

Web	Animation	using	JavaScript
DEVELOP	AND	DESIGN

Julian	Shapiro

WWW.PEACHPIT.COM

http://WWW.PEACHPIT.COM

Web	Animation	using	JavaScript:	Develop	and	Design
Julian	Shapiro

Peachpit	Press
www.peachpit.com

To	report	errors,	please	send	a	note	to	errata@peachpit.com
Peachpit	Press	is	a	division	of	Pearson	Education.

Copyright	2015	by	Julian	Shapiro

Editor:	Victor	Gavenda
Development	editor:	Margaret	S.	Anderson
Project	manager:	Margaret	S.	Anderson
Technical	editor:	Jay	Blanchard
Copyeditor:	Gretchen	Dykstra
Production	editor:	David	Van	Ness
Proofreader:	Patricia	Pane
Compositor:	Danielle	Foster
Indexer:	Jack	Lewis
Cover	design:	Aren	Straiger
Interior	design:	Mimi	Heft

Notice	of	Rights

All	rights	reserved.	No	part	of	this	book	may	be	reproduced	or	transmitted	in	any	form	by
any	means,	electronic,	mechanical,	photocopying,	recording,	or	otherwise,	without	the
prior	written	permission	of	the	publisher.	For	information	on	getting	permission	for
reprints	and	excerpts,	contact	permissions@peachpit.com.

Notice	of	Liability

The	information	in	this	book	is	distributed	on	an	“As	Is”	basis,	without	warranty.	While
every	precaution	has	been	taken	in	the	preparation	of	the	book,	neither	the	author	nor
Peachpit	shall	have	any	liability	to	any	person	or	entity	with	respect	to	any	loss	or	damage
caused	or	alleged	to	be	caused	directly	or	indirectly	by	the	instructions	contained	in	this
book	or	by	the	computer	software	and	hardware	products	described	in	it.

Trademarks

Many	of	the	designations	used	by	manufacturers	and	sellers	to	distinguish	their	products
are	claimed	as	trademarks.	Where	those	designations	appear	in	this	book,	and	Peachpit
was	aware	of	a	trademark	claim,	the	designations	appear	as	requested	by	the	owner	of	the
trademark.	All	other	product	names	and	services	identified	throughout	this	book	are	used
in	editorial	fashion	only	and	for	the	benefit	of	such	companies	with	no	intention	of
infringement	of	the	trademark.	No	such	use,	or	the	use	of	any	trade	name,	is	intended	to
convey	endorsement	or	other	affiliation	with	this	book.

ISBN-13:	978-0-134-09666-7
ISBN-10:								0-134-09666-5

9	8	7	6	5	4	3	2	1

http://www.peachpit.com
mailto:errata@peachpit.com
mailto:permissions@peachpit.com

Printed	and	bound	in	the	United	States	of	America

I	dedicate	this	book	to	people	who	play	Counter-Strike.
And	to	people	who	like	the	show	Rick	and	Morty.

Acknowledgements

I	would	like	to	thank	Yehonatan	Daniv	for	providing	support	to	Velocity’s	users	on
GitHub,	Anand	Sharma	for	regularly	inspiring	me	with	his	motion	design	work,	and	David
DeSandro	for	writing	this	book’s	foreword.	I’d	also	like	to	thank	Mat	Vogels,	Harrison
Shoff,	Adam	Singer,	David	Caplan,	and	Murat	Ayfer	for	reviewing	drafts	of	this	book.

Contents

Foreword

Introduction

CHAPTER	1	ADVANTAGES	OF	JAVASCRIPT	ANIMATION

JavaScript	vs.	CSS	animation

Great	performance

Features

Page	scrolling

Animation	reversal

Physics-based	motion

Maintainable	workflows

Wrapping	up

CHAPTER	2	ANIMATING	WITH	VELOCITY.JS

Types	of	JavaScript	animation	libraries

Installing	jQuery	and	Velocity

Using	Velocity:	Basics

Velocity	and	jQuery

Arguments

Properties

Values

Chaining

Using	Velocity:	Options

Duration

Easing

Begin	and	Complete

Loop

Delay

Display	and	Visibility

Using	Velocity:	Additional	features

Reverse	Command

Scrolling

Colors

Transforms

Using	Velocity:	Without	jQuery	(intermediate)

Wrapping	up

CHAPTER	3	MOTION	DESIGN	THEORY

Motion	design	improves	the	user	experience

Utility

Borrow	conventions

Preview	outcomes

Distraction	over	boredom

Leverage	primal	instincts

Make	interactions	visceral

Reflect	gravitas

Reduce	concurrency

Reduce	variety

Mirror	animations

Limit	durations

Limit	animations

Elegance

Don’t	be	frivolous

Your	one	opportunity	to	be	frivolous

Consider	personality

Go	beyond	opacity

Break	animations	into	steps

Stagger	animations

Flow	from	the	triggering	element

Use	graphics

Wrapping	up

CHAPTER	4	ANIMATION	WORKFLOW

CSS	animation	workflow

Issues	with	CSS

When	CSS	makes	sense

Code	technique:	Separate	styling	from	logic

Standard	approach

Optimized	approach

Code	technique:	Organize	sequenced	animations

Standard	approach

Optimized	approach

Code	technique:	Package	your	effects

Standard	approach

Optimized	approach

Design	techniques

Timing	multipliers

Use	Velocity	Motion	Designer

Wrapping	up

CHAPTER	5	ANIMATING	TEXT

The	standard	approach	to	text	animation

Preparing	text	elements	for	animation	with	Blast.js

How	Blast.js	works

Installation

Option:	Delimiter

Option:	customClass

Option:	generateValueClass

Option:	Tag

Command:	Reverse

Transitioning	text	into	or	out	of	view

Replacing	existing	text

Staggering

Transitioning	text	out	of	view

Transitioning	individual	text	parts

Transitioning	text	fancifully

Textual	flourishes

Wrapping	up

CHAPTER	6	SCALABLE	VECTOR	GRAPHICS	PRIMER

Creating	images	through	code

SVG	markup

SVG	styling

Support	for	SVG

SVG	animation

Passing	in	properties

Presentational	attributes

Positional	attributes	vs.	transforms

Implementation	example:	Animated	logos

Wrapping	up

CHAPTER	7	ANIMATION	PERFORMANCE

The	reality	of	web	performance

Technique:	Remove	layout	thrashing

Problem

Solution

jQuery	Element	Objects

Force-feeding

Technique:	Batch	DOM	additions

Problem

Solution

Technique:	Avoid	affecting	neighboring	elements

Problem

Solution

Technique:	Reduce	concurrent	load

Problem

Solution

Technique:	Don’t	continuously	react	to	scroll	and	resize	events

Problem

Solution

Technique:	Reduce	image	rendering

Problem

Solution

Sneaky	images

Technique:	Degrade	animations	on	older	browsers

Problem

Solution

Find	your	performance	threshold	early	on

Wrapping	up

CHAPTER	8	ANIMATION	DEMO

Behavior

Code	structure

Code	section:	Animation	setup

Code	section:	Circle	creation

Code	section:	Container	animation

3D	CSS	primer

Properties

Options

Code	section:	Circle	animation

Value	functions

Opacity	animation

Translation	animation

Reverse	command

Wrapping	up

Index

Foreword

It’s	a	special	time	when	a	developer	first	discovers	jQuery’s	.animate().	I	remember
trying	to	animate	any	part	of	the	page	that	wasn’t	bolted	to	the	main	content.	I	created
accordions,	fly-out	menus,	hover	effects,	scroll	transitions,	magical	reveals,	and	parallax
sliders.	Turning	my	websites	from	cold,	static	documents	into	moving,	visual	experiences
felt	like	I	was	reaching	another	level	as	a	web	designer.	But	it	was	just	bells	and	whistles.	I
realize	now	that	for	all	the	animation	I	added,	I	hadn’t	actually	improved	the	user
experience	of	my	websites.

All	the	same,	it	was	thrilling.	So	what	makes	animation	so	exciting?

My	apartment	looks	over	downtown	Brooklyn.	I	see	people	walk	down	the	street.
Plumes	from	smokestacks	billow	up.	Pigeons	flutter	to	perch	on	a	ledge.	A	construction
crane	raises	a	section	of	a	building.	A	single,	heart-shaped	balloon	floats	up	into	the
Brooklyn	sky	(corny,	I	know,	but	I	literally	saw	this	happen	twice).	Cars	drive	over	the
Williamsburg	Bridge.	Clouds	pass	overhead.

The	world	is	in	motion.

This	is	how	you	expect	the	universe	to	work.	Things	move.	Like	the	movements	outside
my	window,	each	one	is	a	one-sentence	story.	Together	they	tell	the	larger	story	of	what	is
happening.

Yet	this	isn’t	how	digital	interfaces	work.	Those	little	stories	are	missing.	When	things
change,	you	have	to	fill	in	the	story	for	yourself.	When	you	press	the	Next	button	at	an
ATM,	the	screen	suddenly	changes.	Did	it	move	forward	successfully?	Was	there	an	error?
You	have	to	read	the	screen	again	to	interpret	the	results	of	your	action.	Utilizing	motion
removes	this	leap	of	understanding	between	interactions.	Motion	inherently	communicates
what	has	changed.	It’s	like	writing	tiny	stories	between	states.

When	a	slide	transition	takes	you	to	the	next	screen,	animation	helps	you	better
understand	what	just	happened.	Wielding	this	power	is	what	makes	animation	so	thrilling.
Like	layout,	color,	and	typography,	animation	helps	you	shape	and	direct	the	user
experience.	Animation	is	more	than	just	making	things	move.	It’s	designing	more
effectively,	and	doing	it	thoughtfully.

Unfortunately,	in	the	history	of	web	animation,	thoughtfulness	hasn’t	always	been	the
highest	priority.	As	developers,	we’ve	used	Flash,	animated	GIFs,	Java	applets,	marquee
tags,	and,	more	recently,	CSS,	JavaScript,	and	SVG	to	create	animation	that’s	been,	at
best,	a	level	of	polish	or,	at	worst,	a	gimmick.	The	idea	of	creating	animation	that’s	both
high-performance	and	user-friendly	is	relatively	new.

So	it’s	a	good	thing	you	have	this	book	in	front	of	you.	Julian	Shapiro	is	one	of	the
principal	experts	on	animation	on	the	web.	In	creating	and	supporting	Velocity.js,	he	has
developed	an	intimate	knowledge	of	all	the	quirks	and	advantages	of	using	motion	on
websites.	Web	Animation	using	JavaScript	will	give	you	not	only	the	technical	know-how
required	to	implement	animation	in	your	websites,	but,	more	importantly,	the	insights
you’ll	need	to	use	animation	effectively	and	craft	compelling	user	experiences.

Animation	libraries	and	technologies	have	made	motion	design	more	accessible	than
ever.	But	not	every	developer	abides	by	best	practices.	The	past	couple	of	years	have	seen
several	trendy	anti-patterns	come	and	go.	Scroll	behavior	has	been	hijacked.	Mobile
navigation	has	been	pushed	into	menus	accessible	only	via	gestures.	While	adding
animation	is	within	the	grasp	of	anyone	who	stumbles	across	.animate(),	utilizing	it	to
improve	the	user	experience	is	one	of	the	hallmarks	of	a	dedicated	developer.	This	book
will	help	you	become	one	of	them.

David	DeSandro
February	2015
Brooklyn,	New	York

David	DeSandro	is	the	founder	of	Metafizzy
and	author/developer	of	Masonry	and	Isotope.

Introduction

In	the	early	days	of	the	web,	animation	was	primarily	used	by	novice	developers	as	a
last-ditch	effort	to	call	attention	to	important	parts	of	a	page.	And	even	if	they	wanted
animation	to	transcend	its	niche,	it	couldn’t:	browsers	(and	computers)	were	simply	too
slow	to	deliver	smooth	web-based	animation.

We’ve	come	a	long	way	since	the	days	of	flashing	banner	ads,	scrolling	news	tickers,
and	Flash	intro	videos.	Today,	the	stunning	motion	design	of	iOS	and	Android
dramatically	improves	the	user	experience—instead	of	detracting	from	it.	Developers	of
the	best	sites	and	apps	leverage	animation	to	improve	the	feel	and	intuitiveness	of	their
user	interfaces.	Animation’s	rise	to	relevancy	isn’t	just	a	by-product	of	improved
processing	power;	it	reflects	a	better	appreciation	for	best	practices	within	the	web
development	community.	The	tools	you	use	to	make	a	website	are	now	considered	less
important	than	the	quality	of	the	resulting	user	experience.	As	obvious	as	this	seems,	it
wasn’t	always	the	case.

So,	what	makes	animation	in	particular	so	useful?	Whether	it’s	transitioning	between
chunks	of	content,	designing	intricate	loading	sequences,	or	alerting	the	user	what	to	do
next,	animation	complements	text	and	layout	to	reinforce	your	site’s	intended	behavior,
personality,	and	visual	sophistication.	Does	your	content	bounce	into	view	in	a	friendly
way,	or	does	it	whip	across	the	screen?	This	is	the	domain	of	motion	design,	and	the
decisions	you	make	will	establish	the	transcendent	feeling	of	your	app.

When	users	recommend	your	app	to	others,	they’ll	often	try	to	describe	it	with	words
like	“sleek”	or	“polished.”	What	they	don’t	realize	is	that	they’re	mostly	referring	to	the
motion	design	work	that’s	gone	into	the	interface.	This	inability	of	the	layman	to	make	the
distinction	is	precisely	what	great	user	interface	(UI)	designers	strive	for:	animations	that
reinforce	the	interface’s	objectives	but	don’t	otherwise	divert	the	user’s	attention.

This	book	provides	you	with	the	foundation	necessary	to	implement	animation
confidently	and	in	a	way	that’s	both	technically	maintainable	and	visually	impactful.
Throughout,	it	considers	the	balance	between	enriching	a	page	with	motion	design	and
avoiding	unnecessary	flourishes.

Why	is	all	of	this	so	important?	Why	is	it	worth	your	time	to	perfect	your	transitions
and	easing	combinations?	For	the	same	reason	that	designers	spend	hours	perfecting	their
font	and	color	combinations:	refined	products	simply	feel	superior.	They	leave	users
whispering	to	themselves,	“Wow,	this	is	cool,”	right	before	they	turn	to	a	friend	and
exclaim,	“You	gotta	see	this!”

	Note

If	you’re	unfamiliar	with	basic	CSS	properties,	you	should	pick	up	an
introductory	HTML	and	CSS	book	before	reading	this	one.

Chapter	1.	Advantages	of	JavaScript	Animation

In	this	chapter,	we	compare	JavaScript	to	CSS	for	the	purposes	of	animation,	and
introduce	the	unique	features	and	workflow	advantages	provided	by	JavaScript.

In	short,	we	provide	the	context	needed	to	help	you	understand	everything	you’ll	learn
about	JavaScript	in	this	book.

JavaScript	vs.	CSS	animation
There’s	a	false	belief	in	the	web	development	community	that	CSS	animation	is	the	only
performant	way	to	animate	on	the	web.	This	misconception	has	led	many	developers	to
abandon	JavaScript-based	animation	altogether,	forcing	them	to

	Manage	the	entirety	of	user	interface	(UI)	interaction	within	style	sheets,	which	can
quickly	become	difficult	to	maintain.

	Sacrifice	real-time	animation	timing	control,	which	is	achievable	only	within
JavaScript.	(Timing	control	is	necessary	for	designing	animation	into	UIs	that
respond	to	a	user’s	drag	input,	like	those	found	in	mobile	apps.)

	Forgo	physics-based	motion	design,	which	allows	elements	on	a	webpage	to	behave
like	objects	in	the	real	world.

	Lose	support	for	older	browser	versions,	which	remain	popular	throughout	the
world.

JavaScript-based	animation	is	actually	often	as	fast	as	CSS-based	animation.	CSS
animation	is	mistakenly	considered	to	have	a	significant	leg	up	because	it’s	most	often
compared	to	jQuery’s	animation	features,	which	are	in	fact	very	slow.	However,
alternative	JavaScript	animation	libraries	that	bypass	jQuery	entirely	deliver	fantastic
performance	by	streamlining	their	interaction	with	a	page.

	Note

One	library	of	note,	which	we’ll	be	using	throughout	this	book,	is	Velocity.js.
It’s	lightweight	yet	incredibly	feature	rich,	and	it	mirrors	jQuery’s	animation
syntax	to	help	eliminate	the	learning	curve.

Of	course,	CSS	is	perfectly	suited	for	hover	state	animations	(turning	a	link	blue	when
the	mouse	is	positioned	over	it,	for	example),	which	are	very	often	the	extent	to	which
basic	webpages	include	animation.	CSS	transitions	fit	seamlessly	into	existing	stylesheets,
allowing	developers	to	avoid	bloating	their	pages	with	unnecessary	JavaScript	libraries.
What’s	more,	CSS	animation	delivers	blazing	performance	out	of	the	box.

But	this	book	will	demonstrate	why	JavaScript	is	often	the	superior	choice	for
animations	beyond	simple	hover	state	animations.

Great	performance
JavaScript	and	jQuery	are	falsely	conflated.	JavaScript	animation	is	fast.	jQuery	slows	it
down.	Despite	jQuery	being	tremendously	powerful,	it	wasn’t	designed	to	be	a	high-
performance	animation	engine.	It	has	no	mechanism	to	avoid	“layout	thrashing,”	in	which
a	browser	becomes	overtasked	with	layout	processing	work	while	it’s	in	the	process	of
animating.

Further,	because	jQuery’s	code	base	serves	many	purposes	beyond	animation,	its
memory	consumption	triggers	garbage	collections	within	the	browser,	causing	animations
to	stutter	unpredictably.	Lastly,	due	to	decisions	made	by	the	jQuery	team	in	the	noble
pursuit	of	helping	novice	users	avoid	sabotaging	their	UI	with	bad	code,	jQuery	forgoes
the	recommended	practice	of	using	the	requestAnimationFrame	function,	which
browsers	make	available	to	drastically	improve	frame	rates	for	web	animation.

JavaScript	animation	libraries	that	bypass	jQuery	entirely	deliver	fantastic	performance
by	streamlining	their	interaction	with	a	page.	One	library	of	note,	which	we’ll	be	using
throughout	this	book,	is	Velocity.js.	It’s	lightweight,	yet	incredibly	feature	rich,	and	it
mirrors	jQuery’s	animation	syntax	to	help	eliminate	the	learning	curve.

This	is	a	topic	we’ll	explore	in-depth	in	Chapter	7,	“Animation	Performance.”	By
learning	the	nuances	of	browser	rendering	performance,	you’ll	gain	a	foundation	on	which
to	build	reliable	animations	for	all	browsers	and	devices,	regardless	of	their	individual
processing	power.

Features
Speed	is,	of	course,	not	the	only	reason	to	use	JavaScript—its	abundance	of	features	is
equally	as	important.	Let’s	run	through	a	few	of	the	notable	animation	features	that	are
exclusive	to	JavaScript.

Page	scrolling
Page	scrolling	is	one	of	the	most	popular	uses	for	JavaScript-based	animation.	A	recent
trend	in	web	design	is	to	create	long	webpages	that	animate	new	pieces	of	content	into
view	as	the	page	is	scrolled	down.

JavaScript	animation	libraries,	such	as	Velocity,	provide	simple	functions	for	scrolling
elements	into	view:
Click	here	to	view	code	image

$element.velocity(“scroll”,	1000);

This	scrolls	the	browser	toward	the	top	edge	of	$element	over	a	duration	of	1000ms
using	Velocity’s	"scroll"	command.	Notice	that	Velocity’s	syntax	is	nearly	identical	to
jQuery’s	$.animate()	function,	which	is	covered	later	in	this	chapter.

Animation	reversal
Animation	reversal	is	a	useful	shorthand	for	undoing	an	element’s	previous	animation.	By
invoking	the	reverse	command,	you’re	instructing	an	element	to	animate	back	to	its	values
prior	to	its	last	animation.	A	common	use	for	reversal	is	animating	a	modal	dialogue	into
view,	then	hiding	it	when	the	user	presses	to	close	it.

An	unoptimized	reversal	workflow	consists	of	keeping	track	of	the	specific	properties
that	were	last	animated	on	each	element	that	may	later	be	subjected	to	reversal.
Unfortunately,	keeping	track	of	prior	animation	states	in	UI	code	quickly	becomes
unwieldy.	In	contrast,	with	the	reverse	command,	Velocity	remembers	everything	for
you.

Mimicking	the	syntax	of	Velocity’s	scroll	command,	the	reverse	command	is
called	by	passing	"reverse"	as	Velocity’s	first	argument:
Click	here	to	view	code	image

//	First	animation:	Animate	an	element’s	opacity	toward	0

$element.velocity({	opacity:	0	});

//	Second	animation:	Animate	back	toward	the	starting	opacity	value	of	1

$element.velocity(“reverse”);

When	it	comes	to	JavaScript’s	animation	timing	control,	there’s	more	than	just	reversal:
JavaScript	also	allows	you	to	globally	slow	down	or	speed	up	all	JavaScript	animations
currently	running.	You’ll	learn	more	about	this	powerful	feature	in	Chapter	4,	“Animation
Workflow.”

Physics-based	motion
The	utility	of	physics	in	motion	design	reflects	the	core	principle	of	what	makes	for	a
great	user	experience	(UX)	on	your	site:	interfaces	that	flow	naturally	from	the	user’s
input.	Put	another	way,	interfaces	that	pay	tribute	to	how	objects	move	in	the	real	world.

As	a	simple	yet	powerful	introduction	to	physics-based	motion	Velocity	offers	an	easing
type	based	on	spring	physics.	(We’ll	fully	explore	the	concept	of	easing	in	the	next
chapter.)	With	typical	easing	options,	you	pass	in	a	string	corresponding	to	a	predefined
easing	curve	(for	example,	"ease"	or	"easeInOutSine").	The	spring	physics	easing
type,	in	contrast,	accepts	a	two-item	array.
Click	here	to	view	code	image

//	Animate	an	element’s	width	to	“500px”	using	a	spring	physics	easing	of	500

tensions	units	and	20	friction	units

$element.velocity({	width:	“500px”	},	{	easing:	[500,	20]	});

The	first	item	in	the	easing	array	represents	the	tension	of	the	simulated	spring	and	the
second	item	represents	friction.	A	higher	tension	value	increases	the	total	speed	and
bounciness	of	the	animation.	A	lower	friction	value	increases	the	vibration	speed	at	the	tail
end	of	the	animation.	By	tweaking	these	values,	you	can	give	each	animation	on	your	page
a	unique	movement	profile,	which	helps	to	reinforce	the	differentiation	between	their
individual	behaviors.

Maintainable	workflows
Designing	animation	is	an	experimental	process	that	requires	repeated	tweaking	of	timing
and	easing	values	to	achieve	a	uniform	feel	across	the	page.	Inevitably,	just	when	you’ve
perfected	your	design,	a	client	will	request	significant	changes.	In	these	situations,
maintainable	code	becomes	critical.

The	JavaScript-based	solution	to	this	workflow	problem	is	wonderfully	elegant,	and	it’s
covered	in	depth	in	Chapter	4,	“Animation	Workflow.”	For	now,	here’s	the	short
explanation:	There	are	techniques	for	chaining	together	individual	JavaScript	animations
—all	with	differing	durations,	easings,	and	so	on—such	that	the	timing	of	one	animation
does	not	affect	another.	This	means	you	can	change	individual	durations	without	redoing
math	and	you	can	go	back	and	easily	set	animations	to	run	either	in	parallel	or
consecutively.

Wrapping	up
When	designing	animations	in	CSS,	you’re	inherently	limited	to	the	features	that	the	CSS
specification	provides.	In	JavaScript,	because	of	the	very	nature	of	programming
languages,	third-party	libraries	have	an	infinite	amount	of	logical	control	over	motion
design.	Animation	engines	leverage	this	to	provide	powerful	features	that	drastically
improve	workflow	and	expand	the	possibilities	of	interactive	motion	design.	That’s	what
this	book	is	all	about:	Designing	beautiful	animations	as	efficiently	as	possible.

The	next	chapter	explains	how	to	use	this	book’s	JavaScript	animation	engine	of	choice:
Velocity.js.	In	mastering	Velocity.js,	you’ll	understand	how	to	leverage	the	features	we’ve
just	introduced,	and	many	more.

Chapter	2.	Animating	with	Velocity.js

In	this	chapter,	you’ll	learn	the	features,	commands,	and	options	provided	by	Velocity.js.	If
you’re	familiar	with	jQuery-based	animation,	you	already	know	how	to	use	Velocity;	it
functions	nearly	identically	to	jQuery’s	$.animate()	function.

But	regardless	of	your	existing	knowledge,	the	methodical	feature	breakdowns	in	this
chapter	will	introduce	you	to	the	nuances	of	animation	engine	behavior.	Mastering	these
nuances	will	help	take	you	from	novice	to	professional.	Even	if	you’re	already	intimately
familiar	with	JavaScript	animation	and	Velocity.js,	do	yourself	a	favor	and	skim	this
chapter.	You’re	bound	to	discover	something	you	didn’t	realize	you	could	do.

Types	of	JavaScript	animation	libraries
There	are	many	types	of	JavaScript	animation	libraries.	Some	replicate	physics
interactions	in	the	browser.	Some	make	WebGL	and	Canvas	animations	easier	to	maintain.
Some	focus	on	SVG	animation.	Some	improve	UI	animation—this	last	type	is	the	focus	of
this	book.

The	two	popular	UI	animation	libraries	are	GSAP	(download	it	at	GreenSock.com)	and
Velocity	(download	it	at	VelocityJS.org).	You’ll	work	with	Velocity	throughout	this	book
since	it’s	free	under	the	MIT	license	(GSAP	requires	licensing	fees	depending	on	a	site’s
business	model),	plus	it	boasts	incredibly	powerful	features	for	writing	clean	and
expressive	animation	code.	It’s	in	use	on	many	popular	sites,	including	Tumblr,	Gap,	and
Scribd.

Oh,	and	it	was	created	by	the	author	of	this	book!

Installing	jQuery	and	Velocity
You	can	download	jQuery	from	jQuery.com,	and	Velocity	from	VelocityJS.org.	To	use
them	on	your	page—as	with	any	JavaScript	library—simply	include	<script>
</script>	tags	pointing	toward	the	respective	libraries	before	your	page’s	</body>
tag.	If	you’re	linking	to	pre-hosted	versions	of	the	libraries	(as	opposed	to	local	copies	on
your	computer),	your	code	might	look	like	this:
Click	here	to	view	code	image

<html>

			<head>My	Page</head>

			<body>

						My	content.

						<script	src=”//code.jquery.com/jquery-2.1.1.min.js”></script>

						<script	src=”//cdn.jsdelivr.net/velocity/1.1.0/velocity.min.js”>

</script>

			</body>

</html>

When	using	jQuery	and	Velocity	together,	include	jQuery	before	Velocity.

That’s	it!	Now	you’re	ready	to	roll.

http://GreenSock.com
http://VelocityJS.org
http://jQuery.com
http://VelocityJS.org

Using	Velocity:	Basics
To	get	oriented	to	Velocity,	we’ll	start	with	the	basic	components:	arguments,	properties,
values,	and	chaining.	Since	jQuery	is	so	ubiquitous,	it	is	also	important	to	look	at	the
relationship	between	Velocity	and	jQuery.

Velocity	and	jQuery
Velocity	functions	independently	of	jQuery,	but	the	two	can	be	used	in	combination.	It’s
often	preferable	to	do	so	to	benefit	from	jQuery’s	chaining	capabilities:	When	you’ve
preselected	an	element	using	jQuery,	you	can	extend	it	with	a	call	to	.velocity()	to
animate	it:
Click	here	to	view	code	image

//	Assign	a	variable	to	a	jQuery	element	object

var	$div	=	$(“div”);

//	Animate	the	element	using	Velocity

$div.velocity({	opacity:	0	});

This	syntax	is	identical	to	jQuery’s	own	animate	function:

$div.animate({	opacity:	0	});

All	the	examples	in	this	book	use	Velocity	in	combination	with	jQuery,	and	therefore
follow	this	syntax.

Arguments
Velocity	accepts	multiple	arguments.	Its	first	argument	is	an	object	that	maps	CSS
properties	to	their	desired	final	values.	The	properties	and	their	accepted	value	types
correspond	directly	to	those	used	in	CSS	(if	you’re	unfamiliar	with	basic	CSS	properties,
pick	up	an	introductory	HTML	and	CSS	book	before	reading	this	one):
Click	here	to	view	code	image

//	Animate	an	element	to	a	width	of	“500px”	and	to	an	opacity	of	1.

$element.velocity({	width:	“500px”,	opacity:	1	});

	Tip

In	JavaScript,	if	you’re	providing	a	property	value	that	contains	letters
(instead	of	only	integers),	put	the	value	in	quotes.

You	can	pass	in	an	object	specifying	animation	options	as	a	second	argument:
Click	here	to	view	code	image

$element.velocity({	width:	“500px”,	opacity:	1	},	{	duration:	400,	easing:

“swing”	});

There’s	also	a	shorthand	argument	syntax:	Instead	of	passing	in	an	options	object	as	a
second	argument,	you	can	use	comma-separated	argument	syntax.	This	entails	listing
values	for	duration	(which	accepts	an	integer	value),	easing	(a	string	value),	and	complete
(a	function	value)	in	any	comma-separated	order.	(You’ll	learn	what	all	of	these	options	do
momentarily.)

Click	here	to	view	code	image

//	Animate	with	a	duration	of	1000ms	(and	implicitly	use	the	default	easing

value	of	“swing”)

$element.velocity({	top:	50	},	1000);

//	Animate	with	a	duration	of	1000ms	and	an	easing	of	“ease-in-out”

$element.velocity({	top:	50	},	1000,	“ease-in-out”);

//	Animate	with	an	easing	of	“ease-out”	(and	implicitly	use	the	default

duration	value	of	400ms)

$element.velocity({	top:	50	},	“ease-out”);

//	Animate	with	a	duration	of	1000ms	and	a	callback	function	to	be	triggered

upon	animation	completion

$element.velocity({	top:	50	},	1000,	function()	{	alert(“Complete.”)	});

This	shorthand	syntax	is	a	quick	way	of	passing	in	animation	options	when	you	only
need	to	specify	the	basic	options	(duration,	easing,	and	complete).	If	you	pass	in	an
animation	option	other	than	these	three,	you	must	switch	all	options	to	the	object	syntax.
Hence,	if	you	want	to	specify	a	delay	option,	change	the	following	syntax:
Click	here	to	view	code	image

$element.velocity({	top:	50	},	1000,	“ease-in-out”);

to	this	syntax:
Click	here	to	view	code	image

//	Re-specify	the	animation	options	used	above,	but	include	a	delay	value	of

500ms

$element.velocity({	top:	50	},	{	duration:	1000,	easing:	“ease-in-out”,

delay:	500	});

You	can’t	do	this:
Click	here	to	view	code	image

//	Incorrect:	Divides	animation	options	between	the	comma-separated	syntax

and	the	object	syntax

$element.velocity({	top:	50	},	1000,	{	easing:	“ease-in-out”,	delay:	500	});

Properties
There	are	two	differences	between	CSS-based	and	JavaScript-based	property	animation.

First,	unlike	in	CSS,	Velocity	accepts	only	a	single	numeric	value	per	CSS	property.	So,
you	can	pass	in:
Click	here	to	view	code	image

$element.velocity({	padding:	10	});

or
Click	here	to	view	code	image

$element.velocity({	paddingLeft:	10,	paddingRight:	10	});

But	you	can’t	pass	in:
Click	here	to	view	code	image

//	Incorrect:	The	CSS	property	is	being	passed	more	than	one	numeric	value.

$element.velocity({	padding:	“10	10	10	10”	});

If	you	do	want	to	animate	all	four	padding	values	(top,	right,	bottom,	and	left),

list	them	out	as	separate	properties:
//	Correct

$element.velocity({

			paddingTop:	10,

			paddingRight:	10,

			paddingBottom:	10,

			paddingLeft:	10

});

Other	common	CSS	properties	that	can	take	multiple	numeric	values	include	margin,
transform,	text-shadow,	and	box-shadow.

Breaking	up	compound	properties	into	their	sub-properties	for	the	purposes	of
animation	gives	you	increased	control	over	easing	values.	In	CSS,	you	can	specify	only
one	property-wide	easing	type	when	animating	multiple	sub-properties	within	the	parent
padding	property,	for	example.	In	JavaScript,	you	can	specify	independent	easing	values
for	each	sub-property—the	advantages	of	this	will	become	apparent	during	the	discussion
of	CSS	transform	property	animation	later	in	this	chapter.

Listing	out	independent	sub-properties	can	also	make	your	animation	code	easier	to
read	and	easier	to	maintain.

