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The Physics of Wall Street





Warren Buffett isn’t the best money manager in the world. nei-
ther is George Soros or Bill Gross. the world’s best money manager 
is a man you’ve probably never heard of  —   unless you’re a physicist, 
in which case you’d know his name immediately. Jim Simons is co-
inventor of a brilliant piece of mathematics called the chern-Simons 
3-form, one of the most important parts of string theory. It’s abstract, 
even abstruse, stuff  —   some say too abstract and speculative  —   but it 
has turned Simons into a living legend. He’s the kind of scientist whose 
name is uttered in hushed tones in the physics departments of Harvard 
and Princeton.
 Simons cuts a professorial figure, with thin white hair and a scraggly 
beard. In his rare public appearances, he usually wears a rumpled shirt 
and sports jacket  —   a far cry from the crisp suits and ties worn by most 
elite traders. He rarely wears socks. His contributions to physics and 
mathematics are as theoretical as could be, with a focus on classifying 
the features of complex geometrical shapes. It’s hard to even call him 
a numbers guy  —   once you reach his level of abstraction, numbers, 
or anything else that resembles traditional mathematics, are a distant 
memory. He is not someone you would expect to find wading into the 
turbulent waters of hedge fund management.
 And yet, there he is, the founder of the extraordinarily successful 
firm renaissance technologies. Simons created renaissance’s sig-
nature fund in 1988, with another mathematician named James Ax. 
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they called it Medallion, after the prestigious mathematics prizes that 
Ax and Simons had won in the sixties and seventies. over the next 
decade, the fund earned an unparalleled 2,478.6% return, blowing 
every other hedge fund in the world out of the water. to give a sense 
of how extraordinary this is, George Soros’s Quantum fund, the next 
most successful fund during this time, earned a mere 1,710.1% over 
the same period. Medallion’s success didn’t let up in the next decade, 
either  —   over the lifetime of the fund, Medallion’s returns have aver-
aged almost 40% a year, after fees that are twice as high as the industry 
average. (compare this to Berkshire Hathaway, which averaged a 20% 
return from when Buffett turned it into an investment firm in 1967 
until 2010.) today Simons is one of the wealthiest men in the world. 
According to the 2011 Forbes ranking, his net worth is $10.6 billion, a 
figure that puts Simons’s checking account in the same range as that of 
some high-powered investment firms.
 renaissance employs about two hundred people, mostly at the com-
pany’s fortresslike headquarters in the Long Island town of east Se-
tauket. A third of them have Phds  —   not in finance, but rather, like 
Simons, in fields like physics, mathematics, and statistics. According 
to MIt mathematician Isadore Singer, renaissance is the best physics 
and mathematics department in the world  —   which, say Simons and 
others, is why the firm has excelled. Indeed, renaissance avoids hiring 
anyone with even the slightest whiff of Wall Street bona fides. Phds 
in finance need not apply; nor should traders who got their start at 
traditional investment banks or even other hedge funds. the secret 
to Simons’s success has been steering clear of the financial experts. 
And rightly so. According to the financial experts, people like Simons 
shouldn’t exist. theoretically speaking, he’s done the impossible. He’s 
predicted the unpredictable, and made a fortune doing it.

Hedge funds are supposed to work by creating counterbalanced port-
folios. the simplest version of the idea is to buy one asset while simul-
taneously selling another asset as a kind of insurance policy. often, 
one of these assets is what is known as a derivative. derivatives are 
contracts based on some other kind of security, such as stocks, bonds, 
or commodities. for instance, one kind of derivative is called a futures 
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contract. If you buy a futures contract on, say, grain, you are agreeing 
to buy the grain at some fixed future time, for a price that you settle on 
now. the value of a grain future depends on the value of grain  —   if the 
price of grain goes up, then the value of your grain futures should go 
up too, since the price of buying grain and holding it for a while should 
also go up. If grain prices drop, however, you may be stuck with a con-
tract that commits you to paying more than the market price of grain 
when the futures contract expires. In many cases (though not all), 
there is no actual grain exchanged when the contract expires; instead, 
you simply exchange cash corresponding to the discrepancy between 
the price you agreed to pay and the current market price.
 derivatives have gotten a lot of attention recently, most of it nega-
tive. But they aren’t new. they have been around for at least four 
thousand years, as testified by clay tablets found in ancient Mesopo-
tamia (modern-day Iraq) that recorded early futures contracts. the 
purpose of such contracts is simple: they reduce uncertainty. Sup-
pose that Anum-pisha and namran-sharur, two sons of Siniddianam, 
are Sumerian grain farmers. they are trying to decide whether they 
should plant their fields with barley, or perhaps grow wheat instead. 
Meanwhile, the priestess Iltani knows that she will require barley next 
autumn, but she also knows that barley prices can fluctuate unpre-
dictably. on a hot tip from a local merchant, Anum-pisha and nam-
ran-sharur approach Iltani and suggest that she buy a futures contract 
on their barley; they agree to sell Iltani a fixed amount of barley for 
a prenegotiated price, after the harvest. that way, Anum-pisha and 
namran-sharur can confidently plant barley, since they have already 
found a buyer. Iltani, meanwhile, knows that she will be able to acquire 
sufficient amounts of barley at a fixed price. In this case, the derivative 
reduces to the seller’s risk of producing the goods in the first place, and 
at the same time, it shields the purchaser from unexpected variations 
in price. of course, there’s always a risk that the sons of Siniddianam 
won’t be able to deliver  —   what if there is a drought or a blight?  —   in 
which case they would likely have to buy the grain from someone else 
and sell it to Iltani at the predetermined rate.
 Hedge funds use derivatives in much the same way as ancient 
Mesopotamians. Buying stock and selling stock market futures is like 
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planting barley and selling barley futures. the futures provide a kind 
of insurance against the stock losing value.
 the hedge funds that came of age in the 2000s, however, did the 
sons of Siniddianam one better. these funds were run by traders, 
called quants, who represented a new kind of Wall Street elite. Many 
had Phds in finance, with graduate training in state-of-the-art aca-
demic theories  —   never before a prerequisite for work on the Street. 
others were outsiders, with backgrounds in fields like mathematics or 
physics. they came armed with formulas designed to tell them exactly 
how derivatives prices should be related to the securities on which the 
derivatives were based. they had some of the fastest, most sophis-
ticated computer systems in the world programmed to solve these 
equations and to calculate how much risk the funds faced, so that they 
could keep their portfolios in perfect balance. the funds’ strategies 
were calibrated so that no matter what happened, they would eke out 
a small profit  —   with virtually no chance of significant loss. or at least, 
that was how they were supposed to work.
 But when markets opened on Monday, August 6, 2007, all hell broke 
loose. the hedge fund portfolios that were designed to make money, 
no matter what, tanked. the positions that were supposed to go up 
all went down. Bizarrely, the positions that were supposed to go up if 
everything else went down also went down. essentially all of the major 
quant funds were hit, hard. every strategy they used was suddenly vul-
nerable, whether in stocks, bonds, currency, or commodities. Millions 
of dollars started flying out the door.
 As the week progressed, the strange crisis worsened. despite their 
training and expertise, none of the traders at the quant funds had any 
idea what was going on. By Wednesday matters were desperate. one 
large fund at Morgan Stanley, called Process driven trading, lost $300 
million that day alone. Another fund, Applied Quantitative research 
capital Management, lost $500 million. An enormous, highly secre-
tive Goldman Sachs fund called Global Alpha was down $1.5 billion on 
the month so far. the dow Jones, meanwhile, went up 150 points, since 
the stocks that the quant funds had bet against all rallied. Something 
had gone terribly, terribly wrong.
 the market shakeup continued through the end of the week. It fi-
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nally ended over the weekend, when Goldman Sachs stepped in with 
$3 billion in new capital to stabilize its funds. this helped stop the 
bleeding long enough for the immediate panic to subside, at least for 
the rest of August. Soon, though, word of the losses spread to business 
journalists. A few wrote articles speculating about the cause of what 
came to be called the quant crisis. even as Goldman’s triage saved the 
day, however, explanations were difficult to come by. the fund manag-
ers went about their business, nervously hoping that the week from 
hell had been some strange fluke, a squall that had passed. Many re-
called a quote from a much earlier physicist. After losing his hat in 
a market collapse in seventeenth-century england, Isaac newton de-
spaired: “I can calculate the movements of stars, but not the madness 
of men.”
 the quant funds limped their way to the end of the year, hit again 
in november and december by ghosts of the August disaster. Some, 
but not all, managed to recover their losses by the end of the year. on 
average, hedge funds returned about 10% in 2007  —   less than many 
other, apparently less sophisticated investments. Jim Simons’s Medal-
lion fund, on the other hand, returned 73.7%. Still, even Medallion 
had felt the August heat. As 2008 dawned, the quants hoped the worst 
was behind them. It wasn’t.

I began thinking about this book during the fall of 2008. In the year 
since the quant crisis, the U.S. economy had entered a death spiral, 
with century-old investment banks like Bear Stearns and Lehman 
Brothers imploding as markets collapsed. Like many other people, I 
was captivated by the news of the meltdown. I read about it obses-
sively. one thing in particular about the coverage jumped out at me. 
In article after article, I came across the legions of quants: physicists 
and mathematicians who had come to Wall Street and changed it for-
ever. the implication was clear: physicists on Wall Street were respon-
sible for the collapse. Like Icarus, they had flown too high and fallen. 
their waxen wings were “complex mathematical models” imported 
from physics  —   tools that promised unlimited wealth in the halls of 
academia, but that melted when faced with the real-life vicissitudes of 
Wall Street. now we were all paying the price.
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I was just finishing a Phd in physics and mathematics at the time, 
and so the idea that physicists were behind the meltdown was espe-
cially shocking to me. Sure, I knew people from high school and col-
lege who had majored in physics or math and had then gone on to 
become investment bankers. I had even heard stories of graduate stu-
dents who had been lured away from academia by the promise of un-
told riches on Wall Street. But I also knew bankers who had majored 
in philosophy and english. I suppose I assumed that physics and math 
majors were appealing to investment banks because they were good 
with logic and numbers. I never dreamed that physicists were of par-
ticular interest because they knew some physics.
 It felt like a mystery. What could physics have to do with finance? 
none of the popular accounts of the meltdown had much to say about 
why physics and physicists had become so important to the world 
economy, or why anyone would have thought that ideas from phys-
ics would have any bearing on markets at all. If anything, the current 
wisdom  —   promoted by nassim taleb, author of the best-selling book 
The Black Swan, as well as some proponents of behavioral economics  
—   was that using sophisticated models to predict the market was fool-
ish. After all, people were not quarks. But this just left me more con-
fused. Had Wall Street banks like Morgan Stanley and Goldman Sachs 
been bamboozled by a thousand calculator-wielding con men? the 
trouble was supposed to be that physicists and other quants were run-
ning failing funds worth billions of dollars. But if the whole endeavor 
was so obviously stupid, why had they been trusted with the money 
in the first place? Surely someone with some business sense had been 
convinced that these quants were on to something  —   and it was this 
part of the story that was getting lost in the press. I wanted to get to the 
bottom of it.
 So I started digging. As a physicist, I figured I would start by track-
ing down the people who first came up with the idea that physics could 
be used to understand markets. I wanted to know what the connec-
tions between physics and finance were supposed to be, but I also 
wanted to know how the ideas had taken hold, how physicists had 
come to be a force on the Street. the story I uncovered took me from 
turn-of-the-century Paris to government labs during World War II, 
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from blackjack tables in Las vegas to Yippie communes on the Pacific 
coast. the connections between physics and modern financial theory  
—   and economics more broadly  —   run surprisingly deep.
 this book tells the story of physicists in finance. the recent crisis is 
part of the story, but in many ways it’s a minor part. this is not a book 
about the meltdown. there have been many of those, some even fo-
cusing on the role that quants played and how the crisis affected them. 
this book is about something bigger. It is about how the quants came 
to be, and about how to understand the “complex mathematical mod-
els” that have become central to modern finance. even more impor-
tantly, it is a book about the future of finance. It’s about why we should 
look to new ideas from physics and related fields to solve the ongoing 
economic problems faced by countries around the world. It’s a story 
that should change how we think about economic policy forever.
 the history I reveal in this book convinced me  —   and I hope it will 
convince you  —   that physicists and their models are not to blame for 
our current economic ills. But that doesn’t mean we should be com-
placent about the role of mathematical modeling in finance. Ideas that 
could have helped avert the recent financial meltdown were developed 
years before the crisis occurred. (I describe a couple of them in the 
book.) Yet few banks, hedge funds, or government regulators showed 
any signs of listening to the physicists whose advances might have 
made a difference. even the most sophisticated quant funds were rely-
ing on first- or second-generation technology when third- and fourth-
generation tools were already available. If we are going to use physics 
on Wall Street, as we have for thirty years, we need to be deeply sensi-
tive to where our current tools will fail us, and to new tools that can 
help us improve on what we’re doing now. If you think about financial 
models as the physicists who introduced them thought about them, 
this would be obvious. After all, there’s nothing special about finance  
—   the same kind of careful attention to where current models fail is 
crucial to all engineering sciences. the danger comes when we use 
ideas from physics, but we stop thinking like physicists.
 there’s one shop in new York that remembers its roots. It’s renais-
sance, the financial management firm that doesn’t hire finance experts. 
the year 2008 hammered a lot of banks and funds. In addition to Bear 
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Stearns and Lehman Brothers, the insurance giant AIG as well as doz-
ens of hedge funds and hundred of banks either shut down or teetered 
at the precipice, including quant fund behemoths worth tens of bil-
lions of dollars like citadel Investment Group. even the traditionalists 
suffered: Berkshire Hathaway faced its largest loss ever, of about 10% 
book value per share  —   while the shares themselves halved in value. 
But not everyone was a loser for the year. Jim Simons’s Medallion fund 
earned 80%, even as the financial industry collapsed around him. the 
physicists must be doing something right.



L a fin de siècle, la belle epoque. Paris was abuzz with progress. 
In the west, Gustave eiffel’s new tower  —   still considered a contro-
versial eyesore by Parisians living in its shadow  —   shot up over the 

site of the 1889 World’s fair. In the north, at the foot of Montmartre, 
a new cabaret called the Moulin rouge had just opened to such fan-
fare that the Prince of Wales came over from Britain to see the show. 
closer to the center of town, word had begun to spread of certain un-
explained accidents at the magnificent and still-new home of the city’s 
opera, the Palais Garnier  —   accidents that would lead to at least one 
death when part of a chandelier fell. rumor had it that a phantom 
haunted the building.
 Just a few blocks east from the Palais Garnier lay the beating heart 
of the french empire: the Paris Bourse, the capital’s principal financial 
exchange. It was housed in a palace built by napoleon as a temple to 
money, the Palais Brongniart. Its outside steps were flanked by statues 
of its idols: Justice, commerce, Agriculture, Industry. Majestic neo-
classical columns guarded its doors. Inside, its cavernous main hall 
was large enough to fit hundreds of brokers and staff members. for an 
hour each day they met beneath ornately carved reliefs and a massive 

Primordial Seeds

c H A P t e r  1



skylight to trade the permanent government bonds, called rentes, that 
had funded france’s global ambitions for a century. Imperial and im-
posing, it was the center of the city at the center of the world.
 or so it would have seemed to Louis Bachelier as he approached it 
for the first time, in 1892. He was in his early twenties, an orphan from 
the provinces. He had just arrived in Paris, fresh from his mandatory 
military service, to resume his education at the University of Paris. He 
was determined to be a mathematician or a physicist, whatever the 
odds  —   and yet, he had a sister and a baby brother to support back 
home. He had recently sold the family business, which had provided 
sufficient money for the moment, but it wouldn’t last forever. And so, 
while his classmates threw themselves into their studies, Bachelier 
would have to work. fortunately, with a head for numbers and some 
hard-won business experience, he had been able to secure a position at 
the Bourse. He assured himself it was only temporary. finance would 
have his days, but his nights were saved for physics. nervously, Bach-
elier forced himself to walk up the stairs toward the columns of the 
Bourse.
 Inside, it was total bedlam. the Bourse was based on an open out-
cry system for executing trades: traders and brokers would meet in 
the main hall of the Palais Brongniart and communicate information 
about orders to buy or sell by yelling or, when that failed, by using 
hand signals. the halls were filled with men running back and forth 
executing trades, transferring contracts and bills, bidding on and sell-
ing stocks and rentes. Bachelier knew the rudiments of the french fi-
nancial system, but little more. the Bourse did not seem like the right 
place for a quiet boy, a mathematician with a scholar’s temperament. 
But there was no turning back. It’s just a game, he told himself. Bach-
elier had always been fascinated by probability theory, the mathemat-
ics of chance (and, by extension, gambling). If he could just imagine 
the french financial markets as a glorified casino, a game whose rules 
he was about to learn, it might not seem so scary.
 He repeated the mantra  —   just an elaborate game of chance  —   as he 
pushed forward into the throng.

“Who is this guy?” Paul Samuelson asked himself, for the second time 

2 • t h e  p h y s i c s  o f  wa l l  s t r e e t



Primordial Seeds • 3

in as many minutes. He was sitting in his office, in the economics de-
partment at MIt. the year was 1955, or thereabouts. Laid out in front 
of him was a half-century-old Phd dissertation, written by a french-
man whom Samuelson was quite sure he had never heard of. Bachelor, 
Bacheler. Something like that. He looked at the front of the document 
again. Louis Bachelier. It didn’t ring any bells.
 Its author’s anonymity notwithstanding, the document open on 
Samuelson’s desk was astounding. Here, fifty-five years previously, 
Bachelier had laid out the mathematics of financial markets. Samu-
elson’s first thought was that his own work on the subject over the 
past several years  —   the work that was supposed to form one of his 
students’ dissertation  —   had lost its claim to originality. But it was 
more striking even than that. By 1900, this Bachelier character had 
apparently worked out much of the mathematics that Samuelson and 
his students were only now adapting for use in economics  —   mathe-
matics that Samuelson thought had been developed far more recently, 
by mathematicians whose names Samuelson knew by heart because 
they were tied to the concepts they had supposedly invented. Weiner 
processes. Kolmogorov’s equations. doob’s martingales. Samuelson 
thought this was cutting-edge stuff, twenty years old at the most. But 
there it all was, in Bachelier’s thesis. How come Samuelson had never 
heard of him?
 Samuelson’s interest in Bachelier had begun a few days before, when 
he received a postcard from his friend Leonard “Jimmie” Savage, then 
a professor of statistics at the University of chicago. Savage had just 
finished writing a textbook on probability and statistics and had de-
veloped an interest in the history of probability theory along the way. 
He had been poking around the university library for early-twentieth-
century work on probability when he came across a textbook from 
1914 that he had never seen before. When he flipped through it, Savage 
realized that, in addition to some pioneering work on probability, the 
book had a few chapters dedicated to what the author called “specula-
tion”  —   literally, probability theory as applied to market speculation. 
Savage guessed (correctly) that if he had never come across this work 
before, his friends in economics departments likely hadn’t either, and 
so he sent out a series of postcards asking if anyone knew of Bachelier.



Samuelson had never heard the name. But he was interested in 
mathematical finance  —   a field he believed he was in the process of 
inventing  —   and so he was curious to see what this frenchman had 
done. MIt’s mathematics library, despite its enormous holdings, did 
not have a copy of the obscure 1914 textbook. But Samuelson did find 
something else by Bachelier that piqued his interest: Bachelier’s disser-
tation, published under the title A Theory of Speculation. He checked 
it out of the library and brought it back to his office.

Bachelier was not, of course, the first person to take a mathematical 
interest in games of chance. that distinction goes to the Italian renais-
sance man Gerolamo cardano. Born in Milan around the turn of the 
sixteenth century, cardano was the most accomplished physician of 
his day, with popes and kings clamoring for his medical advice. He au-
thored hundreds of essays on topics ranging from medicine to math-
ematics to mysticism. But his real passion was gambling. He gambled 
constantly, on dice, cards, and chess  —   indeed, in his autobiography he 
admitted to passing years in which he gambled every day. Gambling 
during the Middle Ages and the renaissance was built around a rough 
notion of odds and payoffs, similar to how modern horseraces are 
constructed. If you were a bookie offering someone a bet, you might 
advertise odds in the form of a pair of numbers, such as “10 to 1” or “3 
to 2,” which would reflect how unlikely the thing you were betting on 
was. (odds of 10 to 1 would mean that if you bet 1 dollar, or pound, or 
guilder, and you won, you would receive 10 dollars, pounds, or guil-
ders in winnings, plus your original bet; if you lost, you would lose the 
dollar, etc.) But these numbers were based largely on a bookie’s gut 
feeling about how the bet would turn out. cardano believed there was 
a more rigorous way to understand betting, at least for some simple 
games. In the spirit of his times, he wanted to bring modern math-
ematics to bear on his favorite subject.
 In 1526, while still in his twenties, cardano wrote a book that out-
lined the first attempts at a systematic theory of probability. He focused 
on games involving dice. His basic insight was that, if one assumed a 
die was just as likely to land with one face showing as another, one 
could work out the precise likelihoods of all sorts of combinations oc-
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curring, essentially by counting. So, for instance, there are six possible 
outcomes of rolling a standard die; there is precisely one way in which 
to yield the number 5. So the mathematical odds of yielding a 5 are 1 
in 6 (corresponding to betting odds of 5 to 1). But what about yielding 
a sum of 10 if you roll two dice? there are 6 × 6 = 36 possible out-
comes, of which 3 correspond to a sum of 10. So the odds of yielding 
a sum of 10 are 3 in 36 (corresponding to betting odds of 33 to 3). the 
calculations seem elementary now, and even in the sixteenth century 
the results would have been unsurprising  —   anyone who spent enough 
time gambling developed an intuitive sense for the odds in dice games  
—   but cardano was the first person to give a mathematical account of 
why the odds were what everyone already knew them to be.
 cardano never published his book  —   after all, why give your best 
gambling tips away?  —   but the manuscript was found among his pa-
pers when he died and ultimately was published over a century after 
it was written, in 1663. By that time, others had made independent 
advances toward a full-fledged theory of probability. the most notable 
of these came at the behest of another gambler, a french writer who 
went by the name chevalier de Méré (an affectation, as he was not 
a nobleman). de Méré was interested in a number of questions, the 
most pressing of which concerned his strategy in a dice game he liked 
to play. the game involved throwing dice several times in a row. the 
player would bet on how the rolls would come out. for instance, you 
might bet that if you rolled a single die four times, you would get a 6 
at least one of those times. the received wisdom had it that this was 
an even bet, that the game came down to pure luck. But de Méré had 
an instinct that if you bet that a 6 would get rolled, and you made this 
bet every time you played the game, over time you would tend to win 
slightly more often than you lost. this was the basis for de Méré’s gam-
bling strategy, and it had made him a considerable amount of money. 
However, de Méré also had a second strategy that he thought should 
be just as good, but for some reason had only given him grief. this 
second strategy was to always bet that a double 6 would get rolled at 
least once, if you rolled two dice twenty-four times. But this strategy 
didn’t seem to work, and de Méré wanted to know why.
 As a writer, de Méré was a regular at the Paris salons, fashionable 



meetings of the french intelligentsia that fell somewhere between 
cocktail parties and academic conferences. the salons drew educated 
Parisians of all stripes, including mathematicians. And so, de Méré 
began to ask the mathematicians he met socially about his problem. 
no one had an answer, or much interest in looking for one, until de 
Méré tried his problem out on Blaise Pascal. Pascal had been a child 
prodigy, working out most of classical geometry on his own by draw-
ing pictures as a child. By his late teens he was a regular at the most 
important salon, run by a Jesuit priest named Marin Mersenne, and it 
was here that de Méré and Pascal met. Pascal didn’t know the answer, 
but he was intrigued. In particular, he agreed with de Méré’s appraisal 
that the problem should have a mathematical solution.
 Pascal began to work on de Méré’s problem. He enlisted the help of 
another mathematician, Pierre de fermat. fermat was a lawyer and 
polymath, fluent in a half-dozen languages and one of the most capa-
ble mathematicians of his day. fermat lived about four hundred miles 
south of Paris, in toulouse, and so Pascal didn’t know him directly, 
but he had heard of him through his connections at Mersenne’s salon. 
over the course of the year 1654, in a long series of letters, Pascal and 
fermat worked out a solution to de Méré’s problem. Along the way, 
they established the foundations of the modern theory of probability.
 one of the things that Pascal and fermat’s correspondence pro-
duced was a way of precisely calculating the odds of winning dice bets 
of the sort that gave de Méré trouble. (cardano’s system also accounted 
for this kind of dice game, but no one knew about it when de Méré 
became interested in these questions.) they were able to show that de 
Méré’s first strategy was good because the chance that you would roll 
a 6 if you rolled a die four times was slightly better than 50%  —   more 
like 51.7747%. de Méré’s second strategy, though, wasn’t so great be-
cause the chance that you would roll a pair of 6s if you rolled two dice 
twenty-four times was only about 49.14%, less than 50%. this meant 
that the second strategy was slightly less likely to win than to lose, 
whereas de Méré’s first strategy was slightly more likely to win. de 
Méré was thrilled to incorporate the insights of the two great math-
ematicians, and from then on he stuck with his first strategy.
 the interpretation of Pascal and fermat’s argument was obvious, 
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at least from de Méré’s perspective. But what do these numbers really 
mean? Most people have a good intuitive idea of what it means for 
an event to have a given probability, but there’s actually a deep philo-
sophical question at stake. Suppose I say that the odds of getting heads 
when I flip a coin are 50%. roughly, this means that if I flip a coin over 
and over again, I will get heads about half the time. But it doesn’t mean 
I am guaranteed to get heads exactly half the time. If I flip a coin 100 
times, I might get heads 51 times, or 75 times, or all 100 times. Any 
number of heads is possible. So why should de Méré have paid any at-
tention to Pascal and fermat’s calculations? they didn’t guarantee that 
even his first strategy would be successful; de Méré could go the rest 
of his life betting that a 6 would show up every time someone rolled 
a die four times in a row and never win again, despite the probability 
calculation. this might sound outlandish, but nothing in the theory of 
probability (or physics) rules it out.
 So what do probabilities tell us, if they don’t guarantee anything 
about how often something is going to happen? If de Méré had thought 
to ask this question, he would have had to wait a long time for an an-
swer. Half a century, in fact. the first person who figured out how to 
think about the relationship between probabilities and the frequency 
of events was a Swiss mathematician named Jacob Bernoulli, shortly 
before his death in 1705. What Bernoulli showed was that if the prob-
ability of getting heads is 50%, then the probability that the percentage 
of heads you actually got would differ from 50% by any given amount 
got smaller and smaller the more times you flipped the coin. You were 
more likely to get 50% heads if you flipped the coin 100 times than if 
you flipped it just twice. there’s something fishy about this answer, 
though, since it uses ideas from probability to say what probabilities 
mean. If this seems confusing, it turns out you can do a little better. 
Bernoulli didn’t realize this (in fact, it wasn’t fully worked out until the 
twentieth century), but it is possible to prove that if the chance of get-
ting heads when you flip a coin is 50%, and you flip a coin an infinite 
number of times, then it is (essentially) certain that half of the times 
will be heads. or, for de Méré’s strategy, if he played his dice game 
an infinite number of times, betting on 6 in every game, he would 
be essentially guaranteed to win 51.7477% of the games. this result 



is known as the law of large numbers. It underwrites one of the most 
important interpretations of probability.
 Pascal was never much of a gambler himself, and so it is ironic that 
one of his principal mathematical contributions was in this arena. 
More ironic still is that one of the things he’s most famous for is a 
bet that bears his name. At the end of 1654, Pascal had a mystical ex-
perience that changed his life. He stopped working on mathematics 
and devoted himself entirely to Jansenism, a controversial christian 
movement prominent in france in the seventeenth century. He began 
to write extensively on theological matters. Pascal’s Wager, as it is now 
called, first appeared in a note among his religious writings. He argued 
that you could think of the choice of whether to believe in God as a 
kind of gamble: either the christian God exists or he doesn’t, and a 
person’s beliefs amount to a bet one way or the other. But before tak-
ing any bet, you want to know what the odds are and what happens if 
you win versus what happens if you lose. As Pascal reasoned, if you 
bet that God exists and you live your life accordingly, and you’re right, 
you spend eternity in paradise. If you’re wrong, you just die and noth-
ing happens. So, too, if you bet against God and you win. But if you 
bet against God and you lose, you are damned to perdition. When he 
thought about it this way, Pascal decided the decision was an easy one. 
the downside of atheism was just too scary.

despite his fascination with chance, Louis Bachelier never had much 
luck in life. His work included seminal contributions to physics, fi-
nance, and mathematics, and yet he never made it past the fringes of 
academic respectability. every time a bit of good fortune came his way 
it would slip from his fingers at the last moment. Born in 1870 in Le 
Havre, a bustling port town in the northwest of france, young Louis 
was a promising student. He excelled at mathematics in lycée (basi-
cally, high school) and then earned his baccalauréat ès sciences  —   the 
equivalent of A-levels in Britain or a modern-day AP curriculum in the 
United States  —   in october 1888. He had a strong enough record that 
he could likely have attended one of france’s selective grandes écoles, 
the french Ivy League, elite universities that served as prerequisites for 
life as a civil servant or intellectual. He came from a middle-class mer-
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chant family, populated by amateur scholars and artists. Attending a 
grande école would have opened intellectual and professional doors for 
Bachelier that had not been available to his parents or grandparents.
 But before Bachelier could even apply, both of his parents died. He 
was left with an unmarried older sister and a three-year-old brother to 
care for. for two years, Bachelier ran the family wine business, until 
he was drafted into military service in 1891. It was not until he was re-
leased from the military, a year later, that Bachelier was able to return 
to his studies. By the time he returned to academia, now in his early 
twenties and with no family back home to support him, his options 
were limited. too old to attend a grande école, he enrolled at the Uni-
versity of Paris, a far less prestigious choice.
 Still, some of the most brilliant minds in Paris served as faculty at 
the university  —   it was one of the few universities in france where fac-
ulty could devote themselves to research, rather than teaching  —   and 
it was certainly possible to earn a first-rate education in the halls of the 
Sorbonne. Bachelier quickly distinguished himself among his peers. 
His marks were not the best at the university, but the small handful of 
students who bested him, classmates like Paul Langevin and Alfred-
Marie Liénard, are now at least as famous as Bachelier himself, among 
mathematicians anyway. It was good company to be in. After finishing 
his undergraduate degree, Bachelier stayed at the University of Paris 
for his doctorate. His work attracted the attention of the best minds 
of the day, and he began to work on a dissertation  —   the one Samuel-
son later discovered, on speculation in financial markets  —   with Henri 
Poincaré, perhaps the most famous mathematician and physicist in 
france at the time.
 Poincaré was an ideal person to mentor Bachelier. He had made 
substantial contributions to every field he had come in contact with, 
including pure mathematics, astronomy, physics, and engineering. Al-
though he did attend a grande école as an undergraduate, like Bachelier 
he had done his graduate work at the University of Paris. He also had 
experience working outside of academia, as a mine inspector. Indeed, 
for most of his life he continued to work as a professional mining en-
gineer, ultimately becoming the chief engineer of the french corps de 
Mines, and so he was able to fully appreciate the importance of work-



ing on applied mathematics, even in areas so unusual (for the time) as 
finance. It would have been virtually impossible for Bachelier to pro-
duce his dissertation without a supervisor who was as wide-ranging 
and ecumenical as Poincaré. And more, Poincaré’s enormous success 
had made him a cultural and political figure in france, someone who 
could serve as a highly influential advocate for a student whose re-
search was difficult to situate in the then-current academic world.
 And so it was that Bachelier wrote his thesis, finishing in 1900. 
the basic idea was that probability theory, the area of mathematics 
invented by cardano, Pascal, and fermat in the sixteenth and seven-
teenth centuries, could be used to understand financial markets. In 
other words, one could imagine a market as an enormous game of 
chance. of course, it is now commonplace to compare stock markets 
to casinos, but this is only testament to the power of Bachelier’s idea.
 By any intellectual standard, Bachelier’s thesis was an enormous 
success  —   and it seems that, despite what happened next, Bachelier 
knew as much. Professionally, however, it was a disaster. the problem 
was the audience. Bachelier was at the leading edge of a coming revolu-
tion  —   after all, he had just invented mathematical finance  —  with the 
sad consequence that none of his contemporaries were in a position 
to properly appreciate what he had done. Instead of a community of 
like-minded scholars, Bachelier was evaluated by mathematicians and 
mathematically oriented physicists. In later times, even these groups 
might have been sympathetic to Bachelier’s project. But in 1900, con-
tinental mathematics was deeply inward-looking. the general percep-
tion among mathematicians was that mathematics was just emerging 
from a crisis that had begun to take shape around 1860. during this pe-
riod many well-known theorems were shown to contain errors, which 
led mathematicians to fret that the foundation of their discipline was 
crumbling. At issue, in particular, was the question of whether suitably 
rigorous methods could be identified, so as to be sure that the new 
results flooding academic journals were not themselves as flawed as 
the old. this rampant search for rigor and formality had poisoned the 
mathematical well so that applied mathematics, even mathematical 
physics, was looked at askance by mainstream mathematicians. the 
idea of bringing mathematics into a new field, and worse, of using in-

10 • t h e  p h y s i c s  o f  wa l l  s t r e e t



Primordial Seeds • 11

tuitions from finance to drive the development of new mathematics, 
was abhorrent and terrifying.
 Poincaré’s influence was enough to shepherd Bachelier through 
his thesis defense, but even he was forced to conclude that Bachelier’s 
essay fell too far from the mainstream of french mathematics to be 
awarded the highest distinction. Bachelier’s dissertation received a 
grade of honorable, and not the better très honorable. the commit-
tee’s report, written by Poincaré, reflected Poincaré’s deep appreciation 
of Bachelier’s work, both for the new mathematics and for its deep 
insights into the workings of financial markets. But it was impossible 
to grant the highest grade to a mathematics dissertation that, by the 
standards of the day, was not on a topic in mathematics. And with-
out a grade of très honorable on his dissertation, Bachelier’s prospects 
as a professional mathematician vanished. With Poincaré’s continued 
support, Bachelier remained in Paris. He received a handful of small 
grants from the University of Paris and from independent foundations 
to pay for his modest lifestyle. Beginning in 1909, he was permitted to 
lecture at the University of Paris, but without drawing a salary.
 the cruelest reversal of all came in 1914. early that year, the council 
of the University of Paris authorized the dean of the faculty of Science 
to create a permanent position for Bachelier. At long last, the career he 
had always dreamed of was within reach. But before the position could 
be finalized, fate threw Bachelier back down. In August of that year, 
Germany marched through Belgium and invaded france. In response, 
france mobilized for war. on the ninth of September, the forty-four-
year-old mathematician who had revolutionized finance without any-
one noticing was drafted into the french army.

Imagine the sun shining through a window in a dusty attic. If you 
focus your eyes in the right way, you can see minute dust particles 
dancing in the column of light. they seem suspended in the air. If you 
watch carefully, you can see them occasionally twitching and changing 
directions, drifting upward as often as down. If you were able to look 
closely enough, with a microscope, say, you would be able to see that 
the particles were constantly jittering. this seemingly random mo-
tion, according to the roman poet titus Lucretius (writing in about 



60 b.c.), shows that there must be tiny, invisible particles — he called 
them “primordial bits”  —  buffeting the specks of dust from all direc-
tions and pushing them first in one direction and then another.
 two thousand years later, Albert einstein made a similar argument 
in favor of the existence of atoms. only he did Lucretius one better: he 
developed a mathematical framework that allowed him to precisely 
describe the trajectories a particle would take if its twitches and jit-
ters were really caused by collisions with still-smaller particles. over 
the course of the next six years, french physicist Jean-Baptiste Perrin 
developed an experimental method to track particles suspended in a 
fluid with enough precision to show that they indeed followed paths 
of the sort einstein predicted. these experiments were enough to per-
suade the remaining skeptics that atoms did indeed exist. Lucretius’s 
contribution, meanwhile, went largely unappreciated.
 the kind of paths that einstein was interested in are examples of 
Brownian motion, named after Scottish botanist robert Brown, who 
noted the random movement of pollen grains suspended in water in 
1826. the mathematical treatment of Brownian motion is often called 
a random walk  —  or sometimes, more evocatively, a drunkard’s walk. 
Imagine a man coming out of a bar in cancun, an open bottle of sun-
screen dribbling from his back pocket. He walks forward for a few 
steps, and then there’s a good chance that he will stumble in one di-
rection or another. He steadies himself, takes another step, and then 
stumbles once again. the direction in which the man stumbles is basi-
cally random, at least insofar as it has nothing to do with his purported 
destination. If the man stumbles often enough, the path traced by the 
sunscreen dripping on the ground as he weaves his way back to his 
hotel (or just as likely in another direction entirely) will look like the 
path of a dust particle floating in the sunlight.
 In the physics and chemistry communities, einstein gets all the 
credit for explaining Brownian motion mathematically, because it was 
his 1905 paper that caught Perrin’s eye. But in fact, einstein was five 
years too late. Bachelier had already described the mathematics of ran-
dom walks in 1900, in his dissertation. Unlike einstein, Bachelier had 
little interest in the random motion of dust particles as they bumped 
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into atoms. Bachelier was interested in the random movements of 
stock prices.
 Imagine that the drunkard from cancun is now back at his hotel. 
He gets out of the elevator and is faced with a long hallway, stretching 
off to both his left and his right. At one end of the hallway is room 700; 
at the other end is room 799. He is somewhere in the middle, but he 
has no idea which way to go to get to his room. He stumbles to and fro, 
half the time moving one way down the hall, and half the time moving 
in the opposite direction. Here’s the question that the mathematical 
theory of random walks allows you to answer: Suppose that with each 
step the drunkard takes, there is a 50% chance that that step will take 
him a little further toward room 700, at one end of the long hallway, 
and a 50% chance that it will take him a little further toward room 799, 
at the other end. What is the probability that, after one hundred steps, 
say, or a thousand steps, he is standing in front of a given room?
 to see how this kind of mathematics can be helpful in understand-
ing financial markets, you just have to see that a stock price is a lot like 
our man in cancun. At any instant, there is a chance that the price will 
go up, and a chance that the price will go down. these two possibilities 
are directly analogous to the drunkard stumbling toward room 700, or 
toward room 799, working his way up or down the hallway. And so, 
the question that mathematics can answer in this case is the following: 
If the stock begins at a certain price, and it undergoes a random walk, 
what is the probability that the price will be a particular value after 
some fixed period of time? In other words, which door will the price 
have stumbled to after one hundred, or one thousand, ticks?
 this is the question Bachelier answered in his thesis. He showed 
that if a stock price undergoes a random walk, the probability of its 
taking any given value after a certain period of time is given by a curve 
known as a normal distribution, or a bell curve. As its name suggests, 
this curve looks like a bell, rounded at the top and widening at the 
bottom. the tallest part of this curve is centered at the starting price, 
which means that the most likely scenario is that the price will be 
somewhere near where it began. farther out from this center peak, 
the curve drops off quickly, indicating that large changes in price are 



less likely. As the stock price takes more steps on the random walk, 
however, the curve progressively widens and becomes less tall overall, 
indicating that over time, the chances that the stock will vary from its 
initial value increase. A picture is priceless here, so look at figure 1 to 
see how this works.
thinking of stock movements in terms of random walks is astound-
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figure 1: Bachelier discovered that if the price of a stock undergoes a random walk, 
the probability that the price will take a particular value in the future can be calculated 
from a curve known as a normal distribution. these plots show how that works for a 
stock whose price is $100 now. Plot (a) is an example of a normal distribution, calcu-
lated for a particular time in the future, say, five years from now. the probability that, 
in five years, the price of the stock will be somewhere in a given range is given by the 
area underneath the curve  —  so, for instance, the area of the shaded region in plot (b) 
corresponds to the probability that the stock will be worth somewhere between $60 
and $70 in five years. the shape of the plot depends on how long into the future you 
are thinking about projecting. In plot (c), the dotted line would be the plot for a year 
from now, the dashed line for three years, and the solid line for five years from now. 
You’ll notice that the plots get shorter and fatter over time. this means that the prob-
ability that the stock will have a price very far from its initial price of $100 gets larger, 
as can be seen in plot (d). notice that the area of the shaded region under the solid line, 
corresponding to the probability that the price of the stock will be between $60 and 
$70 five years from now, is much larger than the area of the shaded region below the 
dotted line, which corresponds to just one year from now. 



Primordial Seeds • 15

ingly modern, and it seems Bachelier was essentially unprecedented 
in conceiving of the market in this way. And yet on some level, the 
idea seems crazy (perhaps explaining why no one else entertained it). 
Sure, you might say, I believe the mathematics. If stock prices move 
randomly, then the theory of random walks is well and good. But why 
would you ever assume that markets move randomly? Prices go up on 
good news; they go down on bad news. there’s nothing random about 
it. Bachelier’s basic assumption, that the likelihood of the price tick-
ing up at a given instant is always equal to the likelihood of its ticking 
down, is pure bunk.
 this thought was not lost on Bachelier. As someone intimately fa-
miliar with the workings of the Paris exchange, Bachelier knew just 
how strong an effect information could have on the prices of securi-
ties. And looking backward from any instant in time, it is easy to point 
to good news or bad news and use it to explain how the market moves. 
But Bachelier was interested in understanding the probabilities of fu-
ture prices, where you don’t know what the news is going to be. Some 
future news might be predictable based on things that are already 
known. After all, gamblers are very good at setting odds on things like 
sports events and political elections  —  these can be thought of as pre-
dictions of the likelihoods of various outcomes to these chancy events. 
But how does this predictability factor into market behavior? Bach-
elier reasoned that any predictable events would already be reflected 
in the current price of a stock or bond. In other words, if you had 
reason to think that something would happen in the future that would 
ultimately make a share of Microsoft worth more  —  say, that Microsoft 
would invent a new kind of computer, or would win a major lawsuit  
—  you should be willing to pay more for that Microsoft stock now than 
someone who didn’t think good things would happen to Microsoft, 
since you have reason to expect the stock to go up. Information that 
makes positive future events seem likely pushes prices up now; infor-
mation that makes negative future events seem likely pushes prices 
down now.
 But if this reasoning is right, Bachelier argued, then stock prices 
must be random. think of what happens when a trade is executed at a 
given price. this is where the rubber hits the road for a market. A trade 



means that two people — a buyer and a seller — were able to agree on 
a price. Both buyer and seller have looked at the available information 
and have decided how much they think the stock is worth to them, but 
with an important caveat: the buyer, at least according to Bachelier’s 
logic, is buying the stock at that price because he or she thinks that in 
the future the price is likely to go up. the seller, meanwhile, is selling at 
that price because he or she thinks the price is more likely to go down. 
taking this argument one step further, if you have a market consisting 
of many informed investors who are constantly agreeing on the prices 
at which trades should occur, the current price of a stock can be in-
terpreted as the price that takes into account all possible information. 
It is the price at which there are just as many informed people willing 
to bet that the price will go up as are willing to bet that the price will 
go down. In other words, at any moment, the current price is the price 
at which all available information suggests that the probability of the 
stock ticking up and the probability of the stock ticking down are both 
50%. If markets work the way Bachelier argued they must, then the 
random walk hypothesis isn’t crazy at all. It’s a necessary part of what 
makes markets run.
 this way of looking at markets is now known as the efficient market 
hypothesis. the basic idea is that market prices always reflect the true 
value of the thing being traded, because they incorporate all available 
information. Bachelier was the first to suggest it, but, as was true of 
many of his deepest insights into financial markets, few of his readers 
noted its importance. the efficient market hypothesis was later redis-
covered, to great fanfare, by University of chicago economist eugene 
fama, in 1965. nowadays, of course, the hypothesis is highly contro-
versial. Some economists, particularly members of the so-called chi-
cago School, cling to it as an essential and irrefutable truth. But you 
don’t have to think too hard to realize it’s a little fishy. for instance, 
one consequence of the hypothesis is that there can’t be any specu-
lative bubbles, because a bubble can occur only if the market price 
for something becomes unmoored from the thing’s actual value. Any-
one who remembers the dot-com boom and bust in the late nineties/
early 2000s, or anyone who has tried to sell a house since about 2006, 
knows that prices don’t behave as rationally as the chicago School 
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would have us believe. Indeed, most of the day-to-day traders I’ve spo-
ken with find the idea laughable.
 But even if markets aren’t always efficient, as they surely aren’t, and 
even if sometimes prices get quite far out of whack with the values 
of the goods being traded, as they surely do, the efficient market hy-
pothesis offers a foothold for anyone trying to figure out how mar-
kets work. It’s an assumption, an idealization. A good analogy is high 
school physics, which often takes place in a world with no friction 
and no gravity. of course, there’s no such world. But a few simplifying 
assumptions can go a long way toward making an otherwise intrac-
table problem solvable  —  and once you solve the simplified problem, 
you can begin to ask how much damage your simplifying assumptions 
do. If you want to understand what happens when two hockey pucks 
bump into each other on an ice rink, assuming there’s no friction won’t 
get you into too much trouble. on the other hand, assuming there’s no 
friction when you fall off a bicycle could lead to some nasty scrapes. 
the situation is the same when you try to model financial markets: 
Bachelier begins by assuming something like the efficient market hy-
pothesis, and he makes amazing headway. the next step, which Bach-
elier left to later generations of people trying to understand finance, 
is to figure out when the assumption of market efficiency fails, and to 
come up with new ways to understand the market when it does.

It seems that Samuelson was the only recipient of Savage’s postcards 
who ever bothered to look Bachelier up. But Samuelson was impressed 
enough, and influential enough, to spread what he found. Bachelier’s 
writings on speculation became required reading among Samuelson’s 
students at MIt, who, in turn, took Bachelier to the far corners of the 
world. Bachelier was officially canonized in 1964, when Paul cootner, 
a colleague of Samuelson’s at MIt, included an english translation of 
Bachelier’s thesis as the first essay in an edited volume called The Ran-
dom Character of Stock Market Prices. By the time cootner’s collection 
was published, the random walk hypothesis had been ventured inde-
pendently and improved upon by a number of people, but cootner 
was unambiguous in assigning full credit for the idea to Bachelier. In 
cootner’s words, “So outstanding is [Bachelier’s] work that we can say 



that the study of speculative prices has its moment of glory at its mo-
ment of conception.”
 In many ways, Samuelson was the ideal person to discover Bach-
elier and to effectively spread his ideas. Samuelson proved to be one 
of the most influential economists of the twentieth century. He won 
the second nobel Prize in economics, in 1970, for “raising the level of 
analysis in economic science,” the prize committee’s code for “turning 
economics into a mathematical discipline.” Indeed, although he stud-
ied economics both as an undergraduate at the University of chicago 
and as a graduate student at Harvard, he was deeply influenced by a 
mathematical physicist and statistician named e. B. Wilson. Samuel-
son met Wilson while still a graduate student. At the time, Wilson was 
a professor of “vital statistics” at the Harvard School of Public Health, 
but he had spent the first twenty years of his career as a physicist and 
engineer at MIt. Wilson had been the last student of J. W. Gibbs, the 
first great American mathematical physicist  —  indeed, the first recipi-
ent of an American Phd in engineering, in 1863 from Yale. Gibbs is 
most famous for having helped lay the foundations of thermodynam-
ics and statistical mechanics, which attempt to explain the behavior 
of ordinary objects like tubs of water and car engines in terms of their 
microscopic parts.
 through Wilson, Samuelson became a disciple of the Gibbsian tra-
dition. His dissertation, which he wrote in 1940, was an attempt to 
rewrite economics in the language of mathematics, borrowing exten-
sively from Gibbs’s ideas about statistical thermodynamics. one of the 
central aims of thermodynamics is to offer a description of how the 
behavior of particles, the small constituents of ordinary matter, can be 
aggregated to describe larger-scale objects. A major part of this analy-
sis is identifying variables like temperature or pressure that don’t make 
sense with regard to individual particles but can nonetheless be used 
to characterize their collective behavior. Samuelson pointed out that 
economics can be thought of in essentially the same way: an economy 
is built out of people going around making ordinary economic deci-
sions. the trick to understanding large-scale economics  —  macroeco-
nomics  —  is to try to identify variables that characterize the economy 
as a whole  —  the inflation rate, for instance  —  and then work out the 
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relationship of these variables to the individuals who make up the 
economy. In 1947, Samuelson published a book based on his disserta-
tion at Harvard, called Foundations of Economic Analysis.
 Samuelson’s book was groundbreaking in a way that Bachelier’s the-
sis never could have been. When Bachelier was studying, economics 
was only barely a professional discipline. In the nineteenth century, it 
was basically a subfield of political philosophy. numbers played little 
role until the 1880s, and even then they entered only because some 
philosophers became interested in measuring the world’s economies 
to better compare them. When Bachelier wrote his thesis, there was es-
sentially no field of economics to revolutionize  —  and of the few econ-
omists there were, virtually none would have been able to understand 
and appreciate the mathematics Bachelier used.
 over the next forty years, economics matured as a science. early 
attempts to measure economic quantities gave way to more sophisti-
cated tools for relating different economic quantities to one another  
—  in part because of the work of Irving fisher, the first American 
economist and another student of Gibbs’s at Yale. for the first decades 
of the twentieth century, research in economics was sporadic, with 
some mild support from european governments during World War I, 
as the needs of war pushed governments to try to enact policies that 
would increase production. But the discipline fully came into its own 
only during the early 1930s, with the onset of the depression. Political 
leaders across europe and the United States came to believe that some-
thing had gone terribly wrong with the world’s economy and sought 
expert advice on how to fix it. Suddenly, funding for research spiked, 
leading to a large number of university and government positions. 
Samuelson arrived at Harvard on the crest of this new wave of inter-
est, and when his book was published, there was a large community 
of researchers who were at least partially equipped to understand its 
significance. Samuelson’s book and a subsequent textbook, which has 
since gone on to become the best-selling economics book of all time, 
helped others to appreciate what Bachelier had accomplished nearly 
half a century earlier.

In modern parlance, what Bachelier provided in his thesis was a model 



for how market prices change with time, what we would now call the 
random walk model. the term model made its way into economics 
during the 1930s, with the work of another physicist turned economist, 
Jan tinbergen. (Samuelson was the second nobelist in economics; 
tinbergen was the first.) the term was already being used in physics, 
to refer to something just shy of a full physical theory. A theory, at least 
as it is usually thought of in physics, is an attempt to completely and 
accurately describe some feature of the world. A model, meanwhile, is 
a kind of simplified picture of how a physical process or system works. 
this was more or less how tinbergen used the term in economics, too, 
although his models were designed specifically to devise ways of pre-
dicting relationships between economic variables, such as the relation-
ship between interest rates and inflation or between different wages 
at a single firm and the overall productivity of that firm. (tinbergen 
famously argued that a company would become less productive if the 
income of the highest-paid employee was more than five times the in-
come of the lowest-paid employee  —  a rule of thumb largely forgotten 
today.) Unlike in physics, where one often works with full-blown theo-
ries, mathematical economics deals almost exclusively with models.
 By the time the cootner book was published in 1964, the idea that 
market prices follow a random walk was well entrenched, and many 
economists recognized that Bachelier was responsible for it. But the 
random walk model wasn’t the punch line of Bachelier’s thesis. He 
thought of it as preliminary work in the service of his real goal, which 
was developing a model for pricing options. An option is a kind of 
derivative that gives the person who owns the option the right to buy 
(or sometimes sell) a specific security, such as a stock or bond, at a 
predetermined price (called the strike price), at some future time (the 
expiration date). When you buy an option, you don’t buy the underly-
ing stock directly. You buy the right to trade that stock at some point 
in the future, but at a price that you agree to in the present. So the price 
of an option should correspond to the value of the right to buy some-
thing at some time in the future.
 even in 1900, it was obvious to anyone interested in trading that 
the value of an option had to have something to do with the value of 
the underlying security, and it also had to have something to do with 
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the strike price. If a share of Google is trading at $100, and I have a 
contract that entitles me to buy a share of Google for $50, that option 
is worth at least $50 to me, since I can buy the share of Google at the 
discounted rate and then immediately sell it at a profit. conversely, if 
the option gives me the right to buy a share at $150, the option isn’t 
going to do me much good  —  unless, of course, Google’s stock price 
shoots up to above $150. But figuring out the precise relationship was a 
mystery. What should the right to do something in the future be worth 
now?
 Bachelier’s answer was built on the idea of a fair bet. A bet is consid-
ered fair, in probability theory, if the average outcome for both people 
involved in the bet is zero. this means that, on average, over many re-
peated bets, both players should break even. An unfair bet, meanwhile, 
is when one player is expected to lose money in the long run. Bachelier 
argued that an option is itself a kind of bet. the person selling the op-
tion is betting that between the time the option is sold and the time it 
expires, the price of the underlying security will fall beneath the strike 
price. If that happens, the seller wins the bet  —  that is, makes a profit 
on the option. the option buyer, meanwhile, is betting that at some 
point the price of the underlying security will exceed the strike price, 
in which case the buyer makes a profit, by exercising the option and 
immediately selling the underlying security. So how much should an 
option cost? Bachelier reasoned that a fair price for an option would 
be the price that would make it a fair bet.
 In general, to figure out whether a bet is fair, you need to know the 
probability of every given outcome, and you need to know how much 
you would gain (or lose) if that outcome occurred. How much you 
gain or lose is easy to work out, since it’s just the difference between 
the strike price on the option and the market price for the underly-
ing security. But with the random walk model in hand, Bachelier also 
knew how to calculate the probabilities that a given stock would ex-
ceed (or fail to exceed) the strike price in a given time window. Putting 
these two elements together, Bachelier showed just how to calculate 
the fair price of an option. Problem solved.
 there’s an important point to emphasize here. one often hears 
that markets are unpredictable because they are random. there is a 



sense in which this is right, and Bachelier knew it. Bachelier’s ran-
dom walk model indicates that you can’t predict whether a given stock 
is going to go up or down, or whether your portfolio will profit. But 
there’s another sense in which some features of markets are predictable 
precisely because they are random. It’s because markets are random 
that you can use Bachelier’s model to make probabilistic predictions, 
which, because of the law of large numbers  —  the mathematical result 
that Bernoulli discovered, linking probabilities with frequency  —  give 
you information about how markets will behave in the long run. this 
kind of prediction is useless for someone speculating on markets di-
rectly, because it doesn’t let the speculator pick which stocks will be 
the winners and which the losers. But that doesn’t mean that statisti-
cal predictions can’t help investors  —  just consider Bachelier’s options 
pricing model, where the assumption that markets for the underlying 
assets are random is the key to its effectiveness.
 that said, even a formula for pricing options isn’t a guaranteed trip 
to the bank. You still need a way to use the information that the for-
mula provides to guide investment decisions and gain an edge on the 
market. Bachelier offered no clear insight into how to incorporate his 
options pricing model in a trading strategy. this was one reason why 
Bachelier’s options pricing model got less attention than his random 
walk model, even after his thesis was rediscovered by economists. A 
second reason was that options remained relatively exotic for a long 
time after he wrote his dissertation, so that even when economists in 
the fifties and sixties became interested in the random walk model, 
the options pricing model seemed quaint and irrelevant. In the United 
States, for instance, most options trading was illegal for much of the 
twentieth century. this would change in the late 1960s and again in 
the early 1970s. In the hands of others, Bachelier-style options pricing 
schemes would lay the foundations of fortunes.

