
#4

NEW PERSPECTIVES ON

WEB DESIGN

Published 2013 by Smashing Magazine GmbH, Freiburg, Germany.
Printed in the EU. ISBN: 978-3-944-54-060-3

Cover Design and Illustrations created by Anna Shuvalova.
Proofreading: Owen Gregory, Iris Lješnjanin.
Editing and Quality Control: Vitaly Friedman.
eBook Production: Cosima Mielke.
Layout: Markus Seyfferth.
Typefaces used: Elena by Nicole Dotin (Process Foundry),
Ideal Sans by Hoefler & Frere-Jones.

The Smashing Book #4: New Perspectives on Web Design was written by Vitaly Friedman,
Harry Roberts, Nicholas Zakas, Christian Heilmann, Tim Kadlec, Mat Marquis,
Addy Osmani, Aaron Gustafson, Paul Tero, Marko Dugonjić, Corey Vilhauer,
Rachel Andrew, Nishant Kothary and Christopher Murphy.

The reviewers are: Sindre Sorhus, Addy Osmani, Brian Arnold, Sean Coates,
Sergey Chikuyonok, Ben Dowling, Inayaili de León, Jonathan Snook,
Andy Davies, Nicholas C. Zakas, Dan Ariely, Tim Brown,
Kristen Bermann, Kalpita Kothary and Joshua Allen.

Idea and concept: Vitaly Friedman, Sven Lennartz.

All links featured in this book can be found at smashed.by/links.

Smashing Book #4. Crafted by the Smashing Magazine’s team and well-respected
members of the design community with care and love. http://smashed.by/sb4

Table of ContentS

7	 Preface
	 by Vitaly Friedman

9	 Modern CSS Architecture and Front-End Development
	 by Harry Roberts

49	 Writing Maintainable, Future-Friendly Code
	 by Nicholas Zakas

83	 The Vanilla Web Diet
	 by Christian Heilmann

113	 Culture of Performance
	 by Tim Kadlec

147	 Robust, Responsible, Responsive Web Design
	 by Mat Marquis

177	 Finding and Fixing Mobile Web Rendering Issues
	 by Addy Osmani

215	 Designing Adaptive Interfaces
	 by Aaron Gustafson

Table of ContentS

249	 How to Fix the Web:
	 Obscure Back-End Techniques And Terminal Secrets
	 by Paul Tero

305	 The Next Steps for Web Typography
	 by Marko Dugonjić
	
365	 The Two Faces of Content Strategy:
	 Balancing the Needs of Users and Editors
	 by Corey Vilhauer

395	 Supporting Your Product
	 by Rachel Andrew

431	 The Design of People
	 by Nishant Kothary

465	 On Creative Spirit
	 by Christopher Murphy

By Vitaly Friedman PREFACE

7

by vitaly Friedman

PREFACE

he beauty of the web lies in its longevity and flexibility. Time
never stands still in Web development, and the more time you
spend on the Web, the more frantic the pace seems to become.

Some of you might have started developing websites a while back, others
have jumped into Web design just recently; but all of you have probably
seen techniques and practices coming and going, tools and libraries
praised and neglected, trends appearing and falling over the cliff.

The Web is dynamic and versatile—coding techniques aren’t black
or white, and our decisions always emerge from those shady gray areas.
There are no perfect solutions, and usually it’s a matter of reaching a
sound compromise within given constraints. Web design today requires
pragmatic, open-minded approaches.

T

8

PREFACE

This book will not change everything you know about Web design and
development. Neither will it revolutionize your workflow or your tools. But
hopefully it will challenge you to think a bit differently about how you
approach design problems and how to meaningfully solve them in real
life.

Smashing Book #4 is a practical book for professional designers and Web
developers. It doesn’t discuss flat design or skeuomorphism, and it isn’t
concerned with visual styles or trends.

With New Perspectives on Web Design, we want to explore handy
techniques and smart strategies derived from actual projects. Covering
both technical and design aspects of Web design, this book provides
insights into scalable front-end architecture, obscure back-end tricks,
responsible responsive Web design and performance optimization, but also
adaptive interfaces, Web typography, content strategy, customer support,
the creative process, and the psychology of human behavior on the Web.

We can’t foresee what is coming up next. But we can look closely at
the state of the art today, and keep improving our workflow with small,
gradual enhancements—learning from our colleagues and from our own
experiences. And this is exactly why this book exists—to keep up with,
enrich and improve the wonderful, flexible, unpredictable Web that has
become an integral part of our lives over all these years.

8. CSS Architecture and Front-end Development for Today’s Web

Chapter

Modern CSS
Architecture and

Front-End Development

Written by Harry Roberts

01

10

CHAPTER 1 Modern CSS Architecture and Front-End Development

By Harry Roberts CHAPTER 1

11

Chapter ONE · by Harry Roberts

Modern CSS Architecture and
Front-End Development

n this chapter we are going to take a whirlwind tour of
a new approach to building more powerful front-ends for the Web
today. After the somewhat erratic introduction (there’s a lot to cov-

er, and so little time!), we’ll look at the nitty-gritty of structuring CSS for
modern, powerful websites. Our journey starts, somewhat unexpectedly,
in England, in the 1700s...

The Luddites
The Industrial Revolution, which occurred loosely between the mid-1700s
to mid-1800s, signalled a major shift in the world’s commercial manufac-
turing techniques; traditional hand-working and craftsmanship made way
for newer processes involving machines and automation. In early 19th-cen-
tury England, increasing mechanization gave rise to a group known as the
Luddites, a formation of artisanal textile workers — craftsmen and skilled
labourers — whose jobs were slowly but surely being made obsolete by the
new wave of machine-led manufacturing1. The Luddites were an unfor-

1 Inayaili de León gave a fantastic talk at DIBI Conference entitled “The Mechanical Revolution” back
in 2011. This talk speaks in much greater detail about the plight of the Luddites, as well as likening their
agenda to that of Web developers. I urge you to look it up: https://vimeo.com/27487587.

I

12

CHAPTER 1 Modern CSS Architecture and Front-End Development

tunate, though, in hindsight, probably not unexpected byproduct of the
Industrial Revolution.

The machines being introduced could do the work of ten skilled
workers, and at ten times the pace. Their slow, handcrafted work was
being replaced with the desire for more powerful and profitable means of
production. This shift, naturally, didn’t sit so well with the workers, who in-
creasingly found themselves ousted from roles they had held for decades.
The Luddites are a shining example of people resisting change, and paying
dearly for it. Change is good, change is difficult, change is necessary, and
change will happen — it’s how we deal with it that counts.

The Web is changing. Are you keeping up?

The Web Then
There was a time (not so long ago, really) when websites were built using
tables for structure, and markup like Foo was
used to apply purely visual features. These techniques stayed around for
quite a long time.

I started to get into Web development quite recently, around 2007 or so.
I was incredibly lucky that the days of tables for layout were long gone, and
I strode straight into an arena where technologies like CSS were consid-
ered the standard. Each article I read spoke of semantics, clean HTML, and
using as few IDs and classes as possible.

CSS made its entrance years before my interest in building websites.
Tables were phased out and replaced with a far more powerful and suitable
language. For many this was a huge change from what they were used to;
for me it was just how things were done when I arrived on the scene. The
transition from table-based to CSS-based layouts seemed, on the whole,
a welcome change. It took a while for some developers to make the move
because, as is always the case with front-end development, people were
largely at the mercy of the browsers their audiences were using.

By Harry Roberts CHAPTER 1

13

I remember one tale from an older developer, who built a site in a mix-
ture of tables and CSS in the hope of making the transition more gradual.

Despite how long the transition did (or didn’t) take, people by and large
seemed to love CSS. This was a huge change in development and produc-
tion workflows that almost everyone — certainly everyone I know person-
ally — welcomed with open arms. CSS could let us do so much more than
we were used to: we could build things faster, smarter, bigger and better.
We embraced the change and things were better for it.

Despite these shifts in technology, though, websites were still typically
quite small affairs. A dozen years ago, websites were often just a few pages
used to show off pictures of your cat and auto-play your favourite Rush
song; now websites are often hundreds, if not thousands of pages in size
and generate tens of billions of dollars a year.

The move from tables to CSS was a change of technology, but there
was very little change in landscape; sites fifteen years ago were typically
all relatively similar in size and purpose, regardless of what they were built
upon. The Web then was a much humbler little place, and the advice we
were given regarding Web standards and CSS and semantics and clean
code and avoiding extra markup and classes held true. But that was then;
the Web has changed — and it is still changing — but I worry that we’ve
stopped changing with it. Our best practices were overhauled around a
decade ago but we don’t seem to have taken another look at them since.

The Web Now
Today’s Web is quite a different beast: websites are typically far larger, far
more complex, far more important (they are often comprise people’s sole
means of income), and make a lot more money.

With companies like Amazon posting a 2012 revenue of over $60 bil-
lion2, Twitter boasting 200 million active users3, Google employing almost

2 http://smashed.by/amzn-stock
3 https://blog.twitter.com/2013/celebrating-twitter7

14

CHAPTER 1 Modern CSS Architecture and Front-End Development

54,000 people4, and even the company I work for — Sky Bet — making over
a hundred million pounds a year5 and employing 450 people solely from
money made online, it would be naive to think we can treat websites today
as we did ten or even five years ago. However, a lot of us still do.

With websites getting bigger, their dev teams growing larger, and their
goals becoming more tightly defined and, I dare say, more important, we
need to take another look at how we actually build them. It’s no longer
practical to hand-craft code, and pursue semantic purity and clean markup;
a much more rapid, powerful and pragmatic approach is needed. We need
to change again.

The books, articles and blog posts written on Web standards over the
last decade or so all contained relevant, sound advice — there is no denying
that — but the Web has changed at a much faster rate than our best practic-
es have. We’ve outgrown the methods of years gone by and it’s now up to
us to update the unwritten rules of Web development to fit the new land-
scape. Bigger, app-like sites that serve millions of users a day and generate
billions of dollars of income require an approach that early-2000s advice
simply cannot offer us. We need to embrace another change in attitude,
one that takes into account the different nature of the Web today, and also
that of the people involved in it: your stakeholders.

Note: Nicolas Gallagher recently gave a great talk at W3Conf about “Ques-
tioning Best Practices”6. It is well worth a watch.

The Three Stakeholders
By and large, with any Web project, there are three main stakeholders, the
three groups of people to whom the site matters the most. This is, of course,
a massive generalization, but I find that, for the most part, it holds true:

4 http://investor.google.com/financial/tables.html
5 http://smashed.by/skybet
6 http://smashed.by/best-pract

By Harry Roberts CHAPTER 1

15

1.	 The client: The person paying you to build the site, the person paying
your bills.

2.	 The users: The people who will be using the site that the client is paying
you to build.

3.	 You: The developer, who has to work with, scale and maintain the site.

You need to remember these stakeholders and make sure you do the
right things for the right people for the right reasons.

The Client
The client doesn’t care about semantics. The client doesn’t care about how
many IDs and classes you have or haven’t used. They don’t want to know
that you can’t quickly duplicate a piece of content because you used an ID
and IDs aren’t reusable. It’s not their problem to worry about things like
that, and it’s your responsibility to shield them from these things.

The client cares about how quickly and efficiently (and therefore
cheaply) you can update their site, they care about how reliable and robust
it is, how nicely it works on a wide variety of browsers and devices.

The User
Users don’t care about code: we all use sites day in, day out, that use terri-
ble-looking code (though not necessarily terrible code in itself). Even as de-
velopers we have no concern over how well-written Facebook’s or Google’s
markup is; we care that the sites and services we want to use are fast and
reliable. Code is to a website what bricks and mortar are to a building: very
important, but not really what people turn up to see.

You, the Developer
You care about how well-documented the codebase is, how nice it is to work
with, how naturally it can scale, how easily it can be maintained, how quick-
ly you can make changes, how effectively you can fulfill clients’ requests.

16

CHAPTER 1 Modern CSS Architecture and Front-End Development

The client doesn’t care if you managed to avoid using any classes and
wrote no extraneous markup, but if using two classes and an extra div
makes your job easier, and makes the site easier to maintain, you should
opt for the extra code every time. There is no use making your life more
difficult because you think that avoiding an extra few characters of HTML
is the right way to go. Be kind to yourself and your team.

Keep the Right People Happy
By keeping all of these three stakeholders in mind, we can begin to make
more informed decisions about how we write our front-end code: users
don’t care if we’ve written semantic classes; clients don’t care how many
IDs we’ve used; and only we care about how nice our code is to work with.

In reality, developers are the only people who really care about code.
Write it for yourself, but write it to be fast (for the users) and robust (for
the client). Everyone benefits in some way from good code, but users and
clients only benefit from its results. Developers benefit directly from the
quality of the actual code itself (sensible naming conventions, plenty of
comments, and so on).

Takeaway: The code we write has to serve more people than just ourselves,
and in different ways. We need to write fast, robust code for clients and
users, and maintainable, sane code for ourselves.

Some Misconceptions About CSS
There are still some greatly misunderstood aspects of CSS (and HTML)
that — at a fundamental level — will affect the way you approach build-
ing websites. These misconceptions need acknowledging and fixing. In
so doing, we will free ourselves from years-old dogma and feel a lot more
liberated and empowered to build bigger, faster, more powerful front-ends.

I honestly believe it was realizing, understanding and subsequently
ditching these misconceptions that took me from being able to merely
write CSS to being able to scale CSS for massive websites.

By Harry Roberts CHAPTER 1

17

Semantics
Our first misconception involves semantics. Semantics — at least where
front-end development is concerned — is a greatly misunderstood and
overdefended area. Semantics in front-end developments concerns wheth-
er to use a div or a header, or if some text should be a paragraph or a head-
ing, or whether a list is to be ordered or unordered, and so on.

Semantics in front-end development is about elements and not attri-
butes. It’s about machines (screen readers, browsers, assistive technologies,
bots) gleaning meaning from the elements we use to mark up our docu-
ments. Semantics is not about how we name our classes or IDs; the only
things to gather meaning from classes and IDs are humans. Anything else
that reads or accesses a class or an ID merely matches it; it does not derive
any meaning from them at all. This, straight from the HTML(5) spec:

Particular meanings should not be derived from the value of the ID attribute.

Take the two following snippets:

 <div class="heading-one">My page title</div>

and:

 <h1 class="red">My page title</h1>

The first is an improper semantic implementation: the author should
be using an h1 element to mark up their page’s title, not a div . Even though
the class used is highly descriptive, this is not where the semantics lie. A
machine will gain nothing at all from that snippet of markup.

The second snippet is far more semantic: a machine reading this will
know that it’s a top-level heading. The fact that the author used a class of
red is entirely irrelevant to any machine. If there is a corresponding .red{}
rule set in the CSS then the browser will style this heading no matter what.

18

CHAPTER 1 Modern CSS Architecture and Front-End Development

Machines do not discriminate at all against the classes you use because
they do not understand them; it is merely their job to match them.

Semantics vs. Sensibleness
When most people talk about semantics, what they’re really referring to
is sensibleness. As we have ascertained, classes and IDs have no bearing on
semantics whatsoever. A class of red is neither semantic nor not semantic,
because classes are not found on the semantic spectrum. A class of red,
however, is probably quite ill-advised.

When choosing names for your classes, forget about the idea of seman-
tics and look more at their longevity. How long will this name continue to
make sense? How long will it stay relevant? How much sense will it make
in six months?

Taking the .red example further, it is clear to see why this is an unwise
name for a class. Imagine you’re working on an e-commerce site and you
need to style a price differently because it is a special offer, like so:

 <strong class="red">$99.99

 .red {
 color: red;
 }

If that style just happens to involve the color red then a class and selec-
tor of red might be used, perhaps inadvisably. If, for whatever reason, you
want to change all special offer prices to be blue then you’d end up with
something like this:

 <strong class="red">$99.99

 .red {
 color: blue;
 }

By Harry Roberts CHAPTER 1

19

A machine would not struggle with this at all — a machine’s only duty
is to match and style the classes. What does get awkward, however, is when
humans (that is, developers) start working with this code. It is confusing to
see a class of red which actually makes something blue. This is not a sensible
class, one that has little longevity and that won’t always make sense.

A far better option would be:

 <strong class="special-offer">$99.99

 .special-offer {
 color: blue;
 }

	
It doesn’t matter if the special offer is red, green, blue or purple — that

selector will always make sense to a human. It is a sensible, though not
semantic, class.

Sensibleness is about ease of maintenance, longevity and how much
sense something makes to a human being, because humans are the only
things to take any amount of meaning from class names.

The Separation of Content and Style
Traditionally, the separation of content and style refers to splitting the
markup and styling of content into distinct languages. It does not refer to
keeping the two languages physically separate.

Way back when, we wrote HTML like Foo.
The issue here is that HTML both marks up and styles this content, when
we should use a distinct language for each. This is why CSS was born: to
separate these concerns. The separation of content and style refers purely
to using separate and independent technologies for each role, not to avoid-
ing presentational classes in your markup.

The previous example displays a lack of separate content and style; the
following example has its content and style separated perfectly:

20

CHAPTER 1 Modern CSS Architecture and Front-End Development

 Foo

It’s just pretty poorly named. The separation of content and style is about
separating content and styling languages, not their locations.

By understanding this, you begin to see that this misconception has led
to a blanket and dogmatic hatred of any form of presentational classes. Just
because classes might read as presentational does not equate to mixing
content and style; in fact it comes back around to our points above: it’s all
about how sensibly you’re doing things.

A snippet of HTML like <div class="red"> ... </div> has perfectly
decoupled content and style, it’s just not very sensible.

Takeaway: We’ve still got a couple of misconceptions surrounding CSS. Rec-
ognizing and dropping them is very liberating and opens up the possibili-
ties to build better front-ends.

A Change in Attitude
By now, we should find ourselves in a frame of mind better equipped for
building more powerful, pragmatic front-ends.

If we accept that the Web is a much more serious environment than
it was ten years ago, and if we accept that the code we write has to serve a
number of different people in a number of different ways, then I don’t think
it’s too much to assume that we also accept that we need a change in attitude.

As Nicole Sullivan once said, “Our (CSS) best practices are killing us7”;
our desire to write markup that doesn’t use any classes serves no one, and
often causes ourselves problems.

The pursuit of clean markup and semantic classes and all that came
with it was well-intentioned but helped no one. It led to verbose, diffi-
cult to maintain, tangled style sheets. The price of omitting a few classes

7 Nicole Sullivan, “Our (CSS) Best Practices Are Killing Us”, (April 28, 2011).
 http://www.stubbornella.org/content/2011/04/28/ our-best-practices-are-killing-us/

By Harry Roberts CHAPTER 1

21

was having to write giant, convoluted selectors to target these orphaned,
unnamed DOM elements. As the saying goes, we robbed Peter to pay Paul.
We were writing clean markup at the cost of writing verbose, messy and
convoluted CSS. We just moved the mess somewhere else.

Today’s Web requires a more informed and less dogmatic view of
things like semantics. We need to realize that our actual code benefits no
one other than other developers, so we need to write it for them. We need
to realize that users and clients just want fast, reliable, robust websites. The
Web is growing bigger and bigger, faster and faster. Code is no longer a
craft, it’s a power tool.

I believe that the sooner we drop these well-intentioned but misguided
ideals of yesteryear, then we can be more liberated and able to build bigger,
better quality sites in a more timely and responsive manner. As I men-
tioned before, it was recognizing and dropping these old-fashioned ideals
that made me the developer I am today.

Listen to Developers
One of the biggest changes in attitude I made was moving from being a
design-led front-end developer to being an engineering-led front-end devel-
oper. Just a few years ago, I used to be a hardline semantics guy. I believed
that my markup should be handcrafted and clean and perfect, and that
avoiding classes and using clever selectors was awesome, and the sure sign
of a great developer!

Then I started my job as senior UI developer at BSkyB, where I was the
only front-end developer in a company full of incredibly talented software
engineers. I’d moved from an agency-like company where other front-end
developers shared the same ideals — the yearn for lean markup and seman-
tics — and now I was in a company with no one who thought like that at
all, and I was working on sites that I would have to scale and maintain for
years to come. Being in this environment, surrounded by engineers, really
opened my eyes.

22

CHAPTER 1 Modern CSS Architecture and Front-End Development

I picked up so much from these guys, things like abstraction, DRY-
ness, object-oriented development, performance, extensibility. I learned
firsthand from some of the cleverest people I’ve ever met that code isn’t
about prettiness, or being expressive, or avoiding something just because.
I learned that you don’t get points for being pretty, you get points for being
powerful. This shift in approach, for me, was what started the ball rolling.
I started asking about concepts like the single responsibility principle,
abstraction, the high-level thinking behind object orientation, and lots, lots
more. Then I started to wonder how to apply these tried-and-tested pro-
gramming principles to front-end code: namely CSS.

I still maintain that CSS was left in the hands of the wrong people.
Sure, designers like myself often make the most use of CSS, but CSS is still
code. Granted, it might not have any logic behind it, it’s not a program-
ming language, but code is code is code, and it’s still subject to all the same
things that programming languages are: things like speed, efficiency,
reuse, maintainability, scalability. I took what I’d learned about certain CSS
misconceptions and then rolled that up with what I gleaned from my col-
leagues and started putting CSS on steroids. I totally changed my outlook
on CSS and the benefits were tangible.

Takeaway: It’s time we looked at our code with a fresh pair of eyes to em-
brace and manage the shift in focus, size and nature of front-end projects.

Object-Oriented CSS
In my opinion, one of the biggest, single shifts in writing and scaling CSS
was the advent of object-oriented CSS8, or OOCSS.

OOCSS — a term and methodology coined by Nicole Sullivan9 — bor-
rows a lot from the world of software development and programming. OO
programming is a paradigm which aims to separate code into discrete,

8 https://github.com/stubbornella/oocss/wiki
9 http://stubbornella.org

By Harry Roberts CHAPTER 1

23

logical chunks which can then interact with each other. Instead of one
monolithic piece of code to complete tasks ABC, you’d end up with each of
A, B and C abstracted into its own object. Now we’d have A which we can
combine with either B or C in any order we choose.

This idea, brought to CSS, allows us to do away with cumbersome rule
sets that do one specific thing, so we can use several smaller, simpler rule
sets that can be combined to achieve the same result.

As well as abstraction, OOCSS also introduces the principle of struc-
ture and skin: what makes up the structure of a component should exist
separately from what makes up its visual features. The same, underlying
skeleton can be repeated over and over on a website, but skinned to look to-
tally different in each case. This is the advantage of abstracting repeatable
objects: the ability to manipulate and repurpose them in many different
scenarios.

Takeaway: Spot repeated design patterns, abstract them, reuse them. Sep-
arate components into structure and skin and embrace tried-and-tested
programming paradigms. For more information about OOCSS I would
recommend reading Nicole Sullivan’s GitHub Wiki10.

Code Structure
When writing large amounts of CSS, it is important to plan how you’re go-
ing to organize it. As the old saying goes, failing to plan is planning to fail,
and it is vital that you spend a lot of time thinking about your architecture
before you dive straight in and start coding.

Breaking Things Down
If you have a mortgage or student debt, or have ever done any spring clean-
ing, you will be familiar with breaking these things down into smaller,
more manageable chunks. You might have a mortgage of $200,000, but

10 github.com/stubbornella/oocss/wiki

24

CHAPTER 1 Modern CSS Architecture and Front-End Development

you’re unlikely to ever pay that back all at once; you pay several hundred
dollars a month in order to make that huge total more manageable. When
you’re spring cleaning your house, you break it into smaller tasks: clean
the bathroom, vacuum the carpets, wash the paintwork. Breaking things
down is just a common-sense approach to tackling larger obstacles one
step at a time, and the same applies to building websites.

When faced with building a large-scale front-end, it is important to
not look at the bigger picture. Zoom in and spot smaller tasks that, as
you’re completing them, chip away at the project as a whole. To borrow yet
another saying, take care of the pennies and the pounds will take care of
themselves. Or, as my good friend Jamie Mason11 likes to say, “take care of
the bits and the bytes will take care of themselves.”12

Lego
One of my favourite analogies for breaking code down is from Nicole
Sullivan. She said that you should treat code like Lego; many smaller,
simpler chunks can be combined and arranged to make a huge variety of
structures. With a box of assorted Lego pieces you could build a car, or an
airplane, or the Eiffel Tower, or Big Ben, or anything! All by combining the
same little tiny pieces in different quantities, in a different way, and in a
different order.

So, instead of looking at your project and preparing to build a mono-
lithic contact page, think about combining a series of inputs and buttons
inside a content area, which is next to a subcontent area, which in turn is
surrounded by a header and a footer. Stop thinking in terms of pages and
start thinking in terms of components. If you need to build a search form,
you can probably reuse and repurpose the same inputs from the contact
form. Breaking your code down into Lego-like chunks gives you the ability
to do a lot more with it.

11 https://twitter.com/GotNoSugarBaby	
12 https://twitter.com/csswizardry/status/334962253029838849	

By Harry Roberts CHAPTER 1

25

Another analogy that I have used before is the Subway analogy. If you
have ever ordered at a Subway sandwich store you will be familiar with the
way they offer food. They break everything into separate ingredients, so
you can combine your chosen meat with your favourite salad and top it all
with your favourite sauce.

Breaking things down to this level affords an enormous number of
combinations of the same basic ingredients, and it allows customers to pick
and choose the bits they do and don’t want. One day you could have tuna
and cucumber with sweetcorn and mayo; the next day you could have cured
meats with mayo, onion, lettuce and cucumber. There are some ingredi-
ents shared across both, but because each is distinct, you can simply swap
ingredients and make entirely new sandwiches. So, instead of coding up a
sandwich, code up all the ingredients and make your sandwich from those.

By thinking of your code in the same way as you do Lego and sandwich
ingredients, you should be able to start looking at the smaller pictures and
focus on easier, micro-tasks. The result of these tasks is a whole load of
combinable chunks of code.

Where to Break It Up
It’s all well and good saying we need to break code down into smaller piec-
es, but where do we break it all down?

Unfortunately, there is no right or wrong answer. But! I do feel there are
some helpful analogies and pointers. I mentioned earlier that breaking things
down is just common sense, so think now about how you, as a Web develop-
er who’s probably never worked in construction, would go about building a
house. I imagine we’d all build a house in roughly the following order:

1.	 Foundations upon which to build everything else.
2.	 Structure such as walls, to keep the building up.
3.	 Fixtures like doors, windows and staircases.
4.	 Decoration like wallpaper or paint, carpets or wood flooring.
5.	 Ornaments such as paintings, canvases and posters.

26

CHAPTER 1 Modern CSS Architecture and Front-End Development

This is a sensible order in which to build a house; we can’t hang photos
before we have walls, and we can’t erect walls without foundations, so we
have to assemble things in a certain order. That is not to say we have to
make the individual parts in a certain order, certainly not. Our ornaments
might be antiques made hundreds of years ago, but they can’t become part
of the house until we have our shelves in place.

Let’s carry this analogy over to our websites, then. Our foundations are
our CSS reset; our grid systems are structure; components and widgets
are our fixtures and fittings; our design is the decoration; and, finally, any
skinning or theming (for example, a special offer badge on a product, or a
Christmas-themed logo) are our ornaments.

Again, we could design our components and widgets long before they
are dropped into a page, but when it comes to assembly order there needs
to be a page there to drop that component into. We need to build things in
a certain order, so why not start breaking our code up there?

So now we should be in a position to start breaking our build up into
logical chunks, for example:

1.	 I want to use normalize.css, so that needs to go in first.
2.	 This is what grid system I will be using.
3.	 This is what I want an unclassed h2 to look like.
4.	This is what the store locator widget will look like.
5.	 This is what the store locator widget will look like if there are no stores

in your area.

We can keep all of these things nice and separate, so we should. We have
convenient, natural points at which to start breaking our code up into pieces.

These little pieces leave us with code which adheres to what, in the
computer science field, is known as the single responsibility principle. My
diluted and very high-level definition of the single responsibility principle
is basically: code that does one job, one job only, and one job very well.

By Harry Roberts CHAPTER 1

27

Think back to our Subway ingredients: carrot is excellent at being
carrot, because that is all it is intended to do. Carrot absolutely sucks at
being chicken, but that’s fine because it’s not meant to have anything to do
with chicken. The idea is that we have lots of tiny pieces of code that have
one single responsibility each. These responsibilities should never merge
or leak into each other, but they should play very well alongside each other
when combined.

Organizing It All
Now we have these lovely, Subwayesque, Lego-like, SRP chunks of code,
we have to start thinking about how to get them all playing well together.
Luckily, the way we outlined our house build is pretty much the ideal order
in which to form our style sheets.

A few years ago, before I started thinking about the SRP and granular
CSS, I often laid out my style sheets to roughly mirror the structure of a
typical page. It may have looked something like this:

1.	 Reset
2.	 High-level styles (body backgrounds, etc.)
3.	 Header styles
4.	Page styles (content, subcontent, etc.)
5.	 Content (forms, typography, images, tables)
6.	 Footer styles

This is obviously a vast simplification, but I really did order style sheets
with no appreciation of how the CSS was structured, and with no real
regard for the cascade or inheritance. Since starting to work on larger sites,
I found that the most effective way to order rule sets was in inheritance or-
der. That is to say, every rule set should inherit from and add to the previous ones.
You start with your very basic stuff, your foundations, and you add struc-
ture, then components, then visual design. Your rule sets should be ordered

28

CHAPTER 1 Modern CSS Architecture and Front-End Development

from most to least generic. Not only does this mean your style sheets are
saner, it probably means they are also far smaller and more efficient. If
every rule set simply adds to and extends the ones defined previously then
there is far less chance of having to undo styling, far less chance of hitting
any specificity problems, and far less chance of tripping yourself up.

Jonathan Snook writes about this kind of thing — in a far better man-
ner than I could ever hope to — in his book SMACSS: Scalable and Modular
Architecture for CSS13. If you haven’t yet read SMACSS then stop listening
to me right now (I won’t be offended, I promise) and go get yourself a copy.
I firmly believe it is one of the best publications that modern CSS develop-
ment has seen.

So, now my project’s CSS might look a little more like this:

1.	 Reset/normalize.css
2.	 Grid system
3.	 Element-level styling: elements without classes, like headings, lists,

and html and body elements
4.	Components and classed elements: navigational elements, image

galleries, buttons, forms
5.	 Style trumps: things like error states, seasonal themes, etc.

These things all layer one on top of one another, providing a logical and
planned scalability. Everything should fall into one of those categories and
sensibly slot into place, able to extend anything that came previously, and
pave the way for anything that might come next.

Managing It All
Now you have the skeleton of a big ol’, well-structured project, how are you
actually going to manage it? Well, my simple advice would be to use a lot
files in a lot of directories, plus a preprocessor.

13 http://smacss.com

By Harry Roberts CHAPTER 1

29

I know a lot of people are still on the fence about the value of preproces-
sors, but the beauty of them is that you can use as much or as little as you
need. Where managing big projects is concerned, I think preprocessors’
concatenation (@import) is invaluable. You don’t have to make use of mix-
ins, or variables, or anything else, but the ability to split your codebase into a
lot of little includes is really, really handy when working on big projects.

I use Sass, so by having files like normalize.scss, grids.scss,
forms.scss and so on, I can import everything I need to as and when
and, most importantly, where I want. Because we now have these granular
chunks of SRP CSS, we can simply move our includes up and down our
master Sass file to really quickly reorder our entire style sheet. For example,
let’s imagine this is our main Sass file that imports the entire project’s CSS:

@import	"generic/normalize",
 	 "base/grids",
	 "base/headings",
	 "base/forms",
	 "gui/page-head",
	 "gui/page-foot",
	 "gui/image-gallery",
	 "gui/date-picker",
	 "gui/blog-posts";

All we need to do is nudge a few lines up or down accordingly and we
can completely rearchitect our compiled output. This ability to manage
whole components as single lines rather than in their entirety makes it re-
ally easy to quickly make huge changes to the structure of your CSS should
you need to. It also means you can remove chunks of CSS you no longer
require just by commenting out one of the included files. Don’t need the
image gallery any more? Simple:

@import	"gui/page-foot",
 //	"gui/image-gallery",
	 "gui/date-picker";

30

CHAPTER 1 Modern CSS Architecture and Front-End Development

Organizing the Files
The directory structure will probably mirror the house-build splits in
your code. This is what a CSS directory structure looks like at BSkyB,
for example:

 vars.scss
 generic/
 *.scss
 base/
 *.scss
 objects/
 *.scss
 gui/
 *.scss
 style.scss

Please be aware that the above is written out in implementation order,
rather than alphabetical order, as you might be used to seeing. That order
means that:

1.	 We have a variables file which holds things like brand colors and font sizes.
2.	 Then we have a generic directory with our reset, clearfix and so on.
3.	 Next up is our base directory, which holds our unclassed elements like
h2s,tables, etc.

4.	Then we have a series of objects and abstractions, like the media object.
5.	 On top of that we sit our GUI layer: carousels, accordions, headers,

footers and the like.
6.	 That all then gets compiled into the product-specific CSS file, made

from our master style.scss Sass file.

So now we are left with a very organized directory of Sass files, each
containing small, discrete chunks of CSS. It is these chunks, organized in
this manner, that will allow us to combine — and ultimately scale — our
CSS indefinitely.

By Harry Roberts CHAPTER 1

31

Takeaway: Break your code down into smaller, more discrete parts which
can then be added, removed, combined and layered in a common-sense
order.

CSS Selectors
One of the simplest ways to make your CSS more scalable and suitable
for bigger, modern front-ends is to simply pay more attention to your CSS
selectors. It really is a surprisingly quick win. The bite-sized guideline for
decent CSS selectors is basically: keep them well-named, as short as possi-
ble, and keep specificity low at all costs.

CSS selectors, such as IDs and classes and so on, are one of the first
things you learn when entering the world of front-end development. The
ability to match something like <div id="foo"> with #foo {} is Web devel-
opment 101. Simple stuff, I’m sure we’d all agree.

However, CSS selectors, as humble as they are, hold one of the biggest
keys to writing scalable, modular, extensible and fast UIs. CSS selectors all
impact, in some way:

•	 Location dependency
•	 Code portability
•	 Robustness
•	 Specificity
•	 Selector intent
•	 …and even efficiency

Anatomy of a CSS Selector
Before we continue, we should familiarize ourselves with the anatomy of a
CSS rule set. I won’t go into loads of detail, but let’s take the following:

 .foo .bar .baz {
 float: left;
 }

32

CHAPTER 1 Modern CSS Architecture and Front-End Development

Lines 1–3 — the whole block — is called a rule set. Line 1 is our (compound)
selector. The whole of line 2 is a declaration, made up of float, which is a
property, and left, which is a value. .baz, the final selector before the { is
our key selector. If selectors represent much of the key to scalable CSS, the
key selector definitely holds the key to selectors in general.

Which Selector(s) Should You Use?
The answer to this is actually fairly straightforward: the short version is
classes. They offer granularity, low specificity and reusability, they can be
combined, they’re (obviously) very well supported and they’re great!

If you split code into smaller, single-responsibility-principle-adhering,
Lego-like, modular chunks, then it only makes sense that your style sheets
will be made up, predominantly, of classes. I can’t think of a selector that
lends itself better to the ideals of low specificity, reusability, portability
and explicitness better than the humble class. As the acronym goes: “keep
it simple, stupid.” Classes are a straightforward, simple, tried-and-tested
selector that fit the needs of a CSS architect perfectly.

IDs
Anyone who’s seen me speak — or read any of my articles — will immedi-
ately be able to guess what I’m about to say next: do not use IDs in CSS.

The problems with IDs are manifold. First, they cannot be reused. Only
one instance of an ID should exist on any given HTML page: to do other-
wise is invalid. Interestingly, however, your CSS will still match and style
all occurrences of a repeated ID, but JavaScript will only match the first ele-
ment it finds, and then stop. This is why IDs in JavaScript are nice and fast.

Now, it may well be that you never want anything more than once on
a page, and that you don’t need a reusable selector at all. This is all well
and good, so an ID might be appropriate here, but as we’ll see, there are far
greater downsides.

The second — and far biggest — problem with IDs is their specificity. If
you aim to write a more painless, more extensible, often larger front-end,

By Harry Roberts CHAPTER 1

33

then you will always want to keep your specificity as low as possible. Speci-
ficity, after all, is the reason we have !important.

IDs have a much higher specificity that any other type of selector (save
for inline styles). They are, in fact, infinitely more specific than classes. No
amount of chained classes will ever be as specific as just one ID.

This hike in specificity can have some pretty unexpected, and certainly
undesirable, side effects. Take for example:

 #sidebar {
 background-color: #09f;
 }

 #sidebar,
 #sidebar a {
 color: #fff;
 }

 .twitter-widget {
 background-color: #fff;
 }

 .twitter-widget,
 .twitter-widget a {
 color: #09f;
 }

Here we simply have a sidebar (#sidebar {}) which has a blue (#09f)
background and whose text and any links inside it are white. We also have
a reusable Twitter widget (.twitter {}) which has a white background and
whose text and links are blue, the inverse of the sidebar.

What do you suppose would happen if we were to put the Twitter
widget in the sidebar? Yep, its links would become white on the widget’s
white background. Certainly not what we wanted. This happened because
the #sidebar a {} selector is infinitely more specific than the .twitter a {}
selector, thus trumping it. This is where IDs can become a huge pain.

34

CHAPTER 1 Modern CSS Architecture and Front-End Development

Anything you can do with an ID, you can do with a class, and more. If
you want to use a component once on a page, you can do that with a class. If
you want to use it a thousand times on a page you can do that with a class.
Classes have all the same benefits of an ID but none of the drawbacks.

Keep Your Selectors Short
When I say keep your selectors short, I do not mean the names themselves,
I mean the size of the compound selector. A compound CSS selector is a selec-
tor made up of smaller selectors, for example:

 .a-css-selector {}
 #a .compound .css [selector] {}

Avoid compound selectors wherever possible. There are a number of
reasons why this makes sense.

Location Dependency
Nested or compound selectors most likely use a lot of descendant selectors,
selecting a thing that lives inside another thing. For example:

 .sidebar .button {}

One problem here is that the .button style can now only be used in your
sidebar. There may come a time when a client wants to use the same button
elsewhere, but they can’t. To do that you would need to write some more CSS:

 .sidebar .button,
 .footer .button {}

This might not seem too bad initally, but it’s clearly not a very maintain-
able, scalable or future-proof solution; you will have to keep adding more
and more CSS to achieve your goal. This is far from ideal. Tying selectors to a
location reduces their scope for reuse.

By Harry Roberts CHAPTER 1

35

A far better selector would have been:

 .button--secondary {}

This can now live anywhere without us having to touch (and bloat) our
CSS. All selectors should be as free to move as possible. You might never want
to move them, but there is no benefit in tying them down unnecessarily.

Portability
We just covered how we can move our DOM elements about more freely
without descendant selectors, but we can also increase what DOM ele-
ments we can apply selectors to. Take, for example:

 input.button {}

This looks like a fairly inconspicuous bit of CSS, right? Wrong! We
shouldn’t qualify our selectors with elements.

Imagine we wanted to apply the .button styling to a link. It wouldn’t
work because we have tied our selector to an input element.

By omitting this leading qualifying selector, we instantly open up the
possibility of applying the class to a wider array of HTML elements. Any
time you see anything like the following:

 ul.nav {}
 div.header {}
 p.comment {}
 a.button {}

…and so on, aim to rewrite them as:

 .nav {}
 .header {}
 .comment {}
 .button {}

36

CHAPTER 1 Modern CSS Architecture and Front-End Development

Robustness
If you have long selectors with tons of stuff going on in them then it only
stands to reason that there is, statistically, a higher chance of something
going wrong. Let’s look at an example:

 section.content p:first-child {
 font-size: 1.333em;
 }

Here we have four smaller selectors in one compound selector. That
means there are potentially four places for this code to break. If we change
the section to an article, the selector will break. If we change the class
of .content to .page, the selector will break. If we introduce an element
before that paragraph, the selector will break. Basically, there is a lot to go
wrong because of the size of — and number of parts in — this selector.

A far more robust replacement would be to simply use:

 .intro {
 font-size: 1.333em;
 }

Nothing can go wrong here. The only way we can prevent this selector
from working is to remove it entirely from our markup, and if we do that
then we intend to break it. Keeping selectors shorter keeps them far more
robust, purely by lowering the statistical chance that they can break.

Decrease Specificity
As I mentioned before, specificity is an absolute nightmare. Specificity
is what causes CSS to spiral out of control. Specificity is why we have
!important. Thankfully, by keeping selectors short, you inherently keep
your specificity low. This is a good place to be!

As well as avoiding IDs, we need to avoid adding anything unnecessary
to our selectors. Anything that can be removed from a selector should be.

By Harry Roberts CHAPTER 1

37

As well as decreasing portability and robustness, increasing selector length
increases specificity — this is the worst of all worlds.

The Single Responsibility Principle
We’re back to the SRP again! Now that we have these tiny, class-based
short selectors, we can combine them far more easily with each other. This
is yet another benefit of keeping our selectors short. Their small, one-job-
and-one-job-only nature makes them really easy to combine, add to and
subtract from each other.

Takeaway: Keep your selectors as short as possible, keep their specificity
low at all costs, keep them as combinable as possible, keep them on the SRP
and make sure they have sound selector intent.

Naming Conventions
With all these dozens of abstracted, SRP classes, we need a decent, con-
sistent and workable way of naming them. You’d be surprised just how
troublesome poorly named classes can be, but I wouldn’t advise finding out
the hard way. As Phil Karlton once said:

There are only two hard things in Computer Science: cache invalidation
and naming things.

For the longest time, we’ve been told that our class names should be
semantic. As we covered previously, this is all a bit of fool’s gold: only hu-
mans make any sense of classes, so write them for people.

Giving a list a class of .blog-posts is redundant. We can tell from the
content that this is a list of blog posts so there is no need to state that in
your class, which is merely a style hook. Instead of restricting yourself
to only using this class to style a list of blog posts, why not name it more
neutrally? You could then apply it to any list at all: a list of products, a list of
latest news items, a list of usernames, anything.

38

CHAPTER 1 Modern CSS Architecture and Front-End Development

Keep your class names relevant but neutral, sensible but portable. In-
stead of writing class names that describe the content, try to write names
that can be applied to any type of content, and that describe the visual
treatment that the class will add. Writing classes that describe content is
redundant and serves to help no one.

What is useful is knowing a class isn’t tied to a particular type of
content, and that it is abstracted enough to be reused elsewhere. Nicole
Sullivan’s media object14 is a perfect example of this way of thinking. Class
names that don’t allude at all to the type of content are highly reusable.

To quote Nicolas Gallagher:

Class names should communicate useful information to developers. […] Tying
your class name semantics tightly to the nature of the content has already re-
duced the ability of your architecture to scale or be easily put to use by other
developers.15

Of course, some names won’t need this level of reusability; your page
header, for example, can happily take a class of .page-head. The above rules
apply mainly to abstracted design patterns that could be reused anywhere,
rather than to specific components. It’s a fine balance to strike, but one that
makes itself quite apparent.

What’s in a Name?
So, we’ve discussed how our classes should be written for developers, and
describe the styling’s purpose rather than the content, and how they should
be named as neutrally as possible — but how do we actually name them?

14 Nicole Sullivan, “The media object saves hundreds of lines of code”
http://smashed.by/media-object, June 25, 2010
15 Nicolas Gallagher, “About HTML semantics and front-end architecture”
http://nicolasgallagher.com/about-html-semantics-front-end-architecture/, March 15, 2012

By Harry Roberts CHAPTER 1

39

To quote Google developer, Jens O. Meiert: “Use names that are as short
as possible but as long as necessary”16.

A class like .content is preferable to a class like .cntnt or .the-area-
of-the-page-that-will-hold-the-main-content.

Classes that deal with general design patterns and abstractions should
be vague, abstract and neutral. The media object, again, is a perfect exam-
ple of this. I came up with the idea of the island object: a design pattern
whose only job is to create a padded box. The reason I chose “island” is
because it can be applied to all manner of elements. An island is something
separated from its surroundings on all sides; the island object boxes off
some content.

For very high-level abstractions and design patterns, use abstract
names that lend themselves well to reuse, and don’t align themselves too
tightly to a specific type of content. This vague and abstract relationship
allows for greater portability and reuse of your classes.

For specific components (like carousels, or headers or accordions) you
need to use specific, unambiguous names which tell developers a lot about
the component from the classes in the markup alone. Let’s use a quick
example:

 <div class="widget foobar-widget">
 <h2 class="widget-title"></h2>
 <div class="widget-body">

 </div>
 </div>

Here we can see how all of our classes are well named, very explicit and
clear. Looking at these classes tells us a lot about the component already:
that it is designed to have a heading and an image, for example. But wait,
there’s more…

16 Jens O. Meiert, “Best Practice for ID and Class Names”, http://smashed.by/ids-classes, Aug. 12, 2008

40

CHAPTER 1 Modern CSS Architecture and Front-End Development

BEM: Block, Element, Modifier
Taking explicit naming even further, let’s take a look at BEM.

BEM — meaning block, element, modifier — is a front-end naming
methodology thought up by the guys at Yandex, based in Russia. It is a
smart way of naming your CSS classes to give them more transparency
and meaning to other developers. They are far more strict and informative,
which makes the BEM naming convention ideal for teams of developers on
larger projects that might last a while.

The flavor of BEM that I use is actually a modification thought up by
Nicolas Gallagher, and follows this pattern:

 .block {}
 .block__element {}
 .block--modifier {}

•	 .block represents the higher level of an abstraction or component.
•	 .block__element represents a descendent of .block that helps form

.block as a whole.
•	 .block--modifier represents a different state or version of .block.

Let’s rewrite the previous example with BEM:

 <div class="widget widget--foobar">
 <h2 class="widget__title"></h2>
 <div class="widget__body">

 </div>
 </div>

Here we can see that block is .widget; .widget--foobar is a modifi-
cation of that widget; and .widget__title, .widget__body and .widget__
thumbnail are all elements of the widget.

The advantages here might not be immediately apparent, but now take
this similar example:

By Harry Roberts CHAPTER 1

41

 <div class="widget foobar-widget">
 <div class="media">

 <div class="body">
 <h1 class="heading"></h1>
 <p></p>
 </div>
 </div>
 </div>

How do the classes .img and .widget relate to each other? Do they
relate to each other at all? How about .media and .thumbnail? Well, if we
were to rewrite it with BEM:

 <div class="widget widget--foobar">
 <div class="media">

 <div class="media__body">
 <h1 class="widget__heading"> </h1>
 <p> </p>
 </div>
 </div>
 </div>

Here we can instantly see how all these classes relate to one another.
If we wanted to remove all the styling associated with the widget, we can
quickly spot the related classes. BEM gives developers a really detailed
overview of an entire chunk of markup purely by taking a quick glance
over its classes.

BEM looks ugly, sure, and it is verbose, but the power it gives far out-
weighs any of the superficial cons. If you strive for pretty code over power-
ful code, I dare say you’re focusing on entirely the wrong things.

42

CHAPTER 1 Modern CSS Architecture and Front-End Development

Loose Classes
We’ve covered two real types of class here. First, we looked at really ab-
stract, highly reusable classes with really abstract names that don’t align
themselves to anything in particular. Second, on the flip side, we looked at
classes that do specific jobs and thus receive explicit, verbose, namespaced
names. Combining the two is a very bad idea. Giving a specific component
a very loose class is extremely unwise.

A loose class name is one that isn’t named explicitly enough for its in-
tended purpose. Imagine you work on a huge site with loads of developers
and you see a class of .card . What does this do? Such a class name is very
loose, and loose class names are very bad for two main reasons.

First, you can’t necessarily glean its purpose from the class alone (is it a
user’s profile card, an e-card, a field in a form that accepts credit card num-
bers?). Second, it’s so vague that it could very easily be redefined acciden-
tally by another developer. Loose classes are like global variables: hard to
keep track of, easy to (accidentally) override, and readily able to sneak into
your work where you least expect them.

A loose class name is to CSS what global scope is to JavaScript. A vari-
able in global scope could accidentally be reassigned by or accidentally
introduced into unrelated parts of the program. This is why developers shy
away from global scope where possible.

By paying attention to our class names, and avoiding using loose selec-
tors for specific jobs, we can better control our selectors’ scope.

Recap
So, let’s review. Very high-level abstractions should have very abstract
names. They should not align themselves to any particular content, and the
meaning they convey should allude to visual patterns rather than describ-
ing the affected content.

Specific components should have very explicit naming conventions,
and making use of things like BEM can really help out with this. Such

By Harry Roberts CHAPTER 1

43

classes, because they usually work in conjunction with other classes,
should give developers a helpful and insightful overview of the code
they’re working with.

Finally, you should never combine the two. If a class does a specific job,
it should have an equally explicit name (e.g. .user-profile__name rather
than .name).

Takeaway: Make sure the names you use for selectors are appropriate, and
that they expose as much information as they can. Do not worry about
being long-winded with classes (I recently wrote a class of .accordion__
trigger--closed), and name them so that other developers will find them
practical and sensible to work with.

Verbosity in HTML
Let’s talk about the elephant in the room. All this talk of granularity and
abstractions and objects surely means more classes in our markup, and
more verbose HTML, right? Right. Many people shy away from using
more classes in their HTML because of misconceptions around semantics
and clean markup. As we’ve discussed, this is understandable but a little
misguided. The main reason to avoid using too many classes is maintain-
ability. This is important, but there needs to be a degree of pragmatism and
a balance.

In relation to the maintenance overhead of more classes, we often
think about the cost of having to change classes in many HTML files or
views or templates. Avoiding adding more classes, therefore, means that
we have less to change across HTML files should we ever need to. This, of
course, is very true. More classes does mean more HTML to potentially
maintain.

However, avoiding classes means you’re probably writing less granu-
lar CSS, so your CSS isn’t separated out and it will be harder to maintain.
You’ve simply moved the maintenance overhead from your HTML to your

44

CHAPTER 1 Modern CSS Architecture and Front-End Development

CSS, and changing a few classes in your markup is far easier than refactor-
ing tangled style sheets.

In preparation for a talk I gave in mid-2013, I decided to conduct a
very lo-fi and unscientific experiment. At work I’d built a fairly large site
over the previous six months, containing loads of view files using lots
of classes. I had to make a far-reaching change which involved editing a
class which appeared in many places across many of those files. I decided
to time this process to see just how much effort was involved in changing
a few classes in markup used across a whole site. It took twelve minutes.
That was it. I have lost entire days fixing mangled CSS. Whole, full days.
By using these extra classes I had totally granular CSS which was a joy to
work with, and making changes across this entire project took less than a
quarter of an hour.

The reason it was so fast was simple: automation. You can automate
find and replace but you cannot automate CSS refactoring. My process was
simple. I just ran:

$ git grep "$CLASS_I_WANTED_TO_FIND"

This gave me a list of all the files containing that class in my project.
I then opened all these files in my text editor and ran a global find and
replace. Easy.

The overhead of these extra classes is nothing compared to the effort
involved in reworking CSS. Take the easy route of adding more classes and
use automation (grep, ack, sed) when you need to change them.

The other thing I often tend to say in this situation is this: you are a
Web developer, it is your job to maintain code. Instead of complaining
about having to change some code you wrote, begin to embrace ways of
doing it faster.

So if classes don’t impact semantics, and no one cares about how clean
your markup is, and more classes aren’t that much harder to maintain, I
think it’s time we embraced them a little more.

By Harry Roberts CHAPTER 1

45

Now, I do advocate the use of more classes but, of course, it can be
taken too far:

<div class="red-text brand-face rounded margin-bottom">

This level of granularity will soon balloon and become a total night-
mare to maintain. Your CSS will be too granular and incoherent. Both your
CSS and your HTML will become much harder to look after.

Where to Draw the Line
Unfortunately, it is very difficult to identify the points at which to start
using more or to stop using so many classes in our HTML. My own little
litmus test is that if something has to do N things, it should have N hooks
applied to it. As with the single responsibility principle, you can take away
different aspects of a component just by removing the corresponding
classes. Let’s take an example:

<a href="" class="btn btn--purchase btn--full js-button"
id="js-purchase-button" data-user-id="2893348">Purchase

We can really quickly and clearly see this markup does a few things.
First, it’s a link (<a>) and it’s styled like a button (.btn), specifically a full-
width (.btn--full) purchase (.btn--purchase) button.

Second, we can also see that we’re binding to it via JavaScript because
it’s a button (.js-button), and also because it’s specifically the purchase
button (#js-purchase-button). Finally, we can see that the button has a
data attribute (data-user-id="2893348") which holds some data about
the user. This markup does look very verbose, but it’s only as verbose as it
needs to be.

We could probably have written that markup like this:

Purchase

46

CHAPTER 1 Modern CSS Architecture and Front-End Development

We could attach all our styles and bind all our JavaScript to that one ID,
and still access the data attribute as normal. This would work, and it is far
more concise, but it’s incredibly unreusable. We have attached far too many
functions to one overly specific selector which means our CSS is not very
DRY (don’t repeat yourself) and we won’t easily be able to make discrete
changes to that HTML (like removing JavaScript binding, for example).

The single responsibility principle is tried and tested, and keeping your
code’s tasks granular and discrete makes your application far more flexible,
as well as much faster to work with.

Takeaway: HTML is easier to update than CSS is to refactor. If a piece of
markup has to do five jobs, it needs five hooks, be they classes, data attri-
butes or anything else.

In Closing
In this whirlwind look at more modern approaches to front-end devel-
opment, you have hopefully picked up a thing or two, as well as realized
that, despite their intentions, the things we’ve been doing for years need
constant re-evaluation. Our valiant pursuit of clean markup and semantic
classes and IDs has served to help no one, and often hindered us. To sum-
marize this all-too-brief chapter:

•	 Change can be good, it’s going to happen and you should learn to embrace
it, and even forge your own methods to stay ahead of the curve and
lead the next wave of Web standards.

•	 Code needs to serve different people in different ways, so make sure you
write it with each stakeholder in mind. No one but developers cares
about your actual code, so write it for them. Users and clients just
want fast, robust, reliable and scalable websites.

By Harry Roberts CHAPTER 1

47

•	 Our old ideals have been holding us back, and we need to leave some of
these misconceptions behind in order to be able to deliver today’s
Web, which is a vastly different beast from what it was during the
first wave of Web standards.

•	 We need to take a more pragmatic and engineering-led approach to code.
Code is not art; it is not meant to be pretty. It is a powerful tool that
we need to manipulate to create bigger, faster, more robust websites.
Borrowing paradigms from developers and engineers can help us
no end.

48

CHAPTER 1 Modern CSS Architecture and Front-End Development

ABOUT THE AUTHOR
Harry Roberts works as Consultant Front-end Architect.
He specialises in authoring and scaling massive front-
ends. He is the lead and sole developer of inuit.css, a
powerful, scalable, Sass-based, BEM, OOCSS frame-
work. Harry writes on the subjects of maintainability,
architecture, performance, OOCSS and more at csswiz-
ardry.com and tweets at @csswizardry.

ABOUT THE REVIEWER
Inayaili de León is Lead Web Designer at Canonical —
the company behind Ubuntu — where she focuses
on establishing and evangelizing the brands’ visual
direction online. She has established herself as an ad-
vocate of clean, semantic HTML and CSS. She blogs at
webdesignernotebook.com and tweets at @yaili.

ABOUT THE REVIEWER
Jonathan Snook (@snookca) writes about Web design
and development. He speaks at conferences and blogs
on snook.ca.

Chapter

02

Writing Maintainable,
Future-Friendly Code

Written by Nicholas Zakas

2. The Roadmap to Maintainable, Clean and E�ective Code

50

CHAPTER 2 Writing Maintainable, Future-Friendly Code

By Nicholas Zakas CHAPTER 2

51

Chapter TWO · by NICHOLAS ZAKAS

Writing Maintainable,
Future-Friendly Code

hether you learned how to write code in school or on
your own, it’s unlikely that you learned one of the strange
truths of computer programming: most code is a mess.

I remember thinking when I was young that massive websites must have
the most unbelievably clean yet complex code running them. When I
joined Yahoo!, I found that the code running some of the world’s most
popular websites looked strikingly similar to the code running my person-
al blog. The truth is, code is code no matter where you go, and code has a
tendency to get messy as it gets large and old.

Unfortunately, developers are rarely taught how to deal with messy
code. The most common response is to rewrite everything from scratch.
Yet doing so gives you only a moment of peace as this code very quickly
starts to become messy as well. Things start to break, you find it hard to
figure out why bugs are occurring, and there are parts of the codebase that
seem to be “magic” (a term I use when nobody understands how a piece of
code works).

W

52

CHAPTER 2 Writing Maintainable, Future-Friendly Code

This tends to happen because writing code is more fun than planning
to write code. Most of us are so anxious to get coding that we don’t stop
to think about what we are doing and how it might be used in the future.
What if you need to make changes? What if you didn’t anticipate the addi-
tional features that would be required? What if the project ends up going
in a different direction? Can your code adapt?

When we write code to implement features, we may not think much
about the future. We have deadlines to meet and so we write enough code
to successfully meet that deadline. However, someone is going to have to
maintain that code. That someone might be you next month or it might be
someone else next year, but someone eventually will need to maintain that
code. On a large project with many developers, the problem is magnified.
How can everyone work in the same codebase in such a way that making
changes in the future are easy? That’s what this chapter is about.

What’s that Smell?
We will all have to work with someone else’s code at some point. Not all
code written by others is bad, even though our natural inclination is to
think so. How can you tell that the code you’re dealing with is a problem?
Here are a few signs:

•	 Missing or incomplete documentation: there’s some part of the
code for which there isn’t a good reference to understand why it
exists and what it does.

•	 Missing or incomplete tests: you can’t be sure that a change you’ve
made hasn’t broken expected behavior.

•	 Fear of change: you genuinely feel fear when touching the code
because you’re not sure what the end result will be.

•	 Fragile code: changing one seemingly isolated piece of code has
ripple effects throughout the software that are hard to predict.

By Nicholas Zakas CHAPTER 2

53

•	 Works temporarily: the code works only so long as some unrelated
factor remains true (such as browser version).

•	 Each change requires touching multiple files: whenever you want
to make a change, you need to touch multiple files, which increases
the likelihood of introducing errors.

Each of these has a ‘code smell’, something that makes the code you’re
working with quite unpleasant and is an indicator that something is
wrong. Fortunately, you can start making such code easier to deal with by
applying some good practices as you continue working with it.

Code Conventions
When I was studying computer science in college, I had one extremely
tough professor. His name was Dr. Maxey and he taught the more com-
plicated courses like data structures and computer architecture. He was a
wonderful teacher with a talent for articulating difficult concepts, but also
an extremely tough grader. Not only would he look over your code to make
sure that it worked, he would subtract points for stylistic issues. If your
code lacked appropriate comments, or even if comments contained a mis-
spelled word or two, he would deduct points. If your code was messy (by
his standards), he would deduct points. The message was clear: the quality
of your code is not just in its execution but also in its appearance. That was
my first experience with coding style.

What’s a Style Anyway?
Coding style is how your code looks, plain and simple. And by “your” I
actually mean the code written by you, the person reading this chapter.
Coding style is extremely personal and everyone has their own preferred
approach. You can discover your own personal style by looking back over
code that you’ve written when you didn’t have a style guide to adhere to.
Everyone has their own style because of the way they learned to code. If

54

CHAPTER 2 Writing Maintainable, Future-Friendly Code

you used an IDE like Visual Studio to learn coding, your style probably
matches the one enforced by the editor. If you learned using a plain text
editor, your style likely evolved from what you thought was more readable.
You may even notice that your style changes from language to language.
The decisions that you made in JavaScript might not carry over to your
CSS. For instance, you might decide JavaScript strings should use double
quotes while in CSS strings should use single quotes. This isn’t uncommon
as we tend to switch context when we move back and forth between lan-
guages. Still, it’s an interesting exercise in self-observation.

Coding style is made up of numerous small decisions based on the
language:

•	 How and when to use comments,
•	 Tabs or spaces for indentation (and how many spaces),
•	 Appropriate use of white space,
•	 Proper naming of variables and functions,
•	 Code grouping an organization,
•	 Patterns to be used and patterns to be avoided.

This is by no means an exhaustive list, as coding style can be both
extremely fine-grained, such as the Google JavaScript Style Guide1, or more
general, such as the jQuery Core Style Guidelines2.

It’s Personal
The personal nature of coding style is a challenge in a team atmosphere.
Often, seeking to avoid lengthy arguments, teams defer creating style
guides under the guise of not wanting to discourage innovation and
expression. Some see team-defined style guides as a way of forcing all
developers to be the same.

1 http://smashed.by/javascriptguide	
2 http://smashed.by/jqueryguide

By Nicholas Zakas CHAPTER 2

55

Some developers rebel when presented with style guides, believing that
they can’t properly do their job if someone is telling them how to write
their code.

I liken the situation to a group of musicians trying to form a band. Each
one comes in believing that their way of doing things is best (their method
or process). The band will struggle so long as everyone is trying to do their
own thing. It’s impossible to create good music unless everyone in the band
agrees on the tempo, the style, and who should take the lead during a song.
Anyone who has ever heard a high school band perform knows this to be
true. Unless everyone is on the same page, you aren’t going to accomplish
much. That’s why I strongly recommend style guides for software develop-
ment teams. Getting everyone on the same page is difficult, and the style
guide is a great place to start. By having everyone write code that looks the
same you can avoid a lot of problems down the road.

Communication Is Key

Programs are meant to be read by humans
and only incidentally for computers to execute.

— Harold Abelson and Gerald Jay Sussman,

Structure and Interpretation of Computer Programs, 1984

The most important thing when working in a team is communication.
People need to be able to work together effectively and the only way to
do that is by communicating. As developers, we communicate primarily
through code. We communicate with other parts of the software through
code and we communicate with other developers through code.

While the software your code communicates with doesn’t care how the
code looks, the other developers on your team certainly do. The way code
looks adds to our understanding of it. How many times have you opened
up a piece of code that somebody else wrote and, before doing anything

56

CHAPTER 2 Writing Maintainable, Future-Friendly Code

else, re-indented it the way you like? That’s your brain not being able to
figure out the code because of how it looks. When everyone writes code
that looks different, everyone is constantly trying to parse the code before
being able to understand it. When everyone writes code that looks the
same, your brain can relax a bit as the understanding comes faster.

When you start thinking of code as communication with other devel-
opers, you start to realize that you’re not simply writing code, you’re craft-
ing code. You put extra thought into each keystroke because the code is
no longer just for a computer to execute, but for another person to under-
stand. Your code should clearly communicate its purpose to the casual ob-
server. Keep in mind, your code is destined to be maintained by somebody
other than you. Not only are you communicating with other members of
your team in the present, you’re also communicating with members of
your team in the future.

I recently received an email from someone working on code I wrote 10
years ago. Apparently, much to my shock and horror, my code is still being
used in the product. He felt compelled to email me to say that he enjoyed
working with my code. I smiled. My future teammate actually did appreci-
ate the coding style I followed.

Leave Yourself Clues with Comments

If you know your enemies and know yourself,
you will not be imperiled in a hundred battles.

—Sun Tzu, The Art of War

Knowing yourself is important in life as well as coding. However, you’ll
never know yourself well enough to remember exactly what you were
thinking when you wrote each line of code. Most developers have expe-
rienced looking at a very old piece of code that they wrote and not having
any idea why they wrote it. It’s not that your memories are bad, it’s just

By Nicholas Zakas CHAPTER 2

57

that you make so many little decisions while writing code that it’s impossi-
ble to keep track of them all.

Writing code to a style guide transfers that information into the code
itself. When you decide when and where to use comments, as well as
which patterns should and shouldn’t be used, you leave a breadcrumb trail
for your future self to find your way back to the purpose of the code. It’s
incredibly refreshing to open up an old piece of code and have it look like
a new piece of code. You’re able to acclimate quickly, sidestepping the te-
dious process of relearning what the code does before you can start investi-
gating the real issue.

Any good style guide prescribes when and how to leave comments in
code. Most developers have an aversion to comments because it seems a lot
like writing documentation — and developers tend to hate writing docu-
mentation. This is usually because writing documentation is seen as time
not writing code. However, it’s the documentation that allows you to come
back to code you wrote in the past and quickly get back up to speed.

Another common argument against using comments is that code
should be self-documenting. In reality, there is no such thing as self-doc-
umenting code. Self-documenting code is a myth perpetuated by people
who hate to write documentation. A common argument against writing
comments is, “if you can’t understand my code, then you’re not smart
enough.” In reality, understanding code has nothing to do with how smart
a developer is, but rather providing enough context so the code make
sense. Without comments, or a direct discussion with the code author, it’s
very hard to get enough context.

The best-understood code is littered with comments explaining key
sections. You certainly don’t want a comment for every line of code, and
comments must provide additional context and information that cannot
otherwise be gleaned from reading the code. Here’s an example of a bad
comment:

// set initial count to 0
var count = 0;

58

CHAPTER 2 Writing Maintainable, Future-Friendly Code

This comment provides no additional context or information to the
line of code it describes. Comments of this type should be avoided at all
costs. A good comment includes information such as:

•	 A description of what the code is doing,
•	 Why the code is doing it in this way (as opposed to an alternative),
•	 A reference to any related bug or issue in an issue tracker.

For example, here is an excellent comment from the jQuery codebase:

// #8138, IE may throw an exception when accessing
// a field from window.location if document.domain has been set

try {
 ajaxLocation = location.href;
 } catch(e) {

// Use the href attribute of an A element
// since IE will modify it given document.location

 ajaxLocation = document.createElement("a");
 ajaxLocation.href = "";
 ajaxLocation = ajaxLocation.href;
}

The comment references an issue number and provides a description
of the original bug. The second comment describes the approach that fixes
the issue. It’s very easy for anyone reading over the code to understand
why this code was included and where to go if more information is re-
quired. Here’s another good example from the YUI CSS library:

h1 {
/*18px via YUI Fonts CSS foundation*/
 font-size:138.5%;
}

By Nicholas Zakas CHAPTER 2

59

Without the comment, you might wonder why 138.5% is a significant
number. With the comment, you know two important pieces of informa-
tion. First, this file requires the YUI Fonts CSS foundation to work proper-
ly. Second, 138.5% is equal to 18px based on that requirement. What could
easily have been a source of confusion is now a source of information and
understanding.

How do you know if code needs a comment? Think of comments as
Post-it notes in your code. Anytime you’re afraid you may forget what the
code is doing or how it’s doing it, add a comment. Anytime you come across
something that might trip up another developer, such as a browser-specific
hack, leave a comment. If you’re implementing a specific algorithm, leave a
comment. Leave a comment whenever you feel like you’d be missing some
important information if you went away for six months and then needed
to work on the code again.

Good developers make judicious use of comments and don’t expect
the code to speak for itself. You shouldn’t need to read through all of the
code just to make sense of what’s going on. Comments short-circuit that
need by providing narrative that more succinctly describes what the code
actually does. And that is incredibly valuable for the long-term hygiene of
your code.

Make Errors Obvious
One of the most important reasons to have a coherent style guide is to help
make errors more obvious. Style guides do this by familiarizing developers
with certain patterns. Once you’re acclimated, unfamiliar patterns jump
out of the code when you look at it. Such patterns aren’t always errors, but
they definitely require a closer look to make sure that nothing is amiss.

For example, consider the JavaScript switch statement. It’s a very com-
mon error to mistakenly allow one case to fall through into another, such
as this:

60

CHAPTER 2 Writing Maintainable, Future-Friendly Code

switch(value) {
 case 1:
 doSomething();
 case 2:
 doSomethingElse();
 break;
 default:
 doDefaultThing();
}

The first case falls through into the second case so if value is 1, then
both doSomething() and doSomethingElse() are executed. And here’s the
question: is there an error here? It’s possible that the developer forgot to
include a break in the first case, but it’s also equally possible that the devel-
oper intended for the first case to fall through to the second case. There’s
no way to tell just from looking at the code.

Now suppose you have a JavaScript style guide that says something
like this:

 All switch statement cases must end with break, throw, return,
or a comment indicating a fall-through.

Judging by this guideline, there is definitely a stylistic error and that
means there could be a logic error. If the first case was supposed to fall
through to the second case, then it should look like this:

switch(value) {
 case 1:
 doSomething();
 // falls through
 case 2:
 doSomethingElse();
 break;
 default:
 doDefaultThing();
}

By Nicholas Zakas CHAPTER 2

61

If the first case wasn’t supposed to fall through, then it should end
with a statement such as break. In either case, the original code doesn’t
match the style guide and that means you need to double-check the intend-
ed functionality. In doing so, you might very well find a bug.

As another example, members of one of my teams decided that they did
not like using three values for padding or margin in CSS, such as:

.box {
 padding: 5px 10px 6px;
}

The consensus was that three values didn’t clearly indicate the intent
of the author. Is it obvious that the fourth value was left off on purpose? Is
it an accident? While you may not think of this as a likely error condition,
my team did, and so we made a rule that you could have one, two or four
values for padding and margin but not three. That way, if we ever saw just
three values, we would know that it was a mistake of leaving off the fourth.

When you have a style guide, code that otherwise seems innocuous
immediately raises a flag because the style isn’t followed. This is one of
the most overlooked aspects of style guides: by defining what correct code
looks like, you are more easily able to identify incorrect code and therefore
avoid potential bugs before they happen.

Coding style takes care of what code looks like, which is an important
first step. The next step is to take care of how the code is organized, and
that’s where a good architecture comes into play.

Architecture
There is an interesting tension between developers and architects in most
software engineering organizations. Developers see architects as theo-
reticians who like to draw diagrams and make proclamations about how
software should be built, without taking into account that the world isn’t
perfect. Architects are frequently looked at as those who are incapable of

62

CHAPTER 2 Writing Maintainable, Future-Friendly Code

implementing their own designs due to a lack of on-the-ground, in-the-
trenches perspective.

Truth be told, there are architects who fit that description, but good
architects are priceless commodities who increase the value of an entire
organization through their high-level vision and perspective. Such vision
and perspective transform an architecture.

The role of architecture is overlooked in many places when it may be
the most important part of software. A robust architecture:

•	 Provides easy ways to complete common tasks.
•	 Ensures everything has a place and a purpose.
•	 Allows us to quickly add or augment functionality.
•	 Encourages good software design.

Most of the horribly unmaintainable code I’ve come across in my career
could be traced back to a lack of good architecture. Without such structure,
we get confused about where and when to make certain changes. When
that happens, we end up hacking solutions where they don’t belong and
that starts a downward spiral of code quality. Anytime someone can’t an-
swer the question “Where does this go?”, it means that code ends up in an
unexpected location and that, in turn, perpetuates the problem.

Code has a habit of multiplying when you’re not looking. If there is
when the component was recently one way of doing something in the
codebase then there will quickly be two instances of that same pattern. Two
leads to four, and it continues until that pattern has permeated the entire
system. This happens when developers look for examples of how others
have achieved certain functionality. When they find an example, it gets
copied into another place for a similar purpose. If the pattern is good, then
you’re getting a desired result; if the pattern is bad, then your code becomes
less maintainable as you go.

That’s why the best architectures have a place for everything.
Whenever you need to make a change or addition, you know exactly

By Nicholas Zakas CHAPTER 2

63

where to do so. YUI, for example, has several different types of objects
available for extending the library.

If you want to add completely new functionality, then you create a
module. If you want to add more methods to DOM elements, then you cre-
ate a node plugin. There is always an answer to “How do I do this?” in YUI,
and that makes it easy to work with and extend.

Keep in mind that YUI’s system works well for a JavaScript library, but
you need different approaches depending on what you’re trying to create.
There are library architectures (such as YUI and jQuery’s plugin system),
framework architectures (Node.js module system) and application ar-
chitectures (Model-View-Controller or MVC). There are architectures for
every type of software and choosing one isn’t always easy. On the other
hand, not choosing one is the best way to ensure your code will become
unmanageable in short order.

Web developers traditionally don’t think about architecture very much
but that is starting to change. More and more, libraries and frameworks
with defined architectures are making their way into projects. JavaScript
and CSS for large applications, in particular, have benefited from a lot of
research into how code should be structured. Today, there are a number
of approaches and prebuilt solutions to help you create applications in a
logical way.

Backbone.js
Backbone.js3 is credited with starting the MV architectural movement in
JavaScript. Not a traditional MVC framework for its lack of a controller,
Backbone.js provides common patterns for manipulating views (HTML)
with structured data. A view can be automatically updated when the data
represented in the view changes. Backbone.js itself is pretty small and
doesn’t represent an entire architecture, but it can be a good building block
for a larger design.

3 http://backbonejs.org	

64

CHAPTER 2 Writing Maintainable, Future-Friendly Code

Scalable JavaScript
An approach that I devised for a complete JavaScript application architec-
ture that scales and grows as your application does. The primary approach
is to separate an application into a series of small pieces, each with specific
responsibilities and constraints. The architecture can be built on top of any
JavaScript library and extended through the addition of plugins at each
level. There is no single JavaScript library for this approach, as it was pre-
sented as a high-level architectural design (though there are many imple-
mentations to be found online). See my slides and transcript on SlideShare4
for more information.

Ember.js
Ember.js5 is a complete application framework that includes everything
you need to build a JavaScript application. It provides an MVC framework
plus routing capabilities. These are all mixed in with Handlebars6, a tem-
plating language. Ember.js is opinionated — there’s a way to do everything:
the Ember.js way. Doing so allows you to focus on building your applica-
tion rather than worrying about the design of the surrounding architec-
ture.

Object-Oriented CSS
OOCSS is an approach created by Nicole Sullivan to make CSS more main-
tainable. The general idea is to create small, reusable objects (a combination
of markup and CSS classes) that represent common patterns. With enough
of these small pieces, you can create an infinite number of pages that look
different even though they use the same underlying patterns.

4 http://smashed.by/js-architecture
5 http://emberjs.com	
6 http://handlebarsjs.com

By Nicholas Zakas CHAPTER 2

65

Arranging CSS styles into structure, skins, content and other groupings
brings order to CSS. See Louis Lazarus’s “An Introduction to Object-Ori-
ented CSS”7 for a good primer. Nicole also offers a library based on these
principles8.

Scalable and Modular Architecture for CSS
SMACSS9 was devised by Jonathan Snook to clearly outline the responsi-
bilities of each piece of CSS. He categorizes rules into base, layout, mod-
ule, state and theme, and each category provides a guideline as to which
properties may be used and for what purpose. There is no library that goes
along with this approach as SMACSS is a description of a high-level archi-
tecture rather than a specific implementation.

These are just a sampling of the available architectures for JavaScript
and CSS. Do some research to figure out which architecture works best
for you. Don’t make the mistake of worrying about architecture too late —
that’s a recipe for technical debt from the start. Choosing an architecture
is a lot like laying a foundation for a house. If the foundation is strong, you
can build anything on top of it; if the foundation is weak or absent, then
the quality of the entire house is at risk.

Even if you are unable to find the perfect architecture for your project,
just pick one. Having some organization is much better than having no
organization. When you’ve decided how to structure the code, you’ve taken
an important step toward creating a sustainable codebase. Anytime such
an important decision is made, it’s a good idea to write down how it works
and why it’s designed in this way. Documenting all of this makes it easier
for new developers to come on board.

7 http://smashed.by/oocss	
8 http://github.com/stubbornella/oocss	
9 http://smacss.com	

66

CHAPTER 2 Writing Maintainable, Future-Friendly Code

Documentation
Documentation is the part of the job that developers like the least, yet it
is frequently just as important as the code itself. If you look at the success
of any major open-source software, you can usually draw a straight line
between that success and the presence of excellent documentation. jQuery
owes much of its success to the excellent documentation that surrounds
the library10, a large amount contributed by a passionate community. Fur-
thermore, other jQuery users set up their own blogs with tips and tricks,
and tutorials abound. That was even before jQuery books started popping
up. These days you can do a quick search for anything related to jQuery
and find hundreds of examples and tutorials.

Twitter Bootstrap11 is another library that benefits from excellent
documentation. When you arrive at the site, you’re met with a lot of infor-
mation about how to get started. All of the patterns are documented with
code and live examples so you can see exactly what you’d get by applying
certain classes to HTML. The popularity of Bootstrap is owed in part to the
simplicity of getting started, and that is because of the high-quality docu-
mentation.

There’s a reason why popular open-source software asks for and spends
time on contributions to its documentation: if software is hard to use or
too opaque, then people won’t bother with it. Yet the same developers who
regularly complain about some software’s lack of documentation are the
same people who look for excuses to not write documentation for their
own software. Good software is well-documented software, and bad soft-
ware has little documentation. There is no such thing as maintainable code
that isn’t also documented.

Even the most horribly written software becomes more manageable
when there’s documentation. The documentation lifts the veil of magic
around the code and allows developers to work more effectively with it.

10 http://docs.jquery.com	
11 http://twitter.github.io/bootstrap/	

By Nicholas Zakas CHAPTER 2

67

 That’s why no piece of software should be considered complete with-
out accompanying documentation. Writing good documentation isn’t
hard, it’s just a matter of transferring your thoughts into text and images.
Depending on the type of software you’re building, it may make sense to
structure your documentation in different ways. However, there are some
common approaches to documentation that everyone should be aware of.

Getting Started
A quick start guide describes how to get up and running. This is the
traditional “Hello world” example that many libraries have. A good quick
start guide describes how to obtain and set up the library, and how to start
using the functionality immediately. Twitter Bootstrap has a great getting
started guide12.

Tutorials
There are common use cases that library users frequently need and so it’s
important to show them how to complete those tasks. The tutorials should
be in narrative form, describing each step of the process and resulting in
a functional prototype at the end. jQuery has a large amount of tutorials13
that are very well written.

API Documentation
If you offer an API for others to use, then API documentation is very im-
portant. This describes every public interface of the API in very fine detail,
including the names of functions, the types of arguments the functions
expect, return values, available classes, and more. The YUI library has an
excellent and fully searchable set of API documentation14.

12 http://twitter.github.io/bootstrap/getting-started.html	
13 http://docs.jquery.com/Tutorials
14 http://yuilibrary.com/yui/docs/api/	

68

CHAPTER 2 Writing Maintainable, Future-Friendly Code

Design Document
Design documents describe the architecture and options available within
some piece of software. It is frequently written before coding begins and
updated once coding is complete. Design documents answer the question,
“How does this work?” It’s quite common to see diagrams as well as discus-
sions around design philosophy, design patterns used, and assumptions
the software makes. Chromium, the open-source project on which Google
Chrome and Opera are based, has an excellent set of design documents15.
When you inherit some code that you must begin to maintain, the design
document for that code should be the first place you go to get a good under-
standing of the code.

In general, getting started guides and tutorials are necessary when
you’re creating a library for others to use. API documentation and design
documents are good regardless of the software you’re writing. The exact
structure of these documents necessarily varies based on the software
you’re creating and the intended audience.

API documentation is the minimum that a project should have for
documentation. Most languages, including JavaScript and CSS, have tools
for generating documentation from the source code. These documentation
generators use comments embedded within the code to create standalone
documentation (typically in HTML format) describing the code. The exact
comment style depends on the tool being used. Here are some tools worth
investigating:

•	 JSDoc16: the original JavaScript documentation generator. It uses
JavaDoc-style comments to create API documentation.