The	second	difference	between	CSS-based	and	JavaScript-based	property	animation	is
that	JavaScript	properties	drop	the	dashes	between	words	and	all	words	past	the	first	must
be	capitalized.	For	example,	padding-left	becomes	paddingLeft,	and
background-color	becomes	backgroundColor.	Further	note	that	JavaScript
property	names	should	not	be	in	quotes:
Click	here	to	view	code	image

//	Correct

$element.velocity({	paddingLeft:	10	});

//	Incorrect:	Uses	a	dash	and	doesn’t	capitalize

$element.velocity({	padding-left:	10	});

//	Incorrect:	Uses	quotes	around	the	JavaScript-formatted	property	name

$element.velocity({	“paddingLeft”:	10	});

Values
Velocity	supports	the	px,	em,	rem,	%,	deg,	vw,	and	vh	units.	If	you	don’t	provide	a	unit
type	with	a	numeric	value,	an	appropriate	one	is	automatically	assigned	based	on	the	CSS
property	type.	For	most	properties,	px	is	the	default	unit,	but	a	property	that	expects	a
rotation	angle,	such	as	rotateZ	for	example,	would	be	automatically	assigned	the	deg
(degree)	unit:
Click	here	to	view	code	image

$element.velocity({

			top:	50,	//	Defaults	to	the	px	unit	type

			left:	“50%”,	//	We	manually	specify	the	%	unit	type

			rotateZ:	25	//	Defaults	to	the	deg	unit	type

});

Explicitly	declaring	unit	types	for	all	property	values	increases	your	code’s	legibility	by
making	the	contrast	between	the	px	unit	and	its	alternatives	more	obvious	when	quickly

eyeballing	your	code.

Another	advantage	of	Velocity	over	CSS	is	that	it	supports	four	value	operators	that	can
be	optionally	prefixed	to	a	property	value:	+,	-,	*,	and	/.	These	directly	correspond	to
their	math	operators	in	JavaScript.	You	can	combine	these	value	operators	with	an	equals
sign	(=)	to	perform	relative	math	operations.	Refer	to	the	inline	code	comments	for
examples:
Click	here	to	view	code	image

$element.velocity({

			top:	“50px”,	//	No	operator.	Animate	toward	50	as	expected.

			left:	“-50”,	//	Negative	operator.	Animate	toward	-50	as	expected.

			width:	“+=5rem”,	//	Convert	the	current	width	value	into	its	rem

equivalent	and	add	5	more	units.

			height:	“-10rem”,	//	Convert	the	current	height	value	into	its	rem

equivalent	and	subtract	10	units.

			paddingLeft:	“*=2”	//	Double	the	current	paddingLeft	value.

			paddingRight:	“/=2”	//	Divide	the	current	paddingLeft	value	into	two.

});

Velocity’s	shorthand	features,	such	as	value	operators,	retain	animation	logic	entirely
within	the	animation	engine.	This	not	only	keeps	the	code	more	concise	by	eliminating
manual	value	calculation,	but	also	improves	performance	by	telling	Velocity	more	about
how	you	plan	to	animate	your	elements.	The	more	logic	that	is	performed	within	Velocity,
the	better	Velocity	can	optimize	your	code	for	higher	frame	rates.

Chaining
When	multiple	Velocity	calls	are	chained	back-to-back	on	an	element	(or	a	series	of
elements),	they	automatically	queue	onto	one	another.	This	means	that	each	animation
begins	once	the	preceding	animation	has	completed:
Click	here	to	view	code	image

$element

			//	Animate	the	width	and	height	properties

			.velocity({	width:	“100px”,	height:	“100px”	})

			//	When	width	and	height	are	done	animating,	animate	the	top	property

			.velocity({	top:	“50px”	});

Using	Velocity:	Options
To	round	out	this	introduction	to	Velocity,	let’s	run	through	the	most	commonly	used
options:	duration,	easing,	begin	and	complete,	loop,	delay,	and	display.

Duration
You	can	specify	the	duration	option,	which	dictates	how	long	an	animation	call	takes
to	complete,	in	milliseconds	(1/1000th	of	a	second)	or	as	one	of	three	shorthand	durations:
"slow"	(equivalent	to	600ms),	"normal"	(400ms),	or	"fast"	(200ms).	When
specifying	a	duration	value	in	milliseconds,	provide	an	integer	value	without	any	unit
type:
Click	here	to	view	code	image

//	Animate	with	a	duration	of	1000ms	(1	second)

$element.velocity({	opacity:	1	},	{	duration:	1000	});

or
Click	here	to	view	code	image

$element.velocity({	opacity:	1},	{	duration:	“slow”	});

The	advantage	to	using	the	named	shorthand	durations	is	that	they	express	the	tempo	of
an	animation	(is	it	slow	or	is	it	fast?)	when	you’re	reviewing	your	code.	If	you	use	these
shorthands	exclusively,	they’ll	also	naturally	lead	to	more	uniform	motion	design	across
your	site,	since	all	of	your	animations	will	fall	into	one	of	three	speed	categories	instead	of
each	being	passed	an	arbitrary	value.

Easing
Easings	are	the	mathematical	functions	that	define	how	fast	or	slow	animations	occur	in
different	parts	of	an	animation’s	total	duration.	For	example,	an	easing	type	of	"ease-
in-out"	indicates	that	the	animation	should	gradually	accelerate	(ease	in)	during	the
first	part	then	gradually	decelerate	(ease	out)	during	the	final	part.	In	contrast,	an	easing
type	of	"ease-in"	produces	an	animation	that	accelerates	up	to	a	target	speed	during
the	first	part	of	an	animation	but	thereafter	remains	at	a	constant	speed	until	the	animation
completes.	An	easing	type	of	"ease-out"	is	the	converse	of	this:	the	animation	starts
and	continues	at	a	constant	speed	before	it	gradually	decelerates	during	the	final	part	of
the	animation.

Much	like	the	physics-based	motion	discussed	in	Chapter	1,	“Advantages	of	JavaScript
Animation,”	easings	give	you	the	power	to	inject	personality	into	your	animations.	Take,
for	example,	how	robotic	an	animation	that	uses	the	linear	easing	feels.	(A	linear	easing
produces	an	animation	that	starts,	runs,	and	ends	at	the	same	velocity.)	The	robotic	feel	is
the	result	of	an	association	with	linear	robotic	motion	in	the	real	world:	Self-guided
mechanical	objects	typically	move	in	straight	lines	and	operate	at	constant	speeds	because
there’s	neither	an	aesthetic	nor	an	organic	reason	for	them	to	do	otherwise.

In	contrast,	living	things—whether	it’s	the	human	body	or	trees	blowing	in	the	wind—
never	move	at	constant	speed	in	the	real	world.	Friction	and	other	external	forces	cause
them	to	move	at	varying	speeds.

Great	motion	designers	pay	homage	to	organic	motion	because	it	gives	the	impression
that	the	interface	is	responding	fluidly	to	the	user’s	interaction.	In	mobile	apps,	for
example,	you	expect	a	menu	to	quickly	accelerate	away	from	your	fingers	when	you	swipe
it	off-screen.	If	the	menu	were	to	instead	move	away	from	your	fingers	at	a	constant	speed
—like	a	robotic	arm—you’d	feel	as	if	the	swipe	merely	set	off	a	chain	of	motion	events
that	were	outside	your	control.

You’ll	learn	more	about	the	power	of	easing	types	in	Chapter	3,	“Motion	Design
Theory.”	For	now,	let’s	run	through	all	of	Velocity’s	available	easing	values:

	jQuery	UI’s	trigonometric	easings.	For	a	complete	listing	of	these	easing	equations,
as	well	as	interactive	demonstrations	of	their	acceleration	profiles,	refer	to	the	demos
on	easings.net.

Click	here	to	view	code	image

$element.velocity({	width:	“100px”	},	“easeInOutSine”);

	CSS’s	easings:	"ease-in",	"ease-out",	"ease-in-out",	and	"ease"	(a
subtler	version	of	"ease-in-out").

Click	here	to	view	code	image
$element.velocity({	width:	“100px”	},	“ease-in-out”);

	CSS’s	Bézier	curves:	The	Bézier	curve	easing	allows	complete	control	over	the
structure	of	an	easing’s	acceleration	curve.	A	Bézier	curve	is	defined	by	specifying
the	height	of	four	equidistant	points	on	a	chart,	which	Velocity	accepts	in	the	format
of	a	four-item	array	of	decimal	values.	Visit	cubic-bezier.com	for	an	interactive
guide	to	creating	Bézier	curves.

Click	here	to	view	code	image

$element.velocity({	width:	“100px”	},	[0.17,	0.67,	0.83,	0.67]);

	Spring	physics:	This	easing	type	mimics	the	bouncy	behavior	of	a	spring	that’s	been
stretched	then	suddenly	released.	As	with	the	classical	physics	equation	that	defines
the	motion	of	a	spring,	this	easing	type	lets	you	pass	in	a	two-item	array	in	the	form
of	[tension,	friction].	A	higher	tension	(default:	500)	increases	total	speed	and
bounciness.	A	lower	friction	(default:	20)	increases	ending	vibration	speed.

Click	here	to	view	code	image
$element.velocity({	width:	“100px”	},	[250,	15]);

	"spring"	easing	is	a	predefined	implementation	of	the	spring	physics	easing
that’s	handy	to	use	when	you	don’t	want	to	experiment	with	tension	and	friction
values.

Click	here	to	view	code	image

$element.velocity({	width:	“100px”	},	“spring”);

Remember	that	you	can	also	pass	in	the	easing	option	as	an	explicitly	defined	property
in	an	options	object	argument:
Click	here	to	view	code	image

$element.velocity({	width:	50	},	{	easing:	“spring”	});

Do	not	be	overwhelmed	by	the	number	of	easing	options	available	to	you.	You’ll	most
often	rely	on	the	CSS	easing	types	and	the	“spring”	easing,	which	suit	the	vast	majority	of
animation	use	cases.	The	most	complex	easing	type,	the	Bézier	curve,	is	most	often
employed	by	developers	who	have	a	highly	specific	easing	style	in	mind	and	aren’t	afraid
to	get	their	hands	dirty.

	Note

The	rest	of	the	Velocity	options	in	this	section	must	be	explicitly	passed	into
an	options	object.	Unlike	those	already	described,	these	additional	options
cannot	be	supplied	to	Velocity	in	the	shorthand	comma-separated	syntax.

http://cubic-bezier.com

Begin	and	Complete
The	begin	and	complete	options	allow	you	to	specify	functions	to	be	triggered	at
certain	points	in	an	animation:	Pass	the	begin	option	a	function	to	be	called	prior	to	the
start	of	an	animation.	Conversely,	pass	the	complete	option	a	function	to	be	called	at
the	completion	of	an	animation.

With	both	options,	the	function	is	called	once	per	animation	call,	even	if	multiple
elements	are	being	animated	at	once:
Click	here	to	view	code	image

var	$divs	=	$(“div”);

$divs.velocity(

			{	opacity:	0	},

			//	Open	an	alert	box	right	before	the	animation	begins

			{

begin:	function	()	{	console.log(“Begin!”);	},

					//	Open	an	alert	box	once	the	animation	completes

					complete:	function	()	{	console.log(“Complete!”);	}

			}

);

Callback	Functions

These	options	are	commonly	referred	to	as	“callback	functions”	(or	“callbacks”)
since	they	are	“called”	when	certain	events	occur	in	the	future.	Callbacks	are	useful
for	firing	events	that	are	dependent	on	the	visibility	of	elements.	For	example,	if	an
element	starts	at	invisible	then	animates	toward	an	opacity	of	1,	it	may	be
appropriate	to	subsequently	trigger	a	UI	event	that	modifies	the	new	content	once
users	are	able	to	see	it.

Remember	that	you	don’t	need	to	use	callbacks	to	queue	animations	onto	one
another;	animations	automatically	fire	sequentially	when	more	than	one	is	assigned
to	a	single	element	or	set	of	elements.	Callbacks	are	for	the	queuing	of	non-
animation	logic.

Loop
Set	the	loop	option	to	an	integer	to	specify	the	number	of	times	an	animation	should
alternate	between	the	values	in	the	call’s	property	map	and	the	element’s	values	prior	to
the	call:
Click	here	to	view	code	image

$element.velocity({	height:	“10em”	},	{	loop:	2	});

If	the	element’s	original	height	was	5em,	its	height	would	alternate	between	5em	and
10em	twice.

If	the	begin	or	complete	options	are	used	with	a	looped	call,	they	are	triggered	once
each—at	the	very	beginning	and	end	of	the	total	loop	sequence,	respectively;	they	are	not
retriggered	for	each	loop	alternation.

Instead	of	passing	in	an	integer,	you	can	also	pass	in	true	to	trigger	infinite	looping:

Click	here	to	view	code	image

$element.velocity({	height:	“10em”	},	{	loop:	true	});

Infinite	loops	ignore	the	complete	callback	since	they	don’t	naturally	end.	They	can,
however,	be	manually	stopped	via	Velocity’s	stop	command:

$element.velocity(“stop”);

Non-infinite	loops	are	useful	for	animation	sequences	that	would	otherwise	require	the
repetition	of	chained	animation	code.	For	example,	if	you	were	to	bounce	an	element	up
and	down	twice	(perhaps	to	alert	the	user	of	a	new	message	awaiting	them),	the	non-
optimized	code	would	look	like	this:
Click	here	to	view	code	image

$element

			//	Assume	translateY	starts	at	“0px”

			.velocity({	translateY:	“100px”	})

			.velocity({	translateY:	“0px”	})

			.velocity({	translateY:	“100px”	})

			.velocity({	translateY:	“0px”	});

The	more	compact	and	easier	to	maintain	version	of	this	code	would	look	like	this:
Click	here	to	view	code	image

//	Repeat	(loop)	this	animation	twice

$element.velocity({	translateY:	“100px”	},	{	loop:	2	});

With	this	optimized	version,	if	you	have	a	change	of	heart	about	how	much	the	top
value	should	be	changed	by	(currently	"100px"),	you	need	only	change	the	top	value	in
one	part	of	the	code.	If	there	are	many	such	instances	of	repetition	in	your	code,	it	quickly
becomes	obvious	how	much	looping	benefits	your	workflow.

Infinite	looping	is	tremendously	helpful	for	loading	indicators,	which	typically	animate
indefinitely	until	data	has	finished	loading.

First,	make	the	loading	element	appear	to	pulsate	by	infinitely	looping	its	opacity	from
visible	to	invisible:
Click	here	to	view	code	image

//	Assume	opacity	starts	at	1	(fully	visible)

$element.velocity({	opacity:	0	},	{	loop:	true	});

Later,	once	the	data	has	finished	loading,	you	can	stop	the	animation,	then	hide	the
element:
Click	here	to	view	code	image

$element

			//	First	stop	the	infinite	loop…

			.velocity(“stop”)

			//	…	so	you	can	give	the	element	a	new	animation,

			//	in	which	you	can	animate	it	back	to	invisibility

			.velocity({	opacity:	0	});

Delay
Specify	the	delay	option	in	milliseconds	to	insert	a	pause	before	an	animation	begins.
The	delay	option’s	purpose	is	to	retain	an	animation’s	timing	logic	entirely	within	Velocity
—as	opposed	to	relying	on	jQuery’s	$.delay()	function	to	change	when	a	Velocity
animation	starts:
Click	here	to	view	code	image

//	Wait	100ms	before	animating	opacity	toward	0

$element.velocity({	opacity:	0	},	{	delay:	100	});

You	can	set	the	delay	option	with	the	loop	option	to	create	a	pause	between	loop
alternations:
Click	here	to	view	code	image

//	Loop	four	times,	waiting	100ms	between	each	loop

$element.velocity({	height:	“+=50px”	},	{	loop:	4,	delay:	100	});

Display	and	Visibility
Velocity’s	display	and	visibility	options	correspond	directly	to	their	CSS
counterparts,	and	accept	the	same	values,	including:	"none",	"inline",	"inline-
block",	"block",	"flex",	and	so	on.	In	addition,	Velocity	allows	for	a	value	of
"auto",	which	instructs	Velocity	to	set	the	display	property	to	the	element’s	default
value.	(For	reference,	anchors	and	spans	default	to	"inline",	whereas	divs	and	most
other	elements	default	to	"block".)	Velocity’s	visibility	option,	like	its	CSS
counterpart,	accepts	the	"hidden",	"visible",	and	"collapse"	values.

Within	Velocity,	when	the	display	option	is	set	to	"none"	(or	when	visibility	is	set
to	"hidden"),	the	element’s	CSS	property	is	set	accordingly	once	the	animation	has
completed.	This	effectively	works	to	hide	an	element	upon	completion	of	an	animation,
and	is	useful	in	conjunction	with	animating	an	element’s	opacity	down	to	0	(where	the
intention	is	to	fade	an	element	off	the	page):
Click	here	to	view	code	image

//	Fade	an	element	to	opacity:0	then	remove	it	from	the	page’s	flow

$element.velocity({	opacity:	0	},	{	display:	“none”	});

	Note

The	code	above	effectively	replaces	the	jQuery	equivalent:
$element

			.animate({	opacity:0	})

			.hide();

Quick	Review	of	Visibility	and	Display

For	reference,	the	CSS	display	property	dictates	how	an	element	affects	the
positioning	of	the	elements	surrounding	it	and	contained	within	it.	In	contrast,	the
CSS	visibility	property	exclusively	affects	whether	an	element	can	be	seen.	If
an	element	is	set	to	"visibility:	hidden",	it	will	continue	to	take	up	space
on	the	page,	but	its	space	will	simply	be	represented	by	an	empty	gap—no	part	of
the	element	will	be	seen.	If	an	element	is	instead	set	to	"display:	none",	the
element	will	be	fully	removed	from	the	page’s	flow,	and	all	elements	within	and
around	it	will	fill	into	the	removed	element’s	space	as	if	the	element	never	existed.

Note	that,	instead	of	removing	an	element	from	the	page’s	flow,	you	can	simply	mark
the	element	as	both	invisible	and	non-interactive	by	setting	its	visibility	to
"hidden".	This	is	useful	for	when	you	want	a	hidden	element	to	continue	taking	up
space	on	the	page:
Click	here	to	view	code	image

//	Fade	an	element	to	opacity:0	then	make	it	non-interactive

$element.velocity({	opacity:	0	},	{	visibility:	“hidden”	});

Now,	let’s	consider	animations	in	the	opposite	direction	(showing	elements	instead	of
hiding	elements):	When	display	or	visibility	is	set	to	a	value	other	than	"none"
or	"hidden",	the	value	is	set	before	the	animation	begins	so	the	element	is	visible
throughout	the	duration	of	the	ensuing	animation.	In	other	words,	you’re	undoing	the
hiding	that	occurred	when	the	element	was	previously	removed	from	view.

Below,	display	is	set	to	"block"	before	the	element	begins	fading	in:
Click	here	to	view	code	image

$element.velocity({	opacity:	1	},	{	display:	“block”	});

This	effectively	replaces	the	jQuery	equivalent:
$element

			.show()

			.animate({	opacity:	0	});

	Tip

For	a	complete	overview	of	Velocity’s	animation	options,	consult	the
documentation	at	VelocityJS.org.

Containing	Animation	Logic

As	with	Velocity’s	delay	option,	Velocity’s	incorporation	of	CSS	display	and
visibility	setting	allows	for	animation	logic	to	be	fully	contained	within
Velocity.	In	production	code,	whenever	an	element	is	faded	into	or	out	of	view,	it’s
almost	always	accompanied	by	a	change	in	display	or	visibility.
Leveraging	Velocity	shorthands	like	these	helps	you	keep	your	code	clean	and
maintainable,	since	it’s	less	dependent	on	external	jQuery	functions	and	free	of
repetitive	helper	functions	that	commonly	bloat	animation	logic.

Note	that	Velocity	includes	shorthands	for	the	opacity	toggling	animations
demonstrated	above.	They	function	identically	to	jQuery’s	fadeIn	and	fadeOut
functions.	You	simply	pass	the	corresponding	command	into	Velocity	as	the	first
argument,	and	you	pass	in	an	options	object,	if	desired,	as	normal:

Click	here	to	view	code	image

$element.velocity(“fadeIn”,	{	duration:	1000	});

$element.velocity(“fadeOut”,	{	duration:	1000	});

Using	Velocity:	Additional	features
Additional	Velocity.js	features	that	are	worthy	of	note	include:	the	reverse	command,
scrolling,	colors,	and	transforms	(translation,	rotate,	and	scale).

Reverse	Command
To	animate	an	element	back	to	the	values	prior	to	its	last	Velocity	call,	pass	in
"reverse"	as	Velocity’s	first	argument.	The	reverse	command	behaves	identically	to
a	standard	Velocity	call;	it	can	take	options	and	is	queued	up	with	other	chained	Velocity
calls.

Reverse	defaults	to	the	options	(duration,	easing,	etc.)	used	in	the	element’s	prior
Velocity	call.	However,	you	can	override	these	options	by	passing	in	a	new	options	object:
Click	here	to	view	code	image

//	Animate	back	to	the	original	values	using	the	prior	Velocity	call’s

options

$element.velocity(“reverse”);

or
Click	here	to	view	code	image

//	Do	the	same	as	above,	but	replace	the	prior	call’s	duration	with	a	value

of	2000ms

$element.velocity(“reverse”,	{	duration:	2000	});

	Note

The	previous	call’s	begin	and	complete	options	are	ignored	by	the
reverse	command;	reverse	never	re-calls	callback	functions.

Scrolling
To	scroll	the	browser	to	the	top	edge	of	an	element,	pass	in	"scroll"	as	Velocity’s	first
argument.	The	scroll	command	behaves	identically	to	a	standard	Velocity	call;	it	can
take	options	and	is	queued	up	with	other	chained	Velocity	calls:
Click	here	to	view	code	image

$element

			.velocity(“scroll”,	{	duration:	1000,	easing:	“spring”	})

			.velocity({	opacity:	1	});

This	scrolls	the	browser	to	the	top	edge	of	the	element	using	a	1000ms	duration	and	a
"spring"	easing.	Then,	once	the	element	has	scrolled	into	view,	it	fades	in	fully.

To	scroll	toward	an	element	inside	a	parent	element	with	scrollbars,	you	can	use	the
container	option,	which	accepts	either	a	jQuery	object	or	a	raw	element.	Note	that	the
container	element	of	the	CSS	position	property	must	be	set	to	either	relative,
absolute,	or	fixed—static	won’t	do	the	trick:
Click	here	to	view	code	image

//	Scroll	$element	into	view	of	$(“#container”)

$element.velocity(“scroll”,	{	container:	$(“#container”)	});

In	both	cases—whether	scrolling	is	relative	to	the	browser	window	or	to	a	parent
element—the	scroll	command	is	always	called	on	the	element	that’s	being	scrolled	into
view.

By	default,	scrolling	occurs	on	the	y-axis.	Pass	in	the	axis:	"x"	option	to	scroll
horizontally	instead	of	vertically:
Click	here	to	view	code	image

//	Scroll	the	browser	to	the	*left*	edge	of	the	targeted	div.

$element.velocity(“scroll”,	{	axis:	“x”	});

Finally,	the	scroll	command	also	uniquely	takes	an	offset	option,	specified	in	pixels,
which	offsets	the	target	scroll	position:
Click	here	to	view	code	image

//	Scroll	to	a	position	50px	*above*	the	element’s	top	edge.

$element.velocity(“scroll”,	{	duration:	1000,	offset:	“-50px”	});

//	Scroll	to	a	position	250px	*beyond*	the	element’s	top	edge.

$element.velocity(“scroll”,	{	duration:	1000,	offset:	“250px”	});

Colors
Velocity	supports	color	animation	for	these	CSS	properties:	color,
backgroundColor,	borderColor,	and	outlineColor.	In	Velocity,	color
properties	accept	only	hex	strings	as	inputs,	for	example,	#000000	(black)	or	#e2e2e2
(light	gray).	For	more	granular	color	control,	you	can	animate	the	individual	red,	green,
and	blue	components	of	a	color	property,	as	well	as	the	alpha	component.	Red,	green,	and
blue	range	in	value	from	0	to	255,	and	alpha	(which	is	equivalent	to	opacity)	ranges	from
0	to	1.

Refer	to	the	inline	comments	below	for	examples:

Click	here	to	view	code	image

$element.velocity({

			//	Animate	backgroundColor	to	the	hex	value	for	black

			backgroundColor:	“#000000”,

			//	Simultaneously	animate	the	alpha	(opacity)	of	the	background	to	50%

			backgroundColorAlpha:	0.5,

			//	Also	animate	the	red	component	of	the	element’s	text	color	to	half	its

total	value

			colorRed:	125

});

Transforms
The	CSS	transform	property	performs	translation,	scale,	and	rotation	manipulations	to
elements	in	both	2D	and	3D	space.	It	consists	of	several	subcomponents,	of	which
Velocity	supports	the	following:

	translateX:	Move	an	element	along	the	x-axis.

	translateY:	Move	an	element	along	the	y-axis.

	rotateZ:	Rotate	an	element	along	the	z-axis	(effectively	clockwise	or	counter-
clockwise	on	a	2D	surface).

	rotateX:	Rotate	an	element	along	the	x-axis	(effectively	toward	or	away	from	the
user	in	3D	space).

	rotateY:	Rotate	an	element	along	the	y-axis	(effectively	leftward	or	rightward	in
3D	space).

	scaleX:	Multiply	the	width	dimension	of	an	element.

	scaleY:	Multiply	the	height	dimension	of	an	element.

In	Velocity,	you	animate	these	components	as	individual	properties	within	a	property
object:

$element.velocity({

			translateZ:	“200px”,

			rotateZ:	“45deg”

});

Using	Velocity:	Without	jQuery	(intermediate)
If	you’re	an	intermediate	developer	who	prefers	to	work	in	JavaScript	without	the	aid	of
jQuery,	you’ll	be	happy	to	know	that	Velocity	also	works	when	jQuery	is	not	present	on
the	page.	Accordingly,	instead	of	chaining	an	animation	call	onto	a	jQuery	element	object
—as	shown	in	the	previous	examples	in	this	chapter—the	targeted	element(s)	are	passed
directly	into	the	animation	call	as	the	first	argument:
Click	here	to	view	code	image

Velocity(element,	{	opacity:	0.5	},	1000);	//	Velocity

Velocity	retains	the	same	syntax	as	jQuery’s	$.animate()	even	when	it’s	used
without	jQuery;	the	difference	is	that	all	arguments	are	shifted	one	position	to	the	right	to
make	room	for	passing	in	the	targeted	elements	in	the	first	position.	Further,	the	global

Velocity	object	is	used	to	invoke	animations	instead	of	specific	jQuery	element	objects.

When	you’re	using	Velocity	without	jQuery,	you’re	no	longer	animating	jQuery
element	objects,	but	rather	raw	Document	Object	Model	(DOM)	elements.	Raw	DOM
elements	can	be	retrieved	using	the	following	functions:

	document.getElementByID():	Retrieve	an	element	by	its	ID	attribute.

	document.getElementsByTagName():	Retrieve	all	elements	with	a
particular	tag	name	(e.g.	a,	div,	p).

	document.getElementsByClassName():	Retrieve	all	elements	with	a
particular	CSS	class.

	document.querySelectorAll():	This	function	works	nearly	identically	to
jQuery’s	selector	engine.

Let’s	further	explore	document.querySelectorAll()	since	it	will	probably	be
your	weapon	of	choice	when	selecting	elements	without	the	aid	of	jQuery.	(It’s	a
performant	function	that’s	widely	supported	across	browsers.)	As	with	jQuery’s	element
selector	syntax,	you	simply	pass	querySelectorAll	a	CSS	selector	(the	same
selectors	you	use	in	your	stylesheets	for	targeting	elements),	and	it	will	return	all	matched
elements	in	the	form	of	an	array:
Click	here	to	view	code	image

document.querySelectorAll(“body”);	//	Get	the	body	element

document.querySelectorAll(“.squares”);	//	Get	all	elements	with	the	“square”

class

document.querySelectorAll(“div”);	//	Get	all	divs

document.querySelectorAll(“#main”);	//	Get	the	element	with	an	id	of	“main”

document.querySelectorAll(“#main	div”);	//	Get	all	divs	within	“main”

If	you	assign	the	result	of	one	of	these	lookups	to	a	variable,	you	can	then	reuse	that
variable	to	animate	the	targeted	element(s):
Click	here	to	view	code	image

//	Get	all	div	elements

var	divs	=	document.querySelectorAll(“div”);

//	Animate	all	the	divs

Velocity(divs,	{	opacity:	0	},	1000);

Since	you’re	no	longer	extending	jQuery	element	objects,	you	may	be	wondering	how
to	chain	animations	back-to-back,	like	this:
Click	here	to	view	code	image

//	These	chain	onto	one	another

$element

			.velocity({	opacity:	0.5	},	1000)

			.velocity({	opacity:	1	},	1000);

To	reenact	this	pattern	without	the	aid	of	jQuery,	simply	call	animations	one	after
another:
Click	here	to	view	code	image

//	Animations	on	the	same	element	automatically	chain	onto	one	another.

Velocity(element,	{	opacity:	0	},	1000);

Velocity(element,	{	opacity:	1	},	1000);

Wrapping	up
Now	that	you’re	armed	with	an	understanding	of	the	benefits	of	using	JavaScript	for	web
animation,	plus	a	grasp	of	the	basics	of	Velocity,	you’re	ready	to	explore	the	fascinating
theoretical	foundation	that	underlies	professional	motion	design.

Chapter	3.	Motion	Design	Theory

Utility	and	elegance	are	the	goals	of	every	great	motion	designer,	and	this	chapter	explores
a	handful	of	techniques	for	achieving	those	goals.	Because	the	focus	here	is	on	the	theory
of	motion	design—not	its	implementation—there	are	no	code	examples.	The	techniques
discussed	can	be	broadly	abstracted	across	all	languages,	devices,	and	platforms.

Motion	design	improves	the	user	experience
Let’s	examine	the	phrase	motion	design:	To	design	motion	is	to	decide	which	visual
properties	of	an	object	should	change,	and	how	that	change	should	accelerate.	For
example,	say	you	want	to	call	attention	to	a	button	by	changing	its	color:	you	might
change	the	background	color	from	red	to	blue	over	a	1000ms	duration	with	an	easing	style
of	ease-in-out.	In	this	case,	background-color	is	the	target	property	and	red	is
the	desired	end	value.	The	timing	of	the	property’s	transition	toward	its	end	value	is
subject	to	a	1000ms	duration	whose	acceleration	curve	is	defined	by	ease-in-out.
Great	motion	designers	deliberately	choose	each	one	of	these	components—not	because
they	look	good	or	hit	on	popular	trends,	but	because	they	reinforce	the	intentions	of	a	UI.
Whimsical	motion	design,	in	contrast,	is	not	only	inconsistent,	but	also	appears	inelegant
and	diverting	to	the	user.

There	are	hundreds	of	tutorials	on	the	minutiae	of	UI	design,	but	very	few	on	motion
design.	This	isn’t	surprising	given	that	motion	design	is	less	important	to	a	webpage	than
UI	design.	Until	recently,	browsers	and	devices	weren’t	actually	fast	enough	to
accommodate	rich	motion	design.	But	while	UI	design	lays	the	structural	foundation	for
interacting	with	a	page,	motion	design	enriches	that	foundation	with	the	furnishing	and
decoration	that	make	the	page	usable	and	comfortable.	Furnishing	is	the	utility	that	motion
design	serves,	and	decoration	is	the	elegance	it	provides.

Great	apps	leverage	utility	and	elegance	to	make	the	user	feel	like	she’s	interacting	with
an	interface	that’s	living,	breathing,	and	tangible.	An	interface	that	reacts	the	way	things
do	in	the	real	world	is	one	that	she’ll	engage	with	more	deeply.	In	contrast,	an	interface
that’s	devoid	of	motion	design	reminds	the	user	that	she’s	simply	dragging	a	cursor	across
a	screen	or	tapping	her	finger	on	a	piece	of	glass.	A	UI	without	motion	design	makes	the
user	painfully	aware	of	the	artifice	before	her.

The	utility	of	motion	design	leverages	user	psychology.	When	a	user	presses	a	button,
can	she	be	confident	that	the	press	was	acknowledged	by	the	UI?	An	easy	way	to	ensure
her	confidence	is	to	animate	the	button’s	transition	to	a	depressed	state.	When	a	user	is
waiting	for	content	to	load,	can	she	be	confident	that	progress	is	being	made	or	is	she	left
with	the	unsettling	feeling	that	the	app	has	frozen?	These	are	psychological	expectations
that	motion	design	can	address	by	providing	ongoing	visual	indications	of	the	UI’s	state.

The	complementary	elegance	of	motion	design	is	what	elevates	an	app	from	merely
looking	good	to	feeling	good.	It’s	the	source	of	that	“ooh	ahh”	feeling	that	reminds	the
user	how	magical	technology	can	be.

Let’s	master	both	of	these	aspects.	Let’s	dive	in.

Utility
How	do	you	ensure	your	motion	design	choices	are	valuable	additions	to	your	site?	Here
are	some	techniques.

Borrow	conventions
Let	yourself	be	inspired	by	the	motion	design	in	your	favorite	sites	and	apps.	Popular
motion	design	conventions	are	worth	leveraging	because	they	already	hold	meaning	in	the
user’s	mind.	Repeated	exposure	to	conventions	leads	the	user	to	form	expectations	about
how	certain	animations	“should”	look.	If	you	use	a	convention	for	a	purpose	other	than
what	the	user	has	come	to	expect,	your	app	will	feel	unintuitive.

