many parts of the Spring Framework and you are likely to use more
than the minimum, we recommend sticking with the full spring. jar file. Updates to new versions will be
faster too.

Third-Party JAR Dependencies

No matter which configuration you choose, you will also need commons-logging.jar, the only
required external dependency of the Spring Framework.

Installation

As with all Java web applications, these JAR files must be placed into the /WEB-INF/1ib directory
of your web application.

Before we build the home page, we will first quickly introduce the central trinity of a
Spring MVC application: the Controller, View, and ModelAndView classes.

51

52

CHAPTER 4 = JUMP INTO SPRING MVC

Controllers

Spring MVC delegates the responsibility for handling HTTP requests to Controllers. Controllers
are much like servlets, mapped to one or more URIs and built to work with HttpServletRequest
and HttpServletResponse objects. The Controller API makes no attempt to hide its dependence
to the Servlet AP], instead fully embracing it and exposing its power.

Controllers are responsible for processing HTTP requests, performing whatever work
necessary, composing the response objects, and passing control back to the main request
handling work flow. The Controller does not handle view rendering, focusing instead on
handling the request and response objects and delegating to the service layer.

The Controller class hierarchy is rich with implementations, spanning a wide range of
functionality. Some of the included Controllers are

¢ simple request handlers with no work flow

e form controllers handling complete the XHTML form life cycle
» wizard controllers, providing multipage work flows

¢ WebWork-esque one-off controllers

o flexible, multi-action controllers

Controllers are intended to be singletons, just like servlets. As singletons, they will handle
concurrent requests,! so they should never maintain state during a request.

Views

The response from a Controller is rendered for output by an instance of the View class. The
Controller does not perform any view rendering, nor is it aware of the view rendering tech-
nology used.

Spring MVC has excellent support for many different view rendering technologies, includ-
ing template languages such as

e JSP and JSTL
e Velocity (http://jakarta.apache.org/velocity)
* FreeMarker (http://freemarker.sourceforge.net)

Views can render more than just text output. Other bundled view rendering toolkits
include

e PDF
e Excel

* JasperReports (an open-source reporting tool, http://jasperreports.sourceforge.net)

1. This is true, unless the Controller is an instance of a ThrowAwayController. See Chapter 6.

CHAPTER 4 © JUMP INTO SPRING MVC

Because the Controllers are totally unaware of the view technology, it is easy to mix
and match the rendering toolkits and even use multiple toolkits concurrently in the same
application.

ModelAndView

When processing is complete, the Controller is responsible for building up the collection of
objects that make up the response (the Model) as well as choosing what page (or View) the
user sees next. This combination of Model and View is encapsulated in a class named (drum
roll...) ModelAndView.

Spring MVC makes a special effort to keep the Controller unaware of any view technolo-
gies used, helping to keep coupling low. Therefore, the Model is a Map of arbitrary objects,
and the View is typically specified with a logical name. The view’s name is later resolved to an
actual View instance, later in the processing pipeline. It is the View’s responsibility to intelli-
gently display and render the objects in the Model.

Building the Home Page Use Case

With the very basics of Spring MVC components introduced, we will now implement the first
use case. Because this is the first use case we are building, we will also set up and configure the
web application.

Spring MVC Components

For Use case #1, we need to build a home page that displays special deals for the user. These

special deals aren’t static—presumably they originate from a database—so a regular XHTML
page isn’'t enough. Therefore, we will create a Controller that delegates to the service layer to
load up the special deals so that the View can render them into XHTML.

The most basic Controller implementation is an org.springframework.web.servlet.mvc.
AbstractController, perfect for read-only pages and simple requests. It provides a simple call-
back for handling a request, along with facilities such as controlling caching via HTTP headers
and enforcing certain HTTP methods. For extremely simple Controllers, you may implement
the Controller interface directly, although we don’t recommend it because AbstractController
provides many useful features applicable to all types of web requests.

Tip The AbstractController is well suited for web resources that return dynamic information but don’t
respond to input.

Controller

Let’s begin by taking a look at the code, shown in Listing 4-8. We have created a Controller
named HomeController, to handle the dynamic home page of the application. The method to
notice is handleRequestInternal(), where the real work is performed.

53

54

CHAPTER 4 © JUMP INTO SPRING MVC

Listing 4-8. HomeController

public class HomeController extends AbstractController {

private static final int FIVE_MINUTES = 5*60;
private FlightService flights;

public HomeController() {
setSupportedMethods (new String[]{METHOD GET});
setCacheSeconds (FIVE MINUTES);

}

public void setFlightService(FlightService flightService) {
this.flights = flightService;

}

@0verride
protected ModelAndView handleRequestInternal(HttpServletRequest req,
HttpServletResponse res) throws Exception {
ModelAndView mav = new ModelAndView("home");
mav.addObject("specials”, flights.getSpecialDeals());
return mav;

The constructor configures this Controller to respond only to HTTP GET requests,
because GET has semantics that most closely match that of “read.” In the case of a read-only
web page, such as the home page, this restriction prohibits potentially malicious clients from
exploiting the system in unintended ways.

Tip For a full discussion on all of the available HTTP request methods and their semantics, consult section
9 of the HTTP RFC at http://www.w3.0rg/Protocols/rfc2616/rfc2616-sec9.html. The choice of
request method has a profound impact on application design and web architecture. Respond only to request
methods that are semantically appropriate—for example, GET for reads and POST for writes or modifications.

The constructor also instructs the superclass to send the appropriate HTTP headers to
enable caching. Thus, any caches or browsers that request the home page will be told it is
acceptable to cache the response for five minutes. Depending on the liveliness of your data,
this can be a simple way to reduce bandwidth and CPU cycles for your application. In our
case, the special deals won’t be changing faster than five minutes, so we are telling browsers
it’s OK to cache the home page for that long.

CHAPTER 4 © JUMP INTO SPRING MVC

Note By default, AbstractController will send the appropriate headers to disable caching.

It is important to note that these types of configurations can also be set in the bean defi-
nition of the Controller. It is not uncommon to see the above setCacheSeconds() method
replaced by a <property name="cacheSeconds" value="300" /> XML snippet. The choice of
configuration methods is up to you. However, we believe that the less XML in a system, the
better. For configuration elements that have almost no chance of changing, configuring them
in straight Java code feels like a better solution. We like XML for external issues such as wiring
the classes together, or for configuration elements that have a reasonable chance of changing.
The choice is yours, but whatever you choose it always helps to remain consistent.

The setFlightService() method is a clear sign that the HomeController will require
Dependency Injection to obtain an instance of FlightService. Controllers are declared, con-
figured, and managed by the Spring Framework just like all other beans in the system.
Therefore, it is common and recommended to use Dependency Injection, and the full feature
set of the Spring Framework, when building and configuring Controllers.

The handleRequestInternal() method is analogous to the service() method of a servlet,
in that it accepts a HttpServletRequest and HttpServletResponse in order to perform some
work. One of the main differences, as you can see here, is that instead of returning void, this
method returns an instance of ModelAndView.

The main implication of this difference is that Controllers are not intended to render the
response. Instead, this task is delegated to other components of Spring MVC. This is a benefit
to Controller design, as it can now focus on delegation to the service layer and safely ignore
response rendering issues.

The special deals are pulled from the FlightService and placed directly into the model
with the name specials. The view layer will use this name to locate the list of special deals.
The ModelAndView instance is constructed with the view name home, used to identify which
view to render for this Controller. These logical view names are used to keep the Controller
decoupled from the view technology.

Controller Configuration

Just like there is an ApplicationContext for the FlightService, the web components have
their own ApplicationContext. The HomeController will be defined and configured in a
spring-servlet.xml file, whose name has special meaning as we’ll see in a moment.

To make things simple, we will map the URI for the Controller at the same time we define
the Controller. By default, Spring MVC will search for all beans configured with a name
parameter that begins with a / (forward slash) and will use those names as URI mappings. We
are mapping the HomeController to the URI /home (as shown in Listing 4-9), which will be pre-
fixed by the WebApplicationContext path and the servlet mapping to form the full path to the
Controller. We will cover how a Controller is fully mapped in more detail when we introduce
the web.xml configuration (see the section “URI Mapping to Controllers” later in this chapter).

55

56

CHAPTER 4 = JUMP INTO SPRING MVC

Note The URI-to-Controller mapping strategy is fully pluggable, making it easy to change if the default
is not sufficient.

Listing 4-9. spring-serviet.xml

<?xml version="1.0"?>
<IDOCTYPE beans PUBLIC
"-//SPRING//DTD BEAN//EN"
"http://www.springframework.org/dtd/spring-beans.dtd">
<beans>

<bean name="/home"
class="com.apress.expertspringmvc.flight.web.HomeController">
<property name="flightService" ref="flightService" />

</bean>

</beans>

As you can see, we have also configured the FlightService property of the HomeController,
thus resolving its dependencies.

The spring-servlet.xml file will be stored in the /WEB-INF directory for now (which is the
default location), but the location is completely configurable.

View

With the Controller built and configured, it’s time now to build and configure the View. To

review, in the handleRequestInternal() (from Listing 4-8) method we retrieved a list of special

deals and placed them in the model. We will now render the list of special deals into XHTML.
For our examples, and to keep things simple, we will use JSP to render the views, includ-

ing the home page. Listing 4-10 contains the full JSP for the home page.

Listing 4-10. home.jsp

<?xml version="1.0" encoding="IS0-8859-1" ?>

<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c" %>

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml">

<head>

<meta http-equiv="Content-Type" content="text/html; charset=IS0-8859-1" />

<title>Flight Booking Service</title>

</head>

<body>

<h1>Welcome to the Flight Booking Service</h1>

<p>We have the following specials now:</p>

CHAPTER 4 © JUMP INTO SPRING MVC

<c:forEach items="${specials}" var="special">
${special.departFrom.name} - ${special.arriveAt.name} from
$${special.cost}</1i>
</c:forEach>

<p>Search for a flight.</p>

</body>
</html>

Caution Always place the XML declaration (<?xm12>) on the first line of your JSP, as the XML specifica-
tion requires this. If you place any JSP elements, such as the <%@ taglib %> directive on the first line, a
blank line will appear when the content is rendered to the client. This will create non-conforming XHTML.

Notice that we are iterating over a variable named specials, the same variable placed into
the model by the HomeController. There are no Spring MVC-specific elements in this JSP file,
keeping the learning curve low as you can rely on standard JSP elements and tags.

Asyou can see, the model object named specials were exposed to the JSP page as request
scoped attributes for easy scripting. Each view technology is responsible for exposing and
obtaining the objects from inside the model.

View Configuration

If you recall, the HomeController created a ModelAndView with a view name of home. How does
that logical View name lead to an actual View instance (in this case a JSP page)? An instance of
org.springframework.web.servlet.ViewResolver steps in and provides the mappings between
View names and the View instance.

For our JSP files, the simple org.springframework.web.servlet.view.
InternalResourceViewResolver will provide the perfect view resolution. In this context,
Internal Resource refers to any resource accessible via the Servlet API's RequestDispatcher.

We like using the InternalResourceViewResolver for two reasons. First, unlike other
ViewResolver implementations, the InternalResourceViewResolver does not require explicit
mappings between View names and View instances, which significantly reduces the amount
of configuration required. This works when your logical View names from the ModelAndView
match filename substrings of your JSP pages. The second reason why we like this particular
ViewResolver is that it defaults to supporting JSP pages as Views, further reducing the configu-
ration necessary.

Tip Learn all about the many different Views and ViewResolver options in Chapters 7 and 8.

57

58

CHAPTER 4 = JUMP INTO SPRING MVC

To turn on an InternalResourceViewResolver, simply define it as a bean in the spring-
servlet.xml file, as we have done in Listing 4-11. You must then configure this resolver with a
prefix and suffix to be used when generating the full path to the view resource. For instance,
all of the JSP files are in the /WEB-INF/jsp/ directory, and they all have the file extension . jsp.
Therefore, with a view name of home, a prefix of /WEB-INF/jsp/, and a suffix equal to . jsp, the
full path to the view resource becomes /WEB-INF/jsp/home. jsp.

Listing 4-11. ViewResolver Addition to spring-servlet.xml

<bean id="viewResolver"
class="org.springframework.web.servlet.view.InternalResourceViewResolver">
<property name="prefix" value="/WEB-INF/jsp/" />
<property name="suffix" value=".jsp"/>

</bean>

Tip Itis good practice to place all view pages, including JSP pages, inside or below the /WEB-INF direc-
tory. This protects the pages from being retrieved independently of the Controllers that configure them.

Summary

Let’s recap what we have done so far. Focusing on the home page use case, we have created a
Controller named HomeController and a JSP file for the view.

The HomeController delegates to the FlightService to find any special deals and then
places those deals inside a ModelAndView. This ModelAndView object is returned from the
Controller, bringing along with it the name of the view to render.

The view name is resolved to a JSP file by an InternalResourceViewResolver, which creates
a full resource path by combing a prefix, the view name, and a suffix.

The InternalResourceViewResolver and HomeController are defined and configured in the
spring-servlet.xml file, which defines all the beans that make up the web components appli-
cation context.

With the web layer components complete we will now configure the web.xml file to initial-
ize the Spring MVC environment.

Web Application Configuration

The configuration of the web. xml file is quite simple for a Spring MVC application. Most of the
actual configuration is done via Spring’s bean definition XML files, so we will use the web.xml
to bootstrap our application and to define the central entry point.

Initializing the Root ApplicationContext

Spring MVC applications usually have two ApplicationContexts configured in a parent-child
relationship. The parent context, or root ApplicationContext, contains all of the non-web-
specific beans such as the services, DAOs, and supporting POJOs. For our example, the root

CHAPTER 4 © JUMP INTO SPRING MVC

ApplicationContext contains the FlightService implementation, and is named
applicationContext.xml. This ApplicationContext must be initialized before the web-specific
resources are started because it provides services required by the web application.

To create the root ApplicationContext, there are two choices. The first is to use
the ContextlLoaderlListener, responding to the contextInitialized() callback of a
ServletContextListener. This class is the recommended method for root
ApplicationContext creation, but is only viable for Servlet 2.3 or higher containers.

Caution Some Servlet 2.3 containers do not initialize listeners before servlets, which is incorrect behavior.
If this is the case for your container, you must use the ContextLoaderServlet.

If you are using a Servlet 2.2 container, or if your Servlet 2.3 container does not follow
the correct order for loading components, you will need to use the ContextLoaderServlet.
However, for the rest of the example, we will use and illustrate the ContextLoaderListener.

Configure the ContextLoaderListener by defining a <1istener> element in the web.xml
file (refer to Listing 4-12), with a <1istener-class> of org.springframework.web.context.
ContextlLoaderListener. Upon initialization, it will attempt to use the default location of
/WEB-INF/applicationContext.xml to find the configuration file for the root ApplicationContext
(of course, the file location is configurable). Once the ApplicationContext is built it will be
placed into the application scope of the web application so that the entire application may
access it. However, because of Dependency Injection, it is rare to ever need to access an
ApplicationContext directly.

Listing 4-12. web.xml

<?xml version="1.0" encoding="UTF-8"?>

<web-app version="2.4"
xmlns="http://java.sun.com/xml/ns/j2ee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://java.sun.com/xml/ns/j2ee
http://java.sun.com/xml/ns/j2ee/web-app 2 4.xsd">

<display-name>JumpIntoSpringMvC</display-name>

<listener>
<listener-class>
org.springframework.web.context.ContextlLoaderListener
</listener-class>
</listener>

</web-app>

59

60

CHAPTER 4 © JUMP INTO SPRING MVC

With the root application configured, the last piece of this puzzle is now required. The
main servlet for the application, which provides the central entry point for the application,
needs to be specified. The org. springframework.web.servlet.DispatcherServlet plays this
role, coordinating the processing pipeline for each incoming web request.

DispatcherServlet

The DispatcherServlet is the Front Controller of the system, handling all incoming
requests and coordinating the different subsystems of Spring MVC. For instance, the
DispatcherServlet shuttles the ModelAndView returned by Controllers to the appropriate
ViewResolvers. These, and many other, subsystems are combined to create a sophisticated
and flexible processing pipeline, with each step abstracted for easy customization.

The DispatcherServlet also creates the WebApplicationContext, which contains the web-
specific components such as the Controllers and ViewResolver. The WebApplicationContext is
then nested inside the root ApplicationContext so that the web components can easily find
their dependencies.

Tip For more on ApplicationContext nesting, please consult the book Pro Spring.

To locate the XML for the WebApplicationContext, the DispatcherServlet will by default
take the name of its servlet definition from web.xml, append -servlet.xml, and look for that
file in /WEB-INF. For instance, if the servlet is named spring, it will look for a file named
/WEB-INF/spring-servlet.xml. Of course, as with nearly everything in Spring MVC, the
location of the WebApplicationContext configuration file is itself configurable.

Let’s add the DispatcherServlet to web.xml now (see Listing 4-13).

Listing 4-13. Adding the DispatcherServlet to web.xml

<servlet>
<servlet-name>spring</servlet-name>
<servlet-class>
org.springframework.web.servlet.DispatcherServlet
</servlet-class>
</servlet>

<servlet-mapping>
<servlet-name>spring</servlet-name>
<url-pattern>/app/*</url-pattern>
</servlet-mapping>

As you can see, we also took this opportunity to define the URL mapping for the servlet.

CHAPTER 4 © JUMP INTO SPRING MVC

URI Mapping to Controllers

This is a good time to review how a full URI is mapped to a Controller. There are three compo-
nents to a mapped URI path, the WebApplicationContext path, the servlet mapping, and the
Controller mapping.

If you recall, we defined the HomeController with /home as its URL, which gets appended to
the mapping of the servlet, which has just been mapped to /app/*. The third piece of the puzzle
is the WebApplicationContext path. In this case, if the context path is JumpIntoSpringMVC, the
full URL to the HomeController would be http://www.example.com/JumpIntoSpringMVC/app/home

Full webh.xml

Putting it all together, we now present the full web.xml, shown in Listing 4-14.

Listing 4-14. Full web.xml

<?xml version="1.0" encoding="UTF-8"?>

<web-app version="2.4"
xmlns="http://java.sun.com/xml/ns/j2ee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://java.sun.com/xml/ns/j2ee
http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd">

<display-name>JumpIntoSpringMVC</display-name>

<listener>
<listener-class>
org.springframework.web.context.ContextLoaderListener
</listener-class>
</listener>

<servlet>
<servlet-name>spring</servlet-name>
<servlet-class>
org.springframework.web.servlet.DispatcherServlet
</servlet-class>
</servlet>

<servlet-mapping>
<servlet-name>spring</servlet-name>
<url-pattern>/app/*</url-pattern>
</servlet-mapping>

<welcome-file-list>
<welcome-file>index.html</welcome-file>
<welcome-file>index.jsp</welcome-file>
</welcome-file-list>

</web-app>

61

62 CHAPTER 4 = JUMP INTO SPRING MVC

File Layout and Distribution

The file layout for the web application should now look like the one in Figure 4-2.

—|- == JumplntoSpringMVC
+-[= META-INF
—I-[== WEB-INF
—|-[=- classes
—I-[= com
-|-[-=- apress
—|-[==- expertspringmvc
- (= flight
—|-[== domain
]ﬂh City.class
Tuib Flight.class
T FlightLeg.class
fu__{h SearchFlights.class
ﬁh SpecialDeal.class
-|-[=- service
fulh DummyFlightService.class
fulb FlightService.class
=I-[==web
@: HomeController.class
]ﬂh SearchFlightsController.class
=l-[=- jsp
] beginSearch.jsp
[Z] home.jsp
=] listFlights.jsp
—|-[== lib
=] icommons-logging.jar:
|=| jstljar
|=| spring.jar
|=| standard.jar

%| applicationContext.xml
%] spring-serviet.xml
¥ web.xml

Figure 4-2. Web application file layout

CHAPTER 4 © JUMP INTO SPRING MVC

Start the Application

You are now ready to deploy the application. The deployment process is specific to each
servlet container. If you are using Tomcat, simply create a directory named JumpIntoSpringMVvC
in the $TOMCAT_HOME/webapps directory and place all of the files inside. Be sure to match the file
layout as shown in Figure 4-2.

Once deployed, start your browser and load the URL http://localhost:8080/
JumpIntoSpringMVC/app/home. You should see a page that looks like the one in Figure 4-3.

) Flight Booking Service - Mozilla Firefox g@@
File Edt Wew & Bookmarks Tooks Help |[Cl el G () 3ava [] DL [] BLOG
@~ 5 é‘;‘ ﬁ\ @ Go | || httpifflocalhost:5080f JumpIntoSpringtyC/app/home A

Welcome to the Flight Booking Service

e have the following specials now:

¢ New York City - Baltirore from $250
* Orlando - Honolulu from $300
¢ San Francisco - Tokyo from $700

Search for a flight.

Figure 4-3. Home page

If you see the home page, then congratulations! If you are experiencing errors, check that
all the files are in the right location and that the web application has been deployed correctly
to your servlet container. You may need to create a WAR file before you can deploy the applica-
tion. Check your servlet container’s documentation for specific deployment instructions.

Request Handling Sequence

Figure 4-4 details the work flow performed when an HTTP request enters the system. Notice
how the DispatcherServlet drives the work flow, taking the ModelAndView returned by the
Controller and then delegating to the ViewResolver to locate the View. As you will see in fol-
lowing chapters, the DispatcherServlet coordinates the full life cycle for the request, called
the processing pipeline. What you are seeing in this diagram is but a small piece of the overall
work performed by the DispatcherServlet. However, it does accurately reflect the important
life cycle events related to the HomeController and FlightService objects.

63

64 CHAPTER 4 = JUMP INTO SPRING MVC

| Browser | |DispatcherServIet | | HomeController FlightService
I I I
I
I

I _1: Request homg | 2: handleRequest() :

>1] ModelAndView

6: addObject(specialDeals I
|
7: setView() : Return
I an
8: Return ModelAndView! : 3?23;'"9
K — — = L)
| ,7 | instance
I
I
I
I

A

|

I

I

I

1

1

1

|

|

I

I

| I A

1

1

1

| =

B

g

=
=

=1

| =
@

I =

1

|

|

|

I

I

1

1

1

J I

|

I

I

I

1 E

e e e e ___) _12Retunrendertoclient 1| __ __ _ Ao

Figure 4-4. Sequence for HomeController

Summary

We have built, from the ground up, a Spring MVC application complete with a service layer
and an object model. Nearly all of the configuration work is complete as well, making it quite
easy to add functionality as the application grows.

You have been introduced to many of the core elements of a Spring MVC application,
including the Controller, ModelAndView, ViewResolver, View, and DispatcherServlet. The
Controllers and Views you will build and configure, while the ViewResolver and
DispatcherServlet typically require only configuration.

A Spring MVC application is initialized via the web.xml file, the standard configuration file
for a Java web application, but the configuration is performed via the bean definition XML
files such as applicationContext.xml and spring-servlet.xml. Both the DispatcherServlet
and the ContextlLoaderlListener are defined in the web. xml file, providing the initialization and
bootstrap process for the entire Spring MVC application. Controllers and the ViewResolver
appear in spring-servlet.xml. The service layer and non-web-specific supporting services
appear in applicationContext.xml.

Having built a fully functional application, we will now implement the second use case.
The Search for Flights use case will be much simpler because we've completed the initial
configuration of the application. Its implementation will illustrate how Spring MVC handles
XHTML form processing.

CHAPTER 4 © JUMP INTO SPRING MVC

Building the Search for Flights Use Case

To review, the second use case allows the user to search for a flight by departure location and
time, arrival location, and return time. We have already built the business logic and service
layer for this use case, using the class SearchFlights and the service method findFlights().
To implement this feature, we will now implement the XHTML form and the form handling
SimpleFormController.

Form handling in Spring MVC works similar to Struts, in that it will create a bean on form
submission and populate it with the fields from the form. This bean is then provided to a
Controller for processing.

Unlike Struts, Spring MVC is able to populate any JavaBean, no matter what class or
interface the bean implements. In other words, Spring MVC does not mandate a particular
superclass like Struts does with its FormBean class. For this reason, form handling in Spring
MVC is very flexible, able to populate both simple JavaBeans as well as complex, deeply nested
beans. It is even common to use the domain object model for the form beans, in order to min-
imize the number of classes required in the system.

SimpleFormController

When handling forms in Spring MVC, the SimpleFormController is the class you will most
often extend. This Controller implements a well-defined form handling life cycle, and it
provides many points for extension, making it extremely customizable.

Figure 4-5 illustrates a simplified default version of the form submission work flow for
SimpleFormController. Keep in mind that much of this work flow is configurable based on your
needs. A much more detailed version of this work flow diagram can be found in Chapter 6.

(Create command bean)

Requires validation?

<\ Yes (Validate command bean)

Has errors?

No

<\L(Show initial f)
{__ Show initial form page

No

(Process form
-

Show success page

Figure 4-5. Basic form submission work flow for SimpleFormController

65

66

CHAPTER 4 © JUMP INTO SPRING MVC

The first thing to note about SimpleFormController is that it is intended to handle both
the viewing of the form and the submission of the form. That is, this Controller will respond
to both an initial HTTP GET request for the form itself, as well as the HTTP POST request
when the form is submitted.

Command Bean

The SimpleFormController creates and populates a command bean, which contains all the
parameters from the form as JavaBean properties accessible via getters and setters. The com-
mand bean will be validated if validation is enabled, and if no errors are found, the command
bean will be processed. Otherwise, the original form page will be shown again, this time with
the errors from validation.

Tip For more on validation, consult Chapter 9.

Command beans can be any POJO that implements JavaBean-style getters and setters,
and they are not required to subclass any framework-specific class or interface. Also of benefit
is that Spring MVC allows for the properties of the command class to be of any type or class.
Properties of command beans can be simple types (such as int or boolean), simple classes
(such as String or Long), or even complex classes (such as Date).

Spring will use PropertyEditors, which come from the JavaBean specification, to provide
the conversion between request parameters (which are only Strings) and the specific type
required by the command class. For instance, we will use a CustomDateEditor, which can con-
vert strings such as “2005-06-30” to java.util.Date instances, when we are populating
SearchFlights’ Date properties.

The framework ships with many useful PropertyEditors, and it is easy to create your own
for your own custom types and classes. We will cover the full range of PropertyEditors when
we cover Controllers in Chapter 6.

Binding to a Form

On a form submission, the properties of the command bean are populated via JavaBean-
compatible getters and setters. When the SimpleFormController encounters a request parame-
ter, it will use the parameter name to identify which command bean property to set with the
value.

For instance, we will use the SearchFlights class for the command bean for this use case,
and it has a property named departFrom. When creating an XHTML text input element, the
name of the corresponding form field must also be departFrom. Refer to Listing 4-15.

Listing 4-15. departFrom Text Input
<input type="text" name="departFrom" />

Note Convenience tags are available to help with rendering form elements for some view technologies.
Consult Chapters 7 and 8 for details.

CHAPTER 4 © JUMP INTO SPRING MVC

Summary

Command beans are POJOs that encapsulate the data from a form submission. Command
bean classes must have getters and setters whose property names match the names of the
form fields. Spring MVC uses PropertyEditors to help convert String values from the request
into the expected types of the properties of the command bean class.

SearchFlightsController

With the service layer and the SearchFlights class already created, we can quickly build the
SearchFlightsController, shown in Listing 4-16

Listing 4-16. SearchFlightsController Class

public class SearchFlightsController extends SimpleFormController {
private FlightService flights;

public SearchFlightsController() {
setCommandName ("searchFlights");
setCommandClass(SearchFlights.class);
setFormView("beginSearch");
setSuccessView("listFlights");

}

public void setFlightService(FlightService flights) {
this.flights = flights;
}

@verride
protected void initBinder(HttpServletRequest req,
ServletRequestDataBinder binder) throws Exception {
binder.registerCustomEditor(Date.class, new CustomDateEditor(
new SimpleDateFormat("yyyy-MM-dd HH"), true));

}

@verride

protected ModelAndView onSubmit(Object command) throws Exception {
SearchFlights search = (SearchFlights) command;
ModelAndView mav = new ModelAndView(getSuccessView());
mav.addObject("flights", flights.findFlights(search));
mav.addObject("searchFlights", search);
return mav;

67

68 CHAPTER 4 © JUMP INTO SPRING MVC

The constructor is used to declaratively configure the class, defining the command bean,
the command name, and the view names for the form work flow.

¢ setCommandName() defines the name of the command bean, when referenced by the
view page. You will see this name referenced with the <spring:nestedPath> tagin the
JSP in Listing 4-8, defining the bean to be used for the entire XHTML form.

e setCommandClass() defines the class to be used for the command bean. This can be any
POJO with getters and setters, and it can include both simple and complex types for
properties.

e setFormView() defines the logical name for the view used when initially viewing the
form. This view will also be displayed if validation fails, so that the user can correct any
mistakes. Remember that this view name is resolved to an actual View instance via the
ViewResolver.

e setSuccessView() defines the logical name for the view to display when form submis-
sion finished correctly. This view will receive the objects from the model when form
processing is complete.

Note You may choose to define these properties in the bean definition XML file when you declare the
Controller. However, because these configurations are fairly static, we recommend the constructor as a
better place to set the properties. Anything to keep the amount of XML to a minimum is usually helpful.

Notice that what you don't see in the code is any special handling to display the form
itself. The SimpleFormController handles the initial HTTP GET request and displays the initial
form view. Most of the time, you will concern yourself only with handling the form submis-
sion.

Just like with the HomeController, this Controller delegates the real work of the form sub-
mission to the service layer. We see that this Controller includes the setFlightService()
method so that the ApplicationContext can inject this dependency.

The initBinder() method is a life cycle callback method provided so that you
may register any custom PropertyEditors required for your command bean. Because the
SearchFlights bean has properties of type java.util.Date, we need to create an instance
of CustomDateEditor with the allowed date format. The registerCustomEditor() method
essentially says, “Whenever you see a property of type Date.class, use this CustomDateEditor
to convert the String from the request parameter into an instance of Date.class.”

Note Spring, out of the box, is configured with many different PropertyEditors to support many of the
basic types, such as ints, booleans, and arrays of Strings. These PropertyEditors you do not need to
register. You are required to register an editor only if it requires specific information in order to function,
as is the case here with a custom date format.

CHAPTER 4 © JUMP INTO SPRING MVC

The real action happens inside onSubmit (), the life cycle callback for handling the com-
mand bean when the form is submitted. If this method is called, it is assumed that the bean
was successfully created, populated with values from the form, and validated correctly. By
now you can assume that the command bean is ready to be processed.

The onSubmit () method should delegate to the service layer, as we are doing here with the
call to findFlights(). It also is responsible for generating the Mode1AndView object, to be used
when rendering the success view. As you can see, we are including the search results and the
original command bean into the model, so that we can display the matching flights and the orig-
inal search criteria.

With the matching flights located and included in the model, the success view will be
rendered.

SearchFlightsController Configuration

Like we did for HomeController, the SearchFlightsController will be defined inside the
spring-servlet.xml and thus the WebApplicationContext. We will also map this controller to
the URI /search, which will be used for both viewing the search form and handling the form
submission. Refer to Listing 4-17.

Listing 4-17. spring-servlet.xml Additions for SearchFlightsController

<bean name="/search"
class="com.apress.expertspringmvc.flight.web.SearchFlightsController">
<property name="flightService" ref="flightService" />

</bean>

No other configuration is required, for the environment was previously configured for the
first use case.

Summary

The SearchFlightsController is a basic implementation of the SimpleFormController. It
leaves nearly all of the work flow up to the superclass, implementing only the onSubmit ()
method to process the command bean. The processing is simply delegated to the service layer,
creating a clean separation of concerns.

As seen in the constructor, a SimpleFormController requires two Views, one for the initial
form view, containing the XHTML form, and one for the success view, rendered after a suc-
cessful form submission. Let’s look at both of these JSP pages now.

Form View

The first XHTML page we will create contains the search form, shown in Listing 4-18. Again,
for simplicity’s sake, we will use JSP as the template language, but you can use any of Spring’s
supported template systems that best suits your needs.

Note that, for the time being, we are ignoring validation issues such as displaying valida-
tion errors. All of the work we do here is completely compatible with validation, but for the
sake of showing you the most functionality in this chapter without spilling over to hundreds
of pages, we are glossing over validation. We're big fans of validated data, but there’s a whole
chapter that covers it nicely.

69

70

CHAPTER 4 = JUMP INTO SPRING MVC

As you review Listing 4-18, don’t worry about those <spring:nestedPath> and
<spring:bind> tags; we will explain them momentarily.

Listing 4-18. Search for Flights XHTML Form

<?xml version="1.0" encoding="IS0-8859-1" ?>

<%@ taglib uri="http://www.springframework.org/tags" prefix="spring" %>

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml">

<head>

<meta http-equiv="Content-Type" content="text/html; charset=IS0-8859-1" />

<title>Search For Flights</title>

</head>

<body>

<h1>Search for Flights</h1>

<spring:nestedPath path="searchFlights">
<form action="" method="post">
<table>

<tr>
<td>Depart From:</td>
<td>
<spring:bind path="departFrom">
<input type="text" name="${status.expression}" value="${status.value}" />
</spring:bind>
</td>
<td>Depart On:</td>
<td>
<spring:bind path="departOn">
<input type="text" name="${status.expression}" value="${status.value}" />
</spring:bind>
(yyyy-MM-dd HH)
</td>
</tr>

<tr>
<td>Arrive At:</td>
<td>
<spring:bind path="arriveAt">
<input type="text" name="${status.expression}" value="${status.value}" />
</spring:bind>
</td>
<td>Return On:</td>
<td>

CHAPTER 4 © JUMP INTO SPRING MVC

<spring:bind path="returnOn">
<input type="text" name="${status.expression}" value="${status.value}" />
</spring:bind>
(yyyy-MM-dd HH)
</td>
</tr>

<tr>
<td />
<td><input type="submit" value="Search" /></td>
<td />
<td />
</tr>

</table>
</form>
</spring:nestedPath>

</body>
</html>

This XHTML will generate a page like the example in Figure 4-6.

©) Search For, Flights - Mozilla Firefox |Z||E|P5__<|
File Edt Wew & Bookmarks Tooks Help |[Gl FleL G () 3ava [| DL [] BLOG
<::' - B o- @ @ @ Go ||_| http: fflocalhost: 5050/ JumpIntaSpringtyClappsearch V|

Search for Flights

Done m

Figure 4-6. Search for Flights form

72

CHAPTER 4 = JUMP INTO SPRING MVC

Spring JSP Tags

For the first time, we have used Spring-specific tags in our XHTML, namely the
<spring:nestedPath> and <spring:bind> tags. These tags work together to create full paths to
properties on the command bean, in order to pull values from the bean and return any valida-
tion errors on the field. These tags aren't required, but are recommended as they provide a
standard way to retrieve metadata about a form field and its relationship to a property of the
command bean.

Listing 4-19 includes a snippet of the rendered XHTML that is sent to the browser to illus-
trate what the Spring tags are actually doing. Notice how the names of the form input elements
match the names of the properties from the SearchFlights class, as well as the paths from the
<spring:bind> tags.

Listing 4-19. Rendered XHTML for Search Flights Page

<tr>
<td>Depart From:</td>
<td>
<input type="text" name="departFrom" value="" />
</td>
<td>Depart On:</td>
<td>

<input type="text" name="departOn" value="" />

(yyyy-MM-dd HH)
</td>
</tr>

If you recall that we declared the SearchFlights class as the command bean, then the
paths from the <spring:bind> tags will look familiar. The path names used in the tags are the
same as the bean’s property names.

The <spring:nestedPath> tag sets a path name that all enclosed <spring:bind> tags will
use as a prefix. We are using this tag to effectively set the name of the command bean once, to
avoid repeating it with each <spring:bind> tag.

The <spring:bind> tag will bring a status variable into scope, which is an object that con-
tains the metadata for a bean property from the command bean. The status.value variable
is the current value of the property defined by the path, retrieved from executing the getter
method. On initial page views, this won't render anything, as the command bean has not been
populated yet. The status.expression variable is the name of the property itself (minus the
name of the command bean).

While it might look like overkill at this point to use the Spring tags, their true benefit
appears when validation is enabled and errors are generated. By using the <spring:bind> tag,
you can easily retrieve any errors associated with a property or retrieve the current value of the
property. When validation fails, and the page is re-rendered, these abilities make it easy to dis-
play what the user already entered into the form with the appropriate error messages.

CHAPTER 4 © JUMP INTO SPRING MVC

Tip Using the convenience tags for form elements (available for JSP, Velocity, and FreeMarker) can hide
much of the usage of the Spring tags. Chapters 7 and 8 have more details.

Summary

We will cover these tags in much more detail in Chapter 7, so don’t worry if you don't see the
payoff right away. For now, the take away from this section is this: the <spring:bind> tag pro-
vides a way to expose the property of a command bean to the form, as well as metadata about
the property such as errors, full path name, and the current value. When working with valida-
tors, this tag provides an easy way to integrate with any potential errors. Because most forms
use validation in one form or another, we recommend the use of these tags, even if validation
isn't currently enabled.

Success View

When a SimpleFormController successfully completes its processing of a form submission,
the success view will render the results. The success view for this use case will iterate through
the search results to display them to the user, as shown in Listing 4-20.

Listing 4-20. Success View XHTML JSP

<?xml version="1.0" encoding="IS0-8859-1" ?>

<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c" %>

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml">

<head>

<meta http-equiv="Content-Type" content="text/html; charset=I1S0-8859-1" />

<title>list Flights</title>

</head>

<body>

<h1>List Flights</h1>

<p>
You searched for flights leaving ${searchFlights.departFrom} on or about
${searchFlights.departOn}, heading to ${searchFlights.arriveAt}, returning on
or about ${searchFlights.returnOn}.

</p>

<table>
<thead>
<tr>
<th>Number of Legs</th>
<th>Total Travel Time</th>
<th>Total Cost</th>

73

74

CHAPTER 4 © JUMP INTO SPRING MVC

</tr>

</thead>

<tbody>

<c:forEach items="${flights}" var="flight">

<tr>
<td>${flight.numberOflLegs}</td>
<td>${flight.totalTravelTime}</td>
<td>$${flight.totalCost}</td>

</tr>

</c:forkach>

</tbody>

</table>

</body>
</html>

At this point, this page shouldn’t look too exciting. After rendering, the browser should
display a page that looks like the one in Figure 4-7.

) List Flights - Mozilla Firefox

File Edt Wew & Bookmarks Tooks Help |[Gl FleL G (7 3ava [| DL [BLOG

@-5- é,:‘ @ @ Go | || httpifflocalhost:5080{ JumpIntoSpringtyC/app/search A

List Flights

Tou searched for fights leaving Honolulu on or about Tue Mow 15 06:00:00 HET 20035, heading to Boston,
returning on or about Wed Mow 23 14:00:00 HET 20035

MNwmber of Legs Total Travel Tune Total Cost
1 2.0 Fa00

Done m

Figure 4-7. The success view for Find Flights

Summary

The second use case, searching for available flights, introduced Spring MVC’s support for
XHTML forms. Many new classes and techniques were introduced for the first time, none as
important as the SimpleFormController.

The go-to class for handling form submissions is definitely the SimpleFormController,
for it manages the entire life cycle of an XHTML form from viewing the form, to validation, to
processing, and finally to directing to the success page. This Controller is as powerful as it is
configurable, but its defaults are more than enough to quickly handle forms.

XHTML forms are encapsulated by POJOs named command beans, containing getters
and setters matching the fields found in the form. Command beans can contain properties of
all different types, from simple types to simple and complex classes. PropertyEditors are used

CHAPTER 4 © JUMP INTO SPRING MVC

when conversion is required from the simple Strings returned by the HttpServletRequest to
more complex types found in the command bean. Spring ships with many PropertyEditors
handling common conversions, and it is easy to add your own.

Properties from the command bean are bound into XHTML form elements using the JSP
tag <spring:bind>. This tag exposes a status variable with metadata about the property,
including its value, any errors, and the path name to the variable.

Now Let’s Learn How to Swim

At this point, you've seen the most important elements of the Spring MVC system, but you've
only begun to explore how configurable, flexible, and powerful they can be. Let’s review what
we've see so far.

e Controllers perform an action when a web resource is requested by a client. They can
be simple, as is the case with AbstractController, or complex like SimpleFormController.
Spring MVC provides a rich assortment of Controllers that provide a solid foundation
to build your application.

¢ Views are single pages, usually created with a template language such as JSP, Velocity,
or FreeMarker. Spring MVC also supports such technologies as PDFE, Excel, and
JasperReports. View systems can be mixed and matched in an application.

* ViewResolvers translate a logical view name into a physical View instance. This class is
used to keep the Controllers blissfully unaware of the actual view technology in use.
ViewResolvers can be chained together if multiple strategies are required.

* The DispatcherServlet manages the entire processing pipeline of a HTTP request,
delegating to a wide array of components to complete the request and generate the
response. You've seen some of these components, such as Controllers and ViewResolvers,
but there are many more such as file upload handlers and Locale managers. The
DispatcherServlet is the Front Controller for the application, handling all incoming
requests and choosing the right Controller for the job.

e Spring MVC provides JSP tags for binding properties from the command bean to form
elements. These tags provide metadata about the bean property, such as any errors
from validation or its current value. These tags are also available as macros for the
template languages Velocity and FreeMarker.

This introduction has shown you only the tip of the iceberg in terms of functionality and
configuration options. There is a wide array of Controller implementations to review, as well
as whole chapters devoted to validation and testing. But first thing’s first. In Chapter 5 we will
closely examine the processing pipeline provided by the DispatcherServlet, where you'll see
what it takes to handle an incoming HTTP request.

75

CHAPTER 5

The Processing Pipeline

Spring MVC applications are highly configurable and extensible, and most of that power comes
from its software architecture. Inside Spring MVC, as is the case with the Spring Framework as a
whole, interfaces and abstractions are provided so that you can easily customize the behavior and
work flow of your web application. In this chapter we will examine the DispatcherServlet and the
processing pipeline that it controls in order to understand how a request is handled, as well as
how best to tap into the many extension points and life cycle events.

Processing Requests

A new HTTP request entering the system is passed to many different handlers, each playing its
own small part in the overall processing of the request. We will now look at the timeline of a
new request and the order in which the handlers are activated.

Request Work Flow

1. Discover the request’s Locale; expose for later usage.

2. If the request is a multipart request (for file uploads), the file upload data is exposed
for later processing.

3. Locate which request handler is responsible for this request (e.g., a Controller).

4. Locate any request interceptors for this request. Interceptors are like filters, but cus-
tomized for Spring MVC.

5. Call preHandle() methods on any interceptors, which may circumvent the normal pro-
cessing order (see “HandlerInterceptors” in Chapter 6).

6. Invoke the Controller.
7. Call postHandle() methods on any interceptors.

8. If there is any exception, handle it with a HandlerExceptionResolver.

9. If no exceptions were thrown, and the Controller returned a ModelAndView, then render
the view. When rendering the view, first resolve the view name to a View instance.

10. Call afterCompletion() methods on any interceptors.

77

78

CHAPTER 5 © THE PROCESSING PIPELINE

Functionality Overview

Asyou can see, the DispatcherServlet provides Spring MVC much more functionality than
Controllers and Views. The main theme here is pluggability, as each piece of functionality is
abstracted behind a convenient interface. We will visit each of these areas with more depth
later in this chapter, but for now let’s look at what Spring MVC is really capable of.

Locale Aware

Especially important with applications sensitive to internationalization (i18n) issues, Spring
MVC binds a Locale to all requests. Typically, the servlet container will set the Locale by look-
ing at HTTP headers sent by the client, but Spring MVC abstracts this process and allows for
the Locale to be retrieved and stored in arbitrary ways. By extending the LocaleResolver
interface, you can discover and set the Locale for each request based on your application’s
requirements. The Locale is then available during the entire request processing, including
view rendering.

Tip See section 14.4 of the HTTP RFC for more on the Accept-Language header: http://www.w3.org/
Protocols/rfc2616/rfc2616-sec14.htmlifsec14.4.

Multipart File Uploads

A standard functionality requirement for all web application frameworks, file uploads (also
known as multipart requests) are handled in a pluggable manner. Spring MVC integrates

with the two well-known Java file upload libraries, Jason Hunter’s COS library (http://

www. servlets.com/cos, from his book Java Servlet Programming (O'Reilly, 2001)) and Jakarta
Commons’ FileUpload library (http://jakarta.apache.org/commons/fileupload). If neither of
these libraries covers your application’s needs, you may extend the MultipartResolver inter-
face to implement your custom file upload logic.

Request HandlerAdapters

While all the examples in this book will cover Controllers as the primary way to handle
incoming requests, Spring MVC provides an extension point to integrate any request handling
device. The HandlerAdapter interface, an implementation of the adapter pattern, is provided
for third-party HTTP request handling framework integration.

Tip Learn more about the adapter pattern, which adapts one system’s API to be compatible with
another’s, inside the book Design Patterns: Elements of Reusable Object-Oriented Design (Gamma, Helm,
Johnson, and Vlissides; Addison Wesley, 1995).

Mapping Requests to Controllers

The HandlerMapping interface provides the abstraction for mapping requests to their handlers.
Spring MVC includes many implementations and can chain them together to create very

CHAPTER 5 ©" THE PROCESSING PIPELINE

flexible and partitioned mapping configurations. Typically a request is mapped to a handler
(Controller) via a URL, but other implementations could use cookies, request parameters, or
external factors such as time of day.

Intercepting Requests

Like servlet filters wrapping one or more servlets, HandlerInterceptors wrap request handlers
and provide explicit ways to execute common code across many handlers. HandlerInterceptors
provide useful life cycle methods, much more fine grained than a filter’s simple doFilter ()
method. An interceptor can run before a request handler runs, after a request handler finishes,
and after the view is rendered. Like servlet filters, you may wrap a single request handler with
multiple interceptors.

Custom Exception Handling

Spring MVC allows for more exact exception handling than the standard web.xml file through
its HandlerExceptionResolver interface. It’s still possible to simply map exceptions to error
pages, but with a HandlerExceptionResolver your exception mappings can be specific to the
request handler plus the exception thrown. It’s possible to chain these resolvers to create very
specific exception handling mappings.

View Mapping

The extremely flexible view mapping mechanism, through the ViewResolver interface, is one of
Spring MVC'’s most useful features. ViewResolvers are Locale aware, converting a logical view
name into a physical View instance. Complex web applications are not limited to a single view
technology; therefore Spring MVC allows for multiple, concurrent view rendering toolkits.

Pieces of the Puzzle

As you can see, the request is passed between quite a few different processing elements. While
this might look confusing, Spring MVC does a good job hiding this work flow from your code.
The work flow (see “Request Work Flow” earlier in this chapter) is encapsulated inside the
DispatcherServlet, which delegates to many different components providing for easy exten-
sion and customization.

DispatcherServlet

As mentioned in Chapter 4, the DispatcherServlet is the front controller of the web applica-
tion. It gets its name from the fact that it dispatches the request to many different components,
each an abstraction of the processing pipeline.

Declaration

Typically, you will only declare and configure this class. All the customization is done through
configuring different delegates instead of extending or modifying this class directly.

Caution The DispatcherServlet will be marked final in the near future, so avoid subclassing this class.

79

80 CHAPTER 5 © THE PROCESSING PIPELINE

You saw the declaration and configuration of this servlet in Chapter 4. To quickly review,
this servlet is configured in your application’s web.xml file, as shown in Listing 5-1.

Listing 5-1. DispatcherServlet in the web.xml

<servlet>
<servlet-name>spring</servlet-name>
<servlet-class>
org.springframework.web.servlet.DispatcherServlet
</servlet-class>
</servlet>

<servlet-mapping>
<servlet-name>spring</servlet-name>
<url-pattern>/app/*</url-pattern>
</servlet-mapping>

Of course, the URL pattern you choose for the servlet-mapping element is up to you.

Tip Many servlet containers will validate the web . xm1 against its DTD or schema file, so be sure to place
the elements in the right order and in the right place.

Initialization
When the DispatcherServlet initializes, it will search the WebApplicationContext for one or

more instances of the elements that make up the processing pipeline (such as ViewResolvers
or HandlerMappings).

Tip Remember that the WebApplicationContext is a special ApplicationContext implementation
that is aware of the servlet environment and the ServletConfig object.

For some of the component types such as ViewResolvers (see Table 5-1), the
DispatcherServlet can be configured to locate all instances of the same type. The servlet
will then chain the components together and order them, giving each the chance to handle
the request.

Note The DispatcherServlet uses the Ordered interface to sort many of its collections of delegates.
To order anything that implements the Ordered interface, simply give it a property named order. The lower
the number, the higher it will rank.

Usually, the first element to respond with a non-null value wins. This is very use-
ful if your application requires different ways to resolve view names, for instance. This

CHAPTER 5 ©" THE PROCESSING PIPELINE

technique also allows you to create modular configurations of request handlers and then
chain them together at runtime.

The DispatcherServlet searches for its components using the algorithm pictured in
Figure 5-1. The path through the algorithm is dependent on many factors, including if multi-
ple components of the same type can be detected and if there is a default strategy available if
none are found in the ApplicationContext. For many types of components, if you disable the
automatic detection by type, then the DispatcherServlet will fall back to searching for a single
component with a well-known bean name.

Table 5-1 lists the discovery rules and interfaces of the components managed by the
DispatcherServlet.

DispatcherServlet Init

[Able to detect all] [Only detect all]

[Unable to detect all]

[Configurable detect all]

[Detect all = false] [Detect all = true]

81

>(Detect multiple components of the same type)

[None found]

Detect single by name

[Found one or more]

[Component not found] @der

[Has default strategy]

Get default component

[No default strategy]

[Component located] \P
>@f

Figure 5-1. DispatcherServlet discovery of components algorithm

THE PROCESSING PIPELINE

CHAPTER 5

82

(39TAT9SIBYDYRdST(Q

ay) ur ApoaIrp pasn jou) 3sanbai siyy TIATOSIY2WaY |

ON ON 10J 9UIAY) B SUTAJOSAI 10 90BJIaIUT A30)1eNS IIATOSIYRUWY) *}9TAIDS * oM"Y IoMaweI 4 3utIds * 310

3sanbai1e Jo a7L207 IDATOSYITEI07

ON ON o1} Su1A[0Sa1 103 dorJIIUT A391ENS I9NTOSIYaTEIOT *}9TAIDS * gom* yIomaweI3utIds * 310

I9ATOS9Y}IedTI TN

ON ON speordn a[1j o[puey 0} 90BJIa)UT A391BNS I9ATOS9Y}IedTITNW *3xedTiTnw: gam- yxomawer}3uTds - 810

I9ATOS9YUOTIdadXJ I TpUEH

SOk SOk SMITA pue s1a[puey o) suondaoxa dejy I9ATOSayuoTIdadx3IaTpuey *}9TAIDS * oMy Iomawer3utIds * 310

IOATOSIYMITA

SOk SOk SOJUBISUI MIIA 0] Soweu MaIA sdey IOATOSIYMITA *}9TAIDS * oMy Iomawer3utIds * 310

}19TAI9SIDY2}edST(9} WO SId[puRy 193depyIaTpueH

ON SOk sa1dnooasp ‘urened 1a1depe Jo soue)suy auou *}9TAIDS * om* yIomaweI3utIds * 310

dutddezatpuey

SIk S (SISTTOIIUO) “89) s1aTpuey 0) s)sanbar sdejy dutddepzatpuey *}9TAIDS * gom* yIomawer3utIds * 310
¢liv 1933ed éaldniny

uej uleyg asodind awieN ueag }inejaq aWwiepN adelidiu|

aunjadig Su1ssaso.d ayj Jo saopfiajuf *1-G ajqelL

CHAPTER 5 ©" THE PROCESSING PIPELINE

During initialization, the DispatcherServlet will look for all implementations by type
of HandlerAdapters, HandlerMappings, HandlerExceptionResolvers, and ViewResolvers. How-
ever, you may turn off this behavior for all types but HandlerAdapter by setting to false the
detectAllHandlerMappings, detectAllHandlerExceptionResolvers, or detectAllViewResolvers
properties. To set one or more of these properties, you must use the web.xml where you ini-
tially declared the DispatcherServlet. Listing 5-2 shows an example of disabling the detection
of all ViewResolvers.

Note At the time this was written, there is no way to turn off automatic detection of all
HandlerAdapters.

Listing 5-2. Disable Detection of all View Resolvers

<servlet>
<servlet-name>spring</servlet-name>
<servlet-class>
org.springframework.web.servlet.DispatcherServlet
</servlet-class>
<init-param>
<param-name>detectAllViewResolvers</param-name>
<param-value>false</param-value>
</init-param>
</servlet>

If you do disable the automatic discovery, you will then need to name at least one bean of
each type with the default bean name. Consult Table 5-1 for each type’s default bean name.

The DispatcherServlet is configured with default implementations for most of these inter-
faces. This means that if no implementations are found in the ApplicationContext (either by
name or by type), the DispatcherServlet will create and use the following implementations:

Caution There is no default implementation for MultipartResolver, HandlerExceptionResolver, or
ViewResolver.

* org.springframework.web.servlet.handler.BeanNameUrlHandlerMapping
e org.springframework.web.servlet.mvc.SimpleControllerHandlerAdapter
* org.springframework.web.servlet.view.InternalResourceViewResolver
* org.springframework.web.servlet.i18n.AcceptHeaderLocaleResolver

e org.springframework.web.servlet.theme.FixedThemeResolver

Let’s now take a closer look at each element in the processing pipeline, starting with the
HandlerAdapter interface.

83

84

CHAPTER 5 " THE PROCESSING PIPELINE

HandlerAdapter

The org.springframework.web.servlet.HandlerAdapter is a system level interface, allowing
for low coupling between different request handlers and the DispatcherServlet. Using this

interface, the DispatcherServlet can interact with any type of request handler, as long as a

HandlerAdapter is configured.

Tip If your application consists of only Controllers, then you may safely ignore this section. Controllers
are supported by default, and no explicit configurations for HandlerAdapters are required. However, read on if
you are interested in integrating a third-party framework into Spring MVC.

Why not just require all request handlers to implement some well-known interface? The
DispatcherServlet is intended to work with any type of request handler, including third-party
frameworks. Integrating disparate software packages is often difficult because the source code
isn't available or is very difficult to change. The Adapter design pattern attempts to solve this
problem by adapting the third party’s interface to the client’s expected interface. The seminal
book Design Patterns (Gamma, Helm, Johnson, and Vlissides; Addison Wesley, 1995) defines
this pattern’s goal as follows: “Convert the interface of a class into another interface clients
expect. Adapter lets classes work together that couldn't otherwise because of incompatible
interfaces.”

Spring’s HandlerAdapter achieves this adaptation by delegation. Listing 5-3 shows the
HandlerAdapter interface.

Listing 5-3. HandlerAdapter Interface

package org.springframework.web.servlet;
public interface HandlerAdapter {
boolean supports(Object handler);

ModelAndView handle(HttpServletRequest request, HttpServletResponse response,
Object handler) throws Exception;

long getlastModified(HttpServletRequest request, Object handler);

The DispatcherServlet will check whether the HandlerAdapter supports a handler type
with a call to supports(). If so, the DispatcherServlet will then ask the adapter to delegate the
request to the handler via the handle() method. Notice how this interface is provided the
handler instead of looking one up via the ApplicationContext.

If your application uses only Controllers, which nearly all Spring MVC applications
do, then you will never see this interface. It is intended, along with its default subclass
SimpleControllerHandlerAdapter, to be used by the framework internally. However, if

CHAPTER 5 " THE PROCESSING PIPELINE

you are intending to integrate an exotic web framework, you may use this class to integrate it
into the DispatcherServlet.

Listing 5-4 provides a simple example of an implementation of a HandlerAdapter for some
exotic web framework.

Listing 5-4. Example HandlerAdapter

public class ExoticFrameworkHandlerAdapter implements HandlerAdapter {

public boolean supports(Object handler) {
return (handler != null) &% (handler instanceof ExoticFramework);

}

public ModelAndView handle(HttpServletRequest req, HttpServletResponse res,
Object handler) throws Exception {
ExoticResult result = ((ExoticFramework)handler).executeRequest(req, res);
return adaptResult(result);

}

private ModelAndView adaptResult(ExoticResult result) {
ModelAndView mav = new ModelAndView();
mav.getModel().putAll(result.getObjectsToRender());
return mav;

}

public long getlastModified(HttpServletRequest req, Object handler) {
return -1; // exotic framework doesn't support this

}

Configuring the DispatcherServlet to use this HandlerAdapter is quite easy, as the
DispatcherServlet by default looks into the ApplicationContext for all HandlerAdapters. It
will find all adapters by their type, and it will order them, paying special attention to any
adapters that implement the org.springframework.core.Ordered interface.

Listing 5-5 contains the bean definition for the ExoticFrameworkHandlerAdapter.

Listing 5-5. ApplicationContext with ExoticFrameworkHandlerAdapter

<?xml version="1.0"?
<!DOCTYPE beans PUBLIC
"-//SPRING//DTD BEAN//EN"
"http://www.springframework.org/dtd/spring-beans.dtd">
<beans>
<bean id="exoticHandlerAdapter"
class="com.apress.expertspringmvc.chap4.ExoticFrameworkHandlerAdapter"
/>
</beans>

85

86

CHAPTER 5 " THE PROCESSING PIPELINE

It does not matter what the name of the HandlerAdapter is, because the DispatcherServlet
will look for beans of type HandlerAdapter.

Note that by specifying any HandlerAdapter, the default SimpleControllerHandlerAdapter
will not be used. If your application requires two or more HandlerAdapters, you will need to
explicitly specify all HandlerAdapters, including the default.

Summary

The HandlerAdapter, an example of the Adapter design pattern, is a system-level interface to
promote easy integration between the DispatcherServlet and third-party frameworks. Unless
using third-party frameworks, this interface and its implementations are normally hidden
from the developer. The DispatcherServlet will also chain multiple adapters if found in the
ApplicationContext and will order them based on the Ordered interface.

HandlerMapping

No web application is complete without mapping its request handlers to URLs. As with all
things in Spring MVC, there is no one way to map a URL to a Controller. In fact, it’s very pos-
sible to create a mapping scheme and implementation that doesn't even rely on URLs at all.
However, because the provided implementations are all based on URL paths, we will now
review the default path matching rules.

Path Matching

Path matching in Spring MVC is much more flexible than a standard web.xml’s servlet map-
pings. The default strategy for path matching is implemented by org.springframework.util.
AntPathMatcher. As its name hints, path patterns are written using Apache Ant (http://ant.
apache.org) style paths. Ant style paths have three types of wildcards (listed in Table 5-2),
which can be combined to create many varied and flexible path patterns. See Table 5-3 for
pattern examples.

Table 5-2. Ant Wildcard Characters

Wildcard Description

? Matches a single character

* Matches zero or more characters
ok Matches zero or more directories

Table 5-3. Example Ant-Style Path Patterns

Path Description

/app/*.x Matches all . x files in the app directory

/app/p?ttern Matches /app/pattern and /app/pXttern, but not /app/pttern
/**/example Matches /app/example, /app/foo/example, and /example
/app/**/dir/file.* Matches /app/dir/file.jsp, /app/foo/dir/file.html,

/app/foo/bar/dir/file.pdf, and /app/dir/file.java
/¥*/* . jsp Matches any . jsp file

CHAPTER 5 " THE PROCESSING PIPELINE

Path Precedence

The ordering and precedence of the path patterns is not specified by any interface.

However, the default implementation, found in org. springframework.web.servlet.handler.
AbstractUrlHandlerMapping, will match a path based on the longest (most specific) matching
pattern.

For example, given a request URL of /app/dir/file. jsp and two path patterns of /**/*.jsp
and /app/dir/*.jsp, which path pattern will match? The later pattern, /app/dir/*. jsp, will
match because it is longer (has more characters) than /**/*.jsp. Note that this rule is not
specified in any high-level interface for matching paths to request handlers, but it is an imple-
mentation detail.

Mapping Strategies

The HandlerMapping interface (shown in Listing 5-6) doesn’t specify exactly how the mapping
of request to handler is to take place, leaving the possible strategies wide open.

Listing 5-6. HandlerMapping Interface

package org.springframework.web.servlet;

public interface HandlerMapping {
HandlerExecutionChain getHandler(HttpServletRequest request) throws Exception;

}

As you can see in Listing 5-6, a HandlerMapping returns not a HandlerAdapter, but a
HandlerExecutionChain. This object encapsulates the handler object along with all handler
interceptors for this request. The HandlerExecutionChain is a simple object and is used only
between the DispatcherServlet and implementations of HandlerMapping. If you are not imple-
menting your own custom HandlerMapping, then this object will be hidden from you.

Out of the box, Spring MVC provides three different mappers, all based on URLs. How-
ever, mapping is not tied to URLSs, so feel free to use other mechanisms such as session state to
decide on which request handler shall handle an incoming request.

BeanNameUrlHandlerMapping

The default strategy for mapping requests to handlers is the org. springframework.web.
servlet.handler.BeanNameUrlHandlerMapping class. This class treats any bean with a name or
alias that starts with the / character as a potential request handler. The bean name, or alias,
is then matched against incoming request URLs using Ant-style path matching. Listing 5-7
provides an example bean definition with a bean name containing a URL path.

Listing 5-7. A Controller Mapped by a Bean Name

<bean name="/home"
class="com.apress.expertspringmvc.flight.web.HomeController">
<property name="flightService" ref="flightService" />

</bean>

87

CHAPTER 5 " THE PROCESSING PIPELINE

Caution You may not use a bean definition’s id attribute to specify URL paths, because the XML specifi-
cation forbids the / character in XML ids. You can, however, have both an id attribute and a name
attribute on a single bean definition.

Path Components

Now how does that mapping translate to a full URI used by a client? Many paths are at work
here, including the web application’s context path, the servlet’'s mapped path, and then this
Controller’s mapped path. How are they all combined and parsed when mapping a request
to a handler?

By default, the path provided in the bean definition is inside the servlet’s URL path. The
servlet, in this case, is the DispatcherServlet that is declared and configured in the web.xml.
For example, in Listing 5-8 we have mapped the DispatcherServlet to handle all requests for
/app/*.

Listing 5-8. Example DispatcherServlet Configuration

<servlet>
<servlet-name>spring</servlet-name>
<servlet-class>
org.springframework.web.servlet.DispatcherServlet
</servlet-class>
</servlet>

<servlet-mapping>
<servlet-name>spring</servlet-name>
<url-pattern>/app/*</url-pattern>
</servlet-mapping>

Therefore, to access the HomeController with a bean name of /home, a client must use the
following full URI: http://example.org/servletcontext/app/home. In this case, servletcontext
is the name of the servlet context this application is currently deployed to.

The default behavior, to be relative to the servlet mapping, is useful and preferable
because it is decoupled from the URL pattern used to map the DispatcherServlet (in this
case, /app/*). If the pattern changes, the bean name mappings do not need to change.

If you wish to write bean name mappings that include the servlet path mapping, you may
do so by setting alwaysUseFullPath to true on an instance of BeanNameUr1HandlerMapping. To
do this, simply declare an instance of BeanNameUr1HandlerMapping in your ApplicationContext.
See Listing 5-9.

CHAPTER 5 ©" THE PROCESSING PIPELINE

Listing 5-9. Setting alwaysUseFullPath to True

<bean
class="org.springframework.web.servlet.handler.BeanNameUrlHandlerMapping">
<property name="alwaysUseFullPath" value="true" />

</bean>

<bean name="/app/home"
class="com.apress.expertspringmvc.flight.web.HomeController">
<property name="flightService" ref="flightService" />
</bean>

Multiple Mappings per Handler
You may also assign multiple mappings to a single handler. Simply separate each mapping
with one or more spaces inside the bean name attribute, as shown in Listing 5-10.

Listing 5-10. Multiple Mappings for a Single Handler

<bean name="/home /homepage /index"
class="com.apress.expertspringmvc.flight.web.HomeController">
<property name="flightService" ref="flightService" />
</bean>

Because wildcards are supported, the example shown in Listing 5-10 could be shortened
to Listing 5-11.

Listing 5-11. Multiple Mappings with Wildcards

<bean name="/home* /index"
class="com.apress.expertspringmvc.flight.web.HomeController">
<property name="flightService" ref="flightService" />

</bean>

Tip This convenient mapping technique is useful with MultiActionControllers, which are controllers
that handle multiple URIs with separate methods. For more information, see the section “MultiActionCon-
trollers” in Chapter 6.

Default Mapping

It is also possible to set a default handler, in the case that no other mapping can satisfy the
request. If you wish to designate a default handler, simply map that handler with /*, as shown
in Listing 5-12.

89

90

CHAPTER 5 © THE PROCESSING PIPELINE

Listing 5-12. Setting a Controller As the Default Handler

<bean name="/*"
class="com.apress.expertspringmvc.flight.web.HomeController">
<property name="flightService" ref="flightService" />
</bean>

The order in which you define your beans and mappings does not matter to the
BeanNameUrlHandlerMapping. It attempts to find the best match at request time.

Match Algorithm

As you can see, there are many different strategies for mapping a request handler with a URL
path. The AbstractUrlHandlerMapping class uses the following algorithm when performing a
match.

1. Attempt an exact match. If found, exit from search.
2. Search all registered paths for a match. The most specific (longest) path pattern will win.

3. If no matches are found, use the default mapping (/*) if present.

BeanNameUrlHandlerMapping Shortcomings

While it is very convenient, there are shortcomings with BeanNameUr1HandlerMapping. This
implementation of HandlerMapping is not able to map to prototype beans. In other words,
all request handlers must be singletons when using BeanNameUr1HandlerMapping. Normally,
Controllers are built as singletons, so this doesn’t become an issue. However, as we'll see
in the chapter covering Controllers, there are a few types of controllers that are indeed

prototypes.

Note Prototype beans are non-singleton beans. A new bean instance is created for every call to getBean()
on the ApplicationContext. For more information, consult Pro Spring.

The BeanNameUr1lHandlerMapping has another problem when your application begins to
integrate interceptors. Because there is no explicit binding between this handler mapping and
the beans it is mapping, it is impossible to create complex relationships between controllers
and interceptors. We will cover interceptors in detail in Chapter 6.

If more complex handler mapping requirements arise, you may use the
SimpleUrlHandlerMapping along with BeanNameUr1lHandlerMapping.

SimpleUrliHandlerMapping

Created as an alternative to the simple BeanNameUr1HandlerMapping, the
SimpleUrlHandlerMapping addresses the former’s two shortcomings. It is able to map to
prototype request handlers, and it allows you to create complex mappings between handlers
and interceptors.

CHAPTER 5 ©" THE PROCESSING PIPELINE

The path matching algorithms default to the same mechanism as
BeanNameUr1lHandlerMapping, so the patterns used to map URLs to request handlers remains
the same

To use a SimpleUrlHandlerMapping, simply declare it inside your ApplicationContext.
The DispatcherServlet will recognize it by type, and it will not create an instance of
BeanNameUr1HandlerMapping. This means that if you wish to use both mapping strategies,
you must declare both in your ApplicationContext.

Tip The DispatcherServlet will chain handler mapping strategies, allowing you to mix and match as
you see fit. Handler mappings also implement the Ordered interface.

To begin, we will port the previous mapping to use a SimpleUrlHandlerMapping, as shown
in Listing 5-13.

Listing 5-13. SimpleUrlHandlerMapping Example

<bean
class="org.springframework.web.servlet.handler.SimpleUrlHandlerMapping">
<property name="urlMap">
<map>
<entry key="/home" value-ref="homeController" />
</map>
</property>
</bean>

<bean id="homeController"
class="com.apress.expertspringmvc.flight.web.HomeController">
<property name="flightService" ref="flightService" />

</bean>

Unfortunately, it is a bit more verbose when mapping two different URL patterns to the
same request handler. You must create two different mappings, as shown in Listing 5-14.

Listing 5-14. Two Mappings for One Controller with SimpleUrlHandlerMapping

<bean
class="org.springframework.web.servlet.handler.SimpleUrlHandlerMapping">
<property name="urlMap">
<map>
<entry key="/home*" value-ref="homeController" />
<entry key="/index" value-ref="homeController" />
</map>
</property>
</bean>

91

92

CHAPTER 5 " THE PROCESSING PIPELINE

Asyou can see, we are mapping a URL directly to a request handler instance (in this case,
the singleton homeController). If your request handlers are prototypes, you may instead use
the mappings property of SimpleUrlHandlerMapping. Using this property, the mapping is
between a URL and a bean name (as a String), thus decoupling the mapping from the actual
bean instance. Using the mappings property, you are able to map to prototype request han-
dlers, as they are looked up every time a request enters the system. See Listing 5-15.

Listing 5-15. Mapping URLs to Bean Names for Use with Prototype Handlers

<bean
class="org.springframework.web.servlet.handler.SimpleUrlHandlerMapping">
<property name="mappings">
<props>
<prop key="/home">homeController</prop>
</props>
</property>
</bean>

The SimpleUrlHandlerMapping maps default handlers in the same way as the
BeanNameUr1HandlerMapping. To set a request handler as the default handler, simply map
it to the path /*.

One of the main reasons to use SimpleUrlHandlerMapping is to take advantage of intercep-
tors. While you can configure interceptors with BeanNameUr1HandlerMapping, it is very difficult
to create different combinations of handlers and interceptors. Using SimpleUrlHandlerMapping
makes it easy to create custom handler chains per request handler. We will visit interceptors in
Chapter 6.

Custom Mapping Strategy

The power and flexibility of Spring MVC’s request mapping really shines when a non-URL-based
mapping strategy is required. Because the HandlerMapping interface doesn't require a URL to be
involved in the mapping, the possibilities are quite open.

To illustrate a mapping strategy not based on URLSs, let’s consider mapping requests to
handlers based solely on request parameters.

To begin with, we will subclass AbstractHandlerMapping to take advantage of ordering, the
ability to set a default handler, and other life cycle callbacks. The new
RequestParameterHandlerMapping class (Listing 5-16) will map request parameter values from
a specified parameter name to handler instances.

Listing 5-16. RequestParameterHandlerMapping

public class RequestParameterHandlerMapping extends AbstractHandlerMapping
implements InitializingBean {

public final static String DEFAULT_PARAM NAME = "handler";
private String parameterName = DEFAULT_PARAM NAME;

private final Map<String, Object> paramMappings =
new HashMap<String, Object>();

CHAPTER 5 " THE PROCESSING PIPELINE

public final void setParamMappings(Map<String, Object> paramMappings) {
this.paramMappings.putAll(paramMappings);
}

public final void setParameterName(String parameterName) {
this.parameterName = parameterName;

}

@verride
protected Object getHandlerInternal(HttpServletRequest request)
throws Exception {
String parameterValue = request.getParameter(parameterName);
return paramMappings.get(parameterValue);

}

public void afterPropertiesSet() throws Exception {
Assert.hasText (parameterName,
"parameterName must not be null or blank");

Because this class extends AbstractHandlerMapping, if no handler exists for the request
parameter, then the AbstractHandlerMapping will attempt to load the default handler, which
can be set via the XML bean definition. See Listing 5-17.

Listing 5-17. RequestParameterHandlerMapping XML Definition

<bean
class="com.apress.expertspringmvc.chap5.RequestParameterHandlerMapping">
<property name="defaultHandler" ref="defaultController" />
<property name="parameterName" value="action" />
<property name="paramMappings">
<map>
<entry key="load" value-ref="loadController" />
<entry key="save" value-ref="saveController" />
</map>
</property>
</bean>

With this configuration, the URL http://example.org/springapp/app?action=1oad would
be routed to the loadController. Remember that /app is just the DispatcherServlet mapping
and not specific to any controller or request handler.

93

94

CHAPTER 5 " THE PROCESSING PIPELINE

Summary

Mapping incoming requests to request handlers is very flexible in Spring MVC. Out of the box,
URL mapping methods are provided, but it’s very easy to create mapping strategies that use
any information available in the HttpServletRequest.

The BeanNameUr1lHandlerMapping is the default mapping strategy and is used if no other
mapping strategies are defined in the ApplicationContext. This strategy, while simple and
easy, does have a few limitations. If you require complex interceptor mapping or the use of
prototype beans for handlers, you will need to use the SimpleUrlHandlerMapping.

Handler mapping strategies can be ordered using the Ordered interface, allowing you to
utilize multiple methods to resolve incoming requests to handlers.

HandlerExceptionResolver

When an exception occurs from handling a request, Spring MVC can catch the exception for
you and route the request to a particular error page or other exception handling code. The
HandlerExceptionResolver will handle any exception thrown inside the HandlerInterceptors,
the Controllers, or the View rendering. Typically, an exception is mapped to a particular error
page, but it is easy to extend this functionality for your particular error handling needs.

By using a HandlerExceptionResolver, shown in Listing 5-18, it is easy to centralize error
handling and configuration. Otherwise, each controller and interceptor would have to contain
duplicate code and logic for each exception that could be thrown.

Listing 5-18. HandlerExceptionResolver Interface

package org.springframework.web.servlet;
public interface HandlerExceptionResolver {

ModelAndView resolveException(
HttpServletRequest request, HttpServletResponse response,
Object handler, Exception ex);

The DispatcherServlet is configured by default to look for all beans in its
ApplicationContext of type HandlerExceptionResolver. If it finds one or more, it will order
them using the org.springframework.core.Ordered interface if the bean implements it. If
no HandlerExceptionResolver is found, no exception resolving will take place. Of course, any
mapped exceptions you have specified in the web.xml will still apply if the exception isn't han-
dled by a HandlerExceptionResolver.

You may also tell the DispatcherServlet to use only a single exception resolver,
ignoring all others that may be present in the ApplicationContext. Simply set the
detectAllHandlerExceptionResolvers property of the DispatcherServlet to false,
and then define a single bean with the name handlerExceptionResolver.

CHAPTER 5 ©" THE PROCESSING PIPELINE

The default implementation of this interface is the org. springframework.web.servlet.
handler.SimpleMappingExceptionResolver. This class maps exceptions to view names by the
exception class name or a substring of the class name. This implementation can be configured
for individual Controllers or for globally for all handlers. The example configuration in
Listing 5-19 illustrates these options.

Listing 5-19. Example SimpleMappingExceptionResolver ApplicationContext

<?xml version="1.0"?>
<IDOCTYPE beans PUBLIC
"-//SPRING//DTD BEAN//EN"
"http://www.springframework.org/dtd/spring-beans.dtd">
<beans>
<bean id="exceptionMapping"
class="org.springframework.web.servlet.handler.SimpleMappingExceptionResolver">
<property name="exceptionMappings">
<props>
<prop key="ApplicationException">appErrorView</prop>
<prop key="SomeOtherException">someErrorView</prop>
<prop key="java.lang.Exception">genericErrorView</prop>
</props>
</property>
</bean>
</beans>

The exceptionMappings property is a java.util.Properties with substrings (explained
later in this section) of exception class names as keys and View names as values. Notice how
you can specify a fully qualified class name or only part of a class name for the key. The error
View name will be ultimately resolved by a ViewResolver.

Listing 5-19 does not specify a particular request handler, so it will be applied to any
mapped exception by any handler. However, you can bind an exception resolver to specific
handlers to create very specific mappings. Use this technique when you require displaying dif-
ferent error pages for the same exception thrown by two different controllers.

Caution Mapping exceptions to individual handlers only works if the handler is a singleton. Unless you
are using ThrowawayControllers, this should not be an issue because normally Controllers are single-
tons. However, it is always possible to run any controller as a prototype.

Listing 5-20 provides two examples, one for mapping an exception resolver to a single
request handler, and the other for mapping to multiple request handlers.
Listing 5-20. Two Exception Resolvers for Specific Handlers

<?xml version="1.0"?>
<IDOCTYPE beans PUBLIC

95

96 CHAPTER 5 " THE PROCESSING PIPELINE

"-//SPRING//DTD BEAN//EN"
"http://www.springframework.org/dtd/spring-beans.dtd">
<beans>
<bean id="exceptionMappingForSingleController"
class="org.springframework.web.servlet.handler.SimpleMappingExceptionResolver">
<property name="mappedHandlers">
<set>
<ref bean="someController" />
</set>
</property>
<property name="exceptionMappings">
<props>
<prop key="ApplicationException">appErrorView</prop>
<prop key="SomeOtherException">someErrorView</prop>
<prop key="java.lang.Exception">genericErrorView</prop>
</props>
</property>
</bean>

<bean id="exceptionMappingForMultipleControllers"
class="org.springframework.web.servlet.handler.SimpleMappingExceptionResolver">
<property name="mappedHandlers">
<set>
<ref bean="anotherController" />
<ref bean="mainController" />
</set>
</property>
<property name="exceptionMappings">
<props>
<prop key="java.lang.Exception">differentErrorView</prop>
</props>
</property>
</bean>
</beans>

Two exception resolvers are defined in the ApplicationContext in Listing 5-20. Each
defines a set of mapped handlers that will define when the exception resolver is applied. If an
exception resolver encounters an exception from a handler it is not mapped to, it will simply
ignore the exception. Note that this behavior is only for exception resolvers that are mapped
to at least one handler.

You can control the order in which the DispatcherServlet will call each exception
resolver. To do this, simply add a property named order and set it to a positive integer. Any
exception resolvers not specified with an order will be randomly placed at the end of the
ordered list.

Listing 5-21 provides an example of setting an order priority.

CHAPTER 5 " THE PROCESSING PIPELINE

Listing 5-21. Example of Ordered Exception Resolver

<bean id="anotherExceptionMapping"
class="org.springframework.web.servlet.handler.SimpleMappingExceptionResolver">
<property name="order" value="1" />
<property name="mappedHandlers">
<set>

Pattern Matching Rules

The rules for pattern matching of the exception names might not be obvious, so we cover
them here. There are two rules to be aware of.

Rule Number One
The first rule to be aware of is that the shorter the pattern string, the higher priority it will
receive. For example, the mapping Excep will match any exception whose class name contains
that substring (in other words, nearly every exception). Even if you have another mapping
with the exact class name, the shorter Excep mapping will resolve first. Listings 5-22 through
5-24 illustrate this.

Listing 5-22 contains the two exception classes we’ll use for this example. It is a simple
class hierarchy, with ExceptionChild subclassing ExceptionParent.

Listing 5-22. Example Exception Classes

public class ExceptionParent extends Exception { }
public class ExceptionChild extends ExceptionParent { }

Listing 5-23 illustrates an exception resolver with two mappings. The first is a very general
mapping, handling any exception whose name includes the substring Excep. The second map-
ping is an explicit mapping for an exception whose names includes the fuller ExceptionChild.

Listing 5-23. Exception Mapping Example

<?xml version="1.0"?>
<!DOCTYPE beans PUBLIC
"-//SPRING//DTD BEAN//EN"
"http://www.springframework.org/dtd/spring-beans.dtd">
<beans>
<bean id="exceptionMapping"
class="org.springframework.web.servlet.handler.SimpleMappingExceptionResolver">
<property name="exceptionMappings">
<props>
<prop key="Excep">exceptionPage</prop>
<prop key="ExceptionChild">moreSpecificPage</prop>
</props>
</property>
</bean>
</beans>

97

98

CHAPTER 5 " THE PROCESSING PIPELINE

Listing 5-24 contains sample code that programmatically illustrates what view name is
resolved when an ExceptionChild exception is thrown.

Listing 5-24. Test Case

ModelAndView mav = resolver.resolveException(req, res, handler,
new ExceptionChild());
assertEquals("exceptionPage", mav.getViewName()); // true!

Notice how, in Listing 5-24, the SimpleMappingExceptionResolver returned the view name
exceptionPage, even though there was a rule to map an ExceptionChild exception.