Bachelier survived World War I. He was released from the military 
on the last day of 1918. on his return to Paris, he discovered that his 
position at the University of Paris had been eliminated. But overall, 
things were better for Bachelier after the war. Many promising young 
mathematicians had perished in battle, opening up university posi-
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tions. Bachelier spent the first years after the war, from 1919 until 1927, 
as a visiting professor, first in Besançon, then in dijon, and finally in 
rennes. none of these were particularly prestigious universities, but 
they offered him paid teaching positions, which were extremely rare in 
france. finally, in 1927, Bachelier was appointed to a full professorship 
at Besançon, where he taught until he retired in 1937. He lived for nine 
years more, revising and republishing work that he had written earlier 
in his career. But he stopped doing original work. Between the time he 
became a professor and when he died, Bachelier published only one 
new paper.
 An event that occurred toward the end of Bachelier’s career, in 1926 
(the year before he finally earned his permanent position), cast a pall 
over his final years as a teacher and may explain why he stopped pub-
lishing. that year, Bachelier applied for a permanent position at dijon, 
where he had been teaching for several years. one of his colleagues, 
in reviewing his work, became confused by Bachelier’s notation. Be-
lieving he had found an error, he sent the document to Paul Lévy, a 
younger but more famous french probability theorist. Lévy, examin-
ing only the page on which the error purportedly appeared, confirmed 
the dijon mathematician’s suspicions. Bachelier was blacklisted from 
dijon. Later, he learned of Lévy’s part in the fiasco and became en-
raged. He circulated a letter claiming that Lévy had intentionally 
blocked his career without understanding his work. Bachelier earned 
his position at Besançon a year later, but the damage had been done 
and questions concerning the legitimacy of much of Bachelier’s work 
remained. Ironically, in 1941, Lévy read Bachelier’s final paper. the 
topic was Brownian motion, which Lévy was also working on. Lévy 
found the paper excellent. He corresponded with Bachelier, returned 
to Bachelier’s earlier work, and discovered that he, not Bachelier, had 
been wrong about the original point  —  Bachelier’s notation and infor-
mal style had made the paper difficult to follow, but it was essentially 
correct. Lévy wrote to Bachelier and they reconciled, probably some-
time in 1942.
 Bachelier’s work is referenced by a number of important math-
ematicians working in probability theory during the early twentieth 
century. But as the exchange with Lévy shows, many of the most in-



fluential people working in france during Bachelier’s lifetime, includ-
ing people who worked on topics quite close to Bachelier’s specialties, 
were either unaware of him or dismissed his work as unimportant or 
flawed. Given the importance that ideas like his have today, one is left 
to conclude that Bachelier was simply too far ahead of his time. Soon 
after his death, though, his ideas reappeared in the work of Samuelson 
and his students, but also in the work of others who, like Bachelier, 
had come to economics from other fields, such as the mathematician 
Benoît Mandelbrot and the astrophysicist M.f.M. osborne. change 
was afoot in both the academic and financial worlds that would bring 
these later prophets the kind of recognition that Bachelier never en-
joyed while he was alive.
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M aury osborne’s mother,  Amy osborne, was an avid 
gardener. She was also a practical woman. rather than buy 
commercial fertilizer, she would go out to the horse pas-

tures near her home, in norfolk, virginia, to collect manure and bring 
it back for her garden. And she didn’t approve of idleness. Whenever 
she caught one of her sons lazing about, she was quick to assign a job: 
paint the porch, cut the grass, dig a hole to mix up the soil. When 
osborne was young, he liked the jobs. Painting and hole-digging were 
fun enough, and other jobs, like cutting the grass, were unpleasant but 
better than sitting around doing nothing. Whenever he got bored, he 
would go to his mother and ask what he could do, and she would give 
him a job.
 one day, she pointed out that the ice truck had just passed. the 
truck was pulled by a horse, which meant that there would be nice big 
piles of manure on the road. “So you go and collect that horse manure 
and mix it up with the hose to make liquid manure and pour it on my 
chrysanthemums,” she told him. osborne didn’t much like this assign-
ment. It was the middle of the day and all of his friends were out and 
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about, and when they saw him they yelled out and teased him. red-
faced and fuming, he dutifully collected the manure in a big bucket, 
then went back to his house. He pulled out the hose, filled the bucket 
with water, and began to liquefy the manure. It was a gross, smelly job, 
and osborne was feeling irritated and embarrassed at having to do it 
in the first place. then all of a sudden, as he was stirring, the liquefied 
manure splashed out of the bucket and soaked him. It was a major 
turning point: there, covered in fresh horse manure, osborne decided 
that he would never ask anyone what to do again  —  he would figure 
out what he wanted to do and do that.
 As far as his scientific career went, osborne kept his pledge. He was 
initially trained as an astronomer, calculating things like the orbits of 
planets and comets. But he never felt constrained by academic bound-
aries. Shortly before the United States entered World War II, osborne 
left graduate school to work at the naval research Lab (nrL) on 
problems related to underwater sound and explosions. the work had 
very little to do with astronomical observation, but osborne thought 
it would be interesting. Indeed, before the war was over, he took up 
several different projects. In 1944, for example, he wrote a paper on 
the aerodynamics of insect wings. In the 1940s, entomologists had no 
idea why insects could fly. their bodies seemed to be too heavy for the 
amount of lift generated by flapping wings. Well, osborne had some 
time on his hands, and so, instead of asking the navy what he should 
do, he decided he’d spend his time solving the problem of insect flight. 
And he succeeded: he showed, for the first time, that if you took into 
account both the lift produced by insect wings and the drag on the 
wings, you could come up with a pretty good explanation for why in-
sects can fly and how they control their motion.
 After World War II, osborne went further still. He approached the 
head of the nrL’s Sound division, where he still worked, and told him 
that anyone working for the government could get their work done 
in two hours a day. Bold words for one’s boss, you might think. But 
osborne pressed further. He said that even two hours of work a day 
was more than he wanted to do for the government. He had a problem 
of his own that he wanted to work on. osborne made it clear that this 
new project had nothing at all to do with naval interests, but he said he 
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wanted to work on it anyway. And amazingly, his boss said, “Go right 
ahead.”
 osborne remained at the nrL for nearly thirty more years, but 
from that conversation on, he worked exclusively on his own projects. 
In most cases, these projects had little or no direct bearing on the navy, 
and yet the nrL continued to support him throughout his career. the 
work ran the gamut from foundational problems in general relativity 
and quantum mechanics to studies of deep ocean currents. But his 
most influential work, the work for which he is best known today, was 
on another topic entirely. In 1959, osborne published a paper entitled 
“Brownian Motion in the Stock Market.” though Bachelier had writ-
ten on this very subject sixty years earlier, his work was still essen-
tially unknown to physicists or financiers (aside from a few people in 
Samuelson’s circle). to readers of osborne’s paper, the suggestion that 
physics had something to say about finance was entirely novel. And it 
wasn’t long before people in academia and on Wall Street began to take 
notice.

Any way you look at it, Bachelier’s work was genius. As a physicist, he 
anticipated some of einstein’s most influential early work  —  work that 
would later be used to definitively prove the existence of atoms and 
usher in a new era in science and technology. As a mathematician, he 
developed probability theory and the theory of random processes to 
such a high level that it would take three decades for other mathemati-
cians to catch up. And as a mathematical analyst of financial markets, 
Bachelier was simply without peer. It is exceptionally rare in any field 
for someone to present so mature a theory with so little precedent. In 
a just world, Bachelier would be to finance what newton is to phys-
ics. But Bachelier’s life was a shambles, in large part because academia 
couldn’t countenance so original a thinker.
 Just a few short decades later, though, Maury osborne was thriv-
ing in a government-sponsored lab. He could work on anything he 
liked, in whatever style he liked, without facing any of the institutional 
resistance that plagued Bachelier throughout his career. Bachelier and 
osborne had much in common: both were incredibly creative; both 
had the originality to find questions that hadn’t occurred to previous 
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researchers and the technical skills to make them tractable. But when 
osborne happened on the same problem that Bachelier had addressed 
in his thesis  —  the problem of predicting stock prices  —  and proceeded 
to work out a remarkably similar solution, he did so in a completely 
different environment. “Brownian Motion in the Stock Market” was an 
unusual article. But in the United States in 1959, it was acceptable, even 
encouraged, for a physicist of osborne’s station to work on such prob-
lems. As osborne put it, “Physicists essentially could do no wrong.” 
Why had things changed?
 nylon. American women were first introduced to nylon at the 1939 
new York World’s fair, and they were smitten. A year later, on May 15, 
1940, when nylon stockings went on sale in new York, 780,000 pairs 
were sold on the first day, and 40 million pairs by the end of the week. 
At year’s end, du Pont, the company that invented and manufactured 
nylon, had sold 64 million pairs of nylon stockings in the United States 
alone. nylon was strong and lightweight. It tended to shed dirt and it 
was water resistant, unlike silk, which was the preferred material for 
hosiery before nylon hit the scene. Plus, it was much cheaper than 
either silk or wool. As the Philadelphia Record put it, nylon was “more 
revolutionary than [a] martian attack.”
 But nylon had revolutionary consequences far beyond women’s 
fashion or fetishists’ lounges. the initiative at du Pont that led to the 
invention of nylon  —  along with a handful of other research programs 
begun in the 1930s by companies such as Southern california edison, 
General electric, and Sperry Gyroscope company, and universities 
such as Stanford and Berkeley  —  quietly ushered in a new research 
culture in the United States.
 In the mid-1920s, du Pont was a decentralized organization, with 
a handful of largely independent departments, each of which had its 
own large research division. there was also a small central research 
unit, essentially a holdover from an earlier period in du Pont’s history, 
headed by a man named charles Stine. Stine faced a problem. With so 
many large, focused research groups at the company, each performing 
whatever services its respective department required, the need for an 
additional research body was shaky at best. If the central research unit 
was going to survive, never mind grow, Stine needed to articulate a 
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mission for it that would justify its existence. the solution he finally 
came upon and implemented in 1927 was the creation of an elite, fun-
damental research team within the central research unit. the idea was 
that many of du Pont’s industrial departments relied on a core of basic 
science. But the research teams in these departments were too focused 
on the immediate needs of their businesses to engage in fundamental 
research. Stine’s team would work on these orphaned scientific chal-
lenges over the long term, laying the foundation for future applied, 
industrial work. Stine landed a chemist from Harvard, named Wallace 
carothers, to head this new initiative.
 carothers and a team of young Phds spent the next three years 
exploring and exhaustively documenting the properties of various 
polymers  —  chemical compounds composed of many small, identical 
building blocks (called monomers) strung together like a chain. dur-
ing these early years, the work proceeded unfettered by commercial 
considerations. the central research unit at du Pont functioned as 
a pure, academic research laboratory. But then, in 1930, carothers’s 
team had two major breakthroughs. first, they discovered neoprene, 
a synthetic rubber. Later that same month, they discovered the world’s 
first fully synthetic fiber. Suddenly Stine’s fundamental research team 
had the potential to make real money for the company, fast. du Pont’s 
leadership took notice. Stine was promoted to the executive commit-
tee and a new man, elmer Bolton, was put in charge of the unit. Bolton 
had previously headed research in the organic chemistry department 
and, in contrast to Stine, he had much less patience for research with-
out clear applications. He quickly moved research on neoprene to his 
old department, which had considerable experience in rubber, and 
encouraged carothers’s team to focus on synthetic fibers. the initial 
fiber turned out to have some poor properties: it melted at low tem-
peratures and dissolved in water. But by 1934, under pressure from his 
new boss, carothers came up with a new idea for a polymer that he 
thought would be stable when spun into a fiber. five weeks later, one 
of his lab assistants produced the first nylon.
 over the next five years, du Pont embarked on a crash program to 
scale up production and commercialize the new fiber. nylon began life 
as an invention in a pure research lab (even though, under Bolton’s di-



rection, carothers was looking for such fibers). As such, it represented 
cutting-edge technology, based on the most advanced chemistry of the 
time. But it was not long before it was transformed into a commercially 
viable, industrially produced product. this process was essentially 
new: as much as nylon represented a major breakthrough in polymer 
chemistry, du Pont’s commercialization program was an equally im-
portant innovation in the industrialization of basic research. A few 
important features distinguished the process. first, it required close 
collaboration among the academic scientists in the central research 
unit, the industrial scientists in the various departments’ research di-
visions, and the chemical engineers responsible for building a new 
plant and actually producing the nylon. As the different teams came 
together to solve one problem after another, the traditional boundaries 
between basic and applied research, and between research and engi-
neering, broke down.
 Second, du Pont developed all of the stages of manufacturing of 
the polymer in parallel. that is, instead of waiting until the team fully 
understood the first stage of the process (say, the chemical reaction by 
which the polymer was actually produced) and only then moving on 
to the next step (say, developing a method for spinning the polymer 
into a fiber), teams worked on all of these problems at once, each team 
taking the others’ work as a “black box” that would produce a fixed 
output by some not-yet-known method. Working in this way further 
encouraged collaboration between different kinds of scientists and 
engineers because there was no way to distinguish an initial basic re-
search stage from later implementation and application stages. All of 
these occurred at once. finally, du Pont began by focusing on a single 
product: women’s hosiery. other uses of the new fiber, including linge-
rie and carpets, to name a few, were put off until later. this deepened 
everyone’s focus, at every level of the organization. By 1939, du Pont 
was ready to reveal the product; by 1940, the company could produce 
enough of it to sell.

the story of nylon shows how the scientific atmosphere at du Pont 
changed, first gradually and then rapidly as the 1930s came to a close, 
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to one in which pure and applied work were closely aligned and both 
were valued. But how did this affect osborne, who didn’t work at du 
Pont? By the time nylon reached shelves in the United States, europe 
was already engaged in a growing war effort  —  and the U.S. govern-
ment was beginning to realize that it might not be able to remain 
neutral. In 1939, einstein wrote a letter to roosevelt warning that the 
Germans were likely to develop a nuclear weapon, prompting roos-
evelt to launch a research initiative, in collaboration with the United 
Kingdom, on the military uses of uranium.
 After the Japanese attack on Pearl Harbor, on december 7, 1941, 
and Germany’s declaration of war on the United States four days later, 
work on nuclear weapons research accelerated rapidly. Work on ura-
nium continued, but in the meantime, a group of physicists working 
at Berkeley had isolated a new element  —  plutonium  —  that could also 
be used in nuclear weapons and that could, at least in principle, be 
mass produced more easily than uranium. early in 1942, nobel lau-
reate Arthur compton secretly convened a group of physicists at the 
University of chicago, working under the cover of the “Metallurgical 
Laboratory” (Met Lab), to study this new element and to determine 
how to incorporate it into a nuclear bomb.
 By August 1942, the Met Lab had produced a few milligrams of 
plutonium. the next month, the Manhattan Project began in earnest: 
General Leslie Groves of the Army corps of engineers was assigned 
command of the nuclear weapons project; Groves promptly made 
Berkeley physicist J. robert oppenheimer, who had been a central 
part of the Met Lab’s most important calculations, head of the effort. 
the Manhattan Project was the single largest scientific endeavor ever 
embarked on: at its height, it employed 130,000 people, and it cost a 
total of $2 billion (about $22 billion in today’s dollars). the country’s 
entire physics community rapidly mobilized for war, with research 
departments at most major universities taking part in some way, and 
with many physicists relocating to the new secret research facility at 
Los Alamos.
 Groves had a lot on his plate. But one of the very biggest problems 
involved scaling up production of plutonium from the few milligrams 



the Met Lab had produced to a level sufficient for the mass production 
of bombs. It is difficult to overstate the magnitude of this challenge. 
Ultimately, sixty thousand people, nearly half of the total staff working 
on the Manhattan Project, would be devoted to plutonium produc-
tion. When Groves took over in September 1942, the Stone and Web-
ster engineering corporation had already been contracted to build a 
large-scale plutonium enrichment plant in Hanford, Washington, but 
compton, who still ran the Met Lab, didn’t think Stone and Webster 
was up to the task. compton voiced his concern, and Groves agreed 
that Stone and Webster didn’t have the right kind of experience for 
the job. But then, where could you find a company capable of taking a 
few milligrams of a brand-new, cutting-edge material and building a 
production facility that could churn out tons of the stuff, fast?
 At the end of September 1942, Groves asked du Pont to join the 
project, advising Stone and Webster. two weeks later, du Pont agreed 
to do much more: it took full responsibility for the design, construc-
tion, and operation of the Hanford plant. the proposed strategy? do 
for plutonium precisely what du Pont had done for nylon. from the 
beginning, elmer Bolton, who had led the just-finished nylon project 
as head of the central research unit, and several of his closest associates 
took leadership roles in the plutonium project. And just like nylon, 
the industrialization of plutonium was an enormous success: in a little 
over two years, the nylon team ramped up production of plutonium a 
million-fold.
 Implementing the nylon strategy was not a simple task, nor was it 
perfectly smooth. to produce plutonium on a large scale, you need a 
full nuclear reactor, which, in 1942, had never been built (though plans 
were in the works). this meant that, even more than with nylon, new 
technology and basic science were essential to the development of the 
Hanford site, which in turn meant that the physicists at the Met Lab 
felt they had a stake in the project and took du Pont’s role to be “just” 
engineering. they believed that as nuclear scientists, they were work-
ing at the very pinnacle of human knowledge. As far as they were con-
cerned, industrial scientists and engineers were lesser beings. needless 
to say, they did not take well to the new chain of command.
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 the central problem was that the physicists significantly underes-
timated the role engineers would have to play in constructing the site. 
they argued that du Pont was putting up unnecessary barriers to re-
search by focusing on process and organization. Ironically, this prob-
lem was solved by giving the physicists more power over engineering: 
compton negotiated with du Pont to let the chicago physicists review 
and sign off on the du Pont engineers’ blueprints. But once the physi-
cists saw the sheer scale of the project and began to understand just 
how complex the engineering was going to be, many gained an ap-
preciation of the engineers’ role  —  and some even got interested in the 
more difficult problems.
 Soon, scientists and engineers were engaged in an active collabora-
tion. And just as the culture at du Pont had shifted during the nylon 
project  —  as the previously firm boundaries between science and engi-
neering began to crumble  —  the collaboration between physicists and 
engineers at the Hanford site quickly broke down old disciplinary bar-
riers. In building the plutonium facility, du Pont effectively exported 
its research culture to an influential group of theoretical and experi-
mental physicists whose pre- and postwar jobs were at universities, not 
in industry. And the shift in culture survived. After the war, physicists 
were accustomed to a different relationship between pure and applied 
work. It became perfectly acceptable for even top theoretical physicists 
to work on real-world problems. And equally important, for basic re-
search to be “interesting,” physicists needed to sell their colleagues on 
its possible applications.
 du Pont’s nylon project wasn’t the only place where a new research 
culture developed during the 1930s, and the Hanford site and Met Lab 
weren’t the only government labs at which physicists and engineers 
were brought into close contact during World War II. Similar changes 
took place, for similar reasons, at Los Alamos, the naval research 
Lab, the radiation labs at Berkeley and MIt, and in many other places 
around the country as the needs of industry, and then the military, 
forced a change in outlook among physicists. By the end of the war, the 
field had been transformed. no longer could the gentleman-scientist 
of the late nineteenth or early twentieth century labor under the illu-



sion that his work was above worldly considerations. Physics was now 
too big and too expensive. the wall between pure physics and applied 
physics had been demolished.

Born in 1916, osborne was exceptionally precocious. He finished 
high school at fifteen, but his parents wouldn’t let him attend college 
so young, so he spent a year in prep school  —  which he hated  —  be-
fore going on to the University of virginia to major in astrophysics. 
the intellectual independence and broad, innate curiosity that would 
later characterize his scientific career were apparent early on. After his 
first year of college, for instance, osborne decided he’d had enough of 
studying. So one day that summer, after finishing a job at the Mccor-
mick observatory in charlottesville, virginia, he decided to drop out 
of school. Instead of going back to UvA, he would spend some time 
doing physical labor. He told his parents his plan, and apparently they 
knew better than to try to talk him out of it, because they contacted 
a family friend with a farm in West virginia and osborne went there 
to work for the year. But he was sent home for christmas, followed 
shortly by a note from the farm’s owner saying that she had had quite 
enough of him. osborne spent the rest of the year pushing a wheelbar-
row around norfolk, helping the director of physical education for the 
norfolk school district regrade playgrounds. the year of hard labor 
convinced osborne that academic life wasn’t so bad after all. He re-
turned to UvA the following September.
 After college, osborne headed west to Berkeley for a graduate pro-
gram in astronomy. there he met and worked closely with luminar-
ies in the physics department, including oppenheimer. this is where 
osborne was when war broke out in europe in 1939. By the spring 
of 1941, many physicists, oppenheimer included, were beginning to 
think about the war effort, including the possible use of nuclear weap-
ons. osborne saw the writing on the wall. recognizing that he would 
likely be drafted, he attempted to enlist  —  but he was rejected because 
he wore thick glasses (early in the war effort, recruiters could afford 
to be picky). So he sent an application to the nrL, which offered him 
a job in its Sound division. He packed his bags and headed home to 
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virginia to work in a government lab at the moment the government 
was most prepared to support creative, interdisciplinary research.

osborne began “Brownian Motion in the Stock Market” with a thought 
experiment. “Let us imagine a statistician,” he wrote, “trained perhaps 
in astronomy and totally unfamiliar with finance, is handed a page of 
the Wall Street Journal containing the n.Y. Stock exchange transac-
tions for a given day.” osborne began thinking about the stock market 
around 1956, after his wife, doris (also an astronomer), had given birth 
to a second set of twins  —  the osbornes’ eighth and ninth children, re-
spectively. osborne decided he had better start thinking about financ-
ing the future. one can easily imagine osborne going down to the 
store and picking up a copy of the day’s Wall Street Journal. He would 
have brought it home, sat down at the kitchen table, and opened it to 
the pages that reported the previous day’s transactions. Here he would 
have found hundreds, perhaps thousands, of pieces of numerical data, 
in columns labeled with strange, undefined terms.
 the statistician trained in astronomy wouldn’t have known what the 
labels meant, or how to interpret the data, but that was fine. numerical 
data didn’t scare him. After all, he’d seen page after page of data record-
ing the nightly motions of the heavens. the difficulty was figuring out 
how the numbers related to each other, determining which numbers 
gave information about which other numbers, and seeing if he could 
make any predictions. He would, in effect, be building a model from 
a set of experimental data, which he’d done dozens of other times. So 
osborne would have adjusted his glasses, rolled up his sleeves, and 
dived right in. Lo and behold, he discovered some familiar patterns: 
the numbers corresponding to price behaved just like a collection 
of particles, moving randomly in a fluid. As far as osborne could 
tell, these numbers could have come from dust exhibiting Brownian 
motion.
 In many ways, osborne’s first, and most lasting, contribution to the 
theory of stock market behavior recapitulated Bachelier’s thesis. But 
there was a big difference. Bachelier argued that from moment to mo-
ment stock prices were as likely to go up by a certain small amount as 



to go down by that same amount. from this he determined that stock 
prices would have a normal distribution. But osborne dismissed this 
idea immediately. (Samuelson did, too  —  in fact, he called this aspect 
of Bachelier’s work absurd.) A simple way to test the hypothesis that 
the probabilities governing future stock prices are determined by a 
normal distribution would be to select a random collection of stocks 
and plot their prices. If Bachelier’s hypothesis were correct, one would 
expect the stock prices to form an approximate bell curve. But when 
osborne tried this, he discovered that prices don’t follow a normal dis-
tribution at all! In other words, if you looked at the data, Bachelier’s 
findings were ruled out right away. (to his credit, Bachelier did ex-
amine empirical data, but a certain unusual feature of the market for 
rentes  —  specifically, that their prices changed very slowly, and never 
by very much  —  made his model seem more effective than it actually 
was.)
 So what did osborne’s price distribution look like? It looked like a 
hump with a long tail on one side, but virtually no tail on the other side. 
this shape doesn’t look much like a bell, but it was familiar enough to 
osborne. It’s what you get, not if prices themselves are normally dis-
tributed, but if the rate of return is normally distributed. the rate of 
return on a stock can be thought of as the average percentage by which 
the price changes each instant. Suppose you took $200, deposited $100 
in a savings account, and used the other $100 to buy some stock. A 
year from now, you probably wouldn’t have the $200 (you might have 
more or less), because of interest accrued in the savings account, and 
because of changes in the price of the stock that you purchased. the 
rate of return on the stock can be thought of as the interest rate that 
your bank would have had to pay (or charge) to keep the balances in 
your two accounts equal. It is a way of capturing the change in the 
price of a stock relative to its initial price.
 the rate of return on a stock is related to the change in price by a 
mathematical operation known as a logarithm. for this reason, if rates 
of return are normally distributed, the probability distribution of stock 
prices should be given by something known as a log-normal distribu-
tion. (See figure 2 for what this looks like.) the log-normal distri-
bution was the funny-looking hump with a tail that osborne found 
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when he plotted actual stock prices. the upshot of this analysis was 
that it’s the rate of return that undergoes a random walk, and not the 
price. this observation corrects an immediate, damning problem with 
Bachelier’s model. If stock prices are normally distributed, with the 
width of the distribution determined by time, then Bachelier’s model 
predicts that after a sufficiently long period of time, there would al-
ways be a chance that any given stock’s price would become negative. 
But this is impossible: a stockholder cannot lose more than he or she 
initially invested. osborne’s model doesn’t have this problem. no mat-
ter how negative the rate of return on a stock becomes, the price itself 
never becomes negative  —  it just gets closer and closer to zero.

 osborne had another reason for believing that the rate of return, 
not the price itself, should undergo a random walk. He argued that 
investors don’t really care about the absolute movement of stocks. In-
stead, they care about the percentage change. Imagine that you have a 
stock that is worth $10, and it goes up by $1. You’ve just made 10%. now 
imagine the stock is worth $100. If it goes up by $1, you’re happy  —  but 
not as happy, since you’ve made only 1%, even though you’ve made a 
dollar in both cases. If the stock starts at $100, it has to go all the way 
up to $110 for an investor to be as pleased as if the $10 stock went up 

figure 2: osborne argued that rates of return, not prices, are normally distributed. 
Since price and rate of return are related by a logarithm, osborne’s model implies that 
prices should be log-normally distributed. these plots show what these two distribu-
tions look like at some time in the future, for a stock whose price is $10 now. Plot (a) is 
an example of a normal distribution over rates of return, and plot (b) is the associated 
log-normal distribution for the prices, given those probabilities for rates of return. 
note that on this model, rates of return can be negative, but prices never are.



to $11. And logarithms respect this relativized valuation: they have the 
nice property that the difference between log(10) and log(11) is equal 
to the difference between log(100) and log(110). In other words, the 
rate of return is the same for a stock that begins at $10 and goes up to 
$11 as for a stock that begins at $100 and goes up to $110. Statisticians 
would say that the logarithm of price has an “equal interval” property: 
the difference between the logarithms of two prices corresponds to the 
difference in psychological sensation of gain or loss corresponding to 
the two prices.
 You might notice that the argument in the last paragraph, which 
is just the argument osborne gave in “Brownian Motion in the Stock 
Market,” has a slightly surprising feature: it says that we should be in-
terested in the logarithms of prices because logarithms of prices better 
reflect how investors feel about their gains and losses. In other words, it’s 
not the objective value of the change in a stock price that matters, it’s 
how an investor reacts to the price change. In fact, osborne’s motiva-
tion for choosing logarithms of price as his primary variable was a 
psychological principle known as the Weber-fechner law. the Weber-
fechner law was developed by nineteenth-century psychologists ernst 
Weber and Gustav fechner to explain how subjects react to different 
physical stimuli. In a series of experiments, Weber asked blindfolded 
men to hold weights. He would gradually add more weight to the 
weights the men were already holding, and the men were supposed 
to say when they felt an increase. It turned out that if a subject started 
out holding a small weight  —  just a few grams  —  he could tell when a 
few more grams were added. But if the subject started out with a larger 
weight, a few more grams wouldn’t be noticed. It turned out that the 
smallest noticeable change was proportional to the starting weight. In 
other words, the psychological effect of a change in stimulus isn’t de-
termined by the absolute magnitude of the change, but rather by its 
change relative to the starting point.
 So, as osborne saw it, the fact that investors seem to care about 
percentage change rather than absolute change reflected a general 
psychological fact. More recently, people have criticized mathemati-
cal modeling of financial markets using methods from physics on the 
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grounds that the stock market is composed of people, not quarks or 
pulleys. Physics is fine for billiard balls and inclined planes, even for 
space travel and nuclear reactors, but as newton said, it cannot predict 
the madness of men. this kind of criticism draws heavily on ideas 
from a field known as behavioral economics, which attempts to under-
stand economics by drawing on psychology and sociology. from this 
point of view, markets are all about the foibles of human beings  —  they 
cannot be reduced to the formulas of physics and mathematics. for 
this reason alone, osborne’s argument is historically interesting, and 
I think telling. It shows that mathematical modeling of financial mar-
kets is not only consistent with thinking about markets in terms of the 
psychology of investors, but that the best mathematical models will 
be ones that, like osborne’s and unlike Bachelier’s, take psychology 
into account. of course, osborne’s psychology was primitive, even by 
the standards of 1959. (the Weber-fechner law was already a century 
old when osborne applied it, and much subsequent research had been 
conducted on how human subjects register change.) Modern econom-
ics can draw on far more sophisticated theories of psychology than the 
Weber-fechner law, and later in the book we will see some examples 
where it has. But bringing in new insights from psychology and related 
fields only strengthens our ability to use mathematics to reliably model 
financial markets, by guiding us to make more realistic assumptions 
and by helping us identify situations where the current crop of models 
might be expected to fail.

osborne was accustomed to working with the very finest physicists of 
his day, and he could not be cowed by authority. If he worked out the 
solution to a problem, or if he believed he understood something, he 
argued his case forcefully. In early 1946, for instance, osborne became 
interested in relativity theory. to learn as much about the theory as 
he could, he picked up a book by einstein, The Meaning of Relativity, 
in which einstein offered an argument about how much dark matter 
could exist in the universe. dark matter  —  literally, stuff in the uni-
verse that doesn’t seem to emit or reflect light, which means that we 
can’t see it directly  —  was first discovered in the 1930s, by its effects on 
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the rotation of galaxies. devotees of popular physics know that today, 
dark matter is one of the most puzzling mysteries in all of cosmol-
ogy. observations of other galaxies suggest that the vast majority of 
the matter in the universe is unobservable, something that is not ex-
plained by any of our best physical theories.
 einstein proposed a simple way of figuring out the lower bound for 
the total amount of dark matter in the universe. He argued that the 
density of dark matter in the universe as a whole was at least as much 
as the density within a galaxy (or rather, a group of galaxies known as 
a cluster). osborne decided he didn’t buy the argument. for one, ein-
stein seemed to be making a series of bad assumptions. Worse still, the 
best evidence that anyone had in 1946 showed that most dark matter 
was restricted to certain parts of a galaxy, with basically no dark matter 
in empty space (this still seems to be true). So if anything, you should 
expect the density of dark matter to be higher in a galaxy than in space 
as a whole.
 By 1946, most people, if they disagreed with an argument of ein-
stein’s pertaining to relativity and astrophysics, would assume they had 
misunderstood something. einstein was already a cultural icon. But 
osborne took no heed of such things. When he understood some-
thing, he understood it, and no amount of reputation or authority 
could intimidate him. So osborne wrote einstein a letter in which he 
very politely suggested that einstein’s argument didn’t make any sense. 
einstein replied by restating his argument from the book. So osborne 
wrote again. einstein conceded that his argument was problematic but 
thought the conclusion remained sound, and so he offered another 
argument. once again, osborne refuted it. At the end of a half-dozen-
letter correspondence, it was clear that einstein was unconvinced by 
osborne. But it was equally clear to osborne that einstein’s argument 
in the book failed, and that he didn’t have any other good arguments 
up his sleeve.*
 osborne approached his work in economics in the same spirit. 
Unconcerned about his lack of background in economics or finance, 

*  I think most physicists today, if they read the letters, would say that osborne got the better 
of the exchange.
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osborne presented his research with an engineer’s confidence. He 
published “Brownian Motion in the Stock Market” in a journal called 
Operations Research. It was not an economics journal, but enough 
economists and economically minded mathematicians read it that os-
borne’s research quickly garnered attention. Some of this was positive, 
but it was not unambiguously so. Indeed, when osborne published 
his first paper on finance, he was unaware of Bachelier or Samuelson, 
or any of a handful of economists who had, in one way or another, 
anticipated the idea that stock prices are random. Many economists 
pointed out his lack of originality  —  so many that osborne was forced 
to publish a second paper just a few months after the first, in which he 
presented a brief history of the idea that markets are random, giving 
full credit to Bachelier for coming up with the idea first, but also de-
fending his own formulation.
 osborne stood his ground, and rightfully so. despite connections 
with earlier work, his papers on randomness in the stock market were 
sufficiently original that Samuelson later gave him credit for develop-
ing the modern version of the random walk hypothesis at the same 
time that Samuelson and his students were working on it. More im-
portantly still, osborne approached his model as a true empirical 
scientist, trained to handle data. He developed and applied a series 
of statistical tests designed to corroborate his version of the Brown-
ian motion model. other researchers, such as the statistician Maurice 
Kendall, who in 1953 showed that stock prices were as likely to go up 
as to go down, had done empirical work on the randomness of stock 
prices. But osborne was the first to demonstrate the importance of 
the log-normal distribution to markets. He was also the first to clearly 
articulate a model for how stock market randomness worked and how 
it could be used to derive probabilities for future prices (and rates of 
return), all while providing convincing data that this particular model 
of the markets captured how markets really behave. And despite the 
early reservations about osborne’s originality, economists soon recog-
nized that he brought theory and evidence together in a way that sim-
ply hadn’t been done before. When Paul cootner at MIt collected the 
most important papers on the random walk hypothesis for his 1964 
volume  —  the volume that contained the first english translation of 



Bachelier’s thesis — he included two papers by osborne. one was the 
1959 paper on Brownian motion; the other was a paper that expanded 
on and generalized the earlier work.

By the time osborne began thinking about markets, he had published 
fifteen papers in physics and related topics. He had held a permanent 
position at the nrL for a decade and a half and had rubbed shoul-
ders with some of the best physicists of the mid-twentieth century, as 
both colleague and correspondent. And yet, osborne still didn’t have 
a Phd, in physics or in anything else. He had left grad school in 1941 
to join the nrL without finishing his degree. on one level, a doctorate 
didn’t mean much for a person like osborne; he had a fulfilling career 
in physics even without a doctorate, and no one seemed to doubt his 
credentials as a researcher. His work spoke for itself. He decided, how-
ever, during the mid-fifties, that he wanted to finish his degree, at least 
in part because it would guarantee him a promotion at the nrL. And 
so osborne followed many of his colleagues at the nrL to the physics 
department at the University of Maryland. there he could finish his 
graduate work without giving up his position at the lab.
 osborne’s first attempt at a dissertation was on a topic in astronomy. 
(Usually graduate students write a dissertation proposal. osborne ig-
nored this step. He wrote entire dissertations.) He brought the dis-
sertation to the physics department head, who promptly rejected it 
because too many people were interested in the topic and osborne’s 
research wasn’t original enough. So osborne wrote a second disserta-
tion, based on his research on the stock market. the department head 
rejected this, too, on the grounds that it wasn’t physics. As osborne 
would later put it, “You are supposed to do original research, but if 
you get too original, they don’t know what’s going on.” Stock market 
research may have been acceptable work for a physicist within the gov-
ernment research community, where applied work of any stripe was 
highly valued. But it still wasn’t “physics” from the perspective of a tra-
ditional academic department. And so, though osborne was received 
more favorably by the scientific community than Bachelier, he was still 
something of a maverick for working on financial modeling.
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 even after having two dissertations rejected, osborne wasn’t ready 
to give up. He sent “Brownian Motion in the Stock Market” off to Op-
erations Research and set to writing a third dissertation. for this proj-
ect, he returned to a problem he had been working on just before he 
began to think about the stock market. the third idea concerned the 
migratory efficiency of salmon. Salmon spend most of their lives in 
the ocean. But when it comes time to breed, they return to their birth-
places, often up to a thousand miles upstream of the ocean, to spawn 
and die. But after leaving the ocean, they no longer eat. osborne real-
ized that this meant that one could figure out how efficiently a salmon 
can swim by looking at the distances traveled and the fat lost on ar-
rival. the idea was to think of a salmon as a boat that was traveling a 
certain distance without refueling.
 When he finished this third dissertation and submitted it, he again 
received a lukewarm reaction. It was not clear that this third disser-
tation was any more “physics” than the second one had been. Ulti-
mately, however, the dissertation was accepted. the university was in 
the process of applying for a large grant in biophysics (the study of the 
physics of biological systems), and the administration wanted to have 
evidence of expertise in that field. And so, in 1959, almost twenty years 
after he had first moved to the nrL and the same year that “Brown-
ian Motion in the Stock Market” appeared in print, osborne finally 
received a doctorate (and a much-deserved promotion at the nrL).
 the work on migratory salmon bears a surprising connection to 
osborne’s work on financial markets. His model of how salmon swim 
upriver included analysis at several different time scales. there were 
effects corresponding to how well the salmon were able to swim over 
short distances, which depended on things like the strength of the 
current in the river at a given moment. there were also effects that 
you couldn’t see clearly just by looking at a salmon swimming for a 
few feet or yards but became apparent when you looked at a salmon 
traveling over, say, a thousand miles. the first kind of effect might be 
called “fast” fluctuations in the salmon’s efficiency; the second might 
be called “slow” fluctuations. the trouble was that the data were much 
better on the slow fluctuations. It’s easy to record how many salmon, 



roughly, have reached a given point at a given time; it is much harder 
to record just how well any given salmon is making headway as a riv-
er’s current changes.
 osborne had worked out a theoretical model that tried to explain 
both the slow and fast fluctuations, and to show how they related to 
each other. And he wanted to figure out a way to test the model. Get-
ting better data on individual salmon would have been one way to 
do this  —  but it would have been difficult, and osborne didn’t have 
any idea where to start. A second possibility was to find another sys-
tem that might show both the fast and slow fluctuations that osborne 
wanted to study, to see if the same model described that system as 
well. this second option seemed much more appealing, but osborne 
needed an appropriate system. When he sat down to figure out how to 
understand the stock quotes in the Wall Street Journal, he soon real-
ized that markets, too, have different scales of fluctuations. Some mar-
ket forces, like the details of how an exchange works or the interac-
tions of traders, can affect how prices change over the course of a day. 
these are like the fast fluctuations that salmon experience from one 
river bend to the next. But there are other forces affecting markets, 
things like business cycles and government interest rates, that become 
apparent only when you step back and look at a longer time period. 
these are slow fluctuations. It turned out the financial world was the 
perfect place to look for data that could be used to test osborne’s ideas 
about how these different kinds of fluctuations affect one another.
 the process worked in the other direction, too. After developing 
the migratory salmon model in the context of stock market prices, and 
after tweaking the model to better fit the data he had used to test it, 
he applied it to a problem in physics. osborne proposed a new model 
for deep ocean currents. Specifically, he was able to explain how the 
random motion of water molecules (fast fluctuations in the language 
of the salmon paper) could give rise to variations in apparently sys-
tematic large-scale phenomena, like currents (slow fluctuations). for 
osborne, work in physics and finance were intrinsically linked.

It is tempting to overstate both the reception of osborne’s work and 
his direct influence, because as we shall see, his ideas would ultimately 
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revolutionize financial markets. Still, his work did not make the splash 
on Wall Street that more developed versions of his ideas would, in the 
hands of other researchers just a short time later. osborne was a tran-
sitional figure. He was read widely by academics and some theoreti-
cally minded practitioners, but Wall Street was not yet ready to move 
firmly in the direction that osborne’s work suggested. In part the diffi-
culty was that osborne believed that his model of market randomness 
implied that it was impossible to predict how individual stock prices 
would change with time; unlike Bachelier, osborne didn’t connect 
his work to options, where understanding the statistical properties of 
markets can help you identify when options are correctly priced. In-
deed, reading “Brownian Motion in the Stock Market” and osborne’s 
later work, one gets the sense that there is no way to profit from the 
stock market. Prices are unpredictable. the speculator’s average gain 
is zero. Investing is a losing proposition.
 Later, people would look at osborne’s work and see something 
more optimistic. If you know that stock prices are essentially random, 
then, as Bachelier pointed out, you can figure out the value of options 
or other derivatives based on those stocks. osborne didn’t take his 
work in this direction  —  at least, not until the late 1970s, when others 
had already made similar moves. Instead, he spent much of the rest 
of his career trying to figure out the ways in which stock prices aren’t 
random. In other words, after tying himself to the enormously con-
troversial claim that stock prices represent “unrelieved bedlam” (his 
words, in many of his articles), osborne systematically and exhaus-
tively searched for order and predictability.
 He had some limited success. He showed that the volume of trad-
ing  —  the number of trades that take place in any given stretch of time  
—  isn’t constant, as one would naively assume in a Brownian motion 
model. Instead, there are peaks in volume at the beginning and end of 
a trading day, over the course of an average trading week, and over the 
course of a month. (All of these variations, incidentally, represent just 
the kind of “slow fluctuations” osborne had explored with his migra-
tory salmon  —  applied not to prices, but to numbers of trades.) these 
variations arise from what osborne took to be another principle of 
market psychology, that investors have limited attention spans. they 



get interested in a stock, they make a lot of trades and send the volume 
of trades way up, and then they gradually stop paying attention and 
volume decreases. If you allow for variations in volume, you have to 
change the underlying assumptions of the random walk model, and 
you get a new, more accurate model of how stock prices evolve, which 
osborne called the “extended Brownian motion” model.
 In the mid-sixties, osborne and a collaborator showed that at any 
instant, the chances that a stock will go up are not necessarily the same 
as the chances that the stock will go down. this assumption, you’ll re-
call, was an essential part of the Brownian motion model, where a step 
in one direction is assumed to be just as likely as a step in the other. 
osborne showed that if a stock went up a little bit, its next motion 
was much more likely to be a move back down than another move up. 
Likewise, if a stock went down, it was much more likely to go up in 
value in its next change. that is, from moment to moment the market 
is much more likely to reverse itself than to continue on a trend. But 
there was another side to this coin. If a stock moved in the same direc-
tion twice, it was much more likely to continue in that direction than if 
it had moved in a given direction only once. osborne argued that the 
infrastructure of the trading floor was responsible for this kind of non-
randomness, and osborne went on to suggest a model for how prices 
change that took this kind of behavior into account.
 this was a hallmark of osborne’s work, and it was one of the rea-
sons he’s such an important figure in the story of physics and finance. 
the idea that prices are equally likely to move up or down was part of 
osborne’s version of the efficient market hypothesis, a central assump-
tion of his original model. When he realized this assumption didn’t 
hold, he began to look for ways to tweak the model to account for a 
more realistic assumption, based on what he had learned about real 
markets. osborne was explicit from the beginning that this was his 
methodology, in keeping with the kinds of theoretical work he was 
familiar with in astronomy and fluid dynamics. In those fields, most 
problems are much too hard to solve all at once. Instead, you begin by 
studying the data and then make simplifying assumptions to derive 
simple models. But this is only the first step. next, you check carefully 
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to find places where your simplifying assumptions break down and try 
to figure out, again by focusing on the data, how these failures of your 
assumptions produce problems for the model’s predictions.
 When osborne described his original Brownian motion model, he 
specifically indicated what assumptions he was making. He pointed 
out that if the assumptions were no good, there was no guarantee that 
the model would be, either. What osborne and other physicists under-
stood was that a model isn’t “flawed” when the assumptions underly-
ing it fail. But it does mean you have more work to do. once you’ve 
proposed a model, the next step is to figure out when the assumptions 
fail and how badly. And if you discover that the assumptions fail regu-
larly, or under specific circumstances, you try to understand the ways 
in which they fail and the reasons for the failures. (for instance, os-
borne showed that price changes aren’t independent. this is especially 
true during market crashes, when a series of downward ticks makes it 
very likely that prices will continue to fall. When this kind of herding 
effect is present, even osborne’s extended Brownian motion model is 
going to be an unreliable guide.) the model-building process involves 
constantly updating your best models and theories in light of new evi-
dence, pulling yourself up by the bootstraps as you progressively un-
derstand whatever you’re studying  —  be it cells, hurricanes, or stock 
prices.
 not everyone who has worked with mathematical models in fi-
nance has been as sensitive to the importance of this methodology as 
osborne was, which is one of the principal reasons why mathemati-
cal models have sometimes been associated with financial ruin. If you 
continue to trade based on a model whose assumptions have ceased 
to be met by the market, and you lose money, it is hardly a failure of 
the model. It’s like attaching a car engine to a plane and being disap-
pointed when it doesn’t fly.

despite the patterns in stock prices that osborne was able to discover, 
he remained convinced that in general, there was no reliable way to 
make profitable forecasts about future market behavior. there was, 
however, one exception. Ironically, it had nothing to do with the so-



phisticated models that he developed during the 1960s. Instead, his 
optimism was based on a way of reading the mind of the markets, by 
studying the behavior of traders.
 osborne noticed that a great preponderance of ordinary investors 
placed their orders at whole-number prices  —  $10, or $11 say. But stocks 
were valued in units of 1/8 of a dollar. this meant that a trader could 
look at his book and see that there were a lot of people who wanted to 
buy a stock at, say, $10. He could then buy it at $10 1/8, knowing that 
at the end of the day the stock wouldn’t drop below $10 because there 
were so many people willing to buy at that threshold. So at worst, the 
trader would lose $1/8; at best, the stock would go up, and he could 
make a lot. conversely, he could see that a lot of people wanted to sell 
at, say, $11, and so he could sell at $10 7/8 with confidence that the most 
he could lose would be $1/8 if the stock went up instead of down. this 
meant that if you went through a day’s trades and looked for trades at 
$1/8 above or below whole-dollar amounts, you could gather which 
stocks the experts thought were “hot” because so many other people 
were interested.
 It turned out that what the experts thought was hot was a great in-
dicator of how stocks would do  —  a much better indicator than any-
thing else osborne had studied. Based on these observations, osborne 
proposed the first trading program of a sort that could be plugged into 
a computer to run on its own. But in 1966, when he came up with the 
idea, no one was using computers to make decisions. It would take de-
cades for osborne’s idea and others like it to be tested in the real world.
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S zolem mandelbrojt was the very model of a modern 
mathematician. An expert in analysis (the area of abstract 
mathematics that includes, among other things, standard col-

lege calculus), he had studied in Paris with the best of the best, includ-
ing emile Picard and Henri Lebesgue. He was a founding member of a 
group of french mathematicians who, under the pseudonym nicolas 
Bourbaki, endeavored to bring the highest possible level of rigor and 
abstraction to the field; the group’s collected works set the tone for two 
generations of mathematicians. When his mentor, Jacques Hadamard, 
one of the most famous mathematicians of the late nineteenth century, 
retired from his position at the prestigious collège de france, the col-
lège invited Mandelbrojt to replace him. He was a serious man, doing 
serious work.
 or at least he would have been doing serious work if his nephew 
hadn’t been constantly hounding him. In 1950, Benoît Mandelbrot 
was a doctoral student at the University of Paris, Szolem’s alma mater, 
seeking (Szolem imagined) to follow in his eminent uncle’s footsteps. 
When Szolem first learned that Benoît wanted to pursue mathematics, 
he was thrilled. But gradually, Szolem began to question Benoît’s se-
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riousness. despite his uncle’s advice, Benoît showed no interest in the 
pressing mathematical matters of the day. His work lacked the rigor 
that had brought Szolem such success. Worst of all, Benoît seemed in-
tent on geometrical methods, which every self-respecting mathemati-
cian knew had been abandoned a century before because they had led 
so many people astray. real mathematics couldn’t be done by drawing 
pictures.
 Benoît’s father, Szolem’s oldest brother, had helped raise Szolem. He 
had supported Szolem through graduate school, creating opportuni-
ties Szolem would never have had otherwise. to Szolem, then, Benoît 
was more like a brother than a nephew, and Szolem felt that he owed 
Benoît his continued patience and support. But Szolem was at the end 
of his rope. Benoît just wasn’t getting it. He had as much mathemati-
cal aptitude as anyone, but when it came to picking projects, he was 
hopeless.
 one day, while Benoît was in his office talking about his crazy disser-
tation ideas, Szolem snapped. He reached into his trash can and pulled 
out a discarded paper. If Benoît wanted to work on trash, Szolem had 
plenty of it to give him  —  a whole bin filled with papers of no interest 
or importance. “this is for you,” he said dismissively. “that’s the kind 
of silly stuff you like.”
 Szolem must have hoped his dramatic gesture would knock some 
sense into his young nephew. But the plan backfired magnificently. 
Benoît took the paper  —  a review of a recent book by a Harvard lin-
guist named George Kingsley Zipf  —  and studied it carefully on his 
way home. Zipf was a famously eccentric character and few took him 
seriously. He had spent his career arguing for a universal law of physi-
cal, social, and linguistic phenomena. Zipf ’s law said that if you con-
structed a list of all of the things in some natural category, say, all of the 
cities in france, or all of the libraries in the world, and ranked them ac-
cording to their size  —  you might rank cities by population; libraries, 
by collection size  —  you would always find that the size of each thing 
on the list was related to its rank on the list. In particular, the second 
thing on each list would always be about half the size of the first thing, 
the third thing on the list would be about a third the size of the first 
thing, and so on. the review that Benoît read focused on a particular 
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example of the law in action: Zipf had gone through and counted how 
often various words appeared in various texts. He then showed that if 
you ordered the words by how often they appeared in a piece of writ-
ing, you usually found that the most common word appeared about 
twice as often as the second most common word, three times as often 
as the third most common word, and so on for all of the words in the 
document.
 Szolem was right that Zipf ’s work was just the kind of thing his 
nephew would be interested in. But he was wrong that it was trash  
—  or at least that it was all trash. Zipf ’s law is a peculiar combination 
of estimation and numerology and Zipf was a crank. But there was a 
gem hidden in his book: Zipf had worked out a formula that could 
be used to calculate how often a particular word would appear in a 
book, given its rank on the list and the total number of different words 
appearing in the text. Mandelbrot quickly realized that the formula 
could be improved upon, and moreover that it had some unexpected 
and interesting mathematical properties. despite the resistance of the 
brightest lights in the mathematical establishment, his uncle included, 
Mandelbrot wrote a dissertation on Zipf ’s law and its applications. He 
did so without an advisor and received his degree only by pushing his 
thesis through the university’s bureaucratic channels himself. It was 
highly irregular.
 Indeed, Mandelbrot made a career out of the highly irregular, both 
in his impetuous rejection of the mathematical community and in his 
topics of study. Whereas the vast majority of mathematicians focus 
on shapes that are “smooth,” the kinds of shapes you can make out 
of Play-doh, Mandelbrot’s most famous discovery, which he named 
“fractal geometry,” arose out of the study of jagged and fractured 
shapes, like the surface of a mountain or a shard of broken glass. this 
work on fractal shapes made Mandelbrot realize that there are variet-
ies of randomness in nature that are far more extreme than the kind 
of randomness you get by flipping a coin over and over again  —  with 
consequences for virtually all mathematical science, including finance.
 Mandelbrot was a revolutionary. even today, decades after his most 
important papers, his ideas remain radical, with mainstream scientists 
in many fields still debating them. the situation is particularly striking 



in economics, where Mandelbrot’s central ideas have gone down like 
a bitter pill. If they are correct, almost everything traditional econ-
omists believe about markets is fundamentally flawed. It didn’t help 
that Mandelbrot was uncompromising, both as a person and as a sci-
entist, never bending to academic pressures. He often found himself 
at the fringes of respectability: esteemed, though never as highly as 
he deserved; criticized and dismissed as much for his style as for the 
unconventionality of his work. Yet over the past four decades, as Wall 
Street and the scientific community have encountered new, seemingly 
insurmountable challenges, Mandelbrot’s insights into randomness 
have seemed ever more prescient  —  and more essential to understand.

Benoît Mandelbrot was born in 1924, to Lithuanian parents living in 
Warsaw, Poland. Although his father was a businessman, two of his 
uncles (including Szolem) were scholars. Many of his father’s other rel-
atives were, in Mandelbrot’s words, “wise men” with no particular em-
ployment, but with a group of followers in the community who would 
trade money or goods in exchange for advice or learning. His mother, 
meanwhile, was also well educated, trained as a physician. As a boy, 
Mandelbrot often felt that he was expected to pursue an academic life 
of one sort or another, though his father urged him to choose a practi-
cal form of scholarship, such as engineering or applied science.
 despite the family’s focus on learning, however, the young Mandel-
brot had a very unusual education. His parents’ first child, a daughter, 
died very young when an epidemic ripped through Warsaw. Benoît’s 
mother developed a deep fear of childhood illnesses and sought to pro-
tect her two young sons from her daughter’s fate. So rather than send 
Benoît to school, she hired one of his uncles to tutor him. this uncle, 
though related by marriage, was cast firmly in the mold of Mandel-
brot’s father’s family: well educated and unemployed, with esoteric in-
terests. He despised rote learning, so didn’t bother to teach Benoît such 
mundane topics as arithmetic or the alphabet (indeed, in a speech he 
gave after receiving the Wolf Prize for physics, Mandelbrot admitted 
that he still had trouble multiplying, as he had never learned his mul-
tiplication tables). Instead, the uncle encouraged creative thought and 
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voracious reading. Mandelbrot spent most of his time playing chess 
and studying maps.
 Warsaw was hit hard by the depression  —  worse than western 
europe or the United States  —  and Mandelbrot’s father’s clothing 
business was essentially destroyed in 1931. His father then moved to 
france, hoping that the slightly better economic situation there would 
enable him to support his wife and sons from afar. With their large 
extended family in Warsaw, however, the Mandelbrots were strongly 
tied to the city. the hope was that Benoît’s father would eventually be 
able to move back to Poland and reestablish his business there. But as 
the 1930s droned on and the depression worsened, Poland became 
increasingly unsettled. ethnic and political violence grew. As Jews, the 
Mandelbrots realized that Warsaw had become dangerous for them. 
Benoît’s mother packed what belongings she could and followed her 
husband to Paris. though a difficult decision at the time, the move to 
Paris almost certainly bought the Mandelbrots their lives: of the more 
than 3 million Jews who lived in Poland before World War II, only a 
few hundred thousand survived the Holocaust.
 Szolem was already in Paris when Benoît’s father arrived. He had 
moved to france in 1919, a refugee of an entirely different sort. In the 
immediate aftermath of World War I, mathematics in Poland was dom-
inated by a brilliant young mathematician named Wacław Sierpiński. 
Sierpiński worked on a topic known as set theory. He was militant 
about his preferred style of mathematics and powerful enough to dic-
tate the terms of success for any graduate student in Warsaw. Later in 
life, Szolem may have seemed unbearably rigid to the geometrically 
minded Mandelbrot, but Sierpiński was too formal even for Szolem. 
refusing to work on the topics Sierpiński required, Szolem fled to 
Paris, where the prevailing mathematical ideology was more in line 
with his own. Ironically, Sierpiński was also the discoverer of an un-
usual geometrical object known as the Sierpiński triangle  —  an early 
example of a fractal.
 It wasn’t until Mandelbrot arrived in Paris that he had the opportu-
nity to interact with his famous mathematician uncle. Mandelbrot was 
eleven years old. though the two would later have their differences, 



their early relationship was deeply formative. Since Mandelbrot spoke 
little french, he was placed two grades behind his age level. to keep 
him interested in his education and to encourage his talents, Szolem 
fed him bits of mathematics. It was largely Szolem’s influence during 
this period that pushed Mandelbrot toward mathematics. despite the 
difficult economic and political situation, under Szolem’s tutelage Ben-
oît found a way to thrive in his new home.
 Unfortunately, it would not last. In 1940, Germany invaded france. 
And once again, the Mandelbrots were forced to flee.

How long is Britain’s coastline? this might seem like a simple ques-
tion  —  one that could be easily settled, say, by a team of competent 
surveyors. As it turns out, however, the question is more complicated 
than it appears. there’s a deep puzzle built into it, sometimes known as 
the coastline paradox. to figure out the length of a coastline, you need 
to take some measurements, presumably with some sort of ruler. the 
puzzle concerns how long your ruler needs to be. Suppose you started 
with a single enormous ruler that stretched from cape Wrath, at the 
northernmost tip of Scotland, all the way down to Penzance, at the 
southwestern tip of cornwall. this would give you an estimate of the 
length of the coastline.
 But not a very good one. A coastline is hardly a straight line. the 
coast of Britain dips in at the Bristol channel and the Irish Sea, jutting 
out again near Wales, so taking one very long ruler isn’t going to give 
an accurate measurement. to get a better measurement, you would 
want to use a somewhat smaller ruler  —  one that could easily accom-
modate the additional length that the various peninsulas and bays add 
to the coast. You might try adding up the distances from, say, Penzance 
to Bristol, and then from Bristol to St. david’s in Wales, and then from 
St. david’s to carmel Head at the northwestern tip of Wales, and so on 
all the way up the coast. this total distance would be a lot longer than 
the first distance you calculated, but it would be more accurate.
 now, though, a pattern begins to emerge. this smaller ruler, it turns 
out, underestimates the length in the same way the original long ruler 
did. Using the smaller ruler, you miss cardigan Bay altogether, not to 
mention the dozens of smaller harbors and inlets along the cornish 
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and Welsh coasts. to account for these features, which turn out to add 
rather a lot of distance, you need a smaller ruler still. But again, the 
same problem arises. In fact, no matter what size ruler you pick, the 
answer you get by measuring the coastline with that ruler is always too 
small. In other words, you can always get a larger answer to the ques-
tion by picking a smaller ruler.
 this is where the paradox arises. It is often the case that choosing 
more precise instruments gives you a better measurement of some-
thing. You can get a sense of how hot a pot of water is by sticking your 
finger in it. An alcohol thermometer would do the job even better, and 
a high-tech digital thermometer would bring the accuracy to within a 
fraction of a degree. there is a sense in which the imprecise tools are 
adding measurement error, and as you devise better and better instru-
ments, you home in on the real temperature. But with a coastline, no 
matter how precise your measuring device  —  that is, no matter how 
small your ruler  —  your measurement is always much too small. In 
some sense, a coastline doesn’t have a length, or at least not in the way 
that simple shapes like a line or a circle do.
 Mandelbrot addressed the coastline paradox in a groundbreaking 
paper in 1967. It was one of his first attempts to describe a fractal shape  
—  as, indeed, a coastline turns out to be, though Mandelbrot didn’t 
coin the term until 1975. coastlines (and other fractals) are remark-
able from a mathematical point of view because they have a property 
called self-similarity. to say that something is self-similar is to say that 
it is composed of pieces that look just like the whole; these pieces in 
turn are composed of still smaller pieces that also look like the whole, 
and so on ad infinitum. If you begin with the whole west coast of Brit-
ain and carve it up into several pieces, you will notice that each of 
these also looks like a coastline; just like the full coastline, the smaller 
stretches of coast have their own little inlets and peninsulas. And if 
you break up one of these smaller bits of coast further, the still-smaller 
pieces exhibit all the same features of the larger structures.
 once you start looking for self-similarity, you quickly realize it’s a 
ubiquitous feature of nature. A mountaintop looks much like a whole 
mountain in miniature; a tree branch looks like a little tree, with 
smaller branches of its own; river systems are built out of smaller rivers 



and estuaries. the principle even seems to extend to the social world. 
As Mandelbrot later pointed out, a battle is made up of smaller skir-
mishes, and a war is composed of battles, each a microcosm of the war 
as a whole.