The	more	you	copy	motion	design	effects	from	elsewhere,	the	more	familiar	your	app
will	feel	to	the	user.	The	more	familiar	an	app	feels,	the	quicker	the	user	will	feel
comfortable	with	it	and	confident	about	it.	While	there’s	utility	in	novelty,	the	motion
design	of	everyday	UI	elements	shouldn’t	be	novel.	Reserve	novelty	for	animation
sequences	that	carry	little	meaning	or	are	hard	to	misconstrue,	such	as	a	page’s	loading
sequence	or	a	status	indicator	animation,	respectively.

Preview	outcomes
When	an	element	on	your	page	has	an	ambiguous	purpose,	give	the	user	a	preview	of	the
outcome	of	interaction.	This	provides	reassurance	that	the	element	does	what	the	user
thinks	it	does.	A	simple	example	of	this	would	be	a	button	that	initiates	a	file	transfer
sending	out	visual	radio	wave	pulses	when	hovered	over.	This	leverages	a	common
graphic	design	trope	to	tell	the	user	that	a	data	transfer	action	will	occur.

A	less	ambiguous	kind	of	previewing	outcomes	is	to	show	part	of	the	animation	that
occurs	when	the	user	actually	takes	an	action.	For	example,	if	an	in-progress	file	transfer
indicator	animation	begins	running	when	the	user	clicks	a	button,	implement	motion
design	such	that	hovering	over	the	triggering	element	partially	runs	the	in-progress
animation.	When	the	user	hovers	off	the	element,	reverse	the	partial	animation	so	the	file
transfer	indicator	returns	to	its	default	state.	This	type	of	previewing	technique	helps	the
user	immediately	understand	the	effect	that	her	actions	will	trigger,	which	helps	to
reassure	her	of	the	purpose	of	UI	elements.	The	more	confident	the	user	feels,	the	more	in
control	she	feels.	The	more	in	control	she	feels,	the	more	pleasant	her	experience.

Distraction	over	boredom
When	a	user	performs	a	rote,	non-engaging	task	on	your	page—such	as	filling	out	a	long
form—you	can	use	color	and	movement	to	raise	her	level	of	awareness	and	intrigue.	For
example,	you	might	animate	a	check	mark	when	she	successfully	completes	each	form
field.	This	keeps	the	user’s	mind	superficially	engaged	with	the	interface,	which	lessens
the	dullness	of	the	task	at	hand.	Similarly,	you	could	show	the	user	an	eye-catching
loading	indicator	while	she	waits	for	content	to	load.	A	great	example	of	this	can	be	found
in	Lyft,	a	popular	ride-sharing	app,	which	animates	a	balloon	rhythmically	floating	up	and
down	on	a	blank	canvas	while	the	app	loads	into	memory.

Allowing	the	user’s	brain	to	relax	and	feel	the	pleasurable	momentum	of	repeated
movement	keeps	her	more	engaged	with	your	content.	However	superficial	this	may	seem,
it	works.	But	recognize	that	this	technique	should	be	used	only	in	situations	where	the	user
will	experience	an	unavoidable	stretch	of	boredom;	avoid	using	it	as	a	Band-Aid	any	time
you	feel	like	spicing	up	your	UI.

Let’s	consider	another	example:	when	Facebook	loads	text	content	into	its	News	Feed,
it	animates	a	continual	blurring	of	dummy	text	until	the	real	text	is	ready	to	be	shown.
This	rhythmic	blurring	animation	not	only	indicates	that	the	interface	is	hard	at	work	(as
opposed	to	having	stalled),	but	also	specifically	tells	the	user	which	portion	of	the	UI	she’s
waiting	on.	This	technique	is	called	inline	status	indication.	Compare	this	to	the
ubiquitous	single	status	indicator,	which	is	as	old	as	the	web	itself:	the	superimposition	of
a	single,	looped	animation	graphic	on	a	page	that’s	discomfortingly	devoid	of	content.

Users	are	tired	of	this.	Inline	status	indication,	in	contrast,	lets	you	show	as	much	of	the
interface	as	possible	by	blocking	out	only	the	specific	subsections	whose	content	has	yet
to	load.	This	is	not	only	more	nuanced,	but	also	gives	the	user	more	content	to	fix	her	eyes
on	while	she	twiddles	her	thumbs	waiting	for	the	page	to	fully	load.

The	takeaway	here	is	simple:	the	more	you	give	users	to	engage	with,	the	longer	it’ll
take	for	them	to	get	bored.

Leverage	primal	instincts
The	human	brain	has	a	region	dedicated	to	visual	processing.	We’re	programmed	to
respond	to	sudden	movements	whether	we	want	to	or	not.	So,	if	an	important	action	is
occurring	on	the	page	that	requires	the	user’s	immediate	attention,	consider	leveraging
movement	to	flag	her	attention.	A	common	way	to	alert	the	user	is	to	“bounce”	an	element
by	repeatedly	translating	it	up	and	down.	This	implementation	sits	in	contrast	to	animating
the	element’s	color,	which	doesn’t	exploit	primal	instincts;	we’re	not	programmed	to
instinctively	interpret	color	changes	as	worthy	of	our	immediate	attention.	(However,
consider	how	through	repeated	exposure	in	some	countries,	people	are	trained	to	interpret
red	as	“stop”	and	green	as	“go”,	which	are	examples	of	socially	reinforced	meaning.
When	designing	motion,	take	this	phenomenon	into	consideration	as	well.)

Diving	a	bit	deeper	into	psychology,	the	user	interprets	movement	toward	her	as	an
urgent	notice	that	requires	action,	whereas	she	interprets	movement	away	from	her	as
getting	out	of	her	way	and,	consequently,	not	requiring	action.

Make	interactions	visceral
Big,	squishy	buttons	with	rich	color	gradients	make	the	user	want	to	click.	Elements	like
these	reward	clicking	with	a	satisfying	sense	of	pressure	exertion	and	color	explosion.	The
lesson	here	is	one	of	incentivization:	the	more	intriguing	it	is	to	click	a	button,	the	more	a
user	will	do	it.	Leverage	this	phenomenon	for	important	calls	to	action	that	you	want	the
user	to	engage	with,	such	as	buttons	for	registering	a	new	account	or	checking	out	of	a
shopping	cart.

Reflect	gravitas
If	the	user	has	taken	an	action	with	irreversible	consequences,	reinforce	that	notion	by
using	motion	design	that	feels	equally	important.	For	example,	the	animation	associated
with	clicking	a	Delete	button	should	feel	more	significant	than	the	animation	associated
with	hovering	over	a	standard	navigation	dropdown.	While	the	latter	may	entail	a	simple
color	change,	the	former	might	consist	of	a	sudden	jump	in	size	and	a	thickening	of	the
element’s	border.	By	divvying	up	motion	design	along	a	gradient	of	severity,	you’ll	help
the	user	intuitively	grasp	the	hierarchy	of	the	available	actions.	This	technique,	along	with
the	others	detailed	in	this	chapter,	serves	the	goal	of	increasing	user	understanding	and
confidence.

Reduce	concurrency
To	some	extent,	users	are	always	trying	to	make	sense	of	your	UI.	Consciously	or
subconsciously,	they	ascribe	meaning	to	every	design	and	motion	design	choice	you	make.
So,	if	you	present	the	user	with	extended	animation	sequences	consisting	of	many
elements	animating	into	view	concurrently,	you’ll	compromise	her	ability	to	parse	the
meaning	of	all	the	movements	taking	place.

In	short,	if	you’re	using	motion	design	to	indicate	something	important,	make	sure
you’re	not	indicating	many	different	things	at	once.	If	you	are,	consider	breaking
animations	into	steps	or	reducing	the	total	animation	count.

Reduce	variety
Related	to	the	best	practice	of	reducing	concurrency	is	the	concept	of	limiting	animation
variety:	the	fewer	animation	variations	you	have,	the	more	reassured	the	user	will	feel	that
she’s	fully	abreast	of	what	each	animation	in	your	UI	connotes.	For	example,	if	you	use
one	type	of	animation	for	bringing	big	images	into	view,	but	a	different	type	for	bringing
small	images	into	view,	consider	consolidating	them	into	one.	If	the	differentiation
between	them	was	merely	for	aesthetic	purposes	rather	than	for	improving	usability,
you’ve	successfully	eliminated	unnecessary	complexity	from	your	UI,	and	reinforced
behavioral	consistency	in	the	process.	Consistency	leads	to	pattern	recognition	and
understanding.	Understanding	leads	to	increased	user	confidence.

Mirror	animations
A	tangential	aspect	of	limiting	animation	variety	is	consistency	in	your	choice	of
animation	property	and	option	combinations.	For	example,	if	you	have	a	modal	that
animates	into	view	by	transitioning	opacity	and	scale,	ensure	that	the	modal
animates	out	of	view	with	these	two	properties	reverting	to	their	original	values.	Don’t
change	properties	for	the	two	sides	of	the	same	coin.	Doing	so	will	make	the	user	question
what	prompted	the	differentiation,	and	needlessly	raised	questions	are	the	hallmark	of	a
bad	user	experience.

When	working	with	properties	that	affect	translation	(for	example,	translateX,
left,	marginLeft	in	CSS),	mirroring	applies	literally:	if	a	modal	animates	into	view
by	sliding	down	from	the	top	of	the	page,	have	it	animate	out	of	view	by	sliding	back	up
toward	the	top	of	the	page.	Conversely,	if	you	were	to	have	the	modal	animate	out	of	view
by	further	sliding	down	off	the	page,	you’d	be	indicating	to	the	user	that	the	modal	has
been	sent	somewhere	new	as	opposed	to	having	gone	back	where	it	came	from.	Typically,
you	want	to	imply	that	the	modal	dialog	has	gone	back	where	it	came	from	now	that	the
user	is	done,	say,	changing	account	settings.	If	the	user	were	instead	sending	an	email,
then	having	the	modal	animate	down	off	the	page	would	be	contextually	appropriate
because	it	reinforces	the	idea	that	the	email	is	being	sent	from	its	origin	(the	user)	to	a	new
location	(the	recipient).

Limit	durations
Designers	often	make	the	mistake	of	letting	animations	run	too	long,	causing	the	user	to
wait	needlessly.	Never	let	UI	flourishes	slow	down	the	apparent	speed	of	your	page.	If	you
have	a	lot	of	content	fading	into	view	within	a	larger	animation	sequence,	ensure	that	the
total	duration	across	the	entire	sequence	is	short.

Similarly,	if	there’s	a	part	of	your	UI—a	profile	image,	for	instance—that	transitions
into	or	out	of	view	on	a	frequent	basis	due	to	the	way	users	interact	with	your	page,	be
extra	careful	not	to	allow	protracted	durations.	Seeing	a	piece	of	motion	design	unfold	is
nice	the	first	time,	but	seeing	it	unfold	a	dozen	times	every	time	a	user	interacts	with	an
app	becomes	burdensome	very	quickly—especially	if	the	user	feels	that	repeatedly
waiting	for	the	animation	to	play	out	is	significantly	increasing	the	overall	UI	wait	time.

Since	it’s	difficult	to	judge	the	appropriateness	of	your	animation	durations	after	seeing
them	play	out	dozens	of	times	during	testing,	a	good	rule	of	thumb	is	to	speed	up	all
animations	by	25	percent	before	you	push	a	site	live	to	production.	This	will	help	ensure
that	they	always	lean	toward	the	faster	side.	(See	Chapter	4,	“Animation	Workflow”	for
tips	on	how	to	quickly	time-shift	your	animations.)

Limit	animations
If	removing	an	animation	altogether	doesn’t	detract	from	the	user’s	understanding	of	your
interface,	consider	dropping	it	and	using	an	instant	styling	change	in	its	place.	The	more
animation	you	have	throughout	your	UI,	the	more	the	user	will	get	used	to	seeing	them.
The	more	she	gets	used	to	seeing	them,	the	less	attention	she’ll	pay	to	them,	and	the	less
likely	she’ll	be	able	to	differentiate	between	the	different	types	of	motion	design	and	what
each	signifies.

The	vast	majority	of	your	motion	design	should	be	subtle—minor	color	changes	on
hovers,	for	example—so	the	few	instances	of	grandiose	motion	design	that	do	exist	should
pop	to	convey	their	intended	message.

Elegance
The	line	between	frivolous	and	consequential	motion	design	is	an	easy	one	to	discern:
does	a	particular	piece	of	motion	design	satisfy	one	of	the	best	practices	discussed	in	the
“Utility”	section	of	this	chapter?	If	not,	remove	it.	It’s	frivolous,	and	it’s	jeopardizing	the
usability	of	your	UI.

Don’t	be	frivolous
To	hone	your	judgment	about	what	is	frivolous,	download	the	most	popular	apps,	play
with	each	extensively,	and	judge	whether	they	feature	animation	to	a	greater	or	lesser
extent	than	your	app	does.	Play	close	to	attention	to	what	each	animation	conveys,	and
why	it	conveys	it.	If	you	feel	that	these	apps	use	animation	to	a	much	lesser	extent	than
yours	does,	consider	toning	back	the	motion	design	in	your	UI.

There’s	one	exception	to	this	don’t-be-frivolous	mantra—read	on!

Your	one	opportunity	to	be	frivolous
A	page’s	loading	sequence—when	all	of	your	elements	animate	into	view	from	an	initial
state	of	invisibility—is	your	one	opportunity	to	be	over-the-top	and	frivolous	with	your
animations.	Why?	Because	this	sequence	happens	only	once,	and	it	won’t	repeatedly	get
in	the	way	of	the	user’s	interaction	with	your	site.	Also,	this	is	your	moment	to	leverage
your	motion	design	skills	to	deliver	a	great	first	impression	on	your	site.

If	you	have	a	really	cool	idea	for	animating	your	content	into	view,	then	do	it	here.	But
be	sure	to	respect	all	the	other	rules	in	this	chapter,	especially	limiting	durations.

Consider	personality
If	you	were	designing	a	corporate	site,	you	wouldn’t	use	a	bounce	effect	to	transition
elements	into	view.	Bounciness	is	playful—not	a	quality	that	corporate	sites	often	want	to
convey.	And	if	you	were	designing	an	educational	or	government	app,	you	wouldn’t	use
easings	that	result	in	movement	that	starts	very	quickly	before	finishing	very	slowly
(thereby	conveying	a	whizzing-by-your-face	futuristic	slickness)—these	would	probably
be	too	glossy	and	stylized	for	the	content	at	hand.

Always	be	considerate	of	the	personality	expressed	by	your	animation	decisions.	As	a
designer,	it’s	hard	to	judge	the	tone	of	your	own	work,	so	it’s	a	good	idea	to	get	third-party
feedback	early	and	often.	Ask	test	users	whether	a	UI	feels	suitably	professional,	friendly,
and	sleek,	and	tweak	your	motion	design	according	to	your	preference	for	each	of	those
three	traits.

Go	beyond	opacity
The	most	common	means	of	transitioning	an	element	into	or	out	of	view	is	to	animate	its
opacity	from	0	to	1,	and	vice	versa.	This	can	be	rather	boring.	Opacity	is	just	the	base
property	that	has	to	be	animated	when	displaying	or	hiding	content—it’s	not	the	only
property.	You	can	spice	up	your	property	choices	by	scaling	an	element	down	into	view,
sliding	it	up	out	of	view,	or	changing	its	background	color.	As	you	add	more	properties	to
an	animation,	consider	leveraging	multistep	effects,	which	you’ll	learn	about	in	the	next
technique.

Break	animations	into	steps
The	simplest	path	to	professional-looking	motion	design	is	to	break	animations	into
multistep	effects.	For	example,	if	you’re	animating	an	image	into	view	by	transitioning	its
opacity	and	scale	from	0	to	1,	instead	consider	first	animating	the	element’s
opacity	to	0.5—half	of	its	final	value—followed	by	animating	its	scale	from	0	while
simultaneously	animating	the	remaining	half	of	opacity.	Breaking	the	animations	of
properties	into	steps	like	this	removes	the	linearity	that’s	common	to	most	amateur	motion
design	on	the	web—wherein	all	properties	animate	perfectly	in	sync.	In	the	real	world,	the
properties	of	objects	in	motion	don’t	all	accelerate	in	sync:	Consider	how,	when	a	bird
flies,	it	moves	forward	(translateX)	at	a	different	rate	than	it	moves	up	and	down
(translateY).	If	it	were	instead	to	move	linearly	in	both	of	its	X	and	Y	axes,	it	would
look	more	like	a	bullet	than	an	animal.	Great	motion	design	borrows	from	the	movement
of	living,	breathing	things	because	UIs	are	made	for	humans—not	machines—and	humans
like	to	feel	expression	and	reaction.

If	you	pay	attention	to	the	futuristic	UI	animation	depicted	in	movies,	you’ll	notice	that
intricate	multistep	animations	are	a	key	component	in	making	them	look	so	sleek.	The
reason	for	this	is	simple,	and	it	further	supports	the	case	for	avoiding	linearity:	humans	are
attracted	to	variety	and	contrast.	Consider	how,	when	you	break	up	an	animation,	you’re
contrasting	and	juxtaposing	the	individual	components	of	that	animation	against	each

other.	Just	like	layering	up	clothing	to	create	pleasant	color	and	texture	combinations,	you
should	layer	animations	to	create	pleasant	motion	design	combinations.

For	advice	on	the	technical	implementation	of	multistep	effects,	read	Chapter	4,
“Animation	Workflow.”

Stagger	animations
When	multiple	sibling	elements—say,	a	series	of	images	in	a	gallery—are	animating	into
view	at	the	same	time,	consider	adding	a	tiny	successive	delay	between	them.	(That	is,
after	the	first	image	loads,	a	delay	occurs	before	the	second	image	loads,	and	so	on.)	To
delay	the	animation	of	sibling	elements	in	this	way	is	called	staggering,	and	its	purpose	is
similar	to	that	of	breaking	an	animation	into	steps:	it	adds	visual	layering	by	preventing	all
your	elements	from	animating	perfectly	in	sync,	which	can	look	plain	and	inelegant
compared	to	staggered	loading.	Why?	Because	animating	a	series	of	elements	in	sync
lacks	any	semblance	of	granularity	or	gradience.	Consider	this:	Birds	don’t	fly	side	by	side
in	a	straight	line.	What	makes	their	aerial	movements	so	graceful	is	their	successive
formation	and	timing.	It’s	their	juxtaposition,	and	the	motion	of	their	juxtaposition,	that
makes	them	so	elegant	to	the	human	eye.

Flow	from	the	triggering	element
If	clicking	a	button	causes	a	modal	to	appear,	have	the	modal	animate	out	from	the
button’s	location.	In	other	words,	have	animations	flow	from	the	elements	that	trigger
them.	This	bridges	the	cause-and-effect	relationships	in	your	UI,	making	individual
elements	feel	better	coupled	and	better	organized.

To	understand	the	psychological	benefit	of	this	technique,	consider	how	motion	works
in	the	real	world:	when	you	pull	a	lever,	a	series	of	mechanical	parts	causes	a	connected
object	to	move.	Connected	is	the	key	word:	real	objects	don’t	move	unless	a	force	is
exerted	upon	them.	Likewise,	it’s	important	to	treat	every	element	in	your	UI	as	an
element	capable	of	exerting	its	own	force.	Every	action	should	feel	connected	to	a	trigger.
This	sort	of	seamless	experience	is	what	helps	an	interface	transcend	from	the	digital	into
the	physical.	The	more	physical	an	interface	is,	the	more	responsive	and	emotive	it	feels.

Use	graphics
Make	use	of	scalable	vector	graphics	(SVG)	to	animate	individual	graphic	components	of
a	larger	element	that	the	user	can	interact	with	(learn	more	in	Chapter	6,	“Scalable	Vector
Graphics	Primer”).	A	common	example	of	this	is	the	trio	of	horizontal	lines	that	constitute
a	“hamburger	menu”	icon,	or	the	dots	that	form	a	circle	in	a	loading	indicator.	In	both	of
these	examples,	arbitrary	shapes	are	grouped	together	to	form	a	common	UI	component.
Before	SVG	animation	was	possible	on	the	web,	the	common	approach	to	animating	a
graphic	like	either	of	the	two	described	was	to	embed	the	full	graphic	as	a	PNG	image	and
then	animate	the	entire	shape	by	transitioning	its	opacity	in	CSS.	By	leveraging	SVG,
however,	you	can	animate	these	unique	elements	on	an	individual	shape-by-shape	basis
and	subject	them	to	many	types	of	property	animations.

Graphic	animation	is	a	surefire	way	to	add	nuance	to	key	portions	of	your	UI.	This

nuance	is	partially	a	result	of	the	fact	that	web-based	animation	primarily	deals	with	solid,
rectangular	shapes.	(Sometimes	they	have	rounded	corners,	but	the	shapes	nonetheless
remain	solid	and	whole.)	Animating	the	individual	shapes	of	an	element	instead	lets	you
delight	the	user	with	motion	design	that	she	might	not	have	realized	was	even	possible.

Beyond	novelty,	you	can	also	uniquely	leverage	SVG	animation	to	transform	shapes
into	brand-new	ones.	Pairing	this	with	the	techniques	for	previewing	outcomes	and
flowing	from	the	triggering	element,	you	can	use	graphic	transformations	to	indicate	UI
behavior	and	provide	feedback	to	the	user.	For	example,	if	hovering	over	the	dots	in	a
loading	indicator	causes	those	dots	to	rearrange	themselves	into	an	X	shape,	that	would
indicate	to	the	user	that	clicking	the	status	indicator	graphic	would	cancel	the	loading	of
content.

Experiment	Repeatedly

Finding	the	right	duration,	stagger,	easing,	and	property	combinations	for	each
animation	is	not	a	skill	that	designers	are	born	with.	It’s	a	skill	that	every	great
designer	has	had	to	learn.	So,	remember:	your	first	attempt	at	a	combination	of
animation	properties	might	look	good,	but	it’s	probably	not	the	best	case.	There	are
only	two	ways	to	find	the	best	case:	experiment	by	systematically	changing	each
factor	in	the	motion	design	equation	until	you	stumble	onto	something	sublime,	or
borrow	ideas	from	other	peoples’	work.	Once	you’ve	found	a	combination	you	like
—even	if	it’s	one	you’ve	already	borrowed	elsewhere	pixel-for-pixel—experiment
further.	Consider	cutting	the	duration	in	half,	switching	to	a	completely	different
easing	type,	or	swapping	out	a	property.

Designers	are	often	averse	to	extended	experimentation	because—even	though
there	are	a	million	ways	to	animate	a	button	into	view—each	way	effectively
fulfills	the	goal	at	hand:	making	the	button	visible.	Consequently,	once	you	stumble
onto	a	combination	of	properties	that	look	good,	you’re	likely	to	stick	with	it
because	it	looks	good	and	it	works.	But	don’t	forget	that	goodness	isn’t	a
respectable	design	goal—greatness	is.	Greatness	entails	stepping	outside	your
comfort	zone,	and	not	necessarily	relying	on	what	you	already	know	works.

Wrapping	up
Utility	and	elegance	are	your	goals.	At	minimum,	all	animation	code	must	fulfill	one	or
the	other.

When	implemented	properly,	animation	code	should	provide	concrete	value	to	your	UX
and	not	adversely	impact	the	website’s	performance.	No	matter	how	sleek	your	motion
design	is,	if	the	interface	is	laggy	as	a	result	of	its	implementation,	the	overall	user
experience	will	not	be	elegant.	You’ll	learn	more	about	the	importance	of	performance	in
the	Chapter	7,	“Animation	Performance.”

Chapter	4.	Animation	Workflow

The	animation	code	found	on	most	sites	is	nothing	short	of	a	mess.	If	there’s	one	thing
experienced	motion	designers	miss	about	the	old,	ugly	days	of	Flash,	it’s	a	structured
approach	to	motion	design.

The	contemporary	approach	to	structuring	animation	code	is	twofold:	leverage	the
workflow	features	of	an	animation	engine	(in	this	case,	Velocity.js)	to	make	your	code
more	terse	and	expressive,	and	use	code	organization	best	practices	so	that	it’s	easy	to
modify	your	work	later.

Say	goodbye	to	deep-nesting	JavaScript	callbacks	and	to	dirtying	your	stylesheets	with
unwieldy	CSS	animations.	It’s	time	to	up	your	web	animation	game.

CSS	animation	workflow
In	an	attempt	to	better	manage	UI	animation	workflow,	developers	sometimes	switch	from
JavaScript	to	CSS.	Unfortunately,	once	animations	reach	a	medium	level	of	complexity,
CSS	animations	typically	result	in	a	significantly	worse	workflow.

Issues	with	CSS
While	CSS	transitions	are	convenient	when	used	sparingly	in	a	stylesheet,	they’re
unmanageable	in	complex	animations	sequences	(for	example,	when	all	elements
sequentially	load	into	view	upon	page	load).

CSS	tries	to	address	this	issue	with	a	keyframes	feature,	which	lets	you	separate
animation	logic	into	discrete	time	ranges:
Click	here	to	view	code	image

@keyframes	myAnimation	{

			0%	{	opacity:	0;	transform:	scale(0,	0);	}

			25%	{	opacity:	1;	transform:	scale(1,	1);	}

			50%	{	transform:	translate(100px,	0);	}

			100%	{	transform:	translate(100px,	100px);	}

}

#box	{	animation:	myAnimation	2.75s;	}

This	specifies	separate	points	within	an	animation’s	timeline	at	which	particular
property	values	should	be	reached.	It	then	assigns	the	animation	to	an	element	with	an	ID
of	#box,	and	specifies	the	duration	of	the	keyframe	sequence	to	complete	within.	Don’t
worry	if	you	don’t	fully	grasp	the	syntax	above—you	won’t	be	using	it	in	this	book.	But
before	moving	on,	consider	this:	what	happens	when	a	client	asks	you	to	make	the	opacity
animation	one	second	longer,	but	keep	the	rest	of	the	properties	animating	at	their	current
durations?	Fulfilling	this	request	requires	redoing	the	math	so	the	percentage	values
properly	align	with	a	1-second	increase.	Doing	this	isn’t	trivial,	and	it	certainly	isn’t
manageable	at	scale.

When	CSS	makes	sense
It’s	important	to	point	out	a	situation	in	which	you	should	be	using	CSS	rather	than
JavaScript	for	UI	animation:	when	you’re	animating	simple	style	changes	triggered	by	a
user	hovering	over	an	element.	CSS	transitions	lend	themselves	beautifully	to	these	types
of	micro-interactions,	allowing	you	to	accomplish	the	task	in	just	a	few	lines	of	very
maintainable	code.

Working	in	CSS,	you	first	define	a	transition	on	the	target	element	so	that	changes
in	the	specified	CSS	properties	animate	over	a	predetermined	duration:
Click	here	to	view	code	image

/*	When	this	div’s	color	property	is	modified,	animate	its	change	over	a

duration	of	200ms	*/

div	{

			transition:	color	200ms:

}

You	then	specify	the	value	that	each	particular	CSS	property	should	change	toward,	per
the	transition	rule.	In	the	case	of	the	hover	example,	the	div’s	text	color	will	change
to	blue	when	the	user	hovers	over	it:

div:hover	{

			color:	blue;

}

That’s	it.	In	only	a	few	lines	of	code,	CSS	handles	interaction	state	for	you:	when	the
user	hovers	away	from	the	div,	CSS	will	animate	the	change	from	blue	back	to	the
preexisting	text	color	over	a	duration	of	200ms.

What	Does	Good	Code	Look	Like?

Good	code	is	expressive,	meaning	that	its	purpose	is	easy	to	grasp.	This	is	crucial
not	only	for	coworkers	attempting	to	integrate	your	foreign	code,	but	also	for
yourself	in	the	future,	once	you’ve	forgotten	your	original	approach.	Good	code	is
also	terse,	meaning	that	it	accomplishes	what	it	needs	to	in	as	few	lines	as	possible;
every	line	serves	an	important	purpose,	and	it	can’t	be	rewritten	away.	Lastly,	good
code	is	also	maintainable,	meaning	that	its	individual	parts	can	be	updated	without
fear	of	compromising	the	integrity	of	the	whole.

In	contrast,	coding	this	same	effect	in	jQuery	would	entail	the	following:
Click	here	to	view	code	image

$div

			//	Register	a	mouseover	event	on	this	div,	which	calls	an	animation

function

			.on(“mouseover”,	function()	{

						$(this).animate({	color:	“blue”	},	200);

			})

			//	When	the	user	hovers	off	the	element,	animate	the	text	color	back	to

black

			.on(“mouseout”,	function()	{

						//	Note:	We	have	to	remember	what	the	original	property	value	was

(black)

						$(this).animate({	color:	“black”	},	200);

			});

This	might	not	look	so	bad,	but	the	code	isn’t	taking	advantage	of	the	fact	that
JavaScript	provides	an	infinite	amount	of	logical	control.	It	goes	out	of	its	way	to	do
something	that	CSS	is	designed	for:	triggering	logicless	animations	that	occur	on	the	same
element	that	the	user	is	interacting	with.	Above,	you’re	doing	in	JavaScript	what	you
could	have	done	in	fewer,	more	expressive,	and	more	maintainable	lines	of	CSS.	Even
worse,	you’re	not	getting	any	additional	feature	benefits	by	implementing	this
functionality	in	JavaScript.

In	short,	if	you	can	easily	use	CSS	transitions	to	animate	an	element	that’s	never	being
animated	by	JavaScript	(meaning	there’s	no	potential	for	conflict),	then	you	should	code
that	animation	in	CSS.	For	all	other	UI	animation	tasks—multi-element	and	multistep
sequences,	interactive	drag	animations,	and	much	more—JavaScript	animation	is	the
superior	solution.

Let’s	explore	the	fantastic	workflow	techniques	JavaScript	provides.

Code	technique:	Separate	styling	from	logic
The	first	technique	has	profound	workflow	benefits,	especially	for	teams.

Standard	approach
In	jQuery	animation,	it’s	common	to	animate	CSS	classes	onto	elements	using	the	UI	add-
on	plugin	(jQueryUI.com).	When	the	module	is	loaded,	jQuery’s	addClass()	and
removeClass()	functions	are	upgraded	with	animation	support.	For	example,	let’s	say
you	have	a	CSS	class	defined	in	a	stylesheet	as	follows:

.fadeInAndMove	{

			opacity:	1;

			top:	50px;

}

You	can	then	animate	the	CSS	properties	of	that	class	(opacity	and	top	in	this	case)
onto	the	target	element	along	with	a	specified	duration:
Click	here	to	view	code	image

//	Animate	the	properties	of	the	.fadeInAndMove	class	over	a	1000ms	duration

$element.addClass(“fadeInAndMove”,	1000);

The	more	common	implementation	of	jQuery	animation	consists	of	inlining	the	desired
animation	properties	within	an	$.animate()	call,	which	uses	the	syntax	demonstrated
in	Chapter	1,	“Advantages	of	JavaScript	Animation”:
Click	here	to	view	code	image

$element.animate({	opacity:	1,	top:	50	},	1000);

Both	implementations	produce	the	same	result.	The	difference	is	their	separation	of
logic:	The	first	implementation	delegates	the	styling	rules	to	a	CSS	stylesheet,	where	the
rest	of	the	page’s	styling	rules	reside.	The	second	mixes	styling	rules	with	the	JavaScript
logic	responsible	for	triggering	them.

http://jQueryUI.com

The	first	approach	is	preferable	due	to	the	organizational	cleanliness	and	flexibility
gained	by	knowing	where	to	look	to	make	the	appropriate	style	or	logic	changes	to	your
code.	CSS	stylesheets	exist	for	a	reason;	seasoned	developers	do	not	inline	CSS	into	their
HTML.	That	would	conflate	the	purposes	of	HTML	(structure)	and	CSS	(styling),	and
make	a	site	considerably	more	difficult	to	maintain.

The	value	of	logic	separation	is	further	pronounced	when	working	in	a	team
environment,	in	which	it’s	common	for	developers	and	designers	to	bump	heads	while
trying	to	edit	the	same	file	at	the	same	time.

Optimized	approach
With	the	review	of	standard	methods	out	of	the	way,	let’s	look	at	the	optimized	approach.
It’s	just	as	beneficial—and	often	the	best	methodology	for	JavaScript-centric	animation
workflows—to	shift	animation	styling	logic	into	a	dedicated	JavaScript	file	(for	example,
a	style.js)	rather	than	a	dedicated	CSS	stylesheet.	Sounds	weird,	right?	Perhaps,	but	it
works	brilliantly.	This	technique	leverages	plain	old	JavaScript	objects	to	help	you
organize	your	animation	code.

For	example,	your	style.js	file	might	look	like	this:
Click	here	to	view	code	image

//	This	object	is	a	parallel	to	the	CSS	class	defined	in	the	previous	code

example

var	fadeIn	=	{

					opacity:	1,

					top:	“50px”

			};

In	your	script.js,	which	is	the	primary	JavaScript	file	that	controls	animation	logic,	you
would	then	have:
Click	here	to	view	code	image

//	Pass	our	named	properties	object	into	Velocity

$element.velocity(fadeIn,	1000);

To	recap,	in	your	style.js,	you’ve	defined	a	JavaScript	object	that’s	populated	with	the
CSS	properties	you	want	to	animate.	This	is	the	same	object	that’s	then	passed	into
Velocity	as	a	first	argument.	You’re	not	doing	anything	fancy	here—just	saving	objects	to
named	variables,	then	passing	those	variables	into	Velocity	instead	of	the	raw	objects
themselves.

	Note

This	technique	works	equally	well	with	jQuery’s	animate()	function.