Rule Number Two

The second rule comes in two parts. Exception mappings are aware of their superclasses, so
a mapping for a class will resolve to that class and all of its subclasses. Given the exception
classes from the previous example, the code in Listing 5-25 illustrates this rule.

Listing 5-25. Exception Resolver Configuration for ExceptionParent

<?xml version="1.0"?>
<!DOCTYPE beans PUBLIC
"-//SPRING//DTD BEAN//EN"
"http://www.springframework.org/dtd/spring-beans.dtd">
<beans>
<bean id="exceptionMapping"
class="org.springframework.web.servlet.handler.SimpleMappingExceptionResolver">
<property name="exceptionMappings">
<props>
<prop key="ExceptionParent">parentPage</prop>
</props>
</property>
</bean>
</beans>

Listing 5-26 simply shows that even those an ExceptionChild was thrown, the mapping
for ExceptionParent resolves.

Listing 5-26. Test Case

ModelAndView mav = resolver.resolveException(req, res, handler,
new ExceptionChild()); // throwing child subclass
assertEquals("parentPage", mav.getViewName()); // true!

Now, here is the second part of the rule. If you specify both the parent exception and the
child exception, then the child exception will resolve. So, even though the resolving logic will
scan the exception class hierarchy for a match, it will prefer a match lower in the tree.

CHAPTER 5 " THE PROCESSING PIPELINE

Listing 5-27 contains a simple mapping with both ExceptionParent and ExceptionChild.
Which one will resolve is based on which exception is thrown. Listing 5-28 shows that when
throwing ExceptionChild, the view name childPage resolves because ExceptionChild is more
specific than ExceptionParent.

Listing 5-27. Exception Resolver Mapping Both ExceptionParent and ExceptionChild

<?xml version="1.0"?>
<!DOCTYPE beans PUBLIC
"-//SPRING//DTD BEAN//EN"
"http://www.springframework.org/dtd/spring-beans.dtd">
<beans>
<bean id="exceptionMapping"
class="org.springframework.web.servlet.handler.SimpleMappingExceptionResolver">
<property name="exceptionMappings">
<props>
<prop key="ExceptionParent">parentPage</prop>
<prop key="ExceptionChild">childPage</prop>
</props>
</property>
</bean>
</beans>

Listing 5-28. Test Case

ModelAndView mav = resolver.resolveException(req, res, handler,
new ExceptionChild()); // throwing child subclass
assertkEquals("childPage", mav.getViewName()); // true!

Of course, if you configured that last exception resolver with a mapping of Exce, then that
would take precedence over either previous mapping.

Summary

To summarize, the HandlerExceptionResolver interface provides a mechanism to centralize
exception handling and remove it from the primary work flow logic. You can configure multi-
ple exception resolvers in an ApplicationContext, and they can be ordered by priority.

Spring provides a single implementation of this interface called
SimpleMappingExceptionResolver that maps exception names to error pages. This implemen-
tation can match full class names or substrings, will prefer a shorter name, and is aware of the
class hierarchy when attempting to match the exception.

The DispatcherServlet is aware of all exception resolvers in the ApplicationContext
and can order them based on priority. You can change this behavior by setting the
DispatcherServlet’s detectAllHandlerExceptionResolvers property to false, in which case
you will need to define a single exception resolver with the name handlerExceptionResolver.

99

100

CHAPTER 5 " THE PROCESSING PIPELINE

LocaleResolver

The org.springframework.web.servlet.LocaleResolver is a Strategy interface for retrieving
and setting a java.util.Locale during a web request. The Gang of Four, authors of Design
Patterns (Addison Wesley, 1995), write this of the Strategy pattern: “Define a family of algo-
rithms, encapsulate each one, and make them interchangeable. Strategy lets the algorithm
vary independently from clients that use it.”

Tip The Strategy pattern is heavily implemented within the Spring Framework. One of the reasons this
pattern is preferred is because class inheritance is generally avoided as a means to share behavior. The
Strategy pattern allows you to share behavior much more easily.

The LocaleResolver defines the contract of Locale resolution and modification. It leaves
the details of these methods up to implementations. Most importantly, the implementations
can be exchanged freely without affecting the system.

The Locale is mostly used when the application needs to display translated text for the
user interface, although it is also useful for formatting numbers and currencies. It assists the
general internationalization (i18n) features of the Java platform (http://java.sun.com/docs/
books/tutorial/i18n) and Spring MVC for providing language and culture independent appli-
cations. You will see many examples of this in Chapter 7, which covers user interface options.
For now, it’'s important to know that the Locale is set per user and intended to be accessible to
both the work flow and the user interface.

By default, generic Java web applications will respect the Accept-Language (http://www.w3.
org/Protocols/rfc2616/rfc2616-seci4.html#tsec14.4) header of a HTTP request. The servlet
container will map the languages specified in the header into Locale objects and set the pri-
mary choice as the chosen Locale.

Tip For more information on how Java web applications handle this header, see section 4.8 of the
Servlet 2.4 Specification (http://jcp.org/aboutJava/communityprocess/final/jsr154/index.html)
or HttpServletRequest’s getLocale() and getlLocales() methods.

Many applications, however, require more control when selecting the user’s Locale or
modifying it. This strategy interface allows you to customize where the Locale information
comes from and how to change it. First, let’s look at the LocaleResolver interface, shown in
Listing 5-29 and Figure 5-2.

CHAPTER 5 ©" THE PROCESSING PIPELINE

Listing 5-29. LocaleResolver Interface

package org.springframework.web.servlet;

public interface LocaleResolver {
Locale resolvelocale(HttpServletRequest request);

void setlocale(HttpServletRequest request, HttpServletResponse response,
Locale locale);

Tip To clear out the locale using this strategy interface, simply set the 1ocale property of the
LocaleResolver implementation to null.

<<interface>>
LocaleResolver
AN AN
AcceptHeaderLocaleResolver CookieLocaleResolver
FixedLocaleResolver SessionLocaleResolver

Figure 5-2. LocaleResolver class hierarchy

Once you have chosen an appropriate LocaleResolver, you need to register it with
the DispatcherServlet by creating a bean definition with the name localeResolver in your
ApplicationContext. The DispatcherServlet will look for that name before falling back to its
default implementation, the AcceptHeaderLocaleResolver.

The LocaleResolver interface defines how to query and set a Locale, but it does not define
when or how you should use it. Spring MVC’s i18n infrastructure (discussed in Chapters 7 and
9) will read out the Locale when performing translations and culture-specific formatting. This
work is typically done under the hood, so your job as a developer is to set the locale via the
LocaleResolver.

101

102

CHAPTER 5 " THE PROCESSING PIPELINE

This action is often a manual operation, helped tremendously by the chosen strategy,
because many users and clients cannot be trusted to set their browser’s language preferences
correctly. In other words, you probably can’t trust that the Accept-Language HTTP header is
correctly configured all the time.

Note The DispatcherServlet does not support chaining LocaleResolvers, so you are allowed to
choose only one implementation.

Setting a Locale

Your application’s design will dictate when you should call setLocale, normally in response to
some user action. For example, the application might provide a page with language choices,
and the user will be able to choose one and submit it back to the server.

In one possible implementation, you would create a Controller that delegates to a
LocaleResolver in order to store the user’s chosen Locale. Listings 5-30 and 5-31 show you
how to do this.

Listing 5-30. HTML Form, Choosing Language

<form action="setlLocale" method="post">
<p>
Language: <select name="language">
<option value="en">English</option>
<option value="de">German</option>

</select>
</p>
<p>
<input type="submit" />
</p>
</form>

Listing 5-31. SetLocaleController

public class SetlLocaleController extends AbstractController {

@0verride
protected ModelAndView handleRequestInternal(HttpServletRequest req,
HttpServletResponse res) throws Exception {
String language = req.getParameter("language");
Locale locale = StringUtils.parselocaleString(language);

// How did we get a reference to the localeResolver?
// See Listings 5-32 and 5-34 for the two strategies
// for obtaining a reference

// to this localeResolver instance

CHAPTER 5 ©" THE PROCESSING PIPELINE

localeResolver.setlocale(req, res, locale);

return new ModelAndView("setlocaleSuccess");

}

Tip Spring MVC provides a LocaleChangeInterceptor that performs the exact same operation as the
above example Controller. This interceptor is recommended, especially if many forms all have the same
locale request parameters.

Retrieving a LocaleResolver

Clearly you may use the LocaleResolver to set the locale, but what is the best way to obtain a
reference to the localeResolver from inside the Controller? There are at least two ways to get
the LocaleResolver object, each with different advantages. Which way you choose will be up
to you.

The most obvious way to get the LocaleResolver is to rely on Dependency Injection.
The LocaleResolver instance is a bean in the ApplicationContext like all other objects in
the system, so Spring will be happy to set this object into your Controller via DI for you. The
DispatcherServlet will recognize only one LocaleResolver in the ApplicationContext (it won't
chain multiple resolvers of this type), so typically there will be only one instance in the appli-
cation. If you have defined a LocaleResolver in the context, consider altering your Controller
to allow for injection of the resource, as shown in Listings 5-32 and 5-33.

Listing 5-32. Adding a Setter Method for Dependency Injection

private LocaleResolver localeResolver;

public void setlLocaleResolver(LocaleResolver localeResolver) {
this.localeResolver = localeResolver;

}

Listing 5-33. SetLocaleController ApplicationContext

<?xml version="1.0"?>

<IDOCTYPE beans PUBLIC
"-//SPRING//DTD BEAN//EN"
"http://www.springframework.org/dtd/spring-beans.dtd">

<beans>

<bean id="localeResolver"
class="org.springframework.web.servlet.i18n.SessionLocaleResolver" />

103

104

CHAPTER 5 " THE PROCESSING PIPELINE

<bean id="setlocaleController"
class="com.apress.expertspringmvc.chap4.SetLocaleController">
<property name="localeResolver" ref="localeResolver" />
</bean>

</beans>

There are situations where simple Dependency Injection won't work, such as when Spring
doesn’'t manage the life cycle of the handler object. For instance, the HandlerAdapter interface
was created to allow any request handler to be easily integrated into the DispatcherServlet. In
cases such as these, the DispatcherServlet places some of the framework objects, such as the
LocaleResolver, into the servlet request as request scoped attributes. This allows for any
object handling the HttpServlerRequest to be able to access the LocaleResolver.

To conveniently access the resolver without Dependency Injection, use the org.
springframework.web.servlet.support.RequestContextUtils class and its helpful
getlLocaleResolver () method. This utility method encapsulates the knowledge of where
the LocaleResolver is placed in the request scope, making retrieval safer for the client. The
Controller can be modified as shown in Listing 5-34.

Listing 5-34. RequestContextUtils.getLocaleResolver Example

@0verride
protected ModelAndView handleRequestInternal(HttpServletRequest req,
HttpServletResponse res) throws Exception {
String language = req.getParameter("language");
Locale locale = StringUtils.parselocaleString(language);
LocaleResolver localeResolver = RequestContextUtils.getlocaleResolver(req);
localeResolver.setlocale(req, res, locale);
return new ModelAndView("setlLocaleSuccess");

This class no longer needs the setLocaleResolver() method, as Dependency Injection is
no longer used.

Which method should you use? Using Dependency Injection is always easier to test than
using RequestContextUtils, so the DI solution is preferable.

You have now seen the LocaleResolver interface and the different options of interacting
with it. How the Locale, once it is set, affects the i18n features will be covered in Chapters 7
and 9. It’s time now to look in detail at the different implementations of LocaleResolver.

AcceptHeaderLocaleResolver

The DispatcherServlet will default to the org.springframework.web.servlet.i18n.
AcceptHeaderLocaleResolver class if no other LocaleResolvers are specified in the
ApplicationContext. This implementation simply delegates to the HttpServletRequest’s
getlocale() method, thus obeying the Accept-Language HTTP header. Because the
header originates from the client, there is no way to change the Locale, so the
AcceptHeaderlLocaleResolver will throw an exception if setLocale() is called.

There is no need to specify this class in your ApplicationContext, as the DispatcherServlet
will create it if no implementations can be found.

CHAPTER 5 ©" THE PROCESSING PIPELINE

FixedLocaleResolver

The simplest implementation is the FixedLocaleResolver. This class allows you to define the

Locale in the ApplicationContext, and because the Locale choice is fixed, it’s one size fits all

with this Strategy. This is a useful and easy way to override and ignore any client’s language

choice, for example. Simply define an instance of this class in your ApplicationContext with

the bean name localeResolver, and the DispatcherServlet will recognize it automatically.
Listing 5-35 contains an example configuration of a FixedLocaleResolver.

Listing 5-35. Sample FixedLocaleResolver

<?xml version="1.0"?>

<!DOCTYPE beans PUBLIC
"-//SPRING//DTD BEAN//EN"
"http://www.springframework.org/dtd/spring-beans.dtd">

<beans>

<bean id="fixedlLocaleResolver"
class="org.springframework.web.servlet.i18n.FixedLocaleResolver">
<property name="defaultlLocale" value="en" />

</bean>

</beans>

Using the configuration from Listing 5-35, no matter what the client advertises via its
headers, the framework will force the locale to be en.

You might notice that the defaultLocale property is of type java.util.Locale, yet all we
specified in the above configuration is the string en. Spring will use its LocaleEditor property
editor to convert from the string to a full Locale instance. LocaleEditor is one of the many
property editors that Spring will create and register by default.

Tip Spring’s use of PropertyEditors from the Java Bean specification is quite extensive. Take the time
to learn what editors Spring provides out of the box (a subset is covered in Chapter 6).

If your applications require providing each user their own unique experience, the
FixedLocaleResolver falls quite short. With the default class AcceptHeaderLocaleResolver
(while it does provide a personalized experience) it’s impossible for the application to change
its value. There are two other implementations of LocaleResolver that allow the application to
change the Locale for the user, the CookielocaleResolver and the SessionLocaleResolver.
Both of these implementations support changing and storing the Locale across requests.

105

106

CHAPTER 5 © THE PROCESSING PIPELINE

CookieLocaleResolver

The CookielocaleResolver sets and retrieves the Locale object via a browser cookie. This strat-
egy is useful when the application does not support sessions and the state must be kept client
side.

Simply declare this class in your ApplicationContext to use it. Note that you can configure
the name of the cookie if you choose, but the class provides a sensible default. If you wish to
clear the Locale cookie, simply call setLocale() and pass in a null locale.

Listing 5-36 contains a sample bean definition for a CookielLocaleResolver.

Listing 5-36. CookieLocaleResolver Bean Definition

<?xml version="1.0"?>

<!DOCTYPE beans PUBLIC
"-//SPRING//DTD BEAN//EN"
"http://www.springframework.org/dtd/spring-beans.dtd">

<beans>

<bean id="cookielocaleResolver"
class="org.springframework.web.servlet.i18n.CookielocaleResolver" />

</beans>

Note If there is no Locale cookie present, this class will fall back to ServletRequest’s getLocale()
method. The getlLocale() method returns the client’s preferred Locale, as dictated by the Accept-Language
HTTP header. If the client did not specify an Accept-Language header, the method returns the default Locale of
the server.

SessionLocaleResolver

The SessionLocaleResolver stores the user’s Locale inside the HttpSession object, and it sup-
ports both retrieval and modification. It offers a nice alternative to storing the locale state in a
cookie. As with the CookielocaleResolver, if no Locale is found in the session, this class will
fall back to the getLocale() method of HttpServletRequest.

This implementation (see Listing 5-37) is as easy to declare as the CookielocaleResolver.

Listing 5-37. SessionLocaleResolver Bean

<?xml version="1.0"?>

<IDOCTYPE beans PUBLIC
"-//SPRING//DTD BEAN//EN"
"http://www.springframework.org/dtd/spring-beans.dtd">

<beans>

CHAPTER 5 ©" THE PROCESSING PIPELINE

<bean id="sessionlLocaleResolver"
class="org.springframework.web.servlet.i18n.SessionLocaleResolver" />

</beans>

Summary

So how do you choose which locale management strategy to use? It all depends on what your
application requirements are, and as usual, Spring doesn’t force one decision for you. In fact, if
your needs aren’t covered by the included strategy implementations, the LocaleResolver inter-
face is simple enough to create a customization if required.

Tip Never feel constrained by the provided solutions and implementations. More often than not, there’s an
interface or abstract class for easy customization.

If your application doesn't allow your users to change their Locale, but you do want to
acknowledge their browser’s defaults, then stick with the default AcceptHeaderLocaleResolver.
This strategy emulates the Servlet specification’s default behavior and requires no configura-
tion. It’s also the option of least surprise, as it performs as most people would expect.

If you need to force a particular Locale and it can never be changed, then
FixedLocaleResolver is the one for you. This class is very simple to set up, but is quite limiting.

When your application requires Locales to be changed by the user from inside the web
application, then the CookielocaleResolver and the SessionLocaleResolver are your two
choices. If your application is already using sessions, then the SessionlLocaleResolver is a logi-
cal choice. However, if you require the Locale choice to persist longer than the session, then
the CookielocaleResolver is your only choice. There is no clear winner here, so choose the
option that best fits your situation.

MultipartResolver

Handling file uploads is a standard feature of web frameworks, and Spring MVC'’s
org.springframework.web.multipart.MultipartResolver provides the strategy interface
for this functionality. Like many other features, Spring doesn’t reinvent the wheel when it
comes to file upload handling. Out of the box, Spring provides two implementations of
MultipartResolver, one for Jakarta Commons’ FileUpload (http://jakarta.apache.org/
commons/fileupload) and one for Jason Hunter’s COS (http://www.servlets.com/cos).

Tip COS stands for com.oreilly.servlet, as the library was originally written for Jason Hunter’s Java
Serlvet Programming (0’Reilly, 2001).

107

108

CHAPTER 5 © THE PROCESSING PIPELINE

HTTP file uploading, or “Form-based File Upload in HTML,” is defined in RFC 1867
(http://www.ietf.org/rfc/rfc1867.txt). By creating an HTML input field of type="file" and
setting the form’s enctype="multipart/form-data", the browser can send a text or binary file to
the server as part of a HTTP POST request.

The DispatcherServlet will look for a single bean in the ApplicationContext with the
name multipartResolver. If one is found, it will pass each incoming request to the resolver
in order to wrap the HttpServletRequest with a subclass that can expose the file upload. If a
multipart resolver is not located, then no multipart file handling will be available. Note that
the DispatcherServlet does not chain MultipartResolvers.

Unlike previous resolvers such as LocaleResolver, client code is never intended to
interact with this interface directly. The DispatcherServlet manages the work flow of
the MultipartResolver, and the client code will simply cast the request object to an
org.springframework.web.multipart.MultipartHttpServletRequest wrapper object in
order to get the uploaded file(s).

Listing 5-38 contains the MultipartResolver interface.

Listing 5-38. MultipartResolver Interface

package org.springframework.web.multipart;
public interface MultipartResolver {
boolean isMultipart(HttpServletRequest request);

MultipartHttpServletRequest resolveMultipart(HttpServletRequest request)
throws MultipartException;

void cleanupMultipart(MultipartHttpServletRequest request);

The isMultipart() method is called by the DispatcherServlet in order to determine if
the incoming request is a multipart request. The implementation will most likely check the
Content-Type of the request for a value of multipart/form-data, but this can be only part of
the heuristics.

If the request does indeed contain uploaded files, the resolveMultipart() method is
called, returning the MultipartHttpServletRequest (see Listing 5-39). This wrapping object
adds methods to retrieve the uploaded files.

Caution The MultipartResolver will only wrap requests with a MultipartHttpServletRequest if
the request actually contains file uploads.

CHAPTER 5 " THE PROCESSING PIPELINE

Listing 5-39. MultipartHttpServletRequest Interface

package org.springframework.web.multipart;

public interface MultipartHttpServletRequest extends HttpServletRequest {
Iterator getFileNames();
MultipartFile getFile(String name);

Map getFileMap();

Before the end of the request life cycle and after the handling code has had a chance to
work with the uploaded files, the DispatcherServlet will then call cleanupMultipart(). This
removes any state left behind by the file upload implementation code, such as temporary files
on the file system. Therefore, it is important that any request handling code should work with
the uploaded files before request processing finishes.

So which library should you use, Commons’ FileUpload or COS? The choice is up to you,
as both have been around for years and are considered stable. However, keep in mind that
Commons’ FileUpload will probably receive more maintenance in the future. Of course, if
neither provides the features you require, you may implement a new MultipartResolver.

Example

Working with file uploads is actually quite simple, as most of the mechanisms are handled by
the DispatcherServlet and thus hidden from request handling code. For an example, we will
register a Jakarta Commons FileUpload MultipartResolver and create a Controller that saves
uploaded files to a temporary directory.

Listing 5-40 contains the configuration required for the CommonsMultipartResolver.

Listing 5-40. MultipartResolver ApplicationContext

<?xml version="1.0"?>

<IDOCTYPE beans PUBLIC
"-//SPRING//DTD BEAN//EN"
"http://www.springframework.org/dtd/spring-beans.dtd">

<beans>

<bean id="multipartResolver"
class="org.springframework.web.multipart.commons.CommonsMultipartResolver">
<property name="maxUploadSize" value="2000000" />

</bean>

<bean name="/handleUpload"
class="com.apress.expertspringmvc.chap4.HandleUploadController">
<property name="tempDirectory" value="/tmp" />

109

110 CHAPTER 5 " THE PROCESSING PIPELINE

</bean>

</beans>

Note that we declared the multipart resolver in the same ApplicationContext as our
Controller. We recommend grouping all web-related beans in the same context.
Next, we create the form for the file upload, as shown in Listing 5-41.

Tip It's very important to set the enctype attribute of the <form> element to multipart/form-data.

Listing 5-41. HTML File Upload Form

<?xml version="1.0" encoding="IS0-8859-1" ?>

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml">

<head>
<meta http-equiv="Content-Type" content="text/html; charset=IS0-8859-1" />

<title>File Upload Form</title>

</head>

<body>

<form action="spring/handleUpload" method="post" enctype="multipart/form-data">
File: <input type="file" name="uploaded" />
<input type="submit" />

</formy>
</body>
</html>

The Controller that handles the request is shown in Listing 5-42. Notice how it must cast
the request object to a MultipartHttpServletRequest before extracting the file. The utility class
FileCopyUtils, provided by Spring, contains convenience methods such as copying an input
stream to an output stream.

Listing 5-42. File Upload Controller

public class HandleUploadController extends AbstractController
implements InitializingBean {

private File destinationDir;

public void setDestinationDir(File destinationDir) {
this.destinationDir = destinationDir;

}

CHAPTER 5 " THE PROCESSING PIPELINE

public void afterPropertiesSet() throws Exception {
if (destinationDir == null) {
throw new IllegalArgumentException("Must specify destinationDir");
} else if (!destinationDir.isDirectory() 8& !destinationDir.mkdir()) {
throw new IllegalArgumentException(destinationDir + " is not a " +
"directory, or it couldn't be created");

n

}
}

protected ModelAndView handleRequestInternal(HttpServletRequest req,
HttpServletResponse res) throws Exception {
res.setContentType("text/plain");

if (! (req instanceof MultipartHttpServletRequest)) {
res.sendError (HttpServletResponse.SC_BAD REQUEST,
"Expected multipart request");
return null;

}

MultipartHttpServletRequest multipartRequest =
(MultipartHttpServletRequest) req;
MultipartFile file = multipartRequest.getFile("uploaded");
File destination = File.createTempFile("file", "uploaded",
destinationDir);
FileCopyUtils.copy(file.getInputStream(),
new FileOutputStream(destination));

res.getWriter().write("Success, wrote to " + destination);
res.flushBuffer();

return null;

If you are creating command beans (see BaseCommandController and SimpleFormController
in Chapter 6) to encapsulate the request parameters from forms, you can even populate a prop-
erty of your command object from the contents of the uploaded file. In other words, instead
of performing the manual operation of extracting the file from the MultipartFile instance (as
we did in the preceding example in Listing 5-42), Spring MVC can inject the contents of the
uploaded file (as a MultipartFile, byte[], or String) directly into a property on your command
bean. With this technique there is no need to cast the ServletRequest object or manually retrieve
the file contents.

111

112

CHAPTER 5 " THE PROCESSING PIPELINE

We'll cover binding request parameters from forms in the next chapter, so we won’t
jump ahead here and confuse the topic at hand. But we will provide the hint required to
make the file contents transparently show up in your command bean: you must register
either ByteArrayMultipartFileEditor or StringMultipartFileEditor with your data binder
(for instance, inside the initBinder () method of your form controller). What does that mean?
Hang tight, or skip to Chapter 7.

Aslong as the contents of the uploaded file aren’t too large, we recommend the direct
property binding because it is less work for you and certainly more transparent.

ThemeResolver

Spring MVC supports a concept of themes, which are interchangeable looks and feels for
your web application. Often called skins, themes are a way to abstract a look and feel (color
scheme, logo, size of buttons, and so on) from the user interface. This is helpful to the user
interface implementer, because the skin information can be rendered at runtime, instead of
simply duplicating each page once for each look and feel. We will cover themes in greater
detail in the Chapter 7. For now, we will focus on how to choose and manipulate themes
for each user’s requests. You will find that the concepts here are very similar to the
LocaleResolver.

Listing 5-43 contains the ThemeResolver interface.

Listing 5-43. ThemeResolver Interface

package org.springframework.web.servlet;

public interface ThemeResolver {
String resolveThemeName(HttpServletRequest request);

void setThemeName(HttpServletRequest request, HttpServletResponse response,
String themeName);

As you can see, the ThemeResolver interface resembles the LocaleResolver interface very
closely. One major difference between the two is ThemeResolver returns strings instead of a
strongly typed objects. The resolution of the theme name to a org. springframework.ui.context.
Theme object is done via an org. springframework.ui.context.ThemeSource implementation.

The ThemeResolver interface has the same types of implementations as the
LocaleResolver interface. Out of the box, Spring MVC provides a FixedThemeResolver, a
CookieThemeResolver, and a SessionThemeResolver. Just like their LocaleResolver counter-
parts, both CookieThemeResolver and SessionThemeResolver support retrieving and changing
the theme, while FixedThemeResolver only supports a read-only theme.

CHAPTER 5 ©" THE PROCESSING PIPELINE

Figure 5-3 illustrates the class hierarchy for the ThemeResolver and its subclasses.

<<interface>>
ThemeResolver CookieGenerator
AbstractThemeResolver CookieThemeResolver
SessionThemeResolver FixedThemeResolver

Figure 5-3. ThemeResolver class hierarchy

The DispatcherServlet does not support chaining of ThemeResolvers. It will simply attempt
to find a bean in the ApplicationContext with the name themeResolver. If no ThemeResolvers are
located, then the DispatcherServlet will create its own FixedThemeResolver configured only with
the defaults.

Working with the configured ThemeResolver is no different than working with the
LocaleResolver. The DispatcherServlet places the ThemeResolver into each request as an
HttpServletRequest attribute. You then access this object through the RequestContextUtils
utility class and its getThemeResolver () method.

Summary

A theme is a skin, or look and feel, for your web application that is easily changed by the user
or application. The ThemeResolver interface encapsulates the strategy for reading and setting
the theme for a user’s request. Similar to the LocaleResolver, the ThemeResolver supports a
fixed theme, or storing the theme in a cookie or in the HttpSession object.

The DispatcherServlet will look for a bean with the name themeResolver in
the ApplicationContext upon startup. If it does not find one, it will use the default
FixedThemeResolver.

We'll discuss themes in detail in Chapter 7. For now, it’s important to know that
there is one for each DispatcherServlet and the default, if none are specified, is the
FixedThemeResolver.

113

114

CHAPTER 5 " THE PROCESSING PIPELINE

Summary

Spring MVC has a full-featured processing pipeline, but through the use of sensible
abstractions and extensions, it can be easily extended and customized to create powerful
applications. The key is the many interfaces and abstract base classes provided for nearly
every step along the request’s life cycle.

As a developer, you are encouraged to implement and extend the provided interfaces and
implementations to customize your users’ experiences. Don't be constrained by the provided
implementations. If you don’'t see something you need, chances are it’s very easy to create.

For more information on themes and views, including the ViewResolver, continue on to
Chapter 7. For more information on Controllers (Spring MVC'’s default request handlers) and
interceptors, let’s now continue on to Chapter 6.

CHAPTER 6

The Controller Menagerie

A Controller is the workhorse of Spring MVC, providing the glue between the core applica-
tion and the web. We've mentioned Controllers several times up to this point, and we will
now provide an in-depth review of the different available Controller implementations.

This chapter will also cover many of the details surrounding form submission, including
details on binding form data to POJOs. Related to data binding are simple validation and how
PropertyEditors help convert Strings to complex types. We'll cover both in this chapter.

Introduction

It is important to note that a Controller in Spring MVC is not the same thing as a Front Con-
troller. Martin Fowler in Patterns of Enterprise Application Architecture (Addison Wesley, 2002)
defines a Front Controller as “a controller that handles all requests for a Web site.” By that defi-
nition, the DispatcherServlet serves the role of a Front Controller. A Spring MVC Controller
is really a Page Controller, which Fowler defines as “an object that handles a request for a spe-
cific page or action on a Web site.”

In Spring MVC there are two high-level types of Controllers: Controllers and
ThrowawayControllers. Controllers are (typically) singleton, multithreaded page controllers
fully aware of the Servlet API (e.g., HttpServletRequest, HttpServletResponse, and so on).

A ThrowawayController is an executable command object (providing an execute() method)
that is populated directly with request parameters and has no awareness of the Servlet API.
A ThrowawayController is not intended for multithreaded use, but instead for one-off execu-
tion (hence its name).

Tip Admittedly the naming convention leads you to believe a ThrowawayController is a subclass of
Controller, but in fact a ThrowawayController works very differently than a Controller, and it is not
a subclass of Controller. We will discuss both types in this section, but be aware that a Controller is
treated differently than a ThrowawayController.

115

116

CHAPTER 6 " THE CONTROLLER MENAGERIE

How do you choose which controller type to implement? We believe this decision has a lot
to do with you and how you think about how requests are processed. If you are comfortable with
how the standard servlet model works, then you will feel right at home with the Controller
interface. Controllers are typically implemented and deployed as singletons, therefore all
requests for the same resource (or page) are routed through the same instance. This design
forces you to keep all of the state for the request outside the Controller, instead in places such
as the HttpSession or stateful session beans. The advantage of this design is that it is very
familiar (Struts Actions follow this design, as well as standard servlets, for example) and very
scalable due to the stateless nature of the request processing and its minimal impact on
garbage collection.

If you prefer to think about the incoming request as a thing to be executed, then you might
find the ThrowawayController easier to work with (fans of WebWork (http://www.opensymphony.
com/webwork), I'm talking to you). With this controller type you are not restricted to writing state-
less controllers, as this controller encapsulates both state (parameters from the request) and
behavior (the execute() method). Although we still recommend that you delegate business logic
to the domain model, if you like programming to a model where the command is encapsulated
as first-class citizen, this controller is for you.

As with all things in Spring MVC, the choice is yours, and there is no intrinsic bias toward
one method or the other. Feel free to mix and match controller types in the same application
to give yourself ultimate flexibility. If you are unsure, fear not! We will cover both in detail in
this chapter. One thing to note, however, is that Spring MVC appears to favor Controllers over
ThrowawayControllers, simply by the number of implementations available for Controller.

The Controller Interface and Implementations

To review, the Controller interface (presented again in Listing 6-1) contains a simple, stateless
method that accepts an HttpServletRequest and an HttpServletResponse and optionally returns
aModelAndView. In true Spring MVC style, there are many Controller implementations to choose
from, each building upon its superclass to extend its life cycle and work flow.

Listing 6-1. Controller Interface

public interface Controller {
ModelAndView handleRequest(HttpServletRequest request,
HttpServletResponse response) throws Exception;

A Look at Design

Before we begin our tour of the different Controllers, we will first discuss one of the important
design principles behind the class hierarchy. When studying the different Controllers, new
users encounter plenty of methods marked final. These are often encountered when a user
wishes to add functionality to a subclass of a Controller implementation but is prohibited
from doing so. These final methods can be frustrating, but they are there for an important
reason.

CHAPTER 6 © THE CONTROLLER MENAGERIE

To understand the developers’ intentions, we must look at an important principle of
object-oriented design entitled the Open-Closed Principle. Quoting Bob Martin,! as he
paraphrases Bertrand Meyer,2 this principle is defined as follows:

Software entities (classes, modules, functions, etc.) should be open for extension, but
closed for modification.

In other words, this principle states that a class should protect itself from alteration while
at the same time providing well-defined extension points. At first glance, these two objectives
seem contradictory, for isn’t implementing an extension point just another way to alter a class?

Good object-oriented design places a high premium on encapsulation, which is the hid-
ing of both data and implementation details. This principle states that a class should protect
itself from not only outside influence (something we are very familiar with, as we mark any
method as private), but also internal influence. Internal influence can be anything that might
have intimate knowledge of the class structure, such as subclasses (which are in a much more
powerful position to modify the behavior of a class). A well-designed class conforming to the
Open-Closed Principle considers even subclasses as potentially harmful, which is why you
will see so many methods marked as final.

So what type of harm is the class protecting itself from? Without the final modifier, a sub-
class is able to re-implement any non-private method of its superclass. This method overriding
is potentially very dangerous, as it might ignore or change the original implementation’s intents.
Any redefinition of a method would effectively break the contract the superclass has with the
rest of the system, leading to potentially unintended consequences.

But I hear you saying that your overriding method can simply call super.doMethod(),
ensuring that the original method’s logic is run (thus preserving the original method defini-
tion). This is the crux of the problem, as there is no way to force an overriding method to call
super.doMethod(). Also, does the subclass call the method before or after the overriding
method’s code? For libraries intended to be used across many different systems, this type of
uncertainly is not acceptable.

However, libraries intended for wide use must allow for customization, and this is where
“open for extension” comes in. Instead of allowing a class’s behavior to change, you should
allow a class to be extended. Extension happens via well-defined life cycle callback methods
(typically with method names such as onXxx() in the Spring Framework). These callback
methods are intended to be overridden, because they don’t define the core business logic of
the class. While the core business logic method is marked as final, it might call one or more
extension methods allowing a subclass to add in extra behavior.

To illustrate this principle in action, we will look at the high-level implementation of the
Controller interface, which is the org. springframework.web.servlet.mvc.AbstractController.
This first class in the Controller hierarchy remains fairly simple. However, it provides the first
good example of the Open-Closed Principle in action, plus it gives us a good starting point to
examine the Controller options.

1. Bob Martin, The Open-Closed Principle, http://www.objectmentor.com/resources/articles/ocp.pdf, 1996.
2. Bertrand Meyer, Object Oriented Software Construction (Upper Saddle River, NJ: Prentice Hall, 1988) p 23.

117

118

CHAPTER 6 " THE CONTROLLER MENAGERIE

AbstractController

This class provides the basic building blocks for all other Controllers. You shouldn’t have to
implement your own Controller class, as this class is built for subclassing.

The first thing to notice about this class is that it marks the handleRequest() method
(from the Controller interface) as final. At first glance, this seems to make the class useless
for subclasses. Looking closer, we see a protected method named handleRequestInternal(),
clearly intended for subclasses. Why not just allow overriding of the handleRequest () method?
The answer, in short, is because this class obeys the Open-Closed Principle.

Each Controller in the hierarchy defines a clear work flow and life cycle. For instance, the
AbstractController will

1. check whether the HTTP request method (GET, POST, etc) is supported by this
Controller;

2. check whether a session exists, if this Controller requires a session;
3. send cache control headers, if required;

4. synchronize around the session, if required;

5. run custom logic, via handleRequestInternal().

The first four steps are well defined, and each subclass relies on them to run in a well-known
manner. In other words, they should never change, because if they did, the very definition of
AbstractController changes. For this reason, the class marks the handleRequest () method as
final, to be closed for modification. This class’s work flow is now set in stone, so to speak.

Of course, if the class only performed the first four items, it wouldn’t be of much use. To
be open for extension, it defines a handleRequestInternal() method specifically for subclasses
to have a well-known extension point to place custom logic. This way, subclasses are free to
customize this class without the possibility of changing its well-defined work flow. This is a
perfect manifestation of the Open-Closed Principle, and you will see many examples of it
throughout the Controller hierarchy.

This example also illustrates the Template pattern, a popular design pattern also found
throughout the Spring Framework. The Template pattern is used to separate the variant
sections of an algorithm from the invariant sections to allow for easy customization and
substitution. In other words, a template of the algorithm is created, with the specifics
intended to be filled in later.

The AbstractController’s implementation of handleRequest() applies the Template pat-
tern, as it defines a well-known work flow (the algorithm) but provides an extension point for
specifics via the handleRequestInternal() method. This pattern is another perfect example of
the Open-Closed Principle, and you can find it across the Spring Framework from Spring MVC
to Spring JDBC.

AbstractController Functionality

By examining the work flow of AbstractController, we will see the common functionality that
is applied to all Controllers.

CHAPTER 6 © THE CONTROLLER MENAGERIE

Enforcing HTTP Methods

By default, an AbstractController supports HEAD, GET, and POST methods. If an HTTP
method is used for the request that is not in that list, a RequestMethodNotSupportedException
will be thrown. Note that the AbstractController doesn’t define what should happen for each
type of request, but that other subclasses do make the distinction between different methods.
Setting the list of supported methods is often a good idea, enforcing the contract for a particu-
lar Controller. For example, some Controllers may display only read-only data, so setting its
supported methods to only GET enforces this usage.

Note The HTTP RFC, http://www.w3.0rg/Protocols/rfc2616/1fc2616-sec9.html, defines each
method, its semantics, and its intended usage.

For example, you can set the supported methods via the bean definition (Listing 6-3) or
simply inside the Controller’s constructor (Listing 6-2).

Tip Set the supported methods to only those that the Controller specifically supports. When a client
attempts a non-supported HTTP method, the correct error message and status will be generated, creating
helpful error messages. Plus, your Controller will be protected against incorrect (and potentially damag-
ing) usage

Listing 6-2. Setting Supported Methods via the Constructor

public SimpleController() {
setSupportedMethods(new String[]{"GET","POST"});
}

Listing 6-3. Setting Supported Methods via the Bean Definition

<bean>
<bean name="/sample"
class="com.apress.expertspringmvc.chap4.SimpleAbstractController">
<property name="supportedMethods" value="GET,POST" />
</bean>
</bean>

These two examples are identical, so choose the method that best works for you.

119

120

CHAPTER 6 ©* THE CONTROLLER MENAGERIE

Tip We recommend that for configuration elements that will not change, such as the supported methods
for a Controller, the constructor is the best place to set them. The XML bean definitions are excellent
places for configuration elements that will change or are external to the definition of the bean itself.

How did Spring convert the string "GET,POST" into an array of Strings? Spring used the
org.springframework.beans.propertyeditors.StringArrayPropertyEditor, automatically
registered for ApplicationContexts. Learn more about PropertyEditors later in this chapter.

Require Sessions

The AbstractController will also, if configured to do so, check for an existing HTTP
session in the request. If a session is not found, then the Controller will fail fast with a
SessionRequiredException. This may be useful when a Controller is part of a work flow that
requires a session to already exist, as it should fail in a consistent manner and with a semanti-
cally rich exception if no session exists.

To configure this behavior, simply set the requiresSession property to true. The default
behavior is to not require a session. Again, this can be done inside the constructor or in the
bean definition.

Cache Header Management

With a few simple configuration properties, the AbstractController will also manage the
sending of cache control headers in the response. These headers will instruct the client, and
any caches between the client and server, on how to cache the document returned by the
Controller. By default, the Controller will not send any cache headers with the response.

To send cache control headers, simply set the cacheSeconds property to a value greater
or equal to zero. With zero as the value, the Controller will tell the client that no caching is
allowed. If the value is greater than zero, the Controller will send the appropriate headers to
indicate the content shall be cached for that many seconds. Of course, the client is free to
ignore any or all of these headers, so treat them as hints.

Tip HTTP caching is a large concept with many nuances. Begin your research with the HTTP RFC’s
section on caching (http://www.w3.org/Protocols/rfc2616/rfc2616-sec13.htmlitsec13). Used
correctly, caching can save both bandwidth and system resources. At a minimum, enable caching for
read-only pages with static (or infrequently changing) content.

By default, both HTTP/1.0 and HTTP/1.1 cache manipulation headers will be sent by
AbstractController. Note that there are few clients out in the wild that speak only HTTP/1.0,
but sending both 1.0 and 1.1 headers is normally done to accommodate broken client imple-
mentations. For safety, and unless there is some other explicit reason, send both versions of
headers. To control sending of HTTP/1.0 headers, use the useExpiresHeader property. To
control sending of HTTP/1.1 headers, use the useCacheControlHeader property.

CHAPTER 6 © THE CONTROLLER MENAGERIE

If you have set the property cacheSeconds to zero, the following headers will be sent:
e Pragma: No-cache (universal)

e Expires: n(where n = current system date + one second, as HTTP-formatted date)
(HTTP/1.0)

e Cache-Control: no-cache (HTTP/1.1)
e Cache-Control: no-store (HTTP/1.1, for Firefox)
If you wish to inform the client to cache the document, the following headers will be sent:

e Expires: n(where n = current system date + seconds, as HTTP-formatted date)
(HTTP/1.0)

e Cache-Control: max-age=s (where s =seconds documents should be cached for)
(HTTP/1.1)

There is one more element of caching your Controller can configure, but not through
setting properties. Your Controller implementation may also implement the interface
org.springframework.web.servlet.mvc.LastModified (shown in Listing 6-4) to indicate that
it provides a last modified time for the document. This interface contains one method.

Listing 6-4. LastModified Interface

package org.springframework.web.servlet.mvc;
public interface LastModified {
long getlastModified(HttpServletRequest request);

}

If your Controller implements this (which AbstractController does not by default), then
the cache control code can send an extra hint to the client via cache headers. By providing a last
modified date, the Cache-Control header will contain the value max-age=s, must-revalidate,
which instructs the client that it must revalidate the document once it has become stale in
the cache.

The most common way a client will revalidate the document is to issue a conditional request
using the Last-Modified header inside the HTTP request. When the client requests the document
again, it will send a Last-Modified header set to the date when it last received the document. The
document is considered valid if it has not been modified since this date.

Tip For more on how a client may revalidate a resource, consult section 13.3 of the HTTP RFC,
http://www.w3.0rg/Protocols/rfc2616/rfc2616-sec13.htmlisec13.3.

As you can see, by implementing LastModified, your Controller will be able to accurately
tell the server when its contents last changed. Thus, AbstractController is able to incorporate
the must-revalidate instruction in its Cache-Control headers.

121

122

CHAPTER 6 " THE CONTROLLER MENAGERIE

To be clear, the AbstractController does not implement the LastModified interface. It is
up to you to provide this functionality, if your data supports it.

Cache control is a broad topic but, if implemented correctly, it can help to manage band-
width and CPU consumption considerably. For example, if the Controller’s main responsibility
is to pull static information from a database to be rendered in HTML, instructing clients to cache
the document will save repeated trips to the database, bandwidth, and processing load (always a
good thing).

Synchronized Session

The last bit of functionality the AbstractController will perform on behalf of subclasses
is optionally synchronizing the handling of the request around the session object. By
setting synchronizeOnSession to true, the Controller will synchronize every call to
handleRequestInternal() around the user’s HttpSession object. If there is no session,
then no synchronizing will take place no matter the value of synchronizeOnSession.

This is useful if the Controller must ensure multiple requests from the same client are to
be handled in a serialized and nonconcurrent manner. When would you have to do this? If it is
possible to directly modify state that is stored in the session, it’s useful to serialize access to
the session in order to ensure that multiple processes don't interfere with each other.

As browsers become more sophisticated and pre-fetch more pages (the Google Web
Accelerator does this, for example), the chances of web requests being performed in the
background increase. Be aware that the client may be creating multiple concurrent requests
without the user’s involvement. You may want to investigate the synchronizeOnSession prop-
erty to protect your Controllers from such activity.

Summary

The AbstractController provides the basis for all Controller implementations in Spring MVC.
It adheres to the Open-Closed Principle to protect its work flow and life cycle methods, while
providing a well-known extension hook in the form of handleRequestInternal(). The
AbstractController handles session checking, HTTP method checking, cache control, and
synchronization, all configured by either the bean definition in the XML or through simple
setters called in the constructor.

For simple Controller implementations, subclass this class instead of merely implement-
ing Controller. For more robust work flows, we will now begin examining subclasses of
AbstractController.

BaseCommandController

While AbstractController is a good class for read-only web resources, an interactive web
application will require HTML forms support. Native servlet applications would require work-
ing directly with the HttpServletRequest and its getParameter() method to read submitted
form values. This method is error prone and cumbersome, as the developer needs to handle
missing values and potential type conversion. Modern web frameworks usually provide a
mechanism to automatically convert the raw request parameters into classes and properties,
so that the request handling code can interact with a strongly typed object instead of a collec-
tion of Strings.

CHAPTER 6 © THE CONTROLLER MENAGERIE

The org.springframework.web.servlet.mvc.BaseCommandController class provides the
basic feature set for supporting form submits, including creating JavaBeans from the request,
and registering Validators. It does not support the notion of a page view work flow, nor does
it do anything with the JavaBean once created. This class is the parent for classes such as
SimpleFormController that build upon its functionality to bring coordinated page views to
the user.

Tip If you are looking to handle form submits, look past the BaseCommandController to
SimpleFormController. BaseCommandController does not provide any work flows that you can
extend easily, but it does provide much of the base functionality.

BaseCommandController subclasses AbstractController and provides the concept of a
command object. A command, in this scenario, is a JavaBean whose properties are set from
HTTP request parameters.

Note Do not confuse a command bean with the Gang of Four’s Command design pattern. The formal
Command pattern implies the object has a well-known execution interface (some sort of execute()
method, for instance), encapsulating a callback. In contrast, the BaseCommandController does not call any
methods on its command object once it is created. Of course, you could extend BaseCommandController
and implement the Command pattern (or simply use ThrowawayController), but know that there is no
such built-in callback work flow in this class.

One important note about BaseCommandController is that it does not, itself, define any
work flow. That is, while it provides functionality such as binding request parameters to beans
and life cycle methods for validation, it does not put them together to create anything mean-
ingful. Its subclasses, such as AbstractFormController and SimpleFormController, will add
the value.

Our interest in this class is to explain how Spring MVC converts, or binds, request param-
eters to JavaBean properties. This feature is not unique, as many web frameworks have been
doing this for years. Spring MVC’s benefit is that it does not force a particular type, or super-
class, for the command class. You are free to use any class that conforms to the JavaBeans
model, and this freedom can lead to significantly fewer classes in your system. This means
that you will be able to populate domain classes directly from requests, removing the need for
otherwise duplicate form classes.

Before we show you how to work with a freshly bound command object, we will first cover
the capabilities and limitations of populating beans from HTML form submits, also known as
data binding. Because the BaseCommandController doesn't have any work flow, when we talk
about form processing, we will introduce the SimpleFormController. For now, we present data
binding for beans. Note that while Spring MVC takes advantage of data binding, the binding
framework is not web-specific and can be used with ease outside of the web framework.

123

124 CHAPTER 6 " THE CONTROLLER MENAGERIE

Binding a Form to a Bean

Spring MVC encourages the use of command beans with a wide variety of property types.
However, the Servlet API returns form parameters only as Strings. To fully take advantage of
richly typed command beans, Spring provides the ability to convert string form parameters
into nearly any other Java class. This technique, called data binding, is the act of taking a name-
value pair, such as name. firstName=joe, and converting it to getName().setFirstName("joe").
Spring MVC uses data binding to set form bean properties from request parameters. This
technique is similar to what is often called an expression language, such as the JSTLs Expres-
sion Language (EL) or the Object Graph Navigation Language (OGNL). It is very useful as a
shorthand way to refer to bean properties, even deeply nested properties.

The binding functionality is achieved through the use of Spring’s org. springframework.
validation.DataBinder class and its subclass, org.springframework.web.bind.
ServletRequestDataBinder. As you can see from its package, the DataBinder class is not
specific to the web framework. This means the capabilities and facilities of data binding are
available to any type of application. The ServletRequestDataBinder merely makes it easy to
bind from Servlet request parameters.

The DataBinder will happily bind string values to properties of type String. Given
the previous example, the firstName property is a String, so setting the value joe to a String
is trivial. Of course, not every property on every object is a String, so the DataBinder
supports converting a String to some arbitrary type via PropertyEditors. We will see more of
PropertyEditors soon, but they are a standard JavaBean mechanism to covert Strings to other
types, such as integers, collections, or nearly any other class. Spring uses PropertyEditors
heavily, and we can take advantage of them as we populate command classes from HTTP
requests.

To be exact, the DataBinder merely coordinates these activities, delegating the actual
binding and PropertyEditor support to a BeanWrapper (which we will visit shortly). From
the point of view of a BaseCommandController and its subclasses, you will interact with the
DataBinder instead of BeanWrappers

It’s best to simply jump in and discover what kind of functionality the DataBinder can
support. To begin with, we will create a simple bean that we will use for the command class.
We will want to take servlet request parameters and bind their values into an instance of a
Name class, shown in Listing 6-5.

Listing 6-5. Example Command Class

package com.apress.expertspringmvc.chap4.binding;
public class Name {

private String firstName;
private String lastName;

public String getFirstName() {
return firstName;

}

public void setFirstName(String firstName) {
this.firstName = firstName;

CHAPTER 6 © THE CONTROLLER MENAGERIE

}
public String getlLastName() {

return lastName;

}

public void setlLastName(String lastName) {
this.lastName = lastName;

}

The Name class comes straight from a domain object model, as it is a simple plain old Java
object (POJO). We wish to create an instance of this class when a form is submitted and popu-
late it from form fields. Listing 6-6 contains the example HTML form with fields that
correspond to our Name POJO.

Listing 6-6. CommandBean HTML Form

<form>

<p>

First Name: <input type="text" name="firstName" />
</p>

<p>

Last Name: <input type="text" name="lastName" />
</p>

<p><input type="submit" /></p>

</form>

We see the first requirement when using the DataBinder framework here in the form.
The form field names match the property names of the Name class. More specifically, the form
field names match the JavaBean translation of the Name getters and setters. For example, the
method setFirstName() is converted via JavaBean semantics to “the setter for the firstName
property.” The DataBinder performs this conversion from getter and setter methods to prop-
erty names so that it can match the form fields from the HTTP request.

Caution When using the DataBinder, the bean that you are binding to must have a public setter for the
property. If the bean is missing the setter or if it is spelled differently, no error is generated, and the property
will not be set. It is also important to have a public getter for the property, so that the field may be retrieved
by the view. The DataBinder cannot perform direct field access; it must go through setters or getters.

To demonstrate how simple the binding process is, we have created a JUnit TestCase
(contained in Listing 6-7) that binds the parameters of a HttpServletRequest to a JavaBean of
type Name. We are isolating the actual binding here, so that you may get a clear picture of how a
bean’s properties are populated. Know that this is all hidden from you when working with
BaseCommandController and its subclasses.

125

126

CHAPTER 6 " THE CONTROLLER MENAGERIE

We are using an org.springframework.mock.web.MockHttpServletRequest to simulate an
HttpServletRequest object. Spring provides a complete set of mock objects for the servlet
environment, making it easy to write tests for your Spring MVC components that will run out-
side of a container. We will cover testing of Spring MVC applications in a future chapter, but
for now it’s sufficient to know that these mock classes allow us to control and simulate the
external elements of a web request, such as an HttpServletRequest or HttpServletResponse.

Listing 6-7. Simple DataBinder TestCase

public class CommandBeanBindingTest extends TestCase {

private Name name;
private ServletRequestDataBinder binder;
private MockHttpServletRequest request;

public void setUp() throws Exception {
name = new Name();
binder = new ServletRequestDataBinder(name, "nameBean");
request = new MockHttpServletRequest();

}

public void testSimpleBind() {
// just like /servlet?firstName=Anya8lastName=Lala
request.addParameter("firstName", "Anya");
request.addParameter("lastName", "Lala");

binder.bind(request); // performed by BaseCommandController
// on submit so you don’t have to

assertEquals("Anya", name.getFirstName()); // true!
assertEquals("Lala", name.getlLastName()); // true!

Note that when using the BaseCommandController or its subclasses, the actual bind() call
is performed automatically. By the time your code obtains the command bean, it will be cre-
ated and populated by request parameter values. We explicitly show it here so that you may
understand what is going on under the hood.

The ServletRequestDataBinder is initialized with the bean to be populated and the name
nameBean. This name is used when generating an Errors instance and error messages, in the case
of errors during binding. The name can be any String, though it is best to use names that are
easily compatible with properties files (which is where you typically define error messages). If
not provided the name will default to target. However, when this DataBinder is used in the MVC
framework, the default name of the JavaBean is command.

The unit test in Listing 6-7 creates a MockHttpServletRequest so we can illustrate how the
request is actually bound to the bean. We simulate a request submission by adding parame-
ters, being careful to match the parameter name to the name of the property on the bean. The
bind() method then delegates to a BeanWrapperImpl class to translate the string expressions,

CHAPTER 6 © THE CONTROLLER MENAGERIE

such as firstName, into JavaBean setters, such as setFirstName(). After bind returns, the bean
is populated and ready to be used by the Controller.

If all domain object classes simply had strings for properties and never any child objects,
our discussion could be finished! However, Spring MVC supports and encourages a rich domain
model, and this means the DataBinder can support binding to deeply nested classes, primitives,
and even different types of collections and arrays.

Nested Properties

The real power of the DataBinder shows up when binding string values to nested object graphs.
The example in Listing 6-7 used two simple independent properties, a firstName and lastName.
A reasonable refactoring would move the name properties into a new Name class, as shown in
Listing 6-8.

Listing 6-8. NestedCommandBean Class

package com.apress.expertspringmvc.chap4.binding;
public class NestedCommandBean {
private Name name = new Name();

public Name getName() {
return name;

}

public void setName(Name name) {
this.name = name;

}

It’s important to see that we initialized the name reference to a non-null object. The
DataBinder is not able to set properties on nested objects that are null. Remember that a
string of name . firstName will convert to getName().setFirstName("value"). If getName()
returns null, we have a nasty NullPointerException on our hands. This is especially tricky
when it comes to collections, as we will see later. You do not need to initialize the nested
object in exactly the way we have shown (i.e., the same place as the declaration), but be
certain that the object is not null before any binding is to take place.

The firstName and lastName properties are now moved to a Name class, shown in Listing 6-9.

Listing 6-9. Name Class

package com.apress.expertspringmvc.chap4.binding;
public class Name {

private String firstName;
private String lastName;

127

128 CHAPTER 6 " THE CONTROLLER MENAGERIE

public String getFirstName() {
return firstName;

}

public void setFirstName(String firstName) {
this.firstName = firstName;

}

public String getlLastName() {
return lastName;

}

public void setlLastName(String lastName) {
this.lastName = lastName;

}

The DataBinder supports nested objects and properties with a simple dot notation, simi-
lar to the JSTLs EL. An example, contained in Listing 6-10, best illustrates this nesting.

Listing 6-10. NestedCommandBean Test

public void setUp() throws Exception {
bean = new NestedCommandBean();
binder = new ServletRequestDataBinder(bean, "beanName");
request = new MockHttpServletRequest();

}

public void testSimpleBind() {
// just like /servlet?name.firstName=Anya&name.lastName=Lala
// or name.firstName=Anya&name.lastName=Lala as the payload
// of a POST request
request.addParameter("name.firstName", "Anya");
request.addParameter("name.lastName", "Lala");

binder.bind(request);
assertEquals("Anya", bean.getName().getFirstName()); // true!
assertEquals("Lala", bean.getName().getlLastName()); // true!

}

The property name name.firstName is converted to getName().setFirstName(). The root
bean, in this case a NestedCommandBean, is implicit, and thus it is not mentioned in the binding
string name.

There is no limit to the nesting of objects and properties. Just remember that any object
whose property you are trying to set cannot be null (including collections and objects inside
of collections). The property itself (in this case, firstName) can be null, however.

CHAPTER 6 © THE CONTROLLER MENAGERIE

Binding to Collections

Along with nested classes, the DataBinder supports binding properties of objects inside collec-
tions. Your command bean class and its nested classes can contain Lists, Maps, and arrays.

Just like nested classes, the object in the collection that you are attempting to set a prop-
erty value on must not be null. This means that, before binding, you must not only initialize
the collection, but populate it with objects.

Binding to Lists

To begin, we will create a new command bean that contains a List of Name objects, as shown in
Listing 6-11.

Listing 6-11. NestedCollectionsCommandBean Class

public class NestedCollectionsCommandBean {
private List<Name> names = new ArraylList<Name>();

public NestedCollectionsCommandBean() {
names.add(new Name());
names.add(new Name());

}

public List<Name> getNames() {
return names;

}

public void setNames(List<Name> names) {
this.names = names;

}

Notice how we not only had to initialize the List, but also populate it. We added two Name
objects into the list in the constructor for convenience, but normally the objects will be added
as the result of some web request or business logic.

The DataBinder uses a familiar [index] notation to reference items in a List or array. For
instance, the string names[0] . firstName is the same as getNames () .get(0).setFirstName("value").
Listing 6-12 shows an example of binding to object properties inside collections.

Listing 6-12. NestedCollectionsCommandBeanTest

public void setUp() throws Exception {
bean = new NestedCollectionsCommandBean();
binder = new ServletRequestDataBinder(bean, "beanName");
request = new MockHttpServletRequest();

}

129

130 CHAPTER 6 " THE CONTROLLER MENAGERIE

public void testSimpleBind() {
// just like /servlet?names[0].firstName=Anya8names[0].lastName=Lala
request.addParameter("names[0].firstName", "Anya");
request.addParameter("names[0].lastName", "Lala");

binder.bind(request);

assertEquals("Anya", bean.getNames().get(0).getFirstName()); // true!
assertEquals("Lala", bean.getNames().get(0).getLastName()); // true!

Of course, you aren’t limited to binding to properties of objects inside Lists. You may also
reference a particular String inside a List just as easily as a String property of an object in the
List. To illustrate this, take the example command bean shown in Listing 6-13.

Listing 6-13. StringListCommandBean Class

public class StringlistCommandBean {
private List<String> strings = new Arraylist<String>();

public List<String> getStrings() {
return strings;

}

public void setStrings(List<String> strings) {
this.strings = strings;

}

In this case, to reference the first String in the List, the property name would be strings[0].
When you are setting the values, it’s perfectly legal to refer to Strings in the List in random order,
such as strings[4] and then strings[2]. Of course, if you are trying to read the value of
strings[0] before setting it, you will receive a null value.

Listing 6-14 illustrates how binding directly to Strings inside a List is performed.

Listing 6-14. StringListCommandBean Unit Test

public void setUp() throws Exception {
bean = new StringlistCommandBean();
binder = new ServletRequestDataBinder(bean, "beanName");
request = new MockHttpServletRequest();

}

public void testSimpleBind() {

// just like /servlet?strings[0]=Anya8strings[1]=Lala
request.addParameter("strings[0]", "Anya");
request.addParameter("strings[1]", "Lala");

CHAPTER 6 © THE CONTROLLER MENAGERIE

binder.bind(request);

assertkEquals("Anya", bean.getStrings().get(0)); // true!
assertkEquals("Lala", bean.getStrings().get(1)); // true!

}

Binding to Arrays

Arrays work in an identical manner to Lists. The DataBinder expression for an array is the
same as for the List. Listing 6-15 changes a List of Name objects into an array.

Listing 6-15. NestedArrayCommandBean Class

public class NestedArrayCommandBean {
private Name[] names = new Name[]{new Name(), new Name()};

public Name[] getNames() {
return names;

}

public void setNames(Name[] names) {
this.names = names;

}

The unit test, contained in Listing 6-16, looks nearly identical, and the binding expres-
sions remain the same. As with Lists, when binding properties to objects in arrays, make sure
the object exists in the array first. The DataBinder won't create a new instance of the object if it
is null; instead it will generate a NullPointerException.

Listing 6-16. NestedArrayCommandBeanTest

public void setUp() throws Exception {
bean = new NestedArrayCommandBean();
binder = new ServletRequestDataBinder(bean, "beanName");
request = new MockHttpServletRequest();

}

public void testSimpleBind() {
// just like /servlet?names[0].firstName=Anya8names[0].lastName=Lala
request.addParameter("names[0].firstName", "Anya");
request.addParameter("names[0].lastName", "Lala");

binder.bind(request);

assertEquals("Anya", bean.getNames()[0].getFirstName()); // true!
assertEquals("Lala", bean.getNames()[0].getlLastName()); // true!

131

132

CHAPTER 6 " THE CONTROLLER MENAGERIE

Binding to Maps

Binding to properties inside objects inside Maps is similar to Lists. The brackets remain, but
instead of a numerical index, you will use the string value of the key inside the map. For
instance, we will modify the command bean to support a Map of Name objects, one for a nick-
name and one for a formal name. Thus, the string expression names['nickname'].firstName
translates to getNames().get("nickname").setFirstName("value") in Java code.

Just like Lists and arrays, you can also bind request parameters directly to objects inside
the Map, instead of properties of objects inside the Map. For instance, if you have a Map<String,
String> stringMap, then you can refer to elements inside the Map using the expression
stringMap['key'].

Listing 6-17 is an example of a Map and nested objects.

Listing 6-17. NestedMapCommandBean Class

public class NestedMapCommandBean {
private Map<String,Name> names = new HashMap<String,Name>();

public NestedMapCommandBean() {
names.put("nickname", new Name());
names.put("formal", new Name());

}

public Map<String, Name> getNames() {
return names;

}

public void setNames(Map<String, Name> names) {
this.names = names;

}

Listing 6-18 contains a unit test that illustrates how to use the expression language to refer
to elements in the Map.

Listing 6-18. NestedMapCommandBean Unit Test

public void setUp() throws Exception {
bean = new NestedMapCommandBean();
binder = new ServletRequestDataBinder(bean, "beanName");
request = new MockHttpServletRequest();

}

CHAPTER 6 © THE CONTROLLER MENAGERIE

public void testSimpleBind() {
// just like /servlet?names['nickname'].firstName=Anya \
// 8names['nickname'].lastName=Lala
request.addParameter("names['nickname'].firstName", "Anya");
request.addParameter("names['nickname'].lastName", "Lala");

binder.bind(request);

// true!
assertEquals("Anya", bean.getNames().get("nickname").getFirstName());

// true!
assertEquals("Lala", bean.getNames().get("nickname").getlLastName());

The DataBinder can only refer to objects in a Map with keys of type String. This shouldn't
be a concern, as the keys are HTTP request properties, which themselves are Strings.

Binding to Sets

Binding to properties of objects in Sets is possible, but is not as exact as working with Lists or
arrays. Sets in Java are unordered collections of unique objects, so referring to a single object
within the Set is not possible directly through the Set interface. Spring’s DataBinder works
around this limitation by iterating through the Set to find the object indicated by the index
specified. Obviously, which object resolves to the index is dependent on the Set implementa-
tion. If you will be using Sets with the DataBinder, you should use a LinkedHashSet or some
other implementation that has a predictable iteration order.

Caution We strongly recommend against using Sets inside JavaBeans that will be used as command
objects. There is simply no way to replace or set a value into a Set, which severely limits its usefulness in
this context.

In contrast, the DataBinder is not able to set the value of objects in a Set. While the
DataBinder is able to iterate through the Set to locate an object whose properties need to be
set, there is no way to set a particular object directly into a Set at some location. The following
two examples, illustrated in Listings 6-20 and 6-21, shows what is and isn’t possible when
working with Sets and the DataBinder. Listing 6-19 first sets3 up a command bean with Sets as
properties.

3. No pun intended.

133

134 CHAPTER 6 " THE CONTROLLER MENAGERIE

Listing 6-19. NestedSetCommandBean Class

public class NestedSetCommandBean {

Set<Name> names = new LinkedHashSet<Name>();
Set<String> strings = new LinkedHashSet<String>();

public NestedSetCommandBean() {
names.add(new Name());
strings.add("first string");

}

public Set<Name> getNames() {
return names;

}

public void setNames(Set<Name> names) {
this.names = names;

}

public Set<String> getStrings() {
return strings;

}

public void setStrings(Set<String> strings) {
this.strings = strings;

}

The following unit test, Listing 6-20, illustrates the limits of using the DataBinder with a
Set by showing what is possible.

Listing 6-20. NestedSetCommandBean Unit Test

public void setUp() throws Exception {
bean = new NestedSetCommandBean();
binder = new ServletRequestDataBinder(bean, "beanName");
request = new MockHttpServletRequest();

}

public void testSimpleBind() {
// just like /servlet?names[0].firstName=Anya8names[0].lastName=Lala
request.addParameter("names[0].firstName", "Anya");
request.addParameter("names[0].lastName", "Lala");

binder.bind(request);

CHAPTER 6 © THE CONTROLLER MENAGERIE

// true!
assertEquals("Anya", bean.getNames().iterator().next().getFirstName());
// true!
assertEquals("Lala", bean.getNames().iterator().next().getLastName());

The preceding unit test passes, as we have chosen a LinkedHashSet as the Set implementa-
tion and we're setting properties of objects inside of the Set. However, the following unit test,
Listing 6-21, fails. Notice how we’re attempting to set the value of a String directly in the Set.

Listing 6-21. NestedSetCommandBean Unit Test (Fails)

public void testBindToStrings() {
// just like /servlet?strings[0]=Anya
request.addParameter("strings[0]", "Anya");

binder.bind(request); // errors at this point

}

Note The DataBinder supports setting properties directly on individual objects, or objects in arrays,
Lists, Sets, or Maps only. It only supports setting objects directly, or objects in Lists, arrays, or Maps.

Up to this point, we have covered using the DataBinder to set properties of objects
directly, or within collections. However, all of the examples have used properties of type
String. The DataBinder supports more than simple String properties through its use of
PropertyEditors. It's possible to set properties of nearly any type, including primitives.

Non-String Properties

We've shown you a few examples of PropertyEditors before, normally connected with bean
definitions and the ApplicationContext. The same facilities apply here with the DataBinder.
For a quick review, a PropertyEditor’s job is to convert between a String value and a strongly
typed object, and back again. For instance, a Ur1PropertyEditor would convert the String
http://www.example.comto a java.net.URL class with the value of http://www.example.com,
and from a java.net.URL object back to a String.

Out of the box, the DataBinder, and its BeanWrapper, supports many different PropertyEditors.
This means your command beans can use a wide variety of property types, and the DataBinder
and its facilities will handle all of the conversion for you.

Table 6-1 lists the default PropertyEditors that come registered to the DataBinder by
default. If you require a type not covered in Table 6-1, it is very easy to create and register your
own PropertyEditors.

135

136

CHAPTER 6

THE CONTROLLER MENAGERIE

Table 6-1. BeanWrapper Default PropertyEditors

PropertyEditor Result Description
ByteArrayPropertyEditor byte[] String to abyte[] with
getBytes().
Classkditor Class Similar to Class.forName().
FileEditor java.io.File Via new File(pathname).
InputStreameditor java.io.InputStream See also ResourceEditor.
LocaleEditor java.util.locale See also Locale’s toString()
method for format.
PropertiesEditor java.util.Properties See format in

ResourceArrayPropertyEditor
StringArrayPropertyEditor

URLEditor

CustomCollectionEditor

CharacterEditor
CustomBooleanEditor

CustomNumberEditor

Resource(]
String[]

java.net.URL

java.util.Collection subclass

char or Character
boolean or Boolean

Primitive number or Number
wrapper, BigDecimal or
BigInteger

java.util.Properties.

Wildcard resource locations,
e.g. file:c:\my*.txt.

Comma-separated String to
String array.

Fully qualified standard URL
or Spring’s classpath: prefix
URL.

Converts one collection type
to another. It will convert a
String to a single element
collection. It does not
convert the collection to a
String.

Single character String to
Character.

true/on/yes/1 for true, and
false/off/no/0 for false.

Can use a NumberFormat for
Locale-specific formatting or
default to valueOf() and
toString().

Spring provides a few more PropertyEditors, such as the CustomDateEditor, which require
manual registration and configuration, and it is simple to create others specific to your needs.

PropertyEditors are applied intelligently to the data binding process. You begin by declar-
ing any PropertyEditors not already in the default set, and the DataBinder’s process will
automatically apply them when it encounters a property not of type String.

For example, to begin, let us create a simple command bean with properties other than
String. We will first create a bean (Listing 6-22) with properties that the DataBinder already
knows about. Then we will declare a CustomDateEditor (a custom PropertyEditor provided by
Spring) to handle java.util.Date objects. Last, we will create our own PropertyEditor to han-
dle a specific internal domain class.

CHAPTER 6 © THE CONTROLLER MENAGERIE

Listing 6-22. MultiTypeCommandBean Class

public class MultiTypeCommandBean {

private int intProperty;
private Integer integerProperty;
private Class classProperty;
private URL urlProperty;

public Class getClassProperty() {
return classProperty;

}

public void setClassProperty(Class classProperty) {
this.classProperty = classProperty;

}

public Integer getIntegerProperty() {
return integerProperty;

}

public void setIntegerProperty(Integer integerProperty) {
this.integerProperty = integerProperty;

}

public int getIntProperty() {
return intProperty;

}

public void setIntProperty(int intProperty) {
this.intProperty = intProperty;

}

public URL getUrlProperty() {
return urlProperty;

}

public void setUrlProperty(URL urlProperty) {
this.urlProperty = urlProperty;

}

Using the command bean in Listing 6-22, we have four different properties, each of differ-
ent types, including intProperty, which is a primitive.

We are simulating the following form, shown in Listing 6-23, with the unit test. Note that
input fields for the HTML form are handled like regular text inputs. The actual conversion
happens inside the DataBinder.

Listing 6-23. MultiTypeCommandBean HTML Form

<form>

<p>

Int Property: <input type="text" name="intProperty" />
</p>

<p>

137

138 CHAPTER 6 " THE CONTROLLER MENAGERIE

Integer Property: <input type="text" name="integerProperty" />
</p>

<p>

Class Property: <input type="text" name="classProperty" />
</p>

<p>

URL Property: <input type="text" name="urlProperty" />

</p>

<p><input type="submit" /></p>

</form>

In Listing 6-24 we simulate a HTTP request that will use the DataBinder to populate these
varied type properties.

Listing 6-24. MultiTypeCommandBean Unit Test

public void setUp() {
bean = new MultiTypeCommandBean();
request = new MockHttpServletRequest();
binder = new ServletRequestDataBinder(bean, "bean");

}

public void testBind() throws Exception {
request.addParameter ("intProperty", "34");
request.addParameter ("integerProperty"”, "200");
request.addParameter("classProperty”, "java.lang.String");
request.addParameter ("urlProperty", "http://www.example.com/");

(
(
(Il
(

binder.bind(request);

// all true!
assertEquals
assertEquals
assertEquals
assertEquals

34, bean.getIntProperty());

new Integer(200), bean.getIntegerProperty());

String.class, bean.getClassProperty());

new URL("http://www.example.com/"), bean.getUrlProperty());

P~ A~~~

As you can see, all the property values begin as Strings inside the HTTP request. When the
binder encounters a property type other than String, it will consult its list of PropertyEditors.
When it finds a match based on the property’s class, it will delegate the conversion to the
PropertyEditor. Because Spring provides so many default PropertyEditors, for most cases,
you won't have to perform extra configuration, and the editors will gracefully perform the
conversions.

CHAPTER 6 © THE CONTROLLER MENAGERIE

Non-default PropertyEditors

Some types of classes can't be created from Strings without context specific configurations. For
instance, there are many different valid text representations of a java.util.Date, so it is impracti-
cal to provide a default Date PropertyEditor to handle all the different cases. To allow you to
control the format used for conversion, Spring’s Date PropertyEditor, the CustomDateEditor,
allows you to define the format you expect the date to be entered as. Once configured, you
simply register the PropertyEditor with the DataBinder.

For example, we will create a simple command bean (shown in Listing 6-25) with a
single property of type java.util.Date. We then create an HTML form (Listing 6-26) that requests
the user enter a date with the format YYYY-MM-DD, as a single String (e.g., 2005-03-21). We will
register a CustomDateEditor to handle the conversion, delegating to a java.text.SimpleDateFormat
class.

Listing 6-25. DateCommandBean Class

public class DateCommandBean {
private Date date;

public Date getDate () {
return dateProperty;

}

public void setDate (Date date) {
this.date = date;

}

Listing 6-26. DateCommandBean HTML Form

<form>

<p>

Date: <input type="text" name="date" /> (YYYY-MM-DD)
</p>

<p><input type="submit" /></p>

</form>

For this example, we will configure the CustomDateEditor to use the text format yyyy-MM-dd,
as defined by the java.text.SimpleDateFormat class. Listing 6-27 illustrates these concepts
together.

139

140

CHAPTER 6 " THE CONTROLLER MENAGERIE

Listing 6-27. DateCommandBean Unit Test

protected void setUp() throws Exception {
bean = new DateCommandBean();
request = new MockHttpServletRequest();
binder = new ServletRequestDataBinder(bean, "bean");

}

public void testBind() throws Exception {
SimpleDateFormat dateFormat = new SimpleDateFormat("yyyy-MM-dd");
Date expected = dateFormat.parse("2001-01-01");

CustomDateEditor dateEditor = new CustomDateEditor(dateFormat, true);
binder.registerCustomEditor(Date.class, dateEditor);

request.addParameter("date", "2001-01-01");
binder.bind(request);

assertEquals(expected, bean.getDate()); // true!

The registerCustomEditor(Class, PropertyEditor) (shown in Listing 6-27) configures
the DataBinder to use the PropertyEditor any time it encounters a property with the given
Class.

A second form, registerCustomEditor(Class, String, PropertyEditor), (notshown in
Listing 6-27) takes a third parameter, which is the full path name to a property. If you specify
the property name, the Class parameter can be null, but should be specified to ensure cor-
rectness. If the property name points to a collection, then PropertyEditor is applied to the
collection itself if the Class parameter is a collection, or to each element of the collection if
the Class parameter is not a collection.

Working with PropertyEditors not supported in the default set requires a bit more work,
but still results in a fairly simple setup. You will first create an instance of the CustomDateEditor
and provide it with your chosen DateFormat object. The PropertyEditor is then registered with
the DataBinder, assigning it to a class it will be responsible for converting (in this case, the Date
class). After you register it, proceed as normal, and the CustomDateEditor will handle any
property of type Date.

As you may guess, when you register a PropertyEditor with the DataBinder, that
PropertyEditor is then used any time the Date class is encountered. While most times this
may be what you want, there are some situations where you may want two different date
formats for two different properties of the same object.

To handle this situation, you may register a PropertyEditor to be used for a specific
property, instead of for every instance of that class. Using this type of registration provides
very specific data binding on a per-property basis instead of the default per-class basis.

For example, we will create a command bean with two Date properties. One property we
will require the user to use the format YYYY-MM-DD, while the other property will require the for-
mat DD-MM-YYYY. We will create two CustomDateEditors, each with its own date parsing format.
Then, we will register each CustomDateEditor to their specific properties. Listing 6-28 contains
the new command bean with two Dates.

CHAPTER 6 © THE CONTROLLER MENAGERIE

Listing 6-28. TwoDatesCommand Class

public class TwoDatesCommand {

private Date firstDate;
private Date secondDate;

public Date getFirstDate() {
return firstDate;

}

public void setFirstDate(Date firstDate) {
this.firstDate = firstDate;

}

public Date getSecondDate() {
return secondDate;

}

public void setSecondDate(Date secondDate) {
this.secondDate = secondDate;

}

Listing 6-29 simply shows the XHTML form for both dates.

Listing 6-29. TwoDates HTML Form

<form>

<p>

First Date: <input type="text" name="firstDate" /> (YYYY-MM-DD)
</p>

<p>

Second Date: <input type="text" name="secondDate" /> (DD-MM-YYYY)
</p>

<p><input type="submit" /></p>

</form>

Listing 6-30. TwoDatesCommand Unit Test

protected void setUp() throws Exception {
bean = new TwoDatesCommand();
request = new MockHttpServletRequest();
binder = new ServletRequestDataBinder(bean, "bean");

}

public void testBind() throws Exception {
SimpleDateFormat firstDateFormat = new SimpleDateFormat("yyyy-MM-dd");
Date firstExpected = firstDateFormat.parse("2001-01-01");

SimpleDateFormat secondDateFormat = new SimpleDateFormat("dd-MM-yyyy");
Date secondExpected = secondDateFormat.parse("01-01-2001");

141

142

CHAPTER 6 " THE CONTROLLER MENAGERIE

CustomDateEditor firstDateEditor = new CustomDateEditor(firstDateFormat, true);
CustomDateEditor secondDateEditor = new CustomDateEditor(secondDateFormat, true);

binder.registerCustomEditor(Date.class, "firstDate", firstDateEditor);
binder.registerCustomEditor(Date.class, "secondDate", secondDateEditor);

request.addParameter("firstDate", "2001-01-01");
request.addParameter ("secondDate", "01-01-2001");

binder.bind(request);

assertEquals(firstExpected, bean.getFirstDate()); // true!
assertEquals(secondExpected, bean.getSecondDate()); // true!

As you can see in Listing 6-30, when we register the PropertyEditor to the DataBinder, we
can also specify which property, or field, the PropertyEditor should apply to. This overrides
any PropertyEditor already bound to a class.

Custom PropertyEditors

Although Spring provides many useful PropertyEditors, often times you will wish to convert
some String value to a specific domain class from your object model. Creating and registering
your own PropertyEditors is as simple as registering any PropertyEditor to the DataBinder.

For example, consider a typical PhoneNumber class. This class might encapsulate a typical
phone number, consisting of an area code and the number. The HTML form might allow a
phone number to be entered with a single text input field, as long as it conforms to the stan-
dard (xxx) xxx-xxxx format.

To begin, let us define a simple PhoneNumber class in Listing 6-31.

Listing 6-31. PhoneNumber Class

public class PhoneNumber {

private String areaCode;
private String prefix;
private String suffix;

public String getAreaCode() {
return areaCode;

}

public void setAreaCode(String areaCode) {
this.areaCode = areaCode;

}

public String getPrefix() {
return prefix;

}
public void setPrefix(String prefix) {

CHAPTER 6 © THE CONTROLLER MENAGERIE

this.prefix = prefix;

}

public String getSuffix() {
return suffix;

}
public void setSuffix(String suffix) {
this.suffix = suffix;

}

public String toString() {
return "(" + areaCode + ") " + prefix +

non

+ suffix;

}

We will need a command class to contain a PhoneNumber property so that it may be set by
the DataBinder. Of course, Spring MVC doesn'’t require nesting your domain class inside some
command bean. If you wish to create a form with input fields directly mapping to properties
of the PhoneNumber, then there is no need for a custom PropertyEditor (because all properties
of a PhoneNumber are String in this case). Listing 6-32 illustrates how to convert a single text
field into a (relatively) complex domain object, so we will treat the PhoneNumber as a property
itself.

Listing 6-32. PhoneNumberCommand Bean

public class PhoneNumberCommand {
private PhoneNumber phoneNumber;

public PhoneNumber getPhoneNumber() {
return phoneNumber;

}

public void setPhoneNumber(PhoneNumber phoneNumber) {
this.phoneNumber = phoneNumber;

}

}

For the real fun of this example, we now create the PhoneNumberPropertyEditor (shown in
Listing 6-33) that knows how to convert a string with the format ~(\d{3}) \d{3}-\d{4}$ (as a
regular expression) into a PhoneNumber instance.