When World War II broke out, the Mandelbrots fled Paris, where they 
expected the fighting to be quite intense, and settled in a town called 
tulle, in the region of france known as corrèze. once again, the Man-
delbrots showed great foresight, not to mention luck: they left Paris in 
late 1939, mere months before the nazi invasion of france. tulle turned 
out to be an extremely fortuitous choice. It was far enough south that it 
would soon become part of unoccupied (vichy) france.
 the vichy government cooperated with the Germans, but anti-
Semitism in the south was less virulent than in the German-occupied 
territories. for a few years, at least, Mandelbrot was able to attend high 
school in tulle. He was now fluent in french and he quickly moved 
through school, catching up to his peers by the time the Germans took 
control in 1942. Still, the Mandelbrots lived in constant fear of depor-
tation. In 1940, the vichy government had begun to review the status 
of all immigrants naturalized after 1927. they stripped about fifteen 
thousand (mostly Jews) of their citizenship, as a precursor to sending 
them to German concentration camps. though the Mandelbrots man-
aged to escape notice in little tulle, the threat was ever present.
 Matters became worse in 1942. on november 8, the British and 
American armies invaded french north Africa. In response, the Ger-
mans occupied southern france, anticipating an assault on continen-
tal europe. With the German army came the Gestapo, and as southern 
france became a staging ground for defensive Panzer divisions, even 
tulle became a minor battleground. though it was home to only a few 
thousand people, tulle was the traditional capital of the region. As the 
German presence in southern france increased, tulle became a place 
of strategic interest to both the vestiges of the vichy government and 
the leaders of the resistance. the Mandelbrots could no longer rely on 
the obscurity of their little town for safety.
 In his autobiographical writings and interviews, Mandelbrot often 
spoke of the war’s impact on his education. After finishing second-
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ary school in 1942, he found himself unable to proceed to a grande 
école because his movements were so constrained. (Here his education 
is reminiscent of Bachelier’s, who was also unable to attend a grande 
école.) But Mandelbrot never went into detail about his experiences 
during this period, except to say that the year and a half after finishing 
school was “very, very rough” and he had “several very close calls with 
disaster.”
 Since further schooling was out of the question, and because he 
needed to maintain a low profile, he avoided cities and moved often. He 
lived with members of the resistance, who took him in and attempted 
to hide him. He worked a series of odd jobs, attempting to disguise 
himself as a provincial frenchman. for some months he worked as 
a horse groom, and then as an apprentice toolmaker for the french 
railroad. But he was never a very convincing tradesman. Missing the 
scholarly life, Mandelbrot clung to the few books he managed to find 
during this period, carrying them with him and reading whenever he 
had an opportunity  —  not the smartest move for someone trying to 
pass as a horse groom.
 At one point, at least, Mandelbrot very narrowly escaped deporta-
tion  —  and likely execution. But mostly he managed to keep clear of 
German forces. His father had a closer call. As Mandelbrot would later 
tell it, his father was arrested during this period and sent to a nearby 
prison camp. not long after, the prison was attacked by members of 
the resistance. the guards were neutralized and the prisoners were set 
free. But the resistance fighters were ill prepared to defend the camp, 
so they urged the prisoners to flee quickly to escape capture by Ger-
man reinforcements.
 Lacking a plan or a clear route to safety, the prisoners set out in a 
group on the road to Limoges, the nearest major town. Shortly after 
leaving the camp, however, the elder Mandelbrot realized that this 
was a disastrous idea: they were traveling in a large pack, moving in 
the open on a major road. tracking them would be easy. the others 
couldn’t be persuaded, so Mandelbrot’s father left the group and struck 
out on his own. He headed toward a nearby forest, planning to slowly 
make his way back to where his family had been hiding before his ar-
rest. As he moved through the wilderness, he heard a gut-wrenching 



noise: behind him, back at the main road, a German dive bomber had 
found the other prisoners.

Life during wartime is an unpredictable thing. In thomas Pynchon’s 
novel Gravity’s Rainbow, one of the characters, roger Mexico, is a stat-
istician charged with keeping track of where the v-2 rockets land in 
London during the final days of the third reich. He finds that the 
rockets are falling according to a particular statistical distribution  —  
the one you would expect if they were equally likely to fall anywhere 
in the city. Mexico is surrounded by people desperate to control their 
lives, to save themselves from the rockets’ whimsical paths. to these 
onlookers, Mexico’s charts and graphs hint at some underlying pat-
tern, something they might use to predict where the next rocket will 
fall.
 Some areas of the city seem to be hit quite often. others, rarely. But 
to assume that these patterns say anything about where the next rocket 
will fall is to commit the same fallacy as the roulette player who is con-
vinced that a particular number is “due.” Mexico knows this. And yet 
he, too, finds the data seductive, as though the very randomness of the 
pattern holds the key to its power. And it does, at least if you happen 
to be standing on the street where the next rocket falls.
 Yet mathematically, this sort of randomness is mild. the v-2 rock-
ets were fired systematically, several a day, aimed roughly at London. 
Working out the odds of how many rockets would land on St. Paul’s 
cathedral or in Hammersmith was a lot like working out how many 
times a roulette ball would fall into red 25. Indeed, many of the situa-
tions we think of as random are like this. So many, in fact, that it’s easy 
to fall prey to the idea that all random events are like coin tosses or 
simple casino games.
 this assumption underlies much of modern financial theory. think 
back to when Bachelier was imagining how stock prices would change 
over time if they underwent a random walk. every few moments, the 
price would tick up or down by some small amount as though God 
were flipping a coin. Bachelier discovered that if this was a good ap-
proximation of what was happening, the distribution of prices would 
look like a bell curve, a normal distribution. osborne of course 
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pointed out that this wasn’t quite right; really, you expect the prices to 
change by some fixed percentage each time God flips his coin, rather 
than some fixed amount. this modification led to the observations 
that rates of return should be normally distributed and prices should 
be log-normally distributed.
 the normal distribution shows up in all sorts of places in nature. 
If you took the heights of all of the men in a given part of the world 
and plotted how many of them were 5 feet 6 inches, how many 5 feet 
7 inches, and so on, you would get a normal distribution. If you used 
a thousand thermometers and tried to take your temperature with 
each of them, the results would look like a normal distribution. If you 
played a coin-flipping game in which you got a dollar every time the 
coin landed heads, and you lost a dollar every time it landed tails, the 
probabilities governing your profits after many plays would look like 
a normal distribution. this is convenient: normal distributions are 
easy to understand and to work with. for instance, if something is 
normally distributed and your sample is large enough, the sample’s 
average value tends to converge to a particular number; white men, on 
average, are about 5 feet 9 inches, and unless you are ill, the thousand 
thermometers’ readings will average 98.6 degrees fahrenheit. Your av-
erage profits in the coin-tossing game will converge to zero.
 this rule can be thought of as the law of large numbers for prob-
ability distributions  —  a generalization of the principle discovered 
by Bernoulli, linking probabilities to the long-run frequencies with 
which events occur. It says that if something is governed by certain 
probability distributions, as men’s heights are governed by a normal 
distribution, then once you have a large enough sample, new instances 
aren’t going to affect the average value very much. once you have mea-
sured many men’s heights in a given region of the world, measuring 
one more man won’t change the average height by much.
 not all probability distributions satisfy the law of large numbers, 
however. the location of the drunken vacationer in cancun does  —  he 
is taking a random walk, so on average, he will stay right where he 
started, just as the average profits from a coin-tossing game converge 
to zero. But what if instead of a drunk trying to walk to his hotel, you 
had a drunken firing squad? each member stands, rifle in hand, facing 



a wall. (for argument’s sake, assume the wall is infinitely long.) Just 
like the drunk walking, the drunks on the firing squad are equally li-
able to stumble one way as another. When each one steadies himself to 
shoot the rifle, he could be pointing in any direction at all. the bullet 
might hit the wall directly in front of him, or it might hit the wall 100 
feet to his right (or it might go off in the entirely opposite direction, 
missing the wall completely).
 Suppose the group engages in target practice, firing a few thousand 
shots. If you make a note of where each bullet hits the wall (counting 
only the ones that hit), you can use this information to come up with 
a distribution that corresponds to the probability that any given bullet 
will hit any given part of the wall. When you compare this distribu-
tion to the plain old normal distribution, you’ll notice that it’s quite 
different. the drunken firing squad’s bullets hit the middle part of the 
wall most of the time  —  more often, in fact, than the normal distribu-
tion would have predicted. But the bullets also hit very distant parts of 
the wall surprisingly often  —  much, much more often than the normal 
distribution would have predicted.
 this probability distribution is called a cauchy distribution. Be-
cause the left and right sides of the distribution don’t go to zero as 
quickly as in a normal distribution (because bullets hit distant parts 
of the wall quite often), a cauchy distribution is said to have “fat tails.” 
(You can see what the cauchy distribution looks like in figure 3.)
 one of the most striking features of the cauchy distribution is that 
it doesn’t obey the law of large numbers: the average location of the fir-
ing squad’s bullets never converges to any fixed number. If your firing 
squad has fired a thousand times, you can take all of the places their 
bullets hit and come up with an average value  —  just as you can aver-
age your winnings if you’re playing the coin-flip game. But this average 
value is highly unstable. It’s possible for one of the squad members to 
get so turned around that when he fires next, the bullet goes almost 
parallel with the wall. It could travel a hundred miles (these are very 
powerful guns)  —  far enough, in fact, that when you add this newest 
result to the others, the average is totally different from what it was be-
fore. Because of the distribution’s fat tails, even the long-term average 
location of a drunken firing squad’s bullets is unpredictable.
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As Mandelbrot described it, the war, especially during the first two 
years under vichy rule, left huge swaths of france unaffected for long 
periods. But then “a storm” would come through and wreak havoc, 
followed by another period of calm. So perhaps it is no surprise that 
Mandelbrot was fascinated by these bursts, by random processes that 
couldn’t be tamed like a casino game. He called events that obeyed 
a cauchy distribution wildly random, to distinguish them from the 
plain, mild randomness of the random walk, and he devoted much of 
his career to studying them. When Mandelbrot began his career, most 
statisticians assumed that the world is filled with normally distributed 

figure 3: the location of a drunken vacationer trying to find his hotel room on a 
long corridor is governed by a normal distribution. But not all random processes are 
governed by normal distributions. Where the bullets fired by a drunken firing squad 
will land is determined by a different sort of distribution, called a cauchy distribution. 
(note that the angle at which the members of the drunken firing squad fire will be 
governed by a normal distribution; it’s the location on the wall that they are trying to 
hit that is governed by the cauchy distribution!) cauchy distributions (the solid line in 
this figure) are thinner and taller than normal distributions (the dashed line) around 
their central values, but their tails drop off more slowly  —  which means that events far 
from the center of the distribution are more likely than a normal distribution would 
predict. for this reason, cauchy distributions are called “fat-tailed” distributions. 
Mandelbrot called phenomena governed by fat-tailed distributions “wildly random” 
because they experience many more extreme events.



events; though cauchy and other fat-tailed distributions might show 
up sometimes, they were believed to be the exception. More than any-
one else, Mandelbrot showed just how many of these so-called excep-
tions there are.
 think back to the coastline of Britain. Suppose you want to figure 
out the average size of a promontory, or any outcropping of land. You 
might start by looking at boulders and jetties, things of a manageable 
size. You take the average size of all of these. But you aren’t done, be-
cause you realize that these jetties and outcroppings are themselves 
parts of small peninsulas. So you take out your surveying equipment, 
sensing that you’re about to fall down a rabbit hole, and start measur-
ing the sizes of these peninsulas. there aren’t many of these, but they 
are much bigger than the jetties and boulders you’ve looked at already, 
and now your new average is totally different from what it was after the 
first round of measurement. And what’s more, you haven’t even taken 
into account the still-larger structures, like cornwall. or the whole 
west coast of Britain itself, since from a geological perspective it’s just 
an outcropping from mainland eurasia. And while you’re at it, you 
probably need to consider smaller structures, too. Why count boul-
ders that are several feet across, but not rocks that are just a few inches 
across?
 each time you cast your net wider, the average changes dramati-
cally. You can’t seem to narrow in on a single figure. dismaying as it is 
for our Sisyphean surveyor, there’s no expected value for the average 
size of a feature on a coastline. this is a general property of fractals, 
following from their self-similarity. from one point of view, they are 
beautifully ordered and regular; from another, wildly random. And if 
fractals are everywhere, as Mandelbrot believed, the world is a place 
dominated by extremes, where our intuitive ideas about averages and 
normalcy can only lead us astray.

though he never provided details, Mandelbrot often alluded to a par-
ticularly harrowing experience toward the end of 1943, while he was 
hiding with members of the french resistance. Afterward, his protec-
tors realized that Mandelbrot couldn’t remain in tulle, and they se-
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cured a place for him as a postgraduate student at a preparatory school 
in Lyon.
 Moving Mandelbrot was a risky proposition. Lyon was one of the 
most dangerous cities in southern france for both Jews and resistance 
sympathizers; Mandelbrot was both. nikolaus Barbie, an SS officer, led 
the local Gestapo outpost from a hotel near the center of town. Known 
as the Butcher of Lyon, he was later convicted of war crimes for the de-
portation of nearly one thousand of the region’s Jews. But Mandelbrot 
was not proving to be a very persuasive rural journeyman, and the 
resistance fighters who were caring for him needed a place where he 
wouldn’t be so conspicuous. A school was a natural choice: Mandel-
brot was the right age and he carried himself like a scholar. He would 
attend under an assumed identity and live in the dormitories. Yet even 
with a good cover, Mandelbrot couldn’t risk venturing beyond school 
grounds. He was a prisoner as much as a student.
 to complete the deception, Mandelbrot sat in on classes. But no one 
expected him to learn much. the school was designed to prepare the 
very brightest students for the difficult exams required for entrance 
to the grandes écoles. the atmosphere was often competitive and fast 
paced. Since Mandelbrot had not engaged in any academic work from 
the spring of 1942 to early 1944, when he enrolled at the school, he had 
once again fallen far behind his peers. It would be virtually impossible 
for him to catch up, given the caliber of his classmates and their ample 
head start.
 At first, things went as expected. Mandelbrot sat quietly in the 
classes, pretending to be a student. He understood nothing. A week 
went by and then another. Mandelbrot listened as the instructor 
quizzed students on problems in abstract algebra, pushing them to 
compete to find the solutions as quickly as possible in preparation 
for the timed exams. Still, Mandelbrot understood nothing. He could 
guess at what the problems meant, but he had no clue how to solve 
them, and the discussions of various methods were lost on him. And 
then something remarkable happened. one day, after the teacher gave 
the class a problem to solve, an image appeared in Mandelbrot’s mind. 
Without thinking, he raised his hand. Surprised, the teacher called on 



him. “Isn’t this equivalent to asking whether these two surfaces inter-
sect one another?” Mandelbrot asked, describing the two shapes he 
was picturing. the teacher agreed that the problems were equivalent 
but pointed out that the goal was to solve the problems quickly, not 
interpret them geometrically.
 Mandelbrot sat back in his chair, silenced by the rebuke. But when 
the teacher read the next problem, he again tried to think of it in spa-
tial terms. He very quickly saw what the shapes in question were. Soon 
he realized he could do this reliably. He had, it turned out, a “freakish” 
(his word) gift for visualizing abstract algebraic problems. But as his 
teacher reminded him, just coming up with a geometrical interpreta-
tion of a problem wouldn’t help him on the test, and so Mandelbrot 
began thinking about how to put his talent to use. He didn’t see a way 
to solve the problems using just his geometrical intuition, at least not 
in the way the teacher wanted. But he could very quickly guess what 
the answer had to be. And he was usually right. Soon, despite his poor 
preparation and unusual status, Mandelbrot was embraced by the 
school.
 Liberation came in the summer of 1944. By the end of August, the 
Mandelbrots had moved back to Paris. though he had been in Lyon 
for only six months, a single academic term, Mandelbrot’s experience 
there changed the course of his life. He learned an enormous amount 
and discovered an unusual gift for geometry, but more importantly, he 
had reclaimed his education. He decided to continue his preparations 
for the grande école examinations, and in 1944, he was admitted to one 
of the most prestigious preparatory schools in Paris. After performing 
well on the exams, he gained entrance to several grande écoles, includ-
ing the most selective of all, the École normale Supérieure.
 He attended the École normale Supérieure for two days before de-
ciding that he couldn’t bear life in an ivory tower. His time away from 
the academy had made him all too conscious of real-world problems. 
Mandelbrot immediately transferred to the more practical and scien-
tifically oriented École Polytechnique. the choice augured Mandel-
brot’s path through academia: in each instance, faced with a choice 
between the pure and the applied, Mandelbrot chose the applied. In 
doing so, he brought his “freakish” geometrical gifts to bear on applied 
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problems that had previously been overlooked, or that had seemed too 
difficult to crack. Like Bachelier before him, Mandelbrot asked ques-
tions that had never before occurred to anyone with his mathematical 
abilities  —  and he found answers that changed how scientists see the 
world.

Much later, Mandelbrot would attribute his remarkable career to two 
things. first was his unusual and oft-disrupted education. Mandel-
brot ultimately made his way to a grande école, and on to a Phd. But 
the journey wasn’t easy, and it forced him to be resourceful and inde-
pendent in ways that he wouldn’t have been, had he followed a more 
traditional path. the second was a series of serendipitous discoveries 
that introduced him to various pieces of an intellectual puzzle. Zipf ’s 
formula, which he learned about when his uncle tossed a review in 
his face, was one such discovery. Another occurred several years later, 
soon after Mandelbrot finished graduate school.
 At the time, he was working at IBM, another beneficiary of the in-
dustrialization of physics. though he often expressed pride at having 
completed graduate school without an advisor, this didn’t help when 
it came to seeking employment. He enjoyed a stint as a postdoctoral 
researcher at Princeton’s Institute for Advanced Study and then spent 
some time back in europe, working on thermodynamics for the french 
government’s research center, cnrS. But a full-time faculty position 
proved elusive, and Mandelbrot’s nascent disillusionment with the 
mathematical firmament deepened. When he at last received an offer 
from IBM in 1958 to work as a staff scientist for its research division, he 
jumped at the chance, even though, in his words, “there was no great 
distinction [in] getting an offer from IBM then.”
 one of the goals of IBM’s research division was to find applica-
tions for its newest computers. Mandelbrot was assigned to work on 
economic data. His bosses hoped that if Mandelbrot could show how 
useful computers were for economics, banks and investment houses 
might be convinced to buy an IBM mainframe. In particular, he was 
looking at data describing income distributions throughout society. 
(Banks weren’t necessarily interested in this specific question; rather, 
the idea was to use Mandelbrot’s research as proof of concept, to dem-



onstrate how efficient a computer could be at number-crunching fi-
nancial data.)
 Income distribution had been studied before, most famously by 
a nineteenth-century Italian engineer, industrialist, and economist 
named vilfredo Pareto. A strong believer in laissez-faire economics, 
Pareto was obsessed with the workings of the free market and the ac-
cumulation of capital. He wanted to understand how people got rich, 
who controlled wealth, and how resources were doled out by market 
forces. to this end, he gathered an immense amount of data on wealth 
and income, drawing on such diverse sources as real estate transac-
tions, personal income data from across europe, and historical tax 
records. to analyze these data, Pareto would make elaborate graphs, 
with income levels and wealth on one axis, and the number of people 
who had access to that wealth on the other.
 for all the diversity of his data sources, Pareto found a single pat-
tern over and over again. As he described it, 80% of the wealth in any 
country, in any era, is controlled by 20% of the population. the pat-
tern is now known as Pareto’s principle, or sometimes the 80–20 rule. 
At the time, Pareto interpreted these results much as Zipf would have, 
as evidence for a “social law” revealing that wealth is not distributed 
randomly but rather by some mysterious force that shapes markets 
and societies. once Pareto began looking, the law seemed to apply to 
everything. eighty percent of a company’s sales are usually due to just 
20% of its customers. eighty percent of crimes can be traced to just 
20% of criminals. And so on. (nowadays, Pareto’s principle is seen to 
hold approximately in many places, such as in the ratio of health-care 
costs to patients in the United States.)
 the most interesting thing about Pareto’s work, at least from Man-
delbrot’s point of view, wasn’t the idea that Pareto’s data revealed some 
mathematical law of society. Instead, it was the particular relationship 
between the income distribution for a whole country and for a small 
portion of that country. Pareto showed that the 80–20 rule held, at 
least approximately, for a country as a whole. But what if you asked a 
slightly different question: How is income distributed among that 20% 
of the population that controls the overwhelming majority of wealth? 

66 • t h e  p h y s i c s  o f  wa l l  s t r e e t



From Coastlines to Cotton Prices • 67

remarkably, the same pattern emerges. If you look at just the wealthi-
est people in a country, 80% of their wealth is controlled by just 20% of 
them. the superrich tend to have the same disproportionate amount 
of wealth as the plain old rich. And indeed, the pattern continues. 
eighty percent of the resources controlled by the superrich are con-
solidated in the hands of the ultra-superrich. And so on.
 this kind of pattern should be familiar by now. Wealth distribution 
across a population displays a kind of self-similarity, or a fractal pat-
tern. In fact, the distributions that Pareto discovered, called Paretian 
distributions, are a type of fat-tailed distribution  —  revealing a kind 
of wild randomness in income distribution, though not quite as wild 
as the drunken firing squad’s shots. When Mandelbrot was looking at 
the data for IBM, he had not yet invented fractals. His seminal work 
on the coastline paradox was almost a decade away. But similarly to 
Pareto half a century before him, something about the pattern struck 
Mandelbrot. It reminded him of his doctoral work on Zipf, who also 
had discovered an odd self-similarity in how word frequencies were 
distributed.
 Although Mandelbrot had largely left academia, his work for IBM 
on wealth distribution was of some interest to mainstream econo-
mists, and so he was occasionally invited to give scholarly talks. It was 
in 1961, immediately before one of these lectures, that he made his 
second serendipitous discovery.
 the talk was to be delivered to Harvard’s economics department. 
Shortly before it was scheduled to begin, Mandelbrot met with one 
of the faculty members, an economist named Hendrik Houthakker. 
As soon as he walked into Houthakker’s office, Mandelbrot noticed 
a drawing on Houthakker’s chalkboard. It was nearly identical to the 
graph that Mandelbrot was planning to use in his talk, as part of his 
discussion of income distribution and Pareto’s principle. Mandelbrot 
guessed that Houthakker must have been working on a similar prob-
lem and made some comment about their shared interests. Houthak-
ker responded with a blank stare.
 After another awkward attempt or two, Mandelbrot realized that 
something was wrong. He backed up and pointed to the graph on the 



board. “Isn’t that a wealth distribution plot?” Puzzled, Houthakker ex-
plained that the drawing on his board had been from a meeting with a 
graduate student earlier in the day, during which Houthakker and the 
student were discussing historical data on cotton prices. the picture 
was a graph of daily returns from cotton markets.
 Houthakker went on to explain that he had been working on cotton 
markets for a while now, but the data weren’t cooperating with theory. 
By this time, Bachelier’s work had been rediscovered and economists 
had begun to accept that markets undergo a random walk, as Bachelier 
and osborne had argued. Houthakker was interested in verifying this 
hypothesis by looking at historical data. If the random walk thesis was 
correct, you should see many small price changes over the course of 
a day or a week or a month, but very few large ones. What Houthak-
ker’s data showed, however, was not what the theory predicted: he was 
seeing too many very small changes, but also far too many very large 
ones. Worse, he was struggling to come up with a value for the average 
price change, as Bachelier’s theory predicted must exist. every time 
Houthakker looked at a new set of data, the average would change, 
often dramatically. In other words, cotton prices seemed to behave 
more like a drunken firing squad than a drunken vacationer.
 Mandelbrot was intrigued. He asked Houthakker if he could look 
more closely at the data, and Houthakker agreed; in fact, Houthakker 
told Mandelbrot that he could have it all, since he was ready to aban-
don the project.
 Back at IBM, Mandelbrot had a small team of programmers tear 
through boxes of Houthakker’s cotton data, analyzing everything in 
detail. He quickly confirmed Houthakker’s most troubling findings: it 
appeared that there was no “average” rate of return. the prices looked 
random, but they weren’t explained by the standard statistical tools or 
Bachelier’s and osborne’s theories. Something weird was going on.
 Mandelbrot had seen unusual distributions before. In addition to 
studying Zipf ’s and Pareto’s work, he was familiar with a third kind of 
distribution, discovered by one of his professors in Paris, Paul Lévy. It 
was Lévy who, upon reading a small section of one of Bachelier’s pa-
pers, concluded that Bachelier’s work was plagued with errors. Much 
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later, Lévy would recognize his own mistake and apologize to Bach-
elier. Part of what made Lévy return to Bachelier’s work was a renewed 
interest in random walk processes and probability distributions. Ironi-
cally, this later work of Lévy’s received far less attention than his earlier 
work, leaving Lévy alienated and obscure at the twilight of his career.
 Lévy’s work on random processes had led him to study a class of 
probability distribution now called Lévy-stable distributions. the nor-
mal and cauchy distributions are both examples of Lévy-stable dis-
tributions, but Lévy showed that there is a spectrum of randomness, 
ranging between the two. (In fact, there are even wilder varieties of 
randomness than the cauchy distribution.) Wildness can be captured 
by a number, usually called alpha, that characterizes the tails of a Lévy-
stable distribution (see figure 4). normal distributions have an alpha 
of 2; cauchy distributions have an alpha of 1. the lower the number, 
the more wildly random the process (and the fatter the tails). distribu-
tions that have alpha of 1 or less don’t satisfy the law of large numbers  
—  in fact, it isn’t possible to even define the average value for a quantity 
that wild. distributions with alpha between 1 and 2, meanwhile, have 
average values, but they don’t have a well-defined average variability  
—  what statisticians call volatility or variance  —  which means it can be 
very hard to calculate an average value from empirical data, even when 
the average exists.
 Houthakker, trained as an economist, likely knew very little about 
Lévy’s late work. But Mandelbrot had been a disciple of Lévy’s. And so 
when he saw the detailed data from Houthakker, something clicked. 
Houthakker was right that cotton prices didn’t follow a normal distri-
bution  —  but they also didn’t follow a cauchy distribution. they were 
somewhere in between, with an alpha of 1.7. cotton prices were ran-
dom, all right  —  far more wildly random than Bachelier or osborne 
could have imagined.
 cotton markets were the first place that Mandelbrot found evidence 
of Lévy-stable distributions. But if cotton prices varied wildly, he won-
dered, why should other markets be different? Mandelbrot quickly 
began collecting data on markets of all sorts: other commodities (like 
gold or oil), stocks, bonds. In every case he found the same thing: the 



alphas associated with these markets were less than 2, often substan-
tially so. this meant that Bachelier’s and osborne’s theories of random 
walks and normal distributions faced a big problem. 

Mandelbrot made the connection between Pareto distributions and 
Lévy-stable distributions in 1960, the year after osborne’s first paper; 
he published the extension of this work to cotton prices in 1963, early 
enough that Paul cootner, the MIt economist who edited the collec-
tion of essays the included Bachelier’s and osborne’s work, was able to 
include a paper by Mandelbrot outlining his alternative theory. this 
meant that the volume that brought Bachelier’s and osborne’s work 
to the wider community of economists and financial theorists already 
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figure 4: normal distributions and cauchy distributions are two extreme cases of a 
class of distributions called Lévy-stable distributions. Lévy-stable distributions are 
characterized by a parameter called alpha. If alpha = 2, the distribution is a normal dis-
tribution; if alpha = 1, it is a cauchy distribution. Mandelbrot argued that real market 
returns are governed by Lévy-stable distributions with alpha between 1 and 2, which 
means that returns are more wildly random than osborne had thought, though not as 
wild as a drunken firing squad. this figure shows three Lévy-stable distributions. As 
in figure 3, the solid line corresponds to a cauchy distribution and the dotted line is a 
normal distribution. But the third curve is a Lévy-stable distribution with alpha = 3/2. 
It’s a little taller and a little narrower than a normal distribution, and its tails are a little 
fatter, but it’s not so extreme as a cauchy distribution.
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included hints that simple random walk models were not the whole 
story. Around 1965, financial theorists had a choice, though it surely 
didn’t feel that way to them at the time: they could follow osborne 
and others who showed how traditional statistical methods, developed 
largely in the context of physics, could be used to analyze and model 
stock market returns; or they could follow Mandelbrot, who showed 
that despite this remarkable power, there was reason to think the tradi-
tional methods had shortcomings. Weighing in on the traditionalists’ 
side was the fact that the older methods were better understood and 
simpler. Mandelbrot, meanwhile, had some highly suggestive data on 
his side.
 the field chose osborne. cootner made the argument this way at a 
1962 meeting of the econometric Society,* in response to Mandelbrot’s 
work on cotton prices:

Mandelbrot, like Prime Minister churchill before him, promises us 
not utopia but blood, sweat, toil, and tears. If he is right, almost all of 
our statistical tools are obsolete. .  .  . Almost without exception, past 
econometric work is meaningless. Surely, before consigning centuries 
of work to the ash pile, we should like to have some assurance that all 
our work is truly useless.

Much of the field took a similar view. At this point, the (mild) random 
walk hypothesis was still young, but a growing number of research-
ers, cootner included, had already staked their careers on it. It is easy 
to see cootner’s remarks as a reactionary attempt to fend off a young 
researcher who had caught out the errors of the (recent) past. Surely 
Mandelbrot saw it this way, and perhaps we all should now that many 
practitioners and theorists alike have recognized the importance of 
fat-tailed distributions. for instance, some people  —  most notably, 
nassim taleb, a hedge fund manager and professor at Polytechnic In-
stitute of new York University who wrote an influential book called 
The Black Swan, as well as Mandelbrot himself  —  have recently argued 
that finance took a wrong turn in 1965 by continuing to assume mild 
randomness when really financial markets are wild.

*  econometrics is the statistical study of economic data, including but not limited to finance.



But that argument misses an important point about the way the sci-
ence of finance has developed. In the 1960s, traditional statistics was a 
mature field with an enormous toolbox. Mandelbrot was coming for-
ward with little more than a suggestion and a few pictures. It would 
have been essentially impossible to do the kind of work that osborne, 
Samuelson, and many others working in finance and econometrics did 
during this period without the tools of traditional statistics. Mandel-
brot’s project simply wasn’t well enough understood. It would be like 
telling a carpenter that screws are much stronger than nails, when the 
carpenter has a hammer and no one has yet invented the screwdriver. 
even if the house would be stronger if built with screws, you’d still get 
much farther working with a hammer and nails, at least for a while.
 for this reason, pushing forward with the simpler available tools 
while Mandelbrot and his early converts worked out the consequences 
of his work on fractals and self-similarity was the only sensible choice. 
What the field implicitly understood is that you need to start with the 
simplest theory that works, get as far as you can, and then ask where 
the theory you’ve built has gone wrong. In this case, once you have es-
tablished that stock market prices are random (at least in some sense), 
the next step is to assume that they are random in the simplest possible 
way: that they just follow a random walk. this is what Bachelier did. 
osborne then pointed out that this couldn’t be right, since it would 
mean that stock prices could become negative, and so he complicated 
the model ever so slightly by suggesting that market rates of return 
follow a random walk. He then showed that this suggestion explained 
the data much better than Bachelier’s model.
 then came Mandelbrot, who said that osborne’s suggestion wasn’t 
quite right either, because if you looked at price data in detail, you 
would see a different pattern from the one osborne thought he had 
found. not dramatically different, though; the pattern Mandelbrot 
identified doesn’t say that prices aren’t random, but that prices are ran-
dom in a slightly different way from what osborne had believed. the 
differences between osborne’s model and Mandelbrot’s can hardly be 
dismissed, but they become important only in the context of extreme 
events. on a typical day, there aren’t going to be any extreme events 
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(according to either theory), and so you usually won’t notice much of 
a difference between the two models.
 for this reason  —  as we will see in the next several chapters  —  when 
it came time for economists interested in financial markets to try to 
extend the ideas presented in cootner’s book, to put the randomness 
of stock market prices to work by using statistics to predict derivatives 
prices or to calculate the amount of risk in a portfolio, they had to pick 
between the simple theory that gave good results the vast majority of 
the time and the more cumbersome one that better accounted for cer-
tain extreme events. It made perfect sense to start with the simpler one 
and see what happened. If you make good assumptions, if you idealize 
effectively, you can often solve a problem that otherwise couldn’t be 
solved  —  and get a solution that is quite close to correct, even if some 
of the details are wrong. of course, all along, you know you’ve made 
assumptions that aren’t quite right (markets are not perfectly efficient; 
returns and not prices follow a simple random walk). But they’re a 
start.
 It is also too simple to say that Mandelbrot was ignored in the de-
cades immediately following his early papers on cotton. Most econo-
mists followed osborne’s lead when building on the randomness of 
markets to study related topics. But a dedicated core of mathemati-
cians, statisticians, and economists put Mandelbrot’s proposals to the 
test with ever more detailed data, and ever more sophisticated math-
ematical methods  —  most of which were developed specifically for 
the purpose of better understanding what it would mean if the world 
were really as wildly random as Mandelbrot said. this work confirmed 
Mandelbrot’s basic thesis, that normal and log-normal distributions 
are insufficient to capture the statistical properties of markets. rates of 
return have fat tails.
 that said, there’s a wrinkle in the story. Mandelbrot made a very 
specific claim in his 1963 papers: he said that markets were Lévy-stable 
distributed. And except for the normal distribution, the volatility of 
Lévy-stable distributions is infinite, which means that most standard 
statistical tools don’t apply for analyzing such distributions. (this is 
what cootner was alluding to when he said that if Mandelbrot was 



correct, the standard statistical tools were obsolete.) today, the best 
evidence indicates that this specific claim, regarding infinite variability 
and the inapplicability of standard statistical tools, is false. After al-
most fifty years of research, the consensus is that rates of return are fat-
tailed, but they aren’t Lévy-stable. If this is correct, as most economists 
and physicists working on these topics believe it is, then the standard 
statistical tools do apply, even though the simplest assumptions of nor-
mal and log-normal distributions do not. But evaluating Mandelbrot’s 
claims is an extremely tricky business  —  mostly because the important 
differences between his proposal and its nearest alternatives apply only 
in extreme cases, data for which are very hard to come by. And even 
today, there is disagreement about how to interpret the data we do 
have.
 the fact that Mandelbrot’s claims were likely too aggressive makes 
his legacy a little more difficult to evaluate. Some writers today insist 
that Mandelbrot was never given his due, and that a proper apprecia-
tion of his ideas would solve all the world’s problems. While this is not 
entirely true, a few things are certain. extreme events occur far more 
often than Bachelier and osborne believed they would, and markets 
are wilder places than normal distributions can describe. to fully un-
derstand markets, and to model them as safely as possible, these facts 
must be accounted for. And Mandelbrot is singularly responsible for 
discovering the shortcomings of the Bachelier-osborne approach, and 
for developing the mathematics necessary to study them. Getting the 
details right may be an ongoing project  —  indeed, we should never 
expect to finish the iterative process of improving our mathematical 
models  —  but there is no doubt that Mandelbrot took a crucially im-
portant step forward.

After a decade of interest in the statistics of markets, Mandelbrot gave 
up on his crusade to replace normal distributions with other Lévy-sta-
ble distributions. By this time, his ideas on randomness and disorder 
had begun to find applications in a wide variety of other fields, from 
cosmology to meteorology. these fields were closer to his starting 
point in applied mathematics and mathematical physics. He remained 
affiliated with IBM for his entire career; in 1974, he was named an IBM 
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fellow, which gave him considerable freedom to identify and develop 
his own projects, much like an academic researcher.
 Gradually, as his ideas percolated through the many different scien-
tific disciplines, Mandelbrot began to receive some recognition for his 
work. the book that introduced the term fractals to the wider world 
went through several revisions beginning in 1975 and culminated in 
The Fractal Geometry of Nature in 1982. It was a cult sensation, and 
it turned Mandelbrot into a semi-public figure. By the early 1990s, he 
had collected a long list of significant honors and awards, including 
election to the french Legion of Honor in 1990 and the Wolf Prize for 
physics in 1993. In 1987, he began teaching mathematics part-time at 
Yale  —  ultimately receiving his first tenured faculty position in 1999, at 
the age of seventy-five. He continued to lecture and work on original 
research, right up to his death, on october 14, 2010.
 In the early 1990s, Mandelbrot sensed that the moment had arrived 
to move back into finance, and this time he had more success. over 
the previous three decades, his ideas had developed and matured  —  
benefiting greatly from their application to other fields  —  and so when 
he returned to thinking about economics, he had a much larger set 
of mathematical tools on which to draw. Meanwhile, markets had 
changed, so that far more practitioners on Wall Street and elsewhere 
were equipped to understand and incorporate Mandelbrot’s ideas. It 
was at this point that the recognition of fat-tailed distributions reached 
the financial mainstream. But I am getting ahead of the story. It would 
take a blackjack sharp and a dilettantish ex-physicist to move finance 
to a place where it could take advantage of the insights of Bachelier, 
osborne, and, ultimately, Mandelbrot.



T he year is 1961. the place, Las vegas. It’s a Saturday night in 
the middle of June. the temperature is hovering around 100 de-
grees even though the sun has already set. Inside the casinos, 

no one cares. vegas is at the height of its postwar golden age. A dozen 
world-class resorts, the first of their kind, line the nascent Strip, from 
the Sahara in the north to the tropicana in the south. the loud, smoky 
casino floors are packed with tourists from across the country hoping 
to get lucky at the tables, or at least ogle some celebrities. this is the 
vegas of the original Ocean’s Eleven, the vegas of Michael corleone, 
the vegas James Bond visits in Diamonds Are Forever. the vegas of 
elvis and the rat Pack, Liberace and the Marx Brothers.
 A slender man with a crewcut, just shy of thirty, is sitting at a rou-
lette table. He stares straight ahead, his face impassive behind a pair of 
horn-rimmed glasses. the crowd packs in around him, boisterously 
throwing chips at the table. But he ignores them. He looks intent, 
deeply focused, though on what is unclear. the minutes tick by and 
the crowd starts to wonder if he’s forgotten about the game. then, at 
the last possible moment, he places his chips on seemingly random 
spots on the board. for one round, it’s black 29, red 25, black 10, red 
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27. on the next, it’s black 15, red 34, black 22, and red 5. to the people 
around him he seems crazy. roulette players often have systems, but 
they’re consistent, like lottery players: you bet your birthday, or your 
girlfriend’s phone number. or, if you like a safer bet, you play a color. 
But this guy’s bets keep changing, as though someone is whispering 
the future into his ear. Whatever he’s doing, it doesn’t seem quite right. 
especially because he’s winning. A lot.
 His name is edward thorp. today he is one of the most successful 
hedge fund managers in history. In June of 1961, he was only a few 
years out of graduate school. He had just been hired as an assistant 
professor of mathematics at new Mexico State University. In graduate 
school he had specialized in the mathematics of quantum physics. But 
thorp was also fascinated by games. He was particularly interested in 
strategy games: blackjack, poker, baccarat. even the ancient chinese 
game Go. But on that sweltering vegas night back in 1961, he was play-
ing roulette. this was odd, because the results of spinning a roulette 
wheel should be perfectly random. each spin is independent of the 
spin before and the spin after. there’s no place for strategy.
 Back at the roulette table, a man and a woman walk past thorp, 
gulping whiskey sours. A cheer goes up at another table as someone 
from des Moines wins big. distracted for a moment, thorp looks up  
—  just in time to catch a look of horror from the woman next to him. 
thorp’s hand shoots to his ear. Attracted by the movement, a few by-
standers glance in his direction and catch a glimpse of . . . what is that? 
An earpiece? thorp is already on his feet, gathering his chips and stuff-
ing them into his pockets with one hand while his other hand remains 
pinned to his ear. He pushes his way out of the crowd and hurries 
toward the street.

We’ve seen how Bachelier and osborne used insights from physics to 
propose that markets can be understood in terms of a random walk, 
and how Mandelbrot refined that idea. their work revolutionized the 
study of financial markets, once economists came to appreciate it. But 
all three were firmly ensconced in academia. Bachelier worked at the 
Bourse, but there’s no evidence that he put his ideas to any use there, 
and he certainly never made much money. osborne may have turned 



to finance in an attempt to feed his family, but he ultimately concluded 
that there was no profit to be had in speculating on the unrelieved 
bedlam of financial markets. Mandelbrot, too, seems to have avoided 
trading.
 certainly ideas introduced by Bachelier, osborne, and Mandel-
brot percolated through economics departments and affected how 
traders thought about financial markets. for instance, the 1973 book 
A Random Walk Down Wall Street, by Princeton economist Burton 
Malkiel, has become a classic among investors of every stripe; it owes 
a great deal to osborne in particular, though this influence is largely 
uncredited.
 But the introduction, and subsequent sharpening, of the random 
walk hypothesis is only part of the story of how physicists have shaped 
modern finance. Physicists have been equally, or even more, influen-
tial in their role as practitioners. ed thorp is a prime example. He 
accomplished what Bachelier and osborne never could: he showed 
that physics and mathematics could be used to profit from financial 
markets. Building on the work of Bachelier and osborne, and on his 
own experience with gambling systems, thorp invented the modern 
hedge fund  —  by applying ideas from a new field that combined math-
ematical physics and electrical engineering. Information theory, as it’s 
known, was as much a part of the 1960s as the vegas Strip. And in 
thorp’s hands, it proved to be the missing link between the statistics of 
market prices and a winning strategy on Wall Street.

thorp was born at the peak of the depression, on August 14, 1932. 
His father was a retired army officer, a veteran of the first World War. 
When thorp was born, his father was fortunate enough to have found 
work as a bank guard, but money was still tight and the young thorp 
developed an early instinct for thrift and financial savvy. He realized 
he could buy a packet of Kool-Aid mix for a nickel but could make six 
glasses with each packet. So he sold glasses of cold Kool-Aid to WPA 
workers for a penny each. He bet a storekeeper that he could add up 
a tab in his head faster than the cash register and won himself an ice 
cream cone. An older cousin showed him that the slot machines at 
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his local gas station were rigged so that if you jiggled the handle right, 
they would pay out.
 When World War II began, the thorps headed west to find work 
in defense manufacturing. they settled down in Lomita, california, 
just south of Los Angeles. Both parents took jobs, leaving thorp to 
fend for himself. It was around this time that he discovered something 
even more exciting than betting on his quick head: blowing stuff up. 
He started with a children’s chemistry set, a gift from his parents, and 
ultimately set up a junior mad scientist’s lab in the garage. While his 
parents helped with the war effort, thorp was building pipe bombs 
and blowing holes in the sidewalk with homemade nitrocellulose. 
Later his tinkering would expand to include playing with telescopes 
and electronics, including ham radios.
 thorp’s boyhood penchant for explosives belied a deep fascination 
with the science behind his experiments, and along the way he learned 
a considerable amount of chemistry and physics. In 1948, at the end 
of his sophomore year in high school, thorp signed up to take an All 
Southern california test in chemistry, competing for a scholarship to 
the University of california. When he told his chemistry teacher of his 
plan, the teacher was dubious. thorp was over a year younger than 
the other competitors, who were preparing for college. But after the 
teacher gave thorp a practice exam, he was convinced. thorp didn’t 
know everything, but he had clear aptitude. thorp’s teacher recom-
mended three books for thorp to read and gave him a stack of practice 
tests to work on over the summer.
 When the test results came back, thorp learned that he had come 
in fourth overall. the results were remarkable, but he knew he could 
do better. the version of the test he took included a new section that 
hadn’t been on the previous year’s test, and it had called for a slide 
rule. thorp had a ten-cent slide rule, small and poorly machined. the 
numbers didn’t always line up correctly, introducing errors in thorp’s 
calculations. thorp was convinced that if he’d had a proper slide rule, 
he would have won the competition. the problem was that he couldn’t 
take the chemistry test again. So the following year he signed up for 
the corresponding test in physics. this time he came in first and won 



the scholarship, which paid his way through UcLA. He’d successfully 
parlayed backyard explosives into college tuition.
 Since it was physics rather than chemistry that had gotten thorp 
to UcLA, he decided to make it his major. four years later, he stayed 
on for graduate school. thorp loved his studies, but graduate school 
wasn’t a natural choice for him, given his lack of means. If not for the 
scholarship competition, it’s unlikely that he would have been able to 
afford college. And now, when he was twenty-one, money was as big an 
issue as ever. thorp mustered a budget of $100 a month  —  about $850 
in 2012 dollars  —  half of which went immediately to rent. Strapped for 
cash, thorp began scheming about ways to make a little extra money 
on the side, à la his childhood exploits.
 It was a conversation on just this topic  —  how to make extra money 
without much work  —  that first got thorp thinking about roulette. It 
began as a debate at the UcLA cooperative Housing Association din-
ing room in the spring of 1955, just as thorp was preparing to finish his 
master’s degree in physics. the first Las vegas casinos had just begun 
to open, and gambling was a hot topic. one of thorp’s friends sug-
gested that gambling was a good way to get rich quick. the problem, 
someone else pointed out, was that you usually lose. After a discussion 
of whether it was possible to get an advantage at various games (that is, 
improve your chances so you win more often than you lose), roulette 
came up. Most of thorp’s colleagues argued that roulette was a terrible 
choice for a get-rich-quick scheme. Maybe if the wheel had something 
wrong with it, certain numbers would come up more often than oth-
ers. But the wheels at big casinos, like the ones in Las vegas or reno, 
were made so precisely that you could never find an imperfection to 
exploit. roulette wheels were as close to random as you could get, and 
without some special trick, the odds were against you.
 thorp didn’t disagree with the premise. But he thought the conclu-
sion was wrong. After all, he reasoned, physicists are good at predict-
ing how things like wheels behave. If a roulette wheel really is perfect, 
well, then shouldn’t normal high school physics be enough to predict 
where a ball starting at such and such a place, rolling around a wheel 
spinning with such and such velocity, would land? You don’t need 
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quantum physics or rocket science to figure out how balls roll around 
wheels. the fact that roulette wheels are so perfectly manufactured 
could only help: there aren’t going to be small imperfections in the 
wheel that might throw off your calculations, and each wheel should 
be pretty similar to every other.
 to test his hypothesis, thorp started doing experiments. He did a 
few calculations and then bought a cheap, half-size wheel and filmed a 
ball going around it so he could watch, frame by frame, how it behaved. 
Meanwhile, he thought about how to put his idea to use. Major casinos 
accept bets even after the ball is moving, so in principle it’s possible to 
know the initial speed and position of the wheel and ball, which ought 
to be all you need to calculate where the ball will land, before you make 
your bet. He fantasized about building a machine that could quickly 
make the necessary calculations. But he didn’t get very far. vegas rou-
lette wheels might be flawless, but the toy wheel he bought was a piece 
of junk. Watching the films convinced him that the wheel was useless 
for his experiments; professional wheels, meanwhile, cost well over 
$1,000  —  an impossible investment for an impoverished grad student.
 So thorp gave up on roulette, at least for a while. After finishing his 
master’s degree, he began working on his doctorate, again in physics. 
He quickly realized, however, that his mathematical background wasn’t 
sufficient to tackle the newest topics. He made a list of the courses he 
would need to take, most of which were in a then-burgeoning field 
known as functional analysis, and discovered that if he took them all, 
he’d have enough for a Phd in mathematics, while his work on physics 
would have just begun. And so he switched to math. All the while, his 
ideas about the physics of roulette spun around in his mind. He was 
sure that with the right resources  —  a professional roulette wheel and 
some computer know-how  —  he could strike it rich.

Soon after finishing his Phd, thorp was awarded the prestigious 
c.L.e. Moore instructorship in mathematics at MIt  —  a position held 
a decade earlier by John nash, the pioneering mathematician profiled 
by Sylvia nasar in her book A Beautiful Mind. thorp and his wife, viv-
ian, left Southern california and moved to cambridge, Massachusetts. 



they spent only two years on the east coast before moving back west, 
to new Mexico. But it was enough to set their lives on a different track: 
it was at MIt that thorp met claude Shannon.
 Shannon may be the only person in the twentieth century who can 
claim to have founded an entirely new science. the field he invented, 
information theory, is essentially the mathematics behind the digital 
revolution. It undergirds computer science, modern telecommunica-
tions, cryptography, and code-breaking. the basic object of study is 
data: bits (a term Shannon coined) of information. the study of things 
such as how light waves move through air or how human languages 
work is very old; Shannon’s groundbreaking idea was that you could 
study the information itself  —  the stuff that’s carried by the light waves 
from objects in the world to your retinas, or the stuff that passes from 
one person to another when they speak  —  independently of the waves 
and the words. It is hard to overstate how important this idea would 
become.
 Information theory grew out of a project Shannon worked on dur-
ing World War II, as a staff scientist at Bell Labs, At&t’s research divi-
sion in Murray Hill, new Jersey. the goal of the project was to build an 
encrypted telephone system so that generals at the front could safely 
communicate with central command. Unfortunately, this was hard to 
do. there is only one code system that can be mathematically proven 
to be unbreakable. It’s called a one-time pad. Suppose you start with 
a letter that you want to send to your friend but that you don’t want 
anyone else to read. Say the letter has 100 characters in it, including 
spaces. to protect the letter with an unbreakable code, you need to 
come up with a random list of 100 numbers (corresponding to the 
number of characters in the letter) called a key, and then “add” these 
numbers to the characters in the letter. So if the first character in the 
letter is D (for “dear John,” say), and the first number in your random 
list is 5, you want to add 5 to D by moving down the alphabet by five 
letters. So you write down I as the first letter of the coded message. 
And so on. In order to decrypt the letter, your friend needs to have 
a copy of the key, too, which can then be used to subtract the right 
number from each letter and recover the original message. If the key is 
really random, there’s no way to decrypt the encoded message without 
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access to the key, since the randomness of the key will wash out any 
patterns in the original message.
 A one-time pad such as I just described can be tricky in practice be-
cause the sender and the receiver have to have the same random keys. 
But in principle, the idea is simple. It gets more complicated when you 
try to implement the idea of a one-time pad for a telephone conversa-
tion. now there are no letters to add a number to or subtract a number 
from. there are sounds, and what’s more, the sounds are transmitted 
over long distances by a wire (or at least they were in 1944), which 
means that anyone who can gain access to the wire, at any point be-
tween the generals in the field and their home base, can listen in on the 
conversation.
 the Bell Labs team realized that the essence of the one-time pad 
was the fact that patterns in the “signal,” the message being transmit-
ted, get lost amid the randomness of the “noise”  —  the key consisting 
of random numbers. So you need to take whatever medium is being 
used to carry the message (in this case sound) and add something to 
it that’s totally random so that you can’t make out any of the message-
bearing patterns. In a telephone conversation, the word noise isn’t a 
metaphor. Imagine trying to talk to someone with a loud vacuum 
cleaner running in the background. You wouldn’t be able to make out 
much, if anything, of what the person was trying to say. this is the 
principle behind SIGSALY, the system that Shannon and his collabo-
rators invented. If you add enough noise to whatever your general is 
saying, you can make it incomprehensible. Meanwhile, if you have ac-
cess to a recording of the exact same random noise on the other side 
of the message, back in Washington, you can “subtract” it from the 
coded message to recover the original voice. Implementing the system 
was an engineering marvel: signal processing of the sort necessary to 
remove noise from a telephone line, even if you knew exactly what the 
noise sounded like, was only at its earliest stages. But Shannon and his 
team figured out how to make it work. SIGSALY devices were built at 
the Pentagon for roosevelt, in Guam for MacArthur, in north Africa 
for Montgomery, and in the basement of Selfridges department store 
in London for churchill.
 thinking about the relationship between a signal and noise led 



Shannon to his most important insight — the basic idea underlying all 
of information theory and, by extension, the information revolution. 
Suppose you’re driving on the highway, having a conversation with 
the person in the passenger seat. You’re chatting away, and then an 
eighteen-wheeler passes by, and for a moment your passenger can hear 
only every other word you say because the truck is so loud. Will the 
passenger figure out what you were trying to say? It depends. Maybe 
you’ve just gotten started on your regular rant about traffic in Los An-
geles. You complain about it constantly, so your friend knows the riff 
by heart. Just a few words  —  maybe “construction” or “bad drivers,” 
plus an obscenity or two  —  would be enough to transmit the full force 
of your views on traffic. In fact, the passenger could be a complete 
stranger; no one likes traffic, and so a keyword here or there would be 
sufficient to get your message across. But what if you were trying to 
explain the details of a new film you just saw? then every word could 
be important. Your passenger would have little idea what to make of it 
if all he could hear was, “the lead  —  was  —  in the green  —  .”
 Shannon concluded that the amount of information carried by a 
signal has something to do with how easy it is for the receiver to de-
code, or in other words, on how unpredictable the signal is. Your rant 
on traffic doesn’t contain much information  —  it’s easy to predict; your 
film synopsis contains more. this is the essence of Shannon’s informa-
tion theory.
 Perhaps the easiest way to see why this way of looking at information 
makes sense is to turn Shannon’s picture around. Information is the 
kind of thing that takes you from feeling not so sure about something 
to feeling more sure about it. If you gain information, you learn some-
thing about the world. now imagine two cases. Suppose you begin by 
thinking that the Yankees have a great chance of winning half their 
games in any given year, but that there’s very little chance that there 
are aliens living on the moon. Shannon’s essential insight could be put 
as follows: if you were to learn, as in become absolutely certain, that 
there are aliens living on the moon, you would have gained a lot more 
information than if you were to learn that the Yankees have won more 
than half their games this year. the reason? In Shannon’s terms, it’s 
that the probability of there being aliens on the moon is much, much 
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lower than that of the Yankees (or any other team) winning half their 
games. this connection between the probability of a message and the 
information contained in the message provides the crucial link needed 
to quantify information. In other words, by connecting information 
with probability, Shannon discovered a way to assign a number to a 
message that measures the amount of information it contains, which 
in turn was the first major step in building a mathematical theory of 
information.
 the invention of information theory turned Shannon into an over-
night sensation, at least in the worlds of electrical engineering, math-
ematics, and physics. the applications proved to be endless. He stayed 
at Bell Labs for another decade after the war, before he moved to MIt 
in 1956.

thorp arrived in Massachusetts in 1959, just a year out of graduate 
school. By then, Shannon held an endowed chair, with dual appoint-
ments in the mathematics and electrical engineering departments. His 
most important work had already been published and its influence 
was spreading rapidly. By the late 1950s, he was an academic rock star. 
Already famously eccentric, Shannon was now powerful enough to 
dictate his own terms to MIt: whom he would meet with, what he 
would teach, how much time would be devoted to research. He was 
not the kind of man whose office you would casually stick your head 
into  —  especially if you were just a lowly instructor. to meet Shan-
non, thorp needed an appointment. And to get an appointment, he 
needed something worth talking about; as Shannon’s secretary would 
later inform thorp, Professor Shannon didn’t “spend time on topics 
(or people) that didn’t interest him.”
 fortunately, thorp had a topic that would entice Shannon. A few 
months before moving to Massachusetts, the thorps had visited Las 
vegas for the first time. they chose vegas because they expected it to 
be a bargain: close to Los Angeles, plenty of inexpensive hotels, a lot 
to see and do. Plus, thorp thought, he’d have a chance to scope out 
professional-level roulette wheels. But as it turned out, roulette wasn’t 
thorp’s principal interest on this trip. Shortly before the young couple 
left for their vacation, a colleague passed along a recent academic ar-



ticle from the Journal of the American Statistical Association. It con-
cerned the game of blackjack, or twenty-one.
 As far as casino games go, blackjack is old  —  older, even, than rou-
lette. cervantes, the author of Don Quixote, used to play a variation in 
Spain in the early seventeenth century and wrote stories in which his 
characters became proficient at cheating. the game is typically played 
with one or more standard decks of cards. You start by placing your 
bet. the game begins with each player (including the dealer) being 
dealt two cards, and then players have a chance to ask for additional 
cards until they decide they’ve had enough or they “bust,” which hap-
pens if their cards sum to more than twenty-one points. number cards 
are worth their face value; face cards are worth ten points; and an ace 
can be worth either one point or eleven points, at the player’s discre-
tion. the goal is to have the highest number of points without going 
over twenty-one. At a casino, each player is competing individually 
against the dealer, who represents the house. the goal, then, is to beat 
the dealer without busting. If you win, the game pays a dollar for every 
dollar you bet unless your initial two cards add up to twenty-one. In 
that case, the game pays a $1.50-per-dollar bet.
 casinos always employ the same strategy. the dealer has to take a 
new card as long as his total number of points is less than seventeen. 
If it’s seventeen or more, the dealer stops. And if the dealer busts, ev-
eryone wins. the twist, at least in a casino, is that although the players’ 
cards are all dealt face up, one of the dealer’s cards is dealt face down, 
so the players do not get to see it until the end of the game. not know-
ing what you’re up against makes it more difficult to know when to 
stop asking for new cards.
 casinos have run blackjack tables for a long time. And they’ve made 
money doing it. this suggests, but doesn’t quite prove, that the odds 
are with the house. the reason it doesn’t quite prove it is that black-
jack, unlike roulette, is a strategy game. the player has a choice to 
make: When do you ask for additional cards? even by the early 1950s, 
as gambling took hold in vegas, no one knew if there was a strategy 
that a player could adopt that would give him an advantage over the 
house. All anyone knew for sure was that whatever most people were 
doing, it was good for the house. figuring out more than that would 
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prove incredibly difficult. It involved calculating the probabilities of all 
of the possible hands, under all sorts of different circumstances. Mil-
lions of calculations.
 this was just what a group of army researchers set out to do, begin-
ning in 1953. over the course of three years, using “computers” (which 
in the early 1950s meant people, perhaps with electronic adding ma-
chines), the army team worked out (almost) all of the possible hands, 
figured out their probabilities, and then devised what they claimed 
was the “optimal” blackjack strategy. It was this strategy that they pub-
lished in the Journal of the American Statistical Association, and that 
thorp decided to try on his trip to vegas. It wasn’t a winning strategy. 
According to the army’s calculations, the house had an advantage even 
if you played with their optimal strategy, because of the essential role 
of uncertainty about the dealer’s hand in the player’s decision making. 
But the advantage was tiny. If you made a thousand one-dollar bets at 
successive hands of blackjack using their strategy, the army predicted, 
you should expect to have (on average) about $994 left at the end of the 
day. compare this to slots, where you could expect to have about $800 
left, and the optimal blackjack strategy looked pretty good. Unfortu-
nately, the strategy wasn’t simple, so thorp had to make a cheat sheet; 
he wrote out all of the possibilities on a little card, which he consulted 
as he played.
 He lost. Quickly. Starting with a pile of $10, thorp was down to 
$1.50 within the hour. But the other people at the table lost even more 
quickly, and by the time thorp left the table, he was convinced that the 
army’s researchers were on to something. He was also convinced that 
he could do better.
 the problem with the army strategy, as thorp saw it, was that it 
treated each round of blackjack as independent: it was as though each 
time around, a brand-new deck was being used. But in real life, espe-
cially in 1958 (casinos have since changed the rules slightly), this wasn’t 
the case. A dealer would shuffle a deck and then keep playing as long 
as there were enough cards to go around. this changes everything. 
consider that the probability of receiving, say, an ace from a new deck 
is 4/52, since there are 4 aces in a deck of 52 cards. But suppose you’re 
on your second hand, and on the first hand 10 cards came up, two of 



which were aces. now the odds of getting an ace are 2/42, which is 
much less than 4/52. the point is that if your strategy depends on the 
probabilities of getting different card combinations, and if you’re being 
careful, you need to take into account what cards have already been 
played. Adopting such a strategy, where you keep track of what cards 
have already been played and vary your strategy accordingly, is called 
card counting.
 card counting, thorp believed, could make the odds in blackjack 
even better than what the army researchers found. Using MIt’s IBM 
704, one of the first mass-produced electronic computers, thorp man-
aged to prove that the player would have an advantage if he combined 
a modified version of the army’s strategy with a simple card-counting 
technique. this was thorp’s in with Shannon. He wrote a paper de-
scribing what he had found, with the hope that Shannon would help 
him publish it.
 When the day of the meeting arrived, thorp knew the pressure was 
on. He had his thirty-second elevator pitch ready: what he wanted; 
why Shannon should care.
 As it turned out, thorp had little to worry about. Shannon imme-
diately saw what was interesting about thorp’s results. And after a few 
piercing questions, Shannon was convinced that thorp was the real 
deal. He made some editorial suggestions and suggested that thorp 
tone down the title (from “A Winning Strategy for Blackjack” to “A fa-
vorable Strategy for twenty-one”) and then offered to submit thorp’s 
paper to the Proceedings of the National Academy of Sciences, the most 
prestigious academic journal that would consider publishing such 
work (only members of the Academy could submit papers). then, as 
thorp prepared to leave, Shannon casually asked if thorp had any 
other gambling-related projects. this kind of math, with clear and fun 
applications, was right up Shannon’s alley. After a pause, thorp leaned 
forward. “there is one other thing,” he began. “It’s about roulette . . .”

