

Mastering Web Application
Development with AngularJS

Build single-page web applications using the power of
AngularJS

Pawel Kozlowski

Peter Bacon Darwin

BIRMINGHAM - MUMBAI

Mastering Web Application
Development with AngularJS

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: August 2013

Production Reference: 1170813

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK..

ISBN 978-1-78216-182-0

www.packtpub.com

Cover Image by Abhishek Pandey (abhishek.pandey1210@gmail.com)

Credits

Authors
Pawel Kozlowski

Peter Bacon Darwin

Reviewers
Stephane Bisson

Miško Hevery

Lee Howard

Acquisition Editors
Rukhsana Khambatta

Pramila Balan

Lead Technical Editor
Dayan Hyames

Technical Editors
Shashank Desai

Krishnaveni Haridas

Saumya Kunder

Project Coordinators
Arshad Sopariwala

Priyanka Goel

Proofreaders
Judith Bill

Bernadette Watkins

Indexer
Monica Ajmera Mehta

Graphics
Ronak Dhruv

Abhinash Sahu

Production Coordinator
Aditi Gajjar

Cover Work
Aditi Gajjar

About the Authors

Pawel Kozlowski has over 15 years of professional experience in web
development and was fortunate enough to work with variety of web technologies,
languages, and platforms. He is not afraid of hacking both at client side and server
side and always searches for the most productive tools and processes.

Pawel strongly believes in free, open source software. He has been very committed
in the AngularJS project and also is very active in the AngularJS community. He also
contributes to Angular UI – the companion suite to the AngularJS framework, where
he focuses on the Twitter's Bootstrap directives for AngularJS.

When not coding, Pawel spreads a good word about AngularJS at various conferences
and meetups.

Acknowledgments

Reflecting on the last few months I can't believe how fortunate I was to work on this
book with so many great people. This text wouldn't have been possible without all
the help and hard work of you all. Thank you.

Firstly I would like to say a "Thank you" to all the members of the AngularJS team
at Google. You are the dream team working on an amazing framework. Keep up
the great work! My special thanks go to Brad Green, Miško Hevery, Igor Minar, and
Vojta Jína. Brad, thank you for putting Peter and me in contact with the publisher
and encouraging us to write this book. Miško, thank you for reviewing our book
and bearing with us when we had naive questions about AngularJS. Igor, for your
constant support and an endless stream of good hints, which made this book much
better. It was a lot of fun to work with all of you guys.

I would like to extend my gratitude to the entire AngularJS community, especially to
people with whom I've interacted on the mailing list and other forums. I can't name
you all, but your insightful questions were great inspiration for this book. A vibrant,
supportive community behind AngularJS is one more reason why this framework is
so great.

Thanks are due to all the people at Packt Publishing: Rukhsana Khambatta, Dayan
Hyames, and Arshad Sopariwala. You've made the entire writing and publishing
process very smooth and straightforward. Thank you.

I would like to thank my co-workers at Amadeus, where I've learned what it
takes to be a client-side programmer. Firstly, my managers Bertrand Laporte and
Bruno Chabrier. Bertrand, thank you for introducing me to the world of client-side
development and encouraging me to write this book. Bruno, thank you for letting
me work part time and focus on this project. Thank you both for your generosity.
Thanks to Julian Descottes and Corinne Krych, who reviewed an earlier draft of the
book and provided valuable feedback.

Very, very special thanks to Peter who agreed to co-author this book with me. Peter,
I've throughly enjoyed every minute of working with you on this project. I could
hardly dream of a better co-author.

Lastly, but most importantly, I would like to thank my wonderful soon-to-be wife
Ania. Without your unconditional support and patience I wouldn't have even
thought of starting work on this book.

About the Authors

Peter Bacon Darwin has been programming for over two decades. He worked with
.NET from before it was released; he contributed to the development of IronRuby and
was an IT consultant for Avanade and IMGROUP before quitting to share his time
between freelance development and looking after his kids.

Peter is a notable figure in the AngularJS community. He has recently joined the
AngularJS team at Google as an external contractor and is a founder member of the
AngularUI project. He has spoken about AngularJS at Devoxx UK and numerous
London meetups. He also runs training courses in AngularJS. His consultancy
practice is now primarily focused on helping businesses make best use of AngularJS.

I would like to thank the team at Google for giving us AngularJS, in
particular the ones who got it all going: Miško Hevery, Igor Minar,
Brad Green, and Vojta Jína. They are a constant inspiration. My co-
author, Pawel, is the driving force behind this book. He conceived
the structure, wrote most of the content, and is a great guy to work
with. We have all benefited from the awesome active community
that has built up around AngularJS in such a short time, especially
the folks in the AngularUI project. Finally, I couldn't have completed
the book without the love and support of my wife, Kelyn, and kids,
Lily and Zachary.

About the Reviewers

Stephane Bisson has been a developer at ThoughtWorks, a global IT consultancy.
He is currently based in Toronto, Canada. He has also worked on several rich web
applications for medical, financial, and manufacturing industries.

Miško Hevery has been working as an Agile Coach at Google where he is
responsible for coaching Googlers to maintain the high level of automated testing
culture. This allows Google to do frequent releases of its web applications with
consistent high quality. Previously he worked at Adobe, Sun Microsystems, Intel,
and Xerox, where he became an expert in building web applications using web-
related technologies such as Java, JavaScript, Flex, and ActionScript. He is very
involved in open source community and is an author of several open source projects,
most notable of which is AngularJS (http://angularjs.org).

Lee Howard has a Computer Science degree from Appalachian State University
and is currently the lead programmer analyst for the Northwest Area Health
Education Center at Wake Forest Baptist Health Medical Center in Winston-Salem,
NC. He has developed a variety of web applications to facilitate the creation,
registration, delivery, and completion of live and the online continuing medical
education courses for the Northwest AHEC. He has also developed Northwest
AHEC's CreditTrakr mobile app for IOS devices, which allows physicians and other
medical professionals to track their CME credits with their IOS devices.

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can access, read and search across Packt's entire library of
books.

Why Subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content
• On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

Table of Contents
Preface 1
Chapter 1: Angular Zen 7

Meet AngularJS 8
Getting familiar with the framework 8
Finding your way in the project 8

The community 9
Online learning resources 9

Libraries and extensions 9
Tools 9

Batarang 10
Plunker and jsFiddle 10
IDE extensions and plugins 10

AngularJS crash course 10
Hello World – the AngularJS example 10

Two-way data binding 12
The MVC pattern in AngularJS 12

Bird's eye view 13
Scopes in depth 15
View 21

Modules and dependency injection 26
Modules in AngularJS 26
Collaborating objects 27
Registering services 29
Modules lifecycle 33
Modules depending on other modules 35

AngularJS and the rest of the world 38
jQuery and AngularJS 39

Apples and oranges 40
A sneak peek into the future 41

Summary 41

Table of Contents

[ii]

Chapter 2: Building and Testing 43
Introducing the sample application 44

Getting familiar with the problem domain 44
Technical stack 45
Persistence store 46

MongoLab 46
Server-side environment 47
Third-party JavaScript libraries 48
Bootstrap CSS 48

Build system 48
Build system principles 49

Automate everything 49
Fail fast, fail clean 49
Different workflows, different commands 50
Build scripts are code too 50

Tools 50
Grunt.js 51
Testing libraries and tools 51
Jasmine 51
Karma runner 52

Organizing files and folders 52
Root folders 52
Inside the source folder 54

AngularJS specific files 54
Start simple 56
Inside the test folder 57

File-naming conventions 57
AngularJS modules and files 57

One file, one module 58
Inside a module 59

Different syntax for registering providers 59
Syntax for declaring the configure and run blocks 61

Automated testing 62
Unit tests 63

Anatomy of a Jasmine test 64
Testing AngularJS objects 65
Testing services 65
Testing controllers 67
Mock objects and asynchronous code testing 68

End-to-end tests 70
Daily workflow 71
Karma runner tips and tricks 72
Executing a subset of tests 73
Debugging 73

Summary 74

Table of Contents

[iii]

Chapter 3: Communicating with a Back-end Server 75
Making XHR and JSONP requests with $http 75

Getting familiar with the data model and MongoLab URLs 76
$http APIs quick tour 76

The configuration object primer 77
Request data conversion 78
Dealing with HTTP responses 79
Response data conversion 79

Dealing with same-origin policy restrictions 79
Overcoming same-origin policy restrictions with JSONP 80
JSONP limitations 81
Overcoming same-origin policy restrictions with CORS 81
Server-side proxies 83

The promise API with $q 84
Working with promises and the $q service 85

Learning $q service basics 85
Promises are first-class JavaScript objects 87
Aggregating callbacks 88
Registering callbacks and the promise lifecycle 88
Asynchronous action chaining 89
More on $q 91

$q integration in AngularJS 93
The promise API with $http 94
Communicating with RESTful endpoints 95

The $resource service 95
Constructor-level and instance-level methods 97
$resource creates asynchronous methods 100
Limitations of the $resource service 101

Custom REST adapters with $http 101
Using advanced features of $http 104

Intercepting responses 104
Testing code that interacts with $http 106
Summary 108

Chapter 4: Displaying and Formatting Data 109
Referencing directives 109
Displaying results of expression evaluation 110

The interpolation directive 110
Rendering model values with ngBind 111
HTML content in AngularJS expressions 111

Conditional display 112
Including blocks of content conditionally 114

Rendering collections with the ngRepeat directive 114
Getting familiar with the ngRepeat directive 115

Table of Contents

[iv]

Special variables 115
Iterating over an object's properties 116
ngRepeat patterns 117

Lists and details 117
Altering tables, rows, and classes 119

DOM event handlers 120
Working effectively with DOM-based templates 121

Living with verbose syntax 121
ngRepeat and multiple DOM elements 122
Elements and attributes that can't be modified at runtime 123
Custom HTML elements and older versions of IE 124

Handling model transformations with filters 124
Working with built-in filters 125

Formatting filters 125
Array-transforming filters 125

Writing custom filters – a pagination example 131
Accessing filters from the JavaScript code 133
Filters dos and don'ts 134

Filters and DOM manipulation 135
Costly data transformations in filters 136
Unstable filters 136

Summary 138
Chapter 5: Creating Advanced Forms 139

Comparing traditional forms with AngularJS forms 139
Introducing the ngModel directive 141

Creating a User Information Form 142
Understanding the input directives 143

Adding the required validation 143
Using text-based inputs (text, textarea, e-mail, URL, number) 143
Using checkbox inputs 144
Using radio inputs 145
Using select inputs 145

Providing simple string options 145
Providing dynamic options with the ngOptions directive 146
Using empty options with the select directive 148
Understanding select and object equivalence 149
Selecting multiple options 150

Working with traditional HTML hidden input fields 150
Embedding values from the server 150
Submitting a traditional HTML form 151

Looking inside ngModel data binding 151
Understanding ngModelController 151

Transforming the value between the model and the view 152

Table of Contents

[v]

Tracking whether the value has changed 152
Tracking input field validity 153

Validating AngularJS forms 153
Understanding ngFormController 153

Using the name attribute to attach forms to the scope 154
Adding dynamic behavior to the User Information Form 154

Showing validation errors 155
Disabling the save button 156

Disabling native browser validation 157
Nesting forms in other forms 157

Using subforms as reusable components 157
Repeating subforms 158

Validating repeated inputs 159
Handling traditional HTML form submission 161

Submitting forms directly to the server 161
Handling form submission events 161

Using ngSubmit to handle form submission 162
Using ngClick to handle form submission 162

Resetting the User Info form 162
Summary 164

Chapter 6: Organizing Navigation 165
URLs in single-page web applications 166

Hashbang URLs in the pre-HTML5 era 166
HTML5 and the history API 167

Using the $location service 168
Understanding the $location service API and URLs 169
Hashes, navigation within a page, and $anchorScroll 170
Configuring the HTML5 mode for URLs 171

Client side 171
Server side 171

Handcrafting navigation using the $location service 172
Structuring pages around routes 173
Mapping routes to URLs 174
Defining controllers in route partials 174
The missing bits in the handcrafted navigation 175

Using built-in AngularJS routing services 175
Basic routes definition 175

Displaying the matched route's content 176
Matching flexible routes 177

Defining default routes 178
Accessing route parameter values 178

Reusing partials with different controllers 178
Avoiding UI flickering on route changes 179

Table of Contents

[vi]

Preventing route changes 181
Limitations of the $route service 182

One route corresponds to one rectangle on the screen 183
Handling multiple UI rectangles with ng-include 183

No nested routes support 184
Routing-specific patterns, tips, and tricks 185

Handling links 185
Creating clickable links 186
Working with HTML5 and hashbang mode links consistently 186
Linking to external pages 187

Organizing route definitions 187
Spreading route definitions among several modules 188
Fighting code duplication in route definitions 188

Summary 189
Chapter 7: Securing Your Application 191

Providing server-side authentication and authorization 192
Handling unauthorized access 192
Providing a server-side authentication API 192

Securing partial templates 193
Stopping malicious attacks 194

Preventing cookie snooping (man-in-the-middle attacks) 194
Preventing cross-site scripting attacks 195

Securing HTML content in AngularJS expressions 195
Allowing unsafe HTML bindings 196
Sanitizing HTML 196

Preventing the JSON injection vulnerability 197
Preventing cross-site request forgery 198

Adding client-side security support 198
Creating a security service 199
Showing a login form 200
Creating security-aware menus and toolbars 201

Hiding the menu items 201
Creating a login toolbar 202

Supporting authentication and authorization on the client 203
Handling authorization failures 203
Intercepting responses 204

HTTP response interceptors 204
Creating a securityInterceptor service 205
Creating the securityRetryQueue service 207

Notifying the security service 208
Preventing navigation to secure routes 208

Using route resolve functions 209

Table of Contents

[vii]

Creating the authorization service 210
Summary 212

Chapter 8: Building Your Own Directives 213
What are AngularJS directives? 214

Understanding the built-in directives 214
Using directives in the HTML markup 215

Following the directive compilation life-cycle 215
Writing unit tests for directives 217
Defining a directive 218
Styling buttons with directives 219

Writing a button directive 220
Understanding AngularJS widget directives 222

Writing a pagination directive 222
Writing tests for the pagination directive 223
Using an HTML template in a directive 224
Isolating our directive from its parent scope 225

Interpolating the attribute with @ 226
Binding data to the attribute with = 227
Providing a callback expression in the attribute with & 227

Implementing the widget 228
Adding a selectPage callback to the directive 229

Creating a custom validation directive 230
Requiring a directive controller 231

Making the controller optional 231
Searching for parents for the controller 232

Working with ngModelController 232
Writing custom validation directive tests 233
Implementing a custom validation directive 235

Creating an asynchronous model validator 235
Mocking up the Users service 236
Writing tests for asynchronous validation 237
Implementing the asynchronous validation directive 238

Wrapping the jQueryUI datepicker directive 239
Writing tests for directives that wrap libraries 240
Implementing the jQuery datepicker directive 242

Summary 243
Chapter 9: Building Advanced Directives 245

Using transclusion 245
Using transclusion in directives 245
Transcluding into an isolated scope directive 246

Table of Contents

[viii]

Creating an alert directive that uses transclusion 246
Understanding the replace property in the directive definition 247
Understanding the transclude property in the directive definition 248
Inserting the transcluded elements with ng-transclude 248

Understanding the scope of transclusion 248
Creating and working with transclusion functions 250

Creating a transclusion function with the $compile service 251
Cloning the original elements when transcluding 251

Accessing transclusion functions in directives 252
Getting the transclusion function in the compile function with transcludeFn 252
Getting the transclusion function in the directive controller with $transclude 253

Creating an if directive that uses transclusion 253
Using the priority property in a directive 255

Understanding directive controllers 256
Injecting special dependencies into directive controllers 257
Creating a controller-based pagination directive 258
Understanding the difference between directive
controllers and link functions 258

Injecting dependencies 259
The compilation process 259
Accessing other controllers 260
Accessing the transclusion function 261

Creating an accordion directive suite 261
Using a directive controller in accordion 262
Implementing the accordion directive 263
Implementing the accordion-group directive 263

Taking control of the compilation process 265
Creating a field directive 265

Using the terminal property in directives 267
Using the $interpolate service 268

Binding to validation messages 269
Loading templates dynamically 269
Setting up the field template 270

Summary 271
Chapter 10: Building AngularJS Web Applications
for an International Audience 273

Using locale-specific symbols and settings 274
Configuring locale-specific modules 274
Making use of available locale settings 275

Locale-specific settings and AngularJS filters 275
Handling translations 276

Handling translated strings used in AngularJS templates 277
Using filters 278
Using directives 279

Table of Contents

[ix]

Handling translated strings used in the JavaScript code 280
Patterns, tips, and tricks 282

Initializing applications for a given locale 282
Consequences of including locales as part of URLs 283

Switching locales 284
Custom formatting for dates, numbers, and currencies 285

Summary 287
Chapter 11: Writing Robust AngularJS Web Applications 289

Understanding the inner workings of AngularJS 290
It is not a string-based template engine 290

Updating models in response to DOM events 291
Propagating model changes to the DOM 291
Synchronizing DOM and model 292
Scope.$apply – a key to the AngularJS world 293
Putting it all together 300

Performance tuning – set expectations, measure, tune, and repeat 301
Performance tuning of AngularJS applications 303

Optimizing CPU utilization 303
Speeding up $digest loops 303
Entering the $digest loop less frequently 310
Limit the number of turns per $digest loop 312

Optimizing memory consumption 312
Avoid deep-watching whenever possible 312
Consider the size of expressions being watched 314

The ng-repeat directive 314
Collection watching in ng-repeat 314
Many bindings made easy 315

Summary 315
Chapter 12: Packaging and Deploying AngularJS
Web Applications 317

Improving network-related performance 318
Minifying static resources 318

How does AngularJS infer dependencies? 318
Writing minification-safe JavaScript code 319
The pitfalls of array-style DI annotations 322

Preloading templates 323
Using the <script> directive to preload templates 324
Filling in the $templateCache service 325
Combining different preloading techniques 327

Optimizing the landing page 327
Avoid displaying templates in their unprocessed form 328

Hiding portions of the DOM with ng-cloak 328
Hiding individual expressions with ng-bind 329

Including AngularJS and application scripts 330

Table of Contents

[x]

Referencing scripts 330
AngularJS and Asynchronous Module Definition 331

Supported browsers 333
Working with Internet Explorer 333

Summary 334
Index 337

Preface
AngularJS is a relatively new JavaScript MVC framework but it is the real game
changer. It has a novel approach to templating and bi-directional data binding
which makes the framework very powerful and easy to use. People constantly
report a dramatic reduction in the number of lines of code needed in applications
using AngularJS as compared to other approaches.

AngularJS is an outstanding piece of engineering. With its strong emphasis on testing
and code quality it promotes good practices for the entire JavaScript ecosystem. Given
the quality and novelty of the technology, it is not surprising to see that many people
are attracted to the framework, creating a very vibrant and supportive community
around AngularJS, which contributes to its growing popularity.

As AngularJS becomes more and more popular, people will start to use it
in complex projects. But you will soon face problems that are not solved in
the standard documentation or in the simple examples found on the Web.
AngularJS, as any other technology, has its own set of idioms, patterns, and
best practices that have been uncovered by the community, based on their
collective experiences.

This is where this book comes in – it aims to show how to write non-trivial AngularJS
applications in a canonical way. Instead of describing how the framework works,
this book focuses on how to use AngularJS to write a complex web application. It
provides real answers to real questions being asked by the AngularJS community.

In short, this is a book written for application developers, by application developers,
and based on real developers questions. In this book you will learn:

• How to build a complete, robust application using existing AngularJS
services and directives.

Preface

[2]

• How to extend AngularJS (directives, services, filters) when there is no out-
of-the-box solution

• How to set up a high quality AngularJS development project (code
organization, build, testing, performance tuning)

What this book covers
Chapter 1, Angular Zen, serves as an introduction to AngularJS framework and the
project. The first chapter outlines project's philosophy, its main concepts, and basic
building blocks.

Chapter 2, Building and Testing, lays a foundation for a sample application used in this
book. It introduces problem domain and covers topics such as testing and building
best practices for the system.

Chapter 3, Communicating with a Back-end Server, teaches us how to fetch data from
a remote back-end and feed those data effectively to the UI powered by AngularJS.
This chapter has extensive coverage of the promise API.

Chapter 4, Displaying and Formatting Data, assumes that data to be displayed were
already fetched from back-end and shows how to render those data in the UI. This
chapter discusses the usage of AngularJS directives for UI rendering and filters for
data formatting.

Chapter 5, Creating Advanced Forms, illustrates how to allow users to manipulate
data through forms and various types of input fields. It covers various input types
supported by AngularJS and contains deep dive into forms validation.

Chapter 6, Organizing Navigation, shows how to organize individual screens into an
easy-to-navigate application. It starts by explaining role of URLs in single-page web
applications and familiarizes a reader with key AngularJS services for managing
URLs and navigation.

Chapter 7, Securing Your Application, goes into the details of securing single-page web
applications written using AngularJS. It covers the concepts and techniques behind
authenticating and authorizing users.

Chapter 8, Building Your Own Directives, serves as an introduction to one of the
most exciting parts of the AngularJS: directives. It will guide the reader through
a structure of sample directives as well as demonstrate testing approaches.

Chapter 9, Building Advanced Directives, is based on Chapter 8, Building Your Own
Directives and covers more advanced topics. It is filled with a real-life directive
examples clearly illustrating complex techniques.

Preface

[3]

Chapter 10, Building AngularJS Web Applications for an International Audience, deals
with internationalization of AngularJS applications. Covered topics include
approaches to translating templates as well as managing locale-dependent settings.

Chapter 11, Writing Robust AngularJS Web Applications focuses on non-functional,
performance requirements for web applications. It peeks under the hood of AngularJS
to familiarize readers with its performance characteristics. A good understanding of
AngularJS internals will allow us to avoid common performance-related pitfalls.

Chapter 12, Packaging and Deploying AngularJS Web Applications will guide you through
a process of preparing a finished application for production deployment. It illustrates
how to optimize application load with a special focus on the landing page.

What you need for this book
To experiment with AngularJS examples all you need is a web browser and a text
editor (or your favorite IDE). But in order to take full advantage of this book we
would recommend installing node.js (http://nodejs.org/) and its npm package
manager with the following modules:

• Grunt (http://gruntjs.com/)
• Karma runner (http://karma-runner.github.io)

Code examples illustrating interactions with a back-end are making use of a
cloud-hosted MongoDB database (MongoLab) so a working internet connection
is needed to run many examples from this book.

Who this book is for
This book will be mostly useful to developers who are evaluating or have decided
to use AngularJS for a real-life project. You should have some prior exposure to
AngularJS, at least through basic examples. We assume that you've got working
knowledge of HTML, CSS, and JavaScript.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "We can include other contexts through
the use of the include directive."

Preface

[4]

A block of code is set as follows:

angular.module('filterCustomization', [])
 .config(function ($provide) {
varcustomFormats = {
 'fr-ca': {
 'fullDate': 'y'
 }
 };

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

<head>
<meta charset="utf-8">
<script src="/lib/angular/angular.js"></script>
<script src="/lib/angular/angular-locale_<%= locale %>.js"></script>
<base href="/<%= locale %>/">

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "clicking
the Next button moves you to the next screen".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Preface

[5]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem
with any aspect of the book, and we will do our best to address it.

Angular Zen
This chapter serves as an introduction to AngularJS, both the framework and the
project behind it. Firstly we are going to take a brief look at the project itself: who
drives it, where to find the source code and the documentation, how to ask for help,
and so on.

Most of this chapter is filled with introduction to the AngularJS framework, its core
concepts, and coding patterns. There is a lot of material to cover, so to make the
learning process fast and painless, there are plenty of code examples.

AngularJS is a unique framework that without doubt will shape the web
development space in the years to come. This is why the last part of this chapter
explains what makes AngularJS so special, how it compares to other existing
frameworks, and what we can expect from it in the future.

In this chapter we will cover the following topics:

• How to write a simple Hello World application in AngularJS. In the process
of doing so, you will come to know where to find framework source code,
its documentation, and community.

• To get familiar with the basic building blocks of any AngularJS application:
templates with directives, scopes, and controllers.

• To become aware of the AngularJS sophisticated dependency injection
system with all its nuances.

• To understand how AngularJS compares to other frameworks and libraries
(especially jQuery) and what makes it so special.

Angular Zen

[8]

Meet AngularJS
AngularJS is a client-side MVC framework written in JavaScript. It runs in a web
browser and greatly helps us (developers) to write modern, single-page, AJAX-style
web applications. It is a general purpose framework, but it shines when used to write
CRUD (Create Read Update Delete) type web applications.

Getting familiar with the framework
AngularJS is a recent addition to the client-side MVC frameworks list, yet it has
managed to attract a lot of attention, mostly due to its innovative templating system,
ease of development, and very solid engineering practices. Indeed, its templating
system is unique in many respects:

• It uses HTML as the templating language
• It doesn't require an explicit DOM refresh, as AngularJS is capable of tracking

user actions, browser events, and model changes to figure out when and
which templates to refresh

• It has a very interesting and extensible components subsystem, and it is
possible to teach a browser how to interpret new HTML tags and attributes

The templating subsystem might be the most visible part of AngularJS, but don't be
mistaken that AngularJS is a complete framework packed with several utilities and
services typically needed in single-page web applications.

AngularJS also has some hidden treasures, dependency injection (DI) and
strong focus on testability. The built-in support for DI makes it easy to assemble
a web application from smaller, thoroughly tested services. The design of the
framework and the tooling around it promote testing practices at each stage of
the development process.

Finding your way in the project
AngularJS is a relatively new actor on the client-side MVC frameworks scene; its
1.0 version was released only in June 2012. In reality, the work on this framework
started in 2009 as a personal project of Miško Hevery, a Google employee. The initial
idea turned out to be so good that, at the time of writing, the project was officially
backed by Google Inc., and there is a whole team at Google working full-time on
the framework.

AngularJS is an open source project hosted on GitHub (https://github.com/
angular/angular.js) and licensed by Google, Inc. under the terms of the MIT license.

Chapter 1

[9]

The community
At the end of the day, no project would survive without people standing behind it.
Fortunately, AngularJS has a great, supportive community. The following are some
of the communication channels where one can discuss design issues and request help:

• angular@googlegroups.com mailing list (Google group)
• Google + community at https://plus.google.com/u/0/

communities/115368820700870330756

• #angularjs IRC channel
• [angularjs] tag at http://stackoverflow.com

AngularJS teams stay in touch with the community by maintaining a blog
(http://blog.angularjs.org/) and being present in the social media,
Google + (+ AngularJS), and Twitter (@angularjs). There are also community
meet ups being organized around the world; if one happens to be hosted near
a place you live, it is definitely worth attending!

Online learning resources
AngularJS has its own dedicated website (http://www.angularjs.org) where we
can find everything that one would expect from a respectable framework: conceptual
overview, tutorials, developer's guide, API reference, and so on. Source code for all
released AngularJS versions can be downloaded from http://code.angularjs.org.

People looking for code examples won't be disappointed, as AngularJS
documentation itself has plenty of code snippets. On top of this, we can browse a
gallery of applications built with AngularJS (http://builtwith.angularjs.org).
A dedicated YouTube channel (http://www.youtube.com/user/angularjs) has
recordings from many past events as well as some very useful video tutorials.

Libraries and extensions
While AngularJS core is packed with functionality, the active community keeps
adding new extensions almost every day. Many of those are listed on a dedicated
website: http://ngmodules.org.

Tools
AngularJS is built on top of HTML and JavaScript, two technologies that we've
been using in web development for years. Thanks to this, we can continue using
our favorite editors and IDEs, browser extensions, and so on without any issues.
Additionally, the AngularJS community has contributed several interesting
additions to the existing HTML/JavaScript toolbox.

Angular Zen

[10]

Batarang
Batarang is a Chrome developer tool extension for inspecting the AngularJS web
applications. Batarang is very handy for visualizing and examining the runtime
characteristics of AngularJS applications. We are going to use it extensively in this
book to peek under the hood of a running application. Batarang can be installed
from the Chrome's Web Store (AngularJS Batarang) as any other Chrome extension.

Plunker and jsFiddle
Both Plunker (http://plnkr.co) and jsFiddle (http://jsfiddle.net) make it
very easy to share live-code snippets (JavaScript, CSS, and HTML). While those tools
are not strictly reserved for usage with AngularJS, they were quickly adopted by the
AngularJS community to share the small-code examples, scenarios to reproduce
bugs, and so on. Plunker deserves special mentioning as it was written in AngularJS,
and is a very popular tool in the community.

IDE extensions and plugins
Each one of us has a favorite IDE or an editor. The good news is that there are
existing plugins/extensions for several popular IDEs such as Sublime Text 2
(https://github.com/angular-ui/AngularJS-sublime-package), Jet Brains'
products (http://plugins.jetbrains.com/plugin?pr=idea&pluginId=6971),
and so on.

AngularJS crash course
Now that we know where to find the library sources and their accompanying
documentation, we can start writing code to actually see AngularJS in action.
This section of the book lays the foundation for the subsequent chapters by
covering AngularJS templates, modularity, and dependency injection. Those
are the basic building blocks of any AngularJS web application.

Hello World – the AngularJS example
Let's have a look at the typical "Hello, World!" example written in AngularJS to
get the first impression of the framework and the syntax it employs.

<html>
<head>
 <script src="http://ajax.googleapis.com/ajax/libs/angularjs/1.0.7/
angular.js"></script>
</head>

Chapter 1

[11]

<body ng-app ng-init="name = 'World'">
 <h1>Hello, {{name}}!</h1>
</body>
</html>

First of all, we need to include the AngularJS library to make our sample run
correctly in a web browser. It is very easy as AngularJS, in its simplest form, is
packaged as a single JavaScript file.

AngularJS library is a relatively small one: a minified and gzipped
version has a size of around 30 KB. A minified version without gzip
compression has a size of around 80 KB. It doesn't require any third-
party dependencies.
For the short examples in this book we are going to use an un-
minified, developer-friendly version hosted on Google's content
delivery network (CDN). Source code for all versions of AngularJS
can be also downloaded from http://code.angularjs.org.

Including the AngularJS library is not enough to have a running example. We need
to bootstrap our mini application. The easiest way of doing so is by using the custom
ng-app HTML attribute.

Closer inspection of the <body> tag reveals another non-standard HTML attribute:
ng-init. We can use ng-init to initialize model before a template gets rendered.
The last bit to cover is the {{name}} expression which simply renders model value.

Even this very first, simple example brings to light some important characteristics
of the AngularJS templating system, which are as follows:

• Custom HTML tags and attributes are used to add dynamic behavior to an
otherwise static HTML document

• Double curly braces ({{expression}}) are used as a delimiter for
expressions outputting model values

In the AngularJS, all the special HTML tags and attributes that the framework can
understand and interpret are referred to as directives.

Angular Zen

[12]

Two-way data binding
Rendering a template is straightforward with AngularJS; the framework shines when
used to build dynamic web applications. In order to appreciate the real power of
AngularJS, let's extend our "Hello World" example with an input field, as shown in
the following code:

<body ng-app ng-init="name = 'World'">
 Say hello to: <input type="text" ng-model="name">
 <h1>Hello, {{name}}!</h1>
</body>

There is almost nothing special about the <input> HTML tag apart from the additional
ng-model attribute. The real magic happens as soon as we begin to type text into the
<input> field. All of a sudden the screen gets repainted after each keystroke, to reflect
the provided name! There is no need to write any code that would refresh a template,
and we are not obliged to use any framework API calls to update the model. AngularJS
is smart enough to detect model changes and update the DOM accordingly.

Most of the traditional templating system renders templates in a linear, one-way
process: a model (variables) and a template are combined together to produce a
resulting markup. Any change to the model requires re-evaluation of a template.
AngularJS is different because any view changes triggered by a user are immediately
reflected in the model, and any changes in the model are instantly propagated to
a template.

The MVC pattern in AngularJS
Most existing web applications are based on some form of the well-known
model-view-controller (MVC) pattern. But the problem with the MVC is that it
is not a very precise pattern, but rather a high-level, architectural one. Worse yet,
there are many existing variations and derivatives of the original pattern (MVP
and MVVM seem to be the most popular ones). To add to the confusion, different
frameworks and developers tend to interpret the mentioned patterns differently.
This results in situations where the same MVC name is used to describe different
architectures and coding approaches. Martin Fowler summarizes this nicely in
his excellent article on GUI architectures (http://martinfowler.com/eaaDev/
uiArchs.html):

Take Model-View-Controller as an example. It's often referred to as a pattern, but
I don't find it terribly useful to think of it as a pattern because it contains quite a
few different ideas. Different people reading about MVC in different places take
different ideas from it and describe these as 'MVC'. If this doesn't cause enough
confusion you then get the effect of misunderstandings of MVC that develop
through a system of Chinese whispers.

Chapter 1

[13]

The AngularJS team takes a very pragmatic approach to the whole family of MVC
patterns, and declares that the framework is based on the MVW (model-view-
whatever) pattern. Basically one needs to see it in action to get the feeling of it.

Bird's eye view
All the "Hello World" examples we've seen so far didn't employ any explicit layering
strategy: data initialization, logic, and view were all mixed together in one file.
In any real-world application, though, we need to pay more attention to a set of
responsibilities assigned to each layer. Fortunately, AngularJS provides different
architectural constructs that allows us to properly build more complex applications.

All the subsequent examples throughout the book omit the
AngularJS initialization code (scripts inclusion, ng-app
attribute, and so on) for readability.

Let's have a look at the slightly modified "Hello World" example:

<div ng-controller="HelloCtrl">
 Say hello to: <input type="text" ng-model="name">

 <h1>Hello, {{name}}!</h1>
</div>

The ng-init attribute was removed, and instead we can see a new ng-controller
directive with a corresponding JavaScript function. The HelloCtrl accepts a rather
mysterious $scope argument as follows:

var HelloCtrl = function ($scope) {
 $scope.name = 'World';
}

Scope
A $scope object in AngularJS is here to expose the domain model to a view
(template). By assigning properties to scope instances, we can make new
values available to a template for rendering.

Scopes can be augmented with both data and functionality specific to a given
view. We can expose UI-specific logic to templates by defining functions on a
scope instance.

Angular Zen

[14]

For example, one could create a getter function for the name variable, as given
in the following code:

var HelloCtrl = function ($scope) {
 $scope.getName = function() {
 return $scope.name;
 };
}

And then use it in a template as given in the following code:

<h1>Hello, {{getName()}}!</h1>

The $scope object allows us to control precisely which part of the domain model
and which operations are available to the view layer. Conceptually, AngularJS
scopes are very close to the ViewModel from the MVVM pattern.

Controller
The primary responsibility of a controller is to initialize scope objects. In practice,
the initialization logic consists of the following responsibilities:

• Providing initial model values
• Augmenting $scope with UI-specific behavior (functions)

Controllers are regular JavaScript functions. They don't have to extend any
framework-specific classes nor call any particular AngularJS APIs to correctly
perform their job.

Please note that a controller does the same job as the ng-init
directive, when it comes to setting up initial model values.
Controllers make it possible to express this initialization logic
in JavaScript, without cluttering HTML templates with code.

Model
AngularJS models are plain, old JavaScript objects. We are not obliged to extend
any of the framework's base classes nor construct model objects in any special way.

It is possible to take any existing, pure JavaScript classes or objects and use them
in the same way as in the model layer. We are not limited to model properties being
represented by primitive values (any valid JavaScript object or an array can be used).
To expose a model to AngularJS you simply assign it to a $scope.

Chapter 1

[15]

AngularJS is not intrusive and lets us keep model objects free from
any framework-specific code.

Scopes in depth
Each $scope is an instance of the Scope class. The Scope class has methods that
control the scope's lifecycle, provide event-propagation facility, and support the
template rendering process.

Hierarchy of scopes
Let's have another look at the simple HelloCtrl example, which we've
examined already:

var HelloCtrl = function ($scope) {
 $scope.name = 'World';
}

The HelloCtrl looks similar to a regular JavaScript constructor function, there is
absolutely nothing special about it apart from the $scope argument. Where might
this argument might be coming from?

A new scope was created by the ng-controller directive using the Scope.$new()
method call. Wait a moment; it looks like we need to have at least one instance of a
scope to create a new scope! Indeed, AngularJS has a notation of the $rootScope
(a scope that is a parent of all the other scopes). The $rootScope instance gets
created when a new application is bootstrapped.

The ng-controller directive is an example of a scope-creating directive. AngularJS
will create a new instance of the Scope class whenever it encounters a scope-creating
directive in the DOM tree. A newly-created scope will point to its parent scope using
the $parent property. There can be many scope-creating directives in the DOM tree
and as a result many scopes will be created.

Scopes form a parent-child, tree-like relationship rooted at the
$rootScope instance. As scopes' creation is driven by the DOM tree,
it is not surprising that scopes' tree will mimic the DOM structure.

Now that we know that some directives create new child scopes you might be
wondering why all this complexity is needed. To understand this, let's have a look
at the example that makes use of a ng-repeat repeater directive.

Angular Zen

[16]

The controller is as follows:

var WorldCtrl = function ($scope) {
$scope.population = 7000;
$scope.countries = [
 {name: 'France', population: 63.1},
 {name: 'United Kingdom', population: 61.8},
];
};

And the markup fragment looks in the following manner:

<ul ng-controller="WorldCtrl">
 <li ng-repeat="country in countries">
 {{country.name}} has population of {{country.population}}

 <hr>
 World's population: {{population}} millions

The ng-repeat directive allows us to iterate over a collection of countries and
create new DOM elements for each item in a collection. The syntax of the ng-repeat
directive should be easy to follow; a new variable country is created for each item
and exposed on a $scope to be rendered by a view.

But there is a problem here, that is, a new variable needs to be exposed on a $scope
for each country and we can't simply override previously exposed values. AngularJS
solves this problem by creating a new scope for each element in a collection. Newly
created scopes will form a hierarchy closely matching the DOM tree structure, and we
can visualize this by using the excellent Batarang extension for Chrome as shown in
the following screenshot:

Chapter 1

[17]

As we can see in the screenshot, each scope (boundaries marked with a rectangle)
holds its own set of model values. It's possible to define the same variable on different
scopes without creating name collisions (different DOM elements will simply point to
different scopes and use variables from a corresponding scope to render a template).
This way each item has its own namespace, in the previous example every
element gets its own scope where the country variable can be defined.

Scopes hierarchy and inheritance
Properties defined on one scope are visible to all child scopes, provided that a
child scope doesn't redefine a property using the same name! This is very useful in
practice, since we don't need to redefine over and over again properties that should
be available throughout a scope hierarchy.

Building on our previous example, let's assume that we want to display the percentage
of the world's population that lives in a given country. To do so, we can define the
worldsPercentage function on a scope managed by the WorldCtrl as given in the
following code:

$scope.worldsPercentage = function (countryPopulation) {
 return (countryPopulation / $scope.population)*100;
}

And then call this function from each scope instance created by the ng-repeat
directive as follows:

<li ng-repeat="country in countries">
 {{country.name}} has population of {{country.population}},
 {{worldsPercentage(country.population)}} % of the World's
population

Scope's inheritance in AngularJS follows the same rules as prototypical inheritance
in JavaScript (when we try to read a property, the inheritance tree will be traversed
upwards till a property is found).

Perils of the inheritance through the scopes hierarchy
Inheritance through the scopes hierarchy is rather intuitive and easy to understand
when it comes to the read access. When it comes to the write access, however, things
become a little bit complicated.

Let's see what happens if we define a variable on one scope and omit if from a child
scope. The JavaScript code is as follows:

var HelloCtrl = function ($scope) {
};

Angular Zen

[18]

And the view code is as follows:

<body ng-app ng-init="name='World'">
<h1>Hello, {{name}}</h1>
<div ng-controller="HelloCtrl">
 Say hello to: <input type="text" ng-model="name">
 <h2>Hello, {{name}}!</h2>
</div>
</body>

If you try to run this code, you will observe that the name variable is visible
across the whole application; even if it was defined on the top-most scope only!
This illustrates that variables are inherited down the scope hierarchy. In other
words, variables defined on a parent scope are accessible in child scopes.

Now, let's observe what will happen if we start to type text into the <input> box,
as shown in the following screenshot:

You might be a bit surprised to see that a new variable was created in the scope
initialized by the HelloCtrl controller, instead of changing a value set up on the
$rootScope instance. This behavior becomes less surprising when we realize
that scopes prototypically inherit from each other. All the rules that apply to the
prototypical inheritance of objects in JavaScript apply equally to scopes prototypical
inheritance. Scopes are just JavaScript objects after all.

Chapter 1

[19]

There are several ways of influencing properties defined on a parent scope from a
child scope. Firstly, we could explicitly reference a parent scope using the $parent
property. A modified template would look as follows:

<input type="text" ng-model="$parent.name">

While it is possible to solve an issue using this example by directly referencing a
parent scope, we need to realize that this is a very fragile solution. The trouble is
that an expression used by the ng-model directive makes strong assumptions about
the overall DOM structure. It is enough to insert another scope-creating directive
somewhere above the <input> tag and $parent will be pointing to a completely
different scope.

As a rule of thumb, try to avoid using the $parent property as it
strongly links AngularJS expressions to the DOM structure created
by your templates. An application might easily break as a result of
simple changes in its HTML structure.

Another solution involves binding to a property of an object and not directly to a
scope's property. The code for this solution is as follows:

<body ng-app ng-init="thing = {name : 'World'}">
<h1>Hello, {{thing.name}}</h1>
<div ng-controller="HelloCtrl">
 Say hello to: <input type="text" ng-model="thing.name">
 <h2>Hello, {{thing.name}}!</h2>
</div>
</body>

This approach is much better as it doesn't assume anything about the DOM
tree structure.

Avoid direct bindings to scope's properties. Two-way data binding to
object's properties (exposed on a scope) is a preferred approach.
As a rule of thumb, you should have a dot in an expression provided
to the ng-model directive (for example, ng-model="thing.name").

Angular Zen

[20]

Hierarchy of scopes and the eventing system
Scopes organized in a hierarchy can be used as an event bus. AngularJS allows us
to propagate named events with a payload through the scopes' hierarchy. An event
can be dispatched starting from any scope and travel either upwards ($emit) or
downwards ($broadcast).

$root scope

$scope. $broadcast ()‘down’

$scope. $emit (‘up’)

AngularJS core services and directives make use of this event bus to signal
important changes in the application's state. For example, we can listen to the
$locationChangeSuccess event (broadcasted from the $rootScope instance)
to be notified whenever a location (URL in a browser) changes, as given in the
following code:

$scope.$on('$locationChangeSuccess', function(event, newUrl, oldUrl){

//react on the location change here
//for example, update breadcrumbs based on the newUrl

});

The $on method available on each scope instance can be invoked to register
a scope-event handler. A function acting as a handler will be invoked with
a dispatched event object as its first argument. Subsequent arguments will
correspond to the event's payload and are event-type dependent.

Similar to the DOM events, we can call the preventDefault() and
stopPropagation() methods on event object. The stopPropagation() method
call will prevent an event from bubbling up the scopes' hierarchy, and is available
only for events dispatched upwards in the hierarchy ($emit).

Chapter 1

[21]

While AngularJS event system is modeled after the DOM one, both event
propagation systems are totally independent and have got no common
parts.

While events propagated through the scopes' hierarchy are very elegant solutions
to several problems (especially when it comes to notifications related to global,
asynchronous state changes), those should be used sparingly. Usually we can rely on
the two-way data binding to end up with a cleaner solution. In the entire AngularJS
framework, there are only three events being emitted ($includeContentRequested,
$includeContentLoaded, $viewContentLoaded), and seven events being
broadcasted ($locationChangeStart, $locationChangeSuccess, $routeUpdate,
$routeChangeStart, $routeChangeSuccess, $routeChangeError, $destroy). As
you can see, scope events are used very sparingly and we should evaluate other
options (mostly the two-way data binding) before sending custom events.

Don't try to mimic the DOM event-based programming model in
AngularJS. Most of the time there are better ways of structuring your
application, and you can go very far with the two-way data binding.

Scopes lifecycle
Scopes are necessary to provide isolated namespaces and avoid variable name
collisions. Scopes which are smaller and organized in a hierarchy help in managing
memory usage. When one of the scopes is no longer needed, it can be destroyed.
As a result, model and functionality exposed on this scope will be eligible for
garbage collection.

New scopes are usually brought to life and destroyed by the scope-creating
directives. It is also possible to manually create and destroy scopes by calling
the $new() and $destroy() methods, respectively (both methods are defined
on the Scope type).

View
We've seen enough examples of AngularJS templates to realize that it is not
yet another templating language, but quite a different beast. Not only does the
framework rely on the HTML for its template syntax and allow us to extend the
HTML vocabulary, but it has the unique ability to refresh parts of the screen
without any manual intervention!

Angular Zen

[22]

In reality, AngularJS has even more intimate connections to HTML and the DOM as
it depends on a browser to parse the template's text (as a browser would do with any
other HTML document). After a browser is done transforming the markup's text to
the DOM tree, AngularJS kicks in and traverses the parsed DOM structure. Each time
it encounters a directive, AngularJS executes its logic to turn directives into dynamic
parts of the screen.

Since AngularJS depends on a browser to parse templates, we need to
ensure that the markup represents valid HTML. Pay special attention to
close the HTML tags properly (failing to do so won't produce any error
messages, but the view won't be rendered correctly). AngularJS works
using the live, valid DOM tree!

AngularJS makes it possible to enrich HTML's vocabulary (we can add new attributes
or HTML elements and teach a browser how to interpret them). It is almost similar
to creating a new domain-specific language (DSL) on top of HTML and instructing
a browser on how to make sense of the new instructions. You can often hear that
AngularJS "teaches browsers new tricks".

Declarative template view – the imperative controller logic
There are many handy directives shipped with AngularJS, and we are going to
cover most of the existing ones in the following chapters. What is probably more
important, however, is not the syntax and functionality of individual directives but
rather the underlying AngularJS philosophy of building UIs.

AngularJS promotes a declarative approach to UI construction. What it means in
practice is that templates are focused on describing a desired effect rather than on
ways of achieving it. It all might sound a bit confusing, so an example might come
in handy here.

Let's imagine that we were asked to create a form where a user can type in a short
message, and then send it by clicking on a button. There are some additional
user-experience (UX) requirements such as message size should be limited to 100
characters, and the Send button should be disabled if this limit is exceeded. A user
should know how many characters are left as they type. If the number of remaining
characters is less than ten, the displayed number should change the display style
to warn users. It should be possible to clear text of a provided message as well. A
finished form looks similar to the following screenshot:

Chapter 1

[23]

The preceding requirements are not particularly challenging and describe a fairly
standard text form. Nevertheless, there are many UI elements to coordinate here
such as we need to make sure that the button's disabled state is managed correctly,
the number of remaining characters is accurate and displayed with an appropriate
style, and so on. The very first implementation attempt looks as follows:

<div class="container" ng-controller="TextAreaWithLimitCtrl">
 <div class="row">
 <textarea ng-model="message">{{message}}</textarea>
 </div>
 <div class="row">
 <button ng-click="send()">Send</button>
 <button ng-click="clear()">Clear</button>
 </div>
</div>

Let's use the preceding code as a starting point and build on top of it. Firstly, we
need to display the number of remaining characters, which is easy enough, as
given in the following code:

Remaining: {{remaining()}}

The remaining() function is defined in the TextAreaWithLimitCtrl controller
on the $scope as follows:

$scope.remaining = function () {
 return MAX_LEN - $scope.message.length;
};

Next, we need to disable the Send button if a message doesn't comply with the
required length constraints. This can be easily done with a little help from the
ng-disabled directive as follows:

<button ng-disabled="!hasValidLength()"...>Send</button>

Angular Zen

[24]

We can see a recurring pattern here. To manipulate UI, we only need to touch
a small part of a template and describe a desired outcome (display number of
remaining characters, disable a button, and so on) in terms of the model's state
(size of a message in this case). The interesting part here is that we don't need to
keep any references to DOM elements in the JavaScript code and we are not
obliged to manipulate DOM elements explicitly. Instead we can simply focus on
model mutations and let AngularJS do the heavy lifting. All we need to do is to
provide some hints in the form of directives.

Coming back to our example, we still need to make sure that the number of remaining
characters changes style when there are only a few characters left. This is a good
occasion to see one more example of the declarative UI in action, as given in the
following code:

Remaining: {{remaining()}}

where the shouldWarn() method is implemented as follows:

$scope.shouldWarn = function () {
return $scope.remaining() < WARN_THRESHOLD;
};

The CSS class change is driven by the model mutation, but there is no explicit DOM
manipulation logic anywhere in the JavaScript code! UI gets repainted based on a
declaratively expressed "wish". What we are saying using the ng-class directive
is this: "the text-warning CSS class should be added to the element, every
time a user should be warned about exceeded character limit". This is different from
saying that "when a new character is entered and the number of characters exceeds
the limit, I want to find a element and change the text-warning CSS class
of this element".

What we are discussing here might sound like a subtle difference, but in fact
declarative and imperative approaches are quite opposite. The imperative style of
programming focuses on describing individual steps leading to a desired outcome.
With the declarative approach, focus is shifted to a desired result. The individual little
steps taken to reach to this result are taken care of by a supporting framework. It is like
saying "Dear AngularJS, here is how I want my UI to look when the model ends up in
a certain state. Now please go and figure out when and how to repaint the UI".

Chapter 1

[25]

The declarative style of programming is usually more expressive as it frees
developers from giving very precise, low-level instructions. The resulting code is
often very concise and easy to read. But for the declarative approach to work, there
must be machinery that can correctly interpret higher-level orders. Our programs
start to depend on these machinery decisions and we need to give up some of the
low-level control. With the imperative approach, we are in full control and can fine
tune each and every single operation. We've got more control, but the price to pay
for "being in charge" is a lot of lower-level, repetitive code to be written.

People familiar with SQL language will find all this sounding familiar (SQL is a very
expressive, declarative language for adhoc data querying). We can simply describe
the desired result (data to be fetched) and let a (relational) database figure out how
to go about retrieving specified data. Most of the time, this process works flawlessly
and we quickly get what we have asked for. Still there are cases where it is necessary
to provide additional hints (indexes, query planner hints, and so on) or take control
over data-retrieval process to fine tune performance.

Directives in AngularJS templates declaratively express the desired effect, so we
are freed from providing step-by-step instructions on how to change individual
properties of DOM elements (as is often the case in applications based on jQuery).
AngularJS heavily promotes declarative style of programming for templates
and imperative one for the JavaScript code (controllers and business logic).
With AngularJS , we rarely apply low-level, imperative instructions to the
DOM manipulation (the only exception being code in directives).

As a rule of thumb, one should never manipulate the DOM elements
in AngularJS controllers. Getting a reference to a DOM element in a
controller and manipulating element's properties indicates imperative
approach to UI - something that goes against AngularJS way of
building UIs.

Declarative UI templates written using AngularJS directives allow us to describe
quickly complex, interactive UIs. AngularJS will take all the low-level decisions
on when and how to manipulate parts of the DOM tree. Most of the time AngularJS
does "the right thing" and updates the UI as expected (and in a timely fashion).
Still, it is important to understand the inner workings of AngularJS, so that we can
provide appropriate hints to the framework if needed. Using the SQL analogy once
again here, most of the time we don't need to worry about the work done by a query
planner. But when we start to hit performance problems, it is good to know how
query planner arrived at its decisions so that we can provide additional hints. The
same applies to UIs managed by AngularJS: we need to understand the underlying
machinery to effectively use templates and directives.

Angular Zen

[26]

Modules and dependency injection
Vigilant readers have probably noticed that all the examples presented so far were
using global constructor functions to define controllers. But global state is evil, it
hurts application structure, makes code hard to maintain, test, and read. By no
means is AngularJS suggesting usage of global state. On the contrary, it comes
with a set of APIs that make it very easy to define modules and register objects
in those modules.

Modules in AngularJS
Let's see how to turn an ugly, globally-defined controller definition into its
modular equivalent, before a controller is declared as follows:

var HelloCtrl = function ($scope) {
 $scope.name = 'World';
}

And when using modules it looks as follows:

angular.module('hello', [])
 .controller('HelloCtrl', function($scope){
 $scope.name = 'World';
 });

AngularJS itself defines the global angular namespace. There are various utility
and convenience functions exposed in this namespace, and module is one of those
functions. A module acts as a container for other AngularJS managed objects
(controllers, services, and so on). As we are going to see shortly, there is much
more to learn about modules than simple namespacing and code organization.

To define a new module we need to provide its name as the very first argument
to the module function call. The second argument makes it possible to express
a dependency on other modules (in the preceding module we don't depend on
any other modules).

A call to the angular.module function returns an instance of a newly created
module. As soon as we've got access to this instance, we can start defining new
controllers. This is as easy as invoking the controller function with the
following arguments:

• Controller's name (as string)
• Controller's constructor function

Chapter 1

[27]

Globally-defined controller's constructor functions are only good for
quick-code examples and fast prototyping. Never use globally-defined
controller functions in larger, real life applications.

A module is defined now, but we need to inform AngularJS about its existence. This
is done by providing a value to the ng-app attribute as follows:

<body ng-app="hello">

Forgetting to specify a module's name in the ng-app attribute is
a frequent mistake and a common source of confusion. Omitting
a module name in the ng-app attribute will result in an error
indicating that a controller is undefined.

Collaborating objects
As we can see, AngularJS provides a way to organize objects into modules. A module
can be used not only to register objects that are directly invoked by the framework
(controllers, filters, and so on) but any objects defined by applications' developers.

Module pattern is extremely useful to organize our code, but AngularJS goes one
step further. In addition to registering objects in a namespace, it is also possible to
declaratively describe dependencies among those objects.

Dependency injection
We could already see that the $scope object was being mysteriously injected into
controllers' instances. AngularJS is somehow able to figure out that a new scope
instance is needed for a controller, and then creates a new scope instance and
injects it. The only thing that controllers had to do was to express the fact that it
depends on a $scope instance (no need to indicate how a new $scope object should
be instantiated, should this $scope instance be a newly created one or reused from
previous calls). The whole dependency management boils down to saying something
along those lines: "To function correctly I need a dependency (collaborating object): I
don't know from where it should be coming or how it should be created. I just know
that I need one, so please provide it".

AngularJS has the dependency injection (DI) engine built in. It can perform the
following activities:

• Understand a need for a collaborator expressed by objects
• Find a needed collaborator
• Wire up objects together into a fully-functional application

Angular Zen

[28]

The idea of being able to declaratively express dependencies is a very powerful one;
it frees objects from having to worry about collaborating objects' lifecycles. Even
better, all of a sudden it is possible to swap collaborators at will, and then create
different applications by simply replacing certain services. This is also a key
element in being able to unit test components effectively.

Benefits of dependency injection
To see the full potential of a system integrated using dependency injection,
let's consider an example of a simple notification service to which we can push
messages and retrieve those messages later on. To somewhat complicate the
scenario, let's say that we want to have an archiving service. It should cooperate
with our notifications service in the following way, as soon as the number of
notifications exceeds a certain threshold the oldest notifications should be pushed
to an archive. The additional trouble is that we want to be able to use different
archiving services in different application. Sometimes dumping old messages to
a browser's console is all that is needed; other times we would like to send expired
notifications to a server using XHR calls.

The code for the notifications service could look as follows:

var NotificationsService = function () {
 this.MAX_LEN = 10;
 this.notificationsArchive = new NotificationsArchive();
 this.notifications = [];
};

NotificationsService.prototype.push = function (notification) {

 var newLen, notificationToArchive;

 newLen = this.notifications.unshift(notification);
 if (newLen > this.MAX_LEN) {
 notificationToArchive = this.notifications.pop();
 this.notificationsArchive.archive(notificationToArchive);
 }
};

NotificationsService.prototype.getCurrent = function () {
 return this.notifications;
};

Chapter 1

[29]

The preceding code is tightly coupled to one implementation of an archive
(NotificationsArchive), since this particular implementation is instantiated
using the new keyword. This is unfortunate since the only contract to which both
classes need to adhere to is the archive method (accepting a notification message
to be archived).

The ability to swap collaborators is extremely important for testability. It is
hard to imagine testing objects in isolation without the ability to substitute real
implementations with fake doubles (mocks). On the following pages of this chapter,
we are going to see how to refactor this tightly-coupled cluster of objects into a
flexible and testable set of services working together. In the process of doing so, we
are going to take full advantage of the AngularJS dependency injection subsystem.

Registering services
AngularJS is only capable of wiring up objects it is aware of. As a consequence, the
very first step for plugging into DI machinery is to register an object with an AngularJS
module. We are not registering the object's instance directly, rather we are throwing
object-creation recipes into the AngularJS dependency injection system. AngularJS
then interprets those recipes to instantiate objects, and then connects them accordingly.
The end effect is a set of instantiated, wired-up objects forming a running application.

In AngularJS there is a dedicated $provide service that allows us to register different
recipes for objects creation. Registered recipes are then interpreted by the $injector
service to provide fully-baked, ready-to-be-used object instances (with all the
dependencies resolved and injected).

Objects that were created by the $injector service are referred to as services.
AngularJS will interpret a given recipe only once during the application's lifecycle,
and as a result will create only a single instance of an object.

Services created by $injector are singletons. There will be only one or
instance of a given service per instance of a running application.

At the end of the day, AngularJS module just holds a set of object instances but we
can control how those objects are created.

Values
The easiest way of having AngularJS to manage an object is to register a pre-
instantiated one as follows:

var myMod = angular.module('myMod', []);
myMod.value('notificationsArchive', new NotificationsArchive());

Angular Zen

[30]

Any service managed by AngularJS' DI mechanism needs to have a unique name
(for example, notificationsArchive in the preceding example). What follows is
a recipe for creating new instances.

Value objects are not particularly interesting, since object registered via this
method can't depend on other objects. This is not much of the problem for the
NotificationArchive instance, since it doesn't have any dependencies. In practice,
this method of registration only works for very simple objects (usually expressed as
instances of built-in objects or object literals).

Services
We can't register the NotificationsService service as a value object, since we need
to express a dependency on an archive service. The simplest way of registering a
recipe for objects, depending on other objects, is to register a constructor function.
We can do this using the service method as follows:

myMod.service('notificationsService', NotificationsService);

where the NotificationsService constructor function can now be written
as follows:

var NotificationsService = function (notificationsArchive) {

 this.notificationsArchive = notificationsArchive;

};

By using AngularJS dependency injection we could eliminate the new keyword from
the NoficiationsService constructor function. Now this service is not concerned
with dependencies instantiation and can accept any archiving service. Our simple
application is much more flexible now!

A service is one of those overloaded words that might mean many
different things. In AngularJS the word service can refer to either the
method of registering constructor functions (as shown in the previous
example) or any singleton object that is created and managed by
AngularJS DI system, regardless of the method of registering used
(this is what most people mean by using the word service in the
context of AngularJS modules).

In practice the service method is not commonly used but might come in handy for
registering pre-existing constructor functions, and thus make AngularJS manage
objects created by those constructors.

Chapter 1

[31]

Factories
The factory method is another way of registering recipes for objects creation. It
is more flexible as compared to the service method, since we can register any
arbitrary object-creating function. An example is shown in the following code

myMod.factory('notificationsService',function(notificationsArchive){

 var MAX_LEN = 10;
 var notifications = [];

 return {
 push:function (notification) {
 var notificationToArchive;
 var newLen = notifications.unshift(notification);

 //push method can rely on the closure scope now!
 if (newLen > MAX_LEN) {
 notificationToArchive = this.notifications.pop();
 notificationsArchive.archive(notificationToArchive);
 }
 },
 // other methods of the NotificationsService
 };

AngularJS will use a supplied factory function to register an object returned. It
can be any valid JavaScript object, including function objects!

The factory method is the most common way of getting objects into AngularJS
dependency injection system. It is very flexible and can contain sophisticated
creation logic. Since factories are regular functions, we can also take advantage
of a new lexical scope to simulate "private" variables. This is very useful as we can
hide implementation details of a given service. Indeed, in the preceding example
we can keep the notificationToArchive service, all the configuration parameters
(MAX_LEN) and internal state (notifications) as "private".

Constants
Our NotificationsService is getting better and better, it is decoupled from its
collaborators and hides its private state. Unfortunately, it still has a hard-coded
configuration MAX_LEN constant. AngularJS has a remedy for this, that is, constants
can be defined on a module level and injected as any other collaborating object.

Angular Zen

[32]

Ideally, we would like to have our NotificationsService service to be provided
with a configuration value in the following manner:

myMod.factory('notificationsService',

function (notificationsArchive, MAX_LEN) {
 …
 //creation logic doesn't change
});

And then supply configuration values outside of NotificationsService, on a
module level as shown in the following code:

myMod.constant('MAX_LEN', 10);

Constants are very useful for creating services that can be re-used across many
different applications (as clients of a service can configure it at their will). There
is only one disadvantage of using constants, that is, as soon as a service expresses
a dependency on a constant, a value for this constant must be supplied. Sometimes
it would be good to have default configuration values and allow clients to change
them only when needed.

Providers
All the registration methods described so far are just special cases of the most
generic, ultimate version of all of them, provider. Here is the example of
registering the notificationsService service as a provider:

myMod.provider('notificationsService', function () {

 var config = {
 maxLen : 10
 };
 var notifications = [];

 return {
 setMaxLen : function(maxLen) {
 config.maxLen = maxLen || config.maxLen;
 },

 $get : function(notificationsArchive) {
 return {
 push:function (notification) {
 …
 if (newLen > config.maxLen) {
 …
 }

Chapter 1

[33]

 },
 // other methods go here
 };
 }
 };
 });

Firstly a provider is a function that must return an object containing the $get
property. The mentioned $get property is a factory function, that when invoked
should return a service instance. We can think of providers as objects that embed
factory functions in their $get property.

Next, an object returned from a provider function can have additional methods and
properties. Those are exposed, so it is possible to set configuration options before the
$get (factory) method gets invoked. Indeed, we can still set the maxLen configuration
property, but we are no longer obliged to do so. Furthermore, it is possible to have
more complex configuration logic, as our services can expose configuration methods
and not only simple configuration values.

Modules lifecycle
In the previous paragraphs, we could see that AngularJS supports various recipes
for object's creation. A provider is a special kind of recipe, since it can be further
configured before it produces any object instances. To effectively support providers,
AngularJS splits module's lifecycle into two phases, which are as follows:

• The configuration phase: It is the phase where all the recipes
are collected and configured

• The run phase: It is the phase where we can execute any
post-instantiation logic

The configuration phase
Providers can be configured only during the configuration (first) phase. Surely, it
doesn't make sense to change a recipe after objects are baked, right? Providers can
be configured as shown in the following code:

myMod.config(function(notificationsServiceProvider){
 notificationsServiceProvider.setMaxLen(5);
});

The important thing to notice here is a dependency on the
notificationsServiceProvider objects with the Provider suffix
representing the recipes that are ready to be executed. The configuration
phase allows us to do the last-moment tweaks to the objects' creation formula.

Angular Zen

[34]

The run phase
The run phase allows us to register any work that should be executed upon the
application's bootstrap. One could think of the run phase as an equivalent of the
main method in other programming languages. The biggest difference is that
AngularJS modules can have multiple configure and run blocks. In this sense,
there is not even a single entry point (a running application is truly a collection
of collaborating objects).