•	 YUIDoc17: a JavaScript documentation generator from the YUI team.
It also uses JavaDoc-style comments to create API documentation.

15 http://www.chromium.org/developers/design-documents
16 http://usejsdoc.org
17 http://yuilibrary.com/projects/yuidoc

By Nicholas Zakas CHAPTER 2

69

•	 Docco18: a JavaScript narrative documentation generator. Instead
of creating API documentation, this tool creates a narrative where
the description of the code shows up on the left and the actual code
shows up on the right.

•	 KSS19: a CSS style guide generator. Extracts comments inside of CSS,
SCSS or Less files and generates a style guide with example output.

There are documentation generators for almost any language you
would use to build a Web application. Research them, learn them and use
them. The best way to ensure good comments in code is knowing they’ll
end up in actual documentation. I’ve seen this happen several times: as
soon as documentation starts getting generated and the result is available
for all to see, more time is spent crafting the comments that show up.

There is no such thing as too much documentation for code, but there
is such a thing as too little. The best way to encourage documentation
writing is to make it part of the feature deliverable. A feature should not be
considered complete until adequate documentation is written and placed
in the appropriate location. Requiring a design document before coding
starts also helps keep documentation at the front of everyone’s minds. Re-
gardless of how you decide to set it up, documentation needs to be part of
the deliverable whenever code is written. The exact type of documentation
will depend on the type of code, but all code needs documentation, even if
it’s just the addition of one sentence to an existing document.

Having some good coding style guides, a well-defined architecture, and
generous amounts of documentation sets up any project for success. The
truly challenging part comes when you want to include code that wasn’t
written by your team, and having guidelines for how to do that is import-
ant for the overall health of your application.

18 http://jashkenas.github.io/docco/
19 http://warpspire.com/kss/styleguides

70

CHAPTER 2 Writing Maintainable, Future-Friendly Code

Managing Third-Party Components
Unless you’re working on a personal project, chances are your Web ap-
plication will rely on one or more third-party components to function
properly. Even the best, most experienced developers turn to third-party
components when there are aspects of the Web application that they don’t
want to own or maintain. It doesn’t make sense for everyone to create their
own way of doing everything and so third-party components help get Web
applications up and running faster while outsourcing maintenance to
someone else.

For example, when a new browser comes out you can be sure that
jQuery will be updated to support it. All you need to do is drop in the
latest version and your Web application continues to work fine. If you
had created your own browser abstraction library, it would be up to you
to keep it up to date whenever a new browser is released. Since that
happens every six weeks for Chrome and Firefox, updating your code
would be an onerous and repetitive task that keeps you from doing more
important things.

You aren’t adding value to your business or application by constantly
rewriting low-level utilities. Using third-party components frees you up to
focus on the true value you can provide to your users.

How to Choose Third-Party Components
There are many different kinds of third-party components. There are
JavaScript libraries for almost everything, CSS frameworks and toolkits,
images and fonts, and other types of components that will continue to
evolve along with Web technologies. Choosing these third-party compo-
nents is a very important decision because they represent the materials
and tools with which your Web application will be built. Just like building
a house, you want to make sure that the materials are solid and the tools
are trustworthy.

By Nicholas Zakas CHAPTER 2

71

Web development has a vibrant open source community with very
many third-party components available free of charge. That’s the good
news. The bad news is that sifting through the large sea of open-source
components makes it hard to find quality. Even component catalogs, such
as the jQuery Plugin Registry20 and the NPM Registry21, make it diffi-
cult to find quality components. Each component is placed on an equal
footing with the others, and sometimes arbitrary rating systems, such as
stars or popularity, or when the component was recently updated, don’t
tell the full story.

What you are looking for is a third-party component you can trust.
The whole point of using a third-party component is to free yourself
from maintaining some code. To do that, you need a reasonable degree of
certainty that the code hasn’t been abandoned. If you end up including a
third-party component that is no longer updated then, eventually, you will
end up maintaining it for yourself. Likewise, if the component is being
maintained but it takes a long time for the developer to respond to your
queries, then you will ultimately modify it yourself because you can’t wait
for an official release.

So how can you tell that a third-party component is trustworthy? Here
are some things to evaluate.

When was it last updated? If the component was recently updated, there
is a greater chance that it will continue to be updated in the future. If the
component hasn’t been recently updated, then it might be abandoned. In
general, look for things that have been changed in the past month. That’s a
pretty good indicator that they’re still under active development.

Who is the developer? If the component is provided by a company or or-
ganization, it is a safer bet than a component supported by a single person.
There are lots of open-source projects that are released by their authors
and then discarded. Avoid those components whenever you can.

20 http://plugins.jquery.com/	
21 http://npmjs.org	

72

CHAPTER 2 Writing Maintainable, Future-Friendly Code

If a component is updated by a single person and that person is backed
by a company or organization (that is, this developer is paid to maintain
the component), then it’s also probably safe to use. Any component that
looks like it’s somebody’s hobby should be avoided, even if it appears to do
everything you want. Unless you are willing to nurture that project in the
future, it’s a good idea to steer clear.

How responsive is the developer? At some point, you will find an error in
the component that you’re using. That error might be causing a functional-
ity issue in your Web application and so you want to get it fixed as quickly
as possible. The speed with which the developer can address your concern
is important. You can get a good sense of this by browsing public issue
trackers to see how long certain issues were open before being resolved.
Keep in mind that being resolved doesn’t necessarily mean there has to be
an official release, it could mean that the maintainer checked in a fix so
that the reporter can patch their own copy while waiting for the release.
A good turnaround time for a significant issue is measured in days rather
than weeks. If you can’t rely on fast turnaround from a third-party compo-
nent developer then the component probably shouldn’t be used.

How stable is the API? You might be tempted to use a third-party com-
ponent that is considered to be up-and-coming. Be wary of relying on
anything that hasn’t yet reached version 1.0. Prior to a 1.0 release, compo-
nents have a tendency to change quite dramatically. APIs are typically not
locked down until version 1.0 and that creates a challenge when you try to
upgrade the component. Relying on an ever-changing API footprint means
you will constantly be changing your code so that it will work with the
component. Do yourself a favor and wait until the component has reached
maturity before relying on it.

Who else is using it? Do your research to figure out who else is using this
component. Ideally you want something that is being used by two or more
large Web applications.

By Nicholas Zakas CHAPTER 2

73

When large companies or organizations rely on the component, there
is more incentive for its developer to keep updating the component and
fixing bugs.

That doesn’t mean you shouldn’t deploy anything unless it’s being used
by Facebook or Google, it just means that your Web application shouldn’t
be the first to rely on that component. There is safety in numbers and the
more users of any component, the more likely it will continue to evolve
and issues will be resolved.

So make sure to keep in mind that not all jQuery plugins are the built
the same. Not all NPM modules are built the same. And certainly not all
open-source projects are built the same. Anyone can create an open-source
component but not everyone is dedicated to continuing it. Make sure to
do your due diligence on any third-party component before including it in
your product. One bad decision could create cracks in your foundation that
may be hard to fix later.

Part of your due diligence should be to look at the third-party code
itself. You need to be sure there’s nothing malicious buried inside before
deploying it. Failing to do some cursory examination of the code could lead
to trouble. In 2011, a now-defunct website disappeared from Google search
results overnight22. After some lengthy exploration, it was determined that
a WordPress plugin was to blame. Whenever the Googlebot visited the
site, the plugin would redirect elsewhere. The person who wrote the plugin
had made a mistake in the code as he intended only to block the Googlebot
from the plugins directory (see his explanation23). Unfortunately, the dam-
age was done and caused a lot of inconvenience for those using the plugin.

Intentional or not, the potential damage third-party components can
cause to your application is significant. Don’t assume that all third-party
components are made the same. Spend time investigating before including
them in your application.

22 http://smashed.by/wp-plugins-traffic
23 http://smashed.by/apologies

74

CHAPTER 2 Writing Maintainable, Future-Friendly Code

Forking Third-Party Components
After you’ve selected some third-party components for your Web applica-
tion you may find that they don’t quite do everything that you need. At
that point, you have a decision to make. You can either start your search
again for a new component or you can try to make this component work
the way you need it to. Unfortunately, many developers tend to take the
latter approach which means forking the original code. Forking is any
activity where the third-party component is modified by someone other
than the maintainer. It doesn’t matter if you are adding a new function,
removing an existing function, or changing existing functionality, all of
these are considered forking.

Forking a third-party component is a bad idea. By doing so, you ensure
a non-linear upgrade path for that component. Upgrading the component
should be as simple as removing your current file and dropping in a new
file. Sometimes the component API will change slightly and so you will
need to adjust your code accordingly. Good components, however, mini-
mize this type of occurrence. A drop-in upgrade is considered linear.

A non-linear upgrade path is one where dropping in the new version is
only the start of the upgrade. You then have to trawl your code and make
appropriate fixes for the new version. If you have forked the component,
then you dramatically increase the likelihood of a non-linear upgrade
path. There are all kinds of different issues that can arise. For example, you
might have added a new method on the component only to find that the
next official version of the component has a function with that name that
does something different. That means not only do you need to change the
name of your function, but you also have to change all the places where it’s
used in your code.

When you decide to use a third-party component, it’s best to avoid
forking it in any way. Preserving a linear upgrade path is very important
for these components. Remember, the whole point of using a third-party
component is to eliminate maintenance overhead.

By Nicholas Zakas CHAPTER 2

75

As soon as you fork a component, you condemn yourself to mainte-
nance issues in the future.

To make the separation between your code and third-party code clear,
be sure to store them in separate directories. For example, if you have a
/js directory in which all JavaScript code lives, then place all third-party
JavaScript code in /js/external or /js/3rdparty. The same can be said for
CSS as well. Keeping third-party code separate is a good reminder that it’s
not appropriate to edit these files in any way.

It’s likely that a third-party component won’t do everything that you
need it to do. At that point, it gets increasingly tempting to edit the compo-
nent. Resist this urge as it destroys the linear upgrade path for the com-
ponent. Instead, look for ways to add additional functionality that don’t
require you to edit the third-party code directly.

Well-designed components typically have plugin or extension systems.
These are provided so that developers can augment the existing function-
ality in a predictable and controllable way. jQuery, YUI and Dojo all have
plugin systems that allow you to add new functionality without editing
the main files. If you find that the third-party component doesn’t provide
all the functionality that you need, you should first try to write a plugin or
extension for that component.

When doing this, your code should not be in the same file as the com-
ponent code. To preserve a linear upgrade path, you want to be sure you
can drop in a new version of the component file without needing to mod-
ify it in any way. Need more jQuery functionality? Create a jQuery plugin
and put it in /js/plugins (not in /js/external or /js/3rdparty).

If the component you rely on does not have a plugin system, then the
best approach is to create a wrapper component that abstracts away the
third-party code. The wrapper component is one that you create and manage,
so you can provide whatever functionality you want. You can create func-
tions that pass through directly to the third-party component, as well as new
functions where you have implemented custom pieces of functionality.

76

CHAPTER 2 Writing Maintainable, Future-Friendly Code

Forking third-party components is always a bad idea, so make sure that
you keep third-party component code and your code as separate as possi-
ble. Preserve linear upgrade paths for third-party components by keeping
them in a separate directory from code that you write yourself.

Betting the House
Bringing third-party components into your Web application is a great
way to get up and running quickly. However, by doing so you place a very
significant bet on those components. You bet that the time saved by using
these components outweighs the time you would spend creating similar
components on your own and looking after them. That’s why choosing the
right third-party components and managing them appropriately is so im-
portant. Once a component is in use in the Web application, it’s very hard
to extract that component and replace it with another one.

That’s the most important thing to keep in mind when using third-par-
ty components: once you commit, it’s hard to change your mind. The
third-party code starts to get referenced in multiple places in your code-
base, and so changing to a different component means going through your
entire codebase and making changes. That’s something that you typically
don’t have the luxury of doing on a continual basis. There are new features
to build and bugs to fix, and the last thing you want to do is replace a shaky
foundation when you could be providing more value to your users.

Having everything in place for a maintainable codebase can only really
be guaranteed when starting from scratch. But what happens when you’re
not able to do that? How do you start to work with code that isn’t very well
organized or has other glaring problems?

Dealing with Legacy Code
The definition of legacy code depends on whom you ask. Some describe
legacy code as code relating to functionality that’s no longer supported.
Others describe it as code written by somebody who no longer maintains

By Nicholas Zakas CHAPTER 2

77

it. I describe legacy code as any code that you inherit from someone else
without a formal hand-off. This frequently happens because the code was
written by somebody who no longer works on the project and so manag-
ing the code becomes an expedition through unfamiliar territory. You’re
expected to be able to fix bugs and extend the previous work without fully
understanding what it does or why it was built a certain way. In short, I
describe legacy code as code that someone else wrote and that you have to
maintain.

I have yet to meet a developer who enjoys working with legacy code.
It’s a frustrating experience to have to keep somebody else’s code running
without fully understanding it. There’s a natural inclination to believe that
everything in the legacy code was done incorrectly and therefore should be
completely thrown away to start anew. Practically, you will rarely get the
opportunity to start a project completely from scratch, and so it becomes
important to understand how to deal with this old code.

But before you can learn how to effectively work with legacy code,
you must come to grips with one simple fact: the code you write today is
tomorrow’s legacy code. Every line of code you write will eventually be
maintained by somebody else. Keeping that in mind helps guide the de-
cisions that you make today about any code that you are working on. Ask
yourself, what will a person who maintains this file need to know in order
to work effectively?

Write it Down
I often describe working with legacy code as being similar to spelunking,
the hobby of exploring caves. In spelunking, you don’t always know what’s
around the corner. Caves are dark, wet and not always very stable. Delving
into legacy code has similar pitfalls in that you may not entirely be sure
what each piece of code does. In effect, you are an explorer trying to make
sure that the cave doesn’t fall in on you. Making it further into the code is
an achievement, and to make it easier for others it helps to draw a map.

78

CHAPTER 2 Writing Maintainable, Future-Friendly Code

One of the primary tasks of the code maintainer is to eliminate magic
from the codebase. As you work with the code, fixing bugs or adding new
functionality, make sure that you document what you do. Every time you
touch legacy code, seek to get a better understanding of what it’s doing.
When you make a discovery, write it down. Writing it down is as simple as
leaving a comment or two in the code so that the next person who looks at
it won’t have to wonder why something was done.

It’s best to leave a trail of comments such as this so that you slowly
start to build up a base of knowledge around how the code works. This
comes in handy not just for others, but for you if you find yourself work-
ing on this code again months or years down the line.

Add Tests
Michael C. Feathers, author of Working Effectively with Legacy Code (Pearson,
2004), describes legacy code as any code that doesn’t have tests. In practice,
the pain of legacy code is often associated with a lack of tests, which is
why the code begins to seem like magic. Without anything documenting
expected behavior, either in the way of comments, formal documentation
or good tests, it’s very hard to feel confident when making changes to lega-
cy code. Once again, it’s unlikely that you’ll ever have enough time to stop
and write tests for all the legacy code at once. That doesn’t mean that you
should give up on tests altogether.

The approach for adding tests to legacy code is very similar to add-
ing comments in legacy code. Whenever you work with the code, make
it a point to add at least one test. If you’re fixing a bug, write a test that
reproduces the issue before attempting to fix it. This is called test-driven
development. You start by writing a test that fails (because of the bug) and
then write code that makes the test pass. After fixing the bug, you can add
comments to the code and check in the new test. That’s now one less part
of the code that seems to be magic.

By Nicholas Zakas CHAPTER 2

79

The combination of code comments and tests helps to bring legacy
code under control. Even though progress will seem slow by adding one
test at a time, having one test is better than having no tests. Having two
tests is better than having one. As you continue to work with the code and
continue to add tests, you’ll expose more and more functionality to the
light of day. Parts of the legacy code will start to make sense because you
have simple ways of determining if the code is functioning properly. It’s
important to think of running a marathon rather than a sprint. You can’t
write all the tests at once, but as long as you continue down the path of
writing tests, you’ll eventually reach a much better understanding of the
legacy code.

Refactoring and Rewriting
If you are lucky, you may actually get some time to refactor or rewrite
legacy code. Refactoring involves leaving the public interface of an API
unchanged while changing the underlying implementation. This is where
effective unit tests are extremely important. Good unit tests exercise the
public interface without regard for implementation details. In short, unit
tests are designed to test interfaces by asserting that certain inputs result
in certain outputs. Outputs can be return values, changes to existing ob-
jects, errors that are thrown, or any other visible effect of executing some
code. It is impossible to effectively refactor code unless you have unit tests
in place to verify that your changes result in the same outcomes as the old
code.

Rewriting code is when you make significant changes to both the
public interface and the implementation. This is a developer’s dream: you
have free reign to start from scratch and make something better than what
you’ve been working with. When rewriting code, it doesn’t matter what
you replace because you are creating something new. Unfortunately, this is
usually the time when the least future-friendly code gets written.

80

CHAPTER 2 Writing Maintainable, Future-Friendly Code

Something interesting happens in a developer’s mind when given a
blank slate. It feels like there are no rules, as you are no longer constrained
by previous work. You start dreaming about how wonderful things could
be and how your work is so much better than what came before it. What
you fail to realize is that creating something from scratch means that
you’re writing future legacy code. Your code will be given to someone else
to look after, and so it’s now on you to prevent the creation of yet more
horrible code.

One of my mentors told me that there are very few developers who
can effectively start from scratch and build up a project. In the exuberance
of creation you are far more likely to forget the basics and take shortcuts
to get the job done. In fact, many rewrites represent the beginning of the
familiar legacy code spiral:

1.	 Code is rewritten.
2.	 Authors of the rewritten code are present to answer questions.
3.	 Team works more effectively with new code.
4.	Authors of the new code begin to leave.
5.	 Questions emerge as to how parts of the code work.
6.	 More and more parts of the code become magic.
7.	 Development slowed by lack of understanding.
8.	Developers become frustrated and declare they can’t work with this

code for much longer.
9.	 Go to #1.

Even though rewriting is something that developers love to do, refac-
toring often achieves positive results more quickly and without thrusting
the team back into the legacy code rewrite loop.

You can, of course, effectively rewrite code if you come at it with the
proper perspective. Whenever you write new code you should think five
years into the future and of how someone else is going to pick up where
you left off. Think about the trouble you’ve had while working with legacy

By Nicholas Zakas CHAPTER 2

81

code: not enough tests, too little documentation, patterns that make no
sense. Then, solve those problems as you write the new code.

Conclusion
This entire chapter covers the specific steps you can take to make sure
code you write is as maintainable and future-friendly as possible. The
best way to avoid spaghetti code is to put the work in up front to organize
things. Code conventions ensure that everyone speaks the same language.
An architecture lays a solid foundation on which to build. Good documen-
tation is important so others can extend your code later. Choosing and
managing third-party components appropriately makes sure you have a
linear upgrade path as fixes become available.

Of course, it’s not every day that you start out with a blank slate. You’ll
deal with someone else’s code quite frequently. If that code falls into the
category of legacy code, then your path forward is to make small pieces of
that code easier to understand every day. Add documentation. Add tests.
Don’t believe in magic.

A codebase takes on a life of its own over time. Some grow to be elegant
and beautiful while others grow to be gnarly and stinky. Exactly how your
codebase grows depends on how you nurture it, the structure you give it,
and how comfortable people are with making modifications.

82

CHAPTER 2 Writing Maintainable, Future-Friendly Code

ABOUT THE AUTHOR
Nicholas C. Zakas is a Staff Software Engineer at Box.
He worked at Yahoo! for almost five years, where he
was front-end tech lead for the Yahoo! homepage and
a contributor to the YUI library. He is the author of
Maintainable JavaScript, Professional JavaScript for
Web Developers, High Performance JavaScript and
Professional Ajax. Nicholas is a strong advocate for
development best practices including progressive
enhancement, accessibility, performance, scalability
and maintainability. Nicholas blogs regularly at
http://www.nczonline.net/ and can be found on
Twitter at @slicknet.

ABOUT THE REVIEWER
Addy Osmani is working on the Chrome team at Goo-
gle, building and advocating for tools to help improve
developer productivity and satisfaction. His personal
projects include TodoMVC, which helps developers
compare JavaScript MVC frameworks and AuraJS.
He’s also written Developing Backbone.js Applications
and Learning JavaScript Design Patterns.

4. Vanilla Web Diet

Chapter

The Vanilla Web Diet

Written by Christian Heilmann

03	

84

CHAPTER 3 The Vanilla Web Diet

By Christian Heilmann CHAPTER 3

85

Chapter THREE · by christian heilmann

The Vanilla Web Diet

here’s no question about it: a lot of the content on the Web
these days is consumed on mobile devices and tablets. In some
new and emerging markets, mobile devices will be the first thing

people use to go online as the infrastructure for desktop devices isn’t avail-
able and mobile masts are easier to put up than putting fiber optics in the
ground.

We should be ready for that challenge — Web technology is flexible
enough after all — but when you look at the things we put on the Web and
how many companies opt for native apps or mobile-optimized versions in
parallel to their main website, there seems to be a worrying disconnect.

The hype about HTML5 and its perceived victory over Flash is reced-
ing slightly and now is a good time to analyze what we do and change our
approach to be ready for a new bunch of people coming to the Web.

With Moore’s Law1 in full effect, we all work on very powerful,
high-resolution devices with fast connections when we develop, and a lot

1 http://en.wikipedia.org/wiki/Moore%27s_law

T

86

CHAPTER 3 The Vanilla Web Diet

of our clients have the same. That leads to beautiful and impressive web-
sites and showcases that clock up hundreds of server requests and several
megabytes of data.

When we go out and use our mobile devices, or the wireless connec-
tions available in cafés and hotels, things look different, though. A large
part of our time is spent watching spinning animations show us some-
thing is loading, and often we are told that the connection is wonky and
that we should try again. The same issue will come up for the next gener-
ation of online users. Remember how frustrating dial-up was? We must
not repeat the same mistake of adding lots of slick-looking content and
functionality while we develop just because we can. We must get leaner
and lose some of the fat.

As with any weight loss, just flexing our muscles and going to the gym
is not enough — we also need to analyze and change what we put into our
bodies. Our gym time right now concentrates on generating a new, more
professional workflow for the Web. Instead of writing CSS, HTML and
JavaScript, we use build processes and scripts like Grunt, we preprocess our
CSS with Sass and LESS, and we automatically generate image sprites from
many images in a folder. Many people also proclaim the only way we’ll ever
be flexible enough to build ‘real apps’ is to move to other, new languages
like Dart and TypeScript and apply more software engineering, computer
science and pattern-driven approaches to the Web. This reminds me of the
time when JavaScript libraries were all the rage and made browsers behave
predictably. Of the hundreds of libraries created back then, only a few remain
now and we can easily predict that many of the so-called “essential tools” we
create and rely on now will become unfashionable and outdated.

Maybe we should also take a break in our drive to be cool and new and
innovative the whole time, simply for the sake of being so, and check what
we are doing — analyze our eating habits, so to say. I call this the Vanilla
Web Diet, much like people have started to call using JavaScript without
libraries vanilla JavaScript. I want to share some ideas and thoughts you
can bear in mind to help slim down an existing website or your next app.

By Christian Heilmann CHAPTER 3

87

None of the parts that make up the vanilla Web diet are new but they very
much warrant repeating. Here’s what we’ll cover:

•	 Build on what works
•	 Lack of support is an opportunity
•	 Browser-specific code cannot be trusted
•	 Use a mix of technologies, each for what it does best
•	 Ask questions
•	 Write as much as needed, not the least possible
•	 It is not about what you can add: it is about what we can’t take away
•	 Usefulness beats consistency across browsers
•	 Load only what is needed
•	 Analyzing effects beats adding FX
•	 Strong foundations beat a possible future addition

The first rule of the vanilla Web diet is to start from a clean slate. It’s
tempting to start with many of the existing HTML5 boilerplates or CSS
reset solutions out there, but let’s not do that right away.

The promise of an HTML boilerplate or CSS framework is to flatten
the differences between browsers and to allow you to start at a baseline
that apparently works across them. In many cases this really means a few
desktop browsers — many of which aren’t even in use any longer or will
never be available in a mobile environment. That’s why performance ex-
perts started advocating against boilerplates: they’re considered too heavy.
Making them more lightweight is one way of dealing with that issue, but
it also means we effectively create a code fork that needs maintaining
and upgrading should there be necessary changes in the original. There
is one true boilerplate — it’s called HTML5 and it is supported in a predict-
able manner by all current browsers and, especially, mobile browsers. The
whole idea behind HTML5 was to have a parser that is the same in every
browser, so let’s concentrate on using that, rather than extraneous padding
for browsing environments that are extinct.

88

CHAPTER 3 The Vanilla Web Diet

Without further ado, let’s dive into the first part of a healthy Web product:
a sensible starting point.

Build on What Works
Our base layer should be plain and simple HTML that does what the product is
meant to do.

Something that looks like a button but doesn’t do anything does not
help our users. When everything else fails, HTML is what users get: let’s
not deprive them of that. Mistakes happen, errors can arise from lots of
sources, many of which might not be under our control. As Jake Archibald
put it: “All of our users have JavaScript disabled until your first script loads
and is executed.” That’s why time spent thinking about the base layer of
what we do is never time wasted.

This should be the main principle behind what we build — and it is
nothing new. We’ve called it “semantic layering, progressive enhancement”;
we even came up with cute acronyms like POSH (for plain old semantic
HTML). Yet we keep forgetting this principle again and again. It seems that
the pursuit of crafting sensible HTML that explains itself confuses people
who come from an object-oriented programming world, where everything
needs to be instantiated and changed before it’s applied. In HTML, not so
much. It makes sense to see HTML as a foundation to build on. You can’t
build something heavy and large on a rickety foundation, so let’s use as
much HTML as needed — but not more — and when we use HTML, let’s
use what works.

Say, for example, you want to have a tab control. It is not uncommon
for JavaScript widgets to come up with something like the following,
either as the HTML you have to create for them to work, or generated
by JavaScript:

<div class="tabcontrol">
 <div class="tab">One</div>
 <div class="tab">Two</div>
 <div class="tab">Three</div>

By Christian Heilmann CHAPTER 3

89

 <div class="panel">Panel One</div>
 <div class="panel">Panel Two</div>
 <div class="panel">Panel Three</div>
</div>

The structural meaning of this is exactly zero. No, semantic class
names don’t cut it — they don’t mean a thing for the browser and they don’t
trigger any of the rendering or interaction functionality browsers are so
good at. So why not use what we have — and have had at our disposal since
the first browsers?

<section class="tabcontrol">
 <nav id="nav">

 One
 Two
 Three

 </nav>
 <article id="one">
 <header><h1>One</h1></header>
 <section>
 <!-- fill me with content -->
 </section>
 <footer>
 <p class="back">Back to menu</p>
 </footer>
 </article>
 <article id="two">
 <header><h1>Two</h1></header>
 <section><!-- fill me with content --></section>
 <footer>
 <p class="back">Back to menu</p>
 </footer>
 </article>
 <article id="three">
 <header><h1>Three</h1></header>
 <section>
 <!-- fill me with content -->
 </section>

90

CHAPTER 3 The Vanilla Web Diet

 <footer>
 <p class="back">Back to menu</p>
 </footer>
 </article>
</section>

Granted, this is a lot more HTML, but here’s the thing: you get a boatload
of benefits from this structure.

•	 It works without any JavaScript or CSS. Visitors get a list of links
that point to parts of the document, a tried and true way to skip to
the interesting bits in a large document. The links back to the menu
allow you to easily return.

•	 By using real targets in the document in the shape of IDs on
elements (the days of named anchors really are over by now), our
panel can be bookmarked automatically and seed the history of the
browser without having to use pushState or the horrible hack of
hashbangs.

•	 We have a lot of hooks in there for styles and JavaScript. We could
even use the :target selector in CSS and not need JavaScript at all.

•	 When browsers eventually do something useful with the outline al-
gorithm of sections, articles and nav (for example, they could cre-
ate an automatic table of contents, like Word does, or make them
discoverable in screen readers like headings and lists and links are
now), we’ll already have the right HTML in place — we can build for
things to come instead of simulating them.

•	 Assistive technology loves this. Users are informed that the navi-
gation consists of a list of six items, or they could circumvent the
whole thing and jump from heading to heading.

By Christian Heilmann CHAPTER 3

91

Of course, there are drawbacks. Using more than one of these tab controls
means you need to create unique IDs for all the different targets. Let’s face
it, though — someone who does not understand that an ID is unique will
have trouble coding at all. In the documentation of the widget, you’d ex-
plain that each ID also becomes a part of the URL and thus create readable
URLs as a bonus.

Ideas about HTML should form our main thinking before we go nuts
on extra features and special effects. When everything else breaks, this
is what our users get. Browsers are incredibly forgiving these days; the
HTML5 parser has been built to be backwards compatible. It has to be, be-
cause of the awful markup sins we and our tools committed in the past in
attempts to support terrible browsers that needed hack after hack to render
usable interfaces. This backwards compatibility, however, should not give
us carte blanche to do whatever we want and rely on the browser to fix it for
us. Clean HTML is like good grammar. It is not absolutely essential but it
makes what you do much easier to understand and simpler to translate.

Writing semantic, clean and understandable HTML has fallen out of
fashion. This is sad as it is the lingua franca of the Web and we seem to have
lost a lot of vocabulary when we got all excited about widget libraries and
CMS solutions. Now that browsers have moved on and a lot of the render-
ing problems of “the browser which shall not be named any longer” are
no longer an issue, we should take a look at all the amazing things HTML
gives us and stop using random constructs because they can be easily
styled.

The most common example of HTML abuse is adding links that point
nowhere. A # as the href attribute or, even worse, javascript:void(0),
means you end up writing HTML for a script, and not for the browser to
render or the user to interact with. If you need to call a script, use a button
element. They can be beautifully styled, have in-built keyboard support and
various states, and they can even be disabled using an attribute. By using
attribute selectors in your CSS you can style them. Links are so much more
than initiators of script functionality: they allow users to right-click them

92

CHAPTER 3 The Vanilla Web Diet

to get a context menu full of useful functionality like “Bookmark”, “Save as”
or “Open in a new tab”. None of these make sense if the URL is #, do they?

Forms have come a long way, too. A simple required attribute on an
input element means the user cannot submit the form until that data
has been entered. Adding a pattern attribute allows you to define a rule
in the form of a regular expression. In the past, all of this required a lot of
JavaScript — now it is in browsers by default.

We’ll discuss more examples like this as the chapter progresses. For
now, keep your eyes open and look at what HTML5 has to offer you, with-
out the knee-jerk reaction of saying a particular feature doesn’t work in
your favorite browser. We are building for a new set of conditions and for
people who do not share our developer pain. Having a rich vocabulary is a
wonderful thing. We should not only be Web-literate, we should be mark-
up poets.

Lack of Support is an Opportunity
If an old browser cannot do something, we have the chance to test for it and not
provide that functionality. In most cases, the functionality is merely nice to have
and isn’t needed.

One big mistake we made in the past, and which we keep carrying
forward, is giving standardized and highly demanding code to non-stan-
dard and outdated technology. Yes, this is about OldIE, as we like to call it,
but also concerns the new problem child browsers: stock browsers of older
versions of Android and iOS.

As creators of the Web we have two duties. First, we have to deliver a
working interface which should be exciting and a joy to use. Enjoyment
is a worthwhile goal, but the most important part is the working bit. Our
second duty is to use what browser makers give us to make the results
of fulfilling the first duty as amazing as possible, and as maintainable as
possible for the people we hand our code over to.

By Christian Heilmann CHAPTER 3

93

What do we do to achieve that? Every time a new technology comes out
we polyfill and patch and add libraries to give that technology to browsers
that should not be used any longer. We base this on the misconception that
the premise of the Web is to give everybody the same experience. Most of
the time, this is not our idea but one our managers, clients or project plan
dictate. We try to make the experience of those using outdated technology
as amazing as possible, because we consider it wrong to leave them with
less than those users who have up-to-date environments that keep getting
updated. This is not what the Web is about. No one forces us to support
outdated technology with features readily available in newer technology.

The premise of the Web is to deliver content to everybody regardless of
ability, technical capabilities and knowledge, or geographical location. Web
technologies allow us to do that, but only when we use them wisely and
don’t try to give everyone the same experience, leaving us all disappointed
as we race to cater to the lowest common denominator.

We seem to be obsessed with the question, “Will this work in browser
X?” and use all kinds of tricks and workarounds to make it work. We waste
a lot of effort on unsatisfying results and this increases our frustration. If
we give functionality to a browser by means of a hack or workaround, we
also take it on ourselves to keep supporting and testing in this browser.
More rewarding would be to ask, “What does not work in this browser?” and
then use the answer to define which supported technologies we’ll apply.

When you include a style sheet these days, you don’t worry at all about
browsers that don’t support CSS — you know that browsers will only apply
what they understand, so there is no chance of it causing any trouble. A
compass needle pointing south is as useful as one that points in the right
direction — you just need to use it correctly.

A great example of this is the Smashing Magazine website. It uses re-
sponsive design using CSS media queries. These aren’t supported by OldIE
which is why, originally, the website employed a JavaScript patch called
respond.js to make older versions of IE also switch designs around when
the screen size changed.

94

CHAPTER 3 The Vanilla Web Diet

However, this turned out to be overkill, as all that was needed was a
fixed-width design for older IE, letting the browser decide if responsive
design was within its powers or not.

How about we leave nobody out but build for the next generation of
technology? Give outdated browsers only what they can stomach: a bit of
CSS and HTML that really does the job. Semantic HTML that has meaning
and triggers functionality every browser offered from the start; links that
point somewhere; URLs that can be bookmarked; navigation that seeds
the history of the browser; forms that are validated and processed on the
server and sent back to the browser.

Only then should we add layers and layers of awesomeness for those
browsers which can deal with them. For example, take the wonderful and
standardized addEventListener(). OldIE doesn’t understand that, so
we wrote a filler to overwrite attachEvent(). Bad plan. This is software
ballast we’ll carry with us for years to come and it caters to a tiny sub-
group of users that will get smaller and smaller. Why not just wrap all of
our JavaScript in if (window.addEventListener) {} and never pester OldIE
with the demanding JavaScript we write these days?

The same logic applies to CSS. If we wrap the amazing and beautiful
parts of our CSS in a media query, OldIE and stock browsers will be none
the wiser and won’t try to parse what we give them.

Outdated browsers are retired; we shouldn’t pester them with more
and more demands to execute code that wasn’t meant for them and will
never run smoothly. If you use a filler library to support old browsers, you
also burden yourself with testing in them to make sure the users of those
browsers receive a smooth and beautiful experience. Testing outdated
browsers in the development environments we have today is a chore, and
only adds lots and lots of unhappy hours to our workload. Why do that?

Start with basic code that works in all browsers, then add to it and
make sure that browsers that should not be in use at all do not get code
they might choke on — you’ll leave everybody happy.

By Christian Heilmann CHAPTER 3

95

Things I’ve never seen, I cannot miss. Things I can see that don’t work,
frustrate me. A lack of support is a great opportunity to not promise things
you cannot and should not try to offer.

Browser-Specific Code Cannot be Trusted
Each line of code you write with browser prefixes simply adds to the mass of code
that will break very, very soon.

The release of the iPhone and the subsequent stir in the developer
community made the hair on the back of my neck prickle. I was vividly re-
minded of the times when people told me that everything that only works
in IE6 and no other browser is what every developer should follow, as there
will be no other browsers in the future. That turned out to be rubbish, and
so is all the code on the Web now that only works on the first generation
iPhone, or even blocks other browsers from accessing the content of the
page at all.

If you ever encounter a white button with white text there is a distinct
possibility that the developer used -webkit-linear-gradient and noth-
ing else on the button’s CSS background definition. This is neither clever,
modern nor pragmatic. It is broken code that only worked for a very short
time in a fleeting environment. Writing browser-specific code is much like
releasing movies only on VHS. It seems like a cheap and quick solution at
the time and gets the job done, but it leaves you with thousands of unsold
copies that nobody can watch because the hardware is obsolete.

If you use prefixed code, at least wrap it in a test condition. The best
way, however, is to precede it with a fallback that works everywhere and
follow that with the standardized code. In the example of the button with
white text on a white background, all would be fine if the developer de-
fined a background first and a browser-specific linear gradient afterwards.

Browser-specific code is a to-do. If you cannot revisit and fix the code
once the functionality has been standardized then you write broken, unre-
liable code. Environments change. That is why we have standards.

96

CHAPTER 3 The Vanilla Web Diet

Use a Mix of Technologies, Each for What it Does Best
It is very tempting to do everything in JavaScript, but you shouldn’t.

When you have a shiny new hammer, everything looks like a nail —
and turns out to be a thumb once you start hammering. We have incredibly
powerful technologies in the Web stack, the most powerful probably being
JavaScript. CSS is a strong second, considering the recent additions. In
general, it is possible to do everything to and in a browser with JavaScript.
You can create whole applications with just a body tag in your HTML. You
can make outdated browsers behave like their modern versions, you can
interact with windows and the DOM, and move data to and from the serv-
er. Retaining control makes it tempting to do everything with JavaScript.
Whole frameworks have been built on that premise (qooxdoo2, for exam-
ple) with amazing performance and great programming principles. Sooner
or later, though, they become outdated and do things in JavaScript that no
longer need to be done at the cost of processor computation.

Remember when we created lots of small images to add rounded cor-
ners to things? And how cool it is now to have CSS border radius and back-
ground gradients to change the look and feel, without needing to recreate
all of them or ensure our users don’t have the old ones cached?

The same thing is happening to JavaScript right now. A lot of what we
use JavaScript (and especially libraries like jQuery) for is now handled by
CSS: transitions, animations, media queries. This allows us to create amaz-
ingly smooth experiences and benefit from the browser working to ensure
they stay smooth. If we use JavaScript, we get more control but our larger
responsibility is to ensure things are smooth. And this responsibility very
much depends on the browser and the technological contexts — contexts
that change from month to month.

One thing that massively slows down apps and websites is DOM
access. Yet the simplicity of jQuery’s DOM access API bred a whole gen-
eration of developers whose first lesson learned was how to write a loop

2 http://qooxdoo.org/	

By Christian Heilmann CHAPTER 3

97

(hidden in a $() selector chained to a method) to access elements in the
document to change their look and feel. In a lot of cases, that is just not
needed. You could use event handling instead, or condition checking in
JavaScript and add a class to the body or the parent element of what you
want to change and let CSS do the rest. It’s something the browser does on
reflows and rendering anyway, so why not piggyback on that?

If you check what you need to achieve before getting excited about the
simplicity of chaining and selecting elements in JavaScript, you will find
that most of what you need to do now involves adding and removing class-
es, and loading content. JavaScript is good for on-the-fly changes triggered
by interaction; CSS is great for making the changes appear.

Browser makers do a great job of allowing us, in developer tools, to tap
into the rendering by the browser and see what happens.

A requestAnimationFrame() lets you change things and only display
them when the result can end up onscreen. Furthermore, when the browser
tab your script runs in is inactive (when the user is in another tab or win-
dow), the animation doesn’t run, thereby not wasting computation time and
shortening battery life. In contrast, a setTimeout() hopes that the browser
is ready to draw and runs whether the user is viewing your animation or
not.

Animations and transitions in CSS are hardware-accelerated; JavaScript
animations are not. So are transformations in CSS, which means that a
transform: translate(x,y) beats a position: absolute; top: x ; left: y ;
when it comes to performance.

I urge anyone working on the Web to keep up to date with brows-
er technology and standards support. Only when developers use what
browsers offer can we make the Web better. If functionality defined in the
standards is not used, browser makers are less inclined to support it. Why
support input type="range" when most developers use a div and a jQuery
plugin to turn it into a slider? You probably won’t have the time to con-
stantly update your code, so be lazy about this — use what is fit for the job
and enhance as needed with JavaScript. We can only resolve the chicken

98

CHAPTER 3 The Vanilla Web Diet

and egg problem of standards support by demanding that browser makers
add the support when we can show our products are ready for it.

Every good Web solution works by leaving the right tasks to the right
technology. We often get too excited about our specialisms and want
everything to be possible in the one we favor. A band creates music when
its members play the instruments that they want to play. Very few people
can play the drums, guitar and trombone, and sing — none can at the same
time. Pick and choose, don’t try to replace.

Ask the “if” Question
Whatever you do should be wrapped in an “if”, so only environments that can apply
what you want do so.

Using “if” is a powerful tool, both in conversations and coding. Good
coding is defensive — it tests the depth of the water before diving in. Our
solutions should not just assume that a certain user has what’s needed to
consume the content we give them.

Wrapping the loading of content in test cases is an incredibly powerful
way to achieve the most enjoyable experience for different users — we’ll
come back to that later.

However, “if” can be used for much more. You can ask the current
environment about its capabilities before applying a certain functionality.
You can stop the browser from trying to run whole blocks of JavaScript by
first asking if it can do even the simplest things required. The less code we
force our browsers to parse, the better their performance will be. Why read
a whole book in Icelandic to a friend without asking if they understand the
language in the first place?

Sometimes it is necessary to apply some trickery to avoid very bad
experiences. HTML5 video is one of those examples. You might have seen
the following demo code in a few places.

By Christian Heilmann CHAPTER 3

99

<video src="kittens.mp4" controls>
 Your browser cannot play HTML5 video.</video>

First, this sentence is not fallback content for browsers that cannot play
HTML5 video: this is making your problem the user’s problem, which
is especially frustrating if they are not tech savvy. Imagine trying to do
something and people keep telling you, “Your phleems cannot work with
boodiloo.” OK, what does that mean? A much better way is to give the user
a link to the video as the fallback:

<video src="kittens.mp4" controls>
 Check the video of kittens.</video>

That way, users of old browsers can watch the video in the media play-
er of their operating systems simply by following the link. You can make
that even better by adding a screenshot. Not only does this provide a visual
aid but it allows social media sites like Facebook to show a thumbnail pre-
view — everybody wins. Well, almost.

Browsers that understand the HTML5 video element but do not un-
derstand the MP4 file format (as it is not an open format) will not show
the fallback content. Instead, they show a gray box with a message about a
video not being able to be played, and do not offer a link to follow.

This is annoying, but accords with the standards definitions. Reading
up on those, there is a way to check if a video can be played.

Say we have this HTML:

<video controls>
 <source src="dynamicsearch.mp4" type="video/mp4"></source>

 <img src="dynamicsearch.jpg"
 alt="Dynamic app search in Firefox OS">

 <p>Click image to play a video demo of
 dynamic app search</p>
</video>

100

CHAPTER 3 The Vanilla Web Diet

The following JavaScript shows the way to make a browser (one that sup-
ports the video element but is unable to play it) show the fallback content
instead:

if (window.addEventListener && document.querySelector) {
 var v = document.querySelector('video'),
 sources = v.querySelectorAll('source'),
 lastsource = sources[sources.length-1];
 lastsource.addEventListener('error', function(ev) {
 var d = document.createElement('div');
 d.innerHTML = v.innerHTML;
 v.parentNode.replaceChild(d, v);
 }, false);
}

What’s going on here? When a browser fails to play a video, it fires an
error handler on the last source element in the video element. So, we test
that the browser understands addEventListener() and querySelector()
(which is the standard way of jQuery’s $(), really) and then get the last
source element in the video element. If there is an error event being fired,
we create a div element and replace the video with that one.

By asking the browser what it can do, we can fix an unsatisfactory
fallback experience and make this work for everybody. Not the same expe-
rience, but still one that works. Such action needs thought and research (I
believed, for example, that the video element fires an error event instead
of the last source), but it is worthwhile as we don’t pass on our problems
to our users. “If” is a mighty construct and it makes your code better and
independent of its environment.

Write as Much as Needed, Not the Least Possible
Let’s think about what we write before we write it, instead of adding lots of small,
quick solutions.

The rise of jQuery started something of a fetish in the Web developer
community: the less code you write, the more effective you are considered

By Christian Heilmann CHAPTER 3

101

to be; and the more code you write that does something in a short period of
time, the more awesome you get. This is not necessarily true.

Yes, typing less means we can do other things, but if it comes at the
cost of abstracting what we do into libraries and plugins it can get tricky.
What we never know on the Web is what our users do or have at their
disposal. So relying on an abstraction that we don’t control and whose pro-
cesses we don’t understand seems dangerous. We feel this already. A lot of
small solutions dependent on jQuery or other libraries perform incredibly
badly on mobile devices.

Impressive plugins that tell us they are only a few KB or take just three
lines of code to implement tend to end up sending a much larger number
of bytes to our users, wrapped up in many HTTP requests and adding to
the overall amount of JavaScript in our apps. It is not uncommon to see
people use several libraries at once because they like widgets built in each
of them. This is not the purpose of browser libraries. They should solve
problems and make our work easier, not harder. It is especially dangerous
when libraries stop being maintained or updated and turn out to cause
performance problems. Of course, a good build or deployment script deals
with these issues — yet another thing to learn and to maintain. Why add
more to undo what was done before, when we should avoid overloading
our solutions with small, seemingly useful helpers in the first place?

As shown earlier, using a bit more semantic HTML can trigger the ben-
efits of built-in browser functionality. The same applies to all of our code. It
is much more important to build a solid base into our products, an easy to
read and understandable core that can be added to. We do this by writing
clean, easy-to-understand code that has sensible variable and method
names that does one thing well. Not by writing abstraction APIs for others
to use to achieve a lot quickly without knowing what they’re doing and
hiding the complexities away from them.

The advocacy for short code is at times just an excuse to be lazy. This
can lead to ridiculous threads on forums and message boards where people
use and <i> elements instead of with a sensible class name

102

CHAPTER 3 The Vanilla Web Diet

to save time, or they omit quotes around attributes to save yet another
keystroke from adding to the workload in long documents. Either practice
means you save some time now but both lead to confusion later on when
you need to extend your code. Omitting the quotes around attributes, for
example, only works until you need to add another value that is space sepa-
rated (for example with the class attribute), so why not add them right now
to allow for more to be added?

Using unreadable, terse and rushed code to get things out the door
quickly doesn’t mean you are more effective. It means you will get into
trouble later on. The maintainability of your code is the most important
part to think about and you can only do that while you write it. “Get this
out now, we can clean it up later” is as much of a lie as agreeing that “I
have read the full terms and conditions.” Build for the person who takes
over from you, not for the current state of the browser and you’ll be a great
person to work with.

It’s Not About What You Can Add,
It’s About What We Can’t Take Away
Basic functionality should always be there.
A curious thing about software is that it is fallible.

We, who are excited about it, are prone to forget that. Using a fancy
MVC (Model-View-Controller) framework to build a single-page app with
incredibly clean separation of back-end tasks is a tempting thing to do. Af-
ter all, this is what the cool kids do and what Google and others, who have
to scale to infinity and beyond, use.

We get very excited about adding new features to our products be-
cause we see them used elsewhere and we are bored with building the
same solutions year after year. It can feel like we’re not progressing and,
more importantly, it feels weird that almost nothing we learn in comput-
er science courses at university can be applied once we take a job in Web
development.

By Christian Heilmann CHAPTER 3

103

Something must be wrong and Web development must just not be
evolved enough for proper programming tasks, right? Wrong.

There really is nothing in computing comparable to Web development,
as we do not compile what we write into bytecode optimized for one or an-
other environment. Our code goes out and is transformed on the comput-
ers and handheld devices and cars and fridges and watches and whatever
else users will have in the future that is Web-enabled (glasses perhaps?).
That is why a lot of best practices from the past become shoehorned into
the Web, and while they are good ideas they don’t necessarily yield the
desired results.

In the end, we need to always offer basic functionality to users or we’ll
create lots of small walled environments on the Web. No, you can’t expect a
user to have a certain browser. No, people cannot increase the resolution of
their mobile to fit your needs. No, the connection speed you have on your
development machine is not what every user experiences — not by a long
shot.

What does basic functionality entail? Put simply, it allows the user to
do what they came for regardless of any technology failure. A textbook
example of this happened recently to one of the largest Web companies
out there: Google. For a whole half-day, on February 4, 2013, the download
page for Chrome was unavailable. You could click the download button but
nothing would happen.

Opening the Chrome developer tools revealed two things: first, the
HTML of the button was the following:

<a class="button eula-download-button"
 href="javascript:void(0)"
 data-g-label="download chrome"
 data-g-event="cta"> …

Second, the error console greeted you with “TypeError: chrm.download is
undefined.”

104

CHAPTER 3 The Vanilla Web Diet

What happened? Well, something in the JavaScript went wrong and
took the button with it. javascript:void(0) is not a valid URL and has
no business being in an href attribute. It is a blinking warning sign that
somewhere in the development process Google threw in the towel and
created everything in JavaScript. On investigation, I found out that the pur-
pose of the code is to show an end user license agreement before download
(as hinted in the class name), and the JavaScript automatically detects the
operating system to provide the appropriate install package for Chrome.
Both very good uses for this page, but the way they were implemented
meant Google lost half a day of Chrome downloads.

The remedy is straightforward: instead of pointing the link to a small
inline JavaScript that does nothing at all, it should point to a download
page that lists all the downloadable versions of Chrome. This could be a
great resource in any case, as sometimes I might want to download a ver-
sion not for my OS (for example, if I am on a fast connection somewhere).
You can still add an event handler to the link to do all the other necessary
things done in the JavaScript that was never called.

Redirecting to a EULA page on the server is easy and so is sending
through the information about which OS installer is needed. This was a
classic case of using the wrong tool simply because the developer could.

In essence, it is important to not break the Web with what we do: forms
should be sent to a server-side control; links should point to real resources;
media should be linked to and embedded, instead of just embedded in the
hope that the browser does everything right.

Once we have this, we can add whatever we want. But seriously, trying
to replace the basic transport mechanisms of the Web with our own con-
structs may seem faster but it will always be very prone to error. We have a
working infrastructure — we should use it.

By Christian Heilmann CHAPTER 3

105

Usefulness Beats Consistency Across Browsers
Instead of attempting to give everyone the same experience, we should always find
the best way to ensure people can use what we build.

Something that adds to the obesity of the Web to a very large degree is
the misguided notion of giving every browser and every environment the
same experience. Again, as creators of the Web we know this is foolish, but
many a time we are asked to bow to this pressure by our project plans or
our managers. We need to take a stand. It’s an outdated and infuriatingly
shortsighted idea that just refuses to die. When Web development began,
we were often given print designs and asked to make them work on the
Web by any means necessary. This is how we ended up with text as graph-
ics and, later on, Flash being used for everything that needed “to meet
design specifications.”

Nowadays, we try to create beautiful, interactive and immersive mul-
timedia experiences with the tools HTML5 offers, and then make them
backwards compatible with environments lacking even the basic means
to display a video. And we create massive, Flash-like sites and hide ele-
ments that can’t be shown on a mobile screen. We still load all the content,
though, and move from large to small. When high-resolution displays
came out, we started to send over the wire huge, high-resolution images
that could never be displayed on the low-res hardware receiving them.

This does not make sense. If we want the Web to succeed — and as it
is the simplest worldwide distribution platform, we have this as a good
cause — then we have to rethink our approach and build interfaces that
are not just resized but also tailored to the context they will be displayed
in. We need to start seeing design and UX as context-dependent tasks,
and not take a one-size-fits-all approach. Instead of showing only part of
the design on small-screen devices and more on larger screens, we need to
think about what people want to do and what they can do best in a certain
environment.

106

CHAPTER 3 The Vanilla Web Diet

For example, I skim and triage my news feeds on my phone and book-
mark to read later. When I get to my laptop, I read in detail what I book-
marked and share it with the world. Yet, I have to use more or less the same
interface on both devices and I’d love to have a simpler one on the phone,
tailored to my need to triage, and one that makes sharing easier on the
laptop.

With new ways of interacting with our content being devised all the
time — gestures, touch, glasses, buttons in the steering wheels of cars —
we need to be ready to build bespoke experiences quickly and with ease.
We cannot do that if we try to discover the holy grail of one design that
works everywhere, or start with a framework that promises us that. It
doesn’t exist, unless you stay incredibly simple and leave untouched a lot
of the opportunities modern browsers and hardware offer.

We need to let go and leave some decisions to our users. Look at eBook
readers. I love how Google Play Books changes from landscape to portrait,
and how the Kindle allows me to change from black on white to gray on
black when I want to read in the dark. Let’s think about what our users do
in different contexts, rather than throwing the kitchen sink at them and
hoping that hiding parts of it is enough. We’re not doing enough right
now, which is why mobile browsers have “Reader” modes or allow users to
force a “Desktop version” on to their small screen as the mobile interface is
disappointing and frustrating.

Load Only What is Needed
Why should a browser get a library or a data file if it cannot do anything with it?

One of the most exciting techniques we discovered in the wake of the
DHTML days and now powered by AJAX is that of lazy loading. In essence,
this means that we only load resources when we need them. Why should a
user on a small device get a massive image that can never be displayed in a
satisfying way? Why would you include a JavaScript library targeted at iOS
on an Android device or even the desktop?

By Christian Heilmann CHAPTER 3

107

JavaScript is good at testing for support and then loading resources on
demand. We just don’t use it enough for that. Right now, we find ourselves
with more and more solutions that first load large amounts of high-end
resources because caching will improve the experience as the user moves
through the site. This is wasteful as it doesn’t help the users who will never
benefit from that high-end experience. It might not seem to be a problem
at all for us, with fast connections, big screens and powerful processors.
But this is not what we build for (unless you’re creating developer tools)
and we should ensure that our work is tested on low-power machines and
mobiles and flaky connections. The more we can delay loading unnec-
essary content or subsequently storing it on the user’s device, instead of
repeatedly loading it, the better our solutions will be.

Personally, I find progress bars and animations to be admissions of
failure. No one enjoyed them in Flash intros and they drive us nuts on
YouTube, so why should I have to wait a few minutes because you want to
preload everything, instead of analyze how I interact with your code?

So let’s think before adding the 12 unnecessary fonts on the first page,
the CSS framework that we use to create a two-column layout, and the
kitchen sink JavaScript library we use to add a single event handler to a
button.

Let’s check the available screen space before loading content that will
only need to be hidden because there is no room for it. Let’s not load images
before the user actually scrolls them into view (to avoid causing unsightly
shifting of content, keep a box with the same size in place, then replace it
with the image). Let’s not add background music just because we think users
will want it — let’s wait till they are really happy to hear it.

There is natural downtime in the interaction with our apps. For ex-
ample, people will spend some time entering data into forms. So why not
use that time to load additional resources? A focus handler on the first text
field could trigger a nice-to-have resources download. If the user never
enters the form, nothing needs to happen.

108

CHAPTER 3 The Vanilla Web Diet

This is a world where connectivity is narrower than it is on the desk-
top. Let’s not clog up the pipes with things nobody will ever consume.

Analyzing Effects Beats Adding FX
If you want to add shiny things, make sure they can perform in a shiny fashion.
Nobody likes their browser to slow down for an effect that lags.

All in all, we seem to be far too focused on visual effects in our designs.
You can see this in the procession of design fads that come and go. The
current fascination with scroll-to-parallax websites will soon look as dated
and annoying as rainbow dividers or Flash tunnel pages look now.

The question we have to ask ourselves is how many effects we can add
to a certain environment before we overload our users. Are the drop-shad-
ow, rounded corners and gradient really necessary on everything, or does
it make sense to create them with CSS only for those environments which
support them, instead of simulating them with images and increasing load
times? Moving from skeuomorphic to flat design would mean just chang-
ing the CSS — no need to find and delete orphaned images on the server or,
more likely, abandon them there to add to the overall weight of the project.

Does it make sense to have two states of a widget fade into one another
if it means adding another JavaScript library and calculating the fade in
JavaScript? A CSS transition is done by the browser, and browser makers
can tweak and improve its behavior. The video hardware can calculate it,
rather than the main processor. If you do the transition by hand in JavaS-
cript it is up to you to make it behave smoothly everywhere and you cannot
rely on the browser to do the dirty work for you. Will users really love
the subtle drop-shadow when their battery empties much quicker than it
would without it?

Just because something works well in native apps doesn’t mean it will
be appropriate in Web apps or websites. We’d only be simulating an envi-
ronment we could never match in terms of performance, creating unhap-
py, disappointed users. Nobody wants to get a lovely piece of cake only

By Christian Heilmann CHAPTER 3

109

to realize at the first bite that it has no taste whatsoever. Effects are nice
to have but should not be our end goal. They are great to impress Web
developers and other interested parties, but we should spend far more
time asking real users what their objectives are when visiting our sites or
using our apps. Sometimes the simplest solutions are the most beautiful.

Strong Foundations Beat a Possible Future Addition
Often we add a lot of code or interfaces to allow for a future that we think will need
them. This future hardly ever comes about. Let’s build for the now.

Probably the biggest cause of bloated solutions is that we overshoot the
mark when it comes to planning the architecture of our Web solutions. The
Web is hot right now and there are not enough Web developers to meet the
demand for products to be built. A lot of developers are needed and many
of them come from more traditional software environments where sys-
tems are built in one way and one way only to scale and be robust. Often
we now shoehorn these approaches into the Web, and claim cultishly that
anything not built on OO (Object-Oriented) principles and with an MVC
approach will never scale and be operable.

Years of Web-built products show, however, that this is not the case. Of
course, a cleaner approach bears the fruit of better, maintainable code, but
not when it comes at the cost of generated front-end interfaces that rely
on JavaScript to work, and create distinct code for different browsers — in
many cases, for different versions of the same browser. What many devel-
opment approaches forget is that a single-page application requires you to
not only write your app, but also replace a lot of functionality done for the
Web by HTTP and the browser, like history-keeping and undo functional-
ity. In essence, you run a thick-client app in a thin-client environment you
cannot control.

A good idea is to think about what you want to achieve before you
reach for the silver bullet of MVC frameworks and switch to what’s touted
as a better language than JavaScript merely to generate JavaScript.

110

CHAPTER 3 The Vanilla Web Diet

Things on the Web change a lot. And in many cases it means replacing
the whole code base but duplicating the functionality. Many of the apps
and websites we produce are there, first and foremost, to get people to put
content into them and make that content available to others. The code of
the app itself should play a secondary role to that.

Every time a Web company was bought by a larger one and needed to
scale to millions of users, its whole code base was replaced or altered to
fit an existing framework that had already proved itself. You don’t need
to build Google Mail or Facebook. You should think about creating what
you need to at the time, and prepare yourself to replace the lot in the near
future.

This seems to counterpoint our dictum of old: that separation of con-
cerns into HTML, JavaScript and CSS means you can redo a whole project
by just changing the CSS. The Web has become much more of a commodi-
ty than it was in the past, so we need to be agile. If you build to burn down
using Bootstrap and do everything with it, that’s fine. But don’t use lots of
libraries, frameworks and server-side back-ends that generate whole apps
while claiming that they’ll scale. They won’t just magically do that: you still
need to know them really well to play them to their strengths, rather than
just add a lot of code to be used later — a later that never comes.

Summary
Nothing here should really be new, but it seems that we keep forgetting the
tricks and practices that first made the Web a success. Flexibility defines
the Web and we keep carving out niches for all the things the Web can do
and promote this quality to be the main goal for every developer out there.
It’s not about building thick clients or native apps on the Web, it’s about
using the Web and its technologies to deliver content and media, allowing
people to simply add new things to this wonderful series of tubes.

By Christian Heilmann CHAPTER 3

111

I think it’s time to stop looking for solutions that try to tame the Web
and make it more like other environments. Instead, we should embrace
the idea that the future will only bring more diverse playgrounds, and that
we cannot cater to them by being restrictive. So, rather than abstracting
the task of communicating with browsers into a seemingly shorter but
ultimately more complex world of libraries and quick stopgap solutions, I
hope you found some ideas here of how to write a few lines of code tailored
to what browsers already possess.

ABOUT THE AUTHOR
Christian Heilmann is Principal Developer Evangelist
of the Mozilla Developer Network and lives currently
in North London, a mixing pot of people from many
cool places. He works to bring technology to people and
people to technology, and when he’s not busy working,
films are his diversion of choice. Christian has a diplo-
ma in German, English, history and astronomy. His
motto is, “Start something and play with it; if you don’t
want to play with it, stop doing it.” His message to read-
ers is to stay hungry and stay inquisitive; something
new is always around the corner.

5. It's All About Performance

Chapter

Culture of
Performance

Written by Tim Kadlec

04

114

CHAPTER 4 Culture of Performance

By Tim Kadlec CHAPTER 4

115

Chapter FOUR · by TIM KADLEC

Culture of Performance

y parents were big fans of family time. They loved to get
me and my four siblings together to do things. We went on a lot
of family trips. Every Sunday was family movie night. They took

any chance they could get to have the family doing something together.
A good example of this was choosing a Christmas tree. Now, some

parents would be OK with grabbing a tree from a tree lot nearby. But not
my parents. To them, this was another opportunity to do something as a
family — to create some family memories. So every December, we would
pile together in the van and drive to a quiet, thickly wooded part of the
forest that was full of prime candidates for the perfect Christmas tree.

We took our time — picking out a Christmas tree was not something
to rush. We walked around for hours in the deep snow trying to find a tree
that was just right. We never worried about taking precautions to ensure
we would find our way back to the van — that was something that just
happened. My dad was great with directions and always seemed to know
just which way to go.

M

116

CHAPTER 4 Culture of Performance

Except for one year.
We found the perfect tree after what must have been three or four

hours. After my dad cut it down, we started back in what we thought was
the direction of the van. We walked a long time, saw a lot of forest we
didn’t recognize, and realized that we were lost. My dad’s seemingly unfal-
lible sense of direction had failed him.

This, of course, made everyone kind of grumpy. My dad took pride in
his ability to find his way back, but it had failed him this time. My mother
wasn’t exactly thrilled about her five children being lost in the middle of a
snow-filled forest. And we kids weren’t the most patient bunch.

In my head, I had already decided that we certainly weren’t getting
out of the forest that night. Thinking my teenage self to be something of a
rugged outdoorsman, I started coming up with the contingency plan. We
could build a little shelter, start a fire with some rocks (they did it in the
movies — how hard could it be?) and find some food. It would be cold, but
we’d figure it out.

Thankfully for all of us, we never had to test my survival skills. When
the night was so dark we could see only a foot or so in front of us, we
finally stumbled on the road. From there, my dad was easily able to guide
us back to the car.

The next year, we planned better. We tied strings around trees as we
went, carried a compass, and frequently stopped to check our bearings.
Getting lost wasn’t something we felt like doing again. Instead of viewing
getting back to the van as something that just happened after everything
else was accomplished, we were going to be deliberate about making sure
our outing was a success.

Getting Deliberate About Performance
This same sort of struggle is hurting our websites today. Websites are get-
ting fatter and fatter at an alarming rate. From March 2012 to March 2013,
the average page weight jumped by a staggering 24% according to data

By Tim Kadlec CHAPTER 4

117

from the HTTP Archive1. We’re heading the wrong way fast. Usually, we
don’t even notice it as it happens — and if we do, it’s often too late.

I was talking to a developer about a new website that he had been
working on. The website was certainly well crafted. It was a little on the
heavy side though. Not much, but enough that he felt the need to explain
the situation a bit. What he said highlighted the issue with Web perfor-
mance in general. “I doubt anyone really wants to release a site that doesn’t
perform well,” he explained. “It’s just a product of not being afforded the
luxury of time and top-down pressure.”

Feel like you’ve been there before? Most of us, I’m sure, can easily relate
to this. I know I can.

I was working on a project where I was collaborating with a team of
internal developers. From the very beginning, everyone stated that, among
other things, they wanted the site to be very fast. The developers I was
working with were very good at their jobs, and given the seemingly high
level of importance being placed on performance there was good reason to
believe this was going to go well. But then it didn’t.

Early mock-ups were shown to upper management before being shown
to developers. By the time the developers saw the mock-ups, they had
already been approved by the powers that be. There was no opportunity to
try to alter them based on any potential performance risks (and there were
several).

Then an internal deadline was set based on business requirements that
significantly altered the aggressiveness of the timeline. The combination
of tight timescales and ambitious mock-ups approved too early led to yet
another issue. “Make it fast” quickly turned into “Make it work. We can
always make it faster later.” Of course, later never came.

And so, after a lot of very hard work, we were closing in on launch and
the performance of the site was a disaster. It was slow, sluggish — every-
thing none of us wanted it to be.

1 http://httparchive.org/

118

CHAPTER 4 Culture of Performance

But this was a quality team, and one that took a lot of pride in its work.
So for the remainder of the home stretch, we all kicked it into high

gear. We worked ridiculously late nights. We worked over the weekends.
Things got stressful for everyone — there were short tempers and tears
mixed in with an absolute dedication to improving the situation.

When the site launched, it was better. Not great, but no longer quite
the monster it had been. However, it had taken a lot of incredibly hard
work to get there. Even with the improvement, we had to revisit the prima-
ry landing page of the site a few months later, ditching all the work we had
done and starting from scratch.

Just like when my family got lost in the woods before Christmas, the
long, late (and ultimately wasted) hours on this project could have been
avoided had we been more deliberate. Had performance been baked into
the process of creating the site, instead of something that gets added on,
the result would have been a faster site and a lot happier team.

The issue was not the competence of the developers. As I said, this was
an incredibly talented team. The issue was also not just technological: a lot
of smart optimizations were implemented to get the weight down. Instead,
the issue was the lack of a well-established culture of performance — a total
commitment to performance from the entire team that would drive and
influence decisions during the project cycle.

To put it more succinctly, we weren’t being deliberate about making
sure our site performed well. It was treated as something that would hap-
pen at the end. There were no strings being tied, no checking our bearings
to make sure we weren’t steering off course. As a result, when things got
hairy, performance was one of the first things to get swept under the rug.

Given the incredibly important role performance plays in the user
experience, this is a disastrous mistake to make.

By Tim Kadlec CHAPTER 4

119

The Impact of Performance
Name something your business cares about and I’ll bet good money that
its performance has been an important factor. Study after study has shown
that how your site performs directly impacts how users will interact with it.

•	 Amazon found that for every 100ms of improved page load time, it
saw a 1% increase in revenue2.

•	 Bing tried an experiment where it deliberately made search queries
take two seconds longer. The result was a 4.3% decrease in revenue
per user3.

•	 Mozilla improved the performance of its landing page4 by 2.2
seconds and saw a 15.4% increase in download conversions. This
roughly translates into 60 million more downloads annually.

•	 Shopzilla cut its page load time5 from 6 seconds to 1.2 seconds. In
addition to a 12% increase in revenue, page traffic increased by 25%.

We could go on, but I think the picture is starting to become pretty
clear: improving performance affects page views, traffic — and the bot-
tom line. Performance is about respecting your visitors, and they notice
if you don’t.

•	 39% of users6 say that performance is more important to them than
the functionality of a site.

•	 57% of users7 will abandon a site after waiting three seconds for the
page to load.

2 http://smashed.by/amzn-found
3 http://smashed.by/msft-performance
4 http://smashed.by/mozilla
5 http://smashed.by/shopzilla
6 http://smashed.by/slow-websites	
7 http://smashed.by/3-secs	

120

CHAPTER 4 Culture of Performance

Not only does performance affect existing users, but it can actually
help you reach new audiences as well. Consider the experience YouTube
had when it improved performance (see Mat Marquis’ chapter). New mar-
kets, increased revenue, improved business metrics, better user satisfac-
tion — the impact of improved Web performance is no minor detail.

None of this should be a surprise. The Web is an interactive medium.
Click a button, scroll down a page, submit a form: interactions are at the
heart of what it means to use a website. Performance is a fundamental
component of the user experience.

We can correct the course, and we must if we want to truly capitalize
on the ubiquity and interactive nature of the Web. To do so, we need to
stop treating performance as nice to have, or a developer task, and start to
ingrain it into our workflow.

Before this can happen, we need to get buy-in from management.

Getting Support
No matter how valuable you know performance to be, you need to get sup-
port. If the people dealing directly with budgets and timelines don’t care,
you’ll have a hard time making sure performance is prioritized throughout
the process.

Make it Personal
It’s easy to get excited about reducing metrics like load time and page
weight, but they’re probably not what matters to the people you need to
get support from. They want to hear about what it will do for the things
they care about. Some people will want to see how it affects the bottom
line. Others may care more about what it means for page views and bounce
rates. Learn what others care about and focus on emphasizing how perfor-
mance improves those factors. You’ll have a lot more success convincing
them of the importance of performance if you connect it to something that
matters directly to them.

By Tim Kadlec CHAPTER 4

121

Make it Visual
If you’re trying to persuade a client or boss of the importance of perfor-
mance, augment the metrics with a visual.

One very effective method is to show them their site loading next to a
faster competitor site. If your client is McDonald’s and Burger King’s site
loads faster, first show them what they stand to gain by improving per-
formance, and then show them how Burger King beats them out. Nobody
likes to lose to a competitor.

You can easily do this with WebPageTest.org8 using one of two meth-
ods. The first is to run a test for each site individually, selecting “Capture
Video” under the advanced settings. Save the two videos and queue them
up side by side.

WebPageTest also provides a “Visual Comparison” option. With this
method, you add the URLs for each page to compare and then run the test.
WebPageTest will capture screenshot of static images throughout the

8 http://www.webpagetest.org/

The visual comparison option on WebPageTest.org lets you easily see
how quickly sites load when compared to each other.

122

CHAPTER 4 Culture of Performance

loading process so you can see exactly when things start to load on each
page, and when the page completes. Sometimes this can even be a little
more dramatic than a video.

Baking Performance into the Process
When I was in my early twenties, I took a job at RadioShack. This wasn’t
a great gig for me. Sure, RadioShack had a lot of gadgets to play with —
that part was fun. But I was never a great sales person, and this was a role
where I needed to be. I worked with someone who was good at it. Made for
it, even. He would literally push me aside at times to get to someone eyeing
up a cellphone — easily the quickest way to earn a few extra bucks on our
checks.

You see, we got a minimum wage, but the only way you made any
money was through commission and what they called SPIFs (special per-
formance incentive fund). SPIFs were incentives you received for selling
certain items. Sell a cellphone, you got a SPIF. You also got SPIFs for selling
service plans. In my opinion, our service plans were frequently good value
— particularly for certain items.

Service plans were also the one thing I could sell and sell well. I was
consistently in the top five or six in the district for service plan sales. The
reason was simple. I thought it was important, and as a result, I made it
part of the process.

Most people wouldn’t mention the service plan. They would focus
on the phone itself — what features it had and, more importantly, what it
didn’t have that would make you buy the next model up. They’d come up
to the cash register and after scanning the item, the point-of-sale system
would pop up a little alert asking if the customer wanted the service plan.

They’d look up from the screen and ask “Do you want to buy a service
plan for that? It’s $8 for two years and covers any issues.”

The customer wouldn’t buy. Why would they? This plan hadn’t been
mentioned at all during the sales conversation and most customers

By Tim Kadlec CHAPTER 4

123

recognized that the salesperson was asking merely because of a prompt
from the register. To the customer, this was clearly not an important thing
to worry about. By not discussing the plan throughout, the salespeople
downplayed its importance.

My process was different. A customer would walk in asking for a cord-
less phone. I would say, “Sure, we have plenty of cordless phones and we
also offer really good service plans to protect them. Let’s go look at them
and see if we can find one that works for you.”

While showing them the phones and discussing the features, I would
again mention the plan. “The phone itself should last for a while, but the
batteries typically wear out after about a year and half. The service plan
does include a free battery each year though, so you’ll be safe there.”

At the counter, as I scanned the phone they had picked out — and
before the system got a chance to alert me — I would ask if they wanted
to get the service plan. This worked for 85–90% of the people who bought
phones from me.

There was no magic trick involved, no subterfuge, no attempt to fool
anyone. I believed the service plan was a good idea and thought it offered
value. I made sure that the customer knew I felt that way, before they
bought the item. The result was that they understood this. They believed I
was suggesting the plan not because some system prompted me or be-
cause I was told to do this by someone else — I was doing it because I felt it
was important.

When we leave our discussion of performance to the end of the conver-
sation, when we mention it in passing, we underplay its importance to the
project. By not bringing it up throughout the process, we are saying that
we don’t think it is important enough to discuss further. We’re saying it’s
something that hasn’t much value.

If we want to start correcting the course of performance on the Web,
we must make performance part of the discussion from the very start of
the process, and we must be concrete about it. One of the best ways to do
that is to set a performance budget.

124

CHAPTER 4 Culture of Performance

Setting a Performance Budget
Brad Frost wrote a blog post about the importance of discussing performance
early on in a projects life cycle9 and he suggested mentioning performance in
project documents:

Statements of work, project proposals and design briefs should explicitly and
repeatedly call out performance as a primary goal. “The goal of this project is to
create a stunning, flexible, lightning-fast experience…”

He is, of course, correct.
Often, though, phrases like “lightning-fast” will prove not to be con-

crete enough. I’ve heard many people in the early stages of a project say
they want their site to be fast, only to see it turn into another one of those
things that would be nice to fix eventually.

One thing that I’ve found works well is setting a performance budget.
A performance budget is exactly what it sounds like. You set a budget for
your page and do not allow the page to exceed that number.

It’s a good idea to start with a load time, but the budget you set and
refer to will hold more weight if you can specify the actual page weight or
request count. Referencing a particular page weight or number of requests
instead of just a specific load time makes the conversation easier.

For example, if your budget states that the site must load in less than
five seconds on a 3G network and you’re trying to decide whether or not to
add a carousel to the page, you must first translate those five seconds into
a weight or request count to be able to make that determination up front.

Request count and page weight is also a relatively easy thing to rein-
force in your build process, allowing you to rigidly enforce the budget if
you so choose.

9 http://bradfrostweb.com/blog/post/performance-as-design/

By Tim Kadlec CHAPTER 4

125

Arriving at a Budget
Knowing that performance affects just about every important business
metric, the ideal scenario is to make your site as fast as possible. The most
well-known response time targets have been around since 1968, and were
popularized by Jakob Neilsen in 199310:

•	 0.1 seconds: The limit for users to feel that the system reacts instan-
taneously.

•	 1.0 second: The limit for uninterrupted flow of thought. The users
notice the delay, but they still feel direct interaction.

•	 10 seconds: The limit for keeping user attention. Anything longer
than this and the users will either give up or go off to do something
else while they wait.

Ideally, your site breaks that one second time barrier. Sometimes,
though, that’s not realistic — whether because of the type of site you’re
building, the budget or other external constraints. Armed with knowledge
of the importance of performance, there are two additional criteria to con-
sider when arriving at your ideal budget:

1.	 Current performance of your site
First, audit your existing site to see how it currently performs under
different network conditions. Record load times for these benchmarks,
as well as the number of HTTP requests and overall page weight.

2.	 Current performance of your competitors sites
Next, take a look at how other sites in your industry perform. For par-
ticularly important competitors, do the same sort of analysis that you
did for your own site. You can also get a good overview of how sites

10 http://smashed.by/limits	

126

CHAPTER 4 Culture of Performance

within your industry perform by referring to the Keynote performance
indices11 which break down analysis by industry type.

Now that you know how your site performs, as well as how your com-
petitors fare, you can make an informed decision about what budget to
settle on using Weber’s law and the 20% rule.

The 20% Rule
German physician E.H. Weber observed that the noticeable difference be-
tween two properties varies in proportion to the size of the properties. For
example, it’s easier to tell the difference between one hour and two hours
than it is to tell the difference between one minute and two minutes.

Applying this to computer interaction, Steven C. Seow came up with
the 20% rule in his book, Designing and Engineering Time: The Psychology of
Time Perception12. Put simply, to create a noticeable improvement in perfor-
mance as perceived by your visitors, you need to improve performance by
at least 20%.

If you apply this rule to the metrics you’ve found for your current site,
you can come up with the bare minimum of improvement. If your page
loads in 10 seconds, making it load in 8 seconds or less would provide a
noticeable improvement; 9 seconds, much less so.

Applying the 20% rule to the metrics from your competitors can help
you determine at what point you would provide a large enough improve-
ment in performance to truly distinguish your site as faster.

For example, if your competitor’s site loads in 5 seconds, you want to
get your site under 4 seconds at the very least.

The ultimate goal is to make the experience as fast as possible for your
visitors, but the 20% rule can provide a good starting point.

11 http://www.keynote.com/keynote_competitive_research/index.html
12 http://www.engineeringtime.com

By Tim Kadlec CHAPTER 4

127

Impact of a Performance Budget
Let’s take a look at the impact on your decision making of having a perfor-
mance budget in place.

Your team is debating whether it makes sense to add a content slider to
display more products on the home page, or to display five items by default
and provide a link to browse for more. The cases for each direction could
easily be made, but you’ve already decided your home page can weigh no
more than 400KB and its already at 350KB. The script and extra content
would push the weight well above that number. At this point, because you
have a performance budget to refer to, you have three options.

1.	 You could choose to optimize an existing feature or asset on the page.
If you can decrease the weight of another feature (say an image that
hasn’t yet been compressed or a script that could be simplified) enough
to allow the slider to be added without exceeding the budget, your team
can choose to add it to the page.

2.	 You can remove an existing feature or asset on the page. Maybe you
really want that content slider, but you can ditch the big promotional
image. If you can do that and stay under budget, the content slider gets
the go-ahead.

3.	 You can choose not to add the slider. If nothing can be optimized to
a high enough degree, and you decide that the slider isn’t important
enough to push out another feature from the home page, then you
don’t add it.

Without the budget in place, you would have no framework for this
discussion. Since no performance base has been set, making the case that
the content slider adds too much weight to the page is difficult. When you
have this baseline set, it simplifies the discussion.

128

CHAPTER 4 Culture of Performance

Clearleft, a Web design agency in Brighton, UK, wrote about their expe-
rience using a performance budget13 and came to this same conclusion:

The important point is to look at every decision, right through the design/
build process, as something that has consequence. Having a pre-defined ‘bud-
get’ is a clear, tangible way to frame decisions about what can and can’t be
included, and at a suitably early stage in the project. It can also potentially
provide some justification to the client about why certain things have been
omitted (or rather, swapped out for something else).

Setting a budget provides this justification and framework for dis-
cussion, and continues to do so throughout the life cycle of the site. Keep
enforcing the budget after launch as a way of avoiding the slow creep of
bloat that tends to manifest itself.

Be Realistic
The entire point of the performance budget is to provide a very tangible
point of comparison, so be explicit about it. Something like “a maximum of
500KB in size and no more than 15 HTTP requests” is what you’re aiming for.

And be realistic about it. Setting a budget that is either unhelpfully
high (“No more than 5MB!”) or unrealistically low (“No more than 10KB!”)
does you absolutely no good. Be strict, but understanding of reality.

It’s also worth noting that third-party services like ads, while essential
for businesses, can single-handedly destroy a performance budget.

For those scenarios, it makes sense to categorize the assets on the page.
Developers at the Guardian newspaper came up with three categories14:

13 http://smashed.by/responsive-budget
14 http://smashed.by/re-page-load

By Tim Kadlec CHAPTER 4

129

•	 Content
•	 Enhancement
•	 Leftovers

Content is the meat and potatoes: it’s why the user visits your site. The
enhancements are the dressing: the JavaScript and styling that make the
experience nicer. And the leftovers, well, that’s the scraps you give to the
dog underneath the table, the stuff the user doesn’t care about. Those are
the things that should come last in the load process; give the user what
they want first, and then load in the excess after the fact.