It was dusk on a snowy winter’s evening in cambridge, Massachusetts. 
A dark sedan circled the block once and then slowed to a stop in front 
of the thorps’ apartment building. the doors opened, and from each 
side of the car a beautiful young woman emerged. Both women had 
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mink coats draped over their shoulders. they stepped back from the 
car to reveal its third passenger, a short man in his early sixties. His 
name was Manny Kimmel. He was the owner of a growing parking 
lot and funeral home concern known as the Kinney Parking com-
pany. the Kinney Parking company was in the process of going pub-
lic. over the next decade, under the joint leadership of Kimmel’s son 
caesar and legendary ceo Steve ross, Kinney would rapidly expand: 
first to commercial cleaning and facilities management, and then to 
media. In 1969, Kinney Parking company would acquire Warner 
Brothers Studios as the first step in a transformation that would ulti-
mately culminate in time Warner, which is today the world’s largest 
media conglomerate.
 In 1961 all of this was in the future. But Kimmel was already a very 
wealthy man. His fortune had been made the old-fashioned way: gam-
bling and booze. Legend has it that Kimmel won his first parking lot, 
on Kinney Street in newark, new Jersey, in a high-stakes craps game. 
And the early success of the Kinney Parking company had as much to 
do with Kimmel’s side business of running limousines to illegal gam-
bling houses as it did with people parking their cars. during Prohi-
bition, he teamed up with his childhood friend, the Jewish mobster 
Longy Zwillman. Zwillman would import rye whiskey from canada 
and then use Kimmel’s new Jersey garages to store it.
 It was gambling that brought Kimmel to thorp’s doorstep that cold 
Sunday in february. A few weeks before, thorp had given a public 
talk on his national Academy paper at the American Mathematical 
Society’s annual meeting, in Washington, dc. this time around, he 
permitted himself a provocative title: he called the talk “fortune’s for-
mula: A Winning Strategy for Blackjack.” Blackjack aside, thorp’s talk 
was a winning strategy for attracting media attention. He delivered 
the talk to a packed audience, and soon the AP and other news out-
lets came knocking. Within days, stories had begun to appear in the 
national media, including the Washington Post and Boston Globe. the 
dry annual AMS meeting rarely attracted much notice in the news, but 
something about an MIt mathematician taking vegas to the cleaners 
struck a chord.
 At first, thorp reveled in the attention. His phone began ringing off 



the hook, with reporters looking for interviews and gambling fanat-
ics hoping to learn thorp’s tricks. He boasted to reporters that if he 
could get sufficient funding for a trip to vegas, he would prove that 
his system worked in practice. As a publicity stunt, the Sahara, one 
of the big vegas Strip casinos, offered him free room and board for as 
long as he liked  —  trusting that thorp’s system, like the hundreds that 
preceded it, was at best a fantasy. But the Sahara wouldn’t front thorp 
gambling money, and on his $7,000-a-year salary, thorp couldn’t raise 
sufficient funds himself. (Since casinos have minimum bets, an early 
losing streak can wipe you out if you don’t have a pile of cash on hand  
—  even if you’re very likely to win in the long run.)
 this is where Kimmel came in. Some men like fine wines or expen-
sive cigars. others prefer cars, or sports, or perhaps art. As an inveter-
ate gambling man, Kimmel was a connoisseur of the favorable betting 
system. When Kimmel read about thorp’s blackjack system, he wrote 
to thorp and offered to fund his experiment to the tune of $100,000. 
But first he needed to see the system in action. So when thorp con-
tacted him and agreed to meet, Kimmel took a car up from new York. 
When Kimmel arrived  —  introducing the two young women as his 
nieces  —  thorp began by showing Kimmel his proofs and explaining 
his methodology. But Kimmel didn’t care about any of that. Instead, 
he took a deck of cards out of his pocket and began to deal. Kimmel 
would believe a system worked only after he’d watched someone win 
with it. they played all evening, and then again the next day. over the 
coming weeks, thorp would drive down to new York regularly to play 
against Kimmel and an associate, eddie Hand, who was putting up 
part of the money for the casino trip.
 It took about a month, but at last Kimmel was convinced that 
thorp’s system worked  —  and that thorp had what it took to use the 
system in a real casino. thorp decided that $100,000 was too much 
and insisted on working with a smaller sum  —  $10,000  —  because he 
thought gambling with too much money would attract unwanted at-
tention. Kimmel, meanwhile, thought that Las vegas was too high 
profile, and besides, too many people knew him there. So over MIt’s 
spring break, thorp and Kimmel, who was once again accompanied 
by a pair of young women, descended on reno to test thorp’s system. 
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It was a resounding success. they played, moving from casino to ca-
sino, until they developed a reputation that moved faster than they 
could. In just over thirty man-hours of playing, thorp, Kimmel, and 
Hand collectively turned their $10,000 into $21,000  —  and it would 
have been $32,000 if Kimmel hadn’t insisted on continuing to play one 
evening after thorp announced he was too tired to keep counting. 
thorp would later tell the story  —  with Kimmel’s name changed to Mr. 
X and Hand’s to Mr. Y  —  in a book, Beat the Dealer, that taught readers 
how to use his system to take vegas to the cleaners themselves.

thorp developed several methods for keeping track of how the odds 
in blackjack change as cards are played and removed from the deck. 
Using these systems, thorp was able to reliably determine when the 
deck was in his favor, and when it was in the house’s favor. But suppose 
you are playing a game of blackjack, and suddenly you learn that the 
odds are slightly in your favor. What should you do?
 It turns out that blackjack is extremely complicated. to make the 
problem tractable, it’s better to start with a simpler scenario. real coins 
come up heads and tails equally often. But it’s possible to at least imag-
ine (if not manufacture) a coin that is more likely to come up one way 
or the other  —  for now, suppose it’s more likely to come up heads than 
tails. now imagine you’re making bets on coin flips with this weighted 
coin, against someone who is willing to pay even money on each flip, 
for as many flips as you want to play (or until you run out of money). 
In other words, if you bet a dollar and win the bet, your opponent gives 
you one dollar, and if your opponent wins, you lose one dollar. Since 
the coin is more likely to come up heads than tails, you would expect 
that over the long run money will tend to flow in one direction (yours, 
if you consistently bet heads) because you’re going to win more than 
half the time. finally, imagine that your opponent is willing to take 
arbitrarily large or small bets: you could bet $1, or $100, or $100,000. 
You have some amount of money in your pocket, and if it runs out, 
you’re sunk. How much of it should you bet on each coin flip?
 one strategy would be to try to make bets in a way that maximizes 
the amount of money you could stand to make. the best way to do this 
would be to bet everything in your pocket each time. then, if you win, 



you double your money on each flip. But this strategy has a big prob-
lem: the coin being weighted means that you will usually win, not that 
you’ll always win. And if you bet everything on each flip, you’ll lose 
everything the first time it comes up tails. So even though you were 
trying to make as much money as possible, the chances that you’ll end 
up broke are quite high (in fact, you’re essentially guaranteed to go 
broke in the long run), with no chance to make your money back. this 
scenario  —  where your available funds run out, and you’re forced to 
accept your losses  —  is known as “gambler’s ruin.”
 there’s another possibility  —  one that minimizes the chances of 
going broke. this is also a straightforward strategy: don’t bet in the 
first place. But this option is (almost) as bad as the last one, because 
now you guarantee that you won’t make any money, even though the 
coin is weighted in your favor.
 the answer, then, has to be somewhere in the middle. Whenever 
you find yourself in a gambling situation where you have an advan-
tage, you want to figure out a way to keep the chances of going broke 
to a minimum, while still capitalizing on the fact that in the long run, 
you’re going to win most of the bets. You need to manage your money 
in a way that keeps you in the game long enough for the long-term 
benefits to kick in. But actually doing this is tricky.
 or so it seemed to thorp when he was first trying to turn his analy-
sis of card-counting odds into a winning strategy for the game. fortu-
nately for thorp, Shannon had an answer. When thorp mentioned the 
money management problem to Shannon, Shannon directed thorp to 
a paper written by one of Shannon’s colleagues at Bell Labs named 
John Kelly Jr. Kelly’s work provided the essential connection between 
information theory and gambling  —  and ultimately the insights that 
made thorp’s investment strategies so successful.
 Kelly was a pistol-loving, chain-smoking, party-going wild man 
from texas. He had a Phd in physics that he originally intended to 
use in oil exploration, but he quickly decided that the energy industry 
had little appreciation of his skills, and so he moved to Bell Labs. once 
he was in new Jersey, Kelly’s colorful personality attracted plenty of 
attention in his staid suburban neighborhood. He was fond of firing 
plastic-filled bullets into the wall of his living room to entertain house-
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guests. He was an ace pilot during World War II and later earned some 
local notoriety by flying a plane underneath the George Washington 
Bridge. But despite the theatrics, Kelly was one of the most accom-
plished scientists at At&t  —  and the most versatile. His work ran the 
gamut from highly theoretical questions in quantum physics, to en-
coding television signals, to building computers that could accurately 
synthesize human voices. the work he’s best known for now, and that 
was of greatest interest to thorp, was on applying Shannon’s informa-
tion theory to horseracing.
 Imagine you’re in Las vegas, betting on the Belmont Stakes, a major 
horserace held in elmont, new York. the big board in the off-track-
betting room shows various odds: valentine at 5 to 9, Paul revere at 14 
to 3, epitaph at 7 to 1. these numbers mean that valentine is expected 
to have a roughly 64% chance of winning, Paul revere has an 18% 
chance of winning, and epitaph has a 13% chance of winning. (these 
percentages are calculated by dividing the odds of each horse winning 
by the sum of the odds of that horse winning and losing  —  so, for val-
entine, if your odds are 5 to 9, you divide 9 by 14.)
 In the first half of the century, there was often a delay in commu-
nicating racing results between bookies. this meant that sometimes a 
race would be over, while people in other parts of the country contin-
ued betting on it. So if you had a particularly fast method of commu-
nication, you could in principle get the results before betting closed. 
By 1956, when Kelly wrote his paper, this had become quite difficult: 
telephones and television meant that bookies in Las vegas would 
know what had happened in new York almost as soon as the people 
in elmont. But suspend disbelief for a moment and imagine that you 
had someone in elmont who could send you messages about the Bel-
mont Stakes instantaneously  —  faster, even, than the bookies got their 
results.
 If the messages you were receiving over your private wire service 
were perfectly reliable, you’d be wise to bet everything, since you’re 
guaranteed to win. But Kelly was more interested in a slightly different 
case. What happens if you have someone send you correct racing re-
sults, but there’s noise on the line? If the message that comes along is so 
garbled that you can’t make out much of anything, your default guess 



is going to be that valentine is going to win, since that’s what the odds 
were to begin with and you haven’t received any new information. If it’s 
garbled but you’re pretty sure you heard a t sound, you’ve gotten some 
information  —  you have good reason to think Paul revere didn’t win, 
since there’s no t in his name. If pressed, you would probably guess 
that your contact said “valentine,” because that’s the more likely mes-
sage, but you can’t know for sure. You wouldn’t want to put all of your 
money on one horse, because you still have a chance of losing. But you 
can rule out one possibility, which gives you an advantage: you now 
know that the bookie thinks valentine’s and epitaph’s chances aren’t 
as good as they really are, because the bookie is assuming Paul revere 
has an 18% chance of winning. So if you make a combined bet on both 
valentine and epitaph in the right proportions, you’re guaranteed to 
win one of them for a net profit. Hence even the partial information is 
enough to help you decide what bets to place.
 Shannon’s theory tells you how much credence to give a message 
when there’s a chance that the message is being distorted by noise, or 
when the level of noise makes it difficult to interpret the message in 
the first place. So if it’s difficult to decipher your racing tips, Shannon’s 
theory provides a way of deciding how to place your bets based on the 
partial information you do receive.
 Kelly worked out the solution to this problem, provided you want 
to maximize the long-term growth of the money you start with. As 
in the example above, where you could make out a t sound but noth-
ing else, partial information can be sufficient to give you an advantage 
over a bookie who is setting odds without any information about how 
the race turned out. the advantage can be calculated by multiplying 
the payout  —  the number b when someone gives you b-to-1 odds  —  by 
what you believe is the true probability of winning (based on your par-
tial information), and then subtracting the probability of losing (again, 
based on your partial information). to figure out how much of your 
starting money to bet, as a fraction of what you have, you divide your 
advantage by the payout. this gives the equation now called the Kelly 
criterion or Kelly bet size. the percentage of your money to bet on any 
given outcome is

94 • t h e  p h y s i c s  o f  wa l l  s t r e e t



Beating the Dealer • 95

advantage
  —    —    —    —    —  
payout

If your advantage is zero (or negative!), Kelly says not to bet at all; 
otherwise, bet the fraction of your wealth given by the Kelly criterion. 
If you always follow this rule, you will be guaranteed to outperform 
anyone adopting another betting strategy (such as betting it all or 
betting nothing). one of the most surprising things in Kelly’s paper, 
something that feels almost mystical, is a proof of what will happen 
if you follow his rule in a scenario like the horse betting story, where 
you have a stream of (partial) information coming in: if you always use 
the Kelly criterion, under certain ideal circumstances your wealth will 
increase at exactly the rate that information comes in along the line. 
Information is money.
 When Shannon showed Kelly’s paper to thorp, the last piece of the 
blackjack puzzle fell into place. card counting is a process by which 
you gain information about the deck of cards  —  you learn how the 
composition of the deck has changed with each hand. this is just what 
you need to calculate your advantage, as Kelly proposed. Information 
flows and your money grows.

As thorp and Kimmel made their preparations for reno, Shannon 
and thorp were collaborating on thorp’s roulette plan. When he 
heard thorp’s ideas, Shannon was mesmerized, in large part because 
thorp’s roulette idea combined game theory with Shannon’s real pas-
sion: machines. At the heart of the idea was a wearable computer that 
would perform the necessary calculations for the player.
 they began testing ideas for how the actual gambling would work, 
assuming they could make sufficient progress on the prediction algo-
rithm. they agreed that it would take more than one person for it to go 
smoothly, because one person couldn’t focus sufficiently on the wheel 
to input the necessary data and still be prepared to bet before the ball 
slowed down and the croupier (roulette’s equivalent of a dealer) an-
nounced that betting was closed. So they decided on a two-person 
scheme. one person would stand near the roulette wheel and watch 



carefully — ideally while doing something else, so as not to attract at-
tention. this person would be wearing the computer, which would 
be a small device, about the size of a cigarette pack. the input device 
would be a series of switches hidden in one of the wearer’s shoes. the 
idea was that the person watching the wheel would tap his foot when 
the wheel started spinning, and then again when the ball made one 
full rotation. this would initialize the device and synchronize it to the 
wheel.
 Meanwhile, a second person would be sitting at the table, with an 
earpiece connected to the computer. once the computer had a chance 
to take the initial speeds of the ball and the rotor into account, it would 
send a signal to the person at the table indicating how to bet. It was 
too difficult to predict just what number the ball would fall into, as the 
calculations for that level of precision were far too complicated. But 
roulette wheels are separated into eight regions, called octants. each 
octant has four or five numbers in it, arranged in an order that would 
seem random to someone who didn’t have the roulette wheel memo-
rized. thorp and Shannon discovered that in many cases, they could 
accurately predict which octant the ball would fall into, narrowing the 
possible outcomes from thirty-eight to four or five. the computer was 
designed to indicate whether there was a higher-than-normal chance 
that the ball would fall into a particular octant. once the person at the 
table received the signal, he would quickly place bets on the appropri-
ate numbers  —  using a betting system based on the Kelly criterion to 
decide how much to bet on each.
 By the summer of 1961, the machine was ready for action. thorp, 
Shannon, and their wives traveled to Las vegas. Aside from broken 
wires and the night the earpiece was discovered, the experiment was 
a (middling) success. Unfortunately, technical difficulties prevented 
thorp and Shannon from betting any substantial amounts of money, 
but it was clear that the device did what it was intended to do. With 
Shannon’s help, thorp had beaten roulette.
 the trip as a whole, though, proved more stressful than it was 
worth. Gambling can be tense enough without the constant possibil-
ity that burly enforcers will descend on you. Meanwhile, thorp had 
already received the job offer in new Mexico when the two couples 
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made their vegas trip. despite their small profit, by the time they left 
vegas, thorp knew that he and Shannon wouldn’t continue the rou-
lette project. But it was just as well. With the blackjack and roulette 
experiences under his belt, thorp was ready to try his hand at a new, 
bigger challenge: the stock market.

thorp bought his first share of stock in 1958, before he had finished 
his Phd. He was living on a modest salary as an instructor at UcLA, 
but he had managed to cobble together a small sum to put away for the 
future. over the next year, his investment dropped by half, and then 
slowly inched its way back up. thorp sold, essentially breaking even 
after a year-long roller-coaster ride.
 In 1962, flush with blackjack winnings and the proceeds from his 
card-counting book, he decided to try again. this time he bought sil-
ver. In the early 1960s, demand for silver was sky high  —  so high that 
many people expected the open-market value of the silver in U.S. coins 
to exceed the coins’ denominations, which would make quarters and 
silver dollars more valuable as scrap metal than as money. It seemed 
like a safe bet. to maximize his profits, thorp borrowed some money 
from his broker, with the silver investment as collateral. Silver went 
up for most of the sixties, but it was very volatile; not long after thorp 
bought in, the price fell temporarily, but sharply, and the broker de-
cided he wanted his money back. When thorp couldn’t come up with 
the cash, the broker sold thorp’s silver, at a loss of about $6,000 to 
thorp. It was devastating  —  over half the annual salary for an assistant 
professor in 1962.
 After this second setback, thorp decided to get serious. After all, he 
was a world-renowned expert in the mathematics of gambling. And 
the stock market wasn’t so different from a casino game or a horserace: 
you make bets, based on some partial information about the future, 
and if things go your way, you get a payout. You can even think of 
market prices as reflections of the “house” odds, meaning that if you 
can get access to even partial relevant information, you can compare 
market odds and true odds to determine whether you have an advan-
tage, just as in blackjack.
 All thorp needed was to figure out a way to get information. thorp 



began his careful study of markets in the summer of 1964, by reading 
The Random Character of Stock Prices  —  the collection of essays that 
featured papers by Bachelier, osborne, and Mandelbrot. thorp was 
soon convinced by osborne and the other authors in the collection 
who argued that when you look at the detailed statistics, stock prices 
really do behave randomly  —  because, as Bachelier and osborne both 
argued, all available information was already incorporated into the 
price of a stock at any given moment. By the end of the summer, thorp 
was stymied. If osborne was right, thorp didn’t see a way to gain an 
advantage over the market.
 With a full teaching load for the 1964–65 academic year, thorp had 
little time for anything else. He put his market studies aside, plan-
ning to return to the project the following summer. In the meantime, 
things in new Mexico took a turn. A growing faction of mathemati-
cians working in a different field had taken control of the department, 
prompting him to look for other jobs. He learned that the University 
of california was preparing to open a new campus, about fifty miles 
south of Los Angeles, in the middle of orange county. He applied 
for, and received, a job at the new University of california, Irvine. It 
looked as if work on the stock market would have to be deferred fur-
ther, since he now had another major move to plan and a new depart-
ment to settle into.
 Still, he remained interested in the project, and at some point dur-
ing the year, while scanning advertisements in investment magazines, 
thorp came across a publication called the RHM Warrant Survey. War-
rants are a kind of stock option, offered directly by the company whose 
stock is being optioned. Like an ordinary call option, they give the 
holder the right to purchase a stock at a fixed price, before a fixed expi-
ration date. throughout the middle of the twentieth century, options 
weren’t traded widely in the United States. Warrants were the closest 
thing to an option available. RHM claimed that trading warrants was 
a possible source of untold wealth  —  if you understood them. Implicit 
was that most people didn’t know what to do with warrants. this was 
just the kind of thing thorp was looking for, and so he decided to 
subscribe. But he didn’t have much time to look at the documents that 
began arriving.
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As the spring semester came to an end in new Mexico, thorp found 
himself with a few weeks to spare before his move to california. He 
began to riffle through the RHM documents. the writers at RHM 
apparently thought of warrants as a kind of lottery ticket. they were 
cheap to buy, usually worthless, but occasionally you could strike it 
rich if a stock started trading well above the warrant’s exercise price.
 Where RHM, and most other investors, saw a lottery ticket, thorp 
saw a bet. A warrant is a bet on how a stock will perform over a fixed 
period. the price of the warrant, meanwhile, is a reflection of the mar-
ket’s determination of how likely the buyer is to win the bet. It also 
reflects the payout, since your net profit if the warrant does become 
valuable is determined by how much you had to pay for the warrant 
in the first place. But thorp had just spent an entire summer reading 
about how stock prices are random. He pulled out a piece of paper and 
began to calculate. His reasoning followed Bachelier’s thesis closely, 
except that he assumed prices were log-normally distributed, à la os-
borne. He quickly arrived at an equation that told him how much a 
warrant should really be worth.
 this was valuable, if not trailblazing. But thorp had an ace up 
his sleeve, something Bachelier and osborne never imagined. With 
five years of gambling experience, thorp realized that calculating a 
“true” price for a warrant is a lot like calculating the “true” odds on 
a horserace. In other words, the theoretical relationship that thorp 
discovered between stock prices and warrant prices gave him a way 
to extract information from the market  —  information that gave him 
an edge, not in the stock market directly, but in the associated war-
rant market. this partial information was just what thorp needed to 
implement the Kelly system for maximizing long-term profits.

thorp was energized by this work on warrants. It seemed to him that 
he had finally found the perfect way to use his gambling experience to 
profit from the world’s biggest casino. But there was a problem. When 
he finished his calculations and plugged some numbers into a com-
puter (thorp wasn’t able to solve the equations he set up explicitly, but 
he was able to come up with a way to use a computer to do the final 
calculations for him), he discovered that there was no advantage to 



buying warrants. In other words, you couldn’t go out and buy warrants 
and expect to make a profit  —  according to the Kelly betting system, 
you should invest nothing! the reason for this wasn’t that warrants 
were all trading at exactly what they were worth; rather, they were 
trading at much too high a price. the dirt-cheap lottery tickets that 
RHM Warrant Survey was advertising were actually much, much too 
expensive.
 If you think of investing as a kind of gamble, buying a stock repre-
sents a bet that the stock price will go up. Selling a stock, meanwhile, 
is a bet that the stock will go down. thorp, like Bachelier before him, 
realized that the “true” price of a stock (or option) corresponds to the 
price at which the odds of the buyer winning are the same as the odds 
of the seller winning. But with traditional trades, there’s an asymme-
try. You can virtually always buy a stock; but you can sell a stock only if 
you already own it. So you can bet against a stock only if you’ve already 
chosen to bet for it. this is similar to a casino: it would be highly desir-
able, in roulette, say, to bet against a number. this, after all, is what the 
house does, and the house ultimately has the long-term advantage. But 
it isn’t possible. no casino will let you bet that your blackjack hand will 
lose.
 In investing, however, there is that possibility. If you want to sell a 
stock you don’t already own, all you need to do is find someone who 
does own the stock but doesn’t want to sell it, and who is willing to let 
you borrow the shares for a while. then you sell the borrowed shares, 
with the expectation that at some later time you will buy the same 
number of shares back and return them to their original owner. this 
way, if the price goes down after you sell, you see a profit, since you 
can buy the shares back at the lower price. Whoever loaned you the 
shares, meanwhile, is no worse off than if he had simply held on to 
them. the origins of this investment practice, known as short selling, 
are obscure, but it is at least three hundred years old. We know this 
because it was banned in england in the seventeenth century.
 today, short selling is perfectly standard. But in the 1960s  —  indeed, 
for much of the practice’s history  —  it was viewed as dangerous at best, 
and perhaps even depraved or unpatriotic. the short seller was per-
ceived as a blatant speculator, gambling on market moves rather than 
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investing capital to spur growth. Worse, he had the nerve to take a 
financial interest in bad news. this struck many investors as déclassé. 
views on short selling changed in the 1970s and 1980s, in part because 
of thorp’s and others’ work, and in part because of the rise of the chi-
cago School of economics. As those economists argued at the time, 
short selling may seem crude, but it serves a crucial social good: it 
helps keep markets efficient. If the only people who can sell a stock are 
the ones who already own it, people who have information that could 
be bad for the company often don’t have any way of affecting market 
prices. this would mean that information could be available that isn’t 
reflected in the stock price, because the people who have access to the 
information aren’t able to participate in the market. Short selling pre-
vents this situation.
 Whatever the social impact, short selling does have real risks at-
tached. When you buy a stock (sometimes called taking a “long” po-
sition, in contrast to the “short” position that short sellers take), you 
know how much money you stand to lose. Stockholders aren’t respon-
sible for a corporation’s debts, so if you put $1,000 into At&t, and 
At&t goes under, you lose at most $1,000. But stocks can go up arbi-
trarily high. So if you make a short sale, there’s no telling how much 
money you stand to lose. If you sell $1,000 worth of At&t short, when 
it comes time to buy the shares back to repay the person you borrowed 
them from, you might need to come up with a lot more money than 
you originally received in the sale in order to get the shares back.
 Still, thorp was able to find a broker who was willing to execute 
the required trades. this solved one problem, of figuring out how to 
apply Kelly’s results in the first place. But even if thorp could ignore 
the social stigma of short selling  —  and he could  —  the real dangers of 
unlimited losses remained. Here, though, thorp had one of his most 
creative insights. His analysis of warrant pricing gave him a way of 
relating warrant prices to stock prices. Using this relationship, he re-
alized that if you sell warrants short, but at the same time you buy 
some shares of the underlying stock, you can protect yourself against 
the warrant increasing in value  —  because if the warrant increases in 
value, according to thorp’s calculations the stock price should also in-
crease, limiting your losses on the warrant. thorp discovered that if 



you pick the right mix of warrants and stocks, you can guarantee a 
profit unless the stock price moves dramatically.
 this strategy is now called delta hedging, and it has spawned other 
strategies involving other “convertible” securities (securities that, like 
options, can be exchanged for another security, such as certain bonds 
or preferred shares of stock that can be converted to shares of common 
stock). Using such strategies, thorp was able to consistently make 20% 
per year . . . for about forty-five years. He’s still doing it  —  indeed, 2008 
was one of his worst years ever, and he made 18%. In 1967, he wrote a 
book, called Beat the Market, with a colleague at Uc Irvine who had 
worked on similar ideas.

Beat the Market was too unusual, too different from then-current prac-
tices, to change Wall Street overnight. Many traders simply ignored it; 
most who read it didn’t understand it, or missed its importance. But 
one reader, a stockbroker named Jay regan, saw thorp’s genius. He 
wrote to thorp and proposed that they enter a partnership to create a 
“hedge fund.” (the term hedge fund, originally “hedged” fund, was al-
ready twenty years old when thorp and regan first met, but nowadays 
so many hedge funds are based on ideas related to thorp’s delta hedg-
ing strategy that the name might as well have originated with thorp 
and regan.) regan would take care of the tasks that thorp hated: he 
would promote the fund, find and manage clients, interface with bro-
kers, execute the trades. thorp would just be responsible for identify-
ing the trades and working out the mix of stocks and convertibles to 
buy and sell. thorp wouldn’t even have to leave the West coast: regan 
was happy to run the business end of things from new Jersey, while 
thorp stayed in newport Beach, california, building a team of math-
ematicians, physicists, and computer scientists to identify favorable 
trades. the deal seemed too good to be true. thorp quickly agreed.
 the company that thorp and regan created was initially called 
convertible Hedge Associates, though in 1974 they changed the name 
to Princeton-newport Partners. Success came quickly. In its first full 
year, their investors made just over 13% each on their investments, after 
fees  —  while the market returned only 3.22%. they also had some im-
pressive early admirers. one of their earliest investors, ralph Gerard, 
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the dean of Uc Irvine’s graduate school — in a sense, thorp’s boss —
had inherited a fortune. He was looking to invest with a new fund, be-
cause his old money manager was moving on to other projects. thorp 
was close to home, but before Gerard would invest with the new part-
nership, he wanted his old money manager, a trusted friend, to take a 
careful look at thorp. thorp agreed to the meeting, and one evening 
he and vivian drove a few miles down the Pacific coast Highway, to 
Laguna Beach, where the old money manager lived. the plan was to 
play bridge and chat casually, so that the old money manager could 
size thorp up.
 thorp learned that his host was leaving the money management 
business to focus on a new venture  —  an old manufacturing and tex-
tiles company that he was hoping to rebuild. He’d made his first mil-
lion managing other people’s money, and now it was time to put his 
own money to work. But mostly, thorp and his host discussed prob-
ability theory. While they were playing, the host mentioned a kind 
of trick dice, called nontransitive dice. nontransitive dice are a set of 
three dice with different numbers on each side. they have the unusual 
property that if you roll dice 1 and 2 at the same time, die 2 is favored; 
if you roll dice 2 and 3 at the same time, die 3 is favored; but if you 
roll dice 1 and 3 at the same time, die 1 is favored. thorp, always a fan 
of games and the probabilities associated with them, had long been 
interested in nontransitive dice. from that point on, the two were fast 
friends. on the ride back to newport Beach, thorp told vivian that 
he expected their host to someday be the richest man in the world. In 
2008, his prediction came true. the old money manager’s name was 
Warren Buffett. And at his recommendation, Gerard invested with 
thorp’s company.
 Princeton-newport Partners quickly became one of the most suc-
cessful hedge funds on Wall Street. But all good things must end. And 
Princeton-newport’s demise was particularly dramatic. on decem-
ber 17, 1987, about fifty fBI, Atf, and treasury department agents 
pulled up in front of the firm’s Princeton office. the agents stormed 
into the building, looking for records and audiotapes regarding a se-
ries of trades the firm had made with the soon-to-be-indicted junk 
bond dealer Michael Milken. A former Princeton-newport employee 



named William Hale had testified to a grand jury that regan and 
Milken were engaged in a tax dodge known as stock parking. one 
downside to delta hedging and related strategies is that profits from 
short-term and long-term positions are taxed differently. So when you 
buy and sell at the same time, profits and losses that otherwise would 
cancel each other out don’t cancel from a tax perspective. regan was 
trying to avoid additional taxes by concealing who actually owned 
the long-term positions, “parking” the stocks at Milken’s firm. Parked 
stocks were officially sold to Milken, with an unofficial agreement that 
regan could buy them back for a predetermined price, irrespective of 
what had happened in the market in the meantime. though hardly 
nefarious, stock parking was illegal, and rudy Giuliani, who was pros-
ecuting the case, hoped that by applying pressure on the Princeton-
newport side, he could dig up additional evidence against Milken.
 By all accounts, thorp was completely in the dark. He didn’t know 
that the east coast side of the firm was doing anything illegal until the 
scandal broke in the news. He was never accused of, let alone charged 
with, any crime. And by the time he got wind of the raid, regan al-
ready had a lawyer and refused to talk to his partner. the firm hobbled 
along for another year, but the legal proceedings had ruined its reputa-
tion. In 1989, Princeton-newport Partners closed. over the course of 
twenty years, it had average returns of 19% (over 15% after fees)  —  an 
unprecedented performance.
 After Princeton-newport closed, thorp took some time off be-
fore regrouping to form edward o. thorp Associates, his own money 
management firm. though he has long since given up managing other 
people’s money professionally, he still runs the fund today using his 
own capital. Meanwhile, hundreds of quant hedge funds have opened 
(and closed), trying to reproduce Princeton-newport’s success. As the 
Wall Street Journal put it in 1974, thorp had ushered in a “switch in 
money management” to quantitative, computer-driven methods. It’s 
amazing what a little information theory can do.
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I n february 1961 ,  fischer Black’s Phd advisor, Anthony oet-
tinger, wrote to Harvard’s committee on Higher degrees: “I have 
reason to be concerned about [Black’s] intellectual discipline so 

that, while recognizing his ability and his desire for independence, I 
am concerned lest he lapse into dilettantism.” two months later, oet-
tinger chaired an oral exam designed to determine whether Black was 
prepared to advance to the dissertation stage of his doctorate. Black 
passed  —  but with an explicit requirement that he produce “a coher-
ent, lucid thesis outline” by January 1962. Within a week, Black was in 
jail for participating in student riots in Harvard Square, and when a 
Harvard dean went to bail him out, Black was unrepentant. He railed 
against police authority, against Harvard’s authority, and against his 
advisor. January 1962 came and went, and Black had done no more 
work toward his thesis. He was informed that he could not return to 
Harvard.
 today, fischer Black is one of the most famous figures in the his-
tory of finance. His most important contribution, the Black-Scholes 
(sometimes Black-Scholes-Merton) model of options pricing, remains 
the standard by which all other derivatives models are measured. In 
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1997, Black’s collaborators, Myron Scholes and robert Merton, were 
awarded the nobel Prize in economics for the Black-Scholes model. 
Black had died in 1995 and so was ineligible for the prize (the nobel is 
never awarded posthumously), but in a rare nod, the nobel committee 
explicitly acknowledged Black’s contribution in its announcement of 
the award. every two years, the American finance Association awards 
the fischer Black Prize  —  one of the most prestigious awards in ac-
ademic finance  —  to an individual under forty whose body of work 
“best exemplifies the fischer Black hallmark of developing original 
research that is relevant to finance practice.” MIt’s Sloan School of 
Management endowed a chair in financial economics in Black’s honor. 
And the list goes on.
 In the broad history of physics in finance, Black is perhaps best seen 
as a transitional figure. He was trained as a physicist but was never suc-
cessful as one  —  in large part because he was too wide-ranging and un-
focused. though he was more successful as a financial economist, his 
career was fleeting, as he quickly became bored with the projects that 
made him famous and turned to new ideas that were met with much 
more skepticism. Yet these very qualities  —  the qualities that oettinger 
worried would lead Black to dilettantism  —  were what allowed Black 
to bring about a marriage long in the waiting. He was enough of a 
physicist to understand and develop the insights of people like Bach-
elier and osborne, and yet he was enough of an economist to express 
his discoveries in a language economists could understand. In these 
ways he was like Samuelson, though he was never as intellectually dis-
tinguished. But unlike Samuelson, Black was able to communicate to 
investors and Wall Street bankers how the new ideas coming out of 
physics could be used in practice. thorp was the first person to fig-
ure out how to use Bachelier’s and osborne’s random walk hypothesis 
to make a profit, but he did so outside of the establishment, through 
Princeton-newport Partners. Black, on the other hand, was the person 
who made quantitative finance, with its deep roots in physics, an es-
sential part of investment banking. Black took physics to the Street.

Black first arrived at Harvard in 1955, at age seventeen. If anyone asked 
why he applied to Harvard and nowhere else, he would say it was be-
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cause he liked to sing and Harvard had a great glee club. from the very 
beginning, he was determined to chart his own course through aca-
demia. He refused to do the work he was assigned and instead wrote 
papers on topics he decided were interesting. After a few semesters 
of introductory courses, he decided to enroll in graduate classes. He 
picked an interdisciplinary major called “social relations,” which com-
bined several social science disciplines, and then promptly began con-
ducting experiments with himself as the subject. for instance, he would 
modify his sleep schedule, alternating between four hours awake and 
four hours asleep, all while taking careful and copious notes on how 
his body reacted. He began taking drugs, including hallucinogens, and 
tracking the effects. Most of his friends were graduate students.
 come junior year, however, he started having second thoughts 
about his choice of major. Social relations was interesting, but Black 
wanted a career in research. Like osborne and thorp, Black was a 
natural-born scientist, constantly experimenting and coming up with 
theories to test, and he just didn’t see how social relations could get 
him the kind of job he wanted. So he turned toward the hard sciences, 
flirting with chemistry and biology before finally settling on physics. 
He wanted to do fundamental, theoretical work, and so the next year 
he applied to graduate school, once again only to Harvard, to do a Phd 
in theoretical physics. He won a prestigious national Science founda-
tion graduate student fellowship and Harvard admitted him. In the fall 
of 1959, Black started graduate school as a physicist.
 But by the end of his first year, his attention had begun to stray 
again. He took only one physics course, filling his first year instead 
with electrical engineering, philosophy, and mathematics. He was a 
little interested in everything, but not enough interested in anything to 
stay focused for long. After just a few weeks, he switched departments, 
to study applied mathematics instead of physics; then, come spring 
semester, he was devoting all of his time to an artificial intelligence 
course at MIt, taught by AI pioneer Marvin Minsky; by fall 1960, he 
was back to the social sciences, taking two courses in psychology.
 It would be wrong to say that Black did poorly in school. But his 
tack was certainly unconventional. on the one hand, he barely passed 
some courses  —  including the one physics course he enrolled in. dur-



ing his second year he failed a psychology course because it empha-
sized “behavioralist” methods, while Black saw himself as aligned with 
the newer, more fashionable “cognitivist” school. But he was certainly 
one of the best minds at Harvard. In an open competition during his 
first year, he successfully solved a challenge problem offered by one of 
his mathematics professors, which earned him an endowed scholar-
ship for the following year. And so his abilities were never really in 
doubt. It is nonetheless easy to see oettinger’s worry: two years into 
graduate school, Black was no closer to settling on a major than he 
was as an undergraduate. If anything, the rate at which he swung from 
discipline to discipline was accelerating. As Black saw it, he was sim-
ply curious, and he wasn’t going to be pinned down by some stodgy 
old school’s rules about what constituted appropriate academic work  
—  even if it meant leaving Harvard.

Ultimately, Black did earn a Phd in applied mathematics. But he took 
the scenic route. When Harvard asked him to leave, he found a job 
at Bolt, Beranek and newman (BBn), a cambridge-based high-tech 
consulting firm. BBn hired Black because of his computer skills, and 
most of his time there was spent working on computerized data re-
trieval systems for a project commissioned by the council on Library 
resources. As part of this project, Black wrote a program that used 
formal logic to try to answer simple questions. the program would 
take an input such as “What is the capital of romania?” and try to 
deduce an answer based on a list of facts it had stored in a database. 
A major part of this project was devoted to simply parsing the ques-
tion, trying to determine what the questioner was even after. Black’s 
work represented an important early contribution to the field known 
as computational linguistics, in which people try to figure out how to 
make computers understand and produce natural language.
 Word spread quickly around cambridge of Black’s work at BBn. 
In the spring of 1963, Minsky heard about Black’s question-answering 
program. He was sufficiently impressed  —  and sufficiently influential  
—  that he negotiated readmission to Harvard on Black’s behalf. Min-
sky took responsibility for Black’s work, with a professor at Harvard 
named Patrick fischer serving as the official advisor. over the next 
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year, Black turned his consulting project into a dissertation on deduc-
tive question-answering systems, which he successfully defended in 
June 1964.
 But by this time, Black had had enough of academia  —  at least for a 
while. He had settled on a project long enough to write a dissertation, 
but this hardly signaled a lifelong devotion to artificial intelligence. 
He thought about becoming a writer, working on popular nonfic-
tion projects. or maybe he would go into the computer business. He 
considered applying for a postdoctoral fellowship to stay at Harvard 
and work on the interface between technology and society  —  a new 
subject, spurred by new postwar technologies. But ultimately nothing 
panned out, and so after graduating, Black returned to consulting. At 
least there, he could work on many different projects, and he had al-
ready discovered that solving concrete problems appealed to him.
 Instead of returning to BBn, however, Black took a job with an-
other local firm, called Arthur d. Little, Inc. (AdL), in the opera-
tions research division. At first Black worked primarily on computer 
problems. for instance, MetLife had a state-of-the art computer, but 
the company still felt as if its computation needs weren’t being met. 
MetLife hired AdL to see if a second computer was needed. Black, col-
laborating with two others at AdL, discovered that the problem wasn’t 
the computer, which was working at only half capacity, but rather the 
way in which the computer stored data: instead of using thirty avail-
able drives, it used only eight drives in everyday tasks. So Black and his 
team worked out an optimization scheme for using all of the available 
drives.
 Black worked at AdL for about five years. the experience changed 
his life. When he arrived, he was an operations research and computer 
science guy. He had unusually broad interests, but there’s no evidence 
to suggest that finance was among them. When he left in 1969, he had 
already laid the foundation for the Black-Scholes model. He was recog-
nized, at least in some circles, as an exciting, if radical, up-and-coming 
financial economist. Wells fargo immediately hired him to develop a 
trading strategy.
 this transformation began shortly after Black arrived at AdL, 
where he encountered a slightly older member of the operations re-



search section named Jack treynor. treynor had gone to Haverford 
college intending to major in physics but decided that the department 
wasn’t very good, and so he switched to mathematics. After college 
he went to Harvard Business School and then joined AdL in 1956, a 
decade before Black would arrive. treynor and Black didn’t overlap at 
AdL for long: in 1966, treynor was wooed away by Merrill Lynch. But 
the two practically minded mathematicians made fast friends. Black 
liked treynor’s way of thinking and quickly became interested in his 
work, primarily on risk management, hedge fund performance, and 
asset pricing. Although treynor didn’t have a formal background in 
financial theory either, his business school background had exposed 
him to a set of problems that he was well suited to work on, and so 
much of his work at AdL involved financial institutions. Meanwhile, 
he worked on more theoretical research projects on the side, often mo-
tivated by the kinds of problems AdL clients encountered.
 By the time Black arrived at AdL, treynor had already developed a 
new way of understanding the relationship between risk, probability, 
and expected value, now known as the capital Asset Pricing Model 
(cAPM). the basic idea underlying cAPM was that it should be pos-
sible to assign a price to risk. risk, in this context, means uncertainty, 
or volatility. certain kinds of assets  —  U.S. treasury bonds, for in-
stance  —  are essentially risk-free. nonetheless, they yield a certain rate 
of return, so that if you invest in treasury bonds, you are guaranteed 
to make money at a fixed rate. Most investments, however, are inher-
ently risky. treynor realized that it would be crazy to put your money 
into one of these risky investments, unless you could expect the risky 
investments to have a higher rate of return, at least on average, than 
the risk-free rate. treynor called this additional return a risk premium 
because it represented the additional income an investor would de-
mand before buying a risky asset. cAPM was a model that allowed you 
to link risk and return, via a cost-benefit analysis of risk premiums.
 When Black learned about cAPM, he was immediately hooked. He 
found the simple relationship between uncertainty and profit deeply 
compelling. cAPM was a big-picture theory. It described the role of 
risk in making rational choices in a very abstract way. Later in his 
career, Black would point to one feature of cAPM in particular that 
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he was drawn to: it was (in his words) an equilibrium theory. “equi-
librium was the concept that attracted me to finance and econom-
ics,” Black wrote in 1987. cAPM was an equilibrium theory because 
it described economic value as the natural balance between risk and 
reward. the idea that the world was in a constantly evolving equi-
librium would have appealed to Black’s sensibilities as a physicist: in 
physics, one often finds that complicated systems tend toward states 
that are stable under small changes. these states are called equilibrium 
states because they, too, represent a kind of balance between different 
influences.
 Black set out to learn everything that treynor knew about finance, 
so that when treynor left AdL, just a year after he and Black first met, 
Black was the natural person to take treynor’s place on AdL’s financial 
consulting team  —  and further perfect treynor’s model. cAPM would 
form the foundation for virtually all of the work Black would go on to 
do.

If Jack treynor initiated Black’s transformation into a financial econo-
mist, Myron Scholes brought it to fruition. Scholes arrived in cam-
bridge in September 1968, a fresh doctorate from the University of 
chicago in hand. A fellow graduate student in chicago, Michael Jen-
sen, had recommended that Scholes look up Black  —  an “interesting 
fellow,” in Jensen’s estimation. Scholes called soon after arriving in 
cambridge. Both men were young: Scholes had just turned twenty-
seven, and Black was thirty. neither was particularly accomplished, 
though Scholes’s recent appointment as an assistant professor at MIt 
was a promising sign. they met over lunch in the drab, institutional 
cafeteria at AdL’s Acorn Park campus. one rarely imagines history 
unfolding over a cafeteria meal shared by undistinguished men. And 
yet, that first meeting between Black and Scholes was the start of a 
friendship that would change financial markets forever.
 Black and Scholes were polar opposites. Black was quiet, even shy. 
Scholes was outgoing and brash. Black was interested in applied work, 
but he had a theoretical, abstract mind. Scholes, meanwhile, had just 
written a heavily empirical thesis, analyzing piles of data to test the 
efficient market hypothesis, which by this point had been elevated to 



a central principle of neoclassical economics. It is difficult to imag-
ine how that first conversation could have gone. And yet, something 
clearly clicked. the two men met again, and then again. Soon they had 
laid the foundation for a lifelong friendship and intellectual partner-
ship. Scholes invited Black to participate in the weekly MIt finance 
workshop, which was Black’s first opportunity to fully engage with fi-
nance academics. Soon after, Wells fargo approached Scholes with an 
offer for a consulting arrangement, to help the bank implement some 
of the new ideas in finance, like cAPM, that were just bubbling to the 
surface in academia. Scholes felt that he didn’t have enough time to 
do the work himself, but he knew someone who would be perfect for 
the job. Black quickly agreed, and in March 1969, some six months 
after that first meeting in the AdL cantina, Black quit his job at AdL 
and went off on his own. He started a new consulting firm, called As-
sociates in finance, with Wells fargo as his principal client. He and 
Scholes were tapped to help Wells fargo create a new, state-of-the-art 
investment strategy.
 It was around this time that Black began thinking about ways to 
extend cAPM to different kinds of assets and different kinds of port-
folios. for instance, he tried to apply cAPM to the question of how to 
apportion one’s investments over time. Should you change your risk 
exposure as you get older, as some people were suggesting? Black de-
cided the answer was no: just as you want to diversify over different 
stocks at a given time, you also want to diversify over different times, 
to minimize the impact that any particular stretch of bad luck might 
have. the question of how to value options using cAPM was just one 
of the many such problems that Black was working on at this time. 
And as early as the summer of 1969, Black had already made progress, 
by deriving the fundamental relationship that would ultimately give 
rise to the Black-Scholes equation.
 the essential insight was that at any given instant, it is always pos-
sible to create a portfolio consisting of a stock and an option on that 
stock that would be perfectly risk-free. If this sounds familiar, it’s be-
cause the idea is very similar to the one at the heart of thorp’s delta 
hedging strategy: he, too, realized that if the prices of options and their 
underlying assets are related, you could combine options and stocks 

112 • t h e  p h y s i c s  o f  wa l l  s t r e e t



Physics Hits the Street • 113

to control risk. the difference was that thorp’s delta hedge strategy 
aimed to guarantee a profit, provided that the underlying stock’s price 
didn’t change too dramatically. this approach controlled risk, but it 
didn’t eliminate it altogether. (Indeed, if cAPM-style reasoning is cor-
rect, you shouldn’t be able to both eliminate risk and still make a sub-
stantial profit.) Black’s approach was to find a portfolio consisting of 
stocks and options that was risk-free, and then argue by cAPM rea-
soning that this portfolio should be expected to earn the risk-free rate 
of return. Black’s strategy of building a risk-free asset from stocks and 
options is now called dynamic hedging.
 Black had read cootner’s collection of essays on the randomness of 
markets, and so he was familiar with Bachelier’s and osborne’s work 
on the random walk hypothesis. this gave him a way to model how 
the underlying stock prices changed over time  —  which in turn gave 
him a way to understand how options prices must change over time, 
given the link he had discovered between options prices and stock 
prices. once Black had found this fundamental relationship between 
the price of a stock, the price of an option on that stock, and the risk-
free interest rate, it was just a few steps of algebra for him to derive an 
equation for the value of the option, by relating the risk premium on 
the stock to the risk premium on the option. But now he was stuck. 
the equation he derived was a complicated differential equation  —  an 
equation relating the instantaneous rate of change of the price of the 
option to the instantaneous rate of change of the price of the stock  —  
and Black, despite his background in physics and mathematics, didn’t 
know enough math to solve it.
 After struggling for several months, Black gave up. He didn’t tell 
anyone about the options problem, or his partial solution, until later in 
1969, when Scholes mentioned that one of his master’s students at MIt 
was interested in options pricing. Scholes began to speculate about 
whether cAPM could be used to solve the problem  —  at which point 
Black opened his desk drawer and pulled out a sheet of paper with the 
crucial differential equation written on it, and from then on the two 
men worked on the problem together. they had solved it by summer 
1970, and the Black-Scholes equation for the price of an option made 
its debut in July, at a conference that Scholes organized at MIt, spon-



sored by Wells fargo. In the meantime, a new colleague of Scholes’s at 
MIt, robert Merton (himself an engineer by training, though he went 
on to earn a Phd in economics), had rederived the same differential 
equation and the same solution from an entirely different starting 
point. With two different approaches giving the same answer, Black, 
Scholes, and Merton were convinced they were on to something big.