To illustrate how the run phase could be useful, let's imagine that we need to display
application's start time (or uptime) to the users. To support this requirement, we
could set application's start time as a property of the $rootScope instance as follows:

angular.module('upTimeApp', []).run(function($rootScope) {
 $rootScope.appStarted = new Date();
});

And then retrieve it any template, as given in the following code:

Application started at: {{appStarted}}

In the example showing the run block in action we are setting
properties directly on the $rootScope instance. It is important
to realize that the $rootScope instance is a global variable and it
suffers from all the problems of a global state. The $rootScope
instance should be used to define new properties only sparingly and
only for properties that need to be accessible in many templates.

Different phases and different registration methods
Let's summarize different methods of creating objects and how those methods
correspond to module's lifecycle phases:

What gets registered? Injectable during the
configuration phase?

Injectable during
the run phase?

Constant Constant's value Yes Yes

Variable Variable's value - Yes

Service A new object created by a
constructor function

- Yes

Factory A new object returned from
a factory function

- Yes

Provider A new object created by the
$get factory function

Yes -

Chapter 1

[35]

Modules depending on other modules
Not only does AngularJS do the excellent job of managing object dependencies, but
in addition it takes care of inter-module dependencies. We can easily group related
services into one module, and thus create (potentially re-usable) service libraries.

As an example, we could move both the notifications and archiving services into
their own modules (named notifications and archive, respectively) as follows:

angular.module('application', ['notifications', 'archive'])

This way each service (or a group of related services) can be combined into
a re-usable entity (a module). Then the top-most (application-level) module
can declare dependencies on all the modules needed for proper functioning
of a given application.

The ability to depend on other modules is not reserved for the top-most modules.
Each module can express dependencies on its child modules. In this way, modules
can form a hierarchy. So, when dealing with AngularJS modules we need to think
about two distinct, but related, hierarchies: modules hierarchy and services hierarchy
(as services can express dependencies on other services, values, and constants).

AngularJS modules can depend on each other and every module can contain several
services. But individual services can also depend on other services. This raises
several interesting questions, which are as follows:

• Can a service defined in one AngularJS module depend on services in
another module?

• Can services defined in a child module depend on a service in a parent
module, or only on services defined in child modules?

• Can we have module-private services visible only in a certain module?
• Can we have several services with the same name defined in

different modules?

Services and their visibility across modules
As one might expect services defined in child modules are available for injection
into services in parent modules the following code example should make it clear:

angular.module('app', ['engines'])

 .factory('car', function ($log, dieselEngine) {
 return {
 start: function() {
 $log.info('Starting ' + dieselEngine.type);
 };

Angular Zen

[36]

 }
 });

angular.module('engines', [])
 .factory('dieselEngine', function () {
 return {
 type: 'diesel'
 };
 });

Here the car service is defined in the app module. The app module declares a
dependency on the engines module, where the dieselEngine service is defined.
Not surprisingly a car can be injected with an instance of an engine.

Perhaps more surprisingly, services defined on sibling modules are also visible to
each other. We could move a car service into a separate module, and then change
module dependencies, so that an application depends on both the engines and
cars modules as follows:

angular.module('app', ['engines', 'cars'])

angular.module('cars', [])
 .factory('car', function ($log, dieselEngine) {
 return {
 start: function() {
 $log.info('Starting ' + dieselEngine.type);
 }
 };
 });

angular.module('engines', [])
 .factory('dieselEngine', function () {
 return {
 type: 'diesel'
 };
 });

In the preceding case an engine can still be injected into a car without any problem.

A service defined in one of the application's modules is visible to all the
other modules. In other words, hierarchy of modules doesn't influence
services' visibility to other modules. When AngularJS bootstraps an
application, it combines all the services defined across all the modules
into one application, that is, global namespace.

Chapter 1

[37]

Since AngularJS combines all the services from all the modules into one big,
application-level set of services there can be one and only one service with a
given name. We can use this to our advantage in cases where we want to depend
on a module, but at the same time override some of the services from this module.
To illustrate this, we can redefine the dieselEngine service directly in the cars
module in the following manner:

angular.module('app', ['engines', 'cars'])
 .controller('AppCtrl', function ($scope, car) {
 car.start();
 });

angular.module('cars', [])
 .factory('car', function ($log, dieselEngine) {
 return {
 start: function() {
 $log.info('Starting ' + dieselEngine.type);
 };
 }
 })

 .factory('dieselEngine', function () {
 return {
 type: 'custom diesel'
 };
 });

In this case, the car service will be injected with the dieselEngine service
defined in the same module as that of the car service. The car module level,
dieselEngine, will override (shadow) the dieselEngine service defined under
the engines module.

There can be one and only one service with a given name in an
AngularJS application. Services defined in the modules closer to the
root of modules hierarchy will override those defined in child modules.

In the current version of AngularJS, all the services defined on one module are
visible to all the other modules. There is no way of restricting service's visibility
to one module or a subset of modules.

At the time of writing, there is no support provided for
module-private services.

Angular Zen

[38]

Why use AngularJS modules
The fact that AngularJS combines all the services from all the modules into one
application-level namespace might come as a surprise, and you might wonder
why to use modules. At the end of the day, all the services are ending up in one big
bag, so what is the point of laboriously dividing services into individual modules?

AngularJS modules can help us organize multiple JavaScript files in an application.
There are many strategies for dividing an application into modules, and we are
going to spend a big portion of Chapter 2, Building and Testing discussing different
approaches, their pros, and cons. Also, small and focused modules help facilitate
unit testing as we can load a well-identified set of services under test. Once again,
Chapter 2, Building and Testing, has more details.

AngularJS and the rest of the world
Choosing a perfect framework for your next project is not easy. Some frameworks
might be a better fit for certain types of applications and team's experience, personal
preferences, as well as many other factors can dictate the ultimate choice.

AngularJS will be inevitably be compared to other popular JavaScript MV*
frameworks. Different comparisons will most probably yield different results,
and different points of view will fuel many passionate discussions. Instead of
offering hard-and-fast rules or feature-by-future comparisons, we would like
to summarize how AngularJS is different compared to other frameworks.

If you would like to see how code written with AngularJS compares
to code written with other frameworks, the TodoMVC (http://
addyosmani.github.com/todomvc) is the place to go. This is a
project where one can see the same sample application (TODO list)
reimplemented using different JavaScript MV* frameworks. This is
a unique opportunity to compare architectural approaches and code
syntax, its size, and readability.

There are many things about AngularJS that make it stand out from the crowd.
We saw already that its approach to UI templates is quite novel, as mentioned in
the following features:

• Automatic refresh and the two-way data binding frees developers from
the tedious work of explicitly triggering UI repaints

• Live DOM generated from HTML syntax is used as a templating language.
More importantly, it is possible to extend an existing HTML vocabulary (by
creating new directives), and then build UIs using a new HTML-based DSL

Chapter 1

[39]

• Declarative approach to the UI results in a very concise and expressive way
• The excellent UI templating machinery doesn't put any constraints on the

JavaScript code (for example, models and controllers can be created using
plain, old JavaScript without the AngularJS APIs called all over the place)

AngularJS is breaking new ground by bringing solid testing practices into the
JavaScript world. The framework itself is thoroughly tested (practice what you
preach!), but the whole testability story doesn't stop here, the whole framework
and the ecosystem around it were built with the testability in mind. It continues
as follows:

• The dependency injection engine enables testability, since the whole
application can be composed from smaller, well tested services.

• Most of the code examples in the AngularJS documentation have got an
accompanying test, it is the best proof that code written for AngularJS is
indeed testable!

• The AngularJS team created an excellent JavaScript test runner called
Testacular (spectacular test runner!). Testacular turns an overall testing
workflow into a joyful experience, which is useful, fast, and reliable. Testing
is not always easy, so it is important to have tools that assist us instead of
getting in a way

Above all, AngularJS makes the web development fun again! It takes care of so
many low-level details that the application's code is extremely concise of. It is not
uncommon to hear that rewriting an application in AngularJS reduces the overall
code base by a factor of five or even more. Of course everything depends on an
application and a team, but AngularJS lets us move fast and produce results in the
blink of an eye.

jQuery and AngularJS
AngularJS and jQuery form an interesting relationship that needs special
mentioning. To start with, AngularJS embeds, as part of its sources, a simplified
version of jQuery, that is, jqLite. This is really a tiny subset of the complete jQuery
functionality that focuses on the DOM manipulation routines.

By embedding jqLite, AngularJS can work with no dependency on any
external library.

Angular Zen

[40]

But AngularJS is a good citizen of the JavaScript community and can work hand in
hand with jQuery. Upon detecting jQuery, AngularJS will use its DOM manipulation
functionality instead of relying on jqLite.

If you plan to use jQuery with AngularJS you need to include it before
AngularJS script.

Things get more complicated if one tries to reuse any of the UI components from the
jQuery UI suite. Some of them will work just fine, but most of the time there will be
some friction. It is just that the underlying philosophy of two libraries is so different
that we can hardly expect any seamless integration. Chapter 8, Building Your Own
Directives looks closely into integrating and creating UI widgets that
can correctly work in AngularJS applications.

Apples and oranges
jQuery and AngularJS can cooperate, but comparing the two is a tricky business. First
of all, jQuery was born as a library that simplifies DOM manipulation, and as such
focuses on document traversing, event handling, animating, and Ajax interactions.

AngularJS, on the other hand, is a complete framework that tries to address all the
aspects of the modern web 2.0 applications development.

The most important thing is that AngularJS takes a completely different approach
for building UI, where the declaratively specified view is driven by model changes.
Using jQuery too often involves writing DOM-centric code that can go out of hand
as a project grows (both in terms of size and interactivity).

AngularJS' model-centric and jQuery's DOM-centric paradigms are
radically different. Seasoned jQuery developers new to AngularJS
might fall into a trap of using AngularJS with the jQuery paradigms
in mind. This results in code that "fights AngularJS" rather than
unleashing its full potential. This is why we recommend that you
skip jQuery dependency, while learning AngularJS (just not to be
tempted to fall back to the old habits and learn the AngularJS way of
solving problems).

AngularJS takes a holistic approach to modern web application development,
and tries to make a browser a better development platform.

Chapter 1

[41]

A sneak peek into the future
AngularJS has a truly novel approach to many aspects of web development, and it
might shape the way we write code for the future browsers. At the time of writing,
there are two interesting specifications in the works that are based on ideas similar
to the ones implemented in AngularJS.

The Object.observe (http://wiki.ecmascript.org/doku.
php?id=harmony:observe) specification aims at building into a browser the ability
to track JavaScript object changes. AngularJS relies on the object's state comparison
(dirty checking) to trigger UI repaints. Having a native in a browser—the mechanism
to detect model changes could greatly improve performance of many JavaScript MVC
frameworks, including AngularJS. In fact, the AngularJS team did some experiments
using the Object.observe specification and saw as much as 20 percent to 30 percent
performance improvements.

Web components (http://dvcs.w3.org/hg/webcomponents/raw-file/tip/
explainer/index.html) specification tries to define widgets with a level of visual
richness (which is not possible with CSS alone), and ease of composition and reuse
(which is not possible with script libraries today).

This is not an easy goal, but AngularJS directives show that it is possible to define
well-encapsulated and re-usable widgets.

AngularJS is not only an innovative framework by today's standards, but it also
influences the web development space of tomorrow. The AngularJS team works
closely with the authors of the mentioned specifications, so there is a chance that
many ideas promoted by AngularJS will make it into the browser's internals! We can
expect that time spent learning and playing with AngularJS will pay off in the future.

Summary
We've covered a lot in this chapter. Our journey started by getting familiar with
the AngularJS project and the people behind it. We've learned where to find the
library's sources and documentation, so that we could write our first "Hello World"
application. It is a pleasant surprise that AngularJS is very light-weight and easy to
start with.

Most of this chapter, though was about building solid foundations for the rest of
this booke saw how to work with the AngularJS controllers, scopes and views, and
how those elements play together. A big chunk of this chapter was devoted to the
way AngularJS services can be created in AngularJS modules and wired up using
dependency injection.

Angular Zen

[42]

Finally, we saw how AngularJS compares to other JavaScript frameworks and what
is so special about it. Hopefully, now you are convinced that time spent in learning
AngularJS is the time well invested.

AngularJS views, controllers, and services are the basic ingredients of any AngularJS
application, so it was necessary to gain an in-depth understanding of those topics.
Luckily, now we know how to start creating both the service layer and the view, so
we are ready to tackle real projects. In the next chapter we will prepare a structure of
a non-trivial application, starting from code organization and then covering topics
such as building and testing.

Building and Testing
The previous chapter served as an introduction to AngularJS and covered nuts
and bolts of the framework project itself, people behind it, and basic usage scenarios.
Now, we are well primed to build a complete, more elaborate web application.
The rest of this book is constructed around a sample application that presents
how to use AngularJS in real-life projects.

In the following chapters, we are going to build a simplified project management
tool supporting SCRUM agile software development methodology. This sample
application will help us to demonstrate AngularJS APIs and idioms as well as cover
typical scenarios, such as communicating with a back-end, organizing navigation,
security, internationalization, and so on. This chapter introduces the sample
application, its problem domain and the technical stack used.

Each project starts with some initial decisions regarding files organization strategy,
a build system, and basic workflows employed. Our sample application is no
different and we are going to discuss build system and project-layout related
topics in this chapter.

Automated testing is a solid engineering practice that is promoted by AngularJS
and the whole ecosystem around it. We strongly believe that automated testing
is mandatory for any but the most trivial projects. This is why the last part of this
chapter is fully devoted to testing: different types of it, mechanics and workflows,
best practices, and tooling.

In this chapter, we are going to learn more about:

• The sample application used in this book, its problem domain, and the
technical stack used.

• The recommended build system for the AngularJS web applications as
well as associated tools and workflows.

Building and Testing

[44]

• Suggested organization of files, folders and modules.
• Automated testing practices, different types of tests and their place in

a project. You will get familiar with testing libraries and tools typically
used in AngularJS web applications.

Introducing the sample application
This section gives more details on the sample application that will serve as
a case study throughout this book.

The source code for the sample application is publicly available in the git
repository hosted on GitHub at https://github.com/angular-app/
angular-app. This repository contains complete source code, detailed
installation instructions and the whole project history.

Getting familiar with the problem domain
To showcase AngularJS in its most advantageous environment we are going to build
a project management tool supporting teams using the SCRUM methodology.

AngularJS shines when used as a framework for constructing CRUD-like
applications; ones that consist of many screens filled with dynamic forms,
list and tables.

SCRUM is a popular agile method for running projects, so hopefully many readers
are already familiar with it. Those new to SCRUM should not worry, since the basics
of SCRUM are easy to grasp. There are many excellent books and articles covering
SCRUM in depth but to gain basic understanding it is probably enough to go over
the introductory Wikipedia article on the topic at http://en.wikipedia.org/wiki/
Scrum_(development).

The aim of our sample application is to assist teams in managing SCRUM artifacts:
projects and their backlog, sprints and their backlog, tasks, progress charts, and so
on. The application also has a fully functional administration module to manage
users and projects being worked on.

Our sample application doesn't strive for full and strict adherence to
all the SCRUM principles. When necessary we took several shortcuts
to clearly illustrate AngularJS usage at the expense of building a real
SCRUM project management tool.

Chapter 2

[45]

The application, when finished will look as shown on the following screenshot:

Looking at the screenshot we can immediately see that what we are going to build
is a fairly typical CRUD web application covering:

• Retrieving, displaying and editing data from a persistent store.
• Authentication and authorization.
• Rather complex navigation schema with all the supporting UI elements,

such as menus, breadcrumbs and, so on.

Technical stack
This book is focused on AngularJS but to build any nontrivial web application we
need more than a JavaScript library running in a browser. As a bare minimum a
persistence store and a back-end are required. This book doesn't prescribe any stack,
and we do realize that people are going to use AngularJS in connection with different
back-ends, server-side frameworks and persistent stores. Still, we had to make
choices to illustrate how AngularJS fits into a bigger picture.

First and foremost, we have chosen to use JavaScript-friendly technologies whenever
possible. There are many excellent back-ends, platforms and persistence stores out
there but we would like to make our examples easy to follow for JavaScript developers.
Additionally, we were trying to use technologies that are considered as mainstream in
the JavaScript ecosystem.

Building and Testing

[46]

All the elements of the stack and tools described in this book are
JavaScript-based, free to use, open source projects.

Persistence store
When it comes to data storage there are many options to choose from and the recent
NoSQL movement only multiplied a number of alternatives. For the purpose of this
book we are going to use the document-oriented MongoDB database as it fits well
into the JavaScript-oriented environment:

• Documents are stored using the JSON-style data format (Binary JSON -
BSON in short).

• Querying and manipulating data can be done using JavaScript and the
familiar JSON syntax.

• It is possible to expose data as REST endpoints serving and consuming data
in the JSON format.

No prior knowledge of MongoDB is needed to follow the examples in this book, and
we will try to explain tricky bits while discussing code snippets. By no means are we
suggesting that MongoDB or document-oriented, NoSQL databases are a better fit
for AngularJS applications. AngularJS is back-end and storage-agnostic.

MongoLab
MongoDB is relatively easy to start with, and most of JavaScript developers will feel
at home while working with this document-oriented database. To makes things even
easier our sample application relies on the hosted version of the MongoDB. As a
result, no software installation is necessary to run examples from this book.

There are multiple cloud-based hosting options available for MongoDB, but we've
found that MongoLab (https://mongolab.com) is reliable, easy to start with and
offers free hosting for databases of size below 0.5 GB. The free storage space offered
by MongoLab is more than enough to play with the examples from this book.

MongoLab has one more, non-negligible advantage; it exposes hosted databases
through a very well-designed REST interface. We are going to rely on this interface
to demonstrate how AngularJS can talk to REST endpoints.

The online registration is necessary to start using MongoLab, but it is a fairly painless
process that boils down to filling in a short, electronic form. As soon as this is done,
we can enjoy access to a hosted MongoDB database, the REST interface speaking
JSON, and the online administration console.

Chapter 2

[47]

Server-side environment
Databases hosted by MongoLab could be accessed directly from AngularJS
applications through the REST interface. While talking to MongoLab directly from
a browser might be a good approach for very simple projects; it is not an option one
would choose for any real-life, public-facing application. There is simply not enough
security built in into the MongoLab offering.

In practice most of the UIs written in AngularJS will communicate with some kind
of back-end to retrieve data. A middleware will typically provide security services
(authentication) and will verify access rights (authorization) as well. Our sample
application is no different and needs a back-end. Once again, we are going to bet on
JavaScript-based solution; node.js.

The node.js binaries are available for all popular operating systems, and can be
obtained from http://nodejs.org/. You need to download and install node.js
runtime in order to be able to run examples from this book on your local machine.

Introducing node.js is well beyond the scope of this book. Fortunately
only very basic knowledge of node.js and its package manager
(node.js package manager – npm) is needed to run the examples
from this book. Developers familiar with node.js will find it easier
to understand what is happening on the server-side end of the sample
application, but node.js knowledge is not mandatory to follow and
understand AngularJS examples from this book.

Apart from the node.js itself we are going to use the following node.js libraries to
build server-side components of the sample application:

• Express (http://expressjs.com/) as the server-side web application
framework that can provide routing, serve data and static resources.

• Passport (http://passportjs.org/) as a security middleware for node.js.
• Restler (https://github.com/danwrong/restler) as an HTTP client library

for node.js.

While familiarity with node.js and the mentioned libraries might be helpful it is not
necessary to effectively learn AngularJS. You might want to dive into node.js and
the listed libraries, if you want to gain deeper understanding of the server-side part
of examples we've prepared for this book. If, on the other hand, your work involves
using different back-end you may safely ignore most of the node.js related details.

Building and Testing

[48]

Third-party JavaScript libraries
AngularJS can be used alone as a single library to write fairly complex applications. At
the same time, it doesn't try to reinvent the wheel and reimplement popular libraries.

The sample application tries to keep dependencies on external, third parties' libraries
to the absolute minimum so we can focus on what AngularJS can do for us. Still,
many projects will use well-known libraries like jQuery, underscore.js and so on.
To demonstrate how AngularJS can coexist with other libraries the latest compatible
version of jQuery made it into the project.

Bootstrap CSS
AngularJS doesn't force or prescribe any particular CSS usage so anyone is free to style
their application as needed. To make our SCRUM application look pretty we will use
the popular Twitter Bootstrap (http://twitter.github.com/bootstrap/) CSS.

The sample application includes LESS templates of the Bootstrap's to illustrate how
LESS compilation can be included in the build chain.

Build system
There were times when JavaScript was used as a toy language, those days are long
over. In recent years, JavaScript has become a mainstream language. New, large and
complex applications are being written and deployed every day. Rising complexity
means more code being written. These days it is not uncommon to see projects
consisting of tens of thousands of lines of JavaScript code.

It is no longer practical to have one JavaScript file that can be simply included in an
HTML document; we need a build system. Our JavaScript and CSS files will undergo
many checks and transformations before being deployed on productions servers.
Some examples of those transformations include:

• JavaScript source code must be checked for compliance with coding
standards using tools like jslint (http://www.jslint.com/), jshint
(http://www.jshint.com/) or similar.

• Test suites should be executed as often as possible; at least as part of
each and every build. As such testing tools and processes must be
tightly integrated with the build system.

• Some files might need to be generated (for example CSS files from
templates like LESS).

• Files need to be merged together and minified to optimize
in-browser performance.

Chapter 2

[49]

In addition to the steps, which are listed previously, there are usually other tasks
that must be executed before an application can be deployed to production servers,
such as files must be copied to a final destination, documentation updated, and so
on. In a non-trivial project there are always many laborious tasks that we should try
to automate.

Build system principles
Developers love writing code but in reality only a fraction of our time is spent in
front of a text editor. In addition to the fun part (designing, talking with peers,
coding and bug fixing) there are tons of fatiguing tasks that must be executed often;
sometimes very often. Building an application is one of those tasks that must be run
again and again so it should be as fast and painless as possible. Here, we discuss
some principles governing the design of our build system.

Automate everything
The authors of this book are really bad at executing manual, repetitive tasks over
and over again. We are slow, make mistakes, and to be frank, get bored easily by
the chore of building. If you are anything like us you will easily understand why
we strongly believe in automating every possible step of the build process.

Computers are good at doing repetitive work for us; they don't take false steps,
don't need a coffee break and don't get distracted. Our machines won't complain if
we offload the majority of the recurring tasks on them! Time invested in automating
every possible step of the build process will pay off quickly, since we will be saving
time every day!

Fail fast, fail clean
A typical build process will consist of several distinct steps. Some of those steps
will execute just fine most of the time, while others will be failing from time to
time. Tasks that are more probable to fail should be executed early in the process,
and break the build as soon as an abnormality is detected. This assures that more
time-consuming steps are not executed until basics are covered.

We learned the hard way how important this rule is. Initially, the build system for
the sample application was executing automated tests before jshint. We often found
ourselves waiting for all the automated tests to execute; just to find that the build was
broken due to invalid JavaScript. The solution was to move the jshint task to the very
beginning of the build pipeline and break the build as early as possible.

Building and Testing

[50]

It is important to include clear error messages that are printed out when the build
breaks. With unambiguous error messages in place, we should be able to identify
the root cause of the failure in a matter of seconds. There is nothing worse than
staring at a cryptic error message wondering what is going on when we should
be already going live with our project.

Different workflows, different commands
As developers we are responsible for different tasks. One day we might be busy
adding new code (with tests!), and spend time integrating newly developed
features a day after. Our build system should reflect this reality by providing
different commands for different types of workflows. In our experience a build
system should have three different build tasks:

1. Fast to run and critical for asserting code correctness: In a JavaScript
project it might mean running jslint / jshint and executing unit tests.
This command should be really fast so it can be executed very frequently.
This build task is very useful for developing code using the Test Driven
Development (TDD) approach.

2. A command to deploy a fully functional application for testing purposes:
After executing this build task we should be able to run an application in
a browser. In order to do so, we need to do more processing here, such as
generating CSS files and so on. This build task is focused on a UI-related
development workflow.

3. Production-deployment build task should run all the verifications listed in
the previous step as well as prepare an application for the final deployment,
such as merge and minify files, execute integration tests, and so on.

Build scripts are code too
Build scripts are a part of project's artifacts, and we should treat them with
the same care as any other deliverables. Build scripts will have to be read,
understood and maintained - just like any other source code. Badly written
build scripts can significantly slow down your progress and guarantee some
frustrating debugging sessions.

Tools
The build-system design principles outlined in the previous section can be applied
to any project and any tool set. Our selected tool-chain is operating system (OS)
agnostic, so you should be able to run sample applications or any popular OS.

Chapter 2

[51]

While we've selected the build tools that in our opinion are the best for
the purpose of the sample project, we do realize that different projects
will use different tools. The rest of this book and the recommendations
from this chapter should still be relevant and easily adaptable to
different build systems.

Grunt.js
The build system of the sample SCRUM application is powered by Grunt
(http://gruntjs.com/). The grunt.js is advertised as:

"A task-based command line build tool for JavaScript projects."

What is important for us is that grunt.js build scripts are written in JavaScript and
executed on the node.js platform. This is very good news as it means that we can
use the same platform and the same programming language for both building and
running the sample application.

The Grunt belongs to the same category of task-oriented build tools as Gradle
(scripts written in Groovy) or Rake (scripts written in Ruby), so people familiar
with those tools should feel at home.

Testing libraries and tools
AngularJS uses, promotes and encourages automated testing practices. The AngularJS
team takes testability very seriously, and they made sure that code written using
AngularJS is easy to test. But the whole testability story doesn't stop here, as the
AngularJS team written or extended tools in order to make testing easy in practice.

Jasmine
The tests for the AngularJS code base were written using Jasmine (http://pivotal.
github.com/jasmine/). Jasmine is a framework for testing JavaScript code and has
its roots in the Behavior Driven Development (BDD) movement which has influence
on its syntax.

All the examples in the original AngularJS documentation are using Jasmine's syntax
so this testing framework is a natural choice for our sample application. Moreover,
AngularJS have written various mock objects and Jasmine extensions to provide a
nicely integrated, practical day-to-day testing experience.

Building and Testing

[52]

Karma runner
Karma runner (http://karma-runner.github.io) is enabled to easily execute
JavaScript tests. Karma runner was born to replace another popular test runner JS
TestDriver with a stable, pure JavaScript, node.js based solution.

The Karma runner is able to dispatch source and test code to a running instance of a
browser (or start a new one if needed!), trigger execution of tests, collect individual
tests outcomes and report the final result. It uses real browsers to execute tests. This
is a big deal in the JavaScript world, since we can simultaneously execute tests in
several browsers making sure that our code will operate correctly in the wild.

The Karma runner is a remarkable tool when it comes to stability and
speed. It is used in the AngularJS project to execute tests as part of the
continuous integration build. On each build Karma runner executes
around 2000 unit tests on multiple browsers. In total around 14,000 tests
are being executed in about 20 seconds. Those numbers should raise our
confidence in Karma runner as a tool, and AngularJS as a framework.

Testing is such a central theme in AngularJS that we are going to have deeper look
into Jasmine tests and Karma runner later in this chapter.

Organizing files and folders
So far we've made some pretty important decisions regarding the technical stack and
tools to be used, while constructing the sample SCRUM application. Now, we need
to answer one more crucial question; how to organize different files in meaningful
folders structure.

There are multiple ways of organizing files in any given project. Sometimes choices
are made for us, since some of the existing tools and frameworks force a prescribed
layout. But neither grunt.js nor AngularJS impose any particular directory
structure so we are free to make our choices. In the following paragraphs you can
find one proposal for organizing files and rationales behind this proposal. You might
choose to use the described structure as is in your future projects or tweak it to suit
your particular needs.

Root folders
While designing folders layout we would like to end up with a directory structure
that makes it easy to navigate in the code base. At the same time we need to keep
build complexity at a reasonable level.

Chapter 2

[53]

Here are some basic assumptions leading us to the high-level directory structure:

• Source code for the application and the accompanying tests should be
clearly separated. This is to keep the build system easy to maintain, as
there are usually different sets of build tasks to be executed for tests and
for the source code.

• Third-party code for any external libraries should be clearly isolated from
our internal code base. External libraries will be changing at the different
pace as compared to our deliverables. We want to make it easy to upgrade
external dependencies at any time. Mixing our sources with external libraries
would make such upgrades harder and time consuming.

• Build-related scripts should reside in their own dedicated folders and not be
scattered through the code base.

• Build results should be outputted to a separate folder. The content and
structure of the build output should closely match the one mandated by the
production deployment requirements. It should be very easy to just grab the
output of the build and deploy it in its final destination.

Taking all of the above assumptions into consideration we ended up with the
following set of top-level directories in the project:

• src: It contains application's source code
• test: It contains accompanying automated tests
• vendor: It contains third party dependencies
• build: It contains build scripts
• dist: It contains build results, ready to be deployed in a target environment

Finally, here is the top-level folders structure visualized:

Building and Testing

[54]

In addition to the described folders we can notice several top level files. Just for
reference those files are:

• .gitignore: The git SCM related includes rules to indicate which files
should not be tracked in a git repository

• LICENSE: It contains terms of the MIT license
• Gruntfile.js: It is the entry point to the grunt.js build
• package.json: It contains the package description for the

node.js applications

Inside the source folder
With the basics addressed we are now ready to dive into the structure of the src
folder. Let's have a look at its visualization first:

The index.html file is the entry point to the sample application. Then, there are
four folders, two of them holding AngularJS-specific code (app and common) and
two others contain AngularJS-agnostic presentation artifacts (assets and less).

It is easy to decipher the purpose of the assets and the less folders; the first one
holds images and icons while the second one, LESS variables. Please note that the
LESS templates for Twitter's Bootstrap CSS are located in the vendor folder, here
we just keep variable values.

AngularJS specific files
AngularJS applications consist of two different file types, namely, scripts and HTML
templates. Any non-trivial project will produce many files of each type and we need
to find a way to organize this mass of files. Ideally we would like to group related
files together and keep the unrelated ones further apart. The trouble is that files can
relate to each other in many different ways and we've got only one directory tree to
express those relations.

Chapter 2

[55]

Common strategies of solving this problem involve grouping files by a feature
(package by feature), by an architectural layer (package by layer), or by a file type.
What we would like to propose here is a hybrid approach:

• Most of the application files should be organized by feature. Scripts and
partials that are functionally related to each other should go together. Such
an arrangement is very convenient while working on vertical slices of an
application since all the files changing together are grouped together.

• Files encapsulating cross-cutting concerns (persistence store access,
localization, common directives, and so on) should be grouped together.
The rationale here is that infrastructure-like scripts don't change at the same
pace as the strictly functional code. In a typical life-cycle of an application
some technical infrastructure is written early on and the focus is shifted
to the functional code as the application matures. Files in the common,
infrastructure level area are best organized by an architectural layer.

We can directly translate the above recommendations to the following directory
structure of the sample application:

Building and Testing

[56]

The directory structure described here is different from the one
recommended by the AngularJS seed project (https://github.
com/angular/angular-seed). The directory layout from
the angular-seed project works well for a simple project, but the
general consensus in the AngularJS community is that larger
projects are better organized by feature.

Start simple
Looking at the folder structure you will notice that some of the folders containing
functional code have a deep hierarchy. Those folders closely match hierarchical
navigation in the application itself. This is desirable since looking at the UI of the
application we can quickly understand where the corresponding code might be stored.

It is good idea to start a project with a very simple structure, and take small steps
toward the final directories' layout. For example, the sample application didn't
have any subfolders in the admin section at the beginning and contained all the
functionality for managing SCRUM projects and users in one directory. As the code
base evolved and files were growing bigger (and more numerous) new subfolders
were added. The folder structure can be refactored and evolved in several iterations,
exactly like source code.

Controllers and partials evolve together
It is rather common to see projects where files are organized into folders based on
their type. In AngularJS context JavaScript scripts and templates often get separated
into different directory structures. This separation sounds like a good idea but in
practice templates and the corresponding controllers tend to evolve at the same
pace. This is why in the sample SCRUM application templates and controllers are
kept together. Each functional area will have its own folder and both templates and
controllers will reside in one folder.

As an example here is the content of the folder related to the users'
administration functionality:

Chapter 2

[57]

Inside the test folder
Automated tests are written to assert whether an application is operating properly, and
the test code is closely related to the functional code. As such, it shouldn't be surprising
that the structure of the test folder closely mimics the one of the src/app:

It is easy to see that the content of the test folder almost mirrors the root source
folder. All the tests libraries are located in their dedicated vendor folder and the
Karma runner's test configuration has its home too (config).

File-naming conventions
It is important to establish some file naming conventions to make navigation in
the code base easier. Here are a set of conventions often followed in the AngularJS
community and adopted in the book:

• All the JavaScript files are named with the standard .js extension.
• Partials get the .tpl.html suffix so we can easily distinguish them from

other HTML files.
• Test files get the same name as a file being tested and the suffix dependent

on the test type. Unit tests would get the .spec.js suffix.

AngularJS modules and files
Now that our application is nicely organized into folders and files we can start
looking into content of the individual files. Here we are going to focus on JavaScript
files, their content and relation to AngularJS modules.

Building and Testing

[58]

One file, one module
In Chapter 1, Angular Zen, we've seen that AngularJS modules can depend on each
other. This means that in the AngularJS application we need to deal with both
directories hierarchy and modules hierarchy. Now we are going to dig more into
those topics in order to come up with pragmatic recommendations for organizing
AngularJS modules and their content.

There are basically three approaches we could take to relate individual files and
AngularJS modules:

• Allow multiple AngularJS modules in one JavaScript file
• Have AngularJS modules spanning multiple JavaScript files
• Define exactly one AngularJS module per JavaScript file

Defining multiple modules in one file is not extremely harmful but it might result in
big files with hundreds of lines of code. On top of this it is harder to find a particular
module in the code base as we need to locate both a file in a file system, and a module
within a file. While having multiple modules in one file might work for very simple
projects it is not optimal for larger code bases.

Having one module spanning over multiple files is something that should be
probably avoided. As soon as the code for one module is spread across multiple
files we need to start thinking about load order of those files: module declaration
need to come before providers are registered. Additionally, such modules tend
to be bigger and as such harder to maintain. Big modules can be particularly
undesirable for unit testing, where we want to load and exercise units of code
as small as practically possible.

Out of the three proposals having exactly one AngularJS module per file seems to
be the most sensible approach.

Stick to the one file equals one AngularJS module principle. This will
allow you to maintain relatively small, focused files and modules.
Additionally you won't be concerned with the load order of those files.
Also it will be possible to load individual modules under unit tests.

Chapter 2

[59]

Inside a module
As soon as a module is declared it can be used to register recipes for the object's
creation. As a reminder, those recipes are called providers in AngularJS terminology.
Each provider, when executed, will produce exactly one run-time service instance.
While recipes for services creation can be expressed using multitude of forms
(factories, services, providers and variables) the net effect is always the same; a
configured instance of a service.

Different syntax for registering providers
To register a new provider we need to get a hand on a module's instance first. It
is easy as a module instance will be always returned from a call to the angular.
module method.

We could save a reference to the returned module instance and reuse it to register
multiple providers. For example, to register two controllers on the module
responsible for managing projects we could write:

var adminProjects = angular.module('admin-projects', []);

adminProjects.controller('ProjectsListCtrl', function($scope) {
 //controller's code go here
});

adminProjects.controller('ProjectsEditCtrl', function($scope) {
 //controller's code go here
});

While this approach certainly works it has one drawback; we are obliged to declare
an intermediate variable (adminProjects in this case) just to be able to declare
multiple providers on a module. Worse yet, the intermediate variable could end up
in the global namespace if we don't take additional precautions (wrapping module
declaration into a closure, creating a namespace, and so on.). Ideally, we would like
to be able to somehow retrieve an instance of an already declared module. It turns
out that we can do this as shown in the next example:

angular.module('admin-projects', []);

angular.module('admin-projects').controller('ProjectsListCtrl',
function($scope) {
 //controller's code goes here
});

Building and Testing

[60]

angular.module('admin-projects').controller('ProjectsEditCtrl',
function($scope) {
 //controller's code goes here
});

We've managed to eliminate the extra variable but our code didn't get any better.
Can you notice how the angular.module('admin-projects') is repeated all over
the place All code duplication is evil and this one can hit us hard, if we decide to
rename a module one day. On top of this the syntax to declare a new module and to
retrieve an existing one can be easily mistaken leading, to very confusing results. Just
compare the angular.module('myModule') with angular.module('myModule',
[]). It is easy to overlook the difference, isn't it?

It is better to avoid retrieving AngularJS modules using the angular.
module('myModule') construct. The syntax is verbose and results
in code duplication. Worse yet, module's declaration can be easily
confused with accessing instances of an existing module.

Luckily there is one more approach that addresses all the problems described so far.
Let's have a look at the code first:

angular.module('admin-projects', [])

 .controller('ProjectsListCtrl', function($scope) {
 //controller's code go here
 })

 .controller('ProjectsEditCtrl', function($scope) {
 //controller's code go here
 });

We can see that it is possible to chain calls to the controller's registration logic.
Each call to the controller method will return an instance of a module on which
the method was invoked. Other provider-registering methods (factory, service,
value, and so on) are returning a module's instance, as well so it is possible to
register different providers using the same pattern.

In our sample SCRUM application we are going to use the chaining syntax just
described to register all the providers. This way of registering providers eliminates the
risk of creating superfluous (potentially global!) variables and avoids code duplication.
It is also very readable provided that some effort is put into code formatting.

Chapter 2

[61]

Syntax for declaring the configure and run blocks
As described in Chapter 1, Angular Zen the process of bootstrapping an AngularJS
application is divided in two distinct phases, the configure phase and the run
phase. Each module can have multiple configure and run blocks. We are not
restricted to a single one.

It turns out that AngularJS supports two different ways of registering functions
that should be executed in the configuration phase. We saw already that it is
possible to specify a configuration function as the third argument to the
angular.module function:

angular.module('admin-projects', [], function() {
 //configuration logic goes here
});

The preceding method allows us to register one and only one configure block.
On top of this module declaration becomes quite verbose (especially, if a module
specifies dependencies on other modules). An alternative exists is the form of the
angular.config method:

angular.module('admin-projects', [])
 .config(function() {
 //configuration block 1
 })

 .config(function() {
 //configuration block 2
 });

As you can see, the alternative method makes it possible to register several
configuration blocks. This might come handy to split big configuration functions
(especially ones with multiple dependencies) into smaller, focused functions.
Small, cohesive functions are easier to read, maintain and test.

In the SCRUM sample application we are going to use the later form of registering
configuration and run functions as we find it more readable.

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/supportand register to have the files e-mailed directly to you.

Building and Testing

[62]

Automated testing
Software development is hard. As developers, we need to juggle customer
requirements and pressure of deadlines, work effectively with other team
members, and all this while being proficient with multitude of software
development tools and programing languages. As the complexity of software
rises so is the number of bugs. We are all human and we will make mistakes,
tons of them. Lower-level, programming errors are only one type of defect that
we need to constantly fight. Installation, configuration and integration issues
will also plague any non-trivial project.

Since, it is so easy to introduce different types of bugs in a project we need
effective tools and techniques to battle those errors. The software development
industry as the whole realizes more and more that only rigorously applied
automated testing can guarantee quality, on-time deliverables.

Automated testing practices were firstly popularized by the agile development
methodologies (eXtreme Programming, XP). But, what was new and revolutionary
several years ago (and to a certain point controversial) is now a widely accepted,
standard practice. These days, there is really no excuse for not having a
comprehensive, automated test battery.

Unit tests are our first defense line in the battle against programming bugs.
Those tests as the name implies are focused on small units of code, usually
individual classes or clusters of closely collaborating objects. Unit tests are a tool
for a developer. They help us assert that we got the lower-level constructs right,
and that our functions produce expected results. But unit tests bring much more
benefits beyond simple, one-off code verification:

• They help us find problems early in the development process when the
debugging and fixing is the least costly.

• A well-written set of tests can be executed on each and every build providing
a non-regression test suite. This gives us peace of mind and allows us to
introduce code changes with great confidence.

• There is arguably no better and more lightweight development
environment than just an editor and a test runner. We can move
quickly without building, deploying and clicking through the
application to verify that our change is correct.

Chapter 2

[63]

• Writing code test-first using the Test Drive Development (TDD) approach
helps us design classes and their interfaces. Tests serve as yet another client
invoking our code and as such helps us design flexible, loosely coupled
classes and interfaces.

• Last but not least existing tests can serve as documentation. We can always
open a test to see how a given method should be invoked, what is a set of
accepted arguments. What's more, this documentation is executable and
always up to date.

Unit tests are of great help but they can't catch all the possible problems. In
particular all the configuration and integration issues won't be detected by
unit tests. To thoroughly cover our applications with automated tests we need
to execute higher-level, end-to-end (integration) tests as well. The goal of
integration tests is to exercise an assembled application and make sure that
all the individual units play nicely together to form a fully functional application.

Writing and maintaining automated tests is a skill apart that as any other skill needs
to be learned and honed. At the beginning of your testing journey you might feel
like testing practices are slowing you down and are not worth it. But as you get
more proficient with testing techniques you will appreciate how much time we can
actually gain by rigorously testing the code.

There is a quote saying that writing code without a version control
system (VCS) is like skydiving without a parachute. Today one
would hardly consider running a project without using a VCS.
Same applies to the automated testing and we could say: "Writing
software without an automated test suite is like climbing without a
rope or skydiving without a parachute". You can try but the results
will be almost for sure disastrous.

AngularJS team fully recognizes the importance of the automated testing and strictly
applies testing practices while working on the framework. What is fantastic, though,
is that AngularJS comes with a set of tools, libraries and recommendations that make
our application easy to test.

Unit tests
AngularJS adopted Jasmine as its testing framework: unit tests for the framework
itself are written using Jasmine and all the examples in the documentation are using
Jasmine syntax as well. Moreover AngularJS extended the original Jasmine library
with few useful add-ons that make testing even easier.

Building and Testing

[64]

Anatomy of a Jasmine test
Jasmine announces itself as the "behavior-driven development framework for
testing JavaScript code". The behavior-driven testing roots are reflected in the
syntax employed by the library tests specifications that are supposed to read as
English sentences. Let's examine a simple test exercising a standard JavaScript
class to see how it works in practice:

describe('hello World test', function () {

 var greeter;
 beforeEach(function () {
 greeter = new Greeter();
 });

 it('should say hello to the World', function () {
 expect(greeter.say('World')).toEqual('Hello, World!');
 });
});

There are several constructs in the above tests that need a word of explanation:

• The describe function, describes a feature of an application. It acts as an
aggregating container for individual tests. If you are familiar with other
testing frameworks you can think of the describe blocks as of test suites.
The describe blocks can be nested inside each other.

• The test itself is located inside the it function. The idea is to exercise one
particular aspect of a feature in one test. A test has a name and a body.
Usually the first section of the test's body calls methods on an object under
test while the later one verifies expected results.

• Code contained in the beforeEach block will get executed before each
individual test. This is a perfect place for any initialization logic that has to
be executed before each test.

• The last things to mention are the expect and the toEqual functions. Using
those two constructs we can compare actual results with the expected ones.
Jasmine, as many other popular testing frameworks, comes with a rich set
of matchers, toBeTruthy, toBeDefined, toContain are just few examples
of what is available.

Chapter 2

[65]

Testing AngularJS objects
Testing AngularJS objects is not much different from testing any other, regular
JavaScript class. Specific to AngularJS is its dependency injection system and the
way it can be leveraged in unit tests. To learn how to write tests leveraging the DI
machinery we are going to focus on testing services and controllers.

All the tests-related extensions and mock objects are distributed in a
separate AngularJS file named angular-mocks.js. Don't forget to
include this script in your test runner. At the same time it is important
not to include this script in the deployed version of an application.

Testing services
Writing tests for objects registered in AngularJS modules is easy but requires a bit
of initial setup. More specifically, we need to ensure that a proper AngularJS module
is initialized and the whole DI machinery brought to life. Fortunately AngularJS
provides a set of methods that make Jasmine tests and the dependency injection
system play together really nicely.

Let's break down a simple test for the notificationsArchive introduced in
Chapter 1, Angular Zen to see how to test AngularJS services. As a reminder here
is the code for the service itself:

angular.module('archive', [])
 .factory('notificationsArchive', function () {

 var archivedNotifications = [];
 return {
 archive:function (notification) {
 archivedNotifications.push(notification);
 },
 getArchived:function () {
 return archivedNotifications;
 }};
 });

Here is the corresponding test:

describe('notifications archive tests', function () {

 var notificationsArchive;
 beforeEach(module('archive'));

Building and Testing

[66]

 beforeEach(inject(function (_notificationsArchive_) {
 notificationsArchive = _notificationsArchive_;
 }));

 it('should give access to the archived items', function () {
 var notification = {msg: 'Old message.'};
 notificationsArchive.archive(notification);

 expect(notificationsArchive.getArchived())
 .toContain(notification);
 });
});

At this point you should be able to recognize the familiar structure of the Jasmine
test plus spot some new function calls: module and inject.

The module function is used in Jasmine tests to indicate that services from a given
module should be prepared for the test. The role of this method is similar to the
one played by the ng-app directive. It indicated that AngularJS $injector should
be created for a given module (and all the dependent modules).

Don't confuse the module function used in the test with the
angular.module method. While both have the same name
their roles are quite different. The angular.module method is
used to declare new modules while the module function allows
us to specify modules to be used in a test.

In reality it is possible to have multiple module function calls in one test. In this case
all the services, values and constants from the specified modules will be available
through the $injector.

The inject function has one simple responsibility, that is it injects the services into
our tests.

The last part that might be confusing is the presence of the mysterious underscores
in the inject function call:

var notificationsArchive;
beforeEach(inject(function (_notificationsArchive_) {
 notificationsArchive = _notificationsArchive_;
}));

What is happening here is that $injector will strip any a pair leading and trailing
underscores when inspecting the function's arguments to retrieve dependencies.
This is a useful trick since we can save variable names without underscores for the
test itself.

Chapter 2

[67]

Testing controllers
A test for a controller follows similar a pattern to the one for a service. Let's have a look
at the fragment of the ProjectsEditCtrl controller from the sample application. This
controller in question is responsible for the editing projects in the administration part
of the application. Here we are going to test methods of the controller responsible for
adding and removing project's team members:

angular.module('admin-projects', [])
 .controller('ProjectsEditCtrl', function($scope, project) {

 $scope.project = project;

 $scope.removeTeamMember = function(teamMember) {
 var idx = $scope.project.teamMembers.indexOf(teamMember);
 if(idx >= 0) {
 $scope.project.teamMembers.splice(idx, 1);
 }
 };

 //other methods of the controller
 });

The logic of the presented controllers is not complex and will let us to focus on the
test itself:

describe('ProjectsEditCtrl tests', function () {

 var $scope;
 beforeEach(module('admin-projects'));
 beforeEach(inject(function ($rootScope) {
 $scope = $rootScope.$new();
 }));

 it('should remove an existing team member', inject(function
($controller) {

 var teamMember = {};
 $controller('ProjectsEditCtrl', {
 $scope: $scope,
 project: {
 teamMembers: [teamMember]
 }
 });

 //verify the initial setup
 expect($scope.project.teamMembers).toEqual([teamMember]);

Building and Testing

[68]

 //execute and verify results
 $scope.removeTeamMember(teamMember);
 expect($scope.project.teamMembers).toEqual([]);
 }));
});

The removeTeamMember method that we want to test here will be defined on a
$scope and it is the ProjectsEditCtrl controller that defines this method. To
effectively test the removeTeamMember method we need to create a new scope,
a new instance of the ProjectsEditCtrl controller and link the two together.
Essentially we need to manually do the job of the ng-controller directive.

Let's turn our attention to the beforeEach section for one more moment, as there are
interesting things going on in there. Firstly we are getting access to the $rootScope
service and creating a new $scope instance ($scope.$new()). We do so to simulate
what would happen in a running application, where the ng-controller directive
would create a new scope.

To create an instance of the controller we can use the $controller service (please
notice how the inject function can be placed on the beforeEach section as well as
on the it level).

Look how easy it is to specify controller's constructor arguments while
invoking the $controller service. This is dependency injection at
its best; we can provide both a fake scope and test data to exercise
controller's implementation in complete isolation.

Mock objects and asynchronous code testing
We can see how AngularJS provides a very nice integration of its dependency
injection system with the Jasmine testing framework. But the good testability
story continues as AngularJS provides some excellent mock objects as well.

Asynchronous programming is the bread and butter of JavaScript. Unfortunately
asynchronous code tends to be hard to test. Asynchronous events are not very
predictable, and can fire in any order and trigger actions after an unknown period of
time. The good news is that the AngularJS team provides excellent mock objects that
make testing asynchronous code really easy and what is important is that they are
fast and predictable. How can this be? Let's have a look at the example test exercising
the code using the $timeout service. First at the code itself:

angular.module('async', [])
 .factory('asyncGreeter', function ($timeout, $log) {
 return {

Chapter 2

[69]

 say:function (name, timeout) {
 $timeout(function(){
 $log.info("Hello, " + name + "!");
 })
 }
 };
 });

The $timeout service is a replacement for the JavaScript setTimeout
function. Using $timeout is preferable for the purpose of deferring
actions as it is tightly integrated with the AngularJS HTML compiler
and will trigger the DOM refresh after the time is up. On top of this the
resulting code is easy to test.

Here is the test:

describe('Async Greeter test', function () {

 var asyncGreeter, $timeout, $log;
 beforeEach(module('async'));
 beforeEach(inject(function (_asyncGreeter_, _$timeout_, _$log_) {
 asyncGreeter = _asyncGreeter_;
 $timeout = _$timeout_;
 $log = _$log_;
 }));

 it('should greet the async World', function () {
 asyncGreeter.say('World', 9999999999999999999);
 //
 $timeout.flush();
 expect($log.info.logs).toContain(['Hello, World!']);
 });
});

Most of this code should be easy to follow but there are two very interesting bits
that require more attention. Firstly we can see a call to the $timeout.flush()
method. This one little call on the $timeout mock simulates an asynchronous event
being triggered. The interesting part is that we've got full control over when this
event is going to be triggered. We don't need to wait for the timeout to occur, nor
are we on the mercy of external events. Please note that we've specified a very long
timeout period, yet our test will execute immediately, since we don't depend on the
JavaScript's setTimeout. Rather it is the $timeout mock that simulates the behavior
of the asynchronous environment.

Building and Testing

[70]

Excellent, predictable mocks for the asynchronous services are one
of the reasons why AngularJS tests can run blazing fast.

On many platforms there are often fundamental, global services that are rather
difficult to test. Logging and exception handling code are examples of such logic
that causes testing headaches. Luckily, AngularJS has a remedy here; it provides
services addressing those infrastructural concerns alongside with accompanying
mock objects. You've probably noticed that the test example makes use of one more
mock, namely, $log. The mock for the $log service will accumulate all the logging
statements and store them for further assertions. Using a mock object assures that
we are not invoking real platform services; especially the ones that are potentially
expensive in terms of performance and could have side-effects (for example, one
could imagine that the $log service sends logs to a server over HTTP, and it would
be very bad idea to perform network calls while executing tests).

End-to-end tests
AngularJS introduced its own end-to-end testing solution called Scenario
Runner. The Scenario Runner can execute integration tests by driving actions
in a real browser. It automatically executes actions (filling in forms, clicking on
buttons, and links and so on) and verifies UI responses (page change, proper
information displayed, and so on), thus greatly reducing the need for the
manual verifications traditionally performed by the quality assurance teams.

AngularJS solution has similar functionality as other existing tools (for
example, the very popular Selenium), but it tightly integrates with the
framework. More specifically:

• The Scenario Runner is aware of asynchronous events (most importantly
XHR calls). It can pause the execution of a test until the asynchronous event
completes. In practice this means that the test code doesn't have to use any
explicit waiting instructions. Anyone who has tried to test an Ajax-heavy
web application using traditional tools will highly appreciate this feature.

• We can take advantage of binding information already available in the
AngularJS templates to select DOM elements for further manipulations and
verifications. Essentially it is possible to locate DOM elements and form
inputs based on model to which those elements are bound. This means that
we neither need to embed superfluous HTML attributes (usually IDs or CSS
classes) nor rely on fragile XPath expressions so the testing framework can
locate the DOM elements.

Chapter 2

[71]

• The syntax used by the Scenario Runner makes it really easy to find DOM
elements, interact with them, and assert on their properties. There is a
complete domain-specific language (DSL) for searching and matching
repeaters, inputs, and so on.

Unfortunately, as the time was passing by more and more limitations of the Scenario
Runner were surfacing. Due to this, as of time of this writing, the Scenario Runner
is not actively maintained. There are plans to replace it with another solution based
on Selenium integration, namely, Protractor. The work in progress can be seen in the
GitHub repository at https://github.com/angular/protractor.

We recommend against using the existing Scenario Runner for any
new project. It is not actively maintained and it won't evolve. Instead,
you should keep an eye on Protractor.

Daily workflow
In order to be effective, automated testing needs to be applied rigorously. Tests
should be run as often as practicably possible and failing tests should be fixed as
soon as possible. A failing test should be treated as a failing build, and fixing a
broken build should be a top priority for a team.

During the day we will be switching, back and forth between JavaScript code and UI
templates. When focusing on the pure JavaScript code and other AngularJS artifacts
(such as filters or directives), it is important to run unit tests often. In fact, due to
the remarkable speed at which AngularJS test can be executed with the Karma test
runner it becomes practical to run all the unit tests as often as on every file save!

While writing the sample SCRUM application, the authors of this book were
working with the Karma runner set up in a way that it would monitor all the file
changes (both to the source code and the test code). On each and every file save a
complete suite of tests were executed providing an immediate health-check. In such
a setup, the feedback loop becomes very short, and we can always know that either
our code still works as expected or was broken just seconds before. If things are in
order we can swiftly move on, but if tests start failing we know that it is due to one
of the latest changes. With the tests running so often, we can say goodbye to long
and tedious debugging sessions.

Running tests shouldn't require much effort. It is very important to have a comfortable
testing environment, where the automated test suite can be executed as often as
possible. If running a test involves several manual, tedious steps, we will avoid testing.

Building and Testing

[72]

With modern tools it is possible to have extremely efficient setup. For example, here
is the screenshot of the development environment used to write examples for this
book. As you can see the source and test code are opened side by side so it is easy
to switch between writing test and production code. Karma runner is watching the
file system to execute test on every file save operation and provide the immediate
feedback (in the lower pane):

Unit testing environment described here is in fact the lightest possible
development environment. We can work all the time in our IDE and
focus on writing code. No need to switch context for building, deploying
or clicking in a browser to verify that our code works as expected.

Karma runner tips and tricks
Practicing Test Driven Development (TDD) greatly reduces number of long debugging
sessions. When writing code test, first we are usually doing small changes and running
tests often so the change that causes test to fail is just few keystrokes away. But despite
our best efforts there will be times when we won't be able to understand what is going
on without resorting to a debugger. In times like those we need to be able to quickly
isolate a failing test and focus on this one test.

Chapter 2

[73]

Executing a subset of tests
The Jasmine version shipped with Karma runner has very useful extensions to
quickly isolate a set of tests to run:

• Prefixing a test or a suite with the x character (xit, xdescribe) will disable
this tests/suite during the next run.

• Prefix a test suite with the d character (ddescribe) will only run this suite,
ignoring others.

• Prefixing a test with the i character (iit) will only run this test, ignoring
other tests and suites.

Those little prefixes are extremely useful in practice and can be used as shown below:

describe('tips & tricks', function () {

 xdescribe('none of the tests here will execute', function () {

 it('won't execute - spec level', function () {
 });

 xit('won't execute - test level', function () {
 });
 });

 describe('suite with one test selected', function () {

 iit('will execute only this test', function () {
 });

 it('will be executed only after removing iit', function () {
 });
 });

});

Debugging
Narrowing down a failing test is half of the success. Still we need to understand
what is going on, and this often involves a debugging session. But how to debug
tests executed by Karma runner? It turns out that it is pretty easy; it is enough to add
the debugger statement in our test or production code.

Building and Testing

[74]

While using the debugger statement don't forget to turn on your
developer tools in your favorite browser. Otherwise a browser
won't pause and you won't be able to debug tests.

Sometimes it might be easier to just print values of some variables on a console.
AngularJS mocks come with one convenient method for such occasions angular.
mock.dump(object). In fact the dump method is also exposed on the global (window)
scope so we could simply write dump(object).

Summary
This chapter prepared us for writing real-life applications with AngularJS. At the
beginning we went over the details of the sample application; its problem domain and
the technical stack. The rest of this book is filled with the examples inspired by the
sample application for managing projects using the SCRUM methodology. To write
this application we are going to use a JavaScript-based (or at least JavaScript-friendly),
open source stack: hosted MongoDB as a persistence store, node.js as the server-side
solution and obviously AngularJS as the front-end framework.

We spent a considerable amount of time discussing build-related problematic
philosophy behind a perfect build system and its practical implementations. We've
chosen the JavaScript-based (and node.js powered) grunt.js to write sample build
scripts. Looking into the build inevitably leads us to look into the organization of
files and folders in the sample project. We've chosen a directory structure that plays
nicely with the AngularJS module system. After pondering different ways of declaring
AngularJS modules and providers, we've settled on the syntax that avoids confusion,
doesn't pollute the global namespace, and keeps our build system complexity at
reasonable levels.

The benefits of automated testing are well known and understood these days. We are
lucky since AngularJS puts strong emphasizes on testability of the code written using
the framework. We saw that AngularJS comes with the complete testing offering
tools (Karma runner), integration with the existing testing libraries (Jasmine), and the
built in dependency injection system that makes it easy to test individual objects in
isolation. We saw how to test AngularJS artifacts in practice as well testing AngularJS
services and controllers should have no secrets for you at this point. With all the
solutions in place it is easy to put in place a very nice, lightweight testing workflow.

So far we've learned AngularJS basics and saw how to structure a non-trivial
application. We can now use this foundation to add concrete, real-life elements.
Since any CRUD application needs to work with the data fetched from a persistent
store, the next chapter is devoted to the AngularJS-way of communicating with
various back-ends.

Communicating with
a Back-end Server

More often than not web applications need to communicate with a persistent store to
fetch and manipulate data. This is especially true for CRUD-like applications where
data editing is the essential part.

AngularJS is well equipped to communicate with various back-ends using
XMLHttpRequest (XHR) and JSONP requests. It has a general purpose $http
service for issuing XHR and JSONP calls as well as a specialized $resource service
to easily target RESTful endpoints.

In this chapter, we are going to examine different APIs and techniques to
communicate with various back-ends. In particular, we are going to learn how to:

• Make basic XHR calls using the $http service and test code relying on $http
• Effectively work with asynchronous requests, using the promise API exposed

by AngularJS in the $q service
• Easily talk to RESTful endpoints using the dedicated $resource factory
• Build a custom, $resource-like API tailored to our back-end needs

Making XHR and JSONP requests with
$http
The $http service is a fundamental, all-purpose API for making XHR and JSONP calls.
The API itself is well-crafted and easy to use, as we are going to see shortly. Before
diving into the details of the $http API though, we need to learn a bit more about data
model of our sample SCRUM application so we can follow meaningful examples.

Communicating with a Back-end Server

[76]

Getting familiar with the data model and
MongoLab URLs
The data model of the sample SCRUM application is rather simple and can be
illustrated on the following diagram:

Project

Sprint

BacklogItem Task

User

team member*

**
**

There are five different MongoDB collections holding data of users, projects and
project-related artifacts. All the data are accessible through the RESTful interface
exposed by MongoLab. The REST API can be invoked by targeting URLs with a well-
defined pattern:

https://api.mongolab.com/api/1/databases/[DB name]/collections/
[collection name]/[item id]?apiKey=[secret key]

All the REST API calls targeting databases hosted on MongoLab need
to include a request parameter named apiKey. The apiKey parameter,
with the value unique to an individual account, is necessary to authorize
MongoLab REST API calls. The complete description of the REST
API exposed by MongoLab can be consulted at https://support.
mongolab.com/entries/20433053-rest-api-for-mongodb.

$http APIs quick tour
Doing XHR and JSONP calls using the $http service is straightforward. Let's
consider an example of fetching JSON content with a GET request:

var futureResponse = $http.get('data.json');
futureResponse.success(function (data, status, headers, config) {
 $scope.data = data;
});
futureResponse.error(function (data, status, headers, config) {
 throw new Error('Something went wrong...');
});

Chapter 3

[77]

First of all we can see that there is a dedicated method to issue XHR GET requests.
There are equivalent methods for other types of XHRrequests as well:

• GET: $http.get(url, config)
• POST: $http.post(url, data, config)
• PUT: $http.put(url, data, config)
• DELETE: $http.delete(url, config)
• HEAD: $http.head

It is also possible to trigger a JSONP request with $http.jsonp(url, config).

The parameters accepted by the $http methods differ slightly depending on the
HTTP method used. For calls that can carry data in their body (POST and PUT) the
method signature is the following one:

• url: the URL to be targeted with a call
• data: data to be sent with a request's body
• config: a JavaScript object containing additional configuration options

influencing a request and a response

For the remaining methods (GET, DELETE, HEAD, JSONP) where there is no data to
be sent with the request's body, the signature becomes simpler and is reduced to two
parameters only: url and config.

The object returned from the $http methods allows us to register success and
error callbacks.

The configuration object primer
The JavaScript configuration object can hold different options influencing the request,
response and data being transmitted. The configuration object can have the following
properties (among others):

• method: HTTP method to be issued
• url: URL to be targeted with a request
• params: parameters to be added to the URL query string
• headers: additional headers to be added to a request
• timeout: timeout (in milliseconds) after which a XHR request will be dropped
• cache: enables XHR GET request caching
• transformRequest, transformResponse: transformation functions that

allows us to pre-process and post-process data exchanged with a back-end

Communicating with a Back-end Server

[78]

You might be a bit surprised to see method and url among configuration options since
those parameters can be already supplied as part of a $http methods' signatures. It
turns out that $http itself is a function that can be invoked in a generic way:

$http(configObject);

The generic form might be useful for cases where AngularJS doesn't provide a
"shortcut" method (for example for PATCH or OPTIONS requests). In general we
find that shortcut methods result in a more concise and easier way to read code, and
we would recommend using this form over the generic one whenever possible.

Request data conversion
The $http.post and $http.put methods accept any JavaScript object (or a string)
value as their data parameter. If data is a JavaScript object it will be, by default,
converted to a JSON string.

The default data to JSON conversion mechanism ignores all properties
starting with a dollar sign ($). In general, properties beginning with $ are
considered "private" in AngularJS. This might be problematic for some
back-ends to which we need to send properties with the $ (for example,
MongoDB). The workaround is to convert data manually (using the
JSON.stringify method, for example).

We can see the data conversion in action by issuing a POST request to create a new
user in MongoLab:

var userToAdd = {
 name:'AngularJS Superhero',
 email:'superhero@angularjs.org'
};

$http.post('https://api.mongolab.com/api/1/databases/ascrum/collec
 tions/users',
 userToAdd, {
 params:{
 apiKey:'4fb51e55e4b02e56a67b0b66'
 }
 });

This example also illustrates how HTTP query string parameters (here: apiKey) can
be added to a URL.

Chapter 3

[79]

Dealing with HTTP responses
A request can either succeed or fail and AngularJS provides two methods to register
callbacks to deal with the two outcomes: success and error. Both the methods
accept a callback function that will be called with the following parameters:

• data: The actual response data
• status: The HTTP status of the response
• headers: A function giving access to the HTTP response headers
• config: The configuration object that was supplied when a request

was triggered

AngularJS will invoke success callbacks for the HTTP responses with
status ranging from 200 to 299. Responses with a status outside of this
range will trigger the error callback. The redirection responses (HTTP
status 3xx codes) are automatically followed by a browser.

Both success and error callbacks are optional. If we don't register any callback a
response will be silently ignored.