The	benefit	of	switching	from	CSS	to	JavaScript	to	segregate	logic	is	that	your	style.js
file	is	uniquely	capable	of	defining	animation	options—not	just	animation	properties.
There	are	many	ways	to	specify	an	option:	one	is	to	assign	two	member	properties	to	a
parent	animation	object	to	which	you	assign	an	expressive	name.	The	first	property	on	the
object	defines	the	animation’s	properties;	the	second	defines	its	options.

In	this	case,	your	style.js	file	would	look	like	this:
Click	here	to	view	code	image

var	fadeIn	=	{

						//	p	is	for	“properties”

					p:	{

							opacity:	1,

							top:	“50px”

					},

					//	o	is	for	“options”

					o:	{

							duration:	1000,

							easing:	“linear”

					}

			};

In	the	script.js	file,	you’d	have:
Click	here	to	view	code	image

//	Pass	in	our	clean	and	re-usable	animation	objects

$element.velocity(fadeIn.p,	fadeIn.o);

Pretty	and	clean,	right?	Someone	skimming	it	would	understand	its	purpose,	and	would

know	where	to	look	to	modify	its	properties—the	style.js	file.	Further,	the	purpose	of	this
animation	is	immediately	evident:	because	you’ve	named	the	animation	object
appropriately,	you	know	that	the	code	serves	to	fade	an	object	into	view.	You	no	longer
have	to	mentally	parse	animation	properties	to	assess	the	purpose	of	the	animation.

This	approach	discourages	you	from	arbitrarily	setting	options	for	each	individual
animation	on	a	page	since	there’s	now	a	bank	of	premade	animation	objects	you	can	easily
pull	from.	This	results	in	leaner	code	and	more	consistent	motion	design.	Consistency,	as
you	learned	in	the	previous	chapter,	is	a	key	component	of	great	UX.

But	the	best	part	is	that	this	approach	lends	itself	perfectly	to	organizing	your	animation
variations	together.	For	example,	if	you	typically	fade	button	elements	into	view	with	a
duration	of	1000ms,	but	you	fade	modal	windows	into	view	with	a	duration	of	3000ms,
you	can	simply	split	your	options	object	into	two	appropriately	named	variations:
Click	here	to	view	code	image

var	fadeIn	=	{

					p:	{

							opacity:	1,

							top:	“50px”

					},

					//	Options	object	variation	#1	uses	a	fast	duration

					oFast:	{

							duration:	1000,

							easing:	“linear”

					},

					//	Variation	#2	uses	a	slower	duration

					oSlow:	{

							duration:	3000,

							easing:	“linear”

					}

			};

//	Animate	using	the	fast	duration.

$button.velocity(fadeIn.p,	fadeIn.oFast);

/*	Animate	using	the	slow	duration.	*/

$modal.velocity(fadeIn.p,	fadeIn.oSlow);

Alternatively,	you	could	nest	“fast”	and	“slow”	objects	as	children	of	a	singular	o
options	object.	The	choice	of	which	implementation	to	use	is	based	on	your	personal
preference:
Click	here	to	view	code	image

var	fadeIn	=	{

					p:	{

							opacity:	1,

							top:	“50px”

					},

					o:	{

							fast:	{

										duration:	1000,

										easing:	“linear”

							},

							slow:	{

										duration:	3000,

										easing:	“linear”

							}

					}

			};

//	Animate	using	the	fast	duration.

$button.velocity(fadeIn.p,	fadeIn.o.fast);

/*	Animate	using	the	slow	duration.	*/

$modal.velocity(fadeIn.p,	fadeIn.o.slow);

If	this	seems	like	too	much	overhead,	and	if	you	have	few	enough	lines	of	JavaScript	to
justify	simply	inlining	all	your	animation	logic,	then	don’t	feel	like	a	bad	developer	for
skipping	this	approach	altogether.	You	should	always	use	whichever	degree	of	abstraction
best	suits	the	scope	of	your	project.	The	takeaway	here	is	simply	that	animation	workflow
best	practices	do	exist	if	you	find	yourself	needing	them.

Code	technique:	Organize	sequenced	animations
Velocity	has	a	small	add-on	plugin	called	the	UI	pack	(get	it	at	VelocityJS.org/#uiPack).	It
enhances	Velocity	with	features	that	greatly	improve	the	UI	animation	workflow.	Many	of
the	techniques	in	this	chapter,	including	the	one	discussed	below,	make	use	of	it.

To	install	the	UI	pack,	simply	include	a	<script>	tag	for	it	after	Velocity	and	before
the	ending	</body>	tag	of	your	page:
Click	here	to	view	code	image

<script	src=“velocity.js”></script>

<script	src=“velocity.ui.js”></script>

The	specific	UI	pack	feature	discussed	in	this	section	is	called	sequence	running.	It	will
forever	change	your	animation	workflow.	It	is	the	solution	to	messily	nested	animation
code.

Standard	approach
Without	the	UI	pack,	the	standard	approach	to	consecutively	animating	separate	elements
is	as	follows:
Click	here	to	view	code	image

//	Animate	element1	followed	by	element2	followed	by	element3

$element1.velocity({	translateX:	100,	opacity:	1	},	1000,	function()	{

			$element2.velocity({	translateX:	200,	opacity:	1	},	1000,	function()	{

						$element3.velocity({	translateX:	300,	opacity:	1	},	1000);

			});

});

Don’t	let	this	simple	example	fool	you:	in	real-world	production	code,	animation
sequences	include	many	more	properties,	many	more	options,	and	many	more	levels	of
nesting	than	are	demonstrated	here.	Code	like	this	most	commonly	appears	in	loading
sequences	(when	a	page	or	a	subsection	first	loads	in)	that	consist	of	multiple	elements
animating	into	place.

Note	that	the	code	shown	above	is	different	from	chaining	multiple	animations	onto	the
same	element,	which	is	hassle-free	and	doesn’t	require	nesting:
Click	here	to	view	code	image

//	Chain	multiple	animations	onto	the	same	element

$element1

			.velocity({	translateX:	100	})

			.velocity({	translateY:	100	})

			.velocity({	translateZ:	100	});

So	what’s	wrong	with	first	code	sample	(the	one	with	different	elements)?	Here	are	the
main	issues:

	The	code	bloats	horizontally	very	quickly	with	each	level	of	nesting,	making	it
increasingly	difficult	to	modify	the	code	within	your	IDE.

	You	can’t	easily	rearrange	the	order	of	calls	in	the	overall	sequence	(doing	so
requires	very	delicate	copying	and	pasting).

	You	can’t	easily	indicate	that	certain	calls	should	run	parallel	to	one	another.	Let’s
say	that	halfway	through	the	overall	sequence	you	want	two	images	to	slide	into
view	from	different	origin	points.	When	coding	this	in,	it	wouldn’t	be	obvious	how
to	nest	animations	that	occur	after	this	parallel	mini-sequence	such	that	the	overall
sequence	doesn’t	become	even	more	difficult	to	maintain	than	it	already	is.

Optimized	approach
Before	you	learn	about	the	beautiful	solution	to	this	ugly	problem,	it’s	important	to
understand	two	simple	features	of	Velocity.	First,	know	that	Velocity	accepts	multiple
argument	syntaxes:	the	most	common,	when	Velocity	is	invoked	on	a	jQuery	element
object	(like	all	the	code	examples	shown	so	far),	consists	of	a	properties	object	followed
by	an	options	object:
Click	here	to	view	code	image

//	The	argument	syntax	used	thus	far

$element.velocity({	opacity:	1,	top:	“50px”	},	{	duration:	1000,	easing:

“linear”	});

An	alternative	syntax	pairs	with	Velocity’s	utility	function,	which	is	the	fancy	name
given	to	animating	elements	using	the	base	Velocity	object	instead	of	chaining	off	of	a
jQuery	element	object.	Here’s	what	animating	off	the	base	Velocity	object	looks	like:
Click	here	to	view	code	image

//	Velocity	registers	itself	on	jQuery’s	$	object,	which	you	leverage	here

$.Velocity({	e:	$element,	p:	{	opacity:	1,	scale:	1	},	o:	{	duration:	1000,

easing:	“linear”	}	});

As	shown	above,	this	alternative	syntax	consists	of	passing	Velocity	a	single	object	that
contains	member	objects	that	map	to	each	of	the	standard	Velocity	arguments	(elements,
properties,	and	options).	For	the	sake	of	brevity,	the	member	object	names	are	truncated	to
the	first	letter	of	their	associated	objects	(e	for	elements,	p	for	properties,	and	o	for
options).

Further,	note	that	you’re	now	passing	the	target	element	in	as	an	argument	to	Velocity
since	you’re	no	longer	invoking	Velocity	directly	on	the	element.	The	net	effect	is	exactly
the	same	as	the	syntax	you	used	earlier.

As	you	can	see,	the	new	syntax	isn’t	much	bulkier,	but	it’s	equally—if	not	more—
expressive.	Armed	with	this	new	syntax,	you’re	ready	to	learn	how	the	UI	pack’s
sequence-running	feature	works:	you	simply	create	an	array	of	Velocity	calls,	with	each

call	defined	using	the	single-object	syntax	just	demonstrated.	You	then	pass	the	entire
array	into	a	special	Velocity	function	that	fires	the	sequence’s	calls	successively.	When
one	Velocity	call	is	completed,	the	next	runs—even	if	the	individual	calls	are	targeting
different	elements:
Click	here	to	view	code	image

//	Create	the	array	of	Velocity	calls

var	loadingSequence	=	[

					{	e:	$element1,	p:	{	translateX:	100,	opacity:	1	},	o:	{	duration:	1000

}	},

					{	e:	$element2,	p:	{	translateX:	200,	opacity:	1	},	o:	{	duration:	1000

}	},

					{	e:	$element3,	p:	{	translateX:	300,	opacity:	1	},	o:	{	duration:	1000

}	}

];

//	Pass	the	array	into	$.Velocity.RunSequence	to	kick	off	the	sequence

$.Velocity.RunSequence(loadingSequence);

The	benefits	here	are	clear:

	You	can	easily	reorder	animations	in	the	overall	sequence	without	fear	of	breaking
nested	code.

	You	can	quickly	eyeball	the	difference	between	properties	and	options	objects	across
the	calls.

	Your	code	is	highly	legible	and	expressive	to	others.

If	you	combine	this	technique	with	the	previous	technique	(turning	CSS	classes	into
JavaScript	objects),	your	animation	code	starts	to	look	remarkably	elegant:
Click	here	to	view	code	image

$.Velocity.RunSequence([

			{	e:	$element1,	p:	{	translateX:	100,	opacity:	1	},	o:	slideIn.o	},

			{	e:	$element2,	p:	{	translateX:	200,	opacity:	1	},	o:	slideIn.o	},

			{	e:	$element3,	p:	{	translateX:	300,	opacity:	1	},	o:	slideIn.o	}

]);

Expressiveness	and	maintainability	aren’t	the	only	benefits	to	sequence	running:	you
also	gain	the	ability	to	run	individual	calls	in	parallel	using	a	special	sequenceQueue
option	which,	when	set	to	false,	forces	the	associated	call	to	run	parallel	to	the	call	that
came	before	it.	This	lets	you	have	multiple	elements	animate	into	view	simultaneously,
giving	a	single	Velocity	sequence	the	power	to	intricately	control	timing	that	would
normally	have	to	be	orchestrated	through	messy	callback	nesting.	Refer	to	the	inlined
comments	below	for	details:
Click	here	to	view	code	image

$.Velocity.RunSequence([

			{	elements:	$element1,	properties:	{	translateX:	100	},	options:	{

duration:	1000	}	},

			//	The	following	call	will	start	at	the	same	time	as	the	first	call	since

it	uses	the	`sequenceQueue:	false`	option

			{	elements:	$element2,	properties:	{	translateX:	200	},	options:	{

duration:	1000,	sequenceQueue:	false	},

			//	As	normal,	the	call	below	will	run	once	the	second	call	has	completed

			{	elements:	$element3,	properties:	{	translateX:	300	},	options:	{

duration:	1000	}

];

Code	technique:	Package	your	effects
One	of	the	most	common	uses	of	motion	design	is	fading	content	in	and	out	of	view.	This
type	of	animation	often	consists	of	a	series	of	individual	animation	calls	that	are	chained
together	to	deliver	a	nuanced,	multistage	effect.

Standard	approach
Instead	of	simply	animating	the	opacity	of	an	element	toward	1,	you	might
simultaneously	animate	its	scale	property	so	that	the	element	appears	to	both	fade	in	and
grow	into	place.	Once	the	element	is	fully	in	view,	you	might	choose	to	animate	its	border
thickness	to	1rem	as	a	finishing	touch.	If	this	animation	were	to	happen	multiple	times
across	a	page,	and	on	many	different	elements,	it	would	make	sense	to	avoid	code
repetition	by	turning	it	into	a	standalone	function.	Otherwise,	you’d	have	to	repeat	this
non-expressive	code	throughout	your	script.js:
Click	here	to	view	code	image

$element

			.velocity({	opacity:	1,	scale:	1	},	{	duration:	500,	easing:	“ease-in-out”

})

			.velocity({	borderWidth:	“1rem”	},	{	delay:	200,	easing:	“spring”,

duration:	400	});

Unlike	the	sequencing	technique	discussed	in	the	previous	section,	the	code	above
consists	of	multiple	animations	that	all	occur	on	the	same	element.	Chained	animations	on
a	singular	element	constitute	an	effect.	If	you	were	to	improve	this	effect	by	implementing
the	first	technique	in	this	chapter	(turning	CSS	classes	into	JavaScript	objects),	you’d	have
to	go	out	of	your	way	to	uniquely	name	each	argument	object	for	each	stage	in	the	overall
animation.	Not	only	is	it	possible	that	these	objects	wouldn’t	be	used	by	other	portions	of
the	animation	code	due	to	the	uniqueness	of	this	particular	sequence,	but	you’d	have	to
deal	with	appending	integers	to	each	animation	call’s	respective	objects	to	delineate	them
from	one	another.	This	could	get	messy,	and	could	neutralize	the	organizational	benefit
and	brevity	of	turning	CSS	classes	into	JavaScript	objects.

Another	problem	with	effects	such	as	the	one	above	is	that	the	code	isn’t	very	self-
descriptive—its	purpose	isn’t	immediately	clear.	Why	are	there	two	animation	calls
instead	of	one?	What	is	the	reasoning	behind	the	choice	of	properties	and	options	for	each
of	these	individual	calls?	The	answers	to	these	questions	are	irrelevant	to	the	code	that
triggers	the	animation,	and	should	consequently	be	tucked	away.

Optimized	approach
Velocity’s	UI	pack	lets	you	register	effects	that	you	can	subsequently	reuse	across	a	site.
Once	an	effect	is	registered,	you	can	call	it	by	passing	its	name	into	Velocity	as	its	first
parameter:
Click	here	to	view	code	image

//	Assume	we	registered	our	effect	under	the	name	“growIn”

$element.velocity(“growIn”);

That’s	a	lot	more	expressive,	isn’t	it?	You	quickly	understand	the	code’s	purpose:	An
element	will	grow	into	view.	The	code	remains	terse	and	maintainable.

What’s	more,	a	registered	effect	behaves	identically	to	a	standard	Velocity	call;	you	can
pass	in	an	options	object	as	normal	and	chain	other	Velocity	calls	onto	it:
Click	here	to	view	code	image

$element

			//	Scroll	the	element	into	view

			.velocity(“scroll”)

			//	Then	trigger	the	“growIn”	effect	on	it,	with	the	following	settings

			.velocity(“growIn”,	{	duration:	1000,	delay:	200	})

If	the	UI	pack	is	loaded	onto	your	page,	an	effect	such	as	this	is	registered	using	the
following	syntax:
Click	here	to	view	code	image

$.Velocity.RegisterEffect(name,	{

			//	Default	duration	value	if	one	isn’t	passed	into	the	call

			defaultDuration:	duration,

			//	The	following	Velocity	calls	occur	one	after	another,	with	each	taking

up

			a	predefined	percentage	of	the	effect’s	total	duration

			calls:	[

						[propertiesObject,	durationPercentage,	optionsObject]	,

						[propertiesObject,	durationPercentage,	optionsObject]

],

			reset:	resetPropertiesObject

});

Let’s	break	down	this	template	step	by	step:

1.	The	first	argument	is	the	name	of	the	effect.	If	the	effect	is	responsible	for	bringing
an	element	into	view	(as	in,	it	fades	an	element’s	opacity	from	0	to	1),	it’s
important	to	suffix	the	effect	with	“In”.

2.	The	second	argument	is	an	object	that	defines	the	effect’s	behavior.	The	first
property	in	this	object	is	defaultDuration,	which	lets	you	specify	the	duration
the	full	effect	should	take	if	one	is	not	passed	into	the	Velocity	call	that	triggers	the
effect.

3.	The	next	property	in	the	object	is	the	calls	array,	which	consists	of	the	Velocity
calls	that	constitute	the	effect	(in	the	order	that	they	should	occur).	Each	of	these
array	items	is	an	array	itself,	which	consists	of	the	call’s	properties	object,	followed
by	the	optional	percentage	of	the	total	duration	which	that	call	should	consume	(a
decimal	value	that	defaults	to	1.00),	followed	by	an	optional	options	object	for	that
specific	call.	Note	that	Velocity	calls	specified	within	the	calls	array	accept	only
the	easing	and	delay	options.

4.	Finally,	you	have	the	option	of	passing	in	a	reset	object.	The	reset	object	is
specified	using	the	same	syntax	as	a	standard	Velocity	properties	map	object,	but	it
is	used	to	enact	an	immediate	value	change	upon	completion	of	the	full	effect.	This
is	useful	when	you’re	animating	the	opacity	and	scale	properties	of	an	element
down	to	0	(out	of	view),	but	want	to	return	the	element’s	scale	property	to	1	after

the	element	is	hidden	so	that	subsequent	effects	needn’t	worry	about	the	properties
beyond	opacity	they	must	reset	on	the	element	for	their	calls	to	properly	take
effect.	In	other	words,	you	can	leverage	the	reset	properties	map	to	make	effects
self-contained,	such	that	they	leave	no	clean	up	duties	on	the	target	elements.

In	addition	to	the	reset	object,	another	powerful	workflow	bonus	of	the	UI	pack’s	effect
registration	is	automatic	display	property	toggling.	When	an	element	begins	animating
into	view,	you	want	to	ensure	its	display	value	is	set	to	a	value	other	than	“none”	so	the
element	is	visible	throughout	the	course	of	its	animation.	(Remember,	display:	none
removes	an	element	from	the	page’s	flow.)	Conversely,	when	fading	an	element	out,	you
often	want	to	ensure	its	display	value	is	switched	to	"none"	once	its	opacity	hits	0.
This	way,	you	remove	all	traces	of	the	element	when	you’re	done	using	it.

Using	jQuery,	display	toggling	is	accomplished	by	chaining	the	show()	and	hide()
helper	functions	onto	animations	(oftentimes	messily	buried	within	nested	callbacks).
With	Velocity’s	UI	pack,	however,	this	logic	is	taken	care	of	automatically	when	you
suffix	your	effect	names	with	“In”	and	“Out”	as	appropriate.

Let’s	register	two	UI	pack	effects—one	for	the	“In”	direction	and	one	for	the	“Out”
direction—and	call	the	element	“shadowIn”	since	it	consists	of	fading	and	scaling	an
element	into	view,	then	expanding	its	boxShadow	property	outward:
Click	here	to	view	code	image

$.Velocity

			.RegisterEffect(“shadowIn”,	{

						defaultDuration:	1000,

						calls:	[

								[{	opacity:	1,	scale:	1	},	0.4]	,

								[{	boxShadowBlur:	50	},	0.6]

]

			})

			.RegisterEffect(“shadowOut”,	{

						defaultDuration:	800,

						calls:	[

								//	We	reverse	the	order	to	mirror	the	“In”	direction

								[{	boxShadowBlur:	50	},	0.2],

								[{	opacity:	0,	scale:	0	},	0.8]

]

			});

If	your	effect’s	name	ends	with	“Out”,	Velocity	will	automatically	set	the	element’s
display	property	to	“none”	once	the	animation	is	complete.	Conversely,	if	your	effect’s
name	ends	with	“In”,	Velocity	will	automatically	set	the	element’s	display	property	to
the	default	value	associated	with	the	element’s	tag	type	(for	example,	"inline"	for
anchors,	"block"	for	div	and	p).	If	your	effect’s	name	does	not	contain	one	of	these
special	suffixes,	the	UI	pack	will	not	perform	automatic	display	setting.

Registering	effects	not	only	improves	your	code,	but	also	makes	it	highly	portable
between	projects	and	among	fellow	developers.	When	you’ve	designed	an	effect	you	love,
now	it’s	painless	to	share	the	effect’s	registration	code	with	others	so	they	can	use	it	too.
Pretty	neat!

Design	techniques
The	techniques	discussed	so	far	in	this	chapter	will	improve	your	workflow	during	the
coding	phase	of	motion	design.	The	techniques	covered	in	this	section	focus	on	the	design
phase,	where	you’re	still	experimenting	to	find	the	perfect	animation	that	fits	your	UI.
This	phase	requires	a	lot	of	creativity	and	a	lot	of	repetition,	and	is	accordingly	ripe	for
workflow	improvements.

Timing	multipliers
The	first	design	technique	is	to	use	a	global	timing	multiplier.	This	consists	of	sprinkling
in	a	multiplier	constant	against	all	of	your	animations’	delay	and	duration	values.

Start	by	defining	your	global	timing	multiplier	(arbitrarily	designated	as	M	for
multiplier):

var	M	=	1;

Then,	bake	the	multiplier	into	the	duration	and	delay	option	values	within	each
animation	call:
Click	here	to	view	code	image

$element1.animate({	opacity:	1	},	{	duration:	1000	*	M	});

$element2.velocity({	opacity:	1	},	{	delay:	250	*	M	});

	Note

if	you	use	SASS	or	LESS,	which	provide	support	for	variable	usage	within
stylesheets,	this	technique	applies	equally	to	CSS	animations!

Embedding	a	multiplier	constant	will	help	you	quickly	modify	the	M	constant	in	one
location	(presumably	at	the	top	of	your	style.js)	in	order	to	quickly	speed	up	or	slow	down
all	of	the	animations	across	your	page.	Benefits	of	such	timing	control	include:

	Slowing	down	animations	to	perfect	the	timing	of	individual	animation	calls	within	a
complex	animation	sequence.	When	you’re	constantly	refreshing	your	page	in	order
to	tweak	a	multi-element	animation	sequence	to	perfection,	seeing	the	sequence	in
slow	motion	makes	it	significantly	easier	to	assess	how	individual	elements	interact
with	one	another.

	Speeding	up	animations	when	you’re	performing	repetitive	UI	testing.	When	you’re
testing	a	site	for	purposes	other	than	animation,	evaluating	the	end	state	of	UI
animations	(how	elements	wind	up)	is	more	important	than	testing	the	animations’
motion.	In	these	situations,	it	saves	time	and	reduces	headaches	to	speed	up	all	the
animations	across	your	page	so	you’re	not	repeatedly	waiting	for	your	animations	to
play	out	on	each	page	refresh.

Velocity	has	a	handy	implementation	of	this	functionality	called	mock,	which	functions
as	a	behind-the-scenes	global	multiplier	so	you	don’t	have	to	sprinkle	in	the	M	constant	by
hand.	Like	the	example	shown	above,	mock	multiplies	both	the	duration	and	the
delay	values.	To	turn	mock	on,	temporarily	set	$.Velocity.mock	to	the	multiplier

value	you	want	to	use:
Click	here	to	view	code	image

//	Multiply	all	animation	timing	by	5

$.Velocity.mock	=	5;

//	All	animations	are	now	time-adjusted

//	The	duration	below	effectively	becomes	5000ms

$element.velocity({	opacity:	1	},	{	duration:	1000	});

Velocity’s	mock	feature	also	accepts	a	Boolean	value:	setting	mock	to	true	sets	all
durations	and	delays	to	0ms,	which	forces	all	animations	to	complete	within	a	single
browser	timing	tick,	which	occurs	every	few	milliseconds.	This	is	a	powerful	shortcut	for
quickly	turning	off	all	animations	when	they’re	getting	in	the	way	of	your	UI	development
and	testing.

Use	Velocity	Motion	Designer
Velocity	Motion	Designer	(VMD)	was	crafted	with	the	sole	purpose	of	helping	developers
streamline	the	creation	phase	of	motion	design.	VMD	is	a	bookmarklet	that	you	load	onto
a	page	in	order	to	design	animations	in	real	time.	It	allows	you	to	double-click	elements	to
open	a	modal	that	lets	you	specify	animation	properties	and	options	for	that	element.	You
then	hit	Enter	on	your	keyboard	to	watch	the	animation	play	out	immediately—without	a
page	refresh.

	Note

Get	Velocity	Motion	Designer	at	http://velocityjs.org/#vmd.

http://velocityjs.org/#vmd

Once	you’ve	designed	all	your	element	animations	exactly	the	way	you	want	them,	you
can	export	your	work	into	one-for-one	Velocity	code,	which	you	can	place	immediately
into	an	IDE	for	use	in	production.	(The	resulting	code	is	also	fully	compatible	with
jQuery.)

Ultimately,	VMD	saves	countless	hours	of	development	time	by	preventing	constant
IDE	and	browser	tab	switching	and	repeated	UI	state	retriggering.	Further,	it	streamlines
the	designer-to-developer	workflow	by	allowing	the	two	teams	to	work	alongside	one
another	in	real	time:	with	VMD,	designers	can	implement	motion	design	without	having
to	familiarize	themselves	with	a	site’s	JavaScript	or	CSS.	They	can	simply	hand	off	the
exported	Velocity	code	to	the	developers	to	integrate	into	the	codebase	at	their	discretion.

VMD	is	a	highly	visual	tool—visit	VelocityJS.org/#vmd	to	see	the	walkthrough	video.

Wrapping	up
As	you	implement	animation	workflow	techniques,	you’ll	notice	the	intimidating	black
box	of	motion	design	beginning	to	unfold.	The	beautifully	intricate	loading	sequences
found	on	cutting-edge	sites	like	Stripe.com	and	Webflow.com	will	start	to	make	sense	to
you.	You’ll	gain	confidence	in	your	ability	to	code	animation	sequences,	and	this
newfound	skill	will	reduce	friction	in	your	development	routine,	making	it	not	only	easier
but	also	significantly	more	fun	to	accomplish	your	motion	design	goals.

http://VelocityJS.org/#vmd
http://Stripe.com
http://Webflow.com

Chapter	5.	Animating	Text

Since	textual	animation	is	rarely	employed	in	webpages,	using	it	is	an	easy	way	to	impress
users.	That’s	precisely	what	makes	this	topic	so	much	fun	to	learn:	the	underlying
techniques	are	simple	to	program,	but	the	results	feel	incredibly	rich	and	complex	to	the
user.

This	chapter	introduces	you	to	tools	that	remove	the	tedious	aspects	of	textual
animation	and	equip	you	with	an	efficient	workflow.	Read	on	to	learn	the	nuances	of	this
dark	art.

The	standard	approach	to	text	animation
The	standard	HTML	elements	we	code	sites	with—divs,	tables,	anchor	tags,	and	the
like—are	the	lowest-level	components	of	a	webpage	that	can	be	styled.	So	it	makes	sense
that	these	are	the	lowest-level	components	that	can	be	animated.

Text	does	not	constitute	an	element	unto	itself;	a	block	of	text	is	designated	by	the
browser	as	a	text	node,	which	is	an	unstylable,	lower-level	component	that	must	be
contained	by	an	element.	Further	complicating	matters	is	the	fact	that	the	browser	does	not
subdivide	text	nodes	into	grammatical	components;	there	is	no	way	to	access	individual
letters,	words,	or	sentences.

Consequently,	to	animate	text	on	a	letter,	word,	or	sentence	basis,	you	have	to	break
each	text	node	into	separate	text	nodes,	and	then	wrap	each	of	these	in	a	new	element.	You
can	then	animate	them.	But	manually	wrapping	text	in	span	elements,	for	example,	is
tedious	work	that	results	in	bloated	HTML.

It’s	no	surprise	then	that	text	animation	on	the	web	is	uncommon;	it’s	typically	too
much	of	a	hassle	to	deal	with.	This	puts	the	web	at	an	aesthetic	disadvantage	to	dedicated
motion	design	software,	such	as	Adobe	After	Effects,	which	allows	for	the	fine-grained
animation	of	text—the	results	of	which	are	commonly	seen	in	TV	commercials	and	movie
title	sequences.	These	effects	can	look	absolutely	beautiful.	Unfortunately,	in	addition	to
being	difficult	to	integrate	on	the	web,	they’re	also	widely	considered	bad	practice.	After
all,	the	web	is	a	medium	that	prioritizes	function	over	form,	and	text	animation	is	largely
about	form.

However,	there	is	one	textual	animation	use	case	that	can	carry	over	well	to	the	web
when	used	sparingly:	if	you	pay	close	attention	to	the	depictions	of	futuristic	hardware
interfaces	in	movies,	you’ll	notice	the	common	thread	of	text	being	animated	into	or	out	of
view	on	a	grammatical	level.	The	future	of	computing,	according	to	pop	culture,	consists
of	words	and	sentences	animating	with	flickers,	glitches,	pops,	and	blurs.	These	effects
look	cool,	and	there	isn’t	much	downside	to	embracing	them	for	the	purposes	of
transitioning	content	into	or	out	of	view	since	the	text	had	to	undergo	a	visibility
animation	by	one	means	or	another.	This	concept	of	transitioning	text	visibility	is
precisely	what	you’ll	learn	about	in	this	chapter.

Preparing	text	elements	for	animation	with	Blast.js
The	tool	of	choice	for	typographic	animation	is	Blast.js,	which	handily	breaks	blocks	of
text	into	characters,	words,	and	sentences.	You	can	then	animate	the	resulting	parts	using
Velocity	and	its	UI	pack	plugin.

	Note

Get	Blast.js	at	Julian.com/research/blast.

Blast.js	has	three	delimiter	types	to	define	the	grammatical	components	to	be
individually	extracted:	character,	word,	and	sentence.	Suppose	you	have	a	div	that	looks
like	this:

<div>

		Hello	World

</div>

If	you	call	Blast	on	this	div	using	the	following	syntax
Click	here	to	view	code	image

$(“div”).blast({	delimiter:	“word”	});

the	div	would	turn	into	this:
Click	here	to	view	code	image

<div	class=“blast-root”>

http://Julian.com/research/blast

			Hello

			World

</div>

As	you	can	see,	Blast	separated	the	target	div’s	text	into	text	parts	that	are	individually
wrapped	in	span	elements.	If	you	were	to	instead	use	the	character	delimiter,	the	result
would	have	been:
Click	here	to	view	code	image

<div	class=“blast-root”>

			H

			e

			l

			l

			o

				

			W

			o

			r

			l

			d

</div>

You	can	now	animate	these	span	elements	independently.	Before	you	dive	into	textual
animation,	however,	you’re	going	to	learn	more	about	how	Blast	works	so	you	can	take
full	advantage	of	its	powerful	features.

How	Blast.js	works
The	goal	of	this	section	is	to	make	you	comfortable	with	the	prospect	of	using	Blast	to
break	apart	the	text	on	your	beloved	page.	Let’s	dive	in!

divs,	tables,	and	the	other	HTML	elements	that	you’re	familiar	with	are	called
element	nodes.	An	element	node	commonly	consists	of	two	types	of	children:	additional
element	nodes	and	text	nodes	(raw	text).

Take	this	element,	for	example:
<div>

		Hello	World

</div>

This	div	element	is	composed	of	two	children:	a	text	node	(“Hello”)	and	a	span	element
node.	The	span	element	node	contains	a	child	of	its	own:	another	text	node	(“World”).

When	Blast	is	called,	it	traverses	the	entirety	of	the	target	element’s	descendant	element
chain	to	find	text	nodes.	With	each	text	node,	Blast	executes	the	RegEx	query	associated
with	the	specified	delimiter	type	(character,	word,	or	sentence)	to	subdivide	the
node	into	new	elements,	each	with	its	own	text	node	part.	Since	Blast	doesn’t	actually
subdivide	element	nodes—only	text	nodes—you	can	safely	apply	it	to	the	entire	page
without	worrying	about	breaking	elements’	event	handlers	and	other	expected	behaviors.
This	versatility	is	crucial	when	using	Blast	on	user-generated	content	that	is	often	dirtied
with	HTML.	(Say,	for	example,	you	want	to	separate	the	words	in	a	message	posted	to
your	site’s	comments	section	so	you	can	highlight	important	passages.	With	Blast,	you	can
safely	do	so	without	concern	for	breaking	the	user’s	embedded	links.)

In	addition	to	its	robustness,	Blast	provides	a	high	level	of	accuracy.	It	doesn’t	dumbly
split	words	at	spaces,	nor	does	it	split	sentences	at	periods	within	words.	It	leverages	UTF-
8	character	sets	for	Latin	alphabet	languages,	meaning	that	you	can	accurately	apply	it	to
French,	German,	Spanish,	English,	Italian,	and	Portuguese	content.