Listing 6-33. PhoneNumberEditor Class

public class PhoneNumberEditor extends PropertyEditorSupport {
private Pattern pattern = Pattern.compile(""\\((\\d{3})\\) (\\d{3})-(\\d{4})$");

@0verride

143

144 CHAPTER 6 " THE CONTROLLER MENAGERIE

public void setAsText(String text) throws IllegalArgumentException {
if (! StringUtils.hasText(text)) {
throw new IllegalArgumentException("text must not be empty or null");

}

Matcher matcher = pattern.matcher(text);

if (matcher.matches()) {
PhoneNumber phoneNumber = new PhoneNumber();
phoneNumber . setAreaCode(matcher.group(1));
phoneNumber . setPrefix(matcher.group(2));
phoneNumber . setSuffix(matcher.group(3));

setValue(phoneNumber);
} else {
throw new IllegalArgumentException(text +
" does not match pattern " + pattern);

}

@0verride
public String getAsText() {
return getValue().toString();

}

The HTML form with a phone number input field would look something like that in
Listing 6-34.

Listing 6-34. PhoneNumber HTML Form

<form>

<p>

Phone Number: <input type="text" name="phoneNumber" /> (XXX) XXX-XXXX
</p>

<p><input type="submit" /></p>

</form>

The following unit test, Listing 6-35, simulates the HTTP request with a value of (222)
333-4444 as the user’s phone number.

Listing 6-35. PhoneNumberEditor Binding Unit Test

protected void setUp() throws Exception {

bean = new PhoneNumberCommand();

request = new MockHttpServletRequest();

binder = new ServletRequestDataBinder(bean, "bean");

CHAPTER 6 © THE CONTROLLER MENAGERIE

expected = new PhoneNumber();
expected.setAreaCode("222");
expected.setPrefix("333");
expected.setSuffix("4444");

}

public void testBind() {
PhoneNumberEditor editor = new PhoneNumberEditor();
binder.registerCustomEditor(PhoneNumber.class, editor);

request.addParameter ("phoneNumber", "(222) 333-4444");

binder.bind(request);

assertEquals(expected.getAreaCode(), bean.getPhoneNumber().getAreaCode());
assertEquals(expected.getPrefix(), bean.getPhoneNumber().getPrefix());
assertEquals(expected.getSuffix(), bean.getPhoneNumber().getSuffix());

This all works because the property on the command bean is of type PhoneNumber, so
the PhoneNumberPropertyEditor can easily be called upon to do the String to PhoneNumber
conversion. There is no limit to the number of PropertyEditors you can declare and register
to a DataBinder. You can also replace a registered PropertyEditor in the DataBinder if you wish
to redefine which editor is called upon for each class.

As mentioned, you may also choose to map each property of the PhoneNumber class to a
HTML text field. In this case, you will not need a custom PropertyEditor. However, if you find
that you need to use a single text field to contain the entire value of a bean, even if that bean
has multiple properties, then a custom PropertyEditor will allow you to handle this scenario.
In other words, when you need to convert a single String value into a single complex object
(potentially with many properties of its own), use a custom PropertyEditor.

Controlling Which Fields Are Bound

By default, the DataBinder will bind to any property on a bean that it can. That is, if the HTTP
request contains a parameter name that matches a property of the bean, the bean’s setter for
that property will be called. Depending on the situation, this may or may not be what you will
want. It is possible to control when fields can become bound, in order to provide an extra
layer of protection from outside manipulation.

For instance, in Spring MVC, it’s very common to bind request parameters directly to
domain object models. Although this streamlines development and reduces the amount of
classes in the system, it does present a potential security risk for the system. The binding
process exposes the domain object directly to outside information. An attacker can, if enough
knowledge of the system is gained, manipulate the domain object by sending an unintended
request property and value with the form submit. This action would potentially bypass valida-
tion, and otherwise incur a risky situation.

To provide extra security for handling incoming data, the DataBinder can be configured to
allow only accepted and approved properties. Properties not in the approved list will be
dropped, and binding will continue.

145

146

CHAPTER 6 " THE CONTROLLER MENAGERIE

To allow certain properties, simply call the setAllowedFields() method with a full list of
all properties to be considered for binding. You will need to set this list before binding will take
place.

The example in Listing 6-36 illustrates how to secure the binding process to only bind
allowed fields. We're using the simple Name class (Listing 6-5) for this example, and we prohibit
the lastName from being bound.

Listing 6-36. Allowed Fields Test

public void setUp() {
name = new Name();
binder = new ServletRequestDataBinder(name, "name");
request = new MockHttpServletRequest();

}

public void testAllowedFields() {
// only allow firstName field, ignore all others
binder.setAllowedFields(new String[]{"firstName"});

request.addParameter("firstName", "First");
request.addParameter("lastName", "Last");

binder.bind(request); // only print log message on non-allowed fields
// allow binding to continue

assertEquals("First", name.getFirstName());
assertNull(name.getLastName());

}

By specifying which fields should be allowed for a particular binding, you can ensure
that only intended fields from the HTML form will eventually make their way into the domain
objects. Otherwise, there is no protection from misconfigured or malicious request parameters.

Rudimentary Validation

While Spring MVC support’s Spring’s flexible validation framework (covered in great detail in
Chapter 9), the DataBinder provides a sort of “first line of defense” through its basic validation
support. The DataBinder can be configured to check for required fields, or type mismatches,
and any errors from these rules flow right into the main Validation system.

Although we will dedicate an entire chapter to Spring MVC'’s validation framework, to
fully understand the DataBinder’s basic validation support we will very briefly cover some of
the fundamental constructs here. For every instance of data binding, there is a corresponding
instance of a org.springframework.validation.BindException. This object is created automat-
ically when binding begins, and encapsulates all the errors—either general object errors or
field level errors—resulting from the binding and validation process.

CHAPTER 6 © THE CONTROLLER MENAGERIE

Errors that apply to the entire object being bound to are instances of org. springframework.
validation.ObjectError and are created when a validation rule that is not specific to any field
is violated. Errors that are field-specific are instances of org. springframework.validation.
FieldError. These error types are more common, as they encapsulate the specific error (e.g.,
arequired field is missing) and the field that caused the error.

Configuring the DataBinder to check for required fields is similar to enforcing allowed
fields (see the previous section, “Controlling Which Fields Are Bound”). By calling the
setRequiredFields() method with alist of properties, the DataBinder will register an
error if that property is missing from the request parameters. The error is an instance of
org.springframework.validation.FieldError and is added to the DataBinder’s instance
of org.springframework.validation.BindException.

For the example, we will use the trusty Name class, and we will require the presence of the
firstName field. Listing 6-37 contains the unit test illustrating required fields.

Listing 6-37. Required Field Validation Test

protected void setUp() throws Exception {
name = new Name();
binder = new ServletRequestDataBinder(name, "name");
request = new MockHttpServletRequest();

}

public void testRequired() {
binder.setRequiredFields(new String[]{"firstName"});

// missing firstName parameter
request.addParameter("lastName", "Smith");

binder.bind(request);

BindException errors = binder.getErrors();
FieldError error = errors.getFieldError("firstName");

assertNotNull(error); //true!
assertEquals("required", error.getCode()); //true!

The DataBinder will also generate an error if the request parameter value cannot be
coerced into the field’s type. For instance, if the parameter value is Smith but the field type
is a java.lang.Integer, the DataBinder will intelligently create an error for this situation.
This behavior, in fact, is automatic, and requires no explicit configuration on the DataBinder.
For the example, we will use a MultiTypeCommandBean (Listing 6-24) and attempt to set
a String value into intProperty field, which is an int. Listing 6-38 contains the unit test
illustrating error generation.

147

148

CHAPTER 6 " THE CONTROLLER MENAGERIE

Listing 6-38. Type Conversion Error Test

protected void setUp() throws Exception {
bean = new MultiTypeCommandBean();
binder = new ServletRequestDataBinder(bean, "bean");
request = new MockHttpServletRequest();

}

public void testRequired() {
request.addParameter("intProperty”, "NOT_A_NUMBER");

binder.bind(request);

BindException errors = binder.getErrors();
FieldError error = errors.getFieldError("intProperty");

assertNotNull(error); //true!
assertEquals("typeMismatch", error.getCode()); //true!

These two techniques should not be viewed as a replacement for the full validation
framework. The DataBinder’s validation functionality is limited to either declarative required
field checking or automatic type conversion error generation, so for more complicated valida-
tion logic, you will have to use the org.springframework.validation framework. However, it
does generate errors that are fully compatible to the full validation framework. The two types
of validation mechanisms certainly complement each other.

Another thing to note is that typically, you will not have to deal with pulling the
BindException object out of the DataBinder, or otherwise do any manual checking for
errors. Controllers that implement a full form viewing and submitting work flow (such as
SimpleFormController; see the section after next) will automatically detect the presence of
errors and route the user to the correct view. We presented Listing 6-39 to give you an under-
standing of what is happening under the covers.

Summary

To summarize, the DataBinder is responsible for setting object properties from expression
strings and their values. These expressions, in the form of property.property[2].property,
are the names of HTML fields inside HTML forms. The values come from the submitted HTTP
request parameters. The expression is converted into a series of JavaBean getters and setters
to retrieve or manipulate the data.

The DataBinder supports setting properties of type String, primitives, and nearly any
type, through its use of PropertyEditors. The DataBinder, through its BeanWrapper, supplies
many different PropertyEditors by default, and it is trivial to create and register your own
PropertyEditor to meet your specific needs.

CHAPTER 6 © THE CONTROLLER MENAGERIE 149

You can also bind to properties of objects that live inside collections, such as Sets, Insert
arrays, after Lists, and Maps. You can bind directly to objects that live in Lists, arrays or Maps
(but not Sets, as there is no way to set a member of a Set directly).

We recommend that you control which properties can be bound to, to guard against mali-
cious binding attempts. Using the DataBinder’s setAllowedFields() method, you can declare
the names of properties to be bound to request parameters. If the request parameter is not in
that list, it will be silently dropped and will not be set into the bean.

An error will be generated when a request parameter cannot be converted into the field’s
type. For instance, if a String value is given to a field expecting an integer, a FieldError will
be created and stored inside the BindException object. This functionality happens without any
explicit configuration on the DataBinder.

Data binding is provided for you via the BaseCommandController class, which knows only
how to bind request parameters to command classes. Subclasses of this class build upon this
base functionality to create cohesive work flows.

The command classes, encapsulating form submissions, do not require a special class
type; the DataBinder will happily bind to any class that obeys JavaBean conventions with
standard getters and setters. We encourage you to use your domain model objects as the
command classes and populate them directly from form submissions.

Now that we have thoroughly covered data binding, it’s time now to look at the
SimpleFormController class. This class builds upon the BaseCommandController to provide a
very full-featured work flow for HTML forms. You will see how to apply your new data binding
skills and how to process a command class once it has been populated by form fields.

SimpleFormController and Handling Forms

The org.springframework.web.servlet.mvc.SimpleFormController is a very powerful
Controller responsible for handling the entire life cycle of HTML form interaction. This
Controller manages and coordinates viewing the form, through validation, and finally to
handling the submission. If your page or resource does not have to handle any form submits,
you can move up the class hierarchy to use a simpler controller such as AbstractController.
If you need to display a form and handle its submission, then this is the Controller for you.

Tip This controller extends AbstractController, so it inherits all of the work flow from
AbstractController. It does not attempt to change or replace the logic of AbstractController.

One very nice aspect of this class is that it models the entire life cycle of form interaction.
It handles all the details and provides very explicit extension points allowing you to append
functionality during the process of form viewing or submission.

SimpleFormController is configured through many different properties (listed in Table 6-2).
Because this class attempts to obey the Open-Closed Principle, the properties are provided to
declaratively configure the work flow and behavior of the controller.

150

CHAPTER 6

THE CONTROLLER MENAGERIE

Table 6-2. SimpleFormController Properties

Property Name

Default

Description

Found In

formView

successView

bindOnNewForm

sessionForm

commandName

commandClass

validator(s)

validateOnBinding

null

null

false

false

"command"

null
null

true

The name of the view that
contains the form.

The name of the view to
display on successful
completion of form
submission.

Should parameters be
bound to the form bean

on initial views of the form?

(Parameters will still be

bound on form submission.)

Should the form bean be
stored in the session
between form view and
form submission?

Logical name for the
form bean.

The class of the form bean.

One or more Validators
that can handle objects of
type configured by
commandClass property.

Should the Controller
validate the form bean
after binding during a

form submission?

SimpleFormController

SimpleFormController

AbstractFormController

AbstractFormController

BaseCommandController

BaseCommandController

BaseCommandController

BaseCommandController

This class’s work flow can be split into two parts: viewing the form and handling the
submission of the form. This controller provides both actions from a single URL, or HTTP
resource. In other words, you will use the URL /app/editPerson.html to view the form and
to submit the form. Semantically, using the same resource (URL) for both viewing (via HTTP
GET) and submitting (via HTTP POST) maps very well to HTTP’s modeling of a resource and
how best to interact with the resource.

Tip The HTTP specification specifies eight verbs, or commands, for accessing resources on the web.
The two most popular verbs are GET and POST. GET is used when fetching, or reading, the resource, and the
results are intended to be cacheable and repeatable without repercussions on the resource (i.e., GET is an
idempotent action). In contrast, POST is meant for altering or modifying the resource, which is why it is used
most often for form submissions. A POST action is not meant to be repeated without explicit approval from

the user.

CHAPTER 6

151

THE CONTROLLER MENAGERIE

This controller has a complex work flow, and we will break it down into its core compo-
nents. Then, we will show you the best extension points for altering the work flow in the
controller. We begin by illustrating all possible paths through the controller.

Figure 6-1 illustrates the many paths through the work flow of handling forms with

SimpleFormController.
. > Resource req

Everything from AbstractController

[Retrieve form object from session]

Yes
Is a form submission?

No

Create form object

Create and init binder

Yes
Should bind on NewForm?

No

Yes
Is a session form?

No

Collect reference data
Display form view

Is a session form?

No

Bind to form object

Store form in session

Yes g A
Is form bean in session?

g

Create NewForm object

U

Create and init binder

Remove from session

[Bind request parameters to form object]

Yes
Validate on bind?

No

onBindAndValidate

Errors from binding or validation?

Yes

Validate form object

No
Suppress validation?

Yes

Handle form submit
No

Figure 6-1. SimpleFormController activity diagram

We will focus on the initial retrieval of the HTML form first. The controller uses the
method isFormSubmission() to determine if the HTTP request is either a form viewing or
form submission. The default implementation of this method merely checks the HTTP
method, and if it is a POST then isFormSubmission() returns true. The controller does not
consider a HTTP GET request a form submission. However, this method is not final, so your
implementation is free to define whatever criteria is appropriate to indicate the request
should be treated as a submission. If indeed the request is not a form submission, the

152

CHAPTER 6 © THE CONTROLLER MENAGERIE

controller will then consider this request as the first of two requests (the second being the
actual form submission). It will create an instance of the form object (a.k.a. command bean)
using the formBackingObject() method. By default, this method will return an instance of the
class specified with setCommandClass (). The formBackingObject() method is not final, so you
will use this method to configure, if necessary, the form object class, possibly setting any
dependencies or properties. This is the time to manipulate the form object before it enters
the work flow.

Once the instance of the form object is ready, the controller then creates the DataBinder
and calls the initBinder () life cycle method. Override this method to register any custom
PropertyEditors required when binding to the form object. By default, this method does
nothing.

Now that the DataBinder instance is ready, you have the choice of performing a binding
using any parameters sent with this initial HTTP GET request. This action is determined by the
bindOnNewForm property, enabled by (you guessed it) calling the setBindOnNewForm() method.
Typically, on the first view of a form, no parameters have been sent with the request, so it is safe
to leave bindOnNewForm equal to false (the default). However, if you set the property to true,
and any errors occurred from the binding process, those errors will be available to the initial
form view.

The SimpleFormController has the ability to store the form object in the session for the
duration of the controller’s work flow. That is, the form will live in the session between the ini-
tial form view and the form submission. To enable this feature, simply call setSessionForm()
with a value of true. Once the form object has been created, and after it is possibly bound by
the DataBinder, it will be stored in the session if this property is true.

If you load the form bean from persistence using an object-relational mapping (ORM) tool,
you may find the session form functionality useful. Many ORM tools support the concept of
reattaching, or merging, a detached bean back into persistence. If you require this type of behav-
ior, using the session form functionality is a nice way to load the form bean only once during
initial form view. That same instance will then be used during the form submission stage, avoid-
ing the need to pull the instance from persistence again. Most persistence strategies can handle
pulling the instance twice (once on form view and once on form submission), so weigh the pros
with the cons of increased memory usage for the session, among other issues.

Caution Storing the form in the session should not be chosen lightly if the application is to be clustered.
Typically, in a clustered environment, session data is serialized and often replicated among different nodes in
the cluster. Serialization is a costly procedure, and it can place a heavy burden on cluster bandwidth. Check
with your application server’s clustering strategies, and be sure to understand the impact of session storage.

At this point, the form view is about to be returned to the user. Before the view is ren-
dered, the referenceData() callback is called. This life cycle method allows you to assemble
and return any auxiliary objects required to render the view. The form object will automati-
cally be sent to the form view, so use this method to put anything else into the model the
form page might need. By default, this method does not manipulate the model in any way.

CHAPTER 6 © THE CONTROLLER MENAGERIE

If you've made it this far, the Controller will assemble the full model with the form object,
any possible errors from potential binding, and the model from referenceData(). It will then
send this combined model to the View named by the formView property. This is the name of the
View that contains the actual HTML form.

Form Submission with SimpleFormController

The SimpleFormController has completed half of its job by displaying the HTML form to the
user. Once the user hits the submit button of the form, the SimpleFormController roars back
to life to handle the submission. It will bind the request parameters to the form bean, validate
the bean, and choose to show either the original form again if there were errors or the form
success view if everything worked as expected. We will walk you through this process now,
pointing out the useful life cycle callback methods along the way.

The first method in this controller that determines the form bean’s fate is again the
isFormSubmission() method. Your HTML forms should use the POST method for form submis-
sions for both technical (it can handle much more data) and architectural (POST actions are
intrinsically non-idempotent) reasons. Also, the default implementation of isFormSubmission()
returns true if the action is a POST. You are free to override this method to further define what a
form submission looks like, but the default should work fine for most situations.

In this case, because we are tracking the form submission work flow, this method will
return true. The SimpleFormController will now check whether or not the form bean is stored
in the session, via the isSessionForm() method. If the form bean is stored in the session, then
the Controller will retrieve the form bean, put there originally when the user viewed the form.
The Controller then removes the form bean from the session, as it is likely the form bean will
be successfully submitted during this work flow (thus no longer needed in the session). If, in
fact, there are errors during the submission process, the form bean will be placed back into
the session later.

If the form bean was not stored in the session, then the controller will simply create
another instance of the form bean using the formBackingObject () method. This is the same
method used to create the form bean during the initial form view.

Tip If your form bean requires dependencies to be injected by Spring’s ApplicationContext, overriding
formBackingObject() provides the opportunity to request the bean from the BeanFactory. Of course, to
avoid having to manually pull the bean using the getBean() method on the BeanFactory you can use
Spring’s support for method injection (refer to Pro Spring by Rob Harrop and Jan Machacek (Apress, 2005)
for more information). In any case, don’t restrict your form beans to simple POJOs as you may use Spring’s
dependency injection for your form beans quite easily.

At this point, the form bean instance has been obtained. The Controller now creates the
DataBinder and calls the initBinder() callback method. As with the work flow for viewing
the form, use this method to register any custom PropertyEditors you need during binding.

153

154

CHAPTER 6 ©* THE CONTROLLER MENAGERIE

With the form bean created, and the DataBinder created with custom PropertyEditors regis-
tered, the request parameters are now bound to the form bean. The binding process will also
capture any binding errors, such as type conversion errors or any configured required fields.

Of course, most forms require more complicated validation than what is provided
by the DataBinder. At this point in the work flow, the Controller consults the method
isValidateOnBinding() to determine if it should now run the form bean through the
Validators. This method defaults to true, and it is marked final so the only way to change
its behavior is through setValidateOnBinding().

If your situation requires a more exact control over when validation is performed after a
binding, you may override the suppressValidation() method. While this method defaults to
false, this method allows you to choose on a request-by-request basis whether or not to run
through the validators.

By default, the controller will allow each configured validator to validate the form bean.
After all the validators have run, the controller will then call the onBindAndvalidate() life cycle
method. This callback method is your chance to perform any custom validation logic or gen-
eral logic after binding and validation.

Note The onBindAndvalidate() method will run even if suppressValidation() returns true or if
isValidateOnBinding() returns false. In other words, onBindAndValidate() will always run, even if
validation did not.

After onBindAndValidate() runs, the Controller makes a decision based on whether any
errors exist. These errors would have resulted from the binding process or through automatic
validation or custom validation in onBindAndValidate(). If there are any errors, the Controller
then begins the process of displaying the original form. If no errors exist, then the form bean
can finally be processed.

If errors are present and the isSessionForm() method returns true, then the form bean is
placed back into the session. Remember that the form bean is removed from the session at the
beginning of the form submission handling work flow. However, when there are errors, the
original form is displayed again, and so the form bean is stored in the session again to be
bound again once the errors are addressed by the user. The referenceData() method is called
once more to populate the model with objects for the form. Finally, the form view is displayed
again, with the errors and the form bean.

If there are no errors, the controller then calls the onSubmit () life cycle method. This sig-
nals that the form bean is ready to be processed. There are several overloaded onSubmit ()
methods, each method simply calling the other with one fewer method argument. This flow,
illustrated in Figure 6-2, is arranged this way to allow you to pick the method with the exact
number of parameters you will need to process the form. There is no need to implement all
onSubmit () methods; just choose the one that will work for you.

There is also a very simple doSubmitAction(), which is the most simple callback method
to override and implement. If you do not implement any of the onSubmit () methods, you will
need to implement this method. This method simply provides the form bean to be processed.
You may use this method when there is no model to construct and when the default success
view is appropriate. If you need to construct a model, or if you need to choose the view to
show dynamically, implement one of the onSubmit () methods.

CHAPTER 6 © THE CONTROLLER MENAGERIE 155

[onSubmit(request, response, formBean, errors)]

[onSubmit(formBean, errors) j

[onSubmit(formBean)]

[doSubmitAction(formBean)]

Figure 6-2. Order in which callback methods are called

Tip Choose the best form submit callback to implement based on which objects you need and whether
the default success view is always appropriate. Implement only one callback method.

SimpleFormController Examples

It is time to see the SimpleFormController in action. To begin, we will create a form for a sim-
ple person. This example brings together what we have covered from the DataBinder and the
work flow of the SimpleFormController.

The Person class used in this example (shown in Listing 6-39) has three properties: a Name,
when he was born, and his favorite programming language. To make things more interesting,
the name property is an example of a nested Name object (shown in Listing 6-40), and the bornOn
property will require a custom PropertyEditor.

Listing 6-39. Person Bean

public class Person {

private Name name = new Name();
private Date bornOn;
private String favoriteProgramminglanguage;

public Date getBornOn() {
return bornOn;

}

public void setBornOn(Date bornOn) {
this.bornOn = bornOn;

}

156

CHAPTER 6 " THE CONTROLLER MENAGERIE

public String getFavoriteProgramminglLanguage() {
return favoriteProgramminglanguage;
}
public void setFavoriteProgramminglanguage(String favoriteProgramminglanguage) {
this.favoriteProgramminglanguage = favoriteProgramminglanguage;
}
public Name getName() {
return name;
}
public void setName(Name name) {
this.name = name;
}
@0verride
public String toString() {
StringBuffer sb = new StringBuffer();
sb.append("Name: [");
sb.append(name.toString());
sb.append("], ");
sb.append("Born On: [");
sb.append(bornOn);
sb.append("], ");
sb.append("Favorite Programming Language: [");
sb.append(favoriteProgramminglanguage);
sb.append("]");
return sb.toString();

Listing 6-40. Name Bean

public class Name {

private String first;
private String last;

public String getFirst() {
return first;

}

public void setFirst(String first) {
this.first = first;

}

public String getlast() {
return last;

}

public void setlast(String last) {
this.last = last;

}

@0verride

public String toString() {

CHAPTER 6 © THE CONTROLLER MENAGERIE

return first + " " + last;

Listing 6-41 contains the XHTML that matches the Person object, while Figure 6-3 shows
how the form is rendered. Note that Listing 6-41 deliberately omits the use of the <spring:bind>
tags, in order to illustrate the raw XHTML required. This is the XHTML as the browser would see
it. Obviously, this also illustrates that the use of <spring:bind> and related tags are not required,
though they are recommended for any real projects.

Listing 6-41. XHTML Form for Person

<?xml version="1.0" encoding="IS0-8859-1" ?>
<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<title>Person Form</title>
</head>
<body>
<form method="post" action="">
<table>
<tr>
<td>First Name:</td>
<td><input type="text" name="name.first" /></td>
</tr>
<tr>
<td>Last Name:</td>
<td><input type="text" name="name.last" /></td>
</tr>
<tr>
<td>Born On:</td>
<td><input type="text" name="bornOn" /></td>
</tr>
<tr>
<td>Favorite Programming Language:</td>
<td><input type="text" name="favoriteProgramminglLanguage" /></td>
</tr>
<tr>
<td />
<td><input type="submit" /></td>
</tr>
</table>
</form>

</body>
</html>

157

158

CHAPTER 6 © THE CONTROLLER MENAGERIE

© - [B]x]|
.Eile Edit Wiew Go Bookmarks Tools Help |GL El BL [~ M ;>_
a5~ ,;‘5;;‘ ﬁ\ @ Go | || httpifflocalhost: 30807 SpringMyCwWeb/appiperson i

First IMame: Sam

Last Mame: Smith

Born On: 1978-11-07

Favorite Programming Language: |Java

Submit Query

Done

Figure 6-3. Initial form view

The XHTML shown in Listing 6-41 has some interesting aspects. First, notice that we are
using the POST method for the form. This should be the preferred method for form submis-
sions, as discussed earlier. Second, notice how we used action="" instead of specifying a
particular URI. This is a convenience trick to avoid specifying the page’s URI, which would
tightly couple the page to the URI that indicates it. By not specifying an action, the browser
will submit the form back to the originating URI (which, in the case of SimpleFormController,
is just what we want). Lastly, notice how the form input element names correspond to the
property names from the Person object. This should be familiar from the discussion about
the DataBinder.

Next, we show the SimpleFormController implementation (Listing 6-42) for the form in
Listing 6-41. For our example, it will simply print out the Person via toString(), but it’s easy to
imagine using a data access object to persist the person.

Listing 6-42. PersonFormController

public class PersonFormController extends SimpleFormController {

public PersonFormController() {
setCommandName ("person");
setCommandClass(Person.class);
setFormView("newPerson");
setSuccessView("newPersonSuccess");

@0verride
protected void initBinder(HttpServletRequest request,
ServletRequestDataBinder binder) throws Exception {
binder.registerCustomEditor(Date.class,
new CustomDateEditor(new SimpleDateFormat("yyyy-MM-dd"), false));

@0verride

CHAPTER 6 © THE CONTROLLER MENAGERIE

protected void doSubmitAction(Object command) throws Exception {
Person person = (Person) command;
// persist the object, or some other business logic

The bornOn parameter of the Person object is of type java.util.Date, so we are required
to use a custom PropertyEditor to convert the string parameter into a true Date object. This
Controller relies on the default behavior of forwarding to the successView once the form is
submitted, so we chose to implement doSubmitAction() because it requires the least amount
of code.

By default, the form bean will placed into the model on successful form submission.
Therefore, the form success view can access the form bean with the identifier set via
setCommandName (). The following XHTML page (Listing 6-43) shows this in action.

Listing 6-43. newPersonSuccess XHTML Page

<?xml version="1.0" encoding="IS0-8859-1" ?>

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml">

<head>

<title>New Person Success</title>

</head>

<body>

<p>${person}</p>

</body>
</html>

Listing 6-43’s JSP page will render the following result to the browser (Figure 6-4).

) New Person Success - Mozilla Firefox

File Edit ‘Wew Go Nl Tools Help |GL E‘BL [GM | dava >

<4|:' B @ @ @ Go | || httpifflocalhost:5080/SpringtyCiWeb/app/person A

Mame: [Sam Smuth], Born On: [Tue Meow 07 00:00:00 H3T 1978], Favorte Programming
Language: [Tava]

Done

Figure 6-4. Form success view

159

160

CHAPTER 6 ©* THE CONTROLLER MENAGERIE

The Controller in this example is using logical View names to identify which views should be
rendered. This provides a nice decoupling between the controller and how the Views are actually
implemented. The DispatcherServlet will delegate these View names to a ViewResolver to resolve
the actual View instances. For our example, we will use an InternalResourceViewResolver. This
ViewResolver works well with JSP files and lets us hide the actual JSP files behind the /WEB-INF
directory to prohibit unauthorized client access.

Tip You should place any restricted or otherwise hidden files inside the /WEB-INF directory of your web
application. That directory, and all of its subdirectories, is protected by the servlet container.

The ViewResolver is declared and configured with a prefix and suffix, used to create a fully
qualified filename for the view. This bean definition (Listing 6-44) will typically reside in the
spring-servlet.xml file with the rest of the controller definitions and other web-specific beans.

Listing 6-44. ViewResolver Configuration

<bean id="jspViewResolver"
class="org.springframework.web.servlet.view.InternalResourceViewResolver">
<property name="viewClass" value="org.springframework.web.servlet.view.JstlView"/>
<property name="prefix" value="/WEB-INF/jsp/"/>
<property name="suffix" value=".jsp"/>

</bean>

With our example controller using a view name of newPerson, the ViewResolver in Listing
6-45 will attempt to locate the file /WEB-INF/jsp/newPerson. jsp.

We obviously haven't mentioned Validators or what happens if there is a validation error.
Validation is a large topic, so we are postponing a full discussion about validation to Chapter 9.

To continue with this example, we now want to modify the code to restrict the choices of
favorite programming language. The predetermined choices must be loaded before the initial
page view; thus we will override the referenceData() method.

First, we will create the list of approved languages to pick a favorite from. For the example,
the List’s contents are static, so we will create a simple array to be shared among requests.

It is common to require objects from persistence to be returned by referenceData(). If
that information is static, for performance reasons, load the objects only once at startup. This
will save on pulling them from the database for every request. In this case, your controller may
implement InitializingBean, which is a Spring-specific interface indicating that the bean
requires initializing before servicing requests.

Tip For more information about the InitializingBean interface, consult the book Pro Spring or the
online documentation. An alternative to InitializingBean is the init-method attribute in the XML bean
definition, which avoids the need to implement a framework interface.

CHAPTER 6 © THE CONTROLLER MENAGERIE 161

Listing 6-45 contains the entire PersonFormController code, highlighting the
referenceData() method.

Listing 6-45. PersonFormController with Reference Data

public class PersonFormController extends SimpleFormController {
private String[] languages = new String[]{"Java", "Ruby", "Python"};

public PersonFormController() {
setCommandName("person");
setCommandClass(Person.class);
setFormView("newPerson");
setSuccessView("newPersonSuccess");

}

@0verride

protected Map referenceData(HttpServletRequest req) throws Exception {
Map data = new HashMap();
data.put("languages", languages);
return data;

}

@0verride
protected void initBinder(HttpServletRequest request,
ServletRequestDataBinder binder) throws Exception {
binder.registerCustomEditor(Date.class,
new CustomDateEditor(new SimpleDateFormat("yyyy-MM-dd"), false));

}

@0verride
protected void doSubmitAction(Object command) throws Exception {
Person person = (Person) command;

}

Now that we are providing a list of favorite languages, we can modify our form XHTML to
loop through them to build the <select> and <option> tags, as shown in Listing 6-46.

Listing 6-46. XHTML Snippet of Favorite Programming Languages

<tr>
<td>Favorite Programming Language:</td>
<td>
<select name="favoriteProgramminglLanguage">
<c:forEach items="${languages}" var="language">

162

CHAPTER 6 " THE CONTROLLER MENAGERIE

<option>${language}</option>
</c:forkach>
</select>
</td>
</tr>

Of course, it’s common to return extra information to the View after a form submission.
You may, for example, want to provide a confirmation message after the submission com-
pletes. In our example so far, we have implemented the doSubmitAction() method, which does
not allow for any model to be returned. Again, the doSubmitAction() method is useful when
the default success view is sufficient. When you need to return objects required by the success
view, you will need to implement an onSubmit () method.

For example, we will extend our PersonFormController to persist the person instance into
the database, and we will recommend a book to read based on their favorite programming
language. We will remove our doSubmitAction() method and override onSubmit() so that we
may return a model with the book recommendation, as shown in Listing 6-47.

Listing 6-47. PersonFormController with onSubmit()

public class PersonFormController extends SimpleFormController {
private String[] languages = new String[]{"Java", "Ruby", "Python"};
private PersonDao personDao;

public PersonFormController() {
setCommandName("person");
setCommandClass(Person.class);
setFormView("newPerson");
setSuccessView("newPersonSuccess");

}

public void setPersonDao(PersonDao personDao) {
this.personDao = personDao;

}

@0verride
protected Map<String, String[]> referenceData(HttpServletRequest req)
throws Exception {
Map<String, String[]> data = new HashMap<String, String[]>();
data.put("languages", languages);
return data;

CHAPTER 6 © THE CONTROLLER MENAGERIE

@verride
protected void initBinder(HttpServletRequest request,
ServletRequestDataBinder binder) throws Exception {
binder.registerCustomEditor(Date.class,
new CustomDateEditor(new SimpleDateFormat("yyyy-MM-dd"), false));

}

@0verride

protected ModelAndView onSubmit(Object command) throws Exception {
Person person = (Person) command;
personDao.persist(person);

Map<String, String> model = new HashMap<String, String>();
model. put ("suggestedBook",

suggestBook(person.getFavoriteProgramminglanguage()));
model. put(getCommandName(), person);

return new ModelAndView(getSuccessView(), model);

}

private String suggestBook(String favoriteProgramminglanguage) {
Language language = Language.create(favoriteProgramminglanguage);
return language.recommendBookTitle();

As you may have noticed, the controller now delegates persistence to a PersonDao class.
Thus, a setter method is provided, setPersonDao(), so that the ApplicationContext can easily
inject an instance.

The old doSubmitAction() is now replaced with the more flexible onSubmit() method,
allowing us to return a ModelAndView object. Notice how we simply call getSuccessView() to
return the configured success view. We are also now required to manually add the person
object into the model, which was previously automatically added.

Tip If you return null from onSubmit (), a default Mode1Andview will be created with getSuccessView()
and errors.getModel().

The business logic of choosing a recommended book title is delegated to a Language
object. This follows the recommendations of delegating any business logic to the service layer
or other POJOs in the system.

163

164

CHAPTER 6 © THE CONTROLLER MENAGERIE

All objects in the model are exposed to the View instance, so the success view XHTML
page can now easily display the recommended book, as shown in Listing 6-48.

Listing 6-48. XHTML for Recommended Book Title

<body>

Welcome, ${person.name}! You chose ${person.favoriteProgramminglLanguage}
as your favorite programming language. Therefore, we can recommend you
check out ${suggestedBook}.

</body>

Redirect After Submit Pattern

There is a common problem with the way we are handling the display of the confirmation
page, which needs to be fixed. The success view is rendered in the same request as the initial
POST, leaving the browser in a state with the ability to replay the form submit. In other words,
after the success view is shown, the user can simply reload the page, resubmitting the form.
This can lead to inconsistencies, with the best-case scenario of a confused user and a worst-
case scenario of multiple identical Person instances being saved into the database.

Any form that alters data in persistence, or performs any type of potentially destructive
operation, is at risk of being resubmitted. Multiple solutions exist that can ensure that the user
must view the form before submitting, thus preventing double submissions. We will cover one
of the most common solutions, the Redirect After Submit pattern, in the next example. This
pattern simply redirects the user to the success view instead of internally forwarding the
request. The redirect forces the browser to obtain a new page, and any reloads will now safely
reload the new page instead of the form page.

Caution A client redirect is not the same as a RequestDispatcher. forward() or RequestDispatcher.
include(). These two methods internally redirect a request to another handler inside the servlet container.
A client redirect instructs the client to issue another GET request.

This pattern is implemented via browser redirects, which are initiated from the server and
are built into the HTTP protocol. This means this technique can be used independent of the
view technologies used. To initiate a client redirect, the server will send a 302 response code
(or 303 if HTTP/1.1 only) plus a Location: header to the client. The HTTP response code 302
indicates that a resource? has temporarily moved or that the browser should look elsewhere
for the resource. When the browser encounters a 302, it will look for a Location: header to
indicate where the resource can now be found.

4. More accurately, that the representation of the resource has moved.

CHAPTER 6 © THE CONTROLLER MENAGERIE

Tip For the exact differences between 302 and 303 response codes, please consult the HTTP RFC at
http://www.w3.0rg/Protocols/rfc2616/rfc2616-sec10.html. The 303 response code was added to
HTTP/1.1 specifically for the redirect after post pattern, but is only understood by HTTP/1.1 clients. Luckily,
most HTTP/1.1 clients will treat a 302 response identically to a 303.

There are at least three different ways to accomplish a client redirect with Spring MVC
and the Servlet API. The first method, HttpServletResponse.sendRedirect(), uses the Servlet
API to correctly send the redirect response. You may use this method only if the response has
not been committed, however.

Spring MVC treats redirects as just another type of view with its org. springframework.
web.servlet.view.RedirectView class. This class encapsulates the redirect, the conversion of
model objects to query parameters, and the logic to handle a HTTP/1.0 or HTTP/1.1 redirect.
This view is then resolved like all other Views in the system, hiding the exact view details from
the controller.

While the RedirectView is very simple to use, if your application is already using an
InternalResourceViewResolver, you will need to create another view resolver that is able to
resolve non-file system views. Because we already have an InternalResourceViewResolver
configured, we will need to chain the ViewrResolvers allowing each the chance to resolve the
view name. Once a resolver is able to handle the View name, resolving stops and the view
instance is returned.

To handle a RedirectView, we will define an Xm1ViewResolver (Listing 6-49), which
reads its list of view names from a Spring XML file. This ViewResolver will be defined inside
spring-servlet.xml alongside the InternalResourceViewResolver. The XmlViewResolver
however, will be configured to appear before the InternalResourceViewResolver in the chain,
so that it has a chance to resolve the view names first. We also specify where the resolver will
find its configuration (in this case, in /WEB-INF/views.xml).

Listing 6-49. Two View Resolvers, Chained

<bean id="jspViewResolver"
class="org.springframework.web.servlet.view.InternalResourceViewResolver">
<property name="viewClass" value="org.springframework.web.servlet.view.JstlView"/>
<property name="prefix" value="/WEB-INF/jsp/"/>
<property name="suffix" value=".jsp"/>
</bean>

<bean id="auxViewResolver"
class="org.springframework.web.servlet.view.XmlViewResolver">
<property name="order" value="1"/>
<property name="location" value="/WEB-INF/views.xml"/>
</bean>

165

166

CHAPTER 6 " THE CONTROLLER MENAGERIE

Now it is simply a matter of defining the RedirectView instance in views.xml (as shown
in Listing 6-50). The bean’s name will match the view name the controller is using (i.e.,
newPersonSuccess). We are setting contextRelative to true so that the RedirectView will
prepend the context path name for the web application to the URL value.

Listing 6-50. views.xml
<?xml version="1.0"?>
<IDOCTYPE beans PUBLIC
"-//SPRING//DTD BEAN//EN"
"http://www.springframework.org/dtd/spring-beans.dtd">
<beans>

<bean id="newPersonSuccess"
class="org.springframework.web.servlet.view.RedirectView">
<property name="contextRelative" value="true" />
<property name="url" value="/personSuccess" />

</bean>

</beans>

One of the benefits of the RedirectView is that it will convert each object from the model
and place them in the query string of the full URL. However, for this to work correctly, those
objects are converted to Strings. Therefore, if you will be using the RedirectView with objects
in the model, ensure that the next page expects only Strings from the model. We will now
slightly modify our Controller (as shown in Listing 6-51), explicitly adding each property we
will need for the success page.

Listing 6-51. Modified onSubmit Using Only Strings in the Model

Map<String, Object> model = new HashMap<String, Object>();
model. put ("suggestedBook",
suggestBook (person.getFavoriteProgramminglanguage()));
model.put("personName", person.getName());
model.put("personFavoriteProgramminglanguage",
person.getFavoriteProgramminglanguage());

Our success page’s message (shown in Listing 6-52) will now be changed to reference
the new model properties. Notice how we are accessing the model objects from the request
parameters (as indicated by the param prefix). This is because the objects in the model are sent
to the next page via the query string, such as /personSuccess?personName=joe&suggestedBook=
title automatically by the RedirectView.

Listing 6-52. New Success Page Text

Welcome, ${param.personName}! You chose ${param.personFavoriteProgramminglanguage}
as your favorite programming language. Therefore, we can recommend you

check out ${param.suggestedBook}.

CHAPTER 6 © THE CONTROLLER MENAGERIE

And finally, we will add a Controller to handle the new success page. Why do we need a
Controller for a simple JSP page? A Controller can hide the implementation of the View from
the client, and it provides a uniform URL address space. For consistency’s sake, it’s a good idea
to front even simple Views with a Controller. As you'll see, Spring MVC make this a straight-
forward process.

The view name newPersonSuccess is now being used for the redirect view, which
redirects to the controller identified by /personSuccess. In this case, we simply wish to
display the success message so we aren’t interested in coding up a Controller just to forward
to a JSP page. Luckily, Spring MVC provides an org.springframework.web.servlet.mvc.
UrlFilenameViewController that can convert the last part of the request URL to a view name.
This avoids the need to write a custom Controller for resources that are only implemented
as Views.

For instance, given the URL /app/address.x, the UrlFilenameViewController will convert
the URL into the view name address. This is a very easy way to expose View resources such as
JSP pages while continuing to hide their implementation technology.

Tip For resources that are only views, hide them behind simple controllers such as
UrlFilenameViewController or ParameterizableViewController. This hides implementation
revealing clues, such as the .jsp extension, and can provide a uniform URL address space. This also allows
you to place your view files in the protected /WEB-INF directory.

For the example, we now add the bean definition for the /personSuccess resource (shown
in Listing 6-53), which the client will be redirected to upon successful form submission. This
definition should go in spring-servlet.xml with the other web-specific beans.

Listing 6-53. /personSuccess Bean Definition

<bean name="/personSuccess"
class="org.springframework.web.servlet.mvc.UrlFilenameViewController" />

With this last change, the Controller now correctly redirects the client after the form
submission. We accomplished this by using a RedirectView and an XmlViewResolver, which is
a good strategy when you wish to keep the Controller unaware of the implementations of any
views.

However, quite a bit of infrastructure was required for this configuration. Spring MVC pro-
vides shorthand for redirect views, allowing you to forgo the definition of any RedirectViews or
the configuration of an explicit XmlViewResolver. The UrlBasedViewResolver (the superclass for
InternalResourceViewResolver) recognizes the special prefix redirect:, which simply triggers a
client redirect instead of being resolved through the standard process.

Converting the PersonFormController to use this shorthand is quite easy, and involves
mostly deleting code we just created. The Controller’s success view name will now be changed
to use the redirect: prefix (as shown in Listing 6-54), alleviating the need for a RedirectView
definition or an XmlViewResolver definition.

167

168

CHAPTER 6 © THE CONTROLLER MENAGERIE

Listing 6-54. Person Controller Constructor with Redirect:Pprefix

public PersonFormController() {
setCommandName("person");
setCommandClass(Person.class);
setFormView("newPerson");
setSuccessView("redirect:/app/personSuccess");

Redirect After Submit Summary

The redirect after submit pattern, sometimes known as redirect after POST, is a method to pro-
tect the client from resubmitting a form. By sending a HTTP redirect, the client is sent to a
different page after the form is submitted, effectively leaving the original form’s page. Any
attempts to reload the page will simple reload the success page instead of the original form.

MultiActionController

SimpleFormController is great when you need to model a form work flow with one page view
and one form submission. There are, however, some situations where you might want one
Controller to handle more than one work flow. For instance, you may have a logical group of
read-only operations, and subclassing an AbstractController for each operation might be a
bit verbose for your application. The MultiActionController provides a way to group multiple
actions, or request handlers, together in one controller.

The benefits of the MultiActionController include

 fewer physical controllers, thus fewer classes in the system

* logical grouping of actions in one class

* flexible mapping for action methods.

The disadvantages of MultiActionController include

e form handling work flow isn’t explicit, unlike SimpleFormController

e possibility for large, confusing controllers handling many tasks

* no compile-time checks can be performed due to the use of reflection.

So when does using MultiActionController make sense? We believe it is a perfect way to
consolidate actions that have a similar theme into one controller, when those actions do not
require a full form handling work flow. It’s also useful when the actual processing is performed
by a shared delegate. However, be wary of putting too many request handling methods inside
one MultiActionController, for it can quickly become too large and unwieldy.

Note The MultiActionController is similar in nature to Struts’ DispatchAction, only much more
flexible.

CHAPTER 6 © THE CONTROLLER MENAGERIE

The MultiActionController has the following capabilities:

» flexible action method mapping, defaulting to URL to method name mapping
e command bean binding

¢ support for one or more Validators

e per-action “last modified” timestamp control

* exception handling

Caution Even though this Controller supports Validators and command bean binding, it does not
define a form handling work flow.

On initialization, this class searches all of its methods for any that conform to the request
handler signature. Any method that will handle a request must conform to the following
features:

e returns ModelAndView
e accepts an HttpServletRequest as a first parameter
* accepts an HttpServletResponse as a second parameter

* optionally, accept either an HttpSession or an Object (to be treated as the command
bean) as a third parameter

Note The name of the method does not matter when locating potential request handling methods.

Listing 6-55 contains a simple MultiActionController with three different but valid
request handling methods.

Listing 6-55. Example Request Handling Method Signature

public class MyMultiController extends MultiActionController {
public ModelAndView doStuff(HttpServletRequest reg,
HttpServletResponse res) { .. }

public ModelAndView doOtherStuff(HttpServletRequest reg,
HttpServletResponse res, HttpSession session) { .. }

public ModelAndView doStuff(HttpServletRequest reg,
HttpServletResponse res, CommandBean command) { .. }

169

170

CHAPTER 6 " THE CONTROLLER MENAGERIE

Now the question becomes, how does MultiActionController know which method
to call when it handles a request? This decision process is encapsulated into the strategy
MethodNameResolver, whose job it is to take an HttpServletRequest and return a method
name as a String.

InternalPathMethodNameResolver

The default strategy, if none is specified, is the org.springframework.web.servlet.mvc.
multiaction.InternalPathMethodNameResolver. To quote the Javadocs, this strategy is a
“Simple implementation of MethodNameResolver that maps URL to method name.” This class
will convert the last path section of the URL, ignoring any file extensions, into a method name.
For instance, it will turn /app/account/delete.x into the method name delete.

If the method names in your controller vary in a uniform way from the URL path section,
then a prefix or suffix can be configured. For instance, if your method name is dodelete, but
you want to continue to use /app/account/delete.x, then you can configure the prefix prop-
erty of InternalPathMethodNameResolver to equal “do.”

Because this strategy is the default, no configuration is required if you choose to use it.
However, if you want to configure a prefix or suffix, then you will have to specify its bean defi-
nition. Listing 6-56 contains a sample configuration.

Listing 6-56. Example Configuration of an InternalPathMethodNameResolver

<bean id="methodNameResolver"
class="o.s.web.servlet.mvc.multiaction.InternalPathMethodNameResolver">
<property name="prefix" value="do" />

</bean>

<bean name="/account/*"
class="com.apress.expertspringmvc.flight.web.ViewAccountController">
<property name="methodNameResolver" ref="methodNameResolver" />
<property name="accountService" ref="accountService" />

</bean>

ParameterMethodNameResolver

If you are looking for behavior that matches Struts’ DispatchAction, then you can use the
org.springframework.web.servlet.mvc.multiaction.ParameterMethodNameResolver. This
strategy actually is a combination of two separate strategies, both looking at request parame-
ters for method name resolution.

The first strategy will look for a parameter by name, and its value will be treated as the
method name. By default, the name of the parameter is action, but you can change it by call-
ing setParamName(). Unlike InternalPathMethodNameResolver, there are no prefix and suffix
capabilities, so the value of the action parameter must match exactly the method name.

The second strategy is to look for the mere presence of a request parameter, whose name
will point to the method name. The ParameterMethodNameResolver will look for any parameter
whose name is found in the methodParamNames array, and the first match wins.

CHAPTER 6 © THE CONTROLLER MENAGERIE

Tip The second strategy will take precedence over the first, even if the first successfully resolves a match.

Over time, code gets refactored and URL links change, so the ParameterMethodNameResolver
supports a mapping between request parameter and the true method name found in the con-
troller. The strategy includes a logicalMappings java.util.Properties, containing a map
between the request parameter name or value and the actual method name. This can come
in very handy if you do not wish to expose real method names to the view layer.

Finally, this ParameterMethodNameResolver can be configured with a default method name,
if no other method name can be resolved. To configure a default method name, configure the
defaultMethodName property.

An example usage of this MethodNameResolver is contained in Listing 6-57, configuring a
list of parameters to look for and their mappings to real method names.

Listing 6-57. Example of ParameterMethodNameResolver

<bean id="methodNameResolver"
class=
"org.springframework.web.servlet.mvc.multiaction.ParameterMethodNameResolver">
<property name="methodParamNames">
<list>
<value>hello</value>
</1list>
</property>
<property name="logicalMappings">
<props>
<prop key="hello">index</prop>
</props>
</property>
</bean>

With the example in Listing 6-57, if a URL like /app/controller?hello=true is used, the
index() method will be called on the controller. Note that the value of the hello parameter
does not matter when using the methodParamNames matching strategy, as only the presence of
the parameter is what matters.

PropertiesMethodNameResolver

A third option for method name resolution is the org. springframework.web.servlet.mvc.
multiaction.PropertiesMethodNameResolver, which happens to be the most flexible of the
strategies. As its name implies, the mapping is done via java.util.Properties, with URL
paths acting as keys and the values as method names. The URL path can use the same
Ant-style pattern matching you've seen with other URL path matching strategies.

This strategy will first attempt an exact match on the URL path, excluding the web app
contact name and the servlet mapping, but including the mapping for the Controller. If this
exact match does not work, all the mappings will be attempted in iteration order through the
Properties instance until a match is found.

17

172 CHAPTER 6 " THE CONTROLLER MENAGERIE

Listing 6-58 contains an example bean definition and configuration of a
PropertiesMethodNameResolver.

Listing 6-58. Example of PropertiesMethodNameResolver

<bean id="methodNameResolver"
class=
"org.springframework.web.servlet.mvc.multiaction.PropertiesMethodNameResolver">
<property name="mappings">
<props>
<prop key="/account/findByUsername">findByUsername</prop>
<prop key="/account/*">index</prop> <!-- treated as default -->
</</props>
</property>
</bean>

<bean name="/account/*"
class="com.apress.expertspringmvc.flight.web.ViewAccountController">
<property name="methodNameResolver" ref="methodNameResolver" />
<property name="accountService" ref="accountService" />

</bean>

The default case, in the preceding listing as /account/*, should be the last property
specified, so it will attempted last. Also, notice how the mapping path begins with the
mapping specified for the controller. If you wish to change this behavior, consult the
AbstractUrlMethodNameResolver superclass for options on how to configure the treatment
of the URL path.

MethodNameResolver Summary

You've seen three distinct strategies for mapping a request to a method on a
MultiActionController. The InternalPathMethodNameResolver will parse the URL path for the
last element and use it as a method name. The ParameterMethodNameResolver looks for request
parameters, either by value or by name, to resolve a method name. This strategy also supports
a default method name if no name was resolved. Finally, the PropertiesMethodNameResolver is
the least restrictive of the bunch, as it allows for a mapping of arbitrary URL paths to method
names.

Which one should you use? As with everything Spring Framework, the choice is ultimately
yours, and the framework doesn’t lean toward any preference. You should weigh how much
configuration each strategy will take under your circumstances, as generally less configuration
is better. We favor not relying on request parameters for method names, as we feel URL paths
are cleaner and generally friendlier to work with.

MultiActionController Example

For an example of the MultiActionController, we will create a ViewAccountController that
exposes many different ways to find an Account. For instance, a user may want to find an
Account by username or first name or last name. These are simple read-only methods without

CHAPTER 6 © THE CONTROLLER MENAGERIE

complex form handling, so it’s a perfect chance to consolidate these three actions into one
controller. We'll also take advantage of the built-in exception handling and rudimentary vali-
dation provided by the DataBinder, later in this example.

Listing 6-59 contains a full example of a MultiActionController.

Listing 6-59. ViewAccountController Example

public class ViewAccountController extends MultiActionController {
private AccountService accountService;

public ViewAccountController() throws ApplicationContextException {
setSupportedMethods (new String[]{METHOD GET});

}

public void setAccountService(AccountService accountService) {
this.accountService = accountService;

}

public ModelAndView findByUsername(HttpServletRequest request,
HttpServletResponse response, SearchCriteria criteria) {
Account account = accountService.findAccountByUsername(
criteria.getSearchBy());
return new ModelAndView("viewAccount", "account", account);

}

public ModelAndView findByFirstName(HttpServletRequest request,
HttpServletResponse response, SearchCriteria criteria) {
List<Account> accounts = accountService.findAccountsByFirstName(
criteria.getSearchBy());
return new ModelAndView("viewAccounts", "accounts", accounts);

}

public ModelAndView findByLastName(HttpServletRequest request,
HttpServletResponse response, SearchCriteria criteria) {
List<Account> accounts = accountService.findAccountsByLastName(
criteria.getSearchBy());
return new ModelAndView("viewAccounts", "accounts", accounts);

}

public static class SearchCriteria {
private String searchBy;

public String getSearchBy() {
return searchBy;

}

173

174

CHAPTER 6 " THE CONTROLLER MENAGERIE

public void setSearchBy(String searchBy) {
this.searchBy = searchBy;

}

Let’s chat a bit about this example, which highlights the strengths and weaknesses of this
Controller type. A strength of this Controller is that its superclass AbstractController pro-
vides helpful facilities such as enforcing allowed HTTP methods (as done in the constructor
in Listing 6-59). A shortcoming of this ability is that the allowed HTTP methods are common
across all request handlers inside the class, as there is no way to declaratively configure the
list of allowed request methods on a per-request handling basis. In this example, where all
requests are read-only, globally restricting to GET makes sense. If your MultiActionController
can handle different request methods at different times, you will have to declare those allowed
HTTP methods inside each handler method. For instance, the code from Listing 6-60 can be
used.

Listing 6-60. Ensure HTTP Methods

private void ensureMethod(HttpServletRequest request, String ... methods)
throws RequestMethodNotSupportedException {
for (String method : methods) {
if (request.getMethod().equals(method)) {
return;
}

}
throw new RequestMethodNotSupportedException("The request method " +

request.getMethod() + " is not allowed");

You can use such a method at the beginning of each request handling method (as shown
in Listing 6-61), but be sure to propagate the RequestMethodNotSupportedException as the
superclass knows how to deal with it.

Listing 6-61. Example of Ensuring HTTP Method for a Request Handling Method

public ModelAndView findByUsername(HttpServletRequest request,
HttpServletResponse response, SearchCriteria criteria)
throws RequestMethodNotSupportedException {
ensureMethod(request, METHOD_ GET);
Account account = accountService.findAccountByUsername(
criteria.getSearchBy());
return new ModelAndView("viewAccount", "account", account);

CHAPTER 6 © THE CONTROLLER MENAGERIE

Tip This technique is nice because it fails fast and can protect the semantics of your request handling
method. Plus, it generates the appropriate HTTP error code (405) so that clients know exactly what the
error was.

A second strength you can see is that MultiActionController supports binding the
request to a command bean. For this example each request is using the same bean class,
SearchCriteria, but in fact each request handling method can use a different command bean
class. We are using a static inner class for convenience, but any type of JavaBean can be used.

The MultiActionController will, by default, create an instance of the specified command
bean by simply calling Class.newInstance(). A new instance of the command object is created
for every request. If you wish to change this behavior, override newCommandObject() in your
subclass. Options for alternate object creation include pulling an instance from a BeanFactory
or using method injection to transparently return a new instance.

A downside of using command beans is that, as we've mentioned before, the
MultiActionController doesn't provide a form handling work flow. This means that if there
is a data binding error, there is no way to trap that exception inside the controller itself. The
exception handling facilities alluded to earlier only apply to exceptions thrown from inside the
request handling methods. Any data binding exceptions, or errors generated from validation,
are thrown outside the class. From there you can use the DispatcherServlet’s exception map-
ping and handling facilities, but this can become complicated. Our advice is to simply not
attempt to emulate a form handling, or intelligent command data binding, work flow with
MultiActionController. It is because of this that you do not see the use of Validators in this
example.

However, this controller does provide exception handling capabilities, useful for
business logic exceptions. We will now append our example (shown in Listing 6-62) to
include the handling of a AccountNotFoundException, which can be thrown by AccountService.
findAccountByUsername() in the event that the provided username did not locate an account.

Listing 6-62. Handling the AccountNotFoundException

public ModelAndView accountNotFound(HttpServletRequest request,
HttpServletResponse response, AccountNotFoundException e) {
List<String> errorMessages = new Arraylist<String>();
errorMessages.add("No account found for " +
request.getParameter("searchBy"));
return new ModelAndView("accountFindError", "errorMessages",

errorMessages);

The name of the method, in this case accountNotFound, has no bearing on the work flow
involved. The exception handling method must, however, return ModelAndView and have three
parameters: HttpServletRequest, HttpServletResponse, and an instance of Throwable.

If no exception handling method is found for a type of exception, a method for its super-
class will be searched for, until the class Throwable is encountered. This allows you to write
one exception handling method to encompass an entire exception class hierarchy.

175

176

CHAPTER 6 © THE CONTROLLER MENAGERIE

Summary

In classic Spring Framework style, the MultiActionController looks simple and straightforward,
but can be very configurable and flexible. It allows for one Controller instance to handle many
different requests by resolving the HTTP request into a method name. The method, itself a
request handler, is invoked via reflection, and its arguments are determined at runtime. The
arguments must include an HttpServletRequest and an HttpServletResponse, and the method
must return a ModelAndView instance. The method may also take either an HttpSession object or
a command bean of any type.

If you specify a command bean, it will be instantiated and populated with the request
parameters. You may specify one or more Validators, but if there are any errors there is no
easy way to get a reference to them. For this reason, if you wish to perform any data binding
and validation, we recommend you do this inside your request handling method. From there
you will be able to direct the request appropriately in the event of validation errors.

The strategy for method name resolution is provided by the interface MethodNameResolver,
and three different implementations are provided, each with their own pros and cons. The
default strategy is the InternalPathMethodNameResolver, simply converting the last path ele-
ment of the URI into a method name.

Finally, we can recommend the MultiActionController for situations when you have a
logical grouping of read only requests, or for very simple POST requests. In either case, it helps
if all the requests have some common element, such as acting on the same type class or using
the same service object.

AbstractWizardFormController

The Controllers we've mentioned up to this point provide stateless request handling, with no
explicit features for a multipage work flow. However, there are many situations that call for an
ordered and consistent user experience that spans multiple pages.

For instance, the work flow for creating a new account might take two pages, with the
first page checking for username and email uniqueness and the second page accepting billing
details. Only after the user completes both pages, and no validation errors exist, will the sys-
tem create the account.

These multistep use cases, commonly called wizards, require complex state management
for the user experience. To help with this problem, we will use the org. springframework.web.
servlet.mvc.AbstractWizardFormController, a specialized Controller providing the basic
infrastructure for multiple form work flows. You should think of this Controller as a
SimpleFormController that has spread its form across multiple pages.

Tip Explore the SimpleFormController before attempting to use AbstractWizardFormController,
as the two controllers treat forms in a similar manner.

CHAPTER 6 © THE CONTROLLER MENAGERIE

Limitations

The AbstractWizardFormController has some limitations that are important to understand
before you begin to use it. The Controller really only supports simple multipage work flows
that are essentially a single form spread across multiple pages. This Controller was not
designed to support arbitrary decision branching, and in no way can it handle a generic state
machine. For that, you should turn to Spring Web Flow, covered later in this book. With Spring
Web Flow, you can declaratively create arbitrarily complex work flows, allowing the user to
travel back and forth through the state machine.

To summarize, use AbstractWizardFormController when you want to split what otherwise
would have been a long form into multiple pages. Also, use the AbstractWizardFormController
only when you are populating a single command bean across multiple pages. For anything
more complex Spring Web Flow is your solution.

Caution The AbstractWizardFormController is for work flows with strict page progression. Use this
controller only for splitting a single form across multiple pages.

State Changes

This controller supports three different types of state changes:

* Page change: moving from one page to another, either backward (in the event of valida-
tion errors, for instance) or forward on success.

* Cancel: exiting the wizard in mid-work flow, typically clearing the state of the wizard.
This state change is optional.

e Finish: formally completing the work flow. This is the end state for the wizard.

By default, the Controller knows which state to enter by examining different well-known
request parameters. You may change the heuristics for detecting a state change by overriding
the appropriate method (see Table 6-3).

Table 6-3. Wizard State Change

State Default Parameter Override Method
Page _targetXXX, where XXX equals the number of the next page view getTargetPage()
Cancel _cancel isCancelRequest()
Finish _finish isFinishRequest()

These parameters are normally included as hidden XHTML elements in the form. Each
form submission should contain only one of the above parameters. Their values don't matter;
only the existence of the parameter is enough to trigger the state change.

177

178

CHAPTER 6 © THE CONTROLLER MENAGERIE

Each form can also specify which page it is in the work flow by including a _pageXXX
request parameter. By default, the wizard tracks the current page in the HTTP session, but to
correctly support the back button, your form should include the pageXXX parameter. Just like
with _targetXXX, replace XXX with the number of the current page.

Listing 6-63 says that the current form represents the first page, and the user should be
directed to the second page on a successful form submission.

Listing 6-63. Declaring Current Page and Next Page Numbers

<input type="hidden" name="_page0" value="true" />
<input type="hidden" name="_target1" value="true" />

It is easy to argue that giving the client the responsibility for specifying the target page is
a security concern. For instance, it is easy to specify any target on a form submission. When
precise control over page progression is required, implement the getTargetPage() method to
perform the correct heuristics for target page determination. If you do this, be sure to take into
account support for the Back button of the client’s browser. In other words, don’t base your
decision for the target page solely on information in the session, which isn't necessarily
updated when the user clicks the Back button.

We keep talking about page numbers, but what do they represent? The wizard is config-
ured with a set of view names, or page names, generally in the order that they should be
presented to the user. The page number is the index into the array of view names.

Note The wizard does not enforce the order of the page views, so each page is free to specify any
target page to go to next. In other words, just because the user is on page 2 does not mean she must view
page 3 next.

For instance, consider the account example mentioned at the beginning of this section.
We require two pages, one for username and email, and the other for billing information.
When we configure the Controller, we specify these page names in order.

The configuration can be performed inside the Controller’s constructor, shown by
Listing 6-64.

Listing 6-64. Constructor Configuration

public CreateAccountWizardController() {
setPages(new String[]{"usernameAndEmail", "billingDetails"});

}

Or inside the bean definition, as is the case with Listing 6-65.

Listing 6-65. XML Configuration

<bean name="/createAccount"
class="com.apress.expertspringmvc.flight.web.CreateAccountWizardController">
<property name="pages">

CHAPTER 6 © THE CONTROLLER MENAGERIE

<list>
<value>usernameAndEmail</value>
<value>billingDetails</value>
</list>
</property>
</bean>

Either way is acceptable, but as we have mentioned before, if the list of pages for the wiz-
ard is fairly static, we prefer using the constructor method.

URI Mapping

Be aware that there is a single URI for the entire work flow, including all steps and the finish
page. This effectively means that a user is prohibited from entering into the middle of a wiz-
ard. Luckily, this protects the wizard from ever being in an incorrect state. Any user who
attempts to access the wizard via a bookmark will simply be presented with the first page of
the wizard.

Validation

Just like SimpleFormController, the wizard controller supports one or more Validators. How-
ever, unlike SimpleFormController, the Validators are not automatically invoked during each
request. Because each request only fills out some information of the command bean, the stan-
dard Validator has no way of knowing which properties of the command bean are missing or
simply haven't been filled out yet. Therefore, doing a full validation of the command only
makes sense at the end of the wizard.

To validate the command object during the wizard, you must call the appropriate method
on your Validator that matches the current page of the wizard. The controller provides a
validatePage(Object command, Errors errors, int pageNumber) method for you to imple-
ment, where you will call the appropriate validateXxx() method on your Validator given the
pageNumber. In other words, you must control how validation is to be performed, because the
validate() method will not be called automatically.

Note that at the end of the work flow, and on the finish event, the controller will again
loop through the number of pages and validate each again. This effectively validates the entire
command object before the processFinish() method is called.

Page Change Callback

Although life cycle handlers exist for wizard completion and wizard cancellation, you may also
optionally implement postProcessPage() to perform some action after a normal page change
request.

This method is very useful when the state of the wizard must be persistent, allowing the
user to come back and finish the work flow at a later time. If you wish to support something
similar to this, persist the command bean inside postProcessPage() to somewhere more per-
manent than the HTTP session. You will most likely also need to override formBackingObject()
to pull the command bean back out of persistence when the user begins the wizard again.
Don't forget to also override getInitialPage(), which you can first check to see whether the
user had already started the work flow earlier and return the page he left off on.

179

180

CHAPTER 6 © THE CONTROLLER MENAGERIE

Work Flow Cancellation

Optionally, you may decide to allow the user to cancel out of the work flow at any time by
overriding the processCancel () method. This allows you to perform any cleanup that might
have built up during the wizard.

The default state change trigger is the presence of a_cancel request parameter, but you
may change the heuristics by overriding isCancelRequest().

You do not need to remove the command object from the session, as that is handled for
you by the Controller. At the very least, simply return a ModelAndView instance directing the
user to the appropriate page.

Work Flow Completion

This leads us to talk about processFinish(), the only method you must implement with the
wizard controller. When the controller encounters either a _finish request parameter, or if
you override isFinishRequest() and return true, the command object is validated again, once
for each page in the work flow. If there are no errors after a full validation, processFinish() is
called, which is where you perform any business logic. As always, you are required to return a
ModelAndView, but note that the view name must be set, as the controller does not populate it
from the list of page names.

Wizard Example

Let’s put together a two-page wizard for the account creation use case mentioned at the
beginning of this section. We'll fill out this example with the XHTML files for both pages,
the controller itself, and the Validators required. We're including the Validators so you can
see how the work flow is altered after errors from validation.

First off, Figures 6-5 and 6-6 shows you what the two screens will look like for the end user.

) Create an Account - Mozilla Firefox Q@@
Fle Edt Wew Go Bookmarks Tooks Help |Gl [lecMam »
@ -5 é';‘ ﬁ\ @ Go | || httpifflocalhost: 30807 JumpIntoSpringMyYCfapp/createdccount e

Create an Account

Username:
Password:

Confirm Password:
Email:

Goto Step 2

Done

Figure 6-5. Wizard page 1

CHAPTER 6

THE CONTROLLER MENAGERIE

If the user enters incorrect information, errors will be displayed above the form with a
bulleted list. The error messages and the fields that contain the error will be colored red.

©) Create an Account. - Mozilla Firefox

Fle Edit Wiew Go Eockmarks Tools Help BEREEES

<::' - B o- @ J @ @ Go ||_| http: fflocalhost: 5080/ JumpIntoSpringMyCappfcreatedccount V|

Create an Account

+ Tlzername i1z required.

+ Password must match Confirm Password.
+ Email has an wvalid format.

Ve [

CofimPassword ™=
Ermail: asdfasdf
Goto Step 2
Done

Figure 6-6. Wizard page 1 with errors

Once the user correctly enters the information for page 1, page 2 is displayed (Figure 6-7),
asking for the user’s billing address.

©) Create an Account. - Enter Billing Address - Mozilla Firefox

<::' - B o- @ X | @ @ Go ||_| http: fflocalhost: 5080/ JumpIntoSpringMyCappfcreatedccount V|

Create an Account - Enter Billing
Address

i 1

Swe
PolZp Code| |
Done

Fle Edit Wiew Go Eockmarks Tools Help e am »

Figure 6-7. Wizard page 2

181

182 CHAPTER 6 © THE CONTROLLER MENAGERIE

And finally, if there are no errors with page 2, the success screen is displayed (Figure 6-8).

) Account Successfully Created - Mozilla Firefox [Z]@”‘S__q
Fle Edt Wvew Go Bookmarks Tools Help |[GL [lee ram »

<::' - B o- {g @ @ Go ||_| http: fflocalhost: 5080/ JumpIntoSpringMyCappfcreatedccount V|

Account Successfully Created

Congratulations, foobar, your account was created successfilly.

Done

Figure 6-8. Wizard success page

Putting it all together, Figure 6-9 illustrates the work flow of the wizard detailing page flow
and validation.

Submit username
and email form

View username
and email form

Form validates?

No

View billing details

’L form

Submit billing details

No form

Form validates?

Validate entire form

Error from first page?

Yes

Error from second page?

Yes

No Errors
{ Process H Show success page)%

Figure 6-9. Create Account wizard work flow

CHAPTER 6 © THE CONTROLLER MENAGERIE

JSP Files

We are taking advantage of many different Spring JSP tags when building these pages.
Along with the usual <spring:bind> tag, we are also going to use <spring:hasBindErrors>
and <spring:message>. You'll see more about these tags in Chapters 7 and 9, but for now it’s
important to know that spring:hasBindErrors exposes an errors attribute to the JSP page if
there are validation errors, and spring:message performs i18n formatting duties.

We will first build the XHTML page, as shown in Listing 6-66. Pay special attention to the
use of the hidden pageo and targeti1 form elements.

Listing 6-66. XHTML for Page 1

<?<?xml version="1.0" encoding="1S0-8859-1" ?>

<k@ taglib uri="http://www.springframework.org/tags" prefix="spring" %>

<k@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml">

<head>

<meta http-equiv="Content-Type" content="text/html; charset=IS0-8859-1" />

<title>Create an Account</title>

<link rel="stylesheet" href="<c:url value="/css/main.css" />" type="text/css" />

</head>

<body>

<h1>Create an Account</h1>

<spring:hasBindErrors name="createAccount">

<c:forEach items="${errors.allErrors}" var="error">

<spring:message message="${error}" /></1i>
</c:forkach>

</spring:hasBindErrors>

<spring:nestedPath path="createAccount">

<form action="" method="post">

<div>

<input type="hidden" name="_page0" value="true" />
<input type="hidden" name="_target1" value="true" />
</div>

<table>

<spring:nestedPath path="account">

<spring:bind path="username">

183

184

CHAPTER 6 " THE CONTROLLER MENAGERIE

<tr>
<td><label for="${status.expression}"
<c:if test="${status.error}">class="error"</c:if>>Username:</label></td>
<td>
<input type="text" id="${status.expression}" name="${status.expression}"
value="${status.value}" />

</</td>
</tr>
</spring:bind>

<spring:bind path="password">
<tr>
<td><label for="${status.expression}"
<c:if test="${status.error}">class="error"</c:if>>Password:</label></td>
<td>
<input type="password" id="${status.expression}" name="${status.expression}"”
value="${status.value}" />
</td>
</tr>
</spring:bind>

</spring:nestedPath>

<spring:bind path="confirmPassword">
<tr>
<td><label for="${status.expression}"
<c:if test="${status.error}">class="error"</c:if>>Confirm Password:</label></td>
<td>
<input type="password" id="${status.expression}" name="${status.expression}"”
value="${status.value}" />
</td>
</tr>
</spring:bind>

<spring:nestedPath path="account">

<spring:bind path="email">
<tr>
<td><label for="${status.expression}"
<c:if test="${status.error}">class="error"</c:if>>Email:</label></td>
<td>
<input type="text" id="${status.expression}" name="${status.expression}"
value="${status.value}" />
</td>
</tr>

CHAPTER 6 © THE CONTROLLER MENAGERIE

</spring:bind>
</spring:nestedPath>

<tr>

<td />

<td><input type="submit" value="Go to Step 2" /></td>
</tr>

</table>
</form>
</spring:nestedPath>

</body>
</html>

The first thing to point out is the two hidden input fields that control the page flow of the
wizard. We are specifying both page and target to tell the wizard that the user is viewing
the first page, and the next page in the wizard is the second page.

As you can see, this page balloons in size when you incorporate all of the Spring JSP tags
and appropriate error messaging. We want to take a small diversion from building the wizard
to show you a few ways to handle this large JSP file.

Reducing Repetition with JSP Tag Files and Spring JSP Tags

In Listing 6-66, there is a lot of duplicate code that should be eliminated to not only save

file size but also to increase readability and reduce typing. There are at least two areas in

the file that we can replace with simple tag files, a convenient way in JSP 2.0 to write custom
tags as easily as writing JSP pages. Think of a tag file as a JSP include that can take parameters;
they are very useful when creating reusable blocks of JSP code.

Tip For more on JSP 2.0 tag files, refer to JavaServer Pages, Third Edition, by Hans Bergsten (O’Reilly, 2003).

If you've never heard of JSP 2.0 tag files then don’t worry. If you've written any JSP pages
they will look very familiar.

Tag files only work in JSP 2.0-compliant environments. This means, among other things,
that your servlet container must support JSP 2.0 and that your web. xml file must specify the
Servlet 2.4 standard by including version="2.4".

Tip If you are a Tomcat user, make sure you are using Tomcat 5.0 or better to take advantage of the
Servlet 2.4, JSP 2.0, and tag files.

185

186

CHAPTER 6 " THE CONTROLLER MENAGERIE

The first element we want to pull out of the file is the printing of all the error messages
above the form. This code won't change across our wizard pages, and the only unique part is
the name of the command bean that errors might be bound to. We will create a tag file for this
snippet first.

To create a tag file, create a directory named tags inside WEB-INF. Any file you place in
here with an extension of . tag will be available to your JSP pages just like any other JSP tag.
The advantage here is that you do not need to write a Tag Library Descriptor (TLD), plus these
.tag files are recompiled on the fly just like JSP pages, making development much easier.

Listing 6-67 contains the first tag file, which takes a command bean name and prints
any errors.

Listing 6-67. Errors Tag File

<%@<%@ tag body-content="scriptless" %>

<%@ attribute name="name" required="true" %>

<%@ taglib uri="http://www.springframework.org/tags" prefix="spring" %>
<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c" %>

<spring:hasBindErrors name="${name}">

<c:forkEach items="${errors.allErrors}" var="error">

<spring:message message="${error}" /></1li>
</c:forkach>

</spring:hasBindErrors>

As you can see, the tag file looks a lot like a regular JSP page. The main differences are
found at the top of the file, with the tag and attribute elements.

If this looks so much like a JSP file, why not use a simple include instead of this tag file?
While includes are perfect for static content, this snippet requires a dynamic name attribute for
<spring:hasBindErrors>. By using a tag file instead of an include, we can use this snippet any-
where we want to print out a list of errors from Spring’s validation framework.

Can you spot the second grossly repeated snippet from the JSP page? If you suggested that
the form input fields and labels look awfully similar, give yourself a hand. Listing 6-68 contains
the tagfile for simple <input> form elements. It has two dynamic elements: the path to the
field and the name of the field itself.

Listing 6-68. Form Field Tag File

<%@ tag body-content="scriptless" %>

<%@ attribute name="name" required="true" %>

<%@ attribute name="path" required="true" %>

<%@ attribute name="type" required="false" %>

<%@ taglib uri="http://www.springframework.org/tags" prefix="spring" %>
<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c" %>

<c:if test="${empty type}">
<c:set var="type" value="text" scope="page" />
</c:if>

CHAPTER 6 © THE CONTROLLER MENAGERIE

<spring:bind path="${path}">
<tr>
<td><label for="${status.expression}"
<c:if test="${status.error}">class="error"</c:if>>${name}:</label></td>
<td>
<input type="${type}" id="${status.expression}" name="${status.expression}"
value="${status.value}" />
</td>
</tr>
</spring:bind>

This tag file encapsulates the printing of the table row, checking whether the field has an
error, and filling out the <input> tag’s attribute values. It can also handle both text and pass-
word <input> fields by specifying the type attribute, though text is the default.

This tag file can be improved upon, based on your flexibility needs. For instance, the
name and path attributes might be considered redundant if you already have a translation of
the path attribute in your messages file. You may consider passing the path attribute value
into the <spring:message> tag to get the current locale’s translation for the field name.

Let’s put it all together and use these helpful new tag files in our original JSP file, modified
in Listing 6-69.

Listing 6-69. Page 1: JSP File with Tag Files

<?xml version="1.0" encoding="IS0-8859-1" ?>

<%@ taglib uri="http://www.springframework.org/tags" prefix="spring" %>

<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c" %>

<%@ taglib tagdir="/WEB-INF/tags" prefix="tag" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml">

<head>

<meta http-equiv="Content-Type" content="text/html; charset=IS0-8859-1" />

<title>Create an Account</title>

<link rel="stylesheet" href="<c:url value="/css/main.css" />" type="text/css" />

</head>

<body>

<h1>Create an Account</h1>

<tag:errors name="createAccount” />
<spring:nestedPath path="createAccount">

<form action="" method="post">

<div>

<input type="hidden" name="_page0" value="true" />

<input type="hidden" name="_target1" value="true" />
</div>

187

188

CHAPTER 6 " THE CONTROLLER MENAGERIE

<table>
<spring:nestedPath path="account">

<tag:formField name="Username" path="username" />
<tag:formField name="Password" path="password" type="password"/>

</spring:nestedPath>

<tag:formField name="Confirm Password" path="confirmPassword" type="password"/>
<spring:nestedPath path="account">

<tag:formField name="Email" path="email" />

</spring:nestedPath>

<tr>

<td />

<td><input type="submit" value="Go to Step 2" /></td>
</tr>

</table>
</form>
</spring:nestedPath>

</body>
</html>

Notice that to the JSP file, the tag files are used just like any other tag element. The only
difference is found in the taglib declaration: when using tag files, you must specify a tagdir
attribute instead of a uri attribute. As with all JSP tags, the prefix is arbitrary, so feel free to use
whatever you like.

At least now the file has more XHTML elements than JSP elements, so I think we did a
good job. What should you take away from this? Creating user interface elements should fall
under the same scrutiny as your code. If you find yourself repeating yourself with similar snip-
pets in JSP files, take advantage of includes and tag files to minimize repetition and to create
more easily understood files.

With the new tag files complete, we are in a good position to create the second page of the
wizard, as shown in Listing 6-70.

Listing 6-70. Page 2: Enter Billing Address

<?xml version="1.0" encoding="IS0-8859-1" ?>

<%@ taglib uri="http://www.springframework.org/tags" prefix="spring" %>
<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c" %>

<%@ taglib tagdir="/WEB-INF/tags" prefix="tag" %>

CHAPTER 6 © THE CONTROLLER MENAGERIE

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml">

<head>

<meta http-equiv="Content-Type" content="text/html; charset=IS0-8859-1" />

<title>Create an Account - Enter Billing Address</title>

</head>

<body>

<h1>Create an Account - Enter Billing Address</hi1>
<tag:errors name="createAccount" />
<spring:nestedPath path="createAccount">

<form action="" method="post">

<div>

<input type="hidden" name="_page1" value="true" />
<input type="hidden" name="_finish" value="true" />
</div>

<table>
<spring:nestedPath path="account.billingAddress">

<tag:formField name="Street" path="street" />
<tag:formField name="City" path="city" />

<tag:formField name="State" path="state" />

<tag:formField name="Postal/Zip Code" path="postalCode" />

</spring:nestedPath>

<tr>

<td />

<td><input type="submit" value="Create Account" /></td>
</tr>

</table>
</form>
</spring:nestedPath>

</</body>
</html>

For the second page, we've changed the page parameter to reflect this page, and we've
indicated that this form will trigger the finish event. The finish parameter is important to
include, as this is the default way the wizard will know if the work flow is complete.