Black and Scholes submitted their paper to the Journal of Political 
Economy, one of the most important publications in the field, soon 
after they had solved the problem. the paper was promptly rejected, 
without so much as a note of explanation (suggesting it wasn’t even 
seriously considered). So they tried again, this time with Review of 
Economics and Statistics. Again, they received a rapid rejection with no 
articulation of what was wrong with the article. Merton, meanwhile, 
held off on sending his alternative approach to journals, so that Black 
and Scholes could receive appropriate credit for their discovery.
 despite the early setbacks, however, Black and Scholes were not 
destined to labor in obscurity. Powerful forces in academia, in finance, 
and in politics were aligning in their favor. And some of the then-
reigning academic gods were ready to intervene. After the second re-
jection, University of chicago professors eugene fama and Merton 
Miller, two of the most influential economists at the time and leaders 
of the then-nascent chicago School of economics, successfully urged 
the Journal of Political Economy to reconsider, and in August 1971 the 
article was accepted for publication, pending revisions.
 In the meantime, fischer Black had attracted attention at the Uni-
versity of chicago. economists there were familiar with his work with 
Scholes, both on options and at Wells fargo; they’d seen him in ac-
tion at the Wells fargo conference. A few years earlier, in 1967, Black 
had traveled to chicago with treynor to present some of their collab-
orative work to the graybeards. chicago economists didn’t need fancy 
journals to vet young academics: they knew talent when they saw it, 
and Black certainly had talent. And so in May 1971, they offered Black 
a job. At this point, Black had already been out of graduate school for 
seven years, yet he had only four publications, just two of which were 
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in finance. He had a Phd, but in an unrelated field. none of this mat-
tered. chicago wanted him.
 chicago wasn’t working on a hunch that Black’s work would become 
important. the faculty there had some inside information: options 
were about to become a really big deal  —  and a formula that allowed 
investors to price them would prove essential. two major changes to 
U.S. and international policy were in the works, both centered in chi-
cago, that would soon revolutionize the derivatives industry. Having 
someone like Black on one’s team could only help.
 the first major change took place on october 14, 1971, just a few 
weeks after Black arrived in chicago. the Securities and exchange 
commission (Sec) gave the go-ahead to the chicago Board options 
exchange (cBoe), the first open, dedicated options market in United 
States history. options had been around for hundreds of years, and 
they had been traded in the United States, often in the guise of war-
rants, since at least the middle of the nineteenth century. But they had 
never been traded on an open market before. economists in chicago 
had been agitating for the Sec to remove barriers to an open options 
exchange for years, until finally they convinced the chicago Board of 
trade (cBot) to convene a committee to consider the possibility, in 
1969. the head of that committee was James Lorie, a faculty member 
at the University of chicago business school; later, Lorie and Merton 
Miller were essential in writing the report on the public impact of an 
options exchange that would become a major part of the cBot’s pro-
posal to the Sec in March 1971.
 the cBoe and the Black-Scholes paper were greenlit within 
months of each other; two years later, the cBoe opened for trading, 
just a month before the Black-Scholes article would appear in print. 
on the first day of trading, nine hundred options were traded on six-
teen underlying stocks. But volume grew at an astonishing rate: well 
over a million options were traded in 1973 alone, and by october 1974, 
the exchange began seeing single days in which as many forty thou-
sand options were traded, with regular volume above thirty thousand. 
Within a decade, this number would reach half a million. And com-
petition from other exchanges popped up quickly: first the American 



Stock exchange announced it would begin trading options, followed 
quickly by the Philadelphia and Pacific stock exchanges. In January 
1977, the european options exchange was established in Amsterdam, 
modeled on the cBoe. options trading was suddenly a big business, 
and, at least at first, investors were anxious to learn as much as they 
could about the new instruments. Black, Scholes, and Merton quickly 
became household names, at least in finance.
 the second fortuitous policy change, as far as Black’s career was 
concerned, occurred almost simultaneously with the creation of the 
cBoe, though its impact on Black was slower. once again, chicago’s 
influential economists, and especially the famous monetarist Milton 
friedman, were behind the initiative. In 1968, when nixon was elected 
president, friedman wrote him a letter urging him to abandon the so-
called Bretton Woods system. Bretton Woods, named for the town in 
new Hampshire where the system was devised in July 1944, was the 
international monetary agreement put in place at the end of World 
War II. the Bretton Woods conference led to the creation of the In-
ternational Monetary fund (IMf) and the International Bank for re-
construction and development (now part of the World Bank). More 
important for our story was the fact that under the Bretton Woods 
system, major world currencies were valued at fixed exchange rates, 
based on the value of the U.S. dollar (and ultimately on gold, because 
the dollar was freely exchangeable for gold, at least for foreign govern-
ments). changes in these exchange rates were infrequent, involving a 
long diplomatic process.
 By 1968, however, when friedman wrote to nixon, the Bretton 
Woods system was beginning to show cracks. the main problem was 
that there simply wasn’t enough gold in the world to back the explo-
sion in postwar international trade. While the United States held most 
of the world’s gold supply, gold continued to be traded on the open 
market, where its price could fluctuate. As long as the United States 
and its allies could keep open-market gold prices in line with the Bret-
ton Woods price, there was no problem. But if the price of gold on the 
open market rose too high, as it naturally would with growing demand 
and a limited supply, there would be a risk of a run on the dollar (in 
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the sense of a rush to convert dollars to gold), as foreign governments 
sought to settle their own debts by buying U.S. gold and selling it for 
a profit on the open market  —  in which case the system would simply 
collapse. Such a rush in fact occurred in late 1967, which was the impe-
tus for friedman to write his letter. But for a thinker like friedman, the 
Bretton Woods system was ill conceived from the start: it was hopeless 
for governments to try to set exchange rates at all. exchange rates, like 
anything else, should be determined freely in an open market.
 nixon didn’t listen to friedman at first, but by 1971, with increased 
spending in vietnam accelerating the accumulation of U.S. debt, he 
saw the writing on the wall. first West Germany and Japan pulled 
out of the Bretton Woods agreement and announced their currencies 
would no longer maintain parity with the dollar. then, rather than 
wait for the world economy to collapse, nixon administered the coup 
de grâce to the Bretton Woods system by ending the convertibility of 
U.S. dollars to gold. over the next years, the fixed exchange rates gave 
way to floating rates, creating a system whereby the relative prices of 
currencies were determined on the open market.
 Meanwhile in chicago, Leo Melamed, the chairman of the chicago 
Mercantile exchange (cMe), another futures exchange that had spun 
off from the cBot in the early twentieth century, saw that global 
fiscal policy was in flux. following a hint from friedman, Melamed 
launched a new exchange of his own in May 1972, called the Interna-
tional Monetary Market (IMM), for trading futures contracts in for-
eign currency. As long as the Bretton Woods system was in place, trad-
ing currency futures wasn’t very interesting because currency values 
could change only through a laborious and public process. But once 
the exchange rate was allowed to float and be determined by open-
market trading, futures markets became essential. Most important 
was that companies, and especially banks, could use currency futures 
to protect themselves against unexpected changes in currency values. 
Suppose that a company in the United States contracts with a com-
pany in the United Kingdom to send a shipment of cowboy boots in 
exchange for payment in pounds on delivery. the agreement is made 
at a particular time, but the payment won’t come in until the cowboy 



boots hit Britain. And in the meantime, the pound could change in 
value, so that the U.S. company’s profits (in dollars) would be lower 
than they were when the contract was made. to protect against such 
changes, the U.S. company could sell a futures contract for the amount 
it plans to receive when the shipment arrives, effectively eliminating 
the risk that the currency might change unexpectedly.
 What does the IMM have to do with Black and Scholes’s options 
pricing formula? At first glance nothing  —  but within a few years, fu-
tures trading at the IMM had expanded to include new derivatives 
based on currencies, including options. Because currency risk is an 
important part of any international transaction, currency derivatives 
very rapidly became essential to the international economy. And once 
again, as at the cBoe, the Black-Scholes model became an integral 
part of everyday trading life. even more importantly, Black and Scho-
les pointed a way forward for modeling other derivatives contracts, 
too, which rapidly grew at the IMM as businesses sought new ways of 
protecting themselves against currency risk. Between the IMM and 
the cBoe, Black and Scholes found a world that was perfectly poised 
to take advantage of their new ideas.

the options pricing formula that Black, Scholes, and Merton discov-
ered was equivalent to the method that thorp had worked out in 1965 
for pricing warrants  —  though thorp used a computer program to 
calculate options prices, rather than derive the explicit equation that 
bears Black’s, Scholes’s, and Merton’s names. But the underlying ar-
guments were different. thorp’s reasoning followed Bachelier’s: he ar-
gued that a fair price for an option should be the price at which the 
option could be interpreted as a fair bet. from here, thorp worked 
out what the price of an option should be, assuming that stock prices 
satisfy the log-normal distribution osborne described. once he had 
a way of calculating the “true” price of an option, thorp went on to 
work out the proportions of stocks and options necessary to execute 
the delta hedging strategy.
 Black and Scholes, meanwhile, worked in the opposite direction. 
they started with a hedging strategy, by observing that it should al-
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ways be possible to construct a risk-free portfolio from a combination 
of stocks and options. they then applied cAPM to say what the rate 
of return on this portfolio should be  —  that is, the risk-free rate  —  and 
worked backward to figure out how options prices would have to de-
pend on stock prices in order to realize this risk-free return.
 the distinction may seem inconsequential  —  after all, the two argu-
ments are different paths to the same model of options prices. But in 
practice, it was crucial. the reason is that dynamic hedging, the basic 
idea behind the Black-Scholes approach, gave investment banks the 
tool they needed to manufacture options. Suppose you are a bank and 
you would like to start selling options to your clients. this amounts 
to selling your clients the right to buy or sell a given stock at a prede-
termined price. Ideally, you don’t want to make a risky bet yourself  —  
your profits are going to come from the commissions you will earn on 
the sales, not on the proceeds of speculation. In effect this means that 
when a bank sells an option, it wants to find a way to counterbalance 
the possibility that the underlying stock will become valuable, without 
losing money if the option doesn’t become valuable. Black and Scho-
les’s dynamic hedging strategy gave banks a way to do exactly this: 
using the Black-Scholes approach, banks could sell options and buy 
other assets in such a way that (at least theoretically) they didn’t carry 
any risk. this turned options into a kind of product, something that 
banks could construct and sell.
 Black stayed in chicago until 1975, when MIt wooed him back to 
cambridge. for a few years, academia seemed like the perfect fit for 
Black. He could work on whatever he liked, and at least in the early 
heyday of exchange-based options trading, it seemed he could do 
no wrong. He was an academic celebrity of the highest order, which 
brought both respect and freedom. His personal life, however, was a 
growing disaster: his (second) wife, Mimi, hated their chicago life, 
which was an important part of the decision to move back to cam-
bridge, nearer to her family. But the move east didn’t help much. In-
creasingly alienated at home, Black devoted more and more time to his 
work, branching off now in new directions. He began to work on gen-
eralizing cAPM to try to explain cycles in the economy: why, in a ra-



tional world, would there be periods of growth, followed by periods of 
contraction? this led him to a new theory of macroeconomics, which 
he called “general equilibrium.” He also launched a crusade against the 
accounting industry, which he considered backward and unhelpful to 
investors.
 But these other strands of his work were terribly received. It was 
as though Black had used up all his luck and timing with the options 
paper, and the string of other papers on derivatives and financial mar-
kets that followed it. His work on macroeconomics in particular was 
out of step with the times. economists in the 1970s and 1980s were 
deeply engaged in an ongoing debate about economic regulation and 
monetary policy. on one side were the chicagoans; on the other, the 
Keynesians, who favored government intervention throughout the 
economy. General equilibrium was a third way, thrust into a bipolar 
community. Black found himself attacked, and then ignored, by both 
sides. no one would publish his papers. His colleagues began to write 
him off as irrelevant. In less than a decade, he went from outsider to 
idol, and then back to outsider. By the early 1980s, Black was fed up 
with academia. He wanted out.
 In december 1983, robert Merton, Black’s old collaborator from 
the Black-Scholes days, was doing consulting work for the investment 
bank Goldman Sachs. Merton was doing at Goldman what Black and 
Scholes had been doing at Wells fargo back in 1970: bringing in the 
new ideas from academia and trying to implement them in a practical 
setting. In this capacity, he argued to robert rubin, then head of the 
equities division, that Goldman Sachs should hire a theorist, an aca-
demic of its own, at a high enough level of the company that the new 
ideas would have a chance to seep through the culture. rubin was con-
vinced, and so Merton went back to MIt, brainstorming who among 
their current crop of graduate students he would recommend for this 
important position. Merton asked Black for his advice and received a 
surprising answer: Black wanted the job himself. three months later, 
Black left academia for a new job at Goldman Sachs, to organize a 
Quantitative Strategies Group in the equities division. thus he be-
came one of the first quants, a new kind of investment bank employee 
with an intensely quantitative and scientific focus, as interested in in-
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tellectual innovation as in making a big trade. Wall Street would never 
be the same.

on october 4, 1957, the Soviet Union launched Sputnik, the first man-
made object to enter earth’s orbit. America panicked. eisenhower 
immediately ordered the fledgling U.S. space program to schedule its 
own launch. the date was set for december 6. the event was tele-
vised live across the nation, as American scientists attempted to prove 
they were equal to the Soviets. Millions tuned in as the first American 
spaceship ignited on the launch pad, and then inched off the ground  
—  for about four feet, before falling back to the tarmac and exploding. 
the performance was a humiliation for the American scientific es-
tablishment. four year later, the Soviets did the Americans one better 
still, by propelling Yuri Gagarin into orbit and successfully launching 
the first manned spacecraft. Kennedy responded within the week by 
asking nASA to find a new challenge that the Americans could win. 
on May 25, 1961, Kennedy announced his commitment to put the first 
man on the moon.
 Physics had been on the rise in the United States since World War 
II. But after Sputnik was launched, physics interest skyrocketed. About 
five hundred physics Phds were awarded in 1958. By 1965, that number 
was closer to a thousand, and by 1969 it was over fifteen hundred. this 
rapid growth was in part a matter of nationalism: becoming a rocket 
scientist was a fine way to serve your country. But even more, it was 
a matter of funding. nASA’s annual budget increased by a factor of 
seventy from 1958 to its peak in the mid-sixties. In 1966, nASA was 
given almost $6 billion  —  4.5% of the total federal budget  —  to devote 
to basic science. other government funding agencies, like the depart-
ment of energy and the national Science foundation, were also flush 
(though none could compete with nASA). even mediocre graduates 
of mid-tier doctoral programs were guaranteed jobs in science, as 
either professors or government researchers. Physicists were in high 
demand.
 on July 20, 1969, neil Armstrong and Buzz Aldrin became the first 
men to step foot on the surface of the moon. America and its allies 
rejoiced  —  finally, an American victory in the space race. And almost 



immediately, the physics job market collapsed. As the space race ac-
celerated, so too did America’s commitment to the war in vietnam. 
the success of the Apollo 11 mission gave nixon an excuse to divert 
funds from nASA and other research groups to the military effort. By 
1971, nASA’s budget was less than half what it had been in 1966 (in real 
terms). Meanwhile, college enrollment began to drop, largely because 
the Baby Boom years were over. once the “Boomers” had graduated, 
universities stopped hiring new faculty members.
 emanuel derman was a South African physicist who experienced 
this funding roller coaster firsthand. He entered graduate school, at 
columbia University, in 1966, at the high point of U.S. science fund-
ing. He worked on experimental particle physics  —  a field far from 
nASA’s central interests, but a beneficiary of the uptick in govern-
ment support for physics nonetheless. Like most graduate students, 
he slogged through, living on a small stipend and working long hours. 
the students he knew when he first arrived in graduate school went on 
to positions at universities around the country. But by the time der-
man graduated, in 1973, there were no permanent jobs left. derman, 
and other physicists who had done excellent work, were barely able 
to scrape together a series of temporary research positions. derman 
spent two years at the University of Pennsylvania, followed by two 
years at oxford, and then two years at rockefeller University, in new 
York. By the end of the decade, he was ready to give up. He considered 
quitting physics for medical school but decided to go to Bell Labs and 
work as a programmer instead.
 As the seventies droned on, the number of physics Phds awarded 
in the United States dropped, to about one thousand per year. While 
this was significantly lower than the peak in 1968, it was still far more 
than the flailing job market could support. this meant that by the time 
Black moved to Goldman Sachs, in 1983, there were thousands of very 
talented men and women with graduate degrees in physics and related 
fields who were either unemployed or underemployed.
 Black’s move to Goldman Sachs coincided with another change, 
too. By 1983, options were a growing business, making people with 
training like Black’s attractive on Wall Street. But bond trading  —  al-
ready a mainstay of the financial industry  —  was in the midst of a sea 
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change. Beginning with the carter administration in the late 1970s, the 
U.S. economy entered a period of high inflation and low growth that 
has subsequently been dubbed “stagflation.” In response, Paul volcker, 
the chairman of the federal reserve from 1979 through 1987, increased 
interest rates dramatically, so that the prime interest rate, the rate that 
determines how expensive it is for banks to lend to one another  —  
and, by extension, to lend to consumers  —  reached an unprecedented 
level of 21.5%. volcker was successful at reducing inflation, which he 
had under control by 1983. But this volatility in interest rates forever 
changed the previously sleepy bond industry. If banks couldn’t borrow 
from one another for less than 20%, surely corporations and govern-
ments that were trying to issue bonds would need to pay even higher 
rates (since typically bonds are more risky than interbank loans). the 
so-called bond bores of the 1970s, traders who had chosen to work in 
the least exciting of the financial markets, now needed to cope with the 
most variable market of all. (Sherman Mccoy, the star-crossed anti-
hero of thomas Wolf ’s novel Bonfire of the Vanities, was an eighties-era 
bond trader who took himself to be so important, given the changes 
in the bond markets during the late seventies and early eighties, that 
he privately called himself a “Master of the Universe.” the name has 
stuck, now used to refer to Wall Street traders of all stripes.)
 the success of the Black-Scholes model and other derivatives mod-
els during the 1970s inspired some economists to ask whether bonds 
could be modeled in a similar way to options. Soon, Black and oth-
ers had realized that bonds themselves could be thought of as simple 
derivatives, with interest rates as the underlying asset. they began to 
develop modified versions of the Black-Scholes model to price bonds, 
based on the hypothesis that interest rates undergo a random walk.
 thus, Black arrived on Wall Street at a moment when derivatives, 
and derivative models, were proving increasingly important, in unex-
pected ways. Black’s Quantitative Strategies Group at Goldman Sachs, 
as well as similar groups at other major banks, provided an answer to 
questions that many investment bankers, and especially bond traders, 
hadn’t known how to ask. At the same time, there was a large pool of 
underemployed physicists who were ready to step in and follow Black’s 
lead in changing financial practice. once a few physicists and half-



physicists had made their way to Wall Street, and once the usefulness 
of the ideas that Black had managed to translate from theory to prac-
tice was appreciated, the floodgates opened. Wall Street began hiring 
physicists by the hundreds.
 derman stayed at Bell Labs for five years. Starting in 1983, though, 
he began to get phone calls from headhunters sent from investment 
banks. He was unhappy enough at Bell Labs that he took these offers 
seriously, but when he finally received an offer from Goldman Sachs, 
he declined it on the advice of an acquaintance who had worked there 
before. But the world was changing. derman found the next year at 
Bell Labs intolerable, and so when Wall Street came calling again, in 
1985, he was ready to move. He decided to go with Goldman Sachs 
after all, and in december of 1985 he made the leap. His job was in the 
financial Services Group, which supported Goldman’s bond traders. 
By the time he arrived, Black was already an institutional legend.

Both thorp and Black based their options models on osborne’s ran-
dom walk hypothesis, which amounted to assuming that rates of re-
turn are normally distributed. this might give you pause. After all, 
Mandelbrot argued throughout the 1960s that normal and log-nor-
mal distributions do not effectively account for extreme events, that 
markets are wildly random. even if Mandelbrot’s claim that rates of 
return are Lévy-stable distributed and thus do not have well-defined 
volatility is false  —  and most economists now believe it is  —  the weaker 
claim that market data exhibit fat tails still holds. options models as-
sign prices based on the probability that a stock will rise above (or 
drop below) a certain threshold  —  namely, the strike price for the op-
tion. If extreme market changes are more likely than osborne’s model 
predicts, neither thorp’s model nor the Black-Scholes model will get 
options prices right. In particular, they should undervalue options that 
would be exercised only if the market makes a dramatic move, so-
called far-out-of-the-money options. A more realistic options model, 
meanwhile, should account for fat tails.
 Mandelbrot left finance at the end of the 1960s, but he returned in 
the early 1990s. one of the reasons was that many financial practi-
tioners were beginning to recognize the shortcomings of the Black-
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Scholes model. Instrumental in this shift was the Black Monday stock 
market crash of 1987, during which world financial markets fell more 
than 20% literally overnight. Blame for the crash fell to a novel finan-
cial product based on options and the Black-Scholes model, known as 
portfolio insurance. Portfolio insurance was designed, and advertised, 
to curtail the risk of major losses. It was a kind of hedge that amounted 
to buying stocks and short selling stock market futures, the idea being 
that if stocks began to fall, the market futures would also fall, and so 
your short position would increase to offset your losses. the strategy 
was designed so that you wouldn’t sell too many futures short, because 
that would eat into your profits if the market went up. Instead, you 
would program a computer to gradually sell your stocks if the market 
fell, and you would short just enough market futures to cover those 
losses.
 When the market crashed in 1987, though, everyone with portfolio 
insurance tried to sell their stocks at the same time. the trouble with 
this was that there were no buyers  —  everyone was selling! this meant 
that the computers trying to execute the trades ended up selling at 
much lower prices than the people who had designed the portfolio 
insurance had expected, and the carefully calculated short positions in 
market futures did little to protect investors. (In fact, investors holding 
portfolio insurance tended to do better than those who didn’t hold it; 
however, many people think the automated sell orders associated with 
portfolio insurance exacerbated the sell-off, and so everyone suffered 
because portfolio insurance was so prevalent.) the Black-Scholes-
based calculations underlying portfolio insurance didn’t anticipate the 
possibility of a crash, because the random walk model indicates that a 
major one-day drop like this wouldn’t happen in a million years.
 Several things happened in light of the crash. for one, many prac-
titioners began to question the statistical predictions of the random 
walk model. this makes perfect sense  —  if your model says something 
is impossible, or virtually impossible, and then it happens, you need 
to start asking questions. But something else happened, too. Markets 
themselves seemed to change in the wake of the crash. Whereas in the 
years leading up to the crash the Black-Scholes model seemed to get 
options prices exactly right, in virtually all contexts and all markets, 



after the crash certain discrepancies began to appear. these discrep-
ancies are often called the volatility smile because of their distinctive 
shape in certain graphs. the smile appeared suddenly and presented 
a major mystery for financial engineers in the early 1990s, when its 
prevalence was first recognized. notably, emanuel derman came up 
with a way of modifying the Black-Scholes model to account for the 
volatility smile, though he never came up with a principled reason why 
the Black-Scholes model had stopped working.
 Mandelbrot’s work, however, offers a compelling explanation for 
the volatility smile. one way of interpreting the smile is as an indica-
tion that the market believes large shifts in prices are more likely than 
the Black-Scholes model assumes. this is just what Mandelbrot had 
been claiming all along: that probability distributions describing mar-
ket returns have fat tails, which means that extreme events are more 
likely than one would predict based on a normal distribution. In other 
words, market forces seemed to have brought prices into line with 
Mandelbrot’s theory. from the late 1980s on, Mandelbrot’s work has 
been taken much more seriously by investment bankers.
 there’s an interesting, and rarely told, twist to the story of the rise 
and fall of Black-Scholes. the first major company to develop a quan-
titative strategy based on derivatives was a highly secretive chicago 
firm called o’connor and Associates. o’connor was founded in 1977 
by a pair of brothers named ed and Bill o’connor, who had made their 
fortune on grain futures, and Michael Greenbaum, a risk manager 
who had worked for them at first options, an options clearinghouse 
the brothers ran. Greenbaum had majored in mathematics at rensse-
laer Polytechnic Institute before joining first options, and so he had 
some background with equations. He was one of the first people to 
realize that the new options exchange in chicago offered a chance to 
make a killing, at least if you were mathematically sophisticated. He 
approached the o’connor brothers with the idea of a new firm that 
would focus on options trading.
 this much of the story is well known. But given the timing, many 
people assume that o’connor was simply an early adopter of the 
Black-Scholes model. not so. Greenbaum realized from the start that 
the assumptions underlying Black-Scholes weren’t perfect, and that it 
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was failing to properly account for extreme events. And so Greenbaum 
built a team of risk managers and mathematicians to figure out how 
to improve on the Black-Scholes model. one of o’connor’s first em-
ployees was an eighteen-year-old whiz kid named clay Struve, who 
had worked for Greenbaum at first options in a summer job, and 
who worked for fischer Black as an undergraduate at MIt during the 
school year. during 1977 and 1978, Greenbaum, Struve, and a small 
team of proto-quants worked out a modified Black-Scholes model that 
took into account things like sudden jumps in prices, which can lead 
to fat tails.
 o’connor was famously successful, first in options and then in 
other derivatives  —  in part because the modified Black-Scholes model 
tended to outperform the standard one. remarkably, according to 
Struve, o’connor was aware of the volatility smile from very early on. 
that is, even before the crash of 1987, there were small, potentially ex-
ploitable discrepancies between the Black-Scholes model and market 
prices. Later, when the 1987 crash did occur, o’connor survived.
 there’s another, deeper concern about the market revolution initi-
ated by Black and his followers that many people worried about in 1987 
and that has become quite stark in the wake of the most recent crisis. 
take the 2008 crash as an example. during the financial meltdown, 
even sophisticated investors, such as the banks that produced securi-
tized loans in the first place, appear to have been mistaken about how 
risky these products were. In other words, the models that were sup-
posed to make these products risk-free for their manufacturers failed, 
utterly. Models have failed in other market disasters as well  —  perhaps 
most notably when Long-term capital Management (LtcM), a small 
private investment firm whose strategy team included Myron Scholes 
among others, imploded. LtcM had a successful run from its found-
ing in 1994 until the early summer of 1998, when russia defaulted on 
its state debts. then, in just under four months, LtcM lost $4.6 bil-
lion. By September, its assets had disappeared. the firm was heavily 
invested in derivatives markets, with obligations to every major bank 
in the world, totaling about $1 trillion. Yet at the close of trading on 
September 22, its market positions were worth about $500 million  —  a 
tiny fraction of what they had been worth a few months before, and far 



too little to cover the company’s loans. A feather’s weight would have 
led to a default on hundreds of billions of dollars of debt, leading to an 
immediate international panic, had the government not stepped in to 
resolve the crisis.
 the mathematical models underlying dynamic hedging strategies 
specifically, and derivatives trading more generally, are not perfect. 
Bachelier’s, osborne’s, and Mandelbrot’s stories go a long way toward 
making clear just why this is. their models, and the models that have 
come since, are based on rigorous reasoning that, in a very real sense, 
cannot be wrong. But even the best mathematical models can be mis-
applied, often in subtle and difficult-to-detect ways. In order to make 
complicated financial markets tractable, Bachelier, osborne, thorp, 
Black, and even Mandelbrot introduced idealizations and often strong 
assumptions about how markets work. As osborne in particular em-
phasized, the models that resulted were only as good as the assump-
tions that went in. Sometimes assumptions that are usually excellent 
quickly become lousy as market conditions change.
 for this reason, the o’connor story has an important moral. Many 
histories suggest that the 1987 crash rocked the financial world because 
it was so entirely unexpected  —  impossible to anticipate, in fact, given 
the prevailing market models. the sudden appearance of the volatil-
ity smile is taken as evidence that models can work for a while and 
then suddenly stop working, which in turn is supposed to undermine 
the reliability of the whole market-modeling enterprise. If models that 
work today can break tomorrow, with no warning and no explana-
tion, why should anyone ever trust physicists on Wall Street? But this 
just isn’t right. By carefully thinking through the simplest model and 
complicating it as appropriate  —  in essence, by accounting for fat tails  
—  o’connor was able to anticipate the conditions under which Black-
Scholes would break down, and to adopt a strategy that allowed the 
firm to weather an event like the 1987 crash.
 the story that I have told so far, from Bachelier to Black, goes a long 
way toward showing that financial modeling is an evolving process, 
one that proceeds in iterative fashion as mathematicians, statisticians, 
economists, and quite often physicists attempt to figure out the short-
comings of the best models and identify ways of improving them. In 
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this, financial modeling is much like mathematical modeling in engi-
neering and science more generally. Models fail. Sometimes we can 
anticipate when they will fail, as Greenbaum and Struve did; in other 
cases, we figure out what went wrong only as we are trying to put the 
pieces back together. this simple fact should urge caution as we de-
velop and implement new modeling techniques, and as we continue 
to apply older ones. Still, if we have learned anything in the last three 
hundred years, it’s that the basic methodological principles of scien-
tific progress are the best ones we’ve got  —  and it would be foolish to 
abandon them just because they aren’t always perfect.
 What’s more, since mathematical modeling in finance is an evolving 
process, we should fully expect that new methods can be developed 
that will begin to solve the problems that have plagued the models 
that have gotten us to where we are today. one part of this process 
has involved modifying the ideas that Black and Scholes introduced to 
financial practice to better accommodate Mandelbrot’s observations 
about extreme events. But that’s only the beginning. the final part of 
the book will show how models have continued to evolve outside of 
mainstream finance, as physicists have imported newer and more so-
phisticated ideas to finance and economics, identifying the problems 
with our current models and figuring out how to improve them. Black 
was instrumental in producing a new status quo on Wall Street, but his 
ideas were just the beginning of the era of financial innovation.



W hen the santa fe trail was first pioneered in 1822, it 
stretched from the westernmost edge of the United States  
—  Independence, Missouri  —  through comanche terri-

tory and into the then-Mexican state of nuevo Mexico. from there it 
passed over the high plains of what is now eastern colorado and then 
took the Glorieta Pass through the Sangre de cristo Mountains, the 
southernmost subrange of the rockies. to the southwest was the foot 
of the trail, the Palace of the Governors in the city of Santa fe, the seat 
of Mexican power north of the rio Grande. In front of the palace was 
the city’s central market square, where traders from the United States 
displayed their goods. twenty years after the first American trailblaz-
ers arrived in the city, the U.S. Army followed, battling through the 
Glorieta Pass and claiming the city and all of its surrounding territory 
as part of the newly annexed state of texas.
 A century and a half later, two men in their late thirties sat in a 
saloon at the end of the trail, long paved over and replaced by an in-
terstate highway, sipping tequila. they were surrounded by younger 
men, chatting furiously. outside, the park in the bustling market 
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square was green from late-summer rains. Across the way, the Palace 
of the Governors sat as it always had, the oldest continuously used 
public building in north America. the square was surrounded by 
low-slung buildings, reddish brown and in the pueblo style, much 
as it was when the American army arrived in 1846. the men in the 
saloon were the newest traders to hang their sign in Santa fe’s his-
toric market district. down the road from the square, in a one-story 
adobe house on Griffin Street, a bank of state-of-the-art computers 
was humming, following the instructions set by the men before they 
left for their evening drink. the year was 1991. the men were in the 
prediction business.
 the two graybeards  —  at least by the standards of the new field 
of nonlinear dynamics and chaos, which they had spent the last fif-
teen years helping to create  —  were James doyne farmer and nor-
man Packard. Until recently, farmer had been head of the complex 
Systems group at Los Alamos national Laboratory, the government 
lab most famous for having been the headquarters of the Manhattan 
Project. Packard, meanwhile, had just left a tenured position as associ-
ate professor of physics at the University of Illinois’s flagship campus. 
Among the other men at the bar were former graduate students and 
recent Phds, adventurers looking to follow farmer and Packard as 
they blazed a new trail.
 the new venture was a company, soon to be called the Prediction 
company (though as they sat that evening on the Santa fe market 
square, the company was still nameless). their goal was to do the im-
possible: to predict the behavior of financial markets. If anyone could 
do it, it was this group. Between them, farmer and Packard had three 
decades of experience in a subject known as nonlinear forecasting, an 
area of physics and applied mathematics (and increasingly other fields 
as well) that sought to identify predictive patterns in apparently ran-
dom phenomena. In Packard’s words, it involved identifying the order 
at “the edge of chaos,” the small windows of time in which there was 
enough structure in a chaotic process to predict where a system would 
go next. the tools they used had been developed to predict things like 
how a turbulent fluid would behave in a narrow pipe. But farmer and 



Packard, and the half-dozen acolytes who had followed them to Sante 
fe, believed they could predict far more than that.

As head of the Manhattan Project, J. robert oppenheimer was cer-
tainly the most important member of his family at Los Alamos. But 
he wasn’t the only one. His kid brother, frank, was also a physicist  
—  and when the elder oppenheimer took over work on the bomb, 
frank pitched in, first at Lawrence Berkeley lab in california, and 
then at oak ridge in tennessee, before finally joining his brother in 
new Mexico. eight years younger than his famous brother, frank ar-
rived at Los Alamos just in time to help coordinate the trinity test, 
the world’s first nuclear detonation, which was staged in the middle 
of the tularosa Basin in new Mexico on July 16, 1945. After the war, 
robert appeared on the covers of Time and Life. He was the public 
spokesman for cold War science in the United States, and for military 
restraint regarding the use of the nuclear technology he had helped 
developed. frank was not quite so prominent, but even so, his mili-
tary research landed him a job in the physics department at the Uni-
versity of Minnesota.
 In 1947, J. robert oppenheimer was appointed director of both the 
Institute for Advanced Study in Princeton  —  possibly the most presti-
gious scientific research institute in the world  —  and the newly formed 
Atomic energy commission. the same year, the Washington Times-
Herald reported that frank oppenheimer had been a member of the 
American communist Party from 1937 to 1939. eager as he was to con-
tinue in his brother’s footsteps, 1947 was not a good year for a would-be 
nuclear physicist to be outed as a communist. frank initially denied 
the charges and appeared to have escaped with his reputation intact. 
But two years later, amid mass fear about Soviet nuclear research and 
the mishandling of the “atomic secret,” frank was called before the 
infamous House Un-American Activities committee. Under oath and 
before congress, he admitted that he and his wife had been members 
of the party for about three and a half years, pushed to political ex-
tremes during the Great depression.
 the confession was a newspaperman’s dream. frank oppenheimer, 
brother of the American scientist-savior, was an admitted commu-
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nist. He was never convicted of a crime, nor was there any reason to 
think that he had compromised classified information. But during 
the heady and paranoid days of Mccarthyism, the mere suggestion 
of communist affiliation was enough to blacklist someone, no matter 
whose brother he was. frank was forced to resign from his position at 
the University of Minnesota, and for more than a decade he was effec-
tively strong-armed out of physics. Living on a substantial inheritance 
(sadly, he was forced to sell one of the van Goghs he’d inherited from 
his father), he and his wife bought a ranch in colorado and made a 
new start as cattle farmers and homesteaders.
 It was not until 1959 that Mccarthyism had cooled enough that 
frank oppenheimer could get a job teaching physics at a research uni-
versity, and even then it took the endorsements of a handful of nobel 
and national Medal of Science laureates. Grateful to be back to work, 
he accepted a position at the University of colorado. By now, though, 
the field had long outpaced him, so he limited himself to working on 
topics only indirectly connected to physics, such as science education.
 It was at the University of colorado that oppenheimer met a young 
graduate student named tom Ingerson. Ingerson had grown up in 
texas and had gone on to major in physics at the University of califor-
nia, Berkeley. He had come to colorado to work on general relativity, 
the theory of gravitation that einstein had proposed in 1915 as an al-
ternative to newton’s theory. General relativity had brought fame and 
fortune to its discoverer, but it was overshadowed by the new quantum 
theory, which attracted far more attention and funds. this didn’t seem 
to bother Ingerson, who was strong-willed and fiercely independent. 
He would work on what he liked.
 In 1964, Ingerson began to think about finding a job in a phys-
ics department. In the 1960s, academia was an old boys’ club in the 
strongest sense. Jobs at the top universities were filled by calling up 
famous physicists at famous schools and asking for recommendations  
—  which were then given, in frank and certain terms. the “best men” 
from schools like Princeton, Harvard, and the University of Michigan 
were given the best jobs. Lesser men were dependent on the good-
will and reputation of their faculty, though personal connections and 
called-in favors were usually enough to find a job, especially during 



this, the heyday of the military-scientific-industrial era. colorado may 
not have been in the very highest echelon, but it was up there, and a 
graduate could be reasonably assured of good employment. Unless, of 
course, he used the wrong person as a reference.
 Ingerson didn’t learn until many years later that his cardinal sin had 
been mentioning that frank oppenheimer would vouch for him. At 
the time, the physics community’s uniform disinterest in his applica-
tion seemed like a mystery to him. none of the employers he contacted 
wrote back to him until the very end of the school year, and then he 
heard from only a single school, the old new Mexico territory’s teach-
ing college, newly retooled as Western new Mexico University. this 
was how a bright, independent-minded young physicist found himself 
in Silver city, new Mexico, the sole member of the local university’s 
physics department.
 Perched on the continental divide, Silver city was a paradigm 
Western mining town. Built in the wake of a major find by silver pros-
pectors, it was in the middle of what was traditionally Apache terri-
tory. trade and transport were difficult and dangerous, with regular 
attacks by regional tribes (and local bandits). In 1873, Billy the Kid, 
then just a teenager, settled in Silver city with his mother and brother  
—  it was there that, in 1875, he was arrested for the first time, for steal-
ing some cheese. Later that year, he would escape from a Silver city jail 
to begin his life as an outlaw, a fugitive from the Silver city sheriff. By 
the time Ingerson arrived, the days of cowboys and Indians were over. 
But Silver city was still a one-horse town. resigned to make do with 
the cards he had inexplicably been dealt, Ingerson looked for ways to 
engage with the Silver city locals.
 He started by volunteering with the local Boy Scout troop, which 
he thought might benefit from his experience as a teacher. It was at his 
first meeting, the same year that he moved to Silver city, that Ingerson 
met a pudgy twelve-year-old named doyne farmer. Silver city was 
filled with engineers, attracted by the mining industry. But a scien-
tist was a rarity. farmer didn’t really know what a physicist did, yet 
he found Ingerson irresistible. farmer decided at the meeting that 
whatever physics was, if Ingerson did it, then farmer would do it, too. 
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He lingered afterward and then followed Ingerson home. on the way, 
farmer announced his newfound career goal.
 It was an unlikely friendship. But farmer and Ingerson were kin-
dred spirits, stuck for different reasons about as far away from the cen-
ter of the scientific universe as they could be. for Ingerson, farmer 
was a welcome diversion, a smart student ready to talk seriously about 
all sorts of scientific topics. for farmer, though, Ingerson was pure 
inspiration. He changed his life.
 Ingerson soon started a new group, which he called explorer Post 
114, with his home as clubhouse. the explorer groups were a subsid-
iary of the Boy Scouts of America, intended for older children to learn 
by doing. farmer was the inaugural member of Ingerson’s group, but 
he was soon joined by others. the explorers shared some features with 
the Boy Scouts  —  they went camping and hiking in the desert  —  but 
the real focus was on tinkering and building things, like ham radios 
and dirt bikes.
 officially, to join an explorer post one needed to be at least fourteen 
years old. But one day in 1966, a younger boy was invited to come to a 
meeting. He had been asked to give a lecture on new radio technology, 
a topic on which he was apparently an expert. though he was only 
twelve, the other explorers recognized norman Packard as one of their 
own, and he was immediately welcomed into the group as the new 
electronics guru. Unlike farmer, Packard had known he wanted to be 
a physicist from an early age. He seemed made for it. After all, it was 
his precocious expertise that earned him an invitation to the explor-
ers. Packard and farmer quickly became friends.
 Ingerson lasted for two more years in Silver city before he got a 
job at the University of Idaho. But in just four years, he had succeeded 
in shaping the lives of two men who would go on to become world-
class physicists. When Ingerson left, farmer was sixteen and a junior 
in high school (Packard was two years younger). Bored with Silver 
city and anxious to follow his friend to conquer new territory, farmer 
decided to apply to the University of Idaho a year early. He got in, and 
instead of finishing high school in Silver city, he moved into Ingerson’s 
attic in Moscow, Idaho, to start his career as a physicist. After a year 



in Idaho, though, farmer was ready for bigger pastures. In 1970, he 
transferred to Stanford University. true to his ambitions, he majored 
in physics  —  laying the groundwork for a career that would change sci-
ence, and finance, forever.

the ideas at the heart of farmer’s and Packard’s work were first devel-
oped by a man named edward Lorenz. As a young boy, Lorenz thought 
he wanted to be a mathematician. He had a clear talent for mathemat-
ics, and when it came time to select a major at dartmouth, he had few 
doubts about what he would choose. He graduated in 1938 and went 
on to Harvard, planning to pursue a Phd. But World War II interfered 
with his plans: in 1942, he joined the U.S. Army Air corps. His job was 
to predict the weather for Allied pilots. He was given this task because 
of his mathematical background, but at that point, at least, mathemat-
ics was of little use in weather forecasting, which was done more on 
the basis of gut feelings, rules of thumb, and brute luck. Lorenz was 
sure there was a better way  —  one that used sophisticated mathematics 
to make predictions. When he left the service in 1946, Lorenz decided 
to stick with meteorology. It was a place where he could put his train-
ing to productive use.
 He went to MIt for a Phd in meteorology and stayed for the rest 
of his career  —  first as a graduate student, then as a staff meteorolo-
gist, and finally as a professor. He worked on many of the mainstream 
problems that meteorologists worked on, especially early in his career. 
But he had some unusual tastes. for one, based on his experience in 
the army, he maintained an interest in forecasting. this was consid-
ered quixotic at best by his colleagues; the poor state of forecasting 
technology had convinced many that forecasting technology was a 
fool’s errand. Another oddity was that Lorenz thought computers  —  
which, in the 1950s and 1960s, were little more than souped-up add-
ing machines  —  could be useful in science, and especially in the study 
of complicated systems like the atmosphere. In particular, he thought 
that with a big enough computer and careful enough research, it would 
be possible to come up with a set of equations governing how things 
like storms and winds developed and changed. You could then use the 
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computer to solve the equations in real time, keeping one step ahead of 
the actual weather to make accurate predictions long into the future.
 few of his colleagues were persuaded. As a first step, and as an at-
tempt to show his fellow meteorologists that he wasn’t crazy, Lorenz 
came up with a very simple model for wind. this model drew on the 
behavior of wind in the real world, but it was highly idealized, with 
twelve rules governing the way the wind would blow, and with no ac-
counting for seasons, nightfall, or rain. Lorenz wrote a program using 
a primitive computer  —  a royal McBee, one of the very first computers 
designed to be placed on a desk and operated by a single user  —  that 
would solve his model’s equations and spit out a handful of numbers 
corresponding to the magnitude and direction of the prevailing winds 
as they changed over time. It wasn’t a predictive model of the weather; 
it was more like a toy climate that incorporated atmospheric phenom-
ena. But it was enough to convince at least some of his colleagues that 
this was something worth pursuing. Graduate students and junior fac-
ulty would come into his office daily to peer into Lorenz’s imaginary 
world, taking bets on whether the wind would turn north or south, 
strengthen or weaken, on a given day.
 At first, it seemed that Lorenz’s model was a neat proof of concept. 
It even had some (limited) predictive power: certain patterns seemed 
to emerge over and over again, with enough regularity that a work-
ing meteorologist might be able to look for similar patterns in actual 
weather data. But the real discovery was an accident. one day, while 
reviewing his data, Lorenz decided he wanted to look at a stretch of 
weather more closely. He started the program, plugging in the val-
ues for the wind that corresponded to the beginning of the period 
he was interested in. If things were working as they should, the com-
puter would run the calculations and come up with the same results 
he had seen before. He set the computer to work and went off for the 
afternoon.
 When he returned a few hours later, it was obvious that something 
had gone wrong. the data on his screen looked nothing like the data 
he had seen the first time he had run the simulation with these same 
numbers. He checked the values he had entered  —  they were correct, 



exactly what had appeared on his printout. After poking around for a 
while, he concluded that the computer must be broken.
 It was only later that he realized what had really happened. the 
computer contained enough memory to store six digits at a time. the 
state of Lorenz’s mini world was summed up by a decimal with six fig-
ures, something like .452386. But he had set up the program to record 
only three digits, to save space on the printouts and make them more 
readable. So instead of .452386 (say), the computer printout would 
read .452. When he set up the computer to rerun the simulation, he 
had started with the shorter, rounded number instead of the full six-
digit number that had fully described the state of the system during 
the first run-through.
 this kind of rounding should not have mattered. Imagine you are 
trying to putt a golf ball. the hole you are aiming for is only slightly 
larger than the ball itself. And yet, if you miscalculate by a fraction of 
an inch, and you hit the ball a little too hard or a little too softly, or you 
aim a little to one side, you would still expect the ball to get close to the 
hole, even if it doesn’t go in. If you are throwing a baseball, you would 
expect it to get pretty close to the catcher even if your arm doesn’t 
extend exactly as you want it to, or even if your fingers slip slightly 
on the ball. this is how the physical world works: if two objects start 
in more or less the same physical state, they are going to do more or 
less the same thing and end up in very similar places. the world is an 
ordered place. or at least that’s what everyone thought before Lorenz 
accidentally discovered chaos.
 Lorenz didn’t call it chaos. that word came later, with the work 
of two physicists named James Yorke and tien-Yien Li who wrote a 
paper called “Period three Implies chaos.” Lorenz called his discov-
ery “sensitive dependence on initial conditions,” which, though much 
less sexy, is extremely descriptive, capturing the essence of chaotic be-
havior. despite the fact that Lorenz’s system was entirely determinis-
tic, wholly governed by the laws of Lorenzian weather, extremely small 
differences in the state of the system at a given time would quickly 
explode into large differences later on. this observation, a result of one 
of the very first computer simulations in service of a scientific prob-
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lem, contradicted every classical expectation regarding how things like 
weather worked. (Lorenz quickly showed that much simpler systems, 
such as pendulums and water wheels, things that you could build in 
your basement, also exhibited a sensitivity to initial conditions.)
 the basic idea of chaos is summed up by another accidental contri-
bution of Lorenz’s: the so-called butterfly effect, which takes its name 
from a paper that Lorenz gave at the 1972 meeting of the American As-
sociation for the Advancement of Science called “Predictability: does 
the flap of a Butterfly’s Wings in Brazil Set off a tornado in texas?” 
(Lorenz never took credit for the title. He claimed one of the confer-
ence organizers came up with it when Lorenz forgot to submit one.)
 Lorenz never answered the question asked in the title of his talk, 
but the implication was clear: a small change in initial conditions can 
have a huge impact on events down the road. But the real moral is 
that, even though chaotic systems are deterministic  —  in the sense that 
an infinitely precise description at any given instant can in principle 
lead to an accurate prediction  —  it is simply impossible to capture the 
state of the world with such precision. You can never account for all 
the flaps of all the butterflies across the globe. And even the tiniest er-
rors will quickly explode into enormous differences. the result is that, 
even though weather is deterministic, it seems random because we can 
never know enough about butterflies.

farmer finished his physics degree at Stanford in 1973, although not 
without a few bumps along the way (after his first year there, he had 
done poorly enough to be put on academic probation  —  after which he 
entertained the possibility of dropping out to open a smoothie shack 
in San francisco or maybe smuggle motorcycles). By the end of his 
college years, however, farmer had pulled himself together sufficiently 
to be admitted to a handful of graduate schools for astrophysics. A 
trip down the california coast was enough to make up farmer’s mind, 
however, and he decided to attend the new University of california 
campus in Santa cruz. Packard, meanwhile, had gone to reed college, 
in Portland, oregon, a school famous for the independent spirit of its 
undergraduates.



 during the summer of 1975, the year after Packard’s junior year 
at reed’s and farmer’s second year of graduate school, Packard and 
farmer decided to try their hands at gambling. they had explored 
the idea independently, farmer through reading A.  H. Morehead’s 
Complete Guide to Winning Poker, and Packard by reading ed thorp’s 
Beat the Dealer. With their analytic minds and disdain for authority, 
gambling systems had a certain appeal to both men. they could make 
money without doing work  —  and at least in the blackjack case, they 
could do it by being smarter than everyone else. It was a romantic idea. 
the trouble was in the execution.
 Packard studied thorp’s system carefully and then, along with a 
friend from reed named Jack Biles, he took it to vegas. they kept 
careful track of their winnings and losses  —  and observed an awful lot 
of wins. day after day, they would record profits. they would switch 
to higher-stakes tables as their accumulated capital increased, and 
the profits would soar even higher. But then something happened. 
no matter how much success they had, there would always be a los-
ing streak that would bring them back to zero. In the end, they barely 
broke even. It was only at the very end of a summer of gambling that 
they realized they were being cheated. In the years since thorp’s card-
counting system had first been introduced, casinos had become very 
good at identifying  —  and foiling  —  card counters, often by simple 
methods like crooked dealing.
 farmer, meanwhile, had memorized Morehead’s book. But he had 
never played poker before reading it, so even though he knew what 
to do in any given situation, he didn’t know how to shuffle cards or 
handle chips. He dealt like a kindergartener. But the poor mechan-
ics ultimately worked to his advantage: he looked like an easy mark. 
Playing in the card rooms of Missoula, Montana, under the alias “new 
Mexico clem,” farmer and a friend from Idaho  —  an accomplice from 
the motorcycle-smuggling scheme named dan Browne  —  cleaned up 
against the Missoula cowboys. Browne, a more seasoned player who 
had paid his way through college by gambling in Spokane, Washing-
ton, marveled at farmer’s unlikely success.
 At the end of the summer, farmer and Packard decided to meet 
up to compare notes on their gambling adventures. farmer had good 
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news to report: you could make a killing in poker, if you just played 
by the book. Packard’s experience was less auspicious. But in place of 
blackjack winnings, he brought something even better: a new idea for 
a gambling system. Prompted in part by some cryptic remarks that 
thorp had made at the end of his book, Packard convinced himself 
that another game could be beaten more effectively than blackjack 
(and with less likelihood for casino shenanigans). Packard, like thorp 
before him, had an idea about roulette.
 farmer was skeptical, but Packard was persistent and finally con-
vinced farmer to think about it. Soon enough, farmer was on board. 
He, Packard, and Biles spent three days thinking about the problem, 
working out some initial calculations and getting excited about their 
newest project. By the time farmer had to go back to Santa cruz, the 
three men had decided to pursue the project. they would build a com-
puter to beat roulette.
 In the fall of 1975, farmer was starting his third year of graduate 
school. He was supposed to be settling on a dissertation topic and 
beginning research in astrophysics. Instead, he and Browne began 
running experiments on a roulette wheel they had bought in reno, 
at Paul’s Gaming devices, the manufacturer rumored to provide the 
regulation wheels used in reno and Las vegas. (farmer’s thesis ad-
visor, a man named George Blumenthal, had enjoyed his own run 
as a would-be card counter in Las vegas. He was tickled enough by 
farmer’s project to look the other way as farmer’s academic research 
stalled  —  in fact, after reviewing farmer’s calculations, he even sug-
gested that there might be a physics dissertation lurking in the roulette 
project.) Packard and Biles, meanwhile, were back in Portland, work-
ing on an electronic clock that could take precise measurements of the 
ball traveling around the wheel. Along with his work on the roulette 
project, Packard was finishing college and applying to graduate school. 
Santa cruz was at the top of his list. At this stage, even though Packard 
knew thorp had thought about beating roulette, no one in the group 
knew anything about thorp’s calculations, or about the computer that 
thorp and Shannon had tested in Las vegas. they were reinventing 
the wheel.
 At the end of that academic year, in the spring of 1976, the four 



gambling men met up in Santa cruz to put their work together and 
make a plan for the summer. one of their first pieces of business was to 
settle on a name for the group. farmer had recently stumbled on a new 
word, eudaemonia, while flipping through the dictionary. central to 
the ethics of the ancient Greek philosopher Aristotle, eudaemonia was 
a state of ideal human flourishing. the roulette group took the name 
eudaemonic enterprises, and the members referred to themselves as 
eudaemons (Greek for “good spirits”). they rented a professor’s house 
for the summer and built a tinkerer’s lab, assembling electronics and 
running experiments on roulette wheels. the eudaemons indepen-
dently arrived at the same basic strategy that thorp and Shannon had 
used, with two people working the game, one timing the wheel and 
the other making bets. Ingerson’s legacy was manifest in farmer and 
Packard’s conviction that they could build anything. the eudaemons 
were an only slightly more grown-up version of the explorer Post 114 
(indeed, Ingerson later helped the group in vegas when they tried to 
put the scheme into action).
 the original four were soon joined by another physicist named 
John Boyd and a friend of farmer’s from his undergraduate days, Steve 
Lawton. Lawton was a humanist, a specialist in utopian literature. 
His role was to organize a reading group on political fiction. from 
the start, the group was devoted to a revolutionary mindset. over the 
years, as they continued to work on roulette, more and more people 
joined  —  gamblers, physicists, computer programmers, utopians. the 
group thought of themselves as Yippies, members of the countercul-
tural movement founded by Abbie Hoffman and others in 1967 and 
devoted to undermining the status quo through anarchic pranks they 
called “Groucho Marxism.” for the eudaemons, the roulette project 
was a way to beat the Man and take his money  —  money they planned 
to use to build a commune on the Washington coast.

thorp and Shannon never had much luck with their roulette adven-
ture, on account of frayed wires and nerves. the eudaemons did bet-
ter, plugging away at the problem for the better part of five years. not 
that they didn’t have their own share of hardware problems. Instead 
of an earpiece like thorp wore, the eudaemons’ first generation of 
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technology sent signals via a vibrating magnet attached to the bettor’s 
torso, hidden by clothes. one night, the wires on farmer’s magnet kept 
coming undone, burning his skin whenever the signal arrived. every 
ten minutes he had to jump up from the table and announce some-
thing like “Boy, have I got the runs today!” on his way to the men’s 
room to fix the equipment (this continued until the pit boss followed 
him in and sat in the next stall until farmer decided to call it quits for 
the night). But by the summer of 1978 the computers were running 
well enough that the team took them to vegas  —  and started to profit.
 Meanwhile, as the team at eudaemonic enterprises continued work 
on building a better bettor, farmer, Packard, and some of the others 
in the group began thinking more about the physics at the heart of the 
project. they had derived the equations they needed to predict rou-
lette. But thinking about roulette had piqued their interest in a more 
general problem. roulette is an example of a dynamical system that 
exhibits some pretty funky behavior. Most importantly, where the ball 
lands is sensitive to the initial conditions  —  much like the weather sys-
tem Lorenz discovered. Working out how to use computers to solve 
the differential equations necessary to predict roulette had unwittingly 
put farmer and Packard at the cutting edge of the newest research in 
chaos theory. farmer’s advisor was right that there was a dissertation 
in the roulette calculations. What he didn’t know was that the disserta-
tion would be part of a rising tide of ideas that would usher in a new 
age of physics.
 In 1977, some of the physicists working on eudaemonic enter-
prises (farmer and Packard, along with an undergraduate named 
James crutchfield and an older graduate student named robert Shaw) 
started an informal research group called by turns the dynamical Sys-
tems collective and the chaos cabal. Shaw threw out a nearly finished 
dissertation to start working on chaos theory full-time; farmer offi-
cially switched away from astrophysics. By the late 1970s, a great deal 
had been done on chaos theory. Lorenz had discovered many of the 
basic principles and had then come up with simple examples of cha-
otic systems and described how they behaved. He was the first person 
to recognize that there is a kind of order in chaotic systems: if you 
draw pictures of the paths traced by objects obeying differential equa-



tions, they tend to settle down into regular patterns. these patterns are 
called attractors, because they tend to attract the paths of the objects. 
In roulette, for instance, the attractors correspond to the pockets of 
the wheel: whatever trajectory the ball takes, in the long run it will 
settle down into one of these states. But for other systems, the attrac-
tors can be much more complicated. A major contribution to the study 
of chaos theory was the realization that if a system is chaotic, these 
attractors have a highly intricate fractal structure.
 But despite these foundations, the subject was still young. Work had 
been done in fits and starts, without any real research center. nor-
mally, graduate work in physics is a collaboration among graduate 
students, young postdoctoral researchers, and a professor. But chaos 
theory was still so new that these kinds of research groups didn’t yet 
exist. You couldn’t go to graduate school to study chaos theory. the 
dynamical Systems collective was an attempt to fix this, by pulling 
its members through graduate school by their bootstraps. Some of the 
faculty at Santa cruz were skeptical about this divergence from the 
traditional academic curriculum. But the department was new and 
open to novel ideas, and enough professors were supportive that the 
four initial members were permitted to guide themselves, collectively, 
to Phds in chaos theory.
 from the very start, prompted perhaps by the roulette experience, 
the dynamical Systems collective was interested in prediction. It was 
a novel way of thinking about chaotic systems, which most people 
were interested in precisely because they seemed so unpredictable. the 
collective’s most important paper, published in 1980, showed how you 
could use a stream of data from, say, a sensor placed in the middle of 
a pipe with water flowing through it to reconstruct what the attractor 
for the system would have to be. And once you had the attractor, an 
essential part of trying to understand how a chaotic system would be-
have over time, you could begin to make some predictions. Previously, 
attractors were understood as a theoretical tool, something you could 
get only by solving equations. Packard, farmer, Shaw, and crutchfield 
showed that, in fact, you could figure out this important feature em-
pirically, by looking at how the system actually behaved.
 the dynamical Systems collective lasted for four years, during 
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which time it made seminal advances in chaos theory and managed to 
turn years of thinking about roulette into respectable science. But the 
eudaemons couldn’t stay in graduate school forever. farmer gradu-
ated in 1981 and immediately went to Los Alamos. Packard left the 
following year, to take a postdoctoral position in france. Both men 
were on the verge of turning thirty when they left school. eudaemonic 
enterprises was making money from roulette, but it was ultimately a 
state of mind, not a way to earn a living.
 It was a miracle that either farmer or Packard got academic jobs, 
with degrees in chaos in the early 1980s, when few physicists knew 
what the new theory of dynamical systems was all about, and even 
fewer recognized it as something worth pursuing. Los Alamos, like 
Santa cruz, was far ahead of its time, and farmer was fortunate to find 
himself at the center of research in the new field. (Packard had similar 
luck. After his postdoctoral year in france, he landed positions at the 
Institute for Advanced Study, in Princeton, new Jersey, and the center 
for complex Systems research, at the University of Illinois, the other 
two hotbeds of complex systems research.) things got even better for 
farmer in 1984, when a group of senior scientists at the lab launched a 
new research center devoted to the study of complex systems, includ-
ing chaos. the center was called the Santa fe Institute. Physics would 
play a central part in the Santa fe Institute’s research, but the center 
was designed to be essentially interdisciplinary. complex systems and 
chaos arose in physics, in meteorology, in biology, in computer science  
—  and also, the Santa fe researchers soon realized, in economics.

one theme that characterized much of the research in complexity and 
chaos during the early 1980s was the idea that simple large-scale struc-
tures can emerge from underlying processes that don’t seem to have 
that structure. to take an example from atmospheric physics, consider 
that the atmosphere, at the smallest scale, consists of a bunch of gas 
particles bumping around in the sky. And yet, when one steps back, 
these mindless particles somehow organize themselves into hurri-
canes. Similar phenomena occur in biology. Individual ants seem to 
behave in pretty simple ways, foraging for food, following pheromone 
trails, building nests. And yet, when one takes these simple actions 



and interactions in aggregate, they form a colony, something that ap-
pears to be more than the sum of its parts. As a whole, an ant colony 
even appears to be able to adapt to changes in its environment, or the 
deaths of individual ants. once these ideas were in the air at Santa 
fe, it was a natural leap to ask if the economies of nations and the be-
havior of markets could also be understood as the collective action of 
individual people.
 the Santa fe Institute hosted its first conference on economics, en-
titled “International finance as a complex System,” in 1986. farmer, 
who at this point was the head of the complex Systems research group 
at Los Alamos, was one of a small handful of scientists who was asked 
to speak. It was his first exposure to economics. the other speakers 
were from various banks and business schools. these bankers stood 
up and explained their models to a group of stunned scientists who 
found the financial models almost childishly simple. the bankers, 
meanwhile, walked away thinking that they had heard the siren call 
of the future, though they had virtually no understanding of what was 
being said. excited, they urged the institute to host a follow-up con-
ference and invite various luminaries from economics departments at 
top universities.
 the idea behind the second conference was that even if the finan-
ciers couldn’t follow the latest advances in physics and computer sci-
ence, surely the professional economists would be able to. Unfortu-
nately, things didn’t go as planned. farmer and Packard both spoke, 
as did various other Santa fe Institute researchers. the economists, 
likewise, made their presentations. But there wasn’t much communi-
cation. the two groups were coming from two radically different cul-
tures and taking too many different things for granted. the physicists 
thought the economists were making everything much too simple. 
the economists thought the physicists were talking nonsense. the 
great synthesis of disciplines never occurred.
 Undeterred, the institute tried a third time in february 1991. this 
time, though, the economists stayed at home. Instead, the institute in-
vited practitioners from the banks and investment houses that actu-
ally ran the world’s financial markets. the tone of the conference was 
much more practical and focused on how to create models, test them, 
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and use them to develop trading strategies. the traders proved much 
less defensive than the economists, and by the end of the conference 
each group had gained an appreciation of what the other had to offer. 
farmer and Packard, in particular, left with a clearer sense of how 
practical trading strategies worked. they also left with the conviction 
that they could do better. A month later, they gave notice to their re-
spective employers. It was time to enter the fray.