Until ad networks and other services get with the program and start
creating faster services, you may need to have your budget apply to the
content and enhancements only. Of course that doesn’t mean you can’t
be diligent about limiting those third-party performance drains. It sim-
ply means we sometimes have to concede that certain pieces of the page
remain out of our control.

A Few Words of Caution
Performance budgets are an excellent way to ensure performance remains
part of the discussion. But, as we saw earlier, the budget must be set early
on. If you get halfway through a project before setting a budget, you are
going to have a difficult time convincing anyone it is important enough
to pay attention to. Not to mention that by then, there may already be
approved visuals or features that immediately crush whatever budget you
may have needed to set.

The other important thing to note: when you set the budget, and as you
enforce it, you should already know what content needs to be on the page.
A performance budget is meant to help you decide how to display your con-
tent, not what content to display. Removing important content from a page
is not a performance strategy.

130

CHAPTER 4 Culture of Performance

Embrace the Pain
They say you can’t understand someone until you’ve walked a mile in their
shoes. Until you’ve experienced what they’ve experienced — the highs and
the lows — it can be hard to truly empathize. This is especially the case
with performance.

Recently, a big company launched a re-
designed site. It was beautiful. Lovely im-
agery, slick interactions, excellent typogra-
phy; no doubt about it, this was a beautiful
site. But, like many websites, it was hiding
a secret. Underneath that beautiful, glossy
finish was a horribly bloated site.

Firing up the site over a fast, wired
connection, it seemed fine. It loaded pretty
quickly, certainly not slow enough to
cause any worry. But the same site, loaded
on a 3G network suddenly took over 90
seconds to load. A minute and a half of
staring at a white screen and a loading bar.
There is no way this site would’ve made it live if the people designing and
building it had experienced this during testing.

In addition to getting into real code as soon as possible, we need to
embrace the pain of slow networks during our testing. There are a number
of excellent tools available to help simulate different networks with differ-
ent latency and bandwidth constraints. If you’re on a Mac running OS X
10.7 or later, you can use the Network Conditioner. There is also Slowy15, a
dirt cheap app that sits in your task bar, making it easy to switch between
different network simulations.

15 http://slowyapp.com/

Tools like Charles offer the ability to
throttle your connection to see how
it feels to navigate your site over a

poor network.

By Tim Kadlec CHAPTER 4

131

You could also opt for a full-blown Web debugging proxy tool, like
Charles16 or Fiddler17. Both are available for Mac OS X and Windows and
offer a wide range of additional features beyond network simulation.

Frequent Pain
I mentioned network simulation to an engineer at a company that takes
performance very seriously, and he joked that he might go back and force
his team to write code for the next week over a poor connection.

A full week is probably a little excessive, but consider making network
simulation part of your weekly, or even daily, process. For a couple of hours
one day a week, have everyone on your team use a simulated network con-
nection. It won’t take too long before everyone will become painfully aware
of any performance bottlenecks and start working to fix them.

Get Real
I’m not about to write a lengthy entreaty about how flawed designing web-
sites in software like Photoshop is. I think the more it gets discussed, the
more we realize that, as with any tool, Photoshop has things it does well
and things it does poorly. We’ll never fully get rid of image manipulation
software in the design process and, frankly, that shouldn’t be the goal. But
it’s important to consider what shortcomings it has so that our process can
take them into account.

One valid concern with spending too much time in Photoshop versus
the browser is you see a picture of a website under ideal situations and at
a specific, controlled size. This is frequently cited as a problem for respon-
sive design, but it is also a performance issue. As Brad Frost has said, “You
can’t mock up performance in Photoshop.”18

16 http://www.charlesproxy.com/
17 http://fiddler2.com/
18 http://smashed.by/bf-tweet

132

CHAPTER 4 Culture of Performance

Getting into the browser early on can help you catch potential perfor-
mance bumps before they have a chance to get completely out of control.
That mock-up where every element has a semi-transparent shadow may
look beautiful, but fire it up on a mobile device and you may notice scroll-
ing is an arduous task. Catching that early allows you to consider other
solutions.

To be clear, those other solutions needn’t be devoid of those kinds of
embellishments altogether. Performant sites needn’t be visually plain or
boring. There’s a series of trade-offs to be made by weighing the benefits
and the costs. Performance and visual aesthetics are both important —
your site needs to balance the two. Getting real — real code on real
devices — as early as possible will help you to maintain that balance.

One of the best ways to allow you to get into the browser early is to
think about your site in terms of reusable components. Have a question
about how that fancy navigation embellishment is going to perform on
different devices? Jump into the browser, develop that component and take
it for a test run.

There are a number of ways to do this. My current favorite is Brad
Frost’s Atomic Web Design approach19, which breaks website components
down into their smallest forms allowing you to build, say, a footnote, with-
out committing to building the rest of the page as well. This allows you
to quickly see how different pieces may work at different resolutions and
with different input methods.

The specific tool you use is less important than the end result: being
able to quickly test bits and pieces to catch performance issues before
you’re too far down the road to turn back.

Make it Apparent
Another way to encourage thinking about performance optimization
throughout a project is to make key performance metrics of the site (such

19 http://bradfrostweb.com/blog/post/atomic-web-design/

By Tim Kadlec CHAPTER 4

133

as load time) visible on every page load. Etsy, long known for its incredible
dedication to performance, uses this approach, an idea originally discussed
by Jeff Atwood20.

Etsy displays the render time (calculated by the server) on the page,
but with the introduction of the navigation timing API, you can easily
include page load time with a couple lines of simple JavaScript. The snip-
pet below would output the perceived load time to the console, but you
could easily modify it to output to an element in your document to make
it easily visible.

function getLoadTime() {
	 var now = new Date().getTime();

	 // Get the performance object
 	 window.performance = window.performance || window.mozPerformance
|| window.msPerformance || window.webkitPerformance || {};
 	 var timing = performance.timing || {};
	 if (timing) {
		 var load_time = now - timing.navigationStart;	
		 console.log('Load time: ' + load_time + 'ms');
	 }
}

window.onload = function() {
	 getLoadTime();
}

It may seem like a minor thing, but displaying the load time for every
page in the top-right corner can have a big impact on how your team views
performance optimization. Load time becomes a point of comparison and
conversation — and if a page loads slowly, that fact will be staring them
straight in the face each time they work on it.

20 http://smashed.by/perf-feature

134

CHAPTER 4 Culture of Performance

A Light Base
“Be prepared.” That’s the Boy Scout motto. When I was growing up, I took
that to heart. Whenever I was going on a trip, I would pack everything I
could. My default state was to make sure I had everything with me, in case
I needed it.

We often take a similar approach online. Before anything is even built,
many projects will include a JavaScript framework, just in case. Before
any analysis is done to determine whether one is needed, a CSS frame-
work might get loaded. Boilerplates, meant to provide a starting point
from which you can trim down, are left as is. Image carousels are added at
random as a way to get more stuff onto a page. These projects are like the
proverbial pocketknife — everything is there, just in case we need it.

The opposite should be true: everything that gets added to a page —
each script, each image, every line of code — must be justified. It needs to
serve a purpose. We know this from a visual design perspective; any de-
signer worth their salt will tell you why the decision was made to include
this image or that icon.

Performance should inform that discussion as well. Not only should
an image serve a purpose, but its value should outweigh its cost. No free
lunch and all that.

As for frameworks and boilerplates: there’s nothing wrong with them.
They’re incredibly valuable tools when applied with care and used appro-
priately. But they are not without their own faults and there is cause for
concern when they are the base from which we start, instead of tools we
carefully add when needed.

If we want to reverse the troublesome trend of increasingly bloated
websites we need to start with better defaults and be judicious about ev-
erything we put on our sites.

It’s been shown time and time again that people love to stick with the
default options. One frequently cited study deals with default options for

By Tim Kadlec CHAPTER 4

135

organ donors21 (PDF). In the United States, where the default option is not
to be an organ donor, 28% of people consent to be organ donors. Compare
that with Belgium, where the default option is to consent to being an organ
donor. There, 98% of people are organ donors.

Bringing it closer to home, Jared Spool conducted an experiment22 to
see how many people changed any of the 150+ (at the time) settings avail-
able to them in Microsoft Word.

What we found was really interesting. Less than 5% of the users we surveyed
had changed any settings at all. More than 95% had kept the settings in the
exact configuration that the program installed in.

Perhaps even more interesting, was the reason they didn’t change
these settings. One setting turned off by default was Word’s autosaving
functionality. So in the default settings, the option to save a document as
a person was working on it was disabled. When people were asked why
they didn’t change the setting, they revealed that they assumed there was a
reason it was off.

Of course, this mean[t] that 95% of the users were running with autosave turned
off. When we interviewed a sample of them, they all told us the same thing:
They assumed Microsoft had delivered it turned off for a reason, therefore
who were they to set it otherwise. “Microsoft must know what they are doing,”
several of the participants told us.

This thinking about defaults creeps its way into how we use our devel-
opment tools as well. Much of the weight of these tools is there as a result
of solving very specific issues that you may or may not run into. As Spool
and many before him have discovered, when they’re baked in by default

21 http://www.dangoldstein.com/papers/DefaultsScience.pdf
22 http://www.uie.com/brainsparks/2011/09/14/do-users-change-their-settings/

136

CHAPTER 4 Culture of Performance

it’s unlikely most developers take any time to justify the options’ existence
based on project needs — even when customization tools are available. In-
stead, we load this additional baggage into our sites by default. Just in case.

The Filament Group’s responsive carousel23 is one small example of a
tool that takes the exact opposite approach. Modular, with smart defaults.
They have a default
script that gets the
job done, and then
separate scripts that
extend the behavior
of the carousel in
different ways. Your
default option is to
include only what is
absolutely necessary
— you determine
what else, if anything,
needs to be included.
Christian Heilmann
covers this very well
in the previous chap-
ter, “The Vanilla Web
Diet.”

We need to apply this thinking to the way we approach projects in
general. Have your base template be as lean and mean as possible. Have go-
to options for certain behaviors or fixes — things you know are well-tested
and lightweight. But don’t make them part of your default. Roll them in
only as needed, if needed.

23 https://github.com/filamentgroup/responsive-carousel

ImageOptim and ImageAlpha can team up to bring the size
of your images down.

By Tim Kadlec CHAPTER 4

137

Usual and Unusual Suspects
For any item included on your page, do whatever you can to minimize its
impact on page weight and load time. Among the greatest offenders are
uncompressed images. Thankfully, they’re also one of the easiest to fix.
Image optimization can be automated into a build process, using excellent
tools such as the ImageOptim Command Line Interface24. If you don’t
have a formal build process, or the mere sight of a terminal window sends
shivers down your spine, you can just as easily use GUI-based tools such
as ImageOptim25 and ImageAlpha26 to drastically reduce the size of your
image files simply by dragging and dropping.

Social network sharing buttons are another common source of bloat.
To avoid their excessive heft by default, you can lazy-load the code for the
buttons only after the user makes it clear they want to make use of them.
The Filament Group’s SocialCount27 is an excellent example of this tech-
nique. By default, the buttons are simply CSS with a small image. When
the user takes action (for example, hovers over a button) the actual sharing
script for that network is dynamically loaded and added to the button.
While jQuery-based, the functionality it performs is simple enough that
you could easily adopt it for your own framework, or even for vanilla JavaS-
cript.

You can apply that same sort of thinking to other components on your
page that may not be as obvious to you at first glance. In his excellent
article, Deploying JavaScript Applications28, Alex Sexton talked about delaying
the load of entire sections of code until the user has taken an action that
requires that code.

The example he provided was the Hugo Boss site. If a customer clicks
on the “Write a Review” button, a modal box appears for them to rate the

24 http://jamiemason.github.io/ImageOptim-CLI/
25 http://imageoptim.com/
26 http://pngmini.com/
27 http://filamentgroup.com/lab/socialcount/
28 http://smashed.by/javascript-apps

138

CHAPTER 4 Culture of Performance

product. This button is not only far down the page, but most likely not
used very frequently. By not loading the code and assets necessary for that
modal box until some time after page load — perhaps even waiting until
the cursor is within a few hundred pixels or the button has been clicked —
there’s a nice little boost to initial page load time.

Delaying the load of the code related to that modal box until the after
initial page load could have a noticeable impact on load time.

The review button on the Hugo Boss site is far down the page,
and probably not frequently used.

By Tim Kadlec CHAPTER 4

139

For more specific techniques, be sure to read the chapters by Aaron
Gustafson and Mat Marquis (in addition to the previously mentioned
chapter by Christian Heilmann). The point being: there is a lot you can do
to quickly and easily avoid excess bloat.

If You Can’t Make It, Fake It
Executives at the Houston airport had a problem: they were getting an ex-
tremely high number of complaints about how long it took for passengers
to collect their bags at the baggage claims.29 Naturally, the first thing they
decided to do was hire more baggage handlers. The wait time fell to just
eight minutes, but the complaints persisted.

Digging deeper, as it so often does, revealed something far more inter-
esting. It turns out, the walk from the plane to the baggage claim area took
about one minute. Which meant that most people were spending seven
minutes standing and waiting at the baggage claim. If you’ve ever been to
an airport, you can understand how boring that can be.

So instead of trying to bring the wait time down any further, they
actually made the walk to the baggage claim longer. Passengers now had to
walk six times as far to get to their bags. On the surface, that sounds like a
surefire way to upset people. But the reality is that complaints plummeted.
Passengers were busy for most of the eight-minute wait, so even though it
took them just as long to get their bags, it felt faster.

There are numerous stories about the interesting way that people per-
ceive the passage of time. In New York, almost all the buttons you can push
at pedestrian crossings aren’t functional and haven’t been since the 1980s.
But many people still push them, believing it will save them a few seconds.

Disney, like many other attractions, hides the length of the waiting
lines by twisting them in a serpentine pattern and often masking some of
the line from view by strategically wrapping them around buildings. Why?

29 http://smashed.by/houston-airport

140

CHAPTER 4 Culture of Performance

Because if you can’t see the full length of the line, and you seem to be
moving, you’re less likely to become frustrated. In fact, it turns out people
are happier in a longer line that moves quickly than a shorter line that
moves slowly even when the total time waited is the same.

More than the numbers, what truly matters is how a user perceives
your site. Does it feel like the site loads quickly? Do the interactions feel
immediate and snappy, or delayed and sluggish? We can apply the same
sort of thinking to the sites and applications we build. In fact, some very
successful apps have done that.

At the end of 2011, Mike Krieger, co-founder of Instagram, gave a pre-
sentation called Secrets to Lightning-Fast Mobile Design30. During his talk, he
focused on three secrets:

1.	 Perform actions optimistically
2.	 Adaptively preload content
3.	 Move bits when no one’s watching

It’s worth exploring each in a little more detail.

Perform Actions Optimistically
Let’s say a visitor to your site is going to leave a comment. To do so, they
click a button that submits the form. When they do, two things happen.
The form, using AJAX, sends a request to the server and a loading graphic
appears to tell the user their submission is in process. When the script
hears back from the server that the task completed successfully, it updates
the page alerting the visitor.

This is the way it’s typically done, but maybe it’s not the best way. That
request, particularly on a high-latency network, can take several hundred
milliseconds — a very noticeable delay for the person trying to submit their
comment.

30 http://smashed.by/fast-mobile

By Tim Kadlec CHAPTER 4

141

Instagram31 has taken a different approach to avoid that delay. As soon
as the person submits the comment, it appears on the page. The request
happens in the background. To the person submitting the comment, it
looks like it happens instantaneously. In reality, it takes as long to process
as any other form online — but the perception is dramatically improved.

Mike called this “performing actions optimistically,” but others have
called it asynchronous UI. The idea is the same: ditch the loading state and
let the user feel things are moving more quickly. If the task fails, then gen-
tly alert them somehow after the fact and let them easily resubmit.

Another great example is Polar32, the popular polling application. When
you create a poll, it shows up instantly in your feed. Again, there’s some
clever asynchronous UI at work. What actually happens when you create a
new poll is that Polar creates a temporary local copy of the poll and pushes
it to the top of your feed. The temporary copy is fully functional — you can

31 http://instagram.com/
32 http://www.polarb.com/

By creating a temporary local copy that is fully functional, users of
Polar get immediate feedback that their poll has been submitted and
avoid any performance delays that may happen in the background.

142

CHAPTER 4 Culture of Performance

vote and comment on it and those votes and comments will get pushed to
the actual poll once it’s been uploaded.

In the background, Polar uploads the temporary copy to its servers. If
that fails, they try again a few times before finally admitting defeat to the
user. The result, once again, is that the process feels incredibly fast.

It’s important to note that for both Instagram and Polar, these solutions
are not exactly ideal from an engineering perspective: there’s quite a bit
more complexity involved. But the trade-off is that the users get a system
that feels instantaneous.

Adaptively Preload Content
The next secret is to adaptively preload content. This doesn’t mean blindly
load anything and everything you can before it’s needed. Instead, you need
to consider what you know about user behavior and selectively load based
on that. Instagram uses this technique for their photo feeds.

At first, they loaded everything in the order it appears on the page, as
the browser does. But this wasn’t always the best approach because that’s
not necessarily a correct ranking of importance for the user. Instead,
Instagram chose to reprioritize loading based on where the user ended up
scrolling to, using their interests to prioritize what got loaded first.

Move Bits When No One is Watching
Have you ever seen a magician perform? The tricks they do are based on
illusion and distraction. Grand gestures and flashy effects misdirect you
from the sleight of hand taking place right in front of you.

You can perform the same sort of trick to provide an improved expe-
rience for your visitors. In his presentation, Mike demonstrated one way
you can apply this sort of approach.

When users sign up for Instagram, they are asked to fill out some basic
details. While this is going on, in the background Instagram starts looking
for recommendations on who to follow.

By Tim Kadlec CHAPTER 4

143

The result is that by the time the user submits the form with their ac-
count information, recommendations are presented nearly instantly.

Instagram uses the same trick on image uploads. After you select the
filter for your image, you are able to choose options such as where to share
the image, or to geotag it with a location. All the while, Instagram is already
uploading the image in the background to reduce the time users have to
wait at the end of the process.

Worth noting is that in both of the cases above, there’s a very high like-
lihood that the person will end up moving forward to those next pages. It’s
a slippery slope between moving bits while no one is watching and using
up everyone’s bandwidth and data for pages they may never view and as-
sets they may never need. But if there is a high likelihood that your visitor
will end up needing these assets at some point, it makes sense to do a little
precaching to stay a step ahead.

Beyond Technical
These are all things that are not necessarily obvious, nor are they strict-
ly technical solutions. They require careful consideration about the user
experience and a solid understanding of how users interact with an app.
They also require a little bit of elbow grease, but the end result is well
worth it. Luke Wroblewski (one of the brains behind Polar)33 explained it
well:

If making temporary versions of polls fully functional and using multiple
background processes to make sure uploads are successful sounds like a lot of
extra effort to make things feel fast—it is. But the end result is worth it, when
people create something on Polar it seems instantaneous. And in this case,
perception beats reality.

33 http://smashed.by/luke

144

CHAPTER 4 Culture of Performance

Task Completion
Each of the principles above are ultimately about reducing the amount of
time it takes for the user to complete a given task. The importance of task
completion can’t be overlooked. There’s the classic study conducted by UIE
back in 200134 on the impact of the time taken to complete a task on a vis-
itor’s perception of performance. Researchers sat people down in front of
ten different sites using a 56kpbs modem and gave them tasks to complete.

The surprise came when people rated the slowest site (Amazon.com)
as one of the fastest when asked. The reason was that Amazon.com allowed
people to complete their tasks in fewer steps.

Ultimately, this is what it comes down to: how fast the user feels the
site is. You can get a long way by implementing the performance tech-
niques so frequently cited for developers, but to influence how your users
feel about the performance of your site, performance optimization has to
involve the designer.

If you’re a designer, consider yourself the first line of defense. Yes,
ultimately the developer will have to make many of the specific optimiza-
tions, but you are the person who gets to set the stage. You must make the
decisions early on that will either encourage the site to be as fast as it is
beautiful, or encourage it to be beautiful, yet bloated.

Conclusion
Good performance doesn’t happen by chance: it must be planned for and
carefully designed. To avoid contributing to the ever increasing obesity of
the Web, performance must become baked into the process from the very
beginning of the process.

Taking steps like setting a performance budget, simulating poor con-
nection speeds, and getting onto real browsers and devices as early as pos-
sible will help to make everyone involved more aware of the performance
trade-offs.

34 http://www.uie.com/articles/download_time/

By Tim Kadlec CHAPTER 4

145

This is no longer something we can afford to offload to developers.
Designers get to set the stage early on for how a site will perform. Through
careful consideration, they can ensure that the site will look and feel fast.

The Web doesn’t have to get heavier. We can correct its course by pri-
oritizing performance and respecting the people who use our sites. With
a little care, sites can be both beautiful and fast. Let’s give the people who
visit our sites the fast experience they so desperately want.

ABOUT THE AUTHOR
Tim Kadlec is an independent Web developer with a
propensity for efficient, standards-based front-end
development. His diverse background working with
small companies to large publishers and industrial
corporations has allowed him to see how standards-
based development can be effectively utilized for
business of all sizes. He writes about a variety of
topics at timkadlec.com and tweets as @tkadlec.

3. Robust, Responsible, Responsive Web Design

Chapter

Robust, Responsible,
Responsive Web Design

Written by Mat Marquis

05

148

CHAPTER 5 Robust, Responsible, Responsive Web Design

By Mat Marquis CHAPTER 5

149

Chapter FIVE · by MAT MARQUIS

Robust, Responsible,
Responsive Web Design

esponsive web design is starting to get a reputation —
and not the kind of reputation that it rightfully deserves. When I
say that I’m here to show you some of the ways we can go about

building a lean, feature-rich and highly accessible responsive website that
looks and works great for any user of any browsing context, I’m certain
I’ve earned myself a few eye-rolls right out of the gate — and I understand
that. Since Ethan Marcotte coined the term a few years ago, we’ve all been
bombarded by sensational blog posts about the past, present or future
failure of responsive Web design as a methodology: it can’t do this and
it doesn’t do enough about that; it’s useless without a certain script or
server-side component. Responsive Web design has needed saving more
times than Christmas, if both blogs and television holiday specials are to
be believed.

The most common death knell we’ve heard ringing out — lately,
anyway — is that every page of a responsive site is fated to weigh in at
a couple dozen megabytes and there isn’t a single thing that any of us
can do about it. There seems to be plenty of evidence to back this up, too.

R

150

CHAPTER 5 Robust, Responsible, Responsive Web Design

Oakley recently launched a responsive website with an 85 MB index
page1, complete with an up-front loading screen. The landing pages for the
primary navigation items on time.com are in the ballpark of 3MB each.
I’m glad to see so many people growing uneasy about potential bandwidth
issues with responsive websites, but we have to be careful about where
we direct our blame: we can’t hold responsive Web design responsible for
mistakes that we’ve been making.

Our Faulty Hammers
In another life, years and years ago, I was a carpenter. As I was just
starting out, I worked with two guys who had both been at it for more
than twenty years apiece. Like so many bloggers, I too had concerns about
the tools we were using — concerns the other guys didn’t seem to have,
oddly enough. All of their dented and scarred equipment was brand new to
me: heavy, awkward, impossible to manage. The hammer I was given, in
particular. I was certain that it was defective, weighing as much as it did.

Now, as simple a device as it is, a hammer allows a skilled craftsman
to do an unbelievable amount of work: framing an entire house, shingling
a roof, building furniture, and — of course — opening beer bottles. When
I was holding mine, though, it was only good for hitting my thumbs,
leaving holes in walls, and sending nails careening off a roof and onto a
homeowner’s brand new car. Opening beer bottles it could do well enough,
as I discovered soon after the chipped Lexus incident.

Our early forays into responsive Web design aren’t much different
from my early days of carpentry. RWD is a simple tool and it’s brand
new to us, though the techniques that it encompasses — a percentage-
based grid, media queries and flexible media — aren’t particularly new
themselves. In the right hands, it can accomplish something incredible: a
layout that seems as though it were tailor-made to suit any display on any
device, including the ones we can’t predict. Granted, we can make mistakes

1 http://moto.oakley.com/	

By Mat Marquis CHAPTER 5

151

with it, too. Those hulking, resource-hungry websites aren’t responsive
Web design’s fault any more than a few dozen bent nails could be blamed
on a faulty hammer. This trend is on us, and you don’t see any carpenters
writing blog posts about how hammers are a failed methodology because
of the times they dropped one on their feet. We can do better than blaming
our tools for our mistakes.

Presumptive Enhancement
We can’t be faulted too much. You and I probably have it pretty easy, from a
browsing perspective. We’re developers — we have fast computers and band-
width to spare. I’m not certain I can breathe air that doesn’t have Wi-Fi in it.

That’s our privileged context, though; that’s what we’re used to. It’s
comfortable. We assume high bandwidth and stable networks, because
that’s practically a given for us. We can safely assume that sending
out a request will result in something being sent back, outside of the
occasional subway tunnel. Those of us who build the Web have it the
easiest on the Web, and perhaps as a result the average Web page is now
roughly 1.4 MB2.

If you’ve only ever experienced the Web by way of an unreliable mobile
connection, pages like these are more than just a minor inconvenience:
they’re pages you might not be able to use at all. These pages are a part of
the Web that isn’t for you. Pages like these are evidence that we’re building
from a place of privilege. While I’m certain it isn’t anyone’s intent, what
we’ve been doing lately is building a Web for us.

[...] in the interwoven space-time of the web, context is no longer just about
the here and now. Instead, context refers to the physical, digital, and social
structures that surround the point of use.	

 — Cennydd Bowles, “Designing with context3”, Feb 16, 2013

2 http://smashed.by/stats
3 http://smashed.by/context

152

CHAPTER 5 Robust, Responsible, Responsive Web Design

Universal access is the fundamental underlying truth of the Web.
Building massive, resource-heavy sites means excluding millions of users
in developing countries that only know the Web by way of feature phones
or slightly better — users paying for every kilobyte they consume; users
who already have to keep tabs on which sites they need to avoid day to day
because of the cost of visiting them. Not some nebulous bandwidth cost,
but actual economic cost.

The exclusion of these users has become something of a self-fulfilling
prophecy, with some developers claiming that the lack of traffic from areas
with limited bandwidth makes optimization unnecessary. An unoptimized
site is unlikely to see traffic from areas with limited bandwidth because the
site isn’t optimized.

Late last year, Chris Zacharias set out to reduce the size of YouTube’s
1.2 megabyte player pages, aiming to bring them below 100KB, in a project
he code-named “Feather.” In reducing the player page to 98KB and a mere
12 requests, he actually saw a sharp increase in the page’s average latency.
When this increased latency was plotted geographically, it was revealed
that entire populations were now able to use the service despite their
slower connections. A page that would have previously been too costly to
render — and taken an average of twenty minutes — could now be loaded
in just a few minutes.

[...] entire populations of people simply could not use YouTube because it took
too long to see anything. Under Feather, despite it taking over two minutes
to get to the first frame of video, watching a video actually became a real
possibility. Over the week, word of Feather had spread in these areas and our
numbers were completely skewed as a result. Large numbers of people who
were previously unable to use YouTube before were suddenly able to.4

— Chris Zacharias, “Page Weight Matters”, Dec 21, 2012

4 http://smashed.by/weight

By Mat Marquis CHAPTER 5

153

Progressive Enhancement
Responsive Web design is, in a sense, a natural extension of progressive
enhancement. Responsive Web design and progressive enhancement
both aim to ensure a usable experience for all users, regardless of their
browsing context. RWD is concerned more with providing users with
a natural-feeling layout and presentation for accessing content, and
progressive enhancement aims to ensure access to that content regardless
of a browser’s features and capabilities. We often see the two concepts
conflated — a rare bit of Web development confusion that ends up working
in everyone’s favor. To many, responsive Web design extends beyond
simply a flexible layout tailored by media queries, and includes such
concerns as the ever-fluctuating landscape of mobile browser features,
offline experiences, and network performance. These concerns are the
realm of progressive enhancement for sure, but it’s a blurring of lines that
I’m glad to see — the kind that only serves to highlight potential issues
that might inhibit users’ access to the sites we build, and keep those issues
at the front of our minds.

The foundation of progressive enhancement is to think in terms of an
element’s inherent meaning: what is the best way to express this widget in
markup alone? How can we represent the intention of an element in a way
that works for everyone, and then build up from there? At the core of every
jQuery Mobile widget is markup that’s meaningful regardless of JavaScript
or CSS. The range slider5, for example, is powered by a number input, which
degrades to a text input in browsers unfamiliar with the relatively new
number input. In JavaScript-capable environments, that input is enhanced
to a sliding control. Whether a user receives the enhanced or the basic
experience, they’ll be able to input their data. When you apply this principle
to an entire site, you build a site that makes sense — one that’s usable —
before layering your JavaScript enhancements over that.

5 http://smashed.by/jquerysliders

154

CHAPTER 5 Robust, Responsible, Responsive Web Design

It’s not hard to find figures about the number of users that have
thrown the sparking knife-switch buried in their browser preferences
and disabled JavaScript completely. As you might have guessed, it’s
fairly rare — and those figures are usually accompanied by a call to
abandon progressive enhancement and cater only to the highest common
denominator. But support on the Web is rarely a binary thing — even if we
were to assume that a very low percentage of our users will have JavaScript
disabled wholesale, relying on JavaScript for the core functionality of a site
introduces a tremendous point of failure.

In chapter seven, Aaron Gustafson will discuss some of the situations
where JavaScript might not be readily available to your users, but this point
bears repeating. I don’t have to tell you guys how atrocious the code is in
most of those third-party share widgets or advertisements. What happens
when your user clicks on something while waiting for a megabyte of the
“Like” button to download? What happens when one of your ad tags is so
catastrophically broken that the browser gives up on JavaScript altogether?
Will your site function at all?

Saying that everyone has JavaScript enabled isn’t much more than
an excuse for developer convenience — it doesn’t improve the users’
experiences, just ours. Even if we could assume that a site that completely
relies on JavaScript will work for every user, we’re still not doing them any
favors. We’re still introducing the potential for a user to find themselves
staring at an indefinite loading GIF or an empty page — frustrating things
we’ve all seen plenty of times, even here, with fast and reliable internet
connections. I’ve personally seen a number of otherwise brilliantly
constructed sites time out or display a blank page as a result of an ad-
blocking browser plugin: a single point of failure that halts the execution
of every other script on the page, rendering the entire site unusable.

Granted, this is little more than an inconvenience for you and me.
We can safely pinpoint where a problem like that comes from and work
around it. For less tech-savvy users, what might only be an inconvenience
for us could mean a complete loss of access to a page or an entire site.

By Mat Marquis CHAPTER 5

155

Access is Vital
The Boston Marathon bombing took place on April 15, 2013, and like many
people, I turned to the Boston Globe site throughout the day to find out what
was going on around me — the reasons behind the constant sirens — and
for reassurance that the blasts I heard all day were controlled detonations
carried out by the police. Suffice to say, reliable access to BostonGlobe.com
became very, very important for a huge number of people.

Given the tremendous initial surge and the sustained traffic
throughout the day, and despite the tremendous efforts of the Globe’s
dev and ops teams, it’s easy to understand how their servers started
experiencing some issues. At peak traffic their content delivery network
gave out completely, resulting in a site with no external assets: no images,
no CSS, and no JavaScript.

I’m certain that more than a few of you just winced, but it wasn’t the
disaster you might be envisioning. The site wasn’t as pretty as it could
have been, true, but it worked just fine. Had the Globe relied entirely on
JavaScript for rendering or navigation, or if the scripts and styles weren’t
built on a foundation of progressive enhancement, tens of thousands of
understandably uneasy users would have been left at the mercy of their
search engines for news.

We’ll be talking about progressive enhancement as it relates to
responsive Web design for the remainder of this chapter, but not strictly
in the ways you might have read about it in the past. For us, it won’t
be a matter of simply adding functionality in unobtrusive ways, but
applying that same philosophy to how we load a site’s assets (JavaScript,
CSS, images, and even our markup) in a way that’s best suited to a user’s
context. We’ll work towards building a responsive website that not
only looks tailor-made for any display, but delivers device- and context-
appropriate assets to match.

156

CHAPTER 5 Robust, Responsible, Responsive Web Design

Markup
In terms of our markup alone — the foundation for everything else on our
site — there’s a great deal of room for optimization. How do we deliver rich
experiences while ensuring that the most important part of a page, the
content itself, is available as soon as possible?

The simplest (though far from ideal) way to handle showing and hiding
this content would be to use display: none; and reveal the drop-down
menus when the navigation links are hovered over. But we can safely
assume that a user looking to find the scores of yesterday’s Bruins game
wouldn’t be hovering over each link in the navigation on each page of the
site. Most of this content would never be visible to the user, who would
still be left requesting all this markup — including the images, which
would still be loaded in the vast majority of browsers, even if they were
never displayed — on every single page of the site.

While we didn’t want to include all that content just in case, we also
didn’t want to limit the user at certain breakpoints, or make assumptions
based on the users’ context. The drop-downs are a useful addition to the
site, and worth keeping.

On hovering over the links in the primary navigation, BostonGlobe.com shows a
drop-down containing featured articles, the most recent articles in that section, and

related subsections.

By Mat Marquis CHAPTER 5

157

We needed a baseline, strictly markup means of allowing a user to
opt into content on the site, which was simpler than it might sound. As
one would expect, all the links in the primary navigation take the user to
a landing page containing all the same content: featured articles, recent
articles, and navigation for each subsection. The drop-down menus are a
nice convenience, but not essential for navigating the site. It made sense
to treat these drop-down menus as enhancements, and load them via
JavaScript only as they were needed.

To lazily load other pieces of inessential content on the Globe site
without introducing any barriers to access, and inspired by the approach
we took to the drop-down menus, we developed a simple markup-driven
JavaScript pattern named AjaxInclude6. AjaxInclude enhances links by
using them to fetch a fragment of the linked content. The anchor tag
itself serves as the fallback, ensuring that users will be able to access the
underlying content whether or not JavaScript is available, but also provides
all the information our script would need to fetch the related content and
apply it to the page: the location of the document fragment to be used in
place of the link; and how that content should be injected into the current
page relative to the position of the link.

To replace the link with the injected markup:

Sports

To insert the content before the link’s position in the source:

Sports

To insert the content after to the link’s position in the source:

Sports

6 http://smashed.by/github-ajax	

158

CHAPTER 5 Robust, Responsible, Responsive Web Design

From a responsive design standpoint, this same script can help us
avoid serving all of our content and selectively hiding it, instead allowing
us to include the content only when it suits our layouts. AjaxInclude
also allows us to use a second attribute so we can qualify the content’s
inclusion above or below a certain breakpoint.

Here, we would include the referenced fragment only at viewport
widths of 30em and up:

<a href="/sports" data-append="articles/sports/fragment"
data-media="(min-width: 30em)">Sports

Starting with our site’s core content as our foundation allowed us to
make larger decisions about how and when we could load additional assets
without running the risk of leaving any users out in the cold. If all else
should fail, the site’s intent would still remain intact: no user would be left
unable to use the site. It establishes a baseline that works for everyone,
while affording us the freedom to deliver context-appropriate scripts
and styles in the same way: a functional website for all, with conditional
enhancements when appropriate.

This same reasoning extended a recent project, a site that featured an
image carousel on every page, showing apartment listings. This would
frequently mean including dozens of high-resolution images per page.
But where these carousels appeared alongside a number of other vital
pieces of information — potentially the users’ primary concerns, certainly
more so than the photographs of the listing — there was no guarantee
that the user would click through the galleries upon landing on each page.
Had we included all of the associated img tags in our markup and simply
hidden them with CSS, it would do nothing to prevent those images from
being requested. We would potentially cost our users megabytes at a time,
simply to read a few snippets of text.

In this instance we applied the same “as needed” philosophy as we
did with our AJAX navigation pattern: the initial photo is included with

By Mat Marquis CHAPTER 5

159

the first payload of the page, and the gallery script is initialized. Although
using AJAX to fetch each individual slide while the user navigated through
the gallery would end up adding a troublesome delay and harming the
overall experience, we wanted to ensure that we were still responding to
the user’s intent.

In this instance, when the user triggered the next link, we would fetch
and append all the other slides at once. This still resulted in a slight delay;
the user was presented with a loading indicator upon hitting the second
item in the slideshow while the other items were loaded. After a few
iterations, we ended up loading the first and second photos up front. When
the user clicks to the next item in the gallery — already in the markup —
the third item onward is quietly loaded behind the scenes and added to
the slideshow. By the time the user interacts with the next trigger again
just a moment later, the third slide is ready and waiting for them. The
result is massively reduced bandwidth cost for each user on the site, but a
completely seamless experience at the same time.

These kinds of optimizations are matters of finesse and refinement
of simple concepts — seemingly small steps with enormous potential
benefits for our users.

CSS
Once we have meaningful markup as our foundation and we know that we’re
ensuring a usable experience for everyone, we can make some key decisions
about how we deliver those experiences without leaving anyone out.

While working on the jQuery Mobile project, we quickly realized
that even serving our core CSS indiscriminately could introduce the
potential for a broken experience. Anyone using a feature phone or early
smartphone would be poorly equipped to deal with advanced styles, even
if we were to assume that the styles themselves would degrade gracefully.
Simply attempting to parse the style sheet itself could introduce issues on
platforms as common as Blackberry devices that are only a few years old.

160

CHAPTER 5 Robust, Responsible, Responsive Web Design

We settled on the idea of serving two different levels of enhancement
— sort of an experience breakpoint — after determining whether a browser
is capable of handling complex layouts and enhanced functionality, or
whether it’s somewhere closer to a feature phone. As daunting as that may
sound, this process turned out to be simpler than you might think. The
first step is to split up our style sheet.

The initial style sheet is a feature phone-caliber set of styles: font sizes,
block versus inline elements, a couple of solid-color backgrounds. This
style sheet gets delivered to every user. Since it’s served to everyone, we’ve
recently started using the Normalize CSS reset7 as the basis for our initial
style sheet. Rather than acting as a reset that zeroes out browser default
styles, it provides a sensible normalized set of defaults: useful to bundle
up our enhanced styles for qualified users, while serving as a reasonable
baseline for our basic styles.

The enhanced style sheet is pretty much everything else — advanced
layouts, animations, Web fonts, and so on — minified and gzipped, of
course.

What we end up with are two very different looking experiences,
granted, but not different core experiences. We’re not simply hiding
anything, even from basic users. No one is left out in the cold. A user on an
older or underpowered device will be provided with a far more usable view
of the site. For that matter, they likely aren’t expecting much in the way of
bells and whistles in the first place: the age-old question “Does my website
have to look the same in every browser?” writ large.

In the original version of Filament Group’s Enhance.js8 and early
versions of jQuery Mobile, we used a series of largely unrelated feature
tests to determine whether a device qualified for the basic or enhanced
experience. We would set the result of these tests in a cookie, and use that
variable to deliver assets throughout the user’s time on the site.

7 http://necolas.github.io/normalize.css/	
8 https://github.com/filamentgroup/EnhanceJS	

By Mat Marquis CHAPTER 5

161

Eventually we realized that the test lined up closely with support for
media queries, which is the key component in our complex layouts and a far
more relevant test. In addition, it gave us a native method for conditionally
delivering these style sheets, removing the dependency on JavaScript.

<link rel="stylesheet" href="/css/basic.css">
<link rel="stylesheet" href="/css/enhanced.css" media="only all">

Here, the basic style sheet is linked as usual. Everyone gets that. The
media="only all" attribute on the enhanced style sheet ensures that the
style sheet is only applied by browsers that understand media queries.
Of course, this means excluding older versions of IE — but we’ve given
ourselves some options there. We can still deliver our enhanced style
sheets to Internet Explorer through conditional comments, while ensuring
that versions of IE prior to the minimum version we’ve specified get
a perfectly usable basic experience. Rather than choosing a minimum
version of IE to support and leaving the site broken in earlier versions, we
simply provide earlier versions of IE with the basic experience.

<link rel="stylesheet" href="basic.css" id="basic">
<!--[if (gte IE 6) & (lte IE8)]>
	 <link rel="stylesheet" href="enhanced.css">
<![endif]-->
<!--[if (!IE) | (gte IE 9)]><!-->
	 <link rel="stylesheet" href="enhanced.css" media="only all">
<!--<![endif]-->

We serve up our enhanced CSS the old-fashioned way for IE8 and
above, while other browsers will still use the media qualified link. True,
IE8 still doesn’t know what to do with a media query, so we might include
Filament’s Respond.js9, a lightweight script that parses and translates min-
width and max-width media query support for IE 6–8.

9 https://github.com/scottjehl/Respond

162

CHAPTER 5 Robust, Responsible, Responsive Web Design

Now, we’ve already gone to the trouble of ensuring that our site
remains useful, if not ideal, in browsers that don’t receive our enhanced
styles. In this way, we’ve bought ourselves some breathing room: should
we choose not to shim media query support for vastly outdated versions
of Internet Explorer, we can change our conditional comments to only
deliver the enhanced experience to IE8 and above, or serve them a separate,
static-width style sheet. Support for older versions of Internet Explorer is
no longer a black-and-white issue; we’re no longer painting ourselves into
a corner. We support older versions of IE, for certain, just differently. It just
so happens we do so in the most painless possible way for us, and in a way
that ensures users at the mercy of archaic browsers aren’t presented with
a Jackson Pollock painting of our site. It’s hard to argue with that, from any
angle.

There is one other catch aside from old IE support, and unfortunately
one that affects all other major browsers: when we qualify our style sheets
with media attributes, they aren’t applied, but they will be requested. This
makes sense since we never know if an environment is going to change. If
an external monitor is plugged in or a window is resized, we wouldn’t want
to wait for those new style sheets to be requested. As you can see from the
figure on the next page, browsers do tend to be a bit excessive about it.

These are, unfortunately, blocking requests. Even if the style sheet
could never possibly apply to a user’s context, the page will still be
prevented from loading while the style sheet is requested, downloaded and
then ignored by the browser.

We did some experimenting with asynchronously loading applicable
style sheets in a project named eCSSential10, but found that using
JavaScript to request our style sheets meant sidestepping a number of
browser-level optimizations. For the most part, eCSSential roughly broke
even with loading CSS the old-fashioned way — better in some browsers
and worse in others — but it did introduce a dependency on JavaScript.

10 https://github.com/scottjehl/eCSSential	

By Mat Marquis CHAPTER 5

163

iOS6, Android 4.0, Chrome 24,
Firefox, IE 9, Opera 12

Opera 11

only all Downloaded Downloaded

(min-width: 9999px) Downloaded Downloaded

(min-device-width:
9999px)

Downloaded Downloaded

(min-device-
pixel-ration: 7)

Downloaded Downloaded

tv Downloaded Downloaded

handheld Downloaded Downloaded

dinosaur Downloaded No request

While eCSSential didn’t give us the definitive way forward we’d been
hoping for, it did lead to a number of bugs filed against browsers, and
conversations are taking place right now about how browsers might
asynchronously download inapplicable style sheets in an optimized, non-
blocking way.

JavaScript
The same approach we took with our CSS applies to our custom JavaScript:
we start with a basic set of scripts for everyone, and use the same test to
determine whether they get the enhanced JavaScript experience: media
query support.

The initial JavaScript payload includes: Filament’s Enhance.js11
to conditionally request scripts and style sheets; Modernizr12 as our

11 https://github.com/filamentgroup/enhance	
12 http://modernizr.com/	

 Requested media attribute table: Interestingly, somewhere between version 11 and 12, Opera
decided that it should account for me plugging my laptop into an external brachiosaurus.

164

CHAPTER 5 Robust, Responsible, Responsive Web Design

feature testing framework; and Respond.js if we’ve chosen to give IE8
the enhanced experience. These scripts are loaded in the head of the
page, since they’re either time sensitive (Respond.js) or things we need
to be ready right away in case we reference them in our other scripts
(Modernizr).

(function(win, undefined) {
 var mqSupport = "matchMedia" in win && win.matchMedia("only all").matches;
 if(!mqSupport && !respond.mediaQueriesSupported) {
 return;
 }
})(this);

This script checks whether the user’s browser supports the matchMedia
method (JavaScript’s native method of parsing media queries) and then,
just for good measure, it ensures that the same only all test that we’re
using in our CSS passes. If the native method doesn’t exist, it checks
against Respond.js’s shimmed media query support. If you’re targeting a
specific minimum version of IE for the enhanced experience, this Respond.
js test could be swapped out in favor of checking for the existence of an IE
conditional class.

(function(win, undefined){
	 /* This script assumes a conditional comment scheme along the
lines of the following:
	 <!--[if (lt IE 8)]> <html class="old-ie"> <![endif]-->
	 <!--[if (IE 8)]> <html class="ie8"> <![endif]-->
	 <!--[if (gt IE 8)|!(IE)]><!--> <html> <!--<![endif]-->
	 */
	 var mqSupport = "matchMedia" in win && win.matchMedia("only all").matches,
		 htmlClass = document.getElementsByTagName("html")[0
].getAttribute("class"),
		 ie8 = htmlClass && htmlClass.indexOf("ie8") > -1;
	 if(!enhanced && !ie8){
		 return;
	 }
})(this);

By Mat Marquis CHAPTER 5

165

The trouble is, between Enhance.js, Respond.js, our Modernizr build,
and our new enhancement test, we’ve just added four blocking requests to
the head of the page. We could chuck all of these into a single file, but that’s
likely to cause us headaches when it comes time to update any of these
libraries.

To avoid inconveniencing ourselves or burdening users with additional
requests, we’ve recently introduced the Grunt task-running framework13
to our development process. Grunt can be set to watch a directory and
concatenate your files whenever anything changes, meaning you can
keep all your libraries and custom JavaScript in separate files and work
on them as usual, but link your templates to a single automatically
generated “dist” file that’s ready for production. It will do the same for
your style sheets, allowing you to split up your enhanced CSS and organize
your development environment however you’d like, but output a single
concatenated file. Further, Grunt will minify all your JavaScript and CSS,
lint your code for errors, run your unit tests, or run any custom task you
could imagine — all done automatically, via the command line. Grunt has
very quickly become an indispensable part of our development process.

With our concatenated initial JavaScript file in place, we now have a
framework for conditionally loading files as needed, based on the user’s
context. We can asynchronously load larger JavaScript libraries, plugins
and custom scripts that apply site-wide without delaying the page load.
If we have custom scripts to add swipe interaction on touch devices, we
can feature-detect for touch events and include those scripts, and their
corresponding styles, only if they’re needed. If there are any unique parts
of the site with highly specific CSS or JS, we add a class to the body tag and
load those page-specific scripts and style sheets only when those pages are
loaded.

Remember that there will be a slight delay when loading a style sheet
using this method. Be sure to limit this approach to styles for specific

13 http://gruntjs.com/

166

CHAPTER 5 Robust, Responsible, Responsive Web Design

components in a layout rather than entire pages, or you risk presenting the
user with a flash of unstyled content.

A Little Help from the Server
These conditional requests can add up quickly on a large project: a
JavaScript framework, a few plugin libraries, scripts to add device-specific
enhancements like offline storage or touch support. While they’re no
longer running the risk of delaying a page’s core content from loading,
enough asynchronous requests will still have the potential to make a site
feel sluggish, and prevent our enhancements from being available to the
user as quickly as they might expect.

To get around this, we’re using a server-side concatenation pattern
called QuickConcat14, built to work with Enhance.js, to bundle up all our
conditional scripts and style sheets into a single request.

QuickConcat is a small PHP file that intercepts and parses requests for
comma-separated sets of scripts or style sheets, and assembles them into a
single file for delivery to the user. For example:

<script src="quickconcat.php?files=js/file1.js, js/file2.js,
js/file3.js"></script>

Or:

<link href="quickconcat.php?files=css/file1.css,css/file2.css,
css/file3.css" rel="stylesheet">

With a bit of clean-up via an .htaccess file (or the equivalent for your server
environment):

<script src="js/file1.js, js/file2.js, js/file3.js"></script>
<link href="css/file1.css, css/file2.css, css/file3.css" rel="stylesheet">

14 https://github.com/filamentgroup/quickconcat	

By Mat Marquis CHAPTER 5

167

We’ll still use Grunt to combine our initial JavaScript files and our
global CSS, since they’ll never vary on the client side — where QuickConcat
shines is our asynchronous requests. Rather than writing multiple script
and link tags into the page and sending out a handful of requests, we can
use Enhance.js to prepare a list of scripts and style sheets that apply to the
user’s context and request them all at once:

(function(win, undefined){

	 var mqSupport = "matchMedia" in win && win.matchMedia("only all").matches;
	 if(!mqSupport && !respond.mediaQueriesSupported){
		 return;
	 }

	 ejs.addFile.jsToLoad("js/lib/jQuery.js");
	 ejs.addFile.jsToLoad("js/lib/konami-code.js");

	 // Load custom fonts > 600px
	 if(window.screen.width > 600){
		 ejs.addFile.cssToLoad("css/fonts.css");
	 }

	 if(Modernizr.touch) {
		 ejs.addFile.jsToLoad("js/swipe.js");
		 ejs.addFile.cssToLoad("css/swipe.css");
	 }

	 ejs.enhance();
})(this);

When Enhance.js is invoked, all the files queued up with
ejs.addFile.cssToLoad and ejs.addFile.jsToLoad are sent off
as a single request, through QuickConcat.

I usually refer to QuickConcat as a pattern because it’s rarely
something that drops into a production environment as is. It’s usually
something that we’ll hand off to clients for implementation in their back-
end language of choice.

168

CHAPTER 5 Robust, Responsible, Responsive Web Design

Thanks to QuickConcat, even if we’re loading a handful of scripts and
styles after the page is loaded, we’re only adding two requests: one for all of
our additional scripts, and one for our additional styles.

Images and Video
The subject of media asset weight holds a special place in my heart. At
the time of writing, images make up roughly 64% of the average website’s
weight15, and it’s getting worse as more and more people plaster their sites
with monstrous high-resolution images to suit the newest high-density
displays. The average website’s image weight alone has increased by more
than 13% since January 1st of this year16.

You likely know the basics of responsive images by heart: to make an
image flexible, we first remove the width and height attributes. By setting
a max-width of 100% in our CSS instead, we prevent this image from ever
overflowing its parent container. As our flexible container resizes, so does
the image.

Of course, this approach requires us to use assets that are at least
as large as the largest size at which they’ll be displayed: if an image is
intended for part of a layout that could be anywhere from 300px wide to
2000px wide, you’ll still need to serve an image with an inherent width of
at least 2000px. That’s a huge amount of wasted bandwidth and processing
power for a mobile device, with no perceivable benefit to the user.

This bandwidth cost is multiplied four-fold as we update our assets to
suit high-density displays. A Retina image isn’t just twice as big — it’s twice
as big in both dimensions: a true Retina image is four times larger. We
shouldn’t serve those to everyone indiscriminately when the vast majority
of users will see no benefit whatsoever, especially paired with the already
high bandwidth cost of images that need to be able to scale up to suit
desktop layouts as well as mobile layouts.

15 http://smashed.by/interesting-stats
16 http://smashed.by/compare-stats

By Mat Marquis CHAPTER 5

169

At best, it would be tremendously wasteful. At worst, an older mobile
browser might see all this data bearing down on it and give up entirely,
leaving the page unrendered. In either case we do tremendous damage to a
user’s data plan, and saddle our users with a very real cost.

HTML5’s video element makes it refreshingly simple to tailor assets
to best suit a user’s context. While we can’t yet account for specific factors
like connection speed, we can at least ensure that the assets we deliver
are appropriate to the user’s display. HTML5’s source elements allow us to
specify which source should apply based on the same media queries we
use in our layouts, in a media attribute.

<video>
	 <source src="vid-large.webm" media="(min-width: 600px)"
	 type="video/webm">
<source src="vid-large.ogg" media="(min-width: 600px)" type="video/ogg">
	 <source src="vid-large.mp4" media="(min-width: 600px)"
	 type="video/mp4">

	 <source src="vid-small.webm" type="video/webm">
	 <source src="vid-small.ogg" type="video/ogg">
	 <source src="vid-small.mp4" type="video/mp4">
	 <!-- Fallback for browsers that don’t support 'video': -->
	 Watch Video
</video>

Granted, it is a little verbose when we need to specify multiple formats
for each source; codec support is still something of a minefield17.

In the above example, the smaller of the two video sources — in
whichever format is supported by the browser — is served to any user
with a display narrower than 600px. This attribute is surprisingly well-
supported, despite being a little-known feature: this syntax will work in
current versions of Chrome, Firefox, Opera, Safari, Internet Explorer, iOS,
Windows Phone, BlackBerry and Android.

17 http://smashed.by/compatibility

170

CHAPTER 5 Robust, Responsible, Responsive Web Design

We developed a similar means of delivering screen-appropriate images
while we were working on the Globe site, beginning with the philosophy
that the technique should err on the side of mobile: start with a mobile-
sized and -formatted image, then swap that for a larger version depending
on the user’s screen size.

The key to this was getting the screen’s width in JavaScript and
relaying that information to the server in time to defer the request for the
source specified in the image’s src — otherwise, we’re making two requests
per image on larger screens. We could have prevented this by avoiding the
use of img src altogether and injecting images as needed, but we wouldn’t
want to introduce a dependency on JavaScript in order for users to view
the site’s content. Instead, we ended up putting together a clever little hack
that relied on JavaScript to set the screen’s width in a cookie that would
be sent along with the requests for the image’s original src, allowing us
to choose the most appropriate image source on the server. If any aspect
of the script should fail, the original source specified in the src would be
requested as usual. It worked well — at least, for a while.

Unfortunately, this approach didn’t prove viable for long. Thanks to
increasingly aggressive prefetching in newer versions of several major
desktop browsers, an image’s src would be requested before any of our
custom scripting was applied — resulting in two requests for a single user-
facing image.

What followed was a sordid tale of noscript elements and
dynamically-injected base tags, document.write and eval — the Web
developer equivalent of scary campfire stories. It was not pretty and, more
importantly, none of it worked.

It was around this time that we formed the Responsive Images
Community Group18, and got even more people involved. Despite dragging
dozens of developers into our brainstorming, it quickly became obvious
that responsive images weren’t something that could be solved once and

18 http://responsiveimages.org/

By Mat Marquis CHAPTER 5

171

for all with a bit of clever JavaScript. So, we began hashing out ideas for a
native solution: if HTML5 offered us a way of solving this, what would it
look like?

Bruce Lawson originally proposed a markup pattern19 for delivering
context-appropriate images that fell in line with the syntax for the video
and source elements:

<picture>
	 <source src="fullsize.jpg" media="(min-width: 60em)" />
	 <source src="small.jpg" />

	 <!-- Fallback for browsers that don’t support 'video': -->
	
</picture>

Around the same time as we presented this pattern to the WHATWG,
they pitched their own idea20 for a markup-based means of serving
context-appropriate image sources: the srcset attribute.

<img src="fallback.jpg" srcset="small.jpg 320w 1x, small-hd.jpg 320w 2x,
medium.jpg 640w 1x, medium-hd.jpg 640w 2x, large.jpg 1x, large-hd.jpg
2x">

While the srcset attribute’s syntax was nearly inscrutable, it did
handle one part of the equation in an especially efficient way: resolution
switching, using values of 1x, 2x, and so on. Furthermore, it handled the
question of resolution outside of media queries, which we soon realized
stood to benefit users even further.

Media queries are an absolute, at least on paper. It’s hard to imagine
a circumstance where a user might want to opt into a layout not suited
for their display. Likewise, it takes a lot of imagination to come up with
a scenario in which a user would prefer images too small or too large

19 http://smashed.by/bruce
20 http://smashed.by/whatwg-list

172

CHAPTER 5 Robust, Responsible, Responsive Web Design

for the layout they’re seeing. Image resolution, on the other hand, is a
different story: if I’m on a Retina MacBook but I’m tethered to a shaky 3G
connection, I’d likely prefer to opt out of huge high-resolution images.

Unlike media queries, the srcset attribute is documented as a set of
suggestions. When making asset decisions based on a user’s screen size or
pixel density via media queries, we can ensure that we’re never serving a
larger asset than stands to benefit the user. What we can’t do is use that
information to make assumptions about bandwidth conditions or user
preference.

By acting as a suggestion, srcset would allow browsers to introduce
user settings like “always give me high-res images,” “always give me
low-res images,” or “give me high-res images as bandwidth permits.” The
browser has that bandwidth information at hand, and that’s where the
decision should be made — not for the user, but with them.

In the following snippet, we still rely on media attributes to choose the
appropriate source element. It makes sense — we’d decide our breakpoints
based on a combination of factors: our layout’s media queries; the weight
of the images; and alternate cropping and zooming so we can better
represent the focus of the image on a smaller display.

<picture>
 <source media="(min-width: 40em)" src="big.jpg">
 <source src="small.jpg">

</picture>

After we’ve established the source element, we then present the
resolution options. This is where we use a portion of the WHATWG’s
proposed srcset attribute to determine which resolution source is most
appropriate.

By Mat Marquis CHAPTER 5

173

<picture>
 <source media="(min-width: 40em)" srcset="big-sd.jpg 1x, big-hd.jpg 2x">
 <source srcset="small-sd.jpg 1x, small-hd.jpg 2x">

</picture>

If you don’t need to specify multiple resolutions for a given image
source, but do want to specify a source based on the layout, you can use the
picture element independent of srcset:

<picture><source media="(min-width: 30em)" src="big.jpg">
	 <source src="small.jpg">
	 </picture>

If you should only need the resolution-switching aspect, you can use
srcset independent of the picture element:

Not only can the two proposals harmoniously coexist and complement
each other, they can still solve problems on their own.

We proposed this version of the picture element to the HTML WG,
and a few months ago we reached First Public Working Draft21, which
means it’s time for implementers to start digging into it and asking us
questions. While we’re making steady progress, it might be some time
before we can use either of these exact markup patterns in our work.

All this doesn’t do us a hell of a lot of good right now, though — I mean,
this could be a while, and we’ve got work to do.

Fortunately, we can start using this markup today: Scott Jehl came up
with a polyfill for picture as we were writing the specification. Picturefill22
emulates the picture element’s proposed behavior using divs and

21 http://www.w3.org/TR/html-srcset/
22 https://github.com/scottjehl/picturefill

174

CHAPTER 5 Robust, Responsible, Responsive Web Design

data- attributes — all standards-compliant markup, with all the behavior
we want from picture.

<div data-picture>
	 <div data-source data-media="(min-width: 30em)" data-src="big.jpg">
	 <div data-source data-src="small.jpg">
	 <noscript>
		
	 </noscript>
</picture>

In the event that JavaScript isn’t supported, the user will receive a standard
img element. If JavaScript is available, Picturefill will parse through the
attributes specified on the data-source elements, determine which one is
best suited to the user’s display, and inject an img tag with the appropriate
source into the page. We’ve been using Picturefill in our client work at
Filament Group for approaching a year now, and we’re having great luck
with it. The benefit to a developer-led standards effort is that we get a head
start on polyfilling the new markup: dozens of polyfills for both picture
and srcset are already available on GitHub.

Down on SouthStreet
Filament Group has rolled all the lessons we’ve learned about optimizing
delivery of HTML, CSS, JavaScript and images into a project we’re calling
SouthStreet23, named for the location of FG’s office.

SouthStreet provides you with a set of tools you can use to ensure
that devices get the most efficient amount of code possible, while still
maintaining broad accessibility and support. We’re continuing to refine
SouthStreet as new approaches and techniques come to light, and all of the
projects mentioned in this chapter are completely open source: feedback,
suggestions and new ideas are always welcomed.

23 https://github.com/filamentgroup/southstreet

By Mat Marquis CHAPTER 5

175

The day BostonGlobe.com launched, we opened the site up on a
number of devices which we never tested and definitely didn’t plan for in
advance: a first-generation Amazon Kindle, a Nintendo DS, the Playstation
3’s built-in browser, and even an Apple Newton. At no point were we
presented with a blank screen: no matter the context, we could use the
website to the best the device could allow.

Every time a new device shows up for the jQuery Mobile test lab,
we have a look at the Globe site — and so far, we’re batting a thousand.
No panicked emails about updating UA strings; no worrying about
new mismatched features, or unplanned display sizes. There are new
enhancements we could make as new browser features and APIs roll out,
of course, but our foundation is solid and we’re never limited by it. It works
everywhere, for everyone. By following a few principles for serving assets
responsibly, you can do the same.

Building websites is a complicated business, and it isn’t an easy
one. That’s the nature of the game, not the fault of any of the tools or
techniques we use. The most challenging part of developing for the Web is
simplifying: stripping away the inessentials. Responsive Web design can
ensure that we don’t hinder the inherent flexibility of the Web; progressive
enhancement can ensure that we don’t hinder the inherent usability of
the Web. The very first page of the Web, to this day, works for users of any
browsing context.

We can’t expect to always get everything right; we’re still going to bend
a nail or two here and there. Our tools aren’t perfect either. But we can do
better — we can always do better — and we can use the tools we’ve got to
build amazing things. We might be a little clumsy right now, but we’re just
getting started.

176

CHAPTER 5 Robust, Responsible, Responsive Web Design

ABOUT THE AUTHOR
Mat Marquis makes websites at Filament Group. He is
a member of the jQuery Mobile team, technical editor
and author for A List Apart, and Chair of the Responsive
Images Community Group. Mat has beaten Mega
Man II on “difficult” without losing a single life. He’s
probably flipping out about something on Twitter as
we speak, as @wilto.

ABOUT THE REVIEWER
Brian Arnold is a software developer from Albuquerque,
New Mexico. He is currently a Senior Software
Engineer at Bazaarvoice, and previously served as
Lead Support Engineer at SitePen. His free time goes
largely into playing as many different board games
as possible. He also ranks in the top 2% of Rock Band
Expert Guitarists. He can be found at randomthink.net
and @brianarn on Twitter.

Chapter

06

Finding and Fixing Mobile
Web Rendering Issues

Written by Addy Osmani

178

CHAPTER 6 Finding and Fixing Mobile Web Rendering Issues

By Addy Osmani CHAPTER 6

179

Chapter SIX · by Addy Osmani

Finding and Fixing
Mobile Web Rendering Issues

he performance conversation is starting to change.
It’s no longer important just to consider how quickly a site loads
but also how fast it renders and runs — this is critical on mobile

where the performance of Web pages is often compared to native appli-
cations. Browsers today are able to run at the refresh rate of our devices
and when they do, our pages feel a lot smoother. They’re buttery, crisp and
delightful to use. When they don’t, and users see visual glitches in their
pages, they don’t like that. There’s a performance smell of something being
wrong with the page and it’s something we need to fix.

This can be a challenge as mobile devices are underpowered when
compared to our desktop systems. Rendering the page on the screen takes
longer; loading network resources takes longer; decoding images takes lon-
ger; and executing scripts takes longer. Performance on mobile is almost
never equal to performance on desktop. With slower CPUs and lower-pow-
ered GPUs, mobile platforms are anywhere up to five times slower than
desktop today1. That said, graphics and mobile JavaScript have been getting
better on such devices and 30 frames per second (fps) is said to be achiev-
able for a number of use cases.

1 http://www.sencha.com/blog/5-myths-about-mobile-web-performance/

T

180

CHAPTER 6 Finding and Fixing Mobile Web Rendering Issues

Now while network performance is important and JavaScript execution
is usually quick, many find that rendering (painting pixels to the screen) is
their bottleneck. Large sites, including Facebook2, Flickr3 and Pinterest4, are
starting to care about this side of performance more. They’ve found it can
affect not only the user experience but also user engagement. Measure-
ment is the most important part of any performance profiling and, where
possible, always check your sites and apps using the tools in other brows-
ers to double-check if your slowdown is browser-specific.

The Three Pillars of Performance
So, we’ve said that rendering performance is important, but just where
does it fit into the overall performance conversation? The three key factors
to performance on the Web are: network, compute, and render. Let’s briefly
review them.

Network
Always keep an eye on the number of network requests your site makes.
Most of the time, each file is going to end up being requested separately
and these requests may have a quite large latency on them; that is, it’s
going to take a long time for a server to receive and process a request for
a page. On mobile, they’ll also keep the radio alive on your device, which
is the biggest drain on power after your screen. Keeping those requests
down means we can minimize how long the radio is kept on. Also keep in
mind that bandwidth and latency are different things so even if you’re on
a 3G or 4G connection, your latency might not improve. This is one reason
why best practices like concatenating your scripts, inlining CSS and using
image sprites are so important.

2 http://smashed.by/fb-tweet
3 http://smashed.by/flickr-parallax
4 http://smashed.by/pinterest

By Addy Osmani CHAPTER 6

181

A large amount of the Web’s traffic is images — well over half5 accord-
ing to the HTTP Archive. In many parts of the world, users have fixed data
caps on mobile, meaning that if this cap (e.g. 1GB per month) is exceeded
the customer has to pay more. This is one reason it’s important for images
to be optimized as much as possible. At the moment, newer formats like
WebP6 offer some substantial file size savings compared to the equivalent
quality of a JPEG or PNG. I say quality because you can usually beat a
codec if you lower your quality in another format. For those lucky enough
to be running their own servers, some of my colleagues at Google rec-
ommend trying out mod_pagespeed7 — a tool which can automatically
optimize your site, handling minification and image optimization without
any effort. I’m also happy to recommend ImageOptim8 and JPEGMini9 for
image optimization.

Compute
We refer to JavaScript processing as “compute”. All of it runs inside a ded-
icated engine in the browser (e.g. V8 in Chrome, JavaScriptCore in Safari,
OdinMonkey in Firefox) and in many cases these engines are blazingly
fast. One of the reasons they’re so fast is that the engines keep an eye on
your code and swap it out with optimized lower-level code where possible.

JavaScript developers regularly worry about memory leaks being in-
troduced by their code. Since we don’t handle the retention and release of
memory ourselves and leave this up to the garbage collector, we have to be
careful not to do silly things like leaving references to objects we no longer
need hanging around. Memory usage from all of these hanging objects oth-
erwise grows over time and that’s basically what causes a memory leak —
the garbage collector not being able to release something because it thinks

5 http://smashed.by/growth
6 https://developers.google.com/speed/webp/
7 http://smashed.by/pagespeed
8 http://imageoptim.com/
9 http://www.jpegmini.com/

182

CHAPTER 6 Finding and Fixing Mobile Web Rendering Issues

you may still need it. The browser developer tools in Chrome, Opera and
Firefox can point out where garbage collection has occurred so you can find
out where and why you’re generating garbage and attempt to address this.

The last thing to keep in mind is something we call deoptimization.
This happens when some of the designs you’ve made in code have led to
the engine having to back out of an optimized path for slower code. There
are tons of reasons why this can happen and it varies from engine to
engine. In Chrome, you can get a little mileage using a standalone version
of V8 called d8. It can inform you what JavaScript is being deoptimized,
giving you a chance to reconsider how you’ve written some of your code.

Render
Rendering performance has only recently come under the spotlight for
many Web developers and we’re going to devote the rest of this chapter to
understanding it. Each of your pages contains a DOM tree (representing
its content and structure). Painting the DOM to pixels on the screen can be
one of the most expensive operations in your page’s life cycle. Any extra ef-
fort involved in doing this as your user interacts with your page can result
in a visual slowdown. Lots of things can trigger this — scrolling, injecting
new content into the page, layout thrashing (any changes that modify the
layout of your page), interacting with the UI — pretty much any changes
that need to be painted.

As we’ll discuss in more depth soon, painting isn’t just about user
interactions. It also includes the effort the browser has to put in to decode
images (if you give it a JPEG, this has to be decoded into a Bitmap), as well
as resizing. If you give the browser a 1,024px wide image which you’re
resizing down to 360px using CSS, that’s going to be a lot less efficient than
simply providing a prescaled 360px wide image. Chrome’s DevTools can
give you some more insights into image decode times in Timeline.

By Addy Osmani CHAPTER 6

183

Further Reading
•	 HTML5 Rocks: Performance

http://www.html5rocks.com/en/features/performance
•	 Jank Busting For Better Rendering Performance by Tom Wiltzius

http://www.html5rocks.com/en/tutorials/speed/rendering/
•	 Making a 60fps mobile Web app

http://aerotwist.com/blog/making-a-60fps-mobile-app/
•	 Solving Rendering Performance Puzzles

http://jakearchibald.com/2013/solving-rendering-perf-puzzles/

Rendering Jank and Hitting 60fps
The human eye perceives a continuous stream of information. It does not
naturally see motion as a series of frames. In the worlds of animation, film
and gaming, using a series of still frames to simulate motion creates some
interesting perceptual artifacts — especially if the frames are played back
too slowly. When the frame rate varies, our eyes perceive jerkiness and
jitter rather than smoothness in the motion, and what we see appears to
flicker. For an optimal user experience on the Web, animations need to be
silky, scrolling10 must be buttery-smooth and your page needs to contain
little to no jank, a term that means a disruption in consistent frame rate
that manifests itself visually.

You’ve probably experienced jank before. Have you ever visited a site
where scrolling through just felt really sluggish? Or perhaps there was a
lot of complex animation or new UI being dynamically introduced that
blocked you from being able to do anything. It’s these types of experiences
that we want to avoid.

In the life of a Web page we generally perform three core tasks: fetch-
ing resources; parsing and tokenizing these resources (HTML/CSS/JS); and
finally drawings things to screen. During a user’s interaction with a page,
only parts of it will be changed. For example, they may perform an action

10 http://www.html5rocks.com/en/tutorials/speed/scrolling/

184

CHAPTER 6 Finding and Fixing Mobile Web Rendering Issues

changing visibility or adding an outline to an element. The actual process
of updating the screen is known as a paint.

Changes to your page (e.g. when JavaScript modifies CSS styles) invali-
date the rectangle you see on the screen and cause your browser to view it
as damaged.

A paint is an expensive operation but is also one that can be difficult
to avoid. You always need to draw something to the screen. The key is
to make sure the regions you’re painting (or repainting) are as small as
possible, otherwise you may experience jank. In Chrome, we keep an eye
on what in the screen needs to be changed, creating a damage rectangle
with the coordinates to parts of the page requiring repainting. We save the
old rectangle, prior to your changes, as a bitmap and then only paint the
delta between the new rectangle and the old one. If you notice that there
are particular areas of a page that require a lot of repainting, it’s useful to
investigate what can be done to reduce the painting cost.

On the Web, a low frame rate (and a janky experience) means that
individual frames being rendered by the browser can be made out by the
human eye. Giving users a jank-free experience often comes down to of-
fering an experience that can run at 60fps on sites and Web apps, not just
games and animations. At 60fps, you have 16.66ms to complete absolutely
everything for Chrome to display a frame of your page — that’s logic pro-
cessing, painting, layout, image decoding, compositing… everything. Once
you factor in miscellaneous browser processes, this number looks more
like 8–10ms and blowing this budget can mean your users are more likely
to see jank in their pages.

What’s magical about the number 60? Well, we say 60fps as this
matches the refresh rate of the devices we use today. Animations should
match the refresh rate of the device they are used on. Phones are usually
55–60Hz, laptops 58–60Hz (although 50Hz in low power mode), and most
monitors are 50–62Hz.

To hit 60fps, we sometimes need to go beyond JavaScript as the sole
performance bottleneck for our pages and spend more time investigating

By Addy Osmani CHAPTER 6

185

paint and layout issues. Some of the core causes of jank in sites and appli-
cations include:

•	 Heavy paint times for your DOM elements.
•	 Unnecessary image resizes, because you haven’t pre-scaled to the

size you need.
•	 Long image decodes (e.g. decoding PNG or JPEG).
•	 Unexpected layer invalidations.
•	 Garbage collector runs.
•	 Network requests (e.g. processing an XHR).
•	 Heavy animation or data processing.
•	 Input handlers with a heavy amount of JavaScript. One common

mistake is to add a lot of JavaScript to rearrange the page in an
onscroll handler which impacts paint times.

Faster Animations

requestAnimationFrame
setInterval and setTimeout are regularly used to create animations every
16ms. This comes with its own challenges, but two are of particular note:
refresh rates differ from device to device (e.g. the refresh rate on your
phone may not necessarily be the refresh rate on your desktop); and timer
resolution from JavaScript is only in the order of a few milliseconds.

For the next screen refresh to occur, you need a completed animation
frame with all JavaScript, DOM manipulation, painting and layout to be
ready. It can be really hard to get animation frames complete before the next
refresh when you’re working with low timer resolution and variations in
screen refresh rates make this near impossible with a fixed timer. Regardless
of what your timer interval is, you’ll eventually move out of your timing win-
dow for a frame and will drop them, meaning users may see a visual drop
in smoothness. You’ll also end up doing a bunch of work to generate frames
that never get shown, wasting critical battery and CPU time.

186

CHAPTER 6 Finding and Fixing Mobile Web Rendering Issues

You may have noticed that we’ve been caring about frame rate so far
when talking about rendering performance — variance has the potential
to be a larger issue because, as I mentioned, our eyes notice those little
glitches in motion and these tend to come with poorly timed animations.
The best way to get accurate timed animation frames is to use the
requestAnimationFrame API, currently supported in all modern browsers.
When you use it, you ask the browser to give you an animation frame and
your callback gets called when it’s going to generate a new frame. This hap-
pens irrespective of the device’s refresh rate — which is awesome.

Tom Wiltzius11 and Paul Lewis12 have written on HTML5Rocks about
animation optimization with requestAnimationFrame more succinctly than
I could, and they’ve also previously pointed out some of the other nice things
it gives you that are quite relevant to mobile. For example, animations in
background tabs get paused, which can conserve your battery life, and if the
device can’t render at the screen’s refresh rate it can actually throttle ani-
mations and just generate the callback a little less regularly (e.g. 30 times a
second rather than 60). Although this might mean you’re halving your frame
rate, it means your animation stays consistent. A constant lower frame rate
is better than a varied 60Hz that drops some of its frames.

CSS Animation
We’ve talked about requestAnimationFrame, but did you know that even
more efficient than lighter JavaScript animation in your callbacks is no
JavaScript at all? There’s no perfect solution for avoiding interruptions in
requestAnimationFrame callbacks, but you can get some mileage using CSS
animations to remove the need for them. In browsers like Opera Mobile
and Chrome for Android, CSS animations can be run by the browser while
JavaScript is running thanks to multi-threading.

11 http://www.html5rocks.com/en/tutorials/speed/rendering/
12 http://www.html5rocks.com/en/tutorials/speed/animations/

By Addy Osmani CHAPTER 6

187

CSS animations expose a few different techniques for animating. These
include: transitions, which automatically animate if a specific CSS prop-
erty changes; transforms, which provide methods for altering the way an
element displays on screen (e.g. scaling, translation); and @keyframe-
based animation for defining more complex animations which change
over time. You should use CSS keyframe animations or transitions wherev-
er possible, as they are heavily optimized (often GPU-accelerated) and their
performance is almost universally good.

As Paul Irish has previously recommended13, should you absolutely
need to use JavaScript-based animation, use requestAnimationFrame. set-
Timeout and setInterval should be avoided like the plague. 2-D transforms
typically provide a smoother experience than relying on absolute position-
ing and will lead to quicker paint times and smoother overall animation.

Hardware (GPU) Acceleration
The next thing we’re going to look at is GPU acceleration. In the past,
browsers have relied pretty heavily on the CPU to render pages. This
involved two things: first, painting elements into a bunch of textures,
called layers; and second, compositing all of those layers together to the
final picture seen on screen. Over the past few years, however, we’ve found
that getting the GPU involved in the compositing process can lead to some
significant speeding up. The premise is that, while the textures are still
painted on the CPU, they can be uploaded to the GPU for compositing.
Assuming that all we do on future frames is move elements around (using
CSS transitions or animations) or change their opacity, we simply provide
these changes to the GPU and it takes care of the rest. We essentially avoid
having to give the GPU any new graphics; rather, we just ask it to move ex-
isting ones around. This is something that the GPU is exceptionally quick
at doing, thus improving performance overall.

13 http://smashed.by/translate

188

CHAPTER 6 Finding and Fixing Mobile Web Rendering Issues

There is no guarantee that this hardware compositing will be available
and enabled on a given platform, but if it is available the first time you
use, say, a 3-D transform on an element, then it will be enabled in Chrome.
Currently, the latest versions of Firefox, Safari, IE9+ and the latest version
of Opera all also ship with hardware acceleration. Many developers use
the translateZ hack to do just that. The other side effect of using this hack
is for the element in question to get its own layer, which may or may not
be what you want. It can be very useful to effectively isolate an element
so that it doesn’t affect others as and when it gets repainted. It’s worth
remembering that uploading these textures from system memory to video
memory is not necessarily very quick. The more layers you have, the more
textures need to be uploaded and the more layers that will need to be man-
aged, so it’s best not to overdo it.

Be very careful when manually promoting layers for mobile14 as it can
be easy to shoot yourself in the foot. Don’t apply it to everything as though
this may improve your performance on desktop, the cost of doing so will
not be equal on mobile where you’re working with a more limited GPU.

Avoiding Unnecessary Complexity
The best way to avoid rendering performance issues is to keep things sim-
ple. This advice is particularly important on mobile.

One mistake developers often make when developing for the Web is
opting to create visually complex experiences (like parallax effects). This
involves making visual updates to the page when you get a scroll event.
The big problem here is that scroll events aren’t timed to the visual updates
of the browser (i.e. in a requestAnimationFrame callback). You thereby run
the risk of making multiple updates inside a single render frame which
can introduce jank to desktop and really slow things down on mobile.

Now, if the updates you make are really expensive (which they can be
in the case of visually rich animations and parallax sites) there might be a

14 http://smashed.by/null

By Addy Osmani CHAPTER 6

189

lot of areas that require painting and compositing. Doing this more than
you absolutely need to is a terrible idea. In the case of scrolling, you can
solve this by debouncing your scroll events. This is done by storing the last
known scroll value in a variable whenever you get a scroll event and then
making your visual updates in a requestAnimationFrame using the last
known value. This will minimize layout thrashing.

This lets the browser schedule visual updates at the right time and do
no more work than necessary in each individual frame. For more advice on
optimizing scrolling and parallax15, make sure to check Paul Lewis’s articles.

Diagnosing Slow Paint Times
As we’ve discussed, the browser has to do a lot of work in order to draw
things to the screen. Anything you do to increase the complexity of that
task (like forcing the entire layout of the page to be recalculated) has the
potential to introduce jank to your pages. You want to avoid this. So, let’s
talk about some tools that can help you measure these slowdowns.

Note: At the time of writing, Opera uses the same front-end developer tools as
Chrome DevTools, so many of the tools mentioned in this chapter will be available
there too. This may change over time.

DevTools Performance Tools
In Chrome, the DevTools Timeline panel provides an overview of where
time is spent loading up your Web application, such as how long it takes to
process DOM events, render page layouts or paint elements to the screen.
It allows you to drill down into three separate facets that can help you
discover why your application is slow: events; frames; and actual memory
usage. Right now, we’re interested in frames mode, which gives you in-
sight into the tasks the browser had to perform to generate a single frame
(update) of your application for presentation on the screen.