189

190

CHAPTER 6 " THE CONTROLLER MENAGERIE

Due to our tag files, this page is fairly succinct and easy to read. Another reason for this
is our use of the <spring:nestedPath> tag. We take advantage of it to make the tags for the
address fields a bit easier to read and write. Without the <spring:nestedPath path="account.
billingAddress"> tag, the tag:formField tags would need to include the entire path to the
fields: <tag:formField name="Street" path="account.billingAddress.street" />.Asyou
can imagine, this would become verbose and tedious. Not only do we save typing by using
<spring:nestedPath>, but we're now able to create generic address XHTML code without wor-
rying what the full path to the fields are. For instance, we can use the same chunk of XHTML
to display an address for both a billing address and a shipping address.

Finally, we present the success page to complete the list of JSP required for the wizard,
shown by Listing 6-71.

Listing 6-71. Wizard Success Page

<?<?xml version="1.0" encoding="1S0-8859-1" ?>

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml">

<head>

<meta http-equiv="Content-Type" content="text/html; charset=IS0-8859-1" />

<title>Account Successfully Created</title>

</head>

<body>

<h1>Account Successfully Created</h1>

<p>
Congratulations, ${account.username}, your account was
created successfully.

</p>

</body>
</html>

Command Bean

Every good wizard needs a command bean that contains all the form fields from all those
pages. Because we are writing a Spring MVC application, we will use the Account class from
our domain model. This class contains the username, password, email address, and billing
address of the user.

However, the work flow requires that the user confirm her password, so where does that
form field live? We don’t want to place confirm password inside the Account class, because
after the form is submitted successfully, we don't care about that field anymore. Instead of
allowing the Ul requirements to influence the design of the domain model, we will create a
command bean class (Listing 6-72) that contains both the Account class and the confirm
password property. This way we can still use the Account class and directly populate it from
the request, as well as incorporate any extra fields required for the work flow.

CHAPTER 6 © THE CONTROLLER MENAGERIE

Listing 6-72. Wizard Command Class

public class CreateAccount {

private Account account = new Account();
private String confirmPassword;

public Account getAccount() {
return account;

}

public void setAccount(Account account) {
this.account = account;

}

public String getConfirmPassword() {
return confirmPassword;

}

public void setConfirmPassword(String confirmPassword) {
this.confirmPassword = confirmPassword;

}

You might remember all those <spring:nestedPath> tags we used in the JSP files. You can
see here why we need to use them, as the Account class is nested inside the command bean
(instead of being the command bean itself). And the Address object is inside the Account,
requiring another <spring:nestedPath> tag.

Tip The <spring:nestedTag> is not required if you have nested objects in your command bean, but it
comes in handy when you begin to modularize your JSP pages.

Controller

It is time to look at the concrete implementation of the wizard itself, which surprisingly isn’t
that complicated. The AbstractWizardFormController does a good job at performing the work
of page flows and validation. All that we have left to do is to fill out the validation logic and
save the Account instance at the end of the wizard. Listing 6-73 contains the Controller imple-
mentation.

Listing 6-73. Wizard Controller

public class CreateAccountWizardController extends AbstractWizardFormController {
private AccountService accountService;

public CreateAccountWizardController() {
setCommandName (" createAccount”);

191

192

CHAPTER 6 " THE CONTROLLER MENAGERIE

setCommandClass(CreateAccount.class);
setValidator(new CreateAccountValidator());
setPages(new String[]{"usernameAndEmail", "billingAddress"});

}

public void setAccountService(AccountService accountService) {
this.accountService = accountService;

}

@0verride
protected void validatePage(Object command, Errors errors, int page) {
CreateAccount createAccount = (CreateAccount) command;
CreateAccountValidator validator = (CreateAccountValidator) getValidator();
switch (page) {
case 0:
validator.validatePageo(createAccount, errors);
break;
case 1:
validator.validatePagel(createAccount, errors);
break;

}

@0verride
protected ModelAndView processFinish(HttpServletRequest request,
HttpServletResponse response, Object command, BindException errors)
throws Exception {
CreateAccount createAccount = (CreateAccount) command;
accountService.saveAccount(createAccount.getAccount());
return new ModelAndView("createAccountSuccess",
"account", createAccount.getAccount());

This controller looks a lot like a SimpleFormController, with the exception of the
validatePage() method.

Summary

The AbstractWizardFormController provides a multistep wizard work flow, appropriate for
splitting large forms across many pages. This wizard works with a single command object,
populating it as the user moves through the pages.

The wizard supports three different types of state changes: page change, cancellation, and
completion. By default, each state change is triggered by the existence of well-known request
parameters, but this behavior is easily overridden with the appropriate methods.

CHAPTER 6 © THE CONTROLLER MENAGERIE

Validation is done in piecemeal style as the user moves through the wizard, validating
only parts of the command bean on each step. At the last step in the wizard, all validations are
run again in order, effectively validating the complete command bean.

This controller should not be used for arbitrary work flows. Instead you should use Spring
Web Flow, which is capable of handling complex state changes and page flows.

ThrowawayController

There are at least two schools of thought on how to model a request/response-type web
framework. The first says that the request is something that should be passed around to
stateless handlers, which is exactly how servlets and Controllers work. The second school

of thought says that the request should be modeled with the Command pattern and directly
executed. This matches how WebWork (http://www.opensymphony.com/webwork) has modeled
its request handling, for instance. If this is your cup of tea, Spring MVC provides an
org.springframework.web.servlet.mvc.throwaway.ThrowawayController that implements the
Command pattern for request handling.

Up to now, you've seen Controllers as stateless singletons in the system, working directly
with the HttpServletRequest and HttpServletResponse objects in order to process requests.
The ThrowawayController provides the alternative to this model because it encapsulates both
the state of the request as well as the behavior. The ThrowawayController is also a prototype
bean; a new instance is created for each request. For these reasons, ThrowawayControllers are
an entirely different breed of request handler, so much so that they don’t even implement the
Controller interface.

Tip Controllers such as SimpleFormController do not have to be singletons. You may configure any
controller type as a prototype if you wish, but ThrowawayController must be a prototype because its
design is not thread safe.

ThrowawayControllers are meant to act as the command bean and the request handler.
This controller literally adds an execute() method to a command bean, so that you may
directly execute it. Listing 6-74 contains the ThrowawayController interface.

Listing 6-74. ThrowawayController Interface

public interface ThrowawayController {
ModelAndView execute() throws Exception;

}

The request parameters will be bound to your concrete subclass just like a command
bean. After binding, and assuming no errors were encountered, the execute() method will be
called.

Notice how this controller does not have access to any Servlet API classes, such as
ServletRequest or HttpSession. If you require these classes, you will need to use the
Controller interface.

193

194 CHAPTER 6 © THE CONTROLLER MENAGERIE

The lack of the presence of the Servlet API can be considered a benefit, as it makes it
easier to test this class. There is no need to create a MockHttpServletRequest just to test the
controller.

When should you use this controller type instead of the others we've presented?

First off, if you find it convenient to treat the request as a true command object then the
ThrowawayController is exactly what you need. This style of controller makes it easy to route
the request around a system, with the ability to call methods on the controller and affect

its state. Second, if your controller is really simple and you don’t require access to the
HttpServletRequest and HttpServletResponse classes, this class does allow for easier to
create tests.

You may not want to use this Controller if the request is read-only and does not submit
any data. These cases usually do not require any state while performing the request, which
negates the need for a Command pattern implementation. Of course, you are free to imple-
ment every request handler with ThrowawayController, but the downside might be a higher
rate of garbage collection (which should only be a problem under very high loads).

Also, the ThrowawayController does not implement any form work flow, which makes it
more cumbersome to handle forms, validation, errors, and so on.

Note Modern JVMs have sophisticated object creation and lifespan algorithms that can usually cope
with the constant creation of objects. The overhead of creating a new instance of ThrowawayController is
nearly negligible. As always, if under doubt, run your system with a profiler under heavy load and watch for
garbage collection performance.

Example

For an example of a ThrowawayController, we will add a CancelAccountController (Listing 6-75)
to the system. A form will request an Account’s username, and the Controller will attempt to
find the account and then cancel it.

Listing 6-75. CancelAccountController

public class CancelAccountController implements ThrowawayController {
private AccountService accountService;
private String username;

public void setUsername(String username) {
this.username = username;

}

public void setAccountService(AccountService accountService) {
this.accountService = accountService;

}

CHAPTER 6 © THE CONTROLLER MENAGERIE

public ModelAndView execute() throws Exception {
if (!StringUtils.hasText(username)) {
return new ModelAndView("cancelAccount”, "errorMessage",
"Username must not be blank.");
}
try {
accountService.cancelAccount(username);
return new ModelAndView("cancelAccountSuccess");
} catch(AccountNotFoundException e) {
return new ModelAndView("cancelAccount”, "errorMessage",
"No account found with username " + username);

Configuring this Controller is similar to all other Controllers, except you must specify
singleton="false" in the bean definition. This will ensure a new instance is created for every
request. Otherwise, each request will use the same instance of the Controller and risk
overwriting the property values. Listing 6-76 contains the bean definition for the
CancelAccountController.

Listing 6-76. CancelAccountController Bean Definition

<bean name="/cancelAccount" singleton="false"
class="com.apress.expertspringmvc.flight.web.CancelAccountController">
<property name="accountService" ref="accountService" />

</bean>

Caution Neither the DispatcherServlet nor the ThrowawayControllerHandlerAdapter will pro-
vide a warning if the controller is a singleton, so double-check your ThrowawayControllers are indeed
prototypes.

It should be noted that the ThrowawayController requires its own ThrowawayControllerw
HandlerAdapter to function. If you have specified and configured one or more handler
adapters in your WebApplicationContext, you will need to also include ThrowawayControllerw=
HandlerAdapter if you choose to use that type of controller. By default, the DispatcherServlet
will include both SimpleControllerHandlerAdapter and ThrowawayControllerHandlerAdapter,
but it will ignore the defaults if at least one handler adapter is explicitly declared in the
WebApplicationContext.

As you can tell, there is no way to handle any sort of data binder errors inside
the Controller. If an error does occur, the ServletRequestBindingException will be
thrown by the handler adapter, and it will be left up to any exception resolvers found in the
WebApplicationContext to properly deal with the exception. This is probably not what you
want, so if a binding error could occur while populating the ThrowawayController, you will
need to instead implement a ValidatableThrowawayController (covered in the next section).

195

196

CHAPTER 6 " THE CONTROLLER MENAGERIE

Summary

The ThrowawayController is an alternate request handling method compared to the
Controllers we've seen so far. It is intended to encapsulate both the request parameters as
well as the behavior associated with the request. A new ThrowawayController is created for
each request, so it must be a prototype bean (by specifying singleton="false" in the bean
definition).

Request parameters are bound directly to the controller, and if there are no data binding
errors, the controller’s execute () method is called to handle the request.

ValidatableThrowawayController

The standard ThrowawayController can’t support any fine grained data binding configuration
because there is no callback to specify any custom PropertyEditors. If there are any data bind-
ing errors, the controller never knows about them, making proper error handling cumbersome.

Enter the ValidatableThrowawayController, as shown in Listing 6-77, which adds a bit
more complexity but fills in the gaps of error handling. This controller type is still a stateless
Command pattern implementation of a controller, so you should use it wherever you would
use a ThrowawayController but require the ability to register custom PropertyEditors or build
work flows that take into account any errors.

Listing 6-77. ValidatableThrowawayController

public interface ValidatableThrowawayController {

String getName();
void initBinder(DataBinder binder) throws Exception;
ModelAndView execute(BindException errors) throws Exception;

If you wish to use this controller, you must also declare a ValidatableThrowawayw=
ControllerHandlerAdapter in your WebApplicationContext. If you do, be sure to also include
any other handler adapters, as the defaults are only included if no handler adapter is found in
the ApplicationContext.

Handlerinterceptors

The Servlet 2.3 specification introduced the idea of filters, common code that can wrap one or
more servlets to provide pre- and post-processing of the request and response. Spring MVC
supports an analogous concept with its HandlerInterceptors, which wrap request handlers to
provide common functionality. Interceptors handle more life cycle events than a standard fil-
ter, but filters are more powerful, in that they may directly manipulate or replace the
HttpServletRequest and HttpServletResponse objects.

Listing 6-78 contains the HandlerInterceptor interface.

CHAPTER 6 © THE CONTROLLER MENAGERIE

Listing 6-78. HandlerInterceptor Interface
public interface HandlerInterceptor {

boolean preHandle(HttpServletRequest request, HttpServletResponse response,
Object handler) throws Exception;

void postHandle(HttpServletRequest request, HttpServletResponse response,
Object handler, ModelAndView modelAndView) throws Exception;

void afterCompletion(HttpServletRequest request, HttpServletResponse response,
Object handler, Exception ex) throws Exception;

Three life cycle points can be intercepted. See Table 6-4.

Table 6-4. Interceptor Life Cycle Points

Method Name Description

preHandle Called before the request handler is invoked. If it returns false, the request
handler is never invoked, and the rest of the interceptor’s methods are never
called.

postHandle Called after the handler finishes but before the view is rendered. Useful for

placing common objects into the model.

afterCompletion Called after the view is rendered, even if there was an error in handling the
request. Useful for resource cleanup.

HandlerInterceptor Example

Our simple example of a HandlerInterceptor (shown in Listing 6-79) will insert the current
time into the model after the controller has finished, but before the view is rendered. The diffi-
cult part of using interceptors is not in implementing them but in configuring them.

Listing 6-79. HandlerInterceptor Example

public class DatelInsertionInterceptor implements HandlerInterceptor {

public boolean preHandle(HttpServletRequest request,
HttpServletResponse response, Object handler) throws Exception {
return true; // always continue

}

public void postHandle(HttpServletRequest request,
HttpServletResponse response, Object handler,
ModelAndView modelAndView) throws Exception {
modelAndView.addObject("currentTime", new Date());

197

198

CHAPTER 6 © THE CONTROLLER MENAGERIE

public void afterCompletion(HttpServletRequest request,
HttpServletResponse response, Object handler, Exception ex)
throws Exception {
// nothing

HandlerMapping instances create a HandlerChain, combining HandlerInterceptors with
the request handler such as a Controller. Therefore, HandlerInterceptors much be bound to
HandlerMappings.

If you want the interceptor to apply to all request handlers and you are using only the
BeanNameUr1HandlerMapping object, then the configuration is fairly straightforward. Listing
6-80 contains an example configuration and definition for the DateInsertionInterceptor.

Listing 6-80. HandlerInterceptor Configuration

<bean id="handlerMapping"
class="org.springframework.web.servlet.handler.BeanNameUrlHandlerMapping">
<property name="interceptors">
<list>
<bean
class="com.apress.expertspringmvc.flight.web.DateInsertionInterceptor" />
</list>
</property>
</bean>

The above configuration is more verbose than normal, as now you must declare the
BeanNameUr1HandlerMapping, which previously was the implicit default.

Note Here we are taking advantage of Spring’s support for inner bean definitions, useful in this context
because the interceptor bean is only needed inside this HandlerMapping.

The only way to configure which interceptors will handle each URI is to bind them
to the appropriate HandlerMapping instance. This might mean you need to create more
HandlerMapping objects just to handle the way you would like the interceptors to be handled.

Summary

HandlerInterceptors are an excellent opportunity to apply common business logic to many
Controllers. They act much like filters, in that they intercept the request handling pipeline.
They are capable of bypassing the request handling altogether, placing common objects into
the model, and cleaning up resources after every request.

Interceptors are bound to HandlerMapping objects, so any request that the handler map-
ping can handle will be routed through all of its interceptors and a single request handler.

CHAPTER 6 © THE CONTROLLER MENAGERIE

Controllers Summary

One of Spring MVC’s major strengths is its rich collection of Controller options. From the very
simple (Controller interface) to the complex (AbstractWizardFormController), Spring MVC
has a deep controller hierarchy that is extensible and configurable.

The major design theme for these classes is best summed up with the Open-Closed
Principle, which states that classes should be open for extension but closed for modification.
Many of these controllers lock their behavior down with methods marked as final, but provide
useful extension points for subclasses.

Table 6-5 summarizes the different controller options.

Table 6-5. Controller Options

Name Description

Controller Unifying interface, with no work flow defined.

AbstractController Perfect for all read-only request handlers and has many useful
features.

SimpleFormController Provides a form handling work flow, including validation.

AbstractWizardFormController
MultiActionController
ThrowawayController

ValidatableThrowawayController

UrlFilenameViewController

ParameterizableViewController

Splits a long form across multiple pages; includes validation
support.

Handles multiple URIs with different methods inside the
controller itself.

Non-singleton controller; implements the Command pattern;
unaware of the Servlet API.

Like the ThrowawayController, but aware of data binding errors.

Hides view-only resources behind application URIs; parses the
URI itself.

Hides view-only resources behind the application URI by read a
configuration parameter.

Note There are often many intermediate subclasses between the Controller classes mentioned in the
above table, so look for other options when you require specific overridable behavior.

HandlerInterceptors provide filter-like abilities to wrap requests and control the process-
ing pipeline. They are able to bypass Controllers, interject common objects into the model
for views, or even clean up resources after the request is handled. Interceptors are bound to
HandlerMappings, which in turn create a HandlerChain made up of all the interceptors and a

single Controller.

The SimpleFormController and any Controller that subclasses BaseCommandController
will create command objects to encapsulate the form fields from the request. With the help of
PropertyEditors, the properties of the command objects may be of any type (Strings, ints,
java.util.Date, and so on). The ServletRequestDataBinder is responsible for performing the
actual binding of request parameters to command objects.

199

200

CHAPTER 6 " THE CONTROLLER MENAGERIE

This chapter has briefly mentioned validation, which controllers like SimpleFormController
and AbstractWizardFormController have explicit support for. Some validation may take place at
the DataBinder level, with its support for required fields. For complex validation, however, you
must use the Validator interface, covered in Chapter 9.

We briefly mentioned Views in this chapter, as we looked at building the screens for some
of the form controllers and the wizard example. Like Controllers, Spring MVC supports a rich
selection of view technologies and integrates them nicely into a cohesive package. The next
chapter covers the different view options, including JSPs and the Spring JSP tags.

CHAPTER 7

The View Layer

This chapter discusses the user interface layer, or view layer, of your Web MVC application.
We investigate what the goal of a view is, why it should be considered separately in an applica-
tion, and how Spring’s view layer architecture helps you achieve the goal of producing a user
interface independent of the Model and the Controllers.

We will take a detailed tour of the mechanisms used by Spring to manage views, and we'll
explore the benefits to be gained from this framework design. We'll cover Views, ViewResolvers,
and their relationship to Models and Controllers.

What’s in a View

Chapter 4 introduced views on the whistle-stop tour of the sample MVC application. It’s
important to be familiar with those concepts introduced, because in this chapter we're going
to find out what really makes them “tick” and how they interact with all the other parts of an
MVC application.

A view serves a dual purpose in aWeb MVC application. Primarily, a view is responsible
for the display of a model that has been generated by a Controller. Additionally, views may
also present the user with suitable options for continued interaction with the application.

In an MVC application, it’s often useful to think of the model as the contract between the
Controller and the View: the View can only see what the Controller passes it via the model.

When Controller components generate a model ready for a view to display, that model
should be complete. The view concentrates only on displaying the model and on presenting
the options your users can choose next. In normal circumstances, the view should never need
to call back into any Controller code, access domain logic, or perform data retrieval functions.

Note You may have come across OpenSessionInView, a common counterexample to this maxim. A
view may need to retrieve additional pages from a data store after initially rendering, rather than slowing
down the application by having all of the data loaded prior to displaying the first page. Here, the data store
session remains open while the view is rendered.

201

202

CHAPTER 7 ' THE VIEW LAYER

If you're developing console applications, your user interface might consist of a menu of
options keyed by letter or number. For browser-based views, the more familiar form fields,
hyperlinks, buttons, and images are used, while in rich clients, sets of widgets or Ul components
are available to handle user input. Not all views will implement this function, particularly if the
view consists of a nominally read-only data set like an invoice or a report.

Treating Views in Isolation

An application’s choice of view technology should be considered independently from the work
flow and Controller components. This is generally considered good design and is important
for several reasons.

e In multiskilled teams, commonly found on all but small projects, there are likely to be
people with specific areas of expertise in designing interfaces. These team members
need to be able to work unencumbered by programming knowledge, just as the pro-
grammers need to do their job without knowledge of how data will be presented.

e Your application may require at the outset, or in the future, that other view types be
supported in addition to the primary one. For example, a web application may offer
the user the option of viewing the results of some operation as a PDF file rather than
as HTML in the browser. Similarly, an application may define a requirement to support
different devices such as mobile phones and rich clients

* A separate view layer makes for a more maintainable application, and for most proj-
ects, far more money is spent on maintenance than initial development.

Therefore you'll need to consider the functionality of your application distinctly from the
code that generates the relevant markup language or windowing objects. In the past, web
applications were often developed in a way that meant much of the control and work flow in
the application was tied very closely to the view tier. This design is still found today in some
Java-based applications, but more commonly in applications developed in languages like PHP
and Perl. The JSP architecture is actually partly to blame in J2EE applications, because it
makes it too easy to combine complex work flow logic (and in the worst cases, domain and
data access logic) with the view. This common “Model 1” design, appropriate for only the most
trivial of projects, will often remain in place as applications grow instead of being factored out
into a cleaner set of layers as it really should.

Spring’s View Interface

The DispatcherServlet and Spring Controllers treat views in an implementation-agnostic
manner. That means you can define one or more views using different technologies and

either use them together or switch them around without impacting any of your Controller
code. In many cases, you need make no more than a single change to a configuration file in
order to replace the entire view tier of your application with a new one! Two interfaces—
org.springframework.web.servlet.View and org.springframework.web.servlet.ViewResolver—
primarily make this possible. Listing 7-1 shows the definition of the View interface.

CHAPTER 7 " THE VIEW LAYER

Listing 7-1. View Interface Definition

public interface View {
void render(Map model, HttpServletRequest request,
HttpServletResponse response) throws Exception;

}

Note Many of Spring’s high-level interfaces consist only of a single method. This facilitates the maximum
amount of reuse from interfaces and makes them good candidates for anonymous inner class implementations.

The interface is simple. It says that, given a model and the servlet’s request and response
objects, a View will generate, or render, the output. It assumes nothing else, and that means
you have the widest possible choice when selecting an implementation. As we'll see later,
though, creating your own View implementation is quite rare; more commonly you'll use one
of the built-in Spring view types.

Implementing View

The render () method of the View interface returns void. The buck stops here as far as Spring
MVC is concerned; it is the responsibility of the view not just to generate the content but to
actually return it to the client too, if appropriate.

We could, therefore, successfully implement a view with the example in Listing 7-2.

Listing 7-2. Example View Implementation

public class ModelIteratorView implements View {
public void render(Map model, HttpServletRequest request,
HttpServletResponse response) throws Exception {

PrintWriter out = new PrintWriter(response.getOutputStream());
for (Object key : model.keySet()) {
out.print(key.toString());
out.print(" = ");
out.println(model.get(key));
}
out.flush();
out.close();

OK, so it won't win your website any design awards, but you're fulfilling the very basic
requirement of a View. Spring provides many implementations of View that act as hooks for
the supported view technologies—for example, InternalResourceView (JSP), VelocityView,
AbstractXsltView, and others. We'll cover the specifics of these and others in Chapter 8 as we
examine the major view technologies in more detail.

203

THE VIEW LAYER

CHAPTER 7

204

For now, we'll have a quick tour of some of the common supporting functionality that
Spring implements and how it applies to the diverse range of subclasses. Figure 7-1 shows the

hierarchy of Views that Spring implements for you.

MaINN0AETAYI90[9A

MaIAX0Q]00LA)00jaA

MAIAIS S

Mmalps|xsuodayadser

MaIp|wlHsHodayadser

MaIAAS)SHodayadser

Ayouvia1y maiy *}-L ainbi4

MaIpIpdsHodayadser

maipkioofep MalpIax e aal] _ _ MaIASa|IL _

MaIABSF _

Malpaje|dwaljoensqy

MASYIOBNSqY _ MaYUPJIIEnSqY _

MaIA3IN0SaY LIS}

MalpjewI043]6ujSS10day 1adserioensqy _

_ MmaipeuLIo{nnysuodayadser

MIINJOBIIPAY _ Maljspodayadserioensqy _

MBIAPaSEGLNIIBLSqY MBIAI8IXF1INSqY _

mai
«3Jepdiul»

_ MBIN[99XI IIBNSqY

CHAPTER 7 " THE VIEW LAYER

The preceding diagram shows that all of the Spring View implementations extend
AbstractView and that the majority also descend from AbstractUrlBasedView. Figure 7-2
shows more detail for these classes.

«interface»
View «interface»
+ render(model : Map, request : HttpServietRequest, response : HitpServietResponse) BeanNameAware

«interface»
InitializingBean

+ afterPropertiesSet()

+ setBeanName(name : String)

\ ~
\ //

AN

205

AbstractView

+DEFAULT CONTENT TYPE : String
- beanName : String

- contentType : String

- requestContextAttitude : String

- staticAttributes : HashMap

+ setBeanName(beanName : String)

+ getBeanName() : String

+ setContentType(contentType : String)

+ getContentType() : String

+ setRequestContextAttribute(requestContextAttitude : String)

+ getRequestContextAttribute() : String

+ setAttributesCSV(propString : String)

+ setAttributes(props : Properties)

+ setAttributesMap(attributes : Map)

+ getAttributesMap() : Map

+ addStaticAttribute(name : String, value : Object)

+ getStaticAttributes() : Map

+ render(model : Map, request : HttpServletRequest, response : HttpServletResponse)
createRequestContext(request : HitpServietRequest, model : Map) : support.RequestContext

renderMergedOutputModel(model : Map, request : HttpServietRequest, response : HttpServietResponse)

\ L* toString() : String

AbstractUrIBasedView

- url : String

+ setUrl(url : String)
+ getUrl() : String

+ afterPropertiesSet()
+ toString() : String

Figure 7-2. Abstract superclass detail in the View hierarchy

Spring views don’t necessarily need to be HTML-based. In many cases, entirely different
content types, including binary, can be rendered to the client. All Spring views support the
ability to determine their own content type through AbstractView.setContentType().

206

CHAPTER 7 ' THE VIEW LAYER

By default, this will have the value text/html; charset=IS0-8859-1, and this is appropri-
ate for any view rendering HTML with a Latin character set. The value of the contentType
attribute will be used to set the appropriate HTTP headers in the response stream. This indi-
cates to the client device how it should respond. Setting the contentType to a binary MIME
type, for example, is likely to cause your browser to pop up a dialog box asking if you want to
save the file (or possibly launch it if your machine has an application registered to handle that
particular MIME type). Figure 7-3 shows just such an example of a content type that was set in
the HTTP response of x-application/pdf.

You have chosen to open
spring-reference.pdf

whichis a: POF document
fram: http:/istatic. springframework. arg

What should Firefox do with this file?

@ Open with | PDFViewer (default) [+]
Sawve to Disk

Do this automatically for files like this from now on.

3 cancel @

Figure 7-3. Browser response to a different content type header value

AbstractView offers the ability to set static attributes on your View instance too. These attrib-
utes are independent of the dynamic model generated by the Controllers, and you can set them
programmatically or as part of the view configuration. They are useful for including additional
data in the view that you don’t want to hard-code into, for example, your JSPs or Velocity tem-
plates. AbstractView’s second contribution to the implementation of your views is the option
of declaring a requestContextAttribute name. Setting a value for this will expose the Spring
RequestContext object to your view under the name you specified. The RequestContext holds
request-specific information such as the theme, locale, binding errors, and localized messages.
Support for command and error binding in Velocity and FreeMarker views is based upon expo-
sure of the RequestContext.

Listings 7-3 and 7-4 show how you can use static attributes.

Listing 7-3. Setting Static Attributes

View view = new InternalResourceView("path");
view.addAttribute("companyName", getThisYearsCompanyName());
view.addAttribute("season", "Summer");

Listing 7-4. Using Attributes in a JSTL View

<p>The name of our company (this year at least) is:
${companyName}</p>
<p>Welcome to our ${season} season of products</p>

CHAPTER 7 " THE VIEW LAYER

Once you have added your static attributes to the View instance, they are merged with
the dynamic attributes and simply become part of the model as far as the view is concerned.

If any of your dynamic model attributes have the same name as a static attribute, the
dynamically generated one will take precedence. This is good because it means that you can
define defaults as static attributes and then optionally have your Controller logic override
those defaults.

Caution Your attributes must be keyed with Strings. If you use the setAttributesMap() method and
the Map contains non-String keys, a runtime exception will be generated.

Obviously your applications aren't going to create views programmatically too often.
Much more commonly, you will define the view instances in a configuration file and have
Spring create them for you. There are several different ways to do this, and before we dive in
and take a look at them, we need to look more closely at the relationship between Controller
and View, and to introduce the ViewResolver.

Views and Controllers: Happily Divorced

Spring Controllers specify the following method in their interface shown in Listing 7-5.

Listing 7-56. Controller Interface Method

ModelAndView handleRequest(HttpServletRequest request,
HttpServletResponse response) throws Exception;

The important detail here is the return value from the handleRequest () method. A
ModelAndView object is a simple holder enabling your Controller to return two distinct types
of object to the caller. The model in question is usually a Map containing keyed object values of
the prepared data set that the view will render. The view might either be an implementation
itself (of the View interface) or a String holding a name that will later be resolved to an actual
View by a ViewResolver, which we’ll learn more about in the next section.

Let’s look at a sample Controller implementation that takes the first option (Listing 7-6).

Listing 7-6. Returning a View Instance

public void handleRequestHttpServletRequest request,
HttpServletResponse response) throws Exception {
Map model = new HashMap();
model.put("flights", getFlightList());
View view = new InternalResourceView("/WEB-INF/jsp/flightList.jsp");
return new ModelAndView(view, model);

In Listing 7-6, the Controller is responsible for determining the actual view implementa-
tion and returns this object along with the model it has generated. Note that this code still
makes no assumptions about how that particular view will render the content, and you are

207

208

CHAPTER 7 ' THE VIEW LAYER

still at liberty to change the JSP—or even the implementation of InternalResourceView
without reference to any of the Controllers that use it.

The preceding code could be improved by having the Controller look the view up in an
ApplicationContext, but it doesn’t greatly improve upon the example from a design perspective.
The Controller still needs to have too much information about where to find a particular view.

A better alternative, shown in Listing 7-7, is to have the Controller specify a key that
names the view. Specifying a name for a view is crucial to how a web framework is able to
completely decouple the view from the Controller. A Controller can effectively delegate the
choice of view to another object which knows how to find and instantiate a view based on an
abstract name. Constructing a ModelAndView with a view name rather than a View instance is
much the more common approach in Spring MVC applications and in fact, almost all web
frameworks offer a mechanism of addressing views by name.

Listing 7-7. Returning a Named View

public void handleRequestHttpServletRequest request,
HttpServletResponse response) throws Exception {
Map model = new HashMap();
model.put("flights", getFlightList());
return new ModelAndView("flightList", model);

In the second example, your Controller knows nothing of the view other than its name.
That’s good! You are now free to vary the fype of view that is actually used to render this model,
without revisiting even your Controller code.

Caution Be aware that the ModelAndView constructors are slightly counterintuitive, in that you specify
the view or view name first, followed by the model.

ViewResolvers

The key to a complete decoupling of the view from the Controller is not to permit the
Controller any say in what type of view will be used to render the model. So if the Controller
is now divorced from this responsibility, who or what is responsible? This job falls to the
ViewResolver. ViewResolvers are an important feature in Spring’s view layer support.

When your Controller selects a concrete view to return as part of the ModelAndView object, it
still knows nothing of how that implementation will perform its job. However, it necessarily has
knowledge of which view will perform the rendering task. In some scenarios this may be accept-
able, but in the general case it would be better for your Controllers not to be burdened with this
additional responsibility.

This is where a ViewResolver comes into play. Listing 7-8 has the definition for this interface.

CHAPTER 7 " THE VIEW LAYER 209

Listing 7-8. The ViewResolver Interface

public interface ViewResolver {
View resolveViewName(String viewName, Locale locale)
throws Exception;

Consistent with many other key Spring interfaces, ViewResolver defines a single method
for implementation keeping it focused on one particular task.

It should be fairly clear from the interface definition how ViewResolvers act as the key
link decoupling Controller and view.

Putting View Resolution in Context

We've covered much of the detail now of how Spring manages the view tier, decouples views
from Controllers and operates a sophisticated view resolution strategy. What’s missing is an
overview of how these objects combine in your Web MVC application—what is responsible
for linking them all together?

Let’s briefly take a step back up the chain of events and examine a simplified overview of
the request/response sequence, noting where the View and ViewResolver fit in. Figure 7-4
shows a sequence in which the Controller returns a ModelAndView instance containing the
name of a view, rather than a concrete View implementation.

: DispatcherServiet : Controller | : ViewResolver | | : View |

| |
: handleRequest(request : , response :) : ModelAndView

|

| |

L . \

o o) Ty delAnaview \
A L |
|

' |

\

Figure 7-4. Sequence diagram of named view resolution

In Figure 7-4 we can see clearly how the view resolution and rendering fits in with the
DispatcherServlet, which manages the entire operation, and the Controller that built our
model. The Controller plays no part in resolving the view in this sequence and is entirely
oblivious of the operation.

210 CHAPTER 7 ' THE VIEW LAYER

Types of ViewResolver

ViewResolver is a strategy interface within the framework. In order to get a better handle on how
view resolution is applied through this interface, we’ll introduce some of the abstract and con-
crete implementations. Figure 7-5 details the relationships between various ViewResolver classes.

S

| AbstractCachingViewResolver | |BeanNameV|ewResoIver

ViewResolver
+ resolveViewname(viewName : string, locale : Locale) : View

[ResourceBundleViewResolver | XmiViewResolver UrIBasedViewResolver
[|
[InternalResourceViewResolver | AbstractTemplateViewResolver |
VelocityViewResolver FreeMarkerViewResolver

Figure 7-5. ViewResolver hierarchy

That'’s a lot of ViewResolvers, so what do they all do? Let’s briefly examine some of the
more important ones.

¢ BeanNameViewResolver is a simple implementation of the interface that is useful
in smaller applications. It attempts to resolve views as beans defined in the
ApplicationContext, so the name of the view is the id of a bean. This resolver needs
no additional configuration, but it has the disadvantage of requiring view beans to be
defined in the ApplicationContext file.

e AbstractCachingViewResolver is the superclass to all resolvers that wish to cache their
view objects. Creating a View can be an expensive operation, so this is a useful piece of
common functionality.

e XmlViewResolver creates views based on an XML definition file. This file (/WEB-INF/

views.xml by default) uses the Spring Beans DTD, which has the advantage of making
view definitions both familiar and able to use the full power of Spring’s bean factories.

CHAPTER 7 " THE VIEW LAYER

¢ ResourceBundleViewResolver uses view bean definitions in a ResourceBundle in the class-
path. By default the base name for this bundle is views, so it will be located in a file called
views.properties in the classpath root. ResourceBundleViewResolver is the only resolver
that supports internationalization via the standard ResourceBundle mechanism.

» UrlBasedViewResolver expects the symbolic view name to map directly to a URL with
optional prefixes and suffixes. Appropriate where arbitrary mapping definitions are
not required. This resolver acts as a superclass for JSP- and template-based views.

The other ViewResolvers are extensions of the ones just described and specialize the
ViewResolver functionality for particular view technologies. Most of these we’ll encounter
later as we discuss the view types themselves that those resolvers are used for. For now we’ll
take a look at two of the non-view-specific resolvers and how to configure them.

ResourceBundleViewResolver

Listing 7-9 shows an extract from a views.properties file. This file, located in the root
of the classpath, can be used to define the views in your application when picked up by a
ResourceBundleViewResolver. We'll examine some of the concepts being exposed here.

Listing 7-9. Sample views.properties

parent-view.class=org.springframework.web.servlet.view.Jst1lView
parent-view. (abstract)=true
parent-view.attributesCSV=title=FlightDeals.com, season=Summer

homepage.parent=parent-view
homepage.url=/WEB-INF/jsp/home.jsp
listFlights.parent=parent-view
listFlights.url=/WEB-INF/jsp/1listFlights.jsp

Caution Some of the special properties like abstract (shown in the preceding listing), ref, and
singleton are enclosed in parentheses to distinguish them from properties of the same name that your
class might have. The parent property does not have this requirement, which is inconsistent. This has been
corrected for version 1.3.

Our views.properties file is quite short, but there’s a lot going on under the covers. First,
this is a generic Spring bean definition file. Although using XML is the more typical approach
to defining beans, Spring has always supported property file definitions. From these defini-
tions, three beans would be created in the context with ids:

* parent-view
* homepage

* listFlights

211

212 CHAPTER 7 ' THE VIEW LAYER

PARENT AND ABSTRACT BEANS

We’re declaring a parent view under the name parent-view. This isn’t used as an actual view in our applica-
tion (it doesn’t have its own URL), but instead makes use of Spring’s native bean hierarchy to impose its
values on all other beans that declare it as parent. This is similar to subclassing in your Java applications. For
the homepage bean (view), Spring will create an object by instantiating org. springframework.web.
servlet.view.Jst1View based on the parent-view.class attribute. It will then call homepage.
setAttributesCSV("title=FlightDeals.com,season=Summer"); and then homepage.setUrl
("/WEB-INF/jsp/index.jsp") ;. The same will happen for listFlights and any other views we define in
this file. The home page and listFlights views that declare parent-view as their parent will now have the class
and attributes that the parent view exposed.

As we've already seen, static attributes are overridden by dynamic model items of the
same name, so we have introduced a way to set a default value for a couple of model attrib-
utes for all views that can be amended by any Controller. Although this concept can be used
in any Spring bean definition file, it’s a particularly useful and powerful one in the view layer,
where you often have many views that will need common values.

XmliViewResolver

Your ApplicationContext and DispatcherServlet context files are usually written in XML using
the Spring Beans DTD file. Xm1ViewResolver allows you to write a view definition file using the
same familiar syntax. By default, this file is named WEB-INF/views.xml, and that’s where the
resolver will expect to find it unless you configure it to look elsewhere.

The equivalent XML definition of the preceding views.properties file is displayed in
Listing 7-10.

Listing 7-10. WEB-INF/views.xml

<?xml version="1.0" encoding="UTF-8"?>
<IDOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN"
"http://www.springframework.org/dtd/spring-beans.dtd">

<beans>
<bean id="parent-view" abstract="true"
class="org.springframework.web.servlet.view.JstlView">
<property name="attributes">
<props>
<prop key="title">FlightDeals.com</prop>
<prop key="season">Summer</prop>
</props>
</property>
</bean>

<bean id="homepage" parent="parent-view">
<property name="url"

CHAPTER 7 " THE VIEW LAYER

value="/WEB-INF/jsp/home.jsp"/>
</bean>

<bean id="listFlights" parent="parent-view">
<property name="url"
value="/WEB-INF/jsp/listFlights.jsp"/>
</bean>
</beans>

Making ViewResolvers Known to the Dispatcher

You can define any number of ViewResolvers in your application depending upon your cir-
cumstance. A ViewResolver definition resides in the Dispatcher servlet’s configuration file
(WEB-INF/servletName-servlet.xml by default) and is picked up by the dispatcher based on
its class type. Listing 7-11 shows a snippet of the DispatcherServlet context file defining a
ViewResolver.

Listing 7-11. Configuring a ViewResolver in the Context File

<beans>

<bean id="viewResolver"
class="org.springframework.web.servlet.view.InternalResourceViewResolver">
<property name="viewClass"

value="org.springframework.web.servlet.view.JstlView"/>

<property name="prefix" value="/WEB-INF/jsp/"/>
<property name="suffix" value=".jsp"/>

</bean>

<!-- other beans -->
</beans>

Tip Originally, a ViewResolver definition in the dispatcher context file had to take the name
viewResolver. This is still common but no longer required as the servlet will find all ViewResolvers
by type. If you really want it, you can revert to the old behavior by setting the detectAllViewResolvers
property of the DispatcherServlet to false.

Chaining ViewResolvers with the Ordered Interface

If you elect to use more than one ViewResolver it’s normally because you want to provide
a specific type of resolver for a category of views, perhaps PDFs, falling back to the default
resolver for everything else. This is referred to as chaining ViewResolvers. Whatever the reason
for needing different resolvers, you probably want to be in control of the order in which the
DispatcherServlet consults them.

In Spring, many classes of object implement the generic Ordered interface. This is a sim-
ple interface that defines a single method, getOrder() : int. Groups or collections of objects

213

214

CHAPTER 7 ' THE VIEW LAYER

can be prioritized if they implement the Ordered interface and this is what some of the con-
crete ViewResolvers do. Set the order bean property on the resolver to control chaining order,
as demonstrated in Listing 7-12.

Listing 7-12. Ordering View Resolvers

<bean id="defaultViewResolver"
class="org.springframework.web.servlet.view.InternalResourceViewResolver">
<property name="viewClass"
value="org.springframework.web.servlet.view.JstlView"/>
<property name="prefix" value="/WEB-INF/jsp/"/>
<property name="suffix" value=".jsp"/>
</bean>

<!-- this will be consulted first as it has a lower 'order' value -->

<bean id="pdfViewResolver"
class="org.springframework.web.servlet.view.XmlViewResolver">
<property name="order" value="1"/>
<property name="location" value="/WEB-INF/views.xml"/>

</bean>

Caution A lower value for the order property gives it a higher priority in the chain. Values for the order
property are usually specified in the range 0 .. Integer .MAX VALUE.

Chaining works in the following manner.

* Each ViewResolver in turn, according to its ordered property, gets the option of
returning a view.

¢ If the resolver returns null, the next resolver in the chain is consulted.

¢ Ifaresolver returns a view instance, the dispatcher uses that view, and no further calls
are made to other resolvers that might still be in the chain. View resolution ends at the
first successful attempt to resolve a view name.

Bear in mind, however, that not all ViewResolvers can return null even though the con-
tract of the interface permits it. In particular, InternalResourceViewResolver never returns
null because its implementation depends on calling the RequestDispatcher internally. There’s
no other way to discover whether a JSP exists, and the RequestDispatcher.forward() method
can only be called once. This means that your ViewResolver will always return a view of some
description, and this particular resolver should only ever appear last in the chain. Practically,
that means that your application can return 404 errors where you don’t want them, so it’s
always important to configure a generic page to handle this type of error.

CHAPTER 7 " THE VIEW LAYER

A Word on Redirecting

Note This section is naturally about views, but we’ve left it until after the discussion on ViewResolvers
because we need a degree of knowledge about resolvers before tackling RedirectViews fully.

Sometimes you don't want a view to be rendered as part of a single request-response transac-
tion from the client. This usually applies to form data that is POSTed to a Controller where
the correct response might be to delegate to another Controller. When you do this internally,
the delegate Controller has access to all of the form POST data, which may not be desirable.
In addition, the user can double-post the form data by reloading the current page in the
browser after submitting the form.

Both of these problems can be overcome by having the Controller that receives the form
POST issue a redirect to the client, shown in Figure 7-6. This causes the browser to make a
new request the URL in the address bar to change too. Now if the user hits the Reload button,
she’ll get the page that was the subject of the redirect and won't inadvertently submit a new
set of form POST details—something that could involve a credit card purchase. The problem
and its “Redirect after POST” solution are commonly understood, so let’s take a look at how to
deal with this in Spring MVC applications.

215

_Eﬂ : DispatcherServlet | - SimpleFormController | |: RedirectView | | successController : Controller| | successView : View
: — T |

|
| : [POST form data]
: onSubmit(command : Object) : ModelAndView |

|
|—>J‘

|
|
|
| : render()
|
|
|

L HTTP302/308 | fmmermrmmmemomom oo mm oo

frommm T

Figure 7-6. Redirect after POST

Spring provides a RedirectView class—which implements the View interface—but under
the covers simply sets the response headers to force the client to re-request its configured URL.
If you're using ResourceBundleViewResolver or XmlViewResolver, you can define RedirectViews
as you would any other view. If, however, you've chosen to use an UrlBasedViewResolver or one
of its subclasses, then the nature of the resolver makes it impossible to specify a redirect simply
by using a logical key as the view name.

216

CHAPTER 7 ' THE VIEW LAYER

You can, of course, simply have your Controller create a new RedirectView as part of the
ModelAndView that it returns, but as we've already seen, we don’t really want the Controller
making that decision. The preferred option is to chain two ViewResolvers at this point. You
should specify an XmlViewResolver or ResourceBundleViewResolver to resolve views that need
to be RedirectViews, falling back to the UrlBasedViewResolvers for all other views.

If you really can’t face chaining ViewResolvers, then there is a third alternative—introduced
in version 1.1.2 of Spring—specifying a special prefix in the view name. Because a view name
can be injected into a Controller, this still absolves your controller from knowing that a redirect
is going to occur, and hence, you still have completely decoupled components. Listing 7-13
shows the concept.

Listing 7-13. Using the Redirect Prefix

// viewName should really be injected as a bean property value
String viewName = "redirect:successpage.html";
return new ModelAndView(viewName, model);

The actual URL is specified relative to the context root of the web application so that the
controller need not be aware of the name that the application was deployed under, although
this behavior can be modified in configuration if you really want it.

Themes

You can further enhance your view layer visually through the use of themes. Themes may not
be appropriate for all view types—PDF and Excel, for example—but the manner in which you
define and use them is consistent across other view types.

Themes are a collection of resources, usually stylesheets (CSS) and images that augment the
display of your web pages. Several different themes can coexist in your application together, and
a Spring-supplied ThemeResolver class does the work of determining which one will be applied
in the views.

Let’s see an example for better clarity. Listing 7-14 shows the contents of a properties file
that specifies some theme keys. We've called this file winter.properties.

Listing 7-14. The Winter Theme Definition Properties File

style=/styles/winter.css
background=/images/snow.png
welcome.message=Brrrr! It's cold.

The keys in the theme definition are referred to in your view layer code. In JSP, for example,
this can be done with the <spring:theme> tag, as shown in Listing 7-15.

Listing 7-15. Theme Properties Referred to in a JSP

<taglib prefix="spring" uri="http://www.springframework.org/tags"%>
<html>
<head>
<link rel="stylesheet"

CHAPTER 7 " THE VIEW LAYER

href="<spring:theme code="style"/>"
type="text/css"/>

</head>

<body background="<spring:theme code="background"/>">

<h1><spring:theme code="welcome.message"/></h1>
</body>
</html>
The theme tags highlighted in bold will be replaced with the corresponding value from

the winter.properties. We might also define a new theme, Summer, that we encapsulate in
summer .properties, shown in Listing 7-16.

Listing 7-16. The “Summer” Theme Definition Properties File

style=/styles/summer.css
background=/images/sun.png
welcome.message=Phew! It's a scorcher.

Now, our view can look very different when we switch between winter and summer
themes. You can use Spring’s theme support to dictate a fixed theme per application that all
users see. It can also allow individual users of the application to use a different theme. The
missing piece of the puzzle, then, is knowing how the choice of theme is made for any given
application or user. Let’s see how Spring does that with ThemeSources and ThemeResolvers.

ThemeSources

The properties files that contain the theme’s keys are located in the classpath and accessed as
resource bundles. By default a ResourceBundleThemeSource is used that will look in the root of
the classpath for the properties files.

If you want to place your files elsewhere in the classpath, or if you need to use a custom
ThemeSource implementation, you can specify a bean in your context with the reserved name
themeSource to do this. A bean with this name will automatically be detected and used by the
web ApplicationContext. Listing 7-17 has an example that alters the basename prefix.

Listing 7-17. ThemeSource Defined in the Web Application Context

<bean id="themeSource"
class="org.springframework.ui.context.support.ResourceBundleThemeSource">
<property name="basenamePrefix" value="com.apress.expertspringmvc.themes."/>
</bean>

Using the bean definition in the preceding listing, we can place our theme definition files in
the specified location of the classpath. Thus, they can be found at com.apress.expertspring-
mvc.themes.winter.properties and com.apress.expertspringmvc.themes.summer.properties,
respectively.

217

218

CHAPTER 7 ' THE VIEW LAYER

ThemeResolvers

The ThemeResolver does a very similar job to that of its colleagues, LocaleResolver and
ViewResolver. It returns the correct Theme to the dispatcher based upon the application’s
configuration.

Spring offers three concrete ThemeResolver implementations, shown in Table 7-1.

Table 7-1. Spring ThemeResolver Implementations

Implementation Description

FixedThemeResolver Always resolves the theme keyed by the name of its defaultThemeName
property. All users of the application will see the same theme.

SessionThemeResolver The name of the theme is stored in the HttpSession for each user. It
needs to be set for each user and is not persisted between sessions.

CookieThemeResolver Similar to the SessionThemeResolver, but the value is stored in a cookie
and is persisted between sessions.

The ThemeResolver is listed in the DispatcherServlet’s configuration file using the
reserved name themeResolver. The dispatcher will automatically use this bean to resolve
the correct theme or each application request.

ThemeChangelnterceptor

A final note on theme support: If you need to alter the theme on every request, you can config-
ure a ThemeChangeInterceptor, which is based on Spring’s interceptor support that you learned
about earlier in the book. A configurable parameter name can alter the theme on a per-request
basis.

Internationalization in the View Layer

Internationalization, or i18n, is an essential aspect of the view layer. After all, this is the layer
that renders your data to the end user and in the global marketplace; your users might be any-
where. The majority of them will expect to see local formatting used for numbers and dates at
minimum. Many will expect to be able to read much of your site in their own language.

This section contains a brief tour of the important parts of the view layer that you can
leverage in your applications to offer i18n of your site. We independently cover most of the
subsections you'll see here elsewhere in this chapter and the next.

Locale Resolution

Recall from earlier in the book that the job of LocaleResolvers was to determine the preferred
or default locale of the user making the current request. Much of the support for i18n in other
view layer components relies on the job that the LocaleResolver does. We'll recap on the avail-
able types of LocaleResolver and how they work in Table 7-2.

CHAPTER 7 " THE VIEW LAYER

Table 7-2. LocaleResolver Implementations

Implementation Description

FixedLocaleResolver Always returns the same locale for each request that can be set
with setDefaultlLocale().

AcceptHeaderLocaleResolver Resolves alocale from the HTTP headers of the client request.
Most browsers and other HTTP clients send the current locale in
the header accept-language.

SessionlLocaleResolver Resolves the locale from an attribute held in the user’s
HttpSession. The attribute key can be configured on the
resolver. A locale resolved from the session is not persisted
between sessions; it must be set once per user per session.

CookielocaleResolver Similar to a SessionLocaleResolver, but the choice of locale is
persisted between sessions.

Note If you use a SessionLocaleResolver or a CookieLocaleResolver, it will fall back to the
accept-language locale in the request headers if a locale cannot be found in the session or cookie,
respectively.

Listing 7-18 details the configuration of a LocaleResolver in the ApplicationContext.

Listing 7-18. Configuring the AcceptHeaderLocaleResolver

<bean id="localeResolver"
class="org.springframework.web.servlet.i18n.AcceptHeaderLocaleResolver"/>

MessageSource Beans

A MessageSource is an object that can resolve messages, given a key to that message. Spring
provides two concrete implementations of this interface for use in your applications.

* ResourceBundleMessageSource is based on the familiar standard resource bundle han-
dling in the JVM.

* ReloadableResourceBundleMessageSource works in similar fashion but has the added
advantage that changes to the properties files will be picked up without having to
restart the web application.

Whichever implementation you choose, the usage of a MessageSource bean is the same.
Listing 7-19 shows a MessageSource defined in the ApplicationContext file.

219

220

CHAPTER 7 ' THE VIEW LAYER

Listing 7-19. MessageSource Bean Definition

<bean id="messageSource"
class="org.springframework.context.support.ResourceBundleMessageSource">
<property name="basename" value="messages"/>

</bean>

In the preceding example, a base properties file called messages . properties will be located
in the classpath and used by the MessageSource bean. Various locale-specific files will be used if
present such as messages_es.properties for values in Spanish. Listings 7-20 and 7-21 show a
snippet from a MessageSource properties file using two different languages.

Listing 7-20. Base messages.properties File in the Classpath

homepage .welcome=Hello, welcome.
subpage.title=Books
homepage. footer=8copy; ACME Corp. 2005

Listing 7-21. messages_es.properties File in the Classpath
homepage .welcome=Hola, bienvenidos.
subpage.title=Libros

When messages are resolved from the MessageSource bean using the preceding resource
bundles, the specified key is looked up in the correct bundle depending on the resolved locale.
If the key is not found in the locale-specific bundle, the default bundle is searched instead. In
the preceding examples, the text for homepage.footer will appear exactly the same in both
English and Spanish locales, as it is not defined in the messages_es.properties file.

View Resolution

ResourceBundleViewResolver that we examined earlier fully supports i18n via the standard
resource bundle behavior. By default, your views are defined in a file named views.properties
in the root of the classpath—although this can be configured. If you wish the resolver to return
different views per locale, you can define them in specific properties files, such as
views_fr.properties for French.

If you elect to supply different files for one or more locales, then you can override one or
more definitions from the basename file (views.properties), and the locale-specific selection
will fall back to looking in the default bundle, should a View not exist on its own.

The principal advantage of this is being able to specify very different views for different
locales—for example, by using a completely different JSP or Velocity template. If all you need
to do is modify some or all of the text in a page, you may be better serving the same View to
users in all locales and relying on the message source features instead.

CHAPTER 7 " THE VIEW LAYER

Theme Resolution

In very similar style to the ResourceBundleViewResolver explained in the preceding section,
the ResourceBundleThemeSource also deals with resource bundles. You can create a winter fr.
properties file, for example, that points to theme resources using French text or images and
styles.

Bind Support

Binding is the term given to Spring’s method of mapping request parameters to domain or
command objects. You will most commonly encounter this when dealing with forms in your
web pages.

Recap of Binding and Validation Sequence

Unlike Struts, Spring MVC allows you to use any object you like as a command object without
constraints on its inheritance or interface implementation. When configuring a command
controller, you simply specify the class of the object that will be used to receive the POSTed
items from the form.

After form submission from the browser, the work flow can become quite complex and
diverse because it depends on many factors. But in the simplest cases, Spring’s command
“controller hierarchy will take care of the following:

* Instantiating an object from the class you specify as your command class

e Mapping the POST parameters onto fields in your class (automatically performing
conversions from Strings to primitives, or to any other type for which there is
PropertyEditor support)

* Validating your populated command object with a Validator object that you have
specified

e Calling an onSubmit () or doSubmitAction() method, supplying the command object
and its validation errors as parameters

» Exposing a “status” object on request that can be accessed from tag libraries and
macros containing pertinent information about any given field on your command
object such as its name, value, and any validation errors associated with it

Bind Support in View Templates

Bind support in views is currently available via tag libraries for JSP/JSTL views and via macros
for Velocity and FreeMarker views. Chapter 8 contains more detail on how to use the <bind>
tags or macros for these specific technologies.

221

222

CHAPTER 7 ' THE VIEW LAYER

Summary

In this chapter we introduced the view part of an MVC application. We looked at what the
responsibility of a view is, why a view should be cleanly decoupled from the other layers, and
how Spring helps us to achieve these goals. We covered in detail the Spring View implementa-
tion hierarchy, how ViewResolvers work and which ViewResolvers can be used for your
particular needs.

We've also taken a detailed look at internationalization in the view layer and considered
how to further enhance the user experience through the use of themes. Lastly, we recapped
bind support prior to detailing it in the following chapter.

This chapter has been quite abstract in nature; the concepts introduced provide the basis
for Spring’s support of many different view types. In the next chapter, we’ll take a good look at
those specific view types and how to configure them in your applications.

CHAPTER 8

Supported View Types

Spring provides first-class support for the majority of view technologies that you're likely to
want to use in your Web MVC application. If you need a view that isn't supported, then you
can implement your own View or take advantage of additional functionality by extending
AbstractView or another subclass.

As we investigate the various different types of views that Spring supports out of the box,
we will concentrate on only the Spring integration of those technologies. A discussion of the
working of each of them would be way beyond the scope of this chapter. Please refer to the
documentation for any third-party libraries such as FreeMarker, Velocity, JasperReports, and
others in order to get the full picture on what that particular view type can do for you.

Let’s now dive into some specific technologies and find out what additional benefits you
can gain from Spring’s integration. We'll cover JSP/JSTL, Velocity and FreeMarker, XSLT,
and document-based views (Excel, PDF). In addition, we’ll take a brief look at Tiles and
JasperReports.

JSP and JSTL

JavaServer Pages (JSP) is the only view technology mandated by Sun’s J2EE specification and
therefore the only technology that server vendors are compelled to support. This naturally
makes them the most popular way to generate web pages in J2EE applications.

JSP has not been without its share of criticism in the community, and the arguments
against it are well documented. Essentially, the major issue is the ease with which domain
logic and even data access logic can be coded into JSPs since they are compiled into servlets
and have the full power of the Java language available to them. We firmly believe that you
should treat JSP strictly as a view layer technology in your applications, the goal of which is to
display the model generated by your Controller. That means that you should not be able to
reference a JSP outside of the application—in other words, you should keep them inside the
WEB-INF directory of the WAR file where they are immune from client access.

Spring deals with JSP views via the InternalResourceView class (the name gives you
a strong hint about how they should be used!), which subclasses AbstractUrlBasedView.

The most popular choice of ViewResolvers for JSP are InternalResourceViewResolver and
ResourceBundleViewResolver The example in Listings 8-1 and 8-2 demonstrates best how
you can address a JSP to display your carefully crafted model.

223

224

CHAPTER 8 ©* SUPPORTED VIEW TYPES

Listing 8-1. Setting Up the InternalResourceViewResolver in the WebApplicationContext

<bean id="viewResolver"
class="org.springframework.web.servlet.view.InternalResourceViewResolver">
<property name="viewClass"
value="org.springframework.web.servlet.view.InternalResourceView"/>
<property name="prefix" value="/WEB-INF/jsp/"/>
<property name="suffix" value=".jsp"/>
</bean>

Listing 8-2. Specifying Model and View from the Home Controller

@verride

protected ModelAndView handleRequestInternal(
HttpServletRequest req, HttpServletResponse res)

throws Exception {
ModelAndView mav = new ModelAndView("home");
mav.addObject("specials", flights.getSpecialDeals());
return mav;

The Controller code should be very familiar by now; it simply declares that a View with
the logical name home should be used to handle the model. It doesn’t need to know or care that
a JSP will actually do that job for you. The model consists of a single object—the list of special
deals—keyed under the name specials.

The ViewResolver definition shown in Listing 8-1 has the interesting information—and is
where the magic occurs. First, we specify which View implementation class will be used and we
specify a prefix and a suffix that will be (surprise) prefixed and suffixed to the logical name. So
when the resolver is asked to resolve a View name of home by the DispatcherServlet, it returns an
object that wraps the JSP located at /WEB-INF/jsp/home. jsp—the physical location of your JSP
file in the web application.

Exposing the Model As Request Attributes

Clever stuff—and so far, so gopod—but what about our model? The home. jsp won't be much use if
it doesn’t have access to the model attributes that our Controller obtained from the service layer
of the application. This is where the render () method of the View interface comes into play as it
is this method (or more commonly, a delegate method) that is responsible for knowing how to
make a generic model available to the specific view technology, in this case JSP.

InternalResourceView makes the model available to a JSP in the form of request attrib-
utes. An extract from the code in this class shown in Listing 8-3 demonstrates how.

Listing 8-3. Exposing the Model in InternalResourceView

protected void
exposeModelAsRequestAttributes(Map model, HttpServletRequest request)
throws Exception {

CHAPTER 8 © SUPPORTED VIEW TYPES

Tterator it = model.entrySet().iterator();
while (it.hasNext()) {
Map.Entry entry = (Map.Entry) it.next();
if (!(entry.getKey() instanceof String)) {
throw new ServletException(
"Invalid key [" + entry.getKey() +
"] in model Map - only Strings allowed as model keys");
}
String modelName = (String) entry.getKey();
Object modelValue = entry.getValue();
if (modelvValue != null) {
request.setAttribute(modelName, modelValue);

}

else {
request.removeAttribute(modelName);

}

Note exposeModelAsRequestAttributes is called from the render () method in
InternalResourceView. We've removed logging statements for clarity.

Displaying the Model
Listing 8-4 shows, for completeness, a fragment of the JSP file that you might use to display
the model.

Listing 8-4. Displaying the Model in the JSP

<body>
<h1>Welcome to the Flight Booking Service</h1>

<p>We have the following specials now:</p>

<%

List specials = (List) request.getAttribute("specials");

for (Iterator i = specials.iterator(); i.hasNext();) {
SpecialDeal special = (SpecialDeal) i.next();

%>

<1li>
<%= special.getDepartFrom().getName() %> -

225

226

CHAPTER 8 ©* SUPPORTED VIEW TYPES

<%= special.getArriveAt().getName() %> from
$<%= special.getCost() %>
</1i>
<%
}
%>

</body>

Naturally, this is a bit “last century”; we don’t want to be coding Java in our JSPs but it
serves to demonstrate how the Controller, View, ViewResolver, and implementing technology
work together in a simple end to end example. Let’s see how to use the preferred JSP Standard
Tag Library (JSTL) view to give us a nice, clean syntax.

A simple change to our ViewResolver definition from Listing 8-1 denotes that we will use a
subclass of InternalResourceView which adds JSTL support: <property name="viewClass"
value="org.springframework.web.servlet.view.JstlView"/>. Now we can make the amend-
ments to our JSP shown in Listing 8-5.

Listing 8-5. JSTL Displays Our Specials List
<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c" %>
<body>

<h1>Welcome to the Flight Booking Service</h1>

<p>We have the following specials now:</p>

<c:forEach items="${specials}" var="special">
<1li>
${special.departFrom.name} -
${special.arriveAt.name} from
$${special.cost}
</1i>
</c:forEach>

<p>Search for a flight.</p>
</body>

Much better. Figure 8-1 shows the output.

CHAPTER 8 © SUPPORTED VIEW TYPES

Search for a flight.

Dane

File Edit Wiew Go Bookmarks Tools Help

& hitp: flocalhost BOBO/ExpertSpringMvC/apprhome || 8D Go |GL

Welcome to the Flight Booking Service

We have the following specials now:

& New York City - Baltimore from $250
* Orlando - Honolulu from $500
e San Fransisco - Tokyo from $700

=] Adblock

Figure 8-1. Flight departures output

JSP Tag Libraries

Spring provides a set of JSP tag libraries for use in your applications. There are tags for simplify-
ing form handling, retrieving internationalized messages from one or more resource bundles (in
conjunction with Spring’s Locale resolution support), and a few others. Table 8-1 has a summary

of what'’s available.

Table 8-1. Summary of Spring’s JSP Tags

Tag Name

Description

spring:bind

spring:hasBindErrors
spring:nestedPath

spring:transform

spring:message

spring:htmlEscape

spring:escapeBody

spring:theme

Used in HTML forms, the <bind> tag exposes a status attribute to the
JSP containing information about the command object (or a field on
the command object) that it has been bound to. The status attribute
holds the name of the field, its present value, if any, and any validation
errors associated with that field.

Determines whether a field, or command object that has been bound
to with the <bind> tag currently has any validation errors.

Exposes a prefix path that can be used to simplify subsequent usage of
the <bind> tag.

Allows a non-command object property to be transformed with
PropertyEditors in the same way that bound fields can be. This tag
can only be used inside a <bind> tag.

Retrieves localized messages from a MessageSource. Functionally
similar to JSTLs <fmt :message> tag, but works with Spring’s
ApplicationContext and locale support.

Used to specify a page-level default for HTML escaping. Tags that might
emit content containing characters that need to be converted to HTML
entities will be affected by this tag.

Custom tag that can be used to escape the content of its own body for
HTML, JavaScript, or both.

Look up a value from a theme definition file based on the key supplied
to the tag as a parameter. This tag was discussed in the previous
chapter in the section on themes.

227

228

CHAPTER 8 ©* SUPPORTED VIEW TYPES

Forms

Chapter 6 had a recap of the generic work flow used by Spring when you submit a form to one
of your command Controllers. Let’s see how to link your Views to the command object and
the validation errors that Spring makes available for you through the JSP tag libraries.

Listing 8-6 shows a simple form from a JSTL view that takes advantage of the
<spring:bind> tag.

Listing 8-6. Binding to a Command Object Field in a JSTL View

<html>
<body>
<h1>Form Submission</h1>
<p>Please tell us your first name.</p>

<form action="" method="POST">
<spring:bind path="command.firstName">
<input type="text" name="<c:out value="${status.expression}"/>"
value="<c:out value="${status.value}"/>" />

<c:forEach var="error" items="${status.errorMessages}">
<c:out value="${error}"/>

</c:forkach>
</spring:bind>
<input type="submit" value="submit"/>
</form>
</body>
</html>

Calling the <spring:bind> tag will cause an attribute of type BindStatus to be exposed to
your JSP. The status is instantiated for the field(s) on your command object denoted by the
path attribute you supply to the tag. The BindStatus class is shown in Figure 8-2.

The first time you request the form in your browser with a GET request, the command
object will be empty, and the values for command. firstName and status.errorMessages will also
be empty. The code will then render the HTML for an empty form in response to this request.

The fun starts when you submit the form. If you submit a valid form—as determined by a
suitable Validator class for this particular command object—then the command object’s
firstName field is set to the value submitted by the user. This is immediately usable in your
Controller code and you can pass the command object around in your service layer (or DAO
layer) safe in the knowledge that the values already meet the business validation that you
specified.

Should binding or validation fail, the default Controller behavior is to show the
form again in the browser. This time, the errors part of the status object will not be empty for
fields that failed and the code for the form shown above will now display these errors to your
user. The actual error messages are normally obtained from a MessageSource object in the
ApplicationContext file. All the values that the user submitted originally will still be available
on the command object and will be redisplayed, so your user need only correct the fields for
which binding or validation failed. When binding failures do occur, the BindStatus values
contain exactly what was input by the user, regardless of the binding error, which acts as
the principal of least surprise for the user.

CHAPTER 8 © SUPPORTED VIEW TYPES

BindStatus

- requestContext : RequestContext
- path : String

- htmlEscape : boolean

- expression : String

- errors : Errors

- editor : Property Editor

- value : Object

- objectErrors : List

- errorCodes : String

- errorMessages : String

+ BindStatus()

- initErrorCodes()

- initErrorMessages()

+ getPath() : String

+ getExpression() : String

+ getValue() : Object

+ getDisplay Value() : String
+ isError() : boolean

+ getErrorCodes() : String

+ getErrorCode() : String

+ getErrorMessages() : String
+ getErrorMessage() : String
+ getErrorMessagesAsString(delimiter : String) : String
+ getErrors() : Errors

+ getEditor() : Property Editor
+ toString() : String

Figure 8-2. BindStatus attributes and operations

Note There is a distinction between failure in binding and failure in validation. Binding occurs first, and
this can fail if your user submits a value in a field that cannot automatically be converted to the required
type, or for which a suitable PropertyEditor has not been registered. For example, your command object
has a field of type java.util.Date and the user enters a value of 3. Validation failure is a failure of bound
values to meet business or other validation logic that you supply yourself in the Validator class. Neither
binding nor validation errors are considered fatal, and they are rounded up together in the errors instance.

Nested Paths

If your forms and command objects are fairly complex, you can take advantage of the
<spring:nestedPath> tag to make it a little more readable. Setting a nested path affects the
bind path for all future binds within the body of the tag, prefixing the bind path with the
nested path. Path nesting can be specified multiple times.

We can best explain this by way of example. Listing 8-7 shows a form layout in a JSP that
uses several <bind> tag uses for various fields and nested fields on the command object.

229

230

CHAPTER 8 ©* SUPPORTED VIEW TYPES

Listing 8-7. Binding Without Nesting Paths

<spring:bind path="complexCommand.collection.item">
<input type="text" name="<c:out value="${status.expression}"/>"
value="<c:out value="${status.value}"/>"/>
</spring:bind>

<spring:bind path="complexCommand.collection.item2">
<input type="text" name="<c:out value="${status.expression}"/>"
value="<c:out value="${status.value}"/>"/>
</spring:bind>

As you can see, we're showing binding to two imaginary items in a collection field of a
command object. It’s a bit verbose and a maintenance headache if you have a lot of these
items to bind fields to. Listing 8-8 has the same form, this time using a nested path.

Listing 8-8. Binding with Nested Paths

<spring:nestedPath path="complexCommand.collection">
<spring:bind path="item">
<input type="text" name="<c:out value="${status.expression}"/>"
value="<c:out value="${status.value}"/>"/>
</spring:bind>

<spring:bind path="item2">
<input type="text" name="<c:out value="${status.expression}"/>"
value="<c:out value="${status.value}"/>"/>
</spring:bind>
</spring:nestedPath>

Notice now, that when executing inside a nested path, the bind path is significantly
shorter, taking its prefix from the path exported by the <spring:nestedPath> taginstead.

A Note on Check Box Submissions

Check boxes are handy for displaying Boolean-type data in your forms, but they can be a nui-
sance too. A deficiency in the way HTML form POSTs work means that if a check box appears
on a form but it is not actually checked, then the field will not be submitted by the browser at
all in the list of POST parameters.

This can be a problem for your applications. Consider the following scenario:

¢ Auser selects a check box on a form and submits it.

* Other validation errors cause the form to be shown again to the user; the check box is
correctly checked as per her original choice.

» She corrects the errors, but also changes her mind about the check box selection and
unchecks it.

CHAPTER 8 © SUPPORTED VIEW TYPES

¢ When she resubmits the form, the check box field is not transmitted at all, and so
Spring doesn’t bind a value to it.

* Now, her original selection (check box selected) remains on the command object!

There is fortunately a nice solution to the problem. You can place a hidden field on the form
with the same name as the check box field but prefixed with an underscore (). Listing 8-9 shows
a snippet of just such a form.

Listing 8-9. Hidden Check Box Identifier in the Form

<form ...>
<spring:bind path="command.acceptTermsAndConditions">
<input type="checkbox"
name="${status.expression}"
value="${status.value}"
<c:if test="${status.value}">checked="checked"</c:if>
> I have read the terms and conditions

<input type="hidden" name="_${status.expression}"/>
</spring:bind>

<!-- other form items... -->
</form>

When your Controller receives the form input the second time, it will see a POST param-
eter with the name command.acceptTermsAndConditions and know to look for a corresponding
parameter of the same name, minus the leading underscore. If it doesn’t find it (as it won’t in
our example), then it knows to reset the value for the field on the command object. Resetting
the value depends on the type of field the check box is bound to. If boolean, the field is set to
false.Ifit’s a String[], the field will be set to an empty array, and if it's a Collection, it will be
set to null.

HTML Escaping

Tags might sometimes emit values that are unsafe for HTML and need to be escaped. Charac-
ters such as ampersands (&) and apostrophes (') have special meaning and can be replaced
with HTML entities such as 8amp; and 8apos ;. There are three ways that you can force conver-
sion of these characters to their entity name counterparts in a Spring MVC application.

The coarsest level of granularity for specifying HTML escaping is application-wide. In
your web . xml file, you can force a default behavior which will be honored by the Spring tag
libraries (and Velocity/FreeMarker macros, which we’ll see later). Listing 8-10 shows a snippet
of the configuration.

231

232

CHAPTER 8 ©* SUPPORTED VIEW TYPES

Listing 8-10. Default HTML Escaping Value Set in web.xml

<web-app>
<context-param>
<param-name>defaultHtmlEscape</param-name>
<param-value>true</param-value>
</context-param>

</web-app>

Default values for HTML escaping are always false, so you need only specify this context
parameter if you want to make escaping the default behavior in your application.

The next level of granularity is at the page scope. Within your JSP you can set a

<spring:htmlEscape> tag and the content-producing tags that follow will generate HTML
escaped values. Listing 8-11 shows you how.

Listing 8-11. The <spring:htmlEscape> Tag in Action

<spring:bind path="command.field1">
${status.value} <!-- will NOT be html escaped -->
</spring:bind>

<spring:htmlEscape defaultHtmlEscape="true"/>

<spring:bind path="command.field2">
${status.value} <!-- WILL be html escaped -->
</spring:bind>

Finally, the <bind> tag accepts an optional attribute named htmlEscape that can be used to
override the value set in the page by the <spring:htmlEscape> tag, the value set in web.xml, or
both. Listing 8-12 explains.

Listing 8-12. Overriding HTML Escaping in the Bind Tag

<spring:htmlEscape defaultHtmlEscape="true"/>
<spring:bind path="command.field2" htmlEscape="false">

${status.value} <!-- will NOT be html escaped -->
</spring:bind>

Tagfiles

Version 2.4 of the servlet specification supports the use of tagfiles for JSPs. Tagfiles are similar
in nature to macros in FreeMarker and Velocity. They can manipulate the markup language
directly (no more need to code them in Java), access standard tag libraries, and be deployed
without compilation or tag library descriptor files if you so choose.

Spring currently has no form simplification tagfiles, but they’ve been on the cards for
awhile. It’s hoped that they will finally make it into version 1.3, which will probably have been
released by the time you read this.

CHAPTER 8 © SUPPORTED VIEW TYPES

Tiles

Let’s take a brief look at Tiles integration before moving to non-JSP view types. Tiles allows
you to define separate page components (the tiles) that can be configured independently and
reused in different page layouts. It was originally a JSP-based technology that grew out of the
Struts project and is now considered independent from that framework, although you will
still need to include struts-1.1.jar or later to use Tiles in your view layer. You'll also need
Commons-BeanUtils, Commons-Digester, and Commons-Lang in your classpath.

To get started with Tiles, you must configure it. You can do this with a TilesConfigurer
bean instance in your DispatcherServlet’s configuration file. Listing 8-13 offers just such an
example.

Listing 8-13. Tiles Configuration Bean

<bean id="tilesConfigurer"
class="org.springframework.web.servlet.view.tiles.TilesConfigurer">
<property name="definitions">
<list>
<value>/WEB-INF/tiles/defs-main.xml</value>
<value>/WEB-INF/tiles/defs-other.xml</value>
</list>
</property>
</bean>

In the configuration bean we tell the Tiles subsystem to load definitions (Tiles configura-
tions) from two files located in WEB-INF/tiles. Listing 8-14 shows the trivial defs-main.xml
defining a single home page layout with a single content tile named content.

Listing 8-14. Tiles Definition Configuration for the Home Page
<?xml version="1.0" encoding="IS0-8859-1" ?>
<IDOCTYPE tiles-definitions PUBLIC

"-//Apache Software Foundation//DTD Tiles Configuration 1.1//EN"
"http://jakarta.apache.org/struts/dtds/tiles-config 1 1.dtd">

<tiles-definitions>
<!-- DEFAULT MAIN TEMPLATE -->
<definition name="home" page="/WEB-INF/jsp/tiles-home.jsp">
<put name="content" value="/WEB-INF/jsp/home.jsp" type="page"/>

</definition>

</tiles-definitions>

233

234

CHAPTER 8 ©* SUPPORTED VIEW TYPES

For your Tiles views, Spring provides org.springframework.web.servlet.view.tiles.
TilesView, and you can use this as the viewClass property of an InternalResourceViewResolver,
or, as always, configure Tiles views individually in a ResourceBundleViewResolver or
XmlViewResolver. Listing 8-15 shows an InternalResourceViewResolver that will be used to
return TilesViews.

Listing 8-15. TilesView Resolution

<bean id="viewResolver"
class="org.springframework.web.servlet.view.InternalResourceViewResolver">
<property name="requestContextAttribute" value="requestContext"/>
<property name="viewClass"
value="org.springframework.web.servlet.view.tiles.TilesView"/>
</bean>

To bring it all together, the ViewResolver will resolve the View named home, which our
Controller sets as the View’s key by looking in the definition file. In WEB-INF/tiles/defs-main.xml
shown earlier, the definition has such a key name, so Tiles uses this layout. Listing 8-16 shows
the content of the tiles-home. jsp.

Listing 8-16. Tiles Layout JSP

<@ taglib prefix="tiles"
uri="http://jakarta.apache.org/struts/tags-tiles" %>

<@ taglib prefix="fmt"
uri="http://java.sun.com/jstl/fmt" %>

<html>
<head>
<link rel="stylesheet" type="text/css" href="styles.css"/>
<title><fmt:message key="title"/></title>
</head>
<body>
<h1>Tiled Home Page</h1>
<p class="menu">
home |
specials |
flight search
</p>

<tiles:insert name="content"/>

</body>
</html>

CHAPTER 8 © SUPPORTED VIEW TYPES

Summary

Tiles is a rich technology for creating components in your web pages, and our overview

of Spring’s Tiles support doesn't scratch the surface of what can be achieved with this view
type. If you're new to Tiles, or if you'd like further information on Spring’s Tiles support, see
Pro Spring (Apress, 2004), which has a much more in-depth examination.

Velocity and FreeMarker

Velocity (http://jakarta.apache.org/velocity) and FreeMarker (http://www.freemarker.org)
are both templating technologies. They are purely text-based engines, and both are in wide-
spread use in applications of all kinds that produce text output. Obviously, web applications
are one such subset. As our topic is Web MVC applications, though, we're going to consider
just that aspect of them both.

CHOOSING A TEMPLATING LANGUAGE

Choosing between Velocity and FreeMarker is a discussion beyond the scope of this book. The only real dif-
ferences from a technical point of view in applying these engines in a Spring application is in their respective
templating languages. If you have no experience of either but would like to try them, we suggest perusing the
documentation for both at their respective websites and deciding which suits you and your team best.

Templating Pros and Cons

Unlike JSP, Velocity and FreeMarker templates are not compiled into Java classes; rather, they
are interpreted by their respective template engines. This makes them more akin to XSLT than
JSP. Despite this, there seems to be no performance penalty in applying either of them in place
of JSP. In fact in many benchmarks, Velocity outperforms JSP as the view layer. This is because,
although not compiled to byte code, the templates are cached in an efficient binary format by
the template engines when they are first read.

An advantage of both over JSP is that you can't easily break out of the templating language
and start coding Java, so there’s less danger that domain logic will leak into the view layer with
either of these solutions.

The disadvantages are that you need a little extra configuration to integrate them
smoothly into your application, your preferred IDE may not have good support for them, and,
of course, your developers or designers may need to learn an unfamiliar template language.
The relevant JAR files will need to be added to your WEB-INF/1ib (they ship with Spring in case
you need them), and for Velocity, you will also need to add commons-collections. jar to your
application. To be frank, however, the additional configuration is trivial, and the template lan-
guages are both significantly simpler than something like Java. In our opinion, the advantages
probably just outweigh the disadvantages.

235

236

CHAPTER 8 ©* SUPPORTED VIEW TYPES

Note The Eclipse IDE (and consequently IBM’s WSAD) can be extended with support for both Velocity
and FreeMarker template editing through the use of two open-source plugins. See http://veloedit.
sourceforge.net and http://freemarker.sourceforge.net/eclipse.html, respectively. Your
mileage may vary with other IDEs.

Basic Configuring for Template Engines

The Velocity (or FreeMarker) engine needs to be configured using one of the Spring-supplied
classes. This usually happens in the servlet context file. Listing 8-17 shows you how.