Suppose	you	used	Blast’s	sentence	delimiter	on	the	following	paragraph.	(Bold	and
italic	are	used	below	to	indicate	the	consecutive	text	matches	that	Blast	detects.)	Blast
correctly	identified	six	sentences	in	the	paragraph:

¿Will	the	sentence	delimiter	recognize	this	full	sentence	containing	Spanish
punctuation?	¡Yes!	«	Mais,	oui	!	»	“Nested	“quotes”	don’t	break	the	sentence
delimiter!”	Further,	periods	inside	words	(e.g.	Blast.js),	in	formal	titles	(e.g.	Mrs.	Bluth,
Dr.	Fünke),	and	in	“e.g.”	and	“i.e.”	do	not	falsely	match	as	sentence-final	punctuation.
Darn.	That’s	pretty	impressive.

Notice	how	punctuation	is	associated	with	its	proper	sentence,	and	how	errant	periods
don’t	falsely	demarcate	sentence	matches.

With	these	foundations	covered,	it’s	time	to	run	through	how	to	use	Blast.

Installation
Blast	is	installed	on	a	page	like	any	other	JavaScript	plugin:	embed	the	appropriate	script
link	before	your	page’s	</body>	tag:
Click	here	to	view	code	image

<html>

			<head>My	Page</head>

			<body>

						My	content.

						<script	src=“jquery.js”></script>

						<script	src=“velocity.js”></script>

						<script	src=“blast.js”></script>

			</body>

</html>

	Note

Blast	requires	jQuery	(or	Zepto,	a	jQuery	alternative),	and	therefore	must	be
required	after	jQuery.	It	doesn’t	matter	whether	Blast	is	loaded	before	or	after
Velocity.

Once	Blast	is	loaded,	use	it	by	calling	.blast()	on	a	jQuery	element	object.	It
accepts	an	options	object	as	its	sole	argument:
Click	here	to	view	code	image

$element.blast({	option1:	value1,	option2:	value2	});

Let’s	run	through	the	available	options.

Option:	Delimiter
Blast’s	most	important	option	is	delimiter,	which	accepts	"character",	"word",
or	"sentence".	To	separate	the	text	within	$element	using	the	"sentence"
delimiter,	your	code	would	look	like	this:
Click	here	to	view	code	image

$element.blast({	delimiter:	“sentence”	});

Note	that	Blast	returns	the	generated	text	wrapper	elements	to	the	jQuery	selector	chain
so	you	can	manipulate	them,	like	this:
Click	here	to	view	code	image

$element.blast({	delimiter:	“sentence”	})

			.css(“opacity”,	0.5);

The	.css()	call	is	applied	to	the	individual	text	elements,	not	the	parent	$element
that	you	called	Blast	on.

Option:	customClass
Blast	provides	two	options	to	make	text	manipulation	easier:	customClass	and
generateValueClass.	customClass	behaves	exactly	as	you	would	expect:	supply
a	custom	class	(as	a	string	value)	to	be	assigned	to	the	text	node	wrapper	elements.

Suppose	you	had	the	following	div	and	Blast	call:
Click	here	to	view	code	image

<div>

		Hi	Mom

</div>

$(“div”).blast({	delimiter:	“word”	,	customClass:	“myClass”	});

The	div	would	turn	into	the	following	(note	how	Blast	automatically	assigns	every	text
part	the	"blast"	class	by	default):
Click	here	to	view	code	image

<div>

		Hi

		Mom

</div>

The	value	in	providing	a	custom	class	is	in	differentiating	the	elements	generated	by
each	Blast	call.	If,	for	example,	you	used	Blast	in	two	locations	on	your	page—once	in	the
header	and	once	in	the	footer—it	might	be	helpful	to	assign	these	two	calls	different
classes	so	your	subsequent	JavaScript	code	and	CSS	styles	can	act	on	the	text	elements
appropriately.

Option:	generateValueClass
generateValueClass	takes	a	Boolean	value	(true	or	false)	indicating	whether	a
unique	class,	in	the	form	of	.blast-[delimiter]-[textValue],	should	be
assigned	to	the	generated	text	elements.

	Note

This	option	is	applicable	only	to	the	character	and	word	delimiters.

The	[delimiter]	placeholder	represents	the	delimiter	type	used	in	the	call,	and	the
[textValue]	placeholder	represents	the	text	contained	within	an	individual	element.
Consider	the	following	example:
Click	here	to	view	code	image

<div>

			Hi	Mom

</div>

$(“div”).blast({	delimiter:	“word”	,	generateValueClass:	true	});

The	element	would	turn	into	this:
Click	here	to	view	code	image

<div	class=“blast-root”>

		Hi

		Mom

</div>

When	Blast	is	called	with	the	letter	delimiter,	the	element	would	turn	into	this
instead:
Click	here	to	view	code	image

<div	class=“blast-root”>

		H

		i

		…	and	so	on…

</div>

The	generateValueClass	option	is	useful	when	you	need	to	use	CSS	or
JavaScript	to	manipulate	text	matches	based	on	the	text	contained	with	them.	If,	for
example,	you	used	this	feature	on	a	book	excerpt,	you	could	create	a	visualization	of	all
instances	of	the	word	“and”	by	giving	elements	with	the	.blast.word-and	class	a
yellow	background:
Click	here	to	view	code	image

//	jQuery	implementation

$(“.blast-word-and”).css(“background”,	“yellow”);

//	Raw	JavaScript	implementation

document.querySelectorAll(“.blast-word-and”).forEach(function(item)	{

item.style.background	=	“yellow”;	});

//	CSS	implementation

.blast-word-and	{

			background:	yellow;

}

Thanks	to	this	feature,	you	can	painlessly	target	text	matches	via	either	CSS	or
JavaScript	without	having	to	use	messy	custom	code	to	individually	check	the	text
contents	of	each	element.

Option:	Tag
This	option	lets	you	specify	the	type	of	element	that	wraps	text	parts.	The	default	value	is
span,	but	you	can	pass	in	any	element	type	(for	example,	a,	div,	p).	Consider	this
example:
Click	here	to	view	code	image

<div>

		Hi	Mom

</div>

//	Use	the	“div”	element	as	the	wrapper	tag

$(“div”).blast({	delimiter:	“word”	,	tag:	“div”	});

The	element	would	consequently	turn	into	this:
<div	class=“blast-root”>

		<div	class=“blast”>Hi</div>

		<div	class=“blast”>Mom</div>

</div>

This	feature	is	useful	to	ensure	that	the	resulting	text	elements	mimic	the	structure	of
the	surrounding	HTML.	Perhaps	nearby	sibling	elements	are	all	of	the	div	type,	in	which
case	the	above	example	may	be	appropriate.

You	might	also	want	to	take	advantage	of	the	unique	properties	offered	by	different	tag
types.	strong,	for	example,	automatically	bolds	text,	whereas	div	forces	each	text
match	to	begin	on	a	new	line	thanks	to	div’s	default	display	value	of	"block".

Command:	Reverse
You	can	undo	Blast	on	an	element	by	passing	false	as	the	sole	parameter	into	a	Blast
call.	Hence,	if	your	Blasted	element	looked	like	this:

<div	class=“blast-root”>

			<div	class=“blast”>Hi</div>

			<div	class=“blast”>Mom</div>

</div>

and	you	passed	in	the	following	Blast	call:
$(“div”).blast(false);

the	element	would	return	to	its	original	structure:
<div>

			Hi	Mom

</div>

You	might	be	wondering	how	this	works:	when	Blast	is	reversed,	it	simply	destroys	the
generated	wrapper	elements,	then	inserts	raw	text	where	the	wrapper	elements	were
previously.	Note	that	this	will	break	event	handlers	assigned	to	the	new	elements
generated	by	Blast,	but	it	won’t	break	event	handlers	associated	with	the	HTML	that
existed	prior	to	Blast	being	initially	called.

Reversing	Blast	in	this	way	is	a	crucial	component	of	textual	animation	since	the	modus
operandi	when	animating	elements	on	a	webpage	is	to	leave	things	as	they	were	before
you	touched	them.	If,	for	example,	you’ve	Blasted	apart	a	sentence	in	order	to	animate	its

words	into	view	one	at	a	time,	you	would	subsequently	reverse	Blast	upon	completion	of
the	animation.	Consequently,	JavaScript	code	that	later	interacts	with	the	text	won’t	have
unexpected	child	elements	that	it	has	to	parse	out.	In	short,	it’s	good	practice	to	avoid
leaving	your	HTML	unnecessarily	bloated	so	that	further	programmatic	interaction	with
your	elements	doesn’t	become	increasingly	convoluted.

	Note

To	learn	more	about	Blast,	including	its	unique	search	capabilities	and	its
compatibility	with	screen-reading	software,	visit	its	documentation	at
Julian.com/research/blast.

Now	that	you’ve	separated	your	text	elements,	it’s	time	to	animate	them.

Transitioning	text	into	or	out	of	view
The	most	common	use	of	textual	animation	is	animating	text	in	and	out	of	view.	A	basic
implementation	of	this	is	to	animate	the	words	in	a	sentence	into	view	one	after	another.

Replacing	existing	text
Let’s	start	by	creating	a	container	div	with	placeholder	text	that	will	be	replaced	by	new
text	that	animates	into	place:
Click	here	to	view	code	image

<div>

			A	message	will	load	here	shortly…

</div>

Because	the	div	starts	out	as	visible,	Blasting	the	div’s	text	results	in	child	text
elements	that	are	visible	as	well.	Since	your	goal	is	to	animate	the	generated	text	elements
into	view	starting	from	a	state	of	invisibility,	you	have	to	make	the	generated	text	elements
invisible	immediately	after	you	call	Blast:
Click	here	to	view	code	image

$(“div”)

			.html(“This	is	our	new	message.”)

			.blast({	delimiter:	“word”	})

						.css(“opacity”,	0);

						.velocity({	opacity:	1	});

This	replaces	the	div’s	existing	text	with	a	new	message.	Then	it	Blasts	the	div	using	the
word	delimiter.	Since	a	call	to	Blast	returns	the	generated	text	wrapper	elements	to	the
jQuery	selector	chain,	you	can	easily	extend	the	code	to	set	the	opacity	of	each	text
element	to	0.	This	primes	the	elements	for	the	subsequent	Velocity	call,	which	consists	of
a	simple	opacity	animation.

You	may	have	noticed	that	the	above	code	results	in	all	text	parts	animating	into	view
simultaneously.	This,	of	course,	defeats	the	purpose	of	using	Blast	in	the	first	place:	if	you
wanted	all	of	the	div’s	content	to	animate	into	view	simultaneously,	you	could	have
simply	animated	the	div	itself.	The	goal	here	is	actually	to	achieve	a	successive

http://Julian.com/research/blast

animation	sequence	that	consists	of	one	text	element	animating	after	another.

Staggering
This	is	where	Velocity’s	UI	pack	comes	into	play.	(Review	Chapter	4,	“Animation
Workflow,”	if	you	need	a	primer	on	the	UI	pack.)	To	impose	a	successive	delay	between
animation	start	times	within	an	element	set,	use	Velocity	UI	pack’s	stagger	option,
which	expects	a	duration	specified	in	milliseconds.	Applying	it	to	the	previous	code
example,	you	get:
Click	here	to	view	code	image

$(“div”)

			.html(“This	is	our	new	message.”)

			.blast({	delimiter:	“word”	})

						.css(“opacity”,	0)

						.velocity(“transition.fadeIn”,	{	stagger:	50	});

The	code	above	produces	a	successive	delay	of	50ms	between	the	elements’	animation
start	times.	Importantly,	note	the	Velocity	call’s	previous	{	opacity:	1	}	argument
for	"transition.fadeIn",	which	is	a	premade	fade	effect	included	with	Velocity’s
UI	pack.	(Refer	to	Chapter	4,	“Animation	Workflow,”	if	you	need	a	refresher.)	Since	the
stagger	option	works	with	UI	pack	effects,	this	example	shows	the	effect	that	mirrors
animating	opacity	to	a	value	only	of	1.

As	discussed	in	Chapter	3,	“Motion	Design	Theory,”	be	careful	to	keep	stagger	times	to
a	low	duration	so	that	users	aren’t	waiting	needlessly	while	text	fades	into	view.	Keep	in
mind	that	the	longer	an	element’s	word	count,	the	greater	the	overall	time	an	animation
sequence	will	take	to	complete.	Text	element	staggering	is	one	of	the	easiest	ways	to	slip
into	the	bad	practice	of	slowing	down	your	interface.

Transitioning	text	out	of	view
The	code	example	in	the	previous	section	only	animated	text	into—not	out	of—view;	the
div’s	preexisting	text	was	immediately	replaced	by	the	new	message.	This	doesn’t
necessarily	make	for	poor	motion	design,	but	it	is	often	beneficial	from	the	perspective	of
motion	design	theory	to	unify	animations	such	that	an	element	fades	out	of	view	in	a	way
that	reflects	the	way	it	faded	into	view.	Chapter	3,	“Motion	Design	Theory,”	covered	the
concept	of	mirroring	animations	so	that	what	comes	in	reflects	what	goes	out.	That	advice
applies	here.

If	you	want	the	outward	textual	animation	to	mirror	the	inward	animation,	you	could
rework	the	code	example	as	follows:
Click	here	to	view	code	image

//	Select	the	previously	blasted	text

$(“div	.blast”).velocity(

			//	Animate	the	existing	text	out	of	view	with	the	appropriate	UI	pack

effect

			“transition.fadeOut”,

			{

						//	Stagger	the	outward	animation	as	you	did	the	inward	animation

						stagger:	50,

						backwards:	true,

						//	When	this	outward	animation	is	complete,	begin	the	inward	animation

						complete:	function()	{

									//	Proceed	with	the	inward	animation

									$(“div”)

												.html(message)

												.blast({	delimiter:	“word”	})

															.css(“opacity”,	0)

															.velocity({	opacity:	1	},	{	stagger:	50	});

						}

			}

);

This	begins	by	calling	the	Velocity	UI	pack	"transition.fadeOut"	effect	on	the
text	parts	generated	by	the	div	having	previously	been	Blasted.	As	with	the	inward
direction,	the	stagger	option	successively	offsets	the	individual	text	part	animations	in
the	outward	direction.	New	to	this	call	is	the	use	of	Velocity	UI	pack’s	backwards
option,	which	pairs	with	stagger	to	reverse	the	target	element	set’s	order	so	that	the	last
element	(the	last	word	in	the	sentence)	animates	out	of	view	before	the	second-to-last
element	does,	and	that	element	animates	out	of	view	before	the	third-to-last	element	does,
and	so	on.	When	this	outward	animation	sequence	is	complete,	the	inward	animation	is
called	from	within	the	complete	callback.

Using	the	backwards	option	for	text	animation	provides	two	benefits.	First,	it	helps
mirror	(create	the	inverse	of)	the	inward	animation,	which	consists	of	the	first	word
animating	into	view	before	the	second	word	does,	and	so	on.	Second,	when	the	backward
animation	is	immediately	followed	by	the	forward	animation,	the	net	result	is	an	elegant
chaining	effect	in	which	the	last	word	in	the	backward	direction	and	the	first	word	in	the
forward	direction	occur	back-to-back.	This	works	to	tie	the	two	animation	sequences
together	into	what	looks	like	one	conjoined	animation	instead	of	two	separate	animations
crudely	glued	together.

Transitioning	individual	text	parts
Movie	title	sequences	are	well	known	for	their	inventive	typographic	motion	design.	The
technique	underlying	many	of	these	effects	is	singling	out	individual	text	elements	for
animation.	That’s	what	this	section	covers.

	Note

For	typographic	animation	inspiration,	search	YouTube	for	movie	title
sequences	and	take	detailed	notes!	As	long	as	you	keep	the	principles	of
motion	design	theory	in	mind,	you	should	feel	encouraged	to	explore	textual
animation	design	in	your	interface.

To	achieve	fine-grained	control	over	the	elements	that	Blast	generates,	simply	use
CSS’s	nth-child	selector	or	jQuery’s	eq()	function.	These	functions	behave	similarly
to	one	another,	in	that	they	allow	for	the	selection	of	an	element	within	a	set	based	on	that
element’s	index.	If	you	passed	an	integer	value	of	3	into	these	functions	(or	2	in	the	case
of	jQuery	as	you	will	see),	they	would	target	the	third	element	(that	is,	third	word)	in	the
full	element	set	(that	is,	multiword	sentence):

Click	here	to	view	code	image

//	CSS	implementation

.blast:nth-child(3)	{

			color:	red;

}

//	jQuery	implementation

$(“.blast”).eq(2).css(“color”,	“red”);

Both	examples	above	target	the	third	element	on	the	page	that	has	the	.blast	class
applied.	(Note	that	jQuery’s	eq	function	is	0-based	whereas	CSS’	nth-child	is	1-
based,	hence	the	different	integer	values	being	passed	into	the	examples.)	Let’s	continue
with	a	jQuery	implementation	to	work	toward	a	complete	example:
Click	here	to	view	code	image

<div>

			Current	status:	paused

</div>

//	Blast	the	div	using	the	word	delimiter

$(“div”).blast({	delimiter:	“word”	})

					//	Select	the	third	word	in	the	sentence	(the	span	containing	the

“paused”	text)

					.eq(2)

								//	Fade	the	third	element	out	of	view	then	replace	its	inner	text

with	a	new	message

								.velocity({	opacity:	0	},	function()	{	$(this).text(“running”);	})

								//	Fade	the	replaced	text	into	view

								.velocity({	opacity:	1	});

This	Blasts	a	sentence,	selects	its	third	word	(“paused”),	fades	the	word	out	of	view,
replaces	the	faded	word	with	a	new	word	(“running”),	then	fades	the	new	word	into	view.
The	net	effect	is	that	the	status-indicating	keyword	within	a	sentence	gracefully	fades	into
a	new	word	to	alert	the	user	of	a	change.	This	is	a	tremendously	elegant	effect	that	consists
of	only	a	few	lines	of	simple	code.	If	you	were	to	perform	this	effect	many	times	over	a
larger	block	of	text,	you	could	achieve	an	effect	in	which	one	message	appears	to
sporadically	change	into	another.

Transitioning	text	fancifully
You	could	easily	swap	the	transition.fadeIn	effect	you’ve	used	thus	far	with
another	effect	from	Velocity’s	UI	pack.	Some	of	the	other	effects	are	quite	fanciful,
ranging	from	transition.shrinkIn,	which	causes	an	element	to	scale	down	into
view,	to	transition.perspectiveDownIn,	which	causes	an	element	to	rotate
down	into	view	like	a	hinged	barn	door.	(As	always,	the	sophistication	of	your	effects
should	be	rooted	in	the	principles	discussed	in	Chapter	3,	“Motion	Design	Theory.”)

	Note

For	a	complete	list	of	UI	pack	effects,	including	live	demos,	visit
VelocityJS.org/#uiPack.)

Keep	in	mind	that	some	effects	use	3D	transforms	(rotateX,	rotateY,	and
translateZ),	which	don’t	work	with	on	elements	whose	CSS	display	value	is	set	to

http://VelocityJS.org/#uiPack

"inline"—the	default	display	value	for	span	and	anchor	elements	in	particular.	The
workaround	is	to	set	Blast’s	generated	text	elements	to	a	display	value	of	"inline-
block",	which	keeps	"inline"	elements	behaving	as	they	normally	do	while	giving
them	the	added	functionality	of	"block"	elements	(such	as	div	and	p),	in	which
position-related	properties,	including	3D	transforms,	can	be	styled.	Taking	this	display
tweak	into	account,	the	inward	text	transition	example	would	now	look	like	this:
Click	here	to	view	code	image

$(“div”)

			.html(message)

			.blast({	delimiter:	“word”	})

						.css({	opacity:	0,	display:	“inline-block”	})

						.velocity(“transition.perspectiveDownIn”,	{	stagger:	50	});

This	sets	the	Blasted	text	parts’	display	values	to	"inline-block"	in	the	same
call	to	jQuery’s	css()	function	that	sets	the	elements’	opacity	to	a	starting	value	of	0.

Textual	flourishes
The	final	topic	in	this	discussion	of	textual	animation	is	the	concept	of	flourishes,	ambient
animations	that	produce	ongoing	effects	for	aesthetic	purposes.	One	example	might	be	a
string	of	text	that	flickers	like	a	dying	light	bulb.	Another	might	be	having	all	the	words	in
a	sentence	continuously	animate	to	different	shades	of	blue.

Both	of	these	are	bad	ideas.

These	effects	distract	users	and	ultimately	amuse	only	you—the	developer	who	enjoys
toying	with	motion	design.	Never	include	animation	just	for	the	sake	of	animation;	if	a
part	of	your	page	is	meaninglessly	drawing	the	user’s	attention	away	from	the	parts	that
have	utility,	go	back	to	the	drawing	board.

The	rare	exception	to	this	is	status	indicators—text	such	as	“Loading…”—that	keep	the
user	abreast	of	what	the	interface	is	doing.	These	are	appropriate	targets	for	textual
flourishes	because	the	flourishes	tell	the	user	that	the	interface	is	still	processing	data	(as
opposed	to	having	frozen).	In	this	way,	flourishes	act	as	an	engaging	visual	heartbeat.

So	if	textual	flourishes	are	generally	considered	bad	practice,	why	is	this	section	even
included	in	the	book?	Because	flourishes	that	aren’t	animated	are	often	a	great	idea!
Consider	this	a	non-animation	bonus	provided	by	Blast:	you	can	stylize	the	text	elements
generated	by	Blast	to	produce	colorful	collages	and	other	unique	typographic	designs.	For
example,	you	could	break	apart	a	website’s	slogan	text	(“Delivering	happiness	right	to
your	door!”)	word	by	word	to	reduce	the	opacity	of	each	successive	word,	thereby
creating	a	subtle	gradient	effect	that	spans	the	entire	sentence.	Here’s	what	that	code
would	look	like:
Click	here	to	view	code	image

<div>

		Hi	Mom

</div>

//	Blast	the	div	then	iterate	through	the	generated	text	elements

$(“div”).blast({	delimiter:	“character”	}).each(function(i,	element)	{

		//	Successively	reduce	the	opacity	of	each	element	with	an	arbitrary

formula

		var	adjustedOpacity	=	1	-	i/10;

		element.style.opacity	=	adjustedOpacity;

});

Instead	of	iterating	opacity	values,	you	could	also	iterate	RGB	values	to	create	color-
based	gradients.	For	example,	if	you	increased	the	blue	component	of	text	whose	color
initially	starts	as	gray,	you’d	produce	elements	that	are	increasingly	rich	in	blue	as	you	go
from	first	to	last:
Click	here	to	view	code	image

//	Blast	the	div	then	iterate	through	the	generated	text	elements

$(“div”).blast({	delimiter:	“character”	}).each(function(i,	element)	{

			//	Successively	increase	the	blue	color	component	of	each	element	with	an

arbitrary	formula

			var	adjustedBlue	=	i*20;

			element.style.opacity	=	“rgb(0,	0,”	+	adjustedBlue	+	“)”;

});

Wrapping	up
This	is	just	the	beginning	of	the	possibilities	created	by	granular	text	control.	Other
techniques	include	fine-tuning	the	coordinates	of	every	letter	in	a	word	to	produce	a
collage	effect,	or	placing	words	around	the	circumference	of	a	circle	to	mimic	the
typographic	design	you	might	find	on	a	drink	coaster.

While	these	techniques	may	be	well-suited	for	bold	homepage	centerpieces,	they	may
not	be	appropriate	for	critical	parts	of	your	UI	that	are	subject	to	repeated	user	interaction.

Why?	Because	stylized	text	is	harder	to	read	at	a	glance	than	unstylized	text.	But	if	you
consider	the	balance	between	form	and	function,	you’ll	be	fine.

Chapter	6.	Scalable	Vector	Graphics	Primer

Since	an	in-depth	tutorial	on	Scalable	Vector	Graphics	(SVG)	could	easily	comprise	a
book	of	its	own,	this	chapter	simply	serves	as	an	introduction	to	the	topic.	The	goal	is	to
equip	you	with	enough	knowledge	to	be	comfortable	animating	SVG	elements	and	to
know	where	to	go	next	to	continue	your	learning.

Creating	images	through	code
An	SVG	element	is	a	type	of	DOM	element	that	borrows	the	syntax	of	the	HTML
elements	you’re	already	familiar	with	to	define	arbitrary	shapes.	SVG	elements	differ
from	HTML	elements	in	that	they	have	unique	tags,	attributes,	and	behaviors	that	allow
them	to	define	graphic	shapes.	Put	another	way,	SVGs	let	you	to	create	images	through
code.	This	is	a	tremendously	powerful	concept	because	it	means	you	can
programmatically	style	and	animate	these	shapes	using	JavaScript	and	CSS.	In	addition
SVG	offers	many	other	benefits:

	SVG	compresses	incredibly	well.	Graphics	defined	in	SVG	have	smaller	file	sizes
than	their	PNG/JPEG	equivalents,	which	can	greatly	improve	site	load	times.

	SVG	graphics	scale	to	any	resolution	without	a	loss	of	clarity.	Unlike	standard	image
formats,	they	look	razor	sharp	across	all	devices—say	good-bye	to	blurry	images	on
mobile	screens.

	Like	HTML	elements,	SVG	elements	can	be	assigned	event	handlers	that	respond	to
a	user’s	input,	which	means	that	the	graphics	on	your	page	can	be	made	interactive.
If	you	so	desired,	all	the	buttons	on	your	site	could	be	turned	into	animated	graphics.

	Many	photo-editing	apps	(including	Adobe	Photoshop,	Sketch,	and	Inkscape)	let
you	export	your	design	work	into	SVG	format	for	quick	copying	and	pasting	into
HTML.	So,	even	if	you	don’t	consider	yourself	an	artist,	you	can	leverage	third-
party	applications	to	do	the	designing	for	you.

In	short,	SVGs	are	an	amazing	graphics	solution.	Let’s	dive	in!

SVG	markup
SVG	elements	are	defined	within	a	parent	<svg>	container.	Specifying	the	width	and
height	dimensions	of	container	element	defines	the	canvas	that	your	SVG	graphics	render
upon:
Click	here	to	view	code	image

<svg	version=“1.1”	width=“500”	height=“500”

xmlns=“http://www.w3.org/2000/svg”>

			<circle	cx=“100”	cy=“100”	r=“30”	/>

			<rect	id=“rect”	x=“100”	y=“100”	width=“200”	height=“200”	/>

</svg>

Within	<svg>,	you	can	insert	SVG	shape	elements	of	varying	sorts.	The	above
example	has	a	circle	element	followed	by	a	rect	(rectangle)	element.	As	with	normal
HTML	elements,	SVG	elements	accept	height	and	width	attributes,	which	are	used

here	for	demonstration	purposes,	but	(as	with	HTML)	it’s	considered	best	practice	to
specify	SVG	styling	properties	within	a	CSS	stylesheet.	Also	as	with	HTML,	stylesheet
classes	target	SVG	elements	via	their	id,	class,	or	tag	types.

Where	the	SVG	and	HTML	specifications	fundamentally	differ	is	in	their	range	of
accepted	HTML	attributes	and	CSS	properties.	SVG	elements	accept	only	a	few	of	the
standard	CSS	properties.	Further,	SVGs	accept	a	special	set	of	attributes,	called
presentational	attributes,	which	include	fill,	x,	and	y.	(fill	specifies	which	color	to
fill	a	shape	with,	whereas	x	and	y	define	the	position	of	the	element’s	top-left	corner.)
These	attributes	define	how	an	element	is	visually	rendered	on	its	canvas.	Let’s	run
through	a	few	of	them,	using	rect	as	a	sample	SVG	element:
Click	here	to	view	code	image

<rect	id=“rect”	x=“100”	y=“100”	width=“200”	height=“200”	/>

Here,	the	width	and	height	attributes	work	as	you’d	expect.	The	unique	x	and	y
attributes	define	the	rectangle’s	coordinates	within	the	canvas.	These	values	simply
position	the	rectangle	relative	to	an	x	=	0,	y	=	0	origin	point.	Unlike	HTML,	SVG
positioning	is	not	defined	with	top,	right,	bottom,	left,	float,	or	margin	CSS
properties;	SVG	positioning	logic	is	fully	dictated	by	explicitly	defined	coordinates.	In
other	words,	an	SVG	element’s	positioning	doesn’t	affect	the	position	of	its	sibling
elements;	instead	of	pushing	each	other	around	the	page,	SVG	siblings	simply	overlap	one
another.

Now	let’s	take	a	look	at	the	circle	element.	Its	rendering	is	specified	via	coordinates
that	designate	its	center	point	(cx	and	cy)	along	with	a	radius	value	(r)	that	designates	its
length:
Click	here	to	view	code	image

<circle	cx=“100”	cy=“100”	r=“30”	/>

Pretty	simple,	right?	SVG	elements	use	the	same	markup	structure	as	HTML	elements,
so	all	the	code	samples	in	this	chapter	should	feel	familiar.

Note	that	there	are	many	other	types	of	SVG	elements,	including	ellipse,	line,	and	text.
See	the	end	of	this	chapter	for	further	details.

SVG	styling
SVG	elements	accept	a	variety	of	special	styling	properties	that	are	not	available	to	HTML
elements.	SVG’s	fill	property,	for	example,	is	similar	to	background-color	in
CSS,	stroke	is	similar	to	border-color,	and	stroke-width	is	similar	to
border-width.	Take	a	look	at	this	example:
Click	here	to	view	code	image

<svg	version=“1.1”	width=“500”	height=“500”

xmlns=“http://www.w3.org/2000/svg”>

			<circle	cx=“100”	cy=“100”	r=“30”	style=“fill:	blue”	/>

			<rect	id=“rect”	x=“100”	y=“100”	width=“200”	height=“200”	style=“fill:

green;	stroke:	red;	stroke-width:	5px”	/>

</svg>

Above,	the	circle	element	is	filled	with	solid	blue,	and	the	rect	element	is	filled

with	solid	green.	Additionally,	the	rectangle	has	a	red	border	with	a	thickness	of	5px.

There	are	many	other	SVG-specific	styling	properties.	For	now,	it’s	simply	important
for	you	to	know	that	they	exist	so	you’ll	pay	extra	attention	when	trying	to	animate	CSS
properties	on	SVG	elements.

	Note

Refer	to	the	“Wrapping	up”	section	of	this	chapter	for	information	on	where
to	find	a	full	listing	of	SVG	styling	properties.

Support	for	SVG
Out-of-the-box	support	for	SVG	element	animation	isn’t	great:	neither	jQuery	nor	CSS
offers	complete	support	for	animating	SVG-specific	styling	properties	and	presentational
attributes.	Further,	CSS	transitions	can’t	animate	SVG	elements	at	all	on	Internet	Explorer
9,	and	CSS	can’t	be	used	to	apply	transform	animations	to	SVG	elements	on	any	version
of	Internet	Explorer.

To	gain	comprehensive	SVG	animation	support,	use	either	a	dedicated	SVG	library	or
an	animation	library	that	has	built-in	support	for	SVG	elements.	One	noteworthy
dedicated	SVG	library	is	Snap.svg.	It	probably	won’t	surprise	you	to	learn	that	Velocity.js,
the	JavaScript	animation	library	you’ve	been	using	throughout	this	book,	provides	full
support	for	SVG	element	animation.

	Note

Go	to	SnapSVG.io	to	download	the	Snap.svg	library.

SVG	animation
SVG	elements	might	never	be	the	backbone	of	your	UI,	but	they’re	certainly	appropriate
for	spicing	up	the	parts	of	your	page	that	you’d	normally	fill	with	static	images.	Uses	for
SVGs	include:

	Buttons	with	intricate	animation	sequences	that	are	triggered	when	users	hover	and
click.

	Unique	loading	status	graphics	that	replace	the	all-too-common	rotating	indicator
GIF.

	Company	logos	whose	individual	parts	animate	together	upon	page	load.

This	last	use	case	is	explored	in	more	detail	later	in	this	chapter.

Passing	in	properties
With	Velocity,	SVG	properties	are	animated	in	the	same	way	that	standard	CSS	properties
are.	Pass	the	appropriate	properties	and	their	desired	end	values	into	Velocity’s	properties
object:

Click	here	to	view	code	image

//	Animate	an	SVG	element	to	a	red	fill	and	a	black	stroke

$svgElement.velocity({	fill:	“#ff0000”,	stroke:	“#000000”	});

In	contrast,	note	that	the	code	below	would	not	work	since	the	following	CSS	properties
are	not	supported	by	SVG	elements:
Click	here	to	view	code	image

//	Incorrect:	These	properties	don’t	apply	to	SVG	elements

$svgElement.velocity({	borderSize:	“5px”,	borderColor:	“#000000”	});

Presentational	attributes
The	presentational	attributes	explored	earlier	in	this	chapter	are	also	animated	as	expected:
Click	here	to	view	code	image

//	Animate	the	x	and	y	coordinates	of	a	rectangle

$(“rect”).velocity({	x:	100,	y:	100	});

//	Animate	the	cx	and	cy	coordinates	of	a	circle

$(“circle”).velocity({	cx:	100,	cy:	100	});

//	Animate	the	dimensions	of	a	rectangle

$(“rect”).velocity({	width:	200,	height:	200	});

//	Animate	the	radius	of	a	circle

$(“circ”).velocity({	r:	100	});

All	the	Velocity	features	that	you’re	currently	using—animation	reversal,	UI	pack
effects,	sequence	triggering,	and	so	on—also	work	as	expected	with	SVG	elements.