15 http://www.html5rocks.com/en/tutorials/speed/parallax/

190

CHAPTER 6 Finding and Fixing Mobile Web Rendering Issues

Timeline won’t display any data by default but you can begin a record-
ing session with it by opening your app and clicking on the gray circle at
the bottom of the pane — you can also use the Command / Control+E short-
cut. This record button will turn from gray to red and Timeline will begin
to capture the timelines for your page. Complete a few actions inside your
app (or the one suggested, such as scrolling) and after a few seconds, click
the button again to stop recording.

Chrome DevTools Timeline, zoomed into a set of records with some pretty heavy paint.

Hovering over a record will display an extended tooltip with details about the time
taken to complete it. These have so much useful information in there, so do pay

attention to them, especially the call stack.

By Addy Osmani CHAPTER 6

191

The summary view (at the top of Timeline) displays horizontal bars
representing the network and HTML parsing (blue), JavaScript (yellow),
style recalculation and layout (purple), and painting and compositing
(green) events for your page. Repaints are browser events invoked by re-
sponses to visual changes such as window resizes or scrolls. Recalculations
occur when CSS properties are modified, while layout events (or reflows)
are due to changes in element position.

Know Your Tools
Before we dive into an efficient workflow for discovering and tweaking
rendering performance issues, there are a few other tools available at our
disposal in Chrome that are worth noting.

Shortcut for Quickly Hiding DOM Elements
DevTools has a useful shortcut allowing you to easily toggle setting
visibility:hidden on an element. When this style is applied to an element,
it isn’t painted but does maintain the page layout in an unchanged state.

To use the shortcut, select a DOM element in the Elements panel and
then press the H key. When paired with paint rectangles and Timeline, you
can easily evaluate which DOM elements are spending long on paint time.

Timeline also identifies when your application causes a forced
asynchronous layout and marks these records with a yellow warning icon.

192

CHAPTER 6 Finding and Fixing Mobile Web Rendering Issues

Continuous Painting Mode for Diagnosing Slow Styles
Some of the reasons Chrome repaints areas of the page include: user in-
teractions that cause style changes to DOM elements; DOM nodes being
changed (forcing layout recal-
culation); and any other oper-
ations which cause the layout
of the page to be changed.

It can be useful to under-
stand why repaints occur in
your page. “Continuous page
repainting” is a feature in the
Settings panel which helps
identify elements that have a
high paint cost on the page. It
forces the page into constant-

Walking through the DOM tree in the Elements panel, the H shortcut key helps
identify elements with heavy paint.

Keep an eye on the black and green counter in the
top-right corner for insights into repaints.

By Addy Osmani CHAPTER 6

193

ly repainting, providing a counter that shows just how much paint work is
being done. You can use the H shortcut mentioned above to toggle different
styles (keep an eye on the counter!) to diagnose what is causing the slow-
down.

Show Composited Layer Borders
Another great setting in Developer Tools that can help here is “Show com-
posited layer borders.” This feature will give you insight into those DOM
elements that are being manipulated at the GPU level.

If an element takes advantage of the GPU acceleration, you’ll see an
orange border around it with this on. Now as we scroll through, we don’t
really see any use of composited layers on this page — not when we click
“Scroll to top” or otherwise. Chrome is getting better at automatically han-
dling layer promotion in the background, but, as mentioned, developers
sometimes use the translateZ hack to create a composited layer. Below is
one site’s home page with translateZ(0) applied to all pins. It’s not hitting

With “Show composited layer borders” on, elements promoted to a new layer
are highlighted with a colored border.

194

CHAPTER 6 Finding and Fixing Mobile Web Rendering Issues

60fps, but it is getting closer to a consistent 30fps on desktop, which is
actually not bad.

Show Paint Rectangles
Under “Rendering”
within the “Settings”
cog, you can enable a
feature called “Show
paint rectangles” to
help you visually see
the area repainted in
each frame. With this
feature enabled, it can
become easy to visu-
alize what slows pag-
es down. You want to
keep the areas being
repainted as small as
possible.

FPS Counter
An older but equally useful tool for
visualizing frame rate and jank is the
real-time frames-per-second count-
er. This can be enabled in DevTools
by going to the Settings menu and
checking “Show FPS meter.”

When activated, you will see a
dark box in the top-right corner of
your page with frame statistics. The counter can be used during live editing
to diagnose what in your page is causing a drop-off in frame rate without

In this screenshot, a paint rectangle is being drawn over the
region where a div with overflow:scroll was being drawn.

This is good as it’s a relatively small part of the screen.

By Addy Osmani CHAPTER 6

195

having to switch back
and forth with the
Timeline view.

Keep in mind that
just tracking the FPS
counter may lead you to
not notice frames with
intermittent jank. Be
careful when using the
content. It is also worth
noting that FPS on
desktop does not equal
FPS on other devices
and special care should
be taken to profile the
performance there too.

A “Find and Fix” Workflow for Mobile
It’s hard to build a meaningful mobile Web experience without testing
on the actual devices you support. Luckily, modern Web browsers expose
tools that can profile both your rendering performance on desktop as well
as your performance on connected mobile devices. This is done via remote
debugging, which you’ll need to set up before you can profile your pages on
mobile.

Set Up Remote Debugging
You’ll normally remotely debug your pages over USB. As long as your
mobile device is connected to your development machine, you’ll be able to
profile pages using the Timeline, as well as view and edit HTML, scripts
and styles until you have an optimized page which behaves a little better
on all of your target devices.

The FPS meter showing the page’s current, minimum and
maximum frame rates as well as a histogram of frame

rate variance.

196

CHAPTER 6 Finding and Fixing Mobile Web Rendering Issues

To set up remote debugging for your version of Chrome or Opera, fol-
low the remote debugging guide over in the Chrome DevTools documenta-
tion. You’ll then be able to work through the tutorial below on either a real
mobile device or your desktop.

Note that the docs linked to above will also give you two options for
accessing pages you would like to debug on your device. You can either
open up the page on your device’s browser, or use a new feature called re-
verse-port forwarding to debug a locally hosted version of your code on your
device.

Optimization Workflow
Once you have remote debugging set up, here’s a workflow for diagnosing
paint and jank issues:

1.	 Open up your page on your device, launch the Chrome DevTools and
switch to the “Timeline” panel. Hit record and interact with your page
the same way your user would.

Debugging Chrome for Android using the Chrome Developer Tools.

By Addy Osmani CHAPTER 6

197

2.	 Check the Timeline for any frames that went over budget (i.e. that are
below that ideal 60fps). If you’re close to the budget, then you’re likely
way over budget on mobile. Aim to complete all of your work within
10ms to have some margin. Note that this margin is for slower devic-
es and you should almost certainly run this analysis on mobile using
remote debugging16 (if building for mobile, which you should be!).

3.	 Once you’ve noticed you have a janky frame, check what the cause of it
was. Was it a huge paint? CSS layout issue? JavaScript?

4.	Fix the problem. If it was a paint or layout issue:
i.	 Go to Settings and enable “Continuous page repainting.”
ii.	 Walk through the DOM tree, hiding non-essential elements using

the hide (H) shortcut. You might discover hiding particular elements
makes a large difference to your paint times and frame rate.

iii.	We now know there is something about an element that has
slowed painting down. Uncheck styles that could have an impact
on paint time (e.g. box-shadow) for the element and check your
frame rate again.

iv.	 Continue until you’ve located the style responsible for the
slowdown.

5.	 Rinse and repeat.

16 http://smashed.by/remote

198

CHAPTER 6 Finding and Fixing Mobile Web Rendering Issues

Particularly on sites that rely heavily on scroll, you might discover
that your main content is relying on overflow:scroll. This is a real chal-
lenge as this scrolling isn’t GPU-accelerated in any way so the content is
repainted whenever your user scrolls. You can work around such issues
using normal page scroll (overflow:visible) and position:fixed.

Timeline Reference

•	 Composite layer: Chrome’s rendering engine composited image
layers.

•	 Image decode: an image resource was decoded.
•	 Image resize: an image was resized from its native dimensions.
•	 Paint: composited layers were painted to a region of the display.

Hovering over a Paint record highlights the region of the display
that was updated.

•	 Invalidate layout: the page layout was invalidated by a DOM change.
•	 Layout: a page layout was executed.
•	 Recalculate style: Chrome recalculated element styles.
•	 Scroll: the content of nested view was scrolled.

Remember, though, to test on both desktop and mobile: their perfor-
mance characteristics vary wildly. Use the timeline in both, and watch your
paint time chart in Continuous Paint mode to evaluate how fast you’re
busting your budget. Again, don’t use this hack on every element on the
page – it might pass muster on desktop, but it won’t on mobile. The reason
is that there is increased video memory usage and an increased layer man-
agement cost, both of which could have a negative impact on performance.
Instead, use hardware compositing only to isolate elements where the
paint cost is measurably high.

By Addy Osmani CHAPTER 6

199

Tutorial: Getting a Jank-Free Mobile Web Experience
We’ve talked the talk, but let’s look at a simple app with some janky anima-
tion and see if we can optimize it to be jank-free. Now, remember that the
performance of your page on mobile differs greatly from desktop perfor-
mance so you’ll want to make sure you have remote debugging set up for
this tutorial. Let’s get started.

1.	 Open up http://jsfiddle.net/AxEJY/.
2.	 Click “animate!” As you can see, there is a visual break in motion,

resulting in a suboptimal animation. We can record a Timeline
session during the animation of this page to confirm that we have an
issue hitting an optimal frame rate. The animation performs far worse
on mobile than it does on desktop because we’re working with more
limited GPU.

3.	 Let’s see what’s causing things to slow down. Here’s the JavaScript for
our animation as well as the CSS:

200

CHAPTER 6 Finding and Fixing Mobile Web Rendering Issues

JavaScript

// setup
var rAF = window.requestAnimationFrame;
var startBtn = document.querySelector('.animate');
var stopBtn = document.querySelector('.stop');

// state
var running = false;

// add listeners
// start
startBtn.addEventListener('click', function(e) {
 running = true; rAF(update); });

// stop
stopBtn.addEventListener('click', function(e) {
 running = false;
});

// Set the heights for all these
// movers in simple CSS style.top
var movers = document.querySelectorAll('.mover');
(function init() {
 for (var m = 0; m < movers.length; m++) {
 movers[m].style.top = (m * 20 + 50) + 'px';
 }
})();

// animation loop
function update(timestamp) {
 for (var m = 0; m < movers.length; m++) {
 movers[m].style.left = ((Math.sin(movers[m].offsetTop +
timestamp / 1000) + 1) * 500) + 'px';
 }

 if (running){
 rAF(update);
 }
};
rAF(update);

By Addy Osmani CHAPTER 6

201

CSS

.mover {
 background: url(http://jankfree.org/velocity-europe/examples/too-
much-layout/particle.png);
 height: 100px;
 width: 100px;
 position: absolute;
 z-index: 0;
}

input {
 z-index: 2;
 font-size: 25pt;
 height: 100px;
 width: 100px;
 display: inline-block;
}

Analyze the Recording
Looking at the recording of the first few frames it’s clear that each one is
taking over 300ms to complete. If you hover your mouse over one of the
frames a pop-up appears showing additional details about the frame.

To improve rendering performance, Chrome usually batches layout
changes requested by pages and attempts to schedule a layout pass to asyn-
chronously calculate and render the requested changes.

202

CHAPTER 6 Finding and Fixing Mobile Web Rendering Issues

However, if a page asks for the value of a property depending on
the layout (e.g. offsetWidth or offsetHeight), the browser is forced to
immediately and synchronously perform a page layout. These are called
forced synchronous layouts and can have a pretty significant reduction on
rendering performance, especially when performed repeatedly on larger
DOM trees. We call this scenario layout thrashing.17

The Timeline can alert you when it discovers a forced synchronous lay-
out with a yellow warning icon next to the corresponding Timeline record.
If you hover over one of these records, it displays stack traces for the code
which invalidated the layout and the code that forced it.

So, in our Timeline, locate an “Animation Frame Fired” record and find
the yellow warning icon next to it indicating a forced synchronous layout.
The icon is slightly dimmed indicating that one of its child records con-
tains the offending code, rather than this record itself.

Expand the “Animation Frame Fired” to view its children.

17 http://smashed.by/layout-perf

By Addy Osmani CHAPTER 6

203

The child records show a long, repeating pattern of Recalculate Style and
Layout records. Each layout record is a result of the style recalculation that,
in turn, is a result of the requestAnimationFrame() handler requesting the
value of offsetTop for each image on the page. Hover your mouse over one
of the Layout records and click the link for sources.js next to the Layout
Forced property.

The Sources panel opens at line 43 of the source file at the update()
function, which is the requestAnimationCallback() callback handler. The
handler computes the image’s left CSS style property on the the image’s
offsetTop value. This forces Chrome to perform a new layout immediately
to make sure it provides the correct value.

// animation loop
function update(timestamp) {
 for (var m = 0; m < movers.length; m++) {
 movers[m].style.left = ((Math.sin(movers[m].offsetTop + 	
 timestamp/1000) + 1) * 500) + 'px';
 }
 raf = window.requestAnimationFrame(update);
};

We know that forcing a page layout during every animation frame is slow-
ing things down. Now we can try to fix the problem directly in DevTools.

204

CHAPTER 6 Finding and Fixing Mobile Web Rendering Issues

Apply Fix Within DevTools
Now that we have an idea about what’s causing the performance issues,
we can modify the JavaScript file directly in the Sources panel and test our
changes on desktop or our mobile device right away.

In the Sources panel that was opened previously, replace line 43 with
the following code.

movers[m].style.left = ((Math.sin(m + timestamp/1000) + 1) * 500) + 'px';

1.	 This version computes each image’s left style property on its index in its
holding array instead of on a layout-dependent property (offsetWidth).

2.	 Save your changes by pressing Command+S or Control+S.

Verify with Another Recording
The animation is clearly faster and smoother than before, but it’s always
good practice to measure the difference with another recording. It should
look something like the recording below.

Try it out. The corrected code for this sample can be found at
http://jsfiddle.net/k4yM3/ and now performs at close to 60fps.

By Addy Osmani CHAPTER 6

205

Pro Tips
Your JavaScript can annotate DevTools Timeline recordings using con-
sole.timeStamp() which works whether you’re using remote debugging
or not. See below for “Adding result,” an annotation added by our code
during profiling:

Your code can also use console.time() and console.timeEnd() to mark
ranges in DevTools Timeline recordings:

If you enable “Show CPU activity on the ruler”, you can overlay the CPU
activity in your Timeline recordings. With this on, the light bars indicate
the CPU was busy. If you hover over a CPU bar, this highlights the region
during which the CPU was active.

206

CHAPTER 6 Finding and Fixing Mobile Web Rendering Issues

If you would like to drill down to records of a particular type, you can
do this by using the Control+F shortcut (Command+F on Mac OS X) when
in the Timeline. Just enter in the name of the record type (e.g. “scroll”) and
Timeline will only show the records containing the term.

If you’re wondering what those transparent bars in the Timeline mean,
these hollow frames correspond to one of two things: your JavaScript on
the main thread was busy doing something we forgot to show (instru-
ment) in the DevTools; or you were bottlenecked by your GPU.

By Addy Osmani CHAPTER 6

207

Rendering Performance Tools in IE, Firefox and Safari
So far we’ve discussed tools for finding and fixing rendering performance
issues in Chrome. As rendering is still quite a new area for many Web de-
velopers to optimize for, the tools available for it in other browsers are still
evolving but I’m excited about the direction they’ve been taking.

The IE11 F12 Developer Tools
Many developers are surprised to hear that IE’s developer tools have im-
proved by leaps and bounds of late. In IE11, the F12 developer tools intro-
duce a special UI Responsiveness feature for profiling perfomance issues
around jank, slowness and other common problems areas like CPU and
memory usage.

Workflow
With IE11 installed and the UI Responsiveness tool loaded, you’ll be
prompted to begin a new performance profiling session in the main pane.

208

CHAPTER 6 Finding and Fixing Mobile Web Rendering Issues

•	 Select the arrow at the top of the tool to begin profiling. Keep the
actions you perform to the bare minimum needed to capture the
slowdown you want to investigate in your page. Anything more will
run the risk of decreasing the readability of your results.

•	 When you’ve completed the interactions you wanted to capture,
click “Stop profiling” or the square-shaped icon at the bottom of the
developer tools to create a report from these results.

The UI Responsiveness tool comes with its own performance Timeline
which you’ll see next. It’s a similar, but slightly different take to the one we
saw in Chrome. Use this to visualize the frame-rate of the page (which IE re-
fers to as visual throughput) and drops in this frame-rate, indicating we’ve
dropped frames or some slowdown has occurred. It also captures how much
of the CPU is being used, but this is less interesting for our purposes.

Next, you can drill down into what specific records correspond to
using the Timeline Details view. The official IE11 developer tools docs cover
the categories listed more comprehensively, but in short this captures: CSS
and HTML parsing; network requests; script evaluation; image decodes;
animation frame callbacks; and of particular interest to us: layout and
rendering. Layout in this context refers to changes to the DOM that caused
the dimensions or position of elements to change and rendering refers to
visual changes to the DOM that caused regions of the page to be
repainted. The details summarized include the dimensions and coordi-
nates of the render layer that was affected.

By Addy Osmani CHAPTER 6

209

To learn more about the F12 developer tools, check out the official docu-
mentation18 and their guide to the UI Responsiveness19 tool.

Firefox
The Firefox nightlies have a feature called paint flashing which can also be
used to determine what regions of the page the browser is repainting. With
paint flashing turned on, each region is tinted with a random color making
it really easy to distinguish one region from another. Regions with really
heavy paint flashing are the ones that are going to cost you, so try to mini-
mize them as much as possible.

Enable paint flashing
1.	 Be sure to have Firefox 11 or higher installed (Beta, Aurora, or Nightly).
2.	 Go to about:config.
3.	 Accept the warning that is displayed.
4.	Right-click and select New → Boolean.
5.	 Type nglayout.debug.paint_flashing.
6.	 Set the option to True. That’s it!

18 http://smashed.by/f12
19 http://smashed.by/uiresp

210

CHAPTER 6 Finding and Fixing Mobile Web Rendering Issues

WebKit/Safari
Apple has also been doing interesting work in the WebKit nightlies. If you
grab one of the recent releases you’ll find that two new tools are exposed to
help improve rendering performance.

The first is that the Web Inspector recently introduced a layer details
sidebar for getting insights into WebKit’s compositing of elements. It high-
lights layer information for a selected DOM element (if it’s been promoted
to a layer) as well as layers for descendant elements.

When you select a layer in the sidebar, it displays a pop-over summa-
rizing the reasons the layer was created (promoted). Depending on the type
of page you’re working on, eliminating layers can be a good way to reduce
your page’s graphics performance overhead.

The quickest way to view layer information for a page is to inspect
the document body and review the child layers. You’re then able to narrow
down the list by inspecting descendants that are even deeper. Similar to
Chrome, you can also show compositing layer borders, done in the DOM
tree’s navigation bar, which overlays your page to provide a clearer visual-
ization of layers and the number of times they are being repainted.

By Addy Osmani CHAPTER 6

211

Show Reasons for Compositing

•	 Grab the WebKit nightlies.20

•	 Make sure to switch off “Use WebKit Web Inspector.”
•	 Hit that shiny “Layers” button. Boom!
•	 Reasons for layer promotion are displayed on hover.

The second is that you can display the number of times a layer was (re)
painted, helpful for understanding what parts of your page may be getting
excessively painted due to behavior in your scripts.

Show Paint Counts of Layers

•	 Under Layers → Show composited layer borders.
•	 Like Chrome, it displays layers promoted to a composite layer.
•	 However, it also displays the number of times a layer was painted!

20 http://nightly.webkit.org/

212

CHAPTER 6 Finding and Fixing Mobile Web Rendering Issues

Conclusions
Jank-free experiences are critical for the mobile Web to come anywhere
close to what users are accustomed to with a native app. That’s how high
the bar is and you can rise to the challenge of clearing it.

But building amazing experiences on the mobile Web takes more than
just a good designer and fancy CSS — you absolutely must care about
performance. Users expect a native feel, and smooth animation that never
drops a frame can give it to them. When your pages scroll slowly, anima-
tions stutter and effects lag heavily… that’s jank and it can impact your
user experience and engagement.

Keep in mind that performance can vary massively between browsers
and a performance smell in one might not be present in another. Use their
developer tools to see what’s really happening under the hood.

Check that your style recalculations aren’t changing more styles than
you expect. Keep your paint areas small. If you notice lots of large or full-
screen paints, there may be a problem. Reduce unnecessary image resizing
because even one large resize can make you miss 60fps.

If all goes well, you’ll make your users happy with more fluid, silky
smooth experiences, regardless of the device they’re using. You’ll have
cleared that jank-free bar and can give yourself a well-deserved pat on the
back.

To learn more about optimizing the paint performance of your pages,
check out Jankfree.org and remember, if you think you have a performance
problem on mobile, don’t guess it — test it!

By Addy Osmani CHAPTER 6

213

ABOUT THE AUTHOR
Addy Osmani is working on the Chrome team at Goo-
gle, building and advocating for tools to help improve
developer productivity and satisfaction. His personal
projects include TodoMVC, which helps developers
compare JavaScript MVC frameworks and AuraJS.
He’s also written Developing Backbone.js Applications
and Learning JavaScript Design Patterns.

ABOUT THE REVIEWER
Sindre Sorhus is passionate about creating things and
moving the Web forward. He is an eloquent JavaScript
developer and Open Source monomaniac from Norway,
and the creator of many Open Source projects and
Node.js modules. He is currently infatuated on fixing
front-end development with Yeoman, Bower, Grunt
and TodoMVC.

The New, Adaptive UX Interfaces

Chapter

Written by Aaron Gustafson

07

Designing Adaptive
Interfaces

216

CHAPTER 7 Designing Adaptive Interfaces

By Aaron Gustafson CHAPTER 7

217

Chapter SEVEN · by Aaron Gustafson

Designing Adaptive Interfaces

esign, as a concept, is a tricky little beast. On the one
hand, a well-designed object should be attractive, but on the
other it must also be easily understood and highly usable.

For a design to be successful, these two facets must be in balance. When
aesthetics trump usability, the resulting work serves the designer — by
being a vehicle for self-expression — not the consumer. Similarly, when a
project sacrifices aesthetics for usability, the resulting work can be unin-
spiring, pedestrian even. People will use it, but they won’t love it.

Pleasurable designs are not necessarily usable. But need these attributes
be in conflict? Why not beauty and brains, pleasure and usability?

— Don Norman, Emotion & Design: Attractive things work better 1

Etymologically speaking, “design” originates from the medieval Latin
designare, to mark out. Classically, it has been synonymous with the act of
indicating. From the very beginning, design has been about more than just

1 Don Norman, “Emotion & Design: Attractive things work better”; http://smashed.by/emotion-design, 2002.

D

218

CHAPTER 7 Designing Adaptive Interfaces

aesthetics; it has been about illuminating content and making it easier for
the consumer to accomplish key tasks. We design to solve problems.

To create truly exceptional designs, we must not only reduce the
friction inherent in completing a task, but we should make it (dare I say it)
fun! We must reconcile aesthetics with usability.

We’re Empathetic
Design does not exist in a vacuum. It is not art on a wall. Designs are meant
for interaction. For use. And who is the user? Sometimes it’s us, but unless
we are lucky enough to spend all day building stuff that’s meant solely for
our own consumption, we are probably building for someone else.

It’s hard to design for someone else. After all, we’re complex creatures
with unique perspectives, objectives and needs. It’s incredibly difficult
to put aside our own biases and approach a problem from someone else’s
point of view.

Thankfully, however, we are hardwired with the capacity to do so.
Throughout the 1980s and 90s, Giacomo Rizzolatti and a group of

neurophysiologists in Parma, Italy, were studying the neurons that con-
trol hand and mouth actions. To test these neurons, the researchers would
place electrodes in the ventral premotor cortex of a macaque monkey and
record the firing of individual neurons as the macaque reached for peanuts
from a bowl.

Purely by happenstance, a macaque was still hooked up to the re-
corder when a research assistant walked into the room and grabbed a
peanut. Much to everyone’s surprise, the very same neurons fired when
the macaque saw the peanut plucked from the bowl as when the monkey
performed that same action. Through what have come to be known as mir-
ror neurons, the macaque was able to share in the experience, despite not
actually partaking in it. That’s the root of empathy.

“Empathy” stems from the Greek empatheia meaning state of emotion
and is defined by Merriam-Webster as:

By Aaron Gustafson CHAPTER 7

219

The action of understanding, being aware of, being sensitive to, and vicariously
experiencing the feelings, thoughts, and experience of another […] without hav-
ing the feelings, thoughts, and experience fully communicated in an objectively
explicit manner.

We often rely on user research to establish and maintain empathy with
our customers. We may conduct this research by sending a small team
into the field to meet our customers where they live and work. Or we may
assign one person to look at our site’s analytics data to glean insight. Or, for
better or worse, we may just go with our gut and assume we know what
our users want.

Regardless of how (or whether) we conduct research, it is important
that we never lose sight of the fact that real people will be using our inter-
faces. Data is great, but it’s impossible to empathize with data.

What Do We Know?
Data, especially analytics data, can be enlightening, but it can also lead us
to false assumptions.

Scenario: We do not see any non-JavaScript users in our stats.
Assumption: All of our users have JavaScript, so we don’t need to sup-
port a non-JavaScript use case.
Follow-up Questions: Did we check to see if our analytics software is
configured to track users without JavaScript turned on? Does the site
work at all without JavaScript? What is the experience like while a user
waits for JavaScript to be read and executed? How do you handle SEO?
(Hint: search spiders don’t execute JavaScript.)

Scenario: We do not see any users browsing our site on a Blackberry 5.
Assumption: We have no Blackberry 5 users and can stop supporting it.
Follow-up Questions: How does the site look and function on a Black-
berry 5? If it is a bad experience, would you consider coming back?

220

CHAPTER 7 Designing Adaptive Interfaces

As you can see, a simple stat does not tell us everything. Also, in both
of these scenarios, our initial design and implementation choices may
have unintentionally shaped the stats: JavaScript for stats + no JavaScript
= no stats; bad Blackberry 5 experience = Blackberry 5 users go elsewhere.
When decisions (strategic or accidental) shape them, the stats become less
useful and we run the risk of driving away potential customers. Instead,
we should strive to grow our customer base by treating everyone as we
would want to be treated: with respect.

The fact is that when users come to our site, we know very little about
them. Sure, we can read the user agent (UA) string sent in the request from
their browsers, but that only tells us so much (if it is even telling us the
truth. UA strings are easily spoofed).

A UA string can’t tell us if they visit our site on a Blackberry 5, have $5
to spend on our product or $5 million. A UA string can’t tell us if users don’t
have the same domain knowledge or level of education as we do. A UA
string can’t tell us if they have poor vision and need to be able to enlarge
the text. A UA string can’t tell us if they have a broken arm, are mousing
with the non-dominant hand, and aren’t as accurate at clicking as they oth-
erwise would be. A UA string can’t tell us if a user has installed a browser
plugin that will bring our carefully constructed JavaScript framework to its
knees. A UA string can’t tell us if the high pixel density device being used
is connecting over a mobile network and the user may not want that 7MB
photo.

There are so many possibilities to consider beyond what we know (or
think we know) about users when they visit our site. Instead of trying
to nail it down and control every detail, we should take advantage of the
inherent fluid and flexible nature of the Web. We should focus on building
an experience that is universally accessible and then capitalize on opportu-
nities presented by different devices, platforms and technologies to en-
hance that experience. You know: progressive enhancement.

By Aaron Gustafson CHAPTER 7

221

Progressive enhancement keeps the design open to the possibilities of sexiness
in opportune contexts, rather than starting with the “whole” experience that
must be compromised.2

Brick by Brick, Row by Row
We don’t know what the future has in store for us, but we know that what
has worked in the past will work in the future. That’s the promise of the
Web: future-friendliness3. Embracing the past — real links, forms that
submit to an action page, body elements brimming with actual content —
doesn’t hold us back: it provides us with a solid foundation to build even
more incredible experiences.

When people get excited thinking about a Web interface, they are often
getting excited about some fancy animation effect or dynamic widget. I
have no problem with that. As designers — of content, data, pixels, interac-
tions or code — we should be excited about how we help people accomplish
what they set out to do. But often, we get caught up in trends, tactics and
technology — the things we think are cool, fun, interesting, or likely to
garner us some industry attention — and we lose sight of our users and
their needs.

I’ve been amazed at how often those outside the discipline of design assume
that what designers do is decoration—likely because so much bad design sim-
ply is decoration. Good design isn’t. Good design is problem solving.

— Jeffrey Veen, The Art and Science of Web Design

There’s nothing wrong with a slick interface for folks with the latest and
greatest browsers as long as we consider what the experience looks like
for someone without access to that technology. It’s tempting to focus on
building the flashy version and then go back to patch it to work reasonably

2 Ben Hoh, “From degradation to enhancement”: http://smashed.by/redesigning-society, Jan 30, 2012.
3 http://futurefriend.ly/

222

CHAPTER 7 Designing Adaptive Interfaces

well in less-capable browsers (graceful degradation4). And if we let our stats
deceive us into believing we don’t need to worry about non-JavaScript
users or specific older browsers, we may even call it a day and assume
anyone who visits on those browsers is going to have a bad experience (or
no experience at all).

Obviously, that’s not a very good demonstration of user empathy. We
need to build solid, universal experiences that will work without the bells
and whistles and then add on the flashy bits when we know the browser
can actually use them. Support RGBa colors? Awesome, let’s tweak the look
and feel a bit. Got gesture support? Great, let’s upgrade the interface to
make it work with swipe.

Smartly built interfaces offer a continuum of experience. In case you’re
unfamiliar with the term, a continuum is a collection of steps from point A
to point B where each step varies by a minute degree. For a simple exam-
ple, consider the continuum from a peanut to a Peanut M&M:

1.	 First, there’s the peanut, a natural and tasty snack in its own right.
2.	 Next comes the chocolate-covered peanut, a definite improvement on

the original. The smooth, rich chocolate coating complements the pea-
nut beautifully.

3.	 Finally the package is complete: the candy shell provides texture and a
touch of sweetness that rounds out the experience perfectly.

Each step in this continuum from peanut to Peanut M&M is a perfectly
valid snack option, but each (in my opinion at least) is also a significant
improvement on the previous step.

We should strive to create interfaces that operate like this. Each step
in the process of building an interface should add to the experience. In the
end, independent users may have differing experiences of the interface,
but no one is denied access to a good experience.

4 http://en.wikipedia.org/wiki/Fault-tolerant_system

By Aaron Gustafson CHAPTER 7

223

The Layer Cake, Revisited
When the Web standards movement was young, we were encouraged to
separate the code controlling our content, presentation and behavior. We
did that in order to make our sites more maintainable, our pages smaller,
and our markup cleaner. And it worked. Amazingly well, in fact.

Progressive enhancement asks that we take that concept a step further
and considers these three layers of the Web standards cake comprising
many smaller layers of experience.

Why? As you’re no doubt keenly aware, the browser ecosystem is in-
credibly diverse. One browser accessing our sites today may only support
a subset of HTML4 tags, while another may support all of HTML4 and
some HTML5, and a third may support only HTML4 and some microfor-
mats. One may support only a handful of CSS2 properties, while another
supports most of CSS2 and CSS3 colors, and a third supports all of that in
addition to CSS3 animations and media queries. JavaScript support is sim-
ilarly all over the map. A quick look at Peter Paul Koch’s Acid 3 test matrix
for WebKit5 reveals that not all browsers are created equally, even when they
are based on the same underlying rendering engine. Sure, overall standards
support is far better now than it was when I built my first Web page back in
1996, but that doesn’t mean they all support the same standards.

We all know the answer to the classic question: do websites need to
look exactly the same in every browser? The answer is No6. But why stop
there? We must take it a step further: do websites need to function exactly
the same in every browser? No.

5 http://www.quirksmode.org/webkit_mobile.html
6 http://dowebsitesneedtolookexactlythesameineverybrowser.com

 The peanut to Peanut M&M continuum.

224

CHAPTER 7 Designing Adaptive Interfaces

We could never hope to create (and test) unique experiences for each
combination of these capabilities any more than we could test our websites
in every browser on every device ever made. We’d never sleep and we’d
never launch anything. But we can think about experience as a continuum
and architect our interfaces to adapt to the capabilities of our users’ devices
in order to ensure a positive experience — even if it’s not an identical one.

As the mobile first movement has reminded us, we need to focus on
the core use case for a page or interface and build up the experience from
there. And, while we craft that experience, we need to make sure none of
our design or technical decisions undermine it. The layers of a typical Web
experience break down like this:

0.	The Core
Text content and basic interactive elements that form a universally usable
foundation (links, forms, etc.). Our copywriting (even microcopy like labels
and error messages) must be both clear and appropriate.

1.	 Semantics
HTML markup that illuminates the content of the core experience and
conveys the meaning of the words. Each element we choose should en-
hance the semantic meaning of the content. We should never choose an
element that could obscure the meaning of our content or confuse a reader
(e.g. using a div, span, or even an anchor when it should be a button). We
should also employ ARIA landmark roles to more easily guide our users
who rely on assistive technology around the page.

2.	Design
CSS that establishes a visual hierarchy, enhances the reading experience
(through the use of vertical rhythm, comfortable line lengths, etc.), and
reinforces the brand. Each design decision we make should enrich the
experience and should never subvert the core by reducing access to content
or obscuring it through the use of low-contrast text or visuals.

By Aaron Gustafson CHAPTER 7

225

3.	Enhanced Interaction
JavaScript, in concert with advanced HTML-based interactive elements
(e.g. details/summary, advanced input types) and related CSS styles, that en-
hances the usability of an interface. Enhanced interactions should human-
ize the interface and reduce any friction inherent in completing the specific
task. The JavaScripts we write and use should manipulate the document to
introduce the necessary markup and styles to create the enhanced inter-
face, thereby reducing the size of the page for non-JavaScript users.

No style or coding decisions we make should limit assistive tech-
nology’s access to the core experience if the JavaScript is executed. Our
JavaScripts should also introduce and update the ARIA attributes necessary
to provide assistive technology with useful details about the interface and
what is happening as a user interacts with it.

Each layer not only serves a technical purpose, but a human one. Every
decision we make, every key we press, affects our users’ experience. With
empathy as your guide, you’re more likely to make the right call.

Considering Constraints
The world of Web-enabled devices is extremely diverse and seems to get
more so every day. With each new platform, browser and rendering engine
having its own complex matrix of technical features and constraints, at-
tempting to craft a universally great experience can seem like a daunting
endeavor. Again, looking at an interface as serving a core purpose helps
maintain our sanity.

How Does It Read?
First and foremost, we need to consider how an interface reads. Have you
ever used a screen reader? How about a text-based browser? Ever read
email as plain text? When we strip away the design, the semantics and the
interactive affordances of an interface, what we are left with is the core:
text, enhanced with hyperlinks. If our interface is functional in this con-

226

CHAPTER 7 Designing Adaptive Interfaces

text, we’re almost guaranteed it will
be usable on pretty much anything.

Text-only can seem impossi-
ble when we’re concentrating on
advanced content displays, but with
a little thoughtful consideration of
the interface, we can find ways to
literally spell out that which is visu-
ally conveyed. Take a timeline, like
the one on the right, for instance:
What is a timeline, but an ordered
list of events grouped around mark-
ers in time?

<h1>Timeline of Computer History</h1>

 <h2>1939</h2>

 <figure>

 <figcaption>David Packard and Bill Hewlett in their Palo Alto,
California Garage</figcaption>
 </figure>
 <p>Hewlett-Packard is Founded. David Packard and Bill Hewlett
found Hewlett-Packard in a Palo Alto, California garage. Their first
product was the HP 200A Audio Oscillator, which rapidly becomes a popular
piece of test equipment for engineers. Walt Disney Pictures ordered eight
of the 200B model to use as sound effects generators for the 1940 movie
"Fantasia."</p>

 <h2>1940</h2>

 <figure>

Timeline from the Computer History Museum.
http://www.computerhistory.org/timeline/

By Aaron Gustafson CHAPTER 7

227

 <figcaption>The Complex Number Calculator (CNC)</figcaption>
 </figure>
 <p>The Complex Number Calculator (CNC) is completed. In 1939,
Bell Telephone Laboratories completed this calculator, designed by
researcher George Stibitz. In 1940, Stibitz demonstrated the CNC at an
American Mathematical Society conference held at Dartmouth College. This is
considered to be the first demonstration of remote access computing.</p>

 <h2>1941</h2>

 <figure>

 <figcaption>The Zuse Z3 Computer</figcaption>
 </figure>
 <p>Konrad Zuse finishes the Z3 computer. The Z3 was an early
computer built by German engineer Konrad Zuse working in complete
isolation from developments elsewhere. Using 2,300 relays, the Z3
used floating point binary arithmetic and had a 22-bit word length. The
original Z3 was destroyed in a bombing raid of Berlin in late 1943.</p>

 <figure>

 <figcaption>Bombe replica, Bletchley Park, U.K.</figcaption>
 </figure>
 <p>The first Bombe is completed. Based partly on the design of
the Polish "Bomba," a mechanical means of decrypting Nazi military
communications during WWII, the British Bombe design was greatly
influenced by the work of computer pioneer Alan Turing and others. Many
bombes were built. Together they dramatically improved the intelligence
gathering and processing capabilities of Allied forces.</p>

 <!-- content continues -->

In a text-only context, this example is quite easily understood. Addi-
tionally, it works pretty well on a small screen, where real estate is at a
premium. But, if we want to enhance the timeline with JavaScript to make

228

CHAPTER 7 Designing Adaptive Interfaces

it into a more engaging experience, we can test to see if that enhanced
experience makes sense given the constraints of the browser and device
used to access the content. If the conditions are right, JavaScript can inject
additional markup, rearrange elements on the page, hide visually redun-
dant content (in an accessible way), and insert a new set of style rules to
govern the look and feel of that upgraded interface.

When thinking about different ways to experience content, I like to
sketch out a UI construction flow. You can think of a UI construction flow as
a roadmap for the build process of a
page. It outlines the different potential
experiences along the continuum and
helps us better visualize how they all
fit together. It also gives us an oppor-
tunity to explore the constraints we
need to consider for that interface. To
the right, you’ll find a sample diagram
for the timeline:

The constraint of offering a text-only experience is a crucial first step
toward ensuring everyone can use our websites, but it is only the first of
three constraints I use to guide my work. The second constraint I embrace
is the network.

Sip, Don’t Gulp
Bandwidth. Latency. Simultaneous connection limits. Each of these facets
of the network has an effect on the experience of loading and interacting
with a site. These affect every connection, but on mobile networks they
have an even more profound effect (more on that in a moment).

For years, Web performance luminaries have been telling us to concat-
enate our files, build sprite maps, compress our images, and minify every-
thing. Reducing the number of requests to the server makes a huge differ-
ence in the speed of delivering content to a browser. And, of course, smaller
files will download more quickly.

Load JS? List

Timeline

Yes

No

Simple Timeline UI Construction Flow

Adjust Markup
Add custom CSS

By Aaron Gustafson CHAPTER 7

229

Most of us jumped on the Web performance bandwagon pretty quickly.
It just made sense. But can we do more?

Mobile networks present an interesting challenge because they typical-
ly suffer from high latency, and roaming users may jump from cell tower
to cell tower, experiencing a wide variety of service stability and availabil-
ity. The more quickly we can deliver our experiences to our customers, the
more likely they will be able to use them before they lose connectivity in a
dead zone or wind up dropping from 4G speeds to Edge.

Then there’s the money issue. Few mobile data customers are lucky
enough to have an unlimited usage plan. Most users are paying by the
bit and the larger our site is, the more it costs them to view our content.
Anything extraneous we send to our customers is tantamount to a tax on
accessing our content or service, and we aren’t even the one reaping the
financial benefits.

This is why it is critical that
we focus on the core purpose of
a Web page or interface when
we build it. Mat Marquis’ now
famous tweet (see on the right)
says it all. I don’t think anyone
has more clearly articulated the
tension between a marketing de-
partment’s vision for a page and
the customer’s. Sure, we want our
pages to be beautiful, but there are trade-offs we need to be aware of. In the
end, we should be empathetic toward the people who visit our websites so
they become (and remain) our customers.

To that end, let’s consider a typical newspaper website. Most newspa-
per sites contain one or more pages that display a number of articles in ag-
gregate. The homepage is a typical location, but newspaper section landing
pages often function similarly.

Mat “Wilto” Marquis on twitter.com

230

CHAPTER 7 Designing Adaptive Interfaces

Each of these contexts con-
tains multiple instances of a teas-
er module. Universally, the teaser
module contains a headline,
byline and lede. But sometimes it
also contains a small thumbnail
to draw our eye or hint at what we
might find on the full article page.

As visually appealing as these
thumbnail images might be, they
are merely complementary to the
core purpose of the teaser: getting
us to click through and read the
full article. Furthermore, thumb-
nail images like these create
additional problems:

1.	 Externally referenced images require an additional download (and all of
the networking-related overhead that involves), making the page take
longer to render, while simultaneously costing consumers more money
to view the content over a metered network.

2.	 Images embedded using data URIs are typically three times larger than
their binary equivalents, leading to a larger HTML payload which may
be faster to download, but actually costs metered network customers
more to view than external images.

3.	 In narrower layouts, these images can actually make reading more
difficult, defeating the whole purpose of the content to begin with.

Those are some pretty powerful arguments against having any teaser
thumbnails, right?

The “Latest News” section on Nooga.com

By Aaron Gustafson CHAPTER 7

231

Well, studies have shown that some images — relevant images with
story appeal7 — can actually engage readers, so we shouldn’t throw them out
entirely. Instead, we should scrutinize each image’s content to determine
whether it actually adds anything to teaser. Once we’ve separated the useful
from the useless, we can concentrate on addressing the issues above.

If readability is our chief concern, we might be tempted to link to the
images in the traditional way and hide them with CSS when the browser is
less than twice the thumbnail width. The problem with that strategy is that
the browser will still download the images even though they are not being
displayed. That’s not very respectful of our customer’s time and money.

A better strategy to use is called lazy loading.
You may be familiar with lazy loading as a concept from the JavaScript

world, where additional code is loaded into a Web page as needed. But
there’s no reason to reserve that technique for JavaScript. We can lazy-load
anything that is ancillary to the core purpose of the page: images, HTML,
CSS, etc. In fact, this is exactly what many news sites (e.g. the Guardian,
the Boston Globe, and the BBC) have begun to do. When it comes to lazy
loading images, my current preference is to take an empty paragraph and
assign it a data-* attribute pointing to the image I may want to load if the
conditions seem right:

<p data-image-src="/path/to/my.jpg"></p>

I use some simple CSS to hide this paragraph by default:

[data-image-src] {
	 display: none;
}

Then I use JavaScript to test a few conditions and decide what to do. A UI
construction flow for this approach looks like the figure below:

7 http://smashed.by/the-truth

232

CHAPTER 7 Designing Adaptive Interfaces

Obviously, without JavaScript the script won’t run and the paragraph
just sits there, invisible. Sure, it is a bit of extra markup to download,
but it beats a hidden image or
(worse yet) a hidden embedded
image.

If JavaScript is available,
the script is run and can test
for things like browser width8,
currently employed media
query9, network speed10, and
even whether or not the user
is on a metered connection11.
The usefulness and reliability
of network-related testing are
currently dubious at best, but I am hopeful they’ll get there in the future.

For simplicity’s sake, let’s say we know the thumbnail images are 200px
square and we want to load them if the browser window is at least twice as
wide (400px). The JavaScript for that would look something like this (com-
ments in the code are there to help you understand what’s going on):

// self-executing function
(function(){
	 var
	 // set the threshold
	 threshold = 400,
	 // collect the window width
	 browser_width = window.innerWidth ||
	 document.body.offsetWidth,
	 // prototype image for reuse
	 image = document.createElement('img'),
	 // get all paragraphs

8 http://smashed.by/win-width-height
9 http://adactio.com/journal/5429/	
10 http://smashed.by/network	
11 http://www.w3.org/TR/netinfo-api/#attributes-1	

Load JS? No Image

Image

Yes

No

Lazy Load Images UI Construction Flow

Adjust Markup
Add custom CSS

Yes

No

Verify browser
width condition

By Aaron Gustafson CHAPTER 7

233

	 paragraphs = document.getElementsByTagName('p'),
	 // count the paragraphs
	 i = paragraphs.length,
	 // instantiate loop vars
	 p, src, img;

	 // are we over the threshold
	 if (browser_width >= threshold)
	 {
		 // make sure we have an empty alt for accessibility
		 image.setAttribute('alt',");

		 // reverse looping through the paragraphs is faster
		 while (i--)
		 {
			 // reference the paragraph
			 p = paragraphs[i];
			 // collect the image path
			 src = p.getAttribute('data-image-src');
			 // do we have a path?		
			 if (src != null)
			 {
				 // clone the prototype image
				 img = image.cloneNode(true);
			 	 // set the source
				 img.setAttribute('src',src);
				 // append it to the paragraph
				 p.appendChild(img);
			 	 // flag the paragraph as having an image
				 p.setAttribute('data-image-loaded',");
			 }
		 }

		 // release DOM references
		 image = paragraphs = p = img = null;
	 }
}());

That takes care of the initial load of the page. On a narrow screen (<400px)
the thumbnails won’t be loaded, but on a wider screen they will be dynam-
ically requested and added to the page.

234

CHAPTER 7 Designing Adaptive Interfaces

Comparing potential JavaScript and JavaScript-less experiences of a news teaser.

<p data-image-src="/path/to/my.jpg" data-image-loaded>

</p>

The paragraph itself is shown by keying into the dynamically assigned
data-image-loaded attribute:

[data-image-src][data-image-loaded] {
 display: block;
}

Of course, mobile devices can be held in either landscape or portrait orien-
tation and users often switch to suit the task they are trying to complete.
To provide the best possible reading experience, again demonstrating em-
pathy, we should really take the interface a step further and let it adapt. We
can do that by listening for changes in the window size using a function.
Here’s the one I’m currently using:

window.watchResize = function(callback)
{
 // used to track the timer
 var resizing;
 // this runs when resizing has stopped
 function done()
 {
 // stop the timeout

By Aaron Gustafson CHAPTER 7

235

 clearTimeout(resizing);
 resizing = null;
 // run the callback
 callback();
 }
 // track the resize event
 window.onresize = function(){
 // if we are currently resizing, clear the timeout
 if (resizing)
 {
 clearTimeout(resizing);
 resizing = null;
 }
	 // set the done function to execute when the resize completes
 	 resizing = setTimeout(done, 50);
 };

 // run the callback once
 callback();
};

With a function like watchResize, it becomes easy to track changes in
browser size so we can update the interface in ways CSS alone can’t.

To introduce this more dynamic functionality to the earlier script, we
would start by moving the browser_size variable to the global scope so it
is available to any other adaptive UI scripts we might want to write. We’ll
update it in real time using watchResize:

// watch browser width on resize
var browser_width = 0;
window.watchResize(function(){
 browser_width = window.innerWidth ||
 document.body.offsetWidth;
});

With browser_width being updated live, we can revisit the original script and
make it more adaptive by having it check the width as orientation changes:

236

CHAPTER 7 Designing Adaptive Interfaces

// lazy-load images
window.watchResize(function(){
 var
 threshold = 400,
 image = document.createElement('img'),
 paragraphs = document.getElementsByTagName('p'),
 i = paragraphs.length,
 p, loaded, src, img;
 if (browser_width >= threshold)
 {
 image.setAttribute('alt',");
 while (i--)
 {
 p = paragraphs[i];
 src = p.getAttribute('data-image-src');
 // check to see if the image is already loaded
 loaded = p.getAttribute('data-image-loaded');
 // Do we have a path?
 // Is the image already loaded?
 if (src != null &&
 loaded == null)
 {
 img = image.cloneNode(true);
 img.setAttribute('src',src);
 p.appendChild(img);
 p.setAttribute('data-image-loaded',");
 }
 }
 image = paragraphs = p = img = null;
 }
});

The main differences between this version and the previous one are:
1.	 The function is now being passed into watchResize as a callback.
2.	 We are no longer assessing browser_width within the scope of the func-

tion.
3.	 We are checking the data-image-loaded attribute to see if an image has

already been loaded for the given paragraph so we don’t double-load
images if a user continually reorients the screen.

By Aaron Gustafson CHAPTER 7

237

Finally, we can move our display CSS rule set into a media query to en-
sure any images that were lazy-loaded when a device was in a wider (e.g.
landscape) orientation aren’t displayed when the screen is too narrow (e.g.
portrait):

@media only screen and (min-width:400px) {
 [data-img-src][data-image-loaded] {
 display: block;
 }
}

As you can see, by
being empathetic to
our users and cog-
nizant of the price
they pay to access
our content, we
can create amazing
adaptive experienc-
es for them without
much extra effort.

No JavaScript, no problem
JavaScript can do some nifty stuff, but planning for its absence is equal-
ly important. After all, JavaScript availability is not guaranteed in every
browser. Even if JavaScript is supported by the browser, there are many
circumstances in which our carefully crafted JavaScript may be unable to
run and they are completely beyond our control. For example:

•	 JavaScript code delivery could be being blocked by an overzealous
firewall.

•	 JavaScript may be disabled by the user — either manually or via
plugin — in an effort to stop annoying ads, pop-overs, and the like.

Comparing potential orientation-appropriate experiences of a
news teaser.

238

CHAPTER 7 Designing Adaptive Interfaces

•	 That third-party JavaScript library we included and which was
working yesterday has been upgraded and introduced a bug.

•	 The user installed a browser add-on that contains an error or crea-
tes a conflict with our code.

•	 The user is still waiting for the page assets to finish downloading
and our JavaScript can’t execute until they do.

I love JavaScript, but I also realize that it is quite fragile. Unlike writing
code that will execute on our servers, which we control, JavaScript code
is executed in places and on systems that we have no control over and on
which we cannot guarantee its successful execution.

If my JavaScript code fails to execute, I don’t want to be the one getting a
call in the middle of the night because something’s broken. I want the web-
site, Web application, or any other sort of Web thang12 that I create to be ro-
bust. I want it to keep going like the Chrysler Imperial in a demolition derby13.

As you saw in the previous lazy loading example, I set up the resting
(a.k.a. JavaScript-less) state so that the necessary information was in place
for the JavaScript to act without
creating problems for users who
did not have JavaScript enabled.
But when JavaScript is available
and my code is executed, the
page is manipulated to create
the best possible experience for
readers.

This approach to JavaScript
is often referred to as unobtru-
sive because it doesn’t get in the
way. On one hand, JavaScript

12 http://www.webthang.co.uk/	
13 http://smashed.by/demo-derby	

A simple recipe displayed as a tabbed interface.

By Aaron Gustafson CHAPTER 7

239

is not required to access the core experience, but on the other, the bits of
JavaScript-related markup are not injected into the content in a distracting
or confusing way.

The thumbnails are a pretty simple example of this, but let me give you
another one: a tabbed interface. It’s a pretty common gadget consisting of
a series of content panels that are displayed one at a time when the corre-
sponding tab is activated.

When looking at this from a
semantic point of view, the panels of
content could be ensconced in separate
section elements with the tabs as list
items within an ordered list. Pretty
simple and straightforward, right?

What if there is no JavaScript to
make it function as a tabbed inter-
face? In that case, it really shouldn’t
look like a tabbed interface, as that
would render the bulk of the content
visually inaccessible, which isn’t very
considerate.

Without JavaScript, the list of links and the sections aren’t really all
that necessary either; they don’t add much to the page in terms of meaning
and are just extra markup to download. It would be nice to save those bits
for places where they are actually useful, for microformats and the like.

Stripped of all cruft, what we have in this example is a recipe that con-
sists of several titled sections.

If you’re like me and get all nerdy about semantics, you’ve probably
already realized that those titles should be headings (let’s say h2s) and
heading levels create a natural document outline14.

14 http://html5doctor.com/outlines/	

The same recipe, linearized.

240

CHAPTER 7 Designing Adaptive Interfaces

(If you have no idea what I’m talking about, hit “View Document Out-
line” in the Web Developer Toolbar15 to see the outline of any Web page.)

The great thing about a document outline is that it implies sections.
Knowing that, we can write a simple JavaScript to parse that content, 	
dynamically build the additional markup for the tabbed interface, trigger
the inclusion of some basic CSS rules to lay it out, and add in some accessi-
bility enhancements via ARIA when JavaScript is available.

I won’t exhaust you with the code to do this, but you can check out the
script I’ve been evolving for this purpose over on Github16 if you’re interested.

So now we have an interface that adapts beautifully based on JavaScript
availability; but tabbed interfaces don’t always work nicely on narrow
screens, especially when the tabs don’t fit. To truly call this tabbed interface
adaptive we need to consider the experience in different form factors.

Taking a lesson from the lazy-loaded image example we just discussed,
we could adjust the JavaScript code to include a test to see whether the

15 http://chrispederick.com/work/web-developer/	
16 https://github.com/easy-designs/tabinterface.js	

Load JS? Linear

Tabbed

No

Tabbed Interface UI Construction Flow

Collect implicit sections
Split into explicit sections
Build tabs based on headings
Assign events
Add ARIA roles & states
Add a class to the container to turn on styles

Yes

Diagraming the process of building a tabbed interface
using a UI construction flow.

By Aaron Gustafson CHAPTER 7

241

section headers will fit horizontally when rendered as tabs. If they fit, the
script can proceed and build out the rest of the interface. If not, the script
can stop where it is and leave the linear content as it is. This test could even
be a live check (using a function like watchResize) that triggers the con-
struction and destruction of the interface components as the browser size
or device orientation changes.

Again, by putting ourselves in our users’ shoes, we can discover that
there are many meaningful ways to interact with our content. And placing
those in a continuum can create an impressive adaptive interface.

Building Blocks
Despite how daunting they may seem at first blush, complex problems can
always be broken down into simpler ones. The same is true of complex
Web pages and complex interfaces.

It’s easy for me to get overwhelmed when first presented with an elab-
orate interface. When I begin to pick it apart into smaller page components
and discrete interactions, however, I begin to breathe a little easier.

Components are great because they can be built and tested individu-
ally, yet can be combined in myriad ways to meet the challenges of even
the most complicated of interface requirements. Often teams will organize
these components (or design patterns) into catalogs called pattern libraries.

Each component in a pattern library exists in isolation, with its own
requirements, capabilities and documentation. This allows it to be iterated
without affecting other UI elements in use on a website or across a family
of Web properties.

For me, the starting point for any adaptive component is the UI con-
struction flow I’ve mentioned a few times. Most are simple sketches on a
sheet of paper or a whiteboard that illustrate the different content states
and under what circumstances changes in the presentation or interaction
method occur.

242

CHAPTER 7 Designing Adaptive Interfaces

At the simpler end, we have ones like the lazy loading image example.
At the complex end, we can end up with sprawling flows for a carousel.
I find UI construction flows not only help me organize my thoughts

around the different ways to present and interact with content, but they
also help me communicate my ideas to others.

Creating Adaptive Components
In my experience, component-based development can be done well in
isolation, but it excels in small, integrated, collaborative teams. You don’t
need to hop on the Lean UX or Agile bandwagons, but having a diversity of
perspectives on an interface is really helpful.

Load

Type

Single
Pane

Carousel

Yes

Single

Carousel UI Construction Flow

Lazy load additional panes

Ajax?

Yes

No

JS?

No

Yes

Multiple

Linear

JS?

No

Add next & previous buttons
Add class to trigger carousel layout

Touch?

Add gestures

Yes

No

Pagination?

Add pagination links

Yes

No

UI construction flows can get really complicated, as
this sample one for a carousel demonstrates.

By Aaron Gustafson CHAPTER 7

243

It’s especially helpful when the different members of that team have
different spheres of expertise. A product manager, content strategist, UX
designer, visual designer, front-end engineer, and back-end developer all
bring different, but valuable ideas to the table.

Not only will each person be able to shed light on the positive or nega-
tive effects each decision may have on his or her primary area of concern,
but each will likely empathize with our users in a slightly different way.

In my office, UI construction flows are generally the low fidelity first
pass we use for organizing our thoughts and making sense of the different
interaction paradigms. From there, we move into rough sketches.

Our team tends to sketch on paper or whiteboards, but you may be
more comfortable in OmniGraffle, Photoshop, Illustrator, or any of the
many wireframing and prototyping tools out there.

Use whatever makes you comfortable and efficient, but be conscious to
not get bogged down in details. Sketches are a low-risk way to flesh out the
experiences in a UI construction flow.

Next, we begin prototyping in HTML, CSS and JavaScript, referenc-
ing the low fidelity spec we assembled in the UI construction flow and
our sketches. On occasion, we will stub out some back-end functionality
if we need to reference an API or something, but often we fake that with
static JSON files.

We use the prototype to see if the ideas we came up with actually
make sense and operate as we’d expect. If something falls apart in a cer-
tain context or doesn’t work in a certain form factor, we regroup and try
something else.

We iterate on the prototype until we are generally happy with the dif-
ferent behaviors and then we begin to flesh out the design, tune the code
for performance, and hook it into back-end functionality as necessary.

The result is a living, breathing adaptive component that can be added
to the pattern library and dropped into whatever context we need.

244

CHAPTER 7 Designing Adaptive Interfaces

A Veritable Buffet of Interaction
As a tool, pattern libraries have been with us for quite some time. Most
JavaScript libraries have their own UI patterns (e.g. YUI, jQuery UI, Dojo
Digits) and several standalone UI frameworks such as Bootstrap and
Foundation have captured the popular imagination of late. But I am a firm
believer that one size does not fit all. Don’t get me wrong, I think tools like
Bootstrap can be really helpful for prototyping and testing interactions,
but I hate the idea of deploying a site built entirely on it. I feel this way for
many reasons, some of which I’ll summarize here:

0.	Verbosity
In an attempt to create a universal UI framework, the code behind the
scenes is often bloated or requires that we bloat our code in order to make
use of their grid system or widgets.

1.	 Excess
In most cases, a UI framework (or even a JavaScript library for that matter)
includes more options and components than we actually need for our sites.
And, if we don’t remove unused CSS and JavaScript, it can create perfor-
mance issues for our customers.

2.	Philosophy
Buying wholeheartedly into a UI framework locks us into a narrow way of
thinking and building, which may not align with our way of thinking or
how our team operates. For instance, Bootstrap is made to be responsive, but
it comes from a desktop-first perspective, rather than a mobile-first one.

3.	Aesthetics
UI frameworks have a certain aesthetic and it can sometimes be difficult
to escape that. Failure to break out of the stock UI mold means our sites
end up looking almost identical to every other site out there that’s using
that framework.

By Aaron Gustafson CHAPTER 7

245

It may sound like I have no love for UI frameworks, but that’s not the
case. While I don’t advocate their use on public websites, I do think they
present valuable learning opportunities. The same goes for other publicly
available pattern libraries17.

Seeing what others have done helps ensure we don’t miss anything
when we work on our own pattern libraries — ones that directly meet our
company’s or our clients’ needs. In his discussion of responsive delivera-
bles18, Dave Rupert echoed this very point: “Responsive deliverables should
look a lot like fully-functioning Twitter Bootstrap-style systems custom
tailored for your clients’ needs.”19

Pattern libraries are a godsend for everyone on the team, from upper
management to the grunts pounding out pages. They provide a consistent
catalog of components that can be plucked out and incorporated into a

17 http://smashed.by/pattern-libraries
18 http://smashed.by/rd
19 https://github.com/bradfrost/patternlab	

Brad Frost’s PatternLab is an excellent tool for helping create
and maintain pattern libraries and then combine those patterns

into page templates: http://demo.pattern-lab.info/

246

CHAPTER 7 Designing Adaptive Interfaces

mock-up or prototype. They act as a clearinghouse for code snippets and
documentation to help front-end engineers work more quickly and effi-
ciently. And they allow the QA team to test discrete components rather
than having to diagnose issues when these components become deeply
entwined.

Pattern libraries are also a boon for users. When a website is built us-
ing a pattern library, it imbues the site with a consistency and predicability
that makes it easier for them to do what they need to do.

They don’t need to spend time trying to figure out how to fill out a
particular form or interact with a particular widget because each instance
is familiar to them. It’s reassuring.

Plus, pattern libraries make it much easier to get everyone on the
dev team up to speed when a component is upgraded or an API changes,
because it is the central repository of information for everyone who works
on the website. After all, a pattern library should evolve over time. It should
be a living document of numerous independently evolving modules. It
should not sit there like a monolith, but should be shaped and molded as
we continue to better understand our medium, the Web, and our users’
interaction with it.

The Future is Messy, Embrace it
We live in very interesting times. It seems every day a new device surfac-
es, a new browser, a new interaction model. It’s hard to keep track of it all
and mind-boggling to imagine creating siloed experiences for each new
thing that comes along. Like chasing screen sizes: it’s a fool’s errand. At a
certain point we need to let go and focus on what really matters: people.

We design — content, user flows, interactions, interfaces, APIs and
experiences — to help people do what they need to do as quickly and effi-
ciently as possible. We work hard so they don’t have to.

We’re here to solve problems. To do that, we need to become one with
our customers. We need to empathize with them and experience their
struggles as if they were our own.

By Aaron Gustafson CHAPTER 7

247

With that insight, we can craft amazing experiences for them. We’ll
strike that perfect balance between aesthetics and usability. We’ll build
experiences up from the core, following the progressive enhancement phi-
losophy. We’ll make our work more consistent and flexible by embracing
pattern libraries. And, no matter what devices companies throw at us, we’ll
rest assured our customers will be well-served.

About the Author
Aaron Gustafson is the Founder & Technical Lead of
Easy Designs, a content-focused Web consultancy
that specializes in delivering great user experiences
irrespective of device or platform. He is an Invited Expert
to the W3C, is the former Manager of the Web Standards
Project (WaSP), served as Tech Editor for A List Apart, and
wrote the oft-lauded Adaptive Web Design: Crafting Rich
Experiences with Progressive Enhancement.

About the Reviewer
Nicholas C. Zakas is a Staff Software Engineer at Box. He
is the author of Maintainable JavaScript (O’Reilly, 2012),
Professional JavaScript for Web Developers (Wrox, 2012), High
Performance JavaScript (O’Reilly, 2010), and Professional Ajax
(Wrox, 2007). He blogs regularly at http://www.nczonline.
net/ and can be found on Twitter via @slicknet.

Image credits
1st Image from Adaptive Web Design: Crafting Rich Experiences with Progressive Enhancement,
http://adaptivewebdesign.info, Easy Readers, 2011.
2nd Image from The Computer History Museum, www.computerhistory.org/timeline/

6. How To Break The Web And Fix it
 (obscure back-end techniques, Terminal secrets etc.)

Chapter

How to Fix the Web
Obscure Back-End Techniques

and Terminal Secrets

Written by Paul Tero

08

250

CHAPTER 8 How to Fix The Web: Obscure Back-End Techniques and Terminal Secrets

By Paul Tero CHAPTER 8

251

Chapter EIGHT · by PAUL TERO

How To Fix The Web

Obscure Back-End Techniques

And Terminal Secrets

magine that you wake up one morning, reach groggily for your
laptop and fire it up. You’ve just finished developing a brand new
website and last night you were proudly clicking through the product

list. The browser window is still open, the Widget 3000 is still sparkling
in its AJAXy newness. You grin like a new parent and expectantly click on
“More details”. And nothing happens. You click again, still nothing. You
press Refresh and get that annoying swirling icon and then the page goes
blank. Help! The Internet is gone!

We’re going to cover a lot of ground in this chapter, from routers to
servers, from error logs to PHP hacks. I’ll start with the worst case scenario
and work inwards, exploring the infrastructure of the Internet and the
make-up of a Web server, imparting lots of little tips and commands along
the way, opening up a new perspective on how websites can stop working
— and be fixed.

The End of the World
It is unlikely that civilization has collapsed overnight, especially if you
are a light sleeper. You can verify this with a battery-powered radio. An
apocalypse would certainly make the news and perhaps qualify for a full-

I

252

CHAPTER 8 How to Fix The Web: Obscure Back-End Techniques and Terminal Secrets

blown government warning. All stations should be reporting it, assuming
there are any left; it would be really, really bad news if not.

In the US, many broadcasters participate in the Emergency Alert
System, which theoretically allows the President to address the nation
within 10 minutes, though it might be vulnerable to hackers.1 France
uses air raid sirens for its Signal National d’Alerte2 and Japan’s J-Alert
uses loudspeakers.3 All are part of the United Nation’s International Early
Warning Program. This is important, especially now that the International
Decade for Natural Disaster Reduction (the 1990s) is long over.4

You should be able to ascertain pretty quickly if your website woes are
related to this. If not, move on to the next section.

Infrastructure
The Internet depends on electricity. Your hosting company probably has an
uninterruptible power supply (UPS) which will take over instantly in the
event of power failure. It can provide power to your Web server for a few
minutes, long enough to have a diesel generator ready to take over.5 The
major networking equipment connecting your Web server to the Internet
is probably protected with UPSes and generators as well. And your laptop
should survive for a few more hours if fully charged.

Your wireless router, however, will cease to function. It is the weakest
link. You can get around it by checking the Internet via your smartphone,
which should work as long as your nearest tower has back-up power, and

1 Lucian Constantin, “Emergency Alert System devices vulnerable to hacker attacks, researchers say”,
Computer World, Feb 13 , 2013. http://smashed.by/emergency
2 Le Signal National d’Alerte, Institut Français des Formateurs, Risques Majeurs et protection de 		
l’Environment, Mar 28, 2007. http://smashed.by/national-alert
3 “Japan Launches Alert System For Tsunamis And Missiles”, Terra Daily, Feb 9, 2007.
http://smashed.by/alert-system
4 A-RES-44-236 General Assembly Resolution 44/236, United Nations General Assembly, Dec 22 , 1989.
http://smashed.by/un-solution
5 “UPS and Generators - How long can they run for?”, Power Continuity.
http://smashed.by/power-continuity	

By Paul Tero CHAPTER 8

253

there is a route to the Internet through other working towers. It might be
very slow though, especially if everyone in your neighborhood has also had
the same idea. If your website is still gone, then the problem is a bit more
personal.

Networking
Power outages aren’t the only things which upset broadband routers. They
have many inventive ways of failing, as does all the other networking
equipment between you and your website, and all the copper and fiber-
optic cable in between.

To explore networking issues, you’ll need to run some commands.
Much of this information is also available through various menus, but
the command line gives you more data more quickly. On Mac OS X, go to
Applications → Utilities and run Terminal. In Ubuntu Linux, the terminal
is under Applications → Accessories. In Windows, go to Start → All
Programs → Accessories and choose Command Prompt.

Your IP Address
Every computer connected to the Internet has a numerical IP (Internet
Protocol) address. To find out yours, run the command ifconfig on Mac
and Linux and ipconfig /all on Windows:6

$ ifconfig
eth0 Link encap:Ethernet HWaddr 00:10:dc:75:d9:5b
 inet addr:192.168.0.11 Bcast:192.168.0.255 Mask:255.255.255.0
 inet6 addr: fe80::210:dcff:fe75:d95b/64 Scope:Link
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1...
lo Link encap:Local Loopback
 inet addr:127.0.0.1 Mask:255.0.0.0
 inet6 addr: ::1/128 Scope:Host
 UP LOOPBACK RUNNING MTU:16436 Metric:1...

6 Linux users may need to run /sbin/ifconfig or sudo ifconfig. sudo is used to run a command as the
super user and is discussed later in the chapter.	

254

CHAPTER 8 How to Fix The Web: Obscure Back-End Techniques and Terminal Secrets

This says that the computer (Linux in this case) has two network
interfaces. The eth0 is the one which communicates with the Internet
via a cable. If this computer had wireless there would also be an eth1
or wlan0 interface. The loopback interface lo is used as a shortcut for
communicating with itself. Each interface has an IP address on the local
network. The important line here is inet addr:192.168.0.11. This
gives the computer’s IP address. If you have a cable attached and wireless
turned on, you may have two active interfaces and two IP addresses, but
it’s usually just the one. Macs tend to call these interfaces en0 and en1.
Windows is more verbose and uses sexy names like “Ethernet adapter
Local Area Connection”.

DHCP
How does your computer know its IP address? Especially on a home or
wireless network, you do not need to enter this information yourself.
When your computer first connects to your home network, it sends out
a request to every other device on the network, something like: “Can
someone please give me an IP address?”

Your broadband router should dutifully respond and assign your
computer an IP address. As you probably know, routers are the devices
that hold the Internet together. Unlike laptops and desktops, routers have
more than one network interface, more than one cable (or wireless point)
attached to them and so more than one IP address. In your home or office,
the router is the little box which provides your connection to the Internet
via your broadband service.

The method used to assign an IP address is Dynamic Host Configuration
Protocol (DHCP). If there is no IP address when you run ifconfig or
ipconfig, you can force your computer to retrieve new DHCP settings. On
Windows, run ipconfig /release followed by ipconfig /renew. On a Mac,
run sudo ipconfig set en0 DHCP, and on Linux use sudo dhclient eth07.

7 Some Linux distributions may use a different client such as dhcpcd.	

By Paul Tero CHAPTER 8

255

On Mac and Linux, the actual command is prefaced by sudo8 which forces
you to put in the root password for the computer. You must also specify
which interface to renew, usually eth0 on Linux and en0 for Mac.

If this was successful, then voilà! You’re a tiny bit closer to being
back on the Internet. If not, check your broadband router. It may be off,
disconnected or broken, or it may just need resetting.

Default Gateway
You know your broadband router was alive at some point in the recent past
because it gave you an IP address. But that could have been up to three
days ago: is it still there now?

Every computer on the Internet also has a default gateway9. This is
basically the IP address of the piece of networking equipment at the other
end of your network cable or wireless connection. It is your computer’s
gateway to the Internet. Every time you request anything from the
Internet, it goes via this gateway. To find our your default gateway, run
netstat -nr on Mac and Linux, and route print (or ipconfig again) on
Windows. You will get something a bit like:

Destination Gateway Genmask 	 Flags Metric Ref Use Iface
192.168.0.0 0.0.0.0 255.255.255.0 U 0 0 0 eth0
0.0.0.0 192.168.0.1 0.0.0.0 UG 100 0 0 eth0

In the Destination column above, the 0.0.0.0 (or the word “default”)
means anywhere and the G in the Flags column stands for “Gateway”. The
default gateway of this computer is therefore 192.168.0.1. For people
at home or in a small office this is probably the internal IP address of the
broadband router.

8 Especially on Linux, not all users are allowed to run sudo and sometimes it won’t ask for a password,
for example, if you have already run it recently. Also beware that sudo can be dangerous as it allows you
to run anything. You can inadvertently delete and stop things that should be left alone.	
9 It ’s possible to have more than one default gateway, e.g. if you are connected to a virtual private network.

256

CHAPTER 8 How to Fix The Web: Obscure Back-End Techniques and Terminal Secrets

You can use the ping command to see if it is up and available. Type
ping 192.168.0.1.

$ ping 192.168.0.1
PING 192.168.0.1 (192.168.0.1) 56(84) bytes of data.
64 bytes from 192.168.0.1: icmp_seq=1 ttl=64 time=1.31 ms
64 bytes from 192.168.0.1: icmp_seq=2 ttl=64 time=0.561 ms
64 bytes from 192.168.0.1: icmp_seq=3 ttl=64 time=12.6 ms

The “64 bytes from 192.168.0.1” represents a successful reply. If you get
a reply, then your broadband router is reachable. If not, then check it again.
On Mac and Linux the replies will go on forever until you press Control + C.
On Windows, it will quit after the fourth ping.

Beyond the Router
To go beyond your router, you will need the traceroute command on
Mac and Linux, and tracert on Windows. This command traces a route
through the Internet, reporting each networking device (router) it comes
across. IP addresses are formed of four numbers from 0 to 25510. Pick an IP
address out of a hat and try it:

$ traceroute -q 1 -n 1.2.3.4
traceroute to 1.2.3.4 (1.2.3.4), 30 hops max, 60 byte packets
 1 *
 2 80.3.65.217 9.163 ms
 3 213.105.159.157 11.158 ms
 4 213.105.159.190 11.215 ms
...
13 72.14.236.149 98.484 ms
14 209.85.252.47 104.071 ms
15 *
16 *...

10 There are newer long IPv6 (version 6) addresses which have 8 blocks of 4 hexidemcial digits separa-
ted by colons, but you are unlikely to come across these in 2013.	

By Paul Tero CHAPTER 8

257

The -q 1 option on Mac and Linux tells the command to try each router
only once. The -n tells it not to bother looking up the human-readable
name for each router, which makes the command much slower. This
option is -d on Windows, so use tracert -d 1.2.3.4.

Each step above is known as a hop in networking jargon. The first hop
is the broadband router. It is probably configured not to provide any infor-
mation about itself, so traceroute just shows an asterisk. The second hop
takes it outside the local network to the other side of the broadband router.

At each subsequent hop sits another router, probably with many
network interfaces and many IP addresses. Each router has a routing table
like the one above. Its table contains rules like: if the destination starts
with 0 to 91, then send the packet down interface eth1 (the Use Iface
column); if it starts with 92 to 128, use eth2.

This example goes 14 hops before reaching a dead end, either because
the IP address is blocked or not in use.

That is about as far as numbers alone can take us. Hopefully you’ve
established that civilization is still going at least a couple networking
hops beyond your front door. You’ve also learned how to use the useful
networking commands ifconfig, ping and traceroute. To explore further,
you’ll need DNS.

The Domain Name System
Smashing Magazine could have gone with http://80.72.139.101 as its main
website address rather than http://www.smashingmagazine.com. It would
have had two advantages: it would have used less space on business cards;
and it would still have worked when DNS was down. However, Smashing’s
marketing people may have objected, and their customer base would have
been limited to people with extremely good memories.

The domain name system makes the Internet more human-friendly
by translating between domain names like www.smashingmagazine.com
and IP addresses like 80.72.139.101. DNS is a big hierarchical distributed

258

CHAPTER 8 How to Fix The Web: Obscure Back-End Techniques and Terminal Secrets

database. You are probably aware that there is no single computer
which knows all the translations and which everybody else consults.
Rather, it is a huge network of computers each of which know a few
translations, and know who else to ask if they don’t.

Your Local DNS Server
Every computer knows about a local DNS server. It is one of the crucial bits
of information your broadband router provides via DHCP: your IP address;
your default gateway’s IP address; and your local DNS server’s IP address.

When you type a website address into your browser, your computer
first asks its local DNS server to translate it into an IP address. To find
out your DNS server, run the command cat /etc/resolv.conf on Mac
and Linux11, or ipconfig /all on Windows. On Mac and Linux, the cat
command displays a file, and the file /etc/resolv.conf contains your
domain name servers. The file looks like:

$ cat /etc/resolv.conf
nameserver 194.168.4.100
nameserver 194.168.8.100

Nslookup
To diagnose DNS problems, first check that your local DNS server is alive
with ping. If it is, then you can use the nslookup command to see if it’s
responding correctly. nslookup stands for name server lookup and is used
like this:

$ nslookup www.smashingmagazine.com
Server:	 194.168.4.100
Address: 194.168.4.100#53
Non-authoritative answer:
Name:	 www.smashingmagazine.com
Address: 80.72.139.101

11 Some versions of Mac OS X (Mountain Lion) do not use /etc/resolv.conf but you should be able to
find the information within System Preferences from the Apple menu.	

By Paul Tero CHAPTER 8

259

This command tells you the DNS server used (194.168.4.100) and the
IP address you are looking for (80.72.139.101). If nslookup didn’t respond,
then your Internet woes lie with your local DNS server12. If you are at
home or in a small office, your DNS server is probably provided by your
broadband company.

They generally provide two or more of them, so it’s unlikely that they
will all fail. If you happen to know the IP address of a different name
server, you could query that instead (nslookup www.smashingmagazine.com
194.168.8.100), but it may well refuse to talk to a stranger. You’ll probably
need to complain to your broadband company about the problem instead.

Free Advertising
Have you ever typed in a website address incorrectly and come up with
a branded page from your broadband provider? Instead of admitting
“I don’t know”, your local name
server is sneakily replying
with an alternative IP address
of its choice, promoting the
broadband company it is
owned by. It’s interesting
to see that the marketing
people are into DNS, and a
shame that their technical
colleagues didn’t stop them,
as this sort of practice makes
some automated networking
processes more difficult.

12 This is not a definitive diagnosis. This chapter presents a simplified account of many networking
and server processes, problems and solutions. It could be that some other bit of DNS software on your
own computer or a DNS relay on your router is failing.	

Broadband company intercepting a non-existent
website.

260

CHAPTER 8 How to Fix The Web: Obscure Back-End Techniques and Terminal Secrets

A Full Journey
Having confirmed that your local DNS server is working, you can
tentatively try to establish human-friendly contact with the Internet using
traceroute with a domain name instead of an IP address, and leaving out
the -n option. The command is tracert on Windows. This will report a
readable name for each router.

$ traceroute -q 1 www.smashingmagazine.com
traceroute to www.smashingmagazine.com (80.72.139.101), 30 hops max, 60
byte packets
 1 *
 2 brig-core-2b-ae6-725.network.virginmedia.net (80.3.65.177) 10.542 ms
 3 popl-bb-1b-ae14-0.network.virginmedia.net (213.105.159.157) 13.934 ms
 4 popl-bb-1c-ae1-0.network.virginmedia.net (213.105.159.190) 14.454 ms
 5 nrth-bb-1c-ae7-0.network.virginmedia.net (62.253.174.137) 15.982 ms
 6 nrth-tmr-1-ae1-0.network.virginmedia.net (213.105.159.30) 16.215 ms
 7 fran-ic-1-as0-0.network.virginmedia.net (62.253.185.81) 36.090 ms
 8 FFMGW4.arcor-ip.net (80.81.193.117) 39.064 ms
 9 92.79.213.133 (92.79.213.133) 47.404 ms
10 92.79.200.190 (92.79.200.190) 45.385 ms
11 kar-145-254-15-178.arcor-ip.net (145.254.15.178) 40.421 ms
12 145.253.159.106 (145.253.159.106) 46.436 ms
13 1-3-frr02.continum.net (80.72.130.170) 49.321 ms
14 1-6-frr04.continum.net (80.72.130.158) 47.194 ms
15 www.smashingmagazine.com (80.72.139.101) 48.081 ms

This reveals much more about the journey packets of data take. After it
leaves your local network, the first few hops in any traceroute are probably
owned by the local broadband company, Virgin Media in this case. If the
traceroute stopped here, then it would be an issue for them resolve. You
could phone them for more information.

Once the traceroute leaves your broadband provider, it enters a no man’s
land of big inscrutable networking devices. In this case they are owned by
Arcor, a subsidiary of Vodafone. If the traceroute fails here, it may represent a
fairly major networking problem and there’s not much you can do.

By Paul Tero CHAPTER 8

261

Eventually, it will reach the hosting company for the website in
question (Continum.net in this case). If it fails there, then the fault may
lie with your hosting company. Or it may simply be that the traceroute is
blocked by a firewall. Or that your website has moved.

Moving Websites
It’s unlikely that your website has moved to a different server without you
knowing, especially as you were just working on it last night, but you can
double-check this.

Every DNS server keeps a cache of every domain name it has been
asked for. This saves clogging up the Internet with requests for things that
rarely change. The downside is that if someone changes the IP address for a
domain like www.smashingmagazine.com, it can take 24 to 48 hours for all
the caches to clear so that everyone in the world knows the new IP address.