Listing 8-17. Configuring the Velocity Engine

<bean id="velocityConfigurer"
class="org.springframework.web.servlet.view.velocity.VelocityConfigurer"
<property name="resourceloaderPath" value="WEB-INF/velocity"/>
</bean>

Note For FreeMarkerConfigurer the property name for the template loading path is
templateLoaderPath, although from Spring version 1.3 that may be deprecated and you should use
resourceloaderPath for either.

VelocityConfigurer (and FreeMarkerConfigurer) wrap access to the actual template
engine (VelocityEngine and Configuration, respectively). The most important property to set
on these objects is the one highlighted in the example. The resourceloaderPath determines
where Velocity will look for your template files. As with JSP, it’s a good idea to make these inac-
cessible to web clients by placing them somewhere inside the WEB-INF directory.

There are many important properties that can be set on the respective configurer beans,
some of which we’ll explore later. For now, let’s complete the integration by setting up a
ViewResolver.

Spring’s general ViewResolvers (ResourceBundleViewResolver and XmlViewResolver) are
perfectly adequate for any kind of View, template views included. But often, when your appli-
cation consists of only one view type it makes sense to take advantage of a specific resolver to
keep things a little simpler. For Velocity and FreeMarker, Spring offers VelocityViewResolver
and FreeMarkerViewResolver. Figure 7-5 in the previous chapter showed where these resolvers
fitinto the general hierarchy. Listing 8-18 shows a simple configuration of them.

Listing 8-18. ViewResolver Configuration

<bean id="velocityResolver"
class="org.springframework.web.servlet.view.velocity.VelocityViewResolver">
<property name="prefix" value="" />
<property name="suffix" value=".vm"/>

</bean>

CHAPTER 8 © SUPPORTED VIEW TYPES

<bean id="freemarkerResolver"
class="org.springframework.web.servlet.view.freemarker.FreeMarkerViewResolver">
<property name="prefix" value="" />
<property name="suffix" value=".ftl"/>

</bean>

Caution The prefix property on the ViewResolver is relative to the resourceloaderPath. When set-
ting the resourceloaderPath to WEB-INF/velocity, as we did earlier, we then needed to ensure that the
ViewResolver prefix was empty. This differs a little from the way InternalResourceViewResolver is
usually configured for JSPs.

As you’ll remember from the discussions on InternalResourceViewResolver, your
Controllers need only specify the View key—in this case home—and the resolver will do
the rest. With Velocity, for example, the resolver looks in the specified template directory
(WEB-INF/velocity, which we set on the VelocityConfigurer bean) for a file with a prefix of "",
a name of home, and a suffix of . vm. In other words, WEB-INF/velocity/home.vm.

In the simplest cases you need do no more. Your templates are placed in WEB-INF/velocity,
and you've defined the engine configuration and ViewResolver beans that form the basis of
Spring’s integration for these template languages. For the sample application home page this is
fine. Figure 8-3 shows the file system layout.

=~ [=~WEB-INF
= [=freemarker
EL beginSearch.ftl
5l home.ftl
=L, listFlights. ft!
= l==jsp
€
<
L}
- =lib
commaons-collections.jar

beginSearch.jsp

[

home.jsp

i

listFlights.jsp

5

commons-logging.jar
freemarker.jar
jstl.jar
standard.jar
velocity-1.4 jar
= [=wvelocity
[V] beginsearch.vm
V] home.vm
[listFlights.wm
= [=usl
X home.xslt
¥| applicationContext. xml
¥ spring-serviet.xml
%] web.xml

Figure 8-3. WEB-INF directory with several view layers and the libraries required

237

238

CHAPTER 8 ©* SUPPORTED VIEW TYPES

Exposing the Model

As always, the specific View implementation is responsible for knowing what to do with a
model generated by your Controllers. For VelocityView, each object in the model is added
to aVelocityContext instance, which is what the Velocity engine uses to merge with the
template. FreeMarker works happily with Map objects as models, and so no conversion is
necessary.

The Template Language

Before moving on, let’s take a sneak peek at the actual template files used for the home page.
Listing 8-19 shows an example of Velocity Template Language (VTL). In fact, it’s the familiar
home page of the sample application converted from the JSP example in Listing 8-5.

Listing 8-19. Sample Home Page in VIL

<body>
<h1>Welcome to the Flight Booking Service</h1>

<p>We have the following specials now:</p>

#foreach ($special in $specials)
<1i>
${special.departFrom.name} -
${special.arriveAt.name} from
$${special.cost}
</1i>
#end

<p>Search for a flight.</p>
</body>

Listing 8-20 shows the FreeMarker equivalent for completeness. From here on, we'll
mostly show just Velocity examples unless there are noteworthy differences in FreeMarker
handling.

Listing 8-20. The Home Page Again—This Time in FTL

<body>
<h1>Welcome to the Flight Booking Service</hi1>

<p>We have the following specials now:</p>

<#list specials as special>
<1i>
${special.departFrom.name} -
${special.arriveAt.name} from

CHAPTER 8 © SUPPORTED VIEW TYPES

$${special.cost}
</1i>
</#list>

<p>Search for a flight.</p>
</body>

As you can see, it’s not terribly difficult to get a basic templating solution in place as the
view layer. Let’s go a little deeper and look at some of the more advanced configurations and
also what Spring offers in the way of bind support for Velocity and FreeMarker.

Advanced Configuration Options

Many properties and settings can be used to affect the way your templating engine operates.
Certain properties will determine how templates are loaded and cached, how locales are man-
aged, how macros are handled, and more. All of these are beyond the scope of this book, but if
you are looking at Velocity or FreeMarker for the first time, we strongly recommend that you
familiarize yourself with all these options.

To hook into these advanced options, you can specify the location of an external proper-
ties file (you may have one of these if you've previously used Velocity or FreeMarker outside
of a Spring application). On the configurer object, set the property named configlocation to
wherever the configuration file may be found. The value of configlocation is interpreted as
a Spring Resource, which means you can use classpath, file, or URL-based locations. See the
Spring reference documentation for information about Spring Resources. You can alternatively
set such properties locally on the configurer instance if you have no need to use those proper-
ties outside of your MVC application. Listing 8-21 shows an example of both options.

Listing 8-21. Setting Engine-Specific Properties via the Configurer Bean

<bean id="velocityConfigurer"
class="org.springframework.web.servlet.view.velocity.VelocityConfigurer">
<property name="resourceloaderPath" value="/WEB-INF/velocity"/>

<!-- inline velocity properties -->
<property name="velocityProperties">
<props>
<prop key="velocimacro.library.autoreload">true</prop>
</props>
</property>
</bean>

<bean id="freemarkerConfigurer"
class="org.springframework.web.servlet.view.freemarker.FreeMarkerConfigurer">
<property name="templatelLoaderPath" value="/WEB-INF/freemarker"/>
<!-- load freemarker props from the classpath -->
<property name="configlLocation"
value="classpath:com/apress/expertspringmvc/fm.properties"/>
</bean>

239

240

CHAPTER 8 ©* SUPPORTED VIEW TYPES

Note Check the relevant Velocity and FreeMarker documentation at their respective websites to see the
range of properties and settings that can be configured on the two engines.

By default, Spring doesn’t expose request or session attributes to your template engines. If
you want to access those values in your templates, you need to tell Spring to make them avail-
able. This is the same mechanism for both Velocity and FreeMarker, as the relevant properties
are part of a common superclass (shown in Figure 8-4).

AbstractTemplateView
+ SPRING MACRO REQUEST CONTEXT ATTRIBUTE : String
- exposeRequestAttributes : boolean
- exposeSessionAttributes : boolean
- exposeSpringMacroHelpers : boolean
- allowRequestOverride : boolean
- allowSessionOverride : boolean
+ setExposeRequestAttributes(exposeRequestAttributes : boolean)
+ setExposeSessionAttributes(exposeSessionAttributes : boolean)
+ setAllowRequestOverride(allowRequestOverride : boolean)
+ setAllowSessionOverride(allowSessionOverride : boolean)
+ setExposeSpringMacroHelpers(exposeSpringMacroHelpers : boolean)
renderMergedOutputModel(model : Map, request : , response : HitpServietResponse)
renderMergedTemplateModel(model : Map, request :, response : HitpServietResponse)

FreeMarkerView VelocityView

Figure 8-4. AbstractTemplateView detail

Listing 8-22 has an example of exposing request and session attributes for a VelocityView
instance.

Listing 8-22. Exposing Session and Request Attributes on a View

attributeView.class=org.springframework.web.servlet.view.velocity.VelocityView
attributeView.exposeRequestAttributes=true
attributeView.exposeSessionAttributes=true

CHAPTER 8 © SUPPORTED VIEW TYPES

Tip You can specify exactly the same values on either FreeMarkerViewResolver or
VelocityViewResolver. All Views resolved by the resolver will have those properties set accordingly.

Forms and the SpringBind Macros

Spring’s bind support, made available to JSPs via the tag library, has also been extended to
Velocity and FreeMarker. This makes either an excellent solution for displaying forms, valida-
tion results, and localized messages in your Spring MVC application.

To make the bind support and the Spring macros available to your template, you must
configure the relevant View. You do this exactly the same way we handled the request and
session attribute exposure earlier. On either a View or the ViewResolver, set the property
exposeSpringMacroHelpers to true.

Tip Spring’s Velocity and FreeMarker macros are shipped as part of the spring. jar file that you place in
your WEB-INF/1ib folder of your application. They are also copied to the dist directory if you build Spring
from source. However you don’t need to copy those files into your application’s template directories as
Spring configures the template engine to load the macros directly from the spring. jar file.

Listing 8-23 shows the VelocityViewResolver definition enhanced to make the Spring
bind macros available to all of the Views that it will resolve.

Listing 8-23. Making Spring Macros Available to All Velocity Views

<bean id="velocityResolver"
class="org.springframework.web.servlet.view.velocity.VelocityViewResolver">
<property name="prefix" value="" />
<property name="suffix" value=".vm"/>
<property name="exposeSpringMacroHelpers" value="true"/>

</bean>

We covered general bind support in our overview of the JSP tag libraries earlier, so let’s get
straight to the heart of the templating versions with another Velocity example. Listing 8-24
demonstrates a basic form using the #springBind macro, which is the equivalent of the
<spring:bind> tagin JSP.

Listing 8-24. Binding to a Command Object Field in a Velocity Template

<html>
<body>
<h1>Form Submission</h1>
<p>Please tell us your first name.</p>

<form action="" method="POST">

241

242

CHAPTER 8 ©* SUPPORTED VIEW TYPES

#springBind("command.firstName")
<input type="text" name="$status.expression”
value="$!status.value" />

#foreach($error in $status.errorMessages)
$error

#end
<input type="submit" value="submit"/>

</form>

</body>
</html>

Caution Velocity imports macro definitions into a global namespace, which means all macros are avail-
able from all your templates once they have been loaded. FreeMarker, on the other hand, allows macros to
be subdivided into separate namespaces. When using the Spring macros in FreeMarker you have to import
them into each template that you wish to use them in. Add the following line to the top of your FreeMarker
templates: <#import "spring.ftl" as spring />.

The binding behavior is exactly the same as we outlined for JSP bind support. It uses the
same code under the covers. If you submit a valid form, the command object will have its cor-
responding field set to the user-submitted value. Conversely, if validation errors occur such as
the field being left blank, the form will be redisplayed, and each error in the
status.errorMessages field can be highlighted to the user. If a value had been submitted in the
field, the original incorrect value will be redisplayed in the input field.

So far, so simple. It’s no different from JSP’s <spring:bind> tag behavior, other than the
syntactical differences in the template language.

For Velocity and FreeMarker, however, you have (since Spring 1.1) been able to enjoy an
additional suite of macros that build upon #springBind and generate a lot of the form field
content for you based on optional parameters that you supply. Table 8-2 shows the full range
of macros available to your templates.

Tip In FreeMarker, the two macros marked (*) in the following table exist but are not actually required, as
you can use the normal formInput macro, specifying hidden or password as the value for the fieldType
parameter.

It’s a fairly comprehensive set of form-handling functionality. We'll look at a few common
examples and leave you to explore the remainder within your own applications. Listing 8-25
shows a fragment of the beginSearch.vm template in the example application. It uses the basic
#springFormInput macro to generate a couple of input fields.

SUPPORTED VIEW TYPES 243

CHAPTER 8

(ponunuo))

</sdInqIiyie ‘suorido
‘yred 329TaSTITNWWIOL " SuTIdS®>

</s93ngrIiie ‘suotrido
‘yred 317979591 3uUTSWIOS *uTIdSE>

</S93INqTI11e
‘yred eaxeixajwro 3utidse>

</s’3nhqriile
‘yzed anduipromssedurol - 3utidsy>

</S9Ingqrilie
‘yzed nduuspptHwro - Sutidsy>
</adA1pTaty

‘sangriyie ‘yied indutwrol-3utidsy>

</TINGATIETRI TINn-3utids®>

</3Thejap “o9pod 1xa]adessauw-3utidsy>

</apo> adessaw* 3utidse>

<yzed putq-3utidsp>

(se3nqriiie$ suotido$ yied$)3daTaSTITNWUIOJSUTIASH

(sa3ngrIire$ suotrydo$ yjeds)idarasardurswroqSuridsy

(s93nqT113e$ Yjeds)earelxawro43utidss

(sa3nqr13re$ yieds)indurpiomssequroqSuridsy

(s93ngT133e$ yjeds)indurusppTHuro43uTIdss
(so3ngrr3ie$ yjeds)indutwro43utadsy

(Txn9ATIETR$) TINSUTIdSH#

(3Tnesap$ opod¢)ixaadessapuTadsy

(apod¢)adessaduTIidss
(y3yeds$)putgdutadss

(sen[ea a1oul 10 () 199]0s
0 19sn a3 urmopre suondo
JO X0Q)ST[B) 109[@SHMIAULIOY

(pa39979s 2q 03 anfea parmbazx
9[3urs e 3umorre suondo jo xoq
umop-doip) 193[aSa[SUISULIO]

(indur 1xa) wrrojoa1y ‘Suof Suriayeld
10J PJoY 1X9) 931e]) BIIRIXILULIOJ

(edfy sy jo

spia1j ur pajerndod aq 1943 [[Im
anfeA ou Jeyy 9jou ‘spromssed
urreyyesd 105 proyy Indur
piepue)s) Jndujpiomssequrioy

(ondur 19sn-uou
Jumrmuqns 10y proy ndur
uappry) ,IndujuappryuLIoy

(indur 1esn 3uriayesd 10j p[oy
ndur piepuels) ndujurioy

(1001 1xa1u090 suoneardde ayy
M TN dAne[aI e xgyard) pm

(191ourered

JNeJop 9 JO aNJeA) 0) Yokeq
3urre; ae1owrered apood 9y} uo
Ppaseq a[pung 92In0saI € WOIj

guins e 1ndino) 1xaro8essowx

(191owrered apod
9Y) UO paseq d[pung 90IN0SAI e
wo1y 3urns e ndino) adessaux

puiq

JayJenaald

[STERTENY

uonduiasaq osoepy

LD pup (119019 .10f 2]qV]1VAY SO0V a1v]dwia], "g-8 a|qeL

SUPPORTED VIEW TYPES

CHAPTER 8

244

</9T1A1510SSETD
‘103e1RdaS SIO0IIIMOYS *3UTIdS®>

</S9InqrI}}e ‘I1ojeredss
‘suotydo ‘yjed saxogydaydwrolt*3utidse>

</s9inqriiie ‘rojeredss suotido
‘yred suoringorpeywro*3utidse>

(a1A3s10SSeT2¢$ 103eredast)sIorrIMoySSuUTIdSH

(sa3ngrIlre$ royeredas$ suoridog yieds)saxogydayiwro43utidss

(s91ngr133e$ I03eIRdaS$ SuoTIdog yied$)suoiingoTpeyurodSuridsy

(P[e1y punoq 9y} 10§ S10119
uonepifea jo Aerdsip
Ajrduars) stoxrgmoys

(P910973s a(01 sanfeA
210U 10 () SUIMO[[e
$9X0(] Y292 JO)as k)
SIXO[IdYDHULIOY

(S9010U d[qe[TeAR

9} WOIj 9peU 2q 0}
uono9das a3urs e uimore
Su01IN(OIPEI JO 13S B)
Su0)INGOIpPRYULIO]

JayJenaal

[STERTENY

uonduiasaq osoepy

ponunuo) 'g-8 s|qeL

CHAPTER 8 © SUPPORTED VIEW TYPES

Listing 8-25. Example of the #formInput Macro

<tr>
<td>Depart From:</td>
<td>#springFormInput("searchFlights.departFrom" "")</td>
<td>Depart On:</td>
<td>#springFormInput("searchFlights.departon” "")
(yyyy-MM-dd HH)</td>
</tr>

#springFormInput performs a #springBind on the path supplied as the first parameter and
outputs an input field in HTML based on this bind. The second parameter, in the example an
empty string, is used to convey additional attributes that the input field should have. This is
useful for generating style or class attributes on the output. The preceding fragment will be
rendered into the HTML in Listing 8-26 (assuming this form is not being shown after a valida-
tion failure).

Listing 8-26. Rendered HTML from the Velocity Macro

<tr>
<td>Depart From:</td>
<td><input type="text" name="departFrom" value="" ></td>
<td>Depart On:</td>
<td><input type="text" name="departOn" value="" >
(yyyy-MM-dd HH)</td>
</tr>

When the form is shown after a validation failure, the value attributes of the input fields
will contain any text entered by the user prior to submitting the form.

Tip In Spring 1.2.6 the macros will also add an id attribute to the form fields that will have the same
value as the name attribute. This makes the fields more accessible to JavaScript, for example.

#springFormHiddenInput and #springFormPasswordInput are basically similar to the stan-
dard #springFormInput macro. The only difference being that the input type is set to hidden
or password, respectively. Note that for password fields, the value will never automatically be
populated in the event that the form is redisplayed due to validation failure. This is for security
reasons.

The next four macros are again all related to each other. They can all display groups of
options either as a single select drop-down list, a multiselect list, radio buttons, or check
boxes. With radio buttons and check boxes you must specify what the separator is between
each element in the group—for example,
 to show columns or 8nbsp; to show them in a
row. Let’s see an example of two of these in action. The actual options are created by the
Controller and made available as part of the model. You might do this dynamically or
perhaps through the referenceData() methods in your Controller.

245

246

CHAPTER 8 ©* SUPPORTED VIEW TYPES

In Listing 8-27 we show an example Controller that puts options for the grouped form
input fields into a Map named options. Listing 8-28 shows a template that displays the same set
of options as both a single select drop-down list and a group of check boxes. Lastly in Listing
8-29 we show the HTML that will be rendered from the template.

Listing 8-27. Setting the Options Map in a Controller

public ModelAndView handleRequest(...) {
Map model = new HashMap();
Map<String, String> options = new HashMap<String, String>();
options.put("NYC", "New York City");
options.put("LON", "London");
options.put("PAR", "Paris");
model.put("options"”, options);
return new ModelAndView("cityForm", options);

Listing 8-28. Displaying the Options in the Template

<!-- can only select one here! -->
#springFormSingleSelect("command.city" $options "")

<!-- can select more than one here -->
#tspringFormCheckboxes("command.city" $options "
" "")

Listing 8-29. HTML Output from the Grouped Input Macros

<!-- can only select one here! -->

<select name="city" >
<option value="LON"

>

London</option>
<option value="NYC"

>

New York City</option>
<option value="PAR"

>

Paris</option>

</select>

<!-- can select more than one here -->

<input type="checkbox" name="city" value="LON"
> London

CHAPTER 8 © SUPPORTED VIEW TYPES

<input type="checkbox" name="city" value="NYC"
> New York City

<input type="checkbox" name="city" value="PAR"
> Paris

Tip By default, all of the Spring macros will close input field tags with the HTML 4—compliant tag closure >.
If your templates should be XHTML compliant, you can instruct the macros to use XHTML tag closures /> by
setting a variable in the template. For Velocity, place the line #set ($springXhtmlCompliant = "true")
in your template before calling any of the macros. For FreeMarker, use <#assign xhtmlCompliant =
true in spring>.

As an added benefit, the example highlights how you can use codes for the values that will
be submitted in the form fields, but present different text values to the user. In this example,
we used city codes as the form field values and the full names of the cities in the presentation.
This is a very common requirement in web applications.

Other Macros

There are a couple of macros in the table that we didn't discuss. They are
* f#springMessage
* #springMessageText
* #springUrl

The two message macros can be used to specify localized messages based on text
held in resource bundles. If your ApplicationContext defines a MessageSource bean (highly
recommended), then its resource bundles will be searched to find the key that is passed as
the parameter to the macro. The second of the two permits you to specify a default message
value that will be used if the key cannot be found in the MessageSources.

#springUrl lets you use URLSs in your templates that include the context root of the web
application, without your template needing to know what the context root is. Having any part
of your web application aware of the context root at which it is deployed makes it significantly
less portable. For example, the fragment #springUr1("/mycontroller.html") will be rendered
as /myapp/mycontroller.html if your application was deployed at a context root of myapp.

Number and Date Tools

Velocity makes available several useful tools from its supporting velocity-tools-generic.jar
(you'll need to add these your WEB-INF/1ib to take advantage of them). Two of these are the
NumberTool and the DateTool. Both accept a Locale object in order to parameterize them for
specific locales, but Spring offers a further benefit in that the Locale parameter can be
retrieved using standard Spring LocaleResolver instances that we discussed earlier. That’s
great news, and Listing 8-30 shows how to do it in a VelocityView definition configured by

247

248 CHAPTER 8 © SUPPORTED VIEW TYPES

ResourceBundleViewResolver. You can also set these attributes on VelocityViewResolver to
make them available to all of your Velocity Views.

Listing 8-30. Adding a Number and Date Tool with Spring Locale Resolution

home.class=org.springframework.web.servlet.view.velocity.VelocityView
home.url=/WEB-INF/velocity/home.vm

home.dateToolAttribute=date

home.numberToolAttribute=number

The names you give to the tools are the names you use to access them in your template
files, as shown in Listing 8-31. We assume that the model contains an attribute of type
java.util.Date with the name flightDepartsOn.

Listing 8-31. Using the Date and Number Tools

<h1>Flight details</h1>
<p>

Flight departs: $date.format("E, MMMM d", $flightDepartsOn)
</p>
<p>

Cost of flight: $number.format('currency', $flightCost)
</p>

When the template is rendered in the browser using the default locale (en_GB), we get the
following response, shown in Figure 8-5.

File Edit View Go Bookmarks Tools Help

@-%-@

ﬂ http:/flocalhost 8080/ExpertSpringMVC/app/home m @Gu |GL

Flight details

Flight departs: Tue, September 27
Cost of flight: £300.00

Done (=] Adblack

Figure 8-5. Date and number formatting with a UK locale

And if we switch the browser language to fr_FR (French) and reload the page, voila!
French formatting as shown in Figure 8-6.

CHAPTER 8 © SUPPORTED VIEW TYPES

File Edit View Go Bookmarks Tools Help

ﬁ http:/flocalhost: 8080/ExpertSpringMyVC/app/home m QDGQ ‘CL

Flight details

Flight departs: mar., septembre 27

Cost of flight: 300,00 =

Done 7] Adblock

Figure 8-6. Locale-aware formatting, this time in French

Additional Velocity Views

A final note on Velocity support: There are two additional views extending from VelocityView
that you may recall from Figure 7-1 in Chapter 7.

e VelocityToolboxView offers the ability to load tools from a standard toolbox.xml con-
figuration file (see the Velocity documentation for details of toolboxes). On your View,
set the property toolboxConfiglocation to the location of toolbox.xml.You can option-
ally set this property on VelocityViewResolver too, in which case everything resolved by
the resolver will be of type VelocityToolboxView.

e VelocitylayoutView further extends VelocityToolboxView and supports similar function-
ality to what you obtain by using the native VelocitylLayoutServlet (part of the Velocity
distribution, not Spring). A VelocitylLayoutView consists of two distinct templates: the
layout template and the main content template. When the model is rendered, initially
the content template is merged with the model and placed in a Velocity variable named
screen_content. The model is then merged again with the layout template, which has
access to $screen_content in order to place it anywhere in the layout. VelocitylLayoutView
can be a good option if you want standard layouts for different content views, although
you may be better served investigating other technologies such as SiteMesh (http://
www . opensymphony . com/sitemesh) to achieve this.

Summary

In this section, we've covered Spring’s support for two of the major open-source templating
solutions available to you. We've shown how to set up your MVC application to enable a
smooth integration, and we examined the significant value-added extras in the form of
Spring’s form-handling macros.

At this stage, you should be in a position to decide whether Velocity or FreeMarker is a
suitable view tier technology for your applications, and how to go about writing that layer with
confidence. If you decide upon Velocity, you might like to investigate Pro Jakarta Velocity by
Rob Harrop (Apress, 2004).

249

250

CHAPTER 8 © SUPPORTED VIEW TYPES

In the next section we'll see how Spring enables seamless integration with another well-
known presentation technology: XSLT.

XML and XSLT

XSLT is a popular view technology in many applications. It naturally and cleanly separates
data from presentation and offers no opportunity to mix domain logic with the presentation,
much as we've been advocating throughout this book.

However, despite tremendous advances in some XSLT engines, it can still be quite a
heavyweight view layer in terms of processing power. Unless your application already deals
with XML in some native form, then your model beans will also have to undergo an intermedi-
ate conversion to XML prior to transformation by XSLT. You could consider employing the
W3C API, JDOM, or another XML API that you are familiar with to handle this conversion
manually, but you really need to have a good reason for doing this. If you have to develop the
stylesheets and you have only in-house expertise in JSPB, Velocity, or similar, you may be best
served switching your choice of view technology.

On the other hand, if you are creating Source objects in a more efficient format than XML
DOM trees, or if your team already has in-house XSLT expertise (or better, a suite of existing
stylesheets that you can take advantage of without having to develop them), then these may
be mitigating reasons for considering XSLT as the view.

Defining an XSLT View

So having weighed up the pros and cons, let’s see how to actually make use of XSLT for XHTML
generation in your web applications. First off, we define a View and configure it. Listing 8-32
shows how using a definition in a views.properties file that will be resolved by our good
friend ResourceBundleViewResolver.

Listing 8-32. Defining an XSLT View

home.class=com.apress.expertspringmvc.flight.web.view.HomePage
home.stylesheetLocation=/WEB-INF/xs1/home.xslt

Interestingly, the View class is obviously not provided by Spring but belongs to the applica-
tion itself. Why? Well, as we mentioned in the introduction to this section, the native model (your
Map of objects) probably has to be converted to an XML representation prior to transformation
by your stylesheet. Although several libraries such as JAXB (http://java.sun.com/webservices/
jaxb), Domify (http://domify.sourceforge.net), and Castor (http://www.castor.org) could
potentially help automate this task, they may not offer the flexibility you need in generating your
representation of the object graph. Your XML representation may even exist already in the model
if you generated it in the Controller or obtained it from the service layer of your application.

Tip If you find that something like Domify does provide what you need, then it would be a good idea to
create a concrete DomifyView extending AbstractXs1tView and use this for all your application needs.

CHAPTER 8 © SUPPORTED VIEW TYPES

Listing 8-33 shows the definition of the HomePage class that is our XSLT View. We're gener-
ating the XML representation manually as an example, but as we've seen, this may not be an
ideal use of CPU cycles.

Listing 8-33. HomePage XSLT View Class Definition

public class HomePage extends AbstractXsltView {

public HomePage() {
super();

}

Vioio
* @see AbstractXsltViewttcreateXsltSource()
*/
@0verride
protected Source createXsltSource(
Map model,
String root,
HttpServletRequest request,
HttpServletResponse response)
throws Exception {

// possibly not the best way to generate your
// XML representation. See discussion in the text
List<SpecialDeal> specials =
(List<SpecialDeal>) model.get("specials");
Document doc =
DocumentBuilderFactory
.newInstance()
.newDocumentBuilder()
.newDocument();

Element rootEl = doc.createElement(root);
doc.appendChild(rootEl);

for (SpecialDeal deal : specials) {
Element dealEl = doc.createElement("deal");

Element fromkEl = doc.createElement("from");
fromel.appendChild(
doc.createTextNode(deal.getDepartFrom().getName()));

Element toEl = doc.createElement("to");
toEl.appendChild(
doc.createTextNode(deal.getArriveAt().getName()));

251

252

CHAPTER 8 © SUPPORTED VIEW TYPES

Element costEl = doc.createElement("cost");
costEl.appendChild(
doc.createTextNode(String.valueOf(deal.getCost())));

dealEl.appendChild(fromEl);
dealEl.appendChild(toEl);
dealEl.appendChild(costEl);

rootEl.appendChild(dealEl);
}

return new DOMSource(doc);

Hopefully you can begin to see the issue with generating the XML representation from the
plain old Java object (POJO) model.

The concrete HomePage that we created, extends Spring’s base AbstractXsltView and over-
rides the required createXsltSource() method. The processing in the abstract superclass will
use this Source object as the source (of course) of the transformation.

Caution In Spring 1.2, AbstractView.createXsltSource was not marked abstract, thereby not
requiring you to implement it in your subclass and enforcing the desired contract. This method was added
in Spring 1.2 to replace the legacy createDomNode method that returns a DOM object. Because only one
of those methods should be implemented by subclasses, and backward compatibility was required for
1.1 subclasses, this wasn't possible and createDomNode was simply deprecated instead. In Spring 1.3,
createDomNode has been removed and createXsltSource made abstract.

Transforming the XML Source

Listing 8-34 shows a textual representation of the DOM that we built up in the preceding
method, assuming two special deals had been returned for our home page.

Listing 8-34. The Raw XML Prior to Transformation

<?xml version="1.0" encoding="UTF-8"?>
<specials>
<deal>
<from>London</from>
<to>New York</from>
<cost>300</cost>
</deal>
<deal>
<from>Paris</from>

CHAPTER 8 © SUPPORTED VIEW TYPES

<to>Moscow</from>
<cost>100</cost>
</deal>
</specials>

The name of the root element (<specials>) was in this case set by the Controller when it
returned a single object as the model. The root name takes the name of a single model param-
eter in these cases.

If your model contains more than one object, though, you can set a root name in the
views.properties file that we looked at in Listing 8-32. The value of a home.root property
would be passed into our createXsltSource method as the second parameter (String root).
If you don't set one, your XML will have a root element of <DocRoot>.

To complete the picture, our stylesheet that we instructed the ViewResolver to load from
/WEB-INF/xs1/home.xs1t is shown in Listing 8-35

Listing 8-35. Home Page Stylesheet

<?xml version="1.0"?>

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">

<xsl:template match="/">

<html>
<head><title>Flight Booking Service</title></head>

<body>
<h1>Welcome to the Flight Booking Service</h1>
<p>We have the following specials now:</p>

<xsl:for-each select="/specials/deal">

<xsl:value-of select="./from"/> -
<xsl:value-of select="./to"/> from
<xsl:value-of select="./cost"/>
</1i>
</xsl:for-each>

<p>Search for a flight.</p>

</body>
</html>

</xsl:template>

</xsl:stylesheet>

253

254

CHAPTER 8 © SUPPORTED VIEW TYPES

Returning XML in the Raw

An interesting use case for the XSLT View is actually to avoid transforming the XML at all and
simply return it raw. You can easily achieve this by opting not to specify a value for the
stylesheetLocation property on your View.

Figure 8-7 shows the output of our home page after we comment out the
stylesheetLocation property in views.properties.

File Edit Wiew Go Bookmarks Tools Help

@ $-®

& hittp: flocalhost BOBO/ExpertSpringMvc fapprhome | 8D Go |G,

This XML file does not appear to have any style information associated with it. The document
tree is shown below,

- <specials>
- <deal>
<from>=New York City</from=>
<to>Baltimore</to>
<cost>250</cost>
</deal>
- <deal>
<from=>0rlando</from>
<to>Honolulu</to>
<cost>500</cost>
</deal>
- <deal>
<from=85an Fransisco</from=>
<to>Tokyo</to=
<cost>700</cost>
</deal>
</specials>

Done [57] Adblock

Figure 8-7. XML output in the client

Why would you want to do such a thing? It’s possible that your application’s clients are not
humans but rather machines. In the simplest case, you could be providing something like an
RSS feed for news clients.

Larger systems might use it as a decoupling strategy. The view layer from one part of the
service emits a known XML variant so that it can be used as input by one or more content ren-
dering engines (CREs). These CRE applications are then free to concentrate on generating the
actual end product—probably for multiple device types and languages. Separation of con-
cerns at a higher level!

Other Noteworthy XSLT Features

Before we move on, it's worth mentioning a couple of other features specific to Spring’s
XML/XSLT support. We'll take a brief glance at number and date formatting and stylesheet
parameterization.

CHAPTER 8 © SUPPORTED VIEW TYPES

Number and Date Formatting

Unlike JSTL, Velocity, FreeMarker, and many other templating or web technologies, XSLT (to ver-
sion 1.1) has relatively poor support for number and date formatting. To compensate, Spring
provides a FormatHelper class which offers a number of locale-aware static utility methods.

Our example from earlier could be enhanced by formatting the cost value as a country-
specific currency using the FormatHelper. Listing 8-36 shows how.

Listing 8-36. Currency Formatting in XSLT

for (SpecialDeal deal : specials) {

String amt = FormatHelper.currency(
(double) deal.getCost(), Locale.UK);
Element costEl = doc.createElement("cost");

costEl.appendChild(
doc.createTextNode(amt);

XSL Parameters

Stylesheets can be parameterized through the <xsl:param/> directive. In your XSLT sub-
class a Map of name-value pairs can be created by overriding either the getParameters()

or getParameters(HttpRequest) methods. The parameter names must match those defined
in your XSLT template as declared with <xs1:param name="foo">default</xsl:param>.
Listings 8-37 and 8-38 show how this works.

Listing 8-37. Home Page View Setting Parameter Values

@0verride
protected Map getParameters() {
Map p = new HashMap();
p.put("imageOfTheDay", viewHelper.getImagelocation());

Listing 8-38. Parameter Declaration in home.xslt

<xsl:param name="imageOfTheDay">http://server/image.png</xsl:param>

Summary

In this section we've taken a close look at Spring’s support for XML and XSLT. As before, we
reviewed the pros and cons of applying XSLT as your view layer and introduced the concepts
of the technology.

255

256 CHAPTER 8 ©* SUPPORTED VIEW TYPES

We've outlined the behavior of AbstractXs1tView, shown how to extend this class to pro-
vide your own concrete implementations, and looked at the case for not transforming your
generated XML. You should now have enough knowledge to know not just how to apply XSL in
your Spring MVC applications, but when it is appropriate to consider it.

Next, we're going to move on to some of the lesser-known and -used view technologies.

PDF

Spring offers PDF support via Bruno Lowagie’s iText library (http://www.lowagie.com/iText).
The basic premise follows the same pattern as that for XSLT support. For each view that you
wish to render as a PDE you create a class that extends AbstractPdfView and fill in the
required method buildPdfDocument ().

Listing 8-39 shows an example that can be used to display the home page of our sample
application as a fairly simple PDE

Listing 8-39. Creating the PDF from the Model

public class HomePagePdf extends AbstractPdfView {

@0verride
protected void buildPdfDocument (
Map model,
Document document,
PdfWriter writer,
HttpServletRequest request,
HttpServletResponse response)
throws Exception {

Paragraph header = new Paragraph(new Chunk(
"FlightSearch Special Deals. ",
FontFactory.getFont(FontFactory.HELVETICA, 24)));

document.add(header);

List<SpecialDeal> specials = (List<SpecialDeal>) model.get("specials");
for (SpecialDeal deal : specials) {
document.add(new Paragraph(
deal.getDepartFrom().getName() + " - " +
deal.getArriveAt().getName() + " from $" +
deal.getCost()));

CHAPTER 8 © SUPPORTED VIEW TYPES

Configuring the Application to Use a PDF View

The last part of the setup involves simply telling Spring that you want to use your PDF genera-
tor class as the View. In views.properties (shown following in Listing 8-40) we simply set the
home page View class to the one we just coded.

Listing 8-40. views.properties Entries for the PDF Home Page

homepage.class=com.apress.expertspringmvc.flight.web.view.HomePagePdf

Now when our home page is accessed, the PDF is generated on the fly, and your browser
will either ask you what to do with the file or simply open your PDF viewer and display the
results. Figure 8-8 shows the PDE

Fle Wiew Go Help

B - LEL' 1 of 1 @ -

Open Save a Copy Print In

Pages w

FlightSearch Special Deals.
New York City - Baltimore from $250

Orlando - Honolulu from $500

San Fransisco - Tokyo from $700

Figure 8-8. The home page rendered as a PDF

Template PDFs with FOP

Creating anything other than trivial PDFs on the fly with iText is likely to be very time-consuming
and code intensive, as can be seen from the preceding examples. You might like to investigate the
Apache Formatting Objects Processor (FOP) driver, which can create the PDF from a template.

An example of how to get started is in the Spring sandbox, which contains an
AbstractXslFoView class. The sandbox is available as part of the Spring source code available
from the SourceForge project site (http://sourceforge.net/projects/springframework). You
will also have to download the FOP library, which is large, from http://xmlgraphics.apache.
org/fop.

Note The AbstractXslFoview is actually an extension of Spring’s XSLT support rather than its PDF sup-
port. The basic technology is XSLT, and PDF simply happens to be the output format from the transformation.

257

258

CHAPTER 8 © SUPPORTED VIEW TYPES

Excel

Spring supports two libraries for generating Excel spreadsheets as views: the Jakarta POI
library and JExcel. Both are used in exactly the same way other than the choice of JAR file that
you add to your WEB-INF/1ib directory in the deployed application and the actual manner of
manipulating the workbook in Java. We'll look at an example of how to use the POI library
here.

Creating the Template

Creating an Excel spreadsheet is best done from a template, having your model values update
certain cells within that template, which will perhaps be the subject of charts or formulae
already built in to the XLS template file. Merging your model with the template is done in the
same way as we've seen for XSLT and PDF Views—by coding a concrete extension to a Spring
provided abstract class.

Figure 8-9 displays the template file that we've created for the basis for our view. Model
data will be used to update this template, providing a nicely formatted view to our users. We'll
store this template in our WAR file at WEB-INF/excel/home.x1s.

File Edit View |nsert Format Tools Data Window Help

ca = YR

B-2la R BSR VR £ER-¢ 6- & Ui Sw M
fnd [BitstreamVerasans (v (11 [+] B 7 U = = = = A I W

B19 [~] o = = |
A] B I C T D E[]
1| Special Deals from
ExpertSpringMVC FlightSearch

3 From To Cost

4

[

: N
190

L,

=

14

16
[l % v]\ Flightsearch 4 E|E|

Sheet1/1 Default 100% STD Sum=0

Figure 8-9. Excel template used to display flights

CHAPTER 8 © SUPPORTED VIEW TYPES

Coding the View

Listing 8-41 shows the class com.apress.expertspringmvc.flight.web.view.HomePageExcel,
which extends AbstractExcelView. The required method that you need to override is called
buildExcelDocument().

Listing 8-41. Creating the Excel Spreadsheet from the Model

public class HomePageExcel extends AbstractExcelView {

@0verride

protected void buildExcelDocument(
Map model,
HSSFWorkbook workbook,
HttpServletRequest request,
HttpServletResponse response)

throws Exception {

HSSFSheet dataSheet = workbook.getSheet("FlightSearch");

List<SpecialDeal> specials =
(List<SpecialDeal>) model.get("specials");
int row = 4;
for (SpecialDeal deal : specials) {
int column = 0;
getCell(dataSheet, row, ++column)
.setCellValue(deal.getDepartFrom().getName());
getCell(dataSheet, row, ++column)
.setCellValue(deal.getArriveAt().getName());
getCell(dataSheet, row, ++column)
.setCellValue(deal.getCost());
TOW++;

This should all be starting to look quite familiar by now if you've read the XSLT and PDF
sections earlier in this chapter.

The workbook is created for you by Spring and passed into this method as a parameter.
You simply need to manipulate this object appropriately. In the preceding code, you can see
that the model data is placed in particular cells of the spreadsheet in order to fit into the tem-
plate. The getCell() method is a convenience method included with AbstractExcelView that
just ensures the cell is available for you to set values on.

259

260

CHAPTER 8 © SUPPORTED VIEW TYPES

Configuring the Application

Lastly, it just remains to configure the View for use. In our views. properties file we need two
entries specifying the class name that we want to use and the URL pointing to the template we
want to use. Listing 8-42 has the details.

Listing 8-42. views. properties Configuration for Excel Home Page

home.class=com.apress.expertspringmvc.flight.web.view.HomePageExcel
home.url=/WEB-INF/excel/home

When we hit the home page of our application now, the spreadsheet is created on the fly
from a combination of the model and the template. Either your browser will ask what to do
with it, or it will just fire up your spreadsheet application (Excel or OpenOffice.org, for exam-
ple) to display the output. Figure 8-10 shows how it looks.

File Edit View Insert Format Tools Data Window Help
B-cHa 2 BESR VE RER & & SN v HeornE
IJ | Bitstream vera Sans [+] [z [+] I u A = S = I

D32 [+] s = = |

o
=]
m
»

A

B [
1 | Special Deals from
: | ExpertSpringMVC FlightSearch

3 From To Cost|

F

5 New York City Baltimore $250,00 L
6 Crlando Honolulu $500.00

7 San Fransisco Tokyo $700.00

o

9
10
11
12
13
14

FlightSearch 1141 EIE

Sheet1/1 PageStyle_FlightSearch 100% STD | * Sum=0

Figure 8-10. Spreadsheet view of the home page

JasperReports

JasperReports is an open-source reporting engine written in Java. Report designs are created
in XML and can be output to several different formats. Jasper is a mature reporting engine
now, and a commercial organization (JasperSoft) has recently been incepted to manage
ongoing development and provide support.

We're not going to show an example of the report itself because of the verbose syntax,
but we encourage you to take a look at the samples on the Jasper site (http://jasperreports.
sourceforge.net), which has excellent documentation online. In this section we’ll concentrate
on showing how to integrate the reports with your application.

CHAPTER 8 © SUPPORTED VIEW TYPES

Spring’s Jasper support consists of five concrete View implementations for each of the
final output types available. These were shown in Figure 7-1 in the previous chapter and are
recapped here.

e JasperReportsCsvView

* JasperReportsHtmlView

* JasperReportsPdfView

e JasperReportsXlsView

e JasperReportsMultiFormatView

The first four produce fixed format reports in CSV, HTML, PDE and Excel format, respec-
tively; the final one allows the format to be decided at runtime. A new, concrete type called
ConfigurableJasperReportsView is likely to be available in Spring 1.3, which enables you to
specify which JRExporter to use.

To use one of the Jasper View types, you specify the familiar configuration in the
ViewResolver’s configuration file. Listing 8-43 shows an example that will display the home
page model from our sample application as a Jasper PDF report.

Listing 8-43. views.properties Settings for the Jasper Home Page

home.class=org.springframework.web.servlet.view.jasperreports.JasperReportsPdfView
home.url=/WEB-INF/jasper/home.jrxml

The file home. jrxml is the report design itself. Jasper reports are natively XML, which is
great if you need to get in and do low-level editing of a report, but coding one by hand can be
quite laborious. A few GUI designers are available that will read and write Jasper’s report
design files, some of which are licensed commercially.

Tip Although you can deploy the design file as a . jrxml just as we’re showing here, Jasper needs to
compile the report prior to use. Similar to JSPs, it will do this the first time it encounters a new report and
then cache the resultant . jasper file. To do this, however, you need to make the jdt-compiler.jar
available to your application and configure the JRCompiler accordingly. As such, it’s recommended only for
development environments. For production, you can precompile your reports using an Ant task provided with
Jasper and deploy the compiled versions instead.

Multiformat View

The JasperReportsMultiFormatView is a thin wrapper that delegates to one of the other report
types at runtime. A mapping key is specified that relates to the class name of the actual report
type required.

In Listing 8-44, we show an example of how this can be used in the Controller. The
Controller extracts the filename extension from the incoming request URI and uses it to
tell Jasper which report format should be used.

261

262

CHAPTER 8 ©* SUPPORTED VIEW TYPES

Listing 8-44. Using a URI Extension As a Mapping Key

public ModelAndView handleMultiReport(
HttpServletRequest request, HttpServletResponse response)
throws Exception {

String uri = request.getRequestURI();
String reportFormat = uri.substring(uri.lastIndexOf(".") + 1);

Map model = getModel();
model.put("format", reportFormat);

return new ModelAndView("report", model);

With proper configuration of the request URIs in your dispatcher’s context file, this
method can now be used to serve multiple format reports. For example, a request of
/ExpertSpringMVC/app/home.pdf will result in a PDF version of the report, and
/ExpertSpringMVC/app/home.x1s will generate an Excel spreadsheet-based report.

Note The format key (format in the preceding example) is the name by which
JasperReportsMultiFormatView will look up the actual format type (csv, x1s, or whatever). If you need
to change the name of the format key to something else, you can do so by setting the formatKey property
on the View.

Populating the Report

A report isn't much to look at unless it has some data to show. In common with all Spring’s
supported view types, Jasper report Views extract their data from the model, and you can do
this in two principal ways—differing slightly from other view types in this respect.

Jasper natively works with an instance of JRDataSource, which is an interface from the
Jasper library. If your model contains a single attribute and it implements JRDataSource,
then Spring will expose this object to the Jasper runtime. If your single model attribute is
a java.util.Collection, this can also be used; Spring will convert the Collectionto a
JRDataSource and use this instead.

Should your model consist of more than one attribute, then you should configure the
Jasper View to tell it which model attribute is the JRDataSource or Collection to use. Failing
to do so means that Spring will expose the first attribute it finds that is one of those types—
which may not be the data you wanted to see in your report! On the View configuration, set
the reportDataKey value to the same name as your collection in the model. Listing 8-45 shows
this setting.

CHAPTER 8 © SUPPORTED VIEW TYPES

Listing 8-45. Specifying a Report Data Key for the Jasper Report

home.class=org.springframework.web.servlet.view.jasperreports.JasperReportsPdfView
home.reportDataKey=jasperData
home.url=/WEB-INF/jasper/home.jrxml

In Listing 8-46, the Controller returns a model consisting of multiple objects, one of
which is keyed under the name specified as the report data key in the View.

Listing 8-46. A Model Containing the Report Data and Other Attributes

public ModelAndView handleReport(
HttpServletRequest request, HttpServletResponse response)
throws Exception {

Map model = new HashMap();

Collection reportData = getReportData();
Collection otherData = getOtherData();
model.put("jasperData", reportData);
model.put("otherData", otherData);
return new ModelAndView("home", model);

Summary

Jasper is another very flexible view technology that has myriad options not explored in this
brief introduction. We've covered the basics of how to set up a JasperReport as a view and
expose your data to it. We strongly recommend that you visit the JasperReports website to get
a full rundown on what Jasper can do, safe in the knowledge that you can now apply all those
great features to your Spring MVC applications.

Creating New Views

That pretty much concludes our tour of supported view technologies in Spring applications—
and there was a lot of information to cover and take in. But what do you do in the unlikely
event that Spring has no first-class support for your favorite view technology? Write it yourself,
of course!

Spring is highly extensible in all departments, designed with thought in mind for the
cases where additional support might be required for fringe cases. The view layer is no differ-
ent.

If you need to implement a new view type, look through the JavaDoc and the source code
to see if one of the existing hierarchy of classes offers suitable functionality first. AbstractView
and AbstractUrlBasedView are prime candidates.

Should those classes really not do anything that you need, then implement the View inter-
face directly and handle the response from the render () method.

263

264

CHAPTER 8 ©* SUPPORTED VIEW TYPES

Summary

In this chapter we've looked at the various technologies that can be used within your Spring
Web MVC application, including JSP, templating technologies, XSLT, and document-based
views. We also covered how to create your own view types that fit within the Spring architec-
ture and that allow your application to display models in unusual ways.

We've presented a lot of information in this long chapter. The chances are that your appli-
cations will only ever use a small subset of the functionality and technologies that Spring
supports in its view layer. If you have an application that uses all of it, please write in and let
us know; we'd love to see it!

CHAPTER 9

Validation

COmmand objects that have been populated by DataBinder can be validated and report back

errors when validation fails. Spring offers its own validation infrastructure as an add-on to
core Spring. In fact, validation is not even considered part of Spring MVC.

Validators are implementations of the org.springframework.validation.Validator inter-
face. They are stateless singleton classes that are configured in the Spring ApplicationContext
and injected into your Controllers and test objects and their property values.

Validators are stateless objects just like Spring MVC Controllers. The Validator interface

is designed to facilitate usage in a thread-safe manner; implementation classes should make
sure they are thread-safe as well.
Two types of Validator implementations exist:

* Programmatic Validators where validation constraints are coded

* Declarative Validators that create validation constraints based on configuration

Programmatic Validators

The Validator interface has two methods that should be implemented. Refer to Listings 9-1
and 9-2.

Listing 9-1. org.springframework.validation.Validator Interface

public interface org.springframework.validation.Validator {
public boolean supports(Class clazz);
public void validate(Object target, Errors errors);

The validate() method implements the actual constraints on the target object. The
supports() method defines which classes the Validator supports.

The org.springframework.validation.Errors interface is key to the Spring validation
infrastructure. The Errors interface is discussed at the end of this chapter. Implementation
classes of this interface register errors that occur when binding and validating objects. The
instance received by the validate() method has to be populated with errors detected when
testing the constraints on the target objects.

To reject a property value use one of the rejectValue() methods of the Errors interface.

265

266 CHAPTER 9 ©" VALIDATION

Listing 9-2. Validator Implementation for Address Objects

package com.apress.expertspringmvc.validation;

import org.springframework.validation.Validator;
import org.springframework.validation.Errors;
import org.springframework.validation.ValidationUtils;

public class EasyAddressValidator implements Validator {
public boolean supports(Class clazz) {
Address.class.isAssignableFrom(clazz);
}
public void validate(Object target, Errors errors) {
ValidationUtils.rejectIfEmtpy(errors, "location", "addressLocationEmpty");

}

This Validator rejects the location property on the Address class if the property value is
empty (null or a zero-length string). addressLocationEmpty is the error code that’s looked up
through an org.springframework.context.MessageSource instance; by default this is the
ApplicationContext.

Let’s extend the Address domain class Validator. See Listing 9-3.

Listing 9-3. More Elaborate Validator for Address Objects

package com.apress.expertspringmvc.validation;

import org.springframework.validation.Validator;
import org.springframework.validation.Errors;
import org.springframework.validation.ValidationUtils;

public class AddressValidator implements Validator {

public boolean supports(Class clazz) {
return Address.class.isAssignableFrom(clazz);

}

public void validate(Object target, Errors errors) {
ValidationUtils.rejectIfEmpty(errors, "city", "cityEmpty");
ValidationUtils.rejectIfEmpty(errors, "location", "locationEmpty");
ValidationUtils.rejectIfEmpty(errors, "postalCode", "postalCodeEmpty");
ValidationUtils.rejectIfEmpty(errors, "country", "countryIsEmpty");

CHAPTER 9 " VALIDATION

As you can see, this Validator simply checks whether the required fields have been set.
More complex constraints can be added as well. When a constraint is violated, the property
value is rejected by means of specifying the property name and a message code.

Declarative Validators

Currently two declarative validation strategies are available for Spring:
e the Jakarta Commons Validator
e Valang

The Jakarta Commons Validator uses an XML configuration file to declaratively specify
constraints. However, configuration is not intuitive, and its configuration format is very ver-
bose.

Valang, which stands for validation language, is a language specifically designed for
validating target objects. Its notation is concise and specifically targeted toward getting
data validated.

Valang is an open-source project and is available from Spring Modules. Go to
https://springmodules.dev.java.net to get a copy.

Rewriting the EasyAddressValidator in Valang syntax is very easy, as shown in Listing 9-4.

Listing 9-4. Example of Declarative Constraint in Valang

{

location : ? is not blank : 'Location must be specified' : 'addressLocationEmpty’

}

Each constraint written in Valang notation is enclosed in curly brackets (“{” and “}”).
Multiple constraints can be combined to create one Validator. The fields in a constraint are
separated with colons (“:”).

The first field in the constraint above is the property of the target object that’s being vali-
dated, and the second field is the actual constraint. This particular constraint tests whether
the location property is not blank. The question mark (“?”) replaces the property name speci-
fied in the first field to reduce typing.

When the evaluation of the constraint returns false, the property specified in field one
is rejected with the default message in field three. Field four contains the error code, which is
optional. If the error code cannot be found for the locale of the user or the default locale, the
default message will display.

A fifth optional field can contain error arguments. Note, though, that if error arguments
are provided, then an error code must be provided.

To create a Validator from the constraint in Listing 9-5 Valang has to be configured in the
Spring ApplicationContext.

ValangValidatorFactoryBean parses the Valang syntax once and creates a Validator
instance. Any performance overhead resulting from replacing Java validators with Valang is
thus limited to the one-time parsing of the syntax when the Spring ApplicationContext is
loaded. See Listing 9-5.

267

268

CHAPTER 9 ©" VALIDATION

Listing 9-5. Valang Validator and Configuration for Address Objects

<bean id="easyAddressValidator" ws
class="org.springmodules.validation.ValangValidatorFactoryBean">
<property name="syntax">
<value><![CDATA[
{ location : ? is not blank : 'Location must be specified' : =
'addressLocationEmpty"' }
11></value>
</property>
</bean>

Rewriting the address Validator with Valang is straightforward. Remember that the prop-
erty in a constraint is rejected if the constraint evaluates to false. The constraint thus specifies
which conditions must be matched for the object to be valid. Refer to Listing 9-6.

Listing 9-6. Valang Validating Multiple Properties in One Validator

{ city : ? is not blank : "cityEmpty" }

{ location : ? is not blank : "' : 'locationEmpty' }

{ postalCode : ? is not blank : '' : 'postalCodeEmpty' }
{ country : ? is not blank : "' : 'countryEmpty' }

When we want to extend the constraints for the address Validator in Valang it’s important
to take into account whether all constraints you specify are validated, as well as whether one
or more constraints fail.

If we want to add a constraint that tests the length of the city name, we have to take into
account that the previous constraint that tests whether the city name is blank may have failed.
In other words we need to take into account that the city name may be null.

To achieve this, we let the second constraint succeed if city is blank. See Listing 9-7.

Listing 9-7. Example of Cascading Constraints in Valang

{ city : ? is not blank : "cityEmpty" }
{ city : ? is blank or length(?) <= 30 : '' : 'cityToolong' }

The first constraint will reject the city property value if it’s blank. The second constraint
will only reject the city property value if it’s not blank and it’s more than 30 characters long.

We don’t want to reject the city property in the second constraint if it'’s blank because the
first constraint does this already. We do test whether the city property value is blank because
we don’'t want a NullPointerException to be thrown when we test the length of the property
value.

The example constraints shown in Listing 9-7 reveal that Valang supports complex logical
tests. AND and OR logical operators are supported next to parentheses to define the order of
prevailing.

Let’s write a rather unrealistic constraint (Listing 9-8) to demonstrate complex tests.

CHAPTER 9 " VALIDATION 269

Listing 9-8. Example of Complex Boolean Logic in Valang

{ postalCode :
(? is blank or country is blank)
or ((country in 'United States', 'France' and length(?) = 5)
or (country = 'Belgium' and length(?) = 4)
or country not in
‘United States', 'France', 'Belgium') :
"' : 'postalCodeInvalid' : ?, country, length(?) }

This constraint will fail if the country and postal code are not blank; if the country is
either the United States or France; if the length of the postal code is not 5 or the country is
Belgium; and if the length of the postal code is not 4. Other combinations of postal code and
country will be accepted as is by this constraint.

Also notice that the postal code, the country, and the length of the postal code are passed
as error arguments.

Valang supports a wide range of operators to allow for extensive testing of target objects.

Table 9-1. Operators Supported by Valang

Operator Types Null Safe Description

=, == Any No Tests equality of left and right
values.

I=, <>, >< Any No Tests inequality of left and right
values.

< N, D No Tests value to the left is less than

value to the right. Only supports
numbers and dates.

<=, =< N,D No Tests value to the left is less than or
equal to value to the right. Only
supports numbers and dates.

> N,D No Tests value to the left is more than
value to the right. Only supports
numbers and dates.

=, >= N,D No Tests value to the left is more than
or equal to value to the right. Only
supports numbers and dates.

IN <value> (, <value>)* Any No Tests equality of value to the left
with one of the values to the right.

NOT IN <value> (, <value>)* Any No Tests inequality of value to the left
with all of the values to the right.

BETWEEN <value> AND <value> N,D No Tests value to the left is more than

or equal to first value to the right
and less than or equal to second
value to the right. Only supports
numbers and dates.

NOT BETWEEN <value> AND <value> N, D No Tests value to left is less than first
value to the right or more than
second value to the right. Only
supports numbers and dates.

Continued

270

CHAPTER 9 ©" VALIDATION

Table 9-1. Continued

Operator Types Null Safe Description

ISNULL, NULL Any Yes (true) Tests value to the left is null.

IS NOT NULL, NOT NULL Any Yes (false) Tests value to the left is not null.

HAS TEXT Any (*) Yes (false) Tests String value to the left
contains characters other than
white space, has more than 0
characters and is not null.

HAS NO TEXT Any (*) Yes (true) Tests String value to the left
contains only white-space
characters, contains no characters
oris null.

HAS LENGTH Any (*) Yes (false) Tests String value to the leftis
not null and has more than 0
characters.

HAS NO LENGTH Any (*) Yes (true) Tests String value to the left is null
or contains no characters.

IS BLANK Any (*) Yes (true) Sameas HAS LENGTH.

IS NOT BLANK Any (*) Yes (false) Sameas HAS NO LENGTH.

IS UPPERCASE, IS UPPER CASE, Any (*) No Tests alpha characters in String

IS UPPER value to the left are all uppercase.

IS NOT UPPERCASE, Any (*) No Tests not all alpha characters in

IS NOT UPPER CASE, String value to the left are

IS NOT UPPER uppercase.

IS LOWERCASE, IS LOWER CASE, Any (*) No Tests alpha characters in String

IS LOWER value to the left are all lowercase.

IS NOT LOWERCASE, Any (*) No Tests not all alpha characters in

IS NOT LOWER CASE, IS NOT LOWER String value to left are lowercase.

ISWORD Any (*) Yes (false) Tests String value to the left
contains no white-space
characters.

ISNOTWORD Any (*) Yes (true) Tests String value to the left

contains and least one white-space
character.

N = number
D =date

* = takes value of the toString() method

Valang can test any value—either String, number, Boolean, and date literals or property

values of any type. See Listing 9-9.

Listing 9-9. Examples of Literal Values in Valang

'a string example, next is a number example and after that a date example'

-10.5
[2005-07-30]

CHAPTER 9 " VALIDATION

Internally Valang converts property number values to java.math.BigDecimal, while
BigDecimal also parses number literals. Valang’s internal date parser parses date literals that
allow for powerful date constructs.

Valang uses org.springframework.beans.BeanWrapperImpl to read property values. The
property notation constructs of this class are supported in Valang. They include simple prop-
erties, nested properties, and access to List elements and Map entries. See Listing 9-10.

Listing 9-10. Example of Property Accessors in Valang

name
address.location
customers[0].name
salesParameters|seasonStartDate]

When accessing Map entries keys are expected to be Strings. Since BeanWrapperImpl’s
notation is reused in Valang the String values that represent key values are not quoted.

Valang supports mathematical expressions that can contain literal values of bean prop-
erty values. Parentheses support proper mathematical prevailing. Valang considers the result
of mathematical expressions like the example in Listing 9-11 as values that can be tested.

Listing 9-11. Example of Mathematical Expressions in Valang
((10 - (5 + -3)) * (salesParameters[reduction] mod 3)) div 13
Supported mathematical operators are

o+

e /ordiv
* % or mod

Date literals deserve special attention when discussing Valang. They are always encapsu-
lated in square brackets (“[” and “]”). Valang’s internal date parser recognizes a limited
number of date formats, but you can add your own formats.

Its date operators are the real power of the Valang date parser. Suppose we want to test if a
date is today. It would be fairly trivial to write this in Java code, but it becomes more challeng-
ing when you have to provide a date value to test a property value in a validation language
notation.

To start discovering the functionalities of the Valang date parser we introduce the
T construct. T represents the current time, comparable to creating a new java.util.Date()
instance.

To test whether the value of the order timestamp property is earlier than the current time-
stamp with Valang, we use the constraint in Listing 9-12.

Listing 9-12. Example of Using T As a Date Literal in Valang

{ order.timestamp : ? < [T] : "order.timestamp.in past' }

27

272

CHAPTER 9 ©" VALIDATION

To make sure T represents the time of validation and not the time of parsing the syntax,
Valang parses date literals every time the validation constraint is executed. These semantics
make sure T is always now.

The Valang date parser supports two date operator types: shift operators and incremental
operators.

Suppose we want to test whether the order timestamp property value is today (see Listing
9-13). To achieve this we have to create two limits: the start of the day and the end of the day.
The date parser notation to create these two timestamps is [T<d] and [T>d]. The shift-down
(<) and shift-up (>) operators take a one-character argument to determine how far back or
forth to shift. Each shift operator affects a specific part of the timestamp. The d or day operator
affects the time part of the timestamp. It resets the time to 00:00:00.000 for the shift-down
operator and to 23:59:59.999 for the shift-up operator.

Listing 9-13. Testing Whether a Date Value Is Today

{ order.timestamp :
? between [T<d] and [T>d] :

: 'order.timestamp.not today' : ? }

Valang supports the shift operators shown in Table 9-2.

Table 9-2. Shift Operators for Dates in Valang

Notation Description

>S Shifts second to end of second (999 milliseconds).

<s Shifts second to start of second (0 milliseconds).

>m Shifts minute to end of minute (59 seconds, 999 milliseconds).

<m Shifts minute to start of minute (0 seconds, 0 milliseconds).

>H Shifts hour to end of hour (59 minutes, 59 seconds, 999 milliseconds).

<H Shifts hour to start of hour (0 minutes, 0 seconds, 0 milliseconds).

>d Shifts day to end of day (23 hours, 59 minutes, 59 seconds, 999 milliseconds).

<d Shifts day to start of day (0 hours, 0 minutes, 0 seconds, 0 milliseconds).

SW Shifts date to the end of the current week (next Sunday, 23 hours, 59 minutes, 59

seconds, 999 milliseconds).

<W Shifts date to start of current week (previous Monday, 0 hours, 0 minutes, 0 seconds,
0 milliseconds).

>M Shifts date to end of current month (last day of month, 23 hours, 59 minutes,
59 seconds, 999 milliseconds).

<M Shifts date to start of current month (first day of month, 0 hours, 0 minutes,
0 seconds, 0 milliseconds).

>y Shifts date to end of year (last day of year, 23 hours, 59 minutes, 59 seconds,
999 milliseconds).

<y Shifts date to start of year (first day of year, 0 hours, 0 minutes, 0 seconds,
0 milliseconds).

CHAPTER 9 " VALIDATION

Shift operators and incremental operators can be combined to create new timestamps.
If we want to test whether the order timestamp lies between Monday 8 a.m. of this week and
Friday 8 p.m. of this week we again have to create two new timestamps. [T<w+8H] shifts the
current timestamp back to the start of the week (previous Monday at midnight) and adds
8 hours (previous Monday at 8 a.m.). [T>w<d-2d+20H] shifts the current timestamp forth to
the end of the week (next Sunday evening just before midnight), shifts to the start of the day
(start of Sunday at midnight), subtracts two days (start of Friday at midnight), and adds
20 hours (Friday 8 p.m.).

Valang supports the incremental date operators shown in Table 9-3. Any integer number
above 0 can replace the incremented value.

Table 9-3. Incremental Operators for Dates in Valang

Notation Description

+1S Adds 1 millisecond to the date.
-1S Subtracts 1 millisecond from the date.
+1s Adds 1 second to the date.

-1s Subtracts 1 second from the date.
+1m Adds 1 minute to the date.

-1m Subtracts 1 minute from the date.
+1H Adds 1 hour to the date.

-1H Subtracts 1 hour from the date.
+1d Adds 1 day to the date.

-1d Subtracts 1 day from the date.
+1w Adds 1 week to the date.

-1w Subtracts 1 week from the date.
+1M Adds 1 month to the date.

-1M Subtracts 1 month from the date.
+1y Adds 1 year to the date.

-1y Subtracts 1 year from the date.

In date expression T can also be replaced by a literal date value. [20050730<M] resolves to
the start of Friday, 1 July 2005 at midnight.

Valang by default supports these date formats. The formats are in the notation supported
by java.text.SimpleDateFormat.

Table 9-4. Regular Expressions for Date Formats Valang Recognizes by Default

Date Format Regular Expression

yyyyMMdd M\\d{8}$

yyyy-MM-dd AMAA{AP\-\\{ 21\ -\\d{2}$

yyyy-MM-dd HH:mm:ss M4 -\WA{ 2\ -\\d{2 1\ \s+\\d{ 2} :\\d{2} : \\d{2}$
yyyyMMdd HHmmss MAA{8}\\s+\\d{6}$

yyyyMMdd HH:mm:ss MAA{8I\\s+\\d{2}:\\d{2}:\\d{2}$

yyyy-MM-dd HHmmss MAA{APN-\Nd{2 1\ -\\d{2]\ \s+\\d{6}$

273

274

CHAPTER 9 ©" VALIDATION

Valang allows you to specify other date formats. For each custom date format you add to
the date parser you need to provide a regular expression that matches the date format. Refer
to Table 9-4 for examples of regular expressions. To make sure your regular expressions con-
sume date literals entirely use “*” at the start of the regular expression and “$” at the end. In
regular expressions “*” signifies the start of the literal, while “$” signifies the end.

Date formats are parsed by java.text.SimpleDateFormat and must use the notation
implemented by this class. Look at the SimpleDateFomat javadoc for more details.

To configure Valang with custom date formats, inject them as a Map in the
dateParserRegistrations property, as shown in Listing 9-14.

Listing 9-14. Example of Registering Custom Date Formats with Valang

<bean id="easyAddressValidator" class=w
"org.springmodules.validation.ValangValidatorFactoryBean">
<property name="syntax">
<value><![CDATA[
{ order.timestamp : ? >= [200406] :
"No orders dating before june 2004 can be processed.' }
11></value>

</property>
<property name="dateParserRegistrations">
<props>
<prop key=""\\d{6}$">yyyyMM</prop>
<prop

key=""\\d{4}\\-\\d{2}\\-\\d{2}\\s+\\d{2} :\\d{2}$">
yyyy-MM-dd HH:mm</prop>
</props>
</property>
</bean>

Valang has a number of built-in functions, as shown in Table 9-5. We've already discussed
the length function in Listing 9-8.

Table 9-5. Built-in Functions in Valang

Function Name Description

length Returns the length of the return value of the toString() method of the target
object.

len See length.

size See length.

upper Returns the return value of the toString() method of the target object in

uppercase characters.

lower Returns the return value of the toString() method of the target object in
lowercase characters.

! NOT operation on boolean target objects.

resolve Resolves a message code through a message source.

CHAPTER 9 " VALIDATION

Custom functions can be registered with Valang to include in your constraints. To imple-
ment a custom function you need to extend org.springmodules.validation.functions.
AbstractFunction. Custom function classes should implement the constructor of its parent
class. The doGetResult method implements the actual function logic. Functions in Valang can
have optional arguments, although most functions will probably expect a fixed number of
arguments. The defineMinNumberOfArguments and definedMaxNumberOfArguments methods
check whether the number of arguments passed to the function is within the accepted range.
See Listing 9-15.

Listing 9-15. Custom Function That Alters the Case of a String Value

package com.apress.expertspringmvc.validation;

import org.springmodules.validation.functions.AbstractFunction;
import org.springmodules.validation.functions.Function;
import org.apache.commons.lang.WordUtils;

public class AlterCaseFunction extends AbstractFunction {

public AlterCaseFunction(Function[] functions, int line, int column) {
super(functions, line, column);
defineMinNumberOfArguments(1);
defineMaxNumberOfArguments(1);

}

protected Object doGetResult(Object target) {
String value = getArguments()[0].getResult(target).toString();
return WordUtils.swapCase(value);

AlterCaseFunction swaps the case for the value of its argument. Its constructor is required
by Valang to instantiate the function. To register this function with Valang we have to configure
itin ValangValidatorFactoryBean, as shown in Listing 9-16.

Listing 9-16. Registering the alterCase Function with Valang

<bean id="caseSwappingValidator"
class="org.springmodules.validation.ValangValidatorFactoryBean">
<property name="syntax">
<value><![CDATA[
{ name : alterCase(?) = 'sTEVEN' : 'Name must be Steven' }
11></value>
</property>
<property name="customFunctions">
<map>
<entry key="alterCase"
value="com.apress.expertspringmvc.validation.AlterCaseFunction"/>
</map>
</property>
</bean>

275

276

CHAPTER 9 ©" VALIDATION

Custom Valang function classes often need collaborating objects to do their work.
These objects can be autowired by name or by type. To get collaborating objects, add
JavaBean properties to the function class and overwrite either the isAutoWireByName() or
isAutoWireByType() methods defined in AbstractFunction. The init() method that’s also
defined in AbstractFunction can be overwritten to make sure mandatory properties have
been set.

The init() method will be called by Valang after the properties have been autowired.
Autowiring by type will fail if more than one bean definition of the same type is found in the
Spring container. See Listing 9-17.

Listing 9-17. Example of Autowiring in Custom Valang Functions

package com.apress.expertspringmvc.validation;

import org.springmodules.validation.functions.AbstractFunction;
import org.springmodules.validation.functions.Function;

import org.springframework.jdbc.core.JdbcTemplate;

import org.springframework.util.Assert;

public class SqlQueryForIntFunction extends AbstractFunction {
private JdbcTemplate jdbcTemplate = null;

public SqlQueryForIntFunction(Function[] functions, int line, int column) {
super(functions, line, column);
defineMinNumberOfArguments(1);
defineMaxNumberOfArguments(2);

}

public boolean isAutowireByName() {
return true;

}

public void setJdbcTemplate(JdbcTemplate jdbcTemplate) {
jdbcTemplate = jdbcTemplate;

}

public void init() throws Exception {
Assert.notNull(jdbcTemplate, "JdbcTemplate is required!");

}

protected Object doGetResult(Object target) {
String sql = getArguments()[0].getResult(target).toString();
return new Integer(jdbcTemplate.queryForInt(sql));

The SqlQueryForIntFunction takes a SQL statement that returns an integer value like a
count on a database table. The SQL statement is executed on an instance of JdbcTemplate that

CHAPTER 9 " VALIDATION 211

has to be injected. The isAutowireByName() method returns true, so a bean definition named
jdbcTemplate needs to be configured in the Spring container (see Listing 9-18). The init()
method verifies whether a JdbcTemplate instance has been properly injected.

Listing 9-18. Configuring JdbcTemplate to Be Injected in a Custom Valang Function

<bean id="jdbcTemplate" class="org.springframework.jdbc.core.JdbcTemplate">
<property name="dataSource" ref="dataSource"/>
</bean>

Next, as shown in Listing 9-19, we have to register this function with
ValangValidatorFactoryBean to use it in our constraints.

Listing 9-19. Registering queryForInt Custom Function with Valang

<bean id="validator" class=w
" org.springmodules.validation.ValangValidatorFactoryBean">
<property name="valang">
<value><![CDATA[

{ userId : 1 == queryForInt('select count(0) from users where userId = ' + =
userId) : 'User not found in database' }
11></value>
</property>
<property name="customFunctions">
<props>
<prop

key="queryForInt"
>com.apress.expertspringmvc.validation.SqlQueryForIntFunction</prop>
</props>
</property>
</bean>

Custom Valang function classes can implement a number of Spring callback interfaces to
get hold of the ApplicationContext or resource loader. Supported interfaces are

e org.springframework.context.ApplicationContextAware

e org.springframework.context.ApplicationEventPublisherAware
e org.springframework.beans.factory.BeanFactoryAware

e org.springframework.context.MessageSourceAware

e org.springframework.context.ResourcelLoaderAware

* org.springframework.web.context.ServletContextAware

If any of these interfaces are implemented by a registered custom function, Valang
will inject the related object. If your function implements ApplicationContextAware or
BeanFactoryAware, consider using autowiring to get hold of collaborating services instead
of dependency lookup.

278

CHAPTER 9 " VALIDATION

Message Sources

The Spring ApplicationContext implements the org.springframework.context.MessageSource
interface used to resolve messages based on the locale of the user. When error codes are used
to reject property values or entire objects, Spring MVC asks the ApplicationContext for a mes-
sage for a given locale.

The ApplicationContext checks if a local bean named messageSource has been defined. If
no such bean is available, control is delegated to the parent ApplicationContext. If the parent
ApplicationContexts have no messageSource defined an exception is thrown.

To set up internationalization for validation error messages, configure org. springframework.
context.support.ResourceBundleMessageSource with bean name messageSource.

ResourceBundleMessageSource takes one or more base names to look up localized mes-
sages. These base names are appended with an underscore (“_"), the locale code (“NL”, “FR”,
“ES”, ...) and “.properties”, resulting in a filename that’s loaded from the classpath. These files
will be checked sequentially to resolve error codes, giving priority to the last message found.

ResourceBundleMessageSource uses java.util.ResourceBundle internally to load the mes-
sage files from the classpath. ResourceBundle instances are cached to improve performance.

org.springframework.context.support.ReloadableResourceBundleMessageSource reloads
message files dynamically when they have changed. Set the cacheSeconds property to define
the delay between refresh attempts (-1 being the default to cache forever). This message
source uses Spring resource loaders to find message files defaulting to the default resource
loader of the ApplicationContext. When loading message files from the classpath it should be
noted that many application servers cache resources in the classpath. Changes made to mes-
sage files may thus not be refreshed; put your files in the /WEB-INF folder to circumvent this.
Do not set cache seconds to 0 in production environments, as this will check the modification
timestamp of the message files on every message request.

Both ResourceBundleMessageSource and ReloadableResourceBundleMessageSource extend
the AbstractMessageSource that implements message handling. When error arguments are
passed, MessageFormat replaces tokens in the message. A message example with tokens sup-
ported by MessageFormat is:

Your company name {0} is too long.

AbstractMessageSource supports MessageSourceResolvable instances as error arguments
that will be resolved by AbstractMessageSource. See Listing 9-20.
Listing 9-20. Example of Message File Using Java Property Notation

cpyNameToLong=Your {0} {1} is too long.
cpyName=Company name

errors.rejectValue("name", "cpyNameToolLong", new Object[] { new
DefaultMessageSourceResolvable("cpyName"), company.getName() }, null)

CHAPTER 9 " VALIDATION

Validators and Business Logic

Validators are related to the presentation layer. However, if objects that are validated by a
Validator are passed on to the business logic, this Validator can also be considered as part of
the business logic layer.

Constraints can be called or implemented in three places:

e Validators
* service objects
¢ avalidation method on domain classes

Validators are the only truly pluggable option. They can be injected into Controllers that
call the business logic. Business logic has to implement second-level coarse-grained constraints,
probably by throwing business exceptions. Validators handle the first-level validation that’s
more fine-grained, supports internalization, and is fully integrated with the presentation layer
through the Errors interface. These are the most important advantages Validators offer over
other alternatives.

Errors Interface

The Errors instance received by the validate method of the Validator interface is actually an
instance of BindException. These two classes serve to report validation errors on the target
being validated.

Two error types can be distinguished:

¢ Errors related to the object itself
* Errors related to missing or invalid property values

To reject an object as a whole, use the reject() methods (see Listing 9-21).

Listing 9-21. reject() Methods in the org.springframework.validation.Errors Interface

public void reject(String errorCode);

public void reject(String errorCode, String defaultMessage);

public void reject(String errorCode, Object[] errorArguments, String
defaultMessage);

Rejecting an object as a whole is called a global error, because though no specific property
value is invalid, the form values cannot be processed. An example could be a customer who is
underage.

When property values are invalid or required properties are missing, the rejectValue()
methods can be used, as shown in Listing 9-22.

279

280

CHAPTER 9 ©" VALIDATION

Listing 9-22. rejectValue() Methods in the org.springframework.validation.Errors Interface

public void rejectValue(String propertyName, String errorCode);

public void rejectValue(String propertyName, String errorCode, w»

String defaultMessage);

public void rejectValue(String propertyName, String errorCode, Object[] w=
errorArguments, String defaultMessage);

Rejecting a property value is called a field error. Types of field errors include invalid values
of any kind, null values for required properties, and String values containing only white-space
characters.

Global errors typically appear on top of a form in the view, while field errors typically
appear next to the input fields they are related to.

The Errors interface supports nested Validators. This allows you to reuse Validators for a
single class to validate object graphs. Two methods on the Errors interface allow you to man-
age the nested path. The nested path defines the path to the object that is rejected (or its
property values).

CustomerValidator dispatches control to the AddressValidator to validate the address prop-
erty. Before delegating, the CustomerValidator changes the nested path. Refer to Listing 9-23.

Listing 9-23. Example of Using Nested Path to Delegate to Other Validator

package com.apress.expertspringmvc.validation;

import org.springframework.validation.Validator;
import org.springframework.validation.Errors;
import com.apress.expertspringmvc.Customer;
import org.apache.commons.lang.StringUtils;

public class CustomerValidator implements Validator {

public boolean supports(Class clazz) {
return Customer.class.isAssignableFrom(clazz);

}

public void validate(Object target, Errors errors) {
Customer customer = (Customer)target;
// other constraint checks
errors.pushNestedPath("address");
getAddressValidator(customer.getAddress(), errors);
errors.popNestedPath();

private Validator addressValidator = null;
public void setAddressValidator(Validator addressValidator) {
this.addressValidator = addressValidator;
}
private Validator getAddressValidator() {
if (this.addressValidator = null) {
throw new IllegalStateException("Address validator is not available");

CHAPTER 9 " VALIDATION

}

return this.addressValidator;

pushNestedPath adds the path to the existing nested path if one is set; otherwise, the
nested path is set to the value being pushed. popNestedPath removes the last nested path that
has been added to restore the nested path to the previous value.

Notice CustomerValidator manages the nested path by means of pushing and popping
on the Errors instance. The AddressValidator instance is clueless that its caller is another
Validator; itis injected in CustomerValidator.

Testing Validators

Testing your validators—both declarative and programmatic validators—is important to verify
that they validate only valid objects. Declarative validators like those created with Valang should
be tested to verify the syntax and configuration work correctly. We only have to pass in an object
to validate, and an Errors instance so calling a Validator from a test case is straightforward.
More challenging is verifying whether the correct error codes have been registered with
the Errors instance for specific validation errors. Spring 2.0 offers a convenience class to
check whether an Errors instance has only the error codes we expect. ExrorsVerifier can be
found in the spring-mock.jar and offers methods to check the content of an Errors instance.
The test case in Listing 9-24 demonstrates the use of ExrrorsVerifier. The
testEmptyPersonValidation() method validates a Person object that has no values for
its properties and verifies whether the Errors instance contains the expected errors.

Listing 9-24. Using the ErrorsVerifier Class to Test the State of an Errors Instance

public class PersonValidatorTests extends TestCase {
public void testEmptyPersonValidation() {
Person person = new Person();
Validator validator = new PersonValidator();
BindException errors = new BindException(person, "target");
validator.validate(person, errors);

new ErrorsVerifier(errors) {

{
forProperty("firstName").hasErrorCode("person.firstName.required")
.forProperty("lastName").hasErrorCode("person.lastName.required")
.otherwise().noErrors();

}

The ErrorsVerifier class uses a special notation. First of all we create an anonymous
class by calling new ErrorsVerifier(errors) {}.We pass in the Errors instance we want
to verify in the constructor and in the constructor body—which is again enclosed in curly

281

282

CHAPTER 9 ©" VALIDATION

brackets—and we call the forProperty method and pass firstName as property name. Next we
call the hasErrorCode method and pass in the error code we expect to be present in the Exrors
instance. If this error code cannot be found for the firstName property, an exception will be
thrown. This notation is repeated for the lastName property. The hasErrorCode can be called
more than once for a property and can also be used to check for global errors.