Positional	attributes	vs.	transforms
You	might	be	wondering	what	the	difference	is	between	using	the	x,	cx,	y,	and	cy
positional	attributes	instead	of	CSS	transforms	(e.g.	translateX,	translateY)	when
specifying	the	positions	of	SVG	elements.	The	answer	is	browser	support.	Internet
Explorer	(up	to	and	including	Internet	Explorer	11)	does	not	support	CSS	transforms	on
SVG	elements.	Consider	the	following:
Click	here	to	view	code	image

//	The	x	and	y	attributes	work	everywhere	that	SVG	elements	do	(IE8+,	Android

3+)

$(“rect”).velocity({	x:	100,	y:	100	});

//	Alternatively,	positional	transforms	(such	as	translateX	and	translateY)

work	everywhere	*except*	Internet	Explorer

$(“rect”).velocity({	translateX:	100,	translateY:	100	});

	Note

Although	transforms	are	known	to	be	particularly	performant	due	to	hardware
acceleration	(read	more	on	this	in	Chapter	7,	“Animation	Performance”),	both
approaches	to	SVG	animation	are	equally	fast	since	SVG	graphics	are
hardware-accelerated	by	default.

Implementation	example:	Animated	logos
High-resolution	site	logos	that	animate	into	place	upon	page	load	are	ideal	targets	for	SVG
implementation.	Suppose	you	want	to	crudely	replicate	the	MasterCard	logo,	which
consists	of	two	overlapping	circles	of	different	colors.	If	you	were	to	animate	this	logo
into	place	using	Velocity,	you’d	start	with	an	SVG	canvas	defined	as	follows:
Click	here	to	view	code	image

<svg	version=“1.1”	width=“500”	height=“500”

xmlns=“http://www.w3.org/2000/svg”>

			<circle	id=“circleLeft”	cx=“100”	cy=“100”	r=“30”	style=“fill:	red”	/>

			<circle	id=“circleRight”	cx=“100”	cy=“100”	r=“30”	style=“fill:	orange”	/>

</svg>

This	creates	two	overlapping	circles	with	identical	radii.	Next,	you’d	animate	the	circles
outward	from	their	origins	so	that	they	overlap	only	slightly	when	they’re	done	animating:
Click	here	to	view	code	image

//	Move	one	circle	toward	the	left

$(“#circleLeft”).velocity({	cx:	“-=15px”	},	{	easing:	“spring”	});

//	Move	one	circle	toward	the	right

$(“#circleRight”).velocity({	cx:	“+=15px”	},	{	easing:	“spring”	});

Here,	the	left	circle	is	animated	15	pixels	leftward	(using	the	"-="	operator	to	instruct
Velocity	to	decrement	the	circle’s	current	value)	and	the	right	circle	is	animated	15	pixels
rightward.	The	spring	easing	provides	added	flair	by	making	the	circles	bounce	away
from	one	another	with	propulsive	force.

Since	SVG	elements	can	listen	for	mouse-based	events	(clicks,	hovers,	and	so	on),	you
could	improve	upon	this	demo	by	turning	it	into	an	example	of	SVG	element	interaction.
With	the	aid	of	jQuery	and	Velocity,	one	such	implementation	could	look	like	this:
Click	here	to	view	code	image

$(“svg”).on(“mouseover	mouseout”,	function()	{

		$(“#circleLeft,	#circleRight”).velocity(“reverse”);

});

This	triggers	a	reversal	of	the	circles’	page-load	animation	when	the	user	hovers	on	or
off	the	SVG	element.	The	single	line	of	code	accomplishes	this	by	leveraging	Velocity’s
reverse	animation	command.	For	more	on	working	with	reverse,	refer	to	Chapter	2,
“Animating	with	Velocity.js.”	In	effect,	when	the	user	first	hovers,	the	page-load
animation	is	reversed.	When	the	user	then	hovers	off,	the	reversal	is	itself	reversed,
bringing	the	logo	back	to	its	original	form.

While	this	code	example	is	undoubtedly	anticlimactic,	this	is	once	again	a	good	thing
because	it	reflects	the	similarities	between	animating	SVG	and	HTML	elements.	Where
SVGs	do	start	to	become	uniquely	complex	is	when	you	define	arbitrary	shapes	that	go
beyond	the	basics	of	squares,	rectangles,	circles,	and	so	on.	After	all,	SVG	elements	can
define	any	shape	you	can	dream	up	in	a	photo	editor,	so	they	have	to	be	tremendously
expressive.	And	they	are.	But	mastering	SVG	design	is	beyond	the	scope	of	this	book.	See
the	“Wrapping	up”	section	of	this	chapter	to	learn	where	to	go	next	to	continue	learning.

Wrapping	up
If	you’re	intrigued	by	what	you’ve	read	so	far	and	want	to	learn	more	about	working	with
SVGs,	check	out	these	great	resources:

	For	a	full	overview	of	working	with	SVG	elements,	refer	to	Joni	Trythall’s	fantastic
and	free	SVG	Pocket	Guide	(https://github.com/jonitrythall/svgpocketguide).

	For	a	directory	of	SVG	element	types	and	their	properties,	consult	Mozilla
Developer	Network	(https://developer.mozilla.org/en-US/docs/Web/SVG).

	For	a	listing	of	all	the	SVG	attributes	and	styling	properties	that	Velocity	can
animate,	refer	to	VelocityJS.org/#svg.

https://github.com/jonitrythall/svgpocketguide
https://developer.mozilla.org/en-US/docs/Web/SVG
http://VelocityJS.org/#svg

Chapter	7.	Animation	Performance

Performance	affects	everything.	Increased	performance—apparent	or	real—drastically
improves	UX,	which	in	turn	boosts	your	company’s	bottom	line.	Several	major	studies
have	demonstrated	that	latency	increases	on	search	engines	result	in	significant	decreases
in	revenue	per	user.	To	put	it	bluntly,	people	hate	waiting.

As	explained	in	Chapter	1,	JavaScript	animation	performance	is	comparable	to	that	of
CSS	animation.	So,	if	you’re	using	a	modern	animation	library	such	as	Velocity.js,	the
performance	of	your	animation	engine	is	not	your	app’s	bottleneck—it’s	your	own	code.
That’s	what	this	chapter	explores:	techniques	for	coding	high-performance	animations
across	all	browsers	and	devices.

The	reality	of	web	performance
If	you’ve	ever	wondered	why	running	concurrent	animations	slows	down	your	UI,	or	why
your	site	performs	slowly	on	mobile	devices,	this	chapter	is	for	you.

Animations	are	a	very	resource-intensive	process	for	browsers	to	perform,	but	there	are
many	techniques	that	can	help	the	browser	work	as	efficiently	as	possible.	We’re	about	to
learn	them.

From	the	perspective	of	UI	design,	there’s	no	shortage	of	articles	extolling	the	virtues	of
building	mobile-first,	responsive	websites.	Conversely,	from	the	perspective	of	UI
performance,	most	of	us,	as	developers,	are	unaware	of	what	best	practices	are	or	how	to
follow	them.	Staying	abreast	of	the	web	performance	landscape	is	overwhelming	and
oftentimes	futile;	we’re	held	captive	by	browser	and	device	quirks,	byproducts	of	the
volume	of	devices	(desktops,	smartphones,	and	tablets)	and	browsers	(Chrome,	Android,
Firefox,	Safari,	Internet	Explorer)	that	crowd	the	ecosystem.	Considering	that	these
platforms	are	continuously	updated,	it’s	no	surprise	that	we	often	throw	in	the	towel	and
sideline	performance	concerns	as	much	as	we	can.	Sometimes	we	may	even	be	tempted	to
do	away	with	animations	altogether	if	we’re	unsure	how	to	implement	them	without
sacrificing	performance.

We	tell	ourselves:

Since	devices	are	getting	faster,	as	users	continue	upgrading	their	hardware,
my	site	will	become	progressively	more	performant.

Unfortunately,	the	global	reality	is	the	exact	opposite:	the	smartphones	that	the
developing	world	is	adopting	fall	short	of	the	performance	of	the	latest	iPhones	in	our
pockets.	Do	you	really	want	to	forsake	building	products	for	the	next	few	billion	people
coming	online?	The	upcoming	Firefox	OS	initiative	is	poised	to	bring	capable
smartphones	to	hundreds	of	millions	of	people,	so	we’re	not	simply	waxing	poetic	about
hypotheticals.	The	mobile	revolution	is	here	now.

	Note

Ericsson	has	reported	that	the	global	smartphone	subscriber	count	will	rise
from	1.9	billion	to	5.9	billion	in	the	next	five	years—fueled	almost
exclusively	by	the	developing	world.

If	your	gut	reaction	is,	“It’s	not	my	problem—my	app	is	just	for	the	tech-savvy	middle-
class	in	the	developed	world,”	rest	assured	that	your	evil	web	developer	twin	is	sitting	two
thousand	miles	away	cackling	at	the	thought	of	getting	to	a	nascent	market	before	you	do
by	actually	putting	in	the	effort	necessary	to	deliver	great	experiences	on	low-powered
devices.	(There’s	actually	an	enormous	conglomerate	dedicated	to	this—search	Google	for
“Rocket	Internet.”)

There’s	another	nasty	reality	to	sidelining	performance	concerns:	we	systematically
make	the	mistake	of	testing	our	sites	on	devices	operating	under	ideal	loads.	In	reality,	of
course,	users	have	multiple	apps	and	browser	tabs	running	concurrently.	Their	devices	are
working	overtime	to	process	a	dozen	tasks	at	any	given	time.	Accordingly,	the
performance	baseline	established	for	your	app	probably	doesn’t	reflect	its	performance	in
the	real	world.	Yikes!

But,	fear	not,	keen	developer.	It’s	time	to	explore	the	performance	techniques	at	your
disposal	and	level	up	your	animation	game.

Technique:	Remove	layout	thrashing
Layout	thrashing—the	lack	of	synchronization	in	DOM	manipulation—is	the	800-pound
gorilla	in	animation	performance.	There’s	no	painless	solution,	but	there	are	best	practices.
Let’s	explore.

Problem
Consider	how	webpage	manipulation	consists	of	setting	and	getting:	you	can	set	(update)
or	get	(query)	an	element’s	CSS	properties.	Likewise,	you	can	insert	new	elements	onto	a
page	(a	set)	or	you	can	query	for	a	set	of	existing	elements	(a	get).	Gets	and	sets	are
the	core	browser	processes	that	incur	performance	overhead	(another	is	graphical
rendering).	Think	of	it	this	way:	after	setting	new	properties	on	an	element,	the	browser
has	to	calculate	the	resulting	impacts	of	your	changes.	For	example,	changing	the	width	of
one	element	can	trigger	a	chain	reaction	in	which	the	width	of	the	element’s	parent,
siblings,	and	children	elements	must	also	change	depending	on	their	respective	CSS
properties.

The	UI	performance	reduction	that	occurs	from	alternating	sets	with	gets	is	called
layout	thrashing.	While	browsers	are	highly	optimized	for	page-layout	recalculations,	the
extent	of	their	optimizations	is	greatly	diminished	by	layout	thrashing.	Performing	a	series
of	gets	at	once,	for	example,	can	easily	be	optimized	by	the	browser	into	a	single,
streamlined	operation	because	the	browser	can	cache	the	page’s	state	after	the	first	get,
then	reference	that	state	for	each	subsequent	get.	However,	repeatedly	performing	one
get	followed	by	one	set	forces	the	browser	to	do	a	lot	of	heavy	lifting	since	its	cache	is
continuously	invalidated	by	the	changes	made	by	set.

This	performance	impact	is	exacerbated	when	layout	thrashing	occurs	within	an
animation	loop.	Consider	how	an	animation	loop	aims	to	achieve	60	frames	per	second,
the	threshold	at	which	the	human	eye	perceives	buttery-smooth	motion.	What	this	means
is	that	every	tick	in	an	animation	loop	must	complete	within	16.7ms	(1	second/60	ticks	~=
16.67ms).	Layout	thrashing	is	a	very	easy	way	to	cause	each	tick	to	exceed	this	limit.	The
end	result,	of	course,	is	that	your	animation	will	stutter	(or	jank,	in	web	animation
parlance).

While	some	animation	engines,	such	as	Velocity.js,	contain	optimizations	to	reduce	the
occurrence	of	layout	thrashing	inside	their	own	animation	loops,	be	careful	to	avoid	layout
thrashing	in	your	own	loops,	such	as	the	code	inside	a	setInterval()	or	a	self-
invoking	setTimeout().

Solution
Avoiding	layout	thrashing	consists	of	simply	batching	together	DOM	sets	and	DOM
gets.	The	following	code	causes	layout	thrashing:
Click	here	to	view	code	image

//	Bad	practice

var	currentTop	=	$(“element”).css(“top”);	//	Get

$(“element”).style.top	=	currentTop	+	1;	//	Set

var	currentLeft	=	$(“element”).css(“left”);	//	Get

$(“element”)..style.left	=	currentLeft	+	1;	//	Set

If	you	rewrite	the	code	so	that	all	queries	and	updates	are	aligned,	the	browser	can	batch
the	respective	actions	and	reduce	the	extent	to	which	this	code	causes	layout	trashing:
Click	here	to	view	code	image

var	currentTop	=	$(“element”).css(“top”);	//	Get

var	currentLeft	=	$(“element”).css(“left”);	//	Get

$(“element”).css(“top”,	currentTop	+	1);	//	Set

$(“element”).css(“left”,	currentLeft	+	1);	//	Set

The	illustrated	problem	is	commonly	found	in	production	code,	particularly	in
situations	where	UI	operations	are	performed	depending	on	the	current	value	of	an
element’s	CSS	property.

Say	your	goal	is	to	toggle	the	visibility	of	a	side	menu	when	a	button	is	clicked.	To
accomplish	this,	you	might	first	check	to	see	if	the	side	menu	has	its	display	property
set	to	either	"none"	or	"block",	then	you’d	proceed	to	alternate	the	value	as
appropriate.	The	process	of	checking	for	the	display	property	constitutes	a	get,	and
whichever	action	is	subsequently	taken	to	show	or	hide	the	side	menu	will	constitute	a
set.

The	optimized	implementation	of	this	code	would	entail	maintaining	a	variable	in
memory	that’s	updated	whenever	the	button	is	clicked,	and	checking	that	variable	for	the
side	menu’s	current	status	before	toggling	its	visibility.	In	this	way,	the	get	can	be
skipped	altogether,	which	helps	reduce	the	likelihood	of	the	code	producing	a	set
alternated	with	a	get.	Further,	beyond	reducing	the	likelihood	of	layout	thrashing,	the	UI
now	also	benefits	from	having	one	less	page	query.	Keep	in	mind	that	each	set	and	get
is	a	relatively	expensive	browser	operation;	the	fewer	there	are,	the	faster	your	UI	will
perform.

Many	tiny	improvements	ultimately	add	up	to	a	substantial	benefit,	which	is	the
underlying	theme	of	this	chapter:	Follow	as	many	performance	best	practices	as	you	can,
and	you’ll	wind	up	with	a	UI	that	rarely	sacrifices	your	desired	motion	design	goals	for
the	sake	of	performance.

jQuery	Element	Objects
Instantiating	jQuery	element	objects	(JEO)	is	the	most	common	culprit	of	DOM	gets.
You	may	be	wondering	what	a	JEO	is,	but	you’ve	certainly	seen	this	code	snippet	before:
Click	here	to	view	code	image

$(“#element”).css(“opacity”,	1);

…	or	its	raw	JavaScript	equivalent:

document.getElementById(“element”).style.opacity	=	1;

In	the	case	of	the	jQuery	implementation,	the	value	returned	by	$("#element")	is	a
JEO,	which	is	an	object	that	wraps	the	raw	DOM	element	that	was	queried.	JEO’s	provide
you	with	access	to	all	of	your	beloved	jQuery	functions,	including	.css(),
.animate(),	and	so	on.

In	the	case	of	the	raw	JavaScript	implementation,	the	value	returned	by
getElementByid("element")	is	the	raw	(unwrapped)	DOM	element.	In	both

implementations,	the	browser	is	instructed	to	search	through	the	DOM	tree	to	find	the
desired	element.	This	is	an	operation	that,	when	repeated	in	bulk,	impacts	page
performance.

This	performance	concern	is	exacerbated	when	uncached	elements	are	used	in	code
snippets	that	are	repeated,	such	as	the	code	contained	by	a	loop.	Consider	the	following
example:
Click	here	to	view	code	image

$elements.each(function(i,	element)	{

		$(“body”).append(element);

});

You	can	see	how	$("body")	is	a	JEO	instantiation	that’s	repeated	for	every	iteration
of	the	$.each()	loop:	In	addition	to	appending	the	loop’s	current	element	to	the	DOM
(which	has	its	own	performance	implications),	you’re	now	also	repeatedly	forcing	a	DOM
query.	Seemingly	harmless	one-line	operations	like	these	add	up	very	quickly.

The	solution	here	is	to	cache	the	results—or,	save	the	returned	JEO’s	into	variables—to
avoid	a	repeated	DOM	operation	every	time	you	want	to	call	a	jQuery	function	on	an
element.	Hence,	the	code	goes	from	looking	like	this:
Click	here	to	view	code	image

//	Bad	practice:	We	haven’t	cached	our	JEO

$(“#element”).css(“opacity”,	1);

//	…	some	intermediary	code…

//	We	instantiate	the	JEO	again

$(“#element”).css(“opacity”,	0);

to	looking	like	this	after	it’s	properly	optimized:
Click	here	to	view	code	image

//	Cache	the	jQuery	element	object,	prefixing	the	variable	with	$	to	indicate

a	JEO

var	$element	=	$(“#element”);

$element.css(“opacity”,	1);

//	…	some	intermediary	code…

//	We	re-use	the	cached	JEO	and	avoid	a	DOM	query

$element.css(“opacity”,	0);

Now	you	can	reuse	$element	throughout	your	code	without	ever	incurring	a	repeated
DOM	lookup	on	its	behalf.

Force-feeding
Traditionally,	animation	engines	query	the	DOM	at	the	start	of	an	animation	to	determine
the	initial	value	of	each	CSS	property	being	animated.	Velocity	offers	a	workaround	to	this
page-querying	event	through	a	feature	called	force-feeding.	It’s	an	alternative	technique
for	avoiding	layout	thrashing.	With	force-feeding,	you	explicitly	define	your	animations’
start	values	so	that	these	upfront	gets	are	eliminated.

Force-fed	start	values	are	passed	in	as	the	second	item	in	an	array	that	takes	the	place	of
a	property’s	value	in	an	animation	properties	map.	The	first	item	in	the	array	is	the
standard	end	value	that	you’re	animating	toward.

Consider	the	following	two	animation	examples,	both	of	which	are	triggered	upon	page
load:
Click	here	to	view	code	image

//	Animate	translateX	to	500px	from	a	start	value	of	0

$element.velocity({	translateX:	[500,	0]	});

//	Animate	opacity	to	0	from	a	start	value	of	1

$element.velocity({	opacity:	[0,	1]);

In	the	first	example,	you’re	passing	translateX	a	force-fed	start	value	of	0	since	you
know	that	the	element	has	yet	to	be	translated	(since	the	page	has	just	loaded).	You’re
force-feeding	in	what	you	know	(or	want)	the	original	property	value	to	be.	Further,	in	the
second	example,	the	element’s	current	opacity	is	1	because	that’s	the	default	value	for
opacity	and	you	haven’t	yet	modified	the	element	in	any	way.	In	short,	with	force-
feeding,	you	can	reduce	the	browser’s	workload	in	situations	where	you	have	an
understanding	of	how	elements	are	already	styled.

	Note

Force-feed	animation	properties	only	when	they’re	first	used	in	an	animation
chain,	not	when	they	occur	subsequently	in	the	chain,	since	Velocity	already
does	internal	caching	there:

Click	here	to	view	code	image
$element

			//	Optionally	forcefeed	here

			.velocity({	translateX:[500,	0]	})

			//	Do	not	forcefeed	here;500	is	internally	cached

			.velocity({	translateX:1000	});

Force-feeding	is	an	invaluable	feature	for	high-stress	situations	such	as	animating	a
large	number	of	elements	at	once	on	a	desktop	browser	or	when	dealing	with	low-powered
mobile	devices	for	which	every	page	interaction	incurs	a	noticeable	delay.

However,	for	most	real-world	UI	animation	situations,	force-feeding	is	an	unnecessary
optimization	that	makes	your	code	less	maintainable	due	to	having	to	update	the	force-fed
start	values	whenever	you	change	the	elements’	values	within	CSS	stylesheets.

	Note

Refer	to	Chapter	8,	“Animation	Demo,”	to	walk	through	an	application	of
force-feeding.

Technique:	Batch	DOM	additions
Like	reducing	layout	thrashing,	batching	DOM	additions	is	another	performance	technique
to	help	avoid	unoptimized	interaction	with	the	browser.

Problem
You’re	not	done	with	gets	and	sets	just	yet!	A	common	page	set	is	the	insertion	of
new	DOM	elements	at	run-time.	While	there	are	many	uses	for	adding	new	elements	to	a
page,	perhaps	the	most	popular	is	infinite	scrolling,	which	consists	of	elements
continuously	animating	into	view	at	the	bottom	of	a	page	while	the	user	scrolls	downward.

As	you	learned	in	the	previous	section,	browsers	have	to	compute	the	composition	of	all
affected	elements	whenever	a	new	element	is	added.	This	is	a	relatively	slow	process.
Hence,	when	DOM	insertion	is	performed	many	times	per	second,	the	page	is	hit	with	a
significant	performance	impact.	Fortunately,	when	processing	multiple	elements,	browsers
can	optimize	page	set	performance	if	all	elements	are	inserted	at	the	same	time.
Unfortunately,	we	as	developers	often	unintentionally	forgo	this	optimization	by
separating	our	DOM	insertions.	Consider	the	following	example	of	unoptimized	DOM
insertion	code:
Click	here	to	view	code	image

//	Bad	practice

var	$body	=	$(“body”);

var	$newElements	=	[“<div>Div	1</div>”,	“<div>Div	2</div>”,	“<div>Div

3</div>”];

$newElements.each(function(i,	element)	{

			$(element).appendTo($body);

			//	Other	arbitrary	code

});

This	iterates	through	a	set	of	element	strings	that	are	instantiated	into	jQuery	element
objects	(without	a	performance	drawback	since	you’re	not	querying	the	DOM	for	each
JEO).	Each	element	is	then	inserted	into	the	page	using	jQuery’s	appendTo().

Here’s	the	problem:	even	if	additional	code	exists	after	the	appendTo()	statement,
the	browser	won’t	compress	these	DOM	sets	into	a	single	insertion	operation	because	it
can’t	be	certain	that	asynchronous	code	operating	outside	the	loop	won’t	alter	the	DOM’s
state	between	insertions.	For	example,	imagine	if	you	queried	the	DOM	to	find	out	how
many	elements	exist	on	the	page	after	each	insertion:
Click	here	to	view	code	image

//	Bad	practice

$newElements.each(function(i,	element)	{

			$(element).appendTo($body);

			//	Output	how	many	children	the	body	element	has

			console.log($body.children().size());

});

The	browser	couldn’t	possibly	optimize	the	DOM	insertions	into	a	single	operation
because	the	code	explicitly	asks	the	browser	to	tell	us	the	accurate	number	of	elements
that	exist	before	the	next	loop	begins.	For	the	browser	to	return	the	correct	count	each
time,	it	can’t	have	batched	all	insertions	upfront.

In	conclusion,	when	you	perform	DOM	element	insertion	inside	a	loop,	each	insertion
happens	independently	of	any	others,	resulting	in	a	notable	performance	sacrifice.

Solution
Instead	of	individually	inserting	new	elements	into	the	DOM,	construct	the	full	DOM
element	set	in	memory,	then	insert	it	via	a	single	call	to	appendTo().	The	optimized
version	of	the	code	shown	in	the	section	above	now	looks	like	this:
Click	here	to	view	code	image

//	Optimized

var	$body	=	$(“body”);

var	$newElements	=	[“<div>Div	1</div>”,	“<div>Div	2</div>”,	“<div>Div

3</div>”];

var	html	=	””;

$newElements.each(function(i,	element)	{

			html	+=	element;

});

$(html).appendTo($body);

This	concatenates	the	string	representation	of	each	HTML	element	onto	a	master	string
that	is	then	turned	into	a	JEO	and	appended	into	the	DOM	in	a	single	shot.	In	this	way,	the
browser	is	given	explicit	instruction	to	insert	everything	at	once,	and	it	optimizes	for
performance	accordingly.

Simple,	right?	As	you’ll	see	in	the	remainder	of	this	chapter,	performance	best	practices
are	usually	as	easy	as	this.	You	simply	have	to	train	your	eye	to	know	when	to	use	them.

Technique:	Avoid	affecting	neighboring	elements
It’s	important	to	consider	the	impact	of	an	element’s	animation	on	neighboring	elements.

Problem
When	an	element’s	dimensions	are	animated,	the	changes	often	affect	the	positioning	of
nearby	elements.	For	example,	if	an	element	between	two	sibling	elements	shrinks	in
width,	the	siblings’	absolute	positions	will	dynamically	change	so	they	remain	next	to	the
animating	element.	Another	example	might	be	animating	a	child	element	nested	inside	a
parent	element	that	doesn’t	have	explicitly	defined	width	and	height	properties.
Accordingly,	when	the	child	is	being	animated,	the	parent	will	also	resize	itself	so	that	it
continues	to	fully	wrap	itself	around	the	child.	In	effect,	the	child	element	is	no	longer	the
only	element	being	animated—the	parent’s	dimensions	are	also	being	animated,	and	that’s
even	more	work	for	the	browser	to	perform	upon	each	tick	in	an	animation	loop!

There	are	many	CSS	properties	whose	modification	can	result	in	dimensional	and
positional	adjustments	to	neighboring	elements,	including	top,	right,	bottom,	and
left;	all	margin	and	padding	properties;	border	thickness;	and	the	width	and
height	dimensions.

As	a	performance-minded	developer,	you	need	to	appreciate	the	impact	that	animating
these	properties	can	have	on	your	page.	Always	ask	yourself	how	each	property	you’re
attempting	to	animate	affects	nearby	elements.	If	there’s	a	way	to	rewrite	your	code	such
that	you	can	isolate	elements’	changes	from	one	another,	then	consider	doing	so.	In	fact,
there	is	an	easy	way	to	do	just	this—on	to	the	solution!

Solution
The	simple	solution	to	avoid	affecting	neighboring	elements	is	to	animate	the	CSS
transform	properties	(translateX,	translateY,	scaleX,	scaleY,	rotateZ,
rotateX,	and	rotateY)	whenever	possible.	The	transform	properties	are	unique	in	that
they	elevate	targeted	elements	to	isolated	layers	that	are	rendered	separately	from	the	rest
of	the	page	(with	a	performance	boost	courtesy	of	your	GPU),	so	that	neighboring
elements	aren’t	affected.	For	example,	when	animating	an	element’s	translateX	to	a
value	of	“500px",	the	element	will	move	500px	rightward	while	superimposing	itself	on
top	of	whatever	elements	exist	along	its	animation	path.	If	there	are	no	elements	along	its
path	(that	is,	if	there	are	no	nearby	elements	for	it	to	affect),	then	using	translateX	will
have	the	same	net	effect	on	the	look	of	your	page	as	if	you	had	animated	using	the	much
slower	left	property.

Hence,	whenever	possible,	an	animation	that	once	looked	like	this:
Click	here	to	view	code	image

//	Move	the	element	500px	from	the	left

$element.velocity({	left:	“500px”	});

should	be	refactored	into	this:
Click	here	to	view	code	image

//	Faster:	Use	translateX

$element.velocity({	translateX:	“500px”	});

Similarly,	if	you	can	substitute	translateY	for	top,	do	so:
Click	here	to	view	code	image

$element.velocity({	top:	“100px”	});

//	Faster:	Use	translateY

$element.velocity({	translateY:	“100px”	});

	Note

Sometimes	you	actually	intend	to	use	left	or	top	so	that	neighboring
elements’	positions	are	changed.	In	all	other	cases,	get	into	the	habit	of	using
the	transform	properties.	The	performance	impact	is	significant.

Consider	Opacity	Over	Color

opacity	is	another	CSS	property	that	receives	a	GPU	rendering	boost	since	it
doesn’t	affect	the	positioning	of	elements.	So,	if	there	are	elements	on	your	page	for
which	you’re	currently	animating,	say,	color	when	the	user	hovers	over	them,
consider	animating	opacity	instead.	If	the	net	effect	looks	almost	as	good	as	the
color	animation,	then	consider	sticking	with	it—you’ve	just	boosted	the	UI’s
performance	without	compromising	its	look.

As	a	performance-minded	developer,	you’re	no	longer	allowed	to	arbitrarily	select
animation	properties.	You	must	now	consider	the	impact	of	each	of	your	property	choices.

	Note

Refer	to	CSSTriggers.com	for	a	breakdown	of	how	CSS	properties	affect
browser	performance.

Technique:	Reduce	concurrent	load
Browsers	have	bottlenecks.	Find	out	what	they	are	and	stay	below	them.

Problem
When	a	page	first	loads,	the	browser	processes	HTML,	CSS,	JavaScript,	and	images	as
quickly	as	possible.	It	should	come	as	no	surprise	that	animations	occurring	during	this
time	tend	to	be	laggy—they’re	fighting	for	the	browser’s	limited	resources.	So,	despite	the
fact	that	a	page’s	loading	sequence	is	often	a	great	time	to	flaunt	all	your	motion	design
skills,	it’s	best	to	restrain	yourself	if	you	want	to	avoid	giving	users	the	first	impression
that	your	site	is	laggy.

A	similar	concurrency	bottleneck	arises	when	many	animations	occur	at	once	on	a	page
—regardless	of	where	they	take	place	in	the	page’s	lifecycle.	In	these	situations,	browsers
can	choke	under	the	stress	of	processing	many	styling	changes	at	once,	and	stuttering	can
occur.

http://CSSTriggers.com

Fortunately,	there	are	some	clever	techniques	for	reducing	concurrent	animation	load.

Solution
There	are	two	approaches	for	addressing	the	concurrency	issue:	staggering	and	breaking
up	animations	into	sequences.

Stagger

One	way	to	reduce	concurrent	animation	load	is	to	make	use	of	Velocity’s	UI	pack’s
stagger	feature,	which	delays	the	start	times	of	successive	animations	in	a	set	of
elements	by	a	specified	duration.	For	example,	to	animate	every	element	in	a	set	toward	an
opacity	value	of	1	with	successive	300ms	delays	between	start	times,	your	code	might
look	like	this:
Click	here	to	view	code	image

$elements.velocity({	opacity:	1	},	{	stagger:	300	});

The	elements	are	no	longer	animating	in	perfect	synchronization;	instead,	at	the	very
start	of	the	entire	animation	sequence,	only	the	first	element	is	animating.	Later,	at	the
very	end	of	the	entire	sequence,	only	the	last	element	is	animating.	You’re	effectively
spreading	out	the	animation	sequence’s	total	workload	so	that	the	browser	is	always
performing	less	work	at	one	time	than	it	would	have	had	it	been	animating	every	element
simultaneously.	What’s	more,	implementing	staggering	into	your	motion	design	is	often	a
good	aesthetic	choice.	(Chapter	3,	“Motion	Design	Theory,”	further	explores	the	merits	of
staggering.)

Multi-animation	sequences

There’s	one	more	clever	way	to	reduce	concurrent	load:	break	up	property	animations	into
multi-animation	sequences.	Take,	for	example,	the	case	of	animating	an	element’s	opacity
value.	This	is	typically	a	relatively	low-stress	operation.	But,	if	you	were	to
simultaneously	animate	the	element’s	width	and	box-shadow	properties,	you’d	be
giving	the	browser	appreciably	more	work	to	perform:	more	pixels	will	be	affected,	and
more	computation	would	be	required.

Hence,	an	animation	that	looks	like	this:
Click	here	to	view	code	image

$images.velocity({	opacity:	1,	boxShadowBlur:	“50px”	});

might	be	refactored	into	this:
Click	here	to	view	code	image

$images

			.velocity({	opacity:	1	})

			.velocity({	boxShadowBlur:	“50px”	});

The	browser	has	less	concurrent	work	to	do	since	these	individual	property	animations
occur	one	after	another.	Note	that	the	creative	tradeoff	being	made	here	is	that	we’ve	opted
to	prolong	the	total	animation	sequence	duration,	which	may	or	may	not	be	desirable	for
your	particular	use	case.

Since	an	optimization	such	as	this	entails	changing	the	intention	of	your	motion	design,
this	is	not	a	technique	that	should	always	be	employed.	Consider	it	a	last	resort.	If	you
need	to	squeeze	additional	performance	out	of	low-powered	devices,	then	this	technique
may	be	suitable.	Otherwise,	don’t	pre-optimize	the	code	on	your	site	using	techniques	like
this,	or	you’ll	end	up	with	unnecessarily	bloated	and	inexpressive	code.

Technique:	Don’t	continuously	react	to	scroll	and	resize	events
Be	mindful	of	how	often	your	code	is	being	run.	A	fast	snippet	of	code	being	run	1,000
times	per	second	may—in	aggregate—no	longer	be	very	fast.