To ascertain that you have the latest information, you first need to find
out the local name server for the domain name you are querying. To do this,
give nslookup the option -type=ns, like this on Mac, Linux and Windows:

$ nslookup -type=ns www.smashingmagazine.com
Server:		 194.168.4.100
Address:	 194.168.4.100#53
Authoritative answers can be found from:
smashingmagazine.com
	 origin = a.regfish-ns.net
	 mail addr = postmaster.regfish.com...

The origin (or sometimes primary name server) is the local DNS
server for www.smashingmagazine.com. You can use nslookup again to
query this server directly:

$ nslookup www.smashingmagazine.com a.regfish-ns.net
Server:		 a.regfish-ns.net
Address:	 79.140.49.11#53
Name:	 www.smashingmagazine.com
Address: 80.72.139.101

262

CHAPTER 8 How to Fix The Web: Obscure Back-End Techniques and Terminal Secrets

Compare this to the nslookup on your local DNS server. It no longer
says “non-authoritative”. This is now the authoritative reply. It’s the same
IP address, so we know that www.smashingmagazine.com didn’t suddenly
move last night.

On Mac and Linux, you can use the dig command to find out exactly
how long your local DNS server has cached this translation for. It stands
for domain information groper. Windows users will need to search for an
online dig tool as Windows doesn’t natively support this command:

$ dig www.smashingmagzine.com
...
;; ANSWER SECTION:
www.smashingmagzine.com. 246	 IN	 A	 80.72.139.101...

The 246 is the number of seconds before the local DNS server’s cache
expires and it has to rediscover the IP address for smashingmagazine.com.

Your Broadband Router Revisited
Now that DNS is working, you can find out what the world thinks of you.
You have already discovered your computer’s own IP address above. But
that may not be the one that it uses on the Internet. If it starts with 192.168
or 10, then it is definitely not a public address. Those IP address ranges
signify local IP addresses for use within your internal network only.

When your computer sends a request to the Internet, it first goes
to your default gateway (your broadband router), which also has a local
internal IP address such as 192.168.0.1. But your router has another
public IP address as well. Your router wraps up your request and resends it
from this public IP address instead.

Therefore, your broadband router’s public IP address is basically your
public IP address. This is how the rest of the Internet sees you as you browse.
This is the IP address that will show up in log files in any of the websites
you visit. Consequently, anybody else using the same broadband router
will have the same public IP address as you. Your router handles all of this

By Paul Tero CHAPTER 8

263

using a process called network address translation, making sure requests and
information go out and come back to the right local IP address.

You can find out your broadband router’s public IP address by visiting
a website like whatismyipaddress.com. Alternatively, you can run the
command curl ipinfo.io/ip on Mac or Linux, or wget -O- -q ipinfo.io/
ip on Linux. Both curl and wget retrieve a Web page (http://ipinfo.io/ip)
from the Internet. The -O- option (that’s a letter O, not zero) tells wget to
output the result to the screen (signified by a single hyphen) rather than
save it to a file, and -q tells it to do it quietly. curl automatically outputs to
the screen. To use curl on Windows you have to download and install it
first. All these methods go outside your local network and look back. There
is no way to find out your router’s public IP address from the inside. The
output is quite simple:

$ curl ipinfo.io/ip
85.106.118.199

Where Are They?
Websites like whatismyipaddress.com and ipinfo.io do more than just
tell you your public IP address. They also provide geolocation services.
It is interesting to take the IP addresses from the traceroute mentioned
earlier on page 187 and copy and paste them in. Geolocation guesses at
the physical location of the router, and can also tell you who owns the IP
address. The address 62.253.185.81 is in southern England but the next one
crosses the Channel to 80.81.193.117 in Frankfurt, Germany. This type of
geolocation relies on databases of IP address ownership.

In fact, there are websites which can map this all out for you, such as
DNStools.ch13 and YouGetSignal14. The starting points for these traceroutes
will be the Web server hosting the tool, rather than your own computer.

13 http://smashed.by/visual-traceroute
14 http://smashed.by/visual-tracert	

264

CHAPTER 8 How to Fix The Web: Obscure Back-End Techniques and Terminal Secrets

Above is an example of the distance and time taken between a Web
server in Los Angeles and the BBC website in London.

Connecting to Your Server
So, civilization and its Internet are both up and running. What’s gone
wrong? Your website lives on a computer somewhere out there, probably in
a big air-conditioned room full of other computers, with multiple fire doors
and an awful lot of colorful cabling. This computer is colloquially known as
a Web server.

Imagine for a moment that your Web server is the nation of France. If
you want to send a large item of furniture to somewhere in France, it will
be wrapped up tight on a container ship and sent off across the sea. It will
arrive in one of France’s major ports, maybe Marseille or Bordeaux or Le
Havre. It doesn’t really matter to you which port it goes through, but it does
matter to the shipping company. Computers are similar, except they are a
bit smaller and have 65,535 ports.

On computers, some ports are assigned specific functions. On a Web
server, port 80 receives and replies to Web browsing requests. Ports 25 and
110 deal with email. A typical Web request would involve a high-numbered
(usually random) port on your computer sending a request to port 80 at
80.72.139.101, something like: “Hey you, send me the Web page /index.html.”

Visual traceroute from Los Angeles to London covering 7,904 miles in 4.8 seconds.

By Paul Tero CHAPTER 8

265

Telnet and Netcat
The telnet command allows you to mimic a container ship and connect
to a specific port on a server. Windows does not have telnet by default,
but you can enable it on Windows 7 by going to Start → Control Panel →
Programs → Turn Windows features on or off → Telnet Client.

Since we’re dealing with a website problem, and since the Web server
is almost always on port 80, try telnetting to port 80:

$ telnet www.smashingmagazine.com 80
Trying 80.72.139.101...
telnet: Unable to connect to remote host: Connection refused

Mac and Linux support an alternative command: netcat. It is more
specifically suited for networking tasks and supports additional features
like proxies. This chapter will focus on telnet, however, as it also works on
Windows. Add -v to netcat to make it verbosely tell you what it’s doing.

$ netcat -v www.smashingmagazine.com 80
netcat: connect to www.smashingmagazine.com port 80 (tcp) failed: Connec-
tion refused

Uh oh.
Except, not really. I faked the issue above. Smashing Magazine wasn’t

really down. But I will use www.smashingmagazine.com as an example
domain throughout this chapter. Suspend your disbelief and pretend that
Smashing has moved into the Widget 3000 market and has sequentially
fallen victim to just about every networking and website problem
imaginable, and subsequently overcome them.

Control Panel
Whenever your Web server receives data on port 80, it sends it to a piece
of software for processing. Confusingly, that software is also called a Web
server. By far the most common type of Web server software is Apache.

266

CHAPTER 8 How to Fix The Web: Obscure Back-End Techniques and Terminal Secrets

According to W3Techs in June 2013, it had a market share of 65.2%.15
Microsoft’s Internet Information Server (IIS) is second with 15.7%, just in
front of nginx at 14.3%.

Web server software shouldn’t ever stop working. But if it does you
can, hopefully, just restart it again. The quickest way to do this is using
a control panel provided by your server. Windows servers (34.3% market
share in June 201316) are often managed by Remote Desktop or VNC which
allow you to take control of the server’s screen, keyboard and mouse, and
change settings directly on the server.

The rest of this chapter, however, will focus on Linux and UNIX servers
(65.7%), which are usually managed via a Web interface such as Plesk,
CPanel or Webmin. These management tools are really just websites, but
running on a different port. Plesk, for example, usually runs on port 8443,
CPanel on 2082 or 2083 and Webmin on 10000.

Dig deep into your email folders and look for the URL, username
and password for your control panel. Log in and find the screen which
allows you to restart your Web server software. In Plesk, look for “Services
management” (in Server or Tools & Settings) and press the Play button
next to “Web Server (Apache)”.

15 “Usage of Web servers for websites”, W3Techs. http://smashed.by/web-servers
16 “Usage of operating systems for websites”, W3Techs. http://smashed.by/operating-sys

Restarting a Web server with Plesk.

By Paul Tero CHAPTER 8

267

SSH
If port 80 is down, there’s a good chance that the control panel won’t be
available either. You will need to log in to the server and issue commands
directly. For this there is Secure Shell (SSH). SSH is like the text-only
version of Remote Desktop. It allows you to open a terminal window on
the server. From a Linux or Mac desktop or laptop, use the command ssh.
From a Windows computer, download and run PuTTY.

You’ll need the username and password for your server, contained
in the same email as above. On a Linux server, root is the most powerful
administrative user. For security reasons, the SSH user from your email
will often be something less privileged. When you run SSH, you have to
provide the username as part of the command. It will ask you to accept a
security fingerprint and enter a password:

$ ssh root@www.smashingmagazine.com
The authenticity of host 'www.smashingmagazine.com (80.72.139.101)' can't
be established.
RSA key fingerprint is 00:5a:cf:51:83:46:0b:91:29:ef:2e:1d:c9:59:e9:ab.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added 'www.smashingmagazine.com,80.72.139.101' (RSA)
to the list of known hosts.
root@www.smashingmagazine.com's password: ...

If successful, you'll end up with a welcome message and a terminal prompt:

Linux dedivps-13236 2.6.10-091stab048.3 #1 SMP Fri Dec 7 17:06:14 GMT
2012 x86_64
Last login: Thu May 2 07:20:11 2013 from cpc1-brig18-2-0-cust123.3-3.
cable.virginmedia.com
root@dedivps-13236:~#

Note that this will only work on Linux or UNIX servers that have an
SSH server which accepts connections, and the rare Windows servers
that have opted to install it. For most other Windows servers, you’ll need
Remote Desktop instead. If you can’t get at your server via a control

268

CHAPTER 8 How to Fix The Web: Obscure Back-End Techniques and Terminal Secrets

panel or SSH, your options are very limited. There’s a slim chance that an
overenthusiastic firewall is getting in the way, or that you’re experiencing
a denial of service attack. Or else you’ll need to contact your hosting
company and ask for help.

Firewalls
Firewalls are bits of hardware or software that filter incoming and
outgoing data. These filters are applied according to the source and
destination IP address and port. So, for example, a firewall should allow all
requests going to the server’s port 80 or else nobody will be able to get to
the website. But it may block all requests to port 8443 (Plesk), port 22 (SSH)
or port 3389 (remote desktop) except from a few known and trusted IP
addresses.

Using PuTTY for SSH from a Windows computer.

By Paul Tero CHAPTER 8

269

You can sort of tell if there’s a firewall in your way depending on
how the connection fails. To test if SSH is being blocked, you can run the
command ssh or use telnet as above to port 22:

$ telnet www.smashingmagazine.com 22
Trying 80.72.139.101...
telnet: Unable to connect to remote host: Connection refused

“Connection refused” means that your data reached the server but was
probably refused entry for non-firewall reasons. For example, SSH may
be turned off or running on a different port. The message “Connection
timed out” or no
message more
strongly indicates a
firewall block. If it
does connect, press
Control +] to get to
the telnet> prompt
and then type quit to
quit.

So if you have a
firewall (that email
should tell you), you
need to make sure
that SSH is allowed
and that your public IP address is in the list of trusted ones. Even if you
know your IP address was in the list yesterday, it may have changed
today, particularly if you have had broadband issues recently. The public
IP addresses assigned to home routers can stay the same for months on
end, and then suddenly change. How and why and when depends on your
broadband company and your neighbors. The only way to avoid this is to
pay extra for a static or fixed IP address.￼

Many firewalls maintain a list of trusted IP addresses.

270

CHAPTER 8 How to Fix The Web: Obscure Back-End Techniques and Terminal Secrets

Denial of Service
Imagine that the Widget 3000 suddenly goes viral. The Queen of England
is filmed throwing one at the winner of X Factor and suddenly everybody
in the world wants to own one. You might think “Fantastic!” But unless
your server infrastructure is prepared to go from 100 visits an hour to
100 million, you probably won’t actually sell very many. All those visitors
accessing your website at once will grind the network and your server to a
halt. The first few thousand visitors may receive half a Web page, the rest
will be staring at blank browsers.

And when you try to telnet to your server as above, it will also sit there
waiting — no refusal but no entry either. This is roughly what happens in
a distributed denial of service (DDoS) attack. All those hackers who have spent
the last 15 years finding holes in Internet Explorer were not working in
vain. They have managed to plant Trojan horses on millions of computers
worldwide. When they issue the command, all those computers suddenly
try to send data to and request data from your Web server, overwhelming
it and making it unreachable.

Unless you are running a bank or a spamming operation, or have
managed to make some clever and determined enemies, it is unlikely to
happen to you. Let’s assume telnet has instead connected successfully.

Checking Your Server
Now you’re in business. You’ve got a terminal window open on your
server waiting for your every command. From now on, all the commands
are being issued on your Linux server, not your laptop. Other types of
UNIX server, including Macs, may have different commands or the same
commands with different options.

Listening to Port 80
The first step is to figure out which software should have responded when
you tried to telnet to port 80. For that, you can use the netstat command

By Paul Tero CHAPTER 8

271

to display all the networking information about your server. Add -tlpn
to the command to make it show only TCP connections that it is listening
for, along with the numeric port and the program they belong to. On some
systems the p option requires super user access, so the commands below
also do a sudo.

$ netstat -tlnp
Active Internet connections (only servers)
Proto Recv-Q Send-Q Local Address Foreign Address State PID/Program name
tcp 0 0 127.0.0.1:53 0.0.0.0:* LISTEN 4290/named
tcp 0 0 127.0.0.1:5432 0.0.0.0:* LISTEN 3507/postmaster
tcp 0 0 0.0.0.0:3306 0.0.0.0:* LISTEN 7117/mysqld...

This shows only an abbreviated output. It normally shows all the ports
which the server is listening to, and there can be between 10 and 100 of
them. When running any command, you can whittle down its output
using the grep command. grep filters the output and only shows lines
containing a word or phrase you have specified. The vertical bar | makes
a pipe, piping the output of one command (netstat) into the input of
another (grep). Try this instead:

netstat -tlpn | grep :80
tcp6 0 0 127.0.0.1:8005 :::* LISTEN 22885/java

This runs netstat and shows only results containing :80. This server has a
java process listening to port 8005 but no Web server running.

Which Web Server
When a Linux server starts up it looks in the directory /etc/init.d and
runs the scripts there to launch its software. This varies among Linux
distributions, and on other UNIX flavors like BSD this might be /etc/rc.d
or /etc/rc.d/init.d. This is similar to the Startup menu folder in Windows.

272

CHAPTER 8 How to Fix The Web: Obscure Back-End Techniques and Terminal Secrets

You can see what your server starts using the ls command which
lists the files in a directory. The -l shows a long format with permissions,
owners, size and date created.

$ ls -l /etc/init.d
total 368
-rwxr-xr-x 1 root root 7621 Sep 13 2012 apache2
-rwxr-xr-x 1 root root 3281 Oct 5 2012 bind9
-rwxr-xr-x 1 root root 2444 Jan 1 2011 bootlogd
-rwxr-xr-x 1 root root 5364 Nov 1 2011 courier-imap
-rwxr-xr-x 1 root root 3753 Dec 19 2010 cron...

You are looking for a Web server software package such as apache2,
httpd (the old name for Apache) or nginx. You can use grep again with the
-e option which tells it to use a regular expression. In regular expressions,
the vertical bar means “or” so this displays any files containing “apache” or
“http” or “nginx”. The bar must be escaped with a backslash:

$ ls -l /etc/init.d | grep -e "apache\|http\|nginx"
-rwxr-xr-x 1 root root 7621 Sep 13 2012 apache2

Restarting the Web Server Software
The files in /etc/init.d are called shell scripts. The commands you’ve
been using on Mac and Linux up till now form part of a C-type language
which also includes setting variables and running loops. As in JavaScript,
the semicolon at the end of each line is optional, but if you use it, you can
cram several commands onto a single line. Here is a simple for loop on the
command line:

$ for i in 1 2 3; do echo Line $i; done
Line 1
Line 2
Line 3

By Paul Tero CHAPTER 8

273

To see a complex shell script, take a look at some of the startup scripts
in /etc/init.d. Use the less command to view a file. Press space to view
the next page or q to quit from less.

$ less /etc/init.d/apache2
#!/bin/sh
set -e
SCRIPTNAME="${0##*/}"...

The reason we’re really here, though, is to restart the Web server software.
If you logged into ssh as the administrative user root, you can run the restart
command directly. In this case, you will have been typing your commands
after a # instead of a $. If not, you’ll need to prefix it with the sudo command,
which says do some command as the super user. You’ll need the root
password to hand for sudo. To tell the Web server software to start, run:

$ sudo /etc/init.d/apache2 start
Password:
Starting apache2...

Hopefully this will fail with a useful error message. Hopefully, because
then you will know why it crashed in the first place, and you can plug the
error message into Google to find out how to fix it.

If it was unlucky enough to work, then your Web server is now running.
All the scripts in /etc/init.d run as background processes, or daemons
in UNIX parlance. This means that you can start them and they will stay
running even after you exit from ssh, turn off you computer and go to the
beach. This is unlike commands like traceroute and ls which do their
thing and finish. You can run netstat again to double-check the Web server
is now running. Notice the d at the end of apached. It stands for daemon.

netstat -tlpn | grep :80
tcp 0 0 :::80 :::* LISTEN 18201/apached

tcp6 0 0 127.0.0.1:8005 :::* LISTEN 22885/java

274

CHAPTER 8 How to Fix The Web: Obscure Back-End Techniques and Terminal Secrets

Web Server Error Logs
If it failed to start and didn’t give a friendly error message, the next place
to look is the error logs. These are usually in the /var/log directory named
after the software. Run ls /var/log to double check. For example, Apache’s
logs are in /var/log/apache2.

$ ls -l /var/log/apache2/*log*
-rw-r----- 1 root adm 1944899 May 5 09:59 /var/log/nginx/access.log
-rw-r----- 1 root adm 538152 May 4 02:40 /var/log/nginx/access.
log.2.gz
-rw-r----- 1 root adm 28647 May 5 08:18 /var/log/nginx/error.log
-rw-r----- 1 root adm 5701 May 4 02:35 /var/log/nginx/error.log.2.gz

This shows that Apache has an access log and an error log. Both logs are
zipped up around 02:30 each morning. The next command first changes
into the /var/log/apache2 directory with the cd command, and then uses
tail to view the last few entries in a log file.

$ cd /var/log/apache2; tail error.log

To look at a gzipped log file, use the zcat command to output it and
pipe through tail. The -20 shows the last 20 lines.

$ zcat error.log.2.gz | tail -20

Or better yet, just look for errors using grep. Use zcat with the -f
option to display both normal and zipped log files. Then pipe the output
through grep to search for the word “error” case insensitively:

$ zcat -f error.log* | grep -i error

This command may produce a lot of output. If a Matrix fan happens to
walk past your computer right now, they’ll be impressed to see all that raw
data whizzing by. It won’t help you much, though, so pipe it through less:

$ zcat -f error.log* | grep -i error | less

By Paul Tero CHAPTER 8

275

less is powerful. You can press arrow keys or j to go down, k to go up,
/something to search for “something” and h to see a helpful list of all the
commands. If you can narrow down the moment of failure of your Web
server to a few hours, you can use less to navigate to that part of the log
file.

System Logs
There are several other useful log files in /var/log such as syslog (the
system logger) and dmesg (bootup messages). They all use a similar date
format so if you can narrow down the time when you suspect something
went wrong, you can search them all at once. This command changes to
the /var/log directory and then outputs all the files using zcat -f. The
[234] in grep is borrowed from regular expressions and matches the
numbers 2 or 3 or 4. So this will display any error messages in any of the
logs that took place on May 5 between 02:00 and 04:00 in the morning:

$ cd /var/log; zcat -f * | grep "May 5 0[234]:" | less

Out of Space
If your Web server software still won’t start and the error remains elusive,
there are a couple common problems you can explicitly check for. Your
server could have run out of hard drive space. Use the command df to
show disk file usage. The -h shows things in human-friendly form (with M
for megabyte and G for gigabyte instead of really big numbers):

$ df -h
Filesystem 1M-blocks Used Available Use% Mounted on
/dev/simfs 20.4G 9.8G 10.6G 49% /
tmpfs 1.6G 0 1.6G 0% /lib/init/rw
tmpfs 1.6G 0 1.6G 0% /dev/shm

276

CHAPTER 8 How to Fix The Web: Obscure Back-End Techniques and Terminal Secrets

If that was a problem, then a quick solution is to find and delete really
big files. The find command is very powerful. The -size option tells it to
look for files of at least the given size, and the -printf option tells it to
print the size (%12s, where the 12 directs the print area to be 12 characters
wide to help line things up), last modification time (%t), directory (%h), file
name (%f) and then a new line (\n). To view all files over 10 megabytes try:

$ find / -size +10M -printf "%12s %t %h/%f\n"
445631888 Mon Mar 18 13:38:07.0380913017 2013 /var/www/huge-file.zip

If you are absolutely sure that this file is superfluous, then you can use the
following command to delete the file and free up space quickly. Be warned
that there is no going back. The rm command does not have a trash folder
from which you can restore things later: $ rm /var/www/huge-file.zip

Out of Memory
To check your server’s RAM usage, run the free command, again with -m
to show in megabytes:

$ free -m
 total used free shared buffers cached
Mem: 3067 2673 393 0 0 819
-/+ buffers/cache: 1853 1213
Swap: 0 0 0

This server has 3GB of total memory and 393MB free. This is fine as
Linux likes to use a lot of its memory. It’s the buffers/cache line which
you should focus on. If this is nearly all used, then your system may be
struggling to cope.

To find out what is hogging all the memory, use the top command.
It shows a real-time display of system CPU and memory usage.
Unfortunately this will also run very slowly if your server is under strain,
but it may tell you what’s causing the problem.

By Paul Tero CHAPTER 8

277

$ top
 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
22885 tomcat6 20 0 2061m 159m 2644 S 1 5.2 780:41.85 java
 1 root 20 0 8360 568 536 S 0 0.0 0:52.30 init
 2 root 20 0 0 0 0 S 0 0.0 0:00.00 kthreadd/10086
 3 root 20 0 0 0 0 S 0 0.0 0:00.00 khelper/10086
14579 root 20 0 40900 3124 1668 S 0 0.1 1:30.27 nginx...

If something is being a memory hog, you can restart it or kill it. However,
be sure you know what it is first. You may crash the server completely, or
lock yourself out, or stop an important database amalgamation which your
efficiency-unaware colleague started three days ago.

First of all, try to find a friendly way of restarting an errant process. Many
services can be restarted nicely by issuing a restart command to the shell
script which started them, such as:

$ sudo /etc/init.d/apache2 restart

If that isn’t available, search online for how best to restart or shut it down
gracefully. If you still have no luck, then to kill a process, press k and type in
the number from the process ID (PID) column. It will ask for confirmation
and then try to kill the process. If you are not root, it may say “Operation not
permitted”, in which case you’ll need to run sudo top instead.

The PID is used to identify a piece of software running on a computer.
Each instance of an application, program or software has a unique PID.
If the process refuses to go away, you can press q to leave top and try the
kill command instead. Give it the more extreme -9 option. top sends the
friendly signal 15 (termination). Signal 9 goes straight for the kill.

$ sudo kill -9 22885

Run top again. If some other similar process has taken over the
memory-eating honors, then you have only killed a child process. You will
need to find out the parent which spawned the misbehaving child in the

278

CHAPTER 8 How to Fix The Web: Obscure Back-End Techniques and Terminal Secrets

first place, because killing the parent will also stop all the children. The
ps command can be used to display information about a specific process.
Normally it does not show the parent process ID, so you need to add the -o
option and specify that the output should show the parent process ID ppid
and the full command that started it:

$ ps -o ppid,command 14579
 PPID COMMAND
 6950 nginx: worker process

This nginx process is not the main one.

$ ps -o ppid,command 6950
 PPID COMMAND
 1 nginx: master process /usr/sbin/nginx

A very low parent PID means that this process is the daddy17. Killing
process 6950 will kill the main nginx process and all its children.

There is an easier way to do this. You can search for processes using
pgrep and kill them with pkill. The -l tells pgrep to list the process name
as well. For example:

$ pgrep -l nginx
6950 nginx
14579 nginx...

And then go in for the kill with sudo pkill nginx. A further way to
search for processes is using ps with the aux option as in ps aux | grep
nginx. Easier, but you wouldn’t have learned about the wonder of top.

17 Process ID numbers are assigned in order, so a low number really only means that the process was
started just after the server booted.	

By Paul Tero CHAPTER 8

279

Speaking HTTP
At this stage, your Web server software is hopefully up and running. If
it did crash, you’ve restarted it, found out the reason and taken steps to
prevent it from happening again.

You can now double-check your Web server is up and running by
telnetting to port 80 from your laptop again. This time it should say
“Connected” and then wait for your request. Web servers understand
HTTP (hypertext transfer protocol). After a connection is established type
GET / HTTP/1.1 to tell the server you would like to GET (as opposed to
POST) the home page / and that you speak version 1.1 of the protocol.

Press Enter and then type Host: followed by the host name. This line is
only necessary on servers which host more than one website. HTTP does
not know that you telnetted to www.smashingmagazine.com. As far as it is
concerned, you telnetted to 80.72.139.101 and it needs to know which of its
many websites you are interested in. Press Enter twice to make the request.
You should get back a long stream of text and HTML:

$ telnet www.smashingmagazine.com 80
Trying 80.72.139.101...
Connected to www.smashingmagazine.com.
Escape character is '^]'.
GET / HTTP/1.1
Host: www.smashingmagazine.com

HTTP/1.1 200 OK
Date: Thu, 09 May 2013 13:25:52 GMT
Content-Type: text/html; charset=UTF-8
Transfer-Encoding: chunked
Connection: keep-alive
X-Powered-By: PHP/5.2.17
Content-Length: 25023
Content-Type: text/html

<html>
<head><...

280

CHAPTER 8 How to Fix The Web: Obscure Back-End Techniques and Terminal Secrets

These lines are mostly HTTP headers. The HTTP/1.1 200 OK says that
the server also speaks version 1.1 of HTTP and gives the successful HTTP
response code 200. Other common responses are 500 for Internal Server
Error and 404 for File Not Found. It then continues with the HTML. If the
Connection header specified “keep-alive” then telnet will wait for your
next request and you’ll need to type Control +] and then “quit” to exit.
If the Connection header said “close” then it will finish by itself and say
“Connection closed by foreign host” at the bottom.

Finding Your Website
The 200 code means that your home page is okay, and you should be able to
visit it in your browser. However, it may not show what you expected, and
your fabulous Widget 3000 page may still be absent.

Virtual Hosts and Streams
As mentioned above, many servers host multiple websites. One of these is
the default website. It is the website you get when you visit the server by IP
address http://80.72.139.101/ instead of by name, or when you leave off the
Host: line in the HTTP request while telnetting. The rest of the websites
are known as virtual hosts. Every one of these websites has a physical
location on the server known as its document root. To further investigate
your website woes, you need to discover its document root.

Fortunately and sensibly, most server management packages like
Plesk store their virtually hosted websites according to their domain
name, so you can usually just find directly on the domain name. The / in
the command below tells find to search the whole file system, the -type d
looks only for directories, and the -name part searches for any directories
containing “smashingmagazine”. The asterisks are wild cards. You’ll
need to either escape them *smashingmagazine* or put them in quotes
“*smashingmagazine*”:

By Paul Tero CHAPTER 8

281

$ find / -type d -name "*smashingmagazine*"
find: '/var/run/cups/certs': Permission denied
find: '/var/run/PolicyKit': Permission denied
/var/www/vhosts/smashingmagazine.com
/var/www/vhosts/smashingmagazine.com/httpdocs...

If you run this command as a normal unprivileged user, you will
probably see lots of “Permission denied” as find tries to explore forbidden
places. You are actually seeing two types of output here: stdout for
standard output and stderr for standard error. They are called output
streams and are confusingly mixed together.

You have already encountered the pipe symbol | for piping the output
stream (stdout) of one command into the input stream (stdin) of another.
The symbol > can redirect that output into a file. Try this command to send
all the matches into a file called matches.txt:

$ find / -type d -name ^"*smashingmagazine*" > matches.txt
find: '/var/run/cups/certs': Permission denied
find: '/var/run/PolicyKit': Permission denied...

In this case, all the stdout is redirected into the file matches.txt and only
the error output stream stderr is displayed on the screen. By adding the
number 2 you can instead redirect stderr into a file and just display stdout:

$ find / -type d -name ^"*smashingmagazine*" 2> matcherrors.txt
/var/www/vhosts/smashingmagazine.com
/var/www/vhosts/smashingmagazine.com/httpdocs...

There is a special file on Linux, UNIX and Mac computers which is
basically a black hole where stuff gets sent and disappears. It’s called /dev/
null, so to only see stdout and ignore all errors:

$ find / -type d -name ^"*smashingmagazine*" 2> /dev/null
/var/www/vhosts/smashingmagazine.com
/var/www/vhosts/smashingmagazine.com/httpdocs...

282

CHAPTER 8 How to Fix The Web: Obscure Back-End Techniques and Terminal Secrets

The end result is that this find command tells you roughly where your
document root is. In Plesk, all the virtual hosts are generally stored within
the /var/www/vhosts directory, with the document roots in /var/www/
vhosts/domain.com/httpdocs.

The Long Way
You can find the document root more accurately by looking through the
configuration files. For Apache servers, you can find the default website’s
document root by looking through the main configuration file which is
usually /etc/apache2/apache2.conf or /etc/httpd/conf/httpd.conf.

$ grep DocumentRoot /etc/httpd/conf/httpd.conf
DocumentRoot "/var/www/html"

Somewhere inside this conf file will also be an Include line which
references other conf files, which may themselves include further conf
files. To find the DocumentRoot for your virtual host, you’ll need to
search through them all. You can do this using grep and find but its a long
command, so we will build it up gradually.

First, we will find all the files (because of the -type f) on the whole
server (the /) whose names end in “conf” or “include”. The -type f finds
only files and the -o lets us look for files ending in “conf” or “include”, with
surrounding escaped parentheses. As above, the errors are banished into
the ether:

$ find / -type f \(-name *conf -o -name *include \) 2> /dev/null
/var/spool/postfix/etc/resolv.conf
/var/some file with spaces.conf
/var/www/vhosts/myserv.com/conf/last_httpd.include...

This is not quite complete as any files with spaces will confuse the grep
command we are about to attempt. To fix that you can pipe the output of
the find command through the sed command which allows you to specify a

By Paul Tero CHAPTER 8

283

regular expression. Regular expressions are a huge topic in their own right.
In the command below, the s/ /\\ /g will replace all spaces with a slash
followed by a space:

$ find / -type f \(-name *conf -o -name *include \) 2>/dev/null | sed
's/ /\\ /g'
/var/spool/postfix/etc/resolv.conf
/var/some\ file\ with\ spaces.conf
/var/www/vhosts/myserv.com/conf/last_httpd.include...

Now you can use a backtick to embed the results of that find command
into a grep command. Using ̀is different than | as it actually helps to build
a command, rather than just manipulating its input. The -H option to grep
tells it so show file names as well. So, now we will look for any reference to
“smashingmagazine” in any conf files.

$ grep -H smashingmagazine `find / -type f \(-name *conf -o -name *in-
clude \) 2> /dev/null | sed 's/ /\\ /g'`
/var/www/vhosts/smashingmagazine.com/conf/last_httpd.include: ServerName
"smashingmagazine.com"...

This may take a few seconds to run. It is finding every conf file on
the server and searching through all of them for “smashingmagazine”. It
may reveal the DocumentRoot directly. If not, it will at least reveal the file
where the ServerName or VirtualHost is defined. You can then use grep or
less to look through that file for the DocumentRoot.

You can also use the xargs command to do the same thing. It also
allows the output from one command to be embedded into another:

$ find / -type f \(-name *conf -o -name *include \) 2> /dev/null | sed
's/ /\\ /g' | xargs grep -H smashingmagazine
/var/www/vhosts/smashingmagazine.com/conf/last_httpd.include: ServerName
"smashingmagazine.com"...
$ grep DocumentRoot /var/www/vhosts/smashingmagazine.com/conf/last_httpd.include
DocumentRoot "/var/www/vhosts/smashingmagazine.com/httpdocs"

284

CHAPTER 8 How to Fix The Web: Obscure Back-End Techniques and Terminal Secrets

The end result, hopefully, is that you’ve definitively found the
document root for your website.

You can use a similar technique for nginx. It also has a main conf file,
usually in /etc/nginx/nginx.conf, and it can also include other conf files.
However its document root is just called “root”.

Apache Control Interface
With Apache, there is yet another way to find the right conf file, using the
apachectl or newer apache2ctl command with the -S option.

$ apachectl -S
VirtualHost configuration:
80.72.139.101:80 is a NameVirtualHost
 default server default (/usr/local/psa/admin/conf/genera-
ted/13656495120.10089200_server.include:87)
 port 80 namevhost default (/usr/local/psa/admin/conf/genera-
ted/13656495120.10089200_server.include:87)
 port 80 namevhost www.smashingmagazine.com (/var/www/vhosts/
smashingmagazine.com/conf/last_httpd.include:10)...

If this whizzes by too fast, you can try piping the results through grep.
It won’t work, however, because grep only operates on stdout and for some
reason apachectl outputs its information to stderr. So, you have to first
direct stderr into stdout and then send it through grep. This is done by
redirecting the error stream 2 into the output stream 1 with 2>&1, like this:

$ apachectl -S 2>&1 | grep smashingmagazine
 port 80 namevhost smashingmagazine.com (/var/www/vhosts/smas-
hingmagazine.com/conf/13656495330.08077300_httpd.include:10)

This also reveals the conf file which contains the DocumentRoot for
this website. As above further grep or less will reveal the DocumentRoot.

By Paul Tero CHAPTER 8

285

Checking the Document Root
Now that you’ve found the document root, you can snoop around to make
sure it’s alright. Change to the directory with cd:

$ cd /var/www/vhosts/smashingmagazine.com/httpdocs
bash: cd: /var/www/vhosts/smashingmagazine.com/httpdocs: No such file or
directory

If you get the error message “No such file or directory”, that is bad
news. Either the DocumentRoot has been incorrectly set or your whole
website has been deleted. If it is there, you can list the files with ls. The
-a also shows hidden files which start with a dot, and -l displays them in
long format with permissions and dates:

$ ls -al
drwxrwxrwx 8 nobody nogroup 4096 May 9 14:03 .
drwxr-xr-x 14 root root 4096 Oct 13 2012 ..

Every folder will at least show these two entries. The single “.” is for
the current directory and “..” is for the parent directory. If that’s all there is,
then the directory is empty. While you’re there, you can double-check you
are in the correct place. Create a new file using echo and again using the >
symbol to send the output to a file.
$ echo “<h1>My test file</h1>” > testfile.html

This will create a file called testfile.html containing a bit of HTML. You
can use your browser or telnet or curl or wget to see if the file is where it
should be.

$ curl http://www.smashingmagazine.com/testfile.html
<h1>My test file</h1>

If that worked, then well done, you have found your website! Remove that
test file to clean up after yourself with rm testfile.html and keep going.

286

CHAPTER 8 How to Fix The Web: Obscure Back-End Techniques and Terminal Secrets

Back up and Restore
The tar and zip commands can be used to back up and restore. If your
website is missing, then restoring won’t help you much unless you have
previously backed up. So go back in time and back up your data with one of
the commands below. To go back a whole day:

$ gobackintime 86400
It is now Sat May 10 20:30:57 BST 2013

Just kidding — but it would be nice! The tar command stands for tape
archive and comes from the days when data was backed up on magnetic
tapes. To create an archive of a directory, pass the cfz options to tar which
will create a new archive in a file and then zip it in the gzip format.

$ tar cfz backupfile.tgz /var/www/vhosts/smashingmagazine.com/httpdocs
tar: Removing leading `/' from member names

All Mac and Linux computers support the tar command and most also
have zip. To do the same with zip:

$ zip -r backupfile.zip /directory/to/backup

To see what an archive contains, run:

tar tfz backupfile.tgz
var/www/vhosts/smashingmagazine.com/httpdocs/
var/www/vhosts/smashingmagazine.com/httpdocs/.htaccess...

Or for zip format:

unzip -l backupfile.zip
Archive: test.zip
 Length Date Time Name
--------- ---------- ----- ----
 0 2012-05-28 00:33 var/www/vhosts/smashingmagazine.com/httpdocs
 234 2012-05-28 00:33 var/www/vhosts/smashingmagazine.com/httpdocs/.htaccess

By Paul Tero CHAPTER 8

287

Both tar and zip strip the leading slashes when they backup. So when
you restore the files, they will be restored within the current directory. To
restore them in the same location they were backed up from, first restore
them in the current directory and then move them into place with mv.

$ tar xfzv backupfile.tgz
var/www/vhosts/smashingmagazine.com/httpdocs/...

The “v” above stands for verbose and causes tar to show what it’s doing.
zip has a similar option:

$ unzip -v backupfile.zip
Archive: backupfile.zip
 Length Method Size Cmpr Date Time CRC-32 Name
-------- ------ ------- ---- ---------- ----- -------- ----
 0 Stored 0 0% 2012-05-28 00:33 00000000 var/www/vhosts/
smashingmagazine.com/httpdocs/...

Website Errors
Let’s assume your website hasn’t actually disappeared. The next place to
look is the error log file.

Finding the Log File
When using a server management package like Plesk, each website
probably has its own log file. You can find it by grepping for the word “log”
in the conf file you identified above. The -i means case-insensitive.

$ grep -i log /var/www/vhosts/smashingmagazine.com/conf/last_httpd.include
 CustomLog /var/www/vhosts/smashingmagazine.com/statistics/logs/ac-
cess_log plesklog
 ErrorLog "/var/www/vhosts/smashingmagazine.com/statistics/logs/er-
ror_log"...

There is also a server-wide log where any non-website-specific errors go.
You can find this in the main conf file:

288

CHAPTER 8 How to Fix The Web: Obscure Back-End Techniques and Terminal Secrets

$ grep -i log /etc/apache2/apache2.conf
ErrorLog /var/log/apache2/error.log...

Htaccess Errors
It is very easy to screw up a website. You can quite readily bring down a
very big website by removing a single character from the .htaccess file.
Apache uses the file .htaccess to provide last-minute configuration options
for a website. It’s most often used for URL rewriting rules that look like this:

RewriteRule ^products/.*/([0-9]+)$ products/view.php?id=$1 [L,QSA]

This rule says to rewrite any URL in the form “products/
widget-3000/123” to the actual URL “products/view.php?id=123”. The L
means that this is the last rule to be applied and QSA means that Apache
should attach any query string to the new URL.

URL rewriting is often used for search engine optimization so that Web
managers can get the name of the product into the URL without actually
having to create a directory called “widget-3000”. However, make a single
typo and your whole website will give a 500 Internal Server Error.

The tail command will display the last 10 lines of a log file. Give it a -1
to display the single last line instead. An .htaccess problem will look like this:

$ tail -1 /var/www/vhosts/smashingmagazine.com/statistics/logs/error_log
[Thu May 06 11:04:00 2013] [alert] [client 81.106.118.59] /var/www/
vhosts/smashingmagazine.com/httpdocs/.htaccess: Invalid command 'Rewi-
teRule', perhaps misspelled or defined by a module not included in the
server configuration.

Or give it the -f option to follow the log file, showing any additional log
entries as they happen:

$ tail -f /var/www/vhosts/smashingmagazine.com/statistics/logs/error_log...

You can grep for all of these types of errors:

By Paul Tero CHAPTER 8

289

$ grep alert /var/www/vhosts/smashingmagazine.com/statistics/logs/error_log

[Thu May 06 11:04:00 2013] [alert] [client 81.106.118.59]...

PHP Parse and Runtime Errors
Many websites use the LAMP combination: Linux, Apache, MySQL and
PHP. A common reason for Web pages not showing up is that they contain
a PHP error. Fortunately, these are quite easy to discover and pinpoint.

There are two broad classes of PHP errors: parse errors and runtime
errors. Parse errors are syntax errors and include leaving off a semicolon
or forgetting the $ in front of a variable name. Runtime errors include
undefined functions or referencing objects which don’t exist.

Like .htaccess errors, parse errors will cause an HTML response code
500 for Internal Server Error, often with a completely blank HTML page.
Runtime errors will give a successful HTML response of 200 and will
show as much HTML as they have processed (and flushed) before the error
happened. You can use telnet or wget -S or curl -i to get only the headers
from a URL. So now, copy and paste your erroneous page into a command:

$ curl -i http://www.smashingmagazine.com/products/widget-3000/123
HTTP/1.0 500 Internal Server Error
Date: Sun, 12 May 2013 17:44:49 GMT
Server: Apache
Vary: Accept-Encoding
Content-Length: 0
Connection: close
Content-Type: text/html

PHP Error Settings
To find the exact error, you need to make sure errors are being reported in
the log file.

There are several PHP settings which cover errors. display_errors
determines if errors are shown to the website visitor or not, and
log_errors says whether they will appear in log files. error_reporting
specifies the types of errors that are reported: only fatal errors, for example,

290

CHAPTER 8 How to Fix The Web: Obscure Back-End Techniques and Terminal Secrets

or warnings and notices as well. All of these can be set in a configuration
file, in .htaccess or within the PHP script itself.

You can find out your current settings by running the PHP function
phpinfo. Create a PHP file which calls the function and visit it in your
browser:

$ echo "<?php phpinfo()?>" > /var/www/vhosts/smashingmagazine.com/htt-
pdocs/phpinfo.php

The two columns show the website and server-wide settings. This
shows that display_errors is off, which is good, because it should be
off on live websites. It means that no PHP errors will ever be seen by the
casual visitor. log_errors on the other hand should be on. It is very handy
for debugging PHP issues.

The error_reporting value is 30719. This number represents bit
flags or bit fields. This is a technique for storing multiple yes/no values
in a single number. In PHP there are a series of constants representing
different types of errors.18 For example, the constant E_ERROR is for fatal
errors and has the value 1; E_WARNING is for warnings and equals 2; E_PARSE

18 “Predefined Constants”, PHP.net. http://smashed.by/errorfunc

phpinfo function showing configuration settings.

By Paul Tero CHAPTER 8

291

is for parsing or syntax errors and has the value 4. These values are all
powers of two and can be safely added together. So the number 7 means
that all three types of errors should be reported, as E_ERROR + E_WARNING +
E_PARSE = 7. A value of 5 will only report E_ERROR + E_PARSE.

In reality, there are 16 types of errors from 1 for E_ERROR to 16384
for E_USER_DEPRECATED. You can type “30719 in binary” into Google and
it will give you the binary equivalent: 0b111011111111111. This means
that all errors are switched on except the twelfth, which is E_STRICT. This
particular setup has also been given a constant E_ALL = E_ERROR + E_
WARNING + E_PARSE + etc = 30719. From PHP version 5.4.0, E_ALL is actually
32767 which includes all the errors include E_STRICT.

If your error_reporting setting is 0, then no errors will show up in the
log file. You can change this setting in the file php.ini, but then you have
to restart Apache to make it have an effect. An easier way to change this
setting in Apache is to add a line in a file called .htaccess in your document
root: php_value error_reporting 30719.

Or you can do that on the command line, using the double arrow which
appends to an existing file or creates the file if it doesn’t exist:

$ echo "php_value error_reporting 30719" >> .htaccess
$ echo "php_value log_errors On” >> .htaccess

Refresh your erroneous Web page. If there is a PHP error in your page it
should now show up in the error log. You can grep the log for all PHP errors:

grep PHP /var/www/vhosts/smashingmagazine.com/statistics/logs/error_log
[Sun May 12 18:19:09 2013] [error] [client 81.106.118.59] PHP Notice:
Undefined variable: total in /var/www/vhosts/smashingmagazine.com/htt-
pdocs/products/view.php on line 10...

If you have referenced variables or array indices before assigning
them values, you may see thousands of PHP notices like the one above.
It happens when you do things like <? $total = $total + 1 ?> without

292

CHAPTER 8 How to Fix The Web: Obscure Back-End Techniques and Terminal Secrets

initially setting $total to 0. They are useful for finding potential bugs, but
they are not show stoppers. Your website should work anyway.

You may have so many notices and warnings like this that the real
errors get lost. You can change your error_reporting to 5 to only show E_
ERROR and E_PARSE or you can grep specifically for those types of errors. It
is very common to chain grep commands together like this when you want
to filter by multiple things. The -e option below tells the second grep to use
a regular expression. This command finds all log entries containing “PHP”
and either “Parse” or “Fatal”.

$ grep PHP /var/www/vhosts/smashingmagazine.com/statistics/logs/error_log
| grep -e "Parse\|Fatal"
[Thu Jul 19 12:26:23 2012] [error] [client 81.106.118.59] PHP Fatal er-
ror: Class 'Product' not found in /var/www/vhosts/smashingmagazine.com/
httpdocs/library/class.product.php on line 698
[Sun May 12 18:16:21 2013] [error] [client 81.106.118.59] PHP Parse er-
ror: syntax error, unexpected T_STRING in /var/www/vhosts/smashingmaga-
zine.com/httpdocs/products/view.php on line 100...

Seeing Errors in the Browser
If you are tracing a runtime error rather than a parse error, you can also
change the error_reporting setting directly in PHP. And you can quickly
turn display_errors on, so you will see the error directly in your browser.
This makes debugging quicker, but means everyone else can see the error too.
Add this line to the top of your PHP page:

<? ini_set ('display_errors', 1); error_reporting (E_ERROR | E_WARNING); ?>

These two functions change the two PHP settings. The | in the error_
reporting call is a bit OR operator. It effectively does the same as the +
above but operates on bits, so is the correct operator to use with bit flags.

Any fatal errors or warnings later in the PHP page will now be shown
directly in the browser. This technique won’t work for parse errors as none
of the page will run if there’s a parse error.

By Paul Tero CHAPTER 8

293

Bit Flags
Using bit flags for error_reporting avoids having 15 separate arguments
to the function for each type of error. Bit flags can also be useful in your
own code. To use them, you need to define some constants, use the bit OR
operator | when calling the function and the bit AND operator & within
the function. Here’s a simple PHP example using bit flags to tell a function
called showproduct which product properties to display:

<?
define ('PRODUCT_NAME', 1);
define ('PRODUCT_PRICE', 2);
function showproduct ($product, $flags) {
 if ($flags & PRODUCT_NAME) echo $product['name'];
 if ($flags & PRODUCT_PRICE) echo ': $' . $product['price'];
}
$product = array ('name'=>'Widget 3000', 'price'=>10);
showproduct ($product, PRODUCT_NAME | PRODUCT_PRICE);
?>

This will display “Widget 3000: $10” in the browser. This is a rather
superficial example of bit flags. Usually there are far deeper, more constant
system processes.

Infinite Loops
PHP’s error reporting may struggle with one class of error: an infinite loop. A
loop may just keep executing until it hits PHP’s time limit, which is usually
30 seconds (PHP’s max_execution_time setting), causing a fatal error. Or
if the loop allocates new variables or calls functions, it may keep going until
PHP runs out of workable memory (PHP’s memory_limit setting).

It may, however, cause the Apache child process to crash, which means
nothing will get reported, and you’ll just see a blank or partial page. This
type of error is increasingly rare, as PHP and Apache are now very mature
and can detect and handle runaway problems like this. But if you are about
to bang your head against the wall in frustration because none of the

294

CHAPTER 8 How to Fix The Web: Obscure Back-End Techniques and Terminal Secrets

above has worked, then give it some consideration. Deep within your code,
you may have a function which calls some other function, which calls the
original function in an infinite recursion.

Debuggers
If you’ve gotten this far, and your page is still not showing up, then you’re
entering more difficult territory. Your PHP may be executing validly
and doing everything it should, but there’s some logical error in your
programming. For quick debugging you can var_dump variables to the
browser, perhaps wrapping them in an if statement so that only your IP
address sees them:

<? if ($_SERVER['REMOTE_ADDR'] == '85.106.118.199') var_dump ($product); ?>

This method will narrow down an error but it is ungraceful and error-
prone, so you might consider a debugging tool such as Xdebug or FirePHP.
They can provide masses of information, and can also run invisibly to the
user, saving their output to a log file. Xdebug can be used like this:

<?
ini_set ('xdebug.collect_params', 1);
xdebug_start_trace ('/tmp/xdebugtrace');
echo "This will get traced.";
xdebug_stop_trace();
?>

This bit of code logs all function calls and arguments to the file /
tmp/xdebugtrace.txt. It displays even more information when there is a
PHP notice or error. However, the overhead may not be suitable for a live
environment, and it needs to be installed on the server, so it’s probably not
available in most hosting environments.

FirePHP, on the other hand, is a PHP library that interacts with an add-
on to Firebug, a plugin for Firefox. You can output debugging information
and stack traces from PHP to the Firebug console.

By Paul Tero CHAPTER 8

295

Security Issues
By this point, you should have some HTML reaching your browser. If it’s
not what you expect, then there’s a chance that your website has been
compromised. Don’t take it personally (at first). There are many types of
hacks and most of them are automated. Someone clever but unscrupulous
has written a program which detects vulnerabilities and exploits them.
The purpose of the exploit may simply be to send spam, or to use your
server as part of a larger attack on a more specific target (a DDoS).

Server Hacks
Operating systems are very complex pieces of software. They may be built
from millions of lines of programming code. They are quite likely to have
loopholes where sending the wrong message at just the wrong time will
cause some kind of blip which allows someone or something to gain entry.
That’s why Microsoft, Apple, Ubuntu and others are constantly releasing
updates.

Similarly, Apache, nginx, IIS and all the other software on a typical
server is complicated. The best thing you can do is keep it up to date with
the latest patches. Most good hosts will do this for you.

A hacker can use these flaws to log in to your server and engineer
themselves a terminal session. They may initially gain access as an
unprivileged user and then try a further hack to become the root user. You
should make this as hard as possible by using good passwords, restrictive
permissions, and being careful to run software (like Apache) as an
unprivileged user.

If someone does gain access, they may leave behind a bit of software
which they can later use to take control of your server. This may be
detectable by an anti-virus scanner or something like the Rootkit Hunter,
which looks for anomalies like unexpected hidden files. But there are also a
few things you can do if you suspect an intrusion.

296

CHAPTER 8 How to Fix The Web: Obscure Back-End Techniques and Terminal Secrets

The w command shows who is currently logged in to a server and what
they are doing:

$ w
 20:44:32 up 44 days, 7:51, 2 users, load average: 0.07, 0.03, 0.05
USER TTY FROM LOGIN@ IDLE JCPU PCPU WHAT
root pts/0 cpc1-brig17-2-0- 17:54 1:02m 0.15s 0.13s -bash
root pts/1 cpc1-brig17-2-0- 20:44 0.00s 0.02s 0.00s w...

The last command shows who has logged in recently in date order. Pipe it
through head to show only the first 10 lines.

$ last
paul pts/0 :0.0 Sun May 12 17:21 still logged in
paul tty7 :0 Sun May 12 17:20 still logged in
reboot system boot 2.6.32-41-386 Sun May 12 17:18 - 20:48 (03:29)
fred tty7 :0 Sat May 11 10:10 - down (01:12)

It tells you who has logged in and for how long, plus any terminal session
they have open. down means until the server shut down. Look for unexpected
entries and consult your host or a security expert if you are in doubt.

PHP Hacks
More common are hackers who gain entry though vulnerabilities in PHP
scripts, especially popular content management systems like WordPress.
Anybody can write a plugin for WordPress and, if it’s useful, people will
install it. When writing a plugin, most developers think primarily about
the functionality and little about security. And because WordPress allows
file uploading, hackers who find vulnerabilities can use them to upload
their own PHP scripts and later take control of a computer.

These PHP scripts can use the PHP mail function to send out spam
on demand, but they can also try to execute commands in much the same
way as you can via a terminal session. PHP can execute commands with
its exec or system functions. If you do not need to use these functions,

By Paul Tero CHAPTER 8

297

it is advisable to disable them. You can do this by adding the disable_
functions directive to your server’s php.ini file (or php5.ini for PHP 5) or to
the file php.ini within your document root. If you search for “php disable
functions” in Google, you will find a whole list of functions which should
be disabled in this way:

disable_functions=fpassthru,crack_check,crack_close...

A quick check you can make for this type of hack is to look for all PHP
files modified recently and make sure there are no anomalies. The -mtime
-1 option tells find to only consider files modified within the last day. There
is also -mmin for minutes. This command searches all websites within /var/
www/vhosts for recently modified files ending in “php” or “inc”:

$ find /var/www/vhosts -mtime -1 \(-name *php -o -name *inc \) -printf
"%t %h/%f\n"
Sun May 12 21:20:17.0000000000 2013 /var/www/vhosts/smashingmagazine.com/
httpdocs/products/view.php

PHP hacks are difficult to detect because they are designed to not
stick out. One method hackers use is to gzip their PHP and then encode
it as base64. In that case, you may have a PHP file on your system with
something like this in it:

eval(gzinflate(base64_decode('HJ3HkqNQEkU/ZzqCBd4t8V4YAQI2E3jvPV8...

Another method is to encode text within variables and then combine them
and evaluate them:

$unywlbxc = " uwzsebpgi840hk2a jf";
$hivjytmne = " jqs9m4y 1znp0 ";
eval ("m"."i". "croti"...

Both these methods use the PHP eval function, so you can use grep
to look for eval. Using a regular expression with \beval\b means that the

298

CHAPTER 8 How to Fix The Web: Obscure Back-End Techniques and Terminal Secrets

word “eval” must have a word boundary before and after it, which prevents
it being found in the middle of words. You can combine this with the find
command above and pipe through less for easy reading:

$ find /var/www/vhosts -mtime -1 \(-name *php -o -name *inc \) | sed
's/ /\\ /g' | xargs grep -H -e "\beval\b" | less
/var/www/vhosts/config.php:eval(gzinflate(base64_decode('HJ3HkqNQE...

If you do find this type of hack in your website, try to discover how they
got in before completely removing all the tainted files.

Access Logs
Along with error logs, Apache also keeps access logs. You can browse these
for suspicious activity. For example, if you found a PHP hack inside an
innocuous looking file called test.php, you can look for all activity related to
that file. The access log usually sits alongside the error log and is specified
with the CustomLog directive in Apache configuration files. It contains the IP
address, date and file requested. Search through it with grep:

$ grep -e "\(GET\|POST\) /test.php" /var/www/vhosts/smashingmagazine.com/
statistics/logs/error_log
70.1.5.12 - - [12/May/2013:20:10:49 +0100] "GET /test.php HTTP/1.1" 200
1707 "-" "Mozilla/5.0 (X11; Ubuntu; Linux i686;...

This looks for GET and POST requests for the file test.php. It provides
you with an IP address, so you can now look for all other access by this
address, and also look for a specific date:

$ grep 70.1.5.12 /var/www/vhosts/smashingmagazine.com/statistics/logs/er-
ror_log | grep "12/May/2013"
70.1.5.12 - - [12/May/2013:20:10:49 +0100] "GET /products/view.php?so-
mething HTTP/1.1" 200 1707 "-"...
70.1.5.12 - - [12/May/2013:20:10:49 +0100] "GET /test.php HTTP/1.1" 200
1707 "-" "Mozilla/5.0 (X11; Ubuntu; Linux i686;...

By Paul Tero CHAPTER 8

299

This kind of debugging can be very useful for normal website errors,
too. If you have a feedback form on your website, add the user’s IP address
to the message. If someone reports an error, you can later look through
the logs to see what they have been up to. This is far better than relying on
vague secondhand information about reported problems.

It can also be useful for detecting SQL injection attacks, whereby
hackers try to extract details from your database by fooling your database
retrieval functions. This often involves a lot of trial and error. You could
send yourself an email whenever a database query goes wrong and include
the user’s IP address. You can then cross-reference with the logs to see
what else they have tried.

Last Resorts
William Edward Hickson is credited with popularizing the saying: “If
at first you don’t succeed, try, try, try again.”19 Hickson was a British
educational writer living in early Victorian times. His advice is not
appropriate for the modern Web developer, lying in bed on a Saturday
morning, drowning in frustration, staring at a blank Web page, preparing
to chuck an expensive laptop against a brick wall.

You’ve now been through all the advice above. You’ve checked that the
world hasn’t ended, verified your broadband box, tested the Internet and
reached your server. You’ve looked for hardware problems and software
problems, and delved into the PHP code. But somehow or other, your
Widget 3000 is still not there. The next thing to do is...

Have Breakfast
Get out of bed and take your mind off the problem for a little while. Have
some toast, a bowl of cereal, something to drink. Maybe even indulge in a
shower. Try that new lavender and citrus shampoo you bought by mistake.
While you’re doing all this, your subconscious is busily working on the

19 Oxford Dictionary of Quotations (3rd edition), Oxford University Press, 1979	

300

CHAPTER 8 How to Fix The Web: Obscure Back-End Techniques and Terminal Secrets

website issue, and may unexpectedly pop a solution into your thoughts. If
so, give it a try. If not…

Ask for Help
Check the level of support that you are entitled to by your hosting
company. If you are paying $10 per month, it’s probably not much. You
may be able to get them to cast a vague glance in your direction within the
next 72 hours. If it’s substantially more, they may log in and have a look
within the next few minutes. They should be able to help with hardware
or software issues. They won’t help with Web programming issues.
Alternatively, ring a colleague or freelancer. If you are still stuck…

Prepare
…to release some nervous energy. Find one of those squidgy balls that
you can squeeze mercilessly in your hands, or a couple pencils to use as
drumsticks, or a pack of cigarettes and a pot full of coffee. And then try the
last resort to any computing problem…

Reboot
When your laptop or desktop goes wrong, a common solution is to reboot
it. You can try the same trick on your Web server. This is a quite risky.
Firstly, it may not solve the problem. If it’s a PHP error, then nothing will
change. If, however, your issue is caused by some obscure piece of software
becoming unresponsive, then it may well help, though it may not fix the
problem permanently. The same thing may happen next week.

Secondly, if the reboot fails then you will be really stuck. If the server
shuts down but fails to start back up again, then someone may have to
go and press the power button on the physical machine. That someone
is an employee of your hosting company, and they may be enjoying their
breakfast too, in a nice comfortable office somewhere. They may have left
their jumper at home. They may not want to enter the air-conditioned

By Paul Tero CHAPTER 8

301

bunker where all the servers are kept. You will be thoroughly dependent on
their response time. Given all the risks, the command is:

$ sudo /sbin/reboot
Broadcast message from admin@thisserver.com (/dev/pts/1) at 13:21 ...
The system is going down for reboot now.

The reboot command causes the server to shut down and then restart.
That may take a few minutes. Soon after issuing the command above your
SSH session will come to an abrupt end. You will then be left for a few
nervous minutes wondering if it will come back up again. Use the tools
you prepared above.

While you are waiting, you can issue a ping to see if and when your
server comes back. On Windows use ping -t for an indefinite ping:

$ ping www.smashingmagazine.com
PING www.smashingmagazine.com (80.72.139.101) 56(84) bytes of data.
Request timeout for icmp_seq 0
Request timeout for icmp_seq 0
Request timeout for icmp_seq 0...
64 bytes from www.smashingmagazine.com (80.72.139.101): icmp_seq=1 ttl=52
time=39.4 ms
64 bytes from www.smashingmagazine.com (80.72.139.101): icmp_seq=1 ttl=52
time=32.4 ms...

You can breathe a sigh of relief when ping finally responds. Wait a
couple more minutes and you’ll be able to use ssh again and then try to
view the Widget 3000 in your Web browser.

Conclusion
This has been an epic journey, from the end of the world to a single
misplaced character in a file. Hopefully, it will help you through the initial
few minutes of panic when you wake up one morning and the beautiful
product page you created last night is gone.

302

CHAPTER 8 How to Fix The Web: Obscure Back-End Techniques and Terminal Secrets

Some of the reasons and solutions above are very rare. The most likely
cause is simply a slight malfunction in your broadband box. Running
out of disk space or getting hacked are the only other things that are
in any way likely to happen in the middle of the night when nobody
else is working on the website. But throw in other developers, server
administrators and enthusiastic clients — and anything is possible.

Good luck!

About the Author
Paul Tero is a website and computer programmer living
with his family in Brighton, England. He grew up in
California and studied computer science at UC Berkeley,
before moving to Brighton in 1997. He currently mostly
works for Existor, the company which makes Cleverbot,
a quirky artificial entity which talks back. And he writes
occasionally and enjoyably for Smashing Magazine.

By Paul Tero CHAPTER 8

303

About the Reviewer
Ben Dowling is a British software engineer who lives
in Mountain View, California. He loves writing code,
learning, and launching new products. He is currently
a software engineer at Facebook. Prior to that he was
lead server engineer at Lightbox.com, co-founder of
Geomium. He blogs at coderholic.com and also tweets as
@coderholic.

About the Reviewer
Sergey Chikuyonok (@chikuyonok) is a Russian front-
end Web developer and writer with a big passion for
optimization: from images and JavaScript to working
processes and time-savings on coding. He is the
developer of the Emmet (ex-Zen Coding) tool.

About the Reviewer
Sean Coates (@coates) has been developing web
applications professionally for over a decade. In the past,
he’s worked as Editor in Chief of PHP Architect magazine,
where he also organized PHP conferences. He’s long
been a contributing member of the PHP community,
having worked heavily on the PHP manual in addition
to maintaining PEAR and PECL code, and contributes to
open source projects.

Chapter

09

The Next Steps for
Web Typography

Written by Marko Dugonjić

7. The Next Steps For Web Typography

306

CHAPTER 9 The Next Steps for Web Typography

By Marko Dugonjić CHAPTER 9

307

Chapter NINE · by Marko Dugonjić

The Next Steps for
Web Typography

t’s a cliché, but nevertheless it’s true — for many Web designers,
this is a time of extreme excitement and personal reward, whether
through pioneering new methods and techniques, using technology

to automate previously manual processes (where they were possible at all),
or establishing new rules and standards. In some respects it’s an adventure
into the unknown. And do you know what? We are not even halfway there!
To be able to design and optimize for each and every angle and perspective
known today is next to impossible. There are so many new discoveries
about us as individuals and collectively in the fields of biology, psycholo-
gy, sociology and evolution, that the sentence “There are so many things
that have to be done” takes on a completely new meaning. No Web design
project is ever complete and there’s always room for improvement, wheth-
er it’s fixing minor usability issues, conversion tweaking or optimizing
performance.

Typography is no exception. Indeed, we inherited a lot from our sister
field, graphic design, but there are also a myriad of options that haven’t
been possible until recently. Pardon my enthusiasm, but for me — both
as a Web user and as a Web producer — these times are quite exciting!

I

308

CHAPTER 9 The Next Steps for Web Typography

Here is a quick overview of what we will cover. First, the big picture,
the things I wish I’d known much earlier. Not many code examples here:

•	 Not too frightening context models,
•	 A list of actors that participate in content creation and publishing.

Then practical details, with plenty code examples and tips:

•	 Preparation, typefaces and the typographic design in general
•	 Organization and performance
•	 Typesetting
•	 Advanced techniques

Before we get started, one thing to bear in mind is that practicing

typography as an isolated discipline can be very intoxicating, especially
when diving straight into the tiniest of typeface particularities and histori-
cal anecdotes. As the Web in its purest context is multifaceted, let’s start by
observing typography as an integral part of the bigger picture.

The Big Picture: Universal Typography
In 2012, Tim Brown, type manager at Typekit1 presented his talk “Univer-
sal Typography2” in which he explained the nature and the challenges of a
Web design process.

He argued that in print design, where the medium and physical vari-
ables are inherently fixed, on investigating the options open to you, you
can determine the best typographic setup; that is, a typeface, font grade,
font weight, font width, letter size, line length, line spacing, hierarchy and
layout. And once you have decided, you’re more or less done. At the end,
there is a single design which is unchangeable. It is permanent. The work

1 http://typekit.com
2 http://universaltypography.com/

By Marko Dugonjić CHAPTER 9

309

is then sent off to a print shop and the final result is a physical object that
— in absolute terms — looks consistent to everyone.

A book, a magazine or a leaflet have consistent dimensions. Width,
height, thickness and weight are the same everywhere in the world. More
importantly, we know how to use printed objects, even though in compar-
ison with the digital environment, our options are fixed or more limited.
For example, we cannot read text on paper in suboptimal lighting con-
ditions, and we can realistically only carry a limited quantity of printed
content with us at any one time.

With Web typography today, there is a vast number of combinations.
That’s why Brown proposes we investigate our options thinking in terms
of acceptable ranges instead of fixed points.

It’s easier said than done, however. The Web typographer needs to
understand all the facets of context in order to conduct extensive research
and find appropriate solutions. The system of axes along which our ranges
sit can be quite frightening and it’s ever-growing, especially as technology
advances and new behavioral patterns are discovered. But worry not. Most
of the variables can be addressed and dealt with using a little patience, an
occasional look back into history, and a tiny bit of courage to question the
status quo.

310

CHAPTER 9 The Next Steps for Web Typography

Think about the responsive nature of any particular web experience as a
continuum of being. Along this continuum, on one axis, the experience can
grow wide or narrow. Along a different axis, it can be near or far. Along a still
different axis, it can be coarse or fine. There are many axes.

— Tim Brown, “Breakpoints and range rules”3

Simple Multifaceted Model
If we are only concerned with the medium and content, we can then type-
set along the basic seven axes that describe the device itself and the basic
connection between the device and the reader. These axes are:

•	 reading distance (viewing
distance)

•	 screen dimensions (viewport
width and height)

•	 content hierarchy
•	 information density
•	 pixel density (resolution)
•	 device orientation
•	 screen aspect ratio

If you think this is already too much, don’t worry — that is a normal
reaction and you are a completely normal person. Don’t let this discourage
you, though, and take it as a sign of professional evolution. We should be
happy that there’s a new toy in our sandbox every morning! It is possible
to typeset for the Web within this model. It can be done. We can account
for the extremes and provide appropriate solutions to create satisfactory
results. For the purpose of this journey, we can call this set of methods:
Responsive Web Typography.

3 http://nicewebtype.com/notes/2012/01/27/breakpoints-and-range-rules/

By Marko Dugonjić CHAPTER 9

311

Zoom out a Little More
Carrying on with our theme of
creating lists, let’s zoom out even
further. In February 2013, Cennydd
Bowles wrote an article “Designing
with Context”4 on different flavors
of context.

•	 Device
•	 Environment
•	 Time
•	 Activity
•	 Individual
•	 Location
•	 Social

These flavors are very easy to remember thanks to their handy abbrevi-
ation: DETAILS. They don’t influence typesetting directly, but are food for
thought when we make decisions on a more strategic level. In general, UX
methodologies can help us understand business goals, the target audience’s
needs, and find a sweet spot where universality meets originality.

Content
To begin, let’s utilize (customer) journey mapping, a tool from the UX field
to illustrate the content publishing process from the design perspective.
From its conception in the author’s mind to the full understanding and
comprehension in the reader’s, content is on a journey. It is manipulated,
tweaked, improved and stylized to send a message across in the most
successful manner. This is done by a line of actors which take part in the
process and influence the reading experience:

4 http://www.cennydd.co.uk/2013/designing-with-context

Some comfort is to be had from the com-
bination of these two models despite their
explosive mix. What else to say, other than

“Congrats on your new job!”

312

CHAPTER 9 The Next Steps for Web Typography

•	 author
•	 editor
•	 Web designer
•	 type designer
•	 Web font hosting
•	 OS rendering engine
•	 browser (or an eBook reader)
•	 reader

Just being aware of the number of parts and parties involved is an ac-
complishment in itself. The sooner we start taking into account all of these
factors, the sooner we will be able to let go of the illusion that we can create
a one-size-fits-all design. Web typography and Web design in general are
about creating the best possible conditions for the majority of users, as
long as we are able to preserve adequate experiences for the edge cases.
Less than perfect results are acceptable for users at both ends of the bell
curve, as long as information is accessible and typography is edible.

In the following sections, we will investigate how typography can be
improved at each stage in the content journey.

First, Structure the Content
Having taken stock of the whole picture, with the realization that typog-
raphy on its own cannot fix broken patterns missed earlier in the design
process, it becomes easier to set up the project with a solid foundation. The
foundation for every Web design project is HTML and I’ll probably requote
many smart people out there when I say CSS-less HTML is the first break-
point. An unstyled HTML document that is correctly structured is accessible
by default. By using proper semantic markup and by establishing relation-
ships between different parts of the content with elements like header, foot-
er, section, article and aside, we can create structure and meaning. Even
by applying all that markup, the document can still be rendered and it can
easily adapt to its container, the browser window.

By Marko Dugonjić CHAPTER 9

313

We all know how to markup a basic HTML document. Yet, there’s still
so much content on the Web which is not properly structured. For exam-
ple, the abbreviation element, the non-breaking space, the thin space, the
hair space, all of which are still heavily underused. Proper spacing before
and after punctuation in initials, initialisms and truncations, even ratio or
date and time expressions, can tremendously improve the texture, supply-
ing just the right amount of pause for uninterrupted reading. E.R.Burroughs,
18.04.2013, e.g. and 2:3, as well as E. R. Burroughs, 18. 04. 2013, e. g. and 2 : 3 are
equally wrong. Instead, we should use the thin space and the hair space
between characters. For example:

	 E. R. Burroughs
	 24. 2. 2013.
	 24. 1. 2013.
	 e. g.
	 2 : 3

The situation with quotations (“…” instead of "…" and ‘…’ instead of
'…') and line pauses (dashes) is a little better now — at least in Web design
publications — but we rarely see appropriately applied ranges, for instance
Zagreb–Split or 9AM–5PM (both spaced with an en dash), on a mainstream
website.

Provide content creators (including yours truly) with tools to help
improve their texts by encouraging the proper use of a writing style. There

A couple of examples of properly set spaces.

314

CHAPTER 9 The Next Steps for Web Typography

are quite a few reference websites for writers that provide a good starting
point for us all, for instance The Chicago Manual of Style Online5, The
Oxford Guide to Style6 or the more specific UK Government Digital Service
content principles7. And every Web typographer should write an essay or
an article at some point in their career — at least to change perspective and
learn how content conception works.

I also encourage you to write. You may not be Tolstoy, but shared thoughts can
inspire friends you haven’t met yet.

— Jeffrey Zeldman, Offscreen #3, 2012.

5 http://www.chicagomanualofstyle.org/home.html
6 http://smashed.by/oxford-style-guide
7 https://www.gov.uk/designprinciples/styleguide

non-breaking space

narrow non-breaking  

en-quad  

em-quad  

en-space    

em-space    

three-per-em space  

four-per-em space  

six-per-em space  

figure space  

punctuation space  

thin space    

hair space    

medium mathematical  

A table of spaces available in HTML.

By Marko Dugonjić CHAPTER 9

315

Working with Editors and Art Directors
In recent years we have witnessed a rise in the use of Web art direction.
Naturally, it first started on the personal blogs of Web designers, but now
many online magazines have a person onboard who double-checks how
content looks and if there are any orphans or widows left, whether they
role is art direction, proofreading or anything else. You’ll think, “Why
should I care? It’s the Web!” I know, I know — we have to embrace the
fluidity of the Web. But fixing a widowed word at the end of a paragraph is
easily done either manually or with a preprocessor8, by entering a simple
 or between the two last words, so there’s really no excuse for
not doing so. In editorial environments the chief editor and the art director
work together to rephrase, break and reshuffle content in order to facilitate
readability9. The same process can be applied to every website that goes
out. After all, messages need to be edited — both in content and in form —
so that they reach the receiver.

Work more closely with content creators and CMS developers to en-
sure proper text markup is applied, and provide guidelines for establishing
rhythm and balance, especially if there are different content types — such
as text, photos, videos, graphs or tables — mixed and matched together.

We can go further and design bulletproof templates for whatever
markup is generated by the CMS; for example, restrict floated images,
ignore font styles and custom bullets. Help develop a CMS that supports
content objects that, besides supporting an extensive metadata scheme,
also support content sequencing and hierarchy10.

If this isn’t possible, then, at the very least, extend the original content
object with specialized sub-objects, a feature now available for some years
in a few robust CMSes, for instance in eZ Publish11.

8 http://smashed.by/widont	
9 I love Jason Santa Maria’s definition of readability: “Do I want to read it?”, http://vimeo.com/34178417
10 Gerry Leonidas, The Newest New Typography”, http://player.vimeo.com/video/73444208
11 http://ez.no

316

CHAPTER 9 The Next Steps for Web Typography

Get your developers to build a safety net with rigid edit forms that
limit design explorations and preserve semantics throughout the CMS.
Consult the editor and establish a system of placeholders for the article
equipment, such as introductions, important facts (e.g. the most important
number), pull-quotes or side-notes and account for different combinations.
This might seem redundant, but if content hygiene and style consistency is
important, this is the way to do it. If National Public Radio12 developed an
API for its content13, so too can the rest of us14.

(Responsive) Web Typographer
As Andrew Clarke once wrote15, “Responsive Web Design is web design,
done right.” Likewise, responsive Web typography is Web typography
done right. We use the responsive adjective temporarily, just as we one
used the phrase CSS based layouts until everybody and their neighbor’s dog
realized that tables were bad for laying out pages. Suffice to say, nowadays
everybody refers to layout as layout.

The primary role of typography is to provide an interface for the
message to be put across to the receiver. How you say it is often more
important than the information itself. However, Web typography is not
only about browsing font catalogues and smelling freshly baked type
specimens (don’t tell me you never do that!?). Web typography is primarily
concerned about making information accessible, legible and readable. That
is why understanding micro-typography is essential. If content can’t be
read comfortably, style doesn’t matter.

There are cases when we can superimpose style over substance. If the
content’s only purpose is to achieve a short term attraction and a one time
call to action, then style can be the first thing we should consider, but more

12 http://www.npr.org/
13 http://blog.programmableweb.com/2009/10/13/cope-create-once-publish-everywhere/
14 Karen McGrane, “Adapting Ourselves to Adaptive Content”, http://smashed.by/adaptivecontent
15 http://the-pastry-box-project.net/andy-clarke/2012-january-3/

By Marko Dugonjić CHAPTER 9

317

often than not and especially on the Web, content should be accessible and
readable not only now, but in the future, too. At least, that’s the idea.

As professional matchmakers between content and the reader, we must
understand what has to be covered to design for the reading experience16.
As we get to know the content, context and the user, consider all of the
variables and understand the constraints, limitations and flavors of all the
ingredients in a project, as ultimately our choices are informed as a result
of covering all of these bases and avoiding the traps. In other words, type-
setting is a very rational practice.

Erik Spiekermann likes to say that you only need a color and a typeface
and you have a brand. Once we remove all of the flourishes and decora-
tions, the type remains, thus forming the bare essence of visual commu-
nication. This is far more evident now that we design for ridiculously
cramped mobile screens and adaptive environments. There’s no room for
intensive visual treatments and add-ons, because it’s not viable to carry all
that baggage across different media.

Furthermore, we need to relearn how to design for the Web with fewer
visual devices and with fewer building materials. After we remove all of
the lines, backgrounds, texture and layout, the only thing left is content.
That’s why typography is so important. Since typography is the face of con-
tent, everything else can be stripped down, but typography always stays.

Fortunately, typography is an old and established discipline and there
are plenty of resources to learn from. Below is a selection of recommended
books, listed approximately in order of ease to read.

•	 Inside Paragraphs by Cyrus Highsmith
•	 Thinking with Type by Ellen Lupton
•	 Stop Stealing Sheep and Learn How Type Works

by Erik Spiekermann and E.M. Ginger
•	 Detail in Typography by Jost Hochuli

16 http://www.smashingmagazine.com/2013/02/18/designing-reading-experience/

318

CHAPTER 9 The Next Steps for Web Typography

•	 The Elements of Typographic Style by Robert Bringhurst
•	 The Stroke by Gerrit Noordzij
•	 U&lc: Influencing Design and Typography

Meet Type Designers
In May 2013 Jessica Hische wrote an incredibly easy to follow essay “Up-
ping Your Type Game”17 about selecting typefaces, stressing the impor-
tance of selecting a few type designers and sticking to their typefaces. I
couldn’t agree more. Not only do different typefaces from the same design-
er usually work well together, but talking to your favorite type designer
can bring another perspective into your own process. Type designers have
tons of testing and feedback under their belts and we both share the com-
mon pain of the publish once, work everywhere imperative. For example,
we use @media queries to adjust our designs to different screens; they use
hinting to translate bezier curves into a pixel grid. We are frustrated with
fragmentation and an ever-increasing number of breakpoints and tweak-
points that are difficult to maintain; they are frustrated with manual
hinting at every letter size. We have different browsers; they have different
rasterizers. In short, we have a lot in common and they can be a perfect
friend if you need a shoulder to cry on.

Type designers can advise you as to what could be the best letter size
for your design, how to compensate for the lack of fine spacing control
in CSS, what typeface works best in a given situation. They will have a
different view on things, because they’ve seen their typefaces used in
many more scenarios than we have. They know who their influences are
before they start creating a typeface. And ultimately, they know the history,
because they have been part of it.

Small foundries are very easy to reach, but so too are the bigger found-
ries with their representatives readily available on social networks and at
the conference next door.

17 http://jessicahische.is/talkingtype

By Marko Dugonjić CHAPTER 9

319

Make it your mission to talk to a type designer or a type manager next
time you attend a conference.

If you don’t have a chance to meet a type designer in person, Typophile
forums18 are great places to ask questions and get plenty of answers. Elliot
Jay Stocks’ 8 Faces magazine19 features interviews with type designers
who — apart from giving an insight to their way of thinking — provide the
reader with an elaborated selection of their favorite typefaces.

Still not convinced? Here’s a comforting self-reflecting quote from
Chris Schwartz of Commercial Type20:

Back to my earlier question: “How do I think my work will be influenced by the
‘new’ medium of the Web?”

— Chris Schwartz, Ampersand conference, 2013.

Font Delivery and Distribution
Another group Web designers should talk to are Web font hosting ser-
vices and distributors. In doing so, Web designers have an opportunity
to influence these groups to tailor their services to meet the needs of the
market, so that in return they can deliver even better results to their cli-
ents through the use of type. We are past the �point of having to explain the
importance of consistent cross-channel brand experiences to our clients.
Brands known world-wide, such as Red Bull or The Guardian are good
examples to showcase should you ever require references to reinforce your
message.

Web font hosting services also play a key role in the delivery of fonts
across the full range of Internet-enabled devices. They are on the business
end of the latest technological advances, as they work closely with font
foundries to deliver the best possible results.

18 http://typophile.com/
19 http://8faces.com
20 http://commercialtype.com/

320

CHAPTER 9 The Next Steps for Web Typography

They will often listen if you have a special request. For example, sub-
setting (removing all unnecessary glyphs) is one of the most convenient
methods of reducing the font file size and speeding up Web type perfor-
mance. If you need a particular subset for a project (for instance, small caps
or a lining figures subset), a Web font hosting company might be able to
create and deliver a separate font file and make your website feel lightning
fast. While that particular service might not be available free of charge,
it might not be as expensive either — especially if you can significantly
increase the performance of a website.