Building a company is different from building a radio or a motorcycle 
engine, or even a computer to beat roulette. But many of the same 
skills prove useful: the vision to see how to pull the pieces together 
in a new way; a tolerance for tinkering with something until you can 
make it work; unflagging persistence. Making something new is ad-
dictive, which might be why so many entrepreneurs are engineers and 
scientists.
 farmer and Packard were also motivated by a strong antiestablish-
mentarian bent stretching back to their days as eudaemons. the new 
company wasn’t designed as a first step into the financial world  —  it 
was part of a plan to upend it, to take Wall Street for all it was worth 
by being a little smarter, a little more conniving, than the suits. It was 
a company founded in much the same spirit as the roulette project, 
a Yippie adventure and a return to a culture of pure research and no 
rules. farmer wore an eat the rich t-shirt to the new company’s 
first formal meeting, in March of 1991.
 But there was more at stake here than in roulette. farmer and Pack-
ard wanted the project to work, and they were willing to consider the 
possibility that real business acumen could be useful to them. So they 
brought in Jim McGill, a former physicist turned entrepreneur, as a 
third partner. In 1978, McGill had founded a company called digital 
Sound corp., which specialized in the kinds of microchips necessary 
to process data from electric musical instruments and microphones, 
and then later branched out into voice-mail devices. McGill was, at 
least nominally, the ceo of the Prediction company, the business face 
of their Birkenstock-and-blue-jean outfit. farmer and Packard were 
perfectly adept at imagining what they would do with, say, a hundred 
million in capital. McGill’s job was to find someone to give it to them. 



McGill would be the difference between the Prediction company and 
a rerun of eudaemonic enterprises.
 It quickly turned out, however, that finding would-be investors 
wasn’t as difficult as the founders imagined it would be. farmer and 
Packard had earned reputations during the days of the Santa fe Insti-
tute’s economics conferences. When rumors began flying that farmer 
and Packard were leaving academia to take on Wall Street, some in-
fluential people took notice. farmer had to buy a new suit to look 
presentable for meetings at places like Bank of America and Salomon 
Brothers. things got even better after the New York Times Magazine 
ran a cover article called “defining the new Plowshares those old 
Swords Will Make,” on how physicists, who had largely been absorbed 
into the military-industrial complex in the wake of World War II, were 
branching out as the cold War came to an end. the article led with the 
Prediction company  —  a perfect tie-in, given farmer’s history with 
Los Alamos. After it appeared in print, hundreds of suitors began to 
call, from rich oil men to Wall Street banks.
 the trouble wasn’t getting money. It was what the would-be inves-
tors wanted in exchange. Some of the Wall Street outfits were thrilled 
with the idea of starting a hedge fund based on the Prediction com-
pany’s ideas. But farmer and Packard didn’t like the idea of traveling 
the country trying to raise capital, which they would need to do if 
they were managing a hedge fund. Ideally, they wanted seed money so 
they could focus on developing the science. other companies wanted 
to buy the Prediction company outright  —  equally unappealing to a 
group of men who had just made up their minds to break out of the rat 
race and start their own business. Some companies were willing to put 
up capital in exchange for a portion of the proceeds, but they wanted 
more than just a return on their investment. for instance, david Shaw, 
a former computer science professor at columbia who had started his 
own hedge fund, d. e. Shaw & co., in 1988, wanted to own the com-
pany’s intellectual property in exchange for a few years’ worth of seed 
money.
 Many of these offers were appealing. But farmer and Packard con-
tinued to balk. nothing felt right. Unfortunately, they couldn’t run an 
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investment firm on the backs of their personal checking accounts for-
ever. As the company’s one-year anniversary approached, in March of 
1992, the pressure was on to find a deal.

It is tempting to say that farmer, Packard, and their Prediction com-
pany collaborators “used chaos theory to predict the markets” or 
something along those lines. In fact, this is how their enterprise is usu-
ally characterized. But that isn’t quite right. farmer and Packard didn’t 
use chaos theory as a meteorologist or a physicist might. they didn’t 
do things such as attempt to find the fractal geometry underlying mar-
kets, or derive the deterministic laws that govern financial systems.
 Instead, the fifteen years that farmer and Packard spent working on 
chaos theory gave them an unprecedented (by 1991 standards) under-
standing of how complex systems work, and the ability to use comput-
ers and mathematics in ways that someone trained in economics (or 
even in most areas of physics) would never have imagined possible. 
their experience with chaos theory helped them appreciate how regu-
lar patterns  —  patterns with real predictive power  —  could be masked 
by the appearance of randomness. their experience also showed them 
how to apply the right statistical measures to identify truly predictive 
patterns, how to test data against their models of market behavior, and 
finally how to figure out when those models were no longer doing their 
job. they were at ease with the statistical properties of fat-tailed dis-
tributions and wild randomness, which are characteristic of complex 
systems in physics as well as financial markets. this meant that they 
could easily apply some of Mandelbrot’s ideas for risk management in 
ways that people with more traditional economics training could not.
 As far as the Prediction company was concerned, markets might 
be chaotic, or not. there might be various degrees of randomness in 
market behavior. Markets might be governed by simple laws, or by 
enormously complicated laws, or by laws that changed so fast that 
they might as well not have been there at all. What the Predictors were 
doing, rather, was trying to extract small amounts of information from 
a great deal of noise. It was a search for regularities of the same sort 
that lots of investors look for: how markets react to economic news 
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like interest rates or employment numbers, how changes in one mar-
ket manifest themselves in others, how the performances of different 
industries are intertwined.
 one strategy they used was something called statistical arbitrage, 
which works by betting that certain statistical properties of stocks will 
tend to return even if they disappear briefly. the classic example is 
pairs trading. Pairs trading works by observing that some companies’ 
stock prices are usually closely correlated. consider Pepsi and coca-
cola. virtually any news that isn’t company-specific is likely to affect 
Pepsi’s products in just the same way as coca-cola’s, which means 
that the two stock prices usually track one another. But changes in 
the two companies’ prices don’t always occur simultaneously, so some-
times the prices get out of whack compared to their long-term behav-
ior. If Pepsi goes up a little bit but coca-cola doesn’t, upsetting the 
usual relationship, you buy coca-cola and sell Pepsi because you have 
good reason to think that the two prices will soon revert to normal. 
farmer and Packard didn’t come up with pairs trading  —  it was largely 
pioneered in the 1980s at Morgan Stanley, by an astrophysicist named 
nunzio tartaglia and a computer scientist named Gerry Bamberger  
—  but they did bring a new level of rigor and sophistication to the 
identification and testing of the statistical relationships underlying the 
strategy.
 this sophistication was purely a function of the tools that farmer 
and Packard were able to import from their days in physics. for in-
stance, as a physicist, Packard was at the very forefront of research in 
a variety of computer programs known as genetic algorithms. (An al-
gorithm is just a set of instructions that can be used to solve a particu-
lar problem.) Suppose you are trying to identify the ideal conditions 
under which to perform some experiment. A traditional approach 
might involve a long search for the perfect answer. this could take 
many forms, but it would be a direct attack. Genetic algorithms, on 
the other hand, approach such problems indirectly. You start with a 
whole bunch of would-be solutions, a wide variety of possible experi-
mental configurations, say, which then compete with one another, like 
animals vying for resources. the most successful possible solutions 
are then broken up and recombined in novel ways to produce a sec-
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ond generation of solutions, which are allowed to compete again. And 
so on. It’s survival of the fittest, where fitness is determined by some 
standard of optimality, such as how well an experiment would work 
under a given set of conditions. It turns out that in many cases, genetic 
algorithms find optimal or nearly optimal solutions to difficult physics 
problems very quickly.
 Physicists in general, and farmer and Packard especially, have 
developed many kinds of optimization algorithms that, by different 
means, accomplish the same goals as genetic algorithms, with different 
algorithms carefully tailored to different tasks. these algorithms are 
pattern sleuths: they comb through data, testing millions of models at 
a time, searching for predictive signals.
 But there’s nothing special about physics problems, as far as these 
algorithms are concerned. they can be applied to any number of dif-
ferent areas  —  including finance. Suppose you have discovered some 
strange statistical behavior relating the currency market for Japanese 
yen with the market for rice futures. It might seem sufficient to ob-
serve that if yen go up, then so do rice futures prices. You would then 
buy rice futures whenever you noticed yen ticking upward. or else, 
suppose you have an idea for a possible pairs trade, such as with Pepsi 
and coca-cola.
 notice that in these cases, the basic strategy is clear. But there are 
all sorts of possibilities compatible with that basic strategy. to be per-
fectly scientific about the problem, you would want to figure out just 
how closely correlated the two prices are, and whether the degree of 
correlation varies with other market conditions. You would also want 
to think about how much rice to buy and how to time your purchase 
to be maximally certain that yen were really going up. But trying to 
come up with a way of relating all of these variables in an optimal 
way from scratch would be an enormously time-consuming and dif-
ficult process, and you could never be sure you’d gotten it right. In 
the meantime, your opportunity would pass. But if you used a genetic 
algorithm, you could let thousands of closely related models and trad-
ing strategies based on the supposed connection between yen and rice 
compete with one another. You would soon arrive at an optimal, or 
nearly optimal, strategy. this is a variety of forecasting, but it doesn’t 



require you to come up with some complete chaos-theoretic descrip-
tion of markets. It’s much more piecemeal than that.
 Another one of the Prediction company’s ideas was to use many 
different models at once, each based on different simplified assump-
tions about the statistical properties of different assets. farmer and 
Packard developed algorithms that allowed the different models to 
“vote” on trades  —  and then they adopted a strategy only if their mod-
els were able to form a consensus that it would likely be successful. 
voting may not sound as if it has anything to do with physics, but the 
underlying idea comes right from farmer’s and Packard’s days study-
ing complex systems. Allowing many different models to vote identi-
fies which trading strategies are robust, in the sense that they aren’t 
sensitive to the special details of a particular model. there is a close 
connection between searching for robust strategies and searching for 
attractors in a complex system, since attractors are independent of ini-
tial conditions.
 this kind of modeling, where one uses algorithmic methods to 
identify optimal strategies, is often called “black box” modeling in the 
financial industry. Black box models are very different from models 
like Black-Scholes and its predecessors, whose inner workings are not 
only transparent but often provide deep insights into why the mod-
els (should) work. Black box models are much more opaque, and as 
a result they are often scarier, especially to people who don’t under-
stand where they come from or why they should be trusted. Black box 
models were occasionally used before the Prediction company came 
along, but the Prediction company was one of the very first compa-
nies to build an entire business model based on them. It was a whole 
new way of thinking about trading.

Almost a year into the new company, the senior partners weren’t 
making any money. An investment firm needs something to invest. 
farmer, Packard, and McGill could only go so long without bringing 
home paychecks  —  and to make matters worse, they had been funding 
their team of graduate students and computer hackers out of their own 
pockets for eight months, since everyone had taken up residence at the 
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Griffin Street office in July 1991. the time for being choosy was com-
ing to an end. the partners knew they didn’t want to sell the company 
so soon into the adventure, but the idea of being someone else’s hedge 
fund was starting to look appealing. At least they’d have capital, and 
they would be (more or less) independent. they had spent months 
interviewing possible partners, and at this point it was hard to imagine 
a better solution.
 And then, in early March 1992, a miracle happened. farmer had 
been invited to give a presentation at an annual computer conference. 
He had reluctantly agreed to attend, on the basis that Silicon valley 
investors would be there and they might be willing to offer some no-
strings-attached financing. He gave a talk on the role of computers in 
prediction, which generated a lot of questions. Afterward, as he was 
packing up his slides, a man in a suit approached him. He introduced 
himself as craig Heimark, a partner at o’connor and Associates  —  
the firm that had made its first fortune by successfully modifying the 
Black-Scholes equation to account for fat-tailed distributions, under 
the guidance of Michael Greenbaum and clay Struve. By 1991, it was 
one of the biggest players in the chicago commodities markets, with a 
focus on high-tech derivatives trading. the company had six hundred 
employees and billions of dollars under management. o’connor wasn’t 
using nonlinear forecasting, and the Prediction company wasn’t inter-
ested in derivatives. But nonetheless, o’connor and Associates were 
the Predictors’ kind of people. In fact, one of o’connor’s recent hires 
had been a friend and fellow researcher back in farmer’s and Packard’s 
academic days.
 Shortly after farmer and Heimark met, farmer received a phone 
call from another o’connor partner, named david Weinberger. Wein-
berger had been one of the very first quants, leaving a teaching job in 
operations research (essentially, a branch of applied mathematics) at 
Yale to work for Goldman Sachs in 1976, even before Black arrived. 
He’d moved to o’connor in 1983, to help that company come up with 
new strategies as more and more companies got on the Black-Scholes 
bandwagon. He was one of the few people in the industry, even in 1991, 
who both was high powered enough to make a deal and also spoke the 



language of the scientists running the Prediction company. He called 
on a friday afternoon, from chicago. on Saturday morning, he was 
sitting in the Griffin Street office.
 o’connor turned out to be just the kind of firm that the Predic-
tion company wanted to work with  —  in large part because the people 
working at o’connor were able to understand what farmer and Pack-
ard were doing well enough to evaluate it themselves. Under the deal 
they ultimately negotiated, the Prediction company maintained its in-
dependence. o’connor put up the investment capital, in exchange for 
the majority of the proceeds; it also fronted the Prediction company 
the funds it so desperately needed in order to pay salaries and buy 
equipment in the meantime.
 the deal with o’connor seemed perfect at the time. But it turned out 
to be even better than the Prediction company founders had hoped. 
When o’connor came knocking on the Prediction company’s door, it 
already had a long-running partnership with Swiss Bank corporation 
(SBc), a nearly century-and-a-half-old Swiss bank. And then, in 1992, 
before the ink was dry on o’connor’s deal with the Prediction com-
pany, SBc announced its intention to buy o’connor outright. the 
Prediction company found itself in a partnership negotiated with its 
kindred spirits at o’connor but funded by the much deeper pockets 
of SBc. Weinberger was given a top management position at SBc and 
continued as the principal liaison for the Prediction company. It was 
an ideal arrangement. the Predictors had hit the big time.
 In 1998, SBc merged with the still-larger Union Bank of Switzer-
land to form UBS, one of the largest banks in the world. despite the 
size difference, however, most of the senior positions at UBS went to 
former SBc managers and the relationship with the Prediction com-
pany was maintained.
 the Prediction company, following the o’connor tradition as 
a secretive high-tech firm, never released any metrics of its success 
publicly  —  and none of the former principals or board members with 
whom I spoke were authorized to share any concrete information. 
this might seem suspicious. After all, if you’re successful, why hide it? 
Here, though, the opposite is the case: on Wall Street, success breeds 
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imitation, and the more firms there are implementing a strategy, the 
less profitable it is for anyone. there are some indications, however, 
that the Prediction company has been wildly successful. As one for-
mer board member I spoke with pointed out, it is still an active subsid-
iary of UBS, after more than a decade. Another knowledgeable source 
told me that, over the firm’s first fifteen years, its risk-adjusted return 
was almost one hundred times larger than the S&P 500 return over the 
same period.
 farmer stayed with the firm for about a decade before his passion 
for research lured him back to academia. He took a position at the 
Santa fe Institute as a full-time researcher in 1999. Packard stayed with 
the company for a few more years, serving as ceo until 2003, when 
he left to start a new company, called ProtoLife. By the time they left, 
they had made their point: a firm grasp of statistics and a little creative 
reappropriation of tools from physics were enough to beat the Man. It 
was time to tackle a new set of problems.

Black box models, and more generally “algorithmic trading,” have 
taken much of the backlash against quantitative finance in the period 
since the 2007–2008 financial crisis. the negative press is not unde-
served. Black box models often work, but by definition it is impossible 
to pinpoint why they work, or to fully predict when they are going to 
fail. this means that black box modelers don’t have the luxury of being 
able to guess when the assumptions that have gone into their models 
are going to turn bad. In place of this sort of theoretical backing, the 
reliability of black box models has to be constantly tested by statistical 
methods, to determine the extent to which they continue to do what 
they are intended to do. this can make them seem risky, and in some 
cases, if used injudiciously, they really are risky. they are easy to abuse, 
since one can convince oneself that a model that has worked before is 
a kind of magical device that will continue to work, come what may.
 In the end, though, data outclass theory. this means that no matter 
how good the theoretical backing for your (non–black box) model, 
you ultimately need to evaluate it on the basis of how well it performs. 
even the most transparent models need to be constantly tested by just 



the same kinds of statistical methods that are used to evaluate black 
box models. the clearest example of why this is so can be found by 
looking at the failure of the Black-Scholes model to account for the 
volatility smile in the aftermath of the 1987 crash. theoretical back-
ing for a model can be a double-edged sword: on the one hand, it can 
help guide practitioners who are trying to understand the limits of 
the model; conversely, it can lull you into a sense of false confidence 
that, because you have some theoretical justification for a model, the 
model must be right. Unfortunately science doesn’t work this way. 
And from this latter point of view, black box models have an advan-
tage over other, more theoretically transparent models, because one 
is effectively forced to evaluate their effectiveness on the basis of their 
actual success, not on one’s beliefs about what ought to be successful.
 there’s another worry about black box models, above and beyond 
their opaqueness. All of the physicists whose work I have discussed 
thus far, from Bachelier to Black, have argued that markets are unpre-
dictable. Purely random. the only disputes concern the nature of the 
randomness, and whether they are well enough behaved to be treated 
by normal distributions. In the years since it was first observed by 
Bachelier and osborne, the idea that markets are unpredictable has 
been elevated to a central tenet of mainstream financial theory, under 
the umbrella of the efficient market hypothesis.
 And yet, the Prediction company, and dozens of other black box 
trading groups that have sprung up subsequently, purports to predict 
how the market will behave, over short periods of time and under spe-
cial circumstances. the Prediction company, at least, never worked 
with derivatives  —  its models attempted to predict how markets would 
behave directly, in just the way that many economists (and plenty of 
investors) would have supposed was impossible. nonetheless, it was 
successful.
 It’s reasonable to be skeptical about the company’s success. Invest-
ing can often come down to luck. that markets are random is not just 
conventional wisdom in economics departments. there’s an enor-
mous amount of statistical evidence to support it. then again, perhaps 
the idea that markets are random because they are efficient  —  in the 
sense that market prices quickly change to account for all available 
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information concerning the expected future performance of a stock
—  is not necessarily in conflict with the Prediction company’s success. 
It sounds like a paradox. But think about the basis for the efficient 
market hypothesis. the standard argument goes something like this: 
Suppose that there was some way to game the markets; that is, sup-
pose that there was some reliable way to predict how prices are going 
to change over time. then investors would quickly try to capitalize on 
that information. If markets are always at a local high in the last week 
of May, or if they always drop on the Monday following a Giants vic-
tory, then as soon as the pattern gets noticed, sophisticated investors 
will start selling stocks at the end of May and buying them as soon as 
the Giants win  —  with the result that prices will drop at the end of May 
and rise on Mondays after Giants victories, essentially washing out 
the pattern. Sure enough, every time an economist appears to find an 
anomalous pattern in market behavior, it seems to correct itself before 
the next study can be done to confirm it.
 fair enough. this kind of reasoning might make you think that even 
if markets somehow got out of whack, there are internal processes that 
would quickly push them back into shape. (of course, one of the major 
reasons to think that the efficient markets hypothesis is deeply flawed 
is the apparent presence of speculative bubbles and market crashes. 
Whether these kinds of large-scale anomalies, where prices seem to 
become unmoored, are predictable is the subject of the next chapter. 
Here I am thinking of smaller-scale deviations from perfect efficiency, 
supposing that such a thing exists.) But what are these internal pro-
cesses? Well, they involve the actions of so-called sophisticated inves-
tors, people who are quick to identify certain patterns and then adopt 
trading strategies designed to exploit those patterns. these sophisti-
cated investors are what make the markets random, at least according 
to the standard line. But they do so by correctly identifying predictive 
patterns when they arise. Such patterns might disappear quickly. But 
if you’re the first person to notice such a pattern, the argument about 
self-correcting markets doesn’t apply.
 What does this mean? It means that even if you take the standard 
line on efficient markets seriously, there is still a place for sophisticated 
investors to profit. You just need to be the most sophisticated investor, 
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the one most carefully attuned to market patterns, and the one best 
equipped to find ways to turn patterns into profit. And for this task, a 
few decades of experience in extracting information from chaotic sys-
tems plus a room full of supercomputers could be a big help. In other 
words, the Prediction company succeeded by figuring out how to be 
the most sophisticated investor as often as possible.
 of course, not everyone buys the idea that markets are efficient. 
farmer, for one, has often criticized the idea that markets are unpre-
dictable  —  and with good reason, since he made his fortune by pre-
dicting them. Likewise, wild randomness can be a sign of underlying 
chaos  —  which, perhaps counterintuitively, indicates that there is often 
enough structure present to make useful predictions. And so what-
ever your views on markets, there’s a place for the Predictors. It’s no 
surprise, then, that droves of investors have followed in farmer’s and 
Packard’s pioneering footsteps. In the twenty years since the first com-
puters arrived at the door of 123 Griffin Street, black box models have 
taken hold on Wall Street. they are the principal tool of the quant 
hedge funds, from d. e. Shaw to citadel. the prediction business has 
become an industry.
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D idier sornette looked at the data again. He rubbed his 
forehead thoughtfully. the pattern was unmistakable. Some-
thing was about to happen  —  something big. He was sure of 

it, even though predicting such things was notoriously difficult. He 
leaned back and looked out the window of his office at the University 
of california, Los Angeles geophysics institute. Such a tremor could 
have substantial consequences. the question, though, was what to do 
about it. Should he issue a warning? Would anyone believe him? And 
even if anyone did, what could be done?
 It was late summer 1997. Sornette had been working on this theory 
for years now, though the idea of applying it in the present context 
was new. Still, he had had ample time to test it with historical data. In 
each instance, before a major event, he had seen this same characteris-
tic pattern. It looked like a wavy line, but with the oscillations getting 
faster and faster over time, the peaks becoming closer and closer to 
one another as though they were all trying to bunch up around the 
same point. the critical point. Sornette had found, both theoretically 
and experimentally, that these patterns should be robust enough to 
make predictions, to project when the critical point would occur. the 
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same pattern appeared all over the place: before earthquakes, before 
avalanches, before certain kinds of materials exploded. But this time it 
was different. this time, Sornette actually saw the pattern in advance. 
It was the difference between realizing a prediction was possible  —  a 
risk-free endeavor  —  and actually making it. But Sornette was confi-
dent. He would be willing to bet on this.
 He picked up the phone and called his colleague olivier Ledoit. Le-
doit was a young faculty member at the Anderson Graduate School of 
Management at UcLA. Sornette told his friend what he had found. 
the data showed that a critical event was coming. earth-shattering, 
perhaps, but not geological: this event would be a potentially dramatic 
crash of the world’s financial markets. Sornette could even say when it 
would happen. His calculations put it at the end of october, just a few 
months away.
 Sornette had been working his way into finance for several years, 
but even so he was still a physicist. Ledoit knew the financial indus-
try and could help him figure out the next steps. the two settled on 
a plan. first, they would file their warning with the authorities. Sor-
nette and his postdoctoral researcher at UcLA, another geophysicist-
cum-economist named Anders Johansen, wrote a notice and sent it to 
the french patent office. no one would believe them now, of course  
—  none of the traditional methods of analyzing markets pointed to in-
stability. And if they waited until after the crash, no one would believe 
them either, though for a different reason: their voices would be lost 
among the thousands of economists and investors who would insist 
they had seen this coming. the patent filing would be their insurance 
policy, their proof that they really had made the prediction, over a 
month before the crash. the notice was filed on September 17, 1997. It 
predicted a market crash in late october of that same year.
 the second step? Profit. It’s easy to make money when markets are 
rising. But in many ways, a market crash is an even more dramatic 
profit opportunity, if you can see it coming. there are several ways to 
make money off a crash, but the simplest way is buying put options. 
the options I discussed earlier are known as call options. You buy the 
right to purchase a stock at some fixed price, called the strike price, at 
some time in the future. If the market value of the stock goes above 
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the strike price, you profit, because you have the right to buy the stock 
at the strike price, and then sell it at the higher market price, pocket-
ing the difference. of course, if the price doesn’t go up, that’s oK too. 
You’re only out the money spent on the option, and not the higher 
price of the stock itself. Put options work in essentially the opposite 
way. You buy the right to sell a stock at a specific price. In this case, 
you profit if the price of the stock falls below the strike price, because 
you can buy the stock at the market price and sell it at the higher strike 
price, again pocketing the difference.
 recall that far-out-of-the-money options are options that will be 
valuable only if the market takes a dramatic swing. Since dramatic 
market swings tend to be unlikely, far-out-of-the-money options tend 
to be very inexpensive (because the people selling them believe they 
carry little risk). When markets crash, however, these far-out-of-the-
money put options can become very valuable indeed, with almost no 
initial cost. And if you know when the market is going to crash, you 
can walk away with enormous profits accrued over a very short time  
—  just a few days, say  —  with relatively little risk. It sure beats buy-and-
hold. the problem, of course, is predicting the unpredictable.

Imagine inflating a balloon. You start with a limp piece of rubber. In 
this uninflated state, the balloon is stretchy and very difficult to tear. 
You could poke it and prod it any way you like, even with a very sharp 
knife, and unless you stretch the balloon out first, the knife is unlikely 
to puncture it. A pin would do no damage at all. now begin to blow 
air into it. After a few puffs, the balloon starts to expand. the pressure 
from the air inside is pushing the walls of the balloon out, just enough 
to give the surface a roughly spherical shape. the material still has 
considerable give. depending on how much air has been pumped in, a 
very sharp knife might now slice the rubber, but the balloon certainly 
won’t pop, even if you manage to puncture it. A puncture would allow 
the air inside to leak, but it wouldn’t be very dramatic.
 As you blow more air into the balloon, however, it becomes increas-
ingly sensitive to outside effects. A fully inflated balloon is liable to 
pop from the slightest brush with a tree branch or a bit of concrete  —  a 
tap from a pin is certain to make it explode. Indeed, if you keep blow-



ing air into a balloon, you can make it burst by touching it with your 
fingertips, or by simply blowing in another mouthful of air. once the 
balloon is primed, it doesn’t take much to produce a very dramatic ef-
fect: the balloon shreds into tiny pieces faster than the speed of sound.
 What makes a balloon pop? In some sense, it’s an external cause: a 
tree branch or a pin, or perhaps the pressure from your fingers as you 
hold it. But these very same influences, under most circumstances, 
have little or no effect on the balloon. the balloon needs to be inflated, 
or even overinflated, for the external cause to take hold. Moreover, 
the particular external cause doesn’t much matter  —  it’s far more im-
portant that the balloon be highly inflated when it is pricked. In fact, 
the external cause of a popped balloon isn’t what makes the balloon 
pop at all. It’s the internal instability in the balloon’s state that makes it 
susceptible to an explosive pop.
 the bursting of a balloon is one of a variety of phenomena known 
as ruptures. ruptures occur in all sorts of materials when they are put 
under stress. A rupture can often be thought of as a straw-that-broke-
the-camel’s-back effect: the stress on a substance, such as high internal 
pressure (caused, for instance, by the air in a balloon, or the gas in a 
soda can that has been shaken up  —  or the accumulated weight on a 
camel’s back), leads to instabilities that in turn make the material vul-
nerable to explosive events. these explosions, sometimes called criti-
cal events, are the ruptures. Just as when a balloon bursts, a rupturing 
material changes its state very rapidly, releasing a substantial amount 
of energy in the process. events that might otherwise have little effect, 
like a pin breaking the surface of an only partially inflated balloon, 
tend to cascade, building into something larger.
 no one has done more to improve our understanding of ruptures 
than didier Sornette. He has been stunningly prolific. Still in his early 
fifties, he has published more than 450 scientific articles in just thirty 
years. He has also written four books, one on physics, two on finance, 
and one on Zipf ’s law, the unusual distribution that first attracted 
Mandelbrot’s attention. But even more remarkable than the amount 
of work he has produced is its range. Most physicists, even the most 
successful, work in a handful of closely connected areas. Acquiring 
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expertise in a new area is difficult, and for most people, once or twice 
is often enough for a lifetime.
 But Sornette has made contributions to more than a dozen fields, 
ranging from material science to geophysics, to decision theory (a 
branch of economics and psychology), to financial markets, even to 
neuroscience (he has done considerable work on the origin and pre-
diction of epileptic seizures). He thinks of himself as a scientist in the 
broadest sense, as someone conversant in the sciences at large. He 
studied physics as a young man, not because he believed he wanted to 
devote his life to the field, but because he thought of physics as a kind 
of mother science. He likes to quote the philosopher descartes, who in 
his magnum opus Discourse on Method wrote that the sciences are like 
a tree: metaphysics is the roots, physics is the trunk, and everything 
else is the branches. (nowadays, Sornette is more modest about his 
training. He thinks of his background in physics as an excellent prepa-
ration for approaching many problems but says that the intellectual 
challenges of fields like economics and biology are at least an order of 
magnitude more difficult than those posed by physics.) despite the va-
riety of topics, however, much of Sornette’s work involves identifying 
patterns endemic to the structures of complex systems and using these 
patterns to predict critical phenomena: ruptures, quakes, crashes.
 one of Sornette’s earliest scientific projects involved ruptures in 
Kevlar, a synthetic fiber developed in 1965 by du Pont (and heir to the 
nylon tradition described earlier). It is a famously strong substance, 
used in the bulletproof vests worn by police and soldiers, and even as a 
replacement for steel in suspension bridge cables. It is stronger at very 
cold temperatures than at room temperature, and it is largely stable at 
extremely high heat, at least for short periods. It’s a marvel of modern 
chemistry.
 these properties have made Kevlar a very attractive material for 
all sorts of high-tech applications. It was one of these  —  space flight  
—  that led Sornette to become involved in Kevlar research. Initially, 
the space race was a two-sided affair, between the United States and 
the Soviet Union. But by the mid-1960s, the leaders of several Western 
european nations began to realize that europe couldn’t rely on the lar-



gesse of the superpowers to further european economic, military, and 
scientific interests in space. At first, europe’s entry into the space race 
was slow and scattered, but then in 1975, the various nascent organiza-
tions that had been formed over the previous decade combined into 
what is now the european Space Agency. By this time, the space race 
had begun to slow, with further escalation proving too costly for both 
superpowers. this left an opportunity for the new european agency 
to rapidly catch up and assert itself as a dominant force in the space 
industry. A principal part of the new european initiative was a series 
of cutting-edge rockets called Ariane, designed as satellite delivery 
mechanisms.
 In 1983, the still-young european Space Agency began developing a 
new variety of Ariane rocket, the Ariane 4, to launch commercial sat-
ellites, particularly communication satellites. (It was enormously suc-
cessful  —  at one stage, it was used for roughly half of all commercial 
satellites launched worldwide.) the new rocket was designed by the 
french space agency, cneS, but manufactured by private contractors. 
It was one of these private contractors, a firm called Aérospatiale, that 
contacted Sornette.
 rockets, including the Ariane, often require several substances that 
need to be kept under very high pressure in order for combustion to 
occur. the chemicals are stored in vessels called pressure tanks  —  es-
sentially, high-tech water balloons intended to maintain the necessary 
high pressures without bursting under the strain. the researchers at 
Aérospatiale who contacted Sornette were studying the behavior of 
pressure tanks that would be used in the Ariane 4. these tanks were 
made out of Kevlar. Usually, the tanks were strong, even at very high 
pressures. except when they suddenly exploded. the group at Aéro-
spatiale was trying to determine the conditions under which this 
would happen.
 We know that if a balloon is inflated sufficiently, it will nearly always 
pop when pricked with a sharp pin. other substances, though, can 
be trickier to figure out. Materials like Kevlar will eventually rupture 
from the strain of high-pressure contents, but determining precisely 
when, or why, is a surprisingly difficult problem. When substances like 
Kevlar are put under significant stress, tiny fractures begin to appear. 
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Sometimes these fractures combine and grow into slightly larger frac-
tures. Sometimes these slightly larger fractures grow into still-larger 
fractures, and so on, until you get a very large fracture. these fractures 
follow a pattern we have already seen: they are fractals, where the ti-
niest fractures look just like the larger ones. the difficulty is that tiny 
fractures don’t affect the behavior of the pressure tanks, whereas the 
largest fractures can be disastrous. But it’s hard to say what makes a 
large fracture different from a small one, at least in terms of the frac-
tures’ causes. A large fracture is just a small one that never stopped 
growing; very large, disruptive fractures are no different in kind from 
the very small benign ones.
 this relationship between large and small fractures posed a major 
problem for the rocket scientists. It meant that even under ordinary 
working conditions, when the Kevlar was usually stable, there was al-
ways a chance that a normal tiny fracture would spontaneously grow 
into a major one and destroy the rocket. Any given fracture, even the 
very smallest ones, had the capacity to become explosive. When Sor-
nette joined the team, the other scientists were at a loss. to put these 
pressure tanks to good use, they needed to figure out how to use them 
safely  —  that is, they needed to figure out the conditions under which 
ruptures would occur. But this seemed an impossible task. the rup-
tures seemed, quite simply, random.
 Until Sornette noticed a pattern.
 normally, the parts of a pressure tank are more or less independent, 
like workers in the nineteenth century, before collective bargaining. If 
you kick a pressure tank, for instance, there might be some vibrations, 
but these will die off pretty quickly, and even if you manage to put a 
dent in the part of the tank where your foot made contact (unlikely), 
you won’t do any damage to the rest of the tank. Likewise, if a small 
fracture appears under these circumstances, it won’t produce a rup-
ture. this is a bit like when you try to pop an only partially inflated 
balloon: a pin doesn’t have much of an effect.
 Sometimes, though, the various parts of the material begin to con-
spire with one another. they display a kind of herding effect. this can 
happen for various reasons: heat, say, or pressure, or other external 
effects. When this occurs, it’s almost as if the various parts of the ma-



terial have unionized. A kick in one place can ripple through a whole 
tank, with small localized influences leading to dramatic effects, much 
as a pinprick in one place can make an inflated balloon tear itself apart. 
this kind of conspiracy is sometimes called self-organization, because 
no matter how random and uncorrelated the materials are to begin 
with, if they are placed under stress, they will begin to coordinate their 
activity. It’s as though the bits and pieces of material begin to stir under 
pressure, gradually deciding to join together in common cause.
 Sornette didn’t come up with the notion of self-organization, 
though he has done as much work on the theory as anyone. Instead, 
he realized something slightly different. He finally understood how a 
small labor strike differs from a catastrophic one. All strikes are caused 
by the same sorts of sparks: an egregious injury; an unfair termination; 
cut wages. You might think that there’s no way of telling which such 
events will lead to a nationwide walkout. A large strike looks like a 
small strike that, for whatever reason, simply didn’t stop. So, too, with 
the microfractures that, under some circumstances, seem to explode 
into ruptures that tear a material apart. But the biggest strikes require 
something more than just a spark: they require a labor movement, 
with a high degree of structure and a capacity for coordinated action. 
they require a mechanism for system-wide feedback and amplifica-
tion, something to transform an otherwise small event into a large 
one. In other words, if you want to predict a major strike, don’t look 
for the grievances. those are always there. Look for the unions. Look 
for telltale patterns of self-organization. coordination, rather than the 
pinpricks, is what really leads to critical events. And Sornette would 
take that insight straight to the bank.

Sornette was born in Paris but raised in the southeast of france, in a 
town called draguignan on the french riviera. draguignan is about 
an hour by car from Saint-tropez, the beautiful Mediterranean resort 
town famous as a jet-set vacation spot. through high school, Sornette 
would often go to Saint-tropez to sail and wind-surf. once he gradu-
ated, he moved up the coast to nice where he enrolled in a preparatory 
school to study for the grande école admissions exam. (It was at a simi-
lar kind of school in Lyon, a couple of hundred miles north, that Man-

166 • t h e  p h y s i c s  o f  wa l l  s t r e e t



Tyranny of the Dragon King • 167

delbrot hid from the nazis during World War II.) Sornette performed 
extremely well on his exams and was admitted to the most prestigious 
of the grandes écoles, École normale Supérieure.
 He received his doctorate in 1981, at the young age of twenty-four  
—  and was immediately given a tenured position at the University of 
nice. His earliest work was in an area of physics known as condensed 
matter  —  the study of matter under extreme conditions. But he began 
to branch out the following year, when he began his obligatory mili-
tary service. He spent these years working at a government military 
contractor called thomson-Sintra (keeping his academic position all 
the while). It was during this period, working on research for the mili-
tary, that Sornette first began to study chaos theory and complex sys-
tems, subjects that would later provide much of the foundation for his 
interdisciplinary work.
 In June 1986, Sornette married a young geophysicist named Anne 
Sauron. At the time she was a Phd student in orléans, interested in 
geophysics, but after their marriage she moved to nice, where Sornette 
was already established. Shortly after their wedding, Sornette secured 
funding for his new wife to join his research group, with him as her 
doctoral advisor. they focused on connecting the work Sornette had 
begun on ruptures to questions concerning the cause of earthquakes.
 Although Sornette was officially Sauron’s advisor, their work was re-
ally a collaboration between experts in different fields. He didn’t know 
the first thing about earthquakes when they began working together 
(she, meanwhile, didn’t know anything about material rupture). But 
Sornette was a quick study. together, they began to think about ap-
plying fractal geometry to the study of tectonic plates, sections of the 
earth’s crust that slowly creep around the planet. tectonic plates were 
originally proposed to explain the strange evidence that the continents 
were once connected  —  for example, certain varieties of plant are 
found only in western South America and eastern Australia  —  but they 
are now believed to be responsible for things like earthquakes (which 
occur when two plates collide or shift past one another), mountain 
ranges (which form when the plates collide, buckling at the collision 
site), volcanoes (which erupt at the interface between plates, where 
magma from below the crust can escape), and ocean trenches (the op-



posite of mountain ranges). the Sornettes’ work was an attempt to 
understand how the current geology and topography of the divide be-
tween Asia and India  —  a stretch of land as long across as the conti-
nental United States, spanning the Himalayas and a handful of smaller 
mountain ranges  —  could arise as a result of many small earthquakes 
over millions of years, as the two continents collided with one another.
 Geophysicists study a broad swath of topics concerning the inter-
nal structure of planets. But their bread and butter, the research that 
gets funding agencies most excited, is predicting natural disasters like 
earthquakes and volcanoes. earthquake prediction is a matter of par-
ticular importance, for both scientific and humanitarian reasons. It is 
also famously difficult, though this hasn’t stopped scientists, and be-
fore that philosophers and astrologers, from trying their hand. the 
ancient roman historian Aelian, for instance, hinted that animals 
could accurately predict earthquakes, claiming that snakes and wea-
sels evacuated the Greek city of Helice a few days in advance of an 
earthquake that devastated the region. An ancient Indian astrologer 
and mathematician named varahamihira believed that earthquakes 
could be predicted by looking for particular cloud patterns.
 In the 1960s and 1970s, the United States and the Soviet Union 
launched competing earthquake prediction initiatives, showering 
geophysicists with funds. these programs led to claims that anything 
from electrical storms to increased radioactivity to an absence of 
earthquakes could be used to predict future disasters. But the state of 
the art, especially in the mid-1980s, was not much better than it was 
when Helice succumbed in 373 b.c. (Indeed, both animal behavior 
and earthquake clouds remain on the list of active research programs, 
even today.) the ability to accurately predict earthquakes is a kind of 
holy grail.
 Sornette began his collaboration with Aérospatiale in 1989. that 
same year, he and Sauron published a paper connecting self-organiza-
tion, the idea behind the theory of ruptures he had been developing, 
to earthquakes. the analogy was quite close: the earth’s crust could be 
understood as a material capable of rupture; a theory that described 
rupture in something like Kevlar could also, in principle, describe 
rupture in something like rock. the last step was simply to view cata-
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strophic earthquakes as critical events, ruptures at the interface be-
tween tectonic plates. It was not the very first paper to link the ideas 
of self-organization, criticality, and earthquakes. But it was close. And 
it set the stage for Sornette to think of his two parallel projects  —  pres-
sure tanks and earthquakes  —  as closely connected.
 the moment of inspiration came two years later, in 1991. By this 
time, he and others had developed a detailed model for how fractures 
and cracks percolate through a material. this model accounted for 
how degrees of organization and coordination could serve to amplify 
fractures, to turn small causes into large effects. It was while thinking 
about this model that Sornette realized that if all of the pieces were in 
place for a critical event, an explosive rupture, the way in which the 
fractures leading up to the rupture would multiply would be affected. 
the idea was that a rupture would be preceded by smaller events, fol-
lowing a very specific, accelerating pattern. this pattern is called log-
periodic because the time between the smaller events decreases in a 
particular way, related to the logarithm of the time. Since this pattern 
would occur only if the system were primed for a rupture, it counted 
as a signal that a critical event was about to occur. And because the 
pattern was one that accelerated over time, if you looked at a few of the 
smaller events in a row, you could determine whether they were show-
ing the log-periodic behavior (because the time between the events 
would be shrinking), and you could extrapolate forward in time to 
figure out when the peaks would collapse into one another, thus pre-
dicting the critical event.
 Sornette first sought to test the theory with the pressure tanks. Sure 
enough, right before a rupture, he and his collaborators observed 
the log-periodic pattern in vibrations of the tanks known as acoustic 
emissions. Basically, the tanks would start rumbling as fractures began 
to appear. And if the rumblings were log-periodic, a critical event was 
about to occur. Aérospatiale quickly patented the method for predict-
ing when its rockets’ tanks would explode; it is still used today for 
forecasting and testing pressure tank failure.
 But pressure tanks were only the beginning. If the Sornettes were 
right about the close connection between material rupture and earth-
quakes, didier’s discovery had enormous implications. there were 



all sorts of reasons for the occurrence of small earthquakes, which 
were the equivalent of tiny fractures in Kevlar under stress. But if 
catastrophic earthquakes were like ruptures, as the Sornettes had pro-
posed, then one should be able to predict a critical earthquake by look-
ing for the log-periodic pattern in the geophysical data. (there is a 
long history of people believing that small earthquakes foretell larger 
ones  —  Sornette’s approach makes this much more precise, by saying 
when small earthquakes are predictive.) Sornette’s methods weren’t 
useful for predicting anything but the critical earthquakes, the ones 
that resulted from underlying coordination. But these were usually the 
biggest earthquakes of all, the ones that leveled cities and tore conti-
nents apart. It was a tool for predicting catastrophe. the holy grail, 
indeed.

As September 1997 crept to an end and october began, Sornette and 
Ledoit began to buy far-out-of-the-money put options. neither had a 
fortune to invest, but the options were cheap. nervously, they watched 
as the major world indices marched along, blithely unaware that di-
saster was just around the bend. Sornette was confident enough to 
put his own money where his best science told him to. But there have 
been only a handful of market crashes in modern history. this pattern 
could have been a false alarm. Much was on the line for Sornette, both 
financially and intellectually.
 the middle of october came and went. Sornette’s predictions were 
not perfectly precise  —  the market oscillations put the crash some-
where toward the end of october, but it was difficult to pinpoint a spe-
cific day. each day, the probability that the crash would happen (given 
that it hadn’t already) increased. But this would continue for only a 
short while  —  it was theoretically possible, if unlikely, for the critical 
point to pass without so much as a shudder from the markets. Another 
week passed. Going into the weekend of october 24, there was still no 
crash. It was becoming nerve-racking. the end of october was here, 
and Sornette had nothing to show for it.
 And then it happened. on Monday, october 27, 1997, the dow Jones 
Industrial Average suffered its sixth-largest single-day point loss ever, 
down 554 points. the nASdAQ and S&P 500 indexes suffered similar 
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losses. for the first time in its history, the new York Stock exchange 
was forced to close early in order to avoid a still more severe catastro-
phe. on that day alone, over $650 billion vanished from new York’s fi-
nancial markets. International markets fared just as poorly, with sharp 
declines in London, frankfurt, and tokyo. the Hong Kong Hang Seng 
index fell 14% the following night.
 Sornette and Ledoit, however, made a 400% profit. they released 
their Merrill Lynch trading statement that november to prove it. the 
crash had come, just as Sornette had predicted.
 Historians now explain the worldwide crash as a reverberation ef-
fect. earlier that year, the thai baht collapsed after the thai govern-
ment decided to stop pegging it to the U.S. dollar. thailand carried 
significant foreign debt before the collapse of the currency, and af-
terward the country was essentially bankrupt. thailand’s difficulties 
quickly spread to its neighbors, earning the nickname “Asian flu” for 
the crisis because of the way it moved through Southeast Asian econo-
mies, devaluing currencies and depressing equity markets throughout 
the region. these conditions increased uncertainty in all parts of the 
world’s economy, leading to unusually high variations in the prices of 
securities. When Asian markets fell overnight on the twenty-sixth, in-
vestors in the United States reacted strongly and amplified the crash.
 one of the most striking things about the october 27 crash, and the 
reason it is now referred to as a “mini crash,” is that new York markets 
rebounded the next day. By the close of trading on the twenty-eighth, 
the dow had regained 60% of the previous day’s losses. And in a strik-
ing counterpoint to closing its doors early for the first time the day 
before, october 28 was the first day that over a billion shares were 
traded on the nYSe. this kind of dramatic seesawing is telling: since 
the cumulative effect of the crash and rebound was a relatively modest 
change in prices, standard reasoning about pricing in an efficient mar-
ket does not seem to apply. that is, any theory of the stock market that 
accounts for price changes in terms of the actual values of the compa-
nies whose stocks are being traded would predict that a crash would 
correspond to some dramatic change in the real-world values. But this 
didn’t happen. Stocks were worth more or less the same amount on 
october 29 as they had been on october 26, indicating that most in-



vestors didn’t think the values of the companies had changed all that 
much. Instead, it seems that the crash resulted from some sort of inter-
nal instability in the markets themselves.
 According to Sornette and his collaborators, this is a feature that 
shows up in many market crashes. As he is fond of pointing out, the 
standard economic reasoning suggests that if bubbles are possible 
at all, they can end only with some dramatic news that materially 
changes the value of firms whose stocks are being traded. And yet, 
many economists agree that if you look at particular crashes, it is often 
very hard to identify what that piece of news could have been. Sure, 
there’s always some piece of bad news to associate with a market crash. 
But one is often stuck blaming extreme events on run-of-the-mill ex-
ternal causes that do not seem to change the value of the things being 
traded. this alone should be highly suggestive, at least to someone 
who is accustomed to thinking about critical phenomena in physics, 
because it implies that even if a piece of news is the immediate cause 
of a crash, there is something about the state of the market that deter-
mines whether the market actually crashes, or just closes a few points 
lower. And as with ruptures and earthquakes, Sornette argues, even if 
you cannot predict the news, you can try to identify when the market 
is in a precarious state. Just look for the log-periodic tremors.

critical phenomena often have what physicists call universal proper-
ties. this means that you can start with two materials that look as dif-
ferent from one another as can be  —  a Kevlar tank, for instance, and 
tectonic plates  —  and find that, despite the profound differences in 
their microscopic details, under certain circumstances they exhibit the 
exact same large-scale behaviors. Both rupture, for instance, as a result 
of prolonged strain. If you look in detail at how the ruptures occur, 
you find that the differences in the microscopic details fade away and 
the radically different materials end up acting in more or less the same 
way. there are certain universal laws that seem to apply at a statisti-
cal level. You might think of these as laws that govern coordination 
between parts, irrespective of what the parts happen to be. It is this 
kind of universality that makes Sornette and his collaborators’ ideas 
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so widely applicable. the details are often different from field to field, 
but the principal mechanisms are not. the same phenomena affect 
avalanches, forest fires, political revolutions, even epileptic seizures.
 Sornette’s first foray into economics was in 1994. He coauthored 
a paper with another physicist in france, named Jean-Philippe 
Bouchaud. that same year, Sornette and Bouchaud went on to found 
a research company called Science & finance, which in 2000 merged 
with a Parisian hedge fund management company, capital fund Man-
agement (cfM). today Bouchaud is chairman and chief scientist of 
cfM, which has grown to be the largest hedge fund management 
company in france. (He is still officially a physics professor, at École 
Polytechnique, the grande école near Paris where Mandelbrot studied; 
Sornette, meanwhile, left Science & finance in 1997.) their joint paper 
showed how to price options even if the underlying stock does not fol-
low the kind of random walk assumed by Black and Scholes. this ef-
fectively extended the theory of options pricing to more sophisticated 
models of price changes, including those with fat-tailed distributions. 
(o’connor and Associates had already done work along these lines  
—  but this wasn’t widely known.)
 After that paper, Sornette was hooked. over the next several years, 
he read more and more about traditional economics, adding what he 
could to problems like options pricing and risk. (Sornette prides him-
self on having learned to think like an economist.) Much of this early 
work was done in collaboration with Bouchaud, who by this time was 
working on finance nearly full-time.
 In 1996, Sornette’s work on earthquakes earned him a part-time 
professor-in-residence position in UcLA’s earth and space sciences 
department, and at the Institute of Geophysics and Planetary Physics. 
By this time, though, at least half of his energy was devoted to finance. 
that same year, Sornette, Bouchaud, and Sornette’s postdoctoral re-
searcher, Anders Johansen, realized that Sornette’s earlier work on 
predicting earthquakes and ruptures could be extended to predicting 
market crashes. they published a paper together in another physics 
journal. Amazingly, just a few months later, Sornette detected the log-
periodic pattern that he had determined should presage a crash. the 
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success of october 1997 deepened his belief that he was on to some-
thing important, and he redoubled his efforts on economics and finan-
cial modeling.
 As with his theories of material rupture and earthquakes, the cen-
tral idea behind Sornette’s market-crash-as-critical-event hypothesis 
involves collective action, or herding behavior. By itself, this is hardly 
surprising, as the suggestion that market crashes have something to do 
with mob psychology is old: in 1841, charles Mackay wrote a book on, 
among other things, economic bubbles that he called Extraordinary 
Popular Delusions and the Madness of Crowds. there, he pointed to 
several historical cases in which entire countries had been taken by 
some sort of frenzy, leading to speculative bubbles  —  market condi-
tions under which prices become entirely divorced from the value of 
the things being traded.
 Perhaps the most striking example occurred in the netherlands in 
the early seventeenth century. the subject of speculation was tulip 
bulbs. tulips originated in turkey but made their way into western 
europe, via Austria, in the middle of the sixteenth century. the flowers 
were considered very beautiful and were highly prized by the euro-
pean aristocracy, but the real money was in tulip bulbs, which could 
be used both to produce the flowers and to produce new bulbs. tulips 
came to represent dutch imperial power. the country’s new merchant 
class, made wealthy by trade in the dutch east and West Indies, would 
broadcast its power and prestige with ornate flower gardens, with tu-
lips as the centerpiece.
 So tulip bulbs were a valuable commodity. But how valuable? dur-
ing the 1630s, prices began to grow rapidly. By 1635, trades worth 2,500 
dutch guilders (worth roughly $30,000 in 2010 dollars) for a single 
bulb were recorded. trades of 1,500 guilders were common. In con-
trast, a skilled laborer could expect to make about 150 guilders in a 
year. Around this time, foreign money began to pour into the market 
as outsiders tried to make a quick buck in the tulip game. the dutch 
were thrilled. they took the foreign investment to mean that all of eu-
rope was catching on to their tulip craze, and so they doubled down: 
ordinary people sold their belongings, mortgaged their houses, and 
exhausted their savings to participate in the tulip market.
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 tulips bulbs are typically planted in the fall and then harvested in 
the late spring. But winter was the prime time for speculation because 
this was when would-be investors had the least information about the 
supply for the coming year: the old bulbs had been planted but the new 
bulbs and cut flowers were not yet available. It was during the winter of 
1636–37 that tulip mania (as it is now called) reached its height. that 
winter, a single bulb sold for as much as 5,200 guilders (more than 
$60,000 for one tulip bulb!). And then one day in february 1637, at 
an otherwise ordinary tulip auction in Haarlem, the bidding stopped 
too soon. Apparently no one had invited the next batch of tulip fools. 
that day, prized tulips sold for just a fraction of what they had even 
one day before. Panic spread quickly, and within days prices had fallen 
to less than 1% of their height. fortunes that had been made overnight 
vanished by morning. the dutch economy teetered, until ultimately 
the government needed to intervene.
 Herding and similar phenomena  —  the kinds of behavior that lead 
to bubbles  —  seem to be an ever-present aspect of human psychology. 
no one wants to be left out, and so we tend to copy one another. or-
dinarily, though, we do not act like lemmings. even if we look to one 
another for guidance, we do not usually follow blindly. the question, 
then, is why under some circumstances herding seems to take over. 
How does something like tulip mania strike? When do the normal 
mental brakes that would keep someone from spending his entire 
life savings on a tulip bulb give out? Sornette doesn’t have an answer 
to this question, though he has developed some models that predict 
which circumstances will lead herding effects to become particularly 
strong. What Sornette can do is identify when herding effects have 
taken over. this amounts to identifying when a speculative bubble has 
taken hold in a particular market and to predicting the probability that 
the bubble will pop before a certain fixed time (the critical point).
 despite Sornette’s enormous productivity in finance, he resists the 
idea that he has “switched over” to economics. Since 2006, he has 
held the chair of entrepreneurial risks at the Swiss federal Institute 
of technology in Zürich (usually abbreviated etH Zürich)  —  his first 
finance-related academic position  —  but he maintains a part-time po-
sition in geophysics at UcLA, and also a full-time appointment as a 



geophysicist in etH Zürich’s physics department. He continues to 
write articles and supervise students in both fields. And if you ask him 
what prompted the change in focus of his work, since surely there was 
a shift in the mid-1990s when he began working on new topics, he 
replies, with some bewilderment, that he has always been interested in 
such things. After all, he is interested in everything.
 Still, he does think there is something special about finance and 
economics. Many people go into science because of some urge to un-
derstand how the world works. But, Sornette believes, the physical 
world is only part of the story. He is just as interested, perhaps more 
interested, in how the social world works. Gravity may keep the planet 
in orbit, but, as the emcee in the musical Cabaret sings, money makes 
the world go round. And financial markets determine how money 
flows. As Sornette puts it, finance is the “queen, and not the maid.” It 
controls everything. And whatever your political position on the role 
of financial markets in global geopolitics, Sornette believes that the 
very fact that financial markets and the people who run them do have 
so much social power is a sufficient reason to look closely at how they 
work.

Since first predicting the october 1997 crash, Sornette has had a re-
markable track record of identifying when market crashes will occur. 
He saw the log-periodic pattern in advance of the September 2008 
crash, for instance, and was able to predict the timing. Similarly, the 
1998 collapse in the russian ruble that brought Long-term capital 
Management to its knees showed the signs of an impending crash  —  
indeed, Sornette has claimed that even though the largely unantici-
pated russian debt default may have triggered the market turmoil that 
summer, the crash showed the log-periodic precursors characteristic 
of herding behavior. this means that a market crash would likely have 
occurred during that period whether the ruble had collapsed or not. 
the balloon was already in a primed state; russia’s default was just the 
pinprick.
 He has had success predicting other crashes, as well, most notably 
the dot-com crash that occurred in 2000. over several years in the late 
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nineties, technology stocks skyrocketed. In 1998 and 1999, the technol-
ogy sector of the S&P 500 index went up by a factor of four, while the 
index as a whole increased by just 50%. the technology-based nAS-
dAQ index increased by almost a factor of three between 1998 and 
early 2000. Analysts began talking about a so-called new economy 
consisting of computer firms and companies whose business strategies 
depended entirely on the Internet. for these companies, none of the 
old rules applied. It didn’t matter if a firm was making any money, for 
instance  —  earnings could be negative, but the company could still be 
considered valuable if there was a wide expectation of success in the 
future. In many ways, the boom echoed earlier periods of speculation: 
in the 1920s, for instance, investors also spoke of a “new economy,” 
though then the hot tech companies were At&t and General electric.
 Sornette started seeing the log-periodic oscillations in nASdAQ 
data beginning in late 1999. By March 10, 2000  —  the day the nAS-
dAQ peaked  —  he had enough data to say the crash was imminent, 
and to predict when it would occur. He put the date somewhere be-
tween March 31 and May 2. Sure enough, during the week beginning 
April 10, the nASdAQ fell by 25%. tech stocks had gone the way of the 
tulip bulb.
 the methods Sornette has used to identify bubbles and predict 
when crashes will occur can also be used to identify a situation that 
Sornette has called an anti-bubble. these are cases in which stock 
prices are artificially low. on January 25, 1999, for instance, Sornette 
posted a paper on an online physics archive claiming that, based on his 
observation of log-periodic patterns in the market data, the Japanese 
nikkei stock index was in the midst of an anti-bubble. the paper in-
cluded quite precise predictions: Sornette indicated that by the end of 
that year, the nikkei would increase by 50%.
 this prediction was all the more remarkable because the Japanese 
market was near its fourteen-year low, which it reached on January 5, 
1999. All indications were that the market would continue to fall  —  an 
opinion held by most economists at the time. nobel Prize laureate and 
New York Times opinion columnist Paul Krugman, for instance, wrote 
on January 20 that the Japanese economy was beginning to look like a 



tragedy, and that there simply wasn’t enough demand for a recovery. 
But time proved Sornette right. By the end of the year, the nikkei had 
recovered, by precisely the 50% Sornette predicted.