Response data conversion
As with request data conversions, the $http service will try to convert responses
containing a JSON string into a JavaScript object. This conversion happens
before invoking success or error callbacks. The default conversion behavior
can be customized.

In the current version of AngularJS the $http service will try to
perform JSON string to JavaScript object conversion on any responses
that look like JSON (that is, starts with { or [and end with] or }).

Dealing with same-origin policy restrictions
Web browsers enforce the same-origin security policy. This policy authorizes XHR
interactions only with resources originating from the same source (defined as a
combination of a protocol, host and its port) and enforces restrictions on interactions
with "foreign" resources.

Communicating with a Back-end Server

[80]

As web developers, we need to constantly balance security considerations with
functional requirements to aggregate data from multiple sources. Indeed, it is often
desirable to fetch data from third party services and present those data in our web
applications. Unfortunately, XHR requests can't easily reach servers outside of the
source domain unless we play some tricks.

There are several techniques for accessing data exposed by external servers: JSON
with padding (JSONP) and Cross-origin resource sharing (CORS) are probably the
most popular ones in the modern web. This section shows how AngularJS helps us
applying those techniques in practice.

Overcoming same-origin policy restrictions with
JSONP
Using JSONP is a trick that allows fetching data by passing the same-origin policy
restrictions. It relies on the fact that browsers can freely pull JavaScript from foreign
servers by using the <script> tag.

JSONP calls don't trigger XHR requests but instead generate a <script> tag whose
source points to an external resource. As soon as a generated script tag appears in the
DOM a browser performs its duty and calls the server. The server pads the response
with a function invocation (thus the "padding" in the name of JSONP technique) in
the context of our web application.

Let's examine a sample JSONP request and response to see how it works in practice.
First of all we need to invoke a JSONP request:

$http
 .jsonp('http://angularjs.org/greet.php?callback=JSON_CALLBACK', {
 params:{
 name:'World'
 }
 }).success(function (data) {
 $scope.greeting = data;
 });

Upon invoking the $http.jsonp method AngularJS will dynamically create a new
<script> DOM element like:

<script type="text/javascript" src="http://angularjs.org/greet.
php?callback=angular.callbacks._k&name=World"></script>

Chapter 3

[81]

As soon as this script tag is attached to the DOM the browser will request the URL
specified in the src attribute. The response, upon arrival, will have a body following
a pattern like:

angular.callbacks._k ({"name":"World","salutation":"Hello","greeting":
"Hello World!"});

A JSONP response looks like a regular JavaScript function call and in fact this exactly
what it is. AngularJS generated the angular.callbacks._k function behind the
scenes. This function, when invoked, will trigger a success callback invocation. The
URL supplied to the $http.jsonp function call must contain the JSON_CALLBACK
request parameter. AngularJS will turn this string into a dynamically generated
function name.

JSONP callback names generated by AngularJS will have a form
of angular.callbacks._[variable]. Make sure that your
back-end can accept callback names containing dots.

JSONP limitations
JSONP is a smart and useful work-around for the same-origin policy restrictions but
it has several limitations. Firstly, we should only GET HTTP requests can be issued
using the JSONP technique. Error handling is also very problematic, since browsers
won't expose HTTP response status from the <script> tag back to JavaScript. In
practice it means that it is rather difficult to reliably report the HTTP status errors
and invoke error callbacks.

JSONP also exposes our web application to several security threats. Apart from
the well-known XSS attack, probably the biggest issue is that a server can generate
any arbitrary JavaScript in the JSONP response. This JavaScript will be loaded
to a browser and executed in the context of a user's session. A server configured
in a malicious way could execute undesired scripts causing different damages,
ranging from simply breaking a page to stealing sensitive data. As such, we should
be really careful while selecting services targeted by JSONP request and only use
trusted servers.

Overcoming same-origin policy restrictions with
CORS
Cross-origin resource sharing (CORS) is a W3C specification that aims at solving
the same problem as JSONP in a standard, reliable, and secure way. The CORS
specification builds on top of the XMLHttpRequest object to enable the cross-domain
AJAX requests in a well-defined and controlled manner.

Communicating with a Back-end Server

[82]

The whole idea behind CORS is that a browser and a foreign server need to
coordinate (by sending appropriate request and response headers) to conditionally
allow cross-domain requests. As such, a foreign server needs to be configured
properly. Browsers must be able to send appropriate requests, and headers, and
interpret server responses to successfully complete cross-domain requests.

A foreign server must be configured properly to participate in a CORS
conversation. Those who need to configure servers to accept HTTP
CORS can find more information in http://www.html5rocks.com/
en/tutorials/cors/. Here we are going to focus on the browser role
in the whole communication.

CORS requests are roughly divided into "simple" and "non-simple" ones. GET, POST,
and HEAD requests are considered as "simple" (but only when sending a subset of
allowed headers). Using other HTTP verbs or request headers outside of the allowed
set will force a browser to issue a "non-simple" CORS request.

Most of the modern browsers support CORS communication out of the
box. Internet Explorer in its Version 8 and 9 enables CORS support only
with the non-standard XDomainRequest object. Due to limitations of
the IE-specific XDomainRequest implementation AngularJS doesn't
provide support for it. As a result, the CORS requests are not supported
with the $http service on IE 8 and 9.

With non-simple requests, the browser is obliged to send a probing (preflight)
OPTION request and wait for the server's approval before issuing the primary
request. This is often confusing, since a closer inspection of the HTTP traffic reveals
mysterious OPTIONS requests. We can see those requests by trying to call the
MongoLab REST API directly from a browser. As an example, let's inspect the HTTP
communication while deleting a user:

$http.delete('https://api.mongolab.com/api/1/databases/ascrum/
collections/users/' + userId,
 {
 params:{
 apiKey:'4fb51e55e4b02e56a67b0b66'
 }
 }
);

Chapter 3

[83]

We can see two requests (OPTIONS and DELETE) targeting the same URL:

The response from the MongoLab server includes headers that make the final
DELETE request possible:

The MongoLab servers are well configured to send appropriate headers in response
to the CORS request. If your server is not properly configured the OPTIONS request
will fail and the target request won't be executed.

Don't be surprised upon seeing OPTIONS requests; this is just the
CORS handshake mechanism at work. Failing OPTIONS requests
most probably indicate that a server is not well configured.

Server-side proxies
JSONP is not an ideal technique for making cross-origin requests. The CORS
specification makes the situation better, but it still requires additional configuration
on the server side and a browser that supports the standard.

If you cannot use CORS or JSONP techniques, then there is always the option of
avoiding cross-domain request issues altogether. We can achieve this by configuring
a local server as a proxy to a foreign one. By applying a correct server configuration
we can proxy cross-domain requests through our server, and thus have the browser
target only our servers. This technique works on all browsers, and doesn't require
pre-flight OPTIONS request. Also, it doesn't expose us to any additional security risks.
The downside of this approach is that we need to configure the server accordingly.

Communicating with a Back-end Server

[84]

The sample SCRUM application described in this book relies on
the node.js server configured in a way that it proxies calls to the
MongLab REST APIs.

The promise API with $q
JavaScript programmers are accustomed to the asynchronous programming model.
Both a browser and the node.js execution environments are full of asynchronous
events: XHR responses, DOM events, IO and timeouts, which can be triggered
at any moment and in random order. Even if, we are all used to coping with the
asynchronous nature of the execution environment the truth is that asynchronous
programming might be perplexing, especially when it comes to synchronizing
multiple asynchronous events.

In the synchronous world chaining function calls (invoking a function with a result of
another function) and handling exceptions (with try/catch) is straightforward. In the
asynchronous world, we can't simply chain function calls; we need to rely on callbacks.
Callbacks are fine when dealing with just one asynchronous event, but things start
to get complicated as soon as we need to coordinate multiple asynchronous events.
Exceptional situation handling is particularly tough in this case.

To make asynchronous programming easier the Promise API was recently adopted
by several popular JavaScript libraries. The concepts behind the Promise API are not
new, and were proposed in the late seventies, but only recently those concepts made
it into the mainstream JavaScript programming.

The main idea behind the Promise API is to bring to the asynchronous
world the same ease of functions calls chaining and error handling as
we can enjoy in the synchronous programming world.

AngularJS comes with the $q service a very lightweight Promise API
implementation. A number of AngularJS services (most notably $http, but also
$timeout and others) heavily rely on the promise-style APIs. So we need to get
familiar with $q in order to use those services effectively.

The $q service was inspired by the Kris Kowal's Q Promise API library
(https://github.com/kriskowal/q). You might want to check
out this library to gain a better understanding or promise concepts
and compare AngularJS lightweight implementation with the full
featured Promise API library.

Chapter 3

[85]

Working with promises and the $q service
To learn the relatively small API exposed by the $q service, we are going to use
examples from real life, just to demonstrate that the Promise API can be applied
to any asynchronous events, and not only to XHR calls.

Learning $q service basics
Let's imagine that we want to order a pizza over the phone and have it delivered
to our home. The outcome of our pizza order can be either delivered food or a
phone call indicating problems with our order. While ordering a pizza is just a
matter of a short phone call, the actual delivery (order fulfillment) takes some time,
and is asynchronous.

To get the feeling of the Promise API, let's have a look at the pizza order, and
its successful delivery, modeled using the $q service. Firstly, we are going to
define a person that can consume a pizza, or just get disappointed when an order
is not delivered:

var Person = function (name, $log) {

this.eat = function (food) {
 $log.info(name + " is eating delicious " + food);
 };
this.beHungry = function (reason) {
 $log.warn(name + " is hungry because: " + reason);
 }
};

The Person constructor defined above can be used to produce an object containing
the eat and beHungry methods. We are going to use those methods as the success
and error callbacks, respectively.

Now, let's model a pizza ordering and fulfillment process written as a Jasmine test:

it('should illustrate basic usage of $q', function () {

 var pizzaOrderFulfillment = $q.defer();
 var pizzaDelivered = pizzaOrderFulfillment.promise;

 pizzaDelivered.then(pawel.eat, pawel.beHungry);

 pizzaOrderFulfillment.resolve('Margherita');
 $rootScope.$digest();

 expect($log.info.logs).toContain(['Pawel is eating delicious
Margherita']);
});

Communicating with a Back-end Server

[86]

The unit test starts by the call to the $q.defer() method which returns a deferred
object. Conceptually it represents a task that will be completed (or will fail in the
future). The deferred object has two roles:

• It holds a promise object (in the promise property). Promises are
placeholders for the future results (success or failure) of a deferred task.

• It exposes methods to trigger future task completion (resolve) or
failure (reject).

There are always two players in the Promise API: one that controls future task
execution (can invoke methods on the deferred object) and another one that depends
on the results of the future task execution (holds onto promised results).

The deferred object represents a task that will complete or fail in
the future. A promise object is a placeholder for the future results
of this task completion.

An entity that controls the future task (in our example it would be a restaurant)
exposes a promise object (pizzaOrderFulfillment.promise) to entities that
are interested in the result of the task. In our example, Pawel is interested in the
delivered order and can express his interest by registering callbacks on the promise
object. To register a callback the then(successCallBack, errorCallBack) method
is used. This method accepts callback functions that will be called with a future task
result (in case of success callback) or a failure reason (in case of error callback). The
error callback is optional and can be omitted. If the error callback is omitted and a
future task fails, this failure will be silently ignored.

To signal the future task completion the resolve method should be called on the
deferred object. The argument passed to the resolve method will be used as a value
provided to the success callback. After a success callback is called a future task is
completed and the promise is resolved (fulfilled). Similarly, the call to the reject
method will trigger the error callback invocation and promise rejection.

In the test example there is a mysterious call to the
$rootScope.$digest() method. In AngularJS results of promise
resolution (or rejection) are propagated as part of the $digest
cycle. You can refer to the Chapter 11, Writing Well-performing
AngularJS Web Applications, to learn more about AngularJS internals
and the $digest cycle.

Chapter 3

[87]

Promises are first-class JavaScript objects
At first glance it might look like the Promise API adds unnecessary complexity.
But to appreciate the real power of promises we need to see more examples. First
of all we need to realize that promises are first-class JavaScript objects. We can pass
them around as arguments and return them from function calls. This allows us to
easily encapsulate asynchronous operations as services. For example, let's imagine a
simplified restaurant service:

var Restaurant = function ($q, $rootScope) {

 var currentOrder;

 this.takeOrder = function (orderedItems) {
 currentOrder = {
 deferred:$q.defer(),
 items:orderedItems
 };
 return currentOrder.deferred.promise;
 };

 this.deliverOrder = function() {
 currentOrder.deferred.resolve(currentOrder.items);
 $rootScope.$digest();
 };

 this.problemWithOrder = function(reason) {
 currentOrder.deferred.reject(reason);
 $rootScope.$digest();
 };
};

Now the restaurant service encapsulates asynchronous tasks and only returns a
promise from its takeOrder method. The returned promise can be then used by
the restaurant customers to hold onto promised results and be notified when results
are available.

As an example of this newly crafted API in action, let's write code that will illustrate
rejecting promises and error callbacks being invoked:

it('should illustrate promise rejection', function () {

 pizzaPit = new Restaurant($q, $rootScope);
 var pizzaDelivered = pizzaPit.takeOrder('Capricciosa');

Communicating with a Back-end Server

[88]

 pizzaDelivered.then(pawel.eat, pawel.beHungry);

 pizzaPit.problemWithOrder('no Capricciosa, only Margherita
 left');
 expect($log.warn.logs).toContain(['Pawel is hungry because: no
 Capricciosa, only Margherita left']);
});

Aggregating callbacks
One promise object can be used to register multiple callbacks. To see this in practice
let's imagine that both authors of this book are ordering a pizza and as such both are
interested in the delivered order:

it('should allow callbacks aggregation', function () {

 var pizzaDelivered = pizzaPit.takeOrder('Margherita');
 pizzaDelivered.then(pawel.eat, pawel.beHungry);
 pizzaDelivered.then(pete.eat, pete.beHungry);

 pizzaPit.deliverOrder();
 expect($log.info.logs).toContain(['Pawel is eating delicious
 Margherita']);
 expect($log.info.logs).toContain(['Peter is eating delicious
 Margherita']);
});

Here multiple success callbacks are registered and all of them are invoked upon
a promise resolution. Similarly, promise rejection will invoke all the registered
error callbacks.

Registering callbacks and the promise lifecycle
A promise that was resolved or rejected once can't change its state. There is only one
chance of providing promised results. In other words it is not possible to:

• Resolve a rejected promise
• Resolve an already resolved promise with a different result
• Reject a resolved promise
• Reject a rejected promise with a different rejection reason

Those rules are rather intuitive. For example, it wouldn't make much sense if we
could be called back with the information that there are problems with our order
delivery after our pizza was successfully delivered (and probably eaten!).

Chapter 3

[89]

Any callbacks registered after a promise was resolved (or rejected) will
be resolved (or rejected) with the same result (or failure reason) as the
initial one.

Asynchronous action chaining
While aggregating callbacks is nice, the real power of the Promise API lies in its
ability to mimic the synchronous function invocations in the asynchronous world.

Continuing our pizza example let's imagine that this time we are invited to our
friends for a pizza. Our hosts will order a pizza and upon order arrival they will
nicely slice and serve it. There is a chain of asynchronous events here: firstly a
pizza needs to be delivered, and only then prepared for serving. There are also
two promises that need to be resolved before we can enjoy a meal: a restaurant is
promising a delivery and our hosts are promising that a delivered pizza will be
sliced and served. Let's see the code modeling this situation:

it('should illustrate successful promise chaining', function () {

 var slice = function(pizza) {
 return "sliced "+pizza;
 };

pizzaPit.takeOrder('Margherita').then(slice).then(pawel.eat);

 pizzaPit.deliverOrder();
expect($log.info.logs).toContain(['Pawel is eating delicious sliced
 Margherita']);});

In the previous example, we can see a chain of promises (calls to the then method).
This construct closely resembles synchronous code:

pawel.eat(slice(pizzaPit));

Promise chaining is possible only because the then method returns
a new promise. The returned promise will be resolved with the
result of the return value of the callback.

What is even more impressive is how easy it is to deal with the error conditions.
Let's have a look at the example of the failure propagation to a person holding
onto a promise:

it('should illustrate promise rejection in chain', function () {

 pizzaPit.takeOrder('Capricciosa').then(slice).then(pawel.eat,

Communicating with a Back-end Server

[90]

 pawel.beHungry);

 pizzaPit.problemWithOrder('no Capricciosa, only Margherita
 left');
 expect($log.warn.logs).toContain(['Pawel is hungry because: no
 Capricciosa, only Margherita left']);
});

Here the rejection result from the restaurant is propagated up to the person
interested in the final result. This is exactly how the exception handling works in the
synchronous world: a thrown exception will bubble up to a first catch block.

In the Promise API the error callbacks act as catch blocks, and as with standard catch
blocks - we've got several options of handling exceptional situations. We can either:

• recover (return value from a catch block)
• propagate failure (re-throw an exception)

With the Promise API it is easy to simulate a recovery in catch block. As an example,
let's assume that our hosts will take an effort of ordering another pizza if a desired
one is not available:

it('should illustrate recovery from promise rejection', function () {

var retry = function(reason) {
 return pizzaPit.takeOrder('Margherita').then(slice);
 };

 pizzaPit.takeOrder('Capricciosa')
.then(slice, retry)
.then(pawel.eat, pawel.beHungry);

pizzaPit.problemWithOrder('no Capricciosa, only Margherita left');
pizzaPit.deliverOrder();

expect($log.info.logs).toContain(['Pawel is eating delicious sliced
 Margherita']);
});

We can return a new promise from an error callback. The returned promise will be
part of the resolution chain, and the final consumer won't even notice that something
went wrong. This is a very powerful pattern that can be applied in any scenario
that requires retries. We are going to use this approach in Chapter 7, Securing Your
Application, to implement security checks.

Chapter 3

[91]

The other scenario that we should consider is re-throwing exceptions as it might
happen that recovery won't be possible. In such a case the only option is to trigger
another error and the $q service has a dedicated method ($q.reject) for this purpose:

it('should illustrate explicit rejection in chain', function () {

 var explain = function(reason) {
 return $q.reject('ordered pizza not available');
 };

 pizzaPit.takeOrder('Capricciosa')
.then(slice, explain)
.then(pawel.eat, pawel.beHungry);

 pizzaPit.problemWithOrder('no Capricciosa, only Margherita
 left');

 expect($log.warn.logs).toContain(['Pawel is hungry because:
 ordered pizza not available']);
});

The $q.reject method is an equivalent of throwing an exception in the
asynchronous world. This method is returning a new promise that is rejected
with a reason specified as an argument to the $q.reject method call.

More on $q
The $q service has two additional, useful methods: $q.all and $q.when.

Aggregating promises
The $q.all method makes it possible to start multiple asynchronous tasks and be
notified only when all of the tasks complete. It effectively aggregates promises from
several asynchronous actions, and returns a single, combined promise that can act as
a join point.

To illustrate usefulness of the $q.all method, let's consider an example of ordering
food from multiple restaurants. We would like to wait for both orders to arrive
before the whole meal is served:

 it('should illustrate promise aggregation', function () {

 var ordersDelivered = $q.all([
 pizzaPit.takeOrder('Pepperoni'),
 saladBar.takeOrder('Fresh salad')

Communicating with a Back-end Server

[92]

]);

 ordersDelivered.then(pawel.eat);

 pizzaPit.deliverOrder();
 saladBar.deliverOrder();
 expect($log.info.logs).toContain(['Pawel is eating delicious
Pepperoni,Fresh salad']);
 });

The $q.all method accepts an array of promises as its argument, and returns an
aggregated promise. The aggregated promise will be resolved only after all the
individual promises are resolved. If, on the other hand, one of the individual actions
fail the aggregated promise will be rejected as well:

it('should illustrate promise aggregation when one of the promises
 fail', function () {

 var ordersDelivered = $q.all([
 pizzaPit.takeOrder('Pepperoni'),
 saladBar.takeOrder('Fresh salad')
]);

 ordersDelivered.then(pawel.eat, pawel.beHungry);

 pizzaPit.deliverOrder();
 saladBar.problemWithOrder('no fresh lettuce');
 expect($log.warn.logs).toContain(['Pawel is hungry because: no fresh
lettuce']);
});

The aggregated promise gets rejected with the same reason as the individual promise
that was rejected.

Wrapping values as promises
Sometimes we might find ourselves in a situation where the same API needs to work
with results obtained from asynchronous and synchronous actions. In this case it is
often easier to treat all the results as asynchronous.

The $q.when method makes it possible to wrap a JavaScript object
as a promise.

Chapter 3

[93]

Continuing our "pizza and salad" example, we could imagine that a salad is ready
(synchronous action) but a pizza needs to be ordered and delivered (asynchronous
action). Still we want to serve both dishes at the same time. Here is an example
illustrating how to use the $q.when and the $q.all methods to achieve this in a very
elegant way:

it('should illustrate promise aggregation with $q.when', function () {

 var ordersDelivered = $q.all([
 pizzaPit.takeOrder('Pepperoni'),
 $q.when('home made salad')
]);

 ordersDelivered.then(pawel.eat, pawel.beHungry);

 pizzaPit.deliverOrder();
 expect($log.info.logs).toContain(['Pawel is eating delicious
Pepperoni,home made salad']);
});

The $q.when method returns a promise that is resolved with a value supplied
as an argument to the when method call.

$q integration in AngularJS
The $q service is not only a quite capable (yet lightweight!) Promise
API implementation, but also it is tightly integrated with the AngularJS
rendering machinery.

Firstly, promises can be directly exposed on a scope and rendered automatically
as soon as a promise is resolved. This enables us to treat promises as model values.
For example, given the following template:

<h1>Hello, {{name}}!</h1>

And the code in a controller:

$scope.name = $timeout(function () {
 return "World";
}, 2000);

The famous "Hello, World!" text will be rendered after two seconds without any
manual programmer's intervention.

Communicating with a Back-end Server

[94]

The $timeout service returns a promise that will be resolved with
a value returned from a timeout callback.

As convenient as it might be this pattern results in code that is not very readable.
Things can get even more confusing when we realize that promises returned from a
function call are not rendered automatically! The template markup is as follows:

<h1>Hello, {{getName()}}!</h1>

And the following code in a controller:

$scope.getName = function () {
 return $timeout(function () {
 return "World";
 }, 2000);
};

This code won't yield the expected text in a template.

We advise against exposing promises directly on a $scope and
relying on the automatic rendering of resolved values. We find
this approach is rather confusing, especially taking into account
inconsistent behavior for promises returned from a function call.

The promise API with $http
Now that we've covered promises we can demystify the response object being
returned from the $http method calls. If you recall a simple example from the
beginning of this chapter you will remember that $http calls return an object on
which the success and error callbacks can be registered. In reality the returned object
is a fully fledged promise with two additional, convenience methods: success and
error. As any promise, the one returned from a $http call has also the then method
which allows us to rewrite the callback registration code in the following form:

var responsePromise = $http.get('data.json');
responsePromise.then(function (response) {
 $scope.data = response.data;
},function (response) {
 throw new Error('Something went wrong...');
});

Promises returned from the $http services are resolved with the response object
which has the following properties: data, status, headers and config.

Chapter 3

[95]

Calls to the $http service methods return promises with two additional
methods (success and error) for easy callback registration.

Since the $http service returns promises from its methods' calls we can enjoy the full
power of the Promise API while interacting with a back-end. We can easily aggregate
callbacks, chain and join requests as well as take advantage of sophisticated error
handling in the asynchronous world.

Communicating with RESTful endpoints
The Representational State Transfer (REST) is a popular architectural choice for
exposing services over a network. The interface provided by $http allows us to
easily interact with RESTful endpoints from any AngularJS-based web application.
But AngularJS goes one step further, and provides a dedicated $resource service to
make interactions with RESTful endpoints even easier.

The $resource service
RESTful endpoints often expose CRUD operations that are accessible by calling
different HTTP methods on a set of similar URLs. The code that interacts witch such
endpoints is usually straightforward but tedious to write. The $resource service
allows us to eliminate the repetitive code. We can also start to operate on a higher
abstraction level and think of data manipulation in terms of objects (resources) and
method calls instead of low-level HTTP calls.

The $resource service is distributed in a separate file (angular-
resource.js), and resides in a dedicated module (ngResource).
To take advantage of the $resource service we need to include
the angular-resource.js file and declare dependency on the
ngResource module from our application's module.

To see how easy is to interact with the RESTful endpoint using the $resource
service we are going to construct an abstraction over the collection of users exposed
as a RESTfulservice by the MongoLab:

angular.module('resource', ['ngResource'])

 .factory('Users', function ($resource) {

return
$resource('https://api.mongolab.com/api/1/databases/ascrum/
 collections/users/:id', {

Communicating with a Back-end Server

[96]

 apiKey:'4fb51e55e4b02e56a67b0b66',
 id:'@_id.$oid'
 });
 })

We start by registering a recipe (a factory) for the User constructor function. But
notice that we don't need to write any code for this constructor function. It is the
$resource service that will prepare implementation for us.

The $resource service will generate a set of methods that make it easy to interact
with a RESTFul endpoint. For example, querying for all the users in the persistence
store is as simple as writing:

 .controller('ResourceCtrl', function($scope, Users){
 $scope.users = Users.query();
 });

What will happen upon the call to the User.query() method is that $resource
generated code is going to prepare and issue an $http call. When a response is
ready the incoming JSON string will get converted to a JavaScript array where each
element of this array is of type Users.

Calls to the $resource service return a generated constructor function
augmented with methods to interact with a RESTful endpoint: query,
get, save and delete.

AngularJS requires very little information to generate a fully functional resource.
Let's examine the parameters of the $resource method to see what input is required
and what can be customized:

$resource('https://api.mongolab.com/api/1/databases/ascrum/
collections/users/:id', {
 apiKey:'4fb51e55e4b02e56a67b0b66',
 id:'@_id.$oid'
 });

The first argument is a URL or rather a URL pattern. The URL pattern can contain
named placeholders starting with the colon character. We can specify only one URL
pattern which means that all HTTP verbs should use very similar URLs.

If your back-end uses a port number as part of the URL, the port
number needs to be escaped while supplying the URL pattern to the
$resource call (For example, http://example.com\\:3000/api).
This is required since a colon has a special meaning in the $resource's
URL pattern.

Chapter 3

[97]

The second argument to the $resource function allows us to define default
parameters that should be sent with each request. Please note that here by
"parameters" we mean both placeholders in a URL template, and standard request
parameters sent as a query string. AngularJS will try first to "fill holes" in the URL
template, and then will add remaining parameters to the URL's query string.

The default parameters can be either static (specified in a factory) or dynamic, taken
from a resource object. Dynamic parameter values are prefixed with a @ character.

Constructor-level and instance-level methods
The $resource service automatically generates two sets of convenience methods.
One set of methods will be generated on the constructor-level (class-level) for a given
resource. The aim of those methods is to operate on collections of resources or cater
for the situation where we don't have any resource instance created. The other set of
methods will be available on an instance of a particular resource. Those instance-level
methods are responsible for interacting with one resource (one record in a data store).

Constructor-level methods
The constructor function generated by the $resource has a set of methods
corresponding to different HTTP verbs:

• Users.query(params, successcb, errorcb): It issues an HTTP GET
request and expects an array in the JSON response. It is used to retrieve
a collection of items.

• Users.get(params, successcb, errorcb): It issues an HTTP GET
request and expects an object in the JSON response. It is used to retrieve
a single item.

• Users.save(params, payloadData, successcb, errorcb): It issues
an HTTP POST request with request body generated from the payload.

• Users.delete(params,successcb, errorcb) (and its alias: Users.
remove): It issues an HTTP DELETE request.

For all the methods listed earlier the successcb and errorcb denote a success and
error callback functions, respectively. The params argument allows us to specify
per-action parameters that are going to end up either as part of the URL or as a
parameter in a query string. Lastly, the payloadData argument allows us to specify
the HTTP request body where appropriate (POST and PUT requests).

Communicating with a Back-end Server

[98]

Instance level methods
The $resource service will not only generate a constructor function, but also will
add prototype (instance) level methods. The instance level methods are equivalents
of their class-level counterparts but operate of a single instance. For example, a user
can be deleted either by calling:

Users.delete({}, user);

Or by invoking a method on the user's instance like:

user.$delete();

Instance-level methods are very convenient, and allow us write concise code-
manipulating resources. Let's see another example of saving a new user:

var user = new Users({
 name:'Superhero'
});
user.$save();

This could be re-written using the class-level save method:

var user = {
 name:'Superhero'
};
Users.save(user);

The $resource factory generates both class-level and instance level
methods. The instance level-methods are prefixed with the $ character.
Both the methods have the equivalent functionality so it is up to you to
choose the more convenient form depending on your use-case.

Custom methods
By default the $resource factory generates a set of methods that is sufficient for
typical use-cases. If a back-end uses different HTTP verbs for certain operations
(For example, PUT or PATCH) it is relatively easy to add custom methods on a
resource level.

By default the $resource factory doesn't generate any method
corresponding to HTTP PUT requests. If your back-end maps
any operations to HTTP PUT requests you will have to add those
methods manually.

Chapter 3

[99]

For example, the MongoLab REST API is using the HTTP POST method to create
new items but the PUT method must be used to update existing entries. Let's
see how to define a custom update method (both the class-level update and the
instance-level $update):

.factory('Users', function ($resource) {
 return $resource('https://api.mongolab.com/api/1/databases/ascrum/
collections/users/:id', {
 apiKey:'4fb51e55e4b02e56a67b0b66',
 id:'@_id.$oid'
 }, {
 update: {method:'PUT'}
 });
})

As you can see defining a new method is as simple as supplying a third parameter
to the $resource factory function. The parameter must be an object of the
following form:

action: {method:?, params:?, isArray:?, headers:?}

The action key is a new method name to be generated. A generated method will
issue a HTTP request specified by method, params are holding default parameters
specific to this particular action and the isArray specifies, if data returned from
a back-end represent a collection (an array) or a single object. It is also possible to
specify custom HTTP headers.

The $resource service can only work with JavaScript arrays and objects as data
received from a back-end. Single values (primitive types) are not supported.
Methods returning a collection (ones flagged with isArray) must return a JavaScript
array. Arrays wrapped inside a JavaScript object won't be processed as expected.

Adding behavior to resource objects
The $resource factory is generating constructor functions that can be used as
any other JavaScript constructor to create new resource instances using the new
keyword. But we can also extend prototype of this constructor to add new behavior
to resource objects. Let's say that we want to have a new method on the user level
outputting a full name based on a first and last name. Here is the recommended
way of achieving this:

.factory('Users', function ($resource) {
 var Users = $resource('https://api.mongolab.com/api/1/databases/
ascrum/collections/users/:id', {
 apiKey:'4fb51e55e4b02e56a67b0b66',
 id:'@_id.$oid'

Communicating with a Back-end Server

[100]

 }, {
 update: {method:'PUT'}
 });

 Users.prototype.getFullName = function() {
 return this.firstName + ' ' + this.lastName;
 };

 return Users;
})

Adding new methods on the class (constructor) level is also possible. Since,
in JavaScript a function is a first-class object, we can define new methods on a
constructor function. This way we can add custom methods "by hand" instead of
relying on the AngularJS automatic method generation. This might prove useful,
if we need some non-standard logic in one of the resources methods. For example,
the MongoLab's REST API requires that the identifier of an object is removed from a
payload while issuing PUT (update) requests.

$resource creates asynchronous methods
Let's have a second look at the query method example:

$scope.users = Users.query();

We might get the impression that generated resources behave in the synchronous
way (we are not using any callbacks or promises here). In reality the query
method call is asynchronous and AngularJS uses a smart trick to make it looks
like synchronous.

What is going on here is that AngularJS will return immediately from a call to
Users.query()with an empty array as a result. Then, when the asynchronous
call is successful, and real data arrives from the server, the array will get updated
with the data. AngularJS will simply keep a reference to an array returned at first,
and will fill it in when data is available. This trick works in AngularJS since upon
data arrival the content of the returned array will change and templates will get
refreshed automatically.

But don't get mistaken, the $resource calls are asynchronous. This is often a source
of confusion, as you might want to try to write the following code (or access the
initial array in any other way):

$scope.users = Users.query();
console.log($scope.users.length);

And it doesn't work as expected!

Chapter 3

[101]

Fortunately it is possible to use callbacks in the methods generated by the $resource
factory and rewrite the preceding code to make it behave as intended:

Users.query(function(users){
 $scope.users = users;
 console.log($scope.users.length);
 });

Methods generated by the $resource factory are asynchronous, even
if AngularJS is using a clever trick, and the syntax might suggest that
we are dealing with the synchronous methods.

Limitations of the $resource service
The $resource factory is a handy service, and lets us to start talking to RESTful
back-ends in virtually no time. But the problem with $resource is that it is a
generic service; not tailored to any particular back-end needs. As such it takes some
assumptions that might not be true for the back-end of our choice.

If the $resource factory works for your back-end and web-application, that's
great. There are many use-cases where $resource might be enough, but for more
sophisticated applications it is often better to use lower-level $http service.

Custom REST adapters with $http
The $resource factory is very handy, but if you hit its limitations it is relatively easy
to create a custom, $resource-like factory based on the $http service. By taking
time to write a custom resource factory we can gain full control over URLs and data
pre/post processing. As a bonus we would no longer need to include the angular-
resource.js file and thus save few KB of the total page weight.

What follows is a simplified example of a custom resource-like factory dedicated
to the MongoLab RESTful API. Familiarity with the Promise API is the key to
understanding this implementation:

angular.module('mongolabResource', [])

.factory('mongolabResource', function ($http, MONGOLAB_CONFIG) {

 return function (collectionName) {

 //basic configuration
 var collectionUrl =
 'https://api.mongolab.com/api/1/databases/' +
 MONGOLAB_CONFIG.DB_NAME +

Communicating with a Back-end Server

[102]

 '/collections/' + collectionName;

 var defaultParams = {apiKey:MONGOLAB_CONFIG.API_KEY};

 //utility methods
 var getId = function (data) {
 return data._id.$oid;
 };

 //a constructor for new resources
 var Resource = function (data) {
 angular.extend(this, data);
 };

 Resource.query = function (params) {
 return $http.get(collectionUrl, {
 params:angular.extend({q:JSON.stringify({} || params)},
defaultParams)
 }).then(function (response) {
 var result = [];
 angular.forEach(response.data, function (value, key) {
 result[key] = new Resource(value);
 });
 return result;
 });
 };

 Resource.save = function (data) {
 return $http.post(collectionUrl, data, {params:defaultParams})
 .then(function (response) {
 return new Resource(data);
 });
 };

 Resource.prototype.$save = function (data) {
 return Resource.save(this);

 };

 Resource.remove = function (data) {
 return $http.delete(collectionUrl + '', defaultParams)
 .then(function (response) {
return new Resource(data);
 });
 };

 Resource.prototype.$remove = function (data) {

Chapter 3

[103]

return Resource.remove(this);
 };

 //other CRUD methods go here

 //convenience methods
 Resource.prototype.$id = function () {
 return getId(this);
 };

 return Resource;
 };
});

The example code starts by declaring a new module (mongolabResource) and a
factory (mongolabResource) accepting a configuration object (MONGOLAB_CONFIG)
those are the parts that should look familiar by now. Based on a provided
configuration object we can prepare a URL to be used by a resource. Here we are in
total control of how a URL is created and manipulated.

Then, the Resource constructor is declared, so we can create new resource objects
from existing data. What follows is a definition of several methods: query, save and
remove. Those methods are defined on the constructor (class) level, but instance-level
methods are also declared (where appropriate) to follow the same convention as the
original $resource implementation. Providing an instance-level method is as easy as
delegating to the class-level one:

Resource.prototype.$save = function (data) {
 return Resource.save(this);
};

Usage of promise chaining is the crucial part of the custom resource implementation.
The then method is always called on a promise returned from a $http call, and a
resulting promise is returned to the client. A success callback on a promise returned
from a $http call is used to register post-processing logic. For example, in the query
method implementation we post-process raw JSON returned from a back-end, and
create resource instances. Here, once again we've got full control over data extraction
process from a response.

Let's examine how a new resource factory could be used:

angular.module('customResourceDemo', ['mongolabResource'])
 .constant('MONGOLAB_CONFIG', {
 DB_NAME: 'ascrum',
 API_KEY: '4fb51e55e4b02e56a67b0b66'
 })

Communicating with a Back-end Server

[104]

 .factory('Users', function (mongolabResource) {
 return mongolabResource('users');
 })

 .controller('CustomResourceCtrl', function ($scope, Users,
 Projects) {

 Users.query().then(function(users){
 $scope.users = users;
 });
 });

The usage of our custom resource doesn't differ much from the original $resource
equivalent. To start with we need to declare a dependency on the module where a
custom resource factory is defined (mongolabResource). Next, we need to provide
required configuration options in form of a constant. As soon as the initial setup
is done we can define actual resources created by a custom factory. It is as easy as
invoking the mongolabResource factory function and passing a MongoDB collection
name as an argument.

During application's run-time a newly defined resource constructor (here: Users)
can be injected as any other dependency. Then an injected constructor can be used
to invoke either class-level or instance-level methods. An example of the later is
shown here:

$scope.addSuperhero = function () {
 new Users({name: 'Superhero'}).$save();
};

The best part of switching to a custom, $http-based version of a resource factory is
that we can enjoy the full power of the Promise API.

Using advanced features of $http
The $http service is extremely flexible and powerful. Its super-powers are result of
clean, flexible API and usage of the Promise API. In this section, we are going to see
how we can use some of the more advanced features of the $http service.

Intercepting responses
AngularJS built-in $http service allows us to register interceptors that will be
executed around each and every request. Such interceptors are very useful in
situations where we need to do special processing for many (potentially all) requests.

Chapter 3

[105]

As the initial example, let's assume that we want to retry failed requests. To do so we
can define an interceptor that inspects response status codes and retries a request, if
the HTTP Service Unavailable (503) status code is detected. The sketch of the code
could look like:

angular.module('httpInterceptors', [])

 .config(function($httpProvider){
 $httpProvider.responseInterceptors.push('retryInterceptor');
 })

 .factory('retryInterceptor', function ($injector, $q) {

 return function(responsePromise) {
 return responsePromise.then(null, function(errResponse) {
 if (errResponse.status === 503) {
 return $injector.get('$http')(errResponse.config);
 } else {
 return $q.reject(errResponse);
 }
 });
 };
 });

An interceptor is a function that accepts a promise of the original request as its
argument, and should return another promise resolving to an intercepted result.
Here we inspect the errResponse.status code to check if we are in the error
condition where we can try to recover. If so, then we are returning a promise from
a completely new $http call done with the same configuration object as the original
request. If we happen to intercept an error that we can't handle we are simply
propagating this error ($q.reject method).

AngularJS interceptors make have use of the promise API, and this is what makes
them so powerful. In the example described here we can retry an HTTP request in
a way that is completely transparent to clients using the $http service. Chapter 7,
Securing Your Application, has a complete example of using response interceptors to
provide sophisticated security mechanism.

Registering new interceptors is easy, and boils down to adding a reference to a new
interceptor (here an AngularJS service created via factory) to an interceptor array
maintained by the $httpProvider. Please note that we are using a provider to register
new interceptors, and the providers are only available in configuration blocks.

Communicating with a Back-end Server

[106]

Testing code that interacts with $http
Testing code calling external HTTP services is often problematic due to network
latency and changing data. We want our test to run fast and be predictable.
Fortunately, AngularJS provides excellent mocks to simulate HTTP responses.

In AngularJS the $http service depends on another, lower-level service $httpBackend.
We can think of the $httpBackend as a thin wrapper over the XMLHttpRequest object.
This wrapper masks browsers incompatibilities and enables JSONP requests.

Application code should never call the $httpBackend directly as
the $http service provides a much better abstraction. But having
a separate $httpBackend service means that we can swap it for a
mock one during testing.

To see the $httpBackend mock applied to a unit tests we are going to examine a test
for a sample controller triggering a GET request via the $http service. Here is the
code for the controller itself:

.controller('UsersCtrl', function ($scope, $http) {

 $scope.queryUsers = function () {
$http.get('http://localhost:3000/databases/ascrum/collections/
 users')

 .success(function (data, status, headers, config) {
 $scope.users = data;
 }).error(function (data, status, headers, config) {
 throw new Error('Something went wrong...');
 });
 };
});

To test this controller's code we can write:

describe('$http basic', function () {

 var $http, $httpBackend, $scope, ctrl;
 beforeEach(module('test-with-http-backend'));
 beforeEach(inject(function (_$http_, _$httpBackend_) {
 $http = _$http_;
 $httpBackend = _$httpBackend_;
 }));
 beforeEach(inject(function (_$rootScope_, _$controller_) {
 $scope = _$rootScope_.$new();
 ctrl = _$controller_('UsersCtrl', {

Chapter 3

[107]

 $scope : $scope
 });
 }));

 it('should return all users', function () {

 //setup expected requests and responses
 $httpBackend
.whenGET('http://localhost:3000/databases/ascrum/collections/users').
respond([{name: 'Pawel'}, {name: 'Peter'}]);

 //invoke code under test
 $scope.queryUsers();

 //simulate response
 $httpBackend.flush();

 //verify results
 expect($scope.users.length).toEqual(2);
 });

 afterEach(function() {
 $httpBackend.verifyNoOutstandingExpectation();
 $httpBackend.verifyNoOutstandingRequest();
 });
});

First of all we can see that the $httpBackend mock allows us to specify expected
requests (whenGET(…)) and prepare fake responses (respond(…)). There is a whole
family of whenXXX methods for each HTTP verb. The signature of the whenXXX family
of methods is quite flexible, and allows us to specify URLs as regular expressions.

To stub data normally returned from a back-end we can use the respond method. It
is possible to mock response headers as well.

The best part about the $httpBackend mock is that it allows us to get precise control
over responses and their timing. By using the flush() method we are no longer
on the mercy of the asynchronous events, and we can simulate an HTTP response
arriving from a back-end at a chosen moment. The unit tests using the $httpBackend
mock can run synchronously, even if the $http service is asynchronous by design.
This makes unit tests executing fast and in predictable manner.

The verifyNoOutstandingExpectation method verifies that all the expected
calls were made ($http methods invoked and responses flushed), while the
verifyNoOutstandingRequest call makes sure that code under test didn't trigger
any unexpected XHR calls. Using those two methods we can make sure that the code
under the test invokes all the expected methods and only the expected ones.

Communicating with a Back-end Server

[108]

Summary
This chapter guided us through different methods of communicating with a back-
end end to retrieve and manipulate data. We've started our journey by looking at the
$http APIs which is the fundamental service for issuing XHR and JSONP request
in AngularJS. Not only we got familiar with the basic APIs of the $http service, but
also we had a close look at different ways of dealing with the cross-origin requests.

Many of the AngularJS asynchronous services rely on the Promise API to provide
elegant interfaces. The $http service heavily depends on promises so we had to
exhaustively cover promises implementation in AngularJS. We saw that the $q
service provides a general purpose Promise API, and is tightly integrated with the
rendering machinery. Having a good understanding of the Promise API with $q
allowed us to fully understand values returned from the $http method calls.

AngularJS can easily communicate with RESTful endpoints. There is the dedicated
$resource factory that makes it very easy write code interacting with RESTful
back-ends. The $resource factory is very convenient but it is very generic, and as
such might not cover all your needs. We shouldn't shy away from creating custom
$resource-like factories based on the $http API.

Towards the end of the chapter, we've covered some of the advanced usages of the
$http API with response interceptors.

Lastly, as any JavaScript code, methods using the $http APIs should be thoroughly
tested, and we saw that AngularJS provides excellent mock object to facilitate unit
testing of code talking to a back-end.

With all the data loaded on the client side, and available in JavaScript we are ready
to dive into various ways of rendering those data with AngularJS. The next chapter is
fully devoted to templates, directives and rendering.

Displaying and
Formatting Data

Now that we know how to get data from a back-end into a browser we can focus on
displaying and manipulating that data using AngularJS. This chapter starts with an
overview of AngularJS built-in directives used in templates. As soon as the basics are
covered we will see different directives in action and discuss their usage patterns.
There is also extensive coverage of AngularJS filters.

In this chapter you will learn about:

• Naming conventions for AngularJS directives.
• Solutions for conditionally showing and hiding blocks of markup.
• Usage patterns and pitfalls of the repeater (ng-repeat) directive.
• Registering DOM event handlers so users can interact with an application.
• Limitations of the AngularJS DOM-based template language and

possible workarounds.
• Filters: their purpose and usage samples. We will go over built-in filters as

well as how to create and test a custom filter.

Referencing directives
Before we go over examples of different AngularJS built-in directives it is important
to highlight that we can use a variety of naming conventions to reference directives
in HTML markup.

Displaying and Formatting Data

[110]

In the AngularJS documentation all the directives are indexed under their camel-case
name (For example, ngModel). In a template, however, we need to use either snake-
case form (ng-model), colon-separated (ng:model) or the underscore-separated (ng_
model) form. Additionally, each reference to a directive can be prefixed with either x
or data.

Each single directive can be referenced by a number of different (but
equivalent) names. Taking the ngModel as an example we can write in
our template one of: ng-model, ng:model, ng_model, x-ng-model,
x-ng:model, x-ng_model, data-ng-model, data-ng:model,
data-ng_model, x:ng-model, data_ng-model, and so on.

The data prefix is very convenient for keeping our HTML documents HTML5-
compliant, and making them pass HTML5 validators tests. Otherwise you are free to
choose whatever naming schema that pleases you; they are all equivalent.

All the examples in this book are using the shortest snake-case form
(for example, ng-model). We find this syntax concise and readable.

Displaying results of expression
evaluation
AngularJS offers various ways of rendering data. The net effect is always the same
model content is displayed to users, but there are also subtleties worth noting.

The interpolation directive
The interpolation directive is the most fundamental directive that deals with model
data display. It accepts expressions delimited by a pair of curly braces:

{{expression}}

This directive will simply evaluate the expression and render its result on a screen.

The delimiter used by AngularJS is configurable; changing defaults might be
needed if you plan to mix AngularJS with other language template on the server-
side. Re-configuration is really simple and boils down to setting properties on the
$interpolateProvider:

Chapter 4

[111]

myModule.config(function($interpolateProvider) {
 $interpolateProvider.startSymbol('[[');
 $interpolateProvider.endSymbol(']]');
});

Here we are changing default {{}} to [[]] so later on we can write in the templates:

[[expression]]

Rendering model values with ngBind
The interpolation directive has an equivalent directive called ng-bind. It can be used
as an HTML attribute:

The curly braces form is easier to use but there are cases where the ng-bind directive
might come handy. Usually the ng-bind directive is used to hide expressions before
AngularJS has a chance of processing them on the initial page load. This prevents
UI flickering and provides better user experience. The topic of optimizing the initial
page load is covered in more details in Chapter 12, Packaging and Deploying AngularJS
Web Applications.

HTML content in AngularJS expressions
By default AngularJS will escape any HTML markup that made it into an expression
(model) evaluated by the interpolation directive. For example, given the model:

$scope.msg = 'Hello, World!';

And the markup fragment:

<p>{{msg}}</p>

The rendering process will escape the tags, so they will appear as plain text and
not as markup:

<p>Hello, World!</p>

The interpolation directive will do the escaping of any HTML content found in the
model in order to prevent HTML injection attacks.

If, for any reason, your model contains HTML markup that needs to be evaluated
and rendered by a browser you can use the ng-bind-html-unsafe directive to
switch off default HTML tags escaping:

<p ng-bind-html-unsafe="msg"></p>

Displaying and Formatting Data

[112]

Using the ng-bind-html-unsafe directive we will get the HTML fragment with the
 tags interpreted by a browser.

Extreme care should be taken when using the ng-bind-html-unsafe directive. Its
usage should be limited to cases where you fully trust or can control the expression
being evaluated. Otherwise malicious users might inject any arbitrary HTML on
your page.

AngularJS has one more directive that will selectively sanitize certain HTML tags
while allowing others to be interpreted by a browser: ng-bind-html. Its usage is
similar to the unsafe equivalent:

<p ng-bind-html="msg"></p>

In terms of escaping the ng-bind-html directive is a compromise between behavior
of the ng-bind-html-unsafe (allow all HTML tags) and the interpolation
directive (allow no HTML tags at all). It might be a good alternative for cases where
we want to allow some HTML tags entered by users.

The ng-bind-html directive resides in a separate module
(ngSanitize) and requires inclusion of an additional source
file: angular-sanitize.js.

Don't forget to declare dependency on the ngSanitize module if you plan to use the
ng-bind-html directive:

angular.module('expressionsEscaping', ['ngSanitize'])
 .controller('ExpressionsEscapingCtrl', function ($scope) {
 $scope.msg = 'Hello, World!';
 });

Unless you are working with existing legacy systems (CMS,
back-ends sending HTML, and so on.), markup in the model
should be avoided. Such markup can't contain AngularJS
directives and requires the ng-bind-html-unsafe or ng-
bind-html directive to obtain desired results.

Conditional display
Showing and hiding parts of the DOM based on some conditions is a common
requirement. AngularJS comes equipped with four different sets of directives for this
occasion (ng-show/ng-hide, ng-switch-*, ng-if and ng-include).

Chapter 4

[113]

The ng-show/ng-hide family of directives can be used to hide (by applying CSS
display rules) parts of the DOM tree based on a result of expression evaluation:

<div ng-show="showSecret">Secret</div>

The previous code rewritten using ng-hide would look as follows:

<div ng-hide="!showSecret">Secret</div>

The ng-show/ng-hide directives do the trick by simply applying
style="display: none;" to hide DOM elements. Those
elements are not removed from the DOM tree.

If we want to physically remove or add DOM nodes conditionally the family of
ng-switch directives (ng-switch, ng-switch-when, ng-switch-default) will
come handy:

<div ng-switch on="showSecret">
 <div ng-switch-when="true">Secret</div>
 <div ng-switch-default>Won't show you my secrets!</div>
</div>

The ng-switch directive is really close to the JavaScript switch statement as we
may have several ng-switch-when occurrences inside for one ng-switch.

The main difference between the ng-show/ng-hide and the
ng-switch directives is the way the DOM elements are treated.
The ng-switch directive will add/remove DOM elements from
the DOM tree while the ng-show/ng-hide will simply apply
style="display: none;" to hide elements. The ng-switch
directive is creating a new scope.

The ng-show/ng-hide directives are easy to use but might have unpleasant
performance consequences if applied to large number of DOM nodes. If you
spot performance issues related to the size of DOM tree you should lean towards
using more verbose ng-switch family of directives.

The problem with the ng-switch family of directives is that the syntax can get
quite verbose for simple use-case. Fortunately AngularJS has one more directive
in its arsenal: ng-if. It behaves similarly to the ng-switch directive (in the sense
that it adds / removes elements from the DOM tree) but has very simple syntax:

<div ng-if="showSecret">Secret</div>

Displaying and Formatting Data

[114]

The ng-if directive is available only in the most recent version of
AngularJS: 1.1.x or 1.2.x.

Including blocks of content conditionally
The ng-include directive, while not directly acting as the if/else statement, can
be used to conditionally display blocks of dynamic, AngularJS-powered markup.
The discussed directive has a very nice property. It can load and conditionally
display partials based on a result of expression evaluation. This allows us to easily
create highly dynamic pages. For example, we could include different user edit
forms depending on the user's role. In the following code snippet we load a different
partial for users that have administrator role:

<div ng-include="user.admin && 'edit.admin.html' || 'edit.user.html'">
</div>

The ng-include directive is creating a new scope for each partial it
includes.

Additionally ng-include is the great tool that can be used to compose final pages
from smaller markup fragments.

The ng-include directive accepts an expression as its argument,
so you need to pass a quoted string if you plan to use a fixed value
pointing to a partial, for example, <div ng-include="'header.
tpl.html'"></div>.

Rendering collections with the
ngRepeat directive
The ng-repeat directive is probably one of the most used and the most powerful
directives. It will iterate over a collection of items stamping out a new DOM element
for each entry in a collection. But the ng-repeat directive will do much more than
simply assuring the initial rendering of a collection. It will constantly monitor the
source of data to re-render a template in response to changes.

Chapter 4

[115]

Repeater's implementation is highly optimized and will try to minimize
number of DOM changes needed to reflect data structure in the DOM
tree.

Internally the ng-repeat might choose to move DOM nodes around (if you move
an element in array), delete a DOM node if an element is removed from the array
and insert new nodes if additional elements end up in the array. Regardless of the
strategy chosen by a repeater behind the scenes it is crucial to realize that it is not a
simple for loop that will run once. The ng-repeat directive behaves more like an
observer of a data that tries to map entries in a collection to DOM nodes. The process
of data-observing is continuous.

Getting familiar with the ngRepeat directive
The basic usage and syntax is very simple:

<table class="table table-bordered">
 <tr ng-repeat="user in users">
 <td>{{user.name}}</td>
 <td>{{user.email}}</td>
 </tr>
</table>

Here the users array is defined on a scope and contains typical user objects with
properties like: name, email, and so on. The ng-repeat directive will iterate over
users' collection and create a <tr> DOM element for each entry in a collection.

The ng-repeat directive creates a new scope for each element of a
collection it iterates over.

Special variables
AngularJS repeater will declare a set of special variables in a scope created for each
and every individual entry. Those variables can be used to determine a position of an
element within a collection:

• $index: It will be set to a number indicating index of an element in a
collection (indexes start at 0)

• $first, $middle, $last: These variables will get a Boolean value according
to element's position

Displaying and Formatting Data

[116]

The mentioned variables come in very handy in many real-life situations. For
example, in the sample SCRUM application we can rely on the $last variable to
properly render links in a breadcrumb element. For the last (selected) part of the
path there is no need to render links, while the <a> element is needed for other parts
of the path.

We can model this UI using the following code:

<li ng-repeat="breadcrumb in breadcrumbs.getAll()">
 /
 <ng-switch on="$last">
 {{breadcrumb.name}}

 {{breadcrumb.name}}

 </ng-switch>

Iterating over an object's properties
Usually the ng-repeat directive is used to display entries from a JavaScript array.
Alternatively it can be used to iterate over properties of an object. In this case the
syntax is slightly different:

<li ng-repeat="(name, value) in user">
 Property {{$index}} with {{name}} has value {{value}}

In the preceding example, we can display all the properties of a user object as an
unordered list. Please note that we must specify variable names for both a property
name and its value using a bracket notation (name, value).

The ng-repeat directive will, before outputting results, sort property
names alphabetically. This behavior can't be changed so there is no way
of controlling the iteration order while using ng-repeat with objects.

The $index variable can still be used to get a numerical position of a given property
in a sorted list of all properties.

Chapter 4

[117]

Iterating over objects' properties, while being supported, has limitations. The main
issue is that we can't control iteration order.

If you care about order in which properties are iterated over you should
sort those properties in a controller and put sorted items in an array.

ngRepeat patterns
This section will walk us through some of the commonly used presentation patterns
and ways of implementing them with AngularJS. In particular we are going to look
into lists with details and altering classes on elements being part of a list.

Lists and details
It is a common use case to display a list whose items expand to show additional
details, when they are clicked. There are two variants of this pattern: either only one
element can be expanded or alternatively several expended elements are allowed.
Here is the screenshot illustrating this particular UI design:

Displaying only one row with details
The requirement of having only one element expanded can be easily covered with
the following code:

<table class="table table-bordered" ng-
controller="ListAndOneDetailCtrl">

 <tbody ng-repeat="user in users" ng-click="selectUser(user)" ng-
switch on="isSelected(user)">
 <tr>
 <td>{{user.name}}</td>
 <td>{{user.email}}</td>
</tr>

Displaying and Formatting Data

[118]

<tr ng-switch-when="true">
 <td colspan="2">{{user.desc}}</td>
 </tr>
 </tbody>
</table>

In the preceding example an additional row, containing user details, is only rendered
if a given user was selected. A selection process is very simple and is covered by the
selectUser and isSelected functions:

.controller('ListAndOneDetailCtrl', function ($scope, users) {
 $scope.users = users;

 $scope.selectUser = function (user) {
 $scope.selectedUser = user;
 };

 $scope.isSelected = function (user) {
 return $scope.selectedUser === user;
 };
})

Those two functions take advantage of the fact that there is one scope (defined on top
of the table DOM element) where we can store a pointer (selectedUser) to an active
item of a list.

Displaying many rows with details
Assuming that we would like to allow multiple rows with additional details we need
to change a strategy. This time selection details need to be stored on each and every
element level. As you remember the ng-repeat directive is creating a new scope for
each and every element of a collection it iterates over. We can take advantage of this
new scope to store "selected" state for each item:

<table class="table table-bordered">
 <tbody ng-repeat="user in users" ng-controller="UserCtrl"
 ng-click="toggleSelected()" ng-switch on="isSelected()">
 <tr>
 <td>{{user.name}}</td>
 <td>{{user.email}}</td>
 </tr>
 <tr ng-switch-when="true">
 <td colspan="2">{{user.desc}}</td>
 </tr>
 </tbody>
</table>

Chapter 4

[119]

This example is interesting since we are using the ng-controller directive for each
item. A provided controller can augment scope with functions and variables to
control selection state:

.controller('UserCtrl', function ($scope) {

 $scope.toggleSelected = function () {
 $scope.selected = !$scope.selected;
 };

 $scope.isSelected = function () {
 return $scope.selected;
 };
});

It is important to understand that specifying a controller on the same DOM element
as the ng-repeat directive means that the controller will be managing a new scope
created by a repeater. In practice it means that we can have a controller dedicated to
managing individual items of a collection. It is a powerful pattern that allows us to
neatly encapsulate item-specific variables and behavior (functions).

Altering tables, rows, and classes
Zebra-striping is often added to lists in order to improve their readability. AngularJS
has a pair of directives (ngClassEven and ngClassOdd) that make this task trivial:

<tr ng-repeat="user in users"
ng-class-even="'light-gray'" ng-class-odd="'dark-gray'">
 . . .
</tr>

The ngClassEven and ngClassOdd directives are just specialization of the more
generic ngClass directive. The ngClass is very versatile and can be applied in
many different situations. To demonstrate its power we could rewrite the preceding
example like follows:

<tr ng-repeat="user in users"

ng-class="{'dark-gray' : !$index%2, 'light-gray' : $index%2}">

Here the ngClass directive is used with an object argument. Keys of this object
are class names and values; conditional expressions. A class specified as a key
will be added or removed from an element based on result of a corresponding
expression evaluation.

Displaying and Formatting Data

[120]

The ng-class directive can also accept arguments of type string or
array. Both arguments can contain a list of CSS classes (coma-separated
in case of string) to be added to a given element.

DOM event handlers
Our UI wouldn't be very useful if users couldn't interact with it (either by using
a mouse, a keyboard or touch events). The good news is that registering event
handlers is a child's play with AngularJS! Here is an example of reacting to a
click event:

<button ng-click="clicked()">Click me!<button>

The clicked() expression is evaluated against a current $scope which makes it very
easy to call any method defined on that scope. We are not limited to simple function
calls; it is possible to use expressions of an arbitrary complexity, including ones that
accept arguments:

<input ng-model="name">
<button ng-click="hello(name)">Say hello!<button>

Developers new to AngularJS often try to register event handler as follows:
ng-click="{{clicked()}}" or ng-click="sayHello({{name}})"
that is using interpolation expression inside an attribute value. This is not
needed and it won't work correctly. What would happen is that AngularJS
would parse and evaluate an interpolation expression while processing
the DOM. This first step of processing would evaluate an interpolation
expression and use the result of this evaluation as an event handler!

AngularJS has the built-in support for the different events with the
following directives:

• Click events: ngClick and ngDblClick
• Mouse events: ngMousedown, ngMouseup, ngMouseenter, ngMouseleave,

ngMousemove and ngMouseover
• Keyboard events: ngKeydown, ngKeyup and ngKeypress
• Input change event (ngChange): The ngChange directive cooperates with

the ngModel one, and let us to react on model changes initiated by user input.

Chapter 4

[121]

Mentioned DOM event handlers can accept a special argument $event in their
expression, which represents the raw DOM event. This allows us to get access to
lower-level properties of an event, prevent it default action, stop its propagation,
and so on. As an example we can see how to read the position of a clicked element:

<li ng-repeat="item in items" ng-click="logPosition(item, $event)">
 {{item}}

Where the logPosition function is defined on a scope like follows:

$scope.readPosition = function (item, $event) {
 console.log(item + ' was clicked at: ' + $event.clientX + ',' +
$event.clientY);
};

While the $event special variable is exposed to event handlers it
shouldn't be abused to do extensive DOM manipulations. As you
remember from Chapter 1, Angular Zen AngularJS is all about declarative
UI and DOM manipulation should be restricted to directives. This is
why the $event argument is mostly used inside directive's code.

Working effectively with DOM-based
templates
It is not very common to see a template system employing live DOM and HTML
syntax but this approach turns out to work surprisingly well in practice. People used
to other, string-based template engines might need some time to adjust, but after a
few initial hops writing DOM-based templates becomes a second nature. There are
just a couple of caveats.

Living with verbose syntax
Firstly, the syntax for some of the constructs might be a bit verbose. The best example
of this slightly annoying syntax for the ng-switch family of directives some common
use cases might simply require a lot of typing. Let's consider a simple example of
displaying a different message based on a number of items in a list:

<div ng-switch on="items.length>0">

 There are {{items.length}} items in the list.

Displaying and Formatting Data

[122]

 There are no items in the list.

</div>

Of course it would be possible to move the message-preparing logic to a controller to
avoid switch statements in a template, but it feels like this type of simple conditional
logic has its place in the view layer.

Fortunately, the latest version of AngularJS: the ng-if directive built-in is a very
handy tool for cases where you don't need power of a full if/else expression.

ngRepeat and multiple DOM elements
A slightly more serious issue is connected with the fact that, in its simplest form, the
ng-repeat repeater only knows how to repeat one element (with its children). This
means that ng-repeat can't manage a group of sibling elements.

To illustrate this let's imagine that we've got a list of items with a name and
description. Now, we would like to have a table where both the name and the
description are rendered as separate rows (<tr>). The problem is that we need to
add the <tbody> tag just to have a place for the ng-repeat directive:

<table>
 <tbody ng-repeat="item in items">
 <tr>
 <td>{{item.name}}</td>
 </tr>
 <tr>
 <td>{{item.description}}</td>
 </tr>
 </tbody>
</table>

It looks like the ng-repeat directive needs a container element and forces us to
create a certain HTML structure. This might or might not be a problem depending on
how strictly you need to follow markup structure outlined by your web designers.

In the previous example we were lucky since an appropriate HTML container exists
(<tbody>), but there are cases where there is no valid HTML element where the
ng-repeat directive could be placed. We could think of another example where we
would like to have an HTML output like:

 <!-- we would like to put a repeater here -->
 {{item.name}}

Chapter 4

[123]

 {{item.description}}
 <!-- and end it here -->

A new version of AngularJS (1.2.x) is going to extend the basic syntax of the
ngRepeat directive to allow more flexibility in choosing DOM elements to be iterated
over. In the future it will be possible to write:

 <li ng-repeat-start="item in items">
 {{item.name}}

 <li ng-repeat-end>{{item.description}}

By using the ng-repeat-start and the ng-repeat-end attributes it will be possible
to indicate a group of sibling DOM elements to be iterated over.

Elements and attributes that can't be modified
at runtime
Since AngularJS operates on the live DOM tree in a browser it can only do as
much as browsers permit. It turns out that there are some corner cases where some
browsers disallow any changes to elements and their attributes, after those elements
were put in the DOM tree.