Lastly the otherwise and noErrors() methods are called. These methods verify if no other
errors than the one we expect are present in the Errors instance. The ExrrorsVerifier class is
very convenient to quickly test if your Errors instance contains the correct error codes after
being passed to a Validator. Imagine the Java code you would have to write otherwise to test
that the content of the Errors instance is as expected!

Summary

Spring offers an excellent validation framework. The Validator and Errors interface form the
backbone and allow you to write your own Validator implementations. If you'd rather use
declarative validation, have a look at Valang. This framework creates a Spring Validator
instance based on a set of constraints defined in its proper validation language. Valang is very
convenient to quickly write constraints for your command classes. Its operators, functions,
and date parser functionalities offer more power and flexibility than Validators written in
Java. Whether you write your Validators in Java or Valang, you should always test them to
check whether all error conditions are rejected properly.

Next to validation Spring also offers support for internationalization through its
MessageSource interface. This interface will resolve messages for the locale of your users so
that you can offer your applications in their languages.

CHAPTER 10

Testing Spring
MVC Applications

By writing applications that are modular, pluggable, and loosely decoupled you are also cre-
ating applications that are extremely testable. The Spring Framework encourages you to build
applications in such a way that creating both unit tests and integration tests is fast, easy, and
rewarding. In this chapter, we will look at strategies and techniques for writing tests (both unit
and integration) for your Spring MVC components.

We will build upon the JUnit testing framework and use Spring’s built-in testing stubs
(found in spring-mock.jar), as well as introduce mock objects (with the jMock library) for use
with integration tests. One of the main selling points for building applications the Spring way
is that tests become feasible to create, and we’ll show you how to do it in this chapter.

Overview

When we say festing, what do we mean exactly? By testing, we specifically mean both unit
tests and integration tests. These types of tests are focused on the actual methods of classes
and the interactions between software components, respectively. What we won'’t cover is user
acceptance testing, which is testing performed by users interacting with the interface of the
application. We certainly aren’t diminishing the usefulness of user acceptance tests, but unit
and integration tests should locate most of the issues before they ever reach the users.

Unit Tests

A tremendous amount of literature is already available about unit tests, so we won'’t rehash it
all here. However, we will spend time discussing what a unit test is—and isn't—to contrast
it with an integration test.

Tip Looking for more information on unit testing? We’d like to recommend both JUnit Recipes
by J.B. Rainsberger and Scott Stirling (Manning Publications, 2004), and Pragmatic Unit Testing in Java
(The Pragmatic Programmer, 2003) by Andrew Hunt and David Thomas.

283

284

CHAPTER 10 " TESTING SPRING MVC APPLICATIONS

The basic definition of a unit fest is “a discrete test condition to check correctness of an
isolated software module.” Although we believe that this statement is correct, there is perhaps
a better way to define a unit test. We argue that a test should strive to follow these tenets if it is
truly to be called a unit test:

Run fast: A unit test must run extremely fast. If it needs to wait for database connec-
tions or external server processes, or to parse large files, its usefulness will quickly
become limited. A test should provide an immediate response and instant gratification.

Zero external configuration: A unit test must not require any external configuration
files—not even simple text files. The test’s configurations must be provided and set by
the test framework itself by calling code. The intent is to minimize both the runtime of
the test and to eliminate external dependencies (which can change over time, becom-
ing out of sync with the test). Test case conditions should be expressed in the test
framework, creating more readable test conditions.

Run independent of other tests: A unit test must be able to run in complete isolation. In
other words, the unit test can't depend on some other test running before or after itself.
Each test is a stand-alone unit.

Zero external resources: A unit test must not depend on any outside resources, such as
database connections or web services. Not only will these resources slow the test down,
but they are outside the control of the test and thus aren’'t guaranteed to be in a correct
state for testing.

Leave external state untouched: A unit test must not leave any evidence that it ever ran.
Unit tests are written to be repeatable, so they must clean up after themselves. Obvi-
ously, this is much easier when the test doesn’t rely on external resources (which are
often harder to clean up or restore).

Test smallest unit of code: A unit test must test the smallest unit of code possible in
order to isolate the code under test. In object-oriented programming, this unit is usu-
ally a method of an object or class. Writing unit tests such that a method is tested
independently of other methods reduces the number of code lines that could contain
the potential bug.

Caution Obviously, Spring applications rely heavily upon the ApplicationContext and its XML config-
uration files at runtime. Your unit tests, however, should not rely on these facilities. Many if not all of Spring’s
practices promote the ability to run your code outside of Spring itself. Your code should always be able to be
unit tested without the ApplicationContext’s involvement. To test the wiring and configuration of your
system, see “Integration Tests” later in this chapter.

CHAPTER 10 ©" TESTING SPRING MVC APPLICATIONS

Tools

For all of the unit tests in this book, we have used the ubiquitous JUnit (http://www.junit.org)
library. It is the de facto standard for writing unit tests in Java, with wide industry support and
many add-ons. The Spring Framework uses JUnit for its tests, so there are plenty of excellent
examples available if you want to see how unit tests are created in the wild. You can find the
framework’s tests in the test directory of the downloaded release.

Example

We will quickly illustrate an example of a unit test to provide some perspective and to give our
discussions some weight. The Flight class from Chapter 4 is the perfect candidate for a unit
test, as it doesn’t require external resources and contains business logic statements.

Listing 10-3 is the complete test case for the F1light class. We begin by using setUp() to
create and initialize an instance of Flight, complete with a single FlightlLeg between two
cities. Having one commonly configured Flight instance makes each test easier to write
because of the consistency of data across test methods.

As you can see, we like to place each situation being tested inside its own test method.
This technique is different than many of the tests you'll find in the Spring source code distri-
bution, where you’ll commonly find one test method containing many different actions and
assertions. We believe that tests should run in isolation, so we sacrifice brevity for more
explicit test separation. Another benefit of this type of test method separation is that the risk
of orthogonal code affecting the real method under test is reduced.

Some tests are very simple, testing mere getters or read-only accessor methods. For instance,
Listing 10-1 is verifying that the total cost returned by getTotalCost() happens to be the same
cost specified when the Flight instance was created. These simple-looking methods are just as
important to test as the seemingly more complicated methods. Not only does it increase the test
coverage, but it is providing a very helpful safety net once the refactoring begins (which will hap-
pen sooner or later).

Listing 10-1. testGetTotalCost Method

public void testGetTotalCost() {
assertEquals(40, flight.getTotalCost());

}

Other test methods, like the one shown in Listing 10-2, require more configuration than
is provided by the setUp() method. Here we create test local parameters that are controlled
to give our tests precise outcomes, such as a nonstop FlightlLeg with valid start and end times.
Notice that the assertEquals() method calculates the expected value independently from
the start and end objects set up at the beginning of the test. Why not just use assertEquals
((end.getTime()-start.getTime()), flight.getTotalTravelTime())? The expected value (the
first parameter to the assertEquals() method) should never be calculated from parameters
that participate in the test, in order to ensure the test itself doesn’'t modify any data that would
affect its validity.

285

286 CHAPTER 10 " TESTING SPRING MVC APPLICATIONS

It's possible, however unlikely, that getTotalTravelTime() could alter the values of the
start and end objects. If it did manage to alter the values, the test might appear to succeed
even though it would not return the value you expected when you wrote the test method.
In other words, you would get a false positive.

Listing 10-2. testGetTotalCost Method

public void testGetTotalTravelTimeOnelLeg() throws Exception {
Date start = sdf.parse("2005-01-01 06:00");
Date end = sdf.parse("2005-01-01 12:00");

List<Flightleg> legs = new ArrayList<Flightleg>();
legs.add(new FlightlLeg(fooCity, start, barCity, end));
flight = new Flight(legs, new BigDecimal(40));

assertEquals((6*60*60*1000), flight.getTotalTravelTime());
}

To put it all together, Listing 10-3 contains the entire FlightTest.

Listing 10-3. Unit Test for Flight Class

public class FlightTest extends TestCase {

private Flight flight;

private SimpleDateFormat sdf = new SimpleDateFormat("yyyy-MM-dd HH:mm");
private Airport fooCity;

private Airport barCity;

public void setUp() throws Exception {
super.setUp();
fooCity = new Airport("foo", "F");
barCity = new Airport("bar", "B");

List<FlightlLeg> legs = createSingleleg();
flight = new Flight(legs, new BigDecimal(40));
}

public void testGetTotalCost() {
assertEquals(40, flight.getTotalCost());

}

public void testGetDepartFrom() {
assertEquals(fooCity, flight.getDepartFrom());

}

public void testGetArriveAt() {
assertEquals(barCity, flight.getArrivalAt());

}

CHAPTER 10 ©" TESTING SPRING MVC APPLICATIONS

public void testGetNumberOflLegs() {
assertEquals(1, flight.getNumberOflLegs());

}

public void testIsNonStopOneleg() {
List<Flightleg> legs = createSingleleg();
flight = new Flight(legs, new BigDecimal(40));
assertTrue(flight.isNonStop());

}

public void testIsNonStopTwolegs() {
List<Flightleg> legs = createSingleleg();
flight = new Flight(legs, new BigDecimal(40));
legs.add(new Flightleg(fooCity, new Date(), barCity, new Date()));
assertFalse(flight.isNonStop());

}

public void testGetTotalTravelTimeOnelLeg() throws Exception {
Date start = sdf.parse("2005-01-01 06:00");
Date end = sdf.parse("2005-01-01 12:00");

List<Flightleg> legs = new Arraylist<Flightleg>();
legs.add(new Flightleg(fooCity, start, barCity, end));
flight = new Flight(legs, new BigDecimal(40));

assertkEquals((6*60*60%1000), flight.getTotalTravelTime());
}

public void testGetTotalTravelTimeTwolegs() throws Exception {
Date start = sdf.parse("2005-01-01 06:00");
Date end = sdf.parse("2005-01-01 12:00");

List<Flightleg> legs = new Arraylist<Flightleg>();
legs.add(new Flightleg(fooCity, start, barCity, end));
flight = new Flight(legs, new BigDecimal(40));

Date secondStart = new Date(end.getTime());

Date secondEnd = sdf.parse("2005-01-01 14:30");

legs.add(new Flightleg(new Airport("secondFoo", "F2"), secondStart,
new Airport("secondBar", "B2"), secondEnd));

assertEquals((8*60*60%1000)+(30%60*1000), flight.getTotalTravelTime());
}

public void testWrongEndTime() throws Exception {
Date start = sdf.parse("2005-02-01 06:30");
Date end = sdf.parse("2005-02-01 04:00");

287

288

CHAPTER 10 " TESTING SPRING MVC APPLICATIONS

List<Flightleg> legs = new Arraylist<Flightleg>();
legs.add(new Flightleg(fooCity, start, barCity, end));
flight = new Flight(legs, new BigDecimal(40));

try {
flight.getTotalTravelTime();
fail("Should have thrown exception");
} catch(IllegalArgumentException e) {
assertEquals("Start date must be before end date", e.getMessage());
}
}

private List<Flightleg> createSingleleg() {
List<Flightleg> legs = new Arraylist<Flightleg>();
legs.add(new Flightleg(fooCity, new Date(), barCity, new Date()));
return legs;

Private Methods

As you may have noticed, we didn’t write any tests that explicitly test private methods of the
class. Certainly private methods are internal implementation-specific methods and are not
part of the public API of the class. We write tests to test how the object behaves, from the per-
spective of a client of the class. This is an important point about unit tests, because they force
the test writer (who should be the same person who creates the class) to think like a client of
the class. The test author quickly begins to ask questions such as, How would I want to use this
class? and What do I need from this class to get the job done? Writing unit tests can quickly
expose any weaknesses of the class in terms of usability, which can be very beneficial.

How Do | Know When the Test Is Done?

A common question that pops up when writing unit tests is “How do I know If I've written
enough tests?” There isn’'t a quick and easy answer to this, but a few guidelines and tools can
help you determine how much of the code is actually tested.

The first guideline: Test your methods with values you don’t expect to receive. To begin,
test your methods with zeros and nulls as input values. Your method should gracefully handle
this case, which we will call an edge case. Edge cases are conditions that might expose a prob-
lem because they are near or at the edge of acceptable values. Examples of this are zero, null,
infinity, and conditions that are defined by your business logic as maximum or minimum.
Creating tests for all of these edge cases is a good start toward completeness.

Once you have tests for the edge cases, simply write tests for the common cases. These
test scenarios should use values that are representative of conditions that will occur most fre-
quently. You do not need to test every single value (a lot of real numbers are out there), so use
your best judgment here. The edge cases are certainly more important to test, because they
are most often forgotten or neglected by the code, but the common case(s) should always be
tested as well.

CHAPTER 10 " TESTING SPRING MVC APPLICATIONS

With the common cases out of the way, take a look at the algorithm you are testing and
identify all the branches and decision points. To have a complete set of tests, each branch and
condition that fires the branch must be tested. For instance, if you have a switch statement,
make sure your tests use values that will exercise each condition of the statement including
the default statement. This also applies to anywhere an exception might be thrown (see
testWrongEndTime() in FlightTest (Listing 10-3) for an example).

Of course, any software other than the most trivial will have numerous branches, excep-
tion cases, and execution paths. To ensure that your tests have exercised all of the potential
situations, you can use special tools to track which code is tested and which code isn’t. These
are called code coverage tools, and they work hand-in-hand with testing frameworks (though
they don't require them) to give you an idea of how much of the system is actually tested.

Code coverage utilities, such as Clover (http://www.cenqua.com/clover) and EMMA
(http://emma.sourceforge.net), instrument the code under test by wrapping each line and
condition with a flag. These flags are set when the active test actually runs the particular line
of code. When the tests complete, the utilities generate a detailed report of which lines of
source code were exercised by the unit tests. The report, as shown in Figure 10-1, provides
an excellent visual way to see how much of the system is actually tested by your unit and
integration tests.

Clover coverage report - Spring Framework - 1.2-SNAPSHOT package stats: LOC: 3,672 Methods: 148
Coverage timestamp: Thu Sep 29 2005 02:33:55 BST RIS AT Teerren 10
Overview File Files: 13
FRAMES MO FRAMES

Package % Conditionals Statements Methods TOTAL
org.springframework.web.serviet.mvc £1% Teaw Taiwm e L e

Classes Conditionals Statements Methods TOTAL
SimpleControllerHandleriddapter 0% 0% v ov [
WebContentInterceptor 0% 0% v ov [N
AbstractController 25% zzaw 238w 32w
ServletWrappingController.DelegatingServletConfig - 50% sox sew (S
BaseCommandController 459 T0% 5% 655% N s
AbstractCommandController - 83.3% sax 7% L e
ServletForwardingController 60% 20% oo 7% L e
UrlFilenameYiewController ST.1% 355w 100w s2sw TS
AbstractWizardFormController T4.1% sen s6.2% sz2.e% [N
AbstractFormController 78.5% s7r1% | sa5% e53% [N
ServletWrappingController 66.7% se7% 100% 87% B
SimpleFormController 20% szam 100% s s
CancellableFormController 100% to0% 100% w0
Parameterizable¥iewController 100% toos 100% 10w

o) ﬁoorzgener&t&o’by Clover Code Coverage w135 Open Source L\Jcensle registered to the Spring Flramework Project, This license of Clover is provided

v Sep 29 2005 023200 B5T, to support the v of Spring Framawork only.

Figure 10-1. HTML report from Clover

Tip Spring uses Clover for code coverage, and you can generate and view up-to-the-minute coverage
reports yourself with the Ant build included with the source code.

289

290

CHAPTER 10 " TESTING SPRING MVC APPLICATIONS

Even if you have managed to obtain 100% code coverage from your tests, you're not
necessarily finished writing tests. Code coverage utilities are very helpful, but they cannot
indicate whether you have sufficiently covered the edge cases. For example, they may tell you
if you tested a hypothetical addition() method, but they don’t know if you tried it with nulls,
zeros, negative numbers, or infinity. You must use a combination of code coverage reporting
plus edge case tests to really begin to feel like you have a complete set of tests.

When Do | Write Tests?

Another common question when writing tests is “When in the process of building the system
are tests created?” The answer to this depends a lot on what software development methodol-
ogy you subscribe to.

Extreme Programming (http://www.extremeprogramming.org), or XP, was one of the first
methodologies to popularize the Agile (http://agilemanifesto.org) movement. One of XP’s
main tenets is a technique named test-driven development, or TDD. It says that before any
code is created, a unit test must first be written. At a very basic level, this means that if strictly
followed, all code will have corresponding tests. However, if the proponents of TDD are cor-
rect, this technique has much broader implications.

* You will always have tests for the system if you create them first. When crunch time
comes, unit tests are often left by the wayside. This can be a dangerous decision, espe-
cially because crunch time is when development is moving the fastest (and thus is at its
most risky).

* You will get immediate feedback for all code additions and changes. As software grows
and refactoring becomes more important, the safety net of unit tests is essential. By
writing the test first, you will know instantly whether a refactoring worked and regres-
sion bugs were introduced.

* The system design will emerge in the simplest possible form. TDD proponents argue that
because the code is created in response to tests, the system will emerge with only the
code that allows the tests to pass. By focusing on passing tests, the code won't have a
chance to expand into areas not originally intended or required.

The Rational Unified Process (RUP) merely defines a “construction” phase, where the soft-
ware code and tests are created in no specified order.

Feature Driven Development (FDD) declares that unit testing occurs in the fifth process,
“Build by Feature.” FDD does not define exactly when in the process the unit tests are created,
only that they must be created.

Our personal feelings on the subject are these: Test as early as you can. Although strictly fol-
lowing TDD can be a bit dogmatic, writing tests first really does help to drive a more simple
design (of course, it helps to know where you are going). Writing the tests during software con-
struction—especially at the same time the module under test is being created or updated—is an
excellent idea. We've noticed that any initial slowdown in coding velocity is greatly outweighed
by the confidence you will have in the system plus the natural robustness from the tests them-
selves. Bottom line is, don’t delay writing those unit tests.

It’s important to note that the advice to write tests as early as possible is specific to unit
tests. Integration tests are naturally created later in the process, as more pieces of the system
have been built.

CHAPTER 10 ©" TESTING SPRING MVC APPLICATIONS

What If the Code Has Dependencies?

The unit test suggestions, such as testing the smallest amount of code, are quite reasonable
when testing the domain object model, because it is easy to create and control instances of
dependencies. As shown in Listing 10-3, the FlightTest simply creates new objects such as
FlightlLeg in order to create certain test conditions. However, if the code requires dependen-
cies that are heavyweight or tied to external resources, writing unit tests becomes more
difficult.

For example, consider how one would write a unit test for the following service layer class.
We've created a simple AccountService interface, implemented by AccountServiceImpl, shown
in Listing 10-4. The service class delegates to an AccountDao for loading Account instances from
persistence. The Account class implements the business logic for its activation.

Listing 10-4. AccountServicelmpl

public class AccountServiceImpl implements AccountService {
private AccountDao accountDao;

public void setAccountDao(AccountDao accountDao) {
this.accountDao = accountDao;

}

public void activateAccount(Long accountId) throws AccountNotFoundException {
Assert.notNull(accountId, "accountId must not be null");
Account account = accountDao.getAccount(accountId);
if (account == null) {
throw new AccountNotFoundException(accountId);

}

account.activate();

We can already see some of the conditions the unit test must test, including:

e What if the Data Access Object (DAO) returns a null account?

¢ What if the method parameter is null?

* How do we ensure that the account returned by the DAO is the one that is activated?

To successfully test those conditions, the service object requires a functioning DAO. How-
ever, to keep from violating our unit test rules, we must not actually interact with the database.
Therefore, the AccountDao instance that the AccountServiceImpl uses can’t be the real imple-
mentation. We need to somehow replace the AccountDao with an object that looks and feels like
the real thing, but instead of pulling objects from the database it returns objects from memory.

291

292

CHAPTER 10 " TESTING SPRING MVC APPLICATIONS

To solve this problem, dependencies such as the DAO layer can be replaced by stand-ins
called mock objects. Instead of the real thing, we will create a mock replacement for the
AccountDao, which we will set into the AccountServiceImpl object before the test is run. This
way we will have full control over any dependencies, isolating the service object to be the
variable under test, as well as avoiding any interaction with external resources.

Note Dependency Injection plays a big part in allowing for easy testing through mock objects. Because
the dependency is set into the class via a simple setter, the dependency can easily be substituted with a
mock object at test time.

Mock Objects

Mock objects add intelligence and programmability to stub classes, making them in essence
scriptable stubs. Think of mock objects as smart placeholders for dependencies. Mock objects
are created dynamically, inside the tests that utilize them. They typically are implemented
using JDK java.lang.reflect.Proxy objects, implementing the interface of the dependency
while replacing the behavior. More advanced mock object libraries also support creating
mocks for classes that do not implement interfaces.

Mock objects allow you to script the behavior of the mock in order to create different
situations for testing. For instance, you can control which objects are returned from a method
call, or you can instruct the mock object to throw an exception instead of returning a value.
This technique allows you to essentially inject objects into tests that are the results from
method calls.

Mock objects also let you specify exactly which methods should be called on the mock,
and in what order. This is a type of inside-out testing, as you can ensure that only the expected
methods on a dependency are called. Once configured, you can instruct the mock object to
fail the test if an expected method was never called or if a method was called on the mock that
was never expected.

There are three main mock object libraries, each with their own pros and cons. Refer to
Table 10-1.

Table 10-1. Mock Object Libraries

Title URL Documentation Notes
MockObjects ~ http://www.mockobjects.com Minimal, lacking. One of the first mock
object libraries.
jMock http://www.jmock.org Good, included Getting ~ Rewrite of
Started Guide and MockODbijects,
tutorials. handles mocking

interfaces and classes.

EasyMock http://www.easymock.org Good, many examples. Used by Spring for
testing.

CHAPTER 10 ©" TESTING SPRING MVC APPLICATIONS

We can recommend either jMock or EasyMock for your mock object needs. As noted,
Spring uses EasyMock for testing, so you may want to choose this package due to the number
of examples available in the Spring source code. However, we have the most experience with
jMock, so we will use it for the examples in this chapter.

With the mock object library chosen, it’s time to write the unit test for AccountServiceImpl.

Mock Object Techniques

We use mock objects during testing for two main reasons: to isolate the class under test from
outside influence and to control dependencies.

While unit tests should test a single unit of code in isolation, it’s rare to find a class or a
method that is completely void of dependencies in one form or another. If the dependency is
a simple POJO, using the new operator is an easy way to create an instance used just for the
test. However, if the dependency is not easily created or requires heavyweight resources such
as database connections, using the new operator isn’t often possible. Mock objects step in to
“mock” the dependency, thus allowing the code under test to operate without invoking out-
side resources.

Real mock objects, and not just simple stubs, allow you to control their behavior. This is
extremely important when mocking heavyweight resources such as DAOs. Because you are
testing against a mock DAO, there is no database, so how does the DAO retrieve any objects?
Mocks can be told not only how to look (what interface to appear as) but how to act. In other
words, you instruct a mock object what to do when certain methods are called. When mocking
a DAQ, for instance, you can easily say, “When the method loadFoo() is called, return this
instance of Foo.”

To summarize, mock objects are used when you need to either replace a heavyweight
dependency with a lightweight instance just for testing, or when you need to use an intelligent
stub. Those two situations often occur simultaneously, making mock objects a perfect addi-
tion to any testing tool belt.

Let’s move on to some concrete examples showing off how mock objects work with real tests.

Unit Tests with jMock

For the AccountServiceImpl test we will create a mock for AccountDao in order to return
an Account instance we can control. To begin, the superclass for the test will be org. jmock.
MockObjectTestCase instead of junit.framework.TestCase. This is not required; however, it
makes using jMock much easier and is recommended. The MockObjectTestCase class provides
helper methods used when creating the mock instance, and not using it simply means that
configuring mocks will be more verbose.

Let’s begin by setting up the test class, creating an instance of AccountServiceImpl and a
mock AccountDao, shown in Listing 10-5.

293

294

CHAPTER 10 " TESTING SPRING MVC APPLICATIONS

Listing 10-5. AccountServicelmplTest Setup

public class AccountServiceImplTest extends MockObjectTestCase {

private AccountService accountService;
private Mock mockAccountDao;
private AccountDao accountDao;

protected void setUp() throws Exception {
super.setUp();
accountService = new AccountServiceImpl();
mockAccountDao = mock(AccountDao.class);
accountDao = (AccountDao) mockAccountDao.proxy();
((AccountServiceImpl)accountService).setAccountDao(accountDao);

}

Notice how we require two distinct objects for the mock: an instance of mock and its
proxy. The mock is the object the test configures and controls, while the proxy is the stand-in
we provide to the service object.

The setup() method introduces the mock() method, the first helper method provided by
the MockObjectTestCase class. This method is a builder, accepting an interface and returning
an instance of its mock.

Tip Programming with interfaces allows you to easily work with mock object libraries.

With the mock created, let’s now create the first unit test for this class (Listing 10-6). We
will test that the service object will throw an AccountNotFoundException if the DAO returns a
null Account. This will require the mock to be instructed to expect a single call to getAccount()
with a parameter equal to what we provide to the service object, and to return a value of null.

Listing 10-6. testActivateAccountWithNoAccountFound

public void testActivateAccountWithNoAccountFound() {
mockAccountDao.expects(once())
.method("getAccount")
.with(eq(new Long(1)))
.will(returnValue(null));

try {
accountService.activateAccount(new Long(1));
fail("Should have thrown AccountNotFoundException");
} catch(AccountNotFoundException e) {
assertTrue(e.getMessage().contains("1"));

}

CHAPTER 10 " TESTING SPRING MVC APPLICATIONS

mockAccountDao.verify();

}

Notice how the initialization of the mockAccountDao reads very much like the previous
description of the test. You can read the mock object configuration as, “The mockAccountDao
should expect a single call to the getAccount() method with a parameter equal to 1L and will
return the value of null.”

After the configuration, the service method activateAccount() is called with the correct
parameter. When the service method delegates to the accountDao, the mock object will return
null as instructed. The service object, never the wiser, continues on with its logic and throws
the exception.

If a method was called on the mock that it was not expecting, the mock will cause the test
to fail immediately. However, because there is no immediate failure on expectations never met
(for instance, if a mock method was never called), the verify() method is required to ensure
that the mock will cause a failure if an expectation was never met.

Tip Always place a call to verify() for every mock you configure in your test case.

Another test we wish to write for the AccountServiceImpl object is the optimistic case
of everything working smoothly. We want to ensure that the Account object returned by the
accountDao is correctly activated. For this test, shown in Listing 10-7, instead of returning null
we will return an instance of Account that we control. After the service method runs, it will be
easy to check the state of the Account object to see whether it was correctly activated.

Listing 10-7. testActivateAccountWithAccount

public void testActivateAccountWithAccount() {
Account account = new Account();
assertFalse(account.isActivated());

mockAccountDao.expects(once())
.method("getAccount")
.with(eq(new Long(1)))
.will(returnValue(account));

accountService.activateAccount(new Long(1));
assertTrue(account.isActivated());

mockAccountDao.verify();

}

The setup for the mock object is very similar to the previous test case. However, for this
test we return a real instance of Account, one that we have created. After the service method
completes, we check that the account was activated.

295

296

CHAPTER 10 " TESTING SPRING MVC APPLICATIONS

While this test is checking that the correct account was activated, it is also subtly checking
that the parameter passed to activateAccount() is correctly passed to the getAccount() method
of the DAO. When we instruct the mock object to expect a call “with a parameter equal to new
Long(1)”, we are telling the mock to throw an exception if it receives a different value. Therefore,
we are also testing that we are calling the DAO with the correct information.

If the wrong or unexpected value is passed to the mock (for this example, the value of 2),
the mock will throw an exception looking much like the following the one in Listing 10-8.

Listing 10-8. Incorrect Value Passed to Mock

org.jmock.core.DynamicMockError: mockAccountDao: no match found
Invoked: com.apress.expertspringmvc.testing.AccountDao.getAccount(<2>)
Allowed:

expected once: getAccount(eq(<1>)), returns
<com.apress.expertspringmvc.testing.Account@1a05308>

at org.jmock.core.AbstractDynamicMock.mockInvocation(Unknown Source)

at org.jmock.core.CoreMock.invoke(Unknown Source)

at $Proxy0.getAccount(Unknown Source)

at com.apress.expertspringmvc.testing.AccountServiceImpl.activateAccount(
AccountServiceImpl.java:15)

Mock Objects Summary

Mock objects are an excellent way to write unit tests for components that rely on dependen-
cies that would otherwise be heavyweight or difficult to test. Mocks are intelligent stubs, able
to be scripted to expect certain inputs and respond with certain outputs. You should use
mocks when the dependency would violate some of the unit test guidelines, most importantly
“run fast” and “zero external resources.”

Mocks can be scripted to expect one or more methods, called in a particular order, and
with a particular set of parameters. Mocks can return any preset value, throw an exception
instead of returning a value, or simply return void.

Mocks will fail a test if the code under test uses the mock in unexpected way, or doesn’'t
exercise the mock at all. If using jMock, remember to call verify() on your mock objects at
the end of the test case to ensure all expectations are met.

Mocks don't have to be used for replacements of heavyweight objects such as DAOs. They
can be used anywhere dependencies are found, making it easy to isolate the class under test
by ensuring that all other participants in the test perform and behave exactly as specified.

Testing Controllers

Up to this point, we've discussed testing both the domain object model as simple JUnit
tests and testing the service layer with the help of mock objects. The web layer has its own
set of testing tips and tricks, as it requires both the service layer and Servlet API classes.
Testing Controllers requires both mock objects and a set of stubs for classes such as
HttpServletRequest and HttpSession. Tests for Controllers can be written just as easily
as service layer tests and can be run just as fast.

CHAPTER 10 ©" TESTING SPRING MVC APPLICATIONS

The Spring Framework provides a spring-mock. jar that includes classes useful for
writing both unit tests and integration tests. We will focus on a very useful set of stubs for
testing web components in the org. springframework.mock.web package, including classes
such as MockHttpServletRequest, MockHttpServletResponse, and MockServletContext. These
are lightweight classes and can be used in any unit test, not just tests for Controllers.

Stubs vs. Mocks

While the names for the classes in spring-mock. jar begin with mock, we argue that they are
in fact stubs. The term stub indicates that the class is unintelligent with no scripting or control
abilities. While mocks can be configured with expectations and programmable behavior, a
stub is merely a placeholder with simple predefined behavior.

In no way does this mean that the provided classes such as MockHttpServletRequest are
less than useful. These classes play a valuable role in testing web components, and the fact
that they are predefined saves plenty of time when writing tests.

Stubs are useful not only in testing situations, but also when integrating application lay-
ers. Stubs can help development teams deliver slices faster by allowing each layer to develop
at an independent rate. As layers are built out, they can use stubs as stand-ins for the depend-
ent layers. As layers complete their functionality, the stubs are replaced and testing continues.

Servlet API Stubs

The spring-mock. jar provides a full array of stubs for the Servlet API, among other things.
These classes are simple to create, and for the most part behave exactly like their real-life
counterparts.

* MockHttpServletRequest

* MockHttpServletResponse

* MockHttpSession

* MockServletConfig

* MockServletContext

* MockPageContext

* MockRequestDispatcher

* MockFilterConfig

* MockExpressionEvaluator: Useful for testing JSP 2.0 components; requires jstl.jar on

the classpath

Controller Test Example

Let’s put these stubs to work testing a Controller that will expose the activateAccount() method
to the web. A client wishing to activate an account will use the HTTP POST method and provide
arequest parameter named id. For simplicity’s sake, we will assume that an aspect of the system
has taken care of the security checks for user credentials and permissions.

The Controller code is shown in Listing 10-9.

297

298

CHAPTER 10 " TESTING SPRING MVC APPLICATIONS

Listing 10-9. ActivateAccountController

public class ActivateAccountController extends AbstractController {
private AccountService accountService;

public ActivateAccountController() {
setSupportedMethods(new String[]{"POST"});

}

public void setAccountService(AccountService accountService) {
this.accountService = accountService;

}

@0verride
protected ModelAndView handleRequestInternal(HttpServletRequest request,
HttpServletResponse response) throws Exception {
String idParam = request.getParameter("id");
if (! StringUtils.hasText(idParam)) {
response.sendError (HttpServletResponse.SC_BAD REQUEST,
"Missing id parameter");
return null;
}
Long id = null;
try {
id = Long.valueOf(idParam);
} catch(NumberFormatException e) {
response.sendError (HttpServletResponse.SC_BAD REQUEST,
"ID must be a number");
return null;

}

accountService.activateAccount(id); // let the infrastructure handle
// the business exception of
// AccountNotFoundException

return new ModelAndView("success"); // this should redirect somewhere

We introduced a few conditions in this Controller that are ripe for testing. First, the id
parameter could be missing or empty. Second, the id parameter could have an incorrect for-
mat. Third, the activateAccount() method itself could throw an exception. Fourth, the client
could attempt to access this Controller with a HTTP GET.

That'’s a lot to test, but as you'll see it’s quite easy with the Servlet API stubs in tandem
with mock objects. Let’s first set up the test, including the creation of the Controller, the mock
for the AccountService object, and the stubs. See Listing 10-10.

CHAPTER 10 ©" TESTING SPRING MVC APPLICATIONS

Listing 10-10. ActivateAccountControllerTest Setup

public class ActivateAccountControllerTest extends MockObjectTestCase {

private ActivateAccountController controller;
private Mock mockAccountService;
private AccountService accountService;

private MockHttpServletRequest request;
private MockHttpServletResponse response;

protected void setUp() throws Exception {
super.setUp();
controller = new ActivateAccountController();
mockAccountService = mock(AccountService.class);
accountService = (AccountService) mockAccountService.proxy();
controller.setAccountService(accountService);
request = new MockHttpServletRequest();
response = new MockHttpServletResponse();

}

Next, let’s create a test for the very simple case of a client attempting to use HTTP
GET instead of HTTP POST. For this test, shown in Listing 10-11, we will configure our
HttpServletRequest stub to report the GET method, and we will call the Controller’s
handleRequest () method. We choose to call this method, even though our controller only
implements handleRequestInternal(), because handleRequest() implements the logic for
checking request methods. We are really testing whether we configured the Controller to
accept only the POST method, not necessarily the logic that checks the request methods
(since we generally trust the Spring code, but if not, feel free to run the framework’s tests
locally).

Listing 10-11. restGet Method

public void testGetMethod() throws Exception {
request.setMethod("GET");

try {
controller.handleRequest(request, response);
fail("Should have thrown RequestMethodNotSupportedException™");
} catch (RequestMethodNotSupportedException e) {
/7 ok
}
}

Asyou can see, using the stubs is more straightforward than that working with mock
objects. If this test passes, it means that we've configured the Controller to reject GET methods.
For the second test (Listing 10-12), we will use the correct HTTP method, but we will
forget the id parameter. This should not throw any exceptions, but it should set the

HttpServletResponse for an error state with the correct error message.

299

300

CHAPTER 10 " TESTING SPRING MVC APPLICATIONS

Listing 10-12. testMissingldParam Method

public void testMissingIdParam() throws Exception {
request.setMethod("POST");

ModelAndView mav = controller.handleRequest(request, response);

assertNull(mav);
assertEquals(HttpServletResponse.SC_BAD REQUEST, response.getStatus());
assertEquals("Missing id parameter", response.getErrorMessage());

}

Notice that we are using methods provided by the MockHttpServletResponse object to
manually check the state of the response object. The values that were set in the Controller via
response.sendError() are then checked with getStatus() and getErrorMessage(). The ability
to introspect the request and response objects is part of the value add the stubs provide, as the
native API interfaces don’t provide this functionality.

For completeness, we've included the rest of the tests for the possible error conditions in
the Controller. The last two test cases (Listing 10-13) use both mock objects and stubs to test
the interaction of the Controller with the service layer. Fundamentally, it’s no different than
using mocks to replace the DAO layer.

Listing 10-13. Additional Test Cases for ActivateAccountController

public void testBlankIdParam() throws Exception {
request.setMethod("POST");
request.addParameter("id", " ");

ModelAndView mav = controller.handleRequest(request, response);

assertNull(mav);
assertEquals(HttpServletResponse.SC BAD REQUEST, response.getStatus());
assertEquals("Missing id parameter", response.getErrorMessage());

}

public void testIdNotANumber() throws Exception {
request.setMethod("POST");
request.addParameter("id", "fwewefas");

ModelAndView mav = controller.handleRequest(request, response);
assertNull(mav);

assertEquals(HttpServletResponse.SC BAD REQUEST, response.getStatus());
assertEquals("ID must be a number", response.getErrorMessage());

CHAPTER 10 ©" TESTING SPRING MVC APPLICATIONS

public void testOK() throws Exception {
request.setMethod("POST");
request.addParameter("id", "1");
mockAccountService.expects(once())
.method("activateAccount")
.with(eq(new Long(1)));

ModelAndView mav = controller.handleRequest(request, response);

assertNotNull(mav);
assertEquals("success", mav.getViewName());

}

public void testMissingAccountPropogatesException() throws Exception {
request.setMethod("POST");
request.addParameter("id", "1");
mockAccountService.expects(once())
.method("activateAccount")
.with(eq(new Long(1)))
.will(throwException(new AccountNotFoundException(1L)));

try {

controller.handleRequest(request, response);

fail("Should have propogated the AccountNotFoundException");
} catch (AccountNotFoundException e) {

/7 ok

}

Testing Controllers Summary

Testing Controllers is a natural component of a full suite of unit tests for your system.
Controllers written for Spring MVC are easily testable because their dependencies are set
via Dependency Injection, and in general they do not require any facilities from a running
container. The framework code is easily stubbed or mocked so that tests can be written and
verified quickly.

The Spring Framework provides a rich set of testing stubs inside spring-mock. jar, includ-
ing classes to make writing unit tests for web components very simple. These Servlet API stubs
are not specific to Spring, so you may find them useful for any tests you create for your web
components.

When testing components such as Controllers, you should create mock objects for
dependent objects such as the service layer.

Above all, testing web components should not be any different than testing your domain
object model. A combination of stubs and mocks can make writing and running unit tests for
Controllers simple, effective, and productive.

301

302

CHAPTER 10 " TESTING SPRING MVC APPLICATIONS

Unit Test Summary

Unit tests are meant to be created quickly and run quickly, providing you with a safety net

for eventual refactorings and helping to design a simpler system. Writing tests for the obvious
situations isn’t enough; make sure to consider the edge cases of the code and to test all logic
branches and exceptional conditions. A code coverage utility can help in tracking which code
is actually tested.

It’s important to view the list of unit test tenets not as hard and fast rules, but as guide-
lines to help you write the most effective unit tests possible. The important elements of unit
tests, running fast and independently, should permeate all the tests you create. Remember
that unit tests are written by you, for you. Keep them easy to create and easy to run, and they
will continue to be useful for you.

We recommend that unit tests should be created as early as possible, ideally concurrently
with the module’s creation.

Using mock objects will isolate the class under test to ensure that external variables are
removed from the test. Mock objects also allow a unit test to run without the presence of the
dependency so that the test can run quickly and without risk of affecting the outside world.
Mocks are also a very good way, and sometimes the only way, to test how your code will react
when the dependency behaves under edge cases or in unexpected ways.

Spring provides stubs for easy testing with J2EE APIs such as the Servlet API. You should
use these classes, such as MockHttpServletRequest and MockHttpServletResponse, when writ-
ing tests for Controllers or other web components. These stubs are very easy to use, and make
writing tests for Controllers as easy as testing any other Java class. As with writing all other
unit tests, when testing Controllers be sure to adhere to the principles of “run fast” and “zero
external configuration.”

Some test situations and scenarios, however, simply do not fit into the criteria for a unit
test. If you find you need to write tests that test the interaction between components, you are
writing what is called an integration test. We will discuss integration tests throughout the rest
of the chapter. Let’s define them now.

Integration Tests

We have painted a picture of unit tests as fast, small, lightweight tests that are quick to write
and run. Unit tests are designed to test the smallest elements of your system, isolating each
element and module from the rest of the system. These types of tests not only help ensure cor-
rectness for your system, but also help direct the design of your code—that is, your code needs
to become modular if unit tests can be written effectively in the first place.

Unit tests are excellent for the components of the system that comprise the business
logic. However, there is a lot of code in the system that isn’t necessarily business logic, usually
in the form of database interaction code (the DAOs). Testing these components can quickly
break the rules that we try to follow for unit tests. For example, a unit test shouldn't interact
with external systems such as the database, but how are you supposed to test your DAO
classes? Also, a unit test should test a component in isolation, but how are you supposed to
test that your entire system is wired together properly inside the ApplicationContext?

Enter integration tests: tests written with the same testing framework as your unit tests,
but created specifically to test the interaction between the components of your system. Inte-
gration tests look a lot like unit tests, but they differ on their scope and intention. We're also

CHAPTER 10 ©" TESTING SPRING MVC APPLICATIONS

allowed to bend the rules mentioned above, while keeping with the main themes of quickness,
repeatability, and isolation.

Bend, Don’t Break

When you create an integration test, you are openly acknowledging that you are testing the
interaction between two components of the system. Many times, this might mean you are
even writing tests that interact with the database. As you create these tests, keep in mind the
tenets that make unit tests so successful.

* Leave external state untouched: Even though an integration test might interact with the
database, when the test is finished it must leave that database in a clean state. The data-
base, or any external resource, must be left in the same state it was in before the test
ran. For example, this means you must roll back the database transaction after each
test run. It’s a safe and simple way to ensure the database is not changed.

e Isolated external resources: We argued that for unit tests, there should be no external
resources involved. For an integration test, though, testing the interaction with the
external resource is the whole point. However, the test should exercise only one exter-
nal resource at a time to minimize the areas affected and to keep the test run times as
low as possible.

* Run fast: Still as important for integration tests as it is for unit tests, all of your tests
should run extremely fast. This is related to keeping each test dependent on only
one external resource, as well as smart resource management. For instance, if your
integration test requires a Spring ApplicationContext, caching the context instance
across test runs can greatly speed up the test runs. Of course, if your test alters the
ApplicationContext, you will want to recreate the context for every test run.

e Test smallest unit of code: Even though integration tests are written testing two compo-
nents of the system, each individual test must still exercise a single method of the class
under test. Keeping the amount of code under test to a minimum is extremely helpful
when a bug is inevitably found, as it minimizes the amount of code you have to search
through.

As you can see, the basic guidelines for integration tests mesh well with unit tests.
However, with integration tests, we are explicitly testing the interaction of two or more com-
ponents in the system. With Spring applications, this type of testing becomes quite important
because of the amount of configuration and the extent it reaches into the system.

If we take a step back and look at the range of testing types, we might consider the com-
piler itself to be a type of test. It is ensuring that access modifiers are obeyed, that the correct
number of parameters is used, and that you are returning the correct type of object from a
method. These are fundamental checks we must perform before the system is ever run, and
the compiler is performing these syntactical tests for use before compilation. Moving up the
scale in terms of scope, we then encounter unit tests, mentioned earlier in this chapter. Here
we are testing small units of code, such as methods. So far, though, we've only essentially
tested Java code. External system-level configurations have yet to be tested, and yet they are
as important as any Java code we write.

303

304

CHAPTER 10 " TESTING SPRING MVC APPLICATIONS

This is why we must write integration tests, because there are neither any compiler checks
for the system’s configuration (short from simple DTD validity, non-semantic checks) nor unit
tests for exercising the configuration. The integration tests perform this crucial role for Spring
applications, and as you'll see they are nearly as simple to create and run as unit tests.

Overview

The Spring Framework ships with a set of classes designed to enable effective and simple inte-
gration tests. Also found in spring-mock. jar, but unlike the Servlet API stubs, these classes are
specifically intended for Spring applications.

The intent of integration tests is to ensure the configuration of the components with the
Spring Framework is correct and functioning; therefore, it makes sense to begin the test with
areal ApplicationContext. In contrast, during unit tests we created every object and depend-
ency by hand, completely divorced from the container. During integration tests, all objects
and their dependencies will come from the ApplicationContext, just like they will during a
running application.

As you might imagine, if we are trying to keep all tests running extremely quickly, how to
we accomplish this while creating an ApplicationContext for every test? To solve this problem,
the ApplicationContext is cached between test methods and loaded only once. This is a trade-
off to keep tests running quickly, especially when heavyweight objects exist such as
DataSources or connection pools.

The main base class for integration tests is org. springframework.test.
AbstractSpringContextTests. It is a subclass of JUnit’s TestCase, and it is responsible for
caching the ApplicationContext after load and providing methods to reload the context if
required. However, its subclass, AbstractDependencyInjectionSpringContextTests, is what
most of your non-transactional tests will subclass. This class will use Dependency Injection to
populate the test class itself with required objects before the test methods are run. What better
way to retrieve dependencies for your test than through Dependency Injection itself!

Most integration tests will eventually run into the database, so tight control over transac-
tion demarcation is required inside integration tests. Normally we want to perform all of our
work under a transaction, but at the end of the test roll back the transaction to ensure that the
external world will be left in a clean state. Not only does this technique save us in the event we
have a test accidentally delete the entire database, but it allows future tests to run with
expected data available.

To help with database integration tests, Spring provides the handy
AbstractTransactionalSpringContextTests class, which is injected with an instance of a
PlatformTransactionManager during initialization. By default, this test class will begin a trans-
action before every test method and then roll it back during the teardown phase. If you do
wish to commit the transaction after your test run, you may call setComplete() before your
tests completes.

The main themes repeated in these classes are quickness and safety. Because integration
tests interact with the database, the potential for damage is much greater than with a simple
unit test. The classes provided by Spring allow for easy creation of tests that run quickly and
will, by default, clean up after every test method. If your tests do not require any database
interaction, then AbstractDependencyInjectionSpringContextTests is the class to choose. If
your tests do touch the database, we recommend AbstractTransactionalSpringContextTests
for simplified control over the transaction between and during test methods.

CHAPTER 10 ©" TESTING SPRING MVC APPLICATIONS

Example

As always, code examples speak louder than words, so let’s create an example of a transactional
integration test. We will test the configuration and wiring of the typical components of a Spring
MVC application, including the Controller, service layer, and DAO.

For the example in Listing 10-14, we will create a test for the HomeController we introduced
in Chapter 4.

Listing 10-14. HomeControllerIntegrationTest

public class HomeControllerIntegrationTest extends
AbstractTransactionalSpringContextTests {

private HomeController homeController;
private MockHttpServletRequest request;
private MockHttpServletResponse response;

public void setHomeController(HomeController homeController) {
this.homeController = homeController;

}

@0verride

protected void onSetUpBeforeTransaction() throws Exception {
super.onSetUpBeforeTransaction();
request = new MockHttpServletRequest();
response = new MockHttpServletResponse();

}

@SuppressiWarnings("unchecked")
public void testRequest() throws Exception {
request.setMethod("GET");
ModelAndView mav = homeController.handleRequest(request, response);
assertNotNull(mav);
List<SpecialDeal> specials = (List<SpecialDeal>)
mav.getModel().get("specials");
assertNotNull(specials);
assertTrue(specials.size() > 0);

@0verride
protected String[] getConfiglocations() {
return new String[]{"classpath:applicationContext.xml",
"classpath:spring-servlet.xml"};

305

306

CHAPTER 10 " TESTING SPRING MVC APPLICATIONS

It’s very important that whenever you use the AbstractTransactionalStringContextTests
class that a PlatformTransactionManager can be found, by type, in the ApplicationContext
created for the test. This class is able to run without a transaction manager; however, this will
likely lead to unwanted behavior, and most likely behavior that is different than production
deployment.

If you wish to ignore the fact that no transaction manager exists, you must turn off
dependency checking, as shown in Listing 10-15. The AbstractDependencyInjectionSpringe=
ContextTests by default will attempt to account for all dependencies by type, but you can
change this behavior with the setDependencyCheck() method called from the constructor of
your test class.

Listing 10-15. Turning Off Dependency Checking If No Transaction Manager Exists

public HomeControllerIntegrationTest() {
setDependencyCheck(false);

}

The ApplicationContext is configured from the list of resource names returned by the
getConfiglocations() abstract method. All of your test classes must implement this method
and return one or more resource names pointing to ApplicationContext configuration files.
All of these files will be combined into a single ApplicationContext to be used during testing.
Any Dependency Injection is performed using this ApplicationContext as a source.

Tip In our experience, it’s best to use resource names relative to the classpath, as that makes it easier to
run the tests in different environments and IDEs.

The Spring integration test base classes override the setUp() method and mark it as final,
but do provide life cycle callback methods for subclasses that require per-test method initial-
ization. For transactional tests, two methods are provided: onSetupBeforeTransaction() to be
called before the transaction is started, and onSetupAfterTransaction() to be called after the
transaction is started. Both callbacks are called inside setUp(), and thus before every single
test method.

For our example, we have implemented onSetupBeforeTransaction() in order to simply
initialize any required testing stubs.

Because the transactional test cases are subclasses of AbstractDependencyInjectionw=
SpringContextTests, we provide a setHomeController() method so that our test class can
avoid the manual lookup of dependencies from the ApplicationContext. The dependencies
are resolved by type via the autowiring algorithm, and will be re-injected before every test
method. Of course, because the Controller class originates from the ApplicationContext,
all of its dependencies will be injected as well. The assumption at this point is that the class
under test should be fully initialized as if it were running in production.

The actual test method, testRequest(), is written and run just like any other JUnit test
method. However, during the method a transaction is live, and unless setComplete() is called,
at the end of testRequest() the transaction will be rolled back.

CHAPTER 10 ©" TESTING SPRING MVC APPLICATIONS

Create and Use a Special ApplicationContext for Tests Only?

A common question regarding Spring’s integration test support classes is, “Should I create a
custom ApplicationContext configuration for my tests?” Our initial answer to this question is
no, for a good reason. We feel that much of the purpose for integration tests is to test the config-
uration of the application as it will run in production. There’s rarely another good opportunity
to test all that XML, including external configurations such as Hibernate mapping files, before a
deployment.

It is possible that your configuration will require extra bean definitions to replace
objects found only inside your J2EE container, such as connection pools or transaction
managers. If your application requires these container-provided resources, you can create
a testOnlyApplicationContext.xml configuration with bean definitions for those external
resources. Spring can easily host connection pools and transaction managers, which you can
use when running the code outside of the container.

Through intelligent modularization of the configuration files, you will find it easy to swap
bean definitions at test runtime.

Role of the Application Server

It's important to mention that integration tests are still intended to be run outside of the appli-
cation server. Even though the full Spring ApplicationContext is constructed, the test should
still run without being deployed. Both unit tests and integration tests must still run as quickly
as possible, and testing outside the application server is the only way to run the tests and get
immediate feedback.

Testing inside the container is another way to perform integration tests, but should be
avoided due to the time it takes to run the tests. Any test that becomes a hassle to run will
quickly fall out of fashion and thus usefulness. We discourage requiring an application server
for tests.

If your application requires the application server to run, it’s possible that it is not taking
advantage of the configuration options provided by Spring. As mentioned, even if you are using
the server’s connection pool during deployments, you can use Spring to create a connection
pool for test runs.

Summary

Integration tests ensure that the application is wired and configured correctly by creating a full
Spring ApplicationContext for the test class. Spring provides base classes for easy implemen-
tation of dependency injected and transactional tests, making it easy and safe to create tests
that exercise multiple layers of the system, including the database.

These types of tests follow the basic guidelines of unit tests, except they explicitly are test-
ing how multiple components of the system interact. This is an important testing step, as it
checks that all the XML is configured correctly, and usually that the database mappings are
correct as well.

Spring’s AbstractDependencyInjectionSpringContextTests class performs autowiring by
type on the test class itself to populate it with all of its dependencies. These dependencies are
normally the classes under test, and thus enter the test fully wired and configured.

307

308

CHAPTER 10 " TESTING SPRING MVC APPLICATIONS

The AbstractTransactionalSpringContextTests extends the Dependency Injection test
by managing a transaction for each test method. By default, a transaction is created before
each test method and then rolled back afterward, to ensure that the outside “world” was not
permanently changed. This class, however, requires a PlatformTransactionManager in the
ApplicationContext to be able to manage the transactions.

Testing Summary

Spring MVC applications are highly testable, due to their use of interfaces, Dependency Injec-
tion techniques, and decoupled designs. Both unit and integration tests can easily be written
to test not only the domain model, but all layers of the application. The Spring Framework
provides many classes inside spring-mock.jar to help with test creation and management. In
combination with mock objects, the tests for your web components and other layers can pro-
vide immediate feedback for new features and refactorings. This leads to higher confidence in
the system, and thus a greater ability to adapt the system to growing needs and requirements.

Above all, remember that tests should always run fast, whether you are testing a simple
POJO or a complex web Controller. Tests that run fast are tests that are built and run during
development, when they can catch issues earliest.

CHAPTER 11

Introduction to
Spring Web Flow

This chapter will provide a high-level introduction to Spring Web Flow, a framework for man-
aging complex page navigation and conversational scope within web applications. At the end
of this chapter you will

* Understand the motivation for Spring Web Flow

¢ Be familiar with the terms and concepts within Spring Web Flow

What Itch Does Spring Web Flow Scratch?

Today, the Java Servlet specification (http://www.jcp.org/aboutJava/communityprocess/
final/jsr154) provides developers with a standard for processing HTTP requests within a web
application.

The specification defines three different scopes that dictate the visibility and location of
objects and attributes that are associated with request processing. Table 11-1 lists the existing
scopes from the server’s perspective as we know them today.

Table 11-1. Servlet Scopes

Name Lifetime Typically Used For

Request Has the smallest lifetime, is unique to Contains data sent from the browser
each request from a browser, and will (e.g., browser headings and request
be discarded when the view isreturned ~ parameters).
to the browser.

Session Starts as soon as each unique browser Information about the current user
accesses the server, and ends if the server (user details, authentication) is usually
hasn't received a request from that stored in this scope.
browser within a specified timeout
(default of 30 minutes) or if explicitly
destroyed. This scope allows objects to
live across requests.

Application Lives for the duration of the web Contains shared application components

application deployment.

and configuration elements.

309

310

CHAPTER 11 " INTRODUCTION TO SPRING WEB FLOW

For many problems these existing scopes are sufficient. A page can access the request
scope for data specific to a single request and session scope can be used to hold objects that
are required for the user’s entire session such as authentication information.

The Problem with the Servlet Specification

Many web applications have use cases that do not naturally fit into the scopes provided by the
Servlet specification. These use cases often span more than one page but do not require the
longevity of the session. Users may also perform different use cases per browser session or
even execute the same use case over and over. In this scenario, data associated with one use
case execution needs to be cleaned up before a new execution can begin, which is something
the session cannot do. In essence, the Servlet specification is missing the concept of a
conversational scope to support the execution of use cases that span multiple pages.

Note In Spring Web Flow, the name for a conversation is flow. We will use the two words interchangeably
throughout the next two chapters.

Figure 11-1 illustrates these different types of interactions.

O
A

Welcome Page

Add a new user
Web Page
Web Page Web Page

Web Page
Create a report
Web Page Web Page

Request (page)
. Conversation/use case Web Page
- Session

Figure 11-1. Example use cases and corresponding scopes

CHAPTER 11 " INTRODUCTION TO SPRING WEB FLOW

This means for any nontrivial web application, request scope is too fine grained and ses-
sion scope is not fine grained enough.

Why not store everything in the session and manually perform cleanups when the con-
versation ends? To begin, there are many well-documented issues associated with storing
context within the session, including (but not limited to):

e Server affinity. If your application is to be deployed into a clustered environment,
then your clients will suffer from server affinity. This occurs because a user’s session
is unique to each server, so if a user connects to another server, he will receive a whole
new session. Server affinity prevents failover (http://en.wikipedia.org/wiki/Failover),
thus reducing your ability to load balance within a cluster.

Note There are solutions for session replication in clustered environment, but they are typically
very expensive and complex, and they always incur some performance overhead.

* Greatly increased memory footprint per user. Because each user’s session is stored in
memory, the serving capacity of each server is reduced. This is compounded by the fact
that out-of-date context (e.g., ended or expired conversations) still exists in the session
and needs to be manually removed.

* Name space clashes. Assuming context for a user registration use case is stored in the
session under the name “registration,” what happens if any given user tries to register
more than one user at the same time using multiple browser windows or tabs? The data
will overwrite itself. In summary, the concept of a conversation scope is a missing piece
of the Servlet specification. The life span of conversational scope is longer than a
request but shorter than a session. It has an explicit beginning and an end that corre-
sponds to the time to complete or cancel an application transaction that spans one or
more requests into the server.

* No vocabulary for process modeling. The absence of conversational scope introduces a
mismatch between modeling and implementation. Process modeling is not concerned
with individual pages or the concept of a session that encapsulates the browser’s entire
interaction with the server. Instead, it focuses on modeling one or more business goals
of a system. The current Servlet specification (and modern MVC implementations) do
not provide implementation constructs, or vocabularly that engineer naturally to and
from a process model.

The Solution
So how does Spring Web Flow help?

The Flow Is King

Firstly, Spring Web Flow treats conversational scope as a first-level citizen. It was designed
from the ground up with that as the centerpiece. The core artifact within Spring Web Flow is
the flow (or conversation). It is this flow definition that defines a blueprint for a conversation

311

312

CHAPTER 11 " INTRODUCTION TO SPRING WEB FLOW

with the user. Conversations can execute in parallel without intruding on each other, and
when the conversation has finished, all allocated resources are automatically cleaned up.

Implementation Agnostic

Secondly, Spring Web Flow is deliberately abstracted away from the Servlet specification.
The core artifacts within Spring Web Flow are flows, states, actions, and views. As you will
see, there is nothing web-specific about a flow definition; the flow itself could be describing
a set of web pages, a set of windows in a GUI, or even the communication between disparate
systems. At no point within Spring Web Flow are you presented with an HttpServletRequest
or an HttpServletResponse.

Accessible Lexicon

Thirdly, Spring Web Flow enables communication. You will find the core model simple, and
the terminology used is readily accessible to nontechnical people. Tools already exist (like
the Spring IDE Web Flow editor for Eclipse (http://www.springide.org/project)) that make
XML-based flow definitions easily understood, thus bridging the gap between design and
implementation.

Figure 11-2 shows a screenshot of the Spring Web Flow plugin for Eclipse.

|| [sellttem-flow. xml 52
IWM— 5<webflow id="sellItem"
[Marguee s 8))

iy 7 <action-state id="
¢ Transition 8 <action bean="
' Elze Transition 5 <transition onj
10 <!—-- uncomment
[-=-Web Flow States # 11 <l-- <property|
p@ Action State |52 enterPriceAndItemCount 12 </ection-statex
23 View State 13 _ _
5 14 <view-state id="en|
ﬁi? Subflow State 5 <transition omn;
?ﬁ Dedsion State o <actiocn ke
2B End State 7 <prope
a <faction>
(= Web Flow Prop... # 3 </transition>
B Action Z0 </wiew-states
[| {] o
% Attribute Mapper =@ requiresshipping ;i <vicw—stabe id="en]
v |? &{flowScope, sale. shipping} | 23 <transition omy
_ Z4 <acticn be
25 </transition>
Z8 </view—-state>
. Z7
|6? entershippingDetails E 28 <decision-state idj
1 29 <if test="%{fl
u) 30 </decision-state>
. 31
32 <view-state id="en|
33 <transition omn;
[i] 1]]

Figure 11-2. Spring Web Flow plugin for Eclipse

CHAPTER 11 " INTRODUCTION TO SPRING WEB FLOW

Note The actual flow displayed here is a slight variation on the use case we will be implementing later in
this chapter.

Because the terminology used within Spring Web Flow is implementation agnostic, flow
definitions provide a valuable source of documentation that is understandable by all parties
involved in the development process, and best of all, it is never out of date.

Best Practices

Drawing from its roots within the Spring community, Spring Web Flow adheres to established
best practices:

* Develop against interfaces to allow you to plug in the most appropriate implementa-
tion. A fine-grained life cycle event listener infrastructure provides further
customization points.

 Favor integration with established technologies over reinventing the wheel. Spring Web
Flow ties into much of the same foundational infrastructure Spring MVC does. This
includes Spring’s BeanFactory for configuration, Spring’s Data Binder and Validator
concepts, and Spring MVC'’s DispatcherServlet and View resolution subsystems.

¢ Allow reusablility from within other established web frameworks, to provide a choice in
product configuration. As an embeddable “page flow engine,” Spring Web Flow integrates
out of the box with Struts, JavaServer Faces (JSF), and Portlet MVC environments.

* Facilitate test-driven development (TDD) by removing coupling between components,
collaborators, and the deployment environment. Flow executions are easy to test both
in isolation and as part of an end-to-end integration test.

Low Adoption Overhead

Because Spring Web Flow is self-contained, there is little impact when introducing it on exist-
ing projects. There is no requirement or suggestion that Spring Web Flow should be the only
player in the project. It should simply be used when it is appropriate.

Spring Web Flow is another Controller tool in the MVC toolbox. It does not require exclu-
sivity, it does not impose any restrictions on your domain model, and it fits very easily into the
existing Spring MVC architecture. In fact, a major design goal of Spring Web Flow was to do
one thing and do it well.

The final aspect of adoption is modifications to existing code. Because artifacts within
Spring Web Flow are interfaces as opposed to abstract classes, your cost of modifying your
existing artifacts is very low. In all likelihood there would be very little impact on your existing
code base; integration is usually a case of configuring one of the provided Controller imple-
mentations.

313

314

CHAPTER 11 " INTRODUCTION TO SPRING WEB FLOW

Not a Golden Hammer

Although Spring Web Flow is very powerful, flexible, and well architected, it is a solution to a spe-
cific problem—that of conversation scope. The definition of a conversation (for our purposes) is
alogical progression through a predetermined set of steps to complete a business goal.

Is Spring Web Flow suitable for all web applications? No. Is it suitable for sites that are
effectively static resources, each page disconnected from others where the user can jump from
one page to another? No.

It is tempting when using Spring Web Flow to start thinking of it as the only weapon in
your toolbox, the proverbial golden hammer (you only have a hammer, so everything looks
like a nail), but this would be a misuse of the tool.

There are very few absolutes in web development, however, we offer Table 11-2 simply as
a pragmatic guide.

Table 11-2. When to Use Spring Web Flow

Solution When to Use

Spring MVC Controller The page exists in isolation, not as part of a flow,
and requires very little logic to generate it.

Spring MVC SimpleFormController The page is part of a simple form-submission
flow, such as a simple search box.

Spring MVC AbstractWizardFormController A process is represented by a set of sequential
pages through which the user is guided.

Spring Web Flow Any nontrivial, stateful, guided multipage
navigation is required.

Note Even simple use cases may be better implemented in Spring Web Flow if they can be reused as
subflows by larger flows. We will cover this in Chapter 12.

The key point is that Spring Web Flow isn't a replacement for Spring MVGC; it is a comple-
ment to it.

The Big Picture

So what makes up Spring Web Flow? What does it look like? How does it fit into your applica-
tion architecture?

CHAPTER 11 " INTRODUCTION TO SPRING WEB FLOW

Architectural Overview

As Figure 11-3 illustrates, Spring Web Flow integrates with Spring MVC, Spring Portlet MVC,
Struts, and JavaServer Faces (JSF). Because Spring Web Flow is very self-contained, the entry
points to all these frameworks are consistent, and therefore the cost of integration is minimal.

Struts Spring MVC
AN e
webflow.manager.struts.FlowAction webflow.manager.mvc.FlowController

Spring Web Flow

|webflow.manager.jsf.FIowNavigationHandIer| | webflow.manager.mvc.PortletFlowController |

JSF Portlets

Figure 11-3. Overview of integration options

Integration with other frameworks is done by way of a Front Controller (http://java.sun.
com/blueprints/corej2eepatterns/Patterns/FrontController.html)—associating a flow with
a URL that is backed by a Controller.

Inside the Spring Web Flow System

Inside Spring Web Flow a central FlowExecutionManager facade is responsible for launching
executions of flows on behalf of clients. These flow executions represent new user conversa-
tions with the server. Each conversation is given its own local data structure, called flow scope,
allowing for storage of conversational state. Spring Web Flow fully manages the storage and
restoration of these FlowExecution objects in a repository, and automatically discards them
when a conversation ends.

315

316

CHAPTER 11 " INTRODUCTION TO SPRING WEB FLOW

Different Scopes

As previously discussed, information (or context) created during a user’s interaction with the
server is stored in a request, session or conversational scope.

The Servlet API provides infrastructure for accessing request and session scope, and
Spring Web Flow provides access to conversational scope/flow scope.

The primary concern when considering scopes is that of storage: where does data placed in
a scope actually live? Request scope is stored in the request (the data sent from the browser); ses-
sion (and application) scope is stored on the server. Where is flow scope stored? The answer is in
arepository. More specifically, Spring Web Flow delegates this responsibility to implementations
of org. springframework.webflow.execution.FlowExecutionRepository. As you would expect,
Spring Web Flow provides a number of implementations to support different usage scenarios:

e SimpleFlowExecutionRepository
e ContinuationFlowExecutionRepository
e (ClientContinuationFlowExecutionRepository

The first two repository implementations are stateful and are managed in server-side data
structures, typically the session. In this case, putting attributes in flow scope directly increases
server-side memory requirements, as it increases the size of a flow execution stored in a
repository that is managed in a user’s session.

The last implementation is stateless and requires no server-side data structures. When
using this strategy, encoded flow executions representing the state of user conversations are
serialized out to clients and decoded on each request into the server.

You will learn much more about the different repository implementations in Chapter 12,
including how ContinuationRepositories allow browser navigational buttons to behave in a
sensible way within Spring Web Flow. For now it is important to understand that Spring Web
Flow represents the concept of an ongoing conversation with a user in an object called a
FlowExecution and is fully responsible for the management of those executions within a
repository.

Building Blocks

Before Spring Web Flow can execute flows, there must be at least one flow defined. As dis-
cussed, the key artifact in Spring Web Flow is the flow definition. The primary challenge for
developers becomes the design and implementation of a flow definition, a blueprint for user
conversations that drives the execution of a business process.

Note With Spring Web Flow, the primary challenge for developers is the design and implementation of a
flow definition.

To demonstrate the process of designing and implementing a flow definition, we’ll show a
use case of purchasing a product (graphically represented in Figure 11-4). For our purposes,
let’s simplify and assume the user has already logged in and already chosen the type of prod-
uct she wishes to purchase.

CHAPTER 11 " INTRODUCTION TO SPRING WEB FLOW

Enter
‘——> purchase ;Q
start information cancel

Cancel
submit
A4
Is shipping Y6 .| Enter shipping
required? information
no
submit
Show
cost confirmation

Figure 11-4. Purchase Product use case

The preceding flow is very simple, consisting of two steps the user must complete. These
include:

1. Entering the product purchase information
2. Optionally entering product shipping information

There are also two additional steps that perform back-end processing—the first deter-
mining whether shipping is required and the second for submitting the order for processing.
The user never “sees” these steps, as they are carried out by application code.

Finally, there is a single end step called “Show cost confirmation.” When that step is
reached, the user can review the result of order processing but cannot go back and resubmit.

As you will see, one of the architectural strengths of SWF is that it composes logical user
interactions into discrete, self-contained components called flows. This brings several bene-
fits. When an execution of a flow starts, the user can participate in it, but once it ends the user
cannot go back; she can only start a new execution. In addition, the user can only participate
in a very controlled manner, with the flow fully determining how to handle user events.

As a self-contained component, the Purchase Product flow can be made independent
of the other work flows in the system, such as Authenticate User or Browse Catalog, and be
reused in other contexts. This leads to a highly composable application, with the ability to
mix and match flows to create larger and more complex applications.

317

318

CHAPTER 11 I/ INTRODUCTION TO SPRING WEB FLOW

Note A flow that is called from another flow is referred to as a subflow. See Chapter 12 for more details.

Before walking through the implementation of the example flow, we’ll use the following
sections to define some important terminology and concepts.

Flows

Within Spring Web Flow, a flow defines a conversation, or dialogue, between users and the
server. It serves as a blueprint for a use case or business process. The Purchase Product use
case is one example of a flow.

States

The steps of a flow are called states. A state encapsulates behavior that executes when the state
is entered. The exact behavior is a function of the state’s type. Spring Web Flow provides five
core types of states, shown in Table 11-3.

Table 11-3. Types of States

Name Description

Action state Executes your application code, typically delegating to a business service in the
middle tier.

View state Renders a view allowing the user to participate in the flow by entering data or
viewing a message.

Subflow state Spawns another flow as a subflow. The spawning flow is suspended until the
subflow reaches an end state, at which point the subflow will end and the
spawning flow will resume.

Decision state ~ Evaluates a condition to drive a transition to a new state.

End state Terminates a flow.

Every flow definition must contain exactly one start state and at least one end state.

Transitions

All states except end states are transtionable and maintain a set of one or more transitions that
define “allowed paths” to other states. A transition is triggered on the occurrence of an event.

Events

An event is nothing more than “something that happens” within a state. An event is treated as
a state outcome that captures the logical result of a state’s execution.

From Figure 11-4, you can see the event names such as “submit” and “yes” driving state
transitions (the arrows between states). The “submit” event communicates that a submit button
was pressed as the outcome of a view state, and the “yes” event communicates that a true result
was returned when evaluating a conditional expression as the outcome of a decision state.

CHAPTER 11 " INTRODUCTION TO SPRING WEB FLOW

So with knowledge of these basic building blocks in place, the challenge of implementing
a flow definition becomes:

1. defining the states of the flow

2. defining the possible transitions between states and the event-driven criteria for those
state transitions.

Your First Flow

In this section you will implement the example Purchase Product use case using Spring Web
Flow. Chapter 12 will cover many of the decisions that the author has made and reevaluate
some of those decisions regarding how this example works within Spring MVC. This section
will not cover Spring MVC itself, as that is sufficiently covered elsewhere in this book. For now,
let’s assume you have a working Spring MVC project that can be built and deployed onto a
servlet container.

Installing Spring Web Flow

Instructions for downloading and installing Spring Web Flow can be found at http://
opensource2.atlassian.com/confluence/spring/display/WEBFLOW/Home.

Proposed Flow Directory Structure

From our experience it is best to partition your Spring Web Flow configuration information
into file fragments that are responsible for their own concerns. Figure 11-5 is an example of a
prudent directory structure for managing Spring Web Flow configuration artifacts.

Standard Spring Infrastructure common
= MVC-servlet.xml across *all* Spring Web
& . Flows
E your-domain-servlet.xml — M

Definition of first Definition of xth
web flow web flow
% a-flow.xml x-flow.xml
=
=
i
= Bean Factory for BeanFactory for
first web flow xth web flow
a-contextxml | @[

Figure 11-5. Suggested directory layout

319

320

CHAPTER 11 " INTRODUCTION TO SPRING WEB FLOW

The Purchase Product Flow Definition

A flow definition can be engineered in a number of ways. Many users use XML to define their
flows, as XML is a human readable and highly toolable format. However, you may also define
flows in Java (by extending AbstractFlowBuilder) or with your own custom format by imple-
menting a custom FlowBuilder.

For the Purchase Product example web flow, you will use XML. Recall the graphical depic-
tion of the flow definition in Figure 11-4.

Implementing the First Step: View States

The first step of this flow is to enter the purchase information, which requires the user to par-
ticipate in the flow by providing the following bits of information:

e The price at which the product should be sold
» The quantity of products that are to be sold for this order

Since this is the first step of the flow, it is designated as the start state. Since it is a step
where the user is involved, it is a view state. A view state will select a view to render to allow
the user to participate in the flow. See Listing 11-1.

Listing 11-1. /WEB-INF/flows/purchase-flow.xml

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE flow PUBLIC "-//SPRING//DTD WEBFLOW 1.0//EN"
"http://www.springframework.org/dtd/spring-webflow-1.0.dtd">

<flow start-state="enterPurchaseInformation">
<view-state id="enterPurchaseInformation" view="purchaseForm">

</view-state>
</flow>

The preceding instruction means, “When an execution of this flow starts, enter the
enterPurchaseInformation state. Then select the purchaseForm view for display to the user, and
pause the flow execution until a user event is signaled.”

Transitions

As it stands, the preceding view-state definition is incomplete. Recall that all transitionable
state types, which include the view state, must define at least one transition that leads to
another state.

Also recall that a transition is triggered by the occurrence of an event. A view-state event
is triggered by the user to communicate what action the user took. For example, the user may
press the “submit” or “cancel” button. So for a view state, the set of transitions define the sup-
ported user events you wish to respond to for that state and how you wish to respond to them,
as defined in Listing 11-2.

CHAPTER 11 " INTRODUCTION TO SPRING WEB FLOW

Listing 11-2. /WEB-INF/flows/purchase-flow.xml Containing Transitions

<flow start-state="enterPurchaseInformation">
<view-state id="enterPurchaseInformation" view="purchaseForm">
<transition on="submit" to="requiresShipping">
<transition on="cancel" to="cancel"/>
</view-state>
</flow>

The preceding transition instructions can be read, “On the occurrence of the submit
event, transition to the requiresShipping state; on the occurrence of the cancel event, transi-
tion to the cancel state.”

Actions

At this point you have defined a simple view state that will display a form and respond to
“submit” and “cancel” events. You have yet to define the target states of the above transitions,
which is the next logical step.

Before continuing, however, consider some requirements typical of most form views.
Forms usually need to be prepared before their display; that is, it is often the case that view
prerender logic needs to be executed. This logic might load the “backing form object” that will
be edited in the form, or it might load a collection of objects from the database for display in a
drop-down menu or select box.

Similarly, when a form is submitted, there is typically submit or postback logic that needs
to execute. This logic is usually concerned with data binding (the process of copying form
input parameters into properties of the “backing form object”) and data validation (the
process of validating the new state of the form object).

In Spring Web Flow, you invoke arbitrary command logic such as prerender and postback
logic by executing an action that implements the core org. springframework.webflow.Action
interface, as shown in Listing 11-3.

Listing 11-3. org. springframework.webflow.Action

public interface Action {
Event execute(RequestContext context);

}

The interface is simple, consisting of a single method. An Action is expected to execute
arbitrary logic when invoked in the context of a request. Once execution has completed, a
result event (or outcome) is returned which the calling flow may respond to.

An Action can do whatever you want it to do, and we’ll cover a number of out-of-the-box
implementations in this book. What is important to understand now is the Action is the core
construct for executing application code from a flow, and there are many opportunities to
execute Actions within the life cycle of a flow. Table 11-4 provides the available execution
points within a flow life cycle.

321

322

CHAPTER 11 " INTRODUCTION TO SPRING WEB FLOW

Table 11-4. Action Execution Points Within the Flow Life Cycle

Point Description

On flow start Execute one or more “start actions” when a flow starts.

On flow end Execute one or more “end actions” when a flow ends.

On state enter Execute one or more “entry actions” when a state is entered.

On state exit Execute one or more “exit actions” when a state is exited.

Before transition Execute one or more “transition actions” before executing a transition.

In this case, you are interested in executing view prerender logic when the
enterPurchaseInformation state is entered. Then, on execution of the submit transition you
are interested in executing data binding and validation postback logic. See Listing 11-4.

Listing 11-4. /WEB-INF/flows/purchase-flow.xml Containing Entry Actions

<flow start-state="enterPurchaseInformation">
<view-state id="enterPurchaseInformation" view="purchaseForm">
<entry-actions>
<action bean="formAction" method="setupForm"/>
</entry-actions>
<transition on="submit" to="requiresShipping">
<action bean="formAction" method="bindAndValidate"/>
</transition>
<transition on="cancel" to="cancel"/>
</view-state>
</flow>

The preceding instruction now reads, “When an execution of this flow starts, enter the
enterPurchaseInformation state. When the state is entered, first execute the setupForm()
method on the formAction. Then select the purchaseForm view for display to the user, and
pause the flow execution until a user event is signaled.”

The submit transition instruction now reads, “On the occurrence of the submit event,
transition to the requiresShipping state if the bindAndValidate() method on the formAction
executes successfully.”

This gives you behavior typical of a form view state, executing prerender logic as part of a
state entry action, and postback logic as part of a specific transition action. If the transition
action returns a result other than success, the transition will not be allowed, and the state will
be reentered. This allows us to respond to data binding and validation errors correctly by
redisplaying the view so the user can review the errors and revise his edits.

Action Bean Definitions

At this point you have referenced an Action bean from the flow definition with the formAction
identifier (<action bean="formAction" method="setupForm"/>).

CHAPTER 11 " INTRODUCTION TO SPRING WEB FLOW

However, you have not defined the mapping between that identifier and a specific Action
implementation. This is where the existing Spring infrastructure comes in, as Spring Web Flow
uses Spring to drive configuration of flow artifacts such as Action. Refer to Listing 11-5.

Listing 11-5. /WEB-INF/flows/purchase-flow.xml Importing Spring Beans

<flow start-state="enterPurchaseInformation">
<view-state id="enterPurchaseInformation" view="purchaseForm">
<entry-actions>
<action bean="formAction" method="setupForm"/>
</entry-actions>
<transition on="submit" to="requiresShipping">
<action bean="formAction" method="bindAndValidate"/>
</transition>
<transition on="cancel" to="cancel"/>
</view-state>

<import resource="purchase-flow-context.xml"/>
</flow>

Listing 11-6 is the contents of /WEB-INF/flow/purchase-flow-context.xml.

Listing 11-6. /WEB-INF/flow/purchase-flow-context.xml

<?xml version="1.0" encoding="UTF-8"?>
<IDOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN"
"http://www.springframework.org/dtd/spring-beans.dtd">
<beans>
<bean id="formAction" class="org.springframework.webflow.action.FormAction">
<property name="formObjectName" value="purchase"/>
<property name="formObjectClass" value="purchase.domain.Purchase"/>
<property name="formObjectScope" value="FLOW"/>
<property name="validator">
<bean class="purchase.domain.PurchaseValidator"/>
</property>
</bean>
</beans>

By using the import element, you can pull in any number of files containing bean defini-
tions that define artifacts local to the flow definition. These imported bean definitions also
have full access to the beans defined in the parent WebApplicationContext, typically the
DispatcherServlet context.

In this case formAction corresponds to a singleton instance of org. springframework.
webflow.action.FormAction. This action is a MultiAction implementation that provides a
number of action methods related to form processing, including setupForm for executing form
prerender logic and bindAndValidate for executing form postback logic.

323

324

CHAPTER 11 I/ INTRODUCTION TO SPRING WEB FLOW

When invoked, setupForm will create an instance of the purchase.domain.Purchase form
object class and place it in flow scope under the name purchase. This automatically exposes
the Purchase object to the views by that name, which will allow correct prepopulation fields
based on default values.

When bindAndValidate is invoked it will bind incoming request parameters to the existing
purchase bean managed in flow scope. After successful data binding, the configured Validator
will then validate the new state of the bean.

Note FormAction is a very rich object and will be investigated further in Chapter 12.

Testing the Flow Execution

At this point you nearly have a syntactically correct flow definition whose execution can be
unit tested outside of the container. By filling in temporary state “placeholders” for the unde-
fined states, you'll correct the remaining syntax errors. Refer to Listing 11-7.