Mandelbrot’s work gave some economists reason to think that markets 
are wildly random, exhibiting behavior that someone like Bachelier 
or osborne could never have imagined. even if Mandelbrot turned 
out to be wrong in the details of his proposal, he nonetheless revealed 
that financial markets are governed by fat-tailed distributions. there’s 
nothing special about extreme financial events. they are not excep-
tions; they are the norm  —  and worse, they happen all the time, for the 
same reason as more mundane events. Big market drawdowns, at their 
core, are just smaller drawdowns that didn’t stop.
 If this is right, one might think that there is no way to predict ca-
tastrophes. Indeed, self-organization, one of the principal parts of 
the theory of critical phenomena, is usually associated with just the 
kind of fat-tailed distributions that make predicting extreme events so 
difficult. the three physicists who first introduced the notion of self-
organization, Per Bak, chao tang, and Kurt Wiesenfeld, took their 
discovery as evidence that extreme events are, in principle, indistin-
guishable from more moderate events. the moral, they thought, was 
that predicting such events was a hopeless endeavor.
 this concern is at the heart of hedge fund manager nassim taleb’s 
argument against modeling in finance. In his book The Black Swan, 
taleb explains that some events  —  he calls them “black swans”  —  are 
so far from standard, normal distribution expectations that you can-
not even make sense of questions about their likelihood. they are es-
sentially unpredictable, and yet when they occur, they change every-
thing. taleb takes it to be a consequence of Mandelbrot’s arguments 
that these kinds of extreme events, the events with the most dramatic 
consequences, occur much more frequently than any model can ac-
count for. to trust a mathematical model in a wildly random system 
like a financial market is foolish, then, because the models exclude the 
most important phenomena: the catastrophic crashes.
 recently, Sornette introduced a new term for extreme events. In-
stead of black swans, he calls them “dragon kings.” He used the word 
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king because, if you try to match plots like Pareto’s law — the fat-tailed 
distribution governing income disparity that Mandelbrot studied at 
IBM  —  to countries that have a monarchy, you find that kings don’t fit 
with the 80–20 rule. Kings control far more wealth than they ought to, 
even by the standards of fat tails. they are true outliers. And they, not 
the extremely wealthy just below them, are the ones who really exert 
control. the word dragon, meanwhile, is supposed to capture the fact 
that these kinds of events don’t have a natural place in the normal bes-
tiary. they’re unlike anything else. Many large earthquakes are little 
ones that, for whatever reason, didn’t stop. these are not predictable 
using Sornette’s methods. But dragon-king earthquakes, the critical 
events, seem to require more. Like ruptures, they happen only if all 
sorts of things fall into place in just the right way. A good example of 
a dragon king is the city of Paris. france’s cities follow Zipf ’s law re-
markably well. the distribution of cities in france is fat-tailed, in that 
the very biggest cities are much bigger than the next biggest cities. But 
if you plot the size of french cities by their population size, as Zipf ’s 
law would have you do, Paris is still much too big. It breaks the mold.
 taleb’s argument trades on the fact that black swans can have enor-
mous consequences. dragon kings are similar in their influence. they 
are tyrannical when they appear. But unlike black swans, you can hear 
them coming. Sornette does not argue that all black swans are really 
dragon kings in disguise, or even that all market crashes are predict-
able. But he does argue that many things that might seem like black 
swans really do issue warnings. In many cases, these warnings take 
the form of log-periodic precursors, oscillations in some form of data 
that occur only when the system is in the special state where a mas-
sive catastrophe can occur. these precursors arise only when the right 
combination of positive feedback and amplifying processes is in place, 
along with the self-organization necessary to make a bang, and not a 
whimper.
 the Prediction company, on the one hand, and Sornette, on the 
other, offer two ways in which one might fill in the gaps in the now-
standard Black-Scholes-style reasoning. the Prediction company’s 
methods might be thought of as local, in the sense that their strat-
egy involved probing the fine-grained financial data produced every 



instant by the world’s markets for patterns that had some temporary 
predictive power. these patterns allowed them to build models that 
could be used over a short window of time to make profitable trades, 
even though the patterns were often fleeting. Along with these meth-
ods, they developed the tools necessary to evaluate the effectiveness 
of the patterns they were finding, and to tell when they had passed 
their prime. In a way, the Prediction company’s approach is modest 
and conservative. It is easy to see why it should work, as a part of what 
makes markets more efficient.
 Sornette, conversely, has taken a more global approach, looking for 
regularities that are associated with the biggest events, the most dam-
aging catastrophes, and trying to use those regularities to make pre-
dictions. His starting point is Mandelbrot’s observation that extreme 
events occur more often than a normal random walk would predict; 
Sornette believes that catastrophic crashes happen even more than 
Mandelbrot proposed. In other words, even after you accept fat-tailed 
distributions, you still see extreme events unusually often. Sornette’s 
intuition, on seeing these apparent outliers, is that there must be some 
mechanism that, at least sometimes, amplifies the largest catastrophes. 
this is a riskier hypothesis  —  but it is one that can be tested, and so far, 
it seems to have passed.
 If you think of Mandelbrot’s work as a revision to the early accounts 
of random markets, pointing out why they fail and how, then Sornette’s 
proposal is a second revision. It is a way of saying that, even if markets 
are wildly random and extreme events occur all the time, at least some 
extreme events can be anticipated if you know what to look for. these 
dragon kings can upend the entire world economy  —  and yet they can 
be studied and understood. they are the stuff of myths, but not of 
mystery.
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A nother debate.  Pia Malaney put her arms on the table 
and leaned in to listen to her fiancé, eric Weinstein. Wein-
stein was a postdoctoral researcher at MIt who had recently 

finished a Phd in mathematics at Harvard. they were sitting in a bar 
in cambridge, Massachusetts, where Weinstein was holding forth on 
how the ideas used in his dissertation could be applied to hers. the 
trouble was that his work had been on an application of abstract geom-
etry to mathematical physics. Her work, meanwhile, was in econom-
ics. the two projects seemed as different as could be. She sighed as she 
recalled, with a sense of the irony, how much easier these discussions 
had been before she had won him over to her side.
 Malaney had met Weinstein in 1988, while he was a graduate stu-
dent and she was an undergraduate economics major at Wellesley, the 
women’s college located just outside of Boston. Back then, Weinstein 
had a dim view of economics  —  a view shared by many of his mathe-
matician colleagues. He thought it consisted of mathematically simple 
theories that couldn’t hope to capture the full complexity of human 
behavior. Weinstein would get a rise out of friends in the economics 
department by calling their field “cocktail party conversation”: unsub-
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stantial, trivial. He would happily have admitted that he didn’t know 
much about economics, because, after all, there wasn’t much to know.
 Malaney was not fond of the view frequently espoused by her fi-
ancé. for years, she steadfastly defended her colleagues’ work against 
Weinstein’s attacks.
 And then one day, she found she had convinced him. All of a sud-
den, he went from trying to tell her that economics was worthless to 
declaring that they should collaborate. All Weinstein could talk about 
was how, with his training in mathematics and physics and her training 
in economics, they could tackle all sorts of problems that had stumped 
economists in the past. the point had long been to get her boyfriend 
to read enough economics to understand that there was substance be-
hind it. now, though, Malaney found herself wading into the world of 
mathematical physics. It was not what she had bargained for.
 Still, she couldn’t deny that their collaboration was already proving 
fruitful. they had begun to focus on something called the index num-
ber problem. the problem concerns how to take complex information 
about the world, such as information about the cost and quality of 
various goods, and turn it into a single number that can be used to 
compare, say, a country’s economic health and status at one time to its 
economic status at another time. Some familiar examples are market 
indices like the dow Jones Industrial Average or the S&P 500. these 
are numbers that are supposed to encode all of the complicated infor-
mation about the state of the U.S. stock market. Another index that 
one often hears about is the consumer Price Index (cPI), which is 
supposed to be a number that captures information about the cost of 
the ordinary things that a person living in a U.S. city buys, such as food 
and housing. Index numbers are crucially important for economic 
policy because they provide a standard to compare economic indi-
cators over time, and from place to place. (the Economist magazine 
has proposed a particularly straightforward index, called the Big Mac 
Index. the idea is that the value of a Big Mac hamburger from Mc-
donald’s is a reliable constant that can be used to compare the value of 
money in different countries and at different times.)
 together, Malaney and Weinstein developed an entirely novel way 
of solving the index number problem by adapting a tool from math-
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ematical physics known as gauge theory. (the early mathematical 
development of modern gauge theory  —  the topic on which Wein-
stein wrote his dissertation  —  was largely the work of Jim Simons, the 
mathematical physicist turned hedge fund manager who founded re-
naissance technologies in the 1980s.) Gauge theories use geometry to 
compare apparently incomparable physical quantities. this, Malaney 
and Weinstein argued, was precisely what was at issue in the index 
number problem  —  although there, instead of incomparable physical 
quantities, one was trying to compare different economic variables.
 It was an unusual, highly technical way of thinking about econom-
ics. this made Malaney a little nervous, since she didn’t know how 
economists unaccustomed to such high-level mathematical analysis 
would react. But she decided to pursue the project for her disserta-
tion after she showed it to her advisor, a superstar in the Harvard eco-
nomics department named eric Maskin. (He would go on to win the 
2007 nobel Prize in economics, for work he had already done before 
meeting Malaney.) Maskin told her the idea was great. He believed 
she’d made real progress on an important topic, one with long-term 
political and economic implications. She finished the dissertation dur-
ing the summer of 1996 and began to think about applying for tenure-
track jobs at top research universities. With such a groundbreaking 
thesis topic and the support of her advisor, she had every reason to 
think she’d be a competitive candidate for these highly desirable posi-
tions. She was living the academic dream.

How much is money worth? this might seem like an odd question. 
for most people, money doesn’t have intrinsic value. the value of 
money comes from what you can do with it. Perhaps money can’t buy 
you love, but it sure can buy you orange juice, or a pair of pants, or a 
new car. And over time, the amount of money it takes to buy that same 
orange juice, pair of pants, or new car changes. Usually, goods become 
more expensive over time (at least if you look at the price tags alone); 
grandparents the world over will tell you how little a chocolate bar 
used to cost, or a movie ticket. A nickel, we’re told, went a lot farther in 
1950 than it does now. this decrease in the value of money over time is 
what we usually call inflation.



But how do you measure inflation? It’s not as though all prices go 
up evenly across the board. even as some goods have become more 
expensive with time, others have become cheaper. consider that the 
price tag for an Apple II, one of the first mass-produced personal com-
puters, with a breakneck processor speed of 1MHz and a whopping 
48KB of memory, was $2,638 when it first went on sale in 1977. nowa-
days, almost thirty-five years later, you can get a desktop computer 
with a processor over three thousand times as fast, and with a hundred 
thousand times more memory, for a fraction of that  —  just a few hun-
dred dollars. So what if chocolate is more expensive: computing power 
is now dirt cheap by 1970s standards.
 one way in which economists deal with this problem is by looking 
at how prices change across a broad range of products. they do this by 
tracking the price of what is called a standard market basket: an imagi-
nary shopping cart filled with groceries and household commodities 
like gasoline and heating oil, as well as services like education, medical 
care, and housing. this is what’s used to calculate the cPI, which is ef-
fectively the average price of the various goods and services in the cart. 
By looking at price changes for many different items in this way, you 
can get a rough estimate of how far a dollar (or a euro, or a yen) goes 
today, as compared to sometime in the past. Gasoline prices might 
spike over the course of a few months, while computer prices might 
drop gradually over a few years, but the change in the standard market 
basket is supposed to be a relatively stable indication of how much 
spending power changes with time.
 Given the role that the cPI plays in calculating things like infla-
tion, it’s important to get it right. Unfortunately, this is a difficult thing 
to do. for one, what should go into the market basket? People with 
different lifestyles often spend their money very differently: a family 
with children living in upstate new York buys very different things 
(for instance, winter coats and heating oil) from a single man living 
in Southern california (surfboards?); farmers in Iowa have different 
needs and preferences from coal workers in West virginia. It is hard to 
see how a single market basket could reflect the full variation of these 
different lifestyles. for this reason, the U.S. Bureau of Labor Statistics, 
which calculates the cPI in America, actually produces many different 
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indices, corresponding to people working in different industries, liv-
ing in different areas, and so forth.
 But this kind of variability hints at a deeper problem. If the things 
that a person or family buys can vary from family to family, or from 
place to place, these kinds of preferences can presumably vary with 
time, too. this can happen on large scales and small scales. Imagine 
the standard market basket from 1950, long before cell phones or per-
sonal computers, when relatively few people went to college or took an 
airplane on a family vacation. If you looked at the present prices of that 
standard market basket, you would not have a very good indication of 
today’s cost of living. But so too if you looked at the kinds of things 
on which someone spent money over a relatively short period of time: 
say, a standard market basket for someone immediately out of college, 
and the basket for someone a few years later, after settling down and 
getting married, or a few years later still, after having kids. changes in 
culture, demographics, and technology can all compound to make as-
signing a number to inflation, or to changes in the cost of living, seem 
impossible. this is what makes the index number problem so difficult: 
you need a way to compare values at different times, and for people 
living very different lifestyles.
 the cPI is a blunt tool. virtually everyone in economics agrees 
that we need to find some way to hone it. Still, it is incredibly im-
portant for policymaking because of its central role in determining 
inflation, which in turn affects virtually every aspect of the budget. In 
the United States, for instance, the thresholds for tax brackets are tied 
to the stated rate of inflation. So are wage increases for government 
employees. Social Security outlays are also determined by inflation. 
every year, these quantities are recalculated based on the inflation rate 
of the previous year, to adjust for changes in the cost of living. In June 
1995 the U.S. Senate appointed the Advisory commission to Study the 
consumer Price Index, usually called the Boskin commission after 
Michael Boskin, the Stanford economics professor who chaired it. 
the brainchild of soon-to-be-disgraced Senator Bob Packwood, then 
chairman of the Senate finance committee, the Boskin commission 
was charged with coming up with a better way to compute the cPI, 
and by extension inflation.



 for Malaney and Weinstein, the Boskin commission seemed like a 
godsend. A Senate-appointed committee tasked with solving just the 
problem that they had chosen to tackle made Malaney and Weinstein’s 
work immediately relevant. It was the perfect opportunity for them to 
make a contribution  —  not just to economic theory, but potentially to 
public policy, since Packwood planned to implement the Boskin com-
mission’s findings immediately. even better, one of the economists ap-
pointed to the commission, dale Jorgenson, was a member of the Har-
vard economics department.

Hermann Weyl was offered the position of chair of the mathematics 
department at etH Zürich (the school where didier Sornette cur-
rently teaches) in 1913, when he was just twenty-seven years old. He ar-
rived in Zürich from Göttingen, a German university that in the early 
1920s represented the very pinnacle of international mathematics. His 
advisor there, david Hilbert, was widely recognized as the most in-
fluential mathematician of his day. As Hilbert’s student at Göttingen, 
Weyl was at the center of the mathematical world.
 things were different in Zürich. etH Zürich had a fine reputation, 
but it was quite new: it was only in 1911 that etH was restructured to 
become a real university, with graduate students, shedding its past as 
an engineering-oriented teaching school. the other university in the 
city, the University of Zürich, was the largest in Switzerland. But it was 
no Göttingen.
 Weyl wasn’t etH’s only recent hire, however. As part of the restruc-
turing, the school had made a number of appointments to the physics 
department. one of these was a prominent young physicist, an under-
graduate alumnus of etH named Albert einstein. einstein had gone 
on to do a Phd in physics at the University of Zürich, graduating in 
1905  —  the same year that he published a mathematical treatment of 
Brownian motion (anticipated, of course, by Bachelier), came up with 
a theory of the photoelectric effect (for which he would win the nobel 
Prize in 1921), and discovered the special theory of relativity, including 
his famous equation e = mc2. And yet, none of this led to much success 
for einstein. After finishing graduate school, he moved about 150km 
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away to Bern, where the only job he could find was as a patent clerk. 
occasionally, he was permitted to teach at the local university.
 Gradually, however, as more physicists came to understand the im-
portance of the 1905 papers, einstein’s reputation grew. In 1911, he was 
offered a professorship at the German university in Prague; the next 
year, his alma mater offered him a job. By the time einstein returned 
to Zürich, he was already a shining star of the physics community. His 
reputation had exploded in just a few years. He didn’t stay at Zürich for 
long  —  in 1914, he was appointed director of the Kaiser Wilhelm In-
stitute in Berlin  —  but the year that einstein and Weyl spent together 
was enough to change the course of Weyl’s research. though initially 
a mathematician in the purest sense, Weyl found einstein’s relativity 
theory captivating, particularly because when they met, einstein was 
just beginning to realize the importance of high-powered modern ge-
ometry to the theory.
 the basic idea underlying general relativity is that matter  —  or-
dinary stuff like cars and people and stars  —  affects the geometrical 
properties of space and time. this geometry, meanwhile, determines 
how bodies move. It is this movement of massive objects through de-
formed space and time that we ordinarily think of as gravitation, the 
physical phenomenon that keeps us firmly planted on the surface of 
the earth, and that keeps the earth in its elliptical orbit around the 
sun. the general relativistic picture is as different as can be from the 
older, newtonian theory of gravity. In newtonian gravitation, space 
and time are static. their properties are unrelated to the matter that’s 
distributed through space. Bodies gravitate toward one another via an 
unexplained force that acts instantaneously at a distance.
 Matter affects space and time in einstein’s theory by inducing 
curvature. When physicists and mathematicians say something is 
“curved,” they mean just what we would ordinarily mean. A tabletop 
or an unfolded piece of paper is flat; a basketball or a paper towel roll 
is curved. But from a mathematical point of view, the thing that dis-
tinguishes a tabletop from a basketball isn’t that a basketball rolls and a 
table doesn’t, or that it’s easier to stand on a table than on a basketball. 
Instead, the feature that characterizes curvature for a mathematician is 



how hard it is to keep an arrow pointing in the same direction as you 
move it around the surface. If an object is flat, it turns out to be very 
easy. not so if the object is curved.
 I admit that this is a weird thing to say. But it isn’t hard to see how 
it works in practice. first, imagine you’re standing on a city sidewalk, 
somewhere in midtown Manhattan, say, where the streets are laid out 
like a grid. try to picture what would happen if you did a clockwise 
lap around the block, all the while trying to keep yourself pointed in 
one direction  —  north, say, toward the Bronx. (the direction you’re 
facing, here, is taking the place of an arrow.) You might begin by walk-
ing forward for a while as you head uptown. When you get to the next 
corner, you would head right, east on the crosstown street. But you 
aren’t allowed to turn your body at the corner, since you’re trying to 
stay pointed in the same direction all the time. this means you have 
to walk sideways down the cross street. And when you get to the next 
corner, where you should start heading south again, you have to walk 
backward. If you follow these instructions, never once turning your 
body as you do the lap, you should find yourself back at the original 
corner looking in just the same direction as before.
 this might not come as a surprise. After all, you never turned your 
body  —  why in the world wouldn’t you be facing in the same direc-
tion? But now let’s imagine a longer journey. Instead of doing a lap 
around the block, imagine trying to keep yourself pointed in the same 
direction  —  it might as well be north  —  as you circumnavigate the 
globe. for the first leg of your trip, you’re going to start in new York 
and just head east, toward europe. When you arrive in france, you’re 
going to start crab-walking your way toward Asia, all the while keep-
ing your face firmly pointed toward the north Pole. After a very long 
(and probably uncomfortable) walk, you will finally reach the Pacific 
ocean, and then you’ll head for california. When you finally arrive in 
new York, if you never turned your body, you should still be facing 
north.
 Here’s a different itinerary that begins and ends in the same place. 
You start by heading east, just as before. When you get to Kazakhstan, 
though, you take a detour. Instead of continuing on toward china, 
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you strike north into russia. (now, at least, you get to walk forward.) 
You head all the way to the Arctic circle, without turning your body. 
When you reach the north Pole, you see that new York is directly in 
front of you, far to the south. You keep moving forward into north-
ern canada, and then work your way down the Hudson until you 
return to new York. But this time, when you return to the place where 
you began, you’re facing a different direction: due south! What’s gone 
wrong? You didn’t turn your body at any point of the journey, and 
yet at the end you’re facing the opposite way from the direction you 
started facing  —  and from the direction you were facing at the end of 
your first journey.
 the reason you end up facing in a different direction after your sec-
ond round-the-world trip is that the globe is a curved surface (see fig-
ure 5). A city block, meanwhile, is flat. (At least to a first approxima-
tion  —  real city blocks lie on the surface of the earth, which of course 
is curved. But you don’t see the effects of this curvature over short 
distances.) If you imagine an ant trying to perform the same experi-
ment on a kitchen table, you would find that, no matter what route the 
ant took, it would always end up facing in the same direction. this is 
what a mathematician means when he says that a surface, or a shape, 
is flat: it exhibits “path independence of parallel transport” (parallel 
transport because the goal is to try to keep your body parallel to its 
last direction at all times). for curved surfaces, meanwhile, the direc-
tion an arrow points at the end of a journey is “path dependent.” on a 
curved surface, different routes can lead to different results.
 the connection between path dependence and curvature may be 
unfamiliar to non-mathematicians. But the basic idea of path depen-
dence isn’t. It is easy to find examples in day-to-day life of things that 
are path dependent, and things that are path independent. If you go 
to the store and buy groceries, the amount of milk you have when you 
get back home is path independent. the amount of milk isn’t going to 
change if you take a different route home from the store. the amount 
of gasoline in your tank, however, is path dependent. If you take the 
direct route home, you will usually have more gasoline left when you 
arrive than if you had taken the scenic route. Path dependence of par-



allel transport is just a special case of the more general fact that some-
times, things depend not just on where you start and where you end 
up, but also on the road you take to get there.
 einstein’s theory of general relativity makes essential use of the 
fact that space and time are curved in the sense that parallel trans-
port is path dependent. But Weyl thought that einstein hadn’t gone 
far enough. In general relativity, if you begin with an arrow at one 
place and then move it around a path that brings it back to the start-
ing point, it might face a different direction. But it will always have 
the same length. Weyl thought this was an arbitrary distinction that 
couldn’t have physical meaning, and so he came up with an alterna-
tive theory in which length, too, was path dependent, so that if you 
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figure 5: If you move an arrow along a path on a curved surface, being careful to keep 
the arrow pointing in the same direction at all times, the direction that the arrow points 
at the end of the path will depend on the path taken. Mathematicians call this property 
of curved surfaces “path dependence of parallel transport.” In this figure, there are two 
paths around a sphere. the first path takes the arrow from point A around the equa-
tor and back to point A. At the end of the trip, the arrow faces the same direction as 
when it began. the second trip again starts at point A and travels around the equator, 
but only halfway. on the other side of the sphere, the path moves up over the north 
Pole and returns to point A that way. At the end of this trip, the arrow is pointing in 
the opposite direction from when the trip began. Weyl observed that it was possible 
to construct physical theories in which not only was direction path dependent, but so 
was the length of an arrow. the physical world doesn’t actually work that way, but in 
the years since Weyl first came up with his theory  —  which he called a gauge theory  
—  many physicists and mathematicians have adapted the mathematics he invented to 
other problems, with much more success.



A New Manhattan Project • 191

moved a ruler around two different closed paths, it would have differ-
ent lengths when it returned to the starting point, depending on the 
path it took.
 Weyl called his new theory a gauge theory. It was the first time the 
term had been used, and it was based on the idea that there was no 
universal, once-and-for-all way to “gauge,” or measure, the length of 
a ruler. Suppose you and your neighbor are both about to leave your 
driveway in the morning on the way to work. Imagine you drive iden-
tical cars, and you both work at the same location. What would you 
say if someone stopped you and asked which car would have more 
gasoline in the tank when you both got to work, yours or your neigh-
bor’s? You might glance at your gas gauge and see that you have a full 
tank, and then ask your neighbor how much gas he has. But this isn’t 
enough information to answer the question. the answer will depend 
on the paths you and your neighbor take to work: you might take a 
direct route, while the neighbor takes the scenic route. Your neighbor 
might take a highway, while you stick to city streets. Whatever the case 
may be, how much gasoline each of you has left at the end of your 
journeys will depend on the paths you take to work. comparing some 
path-dependent quantities does not yield a straightforward answer.
 this was the sense in which, in Weyl’s theory, there was no uni-
versal way to measure a ruler, since there was no path-independent 
way to compare two rulers in different locations. But Weyl realized 
that this wasn’t necessarily a problem: if you wanted to compare the 
length of a ruler in chicago to the length of a ruler in copenhagen, or 
on Mars, all you needed to do was figure out a way to bring the rulers 
to the same place so you could hold them up next to each other. this 
wouldn’t be path independent, but that was oK, as long as you could 
figure out how the change in length would depend on the path you 
took. In other words, Weyl realized that what really mattered to his 
theory was identifying a mathematical standard by which compari-
sons of length could be made  —  a way of “connecting” different points 
in a principled way, so that you could compare rulers, even though 
length was path dependent. Mathematically, what Weyl accomplished 
was to show how to compare two otherwise incomparable quantities, 



by moving them to a common location where their properties (in this 
case, their lengths) could be compared directly.
 Weyl’s theory wasn’t a success. einstein quickly pointed out that it 
was inconsistent with some well-known experimental results, and it 
was soon relegated to the dustbins of scientific history. But Weyl’s basic 
idea about gauge  —  that to determine if two quantities are equal in a 
physical theory, you need a standard of comparison that accounts for 
possible path dependence  —  was destined to be far more important 
than the theory that led to it. Gauge theory was resurrected in the 
1950s by a pair of young researchers at Brookhaven national Labora-
tory named c. n. Yang and robert Mills. Yang and Mills took Weyl’s 
theory one step further: If it was possible to construct a theory in 
which length was path dependent, was it possible to construct theo-
ries in which still other quantities were path dependent? the answer, 
they realized, was yes. they went on to develop a general framework 
for much more complicated gauge theories than the one Weyl had 
imagined.
 these theories, now known as Yang-Mills theories, spawned what is 
sometimes called the gauge revolution. Beginning in the 1961, funda-
mental physics was rewritten in terms of gauge theory  —  a process that 
only accelerated when Yang, in collaboration with Jim Simons of re-
naissance, realized a deep connection between Yang-Mills gauge theo-
ries and modern geometry later that decade. Gauge theories proved 
particularly important in physics because they proved to be a natural 
setting to look for “unified” theories, where what was being unified 
was the standard by which different quantities were compared in the 
theories. By 1973, it appeared that the three fundamental forces of par-
ticle physics  —  electromagnetism, the weak force, and the strong force  
—  had been unified into a single gauge-theoretic framework. this 
framework was called the Standard Model of particle physics. today, 
it is the single best-confirmed theory ever discovered, in any field. It is 
the very heart of modern physics.

Jobs in academia, especially the most desirable jobs as tenure-track 
professors, work on a fixed schedule. toward the end of each summer, 
students who are close to finishing their dissertations decide whether 
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they are going to apply that year. If the student and his advisor decide 
that the dissertation is far enough along, the student begins to put to-
gether a dossier, including letters of support from faculty members, 
examples of the work that will go into the student’s dissertation, and a 
statement describing the student’s research interests. then, come fall, 
departments that are looking to hire new faculty members advertise 
their open positions, with applications due at the end of november. 
If you’re lucky, you will be interviewed by a hiring department, and 
if that goes well, you will be flown out to visit the schools that are in-
terested in you, to give a talk on your dissertation research. In many 
disciplines, including economics, the process is called “going on the 
market,” an apt phrase for what is essentially an academic cattle call. 
It’s an extraordinarily stressful process. More than anything else, an 
academic’s success on the market is what determines the trajectory of 
his career.
 A graduate student’s research history and the quality of his disserta-
tion are crucial in determining whether he will get an academic job. 
But more important than either of these factors is the strength of the 
letters written in support of the student by the faculty. If famous, well-
respected professors say your research is good or important, that can 
make all the difference. each year, the Harvard economics department 
holds a faculty-wide meeting to determine which of that year’s batch 
of students are going to get the full-throated support of the university’s 
eminent economics faculty. the department goes through each of the 
candidates, and the student’s advisor brings the rest of the department 
up to speed on the student’s research and prospects. It’s a closed-door 
affair, and so only faculty members in the department know exactly 
what happens. But at the end of the meeting, some students emerge 
with the wind at their backs. When hiring departments start calling, 
these students get special endorsements. others aren’t so lucky.
 Given the importance of her work, and the strong support of her 
advisor, Pia Malaney had every reason to expect that she would fare 
well in this process. everything was in place. But then came the oc-
tober jobs meeting. Afterward, she and Maskin met to discuss her job 
prospects, in light of the department’s determination. things no lon-
ger looked so good.



Going into the meeting, Maskin was convinced that her thesis was 
terrific. But not everyone in the department agreed. one person in 
particular had reservations: dale Jorgenson, one of Harvard’s two rep-
resentatives on the Boskin commission and an expert on the index 
number problem. Malaney’s project covered exactly the same ground 
that the Boskin commission was supposed to investigate. She had de-
veloped an elegant mathematical framework for addressing precisely 
the problem they were tasked with. And so, when she learned of his 
appointment, Malaney arranged a meeting with him. excited, she de-
scribed her work to him, showing how gauge theory could be applied 
to this important problem. Jorgenson replied by throwing her out of 
his office. “You have nothing,” he told her.
 At the time, Malaney was discouraged, but she didn’t give up. So 
what if she couldn’t convince Jorgenson on her first try? Maskin liked 
the ideas and would advise the thesis. In the long run, the work would 
speak for itself. But then, as Malaney prepared to apply for jobs, this 
vision of the future began to dissolve. during the jobs meeting, it be-
came clear that Jorgenson’s resistance to Malaney’s project ran deep. 
Several months later, when the Boskin commission released its find-
ings, the reasons for his resistance would become clear.

It took years for Malaney to convince Weinstein to take economics se-
riously. She tried everything: pointing to famous economists, explain-
ing their most influential theories, describing important experimental 
results. But Weinstein was resistant. the mathematics, he was con-
vinced, was too simple; the subject matter, too complex. economics 
was a worthless pursuit, a pseudo science. finally, on the verge of giv-
ing up, Malaney tried one last tack. She gave Weinstein a challenge, a 
problem whose solution was equivalent to a classic result in economics 
known as coase’s theorem.
 ronald coase was a British economist who spent most of his career 
in the United States, at the University of chicago. He was interested 
in something he called “social cost.” Imagine you are the local sheriff 
in an agricultural community. two of your constituents come to you, 
asking you to help them settle an ongoing dispute. one of them is a 
rancher, raising cattle. the other, the rancher’s neighbor, farms soy-
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beans. the dispute concerns the rancher’s cattle, which have a habit 
of wandering over to the farmer’s land and destroying his crop. Mat-
ters have recently become especially difficult because the farmer has 
learned that the rancher wants to add more cattle to his herd, and the 
farmer is concerned that the problem will get worse. What should you 
do?
 When coase tried to formalize an answer to social cost problems 
like this one, he came to a striking conclusion. It doesn’t matter what 
the sheriff does, at least from a long-term perspective, as long as three 
conditions are met: the damages involved must be adequately quanti-
fied, some well-defined notion of property must be instituted, and bar-
gaining must be free. to see why this would be, consider what would 
happen if the sheriff told the rancher he could have as many cattle 
as he liked, but that he had to pay for all of the damage his herd in-
flicted. In essence, the rancher has incurred an additional cost to rais-
ing cows. depending on how much damage gets done, and how much 
soybeans are worth, it may well make sense for the rancher to keep 
adding head to his herd even while paying the farmer for the soybeans 
that keep getting destroyed. If the rancher really is paying the value of 
the soybeans, the farmer shouldn’t care whether the revenue comes 
from selling the soybeans himself or from the rancher’s compensation  
—  in fact, he might as well think of the rancher as a customer buy-
ing whatever soybeans the cattle destroy. Ultimately, the rancher and 
farmer will reach an agreement about how many cattle the rancher 
will own based on what is maximally profitable for both parties. But 
what if the sheriff makes some other choice? If the farmer has to pay 
the rancher to keep his cattle from destroying the farmer’s crops, one 
would expect the exact same bargaining to occur. coase’s theorem says 
that the endpoint will always be the same: both parties will agree on an 
arrangement that is maximally profitable for everyone.
 When Malaney gave Weinstein this problem, Weinstein took it se-
riously. Making some simple mathematical assumptions, similar to 
the ones coase made, Weinstein soon saw his way to a solution  —  just 
the solution, in fact, that coase had arrived at. But this, Weinstein 
thought, was a surprise. At least in this case, it seemed as though the 
mathematics was working in the right sort of way, and indeed, it led 



to what seemed to be a deeply counterintuitive result that nonethe-
less bore weight. the process felt surprisingly similar to using math-
ematics in physics: one makes some simplifying assumptions and then 
uses mathematics to gain insights into a problem that would have oth-
erwise remained intractable. Most importantly, if someone had told 
Weinstein about coase’s theorem before he had worked on it himself, 
he would likely have thought that the solution was politically driven, a 
thinly veiled case for less government intervention, shrouded in math-
ematics to give the appearance of rigor. But now he saw that matters 
were not so simple.
 His interest piqued, Weinstein began looking for other cases where 
mathematics was used to reach counterintuitive results in econom-
ics. He uncovered several examples. the Black-Scholes equation was 
one, since it makes use of fairly sophisticated mathematics to get at 
the heart of what it means to produce and trade an option. Another 
was Arrow’s theorem, a famous result in social choice theory that es-
sentially proves that if you have a group of people trying to choose 
between three or more options, there is no voting system that can turn 
the ranked preferences of all of the individuals in the community into 
a fair community-wide ranking.
 Weinstein realized that his criticisms of economics had been mis-
placed. Mathematics, he now believed, could be used productively to 
understand economic problems. It was an exhilarating realization, 
because it meant that someone with some mathematical acumen and 
a background in physics stood a chance at making progress on prob-
lems in economics. Soon, instead of looking for cases where math-
ematics had been put to productive use in economics, Weinstein and 
Malaney started looking for cases where it hadn’t been put to use  —  at 
least, not yet. together, they happened on the index number problem. 
the mathematics underlying the cPI is astoundingly simple, given the 
profound difficulties associated with assigning a number to something 
so complicated as the value of money to a consumer. It was a perfect 
place to start.
 Weyl’s essential innovation, conceptually speaking, was to find a 
mathematical theory for comparing otherwise incomparable quanti-
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ties. In his theory, the incomparable quantities were the lengths of rul-
ers at different locations. His solution was to find a way to bring the 
rulers to the same location, and then just hold them up next to one 
another to determine their relationship.
 But now think of the index value problem, which, at its core, in-
volves comparing different, apparently incomparable quantities. How 
can you make sense of the value of money to two different people, 
especially if they have radically different lifestyles? And how do you 
compare what might seem like a reasonable market basket in 1950 
to what would seem like a reasonable market basket in 1970, or in 
2010? these problems seemed insurmountable at first to Weinstein 
and Malaney. But in the context of the mathematical framework that 
Weyl and his successors had developed, at least one possible solution 
emerged. All they needed to do was figure out a way to take any two 
people  —  say, a lumberjack in 1950 and a computer programmer in 
1995  —  and put them in the same circumstances so that they could di-
rectly compare their preferences and values. It was a strange thing to 
propose  —  after all, the conversation between the lumberjack and the 
programmer might be a little awkward  —  but from the point of view 
of Weyl’s mathematics, it was the most natural thing in the world. to 
solve the index number problem, Weinstein and Malaney argued, you 
need a gauge theory of economics.

one day, late in 2005, Lee Smolin received an unusual e-mail. It seemed 
to be about economics, which was unexpected, because Smolin didn’t 
know the first thing about economics. Smolin was a physicist. His 
work was, and continues to be, in a cutting-edge field known as quan-
tum gravity, which consists of people trying to understand how to 
put the two revolutionary, immensely successful innovations of early-
twentieth-century physics  —  quantum mechanics, which describes 
very small objects like electrons, and einstein’s theory of gravitation, 
which describes really big objects, like stars and galaxies  —  together 
into a coherent framework. this endeavor had nothing at all to do 
with economics. or so Smolin thought.
 A few months earlier, Smolin had published an article in the mag-



azine Physics Today, a semi-popular publication whose goal was to 
explain new developments in physics to physicists who weren’t nec-
essarily experts in the given area. Smolin’s article was an attempt to ex-
plain why quantum gravity had not produced a researcher like Albert 
einstein, who successfully revolutionized physics by thinking far out 
of the box. the article was a preview of a book Smolin was just finish-
ing, called The Trouble with Physics. In both the article and the book, 
Smolin argued that physics, or rather, quantum gravity research, faced 
a sociological problem. A group of physicists working on something 
called string theory, one approach to solving the basic problem of how 
to combine gravitational physics with quantum physics, had come to 
dominate the field. When it came time to hire new faculty members 
into their physics departments, or to dole out research funding, these 
string theorists tended to give the resources to other string theorists 
rather than to people working on alternative approaches to quantum 
gravity.
 It was this Physics Today article that had prompted the unexpected 
e-mail. the man who had written the message was eric Weinstein, 
now a hedge fund manager and financial consultant in Manhattan. 
Weinstein agreed with Smolin’s assessment of the physics community, 
based on his years working as a mathematical physicist at Harvard and 
then at MIt. But he had a bigger point to make, about how sociology 
could distort progress in academic research more broadly. As far as 
Weinstein was concerned, the sociology problem in physics was noth-
ing. economics was ten times worse.
 Smolin wanted to hear more. He invited Weinstein to visit the Pe-
rimeter Institute, the research institute in Waterloo, ontario, where 
Smolin was based. Perimeter was founded in 1999 by Mike Lazaridis, 
the entrepreneur and founder of research in Motion, the company 
responsible for BlackBerry devices. Perimeter was designed as a place 
to foster research in fundamental physics. It has a strong reputation 
for open dialogue and discussion among different approaches on basic 
questions, in large part because of Lee Smolin’s influence on the in-
stitute from its earliest days. In some ways, Perimeter is an attempt to 
answer the sociological problem identified in Smolin’s book and ar-
ticles. It was an ideal place for someone with Weinstein’s background 

198 • t h e  p h y s i c s  o f  wa l l  s t r e e t

lalo
Highlight



A New Manhattan Project • 199

and interests to present a new approach to understanding economic 
theory.
 Weinstein visited Perimeter in May of 2006. He gave a talk on the 
way in which gauge-theoretic ideas could be important in a new eco-
nomic theory, presenting the work he and Malaney had done some 
years before. And then he left. Smolin and others at the institute found 
Weinstein’s ideas compelling. But they were inclined to be sympa-
thetic. these were not the people who needed to be convinced.
 Weinstein and Smolin remained in contact, however. Smolin visited 
Weinstein in new York, where he met Malaney and their children. He 
began to study some basic economics, trying to gain a deeper under-
standing of the ideas Weinstein described. And the more time he spent 
with Weinstein, the more interested he became. Smolin describes 
Weinstein as an intellectual force, a creative thinker with remarkable 
intellectual range, whose conversation would regularly extend to top-
ics as disparate as evolutionary biology and natural selection, contem-
porary mathematics, and nineteenth-century physics.
 In September of 2008, Weinstein visited Perimeter a second time, for 
a conference on science in the twenty-first century. the talks focused 
on ways in which scientific research was changing with new funding 
sources, with new means of disseminating ideas, such as blogs and on-
line conferences, and with new ideas about where research should and 
could happen, with places like Perimeter and the Santa fe Institute 
becoming centers of study outside of the traditional university.
 But the future of science was not at the forefront of Weinstein’s mind 
that September. Just a week after Weinstein’s talk at Perimeter, the 
fourth-largest investment bank in the United States, Lehman Broth-
ers, closed its doors after a century and a half of business. At virtually 
the same time, AIG, one of the twenty largest publicly traded compa-
nies in the world, had its debt downgraded, leading to a liquidity crisis 
that would have toppled the company had the U.S. government not 
intervened. In early September, the world economy was already on the 
ropes. As a hedge fund manager and consultant, Weinstein was tuned 
in to the surprise and panic in the financial industry, and in economics 
more generally. As far as Weinstein knew, no one had seen this com-
ing. (Sornette had, but he didn’t publicize this prediction widely.)



 for Weinstein, the unexpectedly dramatic failure of the U.S. bank-
ing system was only further evidence that it was time to take the next 
step in the development of modern economics. It was time to reflect 
on what had gone wrong with the now-toxic securities and recognize 
that economics needed a new set of tools. As physicists had done a 
generation before, economists needed to broaden their theoretical 
framework to account for a wider variety of phenomena. economics 
needed a new generation of theories and models, suited for the com-
plexity of the modern world. Weinstein thought that the crisis should 
be an opportunity to set aside past differences between the various 
approaches to finance and economics. He called for a new large-scale 
collaboration between economists and researchers from physics and 
other fields. It would be, he said, an economic Manhattan Project.

Social Security, technically the U.S. federal old-Age, Survivors, and 
disability Insurance program, was first signed into law in 1935 as part 
of the new deal, franklin roosevelt’s program to end the Great de-
pression through stimulus spending and a broad expansion of the 
U.S. welfare system. It was a way for the federal government to pro-
vide support to the elderly, to children whose parents had died before 
they were of employable age, and to people who became disabled and 
unable to work. It was designed to pay for itself, as a real insurance 
program would. Workers would contribute to the program through a 
mandatory tax, and the funds collected would be used to pay for the 
program’s costs.
 the program was highly controversial. early on, it was challenged 
several times in the Supreme court (unsuccessfully). But over time, as 
successive generations contributed during the course of their working 
lives, most Americans came to count on the program as a retirement 
and disability benefit. By the 1960s, it had become a part of Ameri-
can life, something that workers nearing retirement took as an entitle-
ment. this made matters politically difficult when, during the period 
of high rates of inflation and low economic growth in the 1970s, it 
became clear that Social Security was in trouble. Projecting forward, 
politicians and economists realized that over the coming decades, 
ever-larger numbers of aging Baby Boomers (then just coming into 
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their own) would retire, and the costs of providing them with benefits 
would rapidly outstrip the program’s ability to fund itself.
 And yet, there was little to be done. for a politician to draw attention 
to Social Security’s woes was suicidal. the two obvious solutions to the 
funding problem  —  reducing benefits and raising taxes  —  were equally 
unappealing. Social Security presented a kind of political catch-22  —  
that is, until daniel Patrick Moynihan and Bob Packwood, the two 
leading members of the Senate finance committee in the mid-nine-
ties, shared a moment of inspiration. If you wanted to come up with 
$1 trillion without anyone noticing the difference, all you needed to do 
was change the value of money.
 Here’s how the plan worked. Projections for the future costs of So-
cial Security were based on the expected rate of inflation, which in 
turn was based on the cPI. Moynihan and Packwood realized that 
if the official rate of inflation could be lowered, the income from the 
Social Security tax would rise, and the costs of administering the pro-
gram would fall. the effect would be to raise taxes and reduce entitle-
ments, relative to the real buying power of money, without acknowl-
edging that you were doing so. the challenge was to find an argument 
for why inflation calculations should be modified. this is where the 
Boskin commission came in. It was a masterful sleight of hand. Work-
ing backward from the figure of $1 trillion, which Moynihan believed 
would be necessary to keep Social Security solvent, he and Packwood 
determined that inflation would need to be reduced by 1.1%.
 According to notes written by robert Gordon, an economist at 
northwestern University and one of the five members of the com-
mission, dale Jorgenson  —  the Harvard economist who had thrown 
Malaney out of his office  —  reported to the commission early on that 
they were aiming for $1 trillion in Social Security savings over ten 
years, and that this meant they needed to come up with the requisite 
reduction in inflation. then the committee broke up into two teams to 
work on different ways in which the problems of changing preferences 
and changing quality could affect cPI. Gordon and the other person 
on his team, working together, arrived at one number. the other team, 
which included Jorgenson and Boskin, arrived at another. And then, 
“somehow” (Gordon’s word), when the two teams combined their re-



sults, the commission’s final recommendation “corrected” inflation by 
precisely 1.1%.
 the Boskin commission’s findings were criticized from all cor-
ners. As Gordon later reported, the project was rushed and careless. 
He and his collaborator finished their contribution days before the 
commission was due to present to the Senate. the calculations were 
what physicists and economists both call “back of the envelope,” little 
more than informal estimates. the commission’s report was never 
peer-reviewed before it was presented to the Senate. none of the other 
members of the commission ever asked how his team had come up 
with their number, or how the others had arrived at theirs. the answer 
to such questions would have inconvenient. (Ultimately, many of the 
Boskin commission’s recommendations were squashed by effective 
lobbying on the part of the AArP and others; about five years later, 
the national Academy of Sciences and the U.S. Bureau of Labor Statis-
tics returned to the problem of how to calculate the cPI, with a more 
intellectually rigorous approach, and with more nuanced findings.)
 Malaney approached Jorgenson with her and Weinstein’s ideas 
about index numbers soon after the Boskin commission was formed. 
Jorgenson may have had deep criticisms of Malaney and Weinstein’s 
proposal. they may have even been good criticisms. But it is hard 
to avoid guessing that it would have caused problems for the Boskin 
commission had a new and mathematically rigorous method emerged 
for calculating precisely what they were tasked to calculate. It seems 
the easiest thing was to make Malaney and Weinstein go away.

exporting gauge theories, or other ideas from physics, to econom-
ics remains a hard sell. Weinstein was right that late 2008 presented 
a unique opportunity for someone inclined to change the way econ-
omists thought about the world  —  and the world, economics. Many 
people in finance, in economics, and in ordinary homes around the 
world were scared. things that many people thought they understood 
turned out to be changing and unreliable. Meanwhile, people working 
in other fields, such as physics and mathematics, saw an opportunity 
to contribute to a field that seemed besieged. the suggestion that it 
was time to reevaluate some of the principal theories and methods of 
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modern economics struck a chord with many, including Smolin and a 
handful of other physicists working at Perimeter.
 Smolin, who previously had been reading up on economics in his 
spare time, began to consider working on it more seriously. He col-
lected notes he had written on various topics, including his take on 
Weinstein and Malaney’s proposal, and put them together in a paper 
that he then posted on an online archive where physicists post new 
research. the paper was a kind of translation dictionary, explaining 
basic economics to physicists and then showing how ideas that physi-
cists were already comfortable with could be applied to this otherwise 
foreign science.
 Meanwhile, Smolin and Weinstein began organizing a conference 
to be held at Perimeter. It was scheduled for May 2009. the plan was 
to invite representatives from across the spectrum of economics, with 
a goal of bringing together a diverse and heterodox group of people 
to discuss how to move the field forward in light of the recent crisis. 
Weinstein and Smolin participated, but so did others, such as doyne 
farmer and emanuel derman. Mainstream economists were also in-
vited, such as nouriel roubini of new York University, Barkley rosser 
of James Madison University, and richard freeman of Harvard, as 
well as nassim taleb. richard Alexander, a well-known evolutionary 
biologist, was invited to describe how biology and human behavior 
could inform economics. the plan was simple. Get a large group of 
smart people in a room, get them all to see that economics had clear 
problems, and convince them to work together to come up with a new 
theory. the plan was to use this conference to kick off the new Man-
hattan Project.
 the conference itself was a success: this wide-ranging group of 
physicists, biologists, economists, and finance professionals found 
much to debate and discuss. But when the conference ended, the re-
searchers went their separate ways. As Smolin later explained, there 
was too much bullheadedness even among these economics outsid-
ers to produce fruitful collaboration. everyone agreed that economic 
theory faced major problems, but it was impossible to build consensus 
on what the problems were, never mind how to fix them. Many of the 
participants in the conference  —  as well as other commentators from 



economics and finance — didn’t even agree that a concentrated effort 
to improve the sophistication of economic modeling was called for. In 
the background were questions about funding  —  if the project were 
funded, how would money be doled out to the participants?  —  that 
made the individuals involved cautious of supporting the larger proj-
ect, for fear they wouldn’t receive their cut. And so with regard to the 
larger goal of creating a new community of interdisciplinary research-
ers devoted to tackling problems in economics from new directions, 
the conference failed. After a few months, Smolin gave up on econom-
ics and turned his attention back to physics. now, when he finds him-
self with a few free minutes, he works on climate science. economics, 
he has decided, is intractable  —  not for the subject matter, but because 
the field does not seem open to new ways of thinking. Weinstein was 
right: economics is ten times worse than physics.
 today, Weinstein and Malaney continue to work on expanding the 
mathematical foundations of economic theory. Sornette continues 
to develop his predictive tools. farmer is back at the Santa fe Insti-
tute, developing new connections between complexity science and 
economic modeling. despite this brainpower, the world economy is 
in pieces, still bloodied by the 2007–2008 collapse. can anything be 
done?
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I began thinking about this book in the fall of 2008, in the midst 
of the financial meltdown. At the time, I was about eight months away 
from a Phd in physics. After a few weeks of researching, I mentioned 
what I had uncovered to my dissertation advisor. His reaction sur-
prised me. He was convinced, from my examples of how ideas from 
physics had been used to understand financial markets, that there was 
a strong connection between the fields. (this, I have found, is the case 
with most physicists.) But this didn’t move him. Instead, he responded 
by saying that no matter how many physicists had influenced finance, 
it was impossible to do science on Wall Street.
 this idea can be put in different terms. Science isn’t a body of 
knowledge. It’s a way of learning about the world  —  an ongoing pro-
cess of discovery, testing, and revision. My thesis advisor’s reasons for 
thinking this process couldn’t occur on Wall Street were mostly socio-
logical: investment banks and hedge funds are usually very secretive, 
which means that new ideas developed by such firms are rarely aired 
and debated the way that new developments in scientific fields are. 
When a physicist or biologist develops some new insight, he submits 
a paper on it to a professional journal, where it then undergoes peer 
review  —  a process by which new scientific ideas are vetted by other 
scientists before appearing in print. If a paper passes this first hurdle, 
it is then scrutinized by the larger community of scientists. Many ideas 
don’t survive this ordeal  —  they are either never published, or else they 
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languish in obscurity. even the ideas that are taken up by the commu-
nity, the ideas that prove most useful, are not accepted as sacrosanct. 
Instead, they form the starting point for the next generation of theo-
ries and models.
 In other words, thinking like a physicist is different from (merely) 
using mathematical models or physical theories. It’s how you under-
stand the models that counts. In early 2009, emanuel derman, the for-
mer physicist who worked with fischer Black at Goldman Sachs dur-
ing the eighties and nineties, teamed up with Paul Wilmott, founder 
of oxford University’s program in quantitative finance, to pen the “fi-
nancial Modelers’ Manifesto.” their point was in part to defend math-
ematical models as essential to thinking about finance and econom-
ics, and in part to chide “the teachers of finance” who have forgotten 
that no model states laws by which markets must abide. As they put it, 
“Models are at bottom tools for approximate thinking.” they are never 
the final word  —  they rely on assumptions that never hold perfectly, 
and that sometimes fail entirely. Appropriate use of models requires 
a good dose of common sense and an awareness of the limitations of 
whatever model you happen to be using. In this way, they are like any 
tool. A sledgehammer may be great for laying train rails, but you need 
to recognize that it won’t be very good for hammering in finishing 
nails on a picture frame.
 I believe the history that I have recounted in this book supports 
the closely related claims that models in finance are best thought of 
as tools for certain kinds of purposes, and also that these tools make 
sense only in the context of an iterative process of developing models 
and then figuring out when, why, and how they fail  —  so that the next 
generation of models are robust in ways that the older models were 
not.
 from this perspective, Bachelier represents a first volley, the initial 
attempt to apply new ideas from statistical physics to an entirely dif-
ferent set of problems. He laid the groundwork for a revolutionary way 
of thinking about markets. But his work was littered with problems. 
Most obvious, from the point of view of Samuelson and osborne, 
was that the normal distribution he described for stock prices worked 
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only under the very unusual circumstances that prevailed at the Paris 
Bourse, where there was very little variation in prices. correcting this 
problem led to osborne’s hypothesis that returns, not prices, are nor-
mally distributed. Mandelbrot’s realization that normal and log-nor-
mal distributions cannot capture the full wildness of financial markets, 
then, didn’t represent some crisis at the foundations of financial theory, 
despite his and others’ claims to the contrary  —  rather, it was the first 
recognition of how osborne’s version of the random walk hypothesis 
would run aground. that most economists (and physicists interested 
in such things) now believe that Mandelbrot, too, wasn’t quite right is 
simply another iteration still.
 thorp and Black showed investors how to use the tools developed 
by Bachelier, osborne, and Mandelbrot in day-to-day trading  —  by 
drawing on still more sophisticated ideas from physics. In some sense, 
these two scientists are the most important in this book, both because 
of their pivotal role in putting cutting-edge theory into practice and 
because they reveal what is involved in using one set of models to build 
new ones. the options pricing models that thorp and Black and Scho-
les developed were based on osborne’s version of the random walk 
hypothesis, not on Mandelbrot’s. this meant that these options pricing 
models should have been recognized, from the very beginning, as tools 
with a limited range of applicability. from a physicist’s point of view, 
or an engineer’s, starting with osborne’s model made perfect sense. 
It was far better understood than Mandelbrot’s, and so, by adopting a 
simpler approximation of how market returns really work, thorp and 
Black and Scholes were able to turn an extremely difficult problem into 
a tractable one.
 But there was little doubt, even from the beginning, about how these 
early options pricing models would fail, given Mandelbrot’s work: they 
would misprice extreme events. (Black seemed to recognize the short-
comings of his model as well as anyone  —  in a 1988 article called “the 
Holes in Black-Scholes,” Black explicitly listed the unrealistic assump-
tions that went into deriving his formula and described how each of 
these could lead to errors.) careful investors, like Michael Greenbaum 
and clay Struve at o’connor and Associates, were able to use their un-
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derstanding of when the Black-Scholes model would fail to profit and, 
even more importantly, to protect themselves during the 1987 market 
crash.
 Yet still, the process continues. Both the scientists behind the Pre-
diction company and didier Sornette show how new developments in 
physics can be used to fill in gaps in the random walk, efficient markets 
thinking behind the Black-Scholes model. the Prediction company 
did this by using black box models to identify local, short-term inef-
ficiencies and capitalize on them as quickly as possible  —  essentially 
using physics to be the most sophisticated investors in the market. Sor-
nette, meanwhile, has taken Mandelbrot’s observation that in wildly 
random markets, extreme events like market crashes have dominating 
effects, and asked whether it is possible to predict these catastrophes. 
the tools he has adapted from seismology go a long way toward show-
ing that dragon kings can be seen from afar.
 It is tempting when writing a work of history to try to force the 
pieces into an overarching narrative. Here, I think, there is a narrative  
—  but it would be a mistake to push it too far. the Prediction com-
pany and Sornette represent two natural and important ways to move 
forward from the still-dominant Black-Scholes-style thinking. But de-
spite the successes of such models, they are hardly the end of the story. 
Instead, they are just two examples of particularly fruitful ideas about 
financial markets  —  ideas that themselves should be subjected to care-
ful testing and analysis. It’s not easy to say what the next major advance 
will look like: it might be a new way of understanding and anticipating 
extreme events; it might equally well be a novel test for when the pre-
dictions of models are “robust” against inherent market uncertainty; 
or perhaps it will be a breakthrough in our ability to identify the un-
derlying chaotic patterns lurking in market data. What we do know 
for sure is that there will be a next major advance, and that when we 
figure out where Sornette’s models fail, or where the kind of black box 
modeling the Prediction company developed runs aground, we will 
understand markets more clearly than we do today.