To see the consequences of those restrictions in practice let's consider a rather
common use case of specifying an input element's type attribute dynamically. Many
users have tried (and failed!) to write code along those lines:

<input type="{{myinput.type}}" ng-model="myobject[myinput.model]">

The trouble is that some browsers (yes! you've guessed it: Internet Explorer!)
won't change type of a created input. Those browsers see {{myinput.type}}
(un-evaluated) as an input type, and since it is unknown it is interpreted as
type="text".

There are several approaches to tackling the problem described earlier, but we
need to learn more about AngularJS custom directives before we can discuss those
solutions. Chapter 9, Building Advanced Directives, offers one of the possible solutions.
The other simple approach is to use the built-in ng-include directive to encapsulate
static templates for different input types:

<ng-include src="'input'+myinput.type+'.html'"></ng-include>

Displaying and Formatting Data

[124]

Where the included fragment specifies input's type as static string.

Pay attention to scoping issues when using this technique
as ng-include creates a new scope.

Custom HTML elements and
older versions of IE
Lastly, we need to mention that custom HTML elements and attributes are not well
supported by Internet Explorer Version 8 and earlier. There are additional steps that
must be undertaken to take full advantage of AngularJS directives in IE8 and IE7,
and those are described in the details in Chapter 12, Packaging and Deploying AngularJS
Web Applications, devoted to the real-life deployment scenarios.

Handling model transformations
with filters
AngularJS expressions can get fairly complex and contain function invocations.
Those functions might serve different purposes but model transformations and
formatting are common needs. To cater for those common use-cases AngularJS
expressions support special formatting (transforming) functions called filters:

{{user.signedUp| date:'yyyy-MM-dd'}}

In this example the date filter is used to format user's sign-up date.

A filter is nothing more than a global, named function that is invoked in view using
the pipe (|) symbol with parameters separated by the colon (:) character. In fact we
could re-write our sample code like so (provided that the formatDate function is
defined on a scope):

{{formatDate(user.signedUp, 'yyyy-MM-dd')}}

Advantages of filters are two-fold: they don't require registration of functions on a
scope (so are readily available for each and every template), and usually offer more
convenient syntax as compared to regular function calls.

The simple example also shows that filters can be parameterized (or in other words,
arguments can be passed to a filter function): here we specify a date format as an
argument to the date filter.

Chapter 4

[125]

Several filters can be combined (chained) to form a transformation pipeline.
As an example we can format a string by limiting its length to 80 characters
and convert all the characters to lowercase:

{{myLongString | limitTo:80 | lowercase}}

Working with built-in filters
AngularJS comes with several filters bundled as part of the core library. In
general we can divide built-in filters into two groups: formatting filters and
array-transforming filters.

Formatting filters
Here is a list of built-in formatting filters. Their purpose and usage scenarios
are easy to decipher:

• currency: It formats numbers with two decimal places and a
currency symbol.

• date: It formats date according to a specified data format. Model can
contain dates expressed as Date objects or as Strings (in this case Strings
will be parsed to a Date object before formatting).

• number: It will format input with a number of decimal places specified
as an argument to this filter.

• lowercase and uppercase: As the same implies, those filters can be
used to format strings into their lowercase or uppercase form.

• json: This filter is mostly useful for debugging purposes as it can
assure "pretty-print" for JavaScript objects. Typical usage looks like
follows: <pre>{{someObject | json}}</pre>. It is mostly used for
debugging purposes.

Array-transforming filters
By default AngularJS provides three filters operating on arrays:

• limitTo: It returns an array shrunk to the specified size. We can retain
elements either from the beginning of a collection or from its end (in this
case the limit parameter must be provided as a negative number).

• Filter: This is a general-purpose filtering utility. It is very flexible and
supports many options to precisely select elements from a collection.

• orderBy: Ordering filter can be used to sort individual elements in an array
based on provided criteria.

Displaying and Formatting Data

[126]

The listed filters work on arrays only (limitTo being an exception,
it can cope with strings as well).When applied to an object other
that an array those filters have no effect and will simply return a
source object.

The array-related filters are often used with the ng-repeat directive to render
filtered results. In the following sections we are going to build a full example of a
table that can be sorted, filtered and paginated. Examples are built around SCRUM
backlog list from the sample application, and will illustrate how to combine filters
and the repeater directive.

Filtering with the "filter" filter
First we need to clarify that AngularJS has a filter named filter. The name is a bit
unfortunate since the word "filter" might refer to any filter in general (a transforming
function) or this specific filter named "filter".

The "filter" filter is a general-purpose filtering function that can be used to select
a subset of an array (or put differently exclude some elements). There are number
of parameter formats that can be supplied to this filter in order to drive element
selection process. In the simplest form we can provide a string in the case all fields
of all elements in a collection will be checked for a presence of a given substring.

As an example let's consider a product backlog list that we would like to filter based
on search criteria. Users would be presented with an input box where they could
type-in search criteria. The resulting list should have only elements where any
field of a given element contains a provided substring. The following screenshot
illustrates finished UI:

Chapter 4

[127]

If we assume that our data model has the following properties: name, desc,
priority, estimation and done, we could write a template for the discussed
UI as follows:

<div class="well">
<label>
 Search for:<input type="text" ng-model="criteria">
</label>
</div>
<table class="table table-bordered">
 <thead>
 <th>Name</th>
 <th>Description</th>
 ...
 </thead>
 <tbody>
 <tr ng-repeat="backlogItem in backlog | filter:criteria">
 <td>{{backlogItem.name}}</td>
 <td>{{backlogItem.desc}}</td>
 ...
 </tr>
 </tbody>
</table>

As you can see it is extremely easy to add a filter based on user's input; we just need
to wire up value of an input field as an argument to the filter. The rest will be taken
care of by AngularJS automatic data binding and refresh mechanism.

The matching criteria can be negated by prefixing with the ! operator.

In the previous example all the properties of source objects are searched for a
substring match. If we want to have a more precise control over properties matching
we can do so by providing an object argument to a filter. Such an object will act as
a "query be example". Here we want to limit matching to the name property and
include only items that are not done yet:

ng-repeat="item in backlog | filter:{name: criteria, done: false}"

In this code snippet all properties of an object specified as an argument must match.
We could say that conditions expressed by the individual properties are combined
using the AND logical operator.

Displaying and Formatting Data

[128]

Additionally AngularJS provides a catch-all property name: $. Using this wildcard
as a property name we can combine AND and OR logical operators. Let's say that
we want to search for a string match in all properties of a source object, but take into
account only not completed items. In this case a filtering expression could be re-
written as follows:

ng-repeat="item in backlog | filter:{$: criteria, done: false}"

It might happen that the combination of required search criteria is so complex that
it is not possible to express it using object's syntax. In this case a function can be
provided as an argument to the filter (so called predicate function). Such a function
will be invoked for each and every individual element of a source collection. The
resulting array will contain only elements for which the filtering function returns
true. As a slightly contrived example we could imagine that we want to see only
backlog items that are already completed and required over 20 units of effort. The
filtering function for this example is both easy to write:

$scope.doneAndBigEffort = function (backlogItem) {
 return backlogItem.done && backlogItem.estimation > 20;
};

And use:

ng-repeat="item in backlog | filter:doneAndBigEffort"

Counting filtered results
Often at times, we would like to display a number of items in a collection. Normally
it is as simple as using the {{myArray.length}} expression. Things get a bit more
complicated while using filters as we would like to show the size of a filtered
array. A naive approach could consist of duplicating filters in both a repeater and a
counting-expression. Taking our last example of filtering in a repeater:

<tr ng-repeat="item in backlog | filter:{$: criteria, done: false}">

We could try to create a summary row like:

Total: {{(backlog | filter:{$: criteria, done: false}).length}}

This has obviously several drawbacks; not only code is duplicated but also the same
filters need to be executed several times in two different places, not ideal from the
performance standpoint.

Chapter 4

[129]

To remedy this situation we can create an intermediate variable (filteredBacklog)
that would hold a filtered array:

ng-repeat="item in filteredBacklog = (backlog | filter:{$: criteria,
done: false})"

Then, counting filtered results boils down to displaying the length of a saved array:

Total: {{filteredBacklog.length}}

The preceding pattern for counting filtering objects, while not very intuitive, allows
us to have filtering logic in one place only.

The other possibility is to move the whole filtering logic to a controller and only
expose filtered results on a scope. This method has one more advantage: it moves
filtering code to a controller where it is very easy to unit test. To use this solution you
will need to learn how to access filters from the JavaScript; something that is covered
later on in this chapter.

Sorting with the orderBy filter
Quite often a tabular data can be sorted freely by users. Usually clicking on a header
of an individual column selects a given field as sort criteria, while clicking again
reverses the sort order. In this section, we are going to implement this common
pattern with AngularJS.

The orderBy filter will be our primary tool for this job. When finished, our
sample table holding list of backlog items will get fully functional sorting icons
shown as follows:

Displaying and Formatting Data

[130]

The orderBy filter is easy and intuitive to use so we can immediately dive into the
code example, without spending too much time on theoretical introductions. Firstly
we will make sorting work and then add sorting indicators. Here is relevant part of
markup taking part in sorting:

<thead>
 <th ng-click="sort('name')">Name</th>
 <th ng-click="sort('desc')">Description</th>
 . . .
</thead>
<tbody>
 <tr ng-repeat="item in filteredBacklog = (backlog |
 filter:criteria | orderBy:sortField:reverse)">
 <td>{{item.name}}</td>
 <td>{{item.desc}}</td>
 ...
 </tr>
</tbody>

The actual sorting is taken care of by the orderBy filter, which in our example takes
two arguments:

• sortField: a property name to be used as a sorting predicate
• sort order (reverse): this argument indicates if a sorted array should

be reversed

The sort function, triggered by a click event on a cell header, is responsible for
selecting the sort field as well as toggling sort direction. Here are relevant bits of
the controller's code:

$scope.sortField = undefined;
$scope.reverse = false;

$scope.sort = function (fieldName) {
 if ($scope.sortField === fieldName) {
 $scope.reverse = !$scope.reverse;
 } else {
 $scope.sortField = fieldName;
 $scope.reverse = false;
 }
};

Chapter 4

[131]

Our sorting example builds on top of the previous, filtering one, so now our backlog
list can be both filtered and sorted. With AngularJS it is surprisingly easy to combine
both filters to create interactive tables.

The orderBy filter was deliberately placed after the filter filter.
The reason for this is performance: sorting is more costly as compared
to filtering so it is better to execute ordering algorithm on a minimal
data set.

Now that the sorting works we just need to add icons indicating which field we
are sorting and whether it is ascending or descending. Once again the ng-class
directive will prove very useful. Here is the example of visual indicators for the
"name" column:

<th ng-click="sort('name')">Name
<i ng-class="{'icon-chevron-up': isSortUp('name'), 'icon-chevron-
down': isSortDown('name')}"></i>
</th>

The isSortUp and isSortDown functions are very simple and look like:

$scope.isSortUp = function (fieldName) {
 return $scope.sortField === fieldName && !$scope.reverse;
};

$scope.isSortDown = function (fieldName) {
 return $scope.sortField === fieldName && $scope.reverse;
};

Of course there are many ways of displaying sort indicators, and the one just
presented strives to keep CSS classes out of JavaScript code. This way presentation
can be easily changed just be tweaking a template.

Writing custom filters – a pagination example
So far we've managed to display backlog items in a dynamic table that support
sorting and filtering. Pagination is another UI pattern that is often used with larger
data sets.

AngularJS doesn't provide any filter that would help us to precisely select a subset
of an array based on start and end indexes. To support pagination we need to create
a new filter, and this is a good occasion to get familiar with the process of writing
custom filters.

Displaying and Formatting Data

[132]

To get the idea of an interface for the new filter; let's call it pagination we will write
a sketch of markup first:

<tr ng-repeat="item in filteredBacklog = (backlog |
 pagination:pageNo:pageSize">
 <td>{{item.name}}</td>
 . . .
</tr>

The new pagination filter needs to take two parameters: page to be displayed (its
index) and its size (number of items per page).

What follows is the very first, naive implementation of the filter (error handling was
deliberately omitted to focus on filter writing mechanics):

angular.module('arrayFilters', [])

 .filter('pagination', function(){

 return function(inputArray, selectedPage, pageSize) {
 var start = selectedPage*pageSize;
 return inputArray.slice(start, start + pageSize);
 };
 });

A filter, as any other provider, needs to be registered on an instance of a module.
The filter method should be called with a filter name and a factory function that
will create an instance of a new filter. The registered factory function must return
the actual filter function.

The first argument of pagination filtering function represents input to be filtered
while subsequent parameters can be declared to support filter options.

Filters are very easy to unit test; they work on a supplied input, and when done
properly they shouldn't have any side effects. Here is an example test for our custom
pagination filter:

describe('pagination filter', function () {

 var paginationFilter;
 beforeEach(module('arrayFilters'));
 beforeEach(inject(function (_paginationFilter_) {
 paginationFilter = _paginationFilter_;
 }));

 it('should return a slice of the input array', function () {

Chapter 4

[133]

 var input = [1, 2, 3, 4, 5, 6];

expect(paginationFilter(input, 0, 2)).toEqual([1, 2]);
 expect(paginationFilter(input, 2, 2)).toEqual([5, 6]);
 });

 it('should return empty array for out-of bounds', function () {

 var input = [1, 2];
expect(paginationFilter(input, 2, 2)).toEqual([]);
 });
});

Testing a filter is as simple as testing a single function, and most of the time is really
straightforward. The structure of the sample test just presented should be easy
to follow as there are almost no new constructs here. The only thing that requires
explanation is the way of accessing instances of a filter from the JavaScript code.

Accessing filters from the JavaScript code
Filters are usually invoked from markup (using the pipe symbol in expressions), but
it is also possible to get access to filters instances from JavaScript code (controllers,
services, other filters, and so on). This way we can combine the existing filters to
provide a new functionality.

Filters can be injected to any objects managed by AngularJS Dependency Injection
system. We can express dependency on a filter using two distinct methods,
requiring either:

• The $filter service
• A filter name with the Filter suffix

The $filter service is a lookup function that allows us to retrieve an instance of a
filter based on its name. To see it in action we can write a filter that behaves similarly
to the limitTo one and can trim lengthy strings. Additionally our custom version
will add the "…" suffix if a string is trimmed. Here is the relevant code:

angular.module('trimFilter', [])
 .filter('trim', function($filter){

var limitToFilter = $filter('limitTo');

 return function(input, limit) {
 if (input.length > limit) {

Displaying and Formatting Data

[134]

 return limitToFilter(input, limit-3) + '...';
 }
 return input;
 };
 });

The $filter('limitTo')function call allows us to get a hand on a filter instance
based on the filter's name.

While the previous method certainly works there is an alternative one that is often
faster to code and easier to read:

 .filter('trim', function(limitToFilter){

 return function(input, limit) {
 if (input.length > limit) {
 return limitToFilter(input, limit-3) + '...';
 }
 return input;
 };
 });

In the second example, presented here it is enough to declare a dependency named
as [filter name]Filter where the [filter name] is a name of a filter we want
to retrieve.

Accessing filter instances using the $filter service results in an odd
syntax, and this is why we find it easier to work with the form using
the Filter suffix. The only occasions where the $filter service
might be more convenient is when we need to retrieve several filter
instances in one place or retrieve a filter instance based on a variable,
for example, $filter(filterName).

Filters dos and don'ts
Filters do a marvelous job when used to format and transform data invoked from a
template offering nice and concise syntax. But filters are just a tool for a specific job
and can as any other tools cause damage if used incorrectly. This section describes
situations where filters should be avoided and an alternative solution would be a
better fit.

Chapter 4

[135]

Filters and DOM manipulation
At times it might be tempting to return HTML markup as a result of filter's
execution. In fact AngularJS contains one filter that does exactly that: linky
(in the separate ngSanitize module).

It turns out, in practice, that filters outputting HTML are not the best idea.
The main problem is that to render output of such a filter we need to use one
of the binding directives described earlier on ngBindUnsafeHtml or ngBindHtml.
Not only does it make the binding syntax more verbose (as compared to simply
using {{expression}}) but potentially makes a web page vulnerable to HTML
injection attacks.

To see some issues involving filters outputting HTML we can examine a simple
highlight filter:

angular.module('highlight', [])

 .filter('highlight', function(){

 return function(input, search) {
 if (search) {
 return input.replace(new RegExp(search, 'gi'),
 '$&');
 } else {
 return input;
 }
 };
 });

You can immediately see that this filter contains hardcoded HTML markup.
As a result we can't use it with the interpolation directive but need to write a
template like:

<input ng-model="search">

On top of this the HTML markup outputted from a filter can't contain any
AngularJS directives as those wouldn't be evaluated.

A custom directive will, most of the time, solve the same problem in a more
elegant way, without introducing potential security hazards. Directives are covered
in Chapter 9, Building Advanced Directives and Chapter 10, Building AngularJS Web
Applications for an International Audience.

Displaying and Formatting Data

[136]

Costly data transformations in filters
Filters, when used in a template, become integral part of the AngularJS expression,
and as such are frequently evaluated. In fact, such filter functions are called multiple
times on each digest cycle. We can easily see this in practice by creating a logging
wrapper around the uppercase filter:

angular.module('filtersPerf', [])
 .filter('logUppercase', function(uppercaseFilter){
 return function(input) {
 console.log('Calling uppercase on: '+input);
 return uppercaseFilter(input);
 };
 });

Upon using this newly defined filter in a markup like:

<input ng-model="name"> {{name | logUppercase}}

We will see that the log statement is written at least once (usually twice) for each
keystroke! This experiment alone should convince you that filters are executed often
so it is highly preferable that they execute fast.

Don't be surprised to see that a filter is called multiple times in a row;
this is AngularJS dirty checking at work. Strive to write your filters so
they do light, fast processing.

Unstable filters
Since filters are called multiple times it is reasonable to expect that a filter responds
with the same return value if the input doesn't change. Such functions are called
stable with respect to their parameters.

Things can get easily out of hand if a filter doesn't have this property. To see the
disastrous effects of unstable filters let's write a malicious random filter that selects
a random element from an input array (it is unstable):

angular.module('filtersStability', [])

 .filter('random', function () {

 return function (inputArray) {
 var idx = Math.floor(Math.random() * inputArray.length);
 return inputArray[idx];
 };
 })

Chapter 4

[137]

Given an array of different items stored in the items variable on a scope, the random
filter could be used in a template like:

{{items | random}}

The preceding code, upon execution, will print out a random value so it might seem
that it behaves correctly. It is only upon expecting browser's console we can realize
that in fact an error is logged:

Uncaught Error: 10 $digest() iterations reached. Aborting!

This error means that an expression is yielding different results each time it is
being evaluated. AngularJS sees a constantly changing model and re-evaluates an
expression, hoping that it will stabilize. After repeating this process ten times the
digest is aborted, the last result printed and the error logged in a console. Chapter 11,
Writing Robust AngularJS Web Applications goes into deeper discussion of these topics,
and explains inner workings of AngularJS that should make reasons for this error
easier to understand.

In situations like those the solution is to calculate a random value in a controller,
before a template is rendered:

.controller('RandomCtrl', function ($scope) {

 $scope.items = new Array(1000);
 for (var i=0; i<$scope.items.length; i++) {
 $scope.items[i] = i;
 }

$scope.randomValue = Math.floor(Math.random() * $scope.items.length);
});

Like this a random value will be calculated before template processing and we can
safely use the {{randomValue}} expression to output the prepared value.

If your function can generate different results for the same input it is not a good
candidate for a filter. Invoke this function from a controller instead and leave
AngularJS to render pre-calculated value.

Displaying and Formatting Data

[138]

Summary
This chapter walked us through a set of patterns used to display data contained in
the model.

We started by quickly covering directive's naming conventions and then moved to
the overview of built-in AngularJS directives. The ng-repeat got special attention as
it is the very powerful and one of the most frequently used directives.

While the DOM-based, declarative template, on which AngularJS is based, works
perfectly most of the time, there are some corner cases where we hit the limits of this
approach. It is important to recognize those situations and be prepared to slightly
change target markup when necessary.

Filters offer a very convenient syntax for UI-specific model formatting. We saw
that AngularJS provides several useful filters by default, but when a specific need
arises it is very easy to create a custom filter. Filtering functions shouldn't be
abused and we had a careful look into scenarios where an alternative constructs
should be considered.

Directives, filters and display patterns covered in this chapter focused on data display.
But before data can be displayed users need to be able to enter them using variety
of input elements. The next chapter dives into AngularJS-way of dealing with form
elements and data input problematic.

Creating Advanced Forms
AngularJS builds upon standard HTML forms and input elements. This means that
you can continue to create your UI from the same HTML elements that you already
understand using standard HTML design tools.

So far, in our SCRUM application, we've created some basic forms with input
elements bound to model data and buttons for saving and deleting and so on.
AngularJS takes care of wiring up both the element-model binding and the event-
handler binding.

In this chapter, we will look at how AngularJS forms work in detail and then add
validation and dynamic user interaction to our application's forms.

In this chapter we will cover:

• Model data binding and input directives
• Form Validation
• Nested and Repeated Forms
• Form Submission
• Resetting a Form

Comparing traditional forms with
AngularJS forms
Before we begin to improve our application's forms we should understand how
AngularJS forms work. In this section, we explain the differences between standard
HTML input elements and AngularJS input directives. We will show how AngularJS
modifies and expands the behavior of HTML input elements and how it manages
updates to and from the model for you.

Creating Advanced Forms

[140]

In a standard HTML form, the value of an input element is the value that will be sent
to the server on submission of the form.

FORM SERVER

The trouble with the input elements holding the value of your submission is that
you are stuck with having to work with the input values as they are shown to the
user. This is often not what you want. For instance, a date input field may allow the
user to enter a string in some predefined format, for example, "12 March 2013". But
in your code you might want to work with the value as a JavaScript Date object.
Constantly coding up these transformations is tedious and error-prone.

AngularJS decouples the model from the view. You let input directives worry about
displaying the values and AngularJS worry about updating your model when the
values change. This leaves you free to work with the model, via controllers for
instance, without worrying about how the data is displayed or entered.

MODEL

CONTROLLER

FORM SERVER

D
ATA B

IN
D

IN
G

To achieve this separation, AngularJS enhances HTML forms with the form and
input directives, validation directives, and controllers. These directives and
controllers override the built-in behavior of HTML forms but, to the casual observer,
forms in AngularJS look very similar to standard HTML forms.

First of all, the ngModel directive lets you define how inputs should bind to the model.

Chapter 5

[141]

Introducing the ngModel directive
We have already seen how AngularJS creates data binding between fields on the
scope object and HTML elements on the page. One can set up data binding by using
curly braces, {{}}, or directives such as ngBind. But using such bindings is only one
way. When binding to the value of an input directive, we use ngModel:

<div>Hello </div>
<div>Hello <input ng-model="name"/></div>

Try it at http://bit.ly/Zm55zM.

In the first div, AngularJS binds scope.name of the current scope to the text of the
span. This binding is one way: if the value of scope.name changes, the text of the
span changes; but if we change the text of the span, the value of scope.name will
not change.

In the second div, AngularJS binds scope.name of the current scope to the value of
the input element. Here the data binding really is two way, since if we modify the
value of the input box by typing in it, the value of the scope.name model is instantly
updated. This update to scope.name is then seen in the one way binding to the span.

TEMPLATE SCOPE

name = “Jon”

<input ng-model=”name”>

one
way

two

way

Why do we have a different directive to specify the binding on inputs?
The ngBind directive only binds (one way) the value of its expression
to the text of the element. With ngModel, data binding is two way, so
changes to the value of the input are reflected back in the model.

In addition, AngularJS allows directives to transform and validate the ngModel
directive values as the data binding synchronizes between the model and the input
directive. You will see how this works in the ngModelController section.

Creating Advanced Forms

[142]

Creating a User Information Form
In this section we will describe a simple User Information Form from our
example SCRUM application. Throughout this chapter we will incrementally
add functionality to this form to demonstrate the power of AngularJS forms.
Here is our basic working form:

<h1>User Info</h1>
<label>E-mail</label>
<input type="email" ng-model="user.email">

<label>Last name</label>
<input type="text" ng-model="user.lastName">

<label>First name</label>
<input type="text" ng-model="user.firstName">

<label>Website</label>
<input type="url" ng-model="user.website">

<label>Description</label>
<textarea ng-model="user.description"></textarea>

<label>Password</label>
<input type="password" ng-model="user.password">

<label>Password (repeat)</label>
<input type="password" ng-model="repeatPassword">

<label>Roles</label>
<label class="checkbox">
 <input type="checkbox" ng-model="user.admin"> Is Administrator
</label>

<pre ng-bind="user | json"></pre>

Try it at http://bit.ly/10ZomqS.

While it appears that we simply have a list of standard HTML inputs, these are
actually AngularJS input directives. Each input has been given an ngModel
directive that defines what current scope to bind the value of the input element. In
this case, each input is bound to a field on the user object, which itself is attached to
the current scope. In a controller we could log the value of a model field like so:

$log($scope.user.firstName);

Chapter 5

[143]

Notice that we have not used a form element or put name or id attributes on any
of the input elements. For simple forms with no validation this is all we need.
AngularJS ensures that the values of the input elements are synchronized with the
values in the model. We are then free to work with the user model in a controller,
for example, without worrying about how they are represented in the view.

We have also bound a pre element with a JSON representation of the
user model. This is so that we can see what is being synchronized to
the model by AngularJS.

Understanding the input directives
In this section we describe the AngularJS input directives that are provided out of
the box. Using input directives is very natural to people used to HTML forms
because AngularJS builds on top of HTML.

You can use all the standard HTML input types in your forms. The input directives
work with the ngModel directive to support additional functionality, such as
validation or binding to the model. The AngularJS input directive checks the type
attribute to identify what kind of functionality to add to the input element.

Adding the required validation
All the basic input directives support the use of the required (or ngRequired)
attribute. Adding this attribute to your input element will tell AngularJS that the
ngModel value is invalid if it is null, undefined, or "" (the empty string). See the
following section on Field Validation for more about this.

Using text-based inputs (text, textarea, e-mail,
URL, number)
The basic input directive, type="text" or textarea, accepts any string for its
value. When you change the text in the input, the model is instantly updated with
the value.

The other text-based input directives, such as e-mail, URL, or number, act similarly
except that they only allow the model to update if the value in the input box matches
an appropriate regular expression. If you type into the e-mail input, the e-mail field
in the model is blank until the input box contains a valid e-mail string. This means
that your model never contains an invalid e-mail address. This is one of the benefits
of decoupling the model from the view.

Creating Advanced Forms

[144]

In addition to these validations all the text-based directives allow you to specify
minimum and maximum lengths for the text as well as an arbitrary regular
expression that must match. This is done with the ngMinLength, ngMaxLength,
and ngPattern directives:

<input type="password" ng-model="user.password"
 ng-minlength="3" ng-maxlength="10"
 ng-pattern="/^.*(?=.*\d)(?=.*[a-zA-Z]).*$/">

Try it at http://bit.ly/153L87Q.

Here, the user.password model field must have between 3 and 10 characters,
inclusive, and it must match a regular expression that requires it to include at
least one letter and one number.

Note that these built-in validation features do not stop the user from
entering an invalid string. The input directive just clears the model
field if the string is invalid.

Using checkbox inputs
Checkboxes simply indicate a boolean input. In our form, the input directive assigns
true or false to the model field that is specified by ngModel. You can see this
happening in our User Info Form for the "Is Administrator" field.

<input type="checkbox" ng-model="user.admin">

The value of user.admin is set to true if the checkbox is checked and false
otherwise. Conversely, the checkbox will be ticked if the value of user.admin is true.

You can also specify different strings for true and false values to be used in the
model. For example, we could have used admin and basic in a role field.

<input type="checkbox" ng-model="user.role" ng-true-value="admin" ng-
false-value="basic">

Try it at http://bit.ly/Yidt37.

In this case, the user.role model, would contain either admin or basic depending
on whether the checkbox was ticked or not.

Chapter 5

[145]

Using radio inputs
Radio buttons provide a fixed group of choices for a field. AngularJS makes this
really simple to implement: Just bind all the radio buttons in a group to the same
model field. The standard HTML value attribute is then used to specify what value
to put in the model when the radio is selected:

<label><input type="radio" ng-model="user.sex" value="male"> Male</
label>
<label><input type="radio" ng-model="user.sex" value="female">
Female</label>

Try it at http://bit.ly/14hYNsN.

Using select inputs
The select input directive allows you to create a drop-down list, from which the
user can select one or more items. AngularJS lets you specify options for the drop
down statically or from an array on the scope.

Providing simple string options
If you have a static list of options from which to select you can simply provide them
as option elements below the select element:

 <select ng-model="sex">
 <option value="m" ng-selected="sex=='m'">Male</option>
 <option value="f" ng-selected="sex=='f'">Female</option>
 </select>

Be aware that since the value attribute can only take a string, the value to which you
bind can only be a string.

If you want to bind to values that are not strings or you want your list
of options to be created dynamically from data, then use ngOptions
as follows.

Creating Advanced Forms

[146]

Providing dynamic options with the ngOptions
directive
AngularJS provides an additional syntax for dynamically defining a complex list of
options for a select directive. If you want to bind the value of a select directive to
an object, rather than a simple string, then use ngOptions. This attribute accepts a
comprehension expression that defines what options are to be displayed. The form
of this expression is:

ngOptions expression

optionBinding expression dataSource expression

[value as] label [group by grouping] for item in arrayExpression
for (key, value) in objectExpression

The dataSource expression describes the source of the information about the
options to be displayed. It describes elements in an array or properties on an object.
One select option will be generated for each item in the dataSource expression.

The optionBinding expression describes what should be extracted from each data
source item and how that item should be bound to the select option.

Common examples of ngOptions
Before we explain the details of how to define these comprehension expressions,
here are some typical examples.

Using array data sources
Select a user object with user.email as the label:

ng-options="user.email for user in users"

Select a user object with a computed label (the function would be defined on
the scope):

ng-options="getFullName(user) for user in users"

Select a user's e-mail rather than the whole user object, with their full name as
the label:

ng-options="user.email as getFullName(user) for user in users

Chapter 5

[147]

Select a user object with the list grouped by sex:

ng-options="getFullName(user) group by user.sex for user in users"

Try it at http://bit.ly/1157jqa.

Using object data sources
Let's provide two objects that relate country names to codes:

$scope.countriesByCode = {
 'AF' : 'AFGHANISTAN',
 'AX' : 'ÅLAND ISLANDS',
 ...
};

$scope.countriesByName = {
 'AFGHANISTAN' : 'AF',
 'ÅLAND ISLANDS' : 'AX',
 ...
};

To select a country code by country name, ordered by country code:

ng-options="code as name for (code, name) in countriesByCode"

To select a country code by country name, ordered by country name:

ng-options="code as name for (name, code) in countriesByName"

Try it at http://bit.ly/153LKdE.

Now that we have seen some examples, we can show the full specification of
these expressions.

Understanding the dataSource expression
If the data source will be an array then the arrayExpression should evaluate to
an array. The directive will iterate over each of the items in the array, assigning the
current item in the array to the value variable.

The list of select options will be displayed in the same order as the
items appear in the array.

If the data source will be an object then the objectExpression should evaluate to an
object. The directive will iterate over each property of the object, assigning the value
of the property to the value variable and the key of the member to the key variable.

Creating Advanced Forms

[148]

The list of select options will be ordered alphabetically by the value of
the key.

Understanding the optionBinding expression
The optionBinding expression defines how to get the label and value for each
option and how to group the options from the items provided by the dataSource
expression. This expression can take advantage of all the AngularJS expression
syntax, including the use of filters. The general syntax is:

value as label group by grouping

If the value expression is not provided then the data item itself will be used as the
value to assign to the model when this item is selected. If you provide a grouping
expression, it should evaluate to the name of the group for the given option.

Using empty options with the select directive
What should the select directive do when the bound model value doesn't match
with any of the values in the option list? In this case, the select directive will show
an empty option at the top of the list of options.

The empty option will be selected whenever the model does not match
any of the options. If the user manually selects the empty option then
the model will be set to null. It will not be set to undefined.

You can define an empty option by adding an option element as a child of the
select element that has an empty string for its value:

 <select ng-model="..." ng-options="...">
 <option value="">-- No Selection --</option>
 </select>

Try it at http://bit.ly/ZeNpZX.

Here, we defined an empty option, which will display the -- No Selection -- label.

If you define your own empty option then it will always be shown in
the list of options and can be selected by the user.

If you do not define your own empty option in the declaration of the select
directive it will generate its own.

Chapter 5

[149]

If the directive generates the empty option, it will be shown only when
the model does not match any items in the list. So the user will not be
able to manually set the select value to null/undefined.

It is possible to hide the empty option by defining your own and setting its style to
display: none.

<option style="display:none" value=""></option>

Try it at http://bit.ly/ZeNpZX.

In this case the select directive will use our empty option but the browser will not
show it. Now, if the model does not match any options the select directive will be
blank and invalid but there will not be a blank option shown in the list.

Understanding select and object equivalence
The select directive matches the model value to the option value using the object
equivalence operator (===). This means that if your option values are objects and
not simply values (like numbers and strings) you must use a reference to the actual
option value for your model value. Otherwise the select directive will think that
the objects are different and will not match it to the option.

In a controller we might set up the options and selected items as an array of objects:

app.controller('MainCtrl', function($scope) {
 $scope.sourceList = [
 {'id': '10005', 'name': "Anne"},
 {'id': '10006', 'name': "Brian"},
 {'id': '10007', 'name': "Charlie"}
];
 $scope.selectedItemExact = $scope.sourceList[0];
 $scope.selectedItemSimilar = {'id': '10005', 'name': "Anne"};
});

Here, selectedItemExact actually references the first item in the sourceList, while
selectedItemSimilar is a different object, even though the fields are identical:

<select
 ng-model="selectedItemExact"
 ng-options=" item.name for item in sourceList">
</select>
<select
 ng-model="selectedItemSimilar"
 ng-options="item.name for item in sourceList">
</select>

Creating Advanced Forms

[150]

Try it at http://bit.ly/Zrachk.

Here, we create two select directives that are bound to these values. The one bound
to selectedItemSimilar will not have an option selected. Therefore, you should
always bind the value of the select to an item in the ng-options array. You may
have to search the array for the appropriate option.

Selecting multiple options
If you want to select multiple items, you simply apply the multiple attribute to the
select directive. The ngModel bound to this directive is then an array containing a
reference to the value of each selected option.

AngularJS provides the ngMultiple directive, which takes an
expression to decide whether to allow multiple selections. Currently,
the select directive does not watch changes as to whether it accepts
multiple selections, so the ngMultiple directive has limited use.

Working with traditional HTML hidden input
fields
In AngularJS, we store all our model data in the scope so that there is rarely any need
to use hidden input fields. Therefore, AngularJS has no hidden input directive. There
are two cases where you might use hidden input fields: embedding values from the
server and supporting traditional HTML form submission.

Embedding values from the server
You use a server-side templating engine to create the HTML and you pass data
from the server to AngularJS via the template. In this case, it is enough to put an
ng-init directive into the HTML that is generated by the server, which will add
values to the scope:

<form ng-init="user.hash='13513516'">

Here the HTML sent from the server contains a form element that includes an ng-
init directive that will initialize user, hash on the scope of the form.

Chapter 5

[151]

Submitting a traditional HTML form
Traditionally, you might have wanted to submit values to the server that are not
in the view, that is, not a visible input control. This would have been achieved by
adding hidden fields to your form. In AngularJS, we work from a model that is
decoupled from the form, so we do not need these hidden fields. We simply add
such values to the scope and then simulate the form submission using the $http
service. See Chapter 3, Communicating with a Back-end Server for how to do this.

Looking inside ngModel data binding
Until now we have seen that ngModel creates a binding between the model and the
value in an input field. In this section we look deeper into what else this directive
provides and how it works.

Understanding ngModelController
Each ngModel directive creates an instance of ngModelController. This controller is
made available to all the directives on the input element.

text input directive ng-required directive

<input type=”text” ng-model =”myField”ng-required/>

uses us
es

ngModel Controller

creates

data binding

The ngModelController is responsible for managing the data binding between the
value stored in the model (specified by ngModel) and the value displayed by the
input element.

The ngModelController also tracks whether the view value is valid and whether it
has been modified by the input element.

Creating Advanced Forms

[152]

Transforming the value between the model and the
view
The ngModelController has a transformation pipeline that it applies each time the
data binding is updated. This consists of two arrays: $formatters that transforms
from model into view and $parsers that transforms from view to model. Each
directive on the input element can add in their own formatters and parsers to
this pipeline in order to modify what happens to the data binding as shown in the
following image:

ngModel Controller

MODEL VIEW

Date
Object

Date
String

Date parse. !== “”

!==null Date toString.

required
directive

date
directive

PARSERS

FORMATTERS

Here two directives are adding to the transformation pipeline. The date directive is
parsing and formatting dates. The ng-required directive is checking that the value
is not missing.

Tracking whether the value has changed
Along with transforming the value between the model and the view, the
ngModelController tracks whether the value has changed since it was initialized
and whether the value is valid.

When it is first initialized the ngModelController marks the value as pristine, that
is, it has not been modified. It exposes this as an ng-pristine CSS class on the
input element. When the view changes, say through typing in an input box, the
value is marked as dirty. It replaces the ng-pristine CSS class with the ng-dirty
CSS class.

Chapter 5

[153]

By providing CSS styles for these classes, we can change the appearance of the input
element based on whether the user has entered or modified the data:

.ng-pristine { border: solid black 1px; }

.ng-dirty { border: solid black 3px; }

Here we make the border of the element thicker if the user has made changes to
the input.

Tracking input field validity
Directives on an input element can also tell the ngModelController whether they
believe the value is valid or invalid. This is normally done by hooking into the
transformation pipeline and checking the value rather than transforming it. The
ngModelController tracks the validity and applies the ng-valid or ng-invalid
CSS classes accordingly. We can provide further styles to change the appearance of
the element based on these classes:

.ng-valid.ng-dirty { border: solid green 3px; }

.ng-invalid.ng-dirty { border: solid red 3px; }

Here, we are using a combination of pristine and invalid to ensure that only
fields that have been changed by user input are styled: thick red border when
invalid and thick green border when valid.

In the next section, Validating forms, we will see how we can work with the concepts
of pristine, dirty, valid, and invalid programmatically.

Validating AngularJS forms
In this section we explain how to use validation directives and how they work with
ngFormController to provide a full validation framework.

Understanding ngFormController
Each form (or ngForm) directive creates an instance of ngFormController. The
ngFormController object manages whether the form is valid or invalid and whether
it is pristine or dirty. Importantly, it works with ngModelController to track each
ngModel field within the form.

When an ngModelController is created, it registers itself with the first
ngFormController it comes across as it traverses up its list of parent elements.
This way, the ngFormController knows what input directives it should track. It
can check whether these fields are valid/invalid or pristine/dirty and set whether
the form is valid/invalid or pristine/dirty accordingly.

Creating Advanced Forms

[154]

Using the name attribute to attach forms
to the scope
You can make the ngFormController appear on the local scope by giving the form
a name. Any input elements within the form that also have names will have their
ngModelController object attached as a property to this ngFormController object.

The following table shows how the scope contains the controllers associated with
each of the elements in the form:

HTML Scope Controller
model1, model2, …

<form name="form1"> form1 : {

 $valid, $invalid,

 $pristine, $dirty, …

ngFormController

<input

 name="field1"

 ng-model="model1"
/>

field1: {

 $valid, $invalid,

 $pristine, $dirty, …

 },

ngModelController

<input

 name="field2"

 ng-model="model2"
/>

field2: {

 $valid, $invalid,

 $pristine, $dirty, …

 }

ngModelController

</form> },

Adding dynamic behavior to the User
Information Form
Our form allows us to enter values into fields and we can change the appearance
of the input elements based on the values entered. But for a more responsive user
experience, we would like to show and hide validation messages and change the
state of buttons on our form depending upon the state of the form fields.

Having the ngFormController and ngModelControllers objects on our scope
allows us to work with the state of the form programmatically. We can use values
like $invalid and $dirty to change what is enabled or visible to our user.

Chapter 5

[155]

Showing validation errors
We can show error messages for inputs and for the form as a whole if something is
not valid. In the template:

<form name="userInfoForm">
 <div class="control-group"
 ng-class="getCssClasses(userInfoForm.email)">

 <label>E-mail</label>
 <input type="email" ng-model="user.email"
 name="email" required>

 You must enter a valid email

 This field is required

 </div>
 ...
</form>

In the controller:

app.controller('MainCtrl', function($scope) {
 $scope.getCssClasses = function(ngModelContoller) {
 return {
 error: ngModelContoller.$invalid && ngModelContoller.$dirty,
 success: ngModelContoller.$valid && ngModelContoller.$dirty
 };
 };
 $scope.showError = function(ngModelController, error) {
 return ngModelController.$error[error];
 };
});

Try it at http://bit.ly/XwLUFZ.

This example shows the e-mail input from our User Form. We are using Twitter
Bootstrap CSS to style the form, hence the control-group and inline-help CSS
classes. We have also created two helper functions in the controller.

Creating Advanced Forms

[156]

The ng-class directive will update the CSS classes on div that contains the label, the
input, and the help text. It calls the getCssClasses() method, passing in an object
and an error name.

The object parameter is actually the ngModelController, which
has been exposed on the ngFormController, which in turn is
exposed on the scope.userInfoForm.email scope.

The getCssClasses() method returns an object that defines which CSS classes should
be added. The key of each object refers to the name of a CSS class. The value of each
member is true if the class is to be added. In this case getCssClasses() will return
error if the model is dirty and invalid and success if the model is dirty and valid.

Disabling the save button
We can disable the save button when the form is not in a state to be saved.

<form name="userInfoForm">
 ...
 <button ng-disabled="!canSave()">Save</button>
</form>

In our view, we add a Save button with an ngDisabled directive. This directive
will disable the button whenever its expression evaluates to true. In this case it is
negating the result of calling the canSave() method. We provide the canSave()
method on the current scope. We will do this in our main controller:

app.controller('MainCtrl', function($scope) {
 $scope.canSave = function() {
 return $scope.userInfoForm.$dirty &&
 $scope.userInfoForm.$valid;
 };
});

Try it at http://bit.ly/123zIhw.

The canSave() method checks whether the userInfoForm has the $dirty and
$valid flags set. If so, the form is ready to save.

Chapter 5

[157]

Disabling native browser validation
Modern browsers naturally try to validate the input values in a form. Normally
this occurs when the form is submitted. For instance, if you have a required
attribute on an input box, the browser will complain independently of AngularJS,
if the field does not contain a value when you try to submit the form.

Since we are providing all the validation through AngularJS directives and
controllers, we do not want the browser to attempt its own native validation.
We can turn off this by applying the HTML5 novalidate attribute to the
form element:

<form name="novalidateForm" novalidate>

Try it at http://bit.ly/1110hS4.

This form is called novalidateForm and the novalidate attribute will tell the
browser not to attempt the validation on any of the inputs in the form.

Nesting forms in other forms
Unlike standard HTML forms, AngularJS forms can be nested inside each other.
Since form tags inside other form tags are invalid HTML, AngularJS provides the
ngForm directive for nesting forms.

Each form that provides a name will be added to its parent form,
or directly to the scope if it has no parent form.

Using subforms as reusable components
A nested form acts like a composite field that exposes its own validation information
based on the fields that it contains. Such forms can be used to reuse as subforms by
including them in container forms. Here we group two input boxes together to create
a password and password confirmation widget:

<script type="text/ng-template" id="password-form">
 <ng-form name="passwordForm">
 <div ng-show="user.password != user.password2">
 Passwords do not match
 </div>
 <label>Password</label>
 <input ng-model="user.password" type="password" required>

Creating Advanced Forms

[158]

 <label>Confirm Password</label>
 <input ng-model="user.password2" type="password" required>
 </ng-form>
</script>

<form name="form1" novalidate>
 <legend>User Form</legend>
 <label>Name</label>
 <input ng-model="user.name" required>
 <ng-include src="'password-form'"></ng-include>
</form>

Try it at http://bit.ly/10QWwyu.

We define our subform in a partial template. In this case it is inline in a script block
but it could be in a separate file also. Next we have our container form, form1,which
includes the subform by using the ngInclude directive.

The subform has its own validity state and related CSS classes. Also, notice
that because the subform has a name attribute, it appears as a property on the
container form.

Repeating subforms
Sometimes, we have fields in a form that needs to be repeated by an arbitrary
number of times based on the data in the model. This is a common situation
where you want to provide a single form that can display a one-to-many
relationship in the data.

In our SCRUM app, we would like to allow users to have zero or more website
URLs in their User Info profile. We can use an ngRepeat directive to set this up:

 <form ng-controller="MainCtrl">
 <h1>User Info</h1>
 <label>Websites</label>
 <div ng-repeat="website in user.websites">
 <input type="url" ng-model="website.url">
 <button ng-click="remove($index)">X</button>
 </div>
 <button ng-click="add()">Add Website</button>
</form>

Chapter 5

[159]

The controller initializes the model and provides the helper functions, remove()
and add():

app.controller('MainCtrl', function($scope) {
 $scope.user = {
 websites: [
 {url: 'http://www.bloggs.com'},
 {url: 'http://www.jo-b.com'}
]
 };
 $scope.remove = function(index) {
 $scope.user.websites.splice(index, 1);
 };
 $scope.add = function() {
 $scope.user.websites.push({ url: ''});
 };
});

Try it at http://bit.ly/XHLEWQ.

In the template, we have an ngRepeat directive that iterates over the websites
in the user's profile. Each input directive in the repeat block is data bound to the
appropriate website.url in the user.websites model. The helper functions
take care of adding and removing items to and from the array and AngularJS data
binding does the rest.

It is tempting for each website item in the website's array to be
a simple string containing the URL. This will not work since,
in JavaScript, strings are passed by value and so the reference
between the string in the ngRepeat block and the string in the
array will be lost when you modify the value of the input box.

Validating repeated inputs
The problem with this approach comes when you want to do work with validation
on these repeated fields. We need each input to have a unique name within the form
in order to access that field's validity, $valid, $invalid, $pristine, $dirty, and so
on. Unfortunately, AngularJS does not allow you to dynamically generate the name
attribute for input directives. The name must be a fixed string.

We solve this problem by using nested forms. Each exposes itself on the current
scope, so if we place a nested form inside each repeated block that contains the
repeated input directives, we will have access on that scope to the field's validity.

Creating Advanced Forms

[160]

Template:

<form novalidate ng-controller="MainCtrl" name="userForm">
 <label>Websites</label>
 <div ng-show="userForm.$invalid">The User Form is invalid.</div>
 <div ng-repeat="website in user.websites" ng-form="websiteForm">
 <input type="url" name="website"
 ng-model="website.url" required>
 <button ng-click="remove($index)">X</button>

 Pleae must enter a valid url

 This field is required
 </div>
 <button ng-click="addWebsite()">Add Website</button>
</form>

Controller:

app.controller('MainCtrl', function($scope) {
 $scope.showError = function(ngModelController, error) {
 return ngModelController.$error[error];
 };
 $scope.user = {
 websites: [
 {url: 'http://www.bloggs.com'},
 {url: 'http://www.jo-b.com'}
]
 };
});

Try it at http://bit.ly/14i1sTp.

Here, we are applying the ngForm directive to div, to create a nested form, which is
repeated for each website in the array of websites on the scope. Each of the nested
forms is called websiteForm and each input in the form is called website. This
means that we are able to access the validity of the ngModel for each website from
within the ngRepeat scope.

We make use of this to show an error message when the input is invalid. The two
ng-show directives will show their error messages when the showError function
returns true. The showError function checks the passed in ngModelController
to see if it has the relevant validation entry in the $error field. We can pass
websiteForm.website to this function since this refers to the ngModelController
object for our website input box.

Chapter 5

[161]

Outside the ngForm we cannot reference the websiteForm (ngFormController)
object on the scope or the websiteForm.website (ngModelController) object since
they do not exist in this scope. We can, however, access the containing userForm
(ngFormController) object. This form's validity is based upon the validity of
all its child inputs and forms. If one of the websiteForms is invalid, so is the
userForm. The div at the top of the form displays an overall error message only if
userForms.$valid is true.

Handling traditional HTML form
submission
In this section we take a look at how AngularJS handles submission of forms. Single
Page AJAX Applications, for which AngularJS is perfect, don't tend to follow the
same process of direct submission to the server as traditional web application do.
But sometimes your application must support this. Here we show the various
submission scenarios that you may wish to implement when submitting form data
back to a server.

Submitting forms directly to the server
If you include an action attribute on a form in an AngularJS application, then the
form will submit as normal to the URL defined in the action:

<form method="get" action="http://www.google.com/search">
 <input name="q">
</form>

Try it at http://bit.ly/115cQgq.

Be aware that the Plnkr preview will block the redirection to Google.

Handling form submission events
If you don't include an action attribute, then AngularJS assumes that we are going
to handle the submission on the client side by calling a function on the scope. In this
case, AngularJS will prevent the form trying to directly submit to the server.

We can trigger this client-side function by using the ngClick directive on a button
or the ngSubmit directive on the form.

Creating Advanced Forms

[162]

You should not use both the ngSubmit and ngClick directives on the
same form because the browser will trigger both directives and you
will get double submission.

Using ngSubmit to handle form submission
To use ngSubmit on a form, you provide an expression that will be evaluated when
the form is submitted. The form submission will happen when the user hits Enter in
one of the inputs or clicks on one of the buttons:

<form ng-submit="showAlert(q)">
 <input ng-model="q">
</form>

Try it at http://bit.ly/ZQBLYj.

Here, hitting Enter while in the input will call the showAlert method.

You should use ngSubmit only on a form that has only one input and
not more than one button, such as our search form in the example.

Using ngClick to handle form submission
To use ngClick, on a button or input[type=submit], you provide an expression
that will be evaluated when the button is clicked:

<form>
 <input ng-model="q">
 <button ng-click="showAlert(q)">Search</button>
</form>

Try it at http://bit.ly/153OvLS.

Here, clicking on the button or hitting Enter in the input field will call the
showAlert method.

Resetting the User Info form
In our User Info form, we would like to cancel the changes and reset the form back to
its original state. We do this by holding a copy of the original model with which we
can overwrite any changes that the user has made.

Chapter 5

[163]

Template:

<form name="userInfoForm">
 ...
 <button ng-click="revert()" ng-disabled="!canRevert()">Revert
Changes</button>
</form>

Controller:

app.controller('MainCtrl', function($scope) {
 ...
 $scope.user = {
 ...
 };
 $scope.passwordRepeat = $scope.user.password;

 var original = angular.copy($scope.user);

 $scope.revert = function() {
 $scope.user = angular.copy(original);
 $scope.passwordRepeat = $scope.user.password;
 $scope.userInfoForm.$setPristine();
 };

 $scope.canRevert = function() {
 return !angular.equals($scope.user, original);
 };

 $scope.canSave = function() {
 return $scope.userInfoForm.$valid &&
 !angular.equals($scope.user, original);
 };
});

Try it at http://bit.ly/17vHLWX.

Here, we have a button to revert the model back to its original state. Clicking on
this button calls revert() on the scope. The button is disabled if canRevert()
returns false.

In the controller, you can see that we use angular.copy() to make a copy of the
model and place it in a local variable. The revert() method copies this original back
over to the working user model and sets the form back to a pristine state so that all
the CSS classes are no longer set to ng-dirty.

Creating Advanced Forms

[164]

Summary
In this chapter we have seen how AngularJS extends standard HTML form controls
to provide a more flexible and powerful system for getting input from the user. It
enables a separation of the model from the view through ngModel and provides
mechanisms to track changes and validity of input values through validation
directives and the ngFormController object.

In the next chapter we will look at how to best manage navigation round our
application. We will see how AngularJS supports deep linking to map URLs
directly into aspects of our application and how to use ngView to automatically
display relevant content to the user based on the current URL.

Organizing Navigation
In previous chapters, we've learnt how to fetch data from a back-end, edit those
data using AngularJS-powered forms, and display the data on individual pages by
employing various directives. In this chapter, we will see how to organize separate
screens into a fully functional, easy-to-navigate-through application.

Well-designed and easy-to-remember URLs (Uniform resource locators) play
a vital role in structuring an application for our users. It allows them to move
effectively between different screens, using browser features with which they are
comfortable. AngularJS includes various services and directives that bring URL
support found in Web 1.0 applications to single-page web applications, most
notably the following ones:

• Deep-linking URLs refer to a specific feature within a single-page web
application. They can then be bookmarked or passed around (for example
in an e-mail or in an instant message).

• The back and forward buttons in a browser behave as expected, allowing
users to move between different screens of a single-page web application.

• URLs can have a nice, easy-to-remember format in browsers that support
HTML5 history API.

• URL support in AngularJS is consistent across browsers, the same application
code works correctly in browsers with full support for the HTML5 history
API as well as in older browsers.

AngularJS has sophisticated machinery to handle URLs. In this chapter, we are going
to learn about the following topics:

• The use of URLs in single-page web applications,
• The AngularJS approach to URLs and its abstractions over URLs: the

$location and $anchorScroll services

Organizing Navigation

[166]

• Organizing navigation in a client-side web application using the $route
service (with its provider – $routeProvider) and the ngView directive

• Common patterns, tips, and tricks when using URLs in a single-page,
AngularJS-powered web application

URLs in single-page web applications
Navigation between pages was straightforward in the early days of the web. One
could type a URL in the browser's address bar to retrieve a precisely identified
resource. After all, a URL is used to point to a single, physical resource (a file) on
a server. When a page was loaded, we could follow hyperlinks to jump between
resources as well as use the browser's back and forward buttons to move between
visited items.

The rise of dynamically rendered pages broke this simple navigation paradigm. All
of a sudden, the same URL could result in different pages being sent to a browser,
depending on the application's internal state. The back and forward buttons were
the first victims of the highly interactive web. Their usage became unpredictable, and
many websites are still going as far as discouraging the use of the back and forward
navigation buttons (encouraging users to rely on internal navigation links).

Single-page web applications didn't improve the situation, far from it! In modern,
AJAX-heavy applications, it is not uncommon to see only a single URL in the browser's
address bar (the one that was used to initially load the application). Subsequent HTTP
interactions happen through the XHR object, without affecting the browser's address
bar. In this setup, the back and forward buttons are completely useless, since pressing
them would take us to completely different websites, instead of a place within the
current application. Bookmarking or copying and pasting a link from the browser's
address bar is not much use either. A bookmarked link will always point to the starting
page of an application.

But the browser's back and forward buttons and ability to bookmark URLs
are very useful. Users don't want to give them up while working with single-
page web applications! Fortunately, AngularJS is well-equipped to help us handle
URLs with the same efficiency as in the good, olden days of the static resources web!

Hashbang URLs in the pre-HTML5 era
It turns out that there is a trick that can bring back decent support for URLs in
AJAX-heavy web applications.

Chapter 6

[167]

The trick is based on the fact that we can modify parts of the URL in a browser's
address bar, those after the # character without triggering a reload of the currently
displayed page. This part of the URL is called the URL fragment. By changing the
URL fragment, we can add new elements to the browser's history stack (the window.
history object). The back and forward buttons rely on the browser's history. So if we
manage to get the history right, the navigation buttons will work as expected.

Let's consider a set of typical URLs often used in CRUD-like applications. Ideally,
we would like to have a URL pointing to a list of items, an edit form for an item, a
form for new items, and so on. Taking the administration of users (from our sample
SCRUM application), as an example, we would typically have the following distinct
partial URLs:

• /admin/users/list – This URL shows a list of existing users
• /admin/users/new – This URL shows a form to add a new user
• /admin/users/[userId] – This URL shows a form to edit an existing user

with ID equal to [userId]
We could translate these partial URLs to full URLs with fragments in a single-page
web application using the # trick as follows:

• http://myhost.com/#/admin/users/list

• http://myhost.com/#/admin/users/new

• http://myhost.com/#/admin/users/[userId]

URLs pointing to inner parts of a single-page web applications, in this way are often
referred to as "hashbang URLs".

Having set up the preceding URL scheme, we can change the URL in the browser's
address bar without fully reloading the page. The browser will pick up different
URLs (with the same prefix but different URL fragment after the # character) to drive
its history and back/forward buttons. At the same time, it won't issue any calls to the
server if the only changing part is the URL fragment.

Of course, changing the URL scheme is not enough. We need to have some
JavaScript logic that will observe URL fragment changes, and modify the client-side
state of the application accordingly.

HTML5 and the history API
As users, we love simple, memorable, and easy-to -bookmark URLs, but the
hashbang tricks just described, make URLs excessively long and to be frank quite
ugly. Fortunately there is an HTML5 specification that addresses this problem: The
history API.

Organizing Navigation

[168]

The history API is supported in most of the modern browsers. When it
comes to Internet Explorer, it is only built in starting from Version 10.
The earlier versions work only with hashbang URLs.

In short, using the history API, we can simulate visiting external resources without
actually making round trips to the server. We can do so by pushing full, nicely
formatted URLs on top of the browser's history stack using the new history.
pushState method. The history API also has a built-in mechanism to observe
changes in the history stack. We can listen to the window.onpopstate event and
change the application's state in response to this event.

By using the HTML5 history API, we can once again work with nice URLs (without
the # trick) in single-page web applications and enjoy good user experience by using
bookmarkable URLs, back and forward buttons working as expected, and so on. The
URLs from the previous example could be simply represented as follows:

• http://myhost.com/admin/users/list

• http://myhost.com/admin/users/new

• http://myhost.com/admin/users/[userId]

Those URLs look very much like "standard" URLs, pointing to real resources on a
server. This is good, since we want to have nicely looking URLs. But if one of these
URLs is entered into the browser's address bar, a user agent can't distinguish this
URL from any other URL and it will issue a request to the server.

For the HTML5 mode to work correctly in such situations, the server
needs to be configured properly, and cooperate by always returning
the application's landing page. We are going to cover server setup for
the HTML5 URLs mode later in this chapter.

Using the $location service
AngularJS provides an abstraction layer over URLs (and their behavior) in the
form of the $location service. This service masks the difference between the
hashbang and the HTML5 URL modes allowing us, application developers, to work
with a consistent API regardless of the browser and the mode being used. But the
$location service does more heavy lifting, by providing the following functions:

• Provides convenient, clean API to easily access different parts of the current
URL (protocol, host, port, path, query parameters, and so on)

Chapter 6

[169]

• Lets us to programmatically manipulate different parts of the current URL
and have those changes reflected in the browser's address bar

• Allows us to easily observe changes in different components of the current
URL and take actions in response to those changes

• Intercepts the users' interactions with links on a page (such as clicking on the
<a> tags) to reflect those interactions in the browser's history

Understanding the $location service
API and URLs
Before we see practical examples of using the $location service, we need to get
familiar with its API. Since the $location service works with URLs, the easiest way to
get started is to see how the different components of a URL map to the API methods.

Let's consider a URL that points to a list of users. To make the example more
complex, we will use a URL that has all the possible components: a path, a query
string, and a fragment. The essential part of the URL could look as follows:

/admin/users/list?active=true#bottom

We could decipher this URL as: in the administration section, list all users that are
active and scroll to the bottom of the retrieved list. This is the only part of a URL that
is interesting from the point of view of our application, but in reality a URL is the
"whole package", with a protocol, host, and so on. This URL in its full form, will be
represented differently, depending on the mode (hashbang or HTML5) used. In the
following URL, we can see examples of the same URL represented in both modes. In
HTML5 it would look as follows:

http://myhost.com/myapp/admin/users/list?active=true#bottom

In hashbang mode it would take its longer, uglier form, which is as follows:

http://myhost.com/myapp#/admin/users/list?active=true#bottom

Regardless of the mode used, the $location service API will mask the differences
and offer a consistent API. The following table shows a subset of the methods
available on the API:

Method Given the above example, would return
$location.url() /admin/users/list?active=true#bottom

$location.path() /admin/users/list

$location.search() {active: true}

$location.hash() Bottom

Organizing Navigation

[170]

All of these methods are jQuery-style getters. In other words, they can be used to
both get and set the value of a given URL's component. For example, to read the URL
fragment value you would use: $location.hash(), while setting the value would
require an argument to be supplied to the same function: $location.hash('top').

The $location service offers other methods (not listed in the previous table) to
access any part of a URL: the protocol (protocol()), the host (host()), the port
(port()), and the absolute URL (absUrl()). The methods are getters only. They
 can't be used to mutate URLs.

Hashes, navigation within a page, and
$anchorScroll
The side effect of using hashbang URLs is that the part of the URL after the # sign,
normally used to navigate within a loaded document, is "taken" to represent the
URL part interesting from a single-page web application point of view. Still, there
are cases where we need to scroll to a specified place in a document loaded into the
browser. The trouble is that, in hashbang mode, URLs would contain two # signs,
for example:

http://myhost.com/myapp#/admin/users/list?active=true#bottom

Browsers have no way of knowing that the second hash (#bottom) should be used
to navigate within a document, and we need a little bit of help from AngularJS here.
This is where the $anchorScroll service comes into play.

By default the $anchorScroll service will monitor URL fragments. Upon detecting a
hash that should be used to navigate within a document, it will scroll to the specified
position. This process will work correctly in both the HTML5 mode (where only one
hash is present in a URL) as well as in hashbang mode (where two hashes can make
it into a URL). In short, the $anchorScroll service does the job which is normally
performed by the browser, but taking the hashbang mode into account.

If we want to have more fine-grained control over the scrolling behavior of
the $anchorScroll service you can opt out from its automatic URL fragment
monitoring. To do so, you need to call the disableAutoScrolling() method
on the $anchorScrollProvider service in a configuration block of a module
as follows:

angular.module('myModule', [])
 .config(function ($anchorScrollProvider) {
 $anchorScrollProvider.disableAutoScrolling();
 });

Chapter 6

[171]

By doing these configuration changes, we gain manual control over when
scrolling takes place. We can trigger scrolling by invoking the service's function
($anchorScroll()) at any chosen point of time.

Configuring the HTML5 mode for URLs
By default AngularJS is configured to use hashbang mode for URLs. To enjoy
nice-looking URLs in HTML5 mode, we need to change the default AngularJS
configuration, as well as set up our server to support bookmarkable URLs.

Client side
Changing to HTML5 URL mode in AngularJS is trivial. It boils down to calling
the html5Mode() method on $locationProvider with an appropriate argument
as follows:

angular.module('location', [])
 .config(function ($locationProvider) {
 $locationProvider.html5Mode(true);
 })

Server side
For HTML5 mode to work correctly in all cases, we need a little help from the
server that is responsible for serving the AngularJS application files to the browser.
In a nutshell, we need to set up redirections on the web server, so that requests
to any deep-linking application URL will be responded with the single-page web
application's starting page (the one that contains the ng-app directive).

To understand why such redirections are needed, let's examine a situation where
a user uses a bookmarked URL (in HTML5 mode) pointing to a product backlog of
a specific project. Such a URL could look as follows:

http://host.com/projects/50547faee4b023b611d2dbe9/productbacklog

To the browser, such a URL looks like any other normal URL and the browser will
issue a request to the server. Obviously such a URL only makes sense in the context
of the single-page web application, at the client side. The /projects/50547faee4
b023b611d2dbe9/productbacklog resource doesn't exist physically on the server
and can't be generated by the server dynamically. The only thing that a server can
do with such URLs is to redirect them to the starting point of the application. This
will result in the AngularJS application being loaded into the browser. When the
application starts, the $location service will pick up the URL (still present in the
browser's address bar), and this is where the client-side processing can take over.