Problem
Browsers’	scroll	and	resize	events	are	two	event	types	that	are	triggered	at	very	high
rates:	when	a	user	resizes	or	scrolls	the	browser	window,	the	browser	fires	the	callback
functions	associated	with	these	events	many	times	per	second.	Hence,	if	you’ve	registered
callbacks	that	interact	with	the	DOM—or	worse,	contain	layout	thrashing—they	can	cause
tremendously	high	browser	load	during	times	of	scrolling	and	resizing.	Consider	the
following	code:
Click	here	to	view	code	image

//	Perform	an	action	when	the	browser	window	is	scrolled

$(window).scroll(function()	{

			//	Anything	in	here	is	fired	multiple	times	per	second	while	the	user

scrolls

});

//	Perform	an	action	when	the	browser	window	is	resized

$(window).resize(function()	{

			//	Anything	in	here	is	fired	multiple	times	per	second	while	the	user

resizes

});

Recognize	that	the	functions	above	aren’t	simply	called	once	when	their	respective
events	start;	instead,	they	are	called	throughout	the	duration	of	the	user’s	respective
interaction	with	the	page.

Solution
The	solution	to	this	problem	is	to	debounce	event	handlers.	Debouncing	is	the	process	of
defining	an	interval	during	which	an	event	handler	callback	will	be	called	only	once.	For
example,	say	you	defined	a	debounce	interval	of	250ms	and	the	user	scrolled	the	page	for
a	total	duration	of	1000ms.	The	debounced	event	handler	code	would	accordingly	fire
only	four	times	(1000ms/250ms).

The	code	for	a	debounce	implementation	is	beyond	the	scope	of	this	book.	Fortunately,
many	libraries	exist	exclusively	to	solve	this	problem.	Visit	davidwalsh.name/javascript-
debounce-function	for	one	example.	Further,	the	tremendously	popular	Underscore.js
(UnderscoreJS.org),	a	JavaScript	library	akin	to	jQuery	that	provides	helper	functions	for
making	coding	easier,	includes	a	debounce	function	that	you	can	easily	reuse	across	your
event	handlers.

	Note

As	of	this	book’s	writing,	the	latest	version	of	Chrome	automatically
debounces	scroll	events.

Technique:	Reduce	image	rendering
Not	all	elements	are	rendered	equally.	Browsers	have	to	work	overtime	when	displaying
certain	elements.	Let’s	look	at	which	those	are.

Problem
Videos	and	images	are	multimedia	element	types	that	browsers	have	to	work	extra	hard	to
render.	Whereas	the	dimensional	properties	of	non-multimedia	HTML	elements	can	be
computed	with	ease,	multimedia	elements	contain	thousands	of	pixel-by-pixel	data	points
that	are	computationally	expensive	for	browsers	to	resize,	reposition,	and	recomposite.
Animating	these	elements	will	always	be	less	less	than	optimal	versus	animating	standard
HTML	elements	such	as	div,	p,	and	table.

Further,	given	that	scrolling	a	page	is	nearly	equivalent	to	animating	a	page	(think	of
scrolling	as	animating	the	page’s	top	property),	multimedia	elements	can	also	drastically
reduce	scrolling	performance	on	CPU-constrained	mobile	devices.

Solution
Unfortunately,	there’s	no	way	to	“refactor”	multimedia	content	into	faster	element	types,
other	than	turning	simple,	shape-based	images	into	SVG	elements	wherever	possible.
Accordingly,	the	only	available	performance	optimization	is	reducing	the	total	number	of
multimedia	elements	that	are	displayed	on	the	page	at	once	and	animated	at	once.	Note
that	the	words	at	once	stress	a	reality	of	browser	rendering:	browsers	only	render	what’s
visible.	The	portions	of	your	page	(including	the	portions	that	contain	additional	images)
that	aren’t	visible	do	not	get	rendered,	and	do	not	impose	additional	stress	on	browser
processes.

So,	there	are	two	best	practices	to	follow.	First,	if	you’re	ever	on	the	fence	about	adding
an	additional	image	to	your	page,	opt	to	not	include	it.	The	fewer	images	there	are	to
render,	the	better	UI	performance	will	be.	(Not	to	mention	the	positive	impact	fewer
images	will	have	on	your	page’s	network	load	time.)

Second,	if	your	UI	is	loading	many	images	into	view	at	once	(say,	eight	or	more,
depending	on	your	device’s	hardware	capabilities),	consider	not	animating	the	images	at
all,	and	instead	crudely	toggling	the	visibility	of	each	image	from	invisible	to	visible.	To
help	counteract	how	inelegant	this	can	look,	consider	staggering	visibility	toggling	so	that
the	images	load	into	view	one	after	another	instead	of	simultaneously.	This	will	help	guide
the	user’s	eye	across	the	loading	sequence,	and	will	generally	deliver	more	refined	motion
design.

	Note

Refer	to	Chapter	3,	“Motion	Design	Theory,”	to	learn	more	about	animation
design	best	practices.

Sneaky	images
You’re	not	done	yet.	There’s	more	to	this	section	than	meets	the	eye,	as	we	haven’t	fully
explored	the	ways	in	which	images	can	materialize	on	a	page.	The	obvious	culprit	is	the
img	element,	but	there	are	two	other	ways	that	images	can	sneak	onto	your	pages.

CSS	gradients

These	are	actually	a	type	of	image.	Instead	of	being	pre-produced	by	a	photo	editor,	they
are	produced	at	run-time	according	to	CSS	styling	definitions,	for	example,	using	a
linear-gradient()	as	the	background-image	value	on	an	element.	The
solution	here	is	to	opt	for	solid-color	backgrounds	instead	of	gradients	whenever	possible.
Browsers	can	easily	optimize	the	rendering	of	solid	chunks	of	color,	but,	as	with	images,
they	have	to	work	overtime	to	render	gradients,	which	differ	in	color	from	pixel	to	pixel.

Shadow	properties

The	evil	twin	siblings	of	gradients	are	the	box-shadow	and	text-shadow	CSS
properties.	These	are	rendered	similarly	to	gradients,	but	instead	of	stylizing
background-color,	they	effectively	stylize	border-color.	What’s	worse,	they
have	opacity	falloffs	that	require	browsers	to	perform	extra	compositing	work	because	the
semitransparent	portions	of	the	gradients	must	be	rendered	against	the	elements
underneath	the	animating	element.	The	solution	here	is	similar	to	the	previous	one:	if	your
UI	looks	almost	as	good	when	you	remove	these	CSS	properties	from	your	stylesheet,	pat
yourself	on	the	back	and	never	look	back.	Your	website’s	performance	will	thank	you.

These	recommendations	are	simply	that:	recommendations.	They	are	not	performance
best	practices	since	they	sacrifice	your	design	intentions	for	increased	performance.
Considered	them	only	as	last	resorts	when	your	site’s	performance	is	poor	and	you’ve
exhausted	all	other	options.

Technique:	Degrade	animations	on	older	browsers
You	don’t	have	to	neglect	supporting	underperforming	browsers	and	devices.	If	you
embrace	a	performance-minded	workflow	from	day	one,	you	can	simply	provide	them
with	a	degraded—but	completely	functional—experience.

Problem
Internet	Explorer	8—a	slow,	outdated	browser—is	dying	in	popularity.	But	Internet
Explorer	9,	its	successor,	is	still	widely	used	outside	of	the	Americas.	Further,	older
Android	smartphones	running	Android	2.3.x	and	below,	which	are	slow	relative	to	the
latest-generation	Android	and	iOS	devices,	also	remain	tremendously	popular.	Out	of
every	ten	users	to	your	site,	expect	up	to	three	of	them	to	fall	into	one	of	these	two	groups
(depending	on	the	type	of	users	your	app	attracts).	Accordingly,	if	your	site	is	rich	in
animation	and	other	UI	interactions,	assume	it	will	perform	especially	poorly	for	up	to	a
third	of	your	users.

Solution
There	are	two	approaches	to	addressing	the	performance	issue	raised	by	weaker	devices:
either	broadly	reduce	the	occurrence	of	animations	across	your	entire	site,	or	reduce	them
exclusively	for	the	weaker	devices.	The	former	is	a	ultimately	a	product	decision,	but	the
latter	is	a	simple	technical	decision	that	is	easily	implemented	if	you’re	using	the	global
animation	multiplier	technique	(or	Velocity’s	equivalent	mock	feature)	explained	in	the
Chapter	4,	“Animation	Workflow.”	The	global	multiplier	technique	lets	you	dynamically
alter	the	timing	of	animations	across	your	entire	site	by	setting	a	single	variable.	The	trick
then—whenever	a	weak	browser	is	detected—is	to	set	the	multiplier	to	0	(or	set
$.Velocity.mock	to	true)	so	that	all	of	a	page’s	animations	complete	within	a
single	animation	tick	(less	than	16ms):
Click	here	to	view	code	image

//	Cause	all	animations	to	complete	immediately

			$.Velocity.mock	=	true;

The	result	of	this	technique	is	that	weaker	devices	experience	UI	animations	that
degrade	so	that	instant	style	changes	replace	your	animated	transition.	The	benefits	are
significant:	your	UI	will	perform	noticeably	more	smoothly	without	resource-intensive
animations	occurring	on	your	page.	While	this	technique	is	undoubtedly	destructive	(it
compromises	your	motion	design	intentions),	an	improvement	in	usability	is	always	worth
a	reduction	in	elegance.	After	all,	users	visit	your	app	to	accomplish	specific	goals,	not	to
admire	how	clever	your	UI	work	is.	Never	let	animations	get	in	the	way	of	user	intentions.

If	you’re	still	irked	by	the	notion	of	stripping	animations	from	your	UI,	keep	in	mind
that	users	on	weaker	devices	are	accustomed	to	websites	behaving	slowly	for	them.	So,	if
your	site	bucks	the	trend	in	a	constructive	way,	they’ll	be	especially	delighted	by	it	and
will	be	more	likely	to	continue	using	it.

Find	your	performance	threshold	early	on
Continuing	from	the	previous	technique’s	theme,	it’s	worth	stressing	that	the	advice	in	this
chapter	is	especially	relevant	for	mobile	devices,	many	of	which	are	slow	relative	to
desktop	computers.	Unfortunately,	we,	as	developers,	often	fail	to	consider	this	in	our
workflows:	we	routinely	create	websites	within	the	pristine	operating	environments	of	our
high-end	desktops,	which	are	likely	running	the	latest-generation	hardware	and	software
available.	This	type	of	environment	is	divorced	from	the	real-world	environments	of	users,
who	are	often	not	only	using	outdated	hardware	and	software,	but	tend	to	have	many	apps
and	browser	tabs	running	simultaneously.	In	other	words,	most	of	us	work	in	development
environments	that	are	non-representationally	high-performance!	The	side	effect	of	this
oversight	is	that	your	app	may	actually	be	noticeably	laggy	for	a	significant	portion	of
your	users.	By	the	time	you	asking	what	frustrates	them,	they	may	have	already	lost
interest	in	using	it.

The	correct	approach	for	a	performance-minded	developer	is	to	determine	the
performance	threshold	early	on	in	the	development	cycle.	While	developing	your	app,
check	its	performance	frequently	on	reference	devices,	which	might	include	a	last-
generation	mobile	device	plus	a	virtual	machine	running	Internet	Explorer	9.	If	you	set	a
performance	goal	early	on	of	being	performant	on	your	reference	devices,	then	you	can
sleep	soundly	knowing	that	all	newer	devices	will	deliver	even	better	performance	for
your	users.

	Tip

If	you’re	a	Mac	user,	visit	Microsoft’s	Modern.ie	website	for	information	on
how	to	run	free	virtual	copies	of	old	Internet	Explorer	versions.

If	you	find	that	a	reference	device	is	too	weak	to	power	the	motion	design	that	you
insist	your	app	has,	follow	the	advice	from	the	previous	technique:	gracefully	degrade
animations	on	that	reference	device,	and	choose	a	faster	device	as	your	new	(non-
degraded)	reference.

For	each	testing	device,	remember	to	open	several	apps	and	tabs	at	once	so	you
simulate	users’	operating	environments.	Never	test	in	a	vacuum	in	which	the	only	app
running	is	your	own.

Keep	in	mind	that	remote	browser	testing	(through	services	such	as	BrowserStack.com
and	SauceLabs.com)	is	not	the	same	as	live	reference	device	testing.	Remote	testing
services	are	appropriate	for	testing	for	bugs	and	UI	responsiveness—not	for	animation
performance.	After	all,	the	test	devices	running	in	the	cloud	aren’t	using	real	hardware—
they’re	emulated	versions	of	devices.	Consequently,	their	performance	is	typically
different	than	that	of	their	real-world	counterparts.	Further,	the	lag	time	between	what
occurs	on	the	virtual	machine	and	what’s	displayed	on	your	browser	window	is	too
significant	to	get	a	meaningful	gauge	of	UI	animation	performance.

In	short,	you’ll	need	to	go	out	and	buy	real	devices	for	performance	testing.	Even	if
you’re	a	cash-strapped	developer,	don’t	skimp	on	this.	The	few	hundred	dollars	you	spend

http://BrowserStack.com
http://SauceLabs.com

on	test	devices	will	be	offset	by	the	increased	recurring	revenue	you’ll	generate	from
happier	users	engaging	more	frequently	with	your	buttery-smooth	app.

If	you	wind	up	with	a	handful	of	reference	devices,	also	consider	purchasing	Device
Lab,	a	versatile	stand	that	props	up	all	of	your	mobile	devices	on	a	single	surface	so	you
can	easily	eyeball	the	screens	during	testing.	As	a	bonus,	the	device	includes	a	nifty	app
that	lets	you	control	all	the	browsers	across	your	devices	at	once	so	you	don’t	have	to
manually	refresh	each	browser	tab.

	Note

Visit	Vanamco.com	to	purchase	and	download	Device	Lab.

http://Vanamco.com

Visit	Ebay	to	Buy	Old	Devices	for	Cheap

Purchasing	the	most	popular	Android	and	iOS	devices	from	each	of	these	products’
major	release	cycles	will	give	you	a	broad	cross-section	of	the	hardware	and
software	environments	that	your	users	have.	Here’s	my	recommended	setup	(as	of
early	2015):

	iPhone	4	or	iPad	2	running	iOS7

	iPhone	5s	(or	newer)	running	the	latest	version	of	iOS

	Motorola	Droid	X	running	Android	2.3.x

	Samsung	Galaxy	SII	running	Android	4.1.x

	Samsung	Galaxy	S5	(or	newer)	running	the	latest	version	of	Android

You’re	welcome	to	substitute	any	of	the	Android	devices	for	devices	of	similar
performance.	What’s	important	here	is	that	you’re	using	one	device	from	each
major	Android	release	cycle	(2.3.x,	4.1.x,	and	so	on)	so	that	you	have	a
representative	sample	of	the	web	browser	performance	from	each	one.	Refer	to
http://developer.android.com/about/dashboards	for	a	distribution	of	the	most
popular	Android	versions.

Wrapping	up
Performance	affects	everything.	From	how	many	devices	can	run	your	app,	to	the	quality
of	the	user	experience,	to	the	perception	of	your	app’s	technical	competency,	performance
is	a	major	tenet	of	professional	web	design.	It’s	not	a	“nice-to-have,”	it’s	a	fundamental
building	block.	Don’t	relegate	performance	as	a	simple	optimization	to	be	made	in
hindsight.

http://developer.android.com/about/dashboards

Chapter	8.	Animation	Demo

It’s	time	to	get	your	hands	dirty!	This	final	chapter	walks	you	through	a	full	animation
demo	powered	by	Velocity.	In	going	through	the	demo’s	source,	you’ll	learn	how
Velocity’s	core	features	complement	one	another	to	greatly	improve	UI	animation
workflow.	This	demo	will	also	introduce	you	to	advanced	techniques	for	working	with
CSS’s	transform	properties,	which	are	vital	to	web-based	animation	today.

In	short,	you’re	going	to	put	together	the	skills	you’ve	accumulated	throughout	this
book	to	make	something	really	darn	cool.	Your	goals	in	coding	the	demo	are	twofold:	use
terse	and	expressive	animation	code,	and	ensure	maximum	performance.

Behavior
The	demo	consists	of	250	circles	floating	in,	out,	and	around	the	screen.	Periodically,
you’ll	zoom	in,	then	back	out	to	the	position	where	the	virtual	camera	started.	The	first
image	presented	momentarily	shows	a	zoomed-in	view.

	Note

Before	you	continue	reading,	head	on	over	to	VelocityJS.org/demo.book.html
to	see	a	live	preview	of	the	demo.	(You	can	right-click	anywhere	on	the	page
then	choose	“View	Source”	to	see	the	demo’s	code.)

The	circle	elements	are	simply	normal	divs	with	box-shadow	and	border-
radius	set	in	CSS.	There’s	no	WebGL	or	Canvas	animation	going	on	here—just	pure
HTML	element	manipulation.	(Given	the	volume	of	elements	that	are	being	animated	at
once,	it’s	quite	impressive	that	this	demo	is	capable	of	running	so	smoothly	in	the	DOM!)

Let’s	break	down	the	animation:	It	consists	of	div	elements	translating	along	the	X,	Y,
and	Z	axes.	The	Z-axis	dictates	the	depth	of	each	element’s	animation,	whereas	X	and	Y
provide	the	general	flowing,	2D	movement	seen	across	the	screen.	Concurrent	to	the
elements’	individual	movements	is	a	larger	perspective	shift	that	occurs	on	the	element
containing	all	these	divs.	This	perspective	shift	occurs	every	3	seconds,	and	it	creates	a
periodic	zooming	effect	that	makes	the	viewer	feel	as	if	he’s	briefly	traveling	through	the
circles’	3D	space.

The	second	graphic	depicts	the	3D	scene	in	its	zoomed-out	view.	Contrast	this	with	the
zoomed-in	view	shown	in	the	first	image.

http://VelocityJS.org/demo.book.html

How	to	Download	the	Code	Sample

The	code	behind	this	animation	demo	is	available	for	download	from	peachpit.com.
Here’s	how	to	get	it:

1.	Go	to	www.peachpit.com/register	and	create	or	log	in	to	your	account.

2.	Enter	the	book’s	ISBN	(978-0-13-409670-4)	and	click	Submit.

3.	Your	“My	Registered	Products”	page	opens.	Find	the	listing	for	this	book,	and	click
“Access	Bonus	Content.”

4.	The	page	containing	the	download
link	opens—click	to	access	the	Animation	Demo	file	entitled
WebAnimationJS_DemoCodeSample.zip

http://peachpit.com
http://www.peachpit.com/register

Code	structure
Let’s	take	a	look	at	the	code	that	powers	this	demo.	It	is	structured	as	follows:

5.	Animation	setup:	The	specification	of	parameters	used	for	constraining	animation
movement.

6.	Circle	creation:	The	generation	of	the	div	elements	to	be	animated.

7.	Container	animation:	The	code	responsible	for	animating	the	circles’	parent
element.

8.	Circle	animation:	The	code	responsible	for	animating	the	circle	elements
themselves.

Try	to	familiarize	yourself	with	the	broader	strokes	of	the	demo’s	implementation	so
you	can	keep	its	full	context	in	mind	as	you	explore	each	individual	code	block	in	the
upcoming	sections:
Click	here	to	view	code	image

/************************

				Animation	setup

************************/

/*	Randomly	generate	an	integer	between	two	numbers.	*/

function	r	(min,	max)	{

	return	Math.floor(Math.random()	*	(max	-	min	+	1))	+	min;

}

/*	Query	the	window’s	dimensions.	*/

var	screenWidth	=	window.screen.availWidth,

			screenHeight	=	window.screen.availHeight;

/*	Define	the	z-axis	animation	range.	*/

var	translateZMin	=	-725,

			translateZMax	=	600;

/**********************

			Circle	creation

**********************/

var	circleCount	=	250,

			circlesHtml	=	””,

			$circles	=	””;

for	(var	i	=	0;	i	<	circleCount;	i++)	{

			circlesHtml	+=	“<div	class=‘circle’></div>”;

}

$circle	=	$(circlesHtml);

/******************************

					Container	animation

******************************/

$container

			.css(“perspective-origin”,	screenWidth/2	+	“px	”	+	screenHeight/2	+	“px”)

			.velocity(

			{

						perspective:	[215,	50],

						opacity:	[0.90,	0.55]

			},	{

						duration:	800,

						loop:	1,

						delay:	3000

			});

/***************************

					Circle	animation

***************************/

$circles

			.appendTo($container)

			.velocity({

						opacity:	[

									function()	{	return	Math.random()	},

									function()	{	return	Math.random()	+	0.1	}

],

						translateX:	[

									function()	{	return	“+=”	+	r(-screenWidth/2.5,	screenWidth/2.5)	},

									function()	{	return	r(0,	screenWidth)	}

],

						translateY:	[

									function()	{	return	“+=”	+	r(-screenHeight/2.75,	screenHeight/2.75)

},

									function()	{	return	r(0,	screenHeight)	}

],

						translateZ:	[

									function()	{	return	“+=”	+	r(translateZMin,	translateZMax)	},

									function()	{	return	r(translateZMin,	translateZMax)	}

]

			},	{	duration:	6000	})

			.velocity(“reverse”,	{	easing:	“easeOutQuad”	})

			.velocity({	opacity:	0	},	2000);

Code	section:	Animation	setup
This	section’s	code	is	copied	below	for	easy	reference:
Click	here	to	view	code	image

/************************

				Animation	setup

************************/

/*	Randomly	generate	an	integer	between	two	numbers.	*/

function	r	(min,	max)	{

	return	Math.floor(Math.random()	*	(max	-	min	+	1))	+	min;

}

/*	Query	the	window’s	dimensions.	*/

var	screenWidth	=	window.screen.availWidth,

			screenHeight	=	window.screen.availHeight;

/*	Define	the	z-axis	animation	range.	*/

var	translateZMin	=	-725,

			translateZMax	=	600;

The	first	section,	Animation	setup,	begins	by	defining	a	function	r	(abbreviated	from
"random")	that	lets	you	artificially	constrain	randomly	generated	integer	values.	This
function	takes	min	and	max	parameters,	then	outputs	a	random	number	between	the	min
to	max	range	(using	some	basic	algebra).	You’ll	use	this	later	when	randomizing	the
animating	elements’	CSS	transform	values	within	ranges	that	are	predefined	in	the
next	two	code	blocks.

The	next	section	queries	the	window	object	to	retrieve	the	monitor’s	dimensions.	By
later	referencing	these	values,	you	can	ensure	that	the	circles	don’t	animate	too	far	off-
screen	(and	consequently	out	of	view).

Animation	setup	concludes	by	defining	the	min	and	max	values	for	the	elements’	Z-
axis	movement.	These	values	control	how	small	(far	away)	or	large	(nearby)	you	want	the
circles	to	animate	from	their	initial	size.	Specifically,	it	dictates	that	the	circles	can	go	as
far	as	725	pixels	along	the	Z-axis	away	from	the	virtual	camera	(away	from	the	screen),
and	as	close	as	600	pixels	toward	the	camera.	In	this	case,	there’s	no	constraint	of	going
off-screen,	but	the	circle	could	become	too	distant	to	see	or	so	close	that	it	takes	up	the
entire	monitor.	Basically,	it’s	a	creative	decision.

Code	section:	Circle	creation
Click	here	to	view	code	image

/**********************

			Circle	creation

**********************/

var	circleCount	=	250,

			circlesHtml	=	””,

			$circles	=	””;

for	(var	i	=	0;	i	<	circleCount;	i++)	{

			circlesHtml	+=	“<div	class=‘circle’></div>”;

}

$circle	=	$(circlesHtml);

The	demo’s	second	section,	Circle	creation,	generates	the	primary	div	elements	to	be
animated.	Here,	it	first	defines	the	desired	number	of	circles	as	circleCount.	Then,	it
defines	a	circlesHtml	string	to	contain	the	circles’	collated	HTML.

Next,	it	iterates	up	to	the	circleCount	number	to	generate	the	circles’	HTML.
Notice	that	it	uses	the	performance	best	practice	of	batching	DOM	additions,	as	detailed	in
Chapter	7,	“Animation	Performance.”	It	collates	the	markup	for	each	div	element	onto	a
master	circlesHtml	string	that’s	later	inserted	into	the	DOM	in	a	single	action.	(If	you
were	to	insert	the	div	elements	into	the	DOM	one	at	a	time,	the	negative	performance
impact	would	be	significant:	UI	interaction	in	the	browser	would	be	frozen	until	the
relatively	slow	element	insertion	process	completed.)

Finally,	it	wraps	the	circle	elements	in	a	jQuery	element	object	so	they	can	be	easily
manipulated	as	a	group	in	the	upcoming	Circle	animation	section.

Code	section:	Container	animation
Click	here	to	view	code	image

/******************************

					Container	animation

******************************/

$container

			.css(“perspective-origin”,	screenWidth/2	+	“px	”	+	screenHeight/2	+	“px”)

			.velocity(

			{

						perspective:	[215,	50],

						opacity:	[0.90,	0.55]

			},	{

						duration:	800,

						loop:	1,

						delay:	3000

			});

3D	CSS	primer
Let’s	begin	the	first	of	the	two	animation	sections	of	the	codebase	by	focusing	on	the
element	that	contains	the	circle	elements.	Before	diving	into	the	code,	however,	here’s	a
primer	on	how	3D	animation	works	in	the	browser:

In	order	for	3D	transforms	to	work	(for	example,	translateZ,	rotateX,
rotateY),	the	CSS	specification	requires	that	the	perspective	CSS	property	be	set

on	the	element’s	parent.	In	this	case,	that’s	what	the	$container	element	is	for.

The	greater	the	value	that	perspective	is	set	to,	the	less	distance	Z-axis	translations
(via	CSS’s	translateZ)	appear	to	move	relative	to	their	origin.	In	other	words,	if	you
want	more	exaggerated	depth	in	your	3D	animations,	set	the	parent	element’s
perspective	property	to	something	low,	such	as	50px,	which	is	in	fact	the	value	that
the	container	element	is	set	to	in	the	demo’s	CSS.	In	contrast,	a	higher	perspective
value,	such	as	250px,	would	result	in	less	visible	movement	from	the	origin	point	for
every	pixel	that	the	element’s	translateZ	property	is	incremented	by.

A	separate	and	complementary	CSS	property	is	prospective-origin,	which
defines	the	angle	at	which	the	virtual	camera	is	positioned.	The	virtual	camera	is	the
peephole	through	which	the	viewer	sees	3D	animation	unfold	in	the	browser.	This
section’s	code	block	uses	jQuery’s	$.css()	function	to	set	a	perspective-origin
value	on	the	container	element	that	results	in	the	camera	being	positioned	at	the	center	of
the	page,	creating	a	perpendicular	view	of	the	3D	animation.	This	perpendicular	view
results	in	the	appearance	of	circles	flying	directly	toward	and	away	from	the	viewer.

Specifically,	this	code	section	sets	perspective-origin	to	the	point	on	the	page
that’s	at	half	the	browser’s	height	and	half	its	width—the	center	point	of	the	page.	This
leverages	the	window	dimensions	queried	in	the	Animation	setup	section.

With	that	context	out	of	the	way,	let’s	explore	this	section’s	code.

Properties
This	section’s	code,	reproduced	below	for	easy	reference,	creates	the	demo’s	zooming	in
and	out	effect:
Click	here	to	view	code	image

$container

			.css(“perspective-origin”,	screenWidth/2	+	“px	”	+	screenHeight/2	+	“px”)

			.velocity(

			{

						perspective:	[215,	50],

						opacity:	[0.90,	0.55]

			},	{

						duration:	800,

						loop:	1,

						delay:	3250

			});

While	the	prospective-origin	property	is	set	once	on	the	container	element	and
thereafter	left	alone,	the	prospective	property	is	being	animated	by	Velocity.	This	is
necessary	because	the	intended	effect	of	the	demo	is	to	keep	the	vantage	point	into	the
scene	stationary	(perpendicular),	but	to	exaggerate	then	de-exaggerate	the	distance	of	the
elements	from	the	virtual	camera,	which	is	where	the	perspective	property’s
animation	comes	in.

Specifically,	this	section	uses	Velocity	to	animate	the	perspective	CSS	property	to
a	final	value	of	215px	from	a	starting	value	of	50px.

By	passing	in	an	array	as	an	animation	property’s	value,	you’re	forcefully	specifying

the	final	value	to	animate	the	property	toward	(215px,	in	the	case	above)	as	well	as	the
initial	value	to	animate	from	(50px,	in	the	case	above).	While	you	certainly	could	have
passed	the	property	a	single	integer	value	as	is	typically	expected	by	Velocity,	the	force-
feeding	syntax	provides	increased	control	over	the	property’s	complete	animation	path.
You	might	be	wondering,	isn’t	force-feeding	unnecessary	since	Velocity	knows	how	to

retrieve	a	CSS	property’s	starting	value	on	its	own?	While	that	is	Velocity’s	standard
behavior	when	an	integer	is	passed	in	as	a	value	instead	of	an	array,	this	isn’t	always	a
desirable	behavior	due	to	the	performance	drawbacks	inherent	to	querying	the	DOM	for	a
property’s	starting	value.	What	the	force-feeding	syntax	allows	you	to	do	is	explicitly	pass
in	a	starting	value	so	that	Velocity	can	avoid	querying	the	DOM	for	a	property	whose
starting	value	you	already	know.	In	other	words,	the	50px	starting	value	used	in	the
perspective	code	above	is	the	same	value	you	initially	set	the	container	element’s
perspective	property	to	in	the	CSS	stylesheet.	You’re	simply	repeating	the	value	here.
Notice	that	this	same	force-feeding	technique	is	used	on	the	element’s	opacity	property
as	well:	it’s	animated	to	a	final	value	of	0.90	from	a	starting	value	of	0.55	since	that’s	what
the	property	was	set	to	in	the	CSS.

As	discussed	thoroughly	in	Chapter	7,	“Animation	Performance,”	DOM	queries	are
indeed	the	Achilles’	heel	of	performant	animation:	the	browser	performs	resource-
intensive	calculations	to	determine	the	visual	state	of	an	element.	While	it’s	not	important
to	the	demo’s	performance	that	you	include	this	performance	optimization,	since	the
associated	Velocity	animation	isn’t	being	triggered	repeatedly	inside	a	loop,	it’s	included
nonetheless	to	contrast	force-feeding’s	secondary	use,	which	you’ll	learn	about	later	in	this
chapter.

The	net	effect	of	animating	the	perspective	and	opacity	is	that	all	of	the
container’s	circle	elements	appear	to	zoom	in	closer	to	the	virtual	camera	while	animating
to	an	increased	brightness	(opacity	goes	from	0.55	to	0.90).	The	opacity	boost	mimics
the	way	that	light	behaves	in	the	real	world:	the	closer	the	viewer	is	to	the	objects,	the
brighter	they	appear!

Options
The	final	section	of	Container	animation	code	includes	the	options	being	passed	into
Velocity:	duration,	which	is	self	explanatory;	delay,	which	inserts	a	time-out	at	the
start	of	the	animation,	and	loop,	which	loops	an	animation	back	and	forth	between	the
values	defined	in	the	properties	map	and	the	element’s	values	prior	to	the	animation
occurring.	Specifically,	by	setting	loop	to	2,	you’re	telling	Velocity	to	animate	to	the
values	in	properties	map,	back	to	where	they	were	before,	then	to	repeat	this	full	loop
iteration	once	more	after	a	3000ms	delay.

	Note

When	delay	is	set	alongside	loop,	the	delay	occurs	between	each	of	the
loop’s	alternations.	Using	delay	creates	a	pleasant	pause	so	that	the	zoom-in
and	zoom-out	effect	doesn’t	zigzag	back	and	forth	abruptly.

Code	section:	Circle	animation
This	is	where	things	start	getting	interesting.	Let’s	take	a	look	the	circle	animation,	in
which	you’re	simultaneously	animating	their	X-,	Y-,	Z-axis	translations	individually.
You’re	also	animating	their	opacity.
Click	here	to	view	code	image

/***************************

					Circle	animation

***************************/

$circles

			.appendTo($container)

			.velocity({

						opacity:	[

									function()	{	return	Math.random()	},

									function()	{	return	Math.random()	+	0.1	}

],

						translateX:	[

									function()	{	return	“+=”	+	r(-screenWidth/2.5,	screenWidth/2.5)	},

									function()	{	return	r(0,	screenWidth)	}

],

						translateY:	[

									function()	{	return	“+=”	+	r(-screenHeight/2.75,	screenHeight/2.75)

},

									function()	{	return	r(0,	screenHeight)	}

],

						translateZ:	[

									function()	{	return	“+=”	+	r(translateZMin,	translateZMax)	},

									function()	{	return	r(translateZMin,	translateZMax)	}

]

			},	{	duration:	6000	})

			.velocity(“reverse”,	{	easing:	“easeOutQuad”	})

			.velocity({	opacity:	0	},	2000);

Value	functions
Unlike	the	static	animation	property	values	used	in	the	previous	section	(for	example,	[
215,	50]),	this	section	uses	functions	for	property	values:	each	property	is	force-fed
an	array	of	start	and	end	values	that	are	dynamically	produced	by	functions.	Let’s	briefly
explore	these	value	functions,	which	are	a	unique	feature	of	Velocity.

	Note

Read	more	about	value	functions	at	VelocityJS.org/#valueFunctions.