Listing 11-7. /WEB-INF/flows/purchase-flow.xml Adding End State placeholders

<flow start-state="enterPurchaseInformation">
<view-state id="enterPurchaseInformation" view="purchaseForm">
<entry-actions>
<action bean="formAction" method="setupForm"/>
</entry-actions>
<transition on="submit" to="requiresShipping">
<action bean="formAction" method="bindAndValidate"/>
</transition>
<transition on="cancel" to="cancel"/>
</view-state>

<end-state id="requiresShipping"/>

<end-state id="cancel"/>

<import resource="purchase-flow-context.xml"/>
</flow>

With the requiresShipping and cancel placeholder, when either the submit or cancel transi-
tions are executed, the flow terminates. Once a test verifies that the enterPurchaseInformation
controller logic executes successfully, you'll properly implement the requiresShipping state, as
well as the remaining states of the flow.

Extending AbstractFlowExecutionTests

How do you test the execution of the flow defined so far? Spring Web Flow ships support
classes within the org. springframework.webflow.test package. This support includes conven-
ient base classes for implementing flow execution tests, as well as mock implementations of
core Web Flow constructs such as the RequestContext to support unit testing flow artifacts
such as Actions in isolation.

CHAPTER 11 " INTRODUCTION TO SPRING WEB FLOW

In this case, execution of the preceding purchase flow needs testing. Specifically, the fol-
lowing can be asserted:

¢ When the flow starts, it transitions to the correct start state: enterPurchaseInformation.
o After the enterPurchaseInformation state has entered:
¢ The correct View is selected (purchaseForm).

¢ The model data the View needs is provisioned correctly (an instance of a
purchase bean is present).

¢ On the occurrence of the cancel event, the flow execution ends.

* On the occurrence of the submit event data binding and validation logic executes
correctly.

This is accomplished by writing a test that extends AbstractFlowexecutionTests. Refer to
Listing 11-8.

Listing 11-8. Test Class to Test the Example Flow

public class PurchaseFlowExecutionTests extends AbstractXmlFlowExecutionTests {
@0verride // the location of the flow definition in the file system
protected Resource getFlowlLocation() {
File flowDir = new File("src/webapp/WEB-INF");
return new FileSystemResource(new File(flowDir, "purchaseflow.xml"));

@0verride // the location of the flow definition in the file system
protected Resource getFlowlLocation() {

File flowDir = new File("src/webapp/WEB-INF");

return new FileSystemResource(new File(flowDir, "purchase-flow.xml"));

}

// test that the flow execution starts as expected

public void testStartFlow() {
ViewSelection selectedView = startFlow();
assertCurrentStateEquals("enterPurchaseInformation");
assertModelAttributeNotNull("purchase”, selectedView);
assertViewNameEquals("purchaseForm", selectedView);

}

// test a successful submit, including data binding
public void testSubmitPurchaseInformation() {
testStartFlow();
Map parameters = new HashMap(2);
parameters.put("price", "25");
parameters.put("quantity", "4");

325

326

CHAPTER 11 " INTRODUCTION TO SPRING WEB FLOW

ViewSelection selectedView = signalEvent("submit", parameters);

Purchase purchase = (Purchase)selectedView.getModel().get("purchase");
assertkEquals("Wrong price" new MonetaryAmount("25"), purchase.getAmount());
assertEquals("Wrong quantity", 4, purchase.getQuantity());
assertFlowExecutionEnded();

The preceding test ensures that the controller logic implemented thus far within the flow
definition works as expected. The test can also serve as a convenient way to test the execution
of the use case from the web tier down. As additional states are added to the flow, you simply
add additional test methods that signal events that drive transitions to those states and verify
that the respective state behavior executes correctly.

Decision States

Recall that the next step in this sample flow is to optionally allow the user to enter product
shipping information. In other words, there exists some condition that determines whether or
not shipping information is required for a given flow execution.

The decision state (see Listing 11-9) is designed to handle this type of situation, where a
condition needs to be evaluated to drive a state transition. A decision state is a simple, indem-
potent routing state.

Listing 11-9. /WEB-INF/flows/purchase-flow.xml Containing a Decision State

<flow start-state="enterPurchaseInformation">
<view-state id="enterPurchaseInformation" view="purchaseForm">
<entry-actions>
<action bean="formAction" method="setupForm"/>
</entry-actions>
<transition on="submit" to="requiresShipping">
<action bean="formAction" method="bindAndValidate"/>
</transition>
<transition on="cancel" to="cancel"/>
</view-state>
<decision-state id="requiresShipping">
<if test="${flowScope.purchase.shipping}" then="enterShippingDetails" w=
else="placeOrder"/>
</decision-state>
<view-state id="enterShippingDetails" view="shippingForm">
<transition on="submit" to="placeOrder">
<action bean="sellItemAction" method="bindAndValidate"/>
</transition>
</view-state>
<import resource="purchase-flow-context.xml"/>
</flow>

CHAPTER 11 " INTRODUCTION TO SPRING WEB FLOW

As you can see, if the shipping property of the purchase bean in flow scope evaluates to
true, the flow will transition to the enterShippingDetails state; otherwise, the flow will transi-
tion to the placeOrder state.

In this scenario the decision-state evaluation criteria is an expression defined within the
flow definition. Had the decision criteria been more complex, it could have been made in Java
application code. You'll see how to do this in Chapter 12.

Note You'll learn how to invoke methods on business objects to drive decision-state decisions in Chapter 12.

Action States

Once all information about the product purchase has been collected from the user and vali-
dated, the purchase order can be submitted. The processing of the purchase order is the first
time in this flow where the business tier needs to be invoked, within a transactional context.
The action state is designed to invoke application code, and perhaps code that is non-
indempotent (it should not be repeated). When an action state is entered, one or more actions
are invoked. What these actions do is up to you. In this case, you are interested in calling the
placeOrder () method on an existing OrderClerk business facade. See Listing 11-10.

Listing 11-10. OrderClerk Interface

@Transactional
public interface OrderClerk {
void placeOrder(Purchase purchase);

}

To do this, you simply instruct the flow to call the placeOrder () method for you when the
action state is entered, as shown in Listing 11-11.

Listing 11-11. /WEB-INF/flows/purchase-flow.xml Containing placeOrder Action State

<flow start-state="enterPurchaseInformation">
<view-state id="enterPurchaseInformation" view="purchaseForm">
<entry-actions>
<action bean="formAction" method="setupForm"/>
</entry-actions>
<transition on="submit" to="requiresShipping">
<action bean="formAction" method="bindAndValidate"/>
</transition>
<transition on="cancel" to="cancel"/>

</view-state>

327

328

CHAPTER 11 " INTRODUCTION TO SPRING WEB FLOW

<decision-state id="requiresShipping">
<if test="${flowScope.purchase.shipping}" then="enterShippingDetails" w
else="placeOrder"/>
</decision-state>

<view-state id="enterShippingDetails" view="shippingForm">
<transition on="submit" to="placeOrder">
<action bean="sellItemAction" method="bindAndValidate"/>
</transition>
</view-state>

<action-state id="placeOrder">
<action bean="orderClerk" method="placeOrder(${flowScope.purchase})"/>
<transition on="success" to="showCostConfirmation"/>
</action-state>
<import resource="purchase-flow-context.xml”/>
</flow>

In this case the action referenced is the orderClerk, which is simply a plain old Java object
(POJO). The referenced OrderClerk implementation has no dependency on SWF and does not
implement the Action interface—Spring Web Flow will adapt the placeOrder method to the
Action interface automatically. As you can see, method argument expressions can also be
specified.

The preceding action-state definition means, “When the placeOrder state is entered,
invoke the placeOrder () method on the orderClerk facade, passing it the purchase object from
flow scope as an input argument; then, on a successful return (when no exception is thrown)
transition to the showCostConfirmation state.”

Action states are not limited to invoking just one action; you may invoke any number of
actions as part of a chain. You will see how and when to do this in Chapter 12.

Note You'll learn more about Chain of Responsibility and Spring’s POJO-method-binding capability in
Chapter 12.

End States

The last core state type needed to complete the example flow is the end state. End states sim-
ply terminate the executing flow when entered. Once the execution of a flow is terminated,
any allocated resources in flow scope are automatically cleaned up. The execution cannot
“come back;” it is only possible to start a new, completely independent execution.

Note The exception to this is if the ending flow is being used as a subflow, in which case the flow that
spawned the subflow is expected to resume execution. For more information on subflows, consult Chapter 12.

CHAPTER 11 " INTRODUCTION TO SPRING WEB FLOW

End states effectively define possible flow outcomes (see Listing 11-12). In the Purchase
Product flow there are two possible outcomes: cancel and showCostConfirmation.

Listing 11-12. /WEB-INF/flows/purchase-flow.xml Containing End States

<flow start-state="enterPurchaseInformation">
<view-state id="enterPurchaseInformation" view="purchaseForm">
<entry-actions>
<action bean="formAction" method="setupForm"/>
</entry-actions>
<transition on="submit" to="requiresShipping">
<action bean="formAction" method="bindAndValidate"/>
</transition>
<view-state>

<decision-state id="requiresShipping">
<if test="${flowScope.purchase.shipping}" then="enterShippingDetails" w
else="placeOrder"/>
</decision-state>

<view-state id="enterShippingDetails" view="shippingForm">
<transition on="submit" to="placeOrder">
<action bean="sellItemAction" method="bindAndValidate"/>
</transition>
</view-state>

<action-state id="placeOrder">
<action bean="orderClerk" method="placeOrder(${flowScope.purchase})"/>
<transition on="success" to="showCostConfirmation"/>

</action-state>

<end-state id="showCostConfirmation" view="costConfirmation"/>

<end-state id="cancel" view="home"/>

<import resource="purchase-flow-context.xml"/>

</flow>

End states can optionally select ending or confirmation views that should be
rendered when they are entered. In this scenario, the showCostConfirmation state selects
the costConfirmation view, which will display a summary of the purchase order cost after
order placement.

End states may also be used to trigger redirects after flow, which is a common pattern to
further restrict accidental Back button usage by redirecting the user to a new browser URL.

The Purchase Product Flow: What’s Next

At this point, the purchase order flow has been fully implemented. Listing 11-12 contains a
human-readable, self-contained definition that fully encapsulates the navigation rules for the
purchase product use case—allowing you to change navigation rules without impacting any-
thing else in the system. This module can now be fully tested out of the container and readied
for deployment within the container.

329

330

CHAPTER 11 " INTRODUCTION TO SPRING WEB FLOW

Spring MVC Deployment
To deploy the flow for execution within a Spring MVC environment, you need to define a

FlowController which is a special type of org. springframework.web.servlet.mvc.Controller.
One FlowController will typically manage the execution of all flows within an application.

The FlowController

A FlowController serves as an Adapter (http://en.wikipedia.org/wiki/Adapter pattern)
between Spring MVC and Spring Web Flow (it has knowledge of both systems). A
FlowController exposes a set of managed flow executions for execution at a specific
request URL.

Listing 11-13. Spring MVC DispatcherServlet Configuration

<bean name="/purchase.htm" class="org.springframework.webflow.manager.mvc.
FlowController">

<constructor-arg ref="flowRegistry"/>
</bean>

Spring MVC will now route requests for the /purchase.htm URL to the org.springframework.
webflow.mvc.FlowController. As you can see, the Controller needs a reference to a
flowRegistry, which contains the flow definitions that are eligible for execution.

FlowRegistry

A FlowRegistry (see Listing 11-14) is a dictionary of flow definitions eligible for execution. Flow
definitions placed in a registry are indexed by their identifiers. By default, the filename of the
flow definition, minus the file extension, is treated as the flow id.

Listing 11-14. /WEB-INF/flow.xml Including the purchaseFlow

<bean name="flowRegistry"
class="org.springframework.webflow.registry.XmlFlowRegistryFactoryBean">
<property name="flowlLocations">
<list>
<value>/WEB-INF/flow/purchase-flow.xml</value>
</1list>
</property>
</bean>

As you define new flow definitions, you simply add them as new flow locations. Wildcard
matches are also supported, building on Spring’s ResourceArrayPropertyEditor. See Listing 11-15.

CHAPTER 11 " INTRODUCTION TO SPRING WEB FLOW

Listing 11-15. /WEB-INF/flow.xml Including All Available Flows

<bean name="flowRegistry"
class="org.springframework.webflow.registry.XmlFlowRegistryFactoryBean">

<property name="flowLocations" value="/WEB-INF/flows/**/*-flow.xml">
</bean>

If needed, flow definitions may also be explicitly assigned identifiers and additional, cus-
tom properties when registered.

Additional Configuration

A FlowController plus a FlowRegistry are the only required deployment artifacts for executing
flow definitions within a Spring MVC environment. If you need more power—for example, you
wish to control the way in which flow executions are stored or observe the life cycle of certain
flows—there are additional objects that may be configured, but that configuration is entirely
optional.

Tip Spring Web Flow provides meaningful defaults, but still gives you the power to customize and extend
when you need to. You’ll learn how to configure more advanced options in Chapter 12.

View Template Resolution

There is still one important topic that we have not yet discussed: How are logical view names
selected by view states translated to physical view templates that render responses? The
answer is Spring MVC'’s built-in ViewResolver infrastructure. Spring Web Flow does not care
for this concern; as a controller framework, it simply makes logical view selections. It is the job
of the calling framework (i.e., Spring MVC) to care for mapping those logical view selections to
renderable templates.

View Template Requirements

There are a few requirements placed upon view templates that participate in flow executions.
It should be noted however, that there are not many, and they do not prevent views from being
used “outside” a web flow environment.

» To signal an event in an executing flow, the view must submit back a parameter
that associates the request with the correct flow execution. By default, this is the
_flowExecutionId parameter.

¢ To tell the flow what user event occurred, the view must submit back a parameter that
identifies the event. By default, this is the eventId parameter.

331

332

CHAPTER 11 " INTRODUCTION TO SPRING WEB FLOW

Those are the only two requirements: each view wishing to participate in an executing
flow must submit the flowExecutionId parameter to associate itself with the correct flow
execution and _eventId parameter to tell that execution what happened in the resuming
view state.

Listing 11-16 contains an example of a view participating in a flow execution by submit-
ting back the necessary parameters via hidden form parameters.

Listing 11-16. Example JSP to Continue an Existing Flow

<html>
<head><title>Example page to continue a flow</title></head>
<body>
<form method="POST" action="/purchase.htm">

<input type="hidden" name="_flowExecutionId" value="${flowExecutionId}"/>
<input type="button" name="_eventId submit" value="Submit"/>
</form>
</body>
</html>

This example shows use of the special eventId button name prefix, which allows Spring
Web Flow to obtain the_eventId without JavaScript when using multiple submit buttons
within a single form.

Launching the Flow from the Browser

With the knowledge you have now, you are ready to execute an instance of the Product Purchase
flow from your web browser. To launch a new flow execution, simply point it at the URL of the
FlowController, parameterizing the URL with the flow to execute:

http://localhost:8080/purchase.htm? flowId=purchase-flow

Each time you hit that URL, a new flow purchase-flow execution will be launched and
transitioned to its start state. When the execution reaches a view state, control will be returned
to the client to allow the user to participate in the flow. Subsequent requests to the server must
provide the eventId and the_ flowExecutionId to specify what happened in what conversation.

Tip You can think of the f1owId as analogous to the name of a class, while the flowExecutionId is
analgous to an object reference.

This ping-pong between the view and Spring Web Flow can be visualized as shown in
Figure 11-6.

CHAPTER 11

INTRODUCTION TO SPRING WEB FLOW

Create a new FlowExecution
for the flow named
“purchase-flow”

Y

Execute the first state
(enterPurchaselnformation)

Figure 11-6. View of the View->Server->View Interaction

Summary

flowld=purchase-flow
View - P >
_flowExecutionld=
. (purchase-flow, enterPurchaselnformation)
View <
_flowExecutionld=
. (purchase-flow, enterPurchaselnformation)
View >
_eventld=submit

Load the view and state
specified by the flowExecutionld,
and progress to the
“submit” transition

l

Continue through the flow

Spring Web Flow was designed from the outset to manage the definition and execution of
a dialogue between a user and the server. It is not an extension to Spring MVC, but rather a
stand-alone (and very well-integrated) tool for developing self-contained application con-

troller modules.

Model Conversations

Developers now have a tool kit that explicitly models the conversational flow, in addition to
providing access to the existing servlet (or portlet) infrastructure.
Conversation scope is not just a subset of session scope; it is the ability to assign each new
conversation its own new data set. Request scope is unique per page request, session scope is
unique per browser, and conversation scope is unique per conversation. Conversations can
actually span sessions (more on this in Chapter 12) or exist multiple times within the same

session.

333

334

CHAPTER 11 " INTRODUCTION TO SPRING WEB FLOW

Allows for Extension

Spring Web Flow was designed from the ground up to be as extensible as possible. This is
achieved through providing well-documented extension points and its ability to hook into a
rich domain model in a noninvasive manner.

Another driving factor for Spring Web Flow was that of integration with existing MVC tool
kits. Because Spring Web Flow is self-contained, integration is usually a case of configuring
one of the provided adapters and requires very little, if any manipulation of your existing code.

Testable

Spring Web Flows allows for the development of externalized, self-contained Controller
modules that are fully testable out of the container.

Identifying Flows (Easy, Natural Language)

The vocabulary that Spring Web Flow uses is sensibly not tied to a web tier; it talks about
flows, states, and views, thus reducing the inherent conceptual gap between designers and
implementers. In fact, it is not too much of a stretch to imagine a nirvana where the use-case
models are manipulated in your favorite UML tool that Spring Web Flow then interrogates via
an implementation of org.springframework.webflow.config.FlowBuilder.

In the next chapter, we will delve into the more advanced aspects of Spring Web Flow
(e.g., subflows, exception handling, continuations, long-living transactions) and detail how
to handle common problems like Back button navigation and double submissions.

CHAPTER 12

Advanced Spring Web Flow

This chapter builds on the introduction we presented in Chapter 11 and covers some of the
more advanced problems that Spring Web Flow solves. You will see how Spring Web Flow sim-
plifies web application development by elegantly solving the Back button problem, as well as
the duplicate form submission problem.

After reading this chapter you will have a deeper understanding of how Spring Web Flow
works and be able to extend the framework to meet your needs.

Business Logic and Flows

Chapter 11 introduced the Spring Web Flow framework and walked through the implementa-
tion of an example flow. It also discussed how Spring Web Flow should not be treated as a
golden hammer. One area where you need to be especially considerate of this point is that

of logic; how much and what type of logic is appropriate in a web flow definition?

Business Logic

Let’s reconsider the problem Spring Web Flow solves, that of modeling conversations and exe-
cuting complex page navigation rules. It is neither a business rules engine nor a generic work
flow engine, and it does not claim to be. Spring Web Flow fits very firmly in the presentation
layer of the layered architecture discussed in Chapters 2 and 3. Because of its power and the
fact a flow definition “feels” somewhat like a work flow document, it can be tempting to allow
business logic to creep into the flow definition, but it really doesn’'t belong there.

Why does this matter? Well, primarily because your business rules are no longer isolated
or explicit. As an example, one of us was responsible for developing a web application that
allowed nontechnical users to maintain their own web site content. Part of the business rules
stated that users could only edit pages for which they had both exclusive access and appropri-
ate permissions. To meet these requirements the author produced the flow fragment shown in
Listing 12-1.

Listing 12-1. Spring Web Flow Fragment Enforcing Business Rules

<action-state id="lockPage">
<action name="lock" bean="lockAction" method="lock"/>
<action name="checkPermissions" bean="securityAction" w»
method="checkPermissions"/>
<transition on="lock.error" to="concurrentEditError.view"/> 335

336

CHAPTER 12 " ADVANCED SPRING WEB FLOW

<transition on="checkPermissions.error" to="accessDenied.view"/>
<transition on="checkPermissions.success" to="nextAction"/>
</action-state>

Note Both lockAction and securityAction were trivial adapters between Spring Web Flow and the
business tier and hence are not shown. In the “POJO Actions” section later in this chapter you will see how
to do away with such objects.

Although this worked, it was not ideal; the business rule was only enforced in the flow
definition. If the business rule was changed (e.g., they only had to have exclusive access) then
the web flow definition would have to change, even though the affected logic has nothing to
do with presentational or navigational logic.

Many enterprise applications have multiple entry points into the system, including not
only the XHTML interface, but also web services, batch updates, and even rich clients. When
business logic resides only in web flow artifacts, all other systems either lack that logic or need
to reimplement it. For this reason, keep the business logic of the system out of the web flow
layer and inside the business (or service) layer and domain model.

Tip Asking the question “what needs to change if | change x?” is a good way of determining whether
X belongs or not. If changing x requires changing multiple layers or a seemingly irrelevant layer (as in this
case), then there is something wrong with the application design. In this case, a change to the business logic
resulted in a change to the flow definition, indicating the flow definition is not the right place for this logic.

So what is the solution? Simple: Move the business rule out of the web flow. Does this pre-
vent the web flow from referencing the business rule? Of course not, it simply means that the
web flow does not implement the business rule. Refactoring might lead to something like
Listing 12-2.

Listing 12-2. Spring Web Flow Fragment Referencing Business Rules

<action-state id="checkRights ">
<action bean="checkRightsAction"/>
<transition on="error" to="rightsViolation.view"/>
<transition on="success" to="nextAction"/>
</action-state>

The flow now drives the execution of the business rule, but does not define it. When
implementing Spring Web Flow, be sure to avoid inadvertently coding business logic inside of
your flow.

CHAPTER 12 " ADVANCED SPRING WEB FLOW

Flow Granularity

Flows come in varying granularities, from large top-level flows composed of many smaller
subflows to self-contained flows with no dependencies. Spring Web Flow gains much of its
power from its ability to compose multiple flows together, creating modular and reusable
application components.

Up to this point, you have seen flow definitions that are self-contained with no composi-
tion. In this section we will show you how to create modular flow definitions with subflows
and inner flows.

Subflows

A subflow is simply a flow called by another flow. Any flow can be a subflow, and any subflow is
a flow. This is possible because a flow is a coarse-grained component with a well-defined con-
tract that acts as a self-contained black box. What happens inside a flow is hidden from any
other flows, including the calling flow.

Note When a flow is spawned by another flow, the spawning flow is often referred to as the parent flow
or calling flow, while the flow being spawned is often referred to as the subflow or child flow.

Architecturally, subflows are a powerful mechanism that enable the definition of complex
flows composed of one or more subflows. Subflows can themselves contain subflows (there is
no limit to the depth of subflow nesting). Subflows are best used to model logical sequences of
steps when reuse is possible.

Consider the Purchase Product use case from Chapter 11; it contained a step to capture
product shipping information. In a real application this step could be quite complex, consisting
of different screens dependent upon the mechanism used to ship the product (air, sea, land, and
so on). You can imagine this step being reused elsewhere in the application (wherever shipping
information is required), and therefore this self-contained and reusable component is a good
candidate for refactoring into its own flow. The steps involved in refactoring logic out of an exist-
ing flow and into a subflow are as follows:

1. Isolate the web flow fragment and dependent beans to be modeled as a subflow.
2. Move the fragment and the dependent beans into their own flow definition.

3. Within the new flow definition, define an end state for every logical flow outcome. Each
end state should expose any flow attributes that are “returned” by that outcome (in this
case, the shipping information).

4, Replace the factored-out fragment in the original flow with a call to the subflow using
the subflow state.

Recall the flow definition from Chapter 11. The isolated fragment related to entering ship-
ping information is boldface. See Listing 12-5.

337

338

CHAPTER 12 " ADVANCED SPRING WEB FLOW

Listing 12-3. The Purchase Product Flow Definition

<flow start-state="enterPurchaseInformation">
<view-state id="enterPurchaseInformation" view="purchaseForm">
<entry-actions>
<action bean="formAction" method="setupForm"/>
</entry-actions>
<transition on="submit" to="requiresShipping">
<action bean="formAction" method="bindAndValidate"/>
</transition>
<transition on="cancel" to="cancel"/>
</view-state>

<decision-state id="requiresShipping">
<if test="${flowScope.purchase.shipping}" then="enterShippingDetails" w=
else="placeOrder"/>

</decision-state>

<view-state id="enterShippingDetails" view="shippingForm">
<transition on="submit" to="placeOrder">
<action bean="sellItemAction" method="bindAndValidate"/>
</transition>
</view-state>

<action-state id="placeOrder">
<action bean="orderClerk" method="placeOrder(${flowScope.purchase})"/>
<transition on="success" to="showCostConfirmation"/>

</action-state>

<end-state id="showCostConfirmation" view="costConfirmation"/>

<end-state id="cancel" view="home"/>

<import resource="purchase-flow-context.xml"/>

</flow>

The preceding fragment uses the purchase bean, which contains all the shipping informa-
tion as member variables. Since subflows are independent and isolated from their calling flows,
the shipping information will be extracted into its own class called Shipping. This new
Shipping class will be managed by its own FormAction.

Thus, a new flow (as listed in Listing 12-4) is created in /WEB-INF/flows/shipping-flow.xml.

Listing 12-4. New Spring Web Flow Subflow

<flow start-state="requiresShipping">
<decision-state id="requiresShipping">
<if test="${flowScope.requiresShipping}" then="enterShippingDetails"
else="finish"/>
</decision-state>

CHAPTER 12 " ADVANCED SPRING WEB FLOW

<view-state id="enterShippingDetails" view="shippingForm">
<entry-actions>
<action bean="formAction" method="setupForm"/>
</entry-actions>
<transition on="submit" to="finish">
<action bean="formAction" method="bindAndValidate"/>
</transition>
</view-state>

<end-state id="finish">
<output-attribute name="shipping"/>
</end>

<import resource="shipping-flow-context.xml"/>
</flow>

Note Deciding whether to put the requiresShipping guard into the subflow or keep it in the
calling flow is an interesting exercise. On the one hand you could argue that the decision is part of the
enterShipping logic (and hence be part of the subflow); on the other you could argue that the subflow
should only be called when needed (and hence be part of the calling flow).

When a subflow ends (by reaching an end state), the subflow signals an ending result
event with the id of the end state. The resuming subflow state in the calling flow is responsible
for executing a transition on the occurrence of that event, as well as mapping any output
attributes (which you can think of as return values).

Tip If the flow will only ever be called as a subflow, then there is no need to specify views on the end state.

In this example the new shipping subflow is “returning” the shipping bean to the
calling flow, or at least making the shipping information available to the calling flow. The
<output-attribute name="shipping"/> declaration informs Spring Web Flow to expose
the shipping object once the subflow has finished. As you will see later, the calling flow
can then retrieve this and map it into its scope.

Listing 12-5 contains the definition of the shipping flow’s formAction bean.

Listing 12-5. /WEB-INF/flows/shipping-flow-context.xml Bean Factory for the
shippingInformation Subflow

<beans>
<bean id="formAction" class="org.springframework.webflow.action.FormAction">
<property name="formObjectName" value="shipping"/>

339

340

CHAPTER 12 " ADVANCED SPRING WEB FLOW

<property name="formObjectClass" value="purchase.domain.Shipping"/>
<property name="formObjectScope" value="FLOW"/>
<property name="validator">
<bean class="purchase.domain.ShippingValidator"/>
</property>
</bean>
</beans>

Finally the flowRegistry bean in /WEB-INF/flows.xml is updated to include the new sub-
flow, as shown in Listing 12-6.

Listing 12-6. Modified flowRegistry Definition

<bean name="flowRegistry"w
class="org.springframework.webflow.registry.XmlFlowRegistryFactoryBean">
<property name="flowlLocations">
<list>
<value>/WEB-INF/flows/purchase-flow.xml</value>
<value>/WEB-INF/flows/shipping-flow.xml</value>
</1list>
</property>
</bean>

The subflow is now ready to be used. The next step is to replace the extracted fragment in
/WEB-INF/flows/purchase-flow.xml with a new subflow-state definition that instructs the flow
to spawn the shipping flow as a subflow. The refactored purchase flow is shown in Listing 12-7.

Listing 12-7. Modified /WEB-INF/flows/purchase-flow.xml

<flow start-state="enterPurchaseInformation">
<view-state id="enterPurchaseInformation" view="purchaseForm">
<entry-actions>
<action bean="formAction" method="setupForm"/>
</entry-actions>
<transition on="submit" to="enterShippingInformation">
<action bean="formAction" method="bindAndValidate"/>
</transition>
<transition on="cancel" to="cancel"/>
</view-state>

<subflow-state id="enterShippingInformation" flow="shipping-flow">
<attribute-mapper>
<input-mapping name="purchase.requiresShipping" as="requiresShipping"/>
<output-mapping name="shipping" as="purchase.shipping"/>
</attribute-mapper>
<transition on="finish" to="placeOrder"/>
</subflow-state>

CHAPTER 12 " ADVANCED SPRING WEB FLOW

<action-state id="placeOrder">
<action bean="orderClerk" method="placeOrder(${flowScope.purchase})"/>
<transition on="success" to="showCostConfirmation"/>

</action-state>

<end-state id="showCostConfirmation" view="costConfirmation"/>

<end-state id="cancel" view="home"/>

<import resource="purchase-flow-context.xml"/>

</flow>

Tip Remember, by default the name of the flow is derived from the name of the file it is defined in.
Because the file is /WEB-INF/flows/shipping-flow.xml, the name (by default) is shipping-flow.

The subflow state defines a number of instructions including

* the flow to spawn as a subflow(shipping-flow);

* aset of attribute mappings (explained in the following section);

* one or more transitions eligible for execution when the subflow ends.

When calling a subflow a transition is typically defined for every end state within the
subflow. When the subflow reaches an end state, the subflow will end, and control will return
back to the subflow state in the calling flow. If the subflow state does not contain a transition
matching the ending result of the subflow, a NoMatchingTransitionException will be thrown.

Attribute Mappings

A new element has been introduced within the <subflow-state> element: <attribute-mapper>.
The <attribute-mapper> element, covered in the following section, plays a significant role
when calling subflows, providing the integration between a parent flow and a child flow.
Subflows acting as self-contained black boxes are a very powerful concept, but are some-
what limited if there is no communication at all between the calling flow and the subflow. This
is where AttributeMappers come in. Remember, subflows are independent of the parent flow
and do not share the parent flow’s context. Any information the parent needs to pass into the
subflow, or the subflow needs to return back to the parent, must be explicitly mapped.

Note The attribute-mapper fragment from Listing 12-7 contains both an input-mapping and
an output-mapping; however, input-mapping, output-mapping, and even attribute-mapper are
not required.

34

342

CHAPTER 12 " ADVANCED SPRING WEB FLOW

AttributeMappers

The org.springframework.binding.AttributeMapper, shown in Listing 12-8, is a generic serv-
ice interface for mapping attributes from one source to another. Spring Web Flow uses it to
map objects and properties from one flow to another.

Listing 12-8. AttributeMapper Interface

public interface AttributeMapper {
void map(Object source, Object target, Map context);

}

Example

Let’s look again at the subflow state and attribute mappings from Listing 12-7:

<subflow-state id="enterShippingInformation" flow="shipping-flow">
<attribute-mapper>
<input-mapping name="purchase.requiresShipping" as="requiresShipping"/>
<output-maping name="shipping" as="purchase.shipping"/>
</attribute-mapper>
<transition on="end" to="placeOrder"/>
</subflow-state>

The <input-mapping> element instructs Spring Web Flow to map the value of the
requiresShipping property of the purchase object in the parent flow scope to an attribute in
the subflow scope with the name requiresShipping.

The <output-mapping> element instructs Spring Web Flow to map the result of
the shipping subflow output attribute to the shipping property on the purchase object in the
parent flow scope.

Figure 12-1 graphically represents this.

Purchase Flow Shipping Flow

purchase.requiresShipping

requiresShipping

requiresShipping
shipping

purchase.requiresShipping
purchase.shipping

Figure 12-1. Graphical representation of mapping attributes to and from a subflow

CHAPTER 12 " ADVANCED SPRING WEB FLOW

Custom AttributeMappers

If the default implementation (org.springframework.webflow.support.
ParameterizableFlowAttributeMapper) is not sufficient, you can provide your own implemen-
tation of org. springframework.webflow.FlowAttributeMapper. Listing 12-9 provides a listing
for a custom implementation of FlowAttributeMapper, which performs the same function.

Listing 12-9. Implementation of ShippingAttributeMapper

public final class ShippingAttributeMapper implements FlowAttributeMapper {
public Map createSubflowInput(RequestContext requestContext) {
Map map = new HashMap();
Purchase purchase = (Purchase)w
requestContext.getFlowScope().get("purchase");
map.put("requiresShipping", purchase.isRequiresShipping());
return map;

}

public void mapSubflowOutput(Map subflowOutput, RequestContext requestContext) {
Shipping shipping = (Shipping) subflowOutput.get("shipping");
Purchase purchase = (Purchase)w
requestContext.getFlowScope().get("purchase");
purchase.setShipping(shipping);

}

The attribute mappings in the subflow state in /WEB-INF/flows/purchase-flow.xml would
now change to <attribute-mapper bean="shippingAttributeMapper"/>.

Tip You can plug in a custom AttributeMapper using the bean attribute. Many other constructs support
pluggability in this fashion. Search for the bean attribute within the spring-webflow DTD to review them.

Inline Flows

Subflows are a very powerful construct within Spring Web Flow; they allow you to encapsulate
and reuse page navigation logic in multiple contexts. One consequence of extracting a flow to
be used as a subflow is that the extracted flow becomes usable as a top-level, or first-class,
flow. This level of exposure may not always be desirable. For example, a particularly complex
process that is composed of multiple logical subprocesses may benefit from being partitioned
into separate flows, even if those flows will never be needed outside of the parent flow. The
appropriate construct for this scenario is an inline flow.

343

344 CHAPTER 12 " ADVANCED SPRING WEB FLOW

An inline flow has the exact same behavior as a subflow; they are both flows, but inline
flows exist entirely within the containing flow definition and are local to that definition. The
general strategy for extracting an inline flow is as follows:

1. Move the flow fragment into an <inline-flow> element within the parent flow.
2. If the fragment was previously a top-level flow, remove the flow from the flowRegistry.

Applying step 1 to /WEB-INF/flows/purchase-flow.xml makes the shipping flow an inline
flow, as shown in Listing 12-10. Notice how the parent subflow state doesn’t change. There is
no difference between calling either a top-level flow or an inline flow as a subflow. An inline
flow by definition must simply be declared (and fully contained) within the calling flow.

Tip Subflows are retrieved via the f1lowRegistry mechanism, while inline flows are declared within the
same flow.

Listing 12-10. /WEB-INF/flows/purchase-flow.xml with the Shipping Flow As an Inline Flow

<flow start-state="enterPurchaseInformation">
<view-state id="enterPurchaseInformation" view="purchaseForm">
<entry-actions>
<action bean="formAction" method="setupForm"/>
</entry-actions>
<transition on="submit" to="enterShippingInformation">
<action bean="formAction" method="bindAndValidate"/>
</transition>
<transition on="cancel" to="cancel"/>
</view-state>
<subflow-state id="enterShippingInformation" flow="shipping-flow">
<attribute-mapper>
<input-mapping name="purchase.requiresShipping"w=
as="requiresShipping"/>
<output-mapping name="shipping" as="purchase.shipping"/>
</attribute-mapper>
<transition on="finish" to="placeOrder"/>
</subflow-state>
<action-state id="placeOrder">
<action bean="orderClerk" method="placeOrder(${ flowScope.purchase})"/>
<transition on="success" to="showCostConfirmation"/>
</action-state>
<end-state id="showCostConfirmation" view="costConfirmation"/>
<end-state id="cancel" view="home"/>
<import resource="purchase-flow-context.xml"/>

CHAPTER 12 " ADVANCED SPRING WEB FLOW

<inline-flow id="shipping-flow">
<flow start-state="requiresShipping">

<decision-state id="requiresShipping">

<if test="${flowScope.requiresShipping}" then="enterShippingDetails"=
else="finish"/>

</decision-state>

<view-state id="enterShippingDetails" view="shippingForm">
<entry-actions>

<action bean="formAction" method="setupForm"/>
</entry-actions>
<transition on="submit" to="finish">
<action bean="formAction" method="bindAndValidate"/>

</transition>

</view-state>

<end-state id="finish">
<output-attribute name="shipping"/>

</end>

<import resource="shipping-flow-context.xml"/>

</flow>
</inline-flow>

</flow>

Summary

Flow definitions have two levels of granularity, shown in Table 12-1.

Table 12-1. Flow Definition

Flow Artifact Appropriate Use

Top-level flow Defines an entire use case that can be reused in other contexts as a subflow.
Responsible for completing a logical application transaction.

Inline flow Defines an application transaction that is encapsulated within a larger use case
and is fully contained within the larger flow.

The key point to take away is that a flow always represents a controlled navigation that
accomplishes a logical unit of work for a single user. Whether it should be a top-level flow or
inline flow is dependent upon whether the flow logic should be reused in other contexts.

At the start of a flow definition process it is best not to worry too much about whether a
flow should be a top-level flow or an inline flow. The need for extracting flows has a tendency
to identify itself in the same way a method, or an interface naturally manifests itself as devel-
opment progresses. The key point is to ensure that a flow models a cohesive application
transaction.

345

346

CHAPTER 12 " ADVANCED SPRING WEB FLOW

Tip It may be helpful to think of a flow as a method call, just one that can span many requests into the
server. Following this analogy, top-level flows would be public, while inline flows would be private.

Managing FlowExecutions

In this section we will look in detail at the life cycle of a FlowExecution from start to end and
learn how that life cycle is managed. Before discussing how a FlowExecution is created, it is
worth reviewing how Spring Web Flow is integrated into the various web frameworks.

Integration with Web Frameworks

Chapter 11 introduced the definition of a flow and discussed briefly how FlowExecutions are
managed. In this section we will delve into the FlowExecutionManager, the central fagade for
driving the execution of flows, and examine what happens behind the scenes.

Essentially, the FlowExecutionManager is the primary fagcade through which other systems
like Spring MVC communicate with Spring Web Flow. If Spring Web Flow is a proverbial black
box, then FlowExecutionManager is the lid.

This “handover” to Spring Web Flow is accomplished by calling either the
FlowExecutionManager.launch() or FlowExecutionManager.signalEvent() method, which
instructs Spring Web Flow to initiate processing of an external user event. The launch opera-
tion instructs Web Flow to launch an entirely new flow execution (or user conversation),
and the signalEvent operation instructs Web Flow to signal a user event against the current
state of an existing flow execution. Both methods accept org.springframework.webflow.
ExternalContext and return org.springframework.webflow.ViewSelection. Listing 12-11
shows the ExternalContext interface fagade.

Listing 12-11. Implementation of org.springframework.webflow.ExternalContext

public interface ExternalContext {
Map getRequestParameterMap();
Map getRequestMap();
SharedMap getSessionMap();
SharedMap getApplicationMap();
public interface SharedMap extends Map {
public Object getMutex();

}

The ExternalContext interface enables Spring Web Flow artifacts such as actions to access
information about the calling environment in a standard, normalized fashion, without coupling
those artifacts to a specific deployment environment. It is up to a system calling into Spring
Web Flow to provide an appropriate ExternalContext implementation. This implementation
may provide access to environment-specific constructs; for example, the servlet-specific
ExternalContext (org.springframework.webflow.context.servlet.ServletExternalContext)
provides access to the native HttpServletRequest and HttpServletResponse Servlet artifacts.

Table 12-2 provides a list of ExternalContext adapters provided by Spring Web Flow.

CHAPTER 12 " ADVANCED SPRING WEB FLOW

Table 12-2. Provided Adapters for ExternalContext

Adapter Class Description

org.springframework.webflow.context. Provides information about a request into Spring
portlet.PortletExternalContext Web Flow from a JSR-168 Portlet environment.
org.springframework.webflow.context. Provides information about a request into Spring
servlet.ServletExternalContext Web Flow from within an HTTP Servlet environment.

A StrutsExternalContext subclass exists for integration
with the Struts framework.

org.springframework.webflow.manager. Provides information about a request into Spring Web
jsf.JsfExternalContext Flow from JavaServer Faces (JSF).

After processing an external event, the FlowExecutionManager returns a ViewSelection.
AViewSelection isaValueObject (http://java.sun.com/blueprints/corej2eepatterns/
Patterns/TransferObject.html) that selects a view to be rendered after event processing
and any model data to be rendered with it. Refer to Table 12-3.

Table 12-3. Overview of org.springframework.webflow.ViewSelection

Property Description

viewName Logical name of the View.

model Map containing data that may be rendered by the view.

redirect Boolean value indicating whether the view should trigger a redirect.

You may wonder why ViewSelection is a class but ExternalContext is an interface.
ExternalContext is a contract for behavior, but a ViewSelection is a concrete object—a value
object. Spring Web Flow does not make assumptions about the environment it is executing
within, so it cannot determine which implementation of ExternalContext to instantiate. It is
up to the external system to instantiate an appropriate ExternalContext when calling into
Spring Web Flow. Similarly, Spring Web Flow makes logical view selections when executing
flows but does not care for response rendering. It is also the responsibility of the calling sys-
tem to locate the appropriate view template to render using a returned ViewSelection asa
pointer. This is why a ViewSelection and not View is returned.

The FlowExecutionManager

As mentioned in the previous section, the FlowExecutionManager is responsible for managing the
creation and resuming of FlowExecutions. It defines two methods, as shown in Listing 12-12.

Listing 12-12. org.springframework.webflow.manager. FlowExecutionManager

public interface FlowExecutionManager {
public ViewSelection launch (
String flowld,

) throws FlowException;

347

348

CHAPTER 12 " ADVANCED SPRING WEB FLOW

public ViewSelection signalEvent(
String eventId,
String flowExecutionId,
ExternalContext context
) throws FlowException;

Note You will notice that the FlowExecutionManager isn’t responsible for ending a flow. It is the
responsibility of the flow itself to determine when it has finished.

When a request is sent from a browser to launch a new flow execution or signal an event
in an existing execution, that request is expected to provide the appropriate parameters. The
initial request handler (or “Front Controller”), typically an adapter between a web framework
like Spring MVC and Spring Web Flow, is then expected to extract those parameters and invoke
this FlowExecutionManager fagcade. To launch a new flow execution, the flowId parameter is
required. To signal an event in an existing flow execution, the flowExecutionId and eventId
parameters are required.

The default names by which these logical FlowExecutionManager request parameters are
defined are sensible (_flowId, flowExecutionId, and eventId).If you wish to change them,
however, you can configure the controller adapters such as the Spring MVC FlowController
with a custom org.springframework.webflow.manager.support.
FlowExecutionManagerParameterExtractor.

FlowExecutions

A single execution of a flow definition is a core concept within Spring Web Flow. This concept is
realized by the org. springframework.webflow.execution.FlowExecution interface. A single flow
definition may have any number of active FlowExecutions executing in parallel, where each
FlowExecution represents a unique instance of that flow, for a given user at a point in time.

Tip 1t may help to think of a Flow as being analgous to a class, a definitional construct, whereas a
FlowExecution is an instance of that class, an active construct.

You might assume a FlowExecution implementation is simply a glorified Map representing
a snapshot of conversational state, but it is actually a much richer object. A FlowExecution
encapsulates not only the state of an executing flow including the current state, the flow
scope, and the stack of flow sessions, but also the behavior necessary to respond to external
events. See Listing 12-13.

CHAPTER 12 " ADVANCED SPRING WEB FLOW

Listing 12-13. org. springframework.webflow.execution.FlowExecution

public interface FlowExecution extends FlowExecutionContext {
ViewSelection start(ExternalContext externalContext)
throws StateException;

ViewSelection signalEvent(String eventId, ExternalContext externalContext)
throws StateException;

void rehydrate(
FlowLocator flowLocator,
FlowExecutionlListenerLoader listenerlLoader);

The interface that is extended (org.springframework.webflow.FlowExecutionContext, see
Listing 12-14) provides contextual information about the executing flow.

Listing 12-14. org. springframework.webflow.FlowExecutionContext

public interface FlowExecutionContext extends FlowExecutionStatistics {
Flow getRootFlow();
Flow getActiveFlow() throws IllegalStateException;
State getCurrentState() throws IllegalStateException;
FlowSession getActiveSession() throws IllegalStateException;

You can see that FlowExecutionContext provides information about the root (or top level)
flow definition, the active flow definition, the current state, and the activeSession.

It is important to understand that a FlowExecution lasts for the entire execution of the
flow including the spawning of subflows. The root flow will always be the top-level flow for
which the FlowExecution is created (in our example this would be purchase-flow). If the flow
spawns a subflow (e.g., shipping-flow) the root flow remains the same, but getActiveFlow()
now returns the subflow definition (shipping-flow).

FlowSessions

This distinction between the root flow and the active flow is modeled by org. springframework.
webflow.FlowSession. A stack of FlowSessions are maintained by FlowExecutionImpl.

In the simple case of a flow without any subflow states, there will only ever be a single
FlowSession. If a flow does contain a subflow state, then each time a subflow is spawned, the
top (active) FlowSession is suspended, and a new FlowSession is created and pushed onto
the stack (shown in Figure 12-2).

As you can see, there is a single FlowExecution representing the entire conversation, but
each flow that is spawned (including the parent) receives its own FlowSession. Each instance
of FlowSession has its own local data structure that is the basis for “flow scope.” Figure 12-2
also shows some of the statuses that a FlowSession can have. Table 12-4 lists all of the possible
statuses and their relevance or meaning (the statuses are defined in org.springframework.
webflow.FlowSessionStatus).

349

350 CHAPTER 12 " ADVANCED SPRING WEB FLOW

FlowExecution
<flow start-state="...”> SessionA
<action-state>
</action-state>
AN H
<subflow-state> ; SessionB
<subflow-state> — SessionC
(suspénded)
(suspénded)
</subflow-state>
: \/ A\
</subflow-state>
ye—————
<view-state>
</view-state>
</flow>
Figure 12-2. FlowSession life cycle
Table 12-4. Status of the FlowSession
Status Meaning Event
Created The FlowSession has been created, Creation of a new FlowExecution.
but is not yet active.
Active The FlowSession is currently executing. When a flow is resumed.
Paused The FlowSession is awaiting user input. When the view is rendered.

Suspended The FlowSession is still valid, but not active. When a new subflow is created, the
existing FlowSession is suspended.

Ended The FlowSession is no longer active. When the end state has been reached.

RequestContext

So far we have looked at FlowExecution which represents the execution of an entire top-level
flow including any subflows that are spawned, and FlowSession which represents the execu-
tion of a single flow definition. There is one final lifetime that hasn’t yet been covered, the
lifetime of a request to manipulate a FlowExecution. This is modeled by org. springframework.
webflow.RequestContext. You may recognize this as the parameter that is passed into the
org.springframework.webflow.Action.execute() method. This object is the one that you will
probably be most familiar with if you have implemented a custom Web Flow artifact such as

CHAPTER 12 " ADVANCED SPRING WEB FLOW

an Action or a FlowAttributeMapper. It is a convenient facade that allows you to access infor-
mation about the currently executing request and the environment in which it is executing.
See Listing 12-5.

Listing 12-15. org. springframework.webflow.RequestContext

public interface RequestContext {
ExternalContext getExternalContext();
FlowExecutionContext getFlowExecutionContext();
Scope getRequestScope();
Scope getFlowScope();
Map getProperties();
Event getlastEvent();
Transition getlastTransition();
void setProperties(Map properties);
Map getModel();

As you can see, you can access the ExternalContext, different levels of data scope, the
state of the conversation, and so on. The key point is that the RequestContext represents
context about the current request.

Table 12-5 summarizes the key artifacts that provide information about the execution of
a flow.

Table 12-5. Main Artifacts Used for the Execution of a Flow

Artifact Description

org.springframework.webflow.ExternalContext Provides access to the external
environment in which Spring Web
Flow is executing.

org.springframework.webflow.ViewSelection Defines a logical view selected for
rendering.

org.springframework.webflow.execution.FlowExecution Represents the entire execution of a
top-level flow, including any
spawned subflows.

org.springframework.webflow.FlowSession Represents the execution of a single
flow definition (not including
subflows).

org.springframework.webflow.RequestContext Represents the execution of a single

request into Spring Web Flow trig-
gered by the occurrence of an
external event.

FlowExecutionListener

Spring Web Flow defines a rich event model that allows you to observe the life cycle of an
executing flow. You can write your own observer by implementing the org.springframework.
webflow.execution.FlowExecutionlListener interface. See Listing 12-16.

351

CHAPTER 12 " ADVANCED SPRING WEB FLOW

Listing 12-16. org. springframework.webflow.execution.FlowExecutionlListener

public interface FlowExecutionlistener {

void requestSubmitted(RequestContext context);

void requestProcessed(RequestContext context);

void sessionStarting(RequestContext context, State startState, Map input)
throws EnterStateVetoException;

void sessionStarted(RequestContext context);

void eventSignaled(RequestContext context, State state);

void stateEntering(RequestContext context, State nextState)
throws EnterStateVetoException;

void stateEntered(RequestContext context, State previousState, State state);

void resumed(RequestContext context);

void paused(RequestContext context, ViewSelection selectedView);

void sessionEnding(RequestContext context);

void sessionEnded(RequestContext context, FlowSession endedSession);

Implementing a FlowExecutionlListener allows you to weave in behavior in an
interceptor-like way. For example, you could provide a SecurityFlowExecutionlListener
implementation that throws an EnterStateVetoException preventing a state from entering
if the user does not have the necessary permissions. You might develop listeners to apply
custom auditing, breadcrumbs (navigation history), or transactional behavior and so on.

Tip For convenience Spring Web Flow provides an empty FlowExecutionListener implementation,
org.springframework.webflow.execution.FlowExecutionListenerAdapter.

Listeners are attached to a FlowExecution viaan org.springframework.webflow.execution.
FlowExecutionListenerLoader. The FlowExecutionlistenerlLoader infrastructure allows you to
define which FlowExecutionListeners apply to which flow definitions. Spring Web Flow provides
an org.springframework.webflow.manager.ConditionalFlowExecutionListenerLoader implemen-
tation for convenience, which is registered with the FlowExecutionManager implementation.

Listing 12-17 shows how to amend the flowExecutionManager declaration to attach a
collection of listeners to executions of all flow definitions.

Listing 12-17. XML Fragment to Register a Number of FlowExecutionListeners

<bean id="flowExecutionManager"w=
class="org.springframework.webflow.manager.FlowExecutionManagerImpl">
<constructor-arg ref="flowRegistry"/>
<property name="listenerLoader">
<bean
class="org.springframework.webflow.manager.ConditionalFlowExecutionlListenerLoader">
<property name="listeners">

CHAPTER 12 " ADVANCED SPRING WEB FLOW

<list>
<bean class="purchase.webflow.PurchaseItemFlowExecutionListener"/>
<bean class="purchase.webflow.AnotherPurchaseItemFlowExecutionListener"/>

</list>

</property>
</bean>
</property>
</bean>

FlowExecution Repositories

When an active FlowExecution needs to be persisted (saved before a page is displayed) or
loaded (resumed after a page is submitted), it is moved to and from a repository. This is
taken care of within Spring Web Flow by implementations of org. springframework.webflow.
execution.repository.FlowExecutionRepository (see Listing 12-18).

Listing 12-18. org. springframework.execution.repository.FlowExecutionRepository

public interface FlowExecutionRepository {
public FlowExecutionContinuationKey generateContinuationKey(
FlowExecution flowExecution
) throws FlowExecutionRepositoryException;

public FlowExecutionContinuationKey generateContinuationKey(
FlowExecution flowExecution,
Serializable conversationId
) throws FlowExecutionRepositoryException;

public FlowExecution getFlowExecution(
FlowExecutionContinuationKey key
) throws FlowExecutionRepositoryException;

public void putFlowExecution(
FlowExecutionContinuationKey key,
FlowExecution flowExecution
) throws FlowExecutionRepositoryException;

public void invalidateConversation(
Serializable conversationId
) throws FlowExecutionRepositoryException;

When saved in a repository, a FlowExecution object is indexed under a unique key, called a
continuation key. This continuation key provides enough information to track a single logical
user conversation that is still ongoing, as well as an index into a snapshot of the conversation
taken at a point in time (relative to the user) that can be restored. This deserves more explana-
tion, so let’s look at the concept of continuations in detail.

353

354

CHAPTER 12 " ADVANCED SPRING WEB FLOW

Continuations

Continuations (http://www-128.ibm.com/developerworks/java/library/j-contin.html,
http://en.wikipedia.org/wiki/Continuation) allow you to capture the entire state of a system
at a point in time and isolate that state in a form that can be resumed at a later point. They
effectively allow you to go back in time and restore a system as it was at that time, “continu-
ing” from there.

Tip Remember, Spring Web Flow already has an object that represents the execution of a flow at a
specific point in time, the FlowExecution.

The Problem of Back Buttons and New Browser Windows

You'll see that a continuation-based approach is a powerful concept that, when applied to the
domain of web applications, helps solve many problems that plague web developers, includ-
ing the well-known Back button problem.

Recall in Spring Web Flow that the state of a user conversation at a point in time is held
by a FlowExecution object, which is stored in a repository between requests. The source of a
repository is configurable, and Spring Web Flow provides both server-side and client-side
solutions. If the repository is stored server-side in the user’s session and there is only a single
copy of a FlowExecution per user conversation, the following issues start to arise:

* What if during the conversation the user goes back in his local history without telling
the server? The browser is now “out of sync” with the state of the FlowExecution on the
server. This could result in signaling an event in the wrong state or even the wrong flow
(when using subflows).

¢ What if the user launches a new window? Both windows will reference the same
FlowExecution. Doing work in either window will cause problems, as the other window
will then be out of sync with the server.

Clearly, a trivial form of FlowExecution storage is not good enough when browser naviga-
tional button support is a requirement. Continuations provide a good solution to this
problem.

With a continuation-based approach, instead of storing a single copy of a FlowExecution
for alogical conversation, you store multiple copies, where each copy represents the state of
the conversation at a point in time that is restorable. Given this, consider the case of going
back within local browser history. When you click Back, you go back to a page that references a
specific FlowExecutionContinuation, which represents a restorable snapshot of the conversa-
tion at that time. When you click a submit button, the FlowExecution is restored at that point
and continued from there. It is always restored in the correct state, so the client always
remains in sync with the server.

CHAPTER 12 " ADVANCED SPRING WEB FLOW

Like anything, however, there are trade-offs. And continuations are no exception.
Specifically:

e Creating copies of a FlowExecution to support restoration increases memory require-
ments. There is also some CPU overhead, as copies are created (based on serialization
by default, which also requires objects in flow scope to be serializable).

¢ A copy is a snapshot of the FlowExecution at a point in time. If you go back to a previous
snapshot, you lose data collected by later snapshots. This “undo” behavior may not be
what users expect.

* Sometimes you don't want to allow back under any circumstances. For example, con-
sider a step in a flow that inserts a token in a database table. You want to make sure that
step executes once, and only once in the logical conversation. If a continuation is cre-
ated for every view state, nothing is stopping the user from going back in history and
reexecuting that step.

These trade-offs are manageable, but it is important to note that implementing a robust
continuation server is not a trivial undertaking.

To address memory concerns, continuations can be expired after a configurable idle
period, and the maximum number of continuations allowed per conversation can be capped.

As for the second “undo” issue, this in large part requires exercising caution on the part of
the web developer. Data placed in flow scope is really associated with a continuation. So if you
go back and reference a continuation created at a previous point in time before the data was
created, the data will no longer be there when you continue from that point. Likewise, if the
data was created during the execution of a subflow, going back to a previous continuation
may restore to a point before the subflow was even launched!

To deal with this, Spring Web Flow provides access to more globally scoped data struc-
tures like conversational and session scope, which are shared by all continuations associated
with a logical conversation. Data placed in these scopes remains there even if you go back and
restore a previous continuation. It is very important to understand the semantic differences
here.

To the third point, continuations can be explicitly invalidated. For example, assume after
view state number three of a ten-view-state flow, all previous FlowExecutionContinuations
should be invalidated, preventing use of the Back button for those steps from that point on.
This can be metadata driven, for example by marking a view state as “nonrepeatable.” In addi-
tion, all continuations associated with a logical conversation can be automatically invalidated
after it is determined the conversation “ends” (by one of the continuations reaching an end
state).

Note The memory expense of using a continuations-based implementation depends somewhat upon
where the continuations are stored. If they are stored on the client (as you will see), there is actually no
server-side state at all.

355

356

CHAPTER 12 " ADVANCED SPRING WEB FLOW

FlowExecutionRepository Implementations

As discussed, Spring Web Flow represents an execution of a flow in the FlowExecution object,
and a FlowExecution is loaded and saved from a repository while a logical conversation
remains active between requests. In a continuation-based repository, each conversation
“snapshot” is captured by an org. springframework.webflow.execution.repository.
continuation.FlowExecutionContinuation which represents a FlowExecution at a single point
in time.

An org.springframework.webflow.execution.repository.continuation.
FlowExecutionContinuation is identified by a unique org. springframework.webflow.
execution.repository.FlowExecutionContinuationKey, which consists of two logical parts,
defined in Table 12-6.

Table 12-6. The Parts of a FlowExecutionContinuationKey

Name Description

ConversationId A unique id that identifies a logical conversation or dialog between a user and
the server. This 1d remains the same for the duration of the logical conversation.

ContinuationId A “pointer” to a single instance of a FlowExecutionContinuation associated
with a logical conversation.

Recall that in Chapter 11 the unique key submitted by the view back to the server to
participate in an ongoing conversation was called the flowExecutionId by default. Thisis a
String-encoded representation of the previously mentioned FlowExecutionContinuationKey
and consists of two delimited parts. The first part identifies the active, logical conversation
(in a repository), and the second part identifies the continuation (or restorable snapshot)
to restore. The flowExecutionId that is submitted by a view is parsed into a
FlowExecutionContinuationKey object, which is then used to load the correct FlowExecution
from the repository.

Spring Web Flow provides a number of stateful implementations of
FlowExecutionRepository and a single, stateless, client-side implementation, as described in
the following sections.

Stateful FlowExecution Repositories

Stateful repositories manage their own state and are typically stored in server-side data struc-
tures such as the HTTP session. Two implementations exist: org. springframework.webflow.
execution.repository.continuation.ContinuationFlowExecutionRepository and
org.springframework.webflow.execution.repository.SimpleFlowExecutionRepository.

ContinuationFlowExecutionRepository

This implementation provides a stateful server-side solution that supports browser naviga-
tional button use.

CHAPTER 12 " ADVANCED SPRING WEB FLOW

It stores snapshots of FlowExecutions that represent a stateful user conversation in an
in-memory map. Each map entry key is a conversationId, uniquely identifying a single
ongoing conversation between a client and the Spring Web Flow system. Each map entry
value is an org.springframework.webflow.execution.repository.continuation.Conversation
object, providing the details about one ongoing logical conversation. Each Conversation
object maintains a stack of org. springframework.webflow.execution.repository.continuation.
FlowExecutionContinuations, each continuation representing a restorable state of a conversa-
tion at a point in time. These continuations allow users to go back in their browser successfully
to continue a conversation from a previous point.

SimpleFlowExecutionRepository

This is a trivial implementation that stores single instances of FlowExecutions in an in-memory
map with a much simpler structure than the ContinuationFlowExecutionRepository. It requires
minimal resource requirements, designed to be used when supporting browser navigation
button use is not necessary (as is the case for many intranet applications that lock down the
browser).

In this repository, each map entry key is a conversationId and each map entry
value is a FlowExecutionEntry object. The FlowExecutionEntry (which is internal to
SimpleFlowExecutionRepository) consists of the FlowExecution and a unique continuationId
that acts as a token required for accessing the conversation. Because the continuationId
is changed after every transition, Back button use and duplicate form submission are not
supported and will result in a NoSuchConversationContinuationException being thrown
consistently each time.

Note This is the default implementation used by RepositoryFlowExecutionStorage.

Stateless FlowExecution Repositories

Stateless repositories do not maintain any internal state, but instead rely on conversational
state to be stored externally—for example, in the database or in a serialized structure sent
from the client. Currently there exists one stateless implementation, org. springframework.
webflow.execution.repository.continuation.ClientContinuationFlowExecutionRepository.

ClientContinuationFlowExecutionRepository

This repository implementation encodes the state of the FlowExecutionContinuation into the
continuationld, which is written out to the browser in the flowExecutionId parameter. Ona
subsequent request, that encoded FlowExecutionContinuation is deserialized and resumed.
This implementation requires no server-side state whatsoever, but still reaps all the benefits
of continuations, including proper browser navigational behavior.

357

358 CHAPTER 12 " ADVANCED SPRING WEB FLOW

There are trade-offs to consider when evaluating this strategy:

e Ifthe flowExecution is large then it becomes more expensive to send to the client and
back on every request. You may be limited to POSTs only.

e There is a security risk when storing all the information on the client. This risk is
mitigated by encrypting the flowExecutionId, but not entirely, and therefore needs
to be considered.

» There is no way to track conversation invalidation after completion (for example, when
a continuation reaches an end state). It is possible to “go back” after completing a flow
and resubmit, completing a single logical application transaction more than once.
Supporting conversation completion detection properly likely involves combining a
client-based continuation strategy with some form of centralized storage, like a data-
base-backed conversation table.

Note Although the _flowExecutionId encryption can be customized, the default implementation is still
open to attack. The default encoding algorithm is done by the Commons Codec package (http://jakarta.
apache.org/commons/codec), with optional support for GZIP compression.

Conversation Invalidation After Completion

All but one of the FlowExecutionRepository implementations provide support for “conversa-
tion invalidation after completion.” This ensures that after a logical conversation ends, it is not
allowed to continue. In other words, once a flow execution has ended, you cannot resume it;
you can only start a new, independent FlowExecution. This prevents the possibility of a dupli-
cate submission.

This is accomplished by explicitly managing the duration of a logical conversation
between a client and the server with the aforementioned conversationId. Once a FlowExecution
associated with a conversation reaches an end state, the entire conversation will be invali-
dated. Any subsequent requests to continue that conversation will result in a
NoSuchConversationException being thrown consistently each time.

Note The exception to this is ClientContinuationFlowExecutionRepository, which does not yet
provide support for conversation invalidation at the time of writing. This will likely be added in a future
release of Spring Web Flow.

States and Transitions Revisited

In Chapter 11 we took a brief look at the various constructs within Spring Web Flow, such as
the flow, states, and transition elements, and this section will explore them again in more
detail. Table 12-7 recalls the different types of states.

CHAPTER 12 " ADVANCED SPRING WEB FLOW

Table 12-7. Different States

Name Description

Action state Executes your application code, typically delegating to a business service in the
middle tier.

View state Renders a view allowing the user to participate in the flow by entering data,
viewing a message or making a decision.

Subflow state Spawns another flow as a subflow. The parent flow is suspended until the subflow
reaches an end state, at which point the subflow will end and the parent flow
will resume.

Decision state Evaluates a condition to drive a transition to a new state.

End state Terminates a flow.

Action States

Action states are the primary way to execute your business logic within Spring Web Flow. They
are comprised of action beans and transitions, but may also specify action beans to be exe-
cuted whenever the state is entered or exited.

Chain of Responsibility

A common requirement is to chain a number of logical actions together, and this is easily
achieved within Spring Web Flow. There are essentially two strategies:

* Create distinct action states for each of the logical steps in the chain, transitioning from
state to state. This provides the most flexibility.

¢ Invoke multiple actions within a single action state by using named actions. This does
not provide as much flexibility, but it is more concise.

Let’s look at the first case in Listing 12-19, which shows two actions invoked in a chain
using two distinct action states.

Listing 12-19. Chaining Action States

<action-state id="exposeFormObject">
<action bean="formAction" method="exposeFormObject"/>
<transition on="success" to="setupReferenceData"/>
</action-state>

<action-state id="setupReferenceData">
<action bean="formAction" method="setupReferenceData"/>
<transition on="success" to="setupDateChooser"/>
</action-state>

<action-state id="setupDateChooser">
<action bean="formAction" method="setupDateChooser"/>
<transition on="success" to="nextState"/>
</action-state>

359

360

CHAPTER 12 " ADVANCED SPRING WEB FLOW

Now let’s look at an alternative, using named actions within one action state, as shown in
Listing 12-20.

Listing 12-20. Using Named Actions to Invoke Multiple Actions As Part of a Chain

<action-state id="setupForm">
<action name="exposeFormObject" bean=formAction" method="exposeFormObject"/>
<action name="setupReferenceData" bean="formAction" method="setupReferenceData"/>
<action name="setupDateChooser" bean="formAction" name=""setupDateChooser"/>
<transition on="setupDateChooser.success" to="nextState"/>

</action-state>

The name attribute provides a namespace for the action event id, allowing you to distin-
guish the same event id from different actions. You may choose to transition on an event
returned by any of the actions, but you are not required to provide a transition for each event.
Essentially Spring Web Flow will execute all actions until a matching transition is found. If
there is no transition that matches the result of the last action, a NoSuchTransitionException
will be thrown.

FormAction

Form processing is a common requirement for many web applications, and Spring Web Flow
provides the org.springframework.webflow.action.FormAction implementation to handle
this. FormAction provides the following convenience methods, as listed in Table 12-8.

Table 12-8. FormAction Methods

Method Purpose Life Cycle

exposeFormObject() Instantiate and expose the form object ~ Before the form is displayed.
in the configured scope.

bind() Update the form from the supplied After the form has been
properties. submitted.

validate() Perform validation of the populated After the form has been
form. submitted and bound.

The SimpleFormController in Spring MVC may appear to be similar, but the appearance is
deceiving. SimpleFormController implements a predefined work flow to manage a single-page
form flow, and it allows you to customize that work flow by overriding template methods.
FormAction does not implement such a predefined work flow; rather, it implements and
exposes methods that you are responsible for calling.

This separation of command and controller logic is generally a good thing. One of the
limitations of a template-based approach is that you are restricted to the work flow exposed
by the superclass. If your work flow differs considerably from the template, things start to get
complex. This is not an issue with Spring Web Flow, as you are in full control over the flow and
when certain actions are executed.

For convenience, FormAction does provide some coarse-grained methods that implement
the same functionality as methods in SimpleFormController, and we list these in Table 12-9.

CHAPTER 12 " ADVANCED SPRING WEB FLOW

Table 12-9. FormAction Coarse-Grained Methods

Method Purpose Life Cycle

setupForm() Calls exposeFormObject, but Before the form is displayed.
also performs data binding
(if bindOnSetupFormis true).

bindAndvalidate() Performs binding and validation After the form has been submitted.
of the form object.

As mentioned in Chapter 11, you would typically require these methods to be executed
before and after a form view is displayed. Listing 12-21 shows how to do this.

Listing 12-21. Spring Web Flow Fragment Showing Entry and Exit Actions on a View

<view-state id="enterPurchaseInformation" view="purchaseForm">
<entry-actions>
<action bean="formAction" method="setupForm"/>
</entry-actions>
<transition on="submit" to="enterShippingInformation">
<action bean="formAction" method="bindAndValidate"/>
</transition>
<transition on="cancel" to="cancel"/>
</view-state>

As in Listing 12-19, you could break up each of the steps into distinct states. This is a little
more verbose, but more clearly demarcates the different steps. It also provides greater flexibil-
ity, allowing you to reenter a state definition from a different point within the flow. Listing 12-22
shows this approach.

Listing 12-22. Spring Web Flow Fragment Showing Form Management in Explicit States

<action-state id="setupForm">
<action bean="formAction" method="setupForm"/>
<transition on="success" to="enterPurchaseInformation"/>
</action-state>

<view-state id="enterPurchaseInformation" view="purchaseForm">
<transition on="submit" to="processPurchasePostback">
<transition on="cancel" to="cancel"/>

</view-state>

<action-state id="processPurchasePostback">
<action bean="formAction" method="bindAndValidate"/>
<transition on="success" to="enterShippingInformation"/>
</action-state>

361

362

CHAPTER 12 " ADVANCED SPRING WEB FLOW

POJO Actions

Chapter 11 defined the Action as the central construct for executing your application code
from within a flow definition. It also stated that every action bean had to implement the
org.springframework.webflow.Action interface. And this is true. Every Spring Web Flow
action bean does need to implement the Action interface, but Spring Web Flow will do a
bit of magic for you so you aren’t forced into writing custom action glue code just to invoke
methods on your business services.

When you reference a bean that doesn’'t implement the Action interface (a plain old Java
object (POJO), http://en.wikipedia.org/wiki/Plain 0ld Java Object), Spring Web Flow
will create a new instance of org. springframework.webflow.action.LocalBeanInvokingAction
to automatically adapt a method on your class to the Action interface. The purpose of
LocalBeanInvokingAction is to be an adapter (http://en.wikipedia.org/wiki/Adapter
pattern) between the Spring Web Flow Action interface and a method on your class. Let’s
look again at the XML fragment that declares the POJO bean that will be used as an action:

Listing 12-23. The placeOrder Action

<action-state id="placeOrder">
<action bean="orderClerk" method="placeOrder(${flowScope.purchase})"/>
<transition on="success" to="showCostConfirmation"/>

</action-state>

When Spring Web Flow encounters this fragment, it will construct an instance of
LocalBeanInvokingAction and pass it a reference to your bean (orderClerk), and the signature
of the method you want invoked (placeOrder (${flowScope.purchase}). When Spring Web
Flow executes the action bean (by calling LocalBeanInvokingAction.doExecute()), the method
you specified will be invoked on the bean you provided.

Note Spring Web Flow delegates the actual execution of your method to an instance of org. spring
framework.binding.method.MethodInvoker, part of the Spring Framework method binding
infrastructure.

In the XML fragment Spring Web Flow was instructed to pass in the value of the expres-
sion ${flowScope.purchase} (i.e., the object stored under the name purchase in flow scope) to
the placeOrder method.

The result of MethodInvoker. invoke() is a java.lang.0Object. If your method signature was
void, this will be null; if your method returned a primitive it will be automatically converted to
the java.lang.Object equivalent (boolean to java.lang.Boolean and the like).

CHAPTER 12 " ADVANCED SPRING WEB FLOW

Exposing POJO Method Return Values

If you wish to have the return value of an invoked method exposed in either flow scope or
request scope, you must set the property resultName to the name under which you want it
stored and the resultScope property to either flow or request (the default is request). If you
do not explicitly set the resultName property, the return value will not be stored in any scope.
Refer to Listing 12-24.

Listing 12-24. placeOrder Definition Exposing an orderConfirmation Return Value in Request Scope

<action-state id="placeOrder">

<action bean="orderClerk" method="placeOrder (${flowScope.purchase})"=
resultName="orderConfirmation"/>

<transition on="success" to="showCostConfirmation"/>
</action-state>

The preceding action-state definition reads: “When the placeOrder state is entered, invoke
the placeOrder method on the orderClerk bean, passing in the purchase object from flow
scope as input. Expose the method return value in request scope under the name
orderConfirmation. On success, transition to the showCostConfirmation state.”

Customizing View Selection with View States and End States

Recall from Chapter 11 that view states instruct Spring Web Flow to pause the execution of a
flow and render a view allowing the user to participate in the flow.

Spring Web Flow creates logical view selections (consisting of a view name and a set of
model data), but the resolution of those view selections to a renderable View is the responsibil-
ity of the calling web framework. That said, Spring Web Flow allows you full control over view
selection logic via the org. springframework.webflow.ViewSelector interface.

Listing 12-25. org.springframework.webflow.ViewSelector

public interface ViewSelector {
ViewSelection makeSelection(RequestContext context);

}

This interface allows you to customize how the view name is calculated and/or what
model data is available to the view.

The ViewSelection returned by the ViewSelector is then converted into a renderable arti-
fact by the calling web framework (e.g., a Struts ActionForward or a Spring MVC ModelAndView).
This conversion is performed by the appropriate Front Controller (FlowAction for Struts or
FlowController for Spring MVC). Figure 12-3 illustrates this conversion.

363

364

CHAPTER 12 " ADVANCED SPRING WEB FLOW

Spring Web Flow Engine

Web Framework
(Servlet, JSF,
Portlet)

FlowExecutionManager » ViewSelection

Figure 12-3. Conversion of a ViewSelection to a View

There are two implementations of ViewSelector provided out of the box, shown in
Table 12-10.

Table 12-10. ViewSelector Implementations

Name Behavior Model Exposed
org.springframework.webflow. Represents a redirect view. Only exposes parameters
support.RedirectViewSelector explicitly specified in the

redirect Expression (e.g.,
redirect:/url.htm?paramo=$
{flowScope.foo}¶mi=valuel).

org.springframework. Refers to a static view name. Exposes all data in both
webflow. support. flow and request scope
SimpleViewSelector data in the model.

The FlowBuilder decides which ViewSelector to use based upon the value of the view
property. Table 12-11 describes the criteria Spring Web Flow uses to choose a ViewSelector.

Table 12-11. ViewSelector Selection

ViewSelector Criteria

RedirectViewSelector If the viewName contains a redirect: prefix.
YourViewSelector If the viewName is bean:YourViewSelector.
SimpleViewSelector If none of the other two conditions are met.
Indicating Transitions

When Spring Web Flow encounters a view state it will
1. render the view;
2. pause the flowExecution;

3. wait for a user-supplied eventId to resume.

CHAPTER 12 " ADVANCED SPRING WEB FLOW

The view can submit the eventId in one of two ways. The first way is to submit a request para-
meter whose name is FlowExecutionManagerParameterExtractor.getEventIdParameterName()
(the default is _eventId) and whose value will be the actual user eventId (like submit).

Note For the sake of brevity and readability, FlowExecutionManagerParameterExtractor may be
referred to as FEMPE.

Alternatively, the second way is to have the view submit a parameter whose name has the
format FEMPE . getEventIdParameterName()FEMPE.getParameterDelimiter ()value (the default
value for FEMPE.getParameterDelimiter() is “_”). This form is primarily used with the name of
an HTML input button to support multiple buttons per form without JavaScript. In this case,
the eventId is derived fully from the parameter name, and the value of this parameter is
ignored.

To illustrate these two approaches, to signal the submit event you may provide either of
the following request parameters: _eventId=submit or eventId submit=ignored.

Note FlowExecutionManagerParameterExtractor will also support image buttons that submit
parameters of type eventId.x or eventId.y.

Decision States

Although the example decision state in Chapter 11 defined a simple, single if/else expression,
decision states can do more. As well as supporting multiple if conditions, the decision state
can also delegate the criteria for the decision to Java application code.

If multiple if conditions are supplied, they are evaluated one by one. If none of the condi-
tions evaluates to true, then a NoMatchingTransitionException is thrown. You can implement
a chain of if conditions, but realize that any if condition that defines an else clause will by
definition evaluate to true, and none of the remaining if conditions will be evaluated. For
example, the fragment in Listing 12-26 will never evaluate the second condition.

Listing 12-26. Badly Defined Decision State

<decision-state>
<if test="${flowScope.object.booleanProperty}" then="stateA" else="stateB"/>
<if test="¢{this.will.never.be.called}" then="neverGetCalled"/>
</decision-state>

Listing 12-27 shows a chain of conditions that behaves as you would expect.

365

366

CHAPTER 12 " ADVANCED SPRING WEB FLOW

Listing 12-27. Correctly Defined Decision State

<decision-state>
<if test="${flowScope.object.booleanProperty}" then="stateA" />
<if test="${this is called if the above test evaluates to false}" then="stateB"/>
<if test="${this is called if the above test evaluates to false}" then="stateC"w
else ="stateD"/>
</decision-state>

Caution It is generally wise to put an else branch on the last if; otherwise, you run the risk of Spring
Web Flow not being able to find a matching transition.

Finally, a decision state can be used to invoke a single action that is used as the basis for
the decision. In this case, the action’s result event becomes the primary basis for the transition
decision.

When combined with a POJO action, this allows you to call a method in application code
that returns a single value that can be used as the basis for a routing decision. The decision
state will automatically adapt the method return value to an appropriate action result event
identifier according to a set of rules.

The rules are simple: for example, one rule is if a method return value is a java.lang.Boolean
ayes or no result event will be returned. Table 12-12 details the exact behavior for adapting
method return values of different types.

Table 12-12. Behavior of POJO Return Values

Return Value Event Identifier

null null

true yes

false no

Enum The String representation of the Enum

This allows you to implement branching logic very conveniently. Assuming our backing
object (purchase) has a method boolean isTaxable(TaxationRule rule), in our web flow defi-
nition we can write the code shown in Listing 12-28.

Listing 12-28. Listing of a POJO to Be Used As an Action

<decision-state id="determineTaxable">
<action bean="orderClerk" method="1isTaxable(${flowScope.taxationRule})"/>
<transition on="yes" to="enterTaxDetails"/>
<transition on="no" to="lucky"/>

</action-state>

CHAPTER 12 " ADVANCED SPRING WEB FLOW

Exception Handling

Exceptions within Spring Web Flow are managed the same way that exceptions are handled
within the rest of the Spring Framework. Exceptions from which you cannot recover are
treated as unchecked exceptions.

Spring MVC provides org.springframework.web.servlet.HandlerExceptionResolver to
handle exceptions, but they are common for the entire web application. Given that web flows
are self-contained units of work, it would be inappropriate to allow web flow-specific excep-
tions to leak out of the web flow if the flow knows how to handle them.

Spring Web Flow defines a single interface, org.springframework.webflow.
StateExceptionHandler (Listing 12-29) for handling exceptions thrown by the execution
of a state.

Listing 12-29. org.springframework.webflow.StateExceptionHandler

public interface StateExceptionHandler {
boolean handles(StateException exception);

ViewSelection handle(
StateException exception,
FlowExecutionControlContext context);

Note The exception handling within Spring Web Flow is for exceptions thrown by states within flows.

To register your own ExceptionHandler, simply define it within your web flow definition
<exception-handler bean="myCustomHandler"/>.

Upon encountering an exception thrown by a state, Spring Web Flow will traverse all reg-
istered implementations of org. springframework.webflow.StateExceptionHandler, and if one
can handle the exception, it will hand it off for processing.

Caution This means that the order in which ExceptionHandlers are defined is important, Spring Web
Flow will stop as soon as it finds a StateExceptionHandler that can handle the specified exception.

Table 12-13 lists the common exceptions that might be thrown by Spring Web Flow during
normal runtime execution.

367

368

CHAPTER 12

ADVANCED SPRING WEB FLOW

Table 12-13. Spring Web Flow State Exceptions

Class

Description

Thrown By

org.springframework.
webflow.StateException

org.springframework.webflow.
ActionExecutionException

org.springframework.webflow.
execution.EnterStateVetoException

org.springframework.webflow.
NoMatchingTransitionException

org.springframework.webflow.
execution.repository.
NoSuchConversationException

org.springframework.webflow.
execution.repository.

InvalidConversationContinuationException

Common base class for
all state exceptions.

Indicates an exception
(checked or runtime) was
thrown by an action. The
exception may be from

the action itself, or it may
be an exception thrown by
the target of the action (e.g.,
your business method).

Indicates that the requested
state cannot be entered
because of a constraint
violation.

Thrown if there are no
matching transitions that
match the signaled event
in the current state.

Thrown if a request to
resume an execution

of a flow references a
conversation that is
invalid (i.e., a nonexistent
conversation or an expired
conversation).

Thrown if a request to
resume an execution of a
flow references an invalid
continuation (e.g., a
nonexistent continuation
or a continuation that
has expired).

This is a convenience
class and is not thrown.

ActionExecutor.execute

FlowExecutionListener.
sessionStarting and
FlowExecutionListener.
stateEntering.

TransitionableState.
getRequiredTransition.

FlowExecutionRepository
implementations when
loading a conversation.

FlowExecutionRepository
implementations when
loading a continuation.

The default behavior is for Spring Web Flow to allow unhandled exceptions to trickle out
of the flow and up the call stack, eventually to be handled by the calling web framework or

ultimately the application container.