With the adoption of Web fonts becoming more common and wide-
spread, many font foundries have begun to appreciate and understand the
importance of performance, resulting in numerous foundries offering Web
font services via their own reliable CDNs. Foundries such as Hoefler &
Frere-Jones21, Just Another Foundry22, Monotype Imaging23, Typonine24 and
Typotheque25 have all recently entered the fray and join the usual suspects
such as Adobe Edge Web Fonts, Fontdeck, Google Fonts, Typekit, Webink
and Webtype who all primarily promote other foundries’ Web fonts.

OS Rendering Engine
There’s little you can do to influence OS manufacturers, but it’s useful to
know how different rendering engines affect typography and what we can
do to improve legibility. There are currently three major OSes that render
type differently: Windows, Mac OS X and iOS. On Apple’s OSes both type
and Web designers have little control, because the rendering engine com-
pletely ignores hinting. This results in somewhat thicker letterforms, but
that’s acceptable as rendering is reliable and consistent.

21 http://www.typography.com/cloud/welcome/
22 http://justanotherfoundry.com/
23 http://www.fontslive.com/
24 http://typonine.com/
25 https://www.typotheque.com/

By Marko Dugonjić CHAPTER 9

321

On Windows, we can improve how type appears on the screen by se-
lecting the appropriate font format. For IE6–8 — which use GDI (Windows
Graphic Device Interface) ClearType subpixel rendering — the only viable
options at smaller sizes are well-hinted26 TrueType Web fonts. However,
there is one problem. GDI ClearType improves rendering only along the
horizontal axis, because red, green and blue subpixels are only available in
that direction. To better understand the effects of this, zoom into a screen-
shot of text and observe the orange and blue halo around a curved letter,
such as O. The halo is only present in the horizontal direction and is the
result of subpixel rendering.

On the vertical axis ClearType uses the most primitive black-and-
white rendering (instead of grayscale rendering, which is an interme-
diate anti-aliasing solution). The effect is easily noticed at the top and
bottom of curves in some letters, like o, p and b, where steps and jags
ruin the shape, especially when display type is set at a large size. As GDI
ClearType is dependent on good hinting, and well-hinted fonts are hard
to find, using tried and tested fonts such as Georgia or Verdana for body
copy combined with a Web font for headlines and subheads at larger
sizes makes perfect sense.

PostScript fonts — which use a different type of hinting — are better
for large sizes and oval shapes in IE6–8. Unlike TrueType fonts, Post-
Script fonts are not rendered with GDI ClearType, but instead fall back to
grayscale rendering, which yields better results in the vertical direction,
thereby improving the overall appearance of shapes. Some foundries and
services, such as JAF27 and Typekit, deliver different formats depending on
the use of the typeface.

Self-hosted Web fonts can be embedded with two different formats
for IE6–8, using TrueType font files for content elements set at smaller
sizes (about 14px and below) and PostScript font files for elements set at

26 Hints are built-in instructions that ensure correct positioning of character shapes within the pixel grid.
27 http://justanotherfoundry.com/

322

CHAPTER 9 The Next Steps for Web Typography

larger sizes (about 18px and up). The full procedure of converting files for
different uses is well-explained in the wax-o blog article “Font-face render-
ing problem in chrome and firefox: use postscript outlines”28. A word of
caution: double-check the font’s EULA to ensure you are allowed to make
such changes.

For proper subpixel anti-aliasing, the rendering engine takes information
about the background into account, and so text that sits on a transparent or
semi-transparent layer needs to be anti-aliased against the color that shows
through from the layer in the background. Apple even disables it on the Mac
OS X translucent menu bar. So, if rendering seems a little off, opacity at less
than 100% combined with a difficult background might be the reason.

Finally, in my research I came across a few unofficial sources who
claimed iOS ditched subpixel rendering in favor of standard anti-aliasing,
because subpixel rendering is only possible in a native direction. Support-
ing subpixel anti-aliasing in only one direction would obviously ruin con-
sistency in different device orientations. Indeed, if you take a screenshot
from within an iOS device and zoom in, you will see the light gray pixels in
place of the orange and baby-blue pixels.

However, if you zoom into a photo taken with a simple smartphone
camera, the orange and blue colored fringes are evident. For instance, on
Retina iPhones, the horizontal subpixels BGR (blue, green, red29) sequence
is clearly visible when viewed in portrait, while on iPads the same se-
quence occurs when viewed in landscape (with the volume control buttons
facing up).

I should probably stop at this point, because I can only speculate that
the built-in screenshot app flattens the edge pixels to the respective shades
of gray. But whatever seems to be the case, when it comes to typography
ignore the device specs and trust your good judgment.

28 http://smashed.by/postscript
29 While displays exist in different sub-pixels patterns, for instance horizontal RGB, horizontal BGR,
vertical RGB and vertical BGR — horizontal RGB is the most common. http://en.wikipedia.org/wiki/
Subpixel_rendering

By Marko Dugonjić CHAPTER 9

323

Browsers
Different browsers use different defaults to handle typography. I know,
tell me something new. However, the situation is not as horrible as it used
to be back in the early 2000s, because browser vendors now listen to —
and collaborate with — designers and developers. Even the once closed IE
development team released a couple of nifty typography demos that can be
found at Use The Whole Font30.

As important as it is to stay in the loop with the latest updates, it’s also
essential to participate with feature requests, bug reports, case studies and
compatibility tests. Many conferences and meet-ups for Web developers
are sponsored by browser vendors and they usually send a technical evan-
gelist to present the latest developments. Talk to them during the breaks,
via email or social networks. Even if they may not have the answer to your
particular question, they will certainly forward you on to someone within
their organization who will. The best conversation starter with a technical
evangelist is to have a ready-made test page with both live examples and
screenshots. Easy!

The main differences in typographic defaults across browsers are in
supported font formats, font loading behavior and legibility options. A dis-
cussion about font formats would well exceed an already intensive chapter
(I did warn you I was enthusiastic about the topic), but I’ll explain how to
manage differences with loading behavior a little later. Let’s just focus on
legibility and rendering for a moment.

text-rendering Property
If you haven’t been sleeping under a rock for the past few years, you are
then probably familiar with the text-rendering CSS property31 that can
be set to enable kerning and ligatures. While Internet Explorer and Opera
don’t support text-rendering at the time of writing, it is applied by default

30 http://ie.microsoft.com/testdrive/graphics/opentype/
31 https://developer.mozilla.org/en-US/docs/Web/CSS/text-rendering

324

CHAPTER 9 The Next Steps for Web Typography

in Firefox. The auto value in Firefox is treated as optimizeLegibility (which
enables kerning and common ligatures, but slows down the page load and
scrolling), while in Chrome and Safari the auto value is treated as
optimizeSpeed (which disables kerning and common ligatures in favor of
better performance).

This property has been reported to cause a number of issues, though.
text-rendering can dramatically slow down page loads if applied to longer
texts. Throw in a font-variant: small-caps; and some custom let-
ter-spacing and it occasionally produces unpredictable results. My rule of
thumb has been to apply text-rendering to headlines and subheads only,
or simply filter out the less capable devices via media queries. An orthodox
standardista in me has another minor issue — this property is actually not
part of the CSS standard, but rather the SVG standard. Interrobang!

The same effect can be achieved using the more suitable and fu-
ture-friendly properties font-kerning and font-feature-settings:

 body {
		 -webkit-font-kerning: normal;
		 -moz-font-kerning: normal;font-kerning: normal;
		 -webkit-font-feature-settings: "liga";
		 -moz-font-feature-settings: "liga", "kern";
 		 font-feature-settings: "liga", "kern";
	 	 /* IE 10 supports the standard property name */
	 }

Browser-specific Legibility Improvements
For the unsung heroes among us who feel comfortable with managing dif-
ferent CSS rules for different browsers, there are a few tricks we can apply
to improve the appearance of fonts.

The easiest way to tweak rendering in Safari and Chrome in Mac OS X
is with the -webkit-font-smoothing property and its values of none, sub-
pixel-antialiased (the default), and antialiased. The antialiased value
results in thinner glyphs, but with less than optimal rendering of diagonal
lines, so it’s best avoided with italics:

By Marko Dugonjić CHAPTER 9

325

Different results side by side. Check out the
-webkit-font-smoothing test page by Christoph Zillgens32.

	

	 body { -webkit-font-smoothing: antialiased; }

	

text-shadow improves text antialiasing in Chrome on Windows.
 The shadow has no effect on the Mac:

	 body { text-shadow: 1px 1px #fff; }
	 /* Replace the color with the background color */

Legibility in Firefox can be improved by adding a combination of text
 shadows33:

	 body { text-shadow: 0px 0px 0px #777, 0px 0px 1px #ddd; }

32 http://files.christophzillgens.com/webkit-font-smoothing.html
33 http://dribbble.com/shots/99803-text-shadow-hackery

Different rendering with text-shadow in Firefox.

326

CHAPTER 9 The Next Steps for Web Typography

text-size-adjust Property
Most modern browsers implemented a text inflation algorithm to fix the
mobile experience for websites that sport a fixed layout (D’oh!). We can opt
out from this behavior with the text-size-adjust property. However, if the
value is set to none, it will prevent zooming in34, so be extra cautious when
using it.

	 body {
		 -webkit-text-size-adjust: 100%;
		 -moz-text-size-adjust: 100%;
		 -ms-text-size-adjust: 100%;
		 text-size-adjust: 100%;
	 }

Readers of the World
When designing for print, no matter how big the edition is, it’s still limited.
Designing for the Web means designing for everyone, everywhere and —
in theory — anytime in the future. Unlike with print editions, we cannot
plan and control the distribution of websites that we build. Designing
for an international audience means understanding there are significant
differences.

The work that goes into maintaining a multi-lingual website, such as
BBC World Service35 is simply astonishing. Not only are there different
writing directions, but also cultural particularities too, such as the prohi-
bition on depictions of living beings for the purpose of worship in Islam.
Taking such factors into consideration certainly places even more empha-
sis on typography.

Unlike cursive writing based on the Latin alphabet, the standard Arabic style
is to have a substantially different shape depending on whether it will be

34 http://smashed.by/webkit-text-size
35 http://www.bbc.co.uk/worldservice/languages/index.shtml

By Marko Dugonjić CHAPTER 9

327

connecting with a preceding and/or a succeeding letter, thus all primary letters
have conditional forms (allographs), depending on whether they are at the
beginning, middle or end of a word, so they may exhibit four distinct forms
(initial, medial, final or isolated).

Source: http://en.wikipedia.org/wiki/Arabic_alphabet

Even if only the local audience is to be targeted and the designer is
familiar with the language, it is crucial for the designer to go out and ob-
serve people. You don’t have to be trained to conduct comprehensive user
interviews or contextual inquiries. A less formal approach is completely
acceptable. Simply spend some time among the general public and you
should get a valuable insight into people’s behavior. Pretend that you are
a spy. Stand near a kiosk to see what newspapers are read and how cover
pages influence buying choices. Observe how much time people spend
reading a book in the park. Learn what kinds of topics are consumed and
in which contexts. Public transportation is ideal for this, as people usually
isolate themselves while diving deep into content, whether it’s text, music
or video. Visit a library or watch people in the waiting room at the doctor’s
or hairdresser’s. These are all methods of research for any design project.

When we design with typography, a good test is to simply ask someone
to read the text out loud. If they struggle with otherwise easy to read text
and the reading pace is uneven, that’s a sure sign something is standing in
the way. The solution might be as simple as tweaking letter-spacing, short-
ening the line length or widening the gutter between two columns.

Another great test is to present a person with a document and ask them
to find some information buried within it as quickly as possible. Or you
can ask them to read text within a limited timeframe and then ask them a
set of questions to test whether they were able to find and comprehend all
of the important facts.

While it’s not necessary to undertake this kind of research on each
and every project, observing how people read and share content usually
improves your perspective and understanding.

328

CHAPTER 9 The Next Steps for Web Typography

So, can we measure if a design is successful? Dr. Kevin Larson of Mi-
crosoft and Dr. Rosalind Picard of MIT conducted research to explore the
effect of good typography. In a study “The Aesthetics of Reading”36 (PDF)
they divided 20 participants into two groups. Each group had to read a
document, with one group receiving a well-typeset version, and the other
receiving a poorly typeset version. They conducted two studies to confirm
the results. Any ideas as to the outcome?

Well, here comes a little surprise. The reading time and comprehension
was the same in both groups. However, the group who read the well-type-
set version performed better when it came to relative subjective duration
— they underestimated the reading time more — and so were more capable
of completing creative tasks, such as the candle task37 and the remote asso-
ciates task38 (even though the results in the later test were not statistically
reliable). In plain English, good typography induces good mood.

Now that We are All Friends…
You should be convinced by now that design is not just a solitary activi-
ty. We can best learn about a project’s needs if we go out, exchange ideas
and watch users on both sides of the content journey. Learn to see the big
picture and the decisions about technology, performance or type selection
will become much easier to make. Keep your eyes open and patterns will
start to emerge. Once you become comfortable in spotting them, you will
learn that there are oceans of details you can cover to improve typography.
So now let’s look at the more practical methods.

Practical Details
To establish a design direction, we first need to evaluate the content. Apart from
reading the text, which should be the most obvious first step, we can gauge text

36 http://affect.media.mit.edu/pdfs/05.larson-picard.pdf
37 http://en.wikipedia.org/wiki/Candle_problem
38 http://www.remote-associates-test.com/

By Marko Dugonjić CHAPTER 9

329

with a few handy formulas. Such numeric values can be used to compare text to
other similar pieces and give us a better understanding about the text.

Article readability stats39 is a PHP script that calculates various text
properties. It can be easily embedded in your CMS of choice and can there-
fore automatically calculate reading time, automated readability index and
reading ease for every article on a website.

Reading rates range anywhere from under 100 words per minute to
a few thousand. An average adult reads 250 words per minute with 70%
comprehension40, so reading time is calculated by dividing the number of
words in the text by 250. Simply throw the content for your project into
a local installation of your favorite CMS and run it through the script to
observe the results based on that average rate. Of course, if the reading rate
for your project is different than 250, use the value that suits your target
audience to asses the text.

From there on, if it seems that the text won’t fit the time format in the ex-
pected context (for instance, a 30-minute train ride), we have a few options:

1.	 Talk to the author and editor to rearrange the text to fit the required
time format. This can be done by shortening the article to fit the format
or by breaking up the article either into sequels or separate smaller
articles that can exist on their own.

2.	 Break the main text with subheads and pull-quotes. Remove all expla-
nations and examples from within the text and place them outside of
the main body as side-notes. This way, readers who are familiar with the
topic can quickly run through the article and those who need additional
explanation can use side- and footnotes to learn more.

3.	 Provide the reader with navigation aids such as subheads, metadata and
different structures for complementary elements (for instance, lists,
data tables and graphs), so they can get important information fast.

39 http://www.maratz.com/blog/archives/2012/07/26/article-readability-stats-with-php/
40 Smith, Brenda D. “Breaking Through: College Reading”, 7th Ed. Longman, 2004

330

CHAPTER 9 The Next Steps for Web Typography

Macrotypography
After we have qualified content, depending on the findings, we can take a
different approach to setting up macrotypography.

If the text is easy to read, i.e. scores high at Flesch-Kincaid Reading
Ease41 or low at Automated Readability Index42 — it means it can be read
rather quickly. In this case, there’s room for varieties in style. You can select
a typeface with plenty of character and layout the document in an unusual
way to add interest. The elements can be mixed and matched, as the reader
will be able to understand the story.

One such example is a poster (or a website) for an event. The set of
information on a typical poster is well-known and clear. For instance, a
typical conference website features speakers, attendees, sponsors, topics,
schedule, location and a ticket form. Yet, besides providing the visitor with
information, its purpose is to stand out in the forest of similar events.
Because it serves as a communication tool for some other content (the
event), and it’s expected to be memorable on a visceral level, we can select a
typeface with character.

On the other hand, if the text or the matter is complicated, the layout
should be sound and stable and in this case any quirkiness or unexpected
typographic extravagance can break the flow of thought. Such text can be
broken into components with extensive use of illustration and infography,
numbered image captions and clear document outlines. A document that is
difficult to read or understand benefits from robust structure.

The easiest way to set up the structure is with our old friends block
paragraphs, numbered lists, a clear grid and generous gutters.

For instance, step-by-step how-tos are easiest to follow if each step is
accompanied with a clear photo or illustration. It’s easy to mess things up
here, too. The natural direction of reading for westerners is horizontal,
left to right, so it’s always better to design each step as a horizontal pair

41 http://en.wikipedia.org/wiki/Flesch-Kincaid_Readability_Test
42 http://en.wikipedia.org/wiki/Automated_Readability_Index

By Marko Dugonjić CHAPTER 9

331

instead of stacking images and text on top of one another. For better clarity,
the image and the textual explanation should sit side by side, even if this
means using a smaller image to make it fit comfortably into the available
horizontal space. There is a big difference between a photo with a caption
and a photo as a visual aid for text. In the former case, the photo is the
main content, the main point of interest. In the latter case, the image acts
as a mere helper, an extension that adds clarity to the main text. If needed,
we can always provide a link to a bigger version.

332

CHAPTER 9 The Next Steps for Web Typography

Combining Typefaces
Here comes the fun part — selecting typefaces. The art of choosing and
combining typefaces is well-covered in the pocket guide Combining Type-
faces43 by Tim Brown. However, as Brown himself says, it takes practice. A
lot of practice.

Once you are able to recognize the classification of any typeface you
see, it becomes very easy to combine typefaces, simply because by the time
you are able to see the difference, you’ve learned plenty of other things
about typefaces and typography in general. Sorry for the bad news, but
the shortcut to successfully selecting and combining typefaces is 10,000
repetitions.

Seriously, the art of selecting typefaces is an art of narrowing down
your choices. Your project needs are your criteria. The better you know
the project, the pickier you become. After discarding all typefaces that
don’t have a full character set available, that miss some styles and weights,
that won’t look as good in a range of sizes, and that are generally rude in
the company of other typefaces — you are left with only a few reasonable
choices and in the end you only have to pick from a group of two or three.

To select a typeface, we must know how big the pond is. If we watch
and recognize only a handful of typefaces all the time, we cannot invent
something radically new and we end up with the same conventional de-
signs over and over again.

The first step in studying typefaces is to become familiar with the clas-
sification of typefaces and the history of typography. It is crucial to study
and investigate typefaces from all classifications, even the ones you think
you would never use.

For starters, focus on well-established professional typefaces. These
are popular for a reason. They work in demanding environments and they
resist ageing.

43 http://www.fivesimplesteps.com/products/combining-typefaces

By Marko Dugonjić CHAPTER 9

333

The common mistake is to choose a beautiful typeface, one that looks
attractive, thus favoring form over function. This is putting the cart over
the horse. However strange this sounds, the ‘look’ of the typeface should be
your least concern.

— Alessandro Cattaneo, Yves Peters, Jon Tan, Smashing Book #1

A good place to start is visiting various lists:

•	 Typedia’s Explore section lists all type designers and foundries. Start
with the most popular designers first and then study typefaces by
each designer: http://typedia.com/explore

•	 The folks at Typekit created a number of lists that will help you find
alternatives to common typefaces: https://typekit.com/lists

•	 FontBook for iPad is another great resource. Fonts are grouped by
genre, which is super useful if you are looking for a typeface that
should meet your target audience’s expectations:
http://www.fontshop.com/blog/newsletters/fontbookipad/

Develop Your Type Library
For a seasoned typographer, purchasing typefaces is a big commitment. It’s
comparable to buying new clothes in that they should ideally match items
we already have in the closet, and have some durability. Purchase sets that
complement your existing library, otherwise, you may find yourself with
a typeface that will probably never be used, resulting in a couple hundred
dollars’ worth of merchandise being thrown out the window.

Successful chameleon designers are very rare and in reality we all have
a distinctive style. Some of us are better at designing one-pagers, while
others are better at designing multifaceted information systems. Some
designers specialize in Web shops, others in Web applications. That’s why
it’s very important to find and work with a set of typefaces that suit your
particular style and the type of projects you are usually commissioned to

334

CHAPTER 9 The Next Steps for Web Typography

work on. Don’t think that famous designers use tons of different typefaces.
On the contrary, if you compare their most successful projects, they all use
a limited selection of fonts.

It will not be uncommon for you — or any designer for that matter
— to end up using fonts from the same foundry or type designer over
and over again, because the familiar underlying structure of respective
glyphs along with the common DNA will probably best fit your personal
typesetting style.

Managing a font library would be a pain without font management
software like Fontcase44 or Linotype FontExplorer X Pro45. Once you classi-
fy fonts in your library, previewing and testing them should be relatively
straightforward. Suffice to say, create a backup of your preference files!

Find Inspiration
Train yourself to spot and recognize typographic patterns. Everywhere
we go, we carry our smartphones, so take photos of any interesting typog-
raphy you spot on the street, in libraries or in book stores. Other valuable
sources of inspiration are printed newspapers, fashion magazines or leaf-
lets found in hotel lobbies. Collect each one you see and write a comment
about why you took it on a Post-it note. Still not carrying a block of Post-its
on your trips? Here’s an incentive to start doing so.

Last, but not least, purchase as many specimens as you can and sub-
scribe to every typographic newsletter out there. Over time, you will have a
pretty nice reference full of proven and reusable type combinations created
by experienced designers and typographers. One autobiographical piece of
advice, a form of nostalgia if you will — be extra careful not to be caught
drooling over the legs of some rational serif or displaying the beaming
smile of a first-time kisser while touching engraved stationery.

44 http://www.bohemiancoding.com/fontcase/
45 http://www.fontexplorerx.com

By Marko Dugonjić CHAPTER 9

335

History of Typefaces
A very common piece of advice given by experienced typographers to new-
comers is to learn about the history of a typeface. What does that mean?
What does a period such as the Renaissance have to do with the project
being worked on? Learning about how typefaces came to be through
history can also help us understand the anatomy of typefaces. Many type
designs were the result of technology and the practical needs of that time.
For instance, a typeface with ink traps looks ridiculous on screen, unless its
used as a display type to convey a particular message. A typeface that was
reproduced in the age of photosetting, when typefaces were designed a
little softer, can look less than satisfactory on screen utilizing a rigid grid.

In the creative world, everything is neo-something-from-the-past and
everything is a remix46. It’s natural to reuse old metaphors and design
on the shoulders of our glorious predecessors. When a trend emerges,
it’s useful to learn about its origin. In May 2013, Yves Peters, the editor
at Font Feed47, gave a talk on Trajan Pro as a movie poster typeface48. He
explained how this trend came to be and foresaw the new trend of using
Gotham in movie posters. Both typefaces became popular based on their
previous successes — Trajan Pro being a font used in a movie that won
an Oscar and Gotham being the official font of President Obama’s 2008
election campaign.

Since everything is just another iteration of some previous idea, we can
draw connections to the original idea and use a typeface that matches the
given period.

Sometimes knowing about the history can help you establish more of a
direct connection, too. For example, Arno is a typeface inspired by the early
humanist typefaces of the fifteenth and sixteenth centuries, named after
the Florentine river. It also proved to be a great match for a website offering

46 http://everythingisaremix.info/
47 http://fontfeed.com/
48 http://vimeo.com/72435170

336

CHAPTER 9 The Next Steps for Web Typography

luxury villas for rent in Dubrovnik, Croatia49. Knowing that Dubrovnik in
the past has had strong cultural and economic connections to Venice and
Florence — which influenced the city’s development and prosperity in the
fifteenth and sixteenth centuries — made it very easy for us to select Arno as
the main typeface for the website.

CSS Organization and Performance
A well-structured HTML document is accessible and satisfies all the basic
requirements for the reader, even without CSS. Text can be zoomed, selected,
copied and shared. Letter size by default is big enough to be comfortably read
at arm’s length and the layout is flexible. So the fallbacks are already present
and we only need to ensure the enhancements we add don’t stand in the way,
especially if the browser is less capable or the connection speed is poor.

That said, the best way to manage responsive typography with CSS
is to handle the micro-typography and the most common defaults in the
main CSS file, while placing all of the breakpoint-specific typography into
separate files.

The main CSS file should contain the default rules for:

•	 font stack
•	 document hierarchy
•	 relative letter sizes for headlines, subheads, captions and side-notes
•	 best-guess line height based on the optimal line length
•	 maximum widths for content elements

A breakpoint-specific CSS file can contain:

•	 different typographic scale values based on information density
•	 line height overrides based on increased (or decreased) line length
•	 layout-specific rules

49 http://dubrovnikapartmentsvillas.com

By Marko Dugonjić CHAPTER 9

337

The first thing that’s always recommended is to reset margins and
padding. Whether you prefer to use Eric Meyer’s reset.css50 or a more radical
asterisk reset, the goal is to take full control over the document. It might
seem like overkill at first, but it forces us to revisit all of the elements and to
take care of the tiniest of details.

	 * { margin: 0; padding: 0 }
	 html { font-size: 100%; line-height: 1.5em; }

Since the ideal line length is somewhere around 66 characters51, we
can limit the maximum width of the basic block of text to 33em, given that
an average character width is around half an em. To keep things relatively
safe and simple, the bottom margin on block level elements can be set to
the same value as the line height, which in this case is 1.5em. This way, we
preserve the vertical rhythm — a repeating pattern our brains are used to
— helping our eyes to jump double the line height and not some arbitrary
length, that’s off-rhythm.

	 article { max-width: 33em; }
	 p, ul, ol, dl, table { margin-bottom: 1.5em; }

We can also extend the max-width rule a little more for international
audiences. Based on Vasilis van Gemert’s article “Logical Breakpoints For Your
Responsive Design”52, Jordan Moore came up with the idea of language-based
line lengths53. Since the ideal line length might vary from language to lan-
guage, we can apply language-specific line length maximum values:

	 article { max-width: 33em; }
	 :lang(de) article { max-width: 40em; }

50 http://meyerweb.com/eric/tools/css/reset/
51 http://smashed.by/66char
52 http://www.smashingmagazine.com/2013/03/01/logical-breakpoints-responsive-design/
53 http://www.jordanm.co.uk/post/44359705696/responding-to-language

338

CHAPTER 9 The Next Steps for Web Typography

Baseline grids
To help us compose to a vertical rhythm, we can create a repeating pattern
in the background and adjust the baseline grid to our needs. We used to
create a GIF for this, but today we can dynamically create gradients in CSS.

html {
 background-image: -webkit-linear-gradient(top, #fff 0, #fff 95%, #f00
95%, #f00 100%);
 background-image: -moz-linear-gradient(top, #fff 0, #fff 95%, #f00
95%, #f00 100%);
 background-image: linear-gradient(top, #fff 0, #fff 95%, #f00 95%,
#f00 100%);
 background-repeat: repeat-y; background-size: 100% 24px;
/* Background size height equals rendered line height at the respective
breakpoint */
	 }

Web designers find it very hard to compose to a vertical rhythm and I
agree. It’s not the easiest skill out there to master, but this doesn’t mean we
should give up.

Daniel Eden and Matt Wilcox each developed jQuery plugins54 55 that
calculate bottom margins of images that fall out of the rhythm. With more
and more solutions like these, there is no excuse not to align everything to
a baseline grid. At first, it’s a struggle, but over time, composing to a base-
line grid becomes second nature.

Fonts as a Progressive Enhancement
With a fair share of browsers still unable to handle Web fonts optimally
(e.g. Android 2.2–2.4) or lacking support for more advanced features (e.g.
data URI in IE6–8), Web fonts should be considered a progressive enhance-
ment. They still don’t work optimally outside the box and to make them
work properly we occasionally need to use complicated syntax.

54 Baseline.js by Daniel Eden https://github.com/daneden/Baseline.js
55 jQuery Baseline Align by Matt Wilcox https://github.com/MattWilcox/jQuery-Baseline-Align

By Marko Dugonjić CHAPTER 9

339

By default, the browser doesn’t have to download a font to render a
Web page, it will use what’s already available there. Our custom Web font
is an override and as such can sometimes render some unwelcome effects,
like the flash of unstyled text (FOUT).

Google and Typekit collaborated to create the Web Font loader56, a
JavaScript library that works with most Web font services as well as with
self-hosted fonts. It is very simple to use and, in the case of Typekit, it’s
already built into the standard embeddable snippet. If you are self-hosting or
using another service, the following code should be pasted into the <head> of
the document:

<script type=”text/javascript”>
	 WebFontConfig = {
		 custom: {families: 'Font Family Name', 'Another Font Fa-
mily'], urls: 'http://domain.com/fonts.css']}
	 };

	 (function() {
 	 var wf = document.createElement('script');
 	 wf.src = ('https:' == document.location.protocol ? 'https' :
'http') + '://ajax.googleapis.com/ajax/libs/webfont/1/webfont.js';
 	 wf.type = 'text/javascript';
 	 wf.async = 'true';
 	 var s = document.getElementsByTagName('script')[0];
 	 s.parentNode.insertBefore(wf, s);
	 })();
</script>

Then you have three classes at your disposal: .wf-loading, .wf-active
and .wf-inactive that are set on the <html> element. The most interesting
class is .wf-loading which is used to control what happens until the Web
font is downloaded and applied to text. Here’s an example:

56 https://developers.google.com/fonts/docs/webfont_loader

340

CHAPTER 9 The Next Steps for Web Typography

	 .wf-loading h1 { visibility: hidden; }
	 /* — or — */
	 .wf-loading h1 { font-family: 'A fallback font'; }

When creating font stacks, the best results are achieved if: selected type-
faces belong to the same classification; and each respective character cov-
ers the same amount of physical space. This means an appropriate fallback
font will posses the following qualities, sorted by importance:

•	 matching x-height
•	 similar character width
•	 similar letter space

A bulletproof font stack should contain the first choice typeface, the near-
est alternative, platform-specific alternatives, universal alternatives and fi-
nally a generic alternative. If you are self-hosting Web fonts, the great Font
Squirrel Webfont Generator57, among other options, lets you fix vertical
metrics and resize glyphs to match the x-height of the selected Web-safe
font (Arial, Verdana, Trebuchet, Georgia, Times New Roman and Courier).

Subsetting
We can dramatically improve performance by reducing the file sizes of
Web fonts and by reducing the number of HTTP requests (we’ll come
to that in a minute). It is also common for a font file to contain multiple
scripts that are neither always necessary nor required. If only a subset of
glyphs from a font file are needed, why download the whole font?

Some Web font services offer subsets, like small caps or lining figures
as separate fonts. Others let you select the character ranges you require
prior to exporting. While this is a great step forward, in most cases it’s still
not always possible to subset fonts on a glyph-by-glyph basis.

57 http://www.fontsquirrel.com/tools/webfont-generator

By Marko Dugonjić CHAPTER 9

341

If Web fonts are self-hosted, we can subset them with FF Subsetter58
or the aforementioned Font Squirrel. Both tools let you select and preview
characters that you require in the font, as well as remove hinting, kerning
and optional glyphs, such as old-style numerals. Even though all these
options are available, that doesn’t mean they have to be utilized. Be careful
not to cripple the font by removing punctuation, hyphens, spaces and oth-
er common non-alphabetic symbols. If the built-in kerning is removed, the
typeface will look less than satisfactory on Windows. Even the text-ren-
dering or font-kerning properties won’t know how to handle kerning
pairs properly. Clearly, we should never sacrifice the quality of rendering,
so there will be times when you’ll have to face the facts and simply use a
Web-safe font.

Base64 Encoding
Another way to optimize performance is to reduce the number of HTTP re-
quests by including a Web font as a Base64-encoded string in the main CSS
file. Data URIs are supported in modern browsers (IE9 and up), so you can
serve separate font files for IE8 and the predecessors, or omit Web fonts in
older browsers. Some high profile websites, like The Guardian and GOV.UK
use this method to serve their Web fonts.

	 @font-face {
		 font-family: "My Font";
		 src: url("data:font/opentype;base64,[base-encoded font here]");
}

Again, Font Squirrel is a great service that does all the heavy lifting for you.
It can subset and Base64-encode fonts, export all necessary font formats,
create a CSS file with fallback options for older browsers, as well as create a
sample specimen.

58 http://www.subsetter.com/

342

CHAPTER 9 The Next Steps for Web Typography

Content-based Media Query Breakpoints
To determine where to introduce breakpoints, we can refer to a quote by
Jeremy Keith59, co-founder and technical director at Clearleft:

Breakpoints should not be dictated by devices, but by content. Let the content
decide when to expand and then adjust your designs.

In practice, this means that we can start with the default media query-less,
100%-wide column of text, with or without an aforementioned max-width
limit. This way the content will fill up the screen on sizes smaller than the
max-width limit and leave more room for additional columns on screens
wider than the max-width value. When it hits the max-width mark, we have
two options. First, we can start increasing the white space (for instance,
with the margin: auto; rule) until there’s enough room to comfortably fit
in a new column. Second, we can introduce a new breakpoint right away,
shrinking the original column to an acceptable minimum, while fitting a
new column into the remaining space.

There is an important trade-off when selecting between these two
options. With more controlled layouts, the information density is much
lower, which might be counter-effective, especially in Web applications or
anything else that is supposed to provide plenty of information quickly. On
the other hand, it’s much harder to keep the line length within optimal lim-
its with fully flexible layouts, and it usually results in many more break-
points and tweakpoints being set. As always, your project’s needs should
influence this decision.

Calculating the ideal line length is not the easiest of things to do. That’s
why Trent Walton proposes adding asterisks after the 45th and 75th char-
acters in a paragraph60, which makes life easier when observing content
that reflows at different breakpoints.

59 http://www.lukew.com/ff/entry.asp?1393
60 http://trentwalton.com/2012/06/19/fluid-type/

By Marko Dugonjić CHAPTER 9

343

Some users zoom into websites. To allow for proportional scaling with
zoomed-in text, we can use ems instead of pixels as proposed by Lyza Gard-
ner in her article “The EMs have it: Proportional Media Queries FTW!”61. The ef-
fect takes place when text is zoomed in and the lower breakpoint condition
is met. For example, let’s say our ideal breakpoints for a project are at 600,
800 and 1,000 pixels. If we divide pixel values by the root font size, which
in this example will be 16px, the em-based query values would be 37.5, 50
and 62.5ems respectively.

	 @media only screen and (min-width: 37.5em) { } /* 600px */
	 @media only screen and (min-width: 50em) { } /* 800px */
	 @media only screen and (min-width: 62.5em) { } /* 1000px */

Despite the fact they have changed the way we plan and build websites
from the ground up, media queries are still not the final solution. They
are perfect for introducing different layouts, but the content units should
behave in a certain way depending on their available space, not just going
by the overall screen size. One typical example is a data table that can be
easily turned into a definition list on a small, 300px wide screen, but at the
same time can’t be rearranged in the same manner when placed in a nar-
row, 300px-wide sidebar on a bigger screen. Can you see the problem here?
How can we query that? 62

Andy Hume came up with the concept of responsive containers63 which
he elaborates on his blog, so I won’t go into the exact details here. For now,
rest assured that the problem was detected and some smart people are work-
ing on the solution. Fingers crossed it becomes part of the CSS standard.

61 http://blog.cloudfour.com/the-ems-have-it-proportional-media-queries-ftw/
62 There’s a handful of jQuery plugins available, e.g. http://kumailht.com/responsive-elements/
63 http://blog.andyhume.net/responsive-containers/

344

CHAPTER 9 The Next Steps for Web Typography

White Space Hierarchy
There are three white spaces within a paragraph that are interdependent —
letter space, word space and line space. If any one of the three is changed,
all the others should be reassessed, too. By preserving the hierarchy
between the white spaces, we can achieve the best reading experience for
various scenarios (variable tempo, different line lengths).

Font Size, Leading and Measure
Another fundamental relationship is the interconnection between font
size, line height and line length. The line length is dictated by a combina-
tion of font size and the available horizontal space within a container. The
longer the line, the more space we need between successive lines and vice
versa. As a result of these dependencies, if any of the three is changed, all
the others should be reassessed, too.

As every Web designer knows, the satisfactory line length is between
45 to 75 characters per line64. It’s a common thing among Web designers
to space such lines with a line height of 1.5ems, give or take. The trouble
is, we can barely fit 40 characters on a mobile screen. The line height of 1.5
combined with such a short line length results in too generous spacing. If
a paragraph looks like a list, reduce the spacing between lines.

64 http://smashed.by/webtypo

Illustration of white spaces

By Marko Dugonjić CHAPTER 9

345

Obviously, there are natural boundaries for both line length and line
height. While we need to reduce line height at short line lengths, we
should be careful not to clash extenders in consecutive rows.

Line length can be easily controlled with min- and max-width in CSS,
but there is currently only one fixed value available for line height in CSS.
In spite of that, we can tweak font size, line height and bottom margin with
media queries, depending on the line length at any given breakpoint. The
paragraph code at different breakpoints would look something like this:

	 @media only screen and (min-width: 37.5em) {
		 p {
			 font-size: 1rem; /* 16px */
			 line-height: 1.4;
			 margin-bottom: 1.4em; /* = line-height */
		 }
	 }
	 @media only screen and (min-width: 50em) {
		 p {
			 font-size: 1.125rem; /* 18px */
			 line-height: 1.45;
			 margin-bottom: 1.45em; /* = line-height */
		 }
	 }

How tight is too tight? Test this with a row of letters q or p followed by a row
of bs or ds. For international audiences you might want to enter an upper-

case with a diacritic, for instance Š.

346

CHAPTER 9 The Next Steps for Web Typography

	 @media only screen and (min-width: 62.5em) {
		 p {
			 font-size: 1.312rem; /* 21px */
			 line-height: 1.5;
			 margin-bottom: 1.5em; /* = line-height */
		 }
	 }

Still, this is not the best solution and it greatly depends on the number of
breakpoints. The more breakpoints we introduce, the better the experience
is. But wouldn’t it be easier if such mathematically simple rules were
applied automagically?

Molten Leading
In “Molten leading (or, fluid line-height)65”, Tim Brown proposed range
rules for line height in CSS, which would enable designers to specify line
height limits and let the browser reflow the text following the changes of
the fluid width of the container. He suggested a new pair of CSS properties
min- and max-line-height, which would behave similarly to min- and
max-width. As we will see later in the chapter, the CSS3 Working Draft
introduced another approach for dealing with range values.

Based on Brown’s idea, Mat Marquis made Molten Leading66, a jQuery
plugin that solves that problem. The syntax is as easy as:

	 $('p').moltenLeading({
		 minline: 1.4,
		 maxline: 1.7
	 });

Paragraph Styles
If the text is straightforward and linear, and thoughts are tightly connected,
we can use an alternative more intimate way to divide paragraphs.

65 http://nicewebtype.com/notes/2012/02/03/molten-leading-or-fluid-line-height/
66 https://github.com/Wilto/Molten-Leading

By Marko Dugonjić CHAPTER 9

347

This becomes especially handy at small screen sizes, where not many
bits of information compete for the reader’s attention.

	 p { margin-bottom: 0; }
	 p + p { text-indent: 1em; }

This example is just a simple trick to cram more content into a screen
without sacrificing readability. To learn about many more options to
style paragraphs on the Web, definitely check out Jon Tan’s “12 Examples of
Paragraph Typography”67 and the Web typography chapter he co-authored in
Smashing Book #168.

Letter Spacing
By default, letters on screen can appear too close to one another, especially
on high pixel density screens. This can be improved quite easily by using
the letter-spacing property. Mobile Safari on the iPhone accepts let-
ter-spacing increments of 0.01ems, which comes in handy on iOS devices.

While IE7+ and newer versions of Firefox are capable of rendering
such tiny increments, the coarseness of the 96dpi screen usually produces
less than satisfactory results, so it’s better to reserve such nuances for high-
dpi screens only.

	 @media only screen and (-webkit-min-device-pixel-ratio: 1.5),
 only screen and (min-device-pixel-ratio: 1.5) {
	 p {
 	 font-size: 1rem;
 	 line-height: 1.5;
 	 letter-spacing: 0.01em;
		 word-spacing: 0.01em;
		 }
	 }

67 http://v1.jontangerine.com/silo/typography/p/
68 https://shop.smashingmagazine.com/smashing-book.html

348

CHAPTER 9 The Next Steps for Web Typography

Correctly spaced letters and words should be invisible to a non-trained eye,
so if the average reader can spot the gaps between letters, you probably
went too far.

Hyphenation and Justification
To equalize individual line lengths, paragraphs can be set justified. To
prevent gaps between words in a justified setting, the text should be
hyphenated. Basic hyphenation and justification is possible in all modern
browsers:

	 p {
		 text-align: justify;
		 -webkit-hyphens: auto;
 		 -moz-hyphens: auto;
		 -ms-hyphens: auto;
		 hyphens: auto;
	 }

Unfortunately, this is not enough and the result is far from acceptable.
Apart from hyphenation, the line rhythm in a justified paragraph should
be preserved with a combination of variable word spacing, letter spacing
and character widths. We can get away without using variable character
widths, but variable spacing is a must for a properly justified paragraph.
This is yet another example where min- and max- properties could come
into play, for instance:

	 p {
		 text-align: justify;
		 min-word-spacing: -0.05em;
		 max-word-spacing: 0.1em;
		 min-letter-spacing: -0.01em;
		 max-letter-spacing: 0.02em;
	 }
	
	 /* A concept code */

By Marko Dugonjić CHAPTER 9

349

CSS3 Text Module Level 3 Working Draft 69 proposes the new spacing-limit
value type, which represents optimum, minimum, and maximum spacing
in word-spacing and letter-spacing. The syntax in this case would be:

	 p {
		 text-align: justify;
		 word-spacing: 0 -0.05em 1em; 	
		 letter-spacing: 0 -0.01em 0.02em; 	
	 }

	 /* optimum, minimum, maximum respectively */

Another problem with hyphenation is the lack of fine-grained control over
the severity and occurrence of hyphenation. It’s considered a type crime
when more than three successive rows are hyphenated. Additionally,
Robert Bringhurst, the author of The Elements of Typographic Style 70 suggests
that at least three characters of the hyphenated word should be taken to
the next line.

CSS3 Paged Media Working Draft 71 proposed a few interesting proper-
ties (there are more, but I’ve found these to be the most important):

•	 hyphenate-before specifies a minimum number of characters in a
word before the hyphenation character

•	 hyphenate-after specifies a minimum number of characters in a
word after the hyphenation character

•	 hyphenate-lines specifies a maximum number of successive hy-
phenated lines in an element

If these were supported by browsers, the subsequent set of CSS rules
would look like this:

69 http://smashed.by/spacing
70 http://smashed.by/bringhurst
71 http://smashed.by/hyphen

350

CHAPTER 9 The Next Steps for Web Typography

	 p {
		 hyphens: auto;
		 hyphenate-before: 2;
		 hyphenate-after: 3;
		 hyphenate-lines: 3;
	 }

CSS Text Level 4 Editor’s Draft from 201372 proposes the extension to
hyphenate-before and hyphenate-after in the form of a hyphenate-lim-
it-chars property which would take three values: the required minimum
for the total characters in a word; and the minimum number of characters
in a word before and after the hyphenation. The same draft renames the
hyphenate-lines property to hyphenate-limit-lines which at the time of
writing is supported in IE10 and Safari.

For now, the best results for the user are still achieved ither with manu-
al hyphenation. To manually hyphenate text, simply insert the soft hyphen
­ (or ­) wherever is convenient. If there’s a need for a word break,
the browser will insert the hyphen character. It works as advertised in all
modern browsers.

	 oto­rhino­laryngo­logy

	 p { hyphens: manual; }

Combining pseudo-elements with the content property
I’m a big fan of combining pseudo-elements with the content property.73
Even though they are not supported in older browsers, we can use them to
achieve a better control over hanging symbols, quotation marks and multi-
level numbering.

72 http://dev.w3.org/csswg/css-text-4/#hyphenation
73 http://www.w3.org/TR/CSS21/generate.html

By Marko Dugonjić CHAPTER 9

351

Hanging Symbols and Numbers
Instead of relying on the list-style property which we cannot control,
we can use the :before pseudo-element to add bullets or en dashes before
text in list items and regain full control over such symbols. Options are
now limitless and one that immediately comes to mind is using a different
shade of gray for the hanging bullet.

	 li {
		 list-style: none;	
	 }
	 ul li:before {
		 content: "–"; /* en dash */
		 float: left;
		 margin-left: -1em;
		 color: #999;
	 }

	 ol { counter-reset: item }
	 /* “item” is an arbitrary variable, by default equals zero */

	 ol li:before {
		 content: counter(item) ". ";
		 counter-increment: item; /* equals item++ */
		 float: left;
		 margin-left: -1em;
	 }

Quotation Marks
Following the same principle from the previous section, we can add a
pinch of elegance to blockquotes.

	 blockquote:before { 	
		 content: "“"; 	
		 font-size: 4em;
		 color: #eee;
		 float: left;
		 margin: -.33em 0 0 -.5em;
	 }

352

CHAPTER 9 The Next Steps for Web Typography

 	 /* — or — */

	 blockquote p:first-child: before { 	
		 content: "“"; 	
		 font-size: 4em;
		 color: #eee;
		 float: left;
		 margin: -.33em 0 0 -.5em;
	 }
	 blockquote p:last-child: after { content: "”"; }

To provide a pair of quotation marks for each respective language along
with their nested alternatives, we would use the :lang selector:

	 q:lang(de) { quotes: '„' '“' '‚' "‘" }
	 q:lang(en-gb) { quotes: "‘" "’” '“' '”' }
	 q:lang(en-us) { quotes: '“' '”’ "‘" "’" }
	 q:lang(fr) { quotes: '« ' ' »’ "“" "”" }
	 q:before { content: open-quote }
	 q:after { content: close-quote }

Each language has its own set of rules, so I encourage you to check out
“Non-English usage of quotation marks” 74 at Wikipedia.

Automatic Multilevel Numbering
Automatic numbering in multilevel content provides readers with an easy
to follow outline and enforces hierarchy. With automatic numbering, styl-
ing ordered list items in a “1., 1.1., 1.1.1.” fashion becomes ridiculously easy.

	 ol { counter-reset: item }
	 ol li { display: block }
	 ol li:before {
		 content: counters(item, ".") ". ";
		 counter-increment: item;
	 }

74 http://en.wikipedia.org/wiki/Non-English_usage_of_quotation_marks

By Marko Dugonjić CHAPTER 9

353

Vladimir Simović goes a little further and explains how to apply automatic
numbering to headings75 which is very useful for eBook publishing.

	 body { counter-reset: subhead1; }

	 h1:before {
 	 content: counter(subhead1) " ";
 	 counter-increment: subhead1;
	 }
	 h1 {
	 counter-reset: subhead2;
	 }
	 h2:before {
 	 content: counter(subhead1) "." counter(subhead2) " ";
 	 counter-increment: subhead2;
	 }
	 h2 {
	 counter-reset: subhead3;
	 }

	 h3:before {
 	 content: counter(subhead1) "." counter(subhead2) "." 	
 	 counter(subhead3) " ";
 	 counter-increment: subhead3;
	 }

Hierarchy
You never would have guessed! Typography can help with inaugurating
a document structure, too. Subheads provide the reader with a clue about
the content that follows; side- and footnotes provide us with additional
explanations of the key terms inside the text; and captions provide descrip-
tions for figures, data tables and graphs. All these elements form part of the
typographic hierarchy.

75 http://smashed.by/css-headings

354

CHAPTER 9 The Next Steps for Web Typography

Modular Scales
The most common way to establish hierarchy is with a typographic scale.
Tim Brown created Modular Scale76, an online calculator that returns a
series of related values based on a given body copy size and any of sever-
al common mathematical scales and musical intervals. The calculator is
named after the typographic concept of the same name. As Brown said in
his article “More Meaningful Typography”77:

A modular scale is a sequence of numbers that relate to one another in a
meaningful way.

For the purpose of this chapter, I selected 16px as the ideal text size, and
the 2:3 perfect fifth scale, which gave me an array of useful values: 7.111,
10.667, 16 (the initial value), 24, 36, and 54. Translated to rems and applied to
subheads and captions in CSS, they look like this:

	 h4 { font-size: 1rem }
	 h3 { font-size: 1.5rem }
	 h2 { font-size: 2.25rem }
	 h1 { font-size: 3.375rem }
	
	 caption { font-size: 0.667rem }
	 small 	 { font-size: 0.444rem }

Subhead Styles
While a typographic scale combined with different font weights is a great
way to establish hierarchy and balance on large screens, such variety can
stand in the way on small screens. With large screens there are many more
informational elements and the main content can often compete with
advertisements and other related or unrelated content.

76 http://modularscale.com
77 http://www.alistapart.com/articles/more-meaningful-typography/

By Marko Dugonjić CHAPTER 9

355

On smaller screens there are only a few elements on the screen at the same
time and the signal-to-noise ratio is far better. A 36px subhead that looks
good on a desktop monitor, might be slightly over the top on a smartphone.

So, meet style variations.
Instead of progressively in-
creasing the font size for each
heading level, we can use ital-
ics, small caps and all caps at
the same letter size to establish
text hierarchy. Add bolds into
the mix, and we have a palette of at least six styles.

While all caps and italics are styled easily with CSS, small caps are rela-
tively new in Web design. Web fonts contain small caps subsets less often
than not. In essence, there are three alternatives to applying small caps:

1.	 Apply the CSS3 OpenType feature rule.
2.	 Load a separate small caps font file.
3.	 Create faux small caps.

	 .subhead-1 {
 	 -moz-font-feature-settings: "smcp";
 	 -ms-font-feature-settings: "smcp";
 	 -webkit-font-feature-settings: "smcp";
 	 -o-font-feature-settings: "smcp";
 	 font-feature-settings: "smcp";
 	 text-transform: lowercase;
	 }
	

.subhead-2 {
	 font-family: small-caps-typeface;
	 text-transform: lowercase;
	

}
	 .subhead-3 {
	 font-weight: 500;
 	 font-size: 80%;
 	 text-transform: uppercase;
 	 letter-spacing: .125em;
	 }

Six distinctive styles with font style variations

356

CHAPTER 9 The Next Steps for Web Typography

One possible scenario in responsive typography is switching between
style variations and a scale for subheads. For instance, we can set a range of
styles at the same size for small screens — where a single content unit is in
view and the signal is clear — and create more contrast with a typographic
scale for larger screens where there’s much more noise.

Subheads are a great opportunity to add style to a composition. For
an extensive list of options, check out my article “Setting subheads with
CSS78” and the accompanying demo page79.

Data Tables
Tables are becoming a very common element on the Web, handy for com-
paring numerical data, as well as creating connections between arrays of
information. As such they are almost unavoidable in Web applications.

For a clean-slate table, we can use the border-collapse property and the
cellspacing attribute. Preserve the vertical rhythm by adding the bottom
margin rule and, where necessary, override the bottom margin in break-
point-specific CSS files.

	 <table cellspacing="0" cellpadding="0" />

	 table {
		 border-collapse: collapse;
		 border-spacing: 0;
		 margin-bottom: 1.5em;
	 }

Horizontal borders are easy on the eye and will add clarity, so we can create
such borders using the border-bottom or border-top property. Next, we set
some padding to let the data breathe, keeping in mind the harmony of the
vertical rhythm. For any column that contains numerical data, we can align
the data to the right so that the values can be easily read and matched up to
one another — singles under singles, tens under tens, and so on.

78 http://blog.typekit.com/2013/07/25/setting-subheads-with-css/
79 http://webdesign.maratz.com/lab/subheads/

By Marko Dugonjić CHAPTER 9

357

	 th, td {
		 border-top: .1em solid #ccc;
		 padding: .65em 1em .75em; /* .75em = 1.5em/2 */
		 vertical-align: top;
	 }

	 .numeric {
		 text-align: right;
		 font-feature-settings: 'tnum';
	 }

Some popular typefaces on the Web, for instance Proxima Nova and
Georgia don’t support fixed width lining numerals. In that case, you might
want to consider other alternatives, for instance Anonymous Pro80 by Mark
Simonson. It’s free and available at a Web font host service near you, or a
good old Web-safe font such as Courier New, Trebuchet MS or Verdana.

Setting tabular figures with OpenType fonts is the best option for tabu-
lar data. Activate them with the font-feature-settings property.

Another CSS rule that would be useful for tabular data — still in work-
ing draft — is character-based alignment in a table column81. When the
alignment character is specified, it is centered along a single column-paral-
lel axis and the text is shifted accordingly. This is especially convenient for
styling an array of numbers with a separator, for instance decimal num-
bers. At the time of writing, this rule is still not supported in browsers.
	
	 td { text-align: "." center }

When a large unexpected chunk of data fills the table (for instance a long
URL), it can fall out of its designated area and break the layout. To keep the
table from falling apart, we can use the CSS rule table-layout: fixed and
set the maximum width to the table, for instance 100%. This should keep
the table contained within the parent element.

80 http://www.marksimonson.com/fonts/view/anonymous-pro
81 http://www.w3.org/TR/css3-text/#character-alignment

358

CHAPTER 9 The Next Steps for Web Typography

	 table {
		 border-collapse: collapse;
		 border-spacing: 0;
		 table-layout: fixed;
		 max-width: 100%;
	 }

Advanced Techniques: Pixel density and grades
We have already looked at different rendering technology in different
OSes, but device manufacturers, led by Apple, introduced another variable
to us: screen resolution. Pixel density affects the appearance of type on a
given device. Take, for example, the evident differences in type rendering
on iPhones and iPads which are all made by the same manufacturer. Imag-
ine what happens when you add more densities into the mix.

As an additional issue both on iOS Retina82 and Windows ClearType83
screens, when the device orientation is changed, the stack of subpixels is
not parallel with the line of text anymore, but instead it’s perpendicular to
it. Because of that, the rendering engine cannot rely on the layout of sub-
pixels for subpixel anti-aliasing.

I’ve already introduced you to the vague topic of anti-aliasing on iOS
devices, but regardless of whichever theory is true, there’s still an issue of
text appearing less elegant in landscape orientation on both iPhones and
iPads. I suppose at this point you might want to go out to your balcony and
scream to the sky, so please go on — I don’t mind.

Feeling better? Shall we continue?
Since designing for the screen is very similar to designing for news-

papers, many solutions to our problems can be found in the print design
world. Back in the day, type designers invented graded fonts, slightly ad-
justed variants of the same type style, which helped book and newspaper
designers better control the ink performance on different paper qualities.

82 http://www.muleradio.net/thetalkshow/6/
83 http://smashed.by/cleartype

By Marko Dugonjić CHAPTER 9

359

iA graded fonts

In print design there is rough paper; in Web design there is a coarse
low resolution screen, so the same approach can be applied. Designers at
Information Architects84 led by Oliver Reichenstein use graded fonts85 to
normalize the appearance of text across different resolutions. They embed
three different grades:

•	 the default, non-Retina grade
•	 the Retina landscape grade
•	 and the Retina portrait grade

Since you are a CSS-literate, the code is self-explanatory:

	 @font-face {
 	 font-family: '-graded font';
 	 ...
	 }

	 @media only screen and (min-device-pixel-ratio: 1.5) {
 	 @font-face {
 	 font-family: '+graded font';
 ...
 	 }
	 }

84 http://ia.net
85 The comprehensive list of graded fonts can be found at Typophile forums
http://typophile.com/node/81483 — you will be amazed at the selection.

360

CHAPTER 9 The Next Steps for Web Typography

	 @media only screen and (min-device-pixel-ratio: 1.5)
	 and (orientation: portrait) {
	 @font-face {
 	 font-family: '++graded font';
 ...
 }
 }

Reading Distance, Revisited
We currently assume reading distances are based on the devices’ form fac-
tors. Device manufacturers decide on the reference pixel, making numer-
ous assumptions as to how the device will be used at the uniform reading
distance. That is, we only read from a smartphone when it is held with
the palm facing towards the face, read from a tablet when held with both
hands, and always sit exactly 70cm away from our desktop screen.

We need something better, a way to detect the physical relationship
between the user and the device and to readjust typography accordingly.
We already have the technology to measure reading distances so we can
readily detect and calculate how far the object is from the device with sen-
sors that are already available in devices.

Firefox OS and Firefox for Android both support the Proximity API86,
which detects how close the device is to any other physical object, by
accessing the proximity sensor. In Firefox implementations, it currently
works at distances of up to 10cm, but if it could be expanded to return
accurate values for distances within arm’s reach, we could use that value
to increase or decrease the letter size and adjust paragraph spacing accord-
ingly. Working with proximity API is straightforward. The DeviceProx-
imityEvent interface provides information about the distance between
the device and a nearby object, while the UserProximityEvent currently
returns a boolean value if the user is close to the device.

	

86 https://hacks.mozilla.org/2013/06/the-proximity-api/

By Marko Dugonjić CHAPTER 9

361

window.ondeviceproximity = function (event) {
 	 var prox = "Proximity: " + event.value + " cm";
 prox += "Min. value supported: " + event.min + " cm";
 prox += "Max value supported: " + event.max + " cm";
 proximityDisplay.innerHTML = prox;
	 };

	 window.onuserproximity = function (event) {
	 var userProx = "User proximity - near: " + event.near;
 	 userProximityDisplay.innerHTML = userProx;
	 };

Another example is capturing objects with a plain old Web camera. By com-
bining the getUserMedia API with face recognition algorithms, we can de-
tect the user’s face and calculate the distance between a user and the screen87.

Whatever the sensor technology is, once the reading distance is
available, we can use it as a complementary query to screen size @media
queries to deliver better typography. A few combinations and their respec-
tive setups come to mind:

•	 A smartphone at palm distance (small size, short measure, tight leading)
•	 A smartphone at lap distance (small to medium size, short measure,

medium leading)
•	 A tablet at palm distance (small size, medium measure, normal leading)
•	 A tablet at lap distance (small to medium size, medium measure,

medium leading)
•	 A tablet at desk distance (medium size, short measure, tight leading)
•	 A laptop at lap distance (small to medium size, medium measure,

medium leading)
•	 A laptop at desk distance (medium size, measure and leading)
•	 A desktop screen at desk distance (medium to large size, medium

measure, medium leading)
•	 A desktop screen at wall distance (large size, measure and leading)

87 http://webdesign.maratz.com/lab/responsivetypography/

362

CHAPTER 9 The Next Steps for Web Typography

These different typographic combinations shouldn’t be applied in real
time, because in that case the interface would scale up and down right in
front of the user. Obviously, that would be completely useless. Instead,
the device could apply a slightly different setup each time the user loads
a page, and measure especially if the user tries to readjust the reading dis-
tance by moving the device away from or closer to their face.

All that data could be collected, stored and used to run a series of multi-
variate tests in the background, without ever interrupting the user. Gath-
ered statistics could help us to better determine what the optimal setup is
at each reading distance. The device could recognize each particular user,
recalibrate and apply the optimal typographic setup for them. Not to men-
tion the look on your optician’s face when you dump all your stats onto her
desk. Who’s a nerd now, huh?

Did we hit the roof on the Web? I don’t think so!

It’s not that Hard
You’ll agree that each presented technique is quite simple observed in iso-
lation. The complicated part in Web typography is keeping in mind all the
axes and creating the best possible setup for a given situation. But if you
prioritize, you can achieve pretty decent results with very little effort.

First, markup the text with correct punctuation, dashes, quotes and
spacing. Second, take care of the default paragraph by balancing the letter
size, line length and line height. Aim for even texture. Even if it feels unex-
citing, the use of proper characters and spacing will establish soundness.
Third, create proper hierarchy so the reader can actually make it through
to the end. Finally, if you have enough time, tweak the style subtleties —
think of it as icing on the cake.

How do you become comfortable with designing typography? As a
daily exercise, use one font in black or white on a background color and try
to express different moods using variable sizing, macro and micro white
space and adjusting the arrangement of elements. Another exercise is to

By Marko Dugonjić CHAPTER 9

363

try different strategies for establishing hierarchy and experiment with
supplementary furniture, such as captions or pull-quotes — using only one
typeface. This way you will learn what each type family is capable of and
what can be accomplished with CSS.

I dare you to learn to live without flourishes, the bling and the gloss,
to undesign Web sites and make them lightweight and accessible in both
appearance and performance, as well as being cross-platform. Resist the
seduction of beautiful counters and spines, and delay browsing typefaces
until you have built a solid foundation.

Always keep in mind that typography serves content and we serve
the user — not the other way around. Typeset content first, because the
stark reality is that Web typography is not about selecting fonts, it’s about
making information accessible, legible and readable. We all have an innate
tendency to make things eye-pleasing, so once you have learned to cover
the essentials, you will instinctively know how to add just the right volume
of appeal.

Good luck!

364

CHAPTER 9 The Next Steps for Web Typography

ABOUT THE AUTHOR
Marko Dugonjić is a designer, speaker and author based
in Velika Gorica, Croatia. As the creative and user expe-
rience director at Creative Nights, he improves custom-
ers’ digital experiences for both local and international
clients. He founded FFWD.PRO, a micro-conference for
internet professionals. His favorite pet project is Type-
tester, an online tool for testing screen fonts.

ABOUT THE REVIEWER
Tim Brown is a designer, writer, speaker, and toolmaker,
with a focus on typography. Formerly a web designer
at Vassar College, he is now Type Manager for Adobe
Typekit, a curator for A List Apart, and the author of
Nice Web Type (@nicewebtype on Twitter).

8. Content Strategy

Chapter

Written by Corey Vilhauer

10

The Two Faces of
Content Strategy

366

CHAPTER 10 The Two Faces of Content Strategy: Balancing the Needs of Users and Editors

By Corey Vilhauer CHAPTER 10

367

Chapter TEN · by COREY VILHAUER

The Two Faces of
Content Strategy

Balancing the Needs of Users and Editors

n 2005, I created my own WordPress blog. It wasn’t easy. It took
what felt like a monumental amount of learning — learning I did on
my own time, relying on a continuous cycle of trying and failing my

way toward each small success. It was barely a success, but it launched,
and I took on the task of creating something interesting on a daily basis.

This was my first brush with self-publishing, in which I wrested the
reins of publication from the essayists and journalists whom I admired,
forcing myself into the public eye. I did it to practice writing, to sharpen it
like one might sharpen an axe, chopping through the thicket toward fame,
fortune and maybe a Pulitzer, if I was lucky. Instead, I ended up reinvent-
ing myself as a Web professional, combining the two loves of my life:
words and technology.

This was my choice. I had moved from audience to editor. I was now
behind the machine.

That was eight years ago. Since then, we have seen websites become
more complicated. We have improved our methods. We have focused on
user-centered information architecture, then user-centered content strate-

I

368

CHAPTER 10 The Two Faces of Content Strategy: Balancing the Needs of Users and Editors

gy, then refocused again on a user-centered, multiscreen, everything-is-
everywhere strategy.

Our attention on users — on the audiences and customers we rely on
to make our products and content a success — took a long time to coalesce.
But here we are! The golden age of Web design! Where content is taken
seriously! Where users get a seat at the table! Where everything is rainbows
and chocolate cake and there isn’t an oatmeal raisin cookie to be seen!

Except.
Except for those who may not have had the same desire to take apart

the Web and get behind it. Except for the people who take the things we
make and fold them into their everyday job. Except for the editors who
struggle with the weight of a new CMS, or the trivialities of workflow
change, or the political turmoil that comes with a new website.

Along the way, these people all made the same move I did — from
audience to editor — and they all take part in the creation of Web content.
But we’ve been so focused on making usable websites for our customers
that we somehow forgot that we also need to walk editors and bosses and
co-workers through the process, too.

There are two faces to content strategy: the people we’re targeting (our
users), and the people who are doing the targeting (our editors). We’re re-
sponsible for making great websites. But we’re also responsible for making
websites that are usable from the editor’s standpoint. We are the people
who make the Web; we are also those responsible for helping those who
sustain it.

A Renewed Focus on People
Just as I discovered with that first WordPress blog, people who maintain
and create content are faced with leaps in technological advancement,
complicated new systems, and an inherent change in their workflow. As
we better understand how people access the Web, we find our current
methods aren’t working as well as we had hoped — that we’re forced to

By Corey Vilhauer CHAPTER 10

369

adapt both how we do things and what we do in the first place. We raise the
banner for structured content. We adopt content tools like GatherContent1,
or editorial tools like Editorially2. We lobby for more dedicated content
strategists within our organizations.

We start to ask for change. And against that change comes resistance.
These are not easy things to take on. When Chip and Dan Heath, au-

thors of Switch: How to Change Things When Change is Hard3, say “Change isn’t
an event; it’s a process,” they’re warning us that people aren’t hardwired
to switch directions on a dime. In our jobs, within our teams, in whatever
situation we find ourselves, our worth is defined by what we do.

Imagine you’re working with a Web content editor at a major univer-
sity. As part of the Web design process, we push for changes to how the
home page is laid out, or how content flows through the system, or what
CMS is used. We may also suggest advanced technologies like personaliza-
tion, and we ask the content editor to take a deep look into a new taxono-
my so they can efficiently pull content blocks in from across the website.

We’re not just redesigning a website. We’re also rebuilding their pro-
cess, which, in turn, redefines their role at the university. Change means
more than just the simple adaptation of how we create a spread-sheet or
what it means when we say “content audit.” It’s a full-scale meta-morpho-
sis in what we mean to our co-workers, bosses and partners.

Jonathan Kahn, principal at Together London, says “We’ve got plenty of
ideas, we work with skilled people, and our tools get better every day—but
until we start changing our organizations’ culture, we won’t achieve our
objectives.”4 This means changing our expectations of what content work
really is and who’s in charge. Because we’re all in charge now.

1 https://www.gathercontent.com	
2 https://editorially.com
3 Heath, Chip & Dan; Switch: How to Change Things When Change Is Hard, http://smashed.by/switch
4 Kahn, Jonathan; “Start Changing Your Organisation’s Culture Using Storytelling & Startup 	
Techniques”, http://smashed.by/cult-video	

370

CHAPTER 10 The Two Faces of Content Strategy: Balancing the Needs of Users and Editors

Empathy
Good content requires empowered and engaged people. Good content
needs people to read it, and it needs people to create it. Without people,
there is no content. Content strategy, at its heart, is people strategy.

Yet we still see content work banished to the back offices, left for IT
or the copywriter or the marketing department (people who already have
plenty to do, thanks). Such buck-passing is a sure sign that our discipline
is still fighting to reach maturity. We still spend too much time looking for
the right methods and workflow, and not enough time figuring out how
the vast changes in Web content will affect not just the jobs of those who
are tasked with creating content, but also every other job in the company.

So, those of us who help create or redesign websites must take into
account the needs of our websites’ audiences and the people who will create
content, every last one of them — which is to say: everyone. To do that, we
must put ourselves in their shoes and work with empathy for their situation.

We hand our content needs to an editor5 with the expectation that
everything will be perfect, but each editor is responsible for additional
tasks that may not involve creating or maintaining Web content, tasks that
require time and attention. Every new content need — every addition to
the content workflow, and every new analytics system, every new CMS
platform — eats into that time and that attention.

This is where we come in as content strategists.

Two Paths Converge
To keep things simple, the people engaging with a website can be divided
into two camps: those who will use the website; and those who will main-
tain the website.

5 When I talk about editors throughout this chapter, I refer not just to the traditional editor, but to
anyone who will handle content duties during the creation and governance process. An editor could be a
co-worker, a client, a boss, a freelance copywriter, someone from a different department, a member of an
advisory board, or they could be an actual editor. The content process is a wild, woolly mess, even when
it’s well organized, and because of that we have all become, in some sense, editors of the Web.

By Corey Vilhauer CHAPTER 10

371

On one hand, you have the users, the audiences and customers we need
to make our company or content a success. Our goal with this group is
simple: provide value and communicate a message. On the other hand, you
have the editors, the people who make this content, creating experiences
and stories that resonate with website users. Users ask for information and
products. Editors ask for attention and patience.

Thanks to the traditional advertising method of the big reveal, we’ve
been trained to think that there is a kind of constant struggle between
editor and user; that an editor’s artistic sensitivity and personal views are
held back by data and search engines and user feedback, while users ignore
anything that’s not of immediate relevance and only respond to big, bold
and dumb.

Our editors deserve more respect, as do our users. In reality, the two
groups are separated by nothing more than a few lines of code and an
Internet connection. They play complementary parts in the Web creation
process — supply and demand, create and consume — representing two
paths that, instead of diverging, move in the same direction with constant
interchanges.

When we create a website, we go through the following stages:

•	 Discovery: Who is this website for and why will they visit?
•	 Strategy: How do we lead users to their goals?
•	 Execution: What do we say to our users?
•	 Governance: How do we keep this website relevant?

The methodology on the editorial end follows a similar path:

•	 Discovery: Who is creating content for this website and why?
•	 Strategy: How do we help the company and editors reach their goals?
•	 Execution: What do our editors say and how do we help them say it?
•	 Governance: How do we stay on track after launch?

372

CHAPTER 10 The Two Faces of Content Strategy: Balancing the Needs of Users and Editors

Different tasks, different goals, but the same direction. The discovery
stage is concerned with who and why. The strategy stage is concerned with
how, while the execution stage is concerned with what. Finally, governance
gives us more insight into where and when by giving us a set of editorial
tools and guidelines to live by once the initial website is live.

With these two paths, we can begin to figure out exactly how to reach
our audiences and give them what they need, all while keeping in mind
the issues that may sprout up on the other side of the content process. Let’s
take a look at where these two paths most often meet throughout some of
the basic steps of content strategy.

Discovery: Who and Why?
Successful content relies on a deep level of understanding in both audience
makeup and user goals. Developing successful content requires an addi-
tional level of understanding in how an organization works, who can be
pulled out as content champions, and what form our network of content
editors will finally take. This is done through asking a lot of questions and
undertaking a lot of probing during an initial discovery meeting.

Before any real content work can begin, we sit down with all relevant
parties and determine audiences and perceived outcomes: who will visit
our website and what they expect to get out of it. This “audiences and
outcomes” process gives us a wonderful opportunity to ask some editorial
questions as well.

The discovery process is the most crucial stage in building an empa-
thetic relationship with a Web editorial team. It’s necessary for editorial
buy-in. It’s necessary for effective involvement. And it helps build warm
and fuzzy feelings throughout the project. It’s all about figuring out who’s
going to use the website on both sides of the process.

Audiences and Outcomes
First of all, let’s get this out of the way: we are not the audience. We may
be a frequent flier, but that doesn’t mean we can speak for every airline

By Corey Vilhauer CHAPTER 10

373

passenger. We may have kids, but that doesn’t mean we can speak for
every parent. We may be a huge fan of the newest Daft Punk album, but
that doesn’t mean we can speak the multitudes who also enjoy the new
Daft Punk album. So we must find and talk to the people who can speak for
these audiences: the audiences themselves.

We begin by gathering everyone in for a big information-gathering
discovery meeting. The meeting might take 30 minutes, it might take sev-
eral hours. What matters is that it happens, and that the right people are
involved. This means you need to find someone from every relevant area of
the organization. The list might include, but is not limited to, representa-
tives from:

•	 Marketing
•	 Creative/Web
•	 IT
•	 Product Development
•	 Front-line Service
•	 Executive Board
•	 Business Development

The range of attendees is wide on purpose. Every area of the company
has a different lease on Web content, and they all work differently to make
Web content happen.

Members of IT can talk about their needs and limitations, especially
as it relates to content workflow, while someone from product develop-
ment or sales can discuss the murmurs they hear outside of the company.
Front-line service is key to capturing the thoughts of disgruntled users or
customers, while the executive board will shed light on potential business
strategy and will appreciate being part of the project.

Different voices bring different solutions. If your initial discovery
meeting involves just a few members from marketing, you’re going to run
into trouble.

374

CHAPTER 10 The Two Faces of Content Strategy: Balancing the Needs of Users and Editors

With this group in the room, it’s time to solidify our audiences and the
outcomes those audiences expect. Create two lists and begin sorting all of
the audiences and all of the perceived outcomes into two columns. Then,
start asking questions. For example:

•	 Who do you feel are your website’s audiences?
•	 Which audiences are not represented well enough, and what are

they looking for?
•	 Who else is competing for your audiences’ attention?
•	 What drives your business, and how does your audience help

achieve positive results?
•	 What audiences are part of a strategic initiative? Are there any sec-

ondary audiences that the company seeks to invest in?

Let’s imagine we’re going through this process with a small university.
As you field answers, your audience list might start looking like this:

•	 Potential students
•	 Current students
•	 Parents
•	 Alumni
•	 Athletic fans

And the outcomes may be:

•	 Sign up for a university tour
•	 Find information on applying for school
•	 Learn more about the residence halls
•	 Apply for financial aid
•	 Read news about university projects funded by alumni
•	 Read scores for the football team

By Corey Vilhauer CHAPTER 10

375

These audiences will be further separated by need — after all, a poten-
tial student could be non-traditional, graduate, online or post-secondary
— and the outcomes will overlap across the audiences. You’ll end up with
a long list of audiences, a long list of outcomes…and you’ll gather a lot of
information that doesn’t fit in, either. Because when a group of editors and
marketing professionals starts talking about their customers and con-
tent, they also start talking about the failings of their current systems, the
struggles they have with internal politics, and the initiative they’ve been
pushing to implement for years.

Jackpot. Time to talk about editorial process.
(For a deeper look into audiences, outcomes and personas read my ar-

ticle for A List Apart6, or check out the book that inspired the article: Online
and On Mission7, by C. David Gammel. For a great primer on how, when and
what to ask during discovery interviews and audience interviews, read
Interviewing Users: How to Uncover Compelling Insights8 by Steve Portigal.)

When Editors Become Audiences
Remember when I wrote, “we are not the audience?” I take that back. Be-
cause it’s at this point — when user audience research turns into workflow
gripes — that the fun stuff starts to surface: the editorial audiences.

Editors get content from all corners of the organization. They may be
represented by a single person, or they may be a department’s worth of
staff. They could be the CEO, or they could be a handful of interns. Editors
differ depending on the organization, industry and website, which makes
them as important a website audience as any.

While we’ve got the group together for the initial discovery meet-
ing, now’s the time to ask some sticky questions. Talk about department
siloing, about faulty workflow, and that one person who has a hard time

6 “Audiences, Outcomes, and Determining User Needs”, http://smashed.by/user-needs, 28. Feb. 2012
7 Gammel, C. David; “Online and On Mission” , http://smashed.by/online-mission
8 Portigal, Steve: “Interviewing Users: How to Uncover Compelling Insights”, http://smashed.by/itv-users

376

CHAPTER 10 The Two Faces of Content Strategy: Balancing the Needs of Users and Editors

understanding the WYSIWYG editor. Talk about everything, because this
is your best chance to create editor- and user-friendly content and architec-
ture before it’s too late.

Trust me. They will talk, if given the chance. This is because content
work requires some level of ego; it’s writing and creating, after all, even if
it’s only a basic FAQ or press release. When faulty processes or staff frus-
tration lead to less than stellar content, those responsible for putting the
content on the Web are going to take offense.

So start sussing out annoyances and dive deeper. What causes these
annoyances? What can we do to fix these frustrations? If someone in mar-
keting mentions they can’t make all the changes they’d like because there
aren’t enough editors, ask what kind of skills they’re missing and try to fig-
ure out if there’s a way to spread the work around. If a certain department
has trouble getting content on the website, ask about that department’s
process and whether or not it’s an issue of resources or simply a bad case of
apathy.

Armed with this information, we can create a similar list of audiences
and outcomes for editorial workflow. For example, a university might see
the following editorial audiences:

•	 Departmental directors
•	 Web steering committee
•	 Staff and faculty
•	 Marketing
•	 Undergraduate admissions
•	 Editorial staff

Each of these internal groups has a different role in the Web content
process. By identifying all of the players, we can get a better sense of where
snags might be, and how to untangle them before they become larger
internal content conflicts.

By Corey Vilhauer CHAPTER 10

377

Once we’ve determined all of the editorial audiences, it’s up to us to make
sure each is represented, both within any strategic content plan and as a
part of the overall website discussion. We know, we know: committees are
hard to work with. But dealing with committees is easier than scrambling to
make changes for departments or stakeholders who stick their nose into the
project at far too late a stage. Mike Monteiro, author of Design is a Job9, talks
about the necessity of grabbing the right mix of people:

Going into a project, you need to know who on the client side provides input,
who gives feedback, and who approves. You may have a better idea of who
these people should be than your client. … As important as it is to have a small
feedback group reviewing design decisions, it’s even more important that it’s
the right group.

Each of your editorial groups plays a huge part in determining edito-
rial workflow and project sustainability. By figuring out what makes each
group tick, we can present solutions that fit the project’s expectations.

Auditing the Existing Process
With our audiences — both external and editorial — in mind, it’s time to
figure out what we have to work with. This is an exercise in resource allo-
cation, but it is also a major trial in patience.

We’re already used to diving into a project armed with a spreadsheet
and several hours of droning music, ready to inventory every last PDF and
policy page. We do this to gain a sense of where we are. What areas of the
website are under-represented? What content is sitting idle and mucking
up search results? Why do we still link to the program for the 2002 Annual
Christmas Program?

The goal of this inventory is to:

9 Monteiro, Mike “Design Is A Job”, http://smashed.by/alap-job

378

CHAPTER 10 The Two Faces of Content Strategy: Balancing the Needs of Users and Editors

•	 Determine the current direction of the website, as well as gain a
good understanding of the project scope.

•	 Gain exposure to the voice and tone of the website’s content.
•	 Find relationships between pages and current website information

architecture.

Yet this focuses only on external audiences: how people find things and
whether those things are relevant. We also need to figure out how content
lands on the website where it does, when it does and how it does.

Which means, in addition to standard inventory fields like “ID,” “Page
Name” and “Content Type,” we also have to start determining “Content
Owner,” “On-site Expert” and whether or not a page is static or changing. In
so doing, we’ll create a de facto editorial workflow, a workflow that needs
its own element of editing as well.

In content strategy, we so often talk about getting rid of ROT (redun-
dant, out-of-date, trivial) content. Workflow requires this as well. As we’re
going through website content, we should also look at areas where work-
flow has become redundant, out-of-date or trivial. Some examples of this
might be:

•	 Sending non-legally binding copy to the legal department for
approval,

•	 Running all content through a department supervisor instead of
empowering the content team to make their own edits,

•	 A focus on time-based content production over relevance —
in other words, posting for the sake of posting,

•	 A lack of editorial governance in reviewing old content or archiving
out-of-date content.

This workflow audit (like the content audit) is going to weed out the
bad parts and help us make good strategic decisions.

By Corey Vilhauer CHAPTER 10

379

Strategy: How
Strategic planning is often handled from a user perspective (What are
our audiences’ goals? How can we help achieve them? What content do we
need?); which is fine, except that we need to do more to answer the ques-
tions under the surface. In addition to how to achieve goals, we need to de-
termine who can create the content. Along with working out what content
we need, we need to establish who can maintain it.

Melissa Rach and Kristina Halvorson define strategy as “an idea that
sets the direction for the future.”10A strategy is not a document; it’s the idea
behind the document. Which means it encompasses much more than a
document ever could — it’s made of culture, workforce, tools and, most of
all, people.

Therefore, our strategic plans must embrace a little bit of both worlds.
At Blend, our strategic content plans set out the following high-level

concepts:

•	 Reiteration of website audiences and objectives
•	 Analysis of current content issues and proposed changes
•	 Gap analysis of content needs and proposed additions
•	 An action plan for proposed website messaging
•	 An action plan for proposed website structure
•	 An action plan for proposed website governance
•	 Measurements for success

You’ll notice that apart from the proposed website governance plan,
nearly all of those items are user-facing strategies. Yet, there’s a hidden
purpose to all of this analysis and strategy: we are throwing these ideas out
not just to see if they’ll work with website users, but also to see if they’ll be
accepted by editors.