Organizing Navigation

[172]

Providing further details on how to configure different servers is beyond the scope of
this book, but there are some general rules that apply to all servers. Firstly, there are
roughly three types of URLs that a typical web server needs to handle:

• URLs pointing to static resources (images, CSS files, AngularJS partials, and
so on)

• URLs for back-end data retrieval or modifications requests (for instance, a
RESTful API)

• URLs that represent features of the application in HTML5 mode, where
the server must respond with the application's landing page (typically a
bookmarked URL used, or a URL typed in in a browser's address bar)

Since it is cumbersome to enumerate all the URLs that can hit a web server due to
the HTML5 mode links, it is probably the best to use a well-known prefix for both
static resources and URLs used to manipulate data. This is a strategy employed by
the sample SCRUM application where all the static resources are served from the
URLs with the /static prefix, while the ones prefixed with the /databases prefix
are reserved for data manipulation on a back-end. Most of the remaining URLs are
redirected to the starting point of the SCRUM application (index.html).

Handcrafting navigation using the $location
service
Now that we are familiar with the $location service API and its configuration,
we can put the freshly acquired knowledge into practice by building a very simple
navigation scheme using the ng-include directive and the $location service.

Even the simplest navigation scheme in a single-page web application should offer
some fundamental facilities to make developers life easier. As a bare minimum we
should be able to perform the following activities:

• Define routes in a consistent, easy to maintain manner
• Update the application's state in response to URL changes
• Change the URL in response to the users navigating around the application

(clicking on a link, using back and forward buttons in a browser, and so on)

In the rest of this book, the term routing is used to denote a facility
that helps synchronize the application's state (both screens and
corresponding model) in response to URL changes. A single route is
a collection of metadata used to transition an application to a state
matching a given URL.

Chapter 6

[173]

Structuring pages around routes
Before we dive into code samples, we should note that in a typical web application
there are "fixed parts" of a page (header, footer, and so on) as well as "moving parts",
which should change in response to the user's navigation actions. Taking this into
account, we should organize markup and controllers on our page in such a way that
fixed and moving parts are clearly separated. Building on the previously seen URL
examples, we could structure the application's HTML as follows:

<body ng-controller="NavigationCtrl">
<div class="navbar">
 <div class="navbar-inner">
 <ul class="nav">
 List users
 New user

 </div>
</div>
<div class="container-fluid" ng-include="selectedRoute.templateUrl">
 <!-- Route-dependent content goes here -->
</div>
</body>

The moving part in the preceding example is represented by a <div> tag with the
ng-include directive referencing a dynamic URL: selectedRoute.templateUrl.
But how does this expression gets changed based on URL changes?

Let's examine the JavaScript part, by having a closer look at NavigationCtrl. Firstly,
we can define our routes variable as follows:

.controller('NavigationCtrl', function ($scope, $location) {

 var routes = {
 '/admin/users/list': {templateUrl: 'tpls/users/list.html'},
 '/admin/users/new': {templateUrl: 'tpls/users/new.html'},
 '/admin/users/edit': {templateUrl: 'tpls/users/edit.html'}
 };
 var defaultRoute = routes['/admin/users/list'];
 …
});

The routes object gives a basic structure to the application, it maps all possible
partial templates to their corresponding URLs. By glancing over these routes
definition, we can quickly see which screens make up our application and which
partials are used in each route.

Organizing Navigation

[174]

Mapping routes to URLs
Having a simple routing structure in place isn't enough. We need to synchronize the
active route with the current URL. We can do this easily, by watching the path()
component of the current URL as follows:

$scope.$watch(function () {
 return $location.path();
}, function (newPath) {
 $scope.selectedRoute = routes[newPath] || defaultRoute;
});

Here, each change in $location.path() component will trigger a lookup for one
of the defined routes. If a URL is recognized, a corresponding route becomes the
selected one. Otherwise, we fall back to a default route.

Defining controllers in route partials
When a route is matched, a corresponding template (partial) is loaded, and included
into the page by the ng-include directive. As you remember the ng-include
directive creates a new scope, and most of the time we need to set up this scope with
some data that make sense for the newly loaded partial: a list of users, a user to be
edited, and so on.

In AngularJS, setting up a scope with data and behavior is the job the controller. We
need to find a way to define a controller for each and every partial. Obviously, the
simplest approach is to use the ng-controller directive in the root element of each
partial. For example, a partial responsible for editing users would look as follows:

<div ng-controller="EditUserCtrl">
 <h1>Edit user</h1>
 ...
</div>

The downside of this approach is that we can't reuse the same partial with different
controllers. There are cases where it would be beneficial to have exactly the same
HTML markup, and only change the behavior and the data set up behind this partial.
One example of such a situation is an edit form, where we would like to reuse the
same form both for adding new items editing an existing item. In this situation the
form's markup could be exactly the same but data and behavior slightly different.

Chapter 6

[175]

The missing bits in the handcrafted navigation
The ad-hoc solution presented here is not very robust, and should not be used as
it is in real-life applications. Although incomplete, it illustrates several interesting
features of the $location service.

To start with, the $location service API provides an excellent wrapper around
various raw APIs exposed by browsers. Not only is this API consistent across
browsers, but it also deals with different URL modes (hashbang and HTML5 history).

Secondly, we can really appreciate the facilities offered by AngularJS and its services.
Anyone who had tried to write a similar navigation system in vanilla JavaScript would
quickly see how much is offered by the framework. Still, there are numerous bits that
could be improved! But instead of continuing with this custom development, based
on the $location service, we will discuss the built-in AngularJS solution to these
navigation-related issues: the $route service.

Using built-in AngularJS routing services
The AngularJS framework has a built-in $route service that can be configured to
handle route transitions in single-page web applications. It covers all the features
that we were trying to handcraft using the $location service and additionally offers
other very useful facilities. We are going to get familiar with those step-by-step.

Starting from Version 1.2, AngularJS will have its routing system
delivered in a separate file (angular-route.js) with its own module
(ngRoute). When working with the latest version of AngularJS, you
will need to remember to include the angular-route.js file and
declare a dependency on the ngRoute module.

Basic routes definition
Before diving into more advanced usage scenarios, let's abandon our naïve
implementation by converting our route definitions to the syntax used by the
$route service.

Organizing Navigation

[176]

In AngularJS, routes can be defined during the application's configuration
phase using the $routeProvider service. The syntax used by the $routeProvider
service is similar to the one we were playing with in our custom $location
based implementation:

angular.module('routing_basics', [])
 .config(function($routeProvider) {
 $routeProvider
 .when('/admin/users/list', {templateUrl: 'tpls/users/list.
html'})
 .when('/admin/users/new', {templateUrl: 'tpls/users/new.html'})
 .when('admin/users/:id', {templateUrl: 'tpls/users/edit.html'})

 .otherwise({redirectTo: '/admin/users/list'});
 })

The $routeProvider service exposes a fluent-style API, where we can chain
method invocations for defining new routes (when) and setting up a default
route (otherwise).

Once initialized, an application can't be reconfigured to support
additional routes (or remove existing ones). This is linked to the fact
that AngularJS providers can be injected and manipulated only in
configuration blocks executed during the application's bootstrap.

In the previous examples, you can see that templateUrl was the only property
for each route but the syntax offered by the $routeProvider service is far richer.

The content of a route can be also specified inline using the
template property of a route definition object. While this is a
supported syntax, hardcoding the route's markup in its definition is
not very flexible (nor maintainable) so it is rarely used in practice.

Displaying the matched route's content
When one of the routes is matched against a URL, we can display the route's
contents (defined as templateUrl or template) by using the ng-view directive.
The $location-based version of the markup looked before as follows:

<div class="container-fluid" ng-include="selectedRoute.templateUrl">
 <!-- Route-dependent content goes here -->
</div>

Chapter 6

[177]

With ng-view, this can be rewritten as follows:

<div class="container-fluid" ng-view>
 <!-- Route-dependent content goes here -->
</div>

As you can see, we simply substituted the ng-include directive for ng-view one.
This time we don't need to provide an attribute value, since the ng-view directive
"knows" that it should display the content of the currently matching route.

Matching flexible routes
In the naïve implementation, we were relying on a very simple route matching
algorithm, which doesn't support variable parts in URLs. In fact it is a bit of a stretch to
call it an algorithm, we are simply looking up a property on an object corresponding to
URL's path! Due to the algorithm's simplicity, we were using a URL query parameter
in the query string to pass around the user's identifier as follows:

/admin/users/edit?user={{user.id}}

It would be much nicer to have URLs where the user's identifier is embedded as part
of a URL, for example:

/admin/users/edit/{{user.id}}

With the AngularJS router, this is very easy to achieve since we can use any string
prefixed by a colon sign (:) as a wildcard. To support a URL scheme where the user's
ID is part of a URL we could write as follows:

.when('/admin/users/:userid', {templateUrl: 'tpls/users/edit.html'})

This definition will match any URLs with an arbitrary string in place of the :userid
wildcard, for example:

/users/edit/1234

/users/edit/dcc9ef31db5fc

On the other hand, routes with an empty :userid, or the :userid containing slashes
(/) won't be matched.

It is possible to match routes based on parameters that can contain
slashes, but in this case we need to use slightly modified syntax:
*id. For example, we could use the star-based syntax to match paths
containing slashes: /wiki/pages/*page. The route-matching
syntax will be further extended in AngularJS Version 1.2.

Organizing Navigation

[178]

Defining default routes
The default route can be configured by calling the otherwise method, providing
a definition of a default, catch-all route. Please notice that the otherwise method
doesn't require any URL to be specified as there can be only one default route.

A default route usually redirects to one of the already defined routes
using the redirectTo property of the route definition object.

The default route will be used in both cases where no path was provided as
well as for cases where an invalid URL (without any matching route) triggers
a route change.

Accessing route parameter values
We saw that route URLs definition can contain variable parts that act as parameters.
When a route is matched against a URL, you can easily access the values of those
parameters using the $routeParams service. In fact, the $routeParams service is a
simple JavaScript object (a hash), where keys represent route parameter names and
values represent strings extracted from the matching URL.

Since $routeParams is a regular service, it can be injected into any object managed
by the AngularJS Dependency Injection system. We can see this in action when
examining an example of a controller (EditUserCtrl) used to update a user's data
(/admin/users/:userid) as follows:

.controller('EditUserCtrl', function($scope, $routeParams, Users){
 $scope.user = Users.get({id: $routeParams.userid});
 ...
})

The $routeParams service combines parameter values from both the URL's path
as well as from its search parameters. This code would work equally well for a
route defined as /admin/users/edit with a matching URL: /admin/users/
edit?userid=1234.

Reusing partials with different controllers
In the approach taken so far, we defined a controller responsible for initializing
the partial's scope inside each partial using the ng-controller directive. But the
AngularJS routing system makes it possible to define controllers at the route level.
By pulling the controller out of the partial, we are effectively decoupling the partial's
markup from the controller used to initialize the partial's scope.

Chapter 6

[179]

Let's consider a partial providing a screen for editing a user's data:

<div ng-controller="EditUserCtrl">
 <h1>Edit user</h1>
 . . .
</div>

We could modify it by removing the ng-controller directive as follows:

<div>
 <h1>Edit user</h1>
 . . .
</div>

Instead of that we can define the controller service in the route level as follows:

.when('/admin/users/:userid', {
 templateUrl: 'tpls/users/edit.html'
 controller: 'EditUserCtrl'})

By moving the controller to the route definition level, we've gained the possibility of
reusing the same controller for different partials and more importantly, reusing the
same partials with different controllers. This additional flexibility comes in handy in
several situations. A typical example would be a partial containing a form to edit an
item. Usually we want to have exactly the same markup for both adding a new item
and editing an existing item, but behavior for new items might be slightly different
as compared to the existing ones (for example, creating rather than updating when
persisting the item).

Avoiding UI flickering on route changes
While an application transitions between different screens, we usually need to
get and display markup for a new screen as well as fetch the corresponding data
(model). It turns out that there are two slightly different strategies that we can use to
render a new screen, which are as follows:

• Display new markup as soon as possible (even if corresponding data are
not yet ready) and then repaint the UI upon arrival of the data from the
back-end.

• Make sure that all the requests to the back-end are completed and the data
are ready before displaying markup for a new route

Organizing Navigation

[180]

The first approach is the default one. For a route with both the templateUrl and
the controller properties defined, AngularJS will match the route and render the
contents of the partial, even if the data requested by a controller are not ready by this
time. Of course, AngularJS will automatically repaint the partial when the data finally
arrives (and is bound to the scope), but users might notice an unpleasant flickering
effect. The UI flickering happens due to the same partial being rendered twice in a
short timespan, firstly without data and then again when the data are ready.

The AngularJS routing system has excellent, built-in support for the second approach
where the route change (and UI repaint) is postponed until both the partial and all
the requested data are ready. By using the resolve property on a route definition
object we can enumerate asynchronous dependencies for a route's controller.
AngularJS will make sure that all these dependencies are resolved before the route
change (and controller instantiation) takes place.

To illustrate the basic usage of the resolve property, let's rewrite our "edit user" route
as follows:

.when('/admin/users/:userid', {
 templateUrl: 'tpls/users/edit.html'
 controller: 'EditUserCtrl',
 resolve: {
 user: function($route, Users) {
 return Users.getById($route.current.params.userid);
 }
 }
})

The resolve property is an object, where keys declare new variables that will be
injected into the route's controller. The values of those variables are provided by
a dedicated function. This function can also have dependencies injected by the
AngularJS DI system. Here we are injecting the $route and Users services to
retrieve and return user's data.

These resolve functions can either return simple JavaScript values, objects, or
promises. When a promise is returned, AngularJS will delay the route change until
the promise is resolved. Similarly if several resolve functions return promises, the
AngularJS routing system will make sure that all the promises are resolved before
proceeding with the route change.

Functions in the resolve section of a route definition can return
promises. The actual route change will take place, if and only if all
the promises are successfully resolved.

Chapter 6

[181]

Once all these route-specific variables (defined in the resolve section) are resolved,
they are injected into the route's controller as follows:

.controller('EditUserCtrl', function($scope, user){
 $scope.user = user;
 ...
})

This is an extremely powerful pattern, as it allows us to define variables that are local
to a given route and have those variables injected into a route's controller. There are
multiple practical applications of this pattern and in the sample SCRUM application
we are using it to reuse the same controller with different values for the user variable
(either created in place or retrieved from a back-end). In the following code snippet, we
can see an extract from the sample SCRUM application:

$routeProvider.when('/admin/users/new', {
 templateUrl:'admin/users/users-edit.tpl.html',
 controller:'UsersEditCtrl',
 resolve:{
 user: function (Users) {
 return new Users();
 }
 }
 });

 $routeProvider.when('/admin/users/:userId', {
 templateUrl:'admin/users/users-edit.tpl.html',
 controller:'UsersEditCtrl',
 resolve:{
 user: function ($route, Users) {
 return Users.getById($route.current.params.userId);
 }
 }
 });

Defining local variables on a route level (in the resolve section) means that
controllers defined as part of a route can be injected with those local variables.
This greatly improves our ability to unit test the controllers' logic.

Preventing route changes
There are times where we might want to block a route change, based on certain
conditions. For example, consider the following route to edit a user's data:

/users/edit/:userid

Organizing Navigation

[182]

We need to decide what should happen if a user with the specified identifier doesn't
exist. One reasonable expectation would be that users of an application can't navigate
to a route pointing to a non-existing item.

As it turns out the resolve property of a route definition has a built-in support for
blocking route navigation. If a value of one of the resolve keys is a promise that is
rejected, AngularJS will cancel route navigation and won't change the view in the UI.

If one of the promises returned in the resolve section of a route
definition is rejected the route change will be canceled and the UI
won't be updated.

It should be noted that the URL in a browser's address bar won't be reverted if route
change is canceled. To see what it means in practice, let's assume that a list of users
is displayed under the /users/list URL. All the users in a list might have links
pointing to their edit forms (/users/edit/:userid). Clicking on one of those links
will change the browser's address bar (so it will become something like /users/
edit/1234) but it is not guaranteed that we will be able to edit user's details (user
might have been deleted in the meantime, we don't have sufficient access rights,
and so on). If the route's navigation is canceled the browser's address bar won't be
reverted and will still read /users/edit/1234, even if UI will be still reflecting,
content of the /users/list route.

The Browser's address bar and the displayed UI might get out of
sync if route navigation is canceled due to a rejected promise.

Limitations of the $route service
While the built-in $route service is very well-crafted and does an excellent job
for many applications, there are cases where it falls short. This section lists those
cases, so we can be aware and ready to change our application's design, or roll out
a custom routing service!

There is a community-driven effort in progress to provide a more
powerful routing system for AngularJS applications: ui-router. The
goal is to provide support for nested routes and routes that can
influence multiple rectangles on a screen. At the time of writing
this is still work in progress but you can follow its development at:
https://github.com/angular-ui/ui-router.

Chapter 6

[183]

One route corresponds to one rectangle on
the screen
As you now know, the ng-view directive is used to indicate the DOM element whose
content should be replaced with the content defined by the route (via the template
or templateUrl property). This immediately tells us that in the $route service, a
route can describe content for only one "hole" in the UI.

In reality, there are times where we would like to fill in multiple areas of a screen
in response to a route change. A typical example would involve a menu that might
be common to several routes and should change as we navigate from one area of an
application to the other. The following figure illustrates this:

ADMIN
MENU

ADMIN
CONTENT

NG-VIEW

NAVIGATION BAR

Taking the preceding figure as an example, we would like to keep the ADMIN
MENU if a user navigates within the administration area. The only way to achieve
this navigation scheme with the current version of AngularJS is to use a combination
of the ng-include directive and the trick described in the next section.

Handling multiple UI rectangles with ng-include
Route definition objects are regular JavaScript objects and can contain custom
properties, in addition to the ones interpreted by AngularJS. Defining a custom
property won't interfere with the default $route behavior, but the AngularJS routing
system will preserve those properties, so we can access them later on. Given this
observation, we could define the custom menuUrl and contentUrl properties on a
route level as follows:

$routeProvider.when('/admin/users/new', {
 templateUrl:'admin/admin.tpl.html',

Organizing Navigation

[184]

 contentUrl:'admin/users/users-edit.tpl.html',
 menuUrl:'admin/menu.tpl.html',
 controller:'UsersEditCtrl',
 ...
 });

Then, we would have to point the templateUrl property to a new partial that will
take care of including the menu and content subpartials as follows:

<div>
 <div ng-include='$route.current.contentUrl'>
 <!--menu goes here -->
 </div>
 <div ng-include='$route.current.menuUrl'>
 <!--content goes here -->
 </div>
</div>

While the preceding workaround gets us the desired visual effect, it will result in
the menu DOM element being rerendered on each and every route change, even if
we navigate within the admin section, where such a repaint is obviously unnecessary.
This is not much of a problem if the partial is simple and doesn't need any data to
be fetched from a back-end. But as soon as we need to do expensive processing for
each partial, we need to think twice before triggering this processing with each
route change.

No nested routes support
Another limitation of the existing routing system is the lack of support for nested
routes. In practical terms, it means that we can have one and only one ng-view
directive. Put differently, we can't use the ng-view directive inside any of the partials
referenced in a route definition object. This can be problematic in larger applications
where routes naturally form a hierarchy. In the sample SCRUM application, there is
a set of such routes, which are as follows:

• /projects: It provides the list of all projects
• /projects/[project id]/sprints: It provides the list of sprints for

a given project
• /projects/[project id]/sprints/[sprint id]/tasks: It provides

the list of tasks for a given sprint within a given project

Chapter 6

[185]

This navigation scheme forms a visual hierarchy that could be depicted as follows:

NAVIGATION BAR

PROJECT INFO
SPRINT INFO

TASKS FOR A GIVEN
SPRINT

NG - VIEW

When switching between tasks views for different sprints within the same project,
we would like to keep the data (and UI) for a given project since it doesn't change.
Unfortunately, the "one route equals one rectangle" principle forces us to reload
the whole dynamic part of the screen, including project-specific partial and its
corresponding data. This in turn means that we need to retrieve the project's model
on each route change, even if it doesn't change from one route to another!

While we can play with the ng-include directive to have proper nesting of visual UI
elements, there is not much we can do about the increased number of data retrievals.
We can only try to make sure that repetitive data retrievals from a back-end are as
fast as possible, or cache subsequent calls to a back-end if suitable.

Routing-specific patterns, tips, and tricks
The earlier sections of this chapter gave us a good overview of the AngularJS APIs,
related to handling navigation in single-page web applications. Here we are going to
see practical examples of using those APIs, and discuss the best related practices.

Handling links
The HTML anchor tag (a) is a primary tool for creating navigation links. AngularJS
has special treatment for those links and the following subsections will guide
through AngularJS specifics.

Organizing Navigation

[186]

Creating clickable links
AngularJS comes pre-bundled with the a directive, which prevents default actions
on links when the href attribute is omitted. This allows us to create clickable
elements using the a tag and the ng-click directive. For example, we can invoke
a function defined on a scope by clicking a DOM element rendered as the a tag
as follows:

<a ng-click='showFAQ()'>Frequently Asked Questions

Having the a tags without a default navigation action is handy, as several CSS
frameworks use the a tags to render different types of visual elements, where a
navigation action doesn't make much sense. For example the Twitter's Bootstrap
CSS framework uses the a tags to render headers in tabs and accordion components.

Given the special behavior of the a tag without the href attribute, you might wonder
which method should be used to create actual navigation links. One might argue that
we could use the following equivalent methods:

List users

Another method is as follows:

<a ng-click="listUsers()">List users

where the listUsers method could be defined on a scope as follows:

$scope.listUsers = function() {
 $location.path("/admin/users/list");
};

In practice, there are some subtle differences between the two approaches. To start
with links created using the href attribute are more user-friendly, since visitors can
right-click on such links and choose to open them in a separate tab (or window)
of a browser. In general, we should prefer navigation links created with the href
attribute, or even better with the AngularJS ng-href equivalent that makes it easy
to create dynamic URLs:

<a ng-href="/admin/users/{{user.$id()}}">Edit user

Working with HTML5 and hashbang mode links
consistently
The $location service in an AngularJS application can be configured with either
hashbang mode or HTML5 mode. This choice needs to be made upfront in a
configuration block, and links need to be created according to the chosen strategy.

Chapter 6

[187]

If we choose to use the hashbang mode we must create links as follows
(notice the # character):

<a ng-href="#/admin/users/{{user.$id()}}">Edit user

While in HTML5 mode the link would be slightly simpler as follows:

<a ng-href="/admin/users/{{user.$id()}}">Edit user

As you can see from the preceding examples, all the links need to be created in
accordance with the mode set on the $locationProvider service. The trouble
here is that in a typical application there are many links so if we decide to change
the configuration of $location, we will be forced to go over all the links in the
whole application and add (or remove) hashes.

Decide upon the URL mode very early in the application's
development phase, otherwise you might need to review and
change all the links in the entire application.

Linking to external pages
AngularJS assumes that links created with the a tag are internal to an application,
and as such, should change the internal state of the application, instead of triggering
a page reload in the browser. Most of the time this is the right assumption, but there
are times where we might want to provide a link pointing to a resource that should
be downloaded by the browser. In HTML5 mode it is impossible to distinguish, just
by looking at the URL links pointing to the internal state from the ones meant to
trigger a download of external resources. The solution is to use the target attribute
on such a link as follows:

Download

Organizing route definitions
In a large scale web application, it is not uncommon to have dozens and dozens of
different routes. While the $routeProvider service offers a very nice, fluent style
API, route definitions can get quite verbose (especially when the resolve property
is used). If we combine a large number of routes with the relative verboseness of
each definition, we quickly end up maintaining a huge JavaScript file with several
hundreds of lines of code! Worse yet, having all routes defined in one huge file
means that this file must be modified quite frequently by all developers working
on a project – a recipe for creating a bottlenecks and disastrous merge issues.

Organizing Navigation

[188]

Spreading route definitions among several modules
With AngularJS, we are not forced to define all the routes in one central file! If we
take the approach described in Chapter 2, Building and Testing where each functional
area has its own dedicated module, we can move routes linked to a certain part of an
application to the corresponding module.

In the AngularJS module system, each and every module can have its associated
config function, where we can inject $routeProvider service and define routes.
For example, in the sample SCRUM application the administration module has
two submodules: One for managing users and for managing projects. Each of these
submodules defines its own routes as follows:

angular.module('admin-users', [])
.config(function ($routeProvider) {
 $routeProvider.when('/admin/users', {...});
 $routeProvider.when('/admin/users/new', {...});
 $routeProvider.when('/admin/users/:userId', {...});
});

angular.module('admin-projects', [])
.config(function ($routeProvider) {
 $routeProvider.when('/admin/users', {...});
 $routeProvider.when('/admin/users/new', {...});
 $routeProvider.when('/admin/users/:userId', {...});
});

angular.module('admin', ['admin-projects', 'admin-users']);

Taking this approach, we can spread routes definitions across different modules
and avoid maintaining one giant file containing all the route definitions.

Fighting code duplication in route definitions
As mentioned in the previous section, route definitions can get quite verbose when
the resolve property is used. But if we take a closer look at the code that needs to be
written for routes in each functional area, we can quickly discover blocks of repeated
code and configuration. This is particularly true for CRUD-like applications where
routes for different functional blocks tend to follow the same pattern.

We can fight code duplication in route definitions by writing a custom provider,
wrapping the $routeProvider service. By defining our own provider, we can
come up with a higher-level API that captures URLs and functional patterns in
our application.

Chapter 6

[189]

A custom provider based on this idea will probably vary from one application to
another, so we are not providing detailed, step-by-step instructions on how to build
such a utility here. Nevertheless, the sample SCRUM application contains a custom
provider that drastically reduces the amount of code needed to define routes for
CRUD functionality. Its source code can be found on GitHub, where the whole
application is hosted but the following is an example of a custom API in use:

angular.module('admin-users', ['services.crud'])
.config(function (crudRouteProvider) {
 crudRouteProvider.routesFor('Users')
 .whenList({
 users: function(Users) { return Users.all(); }
 })
 .whenNew({
 user: function(Users) { return new Users(); }
 })
 .whenEdit({
 user: function ($route, Users) {
 return Users.getById($route.current.params.itemId);
 }
 });
})

This is all that is needed to define a full set of CRUD routes for one functional area!

Summary
Effective design of navigation links within an application is paramount, as it forms
the backbone around which the whole application is wrapped. Having a solid
linking structure is important for our users, so that they can easily navigate within
a web application. But it is also important for us, the developers, as it helps us to
structure and organize code.

In this chapter we saw that applications built with AngularJS can offer an excellent
user experience, when it comes to linking and navigation, one comparable to the Web
1.0 days. In practical terms, it means that we can once again allow our users to use the
back and forward buttons in the browser to navigate through the application. On top
of this, we can display nice, bookmarkable URLs in the browser's address bar.

Organizing Navigation

[190]

The $route service (and its provider – $routeProvider) allows us to structure
navigation in applications where only one part of the screen (one rectangle) should
be updated in response to a route change. The built-in $route service is largely
sufficient for many applications, but if the described "one route equals one rectangle
change" characteristic is too limiting for your use case, you might consider keeping
an eye on alternative, community-driven solutions. Or if you are brave enough,
consider rolling out your own routing system. You should be well prepared for this
now as this chapter covered the $location service, a lower-level service upon which
the $route service is built.

Toward the end of the chapter we went over a number of patterns, tips, and
solutions for problems that are commonly encountered in larger applications that
use routing. Hopefully, the examples provided in this section of the chapter are
readily applicable to your application as well! We would particularly encourage you
to move route definitions to the corresponding functional modules in order to avoid
maintaining a huge file containing all your route definitions.

Topics dealing with routing and navigation are linked to security considerations.
Indeed, in applications where not all information is public we need to restrict certain
users to a subset of available routes. The next chapter covers patterns for securing
routes as well as many other security-related topics in detail.

Securing Your Application
In any web application, we must ensure that sensitive data and actions are not
available to unauthorized users. The only really secure place in such an application
is within the server. Outside of this, we have to assume that the code can be
compromised, and so we must put checks in place at the point where data enters or
leaves our server. The first part of this chapter looks at what we must do on both the
client side and the server side to ensure this security, as given in the following points:

• Securing the server to prevent unauthorized access to data and HTML
• Encrypting the connection to prevent snooping
• Preventing cross-site scripting (XSS), and cross-site request forgery

(XSRF) attacks
• Blocking a JSON injection vulnerability

While security checks must always be done on the server, and this is most critical,
we should also provide a good user experience with a client interface that only gives
the user access to functionality that is appropriate to their permissions. We should
also provide a clean authentication process that does not upset the flow of their
interactions with the application. The second part of this chapter looks at how best
to support this in AngularJS, as given in the following points:

• The difference in securing a stateful, rich client application compared to
more traditional stateless, server-based applications

• Handling authorization errors from the server by intercepting
HTTP responses

• Restricting access to parts of the application by securing routes

Securing Your Application

[192]

Providing server-side authentication and
authorization
One thing that is common for all client/server applications is that the server is the
only place where data is safe. We cannot rely on code on the client side to block
access to sensitive information. Similarly, the server must never rely on the client to
validate data that is sent to it.

This is particularly pertinent in JavaScript applications, where it is
quite straightforward to read the source code, and then even modify
it to perform malicious actions.

In a real web application our server must provide the appropriate level of security.
For our demo application, the server has fairly simple security measures in place. We
implement authentication and authorization using Passport, which is an ExpressJS
plugin. The authenticated user ID is stored as part of an encrypted session cookie.
This is passed down to the browser, when the user is logged in. This cookie is sent
back to the server on each request, to allow the server to authenticate that request.

Handling unauthorized access
When a request is made to a URL, the server determines whether this URL requires
an authenticated user, and whether the authenticated user has sufficient privileges.
In our application, we have arranged for the server to respond with an HTTP 401
unauthorized error, if the client tries to do any of the following:

• Any non-GET request (for example POST, PUT, or DELETE) on a database
collection, when there is no current authenticated user

• Any non-GET request on the users or projects database collections, when the
user is not an administrator

In this way, we are able to secure data (JSON requests) from unauthorized access.
We could do the same with other assets such as HTML or images, if we wished to
control access to those too.

Providing a server-side authentication API
To allow the client application to authenticate users, our server exposes the following
HTTP API:

• POST /login: This message authenticates the user by the given username
and password parameters, passed in the body of the POST request.

Chapter 7

[193]

• POST /logout: This message logs out the current user by removing the
authentication cookie.

• GET /current-user: This message retrieves the current user information.

This interface is enough for us to demonstrate how to handle authentication and
authorization in our application.

In a commercial application, the security requirements would be more
complex, and you may also prefer to use a third-party authentication
scheme such as OAuth2 (see http://oauth.net/).

Securing partial templates
There are some situations where you don't want users to be able to access the
partial templates (HTML) for AngularJS routes to which they do not have
authorization. Perhaps, the templates contain layout information that implicitly
exposes sensitive information.

In this case, a simple solution is to ensure that requests for these partial templates are
checked for authorization on the server. First, we should not preload such templates
at application startup. And then, we should configure the server to check the current
user whenever one of these partial templates is requested, once again returning an
HTTP 401 unauthorized error, if unauthorized.

If we are relying on the server to check authorization on each partial
request, we need to ensure that the browser (or any proxy) is not
caching the requests for partials. To do this, the server should provide
the following HTTP headers, when serving up these partials:
Cache-Control: no-cache, no-store, must-revalidate

Pragma : no-cache

Expires : 0

AngularJS caches all the templates that it downloads in the $templateCache service.
If we want to secure our partials, we must also ensure that the partials are not cached
in a way that allows unauthorized access. We must delete these templates from
the $templateCache service before a new user logs in, to ensure that the new user
doesn't inadvertently have access to the templates.

Securing Your Application

[194]

We could delete templates from the $templateCache service, either selectively or
even completely at various points in the application. For instance, we could clear
out restricted templates when navigating away from a restricted route, or when
logging out. This can be complicated to manage, and the safest method is perhaps to
completely reload the page, that is, to refresh the browser, when the user logs out.

Reloading the application, by refreshing the browser page, has the
added benefit of clearing out any data that may have been cached in
AngularJS services.

Stopping malicious attacks
To be able to allow secure access to legitimate users, there has to be an element of
trust between the server and the browser. Unfortunately, there are a number of
attacks that can take advantage of this trust. With the correct support on the server,
AngularJS can provide protection against these security holes.

Preventing cookie snooping (man-in-the-
middle attacks)
Whenever you pass data over HTTP between a client and a server, there is an
opportunity for third parties to snoop on secure information, or even worse,
access your cookies to hijack your session and access the server, as though
they were you. This is often referred to as a "man-in-the-middle" attack, see
http://en.wikipedia.org/wiki/Man-in-the-middle_attack. The easiest
way to prevent these attacks is to use HTTPS rather than HTTP.

Any application, in which sensitive data passes between the
application and the server should use HTTPS to ensure that this
data is encrypted.

By encrypting the connection using HTTPS, we prevent sensitive data from
being read as it passes between the client and the server, and also we prevent
unauthorized users from reading authentication cookies from our requests and
hijacking our session.

In our demo application, the requests to the MongoLab DB are already sent over
HTTPS from our server. To provide complete security from this kind of snooping,
we should also ensure that our client interacts with our server over HTTPS as well.
Mostly, this is just a case of getting the server to listen over HTTPS, and the client to
make requests over HTTPS.

Chapter 7

[195]

Implementing this on the server is dependent on your choice of back-end technology,
and is beyond the scope of this book. But in Node.js you could use the https
module as shown in the following code:

var https = require('https');
var privateKey =
 fs.readFileSync('cert/privatekey.pem').toString();
var certificate =
 fs.readFileSync('cert/certificate.pem').toString();
var credentials = {key: privateKey, cert: certificate};
var secureServer = https.createServer(credentials, app);
secureServer.listen(config.server.securePort);

On the client side, we just have to ensure that the URL used to connect to the server
is not hardcoded to the HTTP protocol. The easiest way to do this is not to provide a
protocol at all in the URL.

angular.module('app').constant('MONGOLAB_CONFIG', {
 baseUrl: '/databases/',
 dbName: 'ascrum'
});

In addition, we should also ensure that the authentication cookie is restricted to
HTTPS requests only. We can do this by setting the httpOnly and secure options to
true, when creating the cookie on the server.

Preventing cross-site scripting attacks
A cross-site-scripting attack (XSS) is where an attacker manages to inject client-side
script into a web page, when viewed by another user. This is particularly bad if the
injected script makes a request to our server, because the server assumes that it is the
authenticated user who is making the request and allows it.

There are a wide variety of forms in which XSS attacks can appear. The most
common are where user-provided content is displayed without being properly
escaped to prevent malicious HTML from being rendered. The next section explains
how we can do this on the client, but you should also ensure that any user-provided
content is sanitized on the server, before being stored or sent back to the client.

Securing HTML content in AngularJS expressions
AngularJS escapes all HTML in text that is displayed through the ng-bind directive,
or template interpolation (that is text in {{curly braces}}). For example, using the
following model:

$scope.msg = 'Hello, World!';

Securing Your Application

[196]

And the markup fragment looks as follows:

<p ng-bind="msg"></p>

The rendering process will escape the tags, so they will appear as plain text, and
not as markup:

<p>Hello, World!</p>

This approach provides a pretty good defense against XSS attacks in general. If you
actually want to display text that is marked up with HTML, then you must either
trust it completely, in which case you can use the ng-bind-html-unsafe directive,
or sanitize the text by loading the ngSanitize module, and then using the ng-bind-
html directive.

Allowing unsafe HTML bindings
The following binding will render the tags as HTML to be interpreted by
the browser:

<p ng-bind-html-unsafe="msg"></p>

Sanitizing HTML
AngularJS has one more directive that will selectively sanitize certain HTML tags,
while allowing others to be interpreted by a browser, which is ng-bind-html. Its
usage is similar to the unsafe equivalent:

<p ng-bind-html="msg"></p>

In terms of escaping, the ng-bind-html directive is a compromise between behavior
of ng-bind-html-unsafe (allow all HTML tags) and ng-bind (allow no HTML tags
at all). It might be a good option for cases where we want to allow some HTML tags
to be entered by users.

The sanitization uses a whitelist of safe HTML tags, which is quite
extensive. The main tags that will be sanitized include the <script>
and <style> elements, as well as attributes that take URLs such as
href, src, and usemap.

The ng-bind-html directive resides in a separate module (ngSanitize), and
requires inclusion of an additional source file: angular-sanitize.js. You must
declare a dependency on the ngSanitize module if you plan to use the ng-bind-
html directive, as shown in the following code:

Chapter 7

[197]

angular.module('expressionsEscaping', ['ngSanitize'])
 .controller('ExpressionsEscapingCtrl', function ($scope) {
 $scope.msg = 'Hello, World!';
 });

The ng-bind-html directive uses the $sanitize service, which is also found inside
the ngSanitize module. This service is a function that takes a string, and then
returns a sanitized version of the string, as described in the following code:

var safeDescription = $sanitize(description);

Unless you are working with any existing legacy systems (For example
CMS, back-ends sending HTML, and so on), markup in the model
should be avoided. Such markup can't contain AngularJS directives and
requires the ng-bind-html-unsafe or ng-bind-html directive to
obtain the desired results.

Preventing the JSON injection vulnerability
There is a JSON injection vulnerability that allows evil third party websites to
access your secure JSON resources, if they return JSON arrays. This is done by
effectively loading the JSON as a script in a web page, and then executing it. See
http://haacked.com/archive/2008/11/20/anatomy-of-a-subtle-json-
vulnerability.aspx.

The $http service has a built-in solution to protect against this. To prevent the
browser from being able to execute the JSON returned from the secure resource,
you can arrange for your server to prefix all the JSON requests with the ")]}',\n"
string, which is not legal JavaScript, and so cannot be executed. The $http service
automatically strips this prefix string, if it appears from any JSON response. For
example, if your JSON resource returns the following array:

['a,'b','c']

This is vulnerable to the JSON injection attack. Instead, the server should return:

)]}',
['a','b','c']

This is not valid JavaScript. It cannot be executed by the browser, and so is no longer
vulnerable to attack. The $http service will automatically strip off this invalid prefix,
if found, before returning the valid JSON in its response object.

Securing Your Application

[198]

Preventing cross-site request forgery
In any application where the server must trust who the user is, that is, they are logged
in, and allows them access to actions on the server based on that trust, there is the
potential for other sites to pretend to be you, and then get access to those actions
themselves. This is called cross-site request forgery (XSRF). If you visit an evil site
when you are already logged into a secure site, the evil site's web page could post to
your secure site, since it trusts that you are currently authenticated.

This attack is often in the form of a fraudulent src attribute on an tag, which
the user inadvertently loads by browsing to an evil page, while still logged into a
secure site. When the browser tries to load the image, it actually makes a request to
the secure site.

The solution is for the server to provide a secret to the browser, which can only be
accessed by JavaScript running on the browser, and so would not be available in the
src attribute. Any request to the server should include this secret in its headers to
prove it is authentic.

The $http service has this solution built-in, in order to protect against such an
attack. You must arrange for the server to set a token in the session cookie called
XSRF-TOKEN, on the first GET request by the application. This token must be unique
for this session.

In the client application, the $http service will extract this token from the cookie,
and then attach it as a header (called X-XSRF-TOKEN) to every HTTP request it
makes. The server must check the token on each request, and then block access if it
is not valid. The AngularJS team recommends that the token is a digest of your site's
authentication cookie with salt for added security.

Adding client-side security support
The rest of this chapter will look at what we should do in our AngularJS application
running in the browser to provide security and give a consistent experience for the
user, when dealing with authentication and authorization.

Out of the box, AngularJS does not provide functionality to deal with authentication
and authorization. In our sample application, we developed services and directives
that can be used in our templates and controllers to display security-related
information, handle authorization failures, and manage logging in and logging out.

Chapter 7

[199]

security $dialog

login-toolbar login-form

This diagram shows two user interface elements, the login-toolbar and login-
form, both of which rely on the security service. The security service uses the
$dialog service to create a modal dialog box from the login-form element.

Creating a security service
The security service is a component, which we have developed provides
the primary API for our application to manage logging in and out, and to get
information about the current user. We can inject this service into controllers and
directives. These can then attach the following properties and methods of the service
to the scope, to have access to them in templates:

• currentUser: This property contains information about the currently
authenticated user, if any.

• getLoginReason(): This method returns a localized message,
explaining why we need to login, for example, The current user
does not have authorization.

• showLogin(): This method causes the login form to be shown. This is called
when the user clicks on the login button on the login toolbar, and when an
HTTP 401 unauthorized error response is intercepted.

• login(email, password): This method sends the specified credentials to
the server to be authenticated. This is called when the user submits the login
form. If the login is successful, the login form is closed, and any unauthorized
requests are retried (that is, the request is made again).

• logout(redirectTo): This method logs out the current user and redirects.
This is called when the user clicks on the logout button on the login toolbar.

• cancelLogin(redirectTo): This method gives up trying to login, any
unauthorized requests are discarded, and then the application redirects to
another $route. This is called if the user closes or cancels the login form.

Securing Your Application

[200]

Showing a login form
We need to allow the user to login to the application. The login form provides this.
It is actually comprised of a template (security/login/form.tpl.html), and a
controller (LoginFormController). The security service opens (showLogin())
or closes (login() or cancelLogin()) the login form, when authentication is
required or requested.

We are using the AngularUI bootstrap project's $dialog service for this. This
service allows us to display a form as a modal dialog box, by specifying a template
and a controller for the form.

You can find out more about the $dialog service at its website: http://angular-
ui.github.io/bootstrap/#/dialog.

In our security service, we have the two helpers: openLoginDialog() and
closeLoginDialog().

var loginDialog = null;
function openLoginDialog() {
 if (!loginDialog) {
 loginDialog = $dialog.dialog();
 loginDialog.open(
 'security/login/form.tpl.html',

Chapter 7

[201]

 'LoginFormController')
 .then(onLoginDialogClose);
 }
}
function closeLoginDialog(success) {
 if (loginDialog) {
 loginDialog.close(success);
 loginDialog = null;
 }
}

To open the dialog box, we call openLoginDialog(), passing in the URL of the login
form template, security/login/form.tpl.html, and the name of the controller,
LoginFormController. This returns a promise object that will be resolved, when the
dialog box is closed, which we do by calling closeLoginDialog(). When the dialog
box closes, we call the onLoginDialogClose() method, which will clean up and
then run the code based on whether the user logged in successfully or not.

There is nothing very special about the template and controller, they just provide a
simple form for entering an email and a password, and connect it up to the security
and service. The Sign in button is handled by security.login(), and the Cancel
button is handled by security.cancelLogin().

Creating security-aware menus and toolbars
For a good user experience, we should not display things for which the user has no
permission. Hiding elements from the user, however, will not prevent a determined
user from accessing the functionality, it is purely to prevent the user being confused
by trying to use features to which they have no permission. It is common to do
this selective display in navigation menus and toolbars. To make it easier to write
templates that react to the current authentication and authorization state of the user,
we can create a currentUser service.

Hiding the menu items
We should only show menu items that are appropriate for the current
user's permissions.

Securing Your Application

[202]

Our navigation menu has a set of ng-show directives on the elements that check
whether the current user has relevant authorization, and then shows or hides the
menu items accordingly.

<ul class="nav" ng-show="isAuthenticated()">
 <li ...>My Projects
 <li ... ng-show="isAdmin()">
 <a ... >Admin ...
 <ul ...>
 <a ... >Projects
 <a ... >Users

Here, you can see that the whole navigation tree is hidden if the user is
not authenticated. Further, the admin options are hidden, if the user is not
an administrator.

Creating a login toolbar
We can create a reusable login-toolbar widget directive that simply displays
a Log in button if no one is logged in, or the current user's name and a Log out
button, if someone is logged in.

Here is the template for this directive. It injects the currentUser and security
service onto the directive's scope, so we can display user information, as well as
show or hide the Log in and Log out buttons.

<ul class="nav pull-right">

<li class="divider-vertical">

<li ng-show="isAuthenticated()">
 {{currentUser.firstName}} {{currentUser.lastName}}

<li ng-show="isAuthenticated()">
 <form class="navbar-form">
 <button class="btn" ng-click="logout()">Log out</button>
 </form>

Chapter 7

[203]

<li ng-hide="isAuthenticated()">
 <form class="navbar-form">
 <button class="btn" ng-click="login()">Log in</button>
 </form>

Supporting authentication and
authorization on the client
Securing a rich client application, such as we are building here with AngularJS, is
significantly different to securing a traditional, server-based web application. This
has an impact on how and when we authenticate and authorize users.

Server-based web applications are generally stateless on the browser. We trigger a
round-trip request for a complete new page from the server on every action. So, the
server can compute the user's authorization levels on each request, and then redirect
to some login page, if necessary.

In a traditional, server-based web app, we would simply send the browser
to some login page, and then once login is successful, we redirect back to
the original page that was requesting the secure resource.

Rich clients do not send full-page requests on each action. They tend to maintain
their own state and only pass data to and from the server. The server doesn't know
the current state of the application, which makes it difficult to implement the
traditional redirect back, after being sent to a login page. The client would have to
serialize all its current state, and then send it to the server. Then, after a successful
login, the server would have to pass this state back to the client, so that it could
continue where it left off.

Handling authorization failures
When the server refuses to process an unauthorized request, returning an HTTP 401
unauthorized error, we need to give the user an opportunity to authenticate, and
then retry the request. The request could have been part of some complex process on
the client, which has no URL to identify it. If we redirected to a login page, then we
would have to stop the current action, and the user would probably have to restart
what they were doing again after authentication.

Securing Your Application

[204]

Instead, we will intercept the responses of unauthorized requests to the server,
before they get back to the caller. We will suspend the current flow of the
application business logic, do the authentication, and then retry the failed requests
to resume the flow.

User Client App Server

Authenticate

OK

Retry Item
Request

Item Data

View Item

Show Login

Request Item
Data

Auth Error

Login

Show Item

Intercepting responses
Remember that the $http requests return promises, which are resolved with
the response from the server. The power of promises is that we can chain them,
transform the response data that is returned, and even return a promise to a
completely different deferred object. As described in Chapter 3, Communicating with
a Back-end Server, AngularJS lets you create interceptors that can work with the server
response, before it is received by the original caller.

HTTP response interceptors
A response interceptor is simply a function that receives a promise object for a
response from the server, and then returns a promise object for the same. On each
$http request, the response promise object will be passed to each interceptor, in turn
giving them each an opportunity to modify the promise object, before it is returned
to the original caller.

Generally, an interceptor function will use a call to then() to chain handlers onto the
promise object it is passed, and then creates a new promise, which it then returns.
Inside these handlers, we can read and modify the response object, such as the
headers and data, as shown in the following example:

function myInterceptor(promise) {
 return promise.then(function(response) {

Chapter 7

[205]

 if (response.headers()['content-type'] == "text/plain") {
 response.data = $sanitize(response.data);
 };
 return response;
 });
}

This interceptor checks the response object's content-type. If it is text/plain, we
sanitize the response object's data, and then return the response promise object.

Creating a securityInterceptor service
We will create a securityInterceptor service that will work with the response
promise object from the server. In our interceptor, we check to see if the response
promise object is rejected with a 401 authorization error. In that case, we can create
a new promise for a retry of the original request, and then return that to the caller,
instead of the original.

The original idea for this came from an excellent blog post
by Witold Szczerba: http://www.espeo.pl/2012/02/26/
authentication-in-angularjs-application.

We create the securityInterceptor as a service, and then add it to the $http
service responseInterceptors array.

.config(['$httpProvider', function($httpProvider) {
 $httpProvider.responseInterceptors.push(
 'securityInterceptor');
}]);

We have to add the securityInterceptor service by name,
rather than the object itself, because it depends upon services that
are not available in the config block.

For our securityInterceptor service we implement the interceptor as a service, so
that we can have other services injected into it.

We can't inject $http directly into our interceptor, because it
would create a circular dependency. Instead, we inject $injector
service, and then use it to access the $http service at call time.

.factory('securityInterceptor',
 ['$injector', 'securityRetryQueue',

Securing Your Application

[206]

 function($injector, queue) {
 return function(promise) {
 var $http = $injector.get('$http');
 return promise.then(null, function(response) {
 if(response.status === 401) {
 promise = queue.pushRetryFn('unauthorized-server',
 function() {return $http(response.config); }
);
 }
 return promise;
 });
 };
}])

Our interceptor watches for error responses that have a 401 status. It does this by
providing a handler for the second parameter of the call to then(). By providing
null for the first parameter, we indicate that we are not interested in intercepting
the promise object if it is resolved successfully.

When a request fails with a 401 error, the interceptor creates an entry in the
securityRetryQueue service, which is described later. This service will repeat
the failed request, when the queue is processed after a successful login.

The important thing to realize here is that promise handlers can either return a
value or a promise object:

• If a handler returns a value, the value is passed straight on to the next
handler in the chain

• If a handler returns a promise object, the next handler in the chain is not
triggered until this new promise object has been resolved (or rejected).

In our case, when the original response returns a 401 unauthorized error, we actually
return a new retry promise, for a retry item in the securityRetryQueue service
instead of the original promise object for the response. This new retry promise
object will be resolved, if the securityRetryQueue is retried and a new successful
response is received from the server, or rejected if the securityRetryQueue is
cancelled, or the response is another error.

While our original caller sits patiently waiting for some response to return from
the server, we can pop up a login box, allow the user to authenticate, and then
eventually retry the items in the queue. Once the original caller receives a successful
response, they are able to carry on, as though they had been authenticated all along.

Chapter 7

[207]

Creating the securityRetryQueue service
The securityRetryQueue service provides a place to store all those items that
will be needed for retry, once the user authenticates successfully. It is basically
a list, to which you add a function (to be called, when the item is retried) with
pushRetryFn(). We process the items in the list by calling retryAll() or
cancelAll(). Here is the retryAll() method.

retryAll: function() {
 while(retryQueue.length) {
 retryQueue.shift().retry();
 }
}

All items in the queue must have two methods, retry() and cancel(). The
pushRetryFn()method makes it easier to set up these objects, as shown in the
following code:

pushRetryFn: function(reason, retryFn) {
 var deferredRetry = $q.defer();
 var retryItem = {
 reason: reason,
 retry: function() {
 $q.when(retryFn()).then(function(value) {
 deferredRetry.resolve(value);
 },function(value) {
 deferredRetry.reject(value);
 });
 },
 cancel: function() {
 deferredRetry.reject();
 }
 };
 service.push(retryItem);
 return deferredRetry.promise;
}

This function returns a promise to retry the provided retryFn function. This retry
promise object will be resolved or rejected, when the item in the queue is retried.

We have to create our own new deferred object for this Retry
promise object because its resolution or rejection is triggered, not by the
response from the server, but by the call to retry() or cancel().

Securing Your Application

[208]

Notifying the security service
The last piece in the puzzle is how to notify the security service, when new
items are added. In our implementation, we simply expose a method on the
securityRetryQueue called onItemAdded(), which is called each time we
push an item into the queue as follows:

push: function(retryItem) {
 retryQueue.push(retryItem);
 service.onItemAdded();
}

The security service overrides this method with its own, so that it can react
whenever there are authorization failures, as given in the following code:

securityRetryQueue.onItemAdded = function() {
 if (securityRetryQueue.hasMore()) {
 service.showLogin();
 }
};

This code is found in the security service, where the variable service is the
security service itself.

Preventing navigation to secure routes
Preventing access to secure routes using client-side code is not secure. The only
secure way to guarantee that users cannot navigate to unauthorized areas of the
application is to require that the page be reloaded; this provides the server the
opportunity to refuse access to the URL. Reloading the page is not ideal, because
it defeats many of the benefits of a rich client application.

While reloading the page to do security is not usually a good
idea in a rich client application. It can be useful, if you have a
clear distinction between areas of your application. For instance,
if your application was really two subapplications, each having
very different authentication requirements, you could host them at
different URLs, and the server could ensure that the user had the
necessary permissions, before allowing each subapplication to load.

In practice, since we can secure what data is displayed to the user, it is not so important
to block access to routes using redirects to the server. Instead, we can simply block
navigation to unauthorized routes on the client when the route changes.

Chapter 7

[209]

This is not a security feature. It is really just a way to help users to
authenticate correctly, if they navigate directly to a URL that requires
some authorization.

Using route resolve functions
Each route defined with the $routeProvider service provider can contain a
set of route resolve functions. Each of these is a function that returns a promise
object, which must be resolved before navigation to the route can succeed. If any
of the promise object is rejected, then navigation to that route is cancelled.

A very simple approach to authorization would be to provide a route
resolve function that only resolves successfully if the current user has the
necessary authorization.

$routeProvider.when('/admin/users', {
 resolve: [security, function requireAdminUser(security) {
 var promise = service.requestCurrentUser();
 return promise.then(function(currentUser) {
 if (!currentUser.isAdmin()) {
 return $q.reject();
 }
 return currentUser;
 });
 }]
});

Here, we request a promise for the current user from the security service, and
then reject it if the user is not an administrator. The trouble with this method is
that the user is not given an opportunity to log in and provide authorization.
The route is just blocked.

In the same way that we dealt with HTTP 401 authorization errors from the server,
we can also retry authorization failures, when navigating to a route. All we need
is to add a retry item to the securityRetryQueue service, whenever such a route
resolve fails, which will attempt the resolve again, once the user has logged in.

function requireAdminUser(security, securityRetryQueue) {
 var promise = security.requestCurrentUser();
 return promise.then(function(currentUser) {
 if (!currentUser.isAdmin()) {
 return securityRetryQueue.pushRetryFn(
 'unauthorized-client',

Securing Your Application

[210]

 requireAdminUser);
 }
 });
}

Now, if a non-admin user attempts to access a route, which has this method as a
resolve, a new item is added to the securityRetryQueue service. Adding this
item to the queue will trigger the security service to display the login form,
where the user can login with admin credentials. Once the login succeeds, the
requireAdminUser method will be retried and, if successful, the route change
will be allowed to succeed.

Creating the authorization service
To support these route resolve methods, we create a service, called
authorization, which provides methods to check whether the current user
has specified permissions.

In a more complex application, we would create a service that could
be configured with a range of roles and permissions to support the
security requirements of the application.

For our application, this service is very simple, and only contains two methods:
requireAuthenticatedUser() and requireAdminUser(), which can be described
as follows:

• requireAuthenticatedUser(): This method returns a promise that will
only be resolved when the user has logged in successfully.

• requireAdminUser(): This method returns a promise that will only be
resolved when an administrator has logged in successfully.

Since these methods are in a service, which is not available directly while configuring
the $routeProvider, we would normally have to call these methods in a function,
wrapped in an array as follows:

 ['securityAuthorization', function(securityAuthorization) {
 return securityAuthorization.requireAdminUser();
 }]

Chapter 7

[211]

To prevent us from having to repeat ourselves, we can actually put this array
into the provider for the authorization service, as given in the following code:

.provider('securityAuthorization', {
 requireAdminUser: [
 'securityAuthorization',
 function(securityAuthorization) {
 return securityAuthorization.requireAdminUser();
 }
],

 $get: [
 'security',
 'securityRetryQueue',
 function(security, queue) {
 var service = {
 requireAdminUser: function() {
 },
 };
 return service;
 }
]
});

The actual authorization service appears in the $get property. We place the route
resolve helpers, such as requireAdminUser(), as methods on the provider. When
configuring our routes, we simply inject the provider, and then use these methods
as follows:

 config([
 'securityAuthorizationProvider',
 function (securityAuthorizationProvider) {
 $routeProvider.when('/admin/users', {
 resolve: securityAuthorizationProvider.requireAdminUser
 });
 }
])

Now our routes are checked before we navigate to them, and the user is given an
opportunity to authenticate with suitably authorized credentials, if necessary.

Securing Your Application

[212]

Summary
In this chapter, we have looked at some common security issues in rich client web
applications, and how they compare to traditional, server-based web applications.
In particular, while security checks must always be done at the server, the client and
the server must also work together to prevent malicious attacks. We implemented
a number of services and directives to support security in our application. We saw
how the AngularJS promise-based $http service allows us to intercept responses to
unauthorized server requests, and then give the user the opportunity to authenticate
without having to interrupt or restart the flow of the application logic. Finally, we
made use of route resolve functions in our application routes to check authorization,
before the user is allowed to navigate to restricted parts of our application.

We are now going to look at how we can teach our browser some new tricks by
developing our own directives, which will allow us to develop user interface
components in a more declarative manner.

Building Your Own Directives
While you can get a long way using just controllers and the built-in directives that
come with AngularJS, there will inevitably come a point in the development of your
application where you will need to teach your browser some new tricks by building
your own directives. The main reasons why you would want to develop custom
directives are:

• You need to manipulate the DOM directly, such as with JQuery
• You want to refactor parts of your application to remove repeated codes
• You want to create new HTML mark-up for non-developers to use,

such as designers

This chapter will introduce you to developing your own AngularJS directives.
Directives appear in many different places and have different uses. In this chapter
we will show:

• How to define a directive
• Examples of the most common types of directive and how to code them
• Directives that rely on each other
• How to unit test directives

Building Your Own Directives

[214]

What are AngularJS directives?
Directives are, arguably, the most powerful feature of AngularJS. They are the
glue that joins your application logic to the HTML DOM. The following diagram
illustrates how directives fit into the architecture of an AngularJS application:

SCOPES
&

DIGESTS

Business Logic

APPLICATION
LOGIC

SERVICES
C

O
N

TR
O

LL
ER

S

User Interface

HTML
MARK-UP

D
IR

EC
TI

VE
S

By extending and customizing how the browser behaves with regard to the HTML,
directives let the application developer, or designer, focus their attention on what
the application should do, or look like, in a declarative manner, rather than on
programming low level interactions with the DOM. This makes the development
process faster, more maintainable, and most importantly more fun!

AngularJS directives add new meaning and behavior to mark up in your HTML
application. It is inside the directives, where you can get low level and dirty with
DOM manipulation, usually working with jQuery or AngularJS's jqLite.

If you load jQuery before AngularJS, then AngularJS will use jQuery
for its DOM manipulation. Otherwise AngularJS assumes that you
are not using jQuery and implements its own internal, minimal
version of jQuery, which is often referred to as jqLite.

The job of a directive is to modify the DOM structure and to link the scope to the
DOM. This means manipulating and binding DOM nodes based on data in the scope,
but also binding DOM events to call methods on the scope.

Understanding the built-in directives
AngularJS comes with a number of built-in directives to the framework. There
are the obvious custom HTML elements and attributes, such as ng-include, ng-
controller and ng-click. There are also what appear to be standard HTML
elements, such as script, a, select, and input. All of these directives are provided
by the core AngularJS framework.

Chapter 8

[215]

What is great is that the built-in directives are defined using the same directive
API that we can use in our own applications. There is nothing special about them
as compared to directives that application developers can build. Looking at the
directives in the AngularJS source code can be a great way to learn how to develop
your own directives.

The built-in AngularJS directives can be found in the src/ng/
directive folder of the AngularJS project (https://github.com/
angular/angular.js/tree/master/src/ng/directive/).

Using directives in the HTML markup
Directives can appear as HTML elements, attributes, comments, or CSS classes.
Also, any directive can be identified in the HTML in a number of different formats.

Here are some examples of using a directive in the HTML mark-up (not all of these
would be appropriate depending on the use of the directive):

<my-directive></my-directive>
<input my-directive>
<!-- directive: my-directive-->
<input class="my-directive">

The canonical name, when used to define and refer to a directive in JavaScript, is the
camelCased version, for example, myDirective.

Following the directive compilation
life-cycle
When AngularJS compiles an HTML template it traverses the DOM supplied by the
browser and tries to match each element, attribute, comment, and CSS class against
its list of registered directives. When it matches a directive, AngularJS calls the
directive's compile function, which returns a linking function. AngularJS collects all
of these linking functions.

The compilation stage is done before the scope has been
prepared, and no scope data is available in the compile function.

Once all the directives have been compiled, AngularJS creates the scope and links
each directive to the scope by calling each of the linking functions.

Building Your Own Directives

[216]

At the linking stage, the scope is being attached to the directive,
and the linking function can then wire up bindings between the
scope and the DOM.

The compile stage is mostly an optimization. It is possible to do almost all the
work in the linking function (except for a few advanced things like access to the
transclusion function). If you consider the case of a repeated directive (inside ng-
repeat), the compile function of the directive is called only once, but the linking
function is called on every iteration of the repeater, every time the data changes.

Transclusion functions are explained in detail in Chapter 9,
Building Advanced Directives

The following table shows what compile functions are called when the AngularJS
compiler matches the directives. You can see that each compile function is only
called once when each directive is used in a template.

Template Compile step
<ul my-dir> myDir compile function
 <li ng-repeat="obj in objs" my-dir>

ngRepeat compile function
myDir compile function

The following table shows what linking functions are called when the template is
converted to the final HTML. You can see that the linking function for myDir is called
on every iteration of the repeater:

HTML Linking step
<ul my-dir> myDir linking function
<!-- ng-repeat="obj in objs" -> ngRepeat linking function
 <li my-dir> myDir linking function
 <li my-dir> myDir linking function
 <li my-dir> myDir linking function

If you have some complex functionality that does not rely on the data in the scope,
then it should appear in the compile function, so that it is only called once.

Chapter 8

[217]

Writing unit tests for directives
Directives have low level access to the DOM and can be complex. This makes them
prone to errors and hard to debug. Therefore, more than the other areas of your
application, it is important that directives have a comprehensive range of tests.

Writing unit tests for directives can seem daunting at first but AngularJS provides
some nice features to make it as painless as possible and you will reap the benefits
when your directives are reliable and maintainable.

AngularJS has a comprehensive set of tests for its built-in directives.
They can be found in the test/ng/directive folder of the AngularJS
project (https://github.com/angular/angular.js/tree/
master/test/ng/directive/).

The general strategy when testing directives is as follows:

• Load the module containing the directive
• Compile a string of mark-up containing the directive to get linking function
• Run the linking function to link it to the $rootScope
• Check that the element has the properties that you expect

Here is a common skeleton unit test for a directive:

describe('myDir directive', function () {
 var element, scope;

 beforeEach(module('myDirModule'));

 beforeEach(inject(function ($compile, $rootScope) {
 var linkingFn = $compile('<my-dir></my-dir>');
 scope = $rootScope;
 element = linkingFn(scope);
 }));

 it('has some properties', function() {
 expect(element.someMethod()).toBe(XXX);
 });

 it('does something to the scope', function() {
 expect(scope.someField).toBe(XXX);
 });

 ...
});

Building Your Own Directives

[218]

Load the module that contains the directive into the test, then create an element
containing this directive, using the $compile and $rootScope functions. Keep a
reference of element and $scope so that it is available in all the tests later.

Depending upon the kind of tests you are writing you may want to
compile a different element in each it clause. In this case you should
keep a reference to the $compile function too.

Finally, test whether the directive performs as expected by interacting with it
through jQuery/jqLite functions and through modifying scope.

In cases where your directive is using $watch, $observe, or $q, you will need to
trigger a $digest before checking your expectations. For example:

it("updates the scope via a $watch", function() {
 scope.someField = 'something';
 scope.$digest();
 expect(scope.someOtherField).toBe('something');
});

In the rest of this chapter we will introduce our custom directives through their
unit tests, in keeping with the concept of Test Driven Development (TDD).

Defining a directive
Each directive must be registered with a module. You call directive() on the
module passing in the canonical name of the directive and a factory function
that returns the directive definition.

angular.module('app', []).directive('myDir', function() {
 return myDirectiveDefinition;
});

The factory function can be injected with services to be used by the directive.

A directive definition is an object whose fields tell the compiler what the directive
does. Some of the fields are declarative (for example, replace: true, which tells
the compiler to replace the original element with what is in the template). Some
fields are imperative (for example, link: function(…), which provides the linking
function to the compiler.