Spring Web Flow provides a default implementation of StateExceptionHandler: org.
springframework.webflow. support.TransitionExecutingStateExceptionHandler, which
allows you to catch an occurrence of a type of Exception and execute a transition to a error
state. So for example, if you decided that you wanted to display a specific error page for
DuplicatePurchaseException exceptions, you would modify your web flow definition to
include <exception-handler class="purchase.domain.DuplicatePurchaseException”

state="error"/>.

Whenever purchase.domain.DuplicatePurchaseException is thrown, this definition
fragment instructs the flow to transition to the specified target state (error), which in this
case would result in an error view being displayed.

CHAPTER 12 " ADVANCED SPRING WEB FLOW

State Scoped ExceptionHandlers

You may decide that you want exception handling to be implemented at a finer-grained level
than that of a flow. You can also define ExceptionHandlers at the state level against any state
type (action, decision, and so on). To achieve this, simply move the exception-handler decla-
ration to within the definition of the state. Listing 12-30 demonstrates how to scope the
ExceptionHandler.

Listing 12-30. Spring Web Flow Fragment Registering a State-Level ExceptionHandler

<action-state id="placeOrder">
<action bean="orderClerk" method="placeOrder (${flowScope.purchase})"/>
<transition on="success" to="showCostConfirmation"/>
<exception-handler bean="myCustomHandler"/>

</action-state>

Exception Handling Summary

Exception handling within Spring Web Flow is simple yet powerful. Any number of

state ExceptionHandlers can be registered at both the flow and state level. The default
ExceptionHandler implementation is sufficient for most scenarios, allowing you to catch

an exception and execute a recovery transition as part of the flow definition. Providing your
own implementation is also possible by implementing a custom state ExceptionHandler.

Summary

Spring Web Flow is a powerful framework for defining and executing reusable, self-contained
controller modules within a web application. However, no tool can cater for every possible
use case. We've shown you that Spring Web Flow provides a number of extension points and
implementations of key strategies that allow for customization. We've also shown how Spring
Web Flow drives the execution of your business logic without tying you to Web Flow APIs.
Finally, we've demonstrated how Spring Web Flow employs the concept of a continuation to
solve many issues facing web application developers.

369

APPENDIX A

Documenting Your
MVC Application

As your applications grow larger and more complex, the XML files used to define your beans
can become more difficult to maintain, especially in multidiscipline teams where different
people maintain the context files for different parts of the application. Documenting your
application is as important as documenting your source code, and with Spring applications,
that means documenting your context files.

BeanDoc

BeanDoc (http://opensource2.atlassian.com/confluence/spring/display/BDOC/Home) is an
official Spring subproject, and it can help by producing a similar kind of documentation for
your Spring beans that Javadoc produces for your Java classes. Beans that are wired together
are cross-linked, their class names can be linked to the relevant Javadoc pages, and many
disparate XML files can be managed and viewed as a logical application context. Beans are
documented with their descriptions and class names (linked to Javadoc locations) and linked
to their dependencies (references, parent-beans, lookup-methods). Best of all, in association
with the open-source tool Graphviz (http://www.graphviz.org) you can visualize your appli-
cation contexts as graphs.

Although BeanDoc is still early release software (version 0.7.0 was current at the time of
writing) it should be stable enough for everyday use. It is highly configurable and skinnable in
terms of its output and designed for extensibility if the basic functionality doesn’t meet your
needs. BeanDoc can be operated from the command line, programmatically, or via its own
Ant task. Figure A-1 shows a sample of BeanDoc’s output (based on the Spring JPetStore sam-
ple application).

3n

372 APPENDIX A

DOCUMENTING YOUR MVC APPLICATION

@ -®

JorderService-burlap
fOrderServica-hessian
JOrderService-httpinvaker
/shop/addIitemToCart. da
{shop/checkout.do
Jehop/index.do
fshop/newhccount. do
/shop/removeltemFromCart.do
ishop/searchProducts, do
Jehap/signoff.do
fshop/signon.de
{shop/signenForm.do
ishop/updateCartQuantities. do
Jshop/viewCart.do

ishop/viewProduct.do
accountDao
accountValidatar
baseTransactionProxy
categoryDao
dataSource
defaultHandlerMapping
itemDao

arderDao
orderValidator
petStore

productDao
propertyConfigurer
sacure_editAccount
secure_listOrders
secure_newOrder
secure_viewOrder
Done

File Edit ¥Yiew Go Bookmarks

-

Tools Help

ﬁ http://springframework. sourceforge.net/beandoc/jpetstore/

beandoc generated: Fri Jan 28 14:10:51 GMT 2005

[v]) Go |[GL

Spring

JPetStore Application Context

files making up this application context

applicationCantext. xml

dataficcessContext-local.xml

petstare-sarvlet, xml

rermoting-servlet, xml

Application cantext definition far JPetStore's business layer. Contains baan
references to the transaction manager and to the DAGs in
datatccessContext-local/jta,xml (se= web,xml's "contextConfiglocation™)

[Empty Description]

DispatcharServlet application context for the Spring web MVC implermentation of

JPetStore's web tier,

[Empty Dascription]

Copyright Spring BeanDoc contributers

W3C XM WAC cssyp

@ | Adblack

Figure A-1. BeanDoc output of the JPetStore sample

If your context consists of multiple XML files, as it usually will, BeanDoc will aggregate

them into a consolidated graph (as shown in Figure A-1) and provide links to the documenta-
tion for each individual context file. The individual documentation pages have graphs of just
the beans in that file. Clicking a graph will reveal it at full size, and each bean on the graph can
be clicked to link to the documentation fragment for that bean.

Installing and Building BeanDoc

BeanDoc is a source-only download, so you'll have to compile and build it. For this, you will
need Ant (which you will doubtless already have if you are a Java developer who has not been
living on the moon for the last ten years) or Maven. From the main site for BeanDoc you can
download the latest version and extract it to your hard drive. Alternatively, if you're comfort-
able with CVS, you can check out the sources from the main Spring repository at SourceForge
under the module name spring-beandoc.

Having acquired a release version or CVS snapshot, the next task is to build the JAR file.
BeanDoc is a small utility, so this doesn't take long. Using Ant, simply run the dist target from
the root of the main spring-beandoc directory that you extracted the file to. If Maven is your
thing, run maven install:jar from the project root instead.

If you want to enable the graphs you will additionally need to download and install a
version of Graphviz suitable for your platform. Its website offers details, but this is a very
straightforward procedure.

APPENDIX A © DOCUMENTING YOUR MVC APPLICATION

Running BeanDoc on Your Configuration Files

When you build BeanDoc, it places the spring-beandoc. jar file and all of its runtime depend-
encies in the target/dist directory under the project root. Whenever you use the tool, you
must ensure that all of the runtime dependencies are available. Two of those are Spring JAR
files, so if you already have a recent spring. jar file in your project, you probably don’t need to
duplicate them.

BeanDoc can be invoked from the command line, through Java code, or as an Ant task—
which is supplied with BeanDoc and is in the spring-beandoc. jar file. Since using Ant is the
most common way to interact with it, that's what we’ll describe here. The Ant option is perfect
for this type of task, since you need to set it up only once and can make the beandoc target a
dependency of your main build target. That way, every time you build your code, the docu-
mentation and object graphs are up to date.

Listing A-1 shows a simple build.xml file defining the task and a target to run BeanDoc on
your application.

Listing A-1. build.xml File for BeanDoc

<project name="spring-beandoc-sample" basedir="." default="beandoc">

<!-- sets up BeanDoc classpath -->
<path id="main-classpath">
<fileset dir="${lib.dir}">
<include name="**/* jar"/>
</fileset>
</path>

<target name="init">
<taskdef name="beandoc"
classname="org.springframework.beandoc.client.AntTask">
<classpath refid="main-classpath"/>
</taskdef>
<mkdir dir="${output.dir}" />
</target>

<target name="beandoc" depends="init">
<beandoc outputDir="${output.dir}">
<fileset dir="${conf.dir}">
<include name="*Context.xml"/>
<include name="*-servlet.xml"/>
</fileset>
</beandoc>
</target>

</project>

373

374

APPENDIX A © DOCUMENTING YOUR MVC APPLICATION

The Ant syntax should be familiar enough, so we’ll concentrate on the key points. The
classpath that is set up initially is there to ensure that BeanDoc has access to those JAR files
we mentioned earlier. In this example, the runtime dependencies would all be located in
${lib.dir}. The BeanDoc task itself is declared in the init target (which the beandoc target
depends on, so it’s guaranteed to be ready for use). In the last section, we actually call the
BeanDoc task.

To run successfully, BeanDoc only needs to know which files make up your application
context and where you want to place the output. You can use one or more nested filesets to
choose the input resources.

Other Options

With the setup described, BeanDoc will happily function and maintain a nicely formatted set
of HTML documentation for your Spring project. But there are many ways in which you can
customize the output should you so wish. Following is a brief overview of some of the more
widely useful options. (For details of more advanced options, see the BeanDoc reference doc-
umentation linked from the main website.)

Most of BeanDoc’s customizable attributes are managed through a properties file that you
can locate anywhere. To tell the Ant task where to load them from, specify the beandocProps
attribute on the task itself, as shown in Listing A-2.

Listing A-2. Specifying beandoc Properties

<beandoc outputDir="${output.dir}"
beandocProps="/path/to/beandoc.properties”>
<fileset dir="${conf.dir}">
<include name="*Context.xml"/>
<include name="*-servlet.xml"/>
</fileset>
</beandoc>

Tip The samples directory of the BeanDoc distribution contains a well-commented beandoc . properties
file that will give you examples of most of the other properties you might be interested in.

Controlling the Output

Let’s briefly look at the two most common options you want to set in the properties file

to affect the documentation produced. First, if you've downloaded and installed Graphviz
(and we highly recommend that you do), then you need to specify where the executable file is.
Listing A-3 shows the relevant options. Modify your paths depending on where you chose to
install to, of course.

APPENDIX A © DOCUMENTING YOUR MVC APPLICATION

Listing A-3. Graphviz Executable Location

for Unix/Linux i.e.
compiler.dotExe=/usr/bin/dot

OR for Windows..
compiler.dotExe=C:/Program Files/ATT/GraphViz/bin/dot.exe

The next important option is choosing JavaDoc locations. BeanDoc will by default link
any classname attributes of your beans to their JavaDoc page for several well-known libraries.
These include the standard Java API for your platform, Spring classes, and many others. You
can override the locations for these (for example, if you have them installed locally) and add
your own by setting one or more properties similar to those shown in Listing A-4.

Listing A-4. Specifying JavaDoc Locations

javadoc.locations[com.mycompany]=http://your.local.server/apidoc/
javadoc.locations[com.vendor]=http://www.vendor.com/javadoc/

The format of each line is the same: In brackets after the javadoc.locations part you
place the prefix of the classnames that should link to the URL used as the property value.
In the listing above, a classname of com.mycompany . foo.Bar will be linked to
http://your.local.server.com/apidoc/com/mycompany/foo/Bar.html.

Summary

We've taken a brief look at BeanDoc and some of the basic options that you can take to cus-
tomize the way it works. In fact, the tool has many more options for controlling graph layouts
and colors that can be selected in beandoc. properties. It is quite extensible too, and you can
switch out the XSLT stylesheets or add new components to it if you require something a bit
out of the ordinary. BeanDoc’s reference documentation contains all the information you
need to delve beyond the basics.

375

APPENDIX B

Ajax and DWR

For awhile, web application development has been a little stagnant. Developing for the
browser has offered the option of creating simple HTML interfaces that work on any browser or
operating system, or taking advantage of specific browser functionality to add more dynamic
behavior at the cost of vendor lock-in or non-portability. The former type of application was
more suited to an Internet audience and the latter more common in the intranet where organi-
zations typically control the desktop software.

But things are changing for a variety of reasons. For one, browsers of all types now have
more commonality in the standards that they implement than at any time in the past. Secondly,
XMLHttpRequest was adopted as standard. Combined, they make cross-platform dynamic
browser solutions a real possibility in the shape of Ajax: Asynchronous JavaScript and XML.

With Ajax, you retrieve from the server only the data that you actually need, and you don’t
have to load a whole page, much of which might be the same as was fetched before. That
means we can post and retrieve data to and from the server after the page has loaded.

In the last 6 to 12 months, loads of toolkits, frameworks, utilities, and applications have
sprung up, all based on Ajax. DWR (http://www.getahead.1td.uk/dwr), which stands for Direct
Web Remoting, is one such toolkit. It provides a bunch of commonly used functions that your
web application will inevitably need anyway to be able to make use of Ajax, and therefore it
saves you from a lot of typing. For all self-respecting coders, this is never a bad thing, of
course.

Spring and DWR

What does this all have to do with Spring MVC, you might be wondering. Well, not a great deal
directly, but this is such a popular technology right now that we thought it would be interesting
to include a few pages on how you might enhance your Spring web applications through the use
of DWR. It would even be possible, if you really wanted to try, to replace the majority of MVC
functionality with Ajax/DWR, but we feel that a blend of the two offers the most promise.

DWR works, as the name suggests, by making server-side objects available to your client-
side JavaScript functions. That means you have the ability to call methods on those objects
from within your JavaScript functions and work with the results. DWR handles the conversion
of the server-side objects by dynamically creating JavaScript objects that implement the same
interface. When you call the methods on the JavaScript object, DWR proxies the call to the
server and converts the returned object (if any).

377

378

APPENDIX B = AJAX AND DWR

Hopefully you're starting to see where this is leading now, and you’ve probably guessed
correctly that DWR can expose the objects from your Spring ApplicationContext directly to
the JavaScript functions in your web pages. In fact, DWR even has support for Spring built in—
making this task even easier and one of the reasons we choose to highlight it.

A Practical Example

Enough of the history and theory; let’s see some code! In order to demonstrate the concepts
and a couple of the gotchas, we've taken one of the Spring sample applications (PetClinic,
shipped with the Spring distribution) and enhanced it. We'll step through those changes that
Ajax-enabled our application.

Tip If you'd like to hack along or prefer to just dive in, you can download a WAR file of the modified
PetClinic application from the Spring wiki at http://opensource.atlassian.com/confluence/
spring/x/Yws.

Configuration and Code Changes

First, we added dwr, jar from the DWR download to the WEB-INF/1ib directory. We also
created a new file called WEB-INF/dwr.xml. Listing B-1 shows the complete dwr.xml file.

Listing B-1. WEB-INF/dwr.xml

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE dwr PUBLIC

"-//GetAhead Limited//DTD Direct Web Remoting 1.0//EN"
"http://www.getahead.1ltd.uk/dwr/dwr10.dtd">

<dwr>
<allow>
<create creator="spring" javascript="Clinic" scope="session">
<param name="beanName" value="clinic"/>
</create>
<convert
converter="bean"
match="org.springframework.samples.petclinic.*"/>
<convert
converter="bean"
match="org.springframework.samples.petclinic.jdbc.*"/>
</allow>
</dwr>

APPENDIX B = AJAX AND DWR

The dwr.xml file is where we configure which objects are going to be exposed to the
client-side scripts. In our example, we're exposing the main business object from PetClinic’s
service layer. DWR has several different types of creators. As you can see in the preceding list-
ing, we're using a Spring creator. This type of creator knows how to obtain a bean by name
from a BeanFactory or an ApplicationContext. Other types of creator that you might use are
scripted—as with a Bean Scripting Framework-supported script language—and new, where
the object is simply instantiated via reflection.

In the other half of the configuration file, you can see some convert elements too. Not
only does the service object need to be understood by DWR, but any objects that its methods
accept as parameters or objects that they return also have to be capable of conversion. For
Strings and primitives, this is a simple 1:1 mapping to JavaScript equivalents, but for other
objects this has to be specified in configuration. For the PetClinic demo, we simply allow all
of the model beans and the concrete implementation of the service bean to be converted.

Note It would be a security risk to automatically allow conversion of any object for JavaScript use, and
that is the main reason you have to specifically allow conversion on a case-by-case basis in DWR.

DWR is servlet-based; it uses a servlet to dynamically generate much of the JavaScript
code that the client will use. The servlet code is already in dwr . jar, so we just need a declara-
tion and mapping in web.xml. Listing B-2 has the details.

Listing B-2. Changes to WEB-INF/web.xml

<servlet>
<servlet-name>dwr-invoker</servlet-name>
<display-name>DWR Servlet</display-name>
<servlet-class>uk.ltd.getahead.dwr.DWRServlet</servlet-class>
<init-param>
<param-name>debug</param-name>
<param-value>true</param-value>
</init-param>
</servlet>

<servlet-mapping>
<servlet-name>dwr-invoker</servlet-name>
<url-pattern>/dwr/*</url-pattern>
</servlet-mapping>

379

APPENDIX B = AJAX AND DWR

We left the debug parameter, which enables a nifty test page to be called for each service
object that you export. See Figure B-1 for an example.

File Edit Wiew Geo PBEoockmarks Tools Help B
4 | 3 o] * o http:/flocalhost: 2080/ petelini * GO |G|
DWER Test —

Methods For: Clinic ($Proxy0)

To use this class in your javascript vou will need the following script includes:

=script type='text/javascript' src='/petclinic/dwr/interface/Clinic.js'==/script=
=script type='text/javascript' src='/petclinic/dwr/engine.js'==/script=

In addition there is an optional utility script:

=script type='text/javascript' src='Jpetclinic/dwrfutil . js'=</script=

Replies from DWR are shown with a yellow background if they are simple or in an alert box
otherwise.
The inputs are evaluated as Javascript so strings must be quoted before execution.

There are 42 declared methods:

+ hashCode() Execute

+ equals()i |Execute

(Warning: No Conwverter for java.lang. Object. See below)

toString(1: Execute

e indexOf{): Execute

(Warning: No Converter for org.springframework. aop. Advisor. See below)
afterPropertiesSet(); | Execute

refreshvetsCache(); Execute

getVetS(1: | Enecute
getPetTypes(); | Execute
findOwners(™ 1.

loadOwner{ o): | Execute

lmm el kel A, o 1 b

Done g Adblock

*

Figure B-1. Test page for clinic service object

The only other change to the server side of the operation was a method name that needed
to be refactored. One of the DWR gotchas is that JavaScript is a little more picky about reserved
names being used as methods than Java is. A common one is the method delete(), which
would be illegal in JavaScript. In our case, we had to rename the isNew() method on the Entity
class, as shown in Listing B-3.

APPENDIX B = AJAX AND DWR

Listing B-3. The Refactored Entity Class

package org.springframework.samples.petclinic;
public class Entity {
private Integer id;

public void setId(Integer id) {
this.id = id;
}

public Integer getId() {
return id;

}

public boolean isNewEntity() {
return (this.id == null);
}
}

Bean property names are converted to JavaScript properties by default, so isNew() would
become just new() on the JavaScript object, which is a reserved name. Using an IDE such as
Eclipse (with a little manual search and replace in the JSP files!), we were quickly able to man-
age all of the dependencies of such a change. That wraps it up for the configuration and code
changes—all in all, a fairly simple exercise to set the application up for DWR.

Presentation File Changes

Now for the interesting bit: We added two files to the root of the PetClinic web application—
index.html and local.js—which contain the application-specific functions to complement
the DWR-provided ones. In the <head> section of the HTML file, we add references to all of the
script libraries required, as shown in Listing B-4.

Listing B-4. Script Library References

<head>

<script type='text/javascript' src='/petclinic/dwr/interface/Clinic.js'></script>
<script type='text/javascript' src='/petclinic/dwr/engine.js'></script>
<script type='text/javascript' src='/petclinic/dwr/util.js'></script>
<script type='text/javascript' src='/petclinic/local.js'></script>
</head>

At the bottom is the file we code ourselves, which we’ll look at shortly. The other three
are supplied by DWR. engine. js and util. js are fairly static and contain the bulk of the DWR
functionality. clinic.js is the interesting one: the JavaScript representation of the service
object that we exported in our WEB-INF/dwr.xml file.

381

382 APPENDIX B = AJAX AND DWR

Note Because all of the other JavaScript files have a /dwr/*-type URL, they will all be served up by the
DWR servlet according to the web.xm1 mapping we looked at in Listing B-2.

Let’s put all this together and show it in action (or at least as much as we can in the static
pages of a book). Figure B-2 shows the index.html page loaded in the browser. It contains a
couple of tables in the main area of the page that are hidden with CSS attributes.

File Edit Wiew Go PBookmarks Tools Help e
T T a ; E ! http:_-"_-"Iocalhost:8DSD_-"pethinic,-"index.htV‘ 5 |G|
PatClinic 11 a Spring Framewark da... —
¥
Spring
= -

PetClinic DWR Ul

i Listvets :: Add Owner :: Find Owner |:

Done @ Adblock

Figure B-2. The DWR PetClinic home page

Listing B-5 shows one of the hidden tables in the left half of the blank area of the screen.
Note how the table body is given an id attribute, but is left empty.

APPENDIX B = AJAX AND DWR

Listing B-5. Hidden Tables in index.html

<div id="leftPanel" style="width:58%; float: left">
<table id="vetlist" class="initHidden">
<thead>
<tr>
<th>first name</th>
<th>last name</th>

<th>specialties</th>
</tr>
</thead>
<tbody id="vets"/>
</table>

When we click the List Vets link in the page, a JavaScript function called getVets() is called.
It’s this function, and the one it delegates to, that do the work of populating the table of vets.
Both functions are in local. js and are shown in Listing B-6.

Listing B-6. local.js Functions for List Vets

function getVets() {
Clinic.getVets(showVets)

}

function showVets(vetData) {
document.getElementById("ownerlist").style.display = "none";
document.getElementById("ownerForm").style.display = "none";
document.getElementById("vetlist").style.display = "inline";
DWRUtil.removeAllRows ("vets");
DWRUtil.addRows("vets", vetData, [getFirstName, getlastName, getSpecialties]);

Don't worry if you can't follow all the logic here. The key points are that the JavaScript ver-
sion of the Clinic object is invoked with Clinic.getVets(). DWR handles the translation of
the call to the real object in the ApplicationContext and marshals the returned Collection of
vets for us. This is passed to the showVets () function for display, based on the parameter sup-
plied to the getVets() method, where DWR utility methods are called to first clear and then
repopulate all of the table rows. The addRows () method takes three parameters:

e The id of the element to update (vets), which as we saw in Listing B-5 was the <tbody>
element.

¢ The collection of data to use (vetData). This was passed to the function by DWR and is
the returned value from the Clinic.getVets() method.

e An array of method names to call on each element of the vetData collection. Each of the
method names in the array will populate a column of the current table row.

383

384

APPENDIX B = AJAX AND DWR

There’s a lot going on in those two methods, and the result is shown in Figure B-3.

File Edit Wiew Geo PBookmarks Tools Help)
4 » (] x ta http://localhost: 8080/ petclinic/index.ht ¥ (60| (|G|
PetClinic 11 a Spring Framewark de... —

Spring

PetClinic DWR Ul

- Listvets : Add Owner Find Owner |

first name last name specialties

James Carter
Linda Douglas ¢ dentistry
* surgery
Sharon Jenkins
Helen Leary + radiology
Rafael Ortega * surgery
Henry Stevens + radiology
http://localhost: 8080/ petclinic/index. html# & Adblock o

Figure B-3. Populated vet table

What we can't easily demonstrate in the book is that the call to the server-side Clinic
object and the population of the table all took place asynchronously, without requiring a page
reload in the browser. If the server-side operation is long running, the browser will still remain
responsive for the user, but usually the page updates much faster than when reloading too.

POSTing Updates

We'll complete the lightning tour of functionality with a look at form posts. In Figure B-4, we
see the same page again, this time after clicking the Find Owner button to bring up a table of
all owners and then clicking the “edit” link for one of them. Both operations are handled by
DWR and update the page very snappily (of course, you'll have to download the application
and try it out for yourself to see).

The Submit button for the Edit Owner form is linked to another JavaScript function coded
in the file local. js. In turn, it relies on yet more DWR utility functions (did we mention how
much typing it saved you?). Listing B-7 shows the code for the form, and Listing B-8 describes
the relevant JavaScript functions.

APPENDIX B = AJAX AND DWR

File Edit Wiew Go PBookmarks Tools Help [
4 » (] x ta http://localhost: 8080/ petclinic/index.ht ¥ (60| (|G|
PetClinic 11 a Spring Framewark de... —

Spring

PetClinic DWR

i1 List vets : Add Owner

first last
name name

George Franklin 110'W. Liberty St.

address

Betty Davis 638 Cardinal Ave.

Eduardo Rodriquez 2393 Commerce

Harold Davis 563 Friendly 5t.
Peter McTavish 2387 5. Fair Way
Jean Colerman 105 M. Lake St
Jeff Elack 1450 Oak Bhed.
Maria Escobito 345 Maple St
David Schroeder 2?4.9 Blackhawk
Trail
Carlos Estaban 2335

Independence La.

Ul

city
Madison

Sun
Prairie

McFarland

Windsor
Madison
Monona
Monona
Madison

Madison

Waunakee

http://lacalhost: 8080/ petclinic/index, html#

Find Owner

telephone

6085551023 edit

6085551749 edit

6085558763 edit

6085553198 edit
6085552765 edit
6085552654
6085555387 edit

6085557683 edit

6085559435 edit

6085555487 edit

Add/Edit Owner Details

first name: Jean

last name: Coleman
address: 105 M. Lake St
city: Monona

telephone: 6085552654

Submit

Edit Pets

pet name type dob
lax cat 09/04/1985
Samantha cat 09/04/1995

) Adblock

Figure B-4. Owners table and editing form

Listing B-7. Form for Editing Owners

<input type="hidden" id="id"/>

<table>

<tr style="border-width:

opx">

<td>first name: </td><td><input class="inp" type="text" id="firstName" /></td>

</tr>

<tr style="border-width:

opx">

<td>last name: </td><td><input class="inp" type="text" id="lastName" /></td>

</tr>

<tr style="border-width:

opx">

<td>address: </td><td><input class="inp" type="text" id="address" /></td>

</tr>

<tr style="border-width:

opx">

<td>city: </td><td><input class="inp" type="text" id="city" /></td>

</tr>

385

386

APPENDIX B = AJAX AND DWR

<tr style="border-width: opx">
<td>telephone: </td><td><input class="inp" type="text" id="telephone" /></td>
</tr>
<tr style="border-width: opx">
<td>8nbsp;</td><td style="padding-top: 7px"><input type="button" value="Submit"
onclick="updateOwner()"/></td>
</tr>
</table>

Listing B-8. JavaScript Function for Updating Owners

function updateOwner() {
DWRUtil.getValues(currentPerson);
Clinic.storeOwner (findOwners, currentPerson);

}

function findOwners() {
var s = document.getElementById("owner").value;
Clinic.findOwners(showOwners, s);

}

function showOwners(ownerData) {
document.getElementById("vetlist").style.display = "none";
document.getElementById("ownerlist").style.display = "inline";
DWRUtil.removeAllRows("owners");
DWRUtil.addRows (
"owners",
ownerData,
[getFirstName, getlastName, getAddress, getCity, getTelephone, getOwnerEdit]
)5
}

What's going on here? First off, we need to explain that the value of the JavaScript variable
currentPerson was initialized to the name/value pairs of the form when the form was popu-
lated. As the submit button calls the updateOwner function, we take advantage of another
DWR utility method; getValues. Its input is any object that contains name-value pairs—
currentPerson in our example. The names are assumed to be the ids of HTML elements,
and the values are altered to reflect the contents of those ids.

Next, we invoke the storeOwner () method of the Clinic service object, instructing DWR
to call findOwners immediately after the update returns and passing the currentPerson object
holding the name-value pairs from the input fields as the parameter. In the findOwners() func-
tion, we make the call on the Clinic’s findOwners () Java method and lastly pass control to the
showOwners () function, which updates the display. The page, of course, updates just the values
that were changed in the owner table with barely a flicker to look like the one in Figure B-5.

APPENDIX B = AJAX AND DWR 387

0 PELL im S ass P g a e oriad Emons Lot o= o S rET o C]C]C]
File Edit View Go Bookmarks Tools Help (5]
4_ T 6 ? E ! http:/fgarbo: 8080/petclinic/index. html# - .E. IG|javascript

PetClinic :: a Spring Framework de. .. =
Spring

PetClinic DWR Ul
u List vets » Add Owner Find Owner

first last .

address cit telephone . .

name name Y p Add/Edit Owner Details

George Franklin = 110 W, Liberty St. Madison 6085551023 edit
Sun first name: Jean
Betty Davis 638 Cardinal Ave, . 6085551749 edit
Prairie last name: Coleman
Eduardo Rodriquez 5593 COmMErce . rarland 5085558763 edit ~ a@ddress: 105N, Lake St
city: Monona
Harold Davis 563 Friendly St. Windsor 6085553198 edit
telephone: 10101010101
Peter McTavish 2387 S, Fair Way Madison 60855527565 edit
Jean Coleman 105 M. Lake St. Monona 10101010101 edit Subrmit
Jeff Elack 1450 Oak Blvd. Monona 6085555387 edit i
Maria Escobito 345 Maple St. Madison 6085557683 edit Edit Pets
David Schroeder 274° Blackhawk . adison 6085550435 edit | petname type dob
2335 lax cat 04/09/1995

Carlos Estaban independence La. Waunakee 6085555487 edit Samantha cat 04/09/1995
Done < Adblock

Figure B-5. Updated owner

Accessibility

Please remember your target audience when developing web content. If you are producing
websites for a large organization, you are almost certainly aware of recent legislation in the
U.S. and U.K. that is cracking down on companies that produce inaccessible sites. An over-
abundance of JavaScript is a surefire way to make your site unusable for people with audio
browsers, text-based browsers and possibly those unable to use a pointing device. Always
check that whatever you do with JavaScript can be done another way if the user doesn’t have
JavaScript available to them.

388

APPENDIX B = AJAX AND DWR

Summary

We've taken a very brieflook at a narrow section of the Ajax world. Our tour covered a quick
look at Ajax technology and a practical example of applying Ajax to your Spring applications in
the form of DWR. We would strongly encourage you to read up on some of the other Ajax-based
technologies too and pick the ones that fit your needs best. In our opinion, it's brought a little
more fun back in to the development of browser-based sites; we hope it does for you too.

Index

Symbols
? (question mark), 267
& (ampersands), 231
* ant wildcard, 86
** ant wildcard, 86
[and] (square brackets), 271
_ (underscore), 231
+1d incremental operator, 273
+1H incremental operator, 273
+1m incremental operator, 273
+1S incremental operator, 273
+1w incremental operator, 273
+ly incremental operator, 273
< operator, Valang, 269
<= operator, Valang, 269
<> operator, Valang, 269
= operator, Valang, 269
|= operator, Valang, 269
=< operator, Valang, 269
== operator, Valang, 269
=> operator, Valang, 269
> operator, Valang, 269
>= operator, Valang, 269
' (apostrophes), 231
? ant wildcard, 86
! function, Valang, 274

Numerics
1d incremental operator, 273
1H incremental operator, 273
1M incremental operator, 273
1s incremental operator, 273
1w incremental operator, 273
ly incremental operator, 273

A

Abstract superclass, 205
AbstractCachingViewResolver resolvers, 210
AbstractController, 149, 168

cache header management, 120-122

Controller options, 199

enforcing HTTP methods, 119-120

overview, 118

require sessions, 120

synchronized session, 122
AbstractController superclass, 174
AbstractDependencylnjectionSpringContext-

Tests subclass, 304, 306

AbstractFlowExecutionTests, extending,
324-326
AbstractFormController subclass, 123
AbstractHandlerMapping subclass, 92
AbstractMessageSource class, 278
AbstractTransactionalSpringContextTests
class, 304
AbstractTransactionalStringContextTests
class, 306
AbstractUrlBasedView class, 205, 263
AbstractUrlHandlerMapping class, 90
AbstractUrlMethodNameResolver
superclass, 172
AbstractView class, 205-206, 263
AbstractWizardFormController, 200, 314
Controller options, 199
limitations, 177
overview, 176
page change callback, 179
state changes, 177-179
URI mapping, 179
validation, 179
wizard example
command bean, 190-191
controller, 191-192
JSP files, 183-185
overview, 180-182
reducing repetition with JSP tag files
and Spring JSP tags, 185-190
work flow cancellation, 180
work flow completion, 180
AbstractXslFoView class, 257
AbstractXsltView technology, 203, 252
AcceptHeaderLocaleResolver class, 104-105,
219
Accept-Language HTTP header, 100, 102, 104
accountPrototype bean definition, 35
action beans, 359, 362
Action interface, 328, 362
Action state, 318, 359
action states
chain of responsibility, 359-360
FormAction, 360-361
overview, 359
activate() method, Account class, 34, 38
activateAccount() method, Account class,
296-297
Active status, FlowSession, 350
activeSession, 349

389

390

INDEX

Adapter design pattern, 84
addition() method, 290
Address class, 266
AddressValidator, 280
addRows() method, 383
afterCompletion method, interceptor life
cycle points, 197
Ajax (Asynchronous JavaScript and XML) and
DWR. See also DWR (Direct Web
Remoting)
AlterCaseFunction, 275
ampersands (&), 231
Anemic Domain Model, 31
Ant syntax, 374
Ant task, 373
AQOP (aspect-oriented programming), 8, 22
Apache Formatting Objects Processor (FOP)
driver, 257
apostrophes ('), 231
Application (servlet scope), 309
application architecture, 21. See also layers
ApplicationContext class, 30, 49, 55, 58-60,
277-278, 304, 306-307, 378-379
ApplicationContextAware class, 277
applyBeanPropertyValues() method,
AutoWireCapableBeanFactory class,
35
arrays, binding to, 131
aspect-oriented programming (AOP), 8, 22
assertEquals() method, 285
Asynchronous JavaScript and XML (Ajax)
and DWR. See also DWR (Direct
Web Remoting)
attribute mappings
AttributeMappers, 342
custom AttributeMappers, 343
example, 342
overview, 341
attribute-mapper fragment, 341
AttributeMapper interface, 341-342, 343
<attribute-mapper> element, 341
autowireBeanProperties() method,
AutowireCapableBeanFactory
interface, 35
AutowireCapableBeanFactory interface, 33

B
BaseCommandController class, 122-123,
126, 199
bean attribute, 343
bean definition, 119, 160
Bean Scripting Framework, 379
BeanDoc
controlling output, 374-375
installing and building, 372
other options, 374
overview, 371-372

running on configuration files, 373-374
beandocProps attribute, 374
BeanFactory class, 153, 175, 313, 379
BeanFactoryAware interface, 277
BeanNameUrlHandlerMapping class, 87-88,

90, 198
BeanNameViewResolver interface, 210
BeanWrapper class, 124
BeanWrapperImpl class, 126, 136
beginOn property, 44
beginSearch.vm template, 242
BETWEEN <value> AND <value> operator,

Valang, 269
BigDecimal data type, 44
bind() method, 126, 360
bind template macro, for Velocity and

FreeMarker, 243
<bind> tag, 229
bindAndValidate() method, formAction

class, 322, 361, FormAction
binding, 221
binding form to bean
binding to collections
binding to arrays, 131
binding to lists, 129-131
binding to maps, 132-133
binding to sets, 133-135
overview, 129

controlling which fields are bound,

145-146

custom PropertyEditors, 142-145

nested properties, 127-128

non-default PropertyEditors, 139-142

non-string properties, 135-138

overview, 124-127

rudimentary validation, 146-148
bindOnNewForm property, 152
bindOnNewForm property,

SimpleFormController class, 150
BindStatus class, 228
bornOn property, 155
Bruno Lowagie's iText library, 256
buildExcelDocument() method, 259
buildPdfDocument() method, 256
build.xml file, 373
business logic, and flows, 335-336
ByteArrayPropertyEditor propertyeditor, 136

C

cacheSeconds property, 120, 278
calling flow, 337

Cancel, state changes, 177
CancelAccountController class, 194
chaining, 213

CharacterEditor propertyeditor, 136
check box submissions, 230-231
child flow, 337

Class parameter, 140
ClassEditor propertyeditor, 136
cleanupMultipart() method, 108
ClientContinuationFlowExecutionRepository,
357-358
Clinic.getVets() method, 383
coarse grained methods, 48, 361
coarse-grained interface, 30
code coverage tools, 289, 302
collections, binding to
binding to arrays, 131
binding to lists, 129-131
binding to maps, 132-133
binding to sets, 133-135
overview, 129
command bean, 66, 133, 140, 186
command bean class, 190
command class, 66, 179
commandClass property,
SimpleFormController class, 150
commandName property,
SimpleFormController class, 150
commons-collections.jar file, 235
CommonsMultipartResolver, 109
Complex Boolean Logic, Valang, 269
component frameworks, 27
configlLocation property, 239
ConfigurableJasperReportsView type, 261
configuration methods, 55
constructor, 68
content rendering engines (CREs), 254
contentType attribute, 206
contextInitialized() method, 59
ContextLoaderListener interface, 59
contextRelative property, RedirectView class,
166
continuation key, 353
continuation-based approach, 354
continuation-based repository, 356
ContinuationFlowExecutionRepository class,
356-357
ContinuationlId, 356
ContinuationRepositories, 316
Controller, 201, 208, 314
AbstractController functionality
cache header management, 120-122
enforcing HTTP methods, 119-120
overview, 118
require sessions, 120
synchronized session, 122
AbstractWizardFormController
limitations, 177
overview, 176
page change callback, 179
state changes, 177-179
URI mapping, 179
validation, 179

INDEX

wizard example, 180-192
work flow cancellation, 180
work flow completion, 180
BaseCommandController, 122-123
binding form to bean
binding to collections, 129-135
controlling which fields are bound,
145-146
custom PropertyEditors, 142-145
nested properties, 127-128
non-default PropertyEditors, 139-142
non-string properties, 135-138
overview, 124-127
rudimentary validation, 146-148
components, 202
configuration, in home page use case,
55-56
HandlerInterceptors, 196-198
in home page use case, 53-55
MultiActionController
example, 172-175
InternalPathMethodNameResolver, 170
overview, 168-170
ParameterMethodNameResolver,
170-171
PropertiesMethodNameResolver,
171-172
overview, 115-116
redirect after submit pattern, 164-168
SimpleFormController
examples, 155-164
form submission with, 153-155
overview, 149-153
ThrowawayController
example, 194-195
overview, 193-194
ValidatableThrowawayController, 196
Controller interface, 28, 202, 207, 224
Controller tool, MVC toolbox, 313
Controllers, 52, 75
mapping requests to, 78-79
and View layer, 207-208
Controllers controller type, 115
Conversation object, 357
conversation scope, 314
conversational scope, 310
Conversationld property, 356-357
CookieLocaleResolver interface, 105-106, 219
CookieThemeResolver interface, 112, 218
costConfirmation view, 329
course grained methods, 28
create, read, update, and delete (CRUD)
application, 31
Created status, FlowSession, 350
createXsltSource() method, 252-253
CREs (content rendering engines), 254

391

I
>
o
=t
—
QO
n
L
@D
=
V)
=
=
=3
=
=
wn
=
=}
D
=
=}
(=X
D
i3
[2Y)
=}
=
D
[72]
»n
(]
(=]
3
~

392

INDEX

CRUD (create, read, update, and delete)
application, 31

CRUD methods, 35

currentPerson variable, 386

custom AttributeMappers, 343

custom date format, 274

custom exception handling, 79

custom PropertyEditors, 142-145

CustomBooleanEditor propertyeditor, 136

CustomCollectionEditor propertyeditor, 136

CustomDateEditor class, 66, 68

CustomDateEditor propertyeditor, 136, 139

CustomerValidator class, 280

CustomNumberEditor propertyeditor, 136

D

>d shift operator, 272
<d shift operator, 272
DAOs (Data Access Objects), 37, 49, 293
data access layer, 37-38
dependencies, 36-37
overview, 35-36
Data Access Objects (DAOs), 37, 49, 293
Data Binder, 313
data binding, 123-124, 321
data validation, 321
DataAccessException class, 37
database interaction code, 302
DataBinder class, 124
Date class, 140
Date class, java.util package, 44, 271
date operators, 271
Date PropertyEditor, 139
DateFormat class, 140
DatelnsertionInterceptor, 198
dateParserRegistrations property, 274
debug parameter, 380
Decision state, 318, 359
decision states, 326-327, 365-366
declarative validators, 267-277
default mapping, 89-90
default statement, 289
defaultLocale property, 105
defaultMethodName property, 171
definedMaxNumberOfArguments method,
275
defineMinNumberOfArguments method, 275
delete() method, 380
departFrom property, 66
Dependency Injection, 7, 14-16, 32, 49, 55,
59, 103
overview, 11-12
Service Locator pattern, 12-13
unit testing benefits, 16
detectAllHandlerExceptionResolvers
property, DispatcherServlet
interface, 83, 94

detectAllHandlerMappings property, 83
detectAllViewResolvers property, 83
Direct Web Remoting (DWR)
accessibility, 387
overview, 377-378
practical example
configuration and code changes,
378-381
overview, 378
presentation file changes, 381-387
discrete test condition, 284
DispatchAction, 170
DispatcherServlet, 63, 75, 78, 195, 209, 213
declaration, 79-80
initialization, 80-83
overview, 60, 79
URI mapping to Controllers, in home page
use case, 61
DispatcherServlet interface, 79
DispatcherServlet resolution subsystem, 313
dist target, 372
documenting MVC application. See BeanDoc
dodelete method name, 170
doFilter() method, 79
doGetResult method, 275
domain model, 26, 31
domain model layer
dependencies, 32
dependency injection for domain model,
33-35
overview, 31-32
Spring's support for, 32
domain object, 145
Don't Repeat Yourself (DRY) principle, 29
doService method, 28
doSubmitAction() method, 154, 162
double type, 44
DRY (Don't Repeat Yourself) principle, 29
DummygFlightService bean, 49
DuplicatePurchaseException exceptions, 368
DWR (Direct Web Remoting)
accessibility, 387
overview, 377-378
practical example
configuration and code changes,
378-381
overview, 378
presentation file changes, 381-387
dwr.xml file, 378
dynamic model attributes, 207
dynamic name attribute, 186

E
EasyMock library, 24, 292
Eclipse IDE, 236, 312
edge case, 288
Effective Java, 44

EL (Expression Language), JSTL, 124
encapsulation, 117
end state, 318, 328-329, 359
Ended status, FlowSession, 350
endOn property, 44
enterPurchaselnformation state, 320, 322
enterShipping logic, 339
enterShippingDetails state, 327
EnterStateVetoException implementation,
352
error code, 267
errors attribute, 183
Errors instance, 126
Errors interface, 279-281
ErrorsVerifier class, 281-282
eventld button name prefix, 332
_eventld parameter, 331, 348
_eventld_submit=ignored request parameter,
365
_eventld=submit request parameter, 365
events, Spring Web Flow, 318-319
Excel
coding the view, 259
configuring the application, 260
creating template, 258
overview, 258
Excep mapping, 97
exception hierarchy, 37
exception resolvers, 96
ExceptionChild class, 97, 99
exception-handler declaration, 369
ExceptionHandlers, 369
exceptionMappings property, 95
ExceptionParent class, 97, 99
execute() method, 193
execute flows, 316
ExoticFrameworkHandlerAdapter interface,
85
explicit business rules, 335
exposeFormObject() method, FormAction,
360
expression language, 124
Expression Language (EL), JSTL, 124
external system level configurations, 303
ExternalContext interface, 346-347
Extreme Programming (XP), 290

F

FDD (Feature Driven Development), 290
Feature Driven Development (FDD), 290
field error, 280

FileCopyUtils utility class, 110

FileEditor propertyeditor, 136
FileUpload library, 78

filters, 196

final modifier, 117

INDEX

findAccountByUsername() method,
AccountService class, 175
findFlights() method, 45, 50, 69
findOwners() method, 386
fine-grained interface, 30
Finish, state changes, 177
_finish event, 179, 189
_finish parameter, 189
_finish request parameter, 180
firstName property, 124, 282
FixedLocaleResolver class, LocaleResolver
bean, 105, 219
FixedThemeResolver class, ThemeResolver
bean, 112,218
flow. See Spring Web Flow
flow scope, 315
FlowAttributeMapper, 343, 351
FlowController, 330-331
FlowExecution class, 315, 346, 349, 353-354
FlowExecution repositories
continuations, 354-355
conversation invalidation after
completion, 358
FlowExecutionRepository
implementations, 356
overview, 353
stateful, 356-357
stateless, 357-358
FlowExecutionContext class, 349
FlowExecutionContinuation class, 354, 357
FlowExecutionContinuationKey class, 356
FlowExecutionEntry class, 357
_flowExecutionld encryption, 358
_flowExecutionld parameter, 331, 348,
356-357
FlowExecutionListener, 351-353
FlowExecutionListenerLoader, 352
FlowExecutionListeners interface, 352
FlowExecutionManager, 315, 346-348, 352
FlowExecutionRepository, 356
FlowExecutions, 357
managing
FlowExecutionListener, 351-353
FlowExecutionManager, 347-348
FlowSessions, 349-350
integration with web frameworks,
346-347
overview, 346, 348-349
RequestContext, 350-351
flowRegistry bean, 330-331, 340, 344
FlowRegistry class, 330-331
FlowSessions, 349-350
FOP (Apache Formatting Objects Processor)
driver, 257
FOP (Formatting Objects Processor) driver,
Apache, 257
form handling, 65

393

I
>
o
=t
—
QO
n
L
@D
=
V)
—
=
=3
=
=
(%2)
=
=3
D
=
=
(=X
D
i3
Q0
=}
=
D
(2]
(7]
()
(=}
3
~

394

INDEX

form parameters, 124

form submission, 66

Form View, 69-71

formAction bean, 322-323, 338-339, 360-361

FormatHelper class, 255

Formatting Objects Processor (FOP) driver,
Apache, 257

formBackingObject() method, 152-153, 179

FormBean class, 65

formCheckboxes template macro, for
Velocity and FreeMarker, 244

formHiddenInput* template macro, for
Velocity and FreeMarker, 243

formInput template macro, for Velocity and
FreeMarker, 243

formMultiSelect template macro, for Velocity
and FreeMarker, 243

formPasswordInput* template macro, for
Velocity and FreeMarker, 243

formRadioButtons template macro, for
Velocity and FreeMarker, 244

formSingleSelect template macro, for
Velocity and FreeMarker, 243

formTextarea template macro, for Velocity
and FreeMarker, 243

formView property, SimpleFormController
class, 150, 153

forProperty method, 282

forward() method, RequestDispatcher class,
214

fragment enforcing business rules, Spring
Web Flow, 335

Framework, Spring, 42

FreeMarker. See Velocity and FreeMarker

Front Controller, 60, 315

function classes, Valang, 276

G

GET,POST string, 120

getAccount() method, 295-296

getActiveFlow() method, 349

getBean() method, 153

getCell() method, 259

getConfigLocations() method, 306

getEventldParameterName() method,
FlowExecutionManagerParameter-
Extractor class, 365

getlnitialPage() method, 179

getLocale() method, HttpServletRequest
class, 104, 106

getLocaleResolver() method, 104

getParameter() method, HttpServletRequest
class, 122

getParameters() method, HttpRequest class,
255

getSpecialDeals() method, 42, 50

getSuccessView() method, 163

getTargetPage() method, 178
getTotalCost() method, 285
getTotalTravelTime() method, 46, 286
getValues method, 386

getVets() method, 383

global error, 279

Graphviz, 371, 374

H
>H shift operator, 272
<H shift operator, 272
handle() method, 84
HandlerAdapter interface, 83-84, , 104
HandlerAdapters interface, 78
HandlerChain, 198-199
handleRequest() method, 118, 207, 299
handleRequestInternal() method, 53, 56,
118,122, 299
HandlerExceptionResolver interface, 79, 82
overview, 94-97
pattern matching rules, 97-99
HandlerExecutionChain interface, 87
HandlerInterceptor interface, 196
HandlerInterceptors, 198-199
example, 197-198
overview, 196-197
HandlerInterceptors interface, 79
HandlerMapping
custom mapping strategy, 92-93
mapping strategies
BeanNameUrlHandlerMapping, 87-88
BeanNameUrlHandlerMapping
shortcomings, 90
default mapping, 89-90
match algorithm, 90
multiple mappings per handler, 89
overview, 87
path components, 88—-89
SimpleUrlHandlerMapping, 90-92
overview, 86
path matching, 86-87
HandlerMapping interface, 78, 82, 87, 92, 198
HandlerMappings interface, 199
HAS LENGTH operator, Valang, 270
HAS NO LENGTH operator, Valang, 270
HAS NO TEXT operator, Valang, 270
HAS TEXT operator, Valang, 270
hasErrorCode method, 282
hasPermission method, 9
<head> section, 381
Hibernate objects, 35
HibernateDaoSupport class, 38
home page use case
overview, 53
request handling sequence, 63-64
Spring MVC components
Controller, 53-55

Controller configuration, 55-56

overview, 53

View, 56-57

View configuration, 57-58

start application, 63
web application configuration

DispatcherServlet, 60-61

file layout and distribution, 62

initializing root ApplicationContext,

58-60

overview, 58

web.xml, 61
HomeController controller, 53
HomeController Integration Test class, 305
HomePage class, 251
home.root property, 253
HTML escaping, 231-232
htmlEscape attribute, 232
HTTP methods, 119-120
HTTP response code, 164
HttpServletRequest class, 52, 126, 194, 299
HttpServletResponse class, 52, 194
HttpSession class, 106

i18n (internationalization) issues, 78
id attribute, 382
if condition, 365
import element, 323
incremental operators, 273
inheritance, 38
init() method, 276
init target, 374
initBinder() method, 68, 112, 152-153
InitializingBean, 160
inline flows, 343-345
<inline-flow> element, 343
<input> tag, 187
input-mapping fragment, 341
<input-mapping> element, 342
InputStreamEditor propertyeditor, 136
inside-out testing, 292
installing JAR dependencies, 51
integration tests
basic guidelines for, 303-304
example, 305-307
overview, 302-304
intercepting requests, 79
internal implementation-specific methods,
288
internal influence, 117
Internal Resource, 57
InternalPathMethodNameResolver property,
170,172
InternalResourceView class, 203, 208, 223
InternalResourceViewResolver, 57, 160, 165,
223

INDEX

internationalization (i18n) issues, 78
Inversion of Control (IoC), 7-8,

invoke() method, MethodInvoker class, 362
IoC (Inversion of Control), 7-8,

IS BLANK operator, Valang, 270

IS LOWER CASE operator, Valang, 270

IS LOWER operator, Valang, 270

IS LOWERCASE operator, Valang, 270

IS NOT BLANK operator, Valang, 270

IS NOT LOWER CASE operator, Valang, 270
IS NOT LOWER operator, Valang, 270

IS NOT LOWERCASE operator, Valang, 270
IS NOT NULL operator, Valang, 270

IS NOT UPPER CASE operator, Valang, 270
IS NOT UPPER operator, Valang, 270

IS NOT UPPERCASE operator, Valang, 270
IS NOT WORD operator, Valang, 270

IS NULL, NULL operator, Valang, 270

IS UPPER CASE operator, Valang, 270

IS UPPER operator, Valang, 270

IS UPPERCASE operator, Valang, 270
ISWORD operator, Valang, 270
isAutoWireByName() method, 276-277
isAutoWireByType() methods, 276
isCancelRequest() method, 180
isFinishRequest() method, 180
isFormSubmission() method, 151, 153
isMultipart() method, 108

isNew() method, 380

isolated business rules, 335
isSessionForm() method, 153-154
isValidateOnBinding() method, 154
isValidNow() method, 44

isValidOn() method, 44

J

Jakarta Commons FileUpload, 109
JAR dependencies

installation, 51

overview, 50-51

third-party JAR dependencies, 51
JAR files, 235
JasperReports

Multiformat view, 261-262

overview, 260-261

populating report, 262-263
JasperReportsMultiFormatView type, 261
Java file upload libraries, 78
Java interface, as layer contract, 23-24
Java object (POJO) model, 252
JavaBeans, 65, 123
JavaDoc locations, 375
java.lang.Integer field type, 147
JavaScript objects, 377
JdbcTemplate class, 277
jMock, 24, 292-293,
JRDataSource class, 262

395

I
>
=%
=
—h
QO
n
—
@D
=
QO
—
=
=
=
=
(%2)
=
=]
@
=3
=
=%
@
P
Q0
=
=
@
(2]
7]
o
=}
3
S~

396

INDEX

JSP and JSTL
displaying model, 225-227
exposing model as request attributes,
224-225
forms
HTML escaping, 231-232
nested paths, 229-230
note on check box submissions,
230-231
overview, 228-229
tagfiles, 232
JSP tag libraries, 227
overview, 223-224
JSP files, 183-190
JSP Standard Tag Library (JSTL).
See JSP and JSTL
JSTL (JSP Standard Tag Library).
SeeJSP and JSTL
JUnit library, 285

L
Last-Modified header, 121
lastName property, 282
launch() method, FlowExecutionManager
class, 346
layers
data access layer, 37-38
dependencies, 36-37
overview, 35-36
domain model layer
dependencies, 32
dependency injection for domain
model, 33-35
overview, 31-32
Spring's support for, 32
Java interface as layer contract, 23-24
layer isolation, 23
overview, 21-24
service layer
dependencies, 30
example, 29-30
overview, 28-29
Spring's support for, 30
vs. tiers, 21
user interface layer
dependencies, 26
overview, 24-25
web layer, 28
dependencies, 28
overview, 26-27
LDAP-compliant directory, 36
len function, Valang, 274
length function, Valang, 274
LinkedHashSet class, 133
<listener> element, 59
<listener-class> element, 59
lists, binding to, 129-131

loadFoo() method, 293

LocalBeanInvokingAction class, 362

Locale Aware, 78

Locale parameter, 247

Locale Resolution, 218-219

LocaleEditor property editor, 105, 136

LocaleResolver, 218
AcceptHeaderLocaleResolver, 104
CookieLocaleResolver, 106
FixedLocaleResolver, 105
overview, 100-102
retrieving, 103-104
SessionLocaleResolver, 106-107
setting Locale, 102-103

LocaleResolver interface, 78, 82, 100, 112, 218

lockAction, 336

logical user conversation, 353

lower function, Valang, 274

>m shift operator, 272
<m shift operator, 272
MailSender instance, 34
MailSender property, 33
Map entries, 271, 357
mapping configurations, 79
mappings property,
SimpleUrlHandlerMapping class, 92
maps, binding to, 132-133
match algorithm, 90
memory footprint, 311
message sources, 278
message template macro, for Velocity and
FreeMarker, 243
MessageFormat, 278
MessageSource bean, 219-220, 247
MessageSource class ApplicationContext file,
228
messages.properties properties file, 220
messageText template macro, for Velocity
and FreeMarker, 243
MethodNameResolver, 170-171
methodParamNames array, 170-171
methods, coarse grained, 48
mock() method, 294
mock implementations, 24
mock objects, 292-293
overview, 292-293
techniques, 293
unit tests with jMock, 293-296
mockAccountDao, 295
MockHttpServletRequest class, 194
MockODbijects library, 292
MockObjectTestCase class, 293
model property description, 347
ModelAndView class, 28, 53, 55, 57, 63, 69,
163, 180, 207-208, 209

MultiAction class, 323
MultiActionController, 168, 174
example, 172-175
InternalPathMethodNameResolver, 170
overview, 168-170
ParameterMethodNameResolver, 170-171
PropertiesMethodNameResolver, 171-172
MultiActionController, Controller options,
199
Multiformat view, JasperReports, 261-262
multipage work flow, 176
Multipart file uploads, 78
MultipartFile class, 111
MultipartResolver interface, 78, 82, 107-112
multiple mappings per handler, 89
MultiTypeCommandBean bean, 147
MVC application, documenting.
See BeanDoc

name attribute, 360

Name class, 125

name space clashes, 311

nameBean name, 126

name.firstName property name, 128

navigation logic, 26

nested paths, 229-230

nested properties, 127-128

NestedCommandBean bean, 128

new() method, 381

newCommandObject() method, 175

newlnstance() method, Class class, 175

newPersonSuccess view name, 167

noErrors() method, 282

NoMatchingTransitionException class, 341,
365

non-default PropertyEditors, 139-142

non-string properties, 135-138

NoSuchConversationContinuationException
class, 357

NOT BETWEEN <value> AND <value>
operator, Valang, 270

NOT IN <value> (, <value>)* operator,
Valang, 269

NOT NULL operator, Valang, 270

NullPointerException class, 127, 268

0

object class, 33

Object Graph Navigation Language (OGNL),
JSTL, 124

object model, 36

object-relational mapping (ORM) tool, 152

OGNL (Object Graph Navigation Language),
JSTL, 124

onBindAndValidate() method, 154

onSetupAfterTransaction() method, 306

INDEX

onSetupBeforeTransaction() method, 306
onSubmit() method, 69, 154, 162
Open-Closed Principle, 117, 199
<option> tags, 161
options map, 246
Ordered interface, 80, 213
org.springframework.core.Ordered interface,
85,94
org.springframework.mock.web.MockHttp-
ServletRequest class, 126
org.springframework.ui.context.Theme
object, 112
org.springframework.util. AntPathMatcher
interface, 86
org.springframework.validation framework,
148
org.springframework.validation.Bind-
Exception class, 146
org.springframework.validation.DataBinder
class, 124
org.springframework.validation.FieldError
instance, 147
org.springframework.validation.ObjectError
instance, 147
org.springframework.validation.Validator
interface, 265
org.springframework.web.bind.Servlet-
RequestDataBinder class, 124
org.springframework.webflow.Action
interface, 321, 362
org.springframework.webflow.Action.do-
Execute() method, 350
org.springframework.webflow.Action-
ExecutionException class, Spring
Web Flow State Exception, 368
org.springframework.webflow.action.Form-
Action implementation, 360
org.springframework.webflow.context.portlet.
PortletExternalContext class, 347
org.springframework.webflow.context.servlet.
ServletExternalContext class, 347
org.springframework.webflow.EnterState-
VetoException class, Spring Web
Flow State Exception, 368
org.springframework.webflow.execution.
FlowExecution artifact, 351
org.springframework.webflow.execution.
repository.InvalidConversation-
ContinuationException class,
Spring Web Flow, 368
org.springframework.webflow.execution.
repository.NoSuchConversation-
Exception class, Spring Web Flow,
368
org.springframework.webflow.ExternalContext
artifact, 351

397

I
>
=%
=
—h
QO
n
—
@D
=
QO
—
=
=
=
=
(%2)
=
=]
@
=3
=
=%
@
P
Q0
=
=
@
(2]
7]
o
=}
3
S~

398

INDEX

org.springframework.webflow.FlowSession
artifact, 351
org.springframework.webflow.manager.jsf.
JstExternalContext adapter class, 347
org.springframework.webflow.NoMatching-
TransitionException class, Spring
Web Flow, 368
org.springframework.webflow.Request-
Context artifact, 351
org.springframework.webflow.StateException
class, Spring Web Flow, 368
org.springframework.webflow.StateException-
Handler, 367
org.springframework.webflow.support.
RedirectViewSelector
implementations, ViewSelector, 364
org.springframework.webflow.support.
SimpleViewSelector
implementations, ViewSelector, 364
org.springframework.webflow.ViewSelection
artifact, 351
org.springframework.webflow.ViewSelector
interface, 363
org.springframework.web.multipart.
MultipartHttpServletRequest
wrapper object, 108
org.springframework.web.multipart.
MultipartResolver, 107
org.springframework.web.servlet.handler.
AbstractUrlHandlerMapping class,
87
org.springframework.web.servlet. Handler-
Adapter interface, 84
org.springframework.web.servlet.handler.
BeanNameUrlHandlerMapping
class, 87
org.springframework.web.servlet. Handler-
ExceptionResolver, 367
org.springframework.web.servlet.i18n.
AcceptHeaderLocaleResolver class,
104
org.springframework.web.servlet.Locale-
Resolver interface, 100
org.springframework.web.servlet. mvc.Base-
CommandController class, 123
org.springframework.web.servlet.mvc.
Controller interface, 28
org.springframework.web.servlet. mvc.
SimpleFormController, 149
org.springframework.web.servlet.mvc.throw-
away.ThrowawayController, 193
org.springframework.web.servlet.mvc.
UrlFilenameViewController, 167
org.springframework.web.servlet.support.
RequestContextUtils class, 104
org.springframework.web.servlet.view.
RedirectView class, 165

org.springmodules.validation.functions.
AbstractFunction, 275

ORM (object-relational mapping) tool, 152

output-mapping fragment, 341

<output-mapping> element, 342

P

Page change, state changes, 177
_page parameter, 189
ParameterizableViewController, Controller
options, 199
ParameterMethodNameResolver, 170-172
parent flow, 337
parent flow scope, 342
parent-view.class attribute, 212
path components, 88-89
Paused status, FlowSession, 350
PDF support
configuring application to use PDF View,
257
overview, 256
template PDFs with FOP, 257
persistence mechanism, 36
plain old Java object (POJO), 7, 18, 27-28, 37,
42, 125, 328, 362-363, 366
PlatformTransactionManager class, 306
POJO (Java object) model, 252
POJO (plain old Java object), 7, 18, 27-28, 37,
42,125, 328, 362-363, 366
polymorphism, 38
popNestedPath, 281
POST method, 158, 215
postHandle method, interceptor life cycle
points, 197
postProcessPage() method, 179
preHandle method, interceptor life cycle
points, 197
Pro Spring, 7
processCancel() method, 180
processFinish() method, 179-180
processing pipeline, 63
programmatic validators, 265-267
Properties, java.util package, 171
properties, nested, 127-128
Properties instance, 171
PropertiesEditor propertyeditor, 136
PropertiesMethodNameResolver, 171-172
property notation constructs, 271
property number values, 271
PropertyEditors, 66, 124, 135-136, 140, 196
custom, 142-145
non-default, 139-142
proxy-based AOP, 9
purchase bean, 327, 338
purchase object, 363
Purchase Product flow, 329
Purchase Product use case

Action Bean definitions, 322-324
action states, 327-328
actions, 321-322
additional configuration, 331
decision states, 326-327
end states, 328-329
extending AbstractFlowExecutionTests,
324-326
flow definition, 320
FlowController, 330
FlowRegistry, 330-331
installing Spring Web Flow, 319
launching flow from browser, 332-333
overview, 319
proposed Flow directory structure, 319
Spring MVC deployment, 330
testing flow execution, 324
transitions, 320-321
view states, 320
view template requirements, 331-332
view template resolution, 331
purchase.domain.DuplicatePurchase-
Exception, 368
purchase.domain.Purchase form object
class, 324
purchaseForm view, 320, 322
pushNestedPath, 281

Q

question mark (?), 267

R
Rational Unified Process (RUP), 290
Redirect After Submit pattern, 164
redirect property description, 347
RedirectView class, 165, 215-216
RedirectViewSelector Selection, 364
Refactored Entity class, 381
refactoring, 38, 127, 302
referenceData() method, 152, 154, 160-161,
245
registerCustomEditor() method, 68, 140
reject() methods, 279
rejectValue() methods, Errors interface, 265,
279
ReloadableResourceBundleMessageSource
implementation, MessageSource
bean, 219
remoting capabilities, 29
render() method, View interface, 203, 224,
263
reportDataKey property, 262
request processing. See also HandlerMapping-
DispatcherServlet
declaration, 79-80
initialization, 80-83
overview, 79

INDEX

functionality overview
custom exception handling, 79
intercepting requests, 79
Locale Aware, 78
mapping requests to Controllers, 78-79
Multipart file uploads, 78
overview, 78
request HandlerAdapters, 78
view mapping, 79
HandlerAdapter, 84-86
HandlerExceptionResolver
overview, 94-97
pattern matching rules, 97-99
LocaleResolver
AcceptHeaderLocaleResolver, 104
CookieLocaleResolver, 106
FixedLocaleResolver, 105
overview, 100-102
retrieving, 103-104
SessionLocaleResolver, 106-107
setting Locale, 102-103
MultipartResolver, 107-112
overview, 77
request work flow, 77
ThemeResolver, 112-113
Request servlet scope, 309
RequestContext class, 206, 350-351
requestContextAttribute name, 206
RequestContextUtils, 104
RequestDispatcher class, 57
RequestMethodNotSupportedException
class, 119, 174
RequestParameterHandlerMapping class, 92
request/response frameworks, 27
resolve function, Valang, 274
resolveMultipart() method, 108
ResourceArrayPropertyEditor propertyeditor,
136, 330
ResourceBundleMessageSource
implementation, MessageSource
class, 219
ResourceBundleThemeSource class, 217
ResourceBundleViewResolver class, 211-212,
215, 220, 223, 250
resourceLoaderPath property, 236
response objects, 52
response.sendError() method, 300
resultName property, 363
resultScope property, 363
return value, methods, 366
root element, 253
RuntimeException class, 37
RUP (Rational Unified Process), 290

S

<s shift operator, 272
>s shift operator, 272

399

=
3
o
—
—n
Q
wn
—
@D
=
QO
—
=
=1
=
=
2]
=
=}
(32}
==
>
(=3
@
o
Q0
=]
=
@
n
7
Q
(=}
=]
S

400

INDEX

search for flights use case
form view, 69-71
overview, 65
SearchFlightsController
overview, 67-69
SearchFlightsController configuration,
69
SimpleFormController
command bean, 66
overview, 65-66
Spring JSP tags, 72-73
success view, 73-74
SecurityFlowExecutionListener class, 352
SecurityManager class, 9
<select> tag, 161
sendRedirect() method,
HttpServletResponse class, 165
serialization, 30
server affinity, 311
service() method, 55
service layer, 27, 32
dependencies, 30
example, 29-30
overview, 28-29
Spring's support for, 30
Service Locator pattern, 12-13
service method, 29
Servlet API, 316
Servlet API classes, 193
Servlet API stubs, 297
servlet applications, 122
servlet container, 63, 185
servlet definition, 60
servlet mapping, 55, 171
servlet request parameters, 124
servlet scopes, 309
servlet-mapping element interface, 80
ServletRequest object, 111
ServletRequestBindingException, 195
ServletRequestDataBinder, 199
Session servlet scope, 309
sessionForm property,
SimpleFormController class, 150
SessionLocaleResolver method,
LocaleResolver class, 105, 106-107,
219
SessionRequiredException property, 120
SessionThemeResolver method,
ThemeResolver class, 112, 218
setAllowedFields() method, 146
setBindOnNewForm() method, 152
setCacheSeconds() method, 55
setCommandClass() method, 68, 152
setCommandName() method, 68, 159
setComplete() method, 304, 306
setContentType() method, AbstractView
class, 205

setDependencyCheck() method, 306
setFirstName() method, 125, 127
setFlightService() method, 55, 68
setFormView() method, 68
setHomeController() method, 306
setLocale() method, 104, 106
setLocaleResolver() method, 104
setParamName() method, 170
setPersonDao() method, 163
setRequiredFields() method, 147
sets, binding to, 133-135
setSessionForm() method, 152
setSuccessView() method, 68
setUp() method, 285, 294, 306
setupForm() method, 322-323, 361
shift operators, 272-273
showCostConfirmation state, 328-329, 363
showOwners() function, 386
showVets() function, 383
signalEvent() method,
FlowExecutionManager class, 346
SimpleControllerHandlerAdapter class, 84,
195
SimpleDateFomat, javadoc documentation,
274
SimpleDateFormat class, java.text package,
139
SimpleFlowExecutionRepository, 357
SimpleFormController, 28, 73, 123, 149, 151,
168,176,179, 314
command bean, 66
Controller options, 199
examples, 155-164
form submission with, 153-155
overview, 65-66, 149-153
SimpleFormController class, 360
SimpleUrlHandlerMapping class, 90-92
SimpleViewSelector Selection, 364
single handler, multiple mappings for, 89
singletons, 116
size function, Valang, 274
skins, 112
SourceForge, 372
SpecialDeal class, 42
specials variable, 57
Spring ApplicationContexts, 17-18
Spring creator, 379
Spring IDE Web Flow editor, 312
Spring JSP tags, 72-73
Spring MVC's i18n infrastructure, 101
Spring MVC-specific elements, 57
Spring Web Flow, 177, 314
architectural overview, 315
building blocks
events, 318-319
flows, 318
overview, 316-318

states, 318
transitions, 318
business logic and flows, 335-336
ClientContinuationFlowExecution-
Repository, 358
and conversation scope, 310-313
different scopes, 316
exception handling
overview, 367-368
state scoped ExceptionHandlers, 369
flow granularity
inline flows, 343-345
overview, 337
subflows, 337-343
FlowExecution repositories
continuations, 354-355
conversation invalidation after
completion, 358
FlowExecutionRepository
implementations, 356
overview, 353
stateful, 356-357
stateless, 357
inside Spring Web Flow system, 315
managing FlowExecutions
FlowExecutionListener, 351-353
FlowExecutionManager, 347-348
FlowSessions, 349-350
integration with web frameworks,
346-347
overview, 346, 348-349
RequestContext, 350-351
overview, 309-310, 335
Purchase Product use case
Action Bean definitions, 322-324
action states, 327-328
actions, 321-322
additional configuration, 331
decision states, 326-327
end states, 328-329
extending AbstractFlowExecutionTests,
324-326
flow definition, 320
FlowController, 330
FlowRegistry, 330-331
installing Spring Web Flow, 319
launching flow from browser, 332-333
overview, 319
proposed Flow directory structure, 319
Spring MVC deployment, 330
testing flow execution, 324
transitions, 320-321
view states, 320
view template requirements, 331-332
view template resolution, 331
states and transitions
action states, 359-361

INDEX

customizing view selection with view
states and end states, 363—-365
decision states, 365-366
exposing POJO method return values,
363
overview, 358-359
POJO actions, 362
spring-beandoc directory, 372
spring-beandoc.jar file, 373
SpringBind macros, 241-247
<spring:bind> tag, 70, 157, 183, 227-228, 241
spring:escapeBody, Spring JSP tag, 227
spring:hasBindErrors, Spring JSP tag, 227
<spring:hasBindErrors> tag, 183, 186
spring:htmlEscape, Spring JSP tag, 227, 232
spring.jar file, 373
spring:message, Spring JSP tag, 227
<spring:message> tag, 183, 187
spring-mock.jar file, 297
spring:nestedPath, Spring JSP tag, 227
<spring:nestedPath> tag, 70, 190-191,
229-230
spring-servlet.xml file, 165, 167
spring:theme, Spring JSP tag, 216, 227
spring:transform, Spring JSP tag, 227
SqlQueryForIntFunction function, 276
square brackets ([and]), 271
StateExceptionHandler interface, 367-368
stateful FlowExecution repositories
ContinuationFlowExecutionRepository,
356-357
overview, 356
SimpleFlowExecutionRepository, 357
stateless FlowExecution repositories
ClientContinuationFlowExecution-
Repository, 357-358
overview, 357
stateless method, 116
states, Spring Web Flow, 318
states and transitions
action states
chain of responsibility, 359-360
FormAction, 360-361
overview, 359
customizing view selection with view
states and end states
indicating transitions, 364-365
overview, 363-364
decision states, 365-366
exposing POJO method return values, 363
overview, 358-359
POJO actions, 362
static attribute, 207
status.errorMessages field, 242
status.expression variable, 72
status.value variable, 72
storeOwner() method, 386

401

I
>
o
=t
—
QO
n
L
@D
=
V)
=
=
=3
=
=
wn
=
=}
D
=
=}
(=X
D
i3
[2Y)
=}
=
D
[72]
»n
(]
(=]
3
~

402

INDEX

String class, 46
StringArrayPropertyEditor propertyeditor,
136
String-encoded representation, 356
Strings, array of, 120
stubs, vs. mocks, 297
stylesheetLocation property, 254
subclasses, 117-118
subflow output attribute, 342
Subflow state, 318, 359
subflows, 318, 337
attribute mappings
AttributeMappers, 342
custom AttributeMappers, 343
example, 342
overview, 341
overview, 337-341
subflow-state definition, 340
<subflow-state> element, 341
submission data, XHTML form, 46
submit event, 318, 322, 365
success view, 73-74

successView property, SimpleFormController

class, 150
superclasses, of exception mappings, 98
super.doMethod() method, 117
supports() method, Validator interface, 265
suppressValidation() method, 154
Suspended status, FlowSession, 350
switch statement, 289
synchronizeOnSession property, 122

T

T construct, 271
tag library, 241
Tag Library Descriptor (TLD), 186
tagdir attribute, 188
tagfiles, 232
taglib attribute, 188
tags, 72
TDD (test-driven development), 290, 313
template languages, 52
template pattern, 37, 118
templates, Velocity and FreeMarker, 235-239
basic configuring for template engines,
236-237
template language, 238-239
templating engine, 239
test-driven development (TDD), 290, 313
testEmptyPersonValidation() method, 281
testing applications
integration tests
basic guidelines for, 303-304
example, 305-307
overview, 302-304
overview, 283
unit tests

code with dependencies, 291-292

example, 285-288

how to know when test is finished,

288-290

mock objects, 292-296

overview, 283-284

testing controllers, 296-301

tools, 285

when to write tests, 290
testRequest() method, 306
testWrongEndTime() method, 289
ThemeChangelnterceptor, 218
ThemeResolver class, 82
ThemeResolver interface, 112-113, 216
ThemeResolvers, 218
themes, 112
ThemeSources, 217
third-party JAR dependencies, 51
ThrowawayController, 193-196, 199
ThrowawayControllerHandlerAdapter, 195
ThrowawayControllers controller type, 115
tiers, vs. layers, 21
tiles, 233-235
TilesConfigurer bean, 233
TilesView resolution, 234
timestamp property value, 272
TLD (Tag Library Descriptor), 186
Top-level flow, 345
toString() method, 158
transitions, Purchase Product use case,

320-321

U

underscore (), 231
unit tests, 36
code with dependencies, 291-292
example, 285-288
how to know when test is finished,
288-290
mock objects
overview, 292-293
techniques, 293
unit tests with jMock, 293-296
overview, 283-284
testing controllers
example, 297-301
overview, 296-297
Servlet API stubs, 297
stubs vs. mocks, 297
tools, 285
when to write tests, 290
updateOwner function, 386
upper function, Valang, 275
URI mappings, 55
URL class, java.net package, 135
url macro, 243
UrlBasedViewResolver resolver, 167, 211, 215

URLEditor propertyeditor propertyeditor,
136

UrlFilenameViewController, 167, 199

UrlPropertyEditor, 135

use cases, 41-50. See also home page use
case; search for flights use case

useCacheControlHeader property, 120

useExpiresHeader property, 120

user interface layer, 24-25, 26, 32

)
ValangValidatorFactoryBean, 267, 275
valid objects, 281
ValidatableThrowawayController, 195-196,
199
ValidatableThrowawayControllerHandler-
Adapter, 196
validate() method, 179, 265, 360
validateOnBinding property,
SimpleFormController class, 150
validatePage() method, 179
validation, 69
and business logic, 279
declarative validators, 267-277
Errors interface, 279-281
message sources, 278
overview, 265
programmatic validators, 265-267
testing, 281
validation language, 267
Validator class, 228, 313
Validator interface, 200
Validators, 160, 179
validator(s) property, SimpleFormController
class, 150
Velocity and FreeMarker
advanced configuration options, 239-241
basic configuring for template engines,
236-237
exposing model, 238
forms and SpringBind macros, 241-247
number and date tools, 247-249
overview, 235
template language, 238-239
templating pros and cons, 235-236
Velocity Template Language (VTL), 238
VelocityConfigurer class, 236
VelocityContext class, 238
VelocityLayoutView view, 249
VelocityToolboxView view, 249
VelocityView, 203, 238
VelocityViewResolver, 241
verify() method, 295-296
View, 56-58, 201
View class, 26, 53, 57, 202-203, 250
View Interface, 203
View key, 237

INDEX

View layer, 55
bind support, 221
and Controllers, 207-208
implementing, 203, 205-207
internationalization in
Locale Resolution, 218-219
MessageSource beans, 219-220
overview, 218
theme resolution, 221
view resolution, 220
overview, 201-203
RedirectView class, 215-216
themes
overview, 216-217
ThemeResolvers, 218
ThemeSources, 217
treating views in isolation, 202
ViewResolvers
making known to Dispatcher, 213-214
overview, 208-209
putting view resolution in context, 209
types of, 210-213
view mapping, 79
view rendering, 52
View resolution subsystem, 313
View resolvers, 214
View state, 318, 359
view types, supported
creating new views, 263
Excel
coding the view, 259
configuring application, 260
configuring the application, 260
creating template, 258
overview, 258
JasperReports
Multiformat view, 261-262
overview, 260-261
populating report, 262-263
JSP and JSTL
displaying model, 225-227
exposing model as request attributes,
224-225
forms, 228-232
JSP tag libraries, 227
overview, 223-224
overview, 223
PDF
configuring application to use PDF
View, 257
overview, 256
template PDFs with FOB, 257
tiles, 233-235
Velocity and FreeMarker, 249-250
advanced configuration options,
239-241

403

I
>
=%
=
—h
QO
n
—
@D
=
QO
—
=
=
=
=
(%2)
=
=]
@
=3
=
=%
@
P
Q0
=
=
@
(2]
7]
o
=}
3
S~

404 INDEX

view types, supported (continued) w
basic configuring for template engines, <w shift operator, 272
236-237 >w shift operator, 272
exposing modgl, 238 web components
forms and SpringBind macros, 241-247 Controllers, 52
number and date tools, 247-249 JAR dependencies
overview, 235 installation, 51
template language, 238-239 overview, 50-51
templating pros and cons, 235-236 third-party, 51
XML ModelAndView, 53
overview, 250 overview, 50
returning in raw, 254 views, 52-53
transforming XML source, 252-253 web layer, 24, 28
XSIT . dependencies, 28
defining XSLT View, 250-252 overview, 26-27
number and date formatting, 255 web layer implementations, 27
overview, 250 WebApplicationContext, 195-196
~ XSL parameters, 255 WebApplicationContext class, 55, 60-61
ViewAccountController, 172 /WEB-INF directory, 56
viewClass property, 234 /WEB-INF/jsp/ directory, 58
viewName property, 347 /WEB-INF/lib directory, 51
ViewResolver interface, 26, 57, 63, 75, 79, 82, WEB-INF/velocity directory, 237
165, 208-210, 218, 224, 236, 331 wildcards, multiple mappings for, 89
making known to Dispatcher, 213-214
overview, 208-209 X
putting view resolution in context, 209 XML, overview, 250
types of, 210-213 XML configuration file, 267
ResourceBundleViewResolver, 211-212 XmlBeanFactory class, 33
_ XmlViewResolver, 212-213 XmlViewResolver class, 165, 210, 212-213,
views, 52-53, 75 215
ViewSelection class, 347, 363 XP (Extreme Programming), 290
ViewSelector interface, 363
views.properties file, 211, 253, 257, 260 Y
void method, 55 <y shift operator, 255, 272

VTL (Velocity Template Language), 238 >y shift operator, 273

yes event, 318
YourViewSelector Selection, 364

	Expert Spring MVC and Web Flow
	Table of Content
	Chapter 1 Introduction
	Chapter 2 Spring Fundamentals
	Chapter 3 Spring MVC Application Architecture
	Chapter 4 Jump into Spring MVC
	Chapter 5 The Processing Pipeline
	Chapter 6 The Controller Menagerie
	Chapter 7 The View Layer
	Chapter 8 Supported View Types
	Chapter 9 Validation
	Chapter 10 Testing Spring MVC Applications
	Chapter 11 Introduction to Spring Web Flow
	Chapter 12 Advanced Spring Web Flow
	Appendix A Documenting Your MVC Application
	Appendix B Ajax and DWR
	Index