10 Halvorson, Kristina, and Rach, Melissa; Content Strategy for the Web, Second Edition, http://content-
strategy.com

380

CHAPTER 10 The Two Faces of Content Strategy: Balancing the Needs of Users and Editors

Each messaging plan comes with workflow suggestions: find someone
to become keeper of the style guide; or determine one person who can run
A/B testing on website content. Structural suggestions pull in editorial
workflow issues from across departments; for example, if we build a news
feed, will someone maintain it?

It’s these governance and workflow issues that pose the largest hurdles
in the process. Remember: people don’t like change. And this is often the
stage of the project where we start suggesting changes to their existing jobs.

Our job is to ease the change. Lay out all expected outcomes and show
what changes are needed. Personally meet people who may have to take on
extra duties and explain the benefits of those duties. Work with managers to
ensure they understand the amount of extra work or the change in skill set
required for each new initiative. But most of all, get people on board early.

Assigning Roles
Who should be involved with Web content? Everyone.

Who can be involved? A select few who hold the password and have the
time to work on the new website. Who will be involved? That’s a subject
that can be both simple and complicated at the same time. Which is kind of
the point of an interdisciplinary content team.

We talk about interdisciplinary content teams because, at their heart,
every group of collected content workers is in some way interdisciplinary.
They play on their own experiences, their own backgrounds and their own
thoughts to create complex content systems for our websites. They don’t
always get along, but they combine their efforts to create a better mix than
any of the pieces could on their own.

There’s a concept called informed simplicity that comes into play when
building and assigning roles within a content team. Matthew Frederick, in
his book 101 Things I Learned in Architecture School, says informed simplicity
is “founded upon an ability to discern or create clarifying patterns within

By Corey Vilhauer CHAPTER 10

381

complex mixtures.”11 He likens it to pattern recognition, but with a twist,
whereby we move past the teeming mass of conflicting interests and find
places where they can come together in harmony.

If this sounds a lot like the quagmires we wade through trying to keep
all of our website users happy, you’re not mistaken. Just like we spend
hours and hours organizing and testing and reorganizing the content on
our website to provide the fastest view to all pertinent audiences, we must
also, through trial and error, determine who will work best within an orga-
nization’s content team.

You start by bringing back your group from the initial discovery ses-
sion. One by one, go through each part of the proposed strategic plan. Ask
questions about ownership and ability. Who does this already? Who else
could do it? How many people do we have working on this project? How
many hours can we pull from other departments? Where are opportunities
for us to hand over content to a subject matter expert in order to save time
on our end?

With these questions, you can create an initial workflow plan. It can be
as simple as a Word document with everyone’s responsibilities by position,
or as complex as a spreadsheet with exact hours and tasks. Simple is better,
however. Step Two Designs, which has undertaken extensive research on
developing intranet content teams and evaluating workflow, warns against
overly complicated workflow processes. James Robertson, managing direc-
tor of Step Two Designs, writes that “simple workflow can be useful, with
one or two steps between the author and the published page… Beyond this,
however, workflow can prove to be ineffective or even problematic.”12

We typically develop a chart that shows relative content flows, very
much like the one displayed below.

11 Frederick, Matthew; 101 Things I Learned in Architecture School, http://101thingsilearned.com/Architec-
ture/101TILArchitecture.html
12 Robertson, James; “What Every Intranet Team Should Know”, http://smashed.by/step2

382

CHAPTER 10 The Two Faces of Content Strategy: Balancing the Needs of Users and Editors

Then, we prepare for it all to change.
Workflow should always be iterative. It depends on ability and current

staffing. There’s a need for constant revisions, and these revisions must
be built into the process. Whether content is created using Agile or Lean
methods, or any other existing or created process, it must be reviewed
periodically. Check the machine for leaks. Tune it up. Repurpose the parts
that aren’t working.

And when things get tight, start prioritizing tasks. That is, if you didn’t
prioritize from the get go.

Don’t Try to Do It All
Let’s make this clear from the beginning: not every client or project team
will be equipped to handle every part of a project. Assigning roles and deter-
mining strategy may require more than just a knowledge of the content and
a handful of user outcomes. It will require understanding the skill set of
each user. And it will require understanding when to say enough is enough.

Believe it or not, we don’t need to throw our full methodology at
every project. The first time I realized this was when I worked with a
small non-profit organization funded entirely on donations. They had
no money for a project, yet I still dove straight in with the full package:
full content inventory, full audit and strategic plan, detailed wireframes
and website map, editorial calendar with weekly updates. We had agreed
to donate our time, and I felt strongly about the organization, so why
wouldn’t I give it my all?

By Corey Vilhauer CHAPTER 10

383

Here’s why. I went way over their heads.
It wasn’t that they couldn’t understand the plan; they just couldn’t

understand why I had spent so much time on it. The website had 20 pages
total, and they had a skeleton crew of volunteers running the organization.
They had no need for detailed content plans — they just needed insight
and direction on how to reach their audiences. They had no need for a
weekly content calendar — they barely had enough staffing to make it to
weekly meetings. They were a non-profit group. They were friends. They
took my contribution as the overzealous ramblings of a content fanatic.

But what if this was a paying client? What if this was someone who
had agreed to spend a full 50% of their marketing budget on a new web-
site? What if you delivered a pointless deliverable because you thought
that’s what they needed?

It’s going to go over their heads, too — as soon as the anger subsides.
Because you’re not just wasting their time and money, at that point: you’re
unknowingly sabotaging their internal team by demanding more project
buy-in than they can handle. We all have methodologies, but none of them
are one-size-fits-all. They’re expandable and contractable, movable and
skippable. They should be designed to work in parts, to be scaled back, and
to be adjusted for the needs of the current project.

Give someone every tool in the toolbox, and they’ll spend most of their
time trying to figure out which screwdriver to start with. Our tools will
differ on every project, and that’s the thing to focus on — we need to under-
stand and empathize with the situation in order to provide more than just
a cookie cutter solution from our methodology.

Execution: What
With a strategic plan in place, we now turn to creating actual website con-
tent, a task typically handled over what seems like a thousand days with
input from 17 million people.

384

CHAPTER 10 The Two Faces of Content Strategy: Balancing the Needs of Users and Editors

Creating content (words, video, organization, relationships, sidebars,
tutorials — whatever it may be) takes shape back in the discovery phase,
when we start talking about website messaging, brand standards and ex-
isting content. But now we are ready to get specific and turn our messages
and outcomes into actual words on a page.

Except, who’s going to make that content?
Your website editors. That’s who.
And if you’ve never been lucky enough to work with a 10,000-page con-

tent migration, or if you’ve managed to steer clear of any complete content
makeover project, I’ll let you in on a little secret: execution is messy, stress-
ful and completely overwhelming.

Empathy for the Devil
Page after page. Sentence after sentence. Every image needs the right tags,
and every video needs the right embedding, and should the heading go
here or there?

Content creation can be as labored an act as the term itself, mired in
politics and revisions and the smallest of details, over and over again. But
the devil is in the details, as they say. And that’s what we need to focus on
with any website content project: the details. The details help us pull con-
tent across the website through metadata, and they inform microcopy and
small interaction decisions during testing, and they might even help us
notice the unfortunate spelling of our “pubic relations department.”

And while we may not necessarily be in charge of every detail of a project
— after all, we’re in this to empower website editors to create a website that’s
usable long after launch — we are responsible for creating an environment
that promotes careful, usable content, from important home page content to
the smallest microcopy. Here are some ways in which we can help:

Put someone in charge
Every project needs a leader who can organize and delegate tasks. This
leader can take two forms: either a natural leader connected to the proj-

By Corey Vilhauer CHAPTER 10

385

ect who understands it and can work with various departments (think:
marketing director, lead content editor, etc.); or someone from outside the
project who can bridge the gaps created through siloing and politics (think:
a content strategy consultant).

This seems so simple, right? Yet we still struggle with teams that have
too many cooks in the kitchen — and too many content sources claiming
precedence. Nothing frustrates the process more than unnecessary work,
so make sure someone is in charge of determining where content comes
from, where it goes, and (most importantly) what’s important.

Rely on subject matter experts
I don’t know anything about flywheel engines or computer chips or cup-
cakes or whatever it is we’re making websites for this week. That’s not my job
as a content strategist, though. My job is to help those who do know about
flywheel engines or computer chips or cupcakes create content that’s usable.

Remember: we aren’t responsible for knowledge within the domain. We
are responsible communicating that knowledge in a way that’s both usable
and useful for that domain’s audiences. We do this by relying on the rela-
tionships we have within the project, asking good questions and conceding
to expertise, instead of running in with all of the answers predetermined.

Know when to hold ’em, and know when to fold ’em
Internal politics. Apathetic co-workers. A reliance on outdated methods
that appeal to a certain section of the organization. These are serious
problems, and they really pop up when we begin figuring out the details of
website content. Who gets to be on the home page? Who gets to have the
biggest bio? Why haven’t you talked about this department yet?

When we start work on a project, we’re often bombarded with informa-
tion. But the information is biased. It’s all connected to specific goals and
departments within the company, and it’s all competing for the same area
on the website. The worst part? These competing nuggets of information
can all be reframed to fit our website’s message hierarchy. For example, if

386

CHAPTER 10 The Two Faces of Content Strategy: Balancing the Needs of Users and Editors

a person really wants the university library link to be one of the top head-
ings on the website, that person can certainly make a case for it using our
existing criteria.

Our goal in this case is to reframe the conversation, taking advantage
of that person’s goals and making allowances were possible. For instance,
imagine a university website where four different departments are vying
for the same website real estate. You have options. You can show them data
that refutes their claim, which can backfire if future gut feelings can’t be
summed up with relatable numbers. You can give in and save the fight for
a larger battle, which could anger and alienate other departments. Or, you
can filter out some of the voices by finding passion projects.

Ultimately, each department or stakeholder is super-focused on a few
ideal things. Make an allowance here or there based on those passion proj-
ects, all while pointing out the vast amount of information you have to deal
with. Be empathetic to their needs and give a little bit, all while helping
them empathize with your situation.

Use editorial tools to help communicate
Often, the biggest difficulty we face isn’t in organizing people and creating
workflow — it’s simply finding a way to give everyone access to changes
and comments within our own content. Thankfully, this is a problem be-
ing worked on through several online Web applications.

There are solutions for Web content planning, such as GatherContent,
that help you collaborate on site maps, content models and other pre-de-
velopment needs. Once that site’s gone live, there are collaborative edito-
rial applications like Editorially or Poetica that promise to create a single
source for content feedback.

And, seriously. Given the issues we all run into when gathering a thou-
sand word documents from seven different departments and organizing
them into something usable, we can only assume that more people are
going to make more online solutions. We’re right on the edge of a content
tool explosion.

By Corey Vilhauer CHAPTER 10

387

Develop with a CMS that’s easy for editors to use
Well, now we’re just being silly, right? Maybe not. Let’s talk about developers.

Working with Developers
Despite the fact that nearly every content strategist has some issue with
the inconsistencies of content management systems, we all rely on some
kind of content management solution to make our jobs easier and our edi-
tors’ jobs relatively painless.

I say relatively, because while we’d never expect editors to go back to
manually marking up each HTML page, that doesn’t mean today’s CMS
solutions are optimal. They’re not. But we can make them better. As long as
we have a good relationship with our developers.

The content strategist/developer rift has been talked up for years.
“Developers don’t understand the needs of editors and are always looking
for fast solutions, not correct solutions,” say the content strategists. The
developers answer, “Content strategists develop impossible, complicated
solutions that we then have to implement, as though they have no knowl-
edge of how databases or programming work.” And it’s true, in some sense.
Content strategy is just now reaching a critical mass on structured, data-
base-driven content, while developers are coming around to the benefits
and efficiencies of a content-first approach.

These stereotypes are just that, though. Stereotypes. When it comes
down to it, developers and content strategists work perfectly together.
Developers want to know what kinds of copy are going to be on the web-
site, and how they’re going to interact. Content strategists benefit from
working closely with developers to create a CMS experience that editors
can understand and use.

Which brings us to the art of content modeling and how we can help
create editor-centric CMS mechanisms — even within existing CMS pack-
ages — by simply listening to our editors and gleaning what content fields
they might need.

388

CHAPTER 10 The Two Faces of Content Strategy: Balancing the Needs of Users and Editors

First, imagine a basic block of content: a university department page,
for example. The page is designed to give access to all content within that
department. The biology department page might have links to biology
research, a list of biology majors, a staff listing, and more. It will also have
basics like a title, introductory paragraph, phone number and office loca-
tion.

Taking this example, we
can dive down into the de-
tails. What fields are needed?
What will an editor need to
update, and what content
would work better populated
through tags or categories?

In this case, we need to
make fields for attributes that
live on the page: the title, in-
troductory paragraph, phone
number and office location.
So the editors don’t need to
manually enter every single
major or research project, we
will also need to pull in ma-
jors, research news, staff and
classes that are categorized
within “biology.”

Yet, the CMS will probably also add fields that aren’t relevant to the
editing experience: publish date, page ID, page language, sort index and
permissions, for example. These fields can be confusing to an editor who
has to weed through the irrelevant just to change a block of copy, but
they’re crucial to making changes within the CMS.

Our job is to help bridge this gap.

SEARCH

QUICK LINKS FOR...

ABOUT ACADEMICS ADMISSIONS CAMPUS ALUMNIATHLETICS

NEWS CALENDAR LIBRARY GIVE TO OUR SCHOOL DIRECTORY APPLY TODAY!SCHEDULE A TOUR

Biology Department
We are proud of the curriculum we offer students. We provide a broad range of courses
which prepares our graduates not only for success in science-related jobs, but for graduate
school and professional programs of study.

The majority of our graduates continue their education at the graduate school or
professional level, but many choose to begin their careers in science immediately following
graduation. Some of our graduates choose to work in quality control or research and
development laboratories. Some go on to work in conservation or park management. Still
others begin fulfilling careers in teaching.

DEPARTMENTS
Art
Biology

Chemistry
Business

Education
English & Writing
History/Political Science
Mass Communications
Mathematics
Music
Nursing
Psychology

Sociology
Spanish

Social Work

HOME > Academics > Departments > Biology

back to ACADEMICS

Theology
Theatre

Biology Major
 (Teaching)
Biology Major
 (Non-Teaching)
Environmental
 Science

DETAILS
CONTACT:

CHAIR:
Choice Coffin, PhD

biology@choice.edu

Sample Hall
(605) 555-5555

COURSE LISTING RELATED FEATURES

BIOLOGY - Major

BIOLOGY - Major (w/ Teaching Endorsement)

BIOLOGY - Minor

ENVIRONMENTAL SCIENCE - Major

INTERDISCIPLINARY - Major

DEGREES OFFERED

COURSES
BIOL 102 - Human Biology
BIOL 102L - Human Biology Laboratory
BIOL 106 - Biology of Women
BIOL 151 - General Biology I
BIOL 152 - General Biology II
BIOL 212 - General Botany
BIOL 213 - Invertebrate Zoology
BIOL 221 - Human Anatomy
BIOL 222 - Human Physiology
BIOL 237 - General Ecology
BIOL 239 - Introduction to Microbiology
BIOL 240 - Nutrition
BIOL 280 - Extended Field Trip

RELATED LINKS
Insect Zoo

Center for Choice Studies

Choice Anatomy Laboratory

Larry F. Bird Molecular Biology Lab

Life, Liberty and Loam Trip

Loess Hilltop

FACULTY

Dr. Choice Coffin

Professor of Biology
(605) 555-5555

Dr. Choice Coffin

Professor of Biology
(605) 555-5555

Dr. Choice Coffin

Professor of Biology
(605) 555-5555

NEWS

April 3, 2011 - Biology Faculty Spend the Day at Choice Zoo

April 3, 2011 - Biology Faculty Spend the Day at Choice Zoo
April 3, 2011 - Biology Faculty Spend the Day at Choice Zoo
April 3, 2011 - Biology Faculty Spend the Day at Choice Zoo
April 3, 2011 - Biology Faculty Spend the Day at Choice Zoo

More >>

Student Portal | Employment | Contact | Legal & Consumer | Privacy
UNIVERSITY OF CHOICE

3303 Choice Street
Sioux Falls, SD 57104
(605) 555-5555 x5200

admissions@choice.edu f

By Corey Vilhauer CHAPTER 10

389

Lullabot’s Jeff Eaton talks at length about the relationship between
content and development, reminding us that editors aren’t going to be
happy with the typical rigid CMS system. In his article, “When Editors
Design: Controlling Presentation in Structured Content,” he says that “pro-
viding editors and writers with more control over the presentation of their
content is where many well-intentioned content models break down.”13 For
this reason, Eaton says, “some teams go to the opposite extreme. They pile
dozens of custom fields onto each content type to capture every possible
presentation option, or they give editors a menu of carefully tailored visual
templates to choose from for each post.”

This is where collaboration between developers and content strategists
is so important. It’s also where collaboration between developers and edi-
tors becomes crucial.

Remember, we content people aren’t interface designers, but we can
work between the two camps to help organize fields for editors while still
developing a structured content model that the developers can build upon.

That’s exactly what we want: a website that both editors and developers
continue to use, especially after launch.

Governance: When and Where
So the website’s been launched. Now what?

Easy. Begin by ditching the assumption that the website is finished.
Because no website is ever actually finished. Ever. None. No way.

In a traditional content strategy sense, this is where we begin talking
about data analysis and content testing and A/B testing and all of the post-
launch governance tools we’ve begin implementing over the years. Yet,
these tools mean nothing without a heavy dose of editor education — edu-
cation that’s just as important as any content model we could devise.

13 Eaton, Jeff; “When Editors Design”, http://smashed.by/content-structure

390

CHAPTER 10 The Two Faces of Content Strategy: Balancing the Needs of Users and Editors

Educating and Iterating
“Education?” you might ask. “Yes,” I’ll answer. Education.

Not just CMS training. Not a course on Web writing. I mean the un-
derstanding that we as content strategists — and Web creators as a whole
— have a duty to keep up with the industry in order to pass it’s benefits to
those who use the websites we make.

Governance is the point when creators and editors merge, when trial
and error testing and constant use unearth the issues we couldn’t have
planned for at the beginning of a project. It also marks the point in the
project when we hand over expertise to the editors. It’s their website now.
It’s their content, their domain knowledge. As they become more familiar
with the website, and as we get less familiar with their process, as it organi-
cally changes throughout the life of the now live project, we lose the ability
to help.

We mustn’t lose that ability. We can’t be strangers. We have to check in.
This comes with a cost, both in time and money. And yes, this means

extra work once the website has launched. Our involvement has to move
beyond “get it up and get it out.”

The solution is to think beyond launch. Be it an internal project esti-
mated on time, or a client contract estimated in overall cost, every project
contract should include a few hours of monthly check-up. Go through the
discovery meeting script again, asking questions about the current work-
flow, what’s working, what’s not. What can we do to alleviate the problems?
What extra training do you need now that you’ve jumped in and have
gotten use to how things run?

Don’t skimp on that portion of the contract. Explain the benefits clear-
ly, and don’t allow it to be removed. It’s that important.

Changes will need to be made. If not, you’re apparently the perfect
content strategist. And last I checked, no one’s perfect.

By Corey Vilhauer CHAPTER 10

391

Rethink the Editorial Calendar: Editorial Triggers
We often think of editorial calendars as tools to help bring new content
to our users. They’re a necessary governance tool that requires the bulk of
our editorial attention. But, let’s be honest, not every company needs an
editorial calendar. Most of our content is not rolled out on a periodic basis,
but as needed.

Enter editorial triggers.
Less editorial calendar and more editorial timeline, editorial triggers

don’t focus on forcing content into a daily or weekly schedule, but instead
create guided paths to getting content completed as necessary. They bor-
row heavily from David Allen’s Getting Things Done14 methodology, breaking
each project into a series of tasks and assigning them a timeline when
relevant, and they take the editorial strain away from periodic change for
change’s sake.

For example, new product launches for your project may not occur at set
intervals. Instead, they happen when the product is ready to launch — re-
gardless of what the editorial calendar says. In this case, an editorial trigger
for new product content takes us away from the rigidity of a calendar and
into the flow of our product life cycle, using the following steps:

New Product Content — Maximum time: 5 days. Immediate Action.
1.	 Gather information on new product based on New Product copy deck

(Web content editor, 2 days)
2.	 Upload initial content to website using placeholder images (1 day)
3.	 Approval needed: Initial approval of content required (product managers)
4.	 Take final image for product and create for all sizes (design, 150px,

300px, banner)
5.	 Final Approval (product manager/Web content editor, 1 day)

14 http://smashed.by/things-done

392

CHAPTER 10 The Two Faces of Content Strategy: Balancing the Needs of Users and Editors

We know this editorial trigger takes five days maximum, and we know
who is involved in the process. A new product like this requires immediate
action, so we know it becomes a priority over any existing work.

What’s more, because this trigger is only pulled when necessary, we
don’t have to watch a deadline come and go because we expected to work
on new product content despite there not being a new product to work on.

This is not to say that the editorial calendar is dead; on the contrary,
the editorial calendar is necessary to check for editorial triggers. Instead
of focusing on publishing on a specific date, the calendar is repurposed to
handle both scheduling content and content review, the most overlooked
portion of any governance workflow.

What this gives us is a balance between editorial needs and editorial
resources. We’re able to keep up on content, and plan for future editorial
initiatives as they arise. Editors are happy. The website content is being
updated. And now we’re diving head first into an editor-centric content
workflow.

Content Strategy for the People, by the People
Websites are made up of code, design and messages, all three of which are
created to serve a purpose. And while those purposes differ from compa-
ny to company and project to project, they all have one thing in common:
they are made of people. People behind the scenes, pulling the levers and
writing copy. People responsible for creating new products and new brand
standards. People making corporate-level decisions and people handling
the grunt work of daily change.

So while it’s logical to focus on keeping our website users happy — to
acknowledge their needs, context and the demands on their time — it also
makes sense to keep website editors happy. Keep them in the loop, helping
them understand the content process, and make a smoother Web work-
flow to make better websites.

By Corey Vilhauer CHAPTER 10

393

It takes more than just empathy, though, more than putting ourselves
in their shoes. It takes action.

When we say empathy, we also mean perseverance; not only putting
ourselves in the shoes of those we create for, but also making sure we
don’t give up on them if they don’t immediately understand our process, or
when it seems like they’re resistant to change.

We mean empowerment, doing what we can to make teams and
co-workers and bosses and everyone involved feel like they’re not just
implementing some random change, but that they have skin in the game.
They have the power to facilitate change on their own. The website is
theirs, ready to be shaped into something awesome.

We mean passion — for the project and the industry, passion for solving
the problems that will undoubtedly arise. We need to be able to say, “Yes,
this is a lot of work right now, but it’s going to be OK. It’s going to make
your customers happy. It’s going to make your team happy.”

And finally, we mean humility, a trait we often overlook. There are two
faces to content strategy, just as there two faces to every part of the Web
process. Where there are two faces, there are two opinions, so we must ad-
mit, often, that — shudder — we’re wrong. That we didn’t fully understand
the relationship between departments, or that we were overzealous with
the changes we proposed.

If there’s anything we’re charged with doing, it’s to remember the
difference between knowing how to do something and communicating
how to do that thing. We can create the best website we can, with design
that’s out of this world and Pulitzer-level content. But it’s worth nothing
if we can’t communicate to our clients and teams how to use it. It’s worth
nothing if we create for the user, but forget to create for the editor.

Content strategy is not a singular discipline, and the Web isn’t some
kind of exclusive club. Our industry has been forged in a mix of disciplines,
each of which have adapted to the current situation to create better, more
readable, nimbler and certainly more effective websites.

394

CHAPTER 10 The Two Faces of Content Strategy: Balancing the Needs of Users and Editors

I am a content strategist. You are a content strategist. Everyone who
works on a website, who works with words, who works in communication
or journalism or public relations is, in essence, also a content strategist at
some point in their career.

I am also a website user and an audience. So are you. We’re on both sides
of the coin. Which is why it’s up to us to create better content models and
editorial calendars, not to mention better Web editing software and content
management systems, to make sure the great Internet things we make can
be taken care of, at launch and beyond. Empathy is just a buzzword until it’s
paired with a corresponding action. So let’s start taking action.

About the Author
Corey Vilhauer is User Experience Strategist at Blend
Interactive, a Web shop in the heart of the Midwest,
where he specializes in content strategy, information
architecture, and editor/end user quality assurance.
Corey is a recovering advertising copywriter and
productivity junkie. Despite these hardships, he still
likes to write at length about methodology, empathy and
small business content strategy at www.eatingelephant.
com Elephant (http://www.eatingelephant.com) and
about other things at Black Marks on Wood Pulp
(http://www.blackmarks.net).

2. Providing Good Technical and Customer Support

Chapter

Written by Rachel Andrew

11

Supporting
Your Product

396

CHAPTER 11 Supporting Your Product

By Rachel Andrew CHAPTER 11

397

Chapter ELEVEN · by Rachel Andrew

Supporting Your Product

Most of your competition spend their days looking forward to those rare
moments when everything goes right. Imagine how much leverage you have
if you spend your time maximizing those common moments when it doesn’t.1

			

			 — Seth Godin

never intended that technical support would become part of my job.
As one of the founders of Perch2 (a self-hosted content management
system), however, technical support is one of the most important

parts of my day-to-day work. When I talk to other developers about our
move from being a service business, developing projects for clients, to
becoming a product company, I typically get two responses. The first is to
express how great it must be to only work on our own product; the second
is to ask whether the support is a nightmare!

Perch is self-hosted: our customers download the software and install
it on their own hosting and local development environments. Unlike a
software-as-a-service application, we have very little control over the envi-
ronment into which our software is installed, and PHP Web hosting can be
a fairly hostile environment.

1 Seth Godin, “Winning on the uphills”, http://smashed.by/winning, 21 July 2009.
2 http://grabaperch.com

I

398

CHAPTER 11 Supporting Your Product

Our typical customers are Web designers, many of whom have never
used a CMS, or installed something that relies on a MySQL database before.

So even if our product is incredibly usable and bug-free, we will always
have people with crazy hosting configurations or who are just unsure how
to get started.

Something that has always surprised us is the importance placed on
support by our customers. Early on, we took to marking as favorites on
Twitter the nice things people said about us, so we could display them
on the website. It was notable how many of those tweets were not about
features of the product, but about the support we gave. How you treat
customers who turn up in support will make a huge difference in how they
feel about your product or service. Does their customer experience make
them feel valued? Do they really feel that their call, ticket or email really is
important to you?

Providing a good customer experience is really important in support.
The customer may make that initial contact feeling annoyed about your
product. They have an issue, and it isn’t doing what they wanted it to. Your
aim should be not only to solve their problem, but to leave them feeling
more positive about your product than they would if they hadn’t had the
issue that brought them into support in the first place.

The Hidden Value of Customer Support
I hope anyone reading this book understands that customer support and a
focus on customer experience are important in their own right. Therefore,
much of this chapter will deal with how we actually provide support.

Before I talk about the nuts and bolts of actually giving support, I’d like
to start by talking about the hidden benefits great customer support can
bring to your product or service. In addition to shaping a great experience
for customers, support can make people confident to try your product in
the first place; it can be a fantastic marketing tool; and it can be a source of
market research and product development information.

By Rachel Andrew CHAPTER 11

399

Building Confidence to Try a New Product
Just the fact that you offer support at all can be a huge selling point. In our
case, we sell a commercial product that has many free competitors. Pur-
chasing a license entitles customers to free and unlimited support, so our
customers can rely on someone being there to help them. Our customers
use our product to provide services to their own customers and need to
have confidence in getting help quickly if they encounter difficulties. They
can’t wait for days to receive help when their website has to go live the next
day, and they need to be sure they won’t end up missing a deadline because
of slow — or no — support.

There are a number of open-source competitors to Perch, not least
the behemoth that is WordPress. Support for these products, however, is
often by way of a community forum, where you might get help, but as you
haven’t paid any money, it is down to some kind soul being willing to help
you free of charge. The inclusive support we offer, therefore, can be a huge
selling point to move the customer from wondering whether they should
pay for a CMS solution, to parting with the money for a license fee.

Support can be Your Best Marketing Tool
One of the reasons I write and talk about support is because of the huge
part it has played in the success of Perch. It is the thing people talk about
the most, and speaking to the developers of the product, not just technical
support staff is a big part of that. Support really can be your best market-
ing tool, because people talk about the experiences they have.

As I’ve already outlined, offering support may be a significant differen-
tiator between your product and free alternatives. Hearing from existing
customers that the promise of support rings true underlines that promise
far more than your own marketing materials ever could.

400

CHAPTER 11 Supporting Your Product

Support as a Market Research Tool

One customer well taken care of could be more valuable
than $10,000 worth of advertising.3

			 — Jim Rohn

For word about your product to spread, support doesn’t only act as a
marketing tool and talking point — it can also be a great place to find out
what people want from your product. You can spend a lot of time and mon-
ey doing market research, sending out and analyzing surveys, when an
excellent source of information is right there in your support channels.

The more you engage with customers, the clearer things become and the easier
it is to determine what you should be doing.

— John Russell, former V.P., Harley-Davidson

Sometimes customers want to make suggestions or request features di-
rectly, so it is important to show you are open to comments and give people
ways to do this. We provide a feature requests forum that also affords other
customers the opportunity to read a request and comment on it, perhaps
adding a new use case or, at the very least, demonstrating that this request
is relevant to more people than the single user who proposed it.

Some companies take this a step further, using support systems such
as UserVoice4, which allow customers to vote for feature requests that have
been posted by others. I’ll talk a bit more about handling feature requests
later in this chapter.

In our experience, it is important to take note of non-explicit feature re-
quests; the times, for example, when you have to tell a customer that your

3 http://smashed.by/care
4 https://www.uservoice.com/

By Rachel Andrew CHAPTER 11

401

product doesn’t do a certain thing. Keeping a record of those helps you see
if the lack of a certain feature is encountered again and again.

Even less obvious are the points where customers have to jump
through a few hoops to make something work in your product. In Perch,
there are a lot of things you can do by writing a small amount of PHP,
but many customers don’t know PHP. We can save people the trouble of
working out what to do by adding a simple function for frequently re-
quired tasks, allowing customers to just grab the code from examples in
the documentation. This is the reason why I think it is very important that
the product’s developers also help out with support. Unless you see these
types of issues come in, and think like a developer to solve them, they may
get missed.

Customer support can be seen as a distraction by developers, as Josh
Emerson from Clearleft explains, “Customer support can be very distract-
ing. It has a tendency to pull you away from work and take you out of
a state of flow.” However, he also understands the benefits of involving
developers in supporting the customers whom they write code for: “The
major benefit of having a developer handle customer support is that it
allows them to directly make changes to improve the product based on
customer feedback.”

I strongly believe that developers should be involved in support. In a
larger company, however, you can manage people’s time so they help with
support without it becoming a distraction when they are writing code. For
example, at 37signals all of the developers are involved in support, with
everyone taking it in turns to spend a day working with customers.

Later in this chapter I’ll discuss the tools that you can use to do tech-
nical support, but when setting up any system I would advise finding a
way to collect all these types of feature requests and ideas that customers
mention. They represent a goldmine of information when working out
what features you’ll add to future versions of your product.

In addition to feature requests for future capabilities, watch out for
those that are already present but the customer just hasn’t discovered yet.

402

CHAPTER 11 Supporting Your Product

This is a huge challenge for us because when we demonstrate the
simplicity and speed of Perch for simple use cases, we sometimes fail to
promote some of the more complex tasks it is capable of. Customers asking
for current features indicate where this is happening. Often what’s needed
is better documentation, and you might want to check your marketing and
sales information to ensure that features are listed in places people might
try to find them.

Managing Feature Requests

I get support tickets that are nothing short of extortion.
				 — Andrey Butov

As I have described above, not all support tickets or posts to your product’s
forum will be issues that you can resolve, close before moving on quickly.
Many tickets will essentially be feature requests, especially in the early
days of your product. If you launched with a small feature set to test the
water, you will soon get a lot of requests for features and additions.

The above quotation from Andrey Butov was something he said in an
edition of the Bootstrapped podcast5 that he hosts with Ian Landsman.
Butov spoke about supporting his mobile products and how customers
have threatened him with a one-star review in the App Store if a certain
feature wasn’t added. I’m glad I don’t operate in that world, but we do have
to manage customers who see one particular feature as vital, despite theirs
being the only request for it. How can you manage such requests and keep
the customer happy?

I have already mentioned my top tip for managing feature requests:
make sure that you log who asks for what, whether as a direct request
or when you have to tell a customer that your product doesn’t do what
they’d like.

5 http://bootstrapped.fm/

By Rachel Andrew CHAPTER 11

403

This log is important as it allows you to check whether a feature is
indeed requested by a lot of different people, or whether it just seems that
way because of one or two noisy people repeatedly asking for it. Once you
have that list of requested features and can see what is floating to the top,
you have something to work with.

Protecting the Core Use Case
Perch has very much been driven by customer requests. We launched with
a product quite different in scope to what it is today. At launch we had a
simple content editor — no ability to add new pages or resize images, and
no API, so no add-ons or ability for users to develop them.

With new pages, for example, we had assumed that our target market
would want to protect the website architecture as designed and not want
clients to add new pages all over the place. However, our customers had
other use cases in mind and the ability to add new pages became a top fea-
ture request, something we added to the product fairly early on.

It is vital that you maintain control of your product and protect it from
feature bloat as you try to fulfill customer requests. Remember that it is
perfectly acceptable for your product not to be a perfect fit for everyone.

If you try to cater to every possible need then you’re likely to end up
with a product that’s difficult to use, with so many options that people find
it hard to get started. In our case, that would mean ending up like so many
other CMS products of the type we try to provide an alternative to.

We deal with this by strongly protecting our core, basic use case — a
use case that hasn’t changed in the four years since we launched. Once
Perch is installed, to start editing content on a page you need to include the
Perch runtime and then add a Perch content tag to your page.

Then, all you need to do is reload that page in your browser and the
region will show up in the admin area where you can select a template and
start editing.

404

CHAPTER 11 Supporting Your Product

<?php include('perch/runtime.php'); ?>
<!doctype html>
<html lang="en">
<head>
 <meta charset="utf-8" /><title>Perch Example Page</title>
</head>
<body>
 <?php perch_content('Content'); ?>
</body>
</html>

We never want the experience of getting started with the product to
become more complex than that. However, our customers see almost every
feature request as an addition to perch_content — the tag that declares a
Perch region on your page. They want to pass an ever increasing number
of variables when creating a region, which would leave us with something
like the following on the page, and users would have to make a whole
bunch of choices just to get started.

<?php include('perch/runtime.php'); ?>
<!doctype html>
<html lang="en">
<head>
 <meta charset="utf-8" />
 <title>Perch Example Page</title>
</head>
<body>
 <?php perch_content('Content','index.php','article','html',true,'ti-
tle','ASC',‘singlepage',true,'index.php.true,1,true,',','admin,hr','tit-
le,text'); ?>
</body>
</html>

We want people to get started simply and then discover the more complex
features as they need them. So, while we log these requests, we don’t imple-
ment them in the way the customer has requested. That might work for that
particular customer, but it would damage the experience of so many others.

By Rachel Andrew CHAPTER 11

405

In the case outlined above, there are ways people can declare regions in
code and add additional options to regions — using alternative tags — so
you can often use these requests to prompt thinking around a solution. If
we can provide a frequently requested feature in a way that doesn’t dam-
age our basic use case, then, assuming we don’t burn up a lot of develop-
ment time for a very rare use case, we generally will.

However, you need to make that call on a feature-by-feature basis. If
your product has an API, as Perch does, you can add extra features by way
of plugins for the core product, and make the API available so people with
specific needs can develop their own functionality.

I see this need to protect the core use case as a potential problem when
using a public system that enables upvoting. There might be a popular
feature request that just doesn’t sit well with the core use case you want
to protect. Not addressing it may cause people to believe that you are not
listening.

I spoke to Ian Landsman of UserScape6, which develops helpdesk appli-
cation HelpSpot7, the system we use for our customer support. I asked him
if certain features weren’t included because they were outside the scope of
support, or issues that software shouldn’t attempt to solve. He said:

Absolutely. In fact HelpSpot takes this more seriously than most. Many of
our competitors have lots and lots of other features that, to me, fall outside of
customer service, like network monitoring, asset tracking, CRM functions,
network password resets and so on. Obviously, some people like the all-in-one
solution, but we’d much rather build something that’s very focused on one
specific problem and solves it well rather than be all things to all people.

When you do have to push back on a feature, perhaps because it doesn’t
fit the product or is useful only to a small minority, you do risk upsetting a

6 http://userscape.com/
7 http://www.helpspot.com/

406

CHAPTER 11 Supporting Your Product

customer. This is especially true if you have the requester of that feature is
very vocal. We’ve experienced that scenario once or twice, and the custom-
er has then accused us of not listening to our customers. I find that really
hard to deal with because we spend all day listening to our customers and
trying to make the best product for them.

What I have to remember in such cases is that we don’t add a feature
because we do listen to and understand our customers; including that fea-
ture would not benefit the majority, or may even be detrimental to many
people’s use of the product.

I see this as the main downside of having the developers of a product
also supporting it. As the founder of a company and developer of a product
you can’t help but feel emotionally attached to it. When customers accuse
you of not helping them, or tell you your product is terrible because it doesn’t
do a certain thing, it can be hard to deal with. That is the time to walk away,
take a deep breath and look at your list of lovely things that people say!

When adding features based on customer requests, you have to ensure
that you always remember your base of happy customers. The people who
like your product and use it without issue never show up in support. Keep
them in mind when planning additions and don’t let the views of a noisy
minority draw you away from a product that a silent majority are paying
for and using quite happily.

Managing Difficult Customers

The customer is frequently “wrong”. They are also a human being, so they
deserve empathy, respect and the best possible advice we can give, even if
that means pointing them to a competitor who would fit their needs better.
It can be really easy to get caught up in the words that someone is using,
rather than the intent — they reached out because they need some help.

			 — Jim Mackenzie, 37signals

By Rachel Andrew CHAPTER 11

407

While moving from client work to a product is something that many of us
aspire to, it isn’t quite the client-free utopia you might imagine. As developers
launching a product, we went from dealing with very few clients over the
course of a year to having thousands of customers to take care of. The ma-
jority of customers happily use our product and we rarely hear from them,
although there are some names that
we know very well in support.

When I talk to my peers about
Perch and support, they tend to ask
about how we deal with customers
who take up all of our time and ask
question after question. There are
days when it feels as if we are just
building some websites one ticket
at a time, but I thought it would be
interesting to take a look at our actual sup-
port statistics. Only 26% of our customers have ever raised a support ticket
and only 10% have raised more than one ticket. Once we get to the more
frequent requesters, we find that 10% of requests are made by the same 10
people and in fact 2% of requests are from one customer.

￼ The graph above demonstrates that there is a long tail of customer
support reflected in the majority of customers who never contact support
or do so only once. We also have a very small number of customers who
contact us a lot. In their defense, those top support requesters also have a
lot of licenses and so have developed a lot of projects using our software.
The idea that we will be swamped by people wanting basic help, or help
with related issues such as their CSS, hasn’t really held true. Yes, we do
spend a significant amount of time helping some customers with poorly
configured PHP hosting, or answering questions better suited to a CSS
forum. Yet, most of our customers we never hear from at all. We know they
are using Perch and many of them have a large number of licenses, but it
must just be working for them.

The long tail of customer support.

408

CHAPTER 11 Supporting Your Product

As long as your product has been accurately described and advertised,
and your support materials are good, most customers should not need to
use support at all. However, you should expect a few to become frequent
faces in your ticket system.

The End Client Problem
As Perch has become a more mature product, one set of difficult custom-
ers has started to appear, and for products like ours they’re probably only
going to increase. Because our software is installed by our customers
for their clients, we have started to be contacted by those end clients, the
people or company who had the CMS installed by a Web designer. How we
have dealt with this makes for a case study in how to deal with the very
specific situations that show up in support of certain products.

We can generally identify someone as an end client when we see a
support request that reads something like: “How do I add an image to my
‘About’ page?” or “I can’t log into my Perch.” We usually ask people whom
we suspect to be an end client, “Did you install Perch yourself?” We then
get to hear the story of how their website was developed by a designer
who has disappeared, or with whom the client has fallen out. Sometimes
the client doesn’t want to pay for updates and thinks they should be able
to manage things themselves from now on. We had one client get in touch
who was trying to transfer a license because, sadly, their designer had died.
The more established Perch becomes as a product, the more of these situa-
tions we have to deal with.

The end client situation poses a few problems. First is the legal one
of who owns the license. Our contract is with the person who bought the
license: if that was the Web designer then our contract is with the designer.
No matter how hard done by the client is (or thinks they are), we can’t just
give them control over the license, so we have to explain they need to contact
the designer and get the designer to place a license transfer request with us.

By Rachel Andrew CHAPTER 11

409

Another issue is that we assume Web designers will be supporting
their clients. We are not set up to support people using Perch as an editor,
as we don’t know anything about individual installations due to the CMS
being self-hosted. We have to tell end clients that unless they have the ba-
sic skills in HTML, CSS and general website building and are able to follow
our support materials, they need to find another designer.

We have dealt with sourcing those designers for end clients by way of
our registered developer program. The Perch customers who sign up to
this typically are experienced with and like the product. We can then send
that list to the end clients as a start in finding someone to help them — we
know that these experienced customers of ours have the understanding of
the product to help them out. Hopefully, we all do well: we get to keep that
person using our product; a designer gets a new, grateful client; and the
end client gets help with their website.

This situation is only likely to be relevant to you if you offer tools or
a service that people use to provide their own services. If, like us, you are
in that situation, it pays to consider how to deal with people with whom
you do not have a contract, but who are still users of your product and may
well come to you for help if the relationship with the person who actually
deployed your product breaks down.

Difficult Customer, or Cultural Clash?

Customers are human and humans can view situations in unexpected ways.
				 — Marilyn Suttle8

Despite our best efforts, we have had the occasional incident where a
customer has felt we were being unhelpful or even rude, and these have
tended to be due to misinterpretation of our replies based on the fact that
we are British and speak English, and our customers are from all around

8 Marilyn Suttle, “Customer Perceptions Matter More than the Truth”, http://smashed.by/truth

410

CHAPTER 11 Supporting Your Product

the world. Even where English is a first language — which isn’t the case
for many of our customers — there is still scope for cultural differences to
create confusion when discussing issues in support.

Our most extreme example of this came from a support ticket that
Drew responded to. The customer was having difficulty with some part
of the software and in one reply Drew referred to having a mental model
of how something worked. This response made the customer furious and
Drew couldn’t see why. I read the thread and also couldn’t understand why
the customer had got so upset, and then it dawned on us: the customer
thought that Drew had called her a mental model! Perhaps she was a model,
we don’t know. But we are not in the habit of calling our customers names.

Most areas of confusion are not as extreme as that, but it pays to use
language that is as clear and simple as possible in support. The person
you are responding to may have English as a second language, may find
following written instructions difficult for whatever reason, or may simply
not understand your sense of humor or colloquialisms from your part of
the world.

One of the challenges of being a business offering a digital product is
that you essentially become an exporter from day one. Traditional busi-
nesses will often be quite well established before they start to export to
new markets. When selling a digital product, you have the advantage of
being able to sell worldwide with little extra outlay, but it does mean that
you have to learn very quickly how to cope with customers who may not
speak your language well, or have different expectations of you based on
what is normal in their culture.

Customers Who Really Need a Different Product
We have a few customers who are not from our target market, and are not
the sort of person we have in mind when we make decisions. Perch was
always aimed at professional Web designers and developers, so we assume
our users know HTML and CSS. We don’t assume they understand PHP, or
how to set up a database or any of the more technical parts of using a con-

By Rachel Andrew CHAPTER 11

411

tent management system. But we do expect them to know how to develop
a static HTML website.

We have, however, picked up a number of customers who use visual
development tools such as Dreamweaver and Freeway Pro, and who don’t
know HTML. When such person contacts us prior to buying our product
we always explain that Perch requires HTML and CSS knowledge. If they
then go on and buy, however, it can be quite difficult to support them.

We have recently raised the price of the product, making it perhaps
slightly less attractive to the hobbyist, and aiming more at the professional
market. We would need to make a number of compromises to make Perch
usable for people without any HTML knowledge. We don’t want to com-
promise the product in that way because we want the product to be a tool
for professional use, and to attract professional designers and developers
to it. There are other website building tools out there that would be a better
fit for the non-coder.

Supporting customers who are not a good fit for your product is diffi-
cult, as to meet their requests and needs could mean becoming a different
product. Good sales material can help, as well as clear indications of who
the product is for, with typical use cases. However, our experience shows
that even when we tell a potential customer directly that we don’t think
Perch is for them, they sometimes still go on to buy a license.

Really Difficult People
We’ve found that by being friendly and professional we don’t have a huge
number of problems with truly difficult customers. Probably the hardest
support conversations are with the noisy person with the very specific
feature request that we have explained we are not going to fulfill.

We offer unlimited free support, which I feel releases us from some of
the potentially tricky conversations we would have if people paid per in-
cident. It doesn’t matter what the issue is: if we can help we do, or we help
the customer get help (for example, if the issue is with their host).

412

CHAPTER 11 Supporting Your Product

There are, of course, some people who are impossible to please. As long
as they are a rarity rather than the norm, it is likely the problem is with
them — not you or your product. My advice is to remain objective at all
times, treating the difficult customer in the same way as any other custom-
er, and working to solve their problem.

Support Pricing Models
In the previous section I mentioned that we provide free and unlimited
support at Perch. Support always incurs a cost in terms of your or your em-
ployees’ time. How you recoup that cost will depend on the pricing model
you decide on. You will find models that range from free support included
with purchase, support subscriptions, and per incident models, where you
pay each time you place a support request.

We are often asked why we decided on offering free and unlimited
support, rather than a paid support subscription or per incident support.
An important reason for not choosing a pay per incident model or a sub-
scription is that we feel that we should not benefit from people needing
support. Not every support request is related to a failing in the product or
documentation, but by offering free support we place the onus on us to
make sure people have a great experience.

As I have already shown, the customer who expects us to help build
their website one ticket at a time is very rare. Making people pay for support
essentially penalizes everyone, because a few people need a lot of help.

We also wanted our product to fit easily into the sales process for
the average Web design job. Typically, designers quote on a project basis,
including any costs for scripts and services used. If they then needed help
and had to pay for that help, they might not be able to pass that cost back to
their client.

We have always wanted our pricing to be fair and easy to understand.
So when we decided on the price of Perch, we had to work out how much
we needed to make to be able to afford to support it as well as develop it.
With a new product that was obviously a bit of a guess, but if you want to

By Rachel Andrew CHAPTER 11

413

offer inclusive support you need to factor that time in when setting your
price.

For SaaS applications, customers usually pay monthly for the service,
so you already receive a recurring payment which generally includes sup-
port. In this case, you need to ensure that the monthly charge covers the
time needed to offer that support.

While we feel that offering free and inclusive support with a license for
Perch is the best solution, other companies in our space have moved away
from that model. The ExpressionEngine9 CMS used to operate under a sim-
ilar model to Perch but recently moved to a paid model. ExpressionEngine
users get three months of support included when they first buy a license, but
then must pay for continued support with a subscription at various levels.

These support plans are a mixture of a subscription and per incident
support. A plan includes a number of urgent tickets, though you can also
purchase additional urgent tickets if you need them. Ellis Labs published
a blog post10 detailing why they moved to this system, which gives some
insight into their decision making. The key driver seems to have been eco-
nomic, and they state:

The cost to provide an ongoing service isn’t well-supported by one-time
purchases, and the disconnect only grows more severe as the number of one-
time purchases increases.

Based on our experience, I would disagree that offering inclusive
support is impossible. Despite a Perch license being a one-time purchase,
customers return to buy additional licenses. What we have seen is that
we often give far more support for the initial license purchase than would
be expected for the price of a license, yet because our customers go on to
buy a license for each website they build, over time it balances out. I have

9 http://ellislab.com/expressionengine
10 http://ellislab.com/blog/entry/rethinking-tech-support

414

CHAPTER 11 Supporting Your Product

included the Ellis Labs information here because I think it interesting to
compare the approaches of two companies that are quite similar in terms
of the type of product sold and support requirements.

Another model used by some companies offering a self-hosted system
or desktop product is to combine a one-off cost for the software with a
yearly support fee that also includes updates to the product. HelpSpot uses
this pricing model for support and updates.

With a subscription model, quite often the initial purchase includes
one year of support; if you wish to continue to receive support and up-
grades, then you must renew the support part of the license. With this
model, however, you can continue to use the software even if you do not
require continued support for it. We don’t often use support from Help-
Spot, although we do like to keep the software up to date with any up-
grades. I am very happy to pay my yearly support subscription as I know
the work that goes into a product and I’m glad that the product continues
to be developed and supported.

Whether you charge explicitly for support or bundle it with your one-
off or monthly charge, the cost of support has to be absorbed somewhere
along the line. When you make pricing decisions for your product, be sure
to account for the time it will take. If you feel that support is draining your
resources, it will be far harder for you to feel happy about going the extra
mile for a customer.

Customers can be upset if the support or pricing model changes in a
way they feel is detrimental to them. That isn’t to say you shouldn’t change
it if you realize your current model isn’t working for you, but it is worth
putting some serious thought into your initial decision because if you can
get it right first time it saves potential bad PR around a move.

By Rachel Andrew CHAPTER 11

415

Strategies to Minimize Support

Collectively you can find very telling patterns [...] if lots of people are asking
where to find something then you probably have a design problem there.

			 — David Goss

Providing some amount of support is inevitable. However clear your
documentation, someone will need help to get started; however careful
your testing, some bug will slip through. So a sensible strategy for support
should also include attempts to minimize
the number of requests that come in. We
have been very successful with this ap-
proach at Perch; despite a large increase
in license sales and new customers over
the course of the past year, the number of
support tickets that we are dealing with
has remained fairly level.

How are we managing this? For Perch,
we attempt to design support requests out.
If people regularly have to request support
for a particular area of your product, is it
possible to remove or change the thing that
causes those requests, rather than assum-
ing them to be inevitable? As an example,
we were receiving a number of tickets
every week where first time users installed
Perch, reached login, and then saw the follow-
ing message: “Sorry, your license key isn’t valid for this domain.”

These users had missed the part of the email sent with their license
details that explained they needed to log into their account on our website
and configure the domains they were using Perch on. It would have been

The updated screen gives
instructions to the user.

416

CHAPTER 11 Supporting Your Product

easy for us to sit back and complain about users who don’t read, and con-
tinued to deal with the tickets as they came in.

However, this issue meant that a first-time user had a slower start
than we would like, as they had to post a ticket and wait for us to answer,
and we were spending time responding to the same request over and
over again. We made these requests disappear with a simple change to
the messaging on that screen. Rather than just tell the user they had done
something wrong, we told them how to fix it. This meant that our custom-
er could quickly get started with our product rather than needing to wait
for support.

Particularly with a technical product, it will not always be possible to
prevent people getting stuck. What seems obvious to a more technical user
can be baffling to a beginner. So, if you are frequently answering questions
about a specific part of your product, there may be things you can do to
help people with it.

While many of our customers are very used to installing and using
a content management system of some type, perhaps having come from
using WordPress, we have a significant number for whom Perch is the first
CMS they have installed. If your experience of Web development to date
has just been flat HTML files, then any system, no matter how straightfor-
ward, is going to involve learning new concepts. We found that we were
stepping people through the initial stages of using Perch. Once they had
grasped the concepts we often didn’t hear from them again — they just
needed some help to get started.

We reduced the frequency of these requests by creating a set of tutorial
videos. These help the newcomer to Perch through the initial setup and
basic implementation on a website. We have found that these greatly re-
duce the amount of initial handholding we need to do. Having a variety of
support materials will ensure that your customers can learn in a way that
is appropriate for them.

By Rachel Andrew CHAPTER 11

417

No FAQs Policy
We have always tried to avoid the frequently asked questions page, which
tends to end up being merely an expedient place to push customers to-
ward, and a way to avoid trying to solve a problem from even occurring.

The previous example of our login page is a great example of this. It
would have been really easy for us, had we had a FAQ area, to just put that
information there. However, this information is already detailed on our
website and in the post-purchase email, yet people were still missing it.

I don’t think adding it to a FAQ page would have done anything other
than providing yet another place for people to not look for the information,
so it wouldn’t have actually mitigate the real problem.

We believe that where possible the problem causing people to get in
touch with support should be fixed, or an explanation sensibly placed in
the documentation. Simply sticking things into a FAQ page is rarely the
best approach.

Tools For Support

I think anyone starting a business that will require customer support should set
themselves up with a proper scalable system from the start — make it work for
having just 1 support “agent” but also make sure it will still work if you suddenly
have 10. Just pointing support@mycompany.com to your own inbox is a bad
way to start. When that transition happens, it probably means you are growing
so there’ll be plenty of other stuff going on, so you don’t want to be dealing with
migrating helpdesk systems and changing processes at the same time.

				

— David Goss

There are a huge range of options available to help you manage customer
support requests. From simply offering support by email to SaaS helpdesk
apps, how do you choose the best method of supporting a product?

418

CHAPTER 11 Supporting Your Product

When launching a small product or service, often the first thing that
people do is to post a support@ email address and deal with the issues
right there in the inbox. The problem with email support with no other sys-
tem backing it, is that it is very hard to scale. If several people all log into
the same mailbox, you will need to enforce some kind of system to make
sure that requests don’t get missed (because everyone thinks someone else
will look at it), and that requests don’t get answered twice (as two people
jump on the email at the same time).

If you have a very small team, perhaps with one person taking respon-
sibility for dealing with email, this might work. If you see the need to scale
your support at any point, however, then my advice would be to look at
what systems can be put in place to ensure that you are not reliant on a
single inbox as your system. Many helpdesk products allow customers to
contact you via email, so moving away from email as a method of manag-
ing requests does not mean that your customers will need to log into and
post to a support forum. The system can be completely transparent to the
user.

Support Statistics
Something that a helpdesk system can often do is provide statistics about
the support tickets raised: the figures I quoted earlier came directly from
our support system. By being able to discover trends in support, you can
see if a feature in your product or service has caused a spike or a drop in
the number of tickets. You can get some idea of how your support require-
ments need to grow to meet the needs of an increasing number of custom-
ers. This can help you to plan for hiring additional support staff ahead of
time, and check that the revenue you will have at that point will be suffi-
cient to cover that expansion.

In addition to giving you a basis for long-term planning, statistics can
help you plan the day-to-day support needs. When we deliver a major new
version, we see a large spike in the number of tickets as people upgrade

By Rachel Andrew CHAPTER 11

419

and try out new features. Knowing that this occurs means that we don’t
plan to do anything that would make it difficult to do support in the few
days after a release.

Canned Responses
A canned response is a standard reply to a standard question, that can be
quickly sent when that question is asked. We find these very useful for
common situations where
a customer has not given
us enough information
at first to be able to help
them. For example, Perch
has a diagnostic report
available in the software,
and we ask that customers
requesting support paste
this into their ticket as
it gives us a lot of information about the particular environment that our
product is running in. If the customer has not added that information we
can, with one click, send out a response asking for it.

￼ Some product owners and those providing support worry that
canned responses might remove the personal touch. Josh Emerson from
Clearleft voiced this concern saying:

I spend a lot of my time replying to customers with very similar solutions
[...] I often consider automating my customer response in some way, but I’m
concerned that by offering a more automated solution, the quality of our
response would suffer. I hate to contact a company and get a generic response
that does not answer my question. I especially hate it when the email pretends
to come from a real person.

Choosing a canned response in HelpSpot.

420

CHAPTER 11 Supporting Your Product

He goes on to say, “I’m sure there are better solutions, such as filter-
ing and sorting emails to speed up my work, potentially prepopulating
the most likely response, but with a human verifying that the response is
correct before sending it.”

I think that using tools to ensure people with the same question get
the same answer is a beneficial thing. In addition to saving you time and
preventing you from writing the same answer over and over again, you
can craft good clear responses to common questions. Ideally, these sorts of
questions are also answered in your documentation but, as we all know,
not all users will read the documentation no matter how clear it is.

Like Josh, I wouldn’t want to send entirely automated responses to
people requesting help, but canned responses can save a great deal of time
in typing the same reply over and over again. When the reply requires
looking up some links in the documentation, the time you can save is sub-
stantial over the course of a week.

The system we use allows us to edit the response before sending it, so I
sometimes use the canned response as a starting point and also add some
information that I can see is relevant to a particular customer. A good sys-
tem should let you use your template responses as a starting point, rather
than relying completely on a standard response to each customer.

Selecting a Helpdesk Product
The solution that is right for you must be driven by the type of support
you need to do. There is a wide range of helpdesk systems, each trying to
solve the problems of providing support in a particular way. This chapter
can’t attempt to review all these systems, as any such review would be
projected through the lens of what I feel is important. Therefore, I suggest
that before you start trying out systems, you should consider what sort
of support you want to offer to your customers; you can then assess each
system against those requirements. For example, if you plan to offer phone
support, can those tickets be logged in a system? Some systems assume

By Rachel Andrew CHAPTER 11

421

you are offering Web-based support only. Is social media support within
the system valuable for you? Is there anything about the types of respons-
es you need to give that you should check is supported? Before setting up
trials of the various systems, consider the following things:

•	 What are the methods (phone, email, Twitter, Facebook, logging
into a ticketing system) we want people to contact us by?

•	 Are support requests usually short questions and answers, or do
you expect longer threads discussing an issue back and forth?

•	 Should support be public, private, or a mixture of both?
•	 If you use a public system, should customers be able to comment

on and advise each other?
•	 Do you need to be able to collect specific information when a

customer posts a ticket?
•	 Do you need to be able to verify a customer’s status in any way?

This is important if you have limitations around support.
•	 Do you need to integrate support with any other systems?

In our case, one of the important features is that the system allows
us to post code examples into tickets and forum responses. Much of our
support involves helping someone with their templates or custom PHP.
Some systems had very poor support for doing this. When we asked for
advice as to how to get round the issue they suggested that we get all of
our customers to use a third-party tool for displaying code snippets. In our
eyes, that just put up an additional barrier for people wanting help. What
might seem a very small thing became a deal breaker for us with some of
the popular systems.

We would also advise caution when having a completely public sys-
tem where customers can help each other out. People often post secure
information — things like database connection details — into the public
domain. Customers don’t always realize that their ticket will be public.

422

CHAPTER 11 Supporting Your Product

Another issue we found was that if a customer replied to another with
incorrect advice, the original poster wasn’t always aware that the response
wasn’t official support. As we try to craft a good support experience for our
customers this was a concern to us. Our current system has a forum and
a separate ticketed support area. We encourage implementation requests,
CSS problems and feature requests to be posted to the public forum where
we and other Perchers can respond. Quite often, if a request is really to do
with a third-party jQuery plugin or a certain editor such as Dreamweaver,
other customers know more about this than we do!

Many support systems have an API so you can link up other systems that
you use or develop extra functionality that is specific to your requirements.
As David Goss, who supports the e-commerce website for Thackerays11,
explains:

We’ve gotten on very well with Zendesk. It’s flexible enough so we can set up the
workflow and processes as we want them, but the really useful thing is the API,
so we can do a lot of stuff automatically from the back end of the website. For
example I’m making a change to our “payment failed” page at the moment so
if a customers payment fails there’s a button for them labelled “Help — I don’t
know why my payment failed” and that will generate a ticket with all their
order and payment details attached to it and email them to let them know we’re
looking into it for them.

Also being more proactive is something I’m working on. Most helpdesk systems
are based on the premise that a customer has a problem and reports it to the
company, but if we see a problem before the customer does, like maybe their
delivery gets delayed a day or something they ordered is out of stock, we want
to open a ticket on their behalf, let them know what’s happening and ask what
they’d like to do, as automatically as possible. With the API this is actually going
to be pretty easy to get done.

11 http://thackerays.co.uk

By Rachel Andrew CHAPTER 11

423

Try to make the experience of receiving support as simple as possible.
The large helpdesk systems all do a fairly similar job, with slightly different
features and focus. They can help you create fairly complex systems for
your support operation. If you have very simple support needs then a full
helpdesk might seem like overkill. I believe this is why many companies
stick with just managing email support in their inboxes. However, there are
smaller solutions out there as companies seek to solve support issues in new
ways. One such solution comes from the developer of the HelpSpot system
we use, and it’s interesting because it’s a new product in the same space as
HelpSpot, but designed to fill this need for smaller, simpler systems.

Snappy12 is a brand new product, but I mention it here as I think it has
a lot of potential for anyone reading this thinking that a big solution is un-
necessary but who would like to have something in place to help manage
email requests. Snappy simply manages email tickets and responses in a
modern and streamlined way. Your customers can send you emails and you
can reply by email, but Snappy solves that immediate problem of tracking
what has been responded to.

Responding to a ticket in Snappy
I think solutions like Snappy have a lot of potential for developers of small
products. I can see this being a great solution if you support a mobile app,
for example, where questions tend to be fairly straightforward. Ian wrote a
blog post13 about some of the thinking behind Snappy, which is interesting
coming from someone who has also developed a larger helpdesk solution.

As the theme of this book is facing the future, I think including new
breed support systems is important and I’ll be very interested to see how
Snappy and other systems that get away from traditional helpdesks devel-
op. It is also interesting that a new system goes back to email at its core.
Email is definitely not dead for most customers, and is often the easiest
way for them to talk to us.

12 http://www.besnappy.com/
13 http://www.ianlandsman.com/2012/08/28/building-a-better-human-helper

424

CHAPTER 11 Supporting Your Product

Using Social Media To Support Your Product

If you make customers unhappy in the physical world, they might each tell
6 friends. If you make customers unhappy on the Internet, they can each tell
6,000 friends.

				 — Jeff Bezos

Big companies have jumped on Twitter and that having support
representatives monitoring and helping people there is a great way to
turn around customers’ negative experiences quickly. When the represen-
tatives actually have power to help on Twitter then they can, in full view
of other customers and potential customers, solve a problem and turn an
unhappy customer about to vent their frustration to Twitter followers
into a happy one.

Twitter was a natural place for us to talk about Perch and to talk to
our customers and potential customers as Drew and I were already ac-
tive there. We use the @grabaperch account to update people on any new
software releases or tutorials and documentation and reply to questions.
We also have a Facebook page and find that while people often like and
share our posts, they tend not to chat or ask questions there as they do on
Twitter.

We see Twitter as a really important way to communicate with cus-
tomers. However, it isn’t always the best place for providing support.

For us, responding to a support ticket often involves posting code.
That isn’t going to be possible in the 140 characters allowed in a Twitter
message. Occasionally, all the person needs is a link to something in our
documentation, and that can be dealt with on Twitter. So it really depends
on what type of response is required.

Twitter can be ideal for quick answers, such as pointing someone to the
right place in the documentation. Providing technical support on Twitter
or Facebook might not be appropriate. By ensuring that people talking

By Rachel Andrew CHAPTER 11

425

about your product or needing support get a response, you demonstrate
that you are there to help. In addition, supporting people in such a visible
way promotes your product and can help to encourage a sense of com-
munity.

Several helpdesk products have some form of social media integration.
For example, Zendesk can turn a tweet into a support ticket, which can be
useful to monitor the track that a request has taken. We haven’t felt the
need to have such tight integration between our helpdesk and social media
activity, though many companies find this sort of integration helpful, in
particular when dealing with a lot of support that originates from a social
media channel.

37signals uses Twitter extensively when supporting its products, and
while its chosen helpdesk system has Twitter integration, the team found
it wasn’t working out for them:

Since we got serious about Twitter, we’ve mostly used the built in Twitter
functionality that our support tool (Desk.com) provides. When I asked the
team how it was working for them a couple months ago, the general reaction
was tepid. The consensus was that while it gets the job done, it was rather slow
to use, and the large number of retweets and links to SvN posts mixed in makes
it hard to get people with urgent questions answers promptly. Most of the team
was using it, but no one was happy about it.14

			 — Noah Lorang, 37signals

The series of posts about the Twitter tool used by 37signals is a fasci-
nating look at how a company can take a small part of their support opera-
tion and really tailor the experience for support staff and customers. It also
shows that even where you have selected a particular system for support,
if part of it doesn’t fit your needs you don’t need to completely change to a
different system. Instead, you can use an alternative approach in that area.

14 Noah Lorang, “Behind the Scenes: Twitter, Part 1”, http://smashed.by/scenes, 13 November 2012.

426

CHAPTER 11 Supporting Your Product

Another way to use Twitter is to be proactive in monitoring what peo-
ple say about your product and jump in where appropriate. We have saved
searches set up for terms such as Perch CMS and sometimes will contact
someone talking about us, even when they haven’t directly replied to
@grabaperch. Used carefully this can be a good way of encouraging someone
into support, rather than just asking their friends and peers for advice.

It also works very well for us in terms of pre-sales as we can ensure their
questions are answered. You need to take care not to come across as spammy
when doing this, however; we tend to just say, “Let us know if you have any
questions” and then leave it up to them to respond to us if they want to.

A Final Thought
Always remember that support is about helping people have a great experi-
ence with your product or service.

Support is a vital part of a successful product. It can be beneficial to the
product, even a source of customer research and a way of advertising. The
ultimate aim of customer support, of course, is to help your customers get
the most out of your product or service, to solve their problem quickly and
get them back to doing whatever it is they purchased your product to do.

You have to be a nice person to do support well. You have to want to help people.
Everything else — how to phrase your emails, how to use the helpdesk software,
the technical knowledge — it can all be taught. You just have to care enough to
get it right, and to keep caring, even when you are in a bad mood, or the servers
are on fire.

			 — Jim Mackenzie, 37signals

If you approach support with the needs of the customer in mind, even
when you don’t have a perfect answer for them, you may find that it starts
to become an enjoyable part of what you do, rather than the chore that
many people believe it is.

By Rachel Andrew CHAPTER 11

427

Next Actions for Future-Friendly Support
I’ve assembled a to-do list and some further reading on the themes in this
chapter.

For the New Product or Service Just Exploring How to do Support
1.	 Think about the type of support you will offer. Will it mostly be quick

replies or will you need to give lengthy technical help? Where will
requests come from: email, phone, social media, anywhere else?

2.	 Think about who will be doing the support now and in the short to
medium term. What would you need to do if the product or service
became an overnight success? Can you put at least part of that infra-
structure in place to begin with?

3.	 Create a requirements list for support using my thoughts in the section
on ‘Selecting a Helpdesk Product’.

4.	 Use the information gathered above to research support solutions and
create a shortlist of those that fit. These will be the solutions you can
demo thoroughly before making a choice.

5.	 Write up a document detailing what tone you want to use in support,
and make sure everyone who does support can access it.

For the Established Business Wanting to Enhance Its Support Offering
1.	 Make a list of the top five to ten issues that arrive in support.

2.	 From that list, can you identify something that you could stop being a
problem by some change to your product or service? If so, make that
change.

428

CHAPTER 11 Supporting Your Product

3.	 In that list is there something that could be better explained in your
documentation or support materials? If so, make that change.

4.	 Identify five support requests that are really feature requests, whether
explicit requests or areas where you have had to tell a customer that
your product does not fulfill a certain requirement. For each request,
consider if it is something that could: damage your core use case and
should not be implemented; could be quickly implemented; or could be
added to the long-term plans for the product. Don’t forget to let custo-
mers know when you have implemented their suggestions.

5.	 If you have a FAQ page, are there issues that could be documented or
dealt with in the product itself to stop them being frequently asked?

6.	 Revisit the above process regularly!

7.	 Are you using your support system to its full potential? Spend some
time looking at any features you don’t use. Can you improve your use
of the system, perhaps by making use of an API to tailor your customer
experience?

By Rachel Andrew CHAPTER 11

429

Links and Further Reading
•	 Support Ops: a website and podcast with lots of practical technical

support help and information. http://supportops.co
•	 Customer Complaints and Types of Customers: an academic paper

from the University of Florida that details the types of personalities
your customers might have, and how to deal with them.
http://smashed.by/complaints

•	 The Help Scout blog is the blog of a helpdesk product but has a
number of excellent articles about the business of doing customer
support: https://www.helpscout.net/blog/

•	 37signals blog contains a number of really useful posts about how
they approach support: http://37signals.com/svn/support

•	 An article on Smashing Magazine that discusses customer
experience in depth: http://smashed.by/like-to-love

•	 Bootstrapped, a podcast by Andrey Butov and Ian Landsman,
creator of HelpSpot and Snappy: http://bootstrapped.fm/

About the Author
Rachel Andrew is a front- and back-end Web developer,
author and speaker. She has written several Web
development books, including chapters for Smashing
Books. She also writes about business and technology
on her own site at rachelandrew.co.uk. In addition
to offering consultancy services through http://
edgeofmyseat.com, Rachel is also one of the developers of
the content management system, Perch.

3. The Psychology of Human Behavior on The Web

Chapter

Written by Nishant Kothary

12

The Design
of People

432

CHAPTER 12 The Design of People

By Nishant Kothary CHAPTER 12

433

Chapter Twelve · by Nishant Kothary

The Design of People

am going to get you fired!” yelled Prakash1, the heavyset, smooth-
talking and very politically savvy engineering manager, so loudly
that I could feel my desk vibrate. I’d just returned from lunch and was

clearing out my inbox when he marched in looking like Mount St. Helens
right before it erupted. He was livid that my executive status report (a
weekly report that I sent to all the stakeholders of our project, including
the vice-president of the company) announced that the overall project
status was “red”, compliments of Prakash’s team letting a few critical
milestones pass. In other words, we were going to miss our launch date,
again. We were over six months behind schedule now.

My brain flashed back six months to a conversation with my manager,
John. “We need to chat,” John began cautiously. I instantly braced for
bad news. Thanks to his lackluster bedside manner, it went south pretty
quickly from there. In the next thirty minutes he delivered a message in
almost undecipherable corporate-speak that amounted to: You really suck
at your job, it’s making me look bad, and if you don’t get your act together
soon, I’m going to have to fire you.

1 All names have been changed to protect the guilty.

I

434

CHAPTER 12 The Design of People

It hit hard because I had been working 70–80 hours a week and giving
it my all in an environment that was as dysfunctional as a chimpanzee
community with two alphas. We were understaffed, overspent, under
tremendous pressure from the market, in the crosshairs of the CEO and, to
make matters worse, I was fresh out of college and learning the ropes. And
I was pretty green: that’s software industry-speak for naive. In a nutshell,
the project had gone to hell, and I was the perfect fall guy.

“I don’t know what I need to do to fix things anymore. I need you to
walk me through this,” I said with resignation to John. Begrudgingly —
after all, he was burning the candle at both ends, too, and really didn’t have
time to deal with his pesky employees. He started making a list of action
items for me on the whiteboard. One of them was: Fix ownership column
for each milestone in status report. Each milestone in the status report
was to have one clear owner. One could debate the true owner for many of
the milestones, and my default in such situations was to list myself as the
owner. I was, after all, ultimately responsible for getting the project out the
gate. So, when we missed a milestone, it was generally seen as my fault.
And I didn’t care.

“You don’t own anything. You have no control over when one of those
items is late or on track. You only have influence. Ultimately, someone
else is responsible for each of those pieces, and you simply need to report
their progress toward completion of their line-item,” said John matter-of-
factly. He instructed me to remove my name from the owner column for
approximately twenty-five of the milestones my status report tracked.

I cringed.
It wasn’t the first time I’d heard this. In fact, I’d rejected these words

from the leading project management books. I philosophically disagreed
with the tactic because, from a practical perspective, I reasoned, it
simply shifted blame and generally ignored seeking out a solution to the
overarching problem: the project had gone off the rails.

But things change when you have a gun to your head.

By Nishant Kothary CHAPTER 12

435

I transferred the commandments from the whiteboard to my notepad
and left John’s office that day determined to save my job.

And now here we were.
As I watched Prakash — the key to many of our critical organizational

problems and, in fact, the true owner of the most critical milestones on the
project — hyperventilate, I couldn’t help but smirk. Success, even when
it comes in this deranged form, still releases the same happy hormones
into the blood stream. My amygdala (the most ancient part of our brains
that, among other things, is responsible for the fight or flight response)
slowly crossed its arms across its large pectorals with a smug grin on its
face, leaving my imminent response in the capable hands of my neocortex:
the newest part of our brain responsible for some of our most complex
decision-making.2

“Dude. I’m just the messenger,” I shrugged with deliberately practiced
nonchalance. “You gave me these dates a few weeks ago. You didn’t hit
them. Now, if you’re telling me that we can still ship on time irrespective
of your items being late, then let’s talk!” He just stared at me with rage and
wonder for the next few seconds as his mind tried to work out how the
tables had been turned. Then, abruptly, his amygdala took over again. He
yelled some incoherent gibberish, swore at me one last time and stormed
out of the office.

The product eventually shipped three months later, a full nine months
behind schedule3, to lackluster reviews and angry customers. Reeling
from the epic death march, most of the team quit and left for other jobs. I
received a good performance review at the end of the project, and was then
assigned to one that was even more visible and important to the company.
I had, after all, done my job “well”.

I quit a few weeks later.

2 Bruce Schneier, “Risk and the Brain”, 2008, http://smashed.by/risk
3 Underestimating the time estimated needed to ship a product is a cliché as old as the software in-
dustry itself. Among the many factors, one that weighs heavily is known as optimism bias. Tali Sharot’s
TED 2012 talk is a great starting point to learn about it: http://smashed.by/ted-time

436

CHAPTER 12 The Design of People

The Goal of this Chapter
My account, even if a little extreme, is hardly unique. We’ve all been there
in one capacity or another: a hard-to-deal-with co-worker, an incompetent
boss, a micro-managing client, seemingly deranged leadership, design by
committee... the list goes on.

There are myriad ways to slice and analyze my story. Some
will empathize with it and express anger over dysfunctional work
environments. Some will point a finger at bad leadership. Some will
focus on the alleged worthlessness of middle management. Some will
attribute the failures to the process — perhaps you should have used Agile
methodologies. And some will suggest that I was, in fact, the true culprit
and should have been fired; after all, I had led the project.

None of these analyses are wrong. In fact, they’re all right. And
there are many more I haven’t mentioned that would apply as well. But
no matter how much we analyze such situations in our postmortems
and vow to avoid them at all costs in the future, we just can’t help but
frequently find ourselves in similar predicaments. While we have amassed
a tremendous number of tactics and patterns that often help us narrowly
avoid dysfunctional situations, we have a poor understanding of the root of
the problem and, as a result, very little control over our destinies.

After years of working my way through more dysfunctional situations
than I’d like to remember, I have firmly settled on a belief (in fact, it is the
only belief I hold sacred anymore): almost every problem we face at work
(and play) begins and ends with one or more people.

While we run off to fix processes, hire experts, solicit feedback
from users, increase the number of code reviews per week, switch our
programming methodologies, churn out more mock-ups, get blue in the
face explaining our strategies to stakeholders, and implement a thousand
other makeshift fixes, the real solution continues to elude us. Creatures of
habit that we are, we simply shut our eyes and swim harder upstream until
we find ourselves spent and jaded, ready to quit our jobs. But as someone

By Nishant Kothary CHAPTER 12

437

wise once said, “The definition of insanity is doing the same thing over
and over and expecting different results.”

The goal of this chapter is simple: to introduce you to the human being
as the center of every success or failure in our lives. But not in that tired
way we’re all guilty of where we commiserate and vent on Twitter. Or the
way where we publish blog posts about the bureaucratic deadweights that
are the true bottlenecks to innovation. Or even that way where we write
articles, chapters and books that disseminate best practices for dealing
with said deadweights. We’ve done it all before, and we’ll surely do it
again. But right now, let’s resist the convenient cover of insanity. Let’s stop
putting more lipstick on the pig, and instead explore why the pig is so
darn ugly in the first place. That is, let’s talk about the root of the problem
instead of the symptoms.

Grab a seat (and a drink).

Too Many Cooks don’t Spoil the Broth
A few years ago I happened to find myself in charge of the redesign and
consolidation of a set of very popular developer community sites, a project
we’ll dub Project Unify. We were combining five different sites, each of
which had been serving a different target audience, and run by a different
internal team. Together, the sites served thousands of unique types of
media: everything from HD videos to short blog posts. Some organized
their content in the form of shows; others featured live streaming content.
The media came in all shapes, formats and sizes. The visual tone and
information architecture of each website was different. By most measures,
it was a complicated redesign.

To make matters worse, there were a ton of stakeholders across the
company who were going to be involved in this project: hosts of the
various shows, developers working on the different sites, the founders of
the sites, managers, and even a few executives. And most of them weren’t
very happy about the existence of this project, for it meant that their day-

438

CHAPTER 12 The Design of People

to-day lives were about to change. Not to mention, they liked how things
were.

I had tried to limit myself to smaller projects with fewer stakeholders
after my experience with Prakash and team, and this was my first big
project since then. I was nervous — after all, swimming with sharks and
coming out alive is hardly a good predictor of your ability to survive
the next expedition. But I was also excited. Thanks to an initial book
recommendation from a friend, I’d ended up immersed in the world
of human behavior — cognitive psychology, behavioral economics,
neuroscience, anthropology, evolutionary biology and so on — and had
amassed enough knowledge to warrant an experiment with a larger
sample size.

Project Unify was a good opportunity for my career, but an even better
one to put some of my newfound knowledge to the test.

The Psychological Effects of Fair Systems
In Sway: The Irresistible Pull of Irrational Behavior, Ori and Rom Brofman wote,
“A group of researchers asked hundreds of felons from Baltimore, Detroit
and Phoenix to fill out a survey. The first part of the survey consisted of
factual questions, such as the nature of their conviction and the length of
their prison sentence. In part two, the survey moved on to the questions
about perceptions of fairness: How were you treated? How did you like the
judge? Were the lawyers nice to you?” The researchers were attempting to
deduce what factors affected inmates’ perceptions of the fairness of the
justice system.

What factor do you think most affected their perception the most? The
length and severity of the sentence, right? Not quite.

The researchers found that respondents placed as much weight on
the legal process as they did on the outcome. “One of the factors weighed
most heavily by respondents was how much time their lawyer spent with
them. The more time he or she spent with them, the more satisfied the
respondents were with the ultimate outcome,” wrote the authors. This

By Nishant Kothary CHAPTER 12

439

is surprising because one would expect that inmates who were slapped
with longer sentences after having spent a great deal of time with their
lawyers would be more disgruntled. But the exact opposite was true.
“Although the outcome might be exactly the same, when we don’t get to
voice our concerns, we perceive the overall fairness of the experience quite
differently,” concluded the authors.

Designers are prone to hiding from their stakeholders. Each of us
has our reasons, but most of them are grounded in the fear of being told
how to design something. But researchers have found time and again
that fulfilling someone’s need to be heard has more influence on their
perception of the outcome of a situation than the actual outcome.4 And if
you’re smart about it, you can both influence stakeholders into cooperating
and create the design you believe to be right for the project at hand. On
Project Unify I forced myself to make time for one-on-one conversations
with around twenty stakeholders. I wanted them to meet me and get to
know me. The meetings ranged from getting lunch together to letting
developers wireframe their vision of the website on their whiteboards. I
always kicked off the meetings with, “So, tell me what you think we should
be doing for Project Unify?”