Chapter 8

[219]

This table describes all the fields that can be used in a directive definition:

Field Description
name The name of the directive.
restrict In what kind of mark-up this directive can appear.
priority Hint to the compiler of the order that directives should be

executed.
terminal Whether the compiler should continue compiling directives

below this.
link The link function that will link the directive to the scope.
template A string that will be used to generate mark-up for this directive.
templateUrl A URL where the template for this directive may be found.
replace Whether to replace this directive's element with what is in the

template.
transclude Whether to provide the contents of this directive's element for

use in the template and compile function.
scope Whether to create a new child scope or isolated scope for this

directive.
controller A function that will act as a directive controller for this directive.
require Requires a directive controller from another directive to be

injected into this directive's link function.
compile The compile function that can manipulate the source DOM and

will create the link function and is only used if a link has not
been provided above.

Most directives that you are likely to write will only need some of these fields. The rest
of this chapter will show various custom directives from our SCRUM application. For
each directive, we will look at the relevant parts of the directive definition.

Styling buttons with directives
We are using Bootstrap CSS styles for our application. This CSS library specifies
mark-up and CSS classes to ensure that buttons are styled correctly. For instance
a button might have mark-up of the form:

<button type="submit"

 class="btn btn-primary btn-large">Click Me!</button>

Having to remember to apply these classes is error prone and time consuming.
We can build a directive to make this easier and more reliable.

Building Your Own Directives

[220]

Writing a button directive
All the buttons in our application should be styled as a Bootstrap CSS button. Instead
of having to remember to add class="btn" to every button, we can add a button
directive to do this for us. The unit tests for this look like:

describe('button directive', function () {
 var $compile, $rootScope;
 beforeEach(module('directives.button'));
 beforeEach(inject(function(_$compile_, _$rootScope_) {
 $compile = _$compile_;
 $rootScope = _$rootScope_;
 }));

 it('adds a "btn" class to the button element', function() {
 var element = $compile('<button></button>')($rootScope);
 expect(element.hasClass('btn')).toBe(true);
 });
 });
});

We load the module, create a button, and check that it has the correct CSS class.

Remember that the injector ignores a pair of underscores (for example,
$compile) surrounding the parameter name. This allows us to copy
the injected services into variables with the correct name for use later
(for example, $compile = _$compile_).

Further any button with type="submit" should automatically be styled as a primary
button and it would be nice to set the size of the button through an attribute size. We
would like to simply write:

<button type="submit" size="large">Submit</button>

We would create unit tests like this:

it('adds size classes correctly', function() {
 var element = $compile('<button size="large"></button>')
($rootScope);
 expect(element.hasClass('btn-large')).toBe(true);
});

it('adds primary class to submit buttons', function() {
 var element = $compile('<button type="submit"></button>')
($rootScope);
 expect(element.hasClass('btn-primary')).toBe(true);
});

Chapter 8

[221]

Let's look at how this directive could be implemented:

myModule.directive('button', function() {
 return {
 restrict: 'E',
 compile: function(element, attributes) {
 element.addClass('btn');
 if (attributes.type === 'submit') {
 element.addClass('btn-primary');
 }
 if (attributes.size) {
 element.addClass('btn-' + attributes.size);
 }
 }
 };
});

We are assuming that we have a myModule module already defined.

The name of our directive is 'button' and it is restricted to only appear as an
element (restrict: 'E'). This means that this directive will be applied whenever
the AngularJS compiler comes across the button element. In effect, we are adding
behavior to the standard HTML button element.

The only other part of this directive is the compile function. This function will be
called whenever the compiler matches this directive. The compile function is passed
a parameter called element. This is a jQuery (or jqLite) object that references the
DOM element where the directive appeared, in this case, the button element itself.

In our compile function we simply add CSS classes to the element. based on the
values of the attributes on the element. We use the injected attributes parameter to
access the value of the attributes on the element.

We can do all these modifications in the compile function rather than the linking
function because our changes to the element do not rely on the scope data that
will be bound to the element. We could have put this functionality into the linking
function instead, but if the button appears in an ng-repeat loop, then addClass()
would be called for each iteration of the button.

See Following the directive compilation life-cycle section for a detailed
discussion of this.

Building Your Own Directives

[222]

By putting the functionality in the compile function, it is only called once, and the
button is simply cloned by the ng-repeat directive. If you are doing complex work
on the DOM then this optimization can make a significant difference, especially if
you are iterating over a large collection.

Understanding AngularJS widget
directives
One of the most powerful features of directives is to be able to create your own
domain-specific tags. In other words, you can create custom elements and attributes
that give new meaning and behavior to the mark-up in your HTML that is specific to
the domain for which you are building the application.

For example, similar to standard HTML tags, you could create a <user> element
displaying user information or a <g-map> element that lets you interact with a
Google map. The possibilities are endless and the benefit is that your mark-up
matches the domain in which you are developing.

Writing a pagination directive
In our SCRUM app, we often have large lists of tasks or backlog items that are
unwieldy to display on the screen in one go. We use pagination to break up the
lists into manageable pages of items. It is common to have a pagination control
block on our screen that links to the pages in the list.

The Bootstrap CSS framework provides a clean design for styling such a widget.

We will implement this pagination block as a reusable widget directive that we
use in our mark-up without having to think about the detail of how it works. The
mark-up will look like this:

<pagination num-pages="tasks.pageCount"
 current-page="tasks.currentPage">
</pagination>

Chapter 8

[223]

Writing tests for the pagination directive
The tests for this widget need to cover all the changes that can occur both on the
$scope function and from the user clicking on the links. Here is a selection of the
more significant tests:

describe('pagination directive', function () {
 var $scope, element, lis;
 beforeEach(module('directives'));
 beforeEach(inject(function($compile, $rootScope) {
 $scope = $rootScope;
 $scope.numPages = 5;
 $scope.currentPage = 3;
 element = $compile('<pagination num-pages="numPages" current-
page="currentPage"></pagination>')($scope);
 $scope.$digest();
 lis = function() { return element.find('li'); };
 }));

 it('has the number of the page as text in each page item',
function() {
 for(var i=1; i<=$scope.numPages;i++) {
 expect(lis().eq(i).text()).toEqual(''+i);
 }
 });

 it('sets the current-page to be active', function() {
 var currentPageItem = lis().eq($scope.currentPage);
 expect(currentPageItem.hasClass('active')).toBe(true);
 });

...

 it('disables "next" if current-page is num-pages', function() {
 $scope.currentPage = 5;
 $scope.$digest();
 var nextPageItem = lis().eq(-1);
 expect(nextPageItem.hasClass('disabled')).toBe(true);
 });

 it('changes currentPage if a page link is clicked', function() {
 var page2 = lis().eq(2).find('a').eq(0);
 page2.click();
 $scope.$digest();

Building Your Own Directives

[224]

 expect($scope.currentPage).toBe(2);
 });

...

 it('does not change the current page on "next" click if already at
last page', function() {
 var next = lis().eq(-1).find('a');
 $scope.currentPage = 5;
 $scope.$digest();
 next.click();
 $scope.$digest();
 expect($scope.currentPage).toBe(5);
 });

 it('changes the number of items when numPages changes', function() {
 $scope.numPages = 8;
 $scope.$digest();
 expect(lis().length).toBe(10);
 expect(lis().eq(0).text()).toBe('Previous');
 expect(lis().eq(-1).text()).toBe('Next');
 });

});

Using an HTML template in a directive
This widget requires that we generate some HTML tags to replace the directive. The
simplest way to do this is to use a template for the directive. Here is the mark-up for
this template:

<div class="pagination">
 <li ng-class="{disabled: noPrevious()}">
 <a ng-click="selectPrevious()">Previous

 <li ng-repeat="page in pages"
 ng-class="{active: isActive(page)}">
 <a ng-click="selectPage(page)">{{page}}

 <li ng-class="{disabled: noNext()}">
 <a ng-click="selectNext()">Next

</div>

Chapter 8

[225]

The template uses an array called pages and a number of helper functions, such
as selectPage() and noNext(). These are internal to the implementation of the
widget. They need to be placed on a scope for the template to access them but they
should not appear on the scope where the widget is used. To achieve this we can ask
the compiler to create a new isolated scope for our template.

Isolating our directive from its parent scope
We do not know what the scope will contain at the point where our directive is used.
It is a good practice, therefore, to provide our directive with a well-defined public
facing interface. This ensures that the directive cannot rely on or be affected by
arbitrary properties on the scope where it is used.

We have three options for the scope to be used in our directive and its template. This
is defined in the directive definition:

• To reuse the scope, from the place where the widget is used. This is the
default and corresponds to scope: false.

• To create a child scope, which prototypically inherits from the scope where
the widget is used. You specify this with scope: true.

• To create an isolated scope, which does not prototypically inherit, so that it is
completely isolated from its parent. You specify this by passing an object to
the scope property: scope: { ... }.

We want to completely decouple our widget's template from the rest of the
application, so that there is no danger of data leaking between the two. We
will use isolated scope as shown in the following image:

Parent

Scope

Child

Scope

Isolated

Scope

Widget directive

prototype $Parent

Parent

Scope

$Parent

Building Your Own Directives

[226]

While an isolated scope does not prototypically inherit from its parent,
it can still access its parent's scope through the $parent property.
But this is considered a bad practice because you are undermining the
isolation of the directive from its surroundings.

Since our scope is now isolated from the parent scope, we need to explicitly map
values between the parent scope and the isolated scope. This is done by referencing
AngularJS expressions on the attributes of the element where the directive appears.
In the case of our pagination directive, the num-pages and current-page attributes
fulfill this role.

We can synchronize the expressions in these attributes with properties on the
template scope through watches. We can set this up manually or we can ask
AngularJS to wire them up for us. There are three types of interface we can specify
between the element's attributes and the isolated scope: interpolate (@), data
bind (=), and expression (&). You specify these interfaces as key-value pairs on
the scope property of the directive definition.

The key is the name of the field on the isolated scope. The value is one of @, =, or &
followed by the name of the attribute on the element:

scope: {
 isolated1: '@attribute1',
 isolated2: '=attribute2',
 isolated3: '&attribute3'
}

Here we have defined three fields on the isolated scope and AngularJS will map their
values from the specified attributes on the element where the directive appears.

If the attribute name is omitted from the value, then it is assumed that
the attribute has the same name as the isolated scope field:
scope: { isolated1: '@' }

It will expect the attribute to be called isolated1.

Interpolating the attribute with @
The @ symbol indicates that AngularJS should interpolate the value of the specified
attribute and update the isolated scope property when it changes. Interpolation is
used with {{}} curly braces to generate a string using values from the parent scope.

Chapter 8

[227]

A common mistake is to expect an interpolated object to be the object
itself. Interpolation always returns a string. So if you have an object, say
user has a field called userName, then the interpolation of {{user}}
will convert the user object to a string and you will not be able to
access the userName property on the string.

This attribute interpolation is equivalent to manually $observe the attribute:

attrs.$observe('attribute1', function(value) {
 isolatedScope.isolated1 = value;
});
attrs.$$observers['attribute1'].$$scope = parentScope;

Binding data to the attribute with =
The = symbol indicates that AngularJS should keep the expression in the specified
attribute and the value on the isolated scope in sync with each other. This is a two-way
data binding that allows objects and values to be mapped directly between the inside
and outside of the widget.

Since this interface supports two way data binding, the expression given
in the attribute should be assignable (that is, refers to a field on the
scope or an object) and not an arbitrary computed expression.

This binding is a bit like setting up two $watch functions:

var parentGet = $parse(attrs['attribute2']);
var parentSet = parentGet.assign;
parentScope.$watch(parentGet, function(value) {
 isolatedScope.isolated2 = value;
});
isolatedScope.$watch('isolated2', function(value) {
 parentSet(parentScope, value);
});

The actual implementation is more complex to ensure stability between the two scopes.

Providing a callback expression in the
attribute with &
The & symbol indicates that the expression provided in the attribute on the element
will be made available on the scope as a function that, when called, will execute the
expression. This is useful for creating callbacks from the widget.

Building Your Own Directives

[228]

This binding is equivalent to $parse the expression in the attribute and exposing the
parsed expression function on the isolated scope:

parentGet = $parse(attrs['attribute3']);
scope.isolated3 = function(locals) {
 return parentGet(parentScope, locals);
};

Implementing the widget
The following is the pagination directive definition object:

myModule.directive('pagination', function() {
return {
 restrict: 'E',
 scope: {
 numPages: '=',
 currentPage: '='
 },
 template: ...,
 replace: true,

The directive is restricted to appear as an element. It creates an isolated scope
with numPages and currentPage data, which is bound to attributes num-pages
and current-page, respectively. The directive element will be replaced with the
template shown earlier:

 link: function(scope) {
 scope.$watch('numPages', function(value) {
 scope.pages = [];
 for(var i=1;i<=value;i++) { scope.pages.push(i); }
 if (scope.currentPage > value) {
 scope.selectPage(value);
 }
 });

 ...

 scope.isActive = function(page) {
 return scope.currentPage === page;
 };

 scope.selectPage = function(page) {
 if (! scope.isActive(page)) {
 scope.currentPage = page;
 }

Chapter 8

[229]

 };

 ...

 scope.selectNext = function() {
 if (!scope.noNext()) {
 scope.selectPage(scope.currentPage+1);
 }
 };
}

The link function sets up a $watch property to create the pages array based on the
value of numPages. It adds the various helper functions to the isolated scope that
will be used in the directive's template.

Adding a selectPage callback to the directive
It would be useful to provide a function or an expression that is evaluated when
the page changes. We can do this by specifying a new attribute on the directive
and mapping it to the isolated scope using &.

<pagination
 num-pages="tasks.pageCount"
 current-page="tasks.currentPage"
 on-select-page="selectPage(page)">
</pagination>

What we are saying here is that whenever the selected page changes, the directive
should call the selectPage(page) function passing it to the new page number as
a parameter. Here is a test of this feature:

 it('executes the onSelectPage expression when the current page
changes', inject(function($compile, $rootScope) {
 $rootScope.selectPageHandler =
 jasmine.createSpy('selectPageHandler');
 element = $compile(
 '<pagination num-pages="numPages" ' +
 ' current-page="currentPage" ' +
 ' on-select-page="selectPageHandler(page)">' +
 '</pagination>')($rootScope);
 $rootScope.$digest();
 var page2 = element.find('li').eq(2).find('a').eq(0);
 page2.click();
 $rootScope.$digest();
 expect($rootScope.selectPageHandler).toHaveBeenCalledWith(2);
 }));

Building Your Own Directives

[230]

We create a spy to handle the call-back and then the it function gets called when we
click on a new page.

To implement this we add an extra field to our isolate scope definition:

scope: {
 ...,
 onSelectPage: '&'
},

Now an onSelectPage() function will be available on the isolated scope. When
called, it will execute the expression passed to the on-select-page attribute.
We now change the selectPage() function on the isolated scope to call
onSelectPage():

scope.selectPage = function(page) {
 if (! scope.isActive(page)) {
 scope.currentPage = page;
 scope.onSelectPage({ page: page });
 }
};

Note that we pass the page variable to the expression in a map of
variables. These variables are provided to the bound expression
when it is executed, as though they were on the scope.

Creating a custom validation directive
In our SCRUM application we have a User Edit Form. On that form we require users
to provide a password. Since the password field is obscured and the user cannot see
what they are typing, it is helpful to have a confirm password field.

We need to check that the password and confirm password field are identical. We
will create a custom validation directive that we can apply to an input element that
checks whether the model of the input element matches another model value. In use,
it will look like this:

<form name="passwordForm">
 <input type="password" name="password" ng-model="user.password">
 <input type="password" name="confirmPassword" ng-
model="confirmPassword" validate-equals="user.password">
</form>

Chapter 8

[231]

This custom model validator directive must integrate with ngModelController to
provide a consistent validation experience for the user.

We can expose the ngModelController on the scope by providing a name for the
form and a name for the input element. This allows us to access model validity in
the controller. Our validation directive will set the confirmPassword input to valid
if its model value is the same as the user.password model.

Requiring a directive controller
Validation directives require access to the ngModelController, which is the
directive controller for the ng-model directive. We specify this in our directive
definition using the require field. This field takes a string or an array of strings.
Each string must be the canonical name of the directive whose controller we require.

When the required directive is found, its directive controller is injected into the
linking function as the fourth parameter. For example:

require: 'ngModel',
link: function(scope, element, attrs, ngModelController) { … }

If more than one controller is required, then the fourth parameter will be an array
containing these controllers in the same order as they were required.

If the current element does not contain the specified directive, then
the compiler will throw an error. This can be a good way to ensure
that the other directive has been provided.

Making the controller optional
You can make the require field of the controller optional by putting a '?' in front
of the directive name, for example, require: '?ngModel'. If the directive has not
been provided, then the fourth parameter will be null. If you require more than one
controller then the relevant element in the array of controllers will be null.

Building Your Own Directives

[232]

Searching for parents for the controller
If the directive, whose controller you require, can appear on this or any ancestor
of the current element, then you can put a '^' in front of the directive name,
for example, require: '^ngModel'. The compiler will then search the ancestor
elements starting from the element containing the current directive and return the
first matching controller.

You can combine optional and ancestor prefixes to have an optional
directive that may appear in an ancestor. For example, require:
'^?form' would let you find the controller for the form directive,
which is what the ng-model directive does to register itself with the
form if it is available.

Working with ngModelController
Once we have required the ngModelController we use its API to specify the
validity of the input element. This is a common case for this kind of directive and
the pattern is fairly straightforward. The ngModelController exposes the following
functions and properties that we will use:

Name Description
$parsers A pipeline of functions that will be called

in turn when the value of the input element
changes.

$formatters A pipeline of functions that will be called in
turn when the value of the model changes.

$setValidity(validationError
Key, isValid)

A function called to set whether the model is
valid for a given kind of validation error.

$valid True if there is no error.
$error An object that contains information about

any validation errors on the model.

The functions that go into $parsers and $formatters take a value and return a
value, for example, function(value) { return value; }. The value they receive
is the value returned from the previous function in the pipeline. It is inside these
functions where we put our validation logic and call $setValidity().

Chapter 8

[233]

Writing custom validation directive tests
The pattern for testing validation directives is to compile a form containing an input
that uses ng-model and our validation directive. For example:

<form name="testForm">
 <input name="testInput"
 ng-model="model.value"
 validate-equals="model.compareTo">
</form>

This directive is an attribute on the input element. The value of the attribute is an
expression that must evaluate to the value on the model. The directive will compare
this value with the input's value.

We specify the model bound to this input using the ng-model directive. This
will create ngModelController, which will be exposed on the scope as $scope.
testForm.testInput and the model value itself will be exposed on the scope as
$scope.value.

We then make changes to the input value and the model value and check the
ngModelController for changes to $valid and $error.

In the test setup we keep a reference to the model and the ngModelController.

describe('validateEquals directive', function() {
 var $scope, modelCtrl, modelValue;

 beforeEach(inject(function($compile, $rootScope) {
 ...
 modelValue = $scope.model = {};
 modelCtrl = $scope.testForm.testInput;
 ...
 }));

 ...
 describe('model value changes', function() {
 it('should be invalid if the model changes', function() {
 modelValue.testValue = 'different';
 $scope.$digest();
 expect(modelCtrl.$valid).toBeFalsy();
 expect(modelCtrl.$viewValue).toBe(undefined);
 });
 it('should be invalid if the reference model changes', function()
{
 modelValue.compareTo = 'different';

Building Your Own Directives

[234]

 $scope.$digest();
 expect(modelCtrl.$valid).toBeFalsy();
 expect(modelCtrl.$viewValue).toBe(undefined);
 });
 it('should be valid if the modelValue changes to be the same as
the reference', function() {
 modelValue.compareTo = 'different';
 $scope.$digest();
 expect(modelCtrl.$valid).toBeFalsy();

 modelValue.testValue = 'different';
 $scope.$digest();
 expect(modelCtrl.$valid).toBeTruthy();
 expect(modelCtrl.$viewValue).toBe('different');
 });
 });

Here, we modify the scope, both the model of the input element itself (modelValue.
testValue) and the model of the value with which to compare the input
(modelValue.compareTo). Then we test the validity of the input (modelCtl). We have
to call $digest() to ensure that the input has been updated from the model changes.

 describe('input value changes', function() {
 it('should be invalid if the input value changes', function() {
 modelCtrl.$setViewValue('different');
 expect(modelCtrl.$valid).toBeFalsy();
 expect(modelValue.testValue).toBe(undefined);
 });

 it('should be valid if the input value changes to be the same as
the reference', function() {
 modelValue.compareTo = 'different';
 $scope.$digest();
 expect(modelCtrl.$valid).toBeFalsy();

 modelCtrl.$setViewValue('different');
 expect(modelCtrl.$viewValue).toBe('different');
 expect(modelCtrl.$valid).toBeTruthy();
 });
 });
});

Here we modify the input value, by calling $setViewValue(), which is what
happens if the user types or pastes into the input box.

Chapter 8

[235]

Implementing a custom validation directive
Now we have our tests in place, so we can implement the functionality of
the directive:

myModule.directive('validateEquals', function() {
 return {
 require: 'ngModel',
 link: function(scope, elm, attrs, ngModelCtrl) {
 function validateEqual(myValue) {
 var valid = (myValue === scope.$eval(attrs.validateEquals));
 ngModelCtrl.$setValidity('equal', valid);
 return valid ? myValue : undefined;
 }

 ngModelCtrl.$parsers.push(validateEqual);
 ngModelCtrl.$formatters.push(validateEqual);

 scope.$watch(attrs.validateEquals, function() {
 ngModelCtrl.$setViewValue(ngModelCtrl.$viewValue);
 });
 }
 };
});

We create a function called validateEqual(value), which compares the passed
in value with the value of the expression. We push this into the $parsers and
$formatters pipelines, so that the validation function gets called each time either
the model or the view changes.

In this directive we also have to take into account the model we are comparing
against changing. We do this by setting up a watch on the expression, which we
retrieve from the attrs parameter of the linking function. When it does change,
we artificially trigger the $parsers pipeline to run by calling $setViewValue().
This ensures that all potential $parsers are run in case any of them modify the
model value before it gets to our validator.

Creating an asynchronous model
validator
Some validation can only be done by interacting with a remote service, say a
database. In these cases, the response from the service will be asynchronous.
This brings in complication not only in working with model validation
asynchronously but also in testing this functionality.

Building Your Own Directives

[236]

In our Admin User Form, we would like to check whether the e-mail address that
a user is entering has already been taken. We will create a uniqueEmail directive,
which will check with our back-end server to find if the e-mail address is already
in use:

<input ng-model="user.email" unique-email>

Mocking up the Users service
We use the Users resource service to query the database for the e-mail addresses
that are already in use. We need to mock up the query() method in this service
for our test.

In this case, it is easiest to create a test module and mock out a
Users service object instead of injecting the service and spying
on the query() method since the Users service itself relies on a
number of other services and constants.

angular.module('mock.Users', []).factory('Users', function() {
 var Users = { };
 Users.query = function(query, response) {
 Users.respondWith = function(emails) {
 response(emails);
 Users.respondWith = undefined;
 };
 };
 return Users;
});

The query() function creates Users.respondWith() that will call the response
callback that was passed to query(). This allows us to simulate a response to the
query in our tests.

Before Users.query() has been called and after it has been
handled with a call to Users.respondWith(), we set the
Users.respondWith function to undefined.

We then load this module in addition to the module under test:

beforeEach(module('mock.users'));

This causes the original Users service to be overridden by our mock service.

Chapter 8

[237]

Writing tests for asynchronous validation
We set up the test similar to the previous validation directive:

beforeEach(inject(function($compile, $rootScope, _Users_){
 Users = _Users_;
 spyOn(Users, 'query').andCallThrough();
 ...
}));

We are spying on the Users.query() function but we also want it to call
through to our mocked out function so that we can simulate responses with
Users.respondWith().

The significant unit tests are as follows:

it('should call Users.query when the view changes', function() {
 testInput.$setViewValue('different');
 expect(Users.query).toHaveBeenCalled();
});

it('should set model to invalid if the Users.query response contains
users', function() {
 testInput.$setViewValue('different');
 Users.respondWith(['someUser']);
 expect(testInput.$valid).toBe(false);
});

it('should set model to valid if the Users.query response contains no
users', function() {
 testInput.$setViewValue('different');
 Users.respondWith([]);
 expect(testInput.$valid).toBe(true);
});

We are checking to see if Users.query() was called. Also, since Users.query()
tracks the response callback, we can simulate a response from the server with Users.
respondWith().

One issue, which we need to test for, is that we don't want to query the server if the
user re-enters the same value as was provided by the model. For instance, if we are
editing a user rather than creating a user, then the user's original e-mail is in the
database on the server but it is a valid e-mail address.

it('should not call Users.query if the view changes to be the same as
the original model', function() {
 $scope.model.testValue = 'admin@abc.com';

Building Your Own Directives

[238]

 $scope.$digest();
 testInput.$setViewValue('admin@abc.com');
 expect(Users.query).not.toHaveBeenCalled();
 testInput.$setViewValue('other@abc.com');
 expect(Users.query).toHaveBeenCalled();

 querySpy.reset();
 testInput.$setViewValue('admin@abc.com');
 expect(Users.query).not.toHaveBeenCalled();
 $scope.model.testValue = 'other@abc.com';
 $scope.$digest();
 testInput.$setViewValue('admin@abc.com');
 expect(Users.query).toHaveBeenCalled();
});

We set the model and then check that User.query() is called only if the input value
is set to an e-mail that does not match the original model value. We use Users.
query.reset() when we want to check that the spy has not been called since the
last time we checked.

Implementing the asynchronous validation
directive
The implementation of this directive is similar in structure to the previous validation
directive. We require the ngModel controller and add to the $parsers and
$formatters in the linking function:

myModule.directive('uniqueEmail', ["Users", function (Users) {
 return {
 require:'ngModel',
 link:function (scope, element, attrs, ngModelCtrl) {
 var original;
 ngModelCtrl.$formatters.unshift(function(modelValue) {
 original = modelValue;
 return modelValue;
 });

 ngModelCtrl.$parsers.push(function (viewValue) {
 if (viewValue && viewValue !== original) {
 Users.query({email:viewValue}, function (users) {
 if (users.length === 0) {
 ngModelCtrl.$setValidity('uniqueEmail', true);
 } else {

Chapter 8

[239]

 ngModelCtrl.$setValidity('uniqueEmail', false);
 }
 });
 return viewValue;
 }
 });
 }
 };
}]);

We are only checking with the server in the $parser, that is, when the user changes
the input. If the value is updated programmatically, via the model, we assume that
the application business logic ensures that this is a valid e-mail address. For example,
if we are loading an existing user to edit, the e-mail address is valid even though it is
already taken.

Normally, in a validation function you return undefined if the value is not valid.
This prevents the model from being updated with an invalid value. In this case, at
the point of returning, the validation function does not know whether the value is
valid or not. So we return the value any-way and then let the response callback set
the validity later.

We are using the $formatters pipeline to add a function that tracks the original
value that was set in the model. This prevents the validation function from
contacting the server if the user re-enters the original e-mail address, as it would
incorrectly set the e-mail to invalid.

Wrapping the jQueryUI
datepicker directive
Sometimes there is a third party widget that is complex enough and it is not worth
writing a pure AngularJS version of it in the short term. You can accelerate your
development by wrapping such as widget in an AngularJS directive but you have
to be careful about how the two libraries would interact.

Here we will look at making a datepicker input directive that wraps the jQueryUI
datepicker widget. The widget exposes the following API that we will use to
integrate into AngularJS, where element is the jQuery wrapper around the element
on which the widget is to be attached.

Building Your Own Directives

[240]

Function Description
element.datepicker(options) Create a new widget using the given

options and attach it to the element.
element.datepicker("setDate", date) Set the date on the widget.
element.datepicker("getDate") Get the date on the widget.
element.datepicker("destroy") Destroy and remove the widget from

the element.

We want to be informed when the user selects a new date with the picker. The
options that we pass to create a new widget can provide an onSelect callback that
will be called when the user selects a date:

element.datepicker({onSelect: function(value, picker) { ... });

To keep things simple, we will specify that the datepicker directive
can only be linked to a JavaScript Date object in the model.

The general pattern for wrapping JQuery input widgets is similar, again, to building
a validation directive. You require ngModel and place functions on the $parsers and
$formatters pipeline to transform the values between the model and the view.

Also, we need to put data into the widget when the model changes and get data
into the model when the widget changes. We override ngModel.$render() to
update the widget. This function is called after all the $formatters have been
executed successfully. To get the data out, we use the onSelect callback to call
ngModel.$setViewValue(), which updates the view value and triggers the
$parsers pipeline.

Scope

someDate

$render

$setViewValue onSelect

setDate

jQueryUI

Date picker

click

$formalities

$parsers

ngModelController

Writing tests for directives that wrap libraries
In a pure unit test we would create a mock jQueryUI datepicker widget that
exposes the same interface. In this case we are going to take a more pragmatic
approach and use a real datepicker widget in the tests.

Chapter 8

[241]

The advantage of this is that we do not have to rely on the widget's interface being
documented accurately. By calling the actual methods and checking that the user
interface is updated correctly, we can be very sure that our directive is working.
The disadvantages are that the DOM manipulation in the widget can slow down
the test runs and there must be a way to interact with the widget to ensure that it is
behaving correctly.

In this case, the jQueryUI datepicker widget exposes another function that allows
us to simulate a user selecting a date:

$.datepicker._selectDate(element);

We create a helper function selectDate(), which we will use to simulate date
selection on the widget:

var selectDate = function(element, date) {
 element.datepicker('setDate', date);
 $.datepicker._selectDate(element);
};

This kind of simulation is sometimes hard to achieve, and if so, you
should consider mocking out the widget altogether.

The tests themselves make use of the widget's API and this helper function.
For example:

describe('simple use on input element', function() {
 var aDate, element;
 beforeEach(function() {
 aDate = new Date(2010, 12, 1);
 element = $compile(
 "<input date-picker ng-model='x'/>")($rootScope);
 });
 it('should get the date from the model', function() {
 $rootScope.x = aDate;
 $rootScope.$digest();
 expect(element.datepicker('getDate')).toEqual(aDate);
 });

 it('should put the date in the model', function() {
 $rootScope.$digest();
 selectDate(element, aDate);
 expect($rootScope.x).toEqual(aDate);
 });
});

Building Your Own Directives

[242]

Here, we check that model changes get forwarded to the widget and widget
changes get passed back to the model. Notice that we do not call $digest() after
selectDate(), since it is the directive's job to ensure that the digest occurs after a
user interaction.

There are more tests for all different scenarios for this directive.
They can be found in the sample code.

Implementing the jQuery datepicker directive
The directive implementation is again making use of the functionality provided
by the ngModelController. In particular, we add a function to the $formatters
pipeline that ensures that the model is a Date object, we add our onSelect callback
to the options, and we override the $render function to update the widget when
the model changes.

myModule.directive('datePicker', function () {
 return {
 require:'ngModel',
 link:function (scope, element, attrs, ngModelCtrl) {
 ngModelCtrl.$formatters.push(function(date) {
 if (angular.isDefined(date) &&
 date !== null &&
 !angular.isDate(date)) {
 throw new Error('ng-Model value must be a Date object');
 }
 return date;
 });

 var updateModel = function () {
 scope.$apply(function () {
 var date = element.datepicker("getDate");
 element.datepicker("setDate", element.val());
 ngModelCtrl.$setViewValue(date);
 });
 };
 var onSelectHandler = function(userHandler) {
 if (userHandler) {
 return function(value, picker) {
 updateModel();
 return userHandler(value, picker);
 };

Chapter 8

[243]

 } else {
 return updateModel;
 }
 };

The onSelect() handler calls our updateModel() function, which passes the new
date value into the $parsers pipeline via $setViewValue():

 var setUpDatePicker = function () {
 var options = scope.$eval(attrs.datePicker) || {};
 options.onSelect = onSelectHandler(options.onSelect);
 element.bind('change', updateModel);
 element.datepicker('destroy');
 element.datepicker(options);
 ngModelCtrl.$render();
 };

 ngModelCtrl.$render = function () {
 element.datepicker("setDate", ngModelCtrl.$viewValue);
 };

 scope.$watch(attrs.datePicker, setUpDatePicker, true);
 }
 };
});

Summary
In this chapter we looked at a variety of common patterns for defining, testing, and
implementing directives. We saw how to integrate with the ngModel to implement
validation, how to write a reusable encapsulated widget, and how to wrap a third
party widget in an AngularJS directive. Throughout the chapter testing has been
promoted and we looked at common strategies for testing directives in AngularJS.

In the next chapter we will take a deeper look into building directives, looking
at some of the more advanced features such as transclusion, and compiling our
own templates.

Building Advanced Directives
The previous chapter introduced how to develop and test your own custom
directives. In this chapter we look at some of the more advanced things that you
can do when developing AngularJS directives. This will include:

• Understanding transclusion: in particular use of transclusion functions and
transclusion scopes

• Define your own directive controllers to create directives that can cooperate,
and how these controllers differ from link functions

• Terminating the compilation process and taking control: loading your own
templates dynamically and using the $compile and $interpolate services

Using transclusion
When you move elements from one part of the DOM to another, you have to decide
what happens to their associated scope.

The naïve approach is to associate the elements with the scope that is defined at
the new position. This is likely to break the application, since the elements may no
longer have access to items from their original scope.

What we really need is to "bring the original scope with us". Moving elements and
their scope in this way is called transclusion. We will look into how to move the
scope in transclusion later in this chapter in the Understanding transclusion scope
section. But first let's look at some examples.

Using transclusion in directives
Transclusion is necessary whenever a directive is replacing its original contents with
new elements but wants to use the original contents somewhere in the new elements.

Building Advanced Directives

[246]

For example, ng-repeat will transclude and clone its original element, stamping out
multiple copies of the transcluded element as it iterates over a list of items. Each of
these elements will be associated with a new scope, which is a child of the original
element's scope.

<li ng-repeat=“item in items”>

{item name}

{{item.name}}

{{item.name}}

{{item.name}}

repeated
element

repeated
element

repeated
element

transclude
transclude

Transcluding into an isolated scope directive
The ng-repeat directive is quite unusual in that it makes clones of itself, which are
then transcluded. It is more common to use transclusion when you are creating a
templated widget directive, where you want to insert the original element's contents
at some point in the template.

Creating an alert directive that uses
transclusion
A simple example of such a templated widget is an alert element directive.

Alerts are messages, which are displayed to the user to indicate the
current status of the application.

Oh snap! Something went wrong.

Well done! It worked out in the end.

Add Alert

+

+

Chapter 9

[247]

The contents of the alert element contains the message to display in the alert. This
needs to be transcluded into the directive's template. A list of alerts can be displayed
using ng-repeat:

<alert type="alert.type" close="closeAlert($index)"
 ng-repeat="alert in alerts">
 {{alert.msg}}
</alert>

The close attribute should contain an expression that will be executed when the
user closes the alert. The implementation of the directive is quite straightforward
as follows:

myModule.directive('alert', function () {
 return {
 restrict:'E',
 replace: true,
 transclude: true,
 template:
 '<div class="alert alert-{{type}}">' +
 '<button type="button" class="close"' +
 'ng-click="close()">×' +
 '</button>' +
 '<div ng-transclude></div>' +
 '</div>',
 scope: { type:'=', close:'&' }
 };
});

Understanding the replace property in the directive
definition
The replace property tells the compiler to replace the original directive's element
with the template given by the template field. If we had provided template but not
replace, then the compiler would append the template to the directive's element.

When you ask the compiler to replace the element with a template, it
will copy over all the attributes from the original element to the template
element as well.

Building Advanced Directives

[248]

Understanding the transclude property in the
directive definition
The transclude property takes either true or 'element'. This tells the compiler to
extract the contents of the original <alert> element and make them available to be
transcluded into the template.

• Using transclude: true means that the children of the directive's element
will be transcluded. This is what happens in the alert directive, although
we then replaced the directive's element with our template.

• Using transclude: 'element' means the entire element will be
transcluded including any attribute directives that have not already
been compiled. This is what happens in the ng-repeat directive.

Inserting the transcluded elements with
ng-transclude
The ng-transclude directive gets the transcluded elements and appends them
to the element in the template on which it appears. This is the simplest and most
common way to use transclusion.

Understanding the scope of transclusion
All DOM elements that have been compiled by AngularJS have a scope associated
with them. In most cases DOM elements do not have scopes defined directly on them
but get their scope from some ancestor element. New scopes are created by directives
that specify a scope property on their directive definition object.

Only a few core directives define new scopes, these are ng-controller,
ng-repeat, ng-include, ng-view, and ng-switch. They all create
child scopes that prototypically inherit from their parent scopes.

We saw in Chapter 8, Building Your Own Directives, how to build widget directives
that use isolated scope to ensure that the scopes inside and outside the widget do
not contaminate each other. This means that expressions within the template have
no access to the values on the parent scope, containing the widget. This is useful
because we don't want properties on the parent scope affecting or being affected by
what we do inside the template.

Chapter 9

[249]

The original contents of the directive's element, which is going to be
inserted into the template, needs to be associated with the original
scope and not the isolated scope. By transcluding the original elements
we are able to maintain the correct scope for these elements.

Our alert directive is a widget, using isolated scope. Consider what scopes are
created with the alert directive. Before the alert directive has been compiled the
DOM and its scopes look like this:

<!-- defines $rootScope -->
<div ng-app ng-init="type='success'">
 <!-- bound to $rootScope -->
 <div>{{type}}</div>
 <!-- bound to $rootScope -->
 <alert type="'info'" ...>Look at {{type}}</alert>
</div>

The <div>{{type}}</div> does not have a scope directly defined on it. Instead, it is
implicitly bound to the $rootScope because it is a child of the ng-app element where
$rootScope is defined and so {{type}} will evaluate to 'success'.

On the alert element we have an attribute: type="'info'". This attribute is mapped
to a type property on the template's scope. Once the alert directive has been
compiled, it is replaced with its template, the DOM and its scopes look like this:

<!-- defines $rootScope -->
<div ng-app ng-init="type='success'">
 <!-- bound to $rootScope -->
 <div>{{type}}</div>
 <!-- defines an isolated scope -->
 <div class="alert-{{type}}" ...>
 <!-- bound to isolated scope -->
 <button>...</button>
 <div ng-transclude>
 <!-- defines new translude scope -->
 Look at {{type}}
 </div>
 </div>
</div>

Inside the template, the class="alert-{{type}}" attribute is implicitly bound to
the isolated scope and so will evaluate to class="alert-info".

Building Advanced Directives

[250]

In contrast, the transcluded contents of the original <alert> element, Look
at {{type}}, are now bound to a new transclude scope. If we had naïvely
moved these contents into the template, their implicit scope binding would change
from $rootScope to the isolated scope and then {{type}} would evaluate to
'info'. This is not what we want.

Instead, the new transclude scope is a child of $rootScope and prototypically
inherits from it. This means that the span will evaluate correctly to Look
at success. The following image shows these scopes in Batarang:

Scope (002) | scopes | models

type: success
Scope (003)| models

type: info
close: null

Scope (004)| models

In the previous image, Scope (002) is the $rootScope, which contains the
type="success". Scope (003) is the isolated scope for the alert template
and does not inherit from $rootScope. Scope (004) is the transcluded scope and
does inherit from $rootScope and so in this scope, type will be success.

When elements are moved by transclusion they get to take their original
scope binding with them. More accurately, the transcluded elements
will be bound to a new scope that is a prototypical child of the scope
from where they were taken.

Creating and working with transclusion
functions
Transclusion in AngularJS is made possible by the use of transclusion functions.
These functions are simply link functions, which are created by calling the
$compile service.

Chapter 9

[251]

When a directive requests transclusion, AngularJS will extract the transcluded
elements from the DOM and compile them. Here is an approximation of what
happens with transclude: true:

var elementsToTransclude = directiveElement.contents();
directiveElement.html('');
var transcludeFunction = $compile(elementsToTransclude);

The first line gets the contents of the element containing the directive that requested
the transclusion. The second line clears this element. The third line compiles the
transcluded contents to produce the transclusion function, which will be passed
back to the directive, for it to use.

Creating a transclusion function with the
$compile service
The AngularJS compiler is exposed as the $compile service. This is the same function
that is used when compiling any other part of an AngularJS application. To use this
service we simply call it with a list of DOM nodes (or a string that will be parsed into a
list of DOM nodes).

var linkingFn = $compile(
 '<div some-directive>Some {{"interpola-ted"}} values</div>');

The call to $compile service returns a linking function. You call this function with a
scope to retrieve a DOM element containing the compiled DOM elements, bound to
the given scope:

var compiledElement = linkingFn(someScope);

Transclusion functions are just special instances of link functions.

Cloning the original elements when transcluding
If we pass in a call-back function as a parameter to a linking function then a clone of
the elements will be returned instead of the original elements. The call-back function
will be called synchronously with the cloned elements as a parameter.

var clone = linkingFn(scope, function callback(clone) {
 element.append(clone);
});

Building Advanced Directives

[252]

This is very useful if you want to make copies of the original element's
children, as it would happen in ng-repeat.

Accessing transclusion functions in
directives
The compiler passes this transclusion function back to the directive. There are two
places where you can get hold a transclusion function: the compile function and the
directive controller. There is a section describing directive controllers in detail later
in this chapter.

myModule.directive('myDirective', function() {
 return {
 transclude: true,
 compile: function(element, attrs, transcludeFn) { ... };
 controller: function($scope, $transclude) { ... },
 };
});

Here we have indicated that the directive should transclude its contents. We can
access the transclusion functions in the compile function, via the transcludeFn
parameter and in the directive controller, via the $transclude parameter.

Getting the transclusion function in the compile
function with transcludeFn
The transclusion function is made available as the third parameter of the compile
function of a directive. At this stage of the compilation, the scope is not known so the
transclusion function is not bound to any scope. Instead, you will pass in the scope
to this function, as its first parameter, when you call it.

The scope is available in the linking function and so this is where you will generally
find the transclusion function being invoked.

compile: function(element, attrs, transcludeFn) {
 return function postLink(scope, element, attrs, controller) {
 var newScope = scope.$parent.$new();
 element.find('p').first().append(transcludeFn(newScope));
 };
}

Chapter 9

[253]

We append the transcluded elements to the first <p> element below the directive's
element. When calling the transclusion function, we bind the transcluded elements
to a scope. In this case we create a new scope, which is a sibling of the directive's
scope, that is, child of the $parent of the directive's scope.

This is necessary when the directive has an isolated scope; since the scope passed to
the link function is the isolated scope and does not inherit the properties from the
parent scope, which the transcluded elements need.

Getting the transclusion function in the directive
controller with $transclude
We can access the transclusion function in a directive controller by injecting
$transclude. In this case, $transclude is a function that is pre-bound to new
a child of the parent scope, so you do not need to provide a scope.

controller: function($scope, $element, $transclude) {
 $element.find('p').first().append($transclude());
}

Once again, we append the transcluded elements to the first <p> element.

With $transclude, the pre-bound scope will be a prototypical child
of the original scope from where the transcluded elements came.

Creating an if directive that uses transclusion
Let's look at a simple directive that makes explicit use of transclusion functions
rather than relying on the ng-transclude directive. While AngularJS 1.0 provides
both ng-show and ng-switch directives for changing the visibility of content in an
application, ng-show doesn't remove the element from the DOM when it is hidden
and ng-switch is quite verbose for simple situations.

If we just want to remove the element from the DOM when it is not needed, we can
create an if directive. It would be used similar to ng-show:

<body ng-init="model= {show: true, count: 0}">
 <button ng-click="model.show = !model.show">
 Toggle Div
 </button>

Building Advanced Directives

[254]

 <div if="model.show" ng-init="model.count=model.count+1">
 Shown {{model.count}} times
 </div>
</body>

Here, each time the button is clicked the value of model.show is toggled between
true and false. To show that the DOM element is being removed and reinserted
on each toggle, we are incrementing model.count.

In the unit tests we will need to test that the DOM element is actually added and
removed correctly:

it('creates or removes the element as the if condition changes',
function () {
 element = $compile(
 '<div><div if="someVar"></div></div>')(scope);
 scope.$apply('someVar = true');
 expect(element.children().length).toBe(1);
 scope.$apply('someVar = false');
 expect(element.children().length).toBe(0);
 scope.$apply('someVar = true');
 expect(element.children().length).toBe(1);
});

Here we check that the number of children on our container element increases or
decreases as the expression toggles between true and false.

Note that we need to wrap the element that contains the if directive
in a div because our directive will use jqLite.after() to insert it
into the DOM, which requires that the element has a parent.

Let's take a look at how to implement this directive:

myModule.directive('if', function () {
 return {
 transclude: 'element',
 priority: 500,
 compile: function (element, attr, transclude) {
 return function postLink(scope, element, attr) {
 var childElement, childScope;

 scope.$watch(attr['if'], function (newValue) {
 if (childElement) {

Chapter 9

[255]

 childElement.remove();
 childScope.$destroy();
 childElement = undefined;
 childScope = undefined;
 }
 if (newValue) {
 childScope = scope.$new();
 childElement = transclude(childScope, function(clone){
 element.after(clone);
 });
 }
 });
 ...

The directive transcludes the entire element (transclude: 'element'). We provide
a compile function, which gives us access to the transclusion function, which returns
the link function, where we $watch the if attribute expression.

We use $watch rather than $observe here because the if attribute
should contain an expression to be evaluated rather than a string to
be interpolated.

When the expression changes, we tidy up the scope and child element, if they exist.
This is important to ensure that we don't have any memory leaks. If the expression
evaluates to true, we create a new child scope and then use it with the transclusion
function to clone a new copy of the transcluded elements. We insert these elements
after the element that contained the directive.

Using the priority property in a directive
All directives have a priority, defaulting to zero, as in the case of the alert directive.
On each element, AngularJS compiles the higher priority directives before lower
priority ones. We can specify this using the priority property on the directive
definition object.

If a directive has transclude: 'element', the compiler will only transclude
attributes whose directives have a lower priority than the current directive, in
other words, the element's directives that have not yet been processed.

Building Advanced Directives

[256]

The ng-repeat directive has transclude: 'element' and priority: 1000, so
generally all attributes that appear on the ng-repeat element are transcluded to
appear on the cloned repeated elements.

We gave out if directive a priority of 500, which is less than ng-
repeat. This means that if you put it on the same element as an
ng-repeat, the expression that if watches will refer to the scope
created by each iteration of ng-repeat.

In this directive, transclusion allowed us to get hold of the contents of the directive's
element, bound to the correct scope, and conditionally insert it into the DOM.

Next we are going to change tack and look at providing controllers specifically
for directives.

Understanding directive controllers
A controller in AngularJS is an object attached to a DOM element that initializes and
adds behaviour to the scope at that element.

We have already seen many application controllers, instantiated
by the ng-controller directive. These controllers should not
interact directly with the DOM but should deal only with the
current scope.

A directive controller is a special form of controller that is defined by a directive
and instantiated each time that directive appears on a DOM element. Its role is to
initialize and provide behavior for the directive rather than a scope.

You define a directive controller using the controller property on the directive
definition object. The controller property can be a string containing the name of
a controller already defined on a module:

myModule.directive('myDirective', function() {
 return {
 controller: 'MyDirectiveController'
 };
});
myModule.controller('MyDirectiveController', function($scope) {
 ...
});

Chapter 9

[257]

Or it can be a constructor function that will be used to instantiate the controller:

myModule.directive('myDirective', function() {
 return {
 controller: function($scope, ...) { ... }
 };
});

If the controller is defined on a module then it is easy to test it
independently of the directive. But this also means that the controller
is exposed to the whole application, via the injector, so you must
be careful that its name does not conflict with controllers in other
modules of the application.
Defining the module inline, as an anonymous function, makes it
more difficult to test it separately from the directive but allows us to
keep it private to the directive.

Injecting special dependencies into directive
controllers
Just like any controller, directive controllers are injected with dependencies by
AngularJS. All controllers are injected with $scope and you can specify other
services to be injected, such as $timeout or $rootScope. On top of these, directive
controllers can also be injected with the following three special services:

• $element: This is a reference to the directive's DOM element. This will be
wrapped in jQLite/jQuery.

• $attrs: This is a normalized list of the attributes that appear on the
directive's DOM element.

• $transclude: This is a transclusion function that is already bound to the
correct scope. This function is described in the transclusion functions.

Building Advanced Directives

[258]

Creating a controller-based pagination
directive
There is a lot of overlap in functionality between directive controllers and link
functions. It is often possible to use a controller instead of a link function. Here is the
pagination directive from Chapter 9, Building Advanced Directives, but this time using
a directive controller instead of a link function:

myModule.directive('pagination', function() {
 return {
 restrict: 'E',
 scope: { numPages: '=', currentPage: '=', onSelectPage: '&' },
 templateUrl: 'template/pagination.html',
 replace: true,
 controller: ['$scope, '$element', '$attrs',
 function($scope, $element, $attrs) {
 $scope.$watch('numPages', function(value) {
 $scope.pages = [];
 for(var i=1;i<=value;i++) {
 $scope.pages.push(i);
 }
 if ($scope.currentPage > value) {
 $scope.selectPage(value);
 }
 });
 $scope.noPrevious = function() {
 return $scope.currentPage === 1;
 };
 ...
 }]
...
});

In this simple case, the only difference between this version and the one that used a
link function is that, while the link function is passed scope, element, attrs, and
controller parameters, the directive controller must use the dependency injection
annotations to be provided with the $scope, $element, and $attrs services.

Understanding the difference between
directive controllers and link functions
When choosing between using link functions or directive controllers it is helpful to
be aware of a few differences.

Chapter 9

[259]

Injecting dependencies
First, as we saw previously, directive controllers must use dependency injection
annotations to specify what services it needs, for example, $scope, $element,
and $attrs. A link function is always passed the same four parameters: scope,
element, attrs, and controller, regardless of the names of these parameters in
the function definition.

The compilation process
Directive controllers and link functions are called at different times during the
compilation process. Given a set of directives on DOM elements with this structure:

parent

..child 1

....child 1 a

....child 1 b

The directive controllers and link functions are invoked in this order:

• parent (controller)
• parent (pre-link)

 ° child 1 (controller)
 ° child 1 (pre-link)

 ° child 1 a (controller)
 ° child 1 a (pre-link)
 ° child 1 a (post-link)
 ° child 1 b (controller)
 ° child 1 b (pre-link)
 ° child 1 b (post-link)
 ° child 1 (post-link)

• parent (post-link)

Building Advanced Directives

[260]

If an element contains multiple directives then for that element:

• A scope is created, if necessary
• Each directive's directive controller is instantiated
• Each directive's pre-link function is called
• Any child elements are linked
• Each directive's post-link function is called

This means that when a directive controller is instantiated the directive's element
and its children have not yet been fully linked. But when the link functions (pre
or post) are called, all the directive controllers for that element have already been
instantiated. This is why directive controllers can be passed to link functions.

The post-link function is called after the compiler has completely
finished compiling and linking the current element and all its child
elements. This means that any changes to the DOM at this stage
will not be noticed by the AngularJS compiler.
This is useful when you want to wire up third party libraries to
elements, such as a JQuery plug-in, which may modify the DOM in
a way that would confuse the AngularJS compiler.

Accessing other controllers
Link functions receive a fourth parameter that contains any directive controllers
that have been required by the directive. We saw how this enabled us to access
ngModelController in Chapter 9, Building Advanced Directives.

myModule.directive('validateEquals', function() {
 return {
 require: 'ngModel',
 link: function(scope, elm, attrs, ngModelCtrl) {
 ...
 };
});

Here the validateEquals directive is requiring the ngModel directive controller,
which is then passed to the link function as ngModelCtrl.

In contrast, a directive controller cannot have other directive controllers injected
into it.

Chapter 9

[261]

Accessing the transclusion function
As described in the section on transclusion functions, directive controllers can be
injected with a $transclusion function, which is already bound to the correct scope.

Link functions can only access a transclusion function via the closure of a compile
function, and this function is not pre-bound to a scope.

Creating an accordion directive suite
Directive controllers attach behavior to a directive's element, which can then be
required by other directives. This lets us build suites of cooperating directives that
can communicate and work together.

In this section we will look at how to implement an accordion widget. An
accordion widget is a list of collapsible groups of content, with clickable headers.
Clicking on the header of a group expands it and causes the other groups to collapse.

Collapsible Group Item #1

Anim pariatur cliche reprehenderit, enim eiusmod high life
non cupidatat skateboard dolor brunch. Food truck quinoa
aliqua put a bird on it squid single-origin coffee nulla
wes anderson cred nesiunt sapiente ea proident.Ad
to-table, raw denim aesthetic synth nesciunt you probably

Collapsible Group Item #2

Collapsible Group Item #3

The HTML when using the accordion looks like this:

<accordion>
 <accordion-group heading="Heading 1">
 Group 1 Body
 </accordion-group>
 <accordion-group heading="Heading 2">
 Group 2 Body
 </accordion-group>
</accordion>

Here we have two new element directives: accordion, which is a container for the
groups, and accordion-group, which specifies the content of each group.

Building Advanced Directives

[262]

Using a directive controller in accordion
To enable the groups to communicate with each other the accordion directive
defines a directive controller, AccordionController. Each accordion-group
directive will require this controller.

The AccordionController directive controller will expose two methods, addGroup
and closeOthers, which the accordion-group directives will use to register
themselves as part of the accordion and to tell the other accordion-groups to close
when they are opened.

Unit testing a directive controller is very similar to testing an application
controller. See Chapter 2, Building and Testing, An Example App. Here is a test
for the closeOthers method:

describe('closeOthers', function() {
 var group1, group2, group3;
 beforeEach(function() {
 ctrl.addGroup(group1 = $scope.$new());
 ctrl.addGroup(group2 = $scope.$new());
 ctrl.addGroup(group3 = $scope.$new());
 group1.isOpen = group2.isOpen = group3.isOpen = true;
 });
 it('closes all groups other than the one passed', function() {
 ctrl.closeOthers(group2);
 expect(group1.isOpen).toBe(false);
 expect(group2.isOpen).toBe(true);
 expect(group3.isOpen).toBe(false);
 });
});

We add three groups, which are all set to isOpen=true. After calling closeOthers
with group2 we test that group1 and group2 have isOpen set to false.

Here is the implementation of the AccordionController:

myModule.controller('AccordionController', ['$scope', '$attrs',
function ($scope, $attrs) {
 this.groups = [];
 this.closeOthers = function(openGroup) {
 angular.forEach(this.groups, function (group) {
 if (group !== openGroup) {
 group.isOpen = false;
 }
 });
 }

Chapter 9

[263]

 };
 this.addGroup = function(groupScope) {
 var that = this;
 this.groups.push(groupScope);
 groupScope.$on('$destroy', function (event) {
 that.removeGroup(groupScope);
 });
 };
 this.removeGroup = function(group) {
 var index = this.groups.indexOf(group);
 if (index !== -1) {
 this.groups.splice(this.groups.indexOf(group), 1);
 }
 };
}]);

Notice that we automatically remove the group from the list when its scope
is destroyed. This is important because our list of groups may be generated
dynamically at run-time using an ng-repeat directive, which could remove
elements and so group scopes from the application. If we still held references
to the these group scopes then they could not be garbage collected.

Implementing the accordion directive
The main accordion directive just specifies AccordionController as its directive
controller and adds an accordion CSS class to its element in its link function:

myModule.directive('accordion', function () {
 return {
 restrict:'E',
 controller:'AccordionController',
 link: function(scope, element, attrs) {
 element.addClass('accordion');
 }
 };
})

Implementing the accordion-group directive
Each collapsible group will be defined by an accordionGroup directive. Each group
consists of a link and a body. Here is the template for this directive:

<div class="accordion-group">
 <div class="accordion-heading" >
 <a class="accordion-toggle"

Building Advanced Directives

[264]

 ng-click="isOpen=!isOpen">{{heading}}
 </div>
 <div class="accordion-body" ng-show="isOpen">
 <div class="accordion-inner" ng-transclude></div>
 </div>
</div>

We transclude the original child elements of the directive into the body of the
template. The template references isOpen and heading, on the current scope. We
want to have complete control over these values so that the accordion-group
directive will have an isolated scope.

In the tests, we set up an accordion and some accordion-group directives and
then check that they open and close correctly. Here is an example of the unit tests:

describe('accordion-group', function () {
 var scope, element, groups;
 beforeEach(inject(function($rootScope, $compile) {
 scope = $rootScope;
 var tpl =
"<accordion>" +
"<accordion-group heading='title 1'>Content 1</accordion-group>" +
"<accordion-group heading='title 2'>Content 2</accordion-group>" +
"</accordion>";
 $compile(tpl)(scope);
 scope.$digest();
 groups = element.find('.accordion-group');
 });
 ...
 it('should change selected element on click', function () {
 groups.eq(0).find('a').click();
 expect(findGroupBody(0).scope().isOpen).toBe(true);
 groups.eq(1).find('a').click();
 expect(groups.eq(0).scope().isOpen).toBe(false);
 expect(groups.eq(1).scope().isOpen).toBe(true);
 });
 ...
});

We trigger a click event on groups and check that isOpen is false on the scope of
the other groups.

The implementation of the directive is fairly straightforward:

myModule.directive('accordionGroup', function() {
 return {
 require:'^accordion',

Chapter 9

[265]

 restrict:'E',
 transclude:true,
 replace: true,
 templateUrl:'template/accordion/accordion-group.html',
 scope:{ heading:'@' },
 link: function(scope, element, attrs, accordionCtrl) {
 accordionCtrl.addGroup(scope);
 scope.isOpen = false;
 scope.$watch('isOpen', function(value) {
 if (value) {
 accordionCtrl.closeOthers(scope);
 }
 });
 }
 };
});

You can see that this directive requires the directive controller from the accordion
directive to appear on an ancestor of this directive's DOM element. The required
directive controller appears as the fourth parameter, accordionCtrl, on the link
function. The accordion-group directive registers itself using the addGroup()
function and calls closeOthers() whenever this group is opened.

Taking control of the compilation process
There are some situations where we need to have more control over how AngularJS
compiles and links an element and its children. Perhaps we wish to load the
directive's template dynamically or we want more control over the transclusion of
elements into a directive's template. In these cases we can terminate the compilation
process then modify and compile the directive's element and children manually.

Creating a field directive
When writing applications that use forms, it quickly becomes apparent that there is
a lot of duplication and redundancy in the amount of boilerplate HTML requires for
each field on the form.

For instance, and for every field there will be an input element and a label element
surrounded by various div and span elements. On these elements, we need to
provide a number of attributes, ng-model, name, id, and for, which are usually very
similar or even identical, and various CSS classes. We also need to display validation
messages for when the input values are invalid.

Building Advanced Directives

[266]

We end up with this kind of HTML repeated all over our forms:

<div class="control-group" ng-class="{'error' : form.email.$invalid
&& form.email.$dirty, 'success' : form.email.$valid && form.
email.$dirty}">
 <label for="email">E-mail</label>
 <div class="controls">
 <input type="email" id="email" name="email" ng-model="user.email"
required>
 <span ng-show="form.email.$error['required'] && form.email.dirty"
class="help-inline">Email is required
 <span ng-show=" form.email.$error['email'] && form.email.dirty"
class="help-inline">Please enter a valid email
 </div>
</div>

We can eliminate much of this duplication by creating a field directive. The
directive will insert a suitable template containing a labeled input control. Here is an
example of using the field directive:

<field type="email" ng-model="user.email" required >
 <label>Email</label>
 <validator key="required">$fieldLabel is required</validator>
 <validator key="email">Please enter a valid email</validator>
</field>

Now we simply provide ng-model, type, and validation directives for the input, as
attributes on the field. Then we provide the label and validation messages as child
elements of the field element. Note, also that we can use a $fieldLabel property
inside the validation messages. This property will be added to the scope of the
validation messages by the field directive.

The field directive has a number of requirements that are hard to achieve with the
built-in directive API.

• Rather than specifying a single template for the whole directive, we need
to insert a different template depending upon the type of field that is being
displayed. We cannot use the template (or templateUrl) property on the
directive definition object.

• We need to generate and apply unique name and id attributes for the input
and wire up the label elements for attribute, before the ng-model directive
is compiled.

• We want to extract the validation messages for the field from the child
validator elements to be used in the template when there is an error with the
field's value.

Chapter 9

[267]

The directive definition object for this field directive looks like this:

restrict:'E',
priority: 100,
terminal: true,
compile: function(element, attrs) {
 ...
 var validationMgs = getValidationValidationMessages(element);
 var labelContent = getLabelContent(element);

 element.html('');

 return function postLink(scope, element, attrs) {
 var template = attrs.template || 'input.html';
 loadTemplate(template).then(function(templateElement) {
 ...
 });
 };
}

We terminate compilation at this directive, giving it a priority of 100, to ensure
that it runs before the ng-model directive that will be on the same element. In the
compile function we extract the validation messages, getValidationMessageMap,
and label information, getLabelContent, from the terminated element. Once this
has been retrieved, we empty out the contents of the element so that we have a clean
element in which to load the template. The compile function returns a postLink
function, which will load a suitable template.

Using the terminal property in directives
If a directive has terminal: true, the compiler will stop and not process the child
elements of this directive's element or any other directives on this directive's element
that have a lower priority than this directive.

Even if you terminate a directive, the directive controller, compile
function, and link function for that directive are still executed.

Once we have terminated the compilation we can modify the directive's element
and its children, but then we are responsible for setting up any new scopes, correctly
transcluding content and also for further compiling of child elements that may
contain directives.

Building Advanced Directives

[268]

Most of the time AngularJS takes care of interpolating strings into expressions,
that is, when using {{}} brackets in templates. But in this directive we need to
programmatically interpolate a string. This is done with the $interpolate service.

Using the $interpolate service
The getLabelContent simply copies across the HTML content from the label
in the directive to the label in the template, where it will be compiled along with
the template:

 function getLabelContent(element) {
 var label = element.find('label');
 return label[0] && label.html();
 }

But for validation messages, we are going to use ng-repeat to display strings
only for validations that are currently failing. So we will need to store the
validation messages on the template's scope, as $validationMessages. These
validation messages may contain interpolated strings so we will interpolate them
during compilation:

function getValidationMessageMap(element) {
 var messageFns = {};
 var validators = element.find('validator');
 angular.forEach(validators, function(validator) {
 validator = angular.element(validator);
 messageFns[validator.attr('key')] =
 $interpolate(validator.text());
 });
 return messageFns;
}

For each of the <validator> elements we use the $interpolate service create an
interpolation function from the text of the element and add that function into a map
based on the value of the validator element's key attribute. This map will be added
to the template's scope as $validationMessages.

The $interpolate service is used throughout AngularJS to evaluate strings that
contain {{}} curly braces. If we pass such a string to the service, it returns an
interpolation function that takes a scope and returns the interpolated string:

var getFullName = $interpolate('{{first}}{{last}}');
var scope = { first:'Pete',last:'Bacon Darwin' };
var fullName = getFullName(scope);

Chapter 9

[269]

Here, we create a getFullName interpolation function, from the '{{first}}
{{last}}' string and then call it with a scope object, resulting in fullName
being assigned as 'Pete Bacon Darwin'.

Binding to validation messages
To display the validation error messages in our field templates, we will have
something like this:

 {{$validationMessages[error](this)}}

We are repeating over all the validation error keys in $fieldErrors and binding
to the result of calling the validation interpolation function for the given error key.

We have to provide a scope to the interpolation function. We can do
this, in a template, by passing this, which refers to the current scope.
Failing to do this can lead to an unexpected and a difficult time in
debugging errors.

The $fieldErrors property contains a list of the current invalid validation error
keys. It is updated by a watch created in the success handler for loadTemplate().