Value	functions	let	you	pass	in	functions	as	animation	property	values.	These	functions
trigger	at	run-time,	and	are	called	individually	for	each	element	animated	in	a	set.	In	the
demo,	the	set	in	question	is	the	circle	divs	contained	within	the	$circles	jQuery
element	object.	Consequently,	each	circle	element	property	will	be	assigned	its	own
randomized	value	once	the	animation	begins.	The	only	other	way	to	achieve
differentiation	between	animation	properties	in	a	set	of	elements	is	to	animate	the
elements	separately	by	looping	through	them,	which	gets	messy	and	performs	badly.	This
is	the	benefit	of	value	functions—you	keep	dynamic	animation	code	terse	and

http://VelocityJS.org/#valueFunctions

maintainable.

Notice	that,	to	produce	the	randomized	values,	this	section	of	code	leverages	our	r
helper	function	that	was	defined	in	Animation	setup.	(As	a	reminder,	the	r	function
returns	a	randomized	integer	value	constrained	by	its	min	and	max	arguments.)	You’ll
learn	more	about	this	function	momentarily.

Opacity	animation
The	opacity	property	animates	from	and	toward	randomized	values.	In	the	case	of	the
starting	value,	you’re	giving	the	randomized	value	a	slight	boost	to	ensure	that	the
elements	are	never	too	close	to	being	invisible—after	all,	you	want	the	viewer	to	see	what
you’re	animating!	The	animation	of	opacity	results	in	a	smattering	of	circles	all	over
the	page	that	have	varying	opacities	from	the	very	first	frame.	Differentiated	opacities
create	a	nice	gradient	effect	that	adds	visual	richness	to	the	demo.

This	code	takes	advantage	of	force-feeding	for	a	purpose	other	than	performance
optimization:	value	functions	are	being	force-fed	to	dynamically	generate	start	values	for
the	elements	that	have	yet	to	be	inserted	into	the	DOM,	which	means	that	you’re
successfully	avoiding	writing	an	entirely	new	code	block	just	to	set	the	initial	CSS	states
of	the	circle	elements.	You’re	dynamically	providing	unique	starting	positions	in	the	same
line	of	code	responsible	for	animating	those	positions.	As	discussed	thoroughly	in	Chapter
4,	“Animation	Workflow,”	you	should	strive	for	this	level	of	expressiveness	in	all	of	your
animation	code.

Translation	animation
For	easy	reference,	here’s	this	section’s	code	once	again:
Click	here	to	view	code	image

/***************************

					Circle	animation

***************************/

$circles

			.appendTo($container)

			.velocity({

						opacity:	[

									function()	{	return	Math.random()	},

									function()	{	return	Math.random()	+	0.1	}

],

						translateX:	[

									function()	{	return	“+=”	+	r(-screenWidth/2.5,	screenWidth/2.5)	},

									function()	{	return	r(0,	screenWidth)	}

],

						translateY:	[

									function()	{	return	“+=”	+	r(-screenHeight/2.75,	screenHeight/2.75)

},

									function()	{	return	r(0,	screenHeight)	}

],

						translateZ:	[

									function()	{	return	“+=”	+	r(translateZMin,	translateZMax)	},

									function()	{	return	r(translateZMin,	translateZMax)	}

]

			},	{	duration:	6000	})

			.velocity(“reverse”,	{	easing:	“easeOutQuad”	})

			.velocity({	opacity:	0	},	2000);

It’s	time	to	examine	the	translate	animations,	which	individually	translate	the	circle
elements’	positions	within	the	demo’s	3D	space.	All	three	axes	are	animating	from	a
randomized	start	value	toward	a	randomized	end	value.	The	value	operator,	which	consists
of	the	plus	sign	followed	by	the	equals	sign	(+=),	tells	the	animation	engine	to	animate
properties	incrementally	from	their	starting	values.	In	other	words,	the	+=	value	operator
instructs	the	animation	engine	to	treat	the	ending	value	as	a	relative	value.	In	contrast,	the
default	behavior	of	an	animation	engine	is	to	interpret	an	end	value	in	absolute	terms.

As	with	opacity,	this	code	section	leverages	force-feeding	and	value	functions	for
their	expressivity	and	performance	benefits.	In	particular,	the	circles’	movement	is
constrained	within	ranges	relative	to	the	screen	dimensions	for	the	X	and	Y	axes,	and
relative	to	the	predefined	min	and	max	depth	values	for	the	Z-axis.	(As	a	reminder,	these
values	were	set	in	the	Animation	setup	section.)	In	the	case	of	the	X	and	Y	axes,	there’s	an
arbitrary	fudge	factor	(notice	the	division	by	2.75)	to	reduce	how	spread	out	the	elements
animate.	This	value	is	simply	a	creative	decision;	tweak	it	to	suit	your	aesthetic
preference.

Finally,	the	options	object	specifies	that	this	entire	animation	should	occur	over	a
duration	of	6000ms.

Reverse	command
After	the	primary	Velocity	animation	call,	the	chain	continues	with	a	call	to	Velocity’s
reverse	command.	Reverse	does	exactly	what	it	sounds	like	it:	it	animates	the	target
elements	back	to	their	initial	values	prior	to	the	previous	Velocity	call	taking	place.	In	this
unique	case,	since	start	values	have	been	force-fed	into	the	previous	Velocity	call,	those
are	the	start	values	that	reverse	will	animate	back	toward.

One	of	my	reasons	for	including	the	reverse	command	in	this	demo	is	to	extend	the
demo’s	overall	animation	duration	with	a	single	line	of	maintainable	and	expressive	code.
(While	you	could	double	the	duration	of	the	animation	from	6000ms	to	12000ms,	this
would	result	in	slowing	down	the	movement	of	the	circles.)	The	convenience	of	the
reverse	command	is	avoiding	having	to	respecify—by	hand—all	of	the	animation	start
values.	It	would	have	been	a	huge	mess	to	accomplish	this	manually	since	you	would	have
had	to	first	store	all	of	the	randomly	generated	start	values	into	memory	so	you	could
animate	back	to	them.	Hence,	reverse	is	yet	another	great	Velocity	feature	that	allows	the
demo	to	accomplish	a	lot	with	just	a	few	lines	of	code.

Velocity’s	reverse	command	defaults	to	the	options	object	used	in	the	previous	Velocity
call—including	its	duration,	easing,	and	so	on.	In	this	case,	since	the	previous	call
used	a	duration	of	6000ms,	so	will	the	reverse	call.	The	reverse	command	also	lets	you
specify	a	new	options	object	to	extend	onto	the	previous	one.	This	demo	uses	a	new	easing
type	of	easeOutQuad	for	added	motion	design	flair	in	the	animation’s	reverse	direction.

	Tip

To	preview	the	behavior	of	the	popular	easing	types,	visit	http://easings.net.

When	the	reverse	animation	completes,	a	final	Velocity	call	fades	the	elements	out	of
view	by	transitioning	their	opacity	values	to	0	over	a	duration	of	2000ms.	This
completes	the	demo	by	leaving	the	browser’s	canvas	in	the	same	visual	state	it	began	in:
clean	and	empty!	Your	work	here	is	done.

Wrapping	up
From	force-feeding,	to	value	functions,	to	reverse,	this	walkthrough	has	illustrated	the
power	of	the	Velocity	animation	engine.	Hopefully,	this	chapter	has	convinced	you	that
this	book’s	focus	on	Velocity	was	worthwhile.	In	fewer	than	75	lines	of	terse,	legible,	and
performant	code,	you’ve	created	a	rich	3D	scene	unlike	anything	you’ve	seen	before	in
pure	HTML.

Let	this	demo	serve	as	a	concrete	example	of	just	how	simple	intricate-looking
animations	can	actually	be—especially	when	you	use	the	right	tools	and	employ	best
practices.	My	hope	is	that	this	book	has	distilled	the	beautiful	animation	work	you’ve	seen
across	the	web	into	a	set	of	tenets	that	are	easy	to	grasp	and	follow	in	pursuit	of	your	own
motion	design.

Now,	go	and	design	some	beautiful	websites	and	apps!	Once	you’ve	put	together
something	cool,	show	me	on	Twitter:	twitter.com/shapiro.

http://easings.net
http://twitter.com/shapiro

Index

Symbols	and	Numbers
$.animate()	13

3D

CSS	primer	on	156

transforms	96

A
Adobe	After	Effect,	animating	text	and	80

Adobe	Photoshop,	SVG	and	104

Alerts,	leveraging	user	response	42–43

Android

purchasing	older	devices	from	eBay	144

realities	of	web	performance	118

Animation	demo

behaviors	148–149

code	section	for	animation	setup	153–154

code	section	for	circle	animation	160–164

code	section	for	circle	creation	154–155

code	section	for	container	animation	156–159

code	structure	150–152

overview	of	147

review	165

Animation	libraries

bypassing	jQuery	6

page	scrolling	functions	7

SVG	support	108

types	of	14

Animation	reversal,	performance	features	of	JavaScript	7–8

Animations.	See	also	Motion	design

breaking	into	steps	48–49

effects	on	neighboring	elements	130

limiting	in	motion	design	45

mirroring	44

older	browsers	problem	139

older	browsers	solutions	139–140

optimized	coding	approach	to	organizing	sequenced	animations	66–68

performance.	See	Performance

reducing	concurrency	43

reducing	variety	44

staggering	49

standard	coding	approach	to	organizing	sequenced	animations	65–66

of	text.	See	Text	animation

workflows.	See	Workflows

Animations,	with	SVG

animated	logo	example	112–113

overview	of	109

passing	properties	109

positional	attributes	vs.	transforms	110–111

presentational	attributes	110

Arguments,	Velocity	16–18

Attributes,	SVG	markup	105–106

B
backgroundColor	property,	Velocity	support	for	CSS	color	properties	31–32

backwards	option,	benefits	in	text	animation	92–93

Baselines,	load	testing	and	120

Batching	DOM	additions

code	section	for	circle	creation	155

problem	126–127

solutions	127–128

begin	option,	Velocity	24

Bézier	curves,	easing	values	in	Velocity	22

Blast.js

customClass	option	85–86

delimiter	option	85

generateValueClass	option	86–87

how	it	works	83–84

installing	on	pages	84–85

preparing	text	elements	using	82–83

reverse	option	88–89

tag	option	87–88

Blue,	Velocity	support	for	CSS	color	properties	31–32

body	tag,	installing	Blast	and	84

Bold	text,	tag	option	in	Blast	and	88

Boolean	values,	generateValueClass	option	in	Blast	86–87

borderColor	property,	Velocity	support	for	CSS	color	properties	31–32

border-radius	set	property,	in	behavior	of	animation	demo	148

Bottlenecks

problem	133

solutions	133–134

Bottom	line,	performance	affecting	117

box-shadow	property,	CSS

in	behavior	of	animation	demo	148

overview	of	138

Browsers

animations	on	older	browsers	problem	139

animations	on	older	browsers	solution	139–140

bottlenecks	and	133

finding	performance	threshold	early	on	141–143

positional	attributes	vs.	transforms	and	110

realities	of	web	performance	118

support	for	older	versions	4

BrowserStack.com,	testing	browsers	on	142

Buttons,	uses	of	SVG	109

C
Callback	functions,	begin	and	complete	options	in	Velocity	24

Chaining

effects	and	69

using	Velocity	with	jQuery	and	16

in	Velocity	20

character	delimiter,	Blast.js	82,	85

Chrome,	realities	of	web	performance	118

circle	element

in	behavior	of	animation	demo	148

code	section	for	circle	animation	160–164

code	section	for	circle	creation	154–155

code	structure	for	animation	demo	153–154

SVG	presentational	attributes	106

SVG	styling	106

Classes

customClass	option	in	Blast	85–86

generateValueClass	option	in	Blast	86–87

Code/coding	techniques

code	section	for	animation	setup	153–154

code	section	for	circle	animation	160–164

code	section	for	circle	creation	154–155

code	section	for	container	animation	156–159

code	structure	for	animation	demo	150–152

creating	images	through	code	in	SVG	104

optimized	approach	to	organizing	sequenced	animations	66–68

optimized	approach	to	packaging	effects	70–72

optimized	approach	to	separating	styling	from	logic	60–65

standard	approach	to	organizing	sequenced	animations	65–66

standard	approach	to	packaging	effects	69

standard	approach	to	separating	styling	from	logic	59–60

what	good	code	looks	like	57

color	property,	Velocity	support	for	CSS	color	properties	31–32

Colors

performance	benefits	of	using	opacity	instead	of	132

Velocity	options	31–32

complete	option,	Velocity	24

Compression,	SVG	and	104

Concurrency

problem	133

reducing	in	motion	design	43

solutions	133–134

Consistency,	pattern	recognition	and	understanding	and	44

Containers

code	section	for	container	animation	156–159

code	structure	for	animation	demo	153–154

SVG	(<svg>)	105

text	elements	80

Conventions,	in	making	design	choices	41

CSS

3D	primer	156

animation	effects	on	neighboring	elements	130–131

appropriate	uses	of	CSS	workflow	57–58

benefit	of	switching	to	JavaScript	for	segregation	of	logic	62

comparing	SVG	positional	attributes	with	CSS	transforms	110

comparing	Velocity	display	and	visibility	options	with	27–29

comparing	Velocity	properties	with	CSS	properties	18–19

comparing	Velocity	values	with	CSS	values	20

easing	values	in	Velocity	22

fine-grained	control	of	Blast	elements	94

issues	with	CSS	workflow	56–57

JavaScript	compared	with	4–9

perspective	properties	156–157

separating	styling	from	logic	59–60

sneaky	images	and	138

SVG	styling	compared	with	107

Velocity	arguments	corresponding	to	16

Velocity	support	for	CSS	transform	property	32

customClass	option,	Blast.js	85–86

D
Data	transfer	indicators,	preview	options	in	motion	design	41

Debouncing,	event	handlers	135–136

delay	option,	Velocity	26

Delay	values

staggering	durations	and	91

timing	multipliers	and	73

Delimiters,	Blast.js	82,	85

Design	techniques.	See	also	Motion	design

page	scrolling	in	Web	design	7

timing	multipliers	73–74

VMD	(Velocity	Motion	Designer)	74–76

Device	Lab	142

display	option,	Velocity	27–28

div

in	behavior	of	animation	demo	148

Blast.js	82

HTML	elements	83

tag	option	in	Blast	88

DOM	(Document	Object	Model)

batching	DOM	additions	for	improved	performance	126–128,	155

layout	thrashing	problem	121–122

layout	thrashing	solution	122–123

retrieving	raw	DOM	elements	33–34

SVG	elements	as	DOM	elements	104

duration	option,	Velocity	21

Durations

limiting	in	motion	design	45

staggering	91

timing	multipliers	and	73

E
Easing	options,	Velocity	21–23

eBay,	purchasing	older	devices	from	144

Effects

fade	effect	in	UI	pack	91

fanciful	effects	in	text	96

flourishes	in	text	97–98

optimized	coding	approach	to	packaging	70–72

standard	coding	approach	to	packaging	69

transition.fadeOut	effect	in	UI	pack	92

Elegance	aspects,	of	motion	design

breaking	animation	into	steps	48–49

flowing	from	triggering	elements	49

graphics	use	50

not	being	frivolous	47

opacity	use	48

overview	of	39–40

staggering	animations	49

using	appropriate	personality	features	47–48

Element	nodes,	HTML	83

Elements

animation	effects	on	neighboring	elements	130–132

circle	element.	See	circle	element

fine-grained	control	of	Blast	elements	94

flowing	from	triggering	elements	49

HTML	element	manipulation	148

image	rendering	problems	137

image	rendering	solutions	137–138

JEOs	(jQuery	element	objects)	123–124,	126–128

preparing	text	elements	for	animation	using	Blast.js	82–83

retrieving	raw	DOM	elements	33–34

span	elements	87–88

SVG	elements	compared	with	HTML	elements	104

text	elements	80

eq()	function,	jQuery	94

Event	handlers,	debouncing	135–136

Experimentation,	benefits	of	repeatedly	experimenting	51–52

F
Fade	effect,	in	UI	pack	91

Familiarity,	use	of	conventions	in	making	design	choices	41

fill,	SVG

presentational	attributes	105

styling	107

Flags,	leveraging	user	response	42–43

Flourishes,	in	text	97–98

Flow,	creating	from	triggering	elements	49

Force-feeding	feature	(Velocity),	for	avoiding	layout	thrashing	problem	124–125

Frivolous	design,	uses	and	abuses	of	47

G
generateValueClass	option,	Blast.js	86–87

gets

JEOs	as	culprit	in	layout	thrashing	123–124

layout	thrashing	and	121–122

Global	timing	multipliers	73–74

Gradients,	CSS	138

Graphics

in	elegant	motion	design	50

SVG	and	104,	109

Green,	Velocity	support	for	CSS	color	properties	31–32

GSAP	animation	library	14

H
Height,	SVG	presentational	attributes	105

Hidden	setting,	display	and	visibility	options	28

Hover	state	animations,	uses	of	CSS	6,	57–58

HTML

coding	web	pages	80

element	manipulation	148

element	nodes	83

SVG	elements	compared	with	HTML	elements	104

I
Images

creating	through	code	in	SVG	104

rendering	problems	137

rendering	solutions	137–138

sneaky	image	problems	139

sneaky	image	solutions	139–140

img	element	138

Incentives,	visceral	nature	of	interactions	and	43

Infinite	looping,	in	Velocity	25–26

See	also	Loops

Inkscape	104

Inline	status	indication,	engaging	users	in	tasks	42

In-progress	indicators,	preview	options	in	motion	design	41–42

Internet	Explorer

animations	on	older	browsers	problem	139

finding	performance	threshold	early	on	141–143

positional	attributes	vs.	transforms	and	110

realities	of	web	performance	118

iOS,	purchasing	older	devices	from	eBay	144

Irreversible	actions,	indicators	for	43

J
Janks	(stutters),	layout	thrashing	and	121

JavaScript	vs.	CSS

animation	reversal	feature	in	JavaScript	7–8

overview	of	4

page	scrolling	feature	in	JavaScript	7

performance	benefits	6

physics-based	motion	in	JavaScript	8

review	10

workflow	maintenance	9

JEOs	(jQuery	element	objects)

batching	DOM	additions	for	improved	performance	126–128

as	culprit	in	layout	thrashing	123–124

jQuery

easing	options	22–23

fine-grained	control	of	Blast	elements	94

installing	15

JavaScript	animation	libraries	that	bypass	6

required	by	Blast	84–85

slowness	of	animation	features	in	4

standard	coding	approach	to	separating	styling	from	logic	59

using	Velocity	with	16

using	Velocity	without	33–34

Velocity	compared	with	13

jQuery	element	objects.	See	JEOs	(jQuery	element	objects)

L
Latency,	search	engine	performance	and	117

Layout	thrashing

force-feeding	feature	in	Velocity	for	avoiding	124–125

JEOs	(jQuery	element	objects)	as	culprit	in	123–124

problem	121–122

solutions	122–123

Load	testing,	realities	of	web	performance	and	120

Logic

optimized	coding	approach	to	separating	from	styling	59–60

standard	coding	approach	to	separating	from	styling	59

Logos

animated	logo	example	in	SVG	112–113

uses	of	SVG	109

loop	option,	Velocity	25–26

Loops

code	section	for	container	animation	159

layout	thrashing	and	121–122

M
Maintenance,	of	workflows	9

Markup,	SVG	105–106

Max	values,	code	section	for	animation	setup	154

Min	values,	code	section	for	animation	setup	154

Mock	feature,	Velocity	74

Motion	design

alerts	and	flags	for	leveraging	user	response	42–43

appropriate	personality	features	47–48

breaking	animation	into	steps	48–49

conventions	in	making	design	choices	41

engaging	users	in	tasks	42

experimenting	repeatedly	51–52

flowing	from	triggering	elements	49

graphics	use	50

indicators	of	severity	of	irreversible	actions	43

limiting	animations	45

limiting	durations	45

mirroring	animations	44

not	being	frivolous	47

opacity	use	48

overview	of	37

previewing	outcomes	41

reducing	concurrency	43

reducing	variety	44

review	53

staggering	animations	49

utility	and	elegance	of	39–40

UX	(user	experience)	improved	by	38

visceral	nature	of	interactions	43

Mozilla	Developer	Network,	directory	of	SVG	elements	114

Multi-animation	sequences,	solutions	to	concurrency	issues	134

Multipliers,	timing	multipliers	as	design	technique	73–74

O
Opacity

animation	of	161

flourishes	in	text	97–98

going	beyond	overuse	of	48

performance	benefits	of	using	instead	of	color	132

opacity	property	161

outlineColor	property,	Velocity	support	for	CSS	color	properties	31–32

P
Page	scrolling,	performance	features	of	JavaScript	7

See	also	scroll	command

Performance

animation	effects	on	neighboring	elements	problem	130

animation	effects	on	neighboring	elements	solution	131–132

animations	on	older	browsers	problem	139

animations	on	older	browsers	solution	139–140

batch	DOM	additions	problem	126–127

batch	DOM	additions	solutions	127–128

bottleneck	concurrency	problems	133

bottleneck	concurrency	solutions	133–134

features	of	JavaScript	6

finding	performance	threshold	early	on	141–143

force-feeding	feature	in	Velocity	for	avoiding	layout	thrashing	124–125

image	rendering	problems	137

image	rendering	solutions	137–138

JEOs	(jQuery	element	objects)	and	123–124

layout	thrashing	problem	121–122

layout	thrashing	solution	122–123

overview	of	117

realities	of	web	performance	118–120

review	145

scroll	and	resize	event	problems	135

scroll	and	resize	event	solutions	135–136

sneaky	image	problems	139

sneaky	image	solutions	139–140

Personality,	using	appropriate	personality	features	in	motion	design	47–48

Perspective	properties,	CSS	156–157

Physics-based	motion,	performance	features	of	JavaScript	8

Pixels,	image	rendering	problems	137

Positional	attributes,	SVG	110–111

Presentational	attributes,	SVG	105,	110

Previews,	previewing	outcomes	in	motion	design	41

Properties

in	behavior	of	animation	demo	148

CSS	perspective	properties	156–157

CSS	shadow	properties	138

passing	properties	in	SVG	animations	109

Velocity	18–19

Velocity	support	for	CSS	color	properties	31–32

px,	as	default	unit	in	Velocity	19–20

R
Random	numbers,	code	section	for	animation	setup	153

Red,	Velocity	support	for	CSS	color	properties	31–32

resize	events

performance	problems	135

performance	solutions	135–136

reverse	command

animation	reversal	feature	in	JavaScript	7–8

code	section	for	circle	animation	163–164

in	Velocity	30

reverse	option,	Blast.js	88–89

RGB	(red,	green,	blue),	Velocity	support	for	CSS	color	properties	31–32

Rotation,	CSS	transform	property	32

S
Safari,	realities	of	web	performance	118

Scalable	vector	graphics.	See	SVG	(scalable	vector	graphics)

Scale,	CSS	transform	property	32

scroll	command

overview	of	30–31

Velocity	page	scrolling	7

scroll	events

performance	problems	135

performance	solutions	135–136

Scrolling,	page	animation	and	137

Search	engines,	latency	and	117

sentence	delimiter,	Blast	options	84–85

Sequence	running,	in	UI	pack	65

Sequenced	animations

optimized	coding	approach	to	organizing	66–68

standard	coding	approach	to	organizing	65–66

sets,	layout	thrashing	and	121–122

setup

code	section	for	animation	setup	153–154

code	structure	for	animation	demo	150

Shadow	properties,	CSS	138

Shorthand	features,	in	Velocity	20

Sketch	program	104

Smartphones

animations	on	older	browsers	and	139

purchasing	from	eBay	144

realities	of	web	performance	118

Sneaky	images,	performance	issues	139–140

Span	elements

animating	text	and	80

tag	option	in	Blast	87–88

Spring	physics,	easing	values	in	Velocity	23

stagger	feature,	in	UI	pack	133–134

Staggering

animations	49

solutions	to	concurrency	issues	133–134

solutions	to	image	rendering	issues	138

text	animation	and	91

Status	indicators

data	transfer	indicators	41

loading	text	and	97

uses	of	SVG	109

Stutters	(janks),	layout	thrashing	and	121

Style	sheets,	JavaScript	vs.	CSS	4

See	also	CSS

Styling

optimized	coding	approach	to	separating	from	logic	60–65

standard	coding	approach	to	separating	from	logic	59–60

SVG	107

SVG	(scalable	vector	graphics)

animated	logo	example	112–113

animating	graphic	components	50

animations	109

creating	images	through	code	104

going	beyond	rectangles	111

markup	105–106

overview	of	103

passing	properties	109

positional	attributes	vs.	transforms	110–111

presentational	attributes	110

review	112–113

styling	107

support	for	108

SVG	Pocket	Guide	(Trythall)	114

Syntax

arguments	in	Velocity	17–18

SVG	markup	105–106

T
Tables,	HTML	elements	83

tag	option,	Blast.js	87–88

Text	animation

customClass	option	in	Blast	85–86

delimiter	option	in	Blast	85

flourishes	in	text	97–98

generateValueClass	option	in	Blast	86–87

how	Blast.js	works	83–84

installing	Blast	on	page	84–85

overview	of	79

preparing	text	elements	using	Blast.js	82–83

replacing	existing	text	90

reverse	option	in	Blast	88–89

review	100

staggering	option	91

standard	approach	to	80

tag	option	in	Blast	87–88

transitioning	individual	text	parts	94–95

transitioning	text	out	of	view	91–93

transitioning	text	using	fanciful	effects	96

Text	nodes	80

text-shadow	property,	CSS	138

Thresholds,	finding	performance	threshold	early	141–143

Timing	control

delay	option	26

JavaScript	vs.	CSS	4

Timing	multipliers,	as	design	technique	73–74

transform	property,	Velocity	31–32

Transforms

3D	CSS	primer	156

3D	transforms	96

animation	effects	on	neighboring	elements	and	131

comparing	SVG	positional	attributes	with	CSS	transforms	110–111

transition.fadeOut	effect,	in	UI	pack	92

transition.perspectiveDown	effect,	in	UI	pack	96

Transitions

individual	text	parts	94–95

limiting	durations	45

replacing	existing	text	90

staggering	durations	91

text	out	of	view	91–93

text	using	fanciful	effects	96

text	visibility	80

Translations

3D	CSS	primer	156

animation	effects	on	neighboring	elements	and	131

animation	of	162–163

code	section	for	circle	animation	160

CSS	transform	property	32

mirroring	and	44

Triggers,	flowing	from	triggering	elements	49

Trigonometric	easings,	easing	values	in	Velocity	22

U
UI	(user	interface)

conventions	in	making	design	choices	41

motion	design	improving	user	experience	38

UI	animation	libraries	14

UI	animation	workflow	65

UI	pack

fade	effect	in	91

getting	and	installing	65

optimized	coding	approach	to	packaging	effects	70–72

stagger	feature	in	133–134

transition.fadeOut	effect	92

transitioning	text	fancifully	96

Unit	types,	values	in	Velocity	19–20

User	experience.	See	UX	(user	experience)

User	interface.	See	UI	(user	interface)

Utility	aspects,	of	motion	design

alerts	and	flags	for	leveraging	user	response	42–43

conventions	in	making	design	choices	41

engaging	users	in	tasks	42

indicators	of	severity	of	irreversible	actions	43

limiting	animations	45

limiting	durations	45

mirroring	animations	44

overview	of	39–40

previewing	outcomes	41

reducing	concurrency	43

reducing	variety	44

visceral	nature	of	interactions	43

Utility	function,	Velocity	66

UX	(user	experience)

motion	design	improving	38

performance	affecting	117

physics-based	motion	in	JavaScript	enhancing	8

V
Values

code	section	for	animation	setup	154

value	functions	161

Velocity	19–20

Variety,	reducing	in	motion	design	44

Velocity

animation	demo.	See	Animation	demo

arguments	16–18

begin	and	complete	options	24

chaining	20

color	options	31–32

compared	with	jQuery	13

containing	animation	logic	within	29

delay	option	26

display	and	visibility	options	27–28

downloading	and	installing	15

duration	option	21

easing	options	21–23

force-feeding	feature	for	avoiding	layout	thrashing	124–125

loop	option	25–26

mock	feature	74

optimized	coding	approach	to	organizing	sequenced	animations	66–68

page	scrolling	functions	7

passing	properties	in	SVG	animations	109

physics-based	motion	8

properties	18–19

resource	for	SVG	attributes	and	styling	properties	114

reverse	command	30

review	33–34

scroll	command	30–31

transform	property	31–32

types	of	animation	libraries	14

UI	pack	65

using	with	jQuery	16

using	without	jQuery	33–34

values	19–20

Velocity	Motion	Designer	(VMD)	74–76

Video.	See	also	Images

image	rendering	problems	137

image	rendering	solutions	137–138

Visibility

replacing	existing	text	90

transitioning	text	out	of	view	91–93

transitioning	text	visibility	80

visibility	option,	Velocity	27–28

Visual	processing,	leveraging	primal	instincts	in	motion	design	42–43

VMD	(Velocity	Motion	Designer)	74–76

W
Web	design,	use	of	page	scrolling	in	7

Web	performance,	realities	of	118–120

Width,	SVG	presentational	attributes	105

word	delimiter,	Blast	options	85

Workflows

CSS	appropriate	uses	57–58

CSS	issues	56–57

maintainability	of	9

optimized	coding	approach	to	organizing	sequenced	animations	66–68

optimized	coding	approach	to	packaging	effects	70–72

optimized	coding	approach	to	separating	styling	from	logic	60–65

overview	of	55

review	77

standard	coding	approach	to	organizing	sequenced	animations	65–66

standard	coding	approach	to	packaging	effects	69

standard	coding	approach	to	separating	styling	from	logic	59–60

timing	multipliers	as	design	technique	73–74

VMD	(Velocity	Motion	Designer)	74–76

X
x	value,	SVG	presentational	attributes	105

Y
y	value,	SVG	presentational	attributes	105

Code	Snippets

	Title Page
	Copyright Page
	Dedication Page
	Acknowledgements
	Contents
	Foreword
	Introduction
	Chapter 1. Advantages of JavaScript Animation
	JavaScript vs. CSS animation
	Great performance
	Features
	Page scrolling
	Animation reversal
	Physics-based motion

	Maintainable workflows
	Wrapping up

	Chapter 2. Animating with Velocity.js
	Types of JavaScript animation libraries
	Installing jQuery and Velocity
	Using Velocity: Basics
	Velocity and jQuery
	Arguments
	Properties
	Values
	Chaining

	Using Velocity: Options
	Duration
	Easing
	Begin and Complete
	Loop
	Delay
	Display and Visibility

	Using Velocity: Additional features
	Reverse Command
	Scrolling
	Colors
	Transforms

	Using Velocity: Without jQuery (intermediate)
	Wrapping up

	Chapter 3. Motion Design Theory
	Motion design improves the user experience
	Utility
	Borrow conventions
	Preview outcomes
	Distraction over boredom
	Leverage primal instincts
	Make interactions visceral
	Reflect gravitas
	Reduce concurrency
	Reduce variety
	Mirror animations
	Limit durations
	Limit animations

	Elegance
	Don’t be frivolous
	Your one opportunity to be frivolous
	Consider personality
	Go beyond opacity
	Break animations into steps
	Stagger animations
	Flow from the triggering element
	Use graphics

	Wrapping up

	Chapter 4. Animation Workflow
	CSS animation workflow
	Issues with CSS
	When CSS makes sense

	Code technique: Separate styling from logic
	Standard approach
	Optimized approach

	Code technique: Organize sequenced animations
	Standard approach
	Optimized approach

	Code technique: Package your effects
	Standard approach
	Optimized approach

	Design techniques
	Timing multipliers
	Use Velocity Motion Designer

	Wrapping up

	Chapter 5. Animating Text
	The standard approach to text animation
	Preparing text elements for animation with Blast.js
	How Blast.js works
	Installation
	Option: Delimiter
	Option: customClass
	Option: generateValueClass
	Option: Tag
	Command: Reverse

	Transitioning text into or out of view
	Replacing existing text
	Staggering
	Transitioning text out of view

	Transitioning individual text parts
	Transitioning text fancifully
	Textual flourishes
	Wrapping up

	Chapter 6. Scalable Vector Graphics Primer
	Creating images through code
	SVG markup
	SVG styling
	Support for SVG
	SVG animation
	Passing in properties
	Presentational attributes
	Positional attributes vs. transforms

	Implementation example: Animated logos
	Wrapping up

	Chapter 7. Animation Performance
	The reality of web performance
	Technique: Remove layout thrashing
	Problem
	Solution
	jQuery Element Objects
	Force-feeding

	Technique: Batch DOM additions
	Problem
	Solution

	Technique: Avoid affecting neighboring elements
	Problem
	Solution

	Technique: Reduce concurrent load
	Problem
	Solution

	Technique: Don’t continuously react to scroll and resize events
	Problem
	Solution

	Technique: Reduce image rendering
	Problem
	Solution
	Sneaky images

	Technique: Degrade animations on older browsers
	Problem
	Solution

	Find your performance threshold early on
	Wrapping up

	Chapter 8. Animation Demo
	Behavior
	Code structure
	Code section: Animation setup
	Code section: Circle creation
	Code section: Container animation
	3D CSS primer
	Properties
	Options

	Code section: Circle animation
	Value functions
	Opacity animation
	Translation animation
	Reverse command

	Wrapping up

	Index
	Code Snippets