And boy did they.
Some vented about politics and bureaucracy (I joined in). Some

vehemently disagreed with the project’s existence (I empathized and
reminded them about our pay grade). Others felt it was time for a
professional designer to take this on (I hid my imposter syndrome5
symptoms). Some focused on a specific aspect they really cared about (I
took notes). And there were those who were just happy to be out getting a
coffee during work hours (my type of people). It was an intense week.

But by the following week, the timbre of Project Unify was a solid

4 Ori Brafman, Rom Brafman, Sway: The Irresistible Pull of Irrational Behavior, 2 Jun 2009, pp. 121-125.
5 The Impostor Syndrome is a psychological phenomenon in which people, despite external evidence of
their competence, remain convinced that they’re frauds and don’t deserve the success they have achieved.

440

CHAPTER 12 The Design of People

positive. Stakeholders were cautiously optimistic, even excited to launch
into such a contentious redesign. The turnaround in attitude far exceeded
my expectations, so much so that informal one-on-ones have become an
indispensible part of my designer repertoire.

A tremendous amount has been written about stakeholder
interviewing on the Internet. I trust you will be able to search your
way to the articles. But before you start creating checklists of interview
questions about brand strategy, success criteria and user personas,
consider for a second that while we need information from stakeholders,
they need security from us. They need to be heard, and this need, when
left unfulfilled, justifiably jeopardizes the project at hand in unfathomable
ways. And the worst way to treat someone hoping to be heard is to walk
in with a clipboard and a checklist. There will be time for that later. First,
focus on what’s important: the little things.

It is the little things, after all, that can have the biggest effects.

Anchoring Good Behavior in Design Reviews
Getting stakeholders to feel optimistic about a project is one thing, but
translating that optimism into useful and favorable feedback is entirely
another.

There is a fascinating concept in psychology known as anchoring.
Anchoring is a psychological phenomenon whereby humans rely heavily
on the first piece of information they’re offered (known as the anchor)
in making subsequent decisions.6 Dan Ariely, behavioral economist and
author of a few of the most fascinating books on human behavior, provides
a fundamental example on anchoring in his first book Predictably Irrational:
The Hidden Forces That Shape Our Decisions: “A few decades ago, the naturalist
Konrad Lorenz discovered that goslings, upon breaking out of their eggs,
become attached to the first moving object they encounter.

6 Daniel Kahneman, “Anchors”, Thinking, Fast and Slow, 2 Apr 2013, pp. 119-129.

By Nishant Kothary CHAPTER 12

441

Lorenz knew this because in one experiment he became the first thing
they saw, and they followed him loyally from then on through adolescence.”7

Over the past few decades, researchers have confirmed the role of
anchors in all walks of life through seemingly bizarre findings: we are
more likely to marry people whose names start with the first letter as our
own, pick products whose brand names share the first three letters with
our own, give favorable reviews to people who share our birthdate, and
more.8 In fact, the effects of anchoring extend even into the moral realm as
Ariely demonstrated in his latest book, The (Honest) Truth About Dishonesty:
How We Lie to Everyone—Especially Ourselves. Ariely conducted a study
showing that you could almost eliminate cheating on tests — that is, you
could literally make people more honest — by simply having students sign
a simple honor code right before they took a test.

7 Dan Ariely, “The Fallacy of Supply and Demand”, Predictably Irrational, Revised and Expanded Edi-
tion: The Hidden Forces That Shape Our Decisions, 2 Apr 2013, p. 27.
8 David Eagleman, “Mind: The Gap”, Incognito: The Secret Lives of the Brain, 15 May 2012, pp. 55-75.

 A regular exam bubble sheet (top) and a modified bubble
sheet with honor code signature slot (bottom).

442

CHAPTER 12 The Design of People

Back on Project Unify, I wondered to myself if I could use the power
of anchoring to shepherd a very large and diverse group of stakeholders
through the design review process without the drama and conflict we’ve
come to expect in such situations. Was there anything I could do or say
that would anchor the individuals in the group to focus on providing
logical feedback rather than reacting from the emotion that they (and all
of us) would naturally feel from looking at new colors, shapes and patterns
that would be part of the new design? I thought it was worth trying and
came up with a simple solution.

Right before my design team started working on the new design, I sent
an email to the entire group of stakeholders. The email was structured as
the customary piece of correspondence that explains the design process,
but within it were hidden several anchors.

Let’s walk through this email together.

The Email: You Are Getting Sleepy, Very Sleepy
I’ve tried my best to reproduce the email in its original form but, inevitably,
a few names and details need to be changed to protect the privacy of all
involved. That said, none of the changes take away from the discussion at
hand.

By Nishant Kothary CHAPTER 12

443

Notice that the email was sent after hours on a Friday. This may
not be an option for all projects, but I’ve found it increases the odds
(unscientifically, of course) that your recipients will read the email in a
positive frame of mind (first thing on Monday before the stress of the
week kicks in).

I also note here that stakeholders are encouraged to not designate
others at the company as stakeholders. That decision needs to be made by
me. However, in return for this, they get to be part of the limited group of
core stakeholders. A fair trade.

There is one tiny element of anchoring here — “and this includes feedback
loops”. It set the expectation that the act of providing feedback would be
bound to a tight schedule (much like the act of actually designing the site).

444

CHAPTER 12 The Design of People

Next, an FAQs section as shown on the page before: Again, I’m
emphasizing fairness. The takeaway is that we are all part of the team and
we all have to contribute equally.

This is a message of support for anyone who happens to be feeling
anxious about the process. There is an escape hatch, but it has constraints
(I’ll help you over email).

By Nishant Kothary CHAPTER 12

445

There are several anchors hidden within this section: reviewing
designs individually isn’t feasible; providing written feedback is important;
design is often subjective; the big picture is more important than
individual features; “trust me”; and more.

Next up, a milestones section, but not just for various stages of design,
but for providing feedback as well.

Holding stakeholders to milestones for providing feedback is not a
new concept, but one we often stray away from because we generally
don’t know how to argue for it. The best argument is generally simple
arithmetic. The design timeline itself was extremely tight for Project Unify.
The design team had nine days (counting the weekend; this was definitely
a burn the midnight oil project) to produce the wireframes for the new site.
In comparison, the stakeholders had three full days to provide feedback. All
in all, this proved to be another excellent anchor, and also a way to control
scope.

Finally, the most important section: how to provide feedback. While
most of this section is process-oriented, the final bullet point — “Your
feedback must be actionable, rational and reasonable. In other words,
focus on specifics of the wireframes and not wishful/nice-to-have
things” — stands out. While it wasn’t equivalent to an explicit signature
(remember, Ariely had subjects physically sign an honor code before they

446

CHAPTER 12 The Design of People

proceeded to take the test), I hoped that this final point, combined with
written and verbal acknowledgements from all the stakeholders in the
following days would nudge the stakeholders to behave more rationally.

A better solution, in hindsight, would have been to have stakeholders
individually respond with a digital signature of sorts to pledge their
rationality; some email software like Microsoft Outlook allows you to
enforce a binary response (“I accept” or “I do not accept”) from each
recipient upon receipt of the email. Also, if the Brafman brothers’ report on
inmates’ perceptions of the legal process had broader applicability, then not
only would this kick-off email succeed in inspiring fruitful participation
in the process, but stakeholders would feel positive about the entire
experience irrespective of the outcome.

So, the question is: did it work?

The Results
Simply put, yes. But it was the process and not the outcome that left me in
admiration of the research that enabled the outcome. Sure, we successfully
designed the website in three weeks. By any reasonable measure, this

By Nishant Kothary CHAPTER 12

447

bordered on impossible given its scope. But what I found most fascinating
was that the stakeholders not only provided feedback on time, but also
offered incredible insights in a way I hadn’t witnessed earlier in my career.

Many stakeholders went above and beyond in explaining their
rationale when they disagreed with design team choices. Some provided
helpful historical information to aid us in making the right design
decisions. Others used their deep subject matter expertise to provide
context for the changes they suggested. Developers specifically focused on
the feasibility of implementing certain aspects of the proposed design. And
a non-trivial number of stakeholders voluntarily pulled themselves out of
the process. You got the sense that everyone was not only invested in the
project, but also focused on moving the process forward. Particularly when
the times got a little hairy.

For instance, at a later phase of the project, the art direction —
specifically, a shade of teal that was a part of the art board — was met with
some resistance. In such cases, stakeholders (even the best designers)
often focus heavily on their personal feelings towards the art, as in “I
really don’t like this!” But, there’s no way to truly weigh such feedback, and
such situations typically tend toward heavy contention. The Project Unify
group members, after acknowledging their visceral distaste for the color,
focused on providing actionable and rational feedback: everything from
suggestions on tweaks to the color, to its disconnect from the company
brand. The stakeholders acted like ideal designers.

Now, you’re probably wondering what was the essence of the email
— what can you take and apply to the next project kick-off email that you
send? There are obvious no-brainers that we’ve all picked up along the
way from basic project management books; for example, by outlining
the process clearly I reduced uncertainty, provided actionable next steps
and, in turn, improved the chances that this project was going to succeed.
While it’s impossible to know exactly else what really helped and what had
a neutral effect on this specific project, here are the core principles that I
personally took away:

448

CHAPTER 12 The Design of People

1.	 Anchoring
The email set expectations about the design process with an eye on
encouraging desirable behaviors among participants. It did so by
employing the power of anchoring repeatedly.

2.	 Fairness
The design process framed in the email employed what we know about
the effect of fair systems in inspiring positive human behaviors.

3.	 Honor Code
The phrasing and choreography of the email capitalized on the anchors
that specifically influence short-term human morality.

4.	 Social Coordination
The email unified the team by making the style of the feedback
something that all stakeholders shared in common.

5.	 Social Norms
The email removed me from the top of the accountability hierarchy and
instead replaced my position with the project. If one person were to
ignore the directions, they would be hurting the project instead of me.

It is worth mentioning that it wasn’t an entirely smooth ride. There
were a few stakeholders who turned in feedback far past their deadlines.
When I rejected their feedback on the grounds that the time had passed,
they escalated to the executive sponsor (and original founder of the sites).
Fortunately, thanks to past experience, I had put some air cover (support
from the most senior influencer on the project) in place before the project
kicked off. He dismissed such escalations, in turn adding another strong
psychological force to the forward momentum of Project Unify.

At this point, we’ll stop talking about other people and start looking at
our problems’ roots from another angle. After all, there’s a hard limit on

By Nishant Kothary CHAPTER 12

449

what you can learn from even the best observations and discussions about
other people. As the old proverb goes, “Nothing ever becomes real until it
is experienced.” Sure, we’ve used the word we throughout this discussion,
implying that we — you and I — are prone to fall prey to all of the same
psychological traps. But let’s admit it, we aren’t as cuckoo as others. Right?

You may want to refill that drink before you proceed.

Designing for Designers
A few years ago I co-founded a little community website for Web designers
and developers. Our community published articles by invited guests (not
unlike Smashing Magazine) about everything from UX strategy and the
Web design process to management and philosophy. We also built open
source software and shared it on a section of our community site.

Over time, the website gained some popularity with the Web
community. The incoming traffic was enough for our team to consider
redesigning the website to better handle our future plans. The original
website was something I’d designed and coded over a couple of weekends.
It wasn’t very maintainable, and in the first year of running the website,
we’d learned much more about our own brand, goals and identity. So, we
set a deadline for ourselves, and I agreed to lead the redesign project. We
shall dub it Project Redo.

I determined pretty quickly that I needed some help for this project. I
had many other responsibilities at my job; the website redesign was simply
one of them. But, I wasn’t about to hand over my baby to just anyone. I
needed someone I could trust, someone who’d give their life before letting
my baby get hurt.

I reached out to a friend and local designer who fit the bill. Let’s call
him Dave. I called him on the phone and we chatted about the goals of the
project. The stakes were high, I told him. “You have an incredible amount
of freedom on this project. I am, after all, the only stakeholder. I want you
to pretend like you’re redesigning your own personal website. I want that

450

CHAPTER 12 The Design of People

care and energy. You game?” Dave signed up. In that moment, I became not
only a friend and peer designer, but also a client.

We split the work between ourselves. I would be responsible for the
information architecture. He would be responsible for visual design and
front-end markup. We agreed to collaborate through it all. With that, I
went to the drawing board to work on the information architecture. A
week or so later I posted the wireframes to Basecamp. Dave reviewed them,
we had a quick phone call, and he set out to turn the skeleton into a full-
color being. A few days later he posted a color composition of one of the
pages to our Basecamp project to give me a quick peek at the art direction.
Needless to say, he really liked what he’d created. It’s only natural, right?9
Unfortunately, I could not see what he saw. Where he saw beauty, I saw
the opposite. It was almost as if he was functioning in a reality entirely
different from mine.

And, as the ingenious Sally–Anne test illustrates, he was.

The Sally–Anne Test
I first came across this gem in Kathryn Schulz’s excellent book, Being
Wrong. The Sally–Anne test is taken by children between the ages of
three and four. It involves staging a simple puppet show involving two
characters, Sally and Anne (figure a on the next page). Sally places a marble
in a basket, closes its lid and leaves the room (figure b). Shortly thereafter,
the very naughty Anne flips open the lid of the basket, pulls out the marble
(c) and places it in a box sitting in the corner (d). Now, the child who has
witnessed all of this is asked a simple question: when Sally returns, where
will she look for the marble (e)?

Almost every child in this age group exclaims with confidence, “In the
box!” This answer is baffling to adults for the obvious reason:

9 The tendency to fall in love with our own work is quintessentially human. It’s beyond the scope of
this chapter to deconstruct all the factors that go into this behavior, but a significant contributor is
something known as the Ikea Effect.

By Nishant Kothary CHAPTER 12

451

there’s no way Sally could have known that the marble was mischievously
displaced by Anne because Sally wasn’t around to witness that. But the
children don’t care about this detail. To them, reality and their minds’
representations of reality are one and the same. Sally thinks the marble is
in the box because, well, it is in the box.10

10 Kathryn Schulz, “Our Minds, Part Two: Belief”, Being Wrong: Adventures in the Margin of Error,
4 Jan 2011, pp. 87-111.

452

CHAPTER 12 The Design of People

The children provide an incorrect answer because they have yet to develop
what is known as the theory of mind (ToM), a differentiating feature of
human beings when compared to most other mammals. We develop ToM
by the time we’re five years old. In fact, if you were to administer the test
to five-year-olds, you would be greeted with sheer bewilderment for having
wasted their time before they gave you the right answer.

Theory of mind bestows on us two critical pieces of knowledge that,
when wielded properly, have the ability to bring out the best in us:

1.	 Our mind’s version of reality isn’t true reality: it’s just one interpretati-
on of reality.

2.	 Everybody has their own mind and, thus, their own interpretation of
reality.

But as David Eagleman, author of Incognito: The Secret Lives of Brains
writes, “There can be a large gap between knowledge and awareness”.11
Back on Project Redo, I was completely unaware of the vicious cycle of
irrationality I was about to enter. I called Dave.

It’s My Party and I’ll Cry If I Want To
I gave Dave my honest feedback. “I don’t think this is the right direction,
Dave. I don’t know what else to say other than, it’s too expected. The design
is not bold.” My Dan Ariely bobble-head was staring at me, and I admitted
to Dave that I could be under some irrational spell. It was his call on how
to proceed (but I had my fingers crossed behind my back). Seasoned as he
was dealing with clients like me, he didn’t flinch. “Let’s try a completely
new direction. It’ll be fun.” He went back to the drawing board, but his first
design had already done the necessary damage in the form of setting a
very negative anchor for me.

11 David Eagleman, Incognito, 15 May 2012, p. 58.

By Nishant Kothary CHAPTER 12

453

I just couldn’t shake the fear that Dave was in over his head on this
project. And by the time he posted the next color comp, a beautiful and
entirely fresh direction for Project Redo, I was well into a psychological
tailspin. What’s worse was that I was completely unaware of it.

When I first opened the newly posted design, I was pleasantly
surprised. It was definitely different. But after a few minutes, my limbic
system — responsible for emotions such as fear and anger, and also the
home of the amygdala that I mentioned earlier — took over. I concluded that
this new design, while better, was simply a cousin of the first one, which,
I was convinced, was truly horrible. Knowing well that I may have been
under the spell of irrational biases, I decided to sleep on it. The next day, I
pulled the design up on my monitor and nothing had changed. In fact, it’d
gotten worse. I showed it to my wife, a teammate and a few others. Nobody
shared my reaction. Most people said, “It’s nice. But I’m not a designer.”

I reasoned with myself, “OK, I’m a designer. I’m someone who’s very
aware of irrational behavior. I know how it works. I’ve read so much about
the brain and psychology. I’ve followed the advice of many of my favorite
authors: everything from getting a devil’s advocate to letting my initial
reactions simmer. But I still feel that this is the wrong direction. I must be
right. Right?” Of course, I concurred with myself.

I then quickly decided that I had to save the day, and committed the
ultimate designer faux pas: I started working on a color comp myself.

Eagleman was twitching somewhere in the distance as, in one swift
moment, all of my knowledge escaped my awareness. But what’s truly
frightening is that this occurs far more often than most of us know, and
this is by design. It is quintessentially human.

And nothing exposes this elegant flaw better than a seemingly
unrelated fact about ourselves: most of us can’t draw.

In Order to Learn to Draw, You Must Learn to See
“I can’t draw,” said my wife plainly. “Well, I can draw stick figures, but
that’s about it. But sure, I’ll give it a try.” I had suggested that we work

454

CHAPTER 12 The Design of People

our way through the world’s most widely used drawing instruction book,
Betty Edwards’ modern classic, Drawing on the Right Side of the Brain. Most of
us can relate to my wife’s words because most of us can’t draw any better
than the neighbor’s kid. And the prevailing belief around why we can’t
draw is that the ability to draw is an innate gift: something we’re born
with. But Edwards vehemently disagrees with this theory.

Instead, she believes that anyone can learn to draw realistically with a
little instruction. She’s proven this an infinite number of times through her
books and courses. Edwards writes, “A beginning drawing student asked to
draw a frontal view of a chair often distorts the retinal image of the chair
seat into a fully round or square shape, even through the retinal image of
the seat is a narrow, horizontal shape.” She identifies the culprit behind
this phenomenon as a core neural process known as size constancy: a
process that ensures that our perceptions of objects are relatively constant
irrespective of their true distance from the retina. Without size constancy
we wouldn’t be able to identify an elephant on the horizon from its tiny
silhouette. “Size constancy can muddle perception by actually overriding
direct information that hits the retina, causing us to ‘see’ images that fit
pre-existing knowledge,” continues Edwards12.

12 Betty Edwards, “The Constancies: Seeing and Believing”, Color: A Course in Mastering the Art of Mixing
Colors, 23 Sep 2004, p. 8.

A chair drawn with proper perspective (left); a chair
drawn under the influence of size constancy (right).

By Nishant Kothary CHAPTER 12

455

In fact, when we attempt to draw the chair, it is our pre-existing
knowledge deliberately sabotaging our hand. Edwards continues, “The left
hemisphere (of the brain) has no patience with this detailed perception and
says, in effect, it’s a chair, I tell you. That’s enough to know. In fact, don’t
bother to look at it, because I’ve got a ready-made symbol for you. Here
it is; add a few details if you want, but don’t bother me with this looking
business.”

The key to Edwards’ drawing instruction method is that she focuses on
teaching her students how to temporarily turn off visual processes like size
constancy. Put another way, Edwards teaches her students how to see what
is rather than what their brain thinks is. There’s a subtle, but profound
difference between the two, one that some individuals often stumble upon
naturally. For the rest of us, there’s Edwards’ method. It is so effective that
my wife was able to dramatically improve her self-portrait after following
just a few pieces of advice in Edwards’ book.

Now consider that size constancy is just one of thousands of silent
neurological and physiological processes that are involved in the proper
functioning of the human being. And, unlike size constancy, we don’t have
the ability to access them or turn them off. In fact, our proper functioning
relies on these processes working non-stop behind the scenes. When
combined with our own personal experiences, these processes play a major

My wife’s first attempt at a self-portrait (left); my wife’s attempt at a
self-portrait after 15 minutes of instruction from Edwards’ book (right).

456

CHAPTER 12 The Design of People

role in shaping our reality: a reality that, even if we pass the Sally–Anne
test by the time we’re five, often remains unfathomably distorted and,
more importantly, uniquely our own.

Unfortunately, Project Redo was a runaway train at this point, and
there was nobody around to help my brain make the cognitive shift it
needed to see reality for what it truly was.

Saving the Day
In The Honest Truth About Dishonesty: How We Lie to Everyone—Especially
Ourselves, Ariely writes about the prevailing economic model for cheating
and lying known as SMORC: simple model of rational crime. He writes,
“We all seek our own advantage as we make our way through the world.
Whether we do this by robbing banks or writing books is inconsequential
to our rational calculations of costs and benefits.” But this doesn’t quite
paint the entire picture. “How can we secure the benefits of cheating and
at the same time still view ourselves as honest, wonderful people?” he
challenges. “This is where our amazing cognitive flexibility comes into
play. Thanks to this human skill, as long as we cheat only a little bit, we
can benefit from cheating and still view ourselves as marvelous human
beings. This balancing act is the process of rationalization, and it is the
basis of what we’ll call the fudge factor theory.”13

Along these lines, when I posted my own design to the Project Redo
Basecamp a few hours after I started working on it, I titled the message
with the auspicious and rather obnoxious, “A Fresh Direction.” In it I waxed
poetic about the strengths of this new design and why it was the right way
forward (acknowledging, of course, that I could be completely wrong with
my assessment).

By now, my brain had constructed an elaborate story about the entire
situation, and thanks to the fudge factor I had given myself the part of the

13 Dan Ariely, “Testing the Simple Model of Rational Crime (SMORC)”, The Honest Truth About
Dishonesty: How We Lie to Everyone—Especially Ourselves, 18 June 2013, p. 17.

By Nishant Kothary CHAPTER 12

457

protagonist. I was the hero who, after much contemplation and tribulation,
was going to save this project. I had to do what I had to do, but it was for a
good cause, I reasoned.

In hindsight, the six hours I spent working on my concept didn’t hold
a candle to Dave’s entire week of hard work. Dave must have seen that
immediately when he held my design up next to his, but decided to remain
silent. Instead, he did what we often do when faced with confrontation in
the design process: he tried to salvage the situation by suggesting that he
take a crack at combining our designs. I didn’t particularly like the idea,
but didn’t quite respond with that. I avoided confrontation as well. The
neocortex had stepped in for us both, but it was a little too late. I said, “OK,
let’s give it a shot.”

We didn’t make it past two Frankenstein versions of the design. By
then, there was a tinge of undeniable awkwardness in the air, and we both
knew that the project had gone off the rails. We decided to chat on the
phone. I finally admitted, “Dave, I don’t think this is working out. No hard
feelings, but I think I’d like to take over the visual design.” But this time
Dave surprised me by pushing back. “Nishant, I think my second concept
was the best one. I even showed another designer the two designs side-by-
side, and he agreed,” he said. He shared the name of the other designer, a
well-known veteran whom I respected.

I felt like the wind had been knocked out of me. In an accidental
moment of clarity, I responded, “I think I should take myself out of the
decision-making process.” Dave, shocked, agreed. We hung up. Dave had
stuck his neck out, and I respected that. But I still couldn’t see what he
could see. I could even admit that maybe my design wasn’t the right one.
But I couldn’t see how his was.

As it turns out, willing ourselves to see the world differently has some
unfortunate hard limits. And it provides the final clue to the source of our
woes.

458

CHAPTER 12 The Design of People

Seeing is Believing isn’t Seeing
Optical illusions provide a great example of our limitations.14 My personal
favorite is the checkershadow illusion first developed by MIT researcher
Edward Adelson.15 The illusion here involves deciphering the colors of
the squares marked A and B in the left image of figure 7. When asked,
participants (including you) will indicate that A is dark gray, while B
is light gray. The squares, in fact, are the same shade of gray. And this
becomes clear as day when you connect the two squares with a solid gray
rectangle as shown in the right image. But the best part of this illusion is
yet to come.

If you take the gray rectangle away (look back at the left figure), it’s as
if we’re stupid again. No matter how hard we try, we see the two squares as
entirely different shades of gray.

Despite the fact that our visual system — more than thirty
different parts of the brain dedicated to helping us see — is about
the most anatomically sophisticated part of the human body, we are
predictably fooled over and over again by optical illusions like Adelson’s
checkershadow. In Predictably Irrational, Ariely wonders how often, then,

14 Dan Ariely at EG ‘08 Podcast, FORA.tv.
15 Edward Adelson, Checkershadow Illusion.

By Nishant Kothary CHAPTER 12

459

must we be predictably fooled in areas where the brain provides no
specialized help? Like making financial decisions? Or, a little closer to
home, recognizing a great design as great?

Ariely’s research deals with discovering and documenting these
so-called illusions of the mind, more formally known as cognitive biases.
Anchoring is but one of hundreds of cognitive biases that exist in human
beings. Once you’ve read these findings, it becomes virtually impossible to
view the world, and yourself, the same way again. In one sense, it’s a relief
to have scientific explanations for some of life’s troubles. But in a different
sense, you are confronted with how much you don’t know about the world,
how much you take for granted, and how fallible we are as human beings.

Back on Project Redo, I was starting to get convinced of my own
fallibility in the situation. I sent the two designs for a blind vote to the
rest of my team adding no context other than, “Here are two options for
the design. Pick the one you like the most.” All five of my team members
voted for Dave’s design. The decision was clear to me even if I couldn’t
understand it. I was Adelson’s smirking revenge. I couldn’t see the squares
as the same color no matter how hard I tried, yet I knew they were the
same color. So, I made the call.

“We’re going to move forward with yours, Dave. Thanks for sticking
your neck out there,” I posted on Basecamp. Dave was elated. Three weeks
later we finished the website and it received much fanfare. It was a hit
with the community, was featured on several design showcases, and even
won a few prestigious awards. Dave maintains that it remains one of his
best portfolio pieces even today.

And for me, it remains an undying reminder of my own irrationality.

And… Scene
As I look back to my first true encounter with workplace dysfunction — my
episode with Prakash and team — I can’t help but wonder what I would
have done differently then had I the knowledge I have now.

460

CHAPTER 12 The Design of People

Over the past few years, I’ve had the pleasure (and pain) of discovering
a whole new side of humans. By applying the work of folks like the
Brafman brothers, Ramachandran, Eagleman, Gigerenzer, Edwards,
Ariely and many others to the world of design collaboration, I’ve been
able to navigate through many tricky situations, and have also been
able to develop a whole new set of seemingly counter-intuitive rules of
thumb to help me along the way. To list a few (and most of these are from
experiences that I haven’t specifically mentioned in this chapter):

•	 Don’t try to educate clients and stakeholders about design. Rather,
spend time priming them to realize that it’s not their domain.

•	 Never conduct a design review in a conference room with all stake-
holders present together. Social conformity studies have firmly
established that this approach is destined for failure. When you
succeed, it’s simply because statistics can be forgiving.

•	 If your client demands multiple versions of a design, you will im-
prove your chances of a quick sign-off by creating three versions:
two that are similar (the one you would like the client to pick needs
to be better), and another that’s obviously the worst and dissimilar
to the pair. That said, you might be better off firing the client.

•	 Getting even great designers to collaborate will generally produce a
design that isn’t as good as that produced by an individual great de-
signer (unless, those designers can really function as one; rare, but
certainly possible). This is because you are attempting to converge
independent realities and average independently great visions.

•	 Trying to convince someone of something that’s contrary to his or
her existing belief generally worsens the situation. You have to look
for a subtler solution to deal with the individual.

•	 In most circumstances at work, praise and positive reinforcement
are far better motivators than monetary or other in-kind payments.

By Nishant Kothary CHAPTER 12

461

•	 Stakeholders generally want to be upstanding citizens of the design
process even if their behavior may seem to indicate otherwise.
Learn to read between the lines to influence the natural propensity
of humans to want to do good.

•	 The worst goal you can set for yourself is to be the best. The best
goal you can set for yourself is to (always) be better. There’s a subtle,
but profound difference.

•	 Nobody is immune to irrational behavior. And no matter how much
you try, you will never eliminate it in yourself or others. The best
approach to dealing with irrationality is to set checks and balances
in place to detect and manage it (especially for yourself). Learn to
self-monitor and along the way ask yourself questions like, “Am I
unknowingly in my own optical illusion right now?”

•	 People discount the future. That is, we are wired to be short-term
thinkers. This is why promises of the long-term benefits of a design
generally never serve as convincing arguments.

I have many more heuristics that I haven’t listed. And it’s worth
pointing out that my intention for listing the above is certainly not to make
you feel cheated; after all, I haven’t provided relevant experiences and
arguments for over half of these. Rather, my intention is to make a critical
point: while the above heuristics have served me well, they are not hard and fast
rules, and I often need to break them.

In the past few years I’ve become particularly passionate about
spreading what I’ve learned. In my own little way, I’ve written about
certain perspectives on my blog, and presented some of these concepts
at conferences. During this time, I’ve been approached by a number of
people, including a few publishers, urging me to write articles, even books
about the topic. But most of these conversations quickly converge on one
question: what are the best practices that can resolve these problems once
and for all?

462

CHAPTER 12 The Design of People

My answer has consistently been, “There aren’t any.” Admittedly, it’s
an answer that disappoints. And it may disappoint you as well. It certainly
disappointed me the first time I found myself uttering those words in a
Q&A after one of my talks. But this disappointment — particularly in light
of what we’ve learned about ourselves in this chapter — is as ironic as it is
paradoxical.

We don’t have static best practices that always work in creating
a perfect design or writing perfect code. Instead, we take all of our
knowledge, skills and experiences, and apply them creatively on our
projects. Each situation is different from the next. The reality is that
our field — really, our world — is grossly imperfect and nothing, not
the combined intellect of all its experts or the power of a thousand fire-
breathing dragons, will ever change that. We are constantly updating our
best practices, from those dealing with structuring markup to designing
for a seemingly infinite number of devices — often finding ourselves
exactly where we started. As frustrating as this is at times, we’ve all come
to appreciate it as one of the things that make our work interesting.

In fact, it may even be the source of our happiness. As Mihaly
Csikszentmihalyi suggests in his book, Flow: The Psychology of Optimal
Experience, setting goals that are just out of reach and working towards
them is the true secret to happiness. Or as Gandhi put it, “Glory lies in the
attempt to reach one’s goal and not in reaching it.”

All that remains between you and glory is a goal.

Next Steps
I believe our need to find a silver bullet for people problems stems from the
very cognition that paints forgiving self-images and constructs elaborate
theories about the world. But if we’ve learned anything in this chapter,
it’s that our theories and ideologies are often built on shaky foundations,
informed by very little real information, and choreographed by biology
beyond our conscious control. The sooner we can accept that people are

By Nishant Kothary CHAPTER 12

463

like our technologies and systems — irreversibly imperfect — the sooner
we can start dealing with people problems the way we deal with all our
problems in life: by acquiring knowledge, practicing, analyzing and
repeating.

Here are some next steps to help you on your journey:

1.	 Acquire knowledge
I maintain a list of books and articles that have helped (and continue
to help) me. This is a good place to start: http://rainypixels.com/
thereadinglist.

2.	 Practice
Aggressively look for opportunities to apply your acquired knowledge
in situations at work and at play. Push yourself to step outside of your
comfort zone.

3.	 Analyze
Make a note of what worked and what didn’t and thoughtfully
analyze why. Look at the situation from all angles, including your own
behaviors and motivations.

4.	 Repeat
Make this a habit and an integral part of your life.

464

CHAPTER 12 The Design of People

About the Author
Nishant Kothary (@rainypixels) cofounded Minky
(weareminky.com) after various multidisciplinary roles at
Amazon and Microsoft. His writings and work have been
featured in UXMag, Smashing Magazine, A List Apart, and
many other online publications. He writes at rainypixels.com.

About the REVIEWER
Kristen Berman is Dan Ariely’s collaborator and co-
founder of Irrational Labs. Dan Ariely, three time NYT
bestselling author and Duke professor, and Kristen bring
the behavioral economics insights into the hearts and
minds of founders, designers and engineers. Kristen
founded the largest behavioral economics conference,
StartupOnomics, and also consults at Google, Intuit and
a variety of startups.

About the REVIEWER
Before cofounding Minky, Kalpita Kothary spent close
to a decade at Microsoft. In her final role, she managed
the team responsible for one of the top 50 web sites in
the world, Microsoft.com, and also helped oversee the
responsive redesign of Microsoft’s home page.

About the REVIEWER
Joshua Allen has been addicted to the quirky collection of
hacks known as “the web”. Over his career, he’s served as
developer lead and program manager for XML APIs and
MSN, helped co-found MIX Online, and more.

1. On Creativity, Inspiration and Getting Started

Chapter

On Creative Spirit

Written by Christopher Murphy

13

466

CHAPTER 13 On Creative Spirit

By Christopher Murphy CHAPTER 13

467

Chapter THIRTEEN · by Christopher Murphy

On Creative Spirit

hen embarking on new projects we often find
ourselves confronted by intense pressure to deliver
something – anything! – in as short a time frame as possible.

All too often the client needs it tomorrow, or better still yesterday, certainly
by the end of the week! (And, guess what, today’s Thursday.)

Faced with unyielding, unrealistic deadlines we buckle under the
weight of expectation and find ourselves looking for shortcuts. Before we
know it, we’re taking the path of least resistance to new ideas, which, as a
consequence, often aren’t new ideas at all, merely recycled ones from the
folder of abandoned past projects.

When time is short and budgets are tight we turn immediately to our
computers in an effort to realize an idea as quickly as possible. The com-
puter, however, is the last place we should look. History shows us that
ideas are all around us and if we choose to widen our frame of reference
and expand our field of vision, even just a little, we’ll find them quite
quickly.

W

468

CHAPTER 13 On Creative Spirit

STOP! Take a deep breath. Let’s rediscover what an ideas culture is re-
ally all about and, along the way, remind ourselves that it’s about stepping
back from the digital world of ones and zeros and, instead, looking towards
the analogue world of dusty libraries and aroma-filled coffee shops.

So, how do you establish an idea generation culture? How do you open
the proverbial floodgates and unleash an endless supply of new and origi-
nal ideas? Is it possible to adopt strategies that allow us to reliably generate
meaningful ideas, which we can then execute skillfully? I believe, by adopt-
ing a simple mental framework and embracing a core set of strategies, it is.

I believe the process involves three factors: first, priming the brain;
second, empowering a conductor or orchestrator of ideas; and third, con-
sidering space as a facilitator.

The first part of the idea-generation equation lies in ensuring the
brain is sustained and regularly nurtured with knowledge, keeping it well
stocked with fuel. The second part of the equation lies in finding a conduc-
tor to enable primed brains to work well in harmony. The third part of the
equation lies in encouraging chance collisions, facilitating the regular col-
lision of primed brains with one another. When these parts of the equation
come together, ideas flow in abundance.

Putting Theory Into Practice
Don’t take my word for it, however — many successful companies adopt
much the same process. As we’ll see through a series of examples later in
this chapter, world-class companies like Apple, Pixar and Google employ
similar strategies to ensure that their companies are overflowing with
great ideas. Let’s take a look at one example in a little more detail.

You may or may not have heard of 3M, but you’ll most certainly have
heard of its many innovative products. Post-it notes and Scotch Tape are
just two of a seemingly endless series of ideas which grew out of 3M’s
creative approach to building an ideas culture and allowing innovation to
flourish.

By Christopher Murphy CHAPTER 13

469

We’ve all heard of Google’s “20 percent time” — it’s lead to a wealth of
interesting ideas. When Google was just a star in the sky, however, 3M was
embracing the benefits of flexible working that its very own 15 percent
time offered. Believing that “creativity needs freedom”, 3M has offered
this “dream day1” as time to explore and space to reflect, since 1948 — a
remarkably open-minded approach if you stop to consider it. Encouraging
employees to spend 15% of their working time on their own projects, the
company also offers resources to staff and grants them licence to self-or-
ganize and build their own teams. This approach enables 3M’s people “to
follow their own insights in pursuit of problem-solving.”

As the company puts it:2

In today’s fast-paced, pressure-packed business climate, many companies take
a very short-term approach to the new product development pipeline. Because
innovation does not occur on a set timeline, 3M takes a different path — thanks
in large part to the principles that former CEO, William L. McKnight instilled
in the company. McKnight believed in the imperatives of hiring the right people,
tolerating mistakes and giving employees freedom to explore in order to foster
a culture of innovation. 3M has put the McKnight Principles into practice by
encouraging employees to dedicate a significant portion of their time to projects
and research that go beyond their core responsibilities. Although it may take
years for such innovative “tinkering” to bear fruit, the results of 3M’s storied 15
Percent Time are truly remarkable. Examples include Scotch® Brand Tapes, Post-
it® Notes, Scotchgard™ Fabric Protector[…]

If you break the McKnight Principles down into their constituent
parts, you might notice the same three factors outlined earlier, factors that
lead towards ideas and innovation: allow people to tinker and learn new
things (in short, give them the space to prime their brains); allow people

1 http://solutions.3m.com/innovation/en_US/stories/time-to-think
2 http://smashed.by/3m

470

CHAPTER 13 On Creative Spirit

to self-organise and manage themselves, enabling them to form ad hoc
teams that bring together the pieces of the jigsaw (in short, allow conduc-
tors to orchestrate teams to create wonderful things); and finally, allow for
serendipitous meetings that potentially lead to new discoveries (in short,
encourage chance collisions).

As we can see from this example (and as you probably know from your
own experience), ideas, contrary to popular opinion, are relatively easy
to come by; it’s the execution of ideas through a meaningful and thorough
implementation that’s the hard part. Set aside time for idea generation
and you should find an endless supply of ideas flowing, far too many to
implement; the hard part really lies in deciding where to apply resources to
develop these ideas. Let’s get started and take a look at the three aspects of
idea generation, outlined above, in a little more detail.

Priming the Brain
To foster a culture of idea generation, we need to promote a hunger for
information. Such a process shouldn’t just happen at the start of a project,
it should occur all the time. A naturally inquisitive mind will be forever
overflowing with ideas. The primary task we have to accomplish, then, is
to get the brain in the right place.

One simple strategy to encourage more ideas? Read more, and read
widely.

There are a number of excellent books on ideas and where they come
from. Two that should be at the top of any self-respecting designer’s list are
Scott Berkun’s The Myths of Innovation and James Webb Young’s A Technique
for Producing Ideas. Both are worth their proverbial weight in gold and will
pay for themselves many times over. Perhaps unsurprisingly, both follow
similar pathways, proposing models which — if adhered to — lead inevita-
bly to an endless supply of ideas.

By Christopher Murphy CHAPTER 13

471

The Myths of Innovation
Berkun’s The Myths of Innovation from 2007 demystifies the myths often
conjured up to explain innovation. As Berkun puts it, “Ideas never stand
alone”; the ideas we remember are always the product of other ideas and
inventions. Break any idea down (let’s say, Twitter and Instagram) and
you’ll find other ideas (SMS text messaging and Polaroid photography,
respectively). The accepted wisdom that these ideas are the result of divine
inspiration, appearing fully formed from nowhere, is a million miles from
reality. In fact, they’re the result of inquisitive minds that see new connec-
tions or see old patterns repeating themselves in new ways.

Berkun uses the idea of a jigsaw to explain the moment of epiphany,
which, rather than a result of divine intervention, is really the moment at
which you see all the pieces of the jigsaw fall into place clearly. As he puts it:

One way to think about epiphany is to imagine working on a jigsaw puzzle.
When you put the last piece into place, is there anything special about that
last piece…? The only reason that last piece is significant is because of the other
pieces you already put into place. If you jumbled up the pieces a second time, any
one of them could turn out to be the last, magical piece.

So, where do the pieces of the jigsaw come from?
In short, you develop some of the pieces of the jigsaw yourself (through

experimentation and prototyping), but other critical pieces of the jigsaw
are already out there. You learn to see those other pieces of the jigsaw by
reading widely, exploring unfamiliar and challenging themes, and main-
taining a curious mind. Constantly interrogating the world, offline and
online, is critical. The jigsaw pieces are everywhere, they’re all around you;
you just need to learn to see them.

Let’s take a jigsaw and break it apart.

472

CHAPTER 13 On Creative Spirit

The iPhone. A beautiful jigsaw that has been through a lengthy and
ever-inventive series of iterations, at every turn revealing imaginative and
exciting new ideas. When Steve Jobs unveiled it for the first time on June
29, 2007, we were mesmerized. We marvelled, not only at Jobs’s charismatic
showmanship – “There’s just one more thing….” – but also at the magical
device he held in his hand. Jobs, ever the impresario, stated:

Every once in a while a revolutionary product comes along that changes
everything.

It was, of course, revolutionary and it certainly changed everything.
Had it really appeared, however, fully formed from nowhere? A moment of
divine inspiration? Of course not. It was the product of other ideas, them-
selves the product of other ideas, themselves the product of other ideas…

If we interpret the iPhone as a jigsaw using Berkun’s metaphor, we see
a huge number of technologies coming together. What was remarkable
about Jobs’s “revolutionary product” was the way it took so many existing
ideas, each one a myriad of complexity, and wove them together seemingly
effortlessly to create a product we had never seen before — and yet we had
seen, in its constituent parts many times before.

Here lies the allure of invention. We see a radically new product and it
seems at once unimaginable, and yet so right and so obvious.

Let’s examine the pieces of the iPhone jigsaw in a little more detail,
exploring how each one of the ideas that came together to form the iPhone
is itself the product of other ideas. At the most abstract level, the iPhone
weaves together a core set of ideas: the original iPod, itself the product
of many other ideas, not least Sony’s Walkman; the telephone, stemming
from mobile devices of the time (which themselves follow a long line of
ideas right back to Alexander Graham Bell — who would, I’m sure, have
loved an iPhone, perhaps in return for his earlier ideas which helped bring
it into being); the camera, with its own long line of precursors; and the list
goes on. Everything, in short, is made from other things.

By Christopher Murphy CHAPTER 13

473

A Technique for Producing Ideas
Funnily enough, Berkun’s The Myths of Innovation is also the product of oth-
er ideas. In the true spirit of academia, which stands on the shoulders of gi-
ants more often than you would imagine, Berkun’s 2007 book echoes many
of the themes of a much slimmer volume published some four decades
earlier, James Webb Young’s A Technique for Producing Ideas from 1965. (A
personal recommendation: if you buy just one book to improve your ability
to generate ideas, make it Young’s.)

Honored as ‘Advertising Man of the Year’ in 1946, Young (1886–1973)
was an award-winning advertising executive who wrote perhaps one of the
most influential books on generating ideas; certainly one of the most con-
cise and no-nonsense in approach. Drawn from his own wealth of experi-
ence and voracious appetite for knowledge, A Technique for Producing Ideas is
a short, sharp and extremely valuable treatise on the process of generating
ideas.

Young’s process is a simple one, centering on “training the mind” by
filling it with an ever-ready supply of raw material. From this fuel, as he
puts it, ideas form, which are, unsurprisingly, “combinations of old ideas.”
Young cites noted sociologist, economist and philosopher Vilfredo Pareto
(1848–1923) as an influence in his thinking (you may have heard of him via
the Pareto Principle, also known as the 80–20 rule). In a chapter called “The
Pareto Theory”, Young refers to Pareto’s thinking, writing:

Pareto thought that all the world could be divided into two main types of peo-
ple. These types he called, in the French in which he wrote, the “Speculator” and
the “Rentier”.

In this classification speculator is a term used somewhat in the sense of our
word ‘speculative.’ The speculator is the speculative type of person and the
distinguishing characteristic of this type, according to Pareto, is that he is con-
stantly preoccupied with the possibilities of new combinations.

474

CHAPTER 13 On Creative Spirit

Young summarises this thinking through two principles, as follows:
first, “an idea is nothing more nor less than a new combination of old ele-
ments.” Second, “the capacity to bring old elements into new combinations
depends largely on the ability to see relationships.”

Astute readers will clearly see that one of Berkun’s central premises,
that ideas never stand alone, echoes one of Young’s central principles, that
all ideas are combinations of old ideas. This, in turn, echoes one of Pareto’s
central arguments, that those who have the ability to conjure up ideas are
“constantly preoccupied with the possibilities of new combinations.”

Three astute thinkers, whose ideas are all, appropriately, an amalgam
of other ideas. Coincidence? Highly unlikely. Although Berkun, Young and
Pareto share a common language in their articulation of this central thesis
— that all ideas are made of other ideas — it is, for me, Young who most
clearly articulates the clearest model for applying this thinking in a cre-
ative context in the service of reliable idea discovery.

Let’s look in a little more detail at Young’s core technique, which forms
the backbone of a five stage process that can be used to generate ideas. As
Young puts it:

This technique of the mind follows five steps. I am sure you will recognise them
individually, but the important thing is to recognise their relationship and to
grasp the fact that the mind follows these five steps in definite order — that by
no possibility can one of them be taken before the preceding one is completed, if
an idea is to be produced.

Young’s five stages can be essentially labelled as follows:

1.	 Gather raw material.
2.	 Masticate.
3.	 Drop everything and walk away.
4.	Marvel as, out of nowhere, an idea materializes.
5.	 Weigh the idea up the morning after.

By Christopher Murphy CHAPTER 13

475

The first stage — gathering raw material — is easy; and yet, as Young
points out in his book, it’s so easy it’s hard. Sagely, he states: “Gathering
raw material is not as simple as it sounds. It’s such a terrible chore that
we are constantly trying to dodge it.” In my experience, this stage is by far
the most difficult; it requires the discipline to take time out of work and
exercise the mind. Sadly, far too few enjoy exercise, and even fewer enjoy
exercising the mind. Why not buck the trend, take the plunge and give
your mind a workout?

Believe me, it will thank you for it.
All too often we bypass stage one, the raw material phase, because

we’re in a headlong rush to complete all manner of tasks at hand. Failing
to realize the importance of priming our brains with an ever-ready supply
of fuel, we leave our brains undernourished and unable to conjure up new
connections (no new fuel, no mastication). In short, we have too few jigsaw
pieces to hand, and with the same short supply of jigsaw pieces, we end up
creating the same jigsaws. Primed with a rich supply of raw material, the
process of mastication can begin.

The second stage — masticate — is an important one. Turning ideas over
in your mind, looking at them from different angles and seeking relation-
ships between them, helps you see the world and its possible connections
in new and exciting ways. As Young puts it: “What you are seeking now is
the relationship, a synthesis where everything will come together in a neat
combination like a jigsaw puzzle.”

As Young points out, the second stage can often be confused for absent-
mindedness as, lost in thought, ideas churning in your mind, you drift off.
At this point you’ll find that fragments or, as Young puts it, “partial ideas”
begin to surface. Get these down on paper, no matter how inconsequential
or absurd they may seem. The act of writing them down rewires your brain
and subtly sows the seeds for the next important phase.

The third stage — dropping everything and walking away — is often the
hardest. Pressed by deadlines, we hurriedly reach for solutions too early; a
far better approach is to allow our thoughts to gestate, to ferment a little,

476

CHAPTER 13 On Creative Spirit

like a fine wine or a well-aged whiskey. To stress the importance of this
stage, Young uses the example of Sherlock Holmes who understands more
deeply than his assistant Dr Watson that for an idea or a solution to appear,
you must walk away, take a break and let the unconscious take over. Where
Watson would rather work the case night and day, Holmes knows that a trip
to the theatre will almost certainly lead to the answers that are eluding you.

The fourth stage — marvel as, out of nowhere, an idea materializes – is, one
would hope, an experience all creative people have had. By giving ourselves
some breathing room we find solutions bubble naturally to the surface, as
stage three (the trip to the theatre) works its magic. This is why we often
hear of creative people having a “Eureka!” moment in the shower (or, so I’ve
heard, in the bath).

The fifth and final stage — critically assessing the idea after the rush of
imagining — is the moment of truth, or what Linds Redding calls The Over-
night Test3, the point in the cold, gray dawn of the morning at which you
take your new idea out and test it against reality. As Young wisely puts it:
“In this stage you have to take your little newborn idea out into the world
of reality. When you do, you usually find that it is not quite the marvelous
child it seemed when you first gave birth to it.”

It’s critical, in this final phase, to share your idea widely. Don’t hold
back — put it up for scrutiny and encourage constructive criticism. If the
idea doesn’t survive, better to repeat the process (back to stage one) in
the quest for a newer and more robust concept. I’ll leave the last word to
Young, who states:

Do not make the mistake of holding your idea close to your chest at this stage.
Submit it to the criticism of the judicious. When you do, a suprising thing will
happen. You will find that a good idea has, as it were, self-expanding qualities.
It stimulates those who see it to add to it. Thus possibilities in it which you have
overlooked will come to light.

3 http://j.mp/ashortlessoninperspective

By Christopher Murphy CHAPTER 13

477

This is the process: it’s easy, but like every seemingly simple thing, it’s
really quite difficult. Learn the process. Apply it. Repeat it. Practice it. It
will, I believe, serve you well; it has so served me.

With the weight of evidence (gathered by Pareto, Young and Berkun)
revealing that raw material is where new ideas emerge from, it becomes
self-evident that we need to put in place strategies and techniques to gather
ideas. You’ll not be surprised to discover that there are a number of tried-
and-tested approaches, not least the scrapbook or sketchbook (and their dig-
ital equivalents) to do just this. Press them into service and all will be well.

Strategies
I’d like to suggest three techniques you can adopt to prime the brain with
raw material.

1.	 Libraries
2.	 Sketchbooks and scrapbooks
3.	 A digital toolbelt

Libraries… Who Knew?
Use them! Libraries contain a wealth of knowledge — much, much more
than we have available at our fingertips through search engines. Libraries
encourage chance discovery, serendipitous unearthings when you happen
on a bookshelf rich with potential. Search engines, on the other hand, are
self-selecting: a predictable world filtered by Google. Search for a term and
find an algorithmically ranked selection merely; there’s very little luck
involved at all. (And luck, in this case, sets you apart.)

Learn to love dusty, musty libraries. There you’ll find ideas aplenty, set-
ting you apart from your peers who remain reliant on the same old digital
sources. If you’re in the unfortunate situation of lacking a neighborhood
library, fear not — book shops make a good susbtitute and if they’re sec-
ondhand bookshops, all the better!

478

CHAPTER 13 On Creative Spirit

Keep a Sketchbook or Scrapbook to Hand
Sketchbooks and scrapbooks promise an endless supply of inspiration;
you simply have to fill them. Always — always! — carry a sketchbook and
a pen. Although it seems that the very best ideas are scribbled on the back
of a beermat or a napkin, carrying your thinking utensils should be second
nature.

The more you use your sketchbook, the less precious you’ll find your-
self becoming. Sketching isn’t about being an excellent draughtsman, it’s
about synthesizing and processing your thoughts and ideas, as Jason Santa
Maria summarises nicely in his article “Pretty Sketchy4”: “Sketchbooks are
not about being a good artist, they’re about being a good thinker.”

Wear a Digital Toolbelt
The last maneuvre to make (after you’ve embraced the offline tools) is to fit
yourself with a bespoke digital toolbelt. We’re blessed with a cornucopia of
tools at our disposal, like Gimme Bar5, Instapaper6, Instagram7, and even
our old friend RSS, which offer us ready methods of gathering and saving
raw material. Equipping your digital toolbelt will fill those moments on
the go and enable you to repurpose downtime (bus queues, short trips,
dull or never-ending meetings), enabling you to add yet more jigsaw pieces
to your EndlessJigsawPuzzleBox™. Remember, more raw material equals
more new combinations.

Choose a Conductor
With a collection of primed brains in place we can begin to orchestrate
them, coaxing even greater ideas from their collective consciousness.
When we embrace the opportunities that arise when harnessing a hive

4 http://j.mp/jasonisprettysketchy
5 https://gimmebar.com
6 http://www.instapaper.com/
7 http://instagram.com

By Christopher Murphy CHAPTER 13

479

mind, we begin to generate ideas that are greater than the sum of their
parts. It’s simple Gestalt where 1 + 1 + 1 = 5.

In order to avoid cacophony, it helps to have a conductor to hand to or-
chestrate everything, ensuring everyone works together in harmony. Your
conductor might be a figure cast in the Steve Jobs mould, manipulating
the action according to a grand, singular vision; or they could be a low- to
mid-level team leader, or series of leaders occupying a leadership role that
passes between them, designed to encourage new reactions between your
primed brains. Think of the conductor as a catalyst, bringing disparate
elements into contact with one another and facilitating a reaction between
them to create something new.

The conductor doesn’t have to be the most senior person to hand.
Indeed, turning the organizational hierarchy upside down on occasion can
lead to radical new thinking. Put the secretaries in charge for a day and
you’ll be surprised at the wisdom they can share through their own unique
worldview (a worldview you might have forgotten in your relentless rise to
the top).

History provides many examples of great conductors, most recently
Steve Jobs at Apple (and NeXT); John Lasseter at Pixar; David Kelley at
IDEO; and many, many more. Two that bear exploring in a little more
detail, for different reasons, are Tony Fadell and Thomas Edison, known
as ‘The Podfather’ and ‘The Wizard of Menlo Park’, respectively. Both tell
us stories about the various roles the conductor can play in helping to
organize and shape teams, to extract the maximum value from the creative
spirit on hand. In Fadell’s case, we learn that sometimes the right conduc-
tor for the task at hand is an outside hire, someone beyond the existing
team. From Edison we learn that sometimes the conductor’s skill lies in
simply stepping back and acting as the guiding hand for others, getting the
right teams in place and allowing them to discover (and marvelling as you
witness, and patent, what they do).

480

CHAPTER 13 On Creative Spirit

Under the guidance of a conductor, we can end up with wonderful mu-
sic. Without one there may just be sound and fury, signifying nothing.

The Podfather
You may or may not have heard of Tony Fadell, but you’ll certainly have
heard of the iconic product he championed and helped to shape: the iPod. A
virtuoso conductor, and a true gentleman too, he was the ideal candidate to
manage Apple’s iPod development team.

In his biography of Steve Jobs, Walter Isaacson underlines the impor-
tance the iPod had for Jobs in late 2000. Frustrated with existing portable
music players (he thought they all “truly sucked”), Jobs was keen for Apple
to create the portable music player others just couldn’t. Working with Jon
Rubinstein, Jobs set about finding the right person to lead the develop-
ment team.

Fadell, just 21 years old at the time, had the perfect track record. Having
started three companies while still at the University of Michigan, he had
spent time working at the handheld device maker General Magic before
spending some time at Philips. Fadell had a number of ideas for creating
a better digital music player, but had been unsuccessful pitching these to
RealNetworks, Sony and Philips.

One day, while skiing, he got the call. As Isaacson puts it:

Rubinstein told him that Apple was looking for someone who could work on a
‘small electronic device’. Fadell, not lacking in confidence, boasted that he was a
wizard at making such devices.

A wizard and a conductor… the rest is history.
Fadell’s story centers around getting the right brains in place — bring-

ing together the right people. It serves to demonstrate that priming the
brain is only the first part of the equation.

By Christopher Murphy CHAPTER 13

481

Fadell’s story is an interesting one. (If you get the chance to hear him
speak, clear your diary as he’s a deeply engaging presenter.) During his ini-
tial period working on the development of the iPod, Fadell was an indepen-
dent contractor; only later, under pressure, did he join Apple permanently.
This underlines the fact that a conductor need not always be a CEO; nor do
they even need to be a full-time employee to shape a vision and coordinate
a team. Under intense pressure from Jobs to deliver an iPod in time for
Christmas, Fadell looked beyond Apple’s internal teams to identify external
talent. This ability, to identify the best team members — the right primed
brains — and bring them in to assist on the task at hand is what a great
conductor possesses. Need a new drummer to add another dimension to
your sound? There are talented session musicians aplenty; use them.

It’s Fadell’s lateral thinking — recasting the team members — that’s
interesting. Lateral thinking, a phrase coined by Edward de Bono in 1967, is
another term the idea-hunter should understand:

With logic you start out with certain ingredients, just as in playing chess you
start out with given pieces […] Lateral thinking is concerned not with playing
with the existing pieces but with seeking to change those very pieces.

Fadell arguably took this a stage further, changing not only the pieces,
but the players in the game playing with those pieces.

Pulling together a carefully selected range of players from different
teams and then using their hive mind to conjure up ideas can prove incred-
ibly powerful and it lies at the heart of companies like Apple, Google and
many other giants of innovation. Drawing from a rich gene pool of talent
and seeking new combinations of assembled ideas can very quickly result
in an abundance of riches.

Get a number of people together in a room, equipped with Sharpies
and flip charts, give yourself a limited amount of time (half an hour should
prove more than enough), and you’ll be surprised at the results a few
well-chosen people can generate. The key is to work fast, pursue divergent

482

CHAPTER 13 On Creative Spirit

thinking and not inhibit anyone’s creativity. With a conductor in control
guiding the process, ideas will be flowing in no time.

Of course, your choice of conductor will influence matters immense-
ly, so how do you select the right conductor? I believe it’s important to let
go a little and explore. The conductor needn’t always be the most senior
member present, indeed, if that member is worthy of their seniority, they’ll
understand that empowering others and letting them take the baton can
have surprising and often game-changing results.

Try rotating the baton and let every member of the team conduct a
passage, for short, sharp periods of differing inputs. You’ll soon find that in
most of your team members – if you offer them encouragement – lies the
ability to stir a rousing number.

Let go, listen to the conductor, and just start playing.

The Wizard of Menlo Park
An inventor, businessman and school dropout, Thomas Edison (1847–1931),
is perhaps best known for his prodigious inventions, including: the pho-
nograph (a little similar to an iPod, only older and – well – different); the
motion picture camera; and, of course, the electric light bulb.

But it is Edison’s approach to team management and coordination that
remains perhaps his most interesting, if often overlooked, achievement.

Nicknamed ‘The Wizard of Menlo Park’, Edison was one of the first
businessmen to apply the principles of mass production and large-scale
teamwork to the process of invention. He is perhaps one of the first true
conductors, leading a team of scientists and researchers at his “invention
factory” at Menlo Park Laboratory, widely considered to be the world’s first
industrial research laboratory. As Edison’s long-standing assistant, Francis
Jehl, put it: “Edison is in reality a collective noun and means the work of
many men.”

By creating a laboratory that was filled with all the materials necessary
— as Edison put it: “a stock of almost every conceivable material” —

By Christopher Murphy CHAPTER 13

483

to spark new ideas, Edison was able to amass a huge portfolio of patents.
According to Rutgers, The State University of New Jersey, Edison held 1,093
successful US patents and well in excess of a thousand patents beyond the
US. The sheer number of patents Edison registered is striking, and proof
that his applied research laboratory had no shortage of ideas. His patents
are available to peruse at Rutgers’ fascinating archive8 and they individu-
ally represent facets of the process of invention and are a window into a
world filled with fascinating ideas. Collectively they comprise Edison’s true
calling, as a leader and orchestrator of extremely intelligent individuals.

Edison’s talent lay in surrounding himself with highly primed minds,
with whom he could have interesting and wide-ranging discussions, which
sparked new ideas by virtue of dialogue and exchange. Edison filed nu-
merous patents for separate, exploratory ideas that cumulatively lead to
the light bulb he is credited for. In each case, teams of researchers worked
to create and refine, orchestrated by him. Edison showed that successful
ideas are collaborative in nature and a good conductor can deliver great-
ness simply by understanding and harnessing that.

In fact, and contrary to popular opinion, Edison did not invent the first
electric light bulb, but instead invented the first commercially practical
incandescent light. (The words “commercially practical” are guaranteed to
appeal to any self-respecting business person.) Numerous earlier inventors
had devised incandescent lamps, including Alessandro Volta’s demonstra-
tion of a glowing wire in 1800 (over eight decades before Edison’s patent).

These early bulbs suffered from varying flaws — extremely short
life spans, high production costs, and a need for high electric currents —
making them difficult to apply on a large scale commercially. After many
experiments with platinum and other metal filaments, Edison returned
to a carbon filament. It was not until several months after the patent was
granted that Edison and his team discovered a carbonized bamboo fila-
ment that could last over 1,200 hours.

8 http://edison.rutgers.edu/patents.htm

484

CHAPTER 13 On Creative Spirit

What prompted Edison to consider bamboo?
The idea of using bamboo originated from Edison’s recollection of

examining a few threads from a bamboo fishing pole, while relaxing on
a trip. Astute readers will, of course, see in this a clear resonance of the
importance of priming the brain. The bamboo was the missing piece of
the jigsaw and, as always seems to be the case in such discoveries, wasn’t a
piece of the jigsaw supplied in the ‘Create a Light Bulb’ puzzle box.

Strategies
Here are three techniques you can adopt to maximize idea returns by ex-
ploring ways of shaping and rethinking teams on the fly.

1.	 Find square pegs for round holes
2.	 Reverse the hierarchy
3.	 Ban the culture of “They”

Find Square Pegs for Round Holes
Sometimes it helps to find someone who doesn’t quite fit neatly into place.
An outsider can offer new ways of seeing things within a discipline. If
you’ve been trained to always do something in a particular way, it can be
difficult, if not impossible, to see things from a different perspective.

One way to circumvent such behavior is to actively hire team members
who don’t fit. Sometimes the most valuable employee can be the one who,
on the surface, appears highly unproductive, but who acts as a valuable
catalyst for change. It’s easy to find people who can follow instructions and
get the job done on time and within budget. Creative catalysts who can
disrupt innovation, however, are harder to find. If you find a perfect square
peg, hang on to them — they’ll more than repay you through their unique
insight and perspective.

By Christopher Murphy CHAPTER 13

485

Reverse the Hierarchy
The CEO tells the CFO who queries the COO who consults the CAO…
seriously, who invents these titles? While this conversation cycles perpetu-
ally, like a scene in Dilbert’s office9, the PA shrugs and gets the job done.

If you’re stuck at a creative impasse, one idea to force change is to re-
verse the hierarchy. Give control to those further down the pecking order.
Ask them how they would approach the task at hand — you just might be
surprised at the insight you receive. Wisdom does not always flow from
the top down and truly great leaders understand that. Switch roles from
time to time and experience life in another’s shoes. You’ll find the change
of perspective leads to new understanding.

Ban the Culture of “They”
If you’ve adopted fluid approaches to reconfiguring your team members,
embraced a culture of chance collisions and your team is working well,
the word “they” shouldn’t exist. Ban phrases like, “Oh, ‘they’ do that job.” If
everyone’s pulling together, there’s no reason for a “they” to exist. Who are
they anyway?

In his book The Art of Innovation, IDEO’s Tom Kelley describes a major
transportation company that had decided to “loosen up”. He writes:

‘They’ suggested there had been a lot of confusion and anxiety about what to
wear on ‘casual Fridays’. So ‘they’ formed a task force. ‘They’ issued a memo
saying, among other things, that if you were unsure about whether something
was appropriate [to wear] or not, it’s probably not.

And so it went on… Banish “they” and, whatever you do, don’t be like
them.

9 http://www.dilbert.com

486

CHAPTER 13 On Creative Spirit

Brief Encounter
We’ve all experienced that moment when bumping into someone in the
corridor, or running into them in a coffee shop, sparks a conversation that
brings together the different pieces that lead to something new. These
chance collisions — when, before you know it, you’re having a two-hour
conversation, conjuring up plans for world domination — are where magic
happens.

Companies like Google, Pixar and IDEO understand this all too well
and arrange their spaces to encourage these fortuitous interactions. Power
outlets in the stairwells, beanbags in open-plan spaces, seemingly un-
owned desks dotted around… these are all facilitators. Good ideas need
creative, chaotic environments; surroundings which aren’t based on strict
hierarchies; settings which embrace flexible and spontaneous workflows.

Getting the physical environment in which a team works right is a
challenge. It’s one that can, however, when approached intelligently, lead
to a multiplication and amplification of ideas. While different people will
hold different pieces of the jigsaw, truly insightful thinkers realize that
only when they come together is the picture formed. The best way to do
this is through shaping space to encourage brief encounters.

By designing workspaces to harness chance meetings and facilitate
new patterns of work, we can ensure our primed brains collide to create
unexpected ideas with potential. You don’t need to have the budget of
Google to put these pieces in place; you can instead foster a more freeform
office culture or perhaps — heaven forfend — permit your employees to
occasionally work off-campus.

It’s no surprise that we’re beginning to understand the creative poten-
tial of spaces to excite idea generation. After all, we now have no shortage
of companies to draw inspiration from. Whether it’s the giant atrium
of Pixar, which Steve Jobs insisted on to encourage chance collisions, or
Google’s ladder chutes in its New York City offices, designed to encourage
Googlers to “casually collide” throughout the working day (presumably on
the way down), we have a wealth of spaces to learn from.

By Christopher Murphy CHAPTER 13

487

Two smaller but no less potent spaces are the d.school at the Institute
of Design at Stanford, and Erik Spiekermann’s innovative model for a per-
fect studio, the “Centralized Office”, which channels all its staff purpose-
fully past each other every day. The d.school comprises a kind of flexible
space design that is slowly but surely influencing creative office designs
the world over. The Centralized Office is currently just a concept, Spieker-
mann’s idea of a perfect workspace — let’s hope that he puts his enthusi-
asm and passion into making it a reality. I, for one, would like to visit it.

The d.school
The d.school10 at the Institute of Design at Stanford has a simple manifesto,
which fits neatly on the back of a napkin11. It reads, simply:

Our intent:
•	 Create the best design school. Period.
•	 Prepare future innovators to be breakthrough thinkers & doers
•	 Use design thinking to inspire multidisciplinary teams
•	 Foster radical collaboration between students, faculty & industry
•	 Tackle big projects and use prototyping to discover new solutions

Founded in 2004 by David Kelley, (chairman and managing partner
of internationally respected multidisciplinary design firm IDEO) the
d.school’s approach to creative space design has informed creative spaces
the world over. The d.school started in a “decrepit one-room trailer on the
outskirts of Stanford’s campus.” Within a year it had to move to larger and
larger spaces as demand for its projects and classes grew.

The school’s attitude towards space as a fluid tool, designed to reshape
and mould collaborative working is summarized neatly in the school’s
thoughts on how to “Make a Space for Innovation”12:

10 http://j.mp/thedschool
11 http://j.mp/napkinmanifesto
12 http://dschool.stanford.edu/make-a-space-for-innovation/

488

CHAPTER 13 On Creative Spirit

The d.school[…] approaches space as a tool to affect student behavior in biasing
toward action[…] when manipulated intentionally, space can be used as a tool
to fuel the creative process by encouraging and discouraging specific behaviors/
actions and by creating venues for emotional expression and physical nego-
tiation. With this disposition, the d.school[…] explore[s] the use of artifacts,
arrangements and the actual physical space of a designed environment, to
support the role of space as a teacher.

Read that last phrase again: “to support the role of space as a teacher.”
At the d.school, space is now, rightly, a participant.

A space intended to ignite creativity, the d.school’s approach (which
was informed by its founder David Kelley’s previous experiments with
spatial design at IDEO) has filtered into other, larger creative business
environments, where space is seen increasingly as a critical tool in the pro-
cess of shaping ideas. Generous in spirit, the school has created a series of
guides that enable you to build your own tools to shape space. Encouraging
others to follow in their footsteps and create spaces that encourage open
exploration and facilitate chance collisions, the d.school offers the follow-
ing advice:

We think the most important factor in creating a space for innovation is to
start: start small, and start now. What we learned from a year in the trailer
formed the foundation of our approach to space; if we’d waited until we had
a big, new building, it would have been five years before the learning process
would have begun. Make your space!

The d.school’s open-minded and inventive approach to space, and how
it can be used as another tool in the ideas culture toolbox, manifests itself
through its students’ projects and their ongoing success. With its open-
source DIY guides and the book Make Space13 by Scott Doorley and Scott

13 http://dschool.stanford.edu/makespace/

By Christopher Murphy CHAPTER 13

489

Witthoft, its secrets aren’t, in fact, secrets. You have no excuses not to pick
up a copy and start to understand and unleash the creative potential of
space when used well. As the d.schoolers put it: “Make your space!”

The Centralized Office
If you’ve ever had the pleasure of hearing Erik Spiekermann speak, you’ll
know that not only is he an extremely engaging and hugely knowledgeable
speaker (entertainer is a far better term), but that he also has a vision for
the perfect studio.

Writing in Studio Culture: The Secret Life of the Graphic Design Studio, de-
sign critic Adrian Shaughnessy states:

Unusually among contemporary designers, Spiekermann has a sophisticated
set of theories relating to the layout, structure and management of design
studios. His theories have been extensively roadtested in the various creative
enterprises he has founded and run during a long career.

During the 1970s Spiekermann worked as a freelance designer in London before
returning to Berlin in 1979 where, with two partners, he founded MetaDesign.
In 2001 he left MetaDesign and started UDN (United Designers Network), with
offices in Berlin, London and San Francisco. Since January 2009 he has been a
director of Edenspiekermann, which employs over 100 people and has offices in
Berlin and Amsterdam.

Spiekermann’s Centralized Office collects his lifetime of experience
running design agencies both large and small, and proposes a design for
the perfect studio. The design solves numerous problems that offices rou-
tinely present, namely: different teams are all too often separated; chance
collisions rarely occur; management hierarchies often (intentionally or un-
intentionally) lead to physical separation by rank; and many, many more.

490

CHAPTER 13 On Creative Spirit

FormFiftyFive has a wonderful video “Erik Spiekermann on the
Centralised Office”14 in which Spiekermann, in typically robust man-
ner, follows the train of thought that lead him to his studio vision, while
sketching his ideas, giving his vision form. I urge you to take ten minutes
to watch it.

So, what does the office look like?
The Centralized Office is round, made up of three or four concentric

circles. At its center lies a reception area, where all employees and visitors
enter. By channeling everyone — employees at all levels as well as clients
— through this central area, chance collisions are encouraged. Further
prompting these collisions, the center of the office, its beating heart, is
where “all the machinery is,” as Spiekermann puts it. Chief among this ma-
chinery are the computer printers and the espresso machine. (The espresso
machine is something Spiekermann feels strongly about — “Always invest
in the most expensive espresso machine you can buy!”. Good coffee will
always get you up from your desk.)

Siting printers and coffee at the heart of the Centralized Office is a
careful piece of strategic thinking, encouraging flow from the periphery
of the office to its center and back again. Like Pixar’s studio was creatively
envisioned to “promote encounters and unplanned collaborations,” the
core of Spiekermann’s vision serves a similar purpose, to drive everyone
together.

Walter Isaacson’s biography of Jobs echoes this vision. Isaacson states:

Jobs believed that, “If a building doesn’t encourage [collaboration], you’ll lose a
lot of innovation and the magic that’s sparked by serendipity. So we designed
the building to make people get out of their offices and mingle in the central
atrium with people they might not otherwise see.”

Brad Bird, director of “The Incredibles”, says:

14 http://j.mp/thecentralisedoffice

By Christopher Murphy CHAPTER 13

491

The atrium initially might seem like a waste of space, but Steve realized that
when people run into each other, when they make eye contact, things happen.

This understanding of facilitating brief encounters is further enhanced
in the Centralized Office through the careful construction of its walls.
Despite its concentric structure, the office’s walls do not extend up to the
ceiling. As Spiekermann puts it: “The walls are only shoulder height. If
a secretary wants to see if I’m in the outer ring, she can get up and look
across and see if I’m actually there.”

It can’t be a coincidence that these spaces, from the smaller spaces of the
d.school and the Centralized Office, to the larger spaces of Apple and Pixar,
encourage idea generation and idea exchange in the very fabric of their
design. These are true idea factories, intended to nurture that most magical
of elusive elements, the creative spark. By building spaces which encour-
age chance collisions we can finally pull together the three facets of the
idea-generation process, nourishing and feeding the creative spirit, unlock-
ing the ideas that lie dormant inside us. Opening the floodgates, if you will.

Strategies
I’d like to suggest three techniques you can adopt to rethink how spaces
are organized to contribute to an ideas culture.

1.	 Café culture
2.	 The Lego office
3.	 Free space

Café Culture
Break away, get out a little more and lose those punch cards. Marissa
Mayer may have banned teleworking at Yahoo! (while single-handedly re-
designing the company’s branding), but that doesn’t mean you can’t loosen
the ties of the workplace a little.

492

CHAPTER 13 On Creative Spirit

By arranging the occasional off-campus meeting with co-workers, you
get away from your desk and unbuckle your thinking a little. Not only is
this often a much-needed exercise, but it allows you to talk away from your
space and break free a little. It’s no surprise that we hear of startups that
germinated in coffee shops; café culture not only provides free Wi-Fi, but
also provides an environment away from the ever-present micro-managers
who stifle creativity.

The Lego Office
Why limit yourself to the office that came off-plan, with it’s off-white walls
and generic carpet, when you can build your own office, large or small, as
you see fit? Google understands that employees aren’t one-size-fits-all by
providing the building blocks — or Bloxes — to create the perfect office or
ad hoc team-working spaces.

Bloxes15, interlocking cardboard boxes designed to build flexible work-
spaces, are the invention of Jef Raskin (who started the Macintosh project
at Apple). They might not keep out the rain, but they doubtless keep out
boredom.

Free Space
Resist the urge to plan every square inch of your office. Allow corners, or
other open-plan spaces, to remain unfilled, with easily movable screens or
whiteboards, where ad hoc teams can escape from their desks and col-
laborate. No one likes a cubicle farm and you’re doing your employees no
favours if you build one. Free up office space and use it more flexibly; your
ideas culture will improve and your team will thank you.

15 http://j.mp/cardboardcreativity

By Christopher Murphy CHAPTER 13

493

Conclusion
Ideas don’t materialize in a vacuum. Without constant input, your outputs
will inevitably remain the same. As such, it’s essential to maintain an
inquisitive mind, ensuring a steady flow of new triggers and stimuli that
enable your thinking to evolve. Widen the idea gene pool and you’ll deepen
the well of ideas you are capable of creating.

Similarly, the best ideas are more often than not the result of teams
that aren’t afraid to reconfigure periodically (either from project to proj-
ect or, if a creative dead end has been reached, mid-project, to help shake
things up). Consider the role of conductors to orchestrate teams, ensuring
they deliver more than the sum of their parts. If it works for companies
like IDEO, which routinely reshape teams to keep inputs varied, it can
work for you.

Finally, consider workspaces. You don’t need to have the multi-billion
dollar budget pouring in to Apple’s new Cupertino campus, but that doesn’t
mean you can’t put a little thought into how your spaces facilitate chance
collisions. At the simplest level, it can just be a change of scenery, work-
ing from a coffee shop, or even the park. A change is as good as a rest and
sometimes just looking at things from a different perspective — literally —
can make all the difference.

Generating ideas isn’t difficult, and if you follow the strategies out-
lined above it’s very easy to stimulate a culture of ideas. All you need to
do is place the pieces in an intelligent manner. Idea factories and creative
idea spaces are easy to build if approached strategically. The fact that they
work has been demonstrated over and over: Thomas Edison proved it at
his Menlo Park Laboratory in the late 19th century; and Steve Jobs amply
underscored that thinking in the early 21st century.

494

CHAPTER 13 On Creative Spirit

Allow yourself the latitude to:

1.	 Step away from the computer from time to time to prime the brain.
2.	 Choose a conductor to orchestrate everything (and don’t be afraid to

mix this role up from time to time).
3.	 Encourage chance collisions between fertile minds, by creating spaces

that allow for serendipitous meetings.

Adopt these three strategies and interweave them and you’ll find the rest
of the pieces fall into place. It’s easy — all it takes is a little hard work.

ABOUT THE AUTHOR
Christopher Murphy is a writer, designer and educator
based in Belfast. Creative Review described him as,
“a William Morris for the digital age,” an epithet he
aspires to fulfil, daily. He writes for Five Simple Steps,
8 Faces, The Manual and the typography journal Glyph.
An internationally respected speaker, he is regularly
invited to talk on a range of topics, including: Design
Education; Exploring How Design is Changing; and
Growing Idea Cultures. He has spoken at conferences
worldwide, including: Build, New Adventures and at
Brooklyn Beta.

20% rule
60fps

A
adaptive components
AjaxInclude
anchoring
antialiasing
architecture
asynchronous UI
atomic design
automation

B
baseline grid
battery life
BEM
blank slate

C
canned responses
centralized office
CMS
Chrome developer tools
code conventions
code organization
code smell
cognitive bias
composited bayer borders
content audit
content planning
continuum of experience
compound selector
core use case
CSS architecture
CSS IDs
CSS selectors
CSS specificity

D
dashes
DDoS

debugging
deoptimization
diagnosing slow paint times
display: none
DNS
documentation
DOM manipulation

E
empathy
end client problem

F
feature requests
firewall
font delivery
forced synchronous layouts
forking
FOUT
FPS counter

G
garbage collector
governance
grep

H
hardware (GPU) acceleration
HTML5
HTTP

I
idea generation
informed simplicity

J
jank-free experience
jQuery Core Style guidelines

L
latency
layer cake

INDEX

126
183

242
157

443
324

61
141

132, 245
44

338
97, 186

40
80

419
489

368, 398
196

37, 53
23, 336

52
459
193
375
379
222

34
403

61
32
31
36

313
270

294
182
189
156
257
66

185

218, 370
408

402
268
319
202

74
339
194

181ff.
389

44, 271

187, 193
78

279

473
380

184
54

130, 180
223

layout thrashing
lazy loading
legacy code
low frame rate

M
macrotypography
minimizing support
molten leading
MVC frameworks

N
network address translation
network performance
normalize.css

O
OOCSS
optimistic interface
optimizeLegibility
optimizeSpeed
OS rendering engine

P
paint flashing
painting
pattern library
performance budget
pixel density
position: fixed
preloading content
pricing model
primed brain
progressive enhancement

Q
querySelector

R
refactoring
remote debugging
rendering jank

rendering performance issues
repaints
requestAnimationFrame
Responsive Web design
Responsive Web typography
reverse-port forwarding
rule set

S
Sass
scrolling
security
semantic layering
semantics
shell script
Single Responsibility Principle
SMACSS
Smashing Book #5
SSH
subsetting
support tools

T
target
telnet
test-driven development
text-size-adjust
theory of mind
third-party components
transform
translateZ

U
UI construction flow
universal typography

V
video

W
Web Font Loader
white space hierarchy

INDEX

182, 202
106, 231

76
184

330
415
346
109

263
153, 180

160

22, 64
140
324
324
320

209
194
241
124
358
198
142
412
470

88, 153, 220

100

79f.
195
183

188, 207
191f.

97, 185
149f.

316
196
32

29
189, 324

295
88
17

265
37

65f.
2014

267
340
417

90
269

78
326
452
70f.

97
188, 193

228
308

99, 169

339
344

	TOC I
	TOC II
	Preface
	Modern CSS Architecture
	Future-Friendly Code
	The Vanilla Web Diet
	Culture of Performance
	Robust, Responsible, Responsive Web Design
	Mobile Web Rendering Issues
	Designing Adaptive Interfaces
	How to Fix the Web
	Web Typography
	Content Strategy
	SupportingYour Product
	Design of People
	On Creative Spirit
	Index