Loading templates dynamically
The loadTemplate function loads in the specified template and converts it to a
jqLite/jQuery wrapped DOM element:

function loadTemplate(template) {
 return $http.get(template, {cache:$templateCache})
 .then(function(response) {
 return angular.element(response.data);
 }, function(response) {
 throw new Error('Template not found: ' + template);
 });
}

The function is asynchronous and so it returns a promise to the wrapped element.
Just as directives using templateUrl and ng-include do, we are using the
$templateCache to cache the templates when we load them.

Building Advanced Directives

[270]

Setting up the field template
In the field directive's link function, we call loadTemplate with the value of the
template attribute on the directive's element (or 'input.html' if none is specified).

loadTemplate(template).then(function(templateElement) {

All the work of the directive happens once the promise is resolved.

 var childScope = scope.$new();
 childScope.$validationMessages = angular.copy(validationMsgs);
 childScope.$fieldId = attrs.ngModel.replace('.', '_').toLowerCase()
+ '_' + childScope.$id;
 childScope.$fieldLabel = labelContent;

 childScope.$watch('$field.$dirty && $field.$error',
function(errorList) {
 childScope.$fieldErrors = [];
 angular.forEach(errorList, function(invalid, key) {
 if (invalid) {
 childScope.$fieldErrors.push(key);
 }
 });
 }, true);

First we create a new child scope and attach useful properties, such as
$validationMessages, $fieldId, $fieldLabel, and $fieldErrors:

 var inputElement = findInputElement(templateElement);
 angular.forEach(attrs.$attr, function (original, normalized) {
 var value = element.attr(original);
 inputElement.attr(original, value);
 });
 inputElement.attr('name', childScope.$fieldId);
 inputElement.attr('id', childScope.$fieldId);

We copy over all the attributes from the field directive's element to the template's
input element and add on computed values for the name and id attributes:

 var labelElement = templateElement.find('label');
 labelElement.attr('for', childScope.$fieldId);
 labelElement.html(labelContent);

Chapter 9

[271]

We copy in the labelContent and apply the for attribute to the label element:

 element.append(templateElement);
 $compile(templateElement)(childScope);
 childScope.$field = inputElement.controller('ngModel');
});

We append the templateElement to the original field element, then use the
$compile service to compile and link it to our new childScope. Once the element is
linked, the ngModelController is available for us to put into the $field property
for the template to use.

Summary
In this chapter we have looked at some of the more advanced aspects of developing
directives. We saw in our alert directive, how transclusion can be used with
ng-transclude when creating widgets. The accordion directive suite neatly
demonstrated how directive controllers can be used to coordinate communication
between directives. We even took complete control of the compile process by
terminating the current compilation in the field directive and the using the
$compile service to manually compile the element's contents.

In the next chapter we will be looking at what we can do to ensure that our
application performance is fast and responsive.

Building AngularJS
Web Applications for an

International Audience
We live in a global village where anyone equipped with an internet connection
can access your web application. You might start your project by providing only a
single language version, but as your website becomes popular on the international
scene you might want to offer content in languages, to which your users are
comfortable with. Or you might be obliged to provide several localized versions
due to customers' demand or law-enforced constraints. Whatever the reasons
internalization problems are a fact of life for many web developers.

There are several aspects of internationalization (i18n) and localization (i10n),
but this chapter focuses on problems and solutions specific to AngularJS web
applications. In particular, you will see how to:

• Configure date, number and currency formats as well as choose other
locale-specific settings based on user's preferences

• Handle content translated into multiple languages (both embedded in
AngularJS templates as well as one manipulated in JavaScript code)

The last part of this chapter presents some patterns, tips and tricks that you will
find useful while building AngularJS applications for an international audience.

Building AngularJS Web Applications for an International Audience

[274]

Using locale-specific symbols and
settings
AngularJS deliverables contain a set of modules with the locale-specific settings. This
section illustrates steps required to configure the locale-specific modules as well as it
describes settings and constants available for each locale.

Configuring locale-specific modules
If you explore AngularJS deliverables carefully you will notice that each distribution
contains a folder named i18n. Inside this folder there are files named according to
the following pattern: angular-locale_[locale name].js where [locale name]
corresponds to a locale name (expressed as a combination of a language code and a
country code). For example, a file with local settings for the French language with
Canadian specificities is named as angular-locale_fr-ca.js.

AngularJS is distributed with over 280 files containing locale specific
settings and constants for different languages and countries. Those
files, while distributed with AngularJS, are not maintained as part
of the project. Instead locale-specific settings are extracted from the
closure library (http://closure-library.googlecode.com/)
on a regular basis.

By default AngularJS will use i8n settings specific to the English locale in the United
States (en-us). If you are writing an application for another locale (or want to choose
different locale for different users) you need to include appropriate file and declare a
dependency on the locale module. For example, to configure a web application to use
the French-Canadian (fr-ca) locale you would organize scripts on your page
as follows:

<!doctype html>
<html ng-app="locale">
<head>
<meta charset="utf-8">
<script src="lib/angular/angular.js"></script>
<script src="lib/angular/angular-locale_fr-ca.js"></script>
<script src="locale.js"></script>
</head>
<body ng-controller="LocaleCtrl">
...
</body>

Chapter 10

[275]

Where the locale.js file should contain a module definition with a dependency on
the ngLocale module:

angular.module('locale', ['ngLocale'])

Making use of available locale settings
Each and every localization file distributed with AngularJS contains definition of a
module named ngLocale. The ngLocale module exposes only one service: $locale.
The only documented, public API of the $locale service consists of the $locale.id
variable, which can be used to retrieve a currently used locale.

In reality the $locale service exposes much more constants for a given locale.
Among the exposed constants we can find ones holding date and time formats
($locale. DATETIME_FORMATS), as well as the number formats ($locale.NUMBER_
FORMATS). The mentioned constants are JavaScript objects containing settings one
might need to format dates, time, number and currencies. For example, we can find
all the month names by inspecting $locale.DATETIME_FORMATS.MONTH.

Locale-specific settings and AngularJS filters
Having access to all the localization settings might come handy when writing custom
directives and filters, but AngularJS already makes good use of those settings in the
build in filters.

Date filter
The date filter converts dates according to a specified format. A target format can
be specified either in a precise, locale-independent manner (For example, mm/dd/
yy hh:mm a) or in a locale-dependent one. In the second case, instead of precisely
enumerating each character of a desired format, we can use predefined, named ones.
AngularJS understands the following names for predefined formats: medium, short,
fullDate, longDate, mediumDate, shortDate, mediumTime, shortTime.

As an example, let's consider the {{now | date:'fullDate'}} expression (where
now is initialized to new Date()), that will produce different results depending on
a locale:

• Tuesday, April 9, 2013 in en-us(English locale in United States)
• mardi 9 avril 2013 in fr-fr (French locale in France)

Building AngularJS Web Applications for an International Audience

[276]

Currency filter
The currency filter can format a number as currencies. By default it will use a
currency symbol from the current locale. For example, the {{100 | currency}}
expression will yield different results depending on the configured locale:

• $100.00 in en-us (English locale in United States)
• 100.00 € in fr-fr (French locale in France)

The default behavior of the currency filter might be confusing for the users of your
web application, as usually we want to display numbers as a price in a specific
currency. It would be rather bizarre, if we could reduce a price of an item from
100.00 € (euros) to 100.00 $ just be changing locale settings.

Unless you are using just one, fixed locale we recommend to always specify a
currency symbol when using the currency filter:

{{100 | currency:'€'}}

There is a further complication though, while the currency filter allows us to specify
a currency symbol, it won't let us specify a position of this symbol or a decimal
separator (and will use defaults from the current locale). This means that the
previous example would render as € 100.00, something that is unusual for the Euro
currency symbol.

If the currency filter does the job for your use cases that's great; by all means use
it. But there are times where it falls short, and we should be prepared to roll out a
custom filter.

Number filter
The number filter behaves as expected, and will format numbers by applying both
thousand and decimal separators according to local settings. For example:

{{1000.5 | number}}

It will render as:
• 1,000.5 in en-us (English locale in United States)
• 1000,5 € in fr-fr (French locale in France)

Handling translations
Being able to format dates and numbers according to local settings is only small part
of the whole localization story. Usually when people think about localization it is the
translation effort that comes to the mind first.

Chapter 10

[277]

In an AngularJS application there are at least two places where we can find words
to be translated to a target language: templates (partials) and strings used in
JavaScript code.

For the rest of this chapter let's assume that we do have translated strings already
available in a convenient format, for example JSON. Such JSON could be an object
where keys correspond to logical names of fragments to be translated (For example,
crud.user.remove.success), and the values are actual translated strings for a
given locale. For example, JSON containing translations for the en-us locale could
look like follows:

{
'crud.user.remove.success': 'A user was removed successfully.',
'crud.user.remove.error': 'There was a problem removing a user.'
 . . .
}

While the same JSON structure for the pl-pl locale would have the
following content:

{
 'crud.user.remove.success': 'Użytkownik został usunięty.',
 'crud.user.remove.error': 'Wystąpił błąd podczas usuwania
 użytkownika.'
. . .
}

Handling translated strings used in AngularJS
templates
Typically, a vast majority of strings to be translated are located in the AngularJS
partials. Let's considering the simple "Hello, World!" example:

Hello, {{name}}!

To make this partial work in different languages we need to find a way of
substituting the Hello string with its translated value for a currently selected
language. There are number of techniques that we can use here, each of them
having their pros and cons as discussed in the following section.

Building AngularJS Web Applications for an International Audience

[278]

Using filters
Assuming that we've got JSON structure with translated strings like:

{
 'greetings.hello': 'Hello'
 . . .
}

We could imagine writing a filter (let's call it i18n) to be used as follows:

{{'greetings.hello' | i18n}}, {{name}}!

Writing a basic version of the i18n filter wouldn't be difficult, and we could start off
by sketching the code as shown in the following code:

angular.module('i18nfilter', ['i18nmessages'])
 .filter('i18n', function (i18nmessages) {
 return function (input) {
 if (!angular.isString(input)) {
 return input;
 }
 return i18nmessages[input] || '?'+input+'?';
 };
 });

The i18 filter would rely on a set of translated messages (i18nmessages). The
messages themselves could be declared as a value is a separate module, for example:

angular.module('i18nmessages', [])
 .value('i18nmessages', {
 'greetings.hello': 'Hello'
 });

The i18n filter shown here is very simple, and there is plenty of room for extensions
and improvements: loading translated strings via $http service with caching,
switching locale on the fly and so on. While the presented i18n filter seems
to be working well, and we could spend time elaborating it further, if there is
performance-related problem with the filter-based approach to translations.

By turning static text "Hello" embedded in HTML into a filtered expression
({{'greetings.hello' | i18n}}) we've introduced one more expression to
be evaluated by AngularJS. As we are going to see in Chapter 11, Writing Robust
AngularJS Web Applications is strongly correlated with a number of expressions
that need to be watched and evaluated by the framework. Adding a new watch
expression for each individual string is wasteful, and might slow down your
application to unacceptable levels.

Chapter 10

[279]

While the filter-based approach to translation seems to be easy and
flexible it has adverse performance implications. The performance
penalty incurred might be acceptable for small pages with few strings
to be translated. For bigger pages with many translations it might
quickly become a bottleneck.

Using directives
To remedy the performance problems related to the filter-based approach we could
turn our attention to directives. One could imagine using syntax as follows:

<i18n key='greetings.hello'></i18n>, {{name}}!

By using a directive we could eliminate the need for an additional AngularJS watch
expression and as a result address performance issues present in the filter-based
approach. But usage of directives brings its own problems.

For a start the syntax is verbose and not very pretty. One could experiments with
alternatives (For example, by using attribute directives) but in any case templates
are becoming harder to read and modify. There is a more serious problem though:
directives can't be used in certain places. Let's consider an input field with a
placeholder attribute:

<input ng-model='name' placeholder='Provide name here'>

We can't use directive-based approach to translate the "Provide name here" string.
There is simply no way of evaluating directives inside an HTML attribute.

As you can see the directive-based approach can't cover all the use cases so we need
to continue our quest in search for a solution.

Translating partials during the build-time
The last approach explored in this chapter consists of moving translation efforts
to the build system. The idea is to process all the partials and generate a set of
language-specific templates to be downloaded by a browser. In this way the
templates would appear to AngularJS as static ones and wouldn't require any
language-specific processing on the client side.

Building AngularJS Web Applications for an International Audience

[280]

The exact technology to be used to translate partials during the build time will
depend on the build system used. For the Grunt.js based builds we could use
Grunt's capability of creating templates. Considering the following partial, named
hello.tpl.html:

<div>
<h3>Hello, {{name}}!</h3>
<input ng-model='name' placeholder='Provide name here'>
</div>

We could turn it into Grunt.js template to be processed during the build-time:

<div>
<h3><%= greeting.hello %>, {{name}}!</h3>
<input ng-model='name' placeholder='<%= input.name %>'>
</div>

Then, based on a list of supported locales and translation files, the Grunt.js build
would produce translated partials, saving them in folders corresponding to a locale
name. For example:

/en-us/hello.tpl.html
/fr-ca/hello.tpl.html
/pl-pl/hello.tpl.html

Setting up a build-time translation system might be a bit cumbersome, but usually
it is a one-time effort done at the very beginning of a project. The benefit is that we
avoid any kind of performance problems linked to localization, and can translate
strings at any place of a partial.

Handling translated strings used in the
JavaScript code
While most of the strings to be translated are located in AngularJS templates, there
are times when we need to handle text in a JavaScript code. We might need to
display a localized error message, an alert and so on. Whatever the reason may be,
we need to be prepared for handling translated strings in the JavaScript code.

AngularJS doesn't provide any facility that would help us here, so we need to roll up
our sleeves, and write a simple service that will serve us as a handy translation tool.
Before writing any code let's consider an example usage scenario. Let's say we would
like to prepare an alert message to be displayed when an item is successfully deleted
from a persistent store, doesn't exist in a persistent store, and so on.

Chapter 10

[281]

If we need to support multiple languages we can't simply hard-code a message's
text in the JavaScript code. Instead we need to be able to retrieve a localized and
parameterized message based on its key. For example, calling:

localizedMessages.get('crud.user.remove.success', {id: 1234})

It should return a message that could look like "A user with id '1234' was removed
successfully." in en-us and "Użytkownik z identyfikatorem '1234' został usunięty." in
pl-pl (Polish in Poland).

Writing a service that would look up a message based on its key and the current
locale is of no use. The only difficulty that we are facing here is delays in handling
parameters inside localized strings. Fortunately, we can lean on AngularJS here,
and re-use the $$interpolate service; the same one that AngularJS uses to handle
interpolation directives in its templates. This would allow us to specify localized
messages as:

"A user with id '{{id}}' was removed successfully."

The sample SCRUM application has a complete implementation of the localization
service based on the idea just described. A sketch of this implementation is presented
here as well as it is very simple:

angular.module('localizedMessages', [])
.factory('localizedMessages', function ($interpolate, i18nmessages) {

 var handleNotFound = function (msg, msgKey) {
 return msg || '?' + msgKey + '?';
 };

 return {
 get : function (msgKey, interpolateParams) {
 var msg = i18nmessages[msgKey];
 if (msg) {
 return $interpolate(msg)(interpolateParams);
 } else {
 return handleNotFound(msg, msgKey);
 }
 }
 };
});

Building AngularJS Web Applications for an International Audience

[282]

Patterns, tips, and tricks
The last part of this chapter is devoted to internationalization and localization
related patterns. We will start by looking into ways of initializing an application
and switching locale. Then we will move to patterns applicable inside a running
application: overriding default locale-specific formats and handling users input in
accordance with a selected locale.

Initializing applications for a given locale
As we've learned in the beginning of this chapter, AngularJS distribution
contains files with locale specific settings. There is one file for each locale and
each file contains definition of the ngLocale module. If we want to take advantage
of locale-specific settings we need to declare a dependency on the ngLocale
module in our application. As a remainder here is how one would initialize
AngularJS application for a fixed locale:

<head>
<meta charset="utf-8">
<script src="lib/angular/angular.js"></script>
<script src="lib/angular/angular-locale_fr-ca.js"></script>
<script src="locale.js"></script>
</head>

This works fine if our application is supposed to work with only one fixed locale.
In reality, though, we often want to initialize locale based on user's preferences.
There is variety of sources we could consider for user preferences:

• Browser's settings
• HTTP request headers (For example, Accept-Language)
• URL or request parameters
• Server-side settings (user profile, geo-localization, and so on.)

Looking at the list provided earlier we can clearly see that we've got more means
of determining a desired locale on the server side. This is why we would advocate
server side processing for the initial page of an application.

To demonstrate locale selection process in practice, let's have a look into a strategy
implemented in the sample SCRUM application. The approach taken consists of
determining the target locale based on:

• Locale specified as part of a URL that trigger's application's bootstrap
• The Accept-Language request header
• A set of supported locales

Chapter 10

[283]

Considering this strategy a user might target our sample application with following
types of URLs:

• http://host.com/fr-ca/admin/users/list: Here a user is specifying a
desired locale (fr-ca). We should cross check the requested locale with a list
of supported ones and redirect a user to a different URL, if we don't happen
to support the wished one. For example, we could redirect users to a URL
with a default locale (say en-us), if the fr-ca is not supported: http://host.
com/en-us/admin/users/list

• http://host.com/admin/users/list: Here a desired locale was not
specified. We can try to guess a locale for a user based on the Accept-
Language HTTP request header, and redirect a user to a URL with an
identified locale. Obviously, we should cross check a locale extracted from
request headers with a set of supported locales.

In practice you are likely to have a more sophisticated algorithm
combining settings from different sources with a robust fallback strategy
and defaults. The exact strategy to determine user's locale based on his
request will largely depend on your application requirements.

As soon a locale for a given user is identified we can send to a browser a page that
bootstraps the whole application. The initial page (index.html or similar) needs to
be generated dynamically on the server side. In the sample SCRUM application the
index.html file is a template shown as follows:

<head>
<meta charset="utf-8">
<script src="lib/angular/angular.js"></script>
<script src="lib/angular/angular-locale_<%= locale %>.js"></script>
. . .
</head>

Here the target locale is identified according to the described algorithm and a
template is processed on the server-side before being served to a browser.

Consequences of including locales as part of URLs
As soon as we add a new path element to the application's URLs we need to take
care of two new issues: reconfiguring routes and downloading partials.

Normally a new path element should be handled as a part of routes definition. Of
course we could go back to our application and re-define all the routes, for example:
/admin/users/list would become /:locale/admin/users/list.

Building AngularJS Web Applications for an International Audience

[284]

While this approach would work it is tedious and error-prone to prefix all the routes
with /:locale. What we can do instead is to define a base tag in a landing's page
HTML and point it to a locale folder:

<head>
<meta charset="utf-8">
<script src="/lib/angular/angular.js"></script>
<script src="/lib/angular/angular-locale_<%= locale %>.js"></script>
<base href="/<%= locale %>/">
 . . .
</head>

The AngularJS $location service (and thus its routing system) can recognize
the <base> tag, and handle all the routes as relative to the path specified in the
href attribute.

Using a base tag that points to a locale folder has one more advantage as we can
use relative URLs to download AngularJS templates (partials). If we decide to adopt
build-time approach to localization we would generate translated partials in folders
corresponding to a given locale. A properly configured <base> tag would assure
that AngularJS downloads partials for a configured locale.

Using the <base> tag on a page means that we need to use non-
relative URLs for all static content that is not locale-dependent.

In the real-life deployment scenarios partials most probably will be pre-fetched at
the beginning, instead of being downloaded on the fly so defining the <base> tag
has less practical implications from the partials point of view. Chapter 12, Packaging
and Deploying AngularJS Web Applications covers different deployment scenarios in
great details.

Switching locales
In the current version of AngularJS all the dependent modules must be listed as
dependencies of the main application module before an application is bootstrapped.
The ngLocale module isn't an exception here, which means that it needs to be loaded
into a browser, and declared as a dependency before AngularJS application can be
started. As a consequence we need to select a module with local settings before an
application starts. Moreover the selected module can't be swapped for another one
without re-initializing AngularJS application.

Chapter 10

[285]

In the current version of AngularJS a locale needs to be selected
upfront, before an application is initialized. The selected locale can't
be switched on the fly, and requires that an application is re-initialized
with another ngLocale module.

Given how the module system operates in the current version of AngularJS our best
option for switching locale is to re-initialize an application by redirecting users to a
URL with a new locale specified. A redirect means that the whole state in a browser
will be lost. Fortunately, the AngularJS deep linking feature will take a user to the
same place in an application after locale change.

To switch a locale by redirecting users we will have to prepare a string for a new
URL first. We can do this easily using the API exposed by the $location service.
For example, given the current URL: http://host.com/en-us/admin/users/list
and a desired target URL http://host.com/fr-ca/admin/users/list.

We could write the following switchLocaleUrl function:

$scope.switchLocaleUrl = function(targetLocale) {
 return '/'+targetLocale+'/'+$location.url();
};

The switchLocale function just shown would calculate a URL taking users to a
route equal to the current one, but in a specified targetLocale. This function could
be used in the standard <a> tag to take users to a site with a new locale selected:

<a ng-href="switchLocaleUrl('fr-ca')" target="_self">Français

Custom formatting for dates, numbers, and
currencies
Some of the AngularJS filters can deal with locale-specific content by default. For
example, as seen at the beginning of this chapter, the date filter can be supplied with
a locale-dependent, named format, for example, {{now | date:'fullDate'}}. The
exact mapping from the fullDate string to the actual format is defined in a file with
locale-specific settings under the $locale.DATETIME_FORMATS.fullDate key. As an
example, for the fr-ca locale the fullDate format is equivalent to: EEEE d MMMM y.

The default formats are usually exactly the ones we would expect for a given
language and a country, but we might want to slightly adjust certain formats for
some locales. This can be easily achieved by creating a decorator over a filter.

Building AngularJS Web Applications for an International Audience

[286]

In AngularJS we can create a decorator over any existing service or
filter. Such a decorator can wrap an existing service and "decorate"
(extend) it with an additional functionality. AngularJS decorators are
great example of the decorator pattern (http://en.wikipedia.
org/wiki/Decorator_pattern).

For example, to change the fullDate format for the fr-ca locale we could write a
wrapper around the date filter as follows:

angular.module('filterCustomization', [])
 .config(function ($provide) {
varcustomFormats = {
 'fr-ca': {
 'fullDate': 'y'
 }
 };

 $provide.decorator('dateFilter', function ($delegate, $locale) {
 return function (input, format) {
 return $delegate(input, customFormats[$locale.id][format]
 || format);
 };
 });
 })

Here we are taking an advantage of decorators in the AngularJS dependency
injection system. By defining a new decorator ($provide.decorator()) we can
wrap an existing service inside our custom one yet still keep access to the original
service ($delegate). Apart from the new $provide service the rest of the code
should be easy to follow. We are simply consulting a hash of overridden formats for
a given locale (customFormats), and if an overridden format was specified we are
using it to call the original data filter. Otherwise we are using a format supplied in a
call the original date filter.

Our decorator replaces the date filter, since we've chosen to register it under the
same name as the original one. The advantage of this approach is that we don't need
to touch application's code to use the customized version of the filter.

We could elaborate this decorator further to choose a format in a situation when
none was specified.

Chapter 10

[287]

The other, brute force solution is to simply edit a file with locale-
specific settings for a given locale. The drawback of this approach is
that we need to remember to re-edit files, when upgrading from one
version of AngularJS to another.

Summary
This chapter touched upon internationalization and localization problems specific to
AngularJS applications. We saw that AngularJS provides the ngLocale module with
locale-specific settings for dates, currencies and number formats. Those settings are
derived from the closure library and influence behavior of some of the build-in filters.

The biggest part of localization efforts is often devoted to translating existing partials
and messages embedded in JavaScript code. We've explored various approaches
for making AngularJS partials work with translated data: filters, directives and
the build-time solution. While the filter-based approach sounds like a good idea it
comes with the performance-penalty that might be unacceptable for many projects.
Directive-based approach solves the performance problem, but is not flexible enough
for real-life applications. This is why we've explored a recommended approach to
translating strings in AngularJS partials build-time solution where translation is
done before templates reach a browser.

We've concluded this chapter with number of i18n/i10n related patterns. We've
started off by looking into options for initializing and switching locale. The current
version of AngularJS requires that a locale is selected before the application's startup,
and this is why we've focused on determining and initializing locale on the server-
side, dynamically generating application's landing page. Switching locale on the fly
is not an option with the version of AngularJS published as of time of this writing so
our best call is to redirect users to a landing page to switch locales.

The other patterns described in this chapter dealt with customizing date, number
and currencies format for data display. While AngularJS provides sensible defaults
for locale-specific filters there are times where you might tweak things a little bit. A
decorator around existing filters is a good approach to customize data output.

At this point we should have a fully functional, internationalized AngularJS web
application. The next chapter will focus on making this application robust. More
specifically, we are going to look into identifying and addressing any potential
performance-related issues.

Writing Robust AngularJS
Web Applications

Web applications' performance is one of the non-functional requirements that
we need to juggle with other tasks and functional exigencies. Obviously we can't
neglect performance, even if our application looks stunning and has all the required
functionality, people might refuse to use it if it doesn't run smoothly.

There are several factors that affect overall performance of a finished web
application: utilization of network, size of the DOM tree, number and complexity
of CSS rules, JavaScript logic and algorithms, data structures used and many, many
others. Not to mention that it all depends on a browser used and users' perception!
Some of the performance-related concerns are universal and need to be addressed
regardless of a technology used. Some others are AngularJS-specific and this chapter
focuses on AngularJS particularities.

To understand AngularJS performance characteristics, we need to better understand
its internals. This is why this chapter starts with a deep dive into AngularJS core
machinery. What follows is an overview of performance-sensitive patterns alongside
discussion of available options and trade-offs.

After reading this chapter you will:

• Learn how AngularJS rendering engine works under the hood.
Getting familiar with AngularJS internals is essential to understand
its performance characteristics.

• Understand theoretical performance-limits of AngularJS applications and
be able to quickly decide if your particular project fits into set boundaries.

Writing Robust AngularJS Web Applications

[290]

• Be able to identify and address CPU-utilization and memory-consumption
bottlenecks in AngularJS applications. You will be well prepared to recognize
performance-sensitive patterns before any code is written, as well as use
performance-monitoring tools to spot problems in already existing code-base.

• Understand performance implications of using the ng-repeat directive with
large data sets.

Understanding the inner workings of
AngularJS
To understand performance characteristics of AngularJS applications, we need
to poke under the hood of the framework. Getting familiar with the AngularJS
machinery inner-working will allow us to easily identify situations and code
patterns that have a major impact on applications' overall performance.

It is not a string-based template engine
Looking at simple code examples we might get an impression that AngularJS is yet-
another client-side template engine. Indeed, just by looking at the following code:

Hello, {{name}}!

It is impossible to distinguish AngularJS code from a regular template system, say,
Mustache (http://mustache.github.io/). The difference only becomes apparent
if we add the ng-model directive:

<input ng-model="name">
Hello, {{name}}!

As soon as we do so, the DOM gets updated automatically in response to the user's
input, without any further intervention from a developer. The two-way data binding
might look like magic at first. Rest assured AngularJS uses only solid algorithms to
bring the DOM tree to life! In the subsequent sections we are going to dissect those
algorithms by examining how changes from DOM are propagated to the model and
how model updates trigger DOM repaints.

Chapter 11

[291]

Updating models in response to DOM events
AngularJS propagates changes from the DOM tree to the model through DOM event
listeners registered by different directives. The code in event-listeners mutate the
model by updating variables exposed on a $scope.

We can write a simplified equivalent of the ng-model directive (let's call it
simple-model) that would illustrate essential bits involved in updating the model:

angular.module('internals', [])
 .directive('simpleModel', function ($parse) {
 return function (scope, element, attrs) {

 var modelGetter = $parse(attrs.simpleModel);
 var modelSetter = modelGetter.assign;

 element.bind('input', function(){
 var value = element.val();
 modelSetter(scope, value);
 });
 };
 });

The key part of the simple-model directive consists of the input DOM event
handler that listens to changes in an input element and updates the model based
on the value entered by a user.

To set the actual model value we are using the $parse service. This service can be
put in action to both evaluate AngularJS expressions against a scope and set a model's
value on a scope. The $parse service, when called with an expression as its argument,
will return a getter function. The returned getter function will have the assign
property (a setter function) if the supplied AngularJS expression is assignable.

Propagating model changes to the DOM
We can use the $parse service to write a simplified version of the ng-bind directive
that can render model values as DOM text nodes:

 .directive('simpleBind', function ($parse) {
 return function (scope, element, attrs) {

 var modelGetter = $parse(attrs.simpleBind);
 element.text(modelGetter(scope));
 }
 });

Writing Robust AngularJS Web Applications

[292]

The simple-bind directive presented here takes an expression (provided as
a DOM attribute), evaluates it against a $scope, and updates the text of a given
DOM element.

Synchronizing DOM and model
With both directives ready we could try to use them in HTML as shown in the
following code, and expect that new directives behave as the ng-model and
ng-bind equivalents:

<div ng-init='name = "World"'>
 <input simple-model='name'>

</div>

Unfortunately running the last example won't yield expected results! While the
initial rendering will be correct, changes from the <input> field won't trigger
updates in the element.

We must clearly be missing something and a quick review of the simple-bind
directive will help you realize that this directive covers only initial rendering of the
model. The directive doesn't observe model changes and won't react on those changes.
We can easily fix this by using the $watch method available on scopes' instances:

 .directive('simpleBind', function ($parse) {
 return function (scope, element, attrs) {

 var modelGetter = $parse(attrs.simpleBind);
 scope.$watch(modelGetter, function(newVal, oldVal){
 element.text(modelGetter(scope));
 });
 }
 });

The $watch method lets us monitor model mutations and execute functions in
response to model changes. This method has a signature that could be, in its
simplified form, described as follows:

scope.$watch(watchExpression, modelChangeCallback)

The watchExpression parameter can be either a function or AngularJS expression
(indicating model value to observe). The modelChangeCallback parameter is a
callback function that will get executed every time a value of the watchExpression
changes. The callback itself has access to both new and old values of the
watchExpression.

Chapter 11

[293]

After getting familiar with the scope $watch mechanism we should realize that our
simple-model directive would also benefit from model observing as a value in an
input field and should be updated in response to model changes:

.directive('simpleModel', function ($parse) {
 return function (scope, element, attrs) {

 var modelGetter = $parse(attrs.simpleModel);
 var modelSetter = modelGetter.assign;

 //Model -> DOM updates
 scope.$watch(modelGetter, function(newVal, oldVal){
 element.val(newVal);
 });

 //DOM -> Model updates
 element.bind('input', function () {
 modelSetter(scope, element.val());
 });
 };
 })

With the recent changes to our simple directives we've set up watches in order
to observe model mutations. The code looks great and it is reasonable to expect
that it should work correctly. Unfortunately those examples still won't work in
a live application.

It turns out that we are missing one more fundamental piece of the whole puzzle:
when and how AngularJS monitors model changes. We need to understand under
which circumstances AngularJS will start evaluating all the watch expressions,
checking for model changes.

Scope.$apply – a key to the AngularJS world
When AngularJS was first released to the public there were many "conspiracy
theories" regarding its model-changes tracking algorithm. The most frequently
repeated one was based on suspicion that it uses some kind of polling mechanism.
Such a mechanism was supposedly kicking-in at certain intervals to check model
values for changes and re-rendering the DOM if changes were found. All of this
is false.

AngularJS does not use any kind of polling mechanism to periodically
check for model changes.

Writing Robust AngularJS Web Applications

[294]

The idea behind AngularJS model-changes tracking mechanism is based on the
observation that at the end of the day, there is a finite (and rather small) number
of situations where models can change. Those include:

• DOM events (user changing value of an input field, clicking on a button
to invoke a JavaScript function and so on)

• XHR responses firing callbacks
• Browser's location changes
• Timers (setTimout, setInterval) firing the callbacks

Indeed, if none of the earlier events take place (user is not interacting with a page,
no XHR calls have finished, no timers firing) there is no point in monitoring the
model for changes. There is simply nothing going on for a given page, the model
isn't changing, so there is no reason to re-render the DOM.

AngularJS starts its model-observing machinery if and only if it is explicitly told to
do so. To bring this sophisticated mechanism to life we need to execute the $apply
method on a scope object.

Going back to our simple-model directive example we could do it after each and
every change to the input's value (so model changes are propagated after each
keystroke. T his is how the ng-model directive behaves by default):

 .directive('simpleModel', function ($parse) {
 return function (scope, element, attrs) {

 var modelGetter = $parse(attrs.simpleModel);
 var modelSetter = modelGetter.assign;

 //Model -> DOM updates
 scope.$watch(modelGetter, function(newVal, oldVal){
 element.val(newVal);
 });

 //DOM -> Model updates
 element.bind('input', function () {
 scope.$apply(function () {
 modelSetter(scope, element.val());
 });
 });
 };
 })

Chapter 11

[295]

Or, we could change the default strategy and propagate model updates only after the
user leaves the input field:

//DOM -> Model updates
element.bind('blur', function () {
 scope.$apply(function () {
 modelSetter(scope, element.val());
 });
});

Whatever the strategy chosen, the important point here is that model-changes tracking
process need to be started explicitly. This might come as a surprise since by simply
using built-in AngularJS directives we can see "magic" happening without calling the
$apply method all over the place. But those calls are present in the built-in directives'
code. It is just that standard directives and services ($http, $timeout, $location, and
so on) take care of starting the whole model-changes tracking process for us.

AngularJS starts the model-changes tracking machinery by calling the
$apply method on a scope. This call is done inside standard services
and directives in response to network activity, DOM events, JavaScript
timers or browser location changes.

Enter the $digest loop
In AngularJS terminology the process of detecting model changes is called $digest
loop (or $digest cycle).The name comes from the $digest method available on
Scope instances. This method is invoked as part of the $apply call and it will
evaluate all the watches registered on all the scopes.

But why does the $digest loop exist in AngularJS? And how it does its job of
determining what has changed in the model? AngularJS the $digest loop exists to
address two related problems:

• Decide which parts of the model have changed and which DOM properties
should be updated as a result. The goal here is to make this process as easy
as possible for developers. We should just mutate model properties and
have AngularJS directives automatically figure out parts of the document
to be repainted.

• Eliminate unnecessary repaints to increase performance and avoid UI
flickering. AngularJS achieves this by postponing DOM repaints till the very
last possible moment when the model stabilizes (all the model values were
calculated and ready to drive UI rendering).

Writing Robust AngularJS Web Applications

[296]

To understand how AngularJS achieves its goals we need to remember that web
browsers have a single UI thread. There are other threads running in a browser (for
example, ones responsible for network-related operations) but only one thread is
available to render DOM elements, listen to DOM events, and execute JavaScript
code. Browsers constantly switch between the JavaScript execution context and the
DOM rendering context.

AngularJS makes sure that all the model values are calculated and "stable" before
giving control back to the DOM rendering context. This way UI is repainted in one
single batch, instead of being constantly redrawn in response to individual model
value changes. This results in faster execution (as there is less context switching) and
better visual effect (as all the repaints are done once only). Repainting UI after each
and every single model property change would give us slow and flickering UI.

Anatomy of a $watch
AngularJS uses dirty checking mechanism to determine if a given model value has
changed. It works it out by comparing previously saved model values with the ones
computed after one of the events that can result in model mutation occurs (DOM
events, XHR events, and so on).

As a reminder, here is the general syntax to register a new watch:

$scope.$watch(watchExpression, modelChangeCallback)

When a new $watch is added on a scope AngularJS evaluates the watchExpression
and internally saves the result of this evaluation. Upon entering the $digest loop the
watchExpression will be executed once again, and a new value will be compared
to the saved one. The modelChangeCallback will be executed only if the new value
differs from the previous one. The new calculated value is also saved for further
comparisons and the whole process can be repeated.

As developers we will be well aware of watches that are registered manually
(in application controllers or custom directives). But we need to remember that
any directive (both from the AngularJS core set of directives as well as from
third party collections) can set up its own watches. Any interpolation expression
({{expression}}) will register a new watch on a scope as well.

Model stability
AngularJS considers that a model becomes stable (and we can move to UI rendering)
if none of the watches detects any further changes. It is enough that one watch sees a
change to mark the whole $digest loop as "dirty", and force AngularJS into another
turn of the loop. It is the "one bad apple spoils the whole bunch" principle, and there
are good reasons for it.

Chapter 11

[297]

AngularJS will keep executing the $digest loop and re-evaluating all the watches
on all scopes till there are no changes reported. Several turns of the $digest loop
are necessary since watch callbacks can have a side effect. Simply put ting a given
callback, executed as a result of a model change, can change the model value that
was already computed and considered as stable.

Let's consider an example of a simple form with two date fields: Start and End. In
such a form the end date should always come after the start date:

<div>
<form>
 Start date: <input ng-model="startDate">
 End date: <input ng-model="endDate">
</form>
</div>

To enforce in the model that endDate is always after the startDate we could
register watches like:

function oneDayAhead(dateToIncrement) {
 return dateToIncrement.setDate(dateToIncrement.getDate() + 1);
};

$scope.$watch('startDate', function (newValue) {
 if (newValue <= $scope.starDate) {
$scope.endDate = oneDayAhead($scope.starDate);
 }
});

The watch registered in a controller makes two model values interdependent in a
way that changes in one model variable can trigger changes in another. The callback
on model change can have side effects that can potentially change a value that was
already considered "stable".

A good understanding of the dirty-checking algorithm will make you realize that
a given watchExpression is executed at least twice in each and every turn of the
$digest loop. We can quickly confirm this by creating the following mark-up:

<input ng-model='name'>
{{getName()}}

With the getName() expression being a function defined on a scope as follows:

$scope.getName = function() {
 console.log('dirty-checking');
 return $scope.name;
}

Writing Robust AngularJS Web Applications

[298]

If you run this example and inspect output of the console, you will notice that two
log entries are written for each change in the <input> field.

Any given $digest loop will have at least one turn, usually two. It
means that each individual watch expression will be evaluated twice
per $digest loop (before the browser leaves JavaScript execution
context and moves to UI rendering).

Unstable models
There are cases where two turns inside the $digest loop are not enough to stabilize
the model. Worse yet, it is possible to get into a situation where model never
stabilizes! Let's consider a very simple example of the markup:

Random value: {{random()}}

Where the random() function is defined on a scope like:

$scope.random = Math.random;

Here a watch expression is equal to Math.random() and it will (most probably)
evaluate to a different value on each turn of the $digest loop. This means that each
turn will be marked as "dirty" and a new turn will be needed. The situation will
keep repeating itself over and over again, until AngularJS decides that the model is
unstable, and will break the $digest loop.

By default AngularJS will try to execute up to 10 turns before giving
up, declaring the model as unstable and breaking the $digest loop.

Upon breaking the $digest loop AngularJS will report an error (using the
$exceptionHandler service which, by default, logs errors on a console). The
reported error will contain information about the last five unstable watches (with
their new and old values). In majority of cases there will be only one unstable watch,
making it easy to find a culprit.

After the $digest loop gets aborted, the JavaScript thread leaves "AngularJS world",
and there will be nothing stopping a browser from moving to the rendering context.
In this case, users will get their page rendered with the value computed by watchers
in the last turn of the $digest loop.

Chapter 11

[299]

A page will be rendered even if the configured limit of 10 turns per
$digest loop is exceeded. The error is not easy to spot till you inspect
a console so it might get unnoticed for a while. Still we should track
down and resolve issues linked to unstable models.

$digest loop and a hierarchy of scopes
Each turn of the $digest loop recomputes all the watch expressions on all scopes,
starting from the $rootScope. This might be counter intuitive at first, as one could
claim that it would be enough to recompute the only expression on a given scope, and
all of its children. Unfortunately, this could lead to UI being desynchronized with the
model. The reason is that changes triggered in one of the child scopes can influence
variables in a parent scope. Here is a simple example of an application with two scopes
(one $rootScope and another one created by the ng-controller directive):

<body ng-app ng-init='user = {name: "Superhero"}'>
 Name in parent: {{user.name}}
 <div ng-controller="ChildCtrl">
 Name in child: {{user.name}}
 <input ng-model='user.name'>
 </div>
</body>

Changes to the model (user.name) are triggered from a child scope (one created by
the ng-controller directive), but are changing properties of an object defined on
the $rootScope.

Setups like this force AngularJS to evaluate all the watches, starting from the
$rootScope, and continue down to child scopes (using depth-first traversal). If
AngularJS had evaluated watches on a scope where changes were triggered (plus
its children) it would have risked desynchronizing model values with the actual
display. In the example discussed here, the Name in parent: {{user.name}}
interpolation expression would not be evaluated and displayed correctly.

In each and every turn of the $digest loop AngularJS needs to
evaluate all the watches in all scopes. It does so starting from the
$rootScope and traversing child scopes depth-first.

Writing Robust AngularJS Web Applications

[300]

Putting it all together
Let's summarize what we know about AngularJS inner working by examining a
simple example of an input field propagating changes live to DOM:

<input ng-model='name'>
{{name}}

The preceding code will result in two watches registered on a $scope, each one of
them tracking the value of the name model variable. After the initial display, nothing
happens on a page a browser will be sitting in an event loop, and waiting for any
events. It is only when a user starts to type into an <input> field that the whole
machinery is brought to life:

• A new DOM input event is fired. Browser enters the JavaScript
execution context.

• A DOM event handler, registered by the input directive is executed. The
handler updates the model value and calls scope.$apply method on a
scope instance.

• JavaScript execution context enters the "AngularJS world" and the $digest
loop is started. Upon the first turn of the $digest loop one of the watches
(registered by the {{name}} interpolation directive) is declared as "dirty"
and another turn of the loop is needed.

• Since a model change was detected a $watch callback is fired. It updates
the text property of the DOM element where the interpolation expression
is present.

• The second turn of the $digest loop is re-evaluating all the watches, but this
time no further changes are detected. AngularJS can declare the model as
"stable" and exit the $digest loop.

• JavaScript execution context can process any other, non-AngularJS JavaScript
code. Most of the time there will be none, and a browser will be free to exit
JavaScript execution context.

• The UI thread is free to move the rendering context, and a browser can re-
paint the DOM node whose text property has changed.

• After rendering is done, a browser can come back to the waiting state in its
event loop.

As you can see, there are a number of steps involved in propagating DOM changes
to the model and back to the DOM.

Chapter 11

[301]

Performance tuning – set expectations,
measure, tune, and repeat
Performance tuning requires a disciplined approach where:

• Expectations regarding performance characteristics are clearly defined,
including measurable performance counters, alongside conditions under
which measures are taken.

• A current performance of a system is measured and cross-checked
with expectations.

• If a system is not up to the expected standards, then performance bottlenecks
need to be identified and fixed. After a fix is performed the whole process
of measuring needs to be repeated to prove that a fix brings system
performance to expected levels or identify further bottlenecks.

There are two very important lessons that we can draw from the process sketched
earlier. First of all, we need to clearly set expectations and conditions under which
performance characteristics are considered and measured. Secondly, the performance
tuning is not a goal in itself, it is a process to bring the system to the point where it
behaves as expected.

AngularJS, as any other well-engineered library, was constructed within a frame of
certain boundary conditions, and those are best described by Miško Hevery, father of
AngularJS (http://stackoverflow.com/a/9693933/1418796):

So it may seem that we are slow, since dirty checking is inefficient. This is where
we need to look at real numbers rather than just have theoretical arguments, but
first let's define some constraints.

Humans are:

slow — Anything faster than 50ms is imperceptible to humans and thus can be
considered as "instant".

limited — You can't really show more than about 2000 pieces of information to a
human on a single page. Anything more than that is really bad UI, and humans
can't process this anyway.

So the real question is this: can you do 2000 comparisons in 50 ms even on slow
browsers? That means that you have 25µs per comparison. I believe this is not an
issue even on slow browsers these days.

Writing Robust AngularJS Web Applications

[302]

There is a caveat: the comparisons need to be simple to fit into 25µs. Unfortunately
it is way too easy to add slow comparison into angular, so it is easy to build slow
apps when you don't know what you are doing. But we hope to have an answer by
providing an instrumentation module, which would show you which are the slow
comparisons.

The boundary conditions set here give us very good hints about practical and
theoretical limits of an application built with AngularJS, as well as set potential
directions for performance tuning.

Luckily for us the "instrumentation module" mentioned by Miško Hevery exists and is
called Batarang, and is available as a Chrome extension in the Chrome Web Store. In
the following screenshot we can see the Batarang extension in action. Among other
useful information Batarang can instrument watches declared on scopes and show:

• Execution time for the individual watches
• Relative time contributed by a given watch expression to the overall

execution time of the entire $digest loop

Batarang allows us to easily pinpoint the slowest watch expressions, and measure
our progress while taking the performance tuning steps.

Chapter 11

[303]

Performance tuning of AngularJS
applications
We would like to have applications that are "fast". But "fast" might mean different
things to different people, and this is why we need to focus on measurable items that
influence the overall performance. In this chapter, we are focusing on the in-browser
performance and putting network-related problems aside (those are discussed in
Chapter 12, Packaging and Deploying AngularJS Web Applications). If we narrow down
performance concerns to what is happening in a browser, we need to look at the CPU
utilization and memory consumption.

Optimizing CPU utilization
Apart from an application's logic there are number of AngularJS-specific operations
that will eat up CPU cycles. The $digest loop requires our special attention. We
need to make sure that individual $digest cycles are fast, and also arrange our code
in a way that AngularJS enters the $digest loop as infrequently as possible.

Speeding up $digest loops
We need to strive to keep the $digest loop execution time under 50 ms so the
human eye can't register its execution time. This is important since our application
will be perceived as responding instantaneously to users' actions (DOM events) if
the $digest loop is unnoticeable.

There are two primary directions we can explore in order to fly under the "50 ms per
$digest cycle" radar:

• Make individual watches faster
• Limit the number of watches evaluated as part of an individual

$digest cycle

Keeping watches slim and fast
If you recall the general syntax of a watch expression:

$scope.$watch(watchExpression, modelChangeCallback)

You will remember that each and every individual watch is composed of two
distinct parts: watchExpression that is used to compare model values, and the
modelChangeCallback that is executed when model mutation is detected. The
watchExpression is executed far more frequently as compared to the callback,
and this is why it is the watchExpression that requires our special attention.

Writing Robust AngularJS Web Applications

[304]

A given watchExpression is executed at least once (usually
twice) in each and every turn of the $digest loop. It is possible to
slow down the entire AngularJS application by introducing a watch
expression that requires significant time to execute. We need to pay
special attention to the watch-expression part of a watcher, and avoid
introducing expensive computations in this part.

Ideally the watch-expression part of a watcher should be as simple as possible
and execute as fast as possible. There are a number of anti-patterns that should be
avoided in order to have watch-expression executing fast.

Firstly, we should minimize expensive computations in a watch-expression.
Usually we use simple expressions in templates, which results in fast to execute
watch-expressions, but there are two situations where it is easy to introduce
non-trivial computations.

You should pay special attention to expressions that execute functions, for example:

{{myComplexComputation()}}

As those will result in the myComplexComputation() being part of the watch-
expression! Another non-obvious consequence of using functions is that we can
accidently leave some logging statements in them. It turns out that writing to
console.log slows down a watcher considerably. Let's consider two functions:

$scope.getName = function () {
 return $scope.name;
};

$scope.getNameLog = function () {
 console.log('getting name');
 return $scope.name;
};

If you observe Batarang's performance tab for the markup shown as follows:

{{getName()}}
{{getNameLog()}}

You will notice a dramatic difference:

Chapter 11

[305]

Always remove all the calls to the consol.log in your production
code and use tools like jshint to assist you in this task. Never use
logging statements in the middle of the profiling/performance tuning
session as those statements will falsify the observed results.

Filters code is another place where we might unknowingly introduce expensive
computations. Consider the following example:

{{myModel | myComplexFilter}}

A filter is nothing more than a function invoked using special syntax as part of
AngularJS expression. Since it is part of a watch-expression, as such it will get
executed at least once (twice most of the time) per each $digest loop. If logic
executed in a filter is expensive it will slow down the entire $digest loop. Filters
are particularly tricky since they can declare dependencies on services and invoke
potentially expensive methods on services.

Each filter in the AngularJS expression is executed at least once
(usually twice) for a given $digest loop. Monitor logic executed as
part of the filtering method to make sure that it doesn't slow down
your application.

Avoid DOM access in the watch-expression
There are times where you might be tempted to read DOM properties as part of the
watchExpression. There are two problems with this approach.

Firstly, DOM properties access can be slow, very slow. The issue is that DOM
properties are calculated live, synchronously, when a property is read. It is enough
to watch a property whose computation is expensive to significantly slow down the
entire $digest loop. For example, reading a property linked to elements position or
dimensions will force a browser to recalculate the element's size and positioning, and
this is an order of magnitude slower as compared to observing JavaScript properties.

Writing Robust AngularJS Web Applications

[306]

Any DOM operation is slow and computed properties are extra slow.
The real problem is that DOM is implemented in C++. It turns out that
it is very expensive to call a C++ function from JS. So any DOM access
is magnitudes slower than JavaScript object access.

The second problem is a conceptual one. The entire AngularJS philosophy is based
on the fact that the source of truth is the model. It is the model that drives declarative
UI. But by observing DOM properties, we are turning things upside-down! All of a
sudden it is DOM that starts to drive the model that in turn, drives the UI. We are
getting into a circular dependencies problem here.

It might be tempting to watch for DOM property changes, especially
when integrating third party JavaScript components into AngularJS
application. Be aware that it might have a dramatic impact on the
$digest loop performance. Avoid watching for DOM property
changes or at least measure performance after introducing such a watch.

Limit the number of watches to be evaluated
If you've fine-tuned existing watches and removed all the bottlenecks, but your
application still needs a performance boost, it is time to take more radical steps.

Remove unnecessary watches
AngularJS two-way data binding is so powerful and easy to play with that you
might fall into a trap of abusing it in places where a static value would do.

In Chapter 10, Building AngularJS Web Applications for an International Audience, we
were discussing one example of such a situation using data binding for translations.
Translations data change very infrequently (if ever!). Yet, by adding AngularJS
expressions for each translated string, we are adding a lot of calculations to each
turn of the $digest loop.

When adding a new interpolation expression to templates, try
to assess if it will really benefit from the two-way data binding.
Maybe a value in a template could be generated on the server side,
for example.

Chapter 11

[307]

Think about your UI
Each watch registered on a scope represents a "moving part" on a page. If we remove
all the unnecessary bindings (see earlier, things that are part of the $digest loop but
are not changing, really) we are left with a "2000 moving parts per page" theoretical
limit. In practice it is more complex than this, since we need to take speed of
individual watches into account.

Still, 2000 is a good indicator. Is 2000 a sufficient number? This depends on who
you ask, and the type of application being written, but we should really think of our
users. Can they cope with 2000 "moving parts" at once? Are we giving them optimal
user experience? Maybe UI of our application should be reevaluated to focus on
presenting essential data and controls? One of the principles of user interface design
the visibility principle says (http://en.wikipedia.org/wiki/Principles_of_
user_interface_design) says:

The design should make all needed options and materials for a given task visible
without distracting the user with extraneous or redundant information. Good designs
don't overwhelm users with alternatives or confuse with unneeded information.

By making UI lighter we can both speed up the $digest loop, and provide better
user experience to people using an application. An option worth exploring!

Don't watch for invisible
AngularJS offers two directives that come handy when we need to conditionally
show parts of the DOM: ng-show and ng-hide. As discussed in Chapter 4, Displaying
and Formatting Data, those directives won't physically remove hidden elements from
the DOM, but will hide elements by styling them appropriately (display: none).
The bottom line is that "hidden" elements are still present in the DOM tree and any
watches registered by those elements (or their children) will be evaluated in every
$digest loop.

Let's skim through the following example and the corresponding Batarang's
performance results:

<input ng-model='name'>
<div ng-show="false">
 {{getNameLog()}}
</div>

Writing Robust AngularJS Web Applications

[308]

Here the getNameLog() is simply returning a name and uses console.log to
simulate an "expensive" operation. If we start to type into the <input> field we
will notice that the getNameLog() expression is evaluated on each keystroke. This
happens even if results of the evaluation are never visible on a screen!

Remember that expensive watches might not have any visual effects on
a screen. If the hidden part of the display slows down your application
consider using the ng-switch family of directives. Those directives
physically remove invisible DOM elements from the DOM tree.

Call Scope.$digest instead of calling Scope.$apply when you
know impacted scopes
In the first part of this chapter, we saw that AngularJS needs to traverse all the scopes
in the whole application when executing its $digest loop. This is done to cater for
the case where change triggered in one scope can mutate model in one of the parent
scopes. But there are times where we know exactly which scopes are impacted by a
given change, and we can use this knowledge to our advantage.

If we know exactly which scopes are impacted by model mutations we can call
the scope.$digest method on the topmost impacted scope, instead of calling
scope.$apply. The scope.$digest method will run a $digest loop on a limited
subset of scopes. Only watches declared on a scope on which the method was
called, plus child scopes, are going to be inspected for model changes. This can
significantly reduce number of watch expressions to be evaluated and thus speed
up the $digest loop.

Chapter 11

[309]

As an example of a situation where we can narrow down impacted scopes, let's
consider a typeahead (autocomplete) directive, shown as follows:

In this directive a pop up with autocomplete suggestion has its own scope holding
all the proposals and a reference to a currently selected item (California). Users can
navigate through the list of proposals using keyboard (up and down arrows) to change
a selected item. When a keyboard event is detected we need to call scope.$apply()
so AngularJS two-way data binding machinery kicks in, and an appropriate item is
highlighted. But keyboard navigation can only influence a scope of the pop up so
evaluating all the watches on all scopes in the entire application is clearly wasteful.
We can act smarter and call the $digest() method on the pop up's scope.

Remove unused watches
You might face a situation where a registered watch is needed only for a fraction of
the application's running time. AngularJS makes it possible to unregister obsolete
watches like:

var watchUnregisterFn = $scope.$watch('name', function (newValue,
oldValue) {
 console.log("Watching 'name' variable");
 ...
});

//later on, when a watch is not needed any more:

watchUnregisterFn();

As you can see, a call to the scope.$watch method returns a function that can be
used to unregister a given watch when it is no longer needed.

Writing Robust AngularJS Web Applications

[310]

Entering the $digest loop less frequently
Usually the $digest loop is triggered from within AngularJS built-in directives
and services, and we don't need to control it manually. Still, we should be aware of
circumstances under which the $digest loop gets triggered. In general there are four
types of events that are listened to by AngularJS directives and services, and result in
the call to scope.$apply() method:

• Navigation events: Users clicking on links, using back and forward buttons,
and so on.

• Network events: All the calls to the $http service (and resources created
with $resource) will trigger a $digest loop when a response (either success
or error) is ready.

• DOM events: All the AngularJS directives corresponding to DOM events
(ng-click, ng-mouseover, and so on) will trigger a $digest loop when an
event handler is firing.

• JavaScript timers: The $timeout service wraps the JavaScript setTimeout
function and will trigger a $digest loop when a timer fires.

As you can see the $digest loop can run and evaluate all the watches quite often,
especially where there are many DOM event handlers starting the loop. There are
situations where we can't do much about it, but there are certain techniques we can
use to minimize the frequency at which AngularJS enters the $digest loop.

Firstly we can try to minimize the number of network calls by arranging back-end's
API in a way that an individual user action results in one single XHR call and one
single response. Of course this is not always possible, but if you've got full control
over your back-end, this might be a technique to consider. Not only would it limit
number of network calls, but would also mean that AngularJS enters the $digest
loop less frequently.

Next, we must pay special attention to the usage of timers, especially ones wrapped
in the $timeout service. By default the $timer service will call scope.$apply
each time a timer fires, and this can have farfetched consequences if we are not
careful enough. To see what could go wrong, let's consider a simple clock directive
displaying current time:

.directive('clock', function ($timeout, dateFilter) {
 return {
 restrict: 'E',
 link: function (scope, element, attrs) {

 function update() {
 // get current time, format it and update DOM text

Chapter 11

[311]

 element.text(dateFilter(new Date(), 'hh:mm:ss'));
 //repeat in 1 second

 $timeout(update, 1000);

 }

 update();
 }
 };
})

Such a directive, used with the <clock></clock>markup that would trigger the
$digest loop every second. This is why we can pass an optional, third parameter to
the $timeout service, which will indicate if scope.$apply should be called or not.
The better way of writing the update() function is shown as follows:

function update() {
 element.text(dateFilter(new Date(), 'hh:mm:ss'));
 $timeout(update, 1000, false);
}

We can avoid a $digest loop being triggered by the $timeout
service if we pass false as the third argument when registering a
timer.

Lastly, we can easily trigger a massive number of $digest loops by registering
a significant number of certain DOM event handlers, especially ones related to
mouse movements. For example, a very declarative, AngularJS-way of changing
an element's class (say, to switch it to active), when a mouse is positioned over it,
would be:

<div ng-class='{active: isActive}' ng-mouseenter ='isActive=true' ng-
mouseleave='isActive=false'>Some content</div>

While the preceding code works and keeps CSS class names where they belong
(HTML markup) it will trigger a $digest loop every time a mouse pointer travels
over a given DOM element. This shouldn't generate many problems if used
sparingly (on just a few DOM elements), but it might grind our application to a halt
if this pattern is repeated for a large number of elements. If you start to observe
performance issues linked to mouse events, consider rolling out your own, custom
directive where you could do direct DOM manipulations in response to DOM events
and model mutations.

Writing Robust AngularJS Web Applications

[312]

Limit the number of turns per $digest loop
Models that are harder to stabilize will require more turns of a $digest loop. As a
result all the watches will be re-evaluated multiple times. Typically a $digest loop
requires two turns but it might quickly grow to the configured limit (10 by default) if
a model never stabilizes.

Try to think of all the conditions that are necessary to stabilize a newly registered
watch. Expressions that are highly unstable shouldn't be part of the watch expression
but instead should be computed outside of a $digest loop.

Optimizing memory consumption
AngularJS uses a dirty-checking mechanism to decide if a given part of the model
has changed, and if an action (updating DOM properties, changing other model
values, and so on) should be taken as a consequence. An efficient values comparison
algorithm is crucial for the proper functioning of the dirty-checking mechanism.

Avoid deep-watching whenever possible
By default AngularJS uses identity comparison (for objects) or values comparison
(for primitive types) to detect changes in the model. Such comparisons are fast and
straightforward but there are cases where we might want to compare objects on the
property-by-property basis (so called deep-compare).

Let's consider a typical User object that has a number of different properties:

$scope.user = {
firstName: 'AngularJS',
 lastName: 'Superhero',
 age: 4,
 superpowers: 'unlimited',
 // many other properties go here…
};

Assuming that we would like to have the full name of this user in one single model
variable, updated automatically whenever one of the first or last name changes, we
could create a new watch on a $scope:

$scope.$watch('user', function (changedUser) {
 $scope.fullName =
 changedUser.firstName + ' ' + changedUser.lastName;
}, true);

Chapter 11

[313]

We can supply a third true argument to the $watch method in order to indicate that
AngularJS should use deep-comparison for objects. In this case the whole object
(every property of it) is compared using the angular.equal function. In the deep-
watching mode the comparison process will be slower. Not only does this AngularJS
need to copy (angular.copy) and save the whole object for further comparisons.
This is obviously wasteful from the memory consumption point of view as we are
constantly copying and storing all the properties of a given object while being only
interested in a subset of them.

Fortunately there are several alternatives to the deep-watching, and those can be
easily applied if we are only concerned with a subset of object's properties. To start,
we could simply watch results of the full name calculation:

$scope.$watch(function(scope) {
 return scope.user.firstName + ' ' + scope.user.lastName;
}, function (newFullName) {
 $scope.fullName = newFullName;
});

The advantage here is that only final results of the full name calculation are stored
in memory for further comparisons. The downside is that the full name calculation
takes place in each and every $digest loop turn, even if the user's properties don't
change at all. By employing this technique we can save memory in expense of
additional CPU cycles. As a side note, the same effect could be achieved by invoking
a function from an AngularJS expression in a template:

{{fullName()}}

Where the fullName() function would be defined on a scope like:

$scope.fullName = function () {
 return $scope.user.firstName + ' ' + $scope.user.lastName;
};

Deep-watching has a double performance penalty. Not only does
AngularJS need to store a copy of an object in memory for further
comparisons but the actual equality check is slower as well. Try to
use alternatives presented here if you are only interested in a subset
of properties for a given object.

Performance tuning is a delicate balancing act. This is very well visible in the
earlier examples where we need to often trade memory bytes for CPU cycles. An
optimal solution to be applied in your application will depend on performance
bottlenecks identified.

Writing Robust AngularJS Web Applications

[314]

Consider the size of expressions being watched
Even if we manage to avoid deep-watches we should still try to think about an
exact value being watched and compared by AngularJS. This is not always obvious,
especially with watches registered by AngularJS while processing templates.

See the following example of a longer text with one AngularJS expression inside:

<p>This is very long text that refers to one {{variable}} defined on a
scope. This text can be really, really long and occupy a lot of space
in memory. It is so long since… </p>

You would probably expect that AngularJS, while processing this template, will
create a watch where the watch expression is equal to variable. Unfortunately, this
is not the case; the whole text enclosed by <p> tags will be used. This means that the
whole, potentially long text will be copied and stored in memory. We can limit the
size of this expression by introducing a tag to delimit part of the text that
should be data-bound:

<p>This is very long text that refers to one <span ng-
bind='variable'> defined on a scope. This text can be really,
really long and occupy a lot of space in memory. It is so long since…
</p>

After this simple change AngularJS will register a watcher where the watch
expression consists of the variable only.

The ng-repeat directive
The ng-repeat directive would probably win a contest for the most useful directive,
if one could be organized. It has enormous power coupled with very simple syntax.
Unfortunately, ng-repeat is also one of the most performance-sensitive directives.
There are two reasons for this. Firstly it needs to do nontrivial inspection of a collection
in each turn of the $digest loop. Then, when changes are detected, impacted DOM
elements need to be reshuffled which may result in many DOM operations.

Collection watching in ng-repeat
The ng-repeat directive needs to keep track of changes to the collection it iterates
over. To operate properly the directive needs to be able to identify elements that
were added to a collection, moved within a collection or removed entirely. It does so
by executing a nontrivial algorithm as part of each $digest loop. Without going into
the details of this algorithm, its performance is linked to the size of a collection.

Chapter 11

[315]

Many bindings made easy
The ng-repeat directive, when used on data sets of substantial size, can quickly
result in many watches being registered on scopes.

An easy calculation is in order here. Let's consider a simple table with five columns.
Each column will probably have at least one binding. This means that one row in a
table will produce five bindings. If we assume that theoretical limits of AngularJS are
around 2000 bindings we can't expect tables of over 400 items to perform reasonably.
Of course more columns (or more bindings per column) will lower the number of
items that can be reasonably managed and displayed.

Collections of over 500 rows are probably a bad fit for the ng-
repeat directive. Exact limits will vary depending on the number of
bindings but we can't expect collections of thousands of elements to
perform correctly.

Unfortunately there is not much we can do about the ng-repeat directive with large
data sets. We should strive to pre-filter and trim a collection before leaving it in the
hands of ng-repeat. All tricks are good here: filtering, pagination, and so on.

If you are working in a domain where you really need to display thousands of rows
the built-in ng-repeat directive might not be a tool of your choice. In this case you
should be ready to roll out your own directive. Such a directive shouldn't create two-
way data bindings for individual items, but rather render DOM elements based on
the content of a collection. This will avoid creating enormous amounts of bindings.

Summary
This chapter provided in-depth coverage of AngularJS internals. We need to get
a good grasp of AngularJS inner-working in order to understand its performance
characteristics and theoretical limits.

All performance-related improvements must start with scrupulous measurements so
as to identify and understand existing bottlenecks. Starting the performance-tuning
process without hard data is like shooting in the dark. Fortunately, there is an excellent
Chrome extension, Batarang, that lets us inspect a running application.

We should pay special attention to the AngularJS $digest loop execution time as it
can determine users' perception of the entire application. Allow the $digest loop
to run for more than 50ms-100ms, and users will start perceiving our application as
unresponsive. This is why we've spent so much time in this chapter discussing how
the $digest loop operates and what we can do to speed it up.

Writing Robust AngularJS Web Applications

[316]

Running time of a $digest loop is proportional to number of watches and their
execution time. We can speed up the $digest loop both by limiting number of
watches or making them run faster. We can also enter the loop less frequently.

Memory consumption is another aspect of the overall performance that should be
monitored. In AngularJS-specific code precious memory bytes can be consumed by
deep-watches. We should avoid them as much as possible, not only when creating
watches manually (scope.$watch), but we should also make sure that we don't
create them accidently in templates.

The ng-repeat directive is especially performance-sensitive, both in terms of CPU
utilization and memory consumption. It might easily create a performance hotspot
if applied to a collection of several hundred items. To make, most of the ng-repeat
directive you need to keep source collections small by pre-filtering them. If you need
to display collections of several hundreds of elements you might consider writing
your own directive that would be fine-tuned for your particular use-case.

The next chapter is going to illustrate how to prepare a fine-tuned application for the
production deployment. It will also discuss network-related performance patterns.

Packaging and Deploying
AngularJS Web Applications

After all the laborious coding, testing, and performance tuning there comes the time
for production deployment. But let's not rush things, there are still a number of little
details to be taken care of before our application is ready for the prime-time!

Firstly, we need to make sure that our application makes reasonable use of network
resources. We can achieve this by limiting the number of HTTP requests as well as the
size of data downloaded with each individual request. Preloading and minification of
static resources are the two common techniques of reducing network traffic, and we
will see how to apply those techniques in the context of AngularJS applications.

The landing page of any web application gives the first impression of what to
expect next. If the very first experience is negative, users might get discouraged and
abandon an application we've worked so hard on. This is why it is so important
to optimize the initial page of our application. This chapter discusses various
adjustments we can make to make the first page experience as smooth as possible.

The last section discusses AngularJS support on different browsers with a special
focus on Internet Explorer.

In this chapter you will learn:

• How to minimize network utilization for downloading static
resources by minifying and merging JavaScript code as well as
preloading partial templates

• How to optimize the landing page
• Which browsers are supported by AngularJS and which particular steps

are necessary to make it run on Internet Explorer without glitches

Packaging and Deploying AngularJS Web Applications

[318]

Improving network-related performance
As web developers we should offer our users functional applications with an
intuitive user interface. Users should have a snappy experience even before an
application starts. To do so we can limit HTTP traffic and reduce application's
loading time by downloading less data in each request and limiting the number
of HTTP requests.

Minifying static resources
One way of minimizing download times over a network is to reduce the number of
bytes that are sent between the web server and the browser. Nowadays minification of
JavaScript, CSS, and HTML code is one of the standard practices in web development.
Minification reduces size of data that needs to be downloaded into a browser.
Additionally it makes the source code much harder to read and adds minimal
protection from the unwelcomed eyes.

While you can safely continue using all the CSS and HTML minification techniques
you know and love, AngularJS-specific JavaScript code needs some attention before
it can be processed by standard tools.

How does AngularJS infer dependencies?
AngularJS heavily relies on the Dependency Injection (DI) pattern throughout
the framework. In our own AngularJS application code we can easily express
dependencies on registered services and have them injected into our code.

AngularJS can infer the dependencies of a given function, fetch them from the
$injector service, and provide them as arguments to our functions. The AngularJS
DI engine introspects dependencies for a function using a surprisingly simple
technique. To see how it works let's take an example from one of the controllers in
our sample SCRUM application:

angular.module('projects', ['resources.projects'])
 .controller('ProjectsViewCtrl', function ($scope, $location) {
 //controller's code
 });

A function for the ProjectsViewCtrl parameter declares dependencies on two
services: $scope and $location. AngularJS parses out those dependencies by
converting function definition to a string and using a regular expression to match
the function's argument names. We can see this technique using the following
minimal example:

Chapter 12

[319]

var ctrlFn = function($scope, $location) {};
console.log(ctrlFn.toString());

This technique upon execution, will log the body of the function method as a string:

"function ($scope, $location) {}"

With the declaration of the function method captured as a string, it is enough to
do some simple regular expression matching to parse out the names of declared
arguments, and thus find out names of required dependencies.

Now, let's consider what happens with function definitions during the JavaScript
minification process. The exact details will vary from one processor to another but
most minifiers will rename function arguments so the code will look similar to the
following code:

angular.module('projects', ['resources.projects'])
 .controller('ProjectsViewCtrl', function (e, f) {
 //minified controller's code referencing new argument names
 });

Obviously AngularJS can't discover dependencies from minified functions, as e and
f are not valid service names.

Writing minification-safe JavaScript code
Standard JavaScript minification processes the destroy parameter information that
is needed by AngularJS to infer dependencies. Since this information is lost from the
signature of function, we need to provide hints using different constructs.

AngularJS offers different ways of providing dependency hints for the minified code,
but we would like to encourage you to use array-style annotations as shown in the
following example:

angular.module('projects', ['resources.projects'])
 .controller('ProjectsViewCtrl', ['$scope', '$location', function
($scope, $location) {
 //controller's code
 }]);

This code when minified, would look as follows:

angular.module('projects', ['resources.projects'])
 .controller('ProjectsViewCtrl', ['$scope', '$location', function (e,
f) {
 //controller's code
 }]);

Packaging and Deploying AngularJS Web Applications

[320]

Even if function arguments were changed, the minification process can't touch
elements of the array, and AngularJS has enough information to find all the
dependencies for a given function.

If you want your code to be minification-safe, replace all functions
(declaring at least one dependency) with an array where initial
elements of an array correspond to the function's argument names
and the last element of an array contains the function itself.

The array-style Dependency Injection annotation syntax might look odd at times,
so let's skim over several examples taken from the SCRUM sample application.
Subsequent sections of this chapter show examples for the most common use cases.

All the code written for the sample SCRUM application contains
array-style DI annotations. You can refer to the code hosted on GitHub
to find examples of those annotations used in different situations.

Modules
The config and run functions on a module level can be injected with dependencies.
Here is an example of defining configuration time dependencies in the minification-
safe way:

angular.module('app')
 .config(['$routeProvider', '$locationProvider', function
($routeProvider, $locationProvider) {
 $locationProvider.html5Mode(true);
 $routeProvider.otherwise({redirectTo:'/projectsinfo'});
}]);

Functions to be executed in run blocks can be annotated in the following fashion:

angular.module('app')
 .run(['security', function(security) {
 security.requestCurrentUser();
}]);

Chapter 12

[321]

Providers
AngularJS offers several ways of registering providers (recipes for object instances).
Factories are probably the most common way of defining new singletons as follows:

angular.module('services.breadcrumbs', [])
 .factory('breadcrumbs', ['$rootScope', '$location',
function($rootScope, $location){
 . . .
}]);

The ability to define decorators around services allows us to easily enrich
existing code with additional functionality. The syntax to define decorators is
not very intuitive, especially when coupled with array-style DI annotations. To
make you more comfortable with this syntax, here is an example of a decorator
with DI annotations:

angular.module('services.exceptionHandler')
 .config(['$provide', function($provide) {
 $provide.decorator('$exceptionHandler', ['$delegate',
'exceptionHandlerFactory', function ($delegate,
exceptionHandlerFactory) {
 return exceptionHandlerFactory($delegate);
 }]);
}]);

Directives
Defining directives in a minification-safe way doesn't differ much from defining
other providers. For example, the field directive described in Chapter 9, Building
Advanced Directives would be defined as follows:

.directive('field', ['$compile', '$http', '$templateCache',
'$interpolate', function($compile, $http, $templateCache,
$interpolate) {
 . . .
 return {
 restrict:'E',
 priority: 100,
 terminal: true
 ...
 };
}]);

Packaging and Deploying AngularJS Web Applications

[322]

Defining controllers for directives needs a bit of attention as the syntax might be
surprising at first. Here is an example of the accordion directive (also discussed in
Chapter 9, Building Advanced Directives) that defines a controller as follows:

.directive('accordion', function () {
 return {
 restrict:'E',
 controller:['$scope', function ($scope) {
 // This array keeps track of the accordion groups
 this.groups = [];

 . . .
 }],
 link: function(scope, element, attrs) {
 element.addClass('accordion');
 . . .
 }
 };
})

The pitfalls of array-style DI annotations
While array-style DI annotations make the AngularJS-specific code minification
safe, they do so at the price of code duplication. Indeed, we need to list arguments
of the function twice: in the function definition and in the array. As with any code
duplication, this one can be problematic, especially when refactoring existing code.

It is relatively easy to forget a new argument and omit it in the annotation array, or
mix the order of arguments in two places as shown in the following example:

angular.module('app')
 .config(['$locationProvider', '$routeProvider', function
($routeProvider, $locationProvider) {
 $locationProvider.html5Mode(true);
 $routeProvider.otherwise({redirectTo:'/projectsinfo'});
}]);

Writing DI-annotations requires concentration, as errors resulting from incorrect
annotating are hard to track down.

Chapter 12

[323]

You can try to alleviate the pain connected with writing DI annotations
by using build-time tools that would post-process your code and
add annotations automatically. Such tools are not trivial to write (as
JavaScript code analysis is required) and are not widespread yet. Still,
if your build system is Grunt.js based, you can give the ngmin
(https://github.com/btford/ngmin) Grunt.js task (grunt-
ngmin) a try.

Preloading templates
With AngularJS we've got many opportunities to divide HTML mark up into
smaller, reusable, partial templates. AngularJS allows us to save partials into
individual files and download them on the fly when needed. While having many
small files with individual partials is good from the development, and from the
code organization point of view, it might negatively impact performance.

Consider a typical route definition, which is as follows:

angular.module('routing_basics', [])
 .config(function($routeProvider) {
 $routeProvider
 .when('/admin/users/list', {templateUrl: 'tpls/users/list.
html'})
 . . .
 })

If we save route's partial in a separate file (tpls/users/list.html), AngularJS will
have to download this file before navigating to a route. Obviously downloading a
template over the network means additional time that needs to be spent before the
UI can be rendered. By spending this time for network communication, we are losing
the opportunity of having a snappy, responsive UI.

Route definitions are only one example of a construct that can point to template
partials. Templates can be also referenced from the ng-include directive as well
as from the templateUrl property of a custom directive definition.

Preloading of partials can significantly reduce network traffic and increase
responsiveness of our UIs. AngularJS offers two slightly different ways of
preloading template partials before their first usage: the <script> directive
and the $templateCache service.

Packaging and Deploying AngularJS Web Applications

[324]

AngularJS is smart enough to cache (in the $templateCache service) all the partials it
has requested. Simply put, AngularJS will check the content of the $templateCache
service before fetching a template over the network. As a result it will never request
the same partial twice over the network. By priming the $templateCache service we
can make sure that all the partials are ready upon the application's startup and are
never downloaded over the network.

Using the <script> directive to preload templates
AngularJS has a very handy <script> tag directive that can be used to pre-load
individual templates into the $templateCache service. Typically one would embed
these partials to be preloaded in the initial page (index.html or similar) loaded in
a browser. Taking an example of the previously discussed route, we could embed a
partial as follows:

<script type="text/ng-template" id="tpls/users/list.html">

 <table class="table table-bordered table-condensed">
 <thead>
 <tr>
 <th>E-mail</th>
 <th>Last name</th>
 <th>First name</th>
 </tr>
 </thead>
 <tbody>
 ...
 </tbody>
 </table>

</script>

To pre-load a partial template we need to enclose its content within the <script> tag
with the AngularJS-specific type: text/ng-template. The URL of a partial template
must be specified as the value of the id attribute.

Any <script> tag containing a partial template needs to be placed
as a child of the DOM element that contains the ng-app directive.
The <script> tags placed outside the DOM subtree managed by
AngularJS won't be recognized, and as a result, their templates will
not be preloaded but instead AngularJS will attempt to download
them over the network upon their first usage.

Chapter 12

[325]

It would be very cumbersome to maintain all the partial templates embedded inside
index.html (or similar initial file). During development we would still prefer to
keep each template as a separate file. In this case the final index.html file should be
generated as part of the build process.

Filling in the $templateCache service
Preloading partial templates with the <script> directive works OK for small
number of templates, but can get out of hand for larger projects. The main issue is
that we need to post process the index.html file as part of the build. This might
become problematic as this file usually contains a substantial amount of hand-
written code. Mixing generated and hand-written code in one file is not ideal, and
it would be better to put all the templates to preload in a separate, dedicated file.
The other problem with the <script> directive is that it can't be used to pre-load
templates for directives in the unit test environment. Fortunately, there is a remedy
for both problems.

We can prepopulate $templateCache content as part of application's startup. Each
entry in the $templateCache service has:a key equal to the template's URL and a
value equal to the content of a template (converted and stored as a JavaScript string).

For example, given a template with the following content:

<div class='hello'>Hello, {{world}}!</div>

And the URL tpls/hello.tpl.html, we could fill in the $templateCache service
as follows:

angular.module('app', []).run(function($templateCache){
 $templateCache.put('tpls/hello.tpl.html', '<div
class=\'hello\'>Hello, {{world}}!</div>');
});

Adding templates to the cache "by hand" is very inconvenient, as we need to take
care of escaping quotes (as shown in the example with the class attribute). Once
again, the solution here is to use a build-time task that would iterate over templates in
your project and generate JavaScript code responsible for filling in $templateCache.
This is the approach taken by the sample SCRUM application – a dedicated build
task generates a module (templates) with a run block responsible for filling in the
$templateCache. The templates module is then added as a dependency to the
application module, alongside with other functional modules as follows:

angular.module('app', ['login', 'dashboard', 'projects', 'admin',
'services.breadcrumbs', 'services.i18nNotifications', 'services.
httpRequestTracker', 'directives.crud' 'templates']);

Packaging and Deploying AngularJS Web Applications

[326]

Preloading partial templates into $templateCache is a common
practice in the AngularJS community and there is a dedicated Grunt.
js task to automate this process: grunt-html2js (https://github.
com/karlgoldstein/grunt-html2js). This Grunt.js task
was inspired by the build process of the sample SCRUM application
described in this book.

In reality, the build system of the sample SCRUM application creates a separate
AngularJS module for each and every template. In this case, a template URL is used
as a module name as follows:

angular.module("header.tpl.html", [])
 .run(["$templateCache", function($templateCache) {
 $templateCache.put("header.tpl.html",
 "<div class=\"navbar\" ng-controller=\"HeaderCtrl\">" +
 . . .
 "</div>");
}]);

angular.module("login/form.tpl.html", [])
 .run(["$templateCache", function($templateCache) {
 $templateCache.put("login/form.tpl.html",
 "<div modal=\"showLoginForm\" close=\"cancelLogin()\">" +
 . . .
 "</div>" +
 "");
}]);

All the individual template modules are later put as dependencies of the templates
module, so an application can simply depend upon this one module only to include
all the templates as follows:

angular.module('templates', ['header.tpl.html', 'login/form.tpl.html',
...]);

Chapter 12

[327]

Having one AngularJS module for each partial template is very convenient
for unit testing, we can precisely control which templates are loaded into the
$templateCache service for a given test. This assures that individual tests are as
isolated as possible.

Combining different preloading techniques
Template preloading, as many other performance-tuning techniques, is a balancing act.
By putting templates into the $templateCache service, we are minimizing network
traffic and increasing UI responsiveness at the expense of memory consumption.
Indeed, each entry in the $templateCache service consumes additional bytes, their
number being proportional to the template's size. This might be problematic in
really huge applications (and by this we mean ones with several hundreds of partial
templates), especially ones divided into multiple logical sections. Depending on an
application and its usage patterns, it might happen that a given user won't visit the
majority of pages and thus many partial templates would be preloaded for nothing.

Fortunately, we don't have to apply the all-or-nothing logic to partial templates
preloading. We can combine different strategies, for example, preload the most
used templates with the initial application load, and then load additional templates
on demand. We can also prefetch templates and put them into the $templateCache
service after application startup. For example, when a user enters a certain section
of an application we could preload all the templates for this section.

Optimizing the landing page
Optimizing performance of the initial landing page of any web application is crucial.
After all this is the first page that users are going see and get the first impression of
our application.

With single-page web applications, it is a bit tricky to get the first page load and
display "right". There is usually a substantial amount of the network communication
involved, and many scripts need to be downloaded before the JavaScript-powered,
rendering engine can start its job. This section covers certain AngularJS-specific
techniques that can be used to improve the user's perception of the initial page load
and display.

Packaging and Deploying AngularJS Web Applications

[328]

Avoid displaying templates in their
unprocessed form
An AngularJS-powered web page needs to download both AngularJS code and
application scripts before templates can be processed and rendered. This means
that users can momentarily see AngularJS templates in their raw, unprocessed form.
Taking the classical "Hello World!" example and assuming that JavaScript takes a
long time to download, users would be presented with the following page until
scripts are downloaded and ready:

After all the scripts are downloaded the AngularJS application will be kickstarted and
the interpolation expression ({{name}}) will be processed to display value defined on
a scope. The whole process is less than ideal: not only might people might be surprised
seeing strange looking expressions displayed on a page, but they also might notice UI
flickering when expressions are replaced with their interpolated values. AngularJS has
two directives that help battling those negative UI effects: ng-cloak and ng-bind.

Hiding portions of the DOM with ng-cloak
The ng-cloak directive lets you hide (display:none) parts of the DOM tree until
AngularJS is ready to process the whole page and make it live. You can hide any
part of the DOM tree by placing the ng-cloak directive on chosen DOM elements
as follows:

<div ng-controller="HelloCtrl" ng-cloak>
 <h1>Hello, {{name}}!</h1>
</div>

If the first page of your application consists of parts, which are mostly dynamic, you
may decide to hide content of the whole page by placing the ng-cloak directive on
the <body> element. If, on the other hand, the first page is a mixture of dynamic and
static content, placing ng-cloak on elements enclosing dynamic parts is a better
strategy, as at least users will see static content while AngularJS is being loaded
and bootstrapped.

Chapter 12

[329]

The ng-cloak directive works with CSS rules to hide elements containing dynamic
content, and show them again when AngularJS is ready, and compile the DOM
tree. To hide DOM elements, there is a CSS rule that matches the ng-cloak HTML
attribute, which is as follows:

[ng\:cloak], [ng-cloak], [data-ng-cloak], [x-ng-cloak], .ng-cloak,
.x-ng-cloak {
 display: none;
}

Those CSS rules are created dynamically in the main AngularJS script so you don't
have to define them by hand.

When AngularJS is loaded and kickstarted it will go over the DOM tree compiling
and linking all the directives. The ng-cloak directive is both a regular HTML
attribute and a directive, that when executed will remove the ng-cloak attribute
from a DOM element. As a result CSS rules matching the ng-cloak attribute won't
be applied and a DOM element will be shown.

Hiding individual expressions with ng-bind
The ng-cloak directive is a good option for hiding large portions of the DOM,
until AngularJS is ready to do its job. While it removes unpleasant UI effects it
doesn't change that fact that our users won't see any content until dynamic
scripts are fully functional.

Ideally we would like to prerender the first page on the server side and blend it
with dynamic JavaScript functionality when AngularJS is ready. Different people
are experimenting with various server-side rendering techniques, but as of the time
of writing, there is no official AngularJS support for server-side rendering. Still, if
the first page of your application consists of mainly static content, you can use the
ng-bind directive in place of interpolation expressions.

Provided that you've got mostly-static HTML with a couple of interpolation
directives use the following code:

<div ng-controller="HelloCtrl">
 Hello, {{name}}!
</div>

You could replace {{name}} with the ng-bind attribute equivalent as follows:

<div ng-controller="HelloCtrl">
 Hello, !
</div>

Packaging and Deploying AngularJS Web Applications

[330]

The advantage here is that AngularJS expressions with their curly braces, do
not appear in the HTML and as such are never shown to the users in their raw,
unprocessed form. Custom attributes (ng-bind) aren't recognized by the browser
and are simply ignored till AngularJS has a chance of processing them. By using
this technique we could even provide a default value for the expression as part of
the initial HTML as follows:

<div ng-controller="HelloCtrl">
 Hello, Your name!
</div>

The default value (Your name) will be rendered by a browser before AngularJS has
a chance to process the ng-bind directive.

The technique employing the ng-bind directive, as described
here, should be only used on a landing page of an application. In
subsequent pages we can safely use interpolation expressions, since
AngularJS will be loaded and ready to handle them.

Including AngularJS and application scripts
This section of the book, devoted to optimizing the landing page, wouldn't be
complete without touching upon script loading. The topic is even more important
if we consider the rising popularity of asynchronous script loaders.

Referencing scripts
Pushing <script> tags to the very bottom of the landing page is generally
considered as a good practice. But this pattern, as any other, should be evaluated
and only applied if suitable. If the <script> tags are placed at the end of a page,
downloading and parsing of JavaScript files won't block other downloads and HTML
rendering. This pattern makes a lot of sense in pages with a substantial amount of
static content sprinkled with occasional JavaScript code. But for highly dynamic,
JavaScript-generated web applications this pattern has a debatable value.

If a landing page contains a maximum of static content, with very few
dynamic parts, put the <script> tags at the very bottom of a page
and use the ng-bind directive to hide bindings, while a page is being
loaded and processed. Otherwise move the <script> tags to the
<head> tag and use the ng-cloak directive.

Chapter 12

[331]

AngularJS and Asynchronous Module Definition
Asynchronous Module Definition (AMD) specification, popularized by Require.
js and similar JavaScript libraries, aims to create a set of rules to be followed by
reusable JavaScript modules that can be loaded asynchronously. AMD modules can
be loaded on demand, taking inter-module dependencies into account. Alternatively,
AMD module definitions can be used by an offline-build script to prepare a
combined version of all the modules needed for the proper application functioning.

AngularJS has its own module system. While both AngularJS and the AMD
specification use the word "module", the same word is used to mean two different
things, which are as follows:

• AngularJS modules define how different JavaScript classes and objects
should be combined together during application runtime. AngularJS
modules don't enforce any script loading strategy. On the contrary,
AngularJS expects that all modules are loaded into a browser before an
application can be bootstrapped

• AMD modules are mostly concerned with scripts loading. The specification
allows you to break down your application into several smaller scripts and
load only the needed parts asynchronously, on-the-fly, when needed.

AngularJS modules and AMD modules address different problems and, as such,
shouldn't be confused.

In the current version (1.1.x), AngularJS expects that all the scripts making up an
application are loaded into a browser before an application is kickstarted. In this
setup there is no room for asynchronous, on-demand modules containing application
code. It is simply not possible to register new modules nor providers (services,
controllers, directives, and so on) after AngularJS application was initialized.

In the current version of AngularJS asynchronous loading of AMD
modules can be only used to load JavaScript libraries and application
code upfront, before the application is initialized. Loading of additional
application code on-the-fly, when needed, is not currently supported.

Lack of on-demand loading of AngularJS modules might sound like a big limitation,
but once again, we need to evaluate it in the right context. The AMD modules were
created to address several concerns, which are as follows:

• Loading scripts asynchronously, so that a browser is not blocked and can
load several different resource types in parallel.

Packaging and Deploying AngularJS Web Applications

[332]

• Loading JavaScript code on demand, as users navigate through an application.
This effectively removes the need of loading application code upfront.

• Using module definitions to figure out inter-module dependencies
and package-required modules for the production deployment.

You can use AMD modules to load AngularJS library, all the third-party
dependencies, and the application's code before bootstrapping your application.
The benefit here is that you can load all the scripts asynchronously and avoid
blocking processing of the <script> tags. This might have a positive effect on the
performance of your application (or not!) depending on the number of libraries
to be loaded.

While working with AMD modules you can no longer use the ng-app directive to
bootstrap AngularJS application. The reason is that AngularJS will start to process
the DOM tree on the document-ready event. At this point asynchronous modules
might not yet be loaded in a browser and AngularJS would try to bootstrap an
application before all the required JavaScript files are downloaded. To cover this
use case AngularJS provides a manual, JavaScript-based way of bootstrapping an
application: angular.bootstrap.

If you decide to use AMD modules in AngularJS application you need
to drop the ng-app directive and use the angular.bootstrap
method from JavaScript instead. This way you can control the timing
of AngularJS kickstarting the application.

We should also look into the topic of on-demand script loading. This optimization
technique trades initial download, startup time, and memory consumption for the
increased network traffic. Downloading on-the-fly assumes that JavaScript files
making up our application are "big enough" to pay for the additional network
time. But usually code written with AngularJS is really, really small as compared
to code written with alternative frameworks. This small code base minified and
gzipped might result in a really small artifact to download and store in the
browser's memory.

The creators of AMD modules recognize that loading of many small files
asynchronously will result in a number of XHR calls. The performance penalty
incurred by the increased network traffic might be too high and you would
be better off loading all the scripts, combined together. This is why there are
AMD tools that can analyze inter-module dependencies and package files for
deployment. But a well-crafted build script can combine JavaScript files as well.
This is particularly easy in AngularJS web applications as AngularJS modules
are designed in a way that individual modules can be loaded into a browser in a
random order.

Chapter 12

[333]

Given that the current AngularJS doesn't support on-the-fly loading of
application's code, cumbersome setup steps and debatable performance
gains we would advise against using asynchronous loaders (Require.js
and similar) in AngularJS 1.1.x applications.

Supported browsers
The AngularJS source code is rigorously tested on a continuous integration (CI)
server. Each code change in the framework triggers a comprehensive battery of unit
tests. No code can make it into the framework code base, unless it is accompanied by
a corresponding unit test. This strict approach to unit testing assures stability of the
framework and its long-term, smooth evolution.

The CI server executes at the time of writing, over 2000 individual tests on different
browsers: latest versions of Chrome, Firefox, Safari, and Opera, as well as Internet
Explorer version 8, 9, and 10. The number of tests and a list of browsers used for
testing should give a good idea of the framework's maturity and solidity. AngularJS
is guaranteed to work on the browsers listed here. It is very likely that it also works
on other modern browsers not enumerated here (mobile browsers come to mind).

Working with Internet Explorer
It shouldn't come as a surprise that there are certain particularities when it comes
to Internet Explorer support. While IE9 and IE10 should work out-of-the-box,
supporting IE8 needs special attention.

Normally one would bootstrap an AngularJS application by using the ng-
app="application_name" directive. Unfortunately, it is not enough for IE8 and we
need to add another attribute: id="ng-app".

IE8 won't recognize custom HTML tags if additional steps are not taken. For
example, we can't include templates similar to the following one, until we teach IE8
to recognize the <ng-include> custom tag:

<ng-include="'myInclude.tpl.html'"></ng-include>

We can do so by creating custom DOM elements first, as shown in the following
code snippet:

<head>
 <!--[if lte IE 8]>
 <script>
 document.createElement('ng-include');

Packaging and Deploying AngularJS Web Applications

[334]

 document.createElement('ng-view');
 . . .
 <![endif]-->
</head>

Custom elements must be created in a script located in the <head>
section of the page. This is to assure that it runs before the parser
sees the new element type.

Of course we can side step aside the whole problem of custom HTML tags by using
the attribute-version of the ng-include directive as follows:

<div ng-include="'myInclude.tpl.html'"></div>

Supporting IE7 is even more problematic. To start with, you will need to take care of
all the steps required for IE8. But IE7 is not part of the integration build and tests, so
there is no guarantee that all the AngularJS functionality will be supported on this
browser. On top of this, IE7 lacks many of the APIs commonly present in modern
browsers. The best example is JSON API that isn't implemented in IE7, and thus
requires a polyfill (http://bestiejs.github.io/json3/).

IE6 is not supported.

AngularJS documentation has a comprehensive section describing
all the steps necessary to support IE 8 and IE 7: http://docs.
angularjs.org/guide/ie.

Summary
This chapter revolved around deployment-related concerns. We started off by
discussing various network-related optimization techniques. In general, we can
reduce the time a browser is spending on network-related tasks by pushing fewer
bytes over the wire and limiting the number of individual requests.

Minification of HTML, CSS, and JavaScript files is a common technique used to
trim down the number of bytes to be downloaded by a browser. The specification
of the AngularJS Dependency Injection machinery forces us to write our JavaScript
code in a minification-safe way. In practice it means that we should use array-style
annotations for all the functions that declare dependencies to be resolved by the
AngularJS DI subsystem.

Chapter 12

[335]

We can combine and preload individual, partial templates to limit the number of
XHR requests issues by a browser. In this chapter, we saw two different techniques of
preloading templates: using the <script> directive and the $templateCache service.

AngularJS is a framework for creating dynamic pages in a browser and as such
heavily relies on JavaScript. Client-side page generation of HTML can only take
place after all the required JavaScript libraries are loaded into a browser and ready to
use. The undesirable side effect of this approach is that users might see a half-baked
screen, while the initial page is being loaded and processed. AngularJS provides two
directives that are of great help in removing unpleasant UI effects: ng-cloak and
ng-bind. The ng-cloak directive can hide larger portions of the DOM tree, and is
mostly useful for applications where the landing page is highly dynamic and there is
not much static content to display. In contrast, the ng-bind directive works best for
the landing pages with mostly static content.

While optimizing user experience for the landing page we should also think about
loading order of various page elements. Putting references to JavaScript files at the
very bottom of a page is normally considered a good practice, but it might be of
little practical value in highly dynamic, JavaScript-driven web applications. Still, if
your landing page is mostly static and has substantial amount of HTML, pushing
the <script> tags to the end of a page might be a good idea. For the pages that are
mostly dynamic, loading scripts in the <head> tag will often yield better results,
especially in conjunction with the ng-cloak directive.

This chapter briefly touched upon the asynchronous script loaders. While the AMD
pattern is very popular these days, its value is somehow diminished in AngularJS
application. The bitter truth is that at the time of this writing, AngularJS didn't play
well with asynchronous script loaders, especially when it comes to downloading
applications code. Given limited benefits and the cumbersome setup, we would
recommend setting up AngularJS applications without AMD modules.

If you have to deploy your applications to a large public, you should very much
care about supporting different browsers. The good news is that AngularJS itself
works flawlessly on all the major browsers. Internet Explorer support requires a
bit of additional setup and all the necessary steps were discussed toward the end
of this chapter.

Index
Symbols
$$interpolate service 281
$anchorScroll

about 165, 170
hashes 170
navigation 170

$anchorScrollProvider service 170
$apply method 295
$attrs 257
$compile service

transclusion function, creating 251
$dialog service 199
$digest loop

about 295-299, 304, 305, 310, 311
speeding up 303
turns, limiting 312

$element 257
$error 232
$exceptionHandler service 298
$fieldErrors property 269
$filter service 133
$formatters pipeline 232, 239
$get (factory) method 33
$get property 211
$http

advanced features 104
and Promise API 94
code, testing 106, 107
REST adapters with 101-104

$http APIs 76, 77
$httpBackend mock 106, 107
$httpBackend service 106
$http.jsonp function 81
$http.post method 78
$http.put method 78

$http request 204
$http service

about 75, 197, 205
advanced features 104

$index variable 115, 116
$injector service 318
$interpolateProvider 110
$interpolate service

using 268
$locale.id variable 275
$locationChangeSuccess event 20
$location.hash() 170
$location.path() component 174
$locationProvider service 187
$location service

about 165, 170, 186, 284
used, for handcrafting navigation 172
using 168, 169

$location service API 169
$on method 20
$parsers 232
$parse service 291
$provide service 286
$q.all method 91, 93
$q.defer() method 86
$q integration

in AngularJS 93
$q service

about 85
basics 85, 86
with Promise API 84

$q.when method 92
$resource service

about 95, 96
limitations 101

$rootScope.$digest() method 86

[338]

$routeParams service 178
$routeProvider service provider 176, 209
$route service

about 175
limitations 182-185
multiple UI rectangles, handling

with ng-include 183, 184
$scope instance 27
$scope object 14
$setValidity(validationErrorKey,

isValid) 232
$templateCache content 325
$templateCache service

about 193, 194, 324, 327
filling 325, 326

$timeout service 310
$timer service 310
$transclude 253, 257
$valid 232
$watch 293, 296
$watch functions 227
$watch method 292, 313
$watch property 229
<script> directives

using, to preload templates 324, 325

A
Accept-Language request header 282
accordion

directive controller, using 262, 263
directive, implementing 263

accordion directive suite
creating 261

accordion-group directive
implementing 263-265

action chaining
asynchronous 89-91

addGroup() function 265
alert directive

creating 246, 247
AMD

and AngularJS 331, 332
angular.callbacks._k function 81
AngularJS

$digest loop 295-299

$q integration 93
$watch 296
about 7, 8, 165, 318
and AMD 331
and application scripts 330
and jQuery 39, 40
applications, performance tuning 303
community 9
crash course 10
DOM, synchronizing 292, 293
example 10, 11
inner workings 290
libraries and extensions 9
model changes, propogating to DOM 291
model, stability 296-298
models, unstable 298
model, synchronizing 292, 293
model, updating 291
modules 26, 27
MVC pattern 12
Online learning resources 9
project 8
Scope.$apply 293, 294, 295
scopes, hierarchy 299
tools 9

AngularJS directives
about 214
built-in directives 214
compilation life-cycle 215, 216
URL 215
using, in HTML mark up 215

AngularJS expressions
HTML content 111, 112
HTML content, securing 195
HTML, sanitizing 196
unsafe HTML bindings, allowing 196

AngularJS forms
about 139, 140
validating 153

AngularJS objects
testing 65

AngularJS seed project
URL 56

AngularJS templates
translated strings, handling 277

[339]

AngularJS widget directives
about 222
HTML template, using 224
pagination directive, tests writing 223
pagination directive, writing 222

angular.module function 26
application

sample application 44, 45
securing 191

array data sources
using 146

array-style DI annotations
pitfalls 322, 323

asynchronous model validator
creating 235
implementing 238, 239
tests, writing 237
users service, mocking 236

attacks
preventing 194

attribute (@)
interpolating 226, 227

attribute (=)
data binding to 227

authorization 210
authorization service

creating 210, 211
automated testing 43, 62, 63

B
Batarang 10, 302
beHungry method 85
bind-html-unsafe directive 112
Birds eye view

about 13
controller 14
model 14
scope 13

Bootstrap CSS
URL 48

build system
about 48
principles 49, 50

built-in directives, AngularJS
directives 214

button directive
writing 220-222

C
cache property 77
call-back expression

providing, in attribute (&) 227, 228
callback function 79
callbacks

aggregation 88
registration 88

cancelLogin(redirectTo) method 199
cancel() method 207
canSave() method 156
checkbox inputs

using 144
clickable links

creating 186
clicked() expression 120
click events 120
client-side authentication

supporting 203
client-side authorization

failures, handling 203
responses, intercepting 204
securityInterceptor service, creating 205,

206
SecurityRetryQueue service, creating 207
supporting 203

client-side security support
adding 198, 199
login form, showing 200, 201
menu items, hiding 202
security-aware menus, creating 201
security service, creating 199
toolbars, creating 201

closeLoginDialog() helper 200
compilation process

about 265
field directive, creating 265-267
field template, setting up 270
templates, loading dynamically 269
terminal property in directives, using 267
validation messages, binding to 269

compilation stage, directives 215, 216
compile field 219
compile function

transclusion, getting 252, 253
comprehension expression 146

[340]

configuration object primer
about 77
cache property 77
headers property 77
method property 77
params property 77
timeout property 77
transformRequest property 77
transformResponse property 77
url property 77

configuration phase, modules 33
constructor-level

and instance-level methods 97, 98
behavior, adding to resource objects 99, 100
custom methods 98, 99

constructor-level
and instance-level methods 97

content delivery network (CDN) 11
continuous integration (CI) server 333
controller based pagination directive

creating 258
controller field 219
controller property 256
controllers

about 56
testing 67-70

cookie snooping
preventing 194, 195

CORS 81-83
CPU utilization

$digest loops, speeding up 303
DOM access in watch-expression, avoiding

305, 306
optimizing 303
unnecessary watches, removing 306
unused watches, removing 309
watch expression, syntax 303-305

Cross-origin resource sharing. See CORS
cross-site request forgery

preventing 198
cross-site scripting attacks

HTML content in AngularJS expressions,
securing 195

HTML, sanitizing 196
preventing 195
unsafe HTML bindings, allowing 196

currency filter 276

currentUser property 199
custom validation directive

creating 230, 231
directive controller 231
implementing 235
tests, writing 233, 234

D
Daily workflow 71
data conversion 79
dataSource expression 146, 147
data transformations

in filters 136
date filter 275, 286
datepicker input directive 239
debugging 74
declarative template view 22, 24, 25
deep-watching mode 313
deferred object 207
dependency injection (DI)

about 8, 27, 28, 259, 318
benefits 28, 29

describe function 64
details

multiple rows, displaying 118, 119
one row, displaying 117, 118

DI annotations
pitfalls 322

directive() 218
directive controllers

about 256, 257
accordion directive, implementing 263
accordion directive suite, creating 261
accordion-group directive, implementing

263, 264
and link functions 258
compilation process 259, 260
controller based pagination directive,

creating 258
dependency injection 259
in accordion, using 262, 263
optional, creating 231
other controllers, access to 260
parents, searching 232
priority property, using 256
requiring 231

[341]

special dependencies, injecting 257
transclusion function, access to 261
transclusion, getting 253

directives
attribute (&), call-back expression

providing 227
attribute (=), data binding to 227
attribute (@), interpolating 226
button directive, writing 220, 221
button, styling 219
compile field 219
controller field 219
defining 218, 219, 321, 322
isolating, from parent

scope 225, 226
link field 219
name field 219
pagination directive definition object 228,

229
pagination directive, tests writing 223
pagination directive, writing 222
priority field 219
priority property, using 255
referencing 109, 110
replace field 219
require field 219
restrict field 219
scope field 219
selectPage call-back, adding 229, 230
skeleton unit test 217
template field 219
templateUrl field 219
terminal field 219
transclude field 219
transclusion functions, accessing 252
transclusion, using 245, 246
unit tests, writing 217, 218
using 279
using, in HTML mark up 215

disableAutoScrolling() method 170
DOM

access in watch-expression,
avoiding 305, 306

synchronizing 292
domain-specific language (DSL) 22, 71
DOM-based templates

about 121

HTML elements, custom 124
multiple DOM elements 122
Repeater DOM elements 122
verbose syntax 121

DOM Event handlers 120, 121
DOM events 310

E
empty options

using, with select directive 148
End to end tests

about 70
daily workflow 71
debugging 73, 74
Karma runner tips and tricks 72
tests subset, executing 73

errorCallBack method 86
Express

URL 47

F
factory method 31
field directive 266
field template

setting up 270
file naming conventions

test folder 57
files

about 58
AngularJS specific files 54, 55

filters
about 125-127
accessing, from JavaScript code 133, 134
and DOM manipulation 135
array-transforming filters 125
built-in filters 125
custom filters 131, 132
data transformations, costly 136
dos and donts 134
filtered results, counting 128, 129
formatting 125
model transformations, handling 124
orderBy filter, sorting with 129-131
unstable 136, 137

first-class JavaScript objects 87
flush() method 107

[342]

folders
root folders 52, 53
sources folder 54
test folder 57

fullDate format 285, 286
fullDate string 285
function arguments 320
function method 319

G
getCssClasses() method 156
GET /current-user message 193
getLoginReason() method 199
getName() expression 297
getNameLog() expression 308
GitHub

URL 8, 44
Google + community

URL 9
Grunt.js 51
GUI architectures

URL 12

H
handcrafting navigation

controllers in route partials, defining 174
controlling, $location service used 172
missing bits 175
pages, structuring around routes 173
routes, mapping to URLs 174

headers property 77
href attribute 186, 284
HTML

sanitizing 196
HTML5

and history API 167, 168
working with 186

HTML5 mode
client side 171
configuring, for URLs 171
server side 171, 172

HTML content
in AngularJS expressions 111, 112

HTML form submission
events 161
handling 161

handling, ngClick used 162
handling, ngSubmit used 162
to server 161

HTML hidden input fields 150, 151
HTML mark up

directives, using 215
HTML template

using, in directives 224
HTTP CORS

URL 82
HTTP responses

dealing with 79
https module 195

I
i18n filter 278
IDE extensions 10
IE. See Internet Explorer
if directive

creating 253, 254
input change event 120
input directives

about 143
checkbox inputs, using 144
radio inputs, using 145
required validation, adding 143
select inputs, using 145
simple string options, providing 145
text-based inputs, using 143, 144

Internet Explorer 333, 334
interpolation directive 110
it function 64

J
Jasmine

about 51
test, anatomy 64

JavaScript code
minification-safe, writing 319, 320
translated strings, handling 280, 281

JavaScript timers 310
jQuery

and AngularJS 39, 40
jQueryUI Date Picker

directive, implementing 242, 243
tests, writing 240-242

[343]

wrapping 239, 240
jsFiddle 10
jshint 305
jslint

URL 48
JSON API

URL 334
JSON_CALLBACK request parameter 81
JSON injection vulnerability

preventing 197
JSONP

limitations 81
same-origin policy restrictions,

overcoming 80, 81
JSONP requests

with $http 75

K
Karma runner 52
keyboard events 120

L
landing page

DOM portion hiding, ng-cloak
used 328, 329

individual expressions, hiding with ng-bind
329, 330

optimizing 327
templates in unprocessed form, display

avoiding 328
limitTo filter 125
link field 219
links

handling 185
loadTemplate function 269
locales

including, as URLs part 283, 284
switching 284, 285

locale-specific modules
and AngularJS filters 275
configuring 274
settings, using 274
symbols, using 274

login(email, password) method 199
login toolbar

creating 202

login-toolbar widget directive 202
logout(redirectTo) method 199
logPosition function 121

M
man-in-the-middle attack

URL 194
memory consumption

optmizing 312
method property 77
model

changes, propogating to DOM 291
DOM events response, updating for 291
stability 296, 297
synchronizing 292
unstable 298

modelChangeCallback 296
model transformations

handling, with filters 124
model values

rendering, with ngBind 111
module function 66
modules

about 26, 27, 59, 320
advantages 38
blocks, configuring 61
blocks, declaring 61
blocks, running 61
depending on other modules 35
lifecycle 33
providers registering, syntax for 59, 60
services, visibility 35, 36, 37

modules, lifecycle
about 33
configuration phase 33
registration, methods 34
run phase 34

MongoDB
collections 76

MongoLab
about 46
URL 76

mouse events 120
multiple options

selecting 150

[344]

Mustache
URL 290

MVC pattern
about 12
Birds eye view 13
scopes 15
view 21, 22

N
name field 219
native browser validation

disabling 157
navigation events 310
network events 310
network-related performance

improving 318
ngBind

model values, rendering with 111
ng-bind directive

about 111, 195
individual expressions,

handling with 329, 330
ng-bind-html directive 112, 196, 197
ng-bind-html-unsafe directive 112, 196
ngClass 119
ng-class directive 156
ngClassEven directive 119
ngClassOdd directive 119
ngClick

using, to handle form submission 162
ng-click directive 186
ng-cloak directive 329
ng-controller directive 13, 15, 178
ngFormController

about 153
name attribute, using 154

ng-hide family 113
ng-include directive 114, 174
ng-init attribute 13
ngLocale module 275, 282, 284
ngModel 110
ngModelController

$error 232
$formatters 232
$parsers 232

$setValidity(validationErrorKey, isValid)
232

$valid 232
about 151, 232
input field validity, tracking 153
transformation pipeline 152

ng-model directive 291, 294
ngModel directive 141
ngOptions directive

array data sources, using 146, 147
dynamic options, providing 146
examples 146
object data sources, using 147

ng-repeat directive 116
about 114-116, 222, 256, 314, 315
bindings, simplifying 315
collection, watching 314

ngRepeat directive 115
ngRepeat patterns 117
ngSanitize module 112, 196, 197
ng-show family 113
ngSubmit

using, to handle form submission 162
ng-switch directive 113
ng-transclude directive 248
non-GET request 192
NotificationsService service 30
novalidate attribute 157
novalidateForm attribute 157
number filter 276

O
OAuth2

URL 193
object data sources

using 147
Object.observe 41
objects

collaborating 27
onLoginDialogClose() method 201
onSelectPage() function 230
openLoginDialog() helper 200, 201
optionBinding expression 146, 148
orderBy filter 125, 129

sorting with 129-131

[345]

P
page

about 225
hashes 170
navigation 170
structuring, around routes 173

pagination directive
tests, writing 223
writing 222

pagination filter 132
params argument 97
params property 77
partial templates

securing 193, 194
Passport

URL 47
performance tuning 301, 302
plugins 10
Plunker 10
POST /login message 192
POST /logout message 193
priority field 219
Promise API

about 84
and $http 94
with $q 84

promise object 86, 204
promises

lifecycle 88
providers 321

registering, syntax for 59, 60
pushRetryFn() method 207

Q
Q Promise API library

URL 84
query() function 236
query() method 236

R
radio inputs

using 145
reject method 86
remaining() function 23
removeTeamMember method 68

replace field 219
replace property

directive definition 247
Representational State Transfer. See REST
request data conversion 78
requireAdminUser() method 210, 211
requireAuthenticatedUser() method 210
require field 219
resolve function 209
resolve method 86, 210
resolve property 180, 188
response interceptors 204
REST 95
REST adapters

with $http 101
REST API 76
Restler

URL 47
restrict field 219
retry() method 207
root folders 53
route definitions

code duplication 188, 189
organizing 187
spreading, among modules 188

routes
mapping, to URLs 174

routes object 173
routes variable 173
routing services

about 175
changes, preventing 181, 182
clickable links, creating 186
default routes, defining 178
defining 176
definitions, organizing 187
definitions, spreading 188
external pages, linking to 187
flexible routes, matching 177
limitations 182
links, handling 185
matcged route content, displaying 176
parameter values, accessing 178
partials, reusing with different controllers

178, 179
patterns 185
tips 185

[346]

tricks 185
UI flickering, avoiding 179-181

run phase, modules 34

S
same-origin security policy

restrictions 79, 80
restrictions, with CORS 81-83
restrictions, with JSONP 80, 81

Scenario Runner 70, 71
Scope.$apply 293, 294
scope.$apply() method

unused watches, removing 310
Scope.$digest

calling, instead of Scope.$apply 308, 309
scope.$digest method 308
scope field 219
scopes

about 15
and evening system 20
hierarchy 15, 16, 20
inheritance 17
inheritance, through scopes

hierarchy 17-19
lifecycle 21

scripts
referencing 330

SCRUM 44
secure routes

access, preventing 208
resolve functions, using 209

securityInterceptor service
creating 205, 206

SecurityRetryQueue service
about 206, 210
creating 207

security service
about 199, 200
notifying 208

select directive
about 149
empty options, using 148

select inputs
using 145

selectPage call-back
adding, to directive 229, 230

selectPage() function 230
server-side authentication

API, providing 192
providing 192

server-side authorization
providing 192
unauthorized access, handling 192

server-side environment 47
server-side proxies 83
services

testing 65, 66
services, registering

about 29, 30
constants 31, 32
factory method 31
providers 32, 33

setTimout function 310
showLogin() method 199
simple-bind directive 292
simple-model directive 291, 293
single-page web applications

URLs 166
sortField property 130
sources folder 54
special variables 115, 116
static resources

minifying 318
stopPropagation() method 20
subforms

repeated inputs, validating 159-161
repeating 158, 159
using, as reusable components 157, 158

switchLocale function 285
switchLocaleUrl function 285

T
table rows classes

altering 119
template field 219
templates module 325
templates, preloading

$templateCache service, filling in 325-327
<script> directives used 324
about 323
techniques, combining 327

[347]

templateUrl field 219
templateUrl property 183, 323
terminal field 219
terminal property

in directives, using 267
Test Driven Development

(TDD) 218
tests

subset, executing 73
Third-party JavaScript libraries 48
timeout property 77
tools, AngularJS

about 9
Batarang 10
IDE extensions and plugins 10
Plunker and jsFiddle 10

transclude field 219
transcludeFn 252, 253
transclusion

alert directive, creating 246, 247
if directive, creating 253-255
in isolated scope directive 246
property, in directive definition 248
using 245
using, in directives 245, 246

transclusion function
about 250
creating, $compile service 251
in compile function 252, 253
in directive controller 253
in directives, accessing 252

transclusion scope 248, 250
translated strings

used in JavaScript code, handling 280, 281
translations

handling 276, 277
partials translating, build-time

used 279, 280
translated strings handling, Angular JS

templates used 277
translated strings handling,

directives used 279
translated strings handling, filters used 278

two-way data binding 12

U
UI 307
Uniform resource locators. See URLs
unit tests

about 63
AngularJS objects, testing 65
asynchronous code testing 68, 70
controllers, testing 67, 68
Jasmine test, anatomy 64
services, testing 65, 66
writing, for directives 217, 218

update() function 311
updateModel() function 243
url property 77
URLs

about 165, 169
HTML5 mode, configuring 171
in pre-HTML5 era 166, 167
in single-page web applications 166
routes, mapping 174

user-experience (UX) 22
User Info form

dynamic behavior, adding 154
native browser validation, disabling 157
resetting 162, 163
save button, disabling 156
validation errors, displaying 155, 156

User Information Form
creating 142, 143

user.password model field 144
User.query() method 96
user.role model 144
Users.query() function 237
Users.respondWith() function 236

V
validateEqual(value) 235
validation messages

displaying 269
verifyNoOutstandingExpectation method

107
view 22

[348]

W
watched expressions

size 314
watches

deep watching, avoiding 312, 313
number, evaluating 306
unnecessary watches, removing 306
unused watches, removing 309

watchExpression 292-303
web application 289
widget

implementing 228, 229
worldsPercentage function 17

X
XHRrequests

types 77
XMLHttpRequest (XHR) 75
XSRF. See cross-site request forgery
XSRF-TOKEN 198
XSS. See cross-site request forgery
X-XSRF-TOKEN 198

Thank you for buying
Mastering Web Application

Development with AngularJS

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For more
information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home to
books published on software built around Open Source licences, and offering information to
anybody from advanced developers to budding web designers. The Open Source brand also runs
Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open Source project
about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Instant AngularJS Starter
ISBN: 978-1-78216-676-4 Paperback: 66 pages

A concise guide to start building dynamic web
applications with AngularJS, one of the Web's most
innovative JavaScript frameworks

1. Learn something new in an Instant! A
short, fast, focused guide delivering
immediate results.

2. Take a broad look at the capabilities of
AngularJS, with in-depth analysis of its key
features

3. See how to build a structured MVC-style
application that will scale gracefully in real-
world applications

4. Examine how popular features are
implemented in AngularJS, such as

Backbone.js Cookbook
ISBN: 978-1-78216-272-8 Paperback: 306 pages

Over 80 recipes for creating outstanding web
applications with Backbone.js, leveraging MVC
and REST architecture principles

1. Easy-to-follow recipes to build dynamic
web applications

2. Learn how to integrate with various frontend
and mobile frameworks

3. Synchronize data with a RESTful backend
and HTML5 local storage

4. Learn how to optimize and test
Backbone applications

Please check www.PacktPub.com for information on our titles

Backbone.js Testing
ISBN: 978-1-78216-524-8 Paperback: 168 pages

Plan, architect, and develop tests for Backbone.js
applications using modern testing principles
and practices

1. Create comprehensive test infrastructures

2. Understand and utilize modern frontend
testing techniques and libraries

3. Use mocks, spies, and fakes to effortlessly
test and observe complex Backbone.js
application behavior

4. Automate tests to run from the command line,
shell, or practically anywhere

Ext JS 4 Web Application
Development Cookbook
ISBN: 978-1-84951-686-0 Paperback: 488 pages

Over 110 easy-to-follow recipes backed up with
real-life examples, walking you through basic Ext
JS features to advanced application design using
Sencha's Ext JS

1. Learn how to build Rich Internet Applications
with the latest version of the Ext JS framework
in a cookbook style

2. From creating forms to theming your
interface, you will learn the building blocks for
developing the perfect web application

3. Easy to follow recipes step through practical
and detailed examples which are all fully
backed up with code, illustrations, and tips

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Authors
	Acknowledgments
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Angular Zen
	Meet AngularJS
	Getting familiar with the framework
	Finding your way in the project
	The community
	Online learning resources

	Libraries and extensions
	Tools
	Batarang
	Plunker and jsFiddle
	IDE extensions and plugins

	AngularJS crash course
	Hello World – the AngularJS example
	Two-way data binding

	The MVC pattern in AngularJS
	Bird's eye view
	Scopes in depth
	View

	Modules and dependency injection
	Modules in AngularJS
	Collaborating objects
	Registering services
	Modules lifecycle
	Modules depending on other modules

	AngularJS and the rest of the world
	jQuery and AngularJS
	Apples and oranges

	A sneak peek into the future

	Summary

	Chapter 2: Building and Testing
	Introducing the sample application
	Getting familiar with the problem domain
	Technical stack
	Persistence store
	MongoLab
	Server-side environment
	Third-party JavaScript libraries
	Bootstrap CSS

	Build system
	Build system principles
	Automate everything
	Fail fast, fail clean
	Different workflows, different commands
	Build scripts are code too

	Tools
	Grunt.js
	Testing libraries and tools
	Jasmine
	Karma runner

	Organizing files and folders
	Root folders
	Inside the source folder
	AngularJS specific files
	Start simple
	Inside the test folder

	File-naming conventions

	AngularJS modules and files
	One file, one module
	Inside a module
	Different syntax for registering providers
	Syntax for declaring the configure and run blocks

	Automated testing
	Unit tests
	Anatomy of a Jasmine test
	Testing AngularJS objects
	Testing services
	Testing controllers
	Mock objects and asynchronous code testing

	End-to-end tests
	Daily workflow
	Karma runner tips and tricks
	Executing a subset of tests
	Debugging

	Summary

	Chapter 3: Communicating with
a Back-end Server
	Making XHR and JSONP requests with $http
	Getting familiar with the data model and MongoLab URLs
	$http APIs quick tour
	The configuration object primer
	Request data conversion
	Dealing with HTTP responses
	Response data conversion

	Dealing with same-origin policy restrictions
	Overcoming same-origin policy restrictions with JSONP
	JSONP limitations
	Overcoming same-origin policy restrictions with CORS
	Server-side proxies

	The promise API with $q
	Working with promises and the $q service
	Learning $q service basics
	Promises are first-class JavaScript objects
	Aggregating callbacks
	Registering callbacks and the promise lifecycle
	Asynchronous action chaining
	More on $q

	$q integration in AngularJS

	The promise API with $http
	Communicating with RESTful endpoints
	The $resource service
	Constructor-level and instance-level methods
	$resource creates asynchronous methods
	Limitations of the $resource service

	Custom REST adapters with $http

	Using advanced features of $http
	Intercepting responses

	Testing code that interacts with $http
	Summary

	Chapter 4: Displaying and
Formatting Data
	Referencing directives
	Displaying results of expression evaluation
	The interpolation directive
	Rendering model values with ngBind
	HTML content in AngularJS expressions

	Conditional display
	Including blocks of content conditionally

	Rendering collections with the
ngRepeat directive
	Getting familiar with the ngRepeat directive
	Special variables
	Iterating over an object's properties
	ngRepeat patterns
	Lists and details
	Altering tables, rows, and classes

	DOM event handlers
	Working effectively with DOM-based templates
	Living with verbose syntax
	ngRepeat and multiple DOM elements
	Elements and attributes that can't be modified at runtime
	Custom HTML elements and
older versions of IE

	Handling model transformations
with filters
	Working with built-in filters
	Formatting filters
	Array-transforming filters

	Writing custom filters – a pagination example
	Accessing filters from the JavaScript code
	Filters dos and don'ts
	Filters and DOM manipulation
	Costly data transformations in filters
	Unstable filters

	Summary

	Chapter 5: Creating Advanced Forms
	Comparing traditional forms with AngularJS forms
	Introducing the ngModel directive

	Creating a User Information Form
	Understanding the input directives
	Adding the required validation
	Using text-based inputs (text, textarea, e-mail, URL, number)
	Using checkbox inputs
	Using radio inputs
	Using select inputs
	Providing simple string options
	Providing dynamic options with the ngOptions directive
	Using empty options with the select directive
	Understanding select and object equivalence
	Selecting multiple options

	Working with traditional HTML hidden input fields
	Embedding values from the server
	Submitting a traditional HTML form

	Looking inside ngModel data binding
	Understanding ngModelController
	Transforming the value between the model and the view
	Tracking whether the value has changed
	Tracking input field validity

	Validating AngularJS forms
	Understanding ngFormController
	Using the name attribute to attach forms
to the scope

	Adding dynamic behavior to the User Information Form
	Showing validation errors
	Disabling the save button

	Disabling native browser validation

	Nesting forms in other forms
	Using subforms as reusable components

	Repeating subforms
	Validating repeated inputs

	Handling traditional HTML form submission
	Submitting forms directly to the server
	Handling form submission events
	Using ngSubmit to handle form submission
	Using ngClick to handle form submission

	Resetting the User Info form
	Summary

	Chapter 6: Organizing Navigation
	URLs in single-page web applications
	Hashbang URLs in the pre-HTML5 era
	HTML5 and the history API

	Using the $location service
	Understanding the $location service
API and URLs
	Hashes, navigation within a page, and $anchorScroll
	Configuring the HTML5 mode for URLs
	Client side
	Server side

	Handcrafting navigation using the $location service
	Structuring pages around routes
	Mapping routes to URLs
	Defining controllers in route partials
	The missing bits in the handcrafted navigation

	Using built-in AngularJS routing services
	Basic routes definition
	Displaying the matched route's content

	Matching flexible routes
	Defining default routes
	Accessing route parameter values

	Reusing partials with different controllers
	Avoiding UI flickering on route changes
	Preventing route changes

	Limitations of the $route service
	One route corresponds to one rectangle on the screen
	Handling multiple UI rectangles with ng-include

	No nested routes support

	Routing-specific patterns, tips, and tricks
	Handling links
	Creating clickable links
	Working with HTML5 and hashbang mode links consistently
	Linking to external pages

	Organizing route definitions
	Spreading route definitions among several modules
	Fighting code duplication in route definitions

	Summary

	Chapter 7: Securing Your Application
	Providing server-side authentication and authorization
	Handling unauthorized access
	Providing a server-side authentication API

	Securing partial templates
	Stopping malicious attacks
	Preventing cookie snooping (man-in-the-middle attacks)
	Preventing cross-site scripting attacks
	Securing HTML content in AngularJS expressions
	Allowing unsafe HTML bindings
	Sanitizing HTML

	Preventing the JSON injection vulnerability
	Preventing cross-site request forgery

	Adding client-side security support
	Creating a security service
	Showing a login form
	Creating security-aware menus and toolbars
	Hiding the menu items
	Creating a login toolbar

	Supporting authentication and authorization on the client
	Handling authorization failures
	Intercepting responses
	HTTP response interceptors

	Creating a securityInterceptor service
	Creating the securityRetryQueue service
	Notifying the security service

	Preventing navigation to secure routes
	Using route resolve functions
	Creating the authorization service

	Summary

	Chapter 8: Building Your Own Directives
	What are AngularJS directives?
	Understanding the built-in directives
	Using directives in the HTML markup

	Following the directive compilation
life-cycle
	Writing unit tests for directives
	Defining a directive
	Styling buttons with directives
	Writing a button directive

	Understanding AngularJS widget directives
	Writing a pagination directive
	Writing tests for the pagination directive
	Using an HTML template in a directive
	Isolating our directive from its parent scope
	Interpolating the attribute with @
	Binding data to the attribute with =
	Providing a callback expression in the
attribute with &

	Implementing the widget
	Adding a selectPage callback to the directive

	Creating a custom validation directive
	Requiring a directive controller
	Making the controller optional
	Searching for parents for the controller

	Working with ngModelController
	Writing custom validation directive tests
	Implementing a custom validation directive

	Creating an asynchronous model validator
	Mocking up the Users service
	Writing tests for asynchronous validation
	Implementing the asynchronous validation directive

	Wrapping the jQueryUI
datepicker directive
	Writing tests for directives that wrap libraries
	Implementing the jQuery datepicker directive

	Summary

	Chapter 9: Building Advanced Directives
	Using transclusion
	Using transclusion in directives
	Transcluding into an isolated scope directive
	Creating an alert directive that uses transclusion
	Understanding the replace property in the directive definition
	Understanding the transclude property in the directive definition
	Inserting the transcluded elements with ng-transclude

	Understanding the scope of transclusion

	Creating and working with transclusion functions
	Creating a transclusion function with the $compile service
	Cloning the original elements when transcluding

	Accessing transclusion functions in directives
	Getting the transclusion function in the compile function with transcludeFn
	Getting the transclusion function in the directive controller with $transclude

	Creating an if directive that uses transclusion
	Using the priority property in a directive

	Understanding directive controllers
	Injecting special dependencies into directive controllers
	Creating a controller-based pagination directive
	Understanding the difference between directive controllers and link functions
	Injecting dependencies
	The compilation process
	Accessing other controllers
	Accessing the transclusion function

	Creating an accordion directive suite
	Using a directive controller in accordion
	Implementing the accordion directive
	Implementing the accordion-group directive

	Taking control of the compilation process
	Creating a field directive
	Using the terminal property in directives

	Using the $interpolate service
	Binding to validation messages

	Loading templates dynamically
	Setting up the field template

	Summary

	Chapter 10: Building AngularJS Web Applications for an International Audience
	Using locale-specific symbols and settings
	Configuring locale-specific modules
	Making use of available locale settings
	Locale-specific settings and AngularJS filters

	Handling translations
	Handling translated strings used in AngularJS templates
	Using filters
	Using directives

	Handling translated strings used in the JavaScript code

	Patterns, tips, and tricks
	Initializing applications for a given locale
	Consequences of including locales as part of URLs

	Switching locales
	Custom formatting for dates, numbers, and currencies

	Summary

	Chapter 11: Writing Robust AngularJS Web Applications
	Understanding the inner workings of AngularJS
	It is not a string-based template engine
	Updating models in response to DOM events
	Propagating model changes to the DOM
	Synchronizing DOM and model
	Scope.$apply – a key to the AngularJS world
	Putting it all together

	Performance tuning – set expectations, measure, tune, and repeat
	Performance tuning of AngularJS applications
	Optimizing CPU utilization
	Speeding up $digest loops
	Entering the $digest loop less frequently
	Limit the number of turns per $digest loop

	Optimizing memory consumption
	Avoid deep-watching whenever possible
	Consider the size of expressions being watched

	The ng-repeat directive
	Collection watching in ng-repeat
	Many bindings made easy

	Summary

	Chapter 12: Packaging and Deploying AngularJS Web Applications
	Improving network-related performance
	Minifying static resources
	How does AngularJS infer dependencies?
	Writing minification-safe JavaScript code
	The pitfalls of array-style DI annotations

	Preloading templates
	Using the <script> directive to preload templates
	Filling in the $templateCache service
	Combining different preloading techniques

	Optimizing the landing page
	Avoid displaying templates in their unprocessed form
	Hiding portions of the DOM with ng-cloak
	Hiding individual expressions with ng-bind

	Including AngularJS and application scripts
	Referencing scripts
	AngularJS and Asynchronous Module Definition

	Supported browsers
	Working with Internet Explorer

	Summary

	Index