If physicists have been successful at improving our understanding of 
finance, it is because they have approached problems in a novel way, 
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using methodological insights that are commonplace in physics (and 
engineering) and that are useful in studying virtually anything. the 
stories in this book show the methodology in action: one uses simpli-
fying assumptions to make a problem tractable and solve it. then, once 
you see how your solution works, you can double back and begin ask-
ing what happens when you play with your assumptions. Sometimes 
you realize that your original solution is no good, because it depends 
too heavily on assumptions that never really apply; other times, you 
discover that the solution is pretty good but can be improved in simple 
ways; and other times still, you realize that your solution is great under 
certain circumstances, but you need to think about what to do when 
those circumstances don’t apply.
 obviously, physicists aren’t the only people who have thought about 
understanding the world in this way. this kind of model building is 
ubiquitous in economics and in other sciences. Unsurprisingly, most 
advances in economics have been made by economists. But physicists 
are very good  —  perhaps especially good  —  at thinking like this. And 
they are usually trained in a way that helps them solve certain kinds 
of problems in economics, without the political or intellectual baggage 
that sometimes hampers economists. Plus, physicists have often come 
to these problems with different knowledge and backgrounds from 
people who are trained as economists, which has meant that in some 
cases, physicists have been able to look at problems in a fresh way.
 However, when I say that science is a process, and particularly that 
financial modeling should be understood as an example of that pro-
cess, I do not mean to say that financial modelers are somehow march-
ing along the path of scientific progress, inexorably approaching some 
“final theory” of finance. the goal isn’t to find the final theory that will 
give the right answer in every market setting. It’s much more modest. 
You’re trying to find some equations that give you the right answer 
some of the time, and to understand when they can be relied on.
 derman and Wilmott, in their Manifesto, make this point quite 
clearly. We should never mistake a good model for the “truth” about 
financial markets. the most important reason for this is that markets 
are themselves evolving, in response to changing economic realities, 
new regulations, and, perhaps most importantly, innovation. for in-
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stance, the Black-Scholes model forever changed how options markets 
operate  —  which meant that the markets the model was designed to 
describe were revolutionized by the increasing use of the model. this 
led to a feedback loop that wasn’t fully recognized until after the 1987 
crash. As sociologist donald MacKenzie has observed, financial mod-
els are as much the engine behind markets as they are a camera capable 
of describing them. this means that the markets financial models are 
trying to capture are a moving target.
 far from undermining the usefulness of models in understanding 
markets, the fact that markets are constantly evolving only makes the 
iterative process I have emphasized more important. Suppose that Sor-
nette’s model of market crashes is perfect for current markets. even 
then, we have to remain ever vigilant. What would happen if investors 
around the world started using his methods to predict crashes? Would 
this prevent crashes from occurring? or would it simply make them 
bigger, or harder to predict? I don’t think anyone knows the answer to 
this question, which means that it is just the kind of thing we should 
be studying. the biggest danger facing mathematical modelers is the 
belief that today’s models are the last word on markets.

Weinstein and Malaney’s proposal is different from the other ideas dis-
cussed in this book. every other chapter concerns, in one way or an-
other, finance and financial modeling. the other physicists I discussed 
were looking at a bunch of statistics  —  stock prices, market moves, an-
nual returns  —  and trying to make predictions about how the num-
bers would change in the future. the details of how markets work is 
of course relevant to such predictions, but it is not so hard to see how, 
as osborne observed, a person trained as a physicist is well suited to 
interpret statistical data. Weinstein and Malaney, however, have pro-
posed a new theory of welfare economics, inspired by ideas developed 
in physics. this is a far more ambitious project, and one that is more 
difficult to wrap one’s head around.
 nonetheless, if one understands the connection between physics 
and finance in the right way, there is nothing weird about using phys-
ics as a way of making progress in economics more broadly. It isn’t that 
financial markets bear some special connection to the subject matter 
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of physics, or that physics and mathematics can be applied to clearly 
numerical areas of economics like finance, but not to other areas. In-
stead, it’s that physicists have successfully applied a way of thinking 
about the world to some areas of economics, and one should fully ex-
pect that those methods should be helpful in other areas, too. Indeed, 
they already are helpful in other areas of economics, insofar as econo-
mists already use mathematical models for all sorts of things that have 
nothing to do with finance. Weinstein and Malaney’s ideas underline 
the fact that mathematical tools are used in every area of economic 
thought, including things like policymaking  —  as shown by the disas-
trous Boskin commission.
 from this point of view, Weinstein and Malaney’s proposal is just 
a recognition that there are ways to make those models better, to use 
more powerful mathematics to avoid having to make strong assump-
tions about people and markets. It may turn out that gauge-theoretic 
methods are a dead end. But there’s no reason to rule them out in ad-
vance of careful study. After all, gauge theory was useful in physics 
when it became clear that a new generation of theories was necessary. 
one might as well see if it can do the same thing for economics. Wein-
stein, Malaney, and Smolin have shown that this might be possible.
 the idea that methods from physics can be useful in economics is 
an important one. equally important is that Weinstein and Malaney’s 
ideas were never given a fair hearing by economists or policymakers. 
there is something deeply troubling about the suggestion that soci-
ological and financial forces have suppressed an important new dis-
covery that could change how we understand something as crucial to 
the economy as inflation. With this in mind, Weinstein’s Manhattan 
Project should not be taken as a call for new tools for investors. no 
one thinks we should devote public resources to the search for a new 
options model that would help a handful of companies profit. Instead, 
the proposal was intended to bring mainstream economics up to speed 
with modern physics and mathematics, setting aside the powerful po-
litical and financial forces that distort the discipline.
 In a 1965 Supreme court decision on freedom of speech, Justice Wil-
liam Brennan coined the expression “marketplace of ideas” to describe 
how the most important insights might be expected to arise out of a 
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free and transparent public discourse. If this is right, then you would 
expect that the best new ideas about economics would get taken up  —  
even if powerful economists rejected them. this should be particularly 
true for ideas in finance, since a good idea there can lead to large prof-
its. In this regard, it is interesting that most of the physicists described 
in the last three chapters of the book, notably farmer, Packard, and 
Weinstein, took their ideas to the financial markets when they were 
rejected by economists. that the ideas have been profitable should be 
a sign of their importance  —  and yet, many economists have refused 
to take notice, including those who set government policy. If there is, 
as Brennan suggests, a marketplace of ideas, it is deeply inefficient, to 
the detriment of the rest of us. Smolin moved on to other projects once 
he realized that mainstream economists weren’t interested in hearing 
what he had to say. even Sornette, who has worked tirelessly to present 
his ideas in a way that mainstream economists could understand and 
appreciate, has hardly been embraced by that community. Much of his 
audience consists of practitioners.
 I don’t know how to change the sociology of economics depart-
ments. But I think that Weinstein’s idea of a major interdisciplinary 
research initiative would be an excellent start  —  provided there was 
some strong institutional or government support behind it, to hold the 
community together and keep it on track. After all, the original Man-
hattan Project was a military affair, and it revolutionized physics by 
changing the way physicists thought about their discipline. A similar 
commitment on the part of the government or a major not-for-profit 
in the service of a new generation of economic models would surely 
have similar effects. More importantly, it would be a source of sorely 
needed new insights. After years of recession and lackluster growth, it’s 
time to get creative.

When Weinstein first proposed a new Manhattan Project to better un-
derstand economics, he was quickly drowned out by the same voices 
that were criticizing mathematical models and the role of physicists 
in finance more generally. Indeed, in the years since the 2008 mar-
ket crash, we’ve heard a steady drumbeat of criticism of the role of 
physicists in finance and economics. Words like quant, derivative, and 
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model have taken on some nasty connotations. now that I have laid out 
the history of these ideas, the naysayers merit some further thought. 
It seems to me that if you think about mathematical modeling in the 
right way, these criticisms are wrong-headed. Understanding why is 
particularly important because the problems with these criticisms re-
veal why we should reconsider Weinstein’s proposal.
 one of the most prominent arguments against mathematical mod-
eling in finance might be thought of as an argument from psychology 
and human behavior. the idea is that ideas from physics are doomed 
to fail in finance because they treat markets as though they’re com-
posed of things like quarks or pulleys. Physics is fine for billiard balls 
and inclined planes, even for space travel and nuclear reactors, but as 
newton said, it cannot predict the madness of men. this kind of criti-
cism draws heavily on ideas from a field known as behavioral econom-
ics, which attempts to understand economics by drawing on psychol-
ogy and sociology. from this point of view, markets are all about the 
foibles of human beings  —  they cannot be reduced to the formulas of 
physics and mathematics.
 there is nothing wrong with behavioral economics  —  it is clear 
that a deeper understanding of how individuals interact with one an-
other and with markets is essential to understanding how an economy 
works. But a criticism of mathematical modeling based on behavioral 
economics trades on a misunderstanding.
 Using physics as a springboard for new ideas in finance does not 
involve describing people as though they were quarks or pendulums. 
think about how the ideas discussed in this book have made the move 
from physics into financial modeling. Some physicists, like Mandel-
brot and osborne, made progress in understanding markets by sim-
ply drawing on their familiarity with statistics to identify new ways 
of thinking about markets and risk. others, like farmer and Packard, 
used their expertise at extracting information from a noisy source to 
identify local patterns that could be useful for trading. Still others, like 
Black, derman, and Sornette, combined their observations about the 
details of markets in action with theoretical expertise learned in phys-
ics to come up with mathematical expressions that describe how read-
ily observed features of markets (like stock prices and fluctuations) 
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relate to more opaque features (like options prices and oncoming 
crashes). none of these examples involves assuming that investors are 
a bunch of quarks or that firms behave like exploding stars.
 there’s a deeper issue here, however. A careful study of human be-
havior is hardly inconsistent with using mathematical models to study 
markets and the economy more broadly. Indeed, psychology, in the 
form of the Weber-fechner law, played an important part at the very 
beginning of mathematical modeling of stock prices: osborne used it 
to explain why stock prices exhibited a log-normal distribution and 
not a normal distribution. More recently, Sornette has shown how ac-
counting for herding effects  —  another important aspect of human 
psychology, and a mainstay of the behavioral economics community  
—  can be useful in predicting financial calamity using mathematical 
techniques. In both of these cases, an understanding of psychology has 
played a crucial role in developing and refining mathematical models. 
In general, one should expect studies of psychology and human behav-
ior to be symbiotic with mathematical approaches to economics.
 A second kind of criticism  —  one that has already come up in the 
book  —  has found its biggest champion in nassim taleb. taleb has 
written an influential book, The Black Swan, which argues that mar-
kets are far too wild to be tamed by physicists. A black swan, you’ll 
recall, is an event that is so unprecedented it is simply impossible to 
predict. Black swans, taleb argues, are what really matter  —  and yet 
they are precisely what our best mathematical models are unable to 
anticipate. this is a particular problem for financial modeling, taleb 
says. He argues in his book and in many articles that physics lives in a 
world he calls “Mediocristan,” whereas finance lives in “extremistan.” 
the difference is that randomness in Mediocristan is well behaved and 
can be described by normal distributions. In extremistan, normal dis-
tributions are simply misleading. for this reason, he argues, applying 
ideas from physics to finance is a fool’s errand.
 on one level, what taleb says is certainly true  —  and absolutely es-
sential to recognize, especially for people who rely on mathematical 
models to make real-world decisions. We will never be able to predict 
everything that can happen. for this reason, a measure of caution and 
a good helping of common sense are always going to be important 
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when we try to use models successfully. But recognizing that we will 
never be able to predict everything, and that we shouldn’t assume our 
models reveal some deep truth about what can and cannot occur, is 
part and parcel of what I have described as thinking like a physicist  —  
it amounts to resisting complacency in model building. And indeed, 
trying to figure out how to predict the kinds of events that might have 
seemed like black swans from the perspective of (say) osborne’s ran-
dom walk model is precisely what led Sornette to start thinking about 
dragon kings. Surely not every black swan is really a dragon king in 
disguise. But that shouldn’t stop us from figuring out how to predict 
and understand as many kinds of would-be black swans as possible.
 taleb, though, wants to go further than this. He believes that black 
swans show that mathematical modeling, in finance and elsewhere, is 
fundamentally unreliable. figuring out how to predict dragon kings, 
or using fat-tailed distributions to address the fact that extreme events 
occur more often than normal distributions indicate, isn’t enough. It 
seems to me that one can argue successfully that any particular model 
is flawed  —  albeit usually in ways that a responsible model builder 
would recognize from the start. But taking this to the next level and 
arguing that the model-building enterprise as a whole is doomed is a 
different matter.
 Just consider: the process of building and revising models that I 
have described here is the basic methodology underlying all of science 
and engineering. It’s the best basic tool we have for understanding the 
world. We use mathematical models cut from the same cloth to build 
bridges and to design airplane engines, to plan the electric grid and 
to launch spacecraft. What does it mean to say that the methodology 
behind these models is flawed  —  that since it cannot be used to predict 
everything that could ever happen, it should be abandoned altogether? 
If taleb is right about mathematical models, then you should never 
drive over the George Washington Bridge or the Hoover dam. After 
all, at any moment an unprecedented earthquake could occur that the 
bridge builders’ models didn’t account for, and the bridge could col-
lapse under the weight of the cars. You should never build a skyscraper 
because it might be hit by a meteor. don’t fly in an airplane, lest a black 
swan collide with one of its engines.
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 taleb would have it that finance is a different kettle of fish from 
civil engineering or rocket science, that extreme events are more un-
predictable or more dangerous there. But it’s hard to see why. cata-
strophic events, when they occur, usually come without warning. this 
is true in all walks of life. And yet, it doesn’t follow that we shouldn’t 
do our very best to understand what risks we can, to domesticate as 
many unknown unknowns as possible. It’s important to distinguish 
between the impossible and the merely very difficult. there’s little 
doubt that mastering financial risk is extremely difficult  —  much more 
difficult, as Sornette would say, than solving problems in physics. But 
the process that I have described in this book is the best way we have 
ever come up with for addressing our biggest challenges. We shouldn’t 
abandon it here.

there’s a third criticism of financial modeling that one sometimes 
hears. this one is a little deeper. It has been made most influentially by 
Warren Buffett, who has famously warned of “geeks bearing formulas.” 
this view has it that financial innovation is a dangerous thing because 
it makes financial markets inherently riskier. the excesses of the 2000s 
that led to the recent crash were enabled by physicists and mathemati-
cians who didn’t understand the real-world consequences of what they 
were doing, and by profit-hungry banks that let these quants run wild.
 there is much that is right in this criticism. the idea that deriva-
tives, including options, are a manufactured “financial product” has 
proved extremely powerful  —  and profitable. over the past forty years, 
financial engineers have come up with ever more creative, and often 
convoluted, derivatives, engineered to make money in a wide variety 
of different circumstances. dynamic hedging  —  the idea behind the 
Black-Scholes model  —  is the basic tool used in this new kind of bank-
ing, since it allows banks to sell such products with apparent impunity. 
As the banking sector has evolved to put more and more emphasis 
on new financial products, the impact of a failure of the mathemati-
cal models undergirding these products has become ever larger. And 
indeed, some of these creative new financial products were at the heart 
of the 2008 crisis. So it is certainly true that physicists and mathemati-
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cians enabled a novel kind of risk taking on the part of banks, and that 
we are now suffering the consequences.
 Still, it’s not as though market crashes or speculative bubbles are 
a new phenomenon  —  after all, the largest market collapse in mod-
ern times occurred in 1929, long before derivatives became important. 
What’s more, for the past forty years, essentially the period over which 
financial innovation has been most important, the financial services 
sector has buoyed Western economies. In the United States, for in-
stance, the financial services industry has grown six times faster than 
the economy as a whole. this rapid growth has occurred at the same 
time that other industries, such as manufacturing, have either de-
clined or grown much more slowly. financial innovation, like other 
technological innovation, has thus played a major role in buoying the 
U.S. and other Western economies over the past three decades. More-
over, there is broad agreement among economists that a large, well-
developed financial sector generally spurs growth in other areas of the 
economy  —  at least to a point. there is also some evidence that if the 
financial sector becomes too large  —  as indeed, perhaps it has  —  it can 
negatively impact growth in other areas, largely because finance ends 
up exerting too much control over other industries. that may well be 
right, and it may be reason to implement financial reform. But one has 
to be very careful about throwing the baby out with the bath water: for 
all sorts of practical reasons, economic growth is a good thing. And 
worries that the financial sector in the United States or europe has 
grown too large hardly undermine the basic point that derivatives, and 
by extension Black and Scholes’s insights, have been essential to pro-
ducing the growth in the first place. If financial practices had stopped 
developing in 1975, the world’s economies would be far less developed 
than they are today.
 that said, there are many sides to financial innovation. While per-
haps some derivatives have spurred growth, many people have criti-
cized their widespread use on account of how complicated they can 
be, and how difficult to understand. the suggestion seems to be that 
at least some derivatives are intentionally constructed to confuse or 
even defraud unsophisticated investors. for instance, this criticism 
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has been leveled against certain derivatives based on consumer loans, 
such as collateralized debt obligations (cdos), that played a major 
role in the 2008 crash. these products involve repackaging mortgages 
and other loans into derivatives that were supposed to have carefully 
tailored risks and returns. In part, the reason these particular securi-
ties have been so heavily criticized is that many investors, including 
some major investment banks, were caught off guard when they rap-
idly declined in value  —  that is, when they became the “toxic assets” 
that have plagued U.S. and european banks. there was an enormous 
amount of confusion about the real risks carried by these products, 
largely because individual investors were ill equipped to evaluate the 
risks themselves, while credit ratings agencies like Moody’s and Stan-
dard & Poor’s gave the securities ratings that indicated they were much 
safer than they turned out to be. to make matters worse, the Sec has 
charged that Goldman Sachs allowed an outside hedge fund, Paulson 
& co., to construct cdos that were more likely to lose value than their 
ratings suggested  —  so that Paulson could bet against the misleadingly 
risky cdos.
 Surely this episode reveals deep dangers inherent in certain prac-
tices involving derivatives. But really, the issue at hand has little to do 
with derivatives as such. If banks really constructed financial products 
that looked better than they were just so that their biggest investors 
could bet against them, as some regulators and others have charged, 
that is surely unethical. But con artists have been defrauding investors 
for a long time, without the help of cdos. It seems to me that deriva-
tives, even cdos, are best thought of as tools, much like the models 
used to construct them. crop futures, for instance, have played an im-
portant role in allowing farmers to finance the planting season and 
to control risk along the way for thousands of years; more recently, 
currency futures have significantly reduced the risk of international 
trade, enabling the growth of an international economy. Any tool can 
be used for more than one purpose  —  after all, a hammer can be used 
to hammer a nail, or to bash in a car window. In the hands of police, 
guns can (at least arguably) be an important part of maintaining a safe 
and orderly society; yet obviously guns are dangerous in other con-
texts. figuring out how to adequately regulate and control derivatives 
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is an important, ongoing policy concern. But it’s no different in kind 
from other regulatory problems.

there is still a worry, however, even after you agree that derivatives and 
their associated models are tools, to be used judiciously or otherwise. 
Surely there are some tools  —  the hydrogen bomb, say, if one can think 
of that as a tool  —  that are so dangerous that the world would be a bet-
ter place if they didn’t exist. Perhaps derivatives are, in Buffett’s words, 
“financial weapons of mass destruction”  —  tools that can be used or 
misused in such destructive ways that no amount of economic growth 
is enough to counterbalance the risks. one might even think that the 
2008 crisis is evidence of the enormity of the dangers of mathematical 
modeling in finance. I don’t think this is right. to see why, it’s worth a 
careful look at what happened in 2007–2008.
 In the film It’s a Wonderful Life, the main character, George Bailey, 
runs a savings and loan bank. It’s a fairly standard kind of bank: cus-
tomers deposit their money into an account, in exchange for safety 
and interest; the bank then turns around and lends the money out, 
usually as mortgages or business loans. this system works well as long 
as depositors are by and large happy to leave their money in the bank. 
on George Bailey’s wedding day, however, as he and his new wife drive 
past his bank, they see a crowd of people clamoring to get in. A rumor 
has spread that the bank is in trouble and the people of Bedford falls 
(Bailey’s town) want to withdraw their deposits.
 Bailey jumps out of the car, realizing there’s been a run on his bank. 
Inside, he explains to the crowd that their money isn’t in the build-
ing  —  it’s in their neighbors’ houses and their community’s stores and 
businesses. the system fails if everyone tries to withdraw at once, since 
the bank doesn’t keep enough capital on hand to reimburse all of the 
depositors. In a moment of tragic (but characteristic) selflessness, Bai-
ley realizes that he has a pile of cash on hand  —  his honeymoon money  
—  and offers to pay some of the depositors out of that, so long as they 
don’t ask too much. He has just enough money that, at the close of the 
business day, the bank has $1 left and they can shut the doors for the 
night without going out of business. they have survived the run, but 
at the expense of Bailey’s dreams of traveling the world.
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Bank runs were fairly common during the depression, and even 
more common during the nineteenth century. they were associated 
with financial panics, periods in which the economy seemed especially 
uncertain and no one was sure which banks would survive. A small 
piece of news that a particular bank was endangered could practically 
ensure that the bank would fail. today, bank runs in the United States 
are a thing of the past, because in 1934 the U.S. government instituted 
the federal deposit Insurance corporation (fdIc), which insures all 
consumer bank deposits. now there’s no reason to make a run on a 
bank, even if you think it’s failing: your money is insured by the federal 
government, no matter what happens.
 In the Introduction, I described the quant crisis  —  the week in Au-
gust 2007 when all of the major quant funds fell to pieces, for no ap-
parent reason. this was the first hint of a coming catastrophe in the 
world’s financial markets. But what caused the quant crisis? In effect, 
the quant funds were an early casualty of a much larger-scale bank 
panic that was setting in that summer, and that would last for more 
than fifteen months. this panic didn’t concern consumer banking, 
which is protected by the fdIc. Instead, it was a panic that affected a 
shadow banking system that has developed in the United States over 
the past three decades. the shadow banking system works like nor-
mal banking in principle, but on much larger scales  —  and with no 
oversight or regulation. It consists of lending between banks and large 
corporations (including other banks).
 When a firm has cash reserves  —  say, a few hundred million dollars  
—  it needs a place to deposit them, just as anyone else needs a place 
to deposit cash. otherwise, the cash doesn’t bear any interest, which 
amounts to a loss of value. So what firms do is deposit their cash re-
serves with other firms. this is basically a short-term loan from one 
bank or firm to another. In exchange, the depositor demands some 
sort of collateral. one standard choice for collateral would be govern-
ment bonds, which are essentially risk-free and pay a small amount of 
interest. But there are only so many government bonds in the world, 
and many people (and other governments) buy them as long-term in-
vestments. And so, as firms’ demand for places to deposit their cash 
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has grown, banks have had a strong incentive to come up with other 
assets that they could use as collateral.
 corporate bonds, which are just like government bonds only issued 
by a corporation, aren’t a very good choice because their value tends to 
be connected with the corporation’s stock prices. no one would want 
collateral that could be highly volatile, or worse, collateral whose value 
you could try to “game” by looking at how the stock prices are chang-
ing. So firms participating in this shadow banking sector wanted to 
come up with some new kind of asset that worked like a bond, but 
whose value didn’t depend on something that it was easy to get in-
formation about. the solution they happened on was consumer debt  
—  mortgages, student loans, credit card debt. now, consumer debt by 
itself isn’t a great choice, because it’s possible to predict from a par-
ticular individual’s history whether that person is likely to default. So 
instead of using loans as collateral directly, banks took the consumer 
loans and “securitized” them. this involved combining a large number 
of loans into a pool, and then slicing the pool up into pieces and selling 
the pieces as bonds. these new assets  —  which included cdos  —  were 
designed to work just like government bonds (though they were much 
riskier). they bore interest so that when firms deposited money with 
one another, that money wouldn’t lose value.
 the quant crisis was the first signal that all was not well in this 
shadow banking system. the whole system was built on the assump-
tion that U.S. housing markets wouldn’t decline. When they did, be-
ginning in 2006, the system began to crumble, and when the decline 
accelerated in 2007, panic set in. defaults occurred, mainly among 
homeowners who were already perceived as high risk, the beneficia-
ries of so-called subprime mortgages. this sudden high default rate, 
in turn, made the securities based on subprime mortgages rapidly lose 
value, as no one was sure whether the promised interest rates would 
be paid. the quant crisis resulted when a small handful of hedge funds 
were told they needed to put up more collateral for the loans they used 
to finance their investment, which in turn meant they needed to sell 
quickly to raise cash. Most of the quant funds used similar methods, 
which meant they often had very similar portfolios  —  so that when 
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one fund started to liquidate, it pushed all of their holdings, includ-
ing the ones that were supposed to act as insurance, lower. this rapid 
and unexpected loss then forced other funds to sell, too, leading to a 
vicious cycle where everyone involved lost a lot of money. (this is a 
perfect example of how Sornette’s herding effects can lead to crashes.)
 the quant crisis, and its reverberations later in 2007, were just the 
beginning. the next casualty was the eighty-five-year-old investment 
bank Bear Stearns, in March 2008. Bear Stearns had been a major 
player in the shadow banking system, producing many of the securi-
tized loans that served as collateral. When the underlying mortgages 
started to see ever-higher default rates, Bear Stearns’s depositors 
started to get edgy. Starting in the middle of the month, some of Bear 
Stearns’s biggest customers asked for their money back at the same 
time. first was renaissance, James Simons’s firm, which wanted its $5 
billion. Another $5 billion was pulled out by another hedge fund, d. e. 
Shaw. Soon it was a classic run on the bank, with all of the custom-
ers clamoring for their cash. to stem the bleeding, Bear Stearns was 
forced to agree to a government-backed takeover by another invest-
ment bank, J. P. Morgan.
 the crisis was just beginning to pick up steam. the real climax oc-
curred at the end of that summer, when Lehman Brothers, another 
eminent old investment bank, collapsed. this time, the government 
didn’t step in to negotiate a bailout, which only increased the sense of 
panic. Within just a few days in September, another struggling invest-
ment bank, Merrill Lynch, was eaten up by Bank of America. the in-
surance firm AIG was on the verge of collapse. no banks were willing 
to lend money, least of all to other banks, whose fortunes were far from 
certain. the entire shadow banking system froze up, and the financial 
market collapsed beneath the pressure. By october, 40% of the value 
of the U.S. stock market had vanished into thin air.
 Surely, the misuse of mathematical models played a role in this cri-
sis. the securitization procedure by which subprime mortgages were 
turned into new products that behaved like bonds was based on a 
model developed by a statistician named david X. Li. Li’s model had 
a fundamental flaw: it essentially assumed that default on one mort-
gage wouldn’t change the risk of default on other mortgages. As long as 
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the default rate was low, this was a good assumption — a few isolated 
defaults didn’t have much effect on the housing market. But once the 
default rate picked up, sometime in 2006, the model stopped mak-
ing sense. When lots of people defaulted on their mortgages, housing 
prices in the default-heavy neighborhoods dropped  —  leading to still 
more defaults. Moreover, the rise in defaults indicated some deeper 
problems in the economy.
 But putting all of the blame for the 2007–2008 crisis on Li’s model, 
or even securitized consumer loans, is a mistake. the crisis was partly 
a failure of mathematical modeling. But even more, it was a failure 
of some very sophisticated financial institutions to think like physi-
cists. the model worked well under some conditions, but like any 
mathematical model, it failed when its assumptions ceased to hold. 
And it seems that the people who were empowered to make decisions 
about risk management didn’t think through when Li’s model would 
fail them. everyone was making money, and so they threw caution to 
the winds. But even this is too easy. the crisis was equally a failure of 
government policy and regulation, since the shadow banking system 
that ultimately collapsed ran with essentially no oversight. either regu-
lators didn’t know what was happening, they didn’t understand the 
risks, or they believed that the industry would regulate itself. the crisis 
resulted from failures on all fronts.
 It’s worth emphasizing once again that just as o’connor survived 
the 1987 crash by being a little more sophisticated in how it used its 
models than anyone else, Jim Simons’s renaissance technologies re-
turned 80% in 2008  —  again by being smarter than the competition. 
What’s the difference between renaissance and other hedge funds? It’s 
that renaissance has figured out a way to do what my dissertation ad-
visor claimed was impossible: do science on Wall Street. this has not 
involved airing its ideas publicly. Indeed, renaissance is more secre-
tive than most. But its employees haven’t forgotten how to think like 
physicists, how to question their assumptions and constantly search 
for the chinks in their models’ armor. Much of the company’s advan-
tage comes from the quality of the people who work there  —  they are, 
by all accounts, simply smarter than most other quants. But equally 
important is the way the firm is structured: it has a large group of dedi-
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cated researchers who are given forty hours a week of unstructured 
time during which they are encouraged to pursue their own ideas. It 
is embracing its roots, more than anything else, that has allowed the 
company to flourish where others have not. renaissance shows that 
mathematical sophistication is the remedy, not the disease.

As I finish this book, in early 2012, the world economy still hasn’t re-
covered from the 2008 crisis. If anything, it seems poised for another 
collapse. And no one expects matters to improve any time soon. the 
obama administration has issued predictions that unemployment will 
hover around 8% through the end of 2012, with sluggish growth in 
GdP. Both political parties in the United States are simply repeating 
the same tried-and-failed policy proposals they’ve been trotting out 
for a generation. And it’s not just the United States. Most of southern 
europe is on the verge of default on its sovereign debt  —  and despite 
Germany’s best efforts, it is hard to see how the euro has a future. even 
china and India have showed signs of slowing down. Prospects look 
dim for the world economy. And the most remarkable thing of all is 
that no one seems to have any ideas about how to fix it.
 there’s an ancient Latin proverb that I think applies: “Extremis malis 
extrema remedia.” desperate times call for desperate measures. What 
we need now, more than anything else, is a new source of economic 
ideas. this is why it is time to return to Weinstein’s proposal for a new 
large-scale interdisciplinary research initiative. We have mobilized 
the U.S. and european scientific communities before, and the result 
changed the world forever. Given the proven track record of applying 
ideas from physics in finance that I have described in this book, and 
the promising directions indicated by Weinstein and Malaney’s work, 
it is time to do the same again. this time, though, the goal wouldn’t be 
a new weapon. It would be a new set of tools for the proper function-
ing of the world’s economies.
 consider that throughout the last decades, and especially during 
the 2007–2008 crisis, the U.S. government, including its major regula-
tory groups, has always been a step behind even the least sophisticated 
banks and investment firms. they’re three steps behind the real in-
novators. When, in the lead-up to the crisis, banks failed to account 
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for the risk associated with securitized loans, there was no one there 
to point out that the shadow banking system was built on a house of 
cards. It was only in the aftermath of the crash that new banking regu-
lations made their way through congress  —  and even then, the new 
regulations amounted to rudimentary policy changes designed to pro-
tect against yesterday’s risks.
 this situation should be exactly reversed. We are perfectly happy 
to devote enormous resources to intelligence initiatives and counter-
terrorism. But the 2008 market crash did at least as much economic 
damage as 9/11. We should devote the same resources to staving off 
economic calamity as we devote to protecting ourselves from other 
risks. organizations like the federal reserve and the Securities and 
exchange commission, even the World Bank, should be the most so-
phisticated players in the game  —  and if these groups are not up to the 
task, we need some new research organization devoted to interdisci-
plinary economic research to help guide them. the people charged 
with running the world’s economies should be as good as renaissance. 
In fact, they should be better.
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1. introduction: of Quants and other demons

 1  “Simons cuts a professorial figure . . .”: Simons declined to be interviewed for 
this book. Material on Simons and the history of renaissance is culled from several 
sources, including Peltz (2008), Greer (1996), Seed magazine (2006), Zuckerman (2005), 
Lux (2000), and Patterson (2010). Simons is unusually forthcoming (as compared to his 
usual reticence) about how he became a mathematician, and then how he moved from 
mathematics and physics into finance, in a public lecture he gave at MIt in 2010 (Si-
mons 2010); he describes his early contributions to mathematical physics and geometry 
in Zimmerman (2009).
 2  “They called it Medallion . . .”: Ax won the cole Prize in 1967, and Simons won 
the veblen Prize in 1976.
 2  “Over the next decade . . .”: the numbers on Medallion’s past returns are from 
Lux (2000) and Zuckerman (2005).
 2  “Compare this to Berkshire Hathaway . . .”: these numbers are from the 2010 
Berkshire Hathaway annual report (Buffett 2010). the year 2010 is the most recent year 
for which data are available.
 2  “According to the 2011 Forbes ranking . . .”: Forbes magazine (2011).
 2  “According to MIT mathematician Isadore Singer . . .”: Singer made this remark 
in the introduction to Simons’s public lecture at MIt in 2010 (Simons 2010).
 2  “Hedge funds are supposed to work .  .  .”: for more on the history of hedge 
funds, including their role in the 2008 crisis, see Mallaby (2010). for background on the 
workings of financial institutions more generally, see Mishkin and eakins (2009).
 3  “They have been around for at least four thousand years . . .”: the details of the 
early history of derivatives contracts come from Swan (2000). the names used in the 
text are from real Mesopotamian tablets.
 4  “But when markets opened . . .”: this history of the 2007 quant crisis, includ-
ing numbers cited below, comes from Patterson (2010), from news articles from Au-

Notes
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gust/September 2007 (Patterson and raghavan 2007; Lahart 2007; nocera 2007; Ahrens 
2007), as well as from academic work on the topic (Gorton 2010; Khandani and Lo 2011).
 5  “Isaac Newton despaired . . .”: While it is known that newton suffered some 
losses in the South Seas bubble, this quote is sometimes disputed. the attribution seems 
to originate with Spence (1820, p. 368).
 5  “On average . . .”: these numbers come from Sourd (2008).
 5  the Medallion returns are from Willoughby (2008). It is worth pointing out 
that renaissance’s other principal fund, the renaissance Institutional equities fund, 
which uses strategies similar to those of the other quant funds and which is designed to 
have a much higher capitalization than the Medallion fund, did suffer losses of about 1% 
in 2007 (Strasburg and Burton 2008).
 6  “. . . promoted by Nassim Taleb . . .”: See taleb (2004, 2007a).
 8  “Even the traditionalists suffered . . .”: numbers are from Berkshire Hathaway’s 
2010 annual report (Buffett 2010).
 8  “Jim Simons’s Medallion Fund .  .  .”: the Medallion numbers are from Wil-
loughby (2009).

1. Primordial seeds

 2  “Or so it would have seemed to Louis Bachelier . . .”: the story told in this open-
ing section takes some liberties, as certain details of Bachelier’s life are not well known. 
In particular, I am following the french historian of statistics Bernard Bru, who has ar-
gued that Bachelier almost certainly worked at the Bourse to support himself during his 
time at the University of Paris, which began in 1892, and during the years after his Phd 
when he lived in Paris without regular academic employment (taqqu 2001). However, 
as Bru admits, there is no concrete evidence of Bachelier’s employment at the Bourse. 
Whatever else is the case, it is clear that Bachelier had an unusual amount of experi-
ence with the french financial system when he wrote his dissertation in 1900. A second 
liberty concerns the idea that Bachelier would have comforted himself in approaching 
the Bourse by imagining it as a giant casino. other details provided here  —  Bachelier’s 
age, the year he arrived in Paris, his family situation  —  are all well documented. Bio-
graphical details provided here and elsewhere in the chapter come principally from the 
documents collected in courtault and Kabanov (2002), as well as dimand and Ben-el-
Mechaiekh (2006), Sullivan and Weithers (1991), Jovanovic (2000), davis and etheridge 
(2006), Mandelbrot (1982), Mandelbrot and Hudson (2004), MacKenzie (2006), and 
Patterson (2010).
 2  “Inside, it was total bedlam”: the Bourse was a variety of open outcry system, 
and it seems that during the brief periods when the brokers would meet in the building 
for trades, the scene could become quite disordered. Modern open outcry exchanges 
are certainly “total bedlam.” for more on the history of the Bourse, including various 
pictures of how it functioned, see Walker (2001) and Lehmann (1991, 1997).
 3  “Laid out in front of him . . .”: this would have been Bachelier’s dissertation 
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(Bachelier 1900), which is presented in both french and english in davis and etheridge 
(2006).
 3  “Louis Bachelier. It didn’t ring any bells”: Samuelson told the story of his re-
discovery of Bachelier’s work in numerous places, including his preface to davis and 
etheridge (2006) and in Samuelson (2000). In this latter reference, Samuelson suggests 
that he might have heard of Bachelier at least once before Savage’s postcard arrived. note 
that although the version of the story I tell here, in which Bachelier was forgotten until 
Savage happened upon his 1914 textbook, is the standard one, there are some who have 
argued that Bachelier was never really as obscure, even in the english-speaking world, 
as this standard story suggests. See Jovanovic (2000).
 3  “. . . a textbook from 1914 . . .”: Savage had found Bachelier (1914).
 4  “That distinction goes to the Italian . . .”: Much of what is known about car-
dano comes from his own autobiography, cardano (1929 [1576]). Several other biog-
raphies have been written, including Morley (1854), ore (1953), and Siraisi (1997), that 
seek to put his work (both in mathematics and in medicine) in context. for more on the 
history of probability generally, see Bernstein (1998), Hacking (1975, 1990), david (1962), 
Stigler (1986), and Hald (2003).
 4  “Cardano wrote a book . . .”: the “book” I have in mind is much of what later 
became the posthumous Liber de ludo aleæ (cardano 1961 [1565]).
 5  “.  .  . a French writer who went by .  .  .”: for more on de Méré, Pascal, and 
fermat, see devlin (2008), in addition to the works cited above on the history of prob-
ability.
 7  “.  .  . a deep philosophical question at stake”: for sophisticated but readable 
overviews of the philosophical difficulties associated with interpreting probability the-
ory, see Hájek (2012), Skyrms (1999), or Hacking (1990).
 8  “This result is known as the law of large numbers”: for more on the law of large 
numbers, see casella and Berger (2002) and Billingsley (1995). See also Bachelier (1937).
 9  “Poincaré was an ideal person to mentor Bachelier”: for more on Poincaré, see 
Mahwin (2005) or Galison (2003), as well as references therein.
 11  “. . . even he was forced to conclude . . .”: Poincaré’s report on Bachelier’s thesis 
can be found in courtault and Kabanov (2002), and in translated form in davis and 
etheridge (2006).
 12  “.  .  . according to the Roman poet Titus Lucretius .  .  .”: See Lucretius (2008 
[60b.c.], p. 25).
 12  “These experiments were enough . . .”: the history of the “atomic theory” and 
its detractors through the beginning of the twentieth century is fascinating and plays an 
important role in present debates concerning how mathematical and physical theories 
can be understood to represent the unobservable world. for instance, see Maddy (1997, 
2001, 2007), chalmers (2009, 2011), and van fraassen (2009). Although discussing such 
debates is far from the scope of this book, I should note that the arguments offered here 
for how one should think of the status of mathematical models in finance are closely 
connected to more general discussions concerning the status of mathematical or physi-
cal theories quite generally.
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 12  “.  .  . named after Scottish botanist Robert Brown .  .  .”: Brown’s observations 
were published as Brown (1828).
 12  “The mathematical treatment of Brownian motion . . .”: More generally, Brown-
ian motion is an example of a random or “stochastic” process. for an overview of the 
mathematics of stochastic processes, see Karlin and taylor (1975, 1981).
 12  “.  .  . it was his 1905 paper that caught Perrin’s eye”: einstein published four 
papers in 1905. one of them was the one I refer to here (einstein 1905b), but the other 
three were equally remarkable. In einstein (1905a), he first suggests that light comes in 
discrete packets, now called quanta or photons; in einstein (1905c), he introduces his 
special theory of relativity; and in einstein (1905d), he proposes the famous equation e 
= mc2.
 13  “. . . curve known as a normal distribution . . .”: for more on probability distri-
butions, and the normal distribution in particular, see casella and Berger (2002), Bill-
ingsley (1995), and forbes et al. (2011).
 15  “. .  . Bachelier was essentially unprecedented in conceiving .  .  .”: for both so-
phistication and (ultimately) influence, Bachelier is without peer. But in fact, there were 
some others who either anticipated Bachelier in some ways (most notably Jules reg-
nault) or else did similar work within a few years of Bachelier (for instance, vinzenz 
Bronzin). for more on these other pioneers in finance, see Poitras (2006) (especially 
Jovanovic [2006] and Zimmermann and Hafner [2006]) and Girlich (2002).
 16  “The efficient market hypothesis was later rediscovered . . .”: See fama (1965). 
the efficient market hypothesis is now a central part of modern economic thought; it 
is described in detail in any major textbook, such as Mankiw (2012) or Krugman and 
Wells (2009). for a history of the efficient market hypothesis, see Sewell (2011) and Lim 
(2006). See also the dozens of recent books and articles attacking the idea that markets 
are in fact efficient, such as taleb (2004, 2007a), fox (2009), cassidy (2010a,b), Stiglitz 
(2010), and Krugman (2009).
 17  “. . . called the random character of Stock Market Prices”: this is cootner 
(1964).
 18  “In Cootner’s words . . .”: the quote is from cootner (1964, p. 3).
 18  “. . . mathematical physicist and statistician named E. B. Wilson”: Wilson was 
a polymath who made major contributions to many fields, including statistics, physics, 
engineering, economics, and public health. In some ways, however, his most lasting 
contributions were pedagogical; his textbooks on vector analysis (Wilson 1901) and ad-
vanced calculus (Wilson 1912) became the standards for a generation of American scien-
tists and engineers. details about his intellectual biography are to be found in Hunsaker 
and Lane (1973).
 18  “Gibbs is most famous for . . .”: for more on Gibbs and his work, see Hastings 
(1909), rukseyer (1988), or Wheeler (1988). His student e. B. Wilson, noted above, also 
wrote a memoir of his interactions with Gibbs (Wilson 1931).
 19  “.  .  . called foundations of economic Analysis”: this is Samuelson (1947). 
Samuelson’s textbook on economics (Samuelson 1948) further extended his influence on 
American economic thought.
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 19  “. . . economics matured as a science”: the picture of the history and especially 
the mathematization of economics presented here is heavily indebted to Morgan (2003).
 19  “. . . in part because of the work of Irving Fisher . . .”: for more on the life and 
work of Irving fisher, see Allen (1993).
 20  “.  .  . physicist turned economist, Jan Tinbergen”: the claim about the origin 
of the term model comes from Morgan (2003). for a brief biographical sketch of tin-
bergen, see Hendry and Morgan (1996); for a more detailed discussion of his work, see 
Morgan (1990).
 20  “Unlike in physics . . .”: the relationship between models and theories, and in 
particular how models in economics differ from theories in physics, is the topic of der-
man (2011b).
 23  “He circulated a letter . . .”: the letter is reprinted in courtault and Kabanov 
(2002).
 23  “ . . . Lévy read Bachelier’s final paper”: the paper would have been Bachelier 
(1941). the version of the story I tell here comes from taqqu (2001). It is based on con-
temporaneous notes on Lévy’s copy of Bachelier (1941). Lévy himself, in a much later 
letter to Benoît Mandelbrot, recalls a slightly different story, in which he encountered a 
reference to Bachelier in Kolmogorov (1931) in 1931 and immediately returned to Bach-
elier’s work. the existence of the 1941 paper, however, with Lévy’s annotations concern-
ing a recent reconciliation, suggest that Lévy misremembered. for more on Lévy, see the 
biographical note in Mandelbrot (1982).

2. swimming Upstream

 25  “Maury Osborne’s mother . . .”: Almost nothing has been written about M.f.M. 
osborne, though his contributions to the early study of market randomness are widely 
recognized. He is mentioned briefly in Bernstein (1993). the biographical material in 
this chapter comes from numerous interviews with two of his children, Holly osborne 
and Peter osborne; an interview with one of his principal collaborators, Joe Murphy; 
and especially from documents provided to me by his family. Included among these 
documents were two autobiographies that he composed for his family in 1987 (osborne 
1987a, b). Holly, Peter, and their sister, Melita osborne carter, were generous enough to 
read an earlier draft of this chapter and check it for accuracy.
 25  “So you go and collect that horse manure .  .  .”: this quote comes from the 
shorter of two autobiographical documents osborne dictated before his death (osborne 
1987b).
 26  “. . . to work at the Naval Research Lab (NRL) . . .”: for more on the history of 
the nrL, both before and after World War II, see Allison (1985) and Gebhard (1979).
 26  “. . . if you took into account both the lift produced . . .”: this paper, osborne 
(1951), didn’t appear in print for another six years because, even though osborne had 
institutional support for working on whatever he liked, he had difficulty finding jour-
nals for some of his most interdisciplinary work. the insect flight paper was ultimately 
published in the Journal of Experimental Biology.



234 • t h e  p h y s i c s  o f  wa l l  s t r e e t

 27  “. . . he worked exclusively on his own projects”: He also served as an internal 
consultant. other navy scientists could come by his office and ask questions; osborne 
was quick enough and creative enough that he was a resource for the lab even though he 
did not participate directly in its research initiatives. He also helped during the search 
operation for the U.S.S. Thresher, a nuclear submarine that was lost at sea during a depth 
test in 1963.
 28  “Nylon”: the story of the development of nylon and du Pont’s participation 
in the plutonium project comes from Hounshell and Smith (1988), Hounshell (1992), 
and ndiaye (2007). Additional details concerning the early reception of nylon are from 
Handley (2000); for background concerning the Manhattan Project, see Baggott (2009), 
rhodes (1995), Jones (1985), and Groves (1962). for more on the dawn and development 
of “big science,” see Galison and Hevly (1992) or Galison (1997).
 28  “As the Philadelphia record put it .  .  .”: Philadelphia Record, november 10, 
1938 (Handley 2000).
 31  “. . . Einstein wrote a letter to Roosevelt . . .”: See rhodes (1995).
 31  “. . . Nobel laureate Arthur Compton secretly convened a group . . .”: In addition 
to the references above on the Manhattan Project, see compton (1956).
 34  “.  .  . his parents wouldn’t let him attend college so young .  .  .”: Although this 
is true, osborne told the story in a slightly different way: When he graduated from 
high school, he wanted to go immediately to the University of virginia, but his parents 
told him that the college catalog said they would not accept such a young student. the 
following year, when he went to interview at the university, the interviewer told him 
that they would have been glad to have him at fifteen. After that, osborne always cited 
the college catalog story (apparently manufactured by his parents) as evidence that one 
should never believe what one reads. this independence of spirit was characteristic of 
osborne’s intellectual life.
 34  “Osborne began ‘Brownian Motion in the Stock Market’ with a thought experi-
ment”: See osborne (1959, pp. 146–47). It is quite easy to imagine the scene occurring 
much as he describes.
 36  “The rate of return . . .”: the rate of return is usually just called the returns, or 
sometimes logarithmic returns, by people who work in finance. But I want to be careful 
to distinguish it from what you might call absolute returns  —  that is, the total amount of 
money earned on an investment  —  since for many people outside of the profession, it is 
natural to think of the returns on an investment in terms of the amount earned. It is the 
logarithmic returns, and not the absolute returns, that osborne argued were normally 
distributed.
 36  “. . . something known as a log-normal distribution”: for background on prob-
ability distributions, including log-normal distributions, see casella and Berger (2002) 
and forbes et al. (2011).
 38  “. . . principle known as the Weber-Fechner law”: See osborne (1959).
 39  “. . . he picked up a book by Einstein, the Meaning of relativity . . .”: this is 
einstein (1946).
 40  “So Osborne wrote Einstein a letter .  .  .”: the original letters are kept at the 
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einstein archive at the Hebrew University of Jerusalem. osborne’s family provided me 
with photocopies (osborne and einstein 1946).
 41  “Other researchers, such as the statistician Maurice Kendall . . .” See Kendall 
(1953) in particular. Kendall’s work on the randomness of stock prices is described in 
detail in Bernstein (1993).
 42  “As Osborne would later put it . . .”: the quote is from osborne (1987a, p. 137).
 42  “The third idea concerned the migratory efficiency of salmon”: this work was 
ultimately published as osborne (1961).
 44  “Osborne proposed a new model for deep ocean currents”: this work was pub-
lished as osborne (1973).
 44  “. . . it was impossible to predict how individual stock prices would change . . .”: 
osborne makes this point in several places, but he dwells on it (and the related question 
of how analyses such as his might be put into use in practice) in his book, osborne (1977, 
pp. 96–100).
 45  “.  .  . ‘unrelieved bedlam’ .  .  .”: See, for instance, osborne (1962, p. 378) for 
the quote. for a clear example of where osborne relentlessly sought empirical evidence 
against his own hypothesis, see osborne (1967).
 45  “He showed that the volume of trading . . .”: See osborne (1962). note that this 
work appeared just one year after the migratory salmon paper was published.
 45  “. . . Osborne and a collaborator . . .”: the article I have in mind is niederhof-
fer and osborne (1966); the collaborator was victor niederhoffer, the now-(in)famous 
hedge fund manager. for more on niederhoffer, see his autobiography, niederhoffer 
(1998), or the recent New Yorker profile (cassidy 2007).
 48  “. . . Osborne proposed the first trading program . . .”: In other words, the first 
systematic, fully deterministic trading strategy that could be programmed into a com-
puter  —  a system for what today would be called algorithmic trading. the proposal is 
made in niederhoffer and osborne (1966).

3. from coastlines to cotton Prices

 49  “Szolem Mandelbrojt was the very model . . .”: Information about Mandelbrojt 
comes from o’connor and robertson (2005), as well as from the biographical materials 
related to Mandelbrot cited below.
 49  “In 1950, Benoît Mandelbrot . . .”: Unfortunately, Mandelbrot passed away in 
2010, before I had an opportunity to interview him in connection with this book. Bio-
graphical material in this chapter comes from Mandelbrot and Hudson (2004), Man-
delbrot (1987, 2004a), Gleick (1987), Barcellos (1985), and davis (1984), as well as from 
a number of filmed interviews of Mandelbrot produced shortly before he died  —  espe-
cially Mandelbrot (1998, 2010).
 50  “This is for you . . .”: this story, including the quote, is told in Mandelbrot and 
Hudson (2004).
 50  “.  .  . linguist named George Kingsley Zipf .  .  .”: for more on Zipf, see Man-
delbrot’s biographical notes at the end of Mandelbrot (1982). for the most up-to-date 
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take on the mathematics of Zipf ’s law, see Saichev et al. (2010)  —  a book coauthored by 
didier Sornette, who is the subject of chapter 7 of this book.
 51  “. . . which he named ‘fractal geometry’ . . .”: for more on fractal geometry, see, 
for instance, falconer (2003).
 52  “. . . indeed, in a speech he gave . . .”: this is Mandelbrot (2004a).
 53  “. . . of the more than 3 million Jews who lived in Poland . . .”: Background mate-
rial on World War II and the Holocaust in particular is from dwork and van Pelt (2002), 
fischel (1998), rossel (1992), and Yahil (1987).
 54  “How long is Britain’s coastline?”: this question is taken up in Mandelbrot 
(1967).
 55  “.  .  . a coastline doesn’t have a length .  .  .”: the more precise version of this 
claim is that a coastline should be understood to have non-integer Hausdorff dimension, 
which means that the correct “measure” of a coastline does not behave like a length.
 55  “It was one of his first attempts .  .  .”: Mandelbrot coined the term fractal in 
Mandelbrot (1975), which was translated into english as Mandelbrot (1977). But Man-
delbrot (1967) is one of the first places where he describes geometrical objects with non-
integer Hausdorff dimension exhibiting self-similarity.
 56  “. . . but anti-Semitism in the south was less virulent . . .”: While the compara-
tive claim is true, it should not be taken to mean that anti-Semitism was not rampant in 
vichy france. for more on vichy france during World War II, including french anti-
Semitism during the war, see Paxton (1972), Marrus and Paxton (1995), and Poznanski 
(2001).
 57  “. . . except to say that . . .”: these quotes come from the interview that Man-
delbrot did for Web of Stories (Mandelbrot 1998).
 58  “In Thomas Pynchon’s novel Gravity’s rainbow . . .”: this is Pynchon (1973).
 59  “The normal distribution shows up . . .”: Indeed, an important result of math-
ematical statistics, the central limit theorem, states that if you can model a random vari-
able as the sum of a sufficiently large number of independent and identically distributed 
random variables, where the distribution of the random variables in the sum has finite 
mean (average) and variance (volatility), then the random variable must be normally 
distributed, even if the variables in the sum are not normally distributed. this means 
that normal distributions appear all over the place. As we shall see, however, Mandelbrot 
argued that for financial markets, one of the assumptions of the central limit theorem 
fails: he argues that the distributions of market returns do not have finite variance. for 
more on the central limit theorem, see Billingsley (1995), casella and Berger (2002), and 
forbes et al. (2011). for more on Mandelbrot’s claims, see Mandelbrot (1997) and Man-
delbrot and Hudson (2004).
 59  “.  .  . the law of large numbers for probability distributions .  .  .”: It is actually 
more general than the other version of the law of large numbers, which governs how 
probabilities for simple games like coin flips relate to frequency. the law of large num-
bers for probability distributions can be used to prove the other version, as can be seen 
by thinking about the coin-tossing example.
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 59  “Not all probability distributions satisfy the law of large numbers . . .”: the more 
precise version of this claim is that not all distributions have finite mean  —  and indeed, 
cauchy distributions do not have finite mean. for more on cauchy distributions and the 
law of large numbers, see casella and Berger (2002), Billingsley (1995), and forbes et al. 
(2011).
 61  “But then ‘a storm’ would come through . . .”: Mandelbrot describes this aspect 
of his wartime experience in Mandelbrot (1998).
 62  “This is a general property of fractals .  .  .”: there are many connections be-
tween fractals and fat-tailed distributions. that certain features of fractals exhibit fat 
tails is one such connection; another is that (some) fat-tailed distributions themselves 
exhibit self-similarity, in the form of power-law scaling in their tails. Mandelbrot was a 
central figure in identifying and exploring these relationships. See Mandelbrot (1997).
 63  “Known as the Butcher of Lyon . . .”: for more on Barbie, see Bower (1984) and 
McKale (2012).
 65  “. . . ‘there was no great distinction . . .’”: this quote is from Mandelbrot (1998).
 66  “. . . and economist named Vilfredo Pareto”: the definitive collection on Pareto 
and his influence is the three-volume Wood and Mcclure (1999); see also cirillo (1979).
 68  “.  .  . it appeared that there was no ‘average’ rate of return”: In other words, 
it seemed that neither mean nor variance was defined for the distributions of cotton 
prices. As described below, Mandelbrot would later argue that the distributions of rates 
of return for financial markets do have finite means, but not variances. However, it can 
often be difficult to calculate the mean for a Lévy-stable distribution  —  in cases where 
variance is undefined, the average value calculated from any finite data set takes a long 
time to converge to the mean  —  which accounts for why Mandelbrot and Houthakker 
originally believed that the mean did not exist.
 68  “. . . discovered by one of his professors in Paris, Paul Lévy”: Mandelbrot offers 
some biographical background on Lévy in Mandelbrot (1982) and describes his interac-
tions with him in Mandelbrot and Hudson (2004).
 69  “.  .  . a class of probability distribution now called Lévy-stable distributions”: 
they are also called α-stable distributions. throughout the text (and in Mandelbrot’s 
popular writing), “wildness” is code for “α < 2.” for a Lévy-stable distribution with 1 < 
α < 2, the mean is defined, but the variance is not; if α ≤ 1, neither mean nor variance is 
defined. notably, the central limit theorem fails for Lévy-stable distributions, or rather, 
the following more general theorem holds: a random variable that can be modeled as a 
sum of sufficiently many independent and identically Lévy-stable-distributed variables 
must also be Lévy-stable distributed. for more on the mathematics of Lévy-stable dis-
tributions, see Mantegna and Stanley (2000) and Zolotarev (1986).
 70  “. . . early enough that Paul Cootner . . .”: See Mandelbrot (1964) and cootner 
(1964).
 71  “Cootner made the argument . . .”: the passage is quoted in Mandelbrot and 
Hudson (2004, p. xxiii).
 71  “.  .  . most notably, Nassim Taleb .  .  .”: See taleb (2004, 2007a). Mandelbrot 
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makes related arguments in Mandelbrot and Hudson (2004). for a more moderate ver-
sion of taleb’s argument  —  one that is sympathetic with the central arguments of this 
book, though perhaps not regarding the present point on the direction history took in 
1962  —  see taleb (2007b).
 72  “On a typical day, there aren’t going to be any extreme events . . .”: While true, 
this remark obscures some important points, often emphasized by Mandelbrot. for one, 
the statistical tools that one uses in the context of normal and log-normal distributions 
often do not make any sense  —  and certainly do not work  —  in the context of Lévy-
stable-distributed variables. for this reason, assuming normal or log-normal distribu-
tions can lead to extremely misleading results and, moreover, produce a false sense of 
confidence regarding the likelihood of certain kinds of extreme events. for another, de-
spite the fact that extreme events happen infrequently on both models, in Mandelbrot’s 
models of financial markets, they happen often enough that it is the extreme events that 
dominate market behavior in the long run. And so, even if there are similarities in how 
the models predict markets on a typical day, there is a significant difference in how one 
should view the importance of a “typical day” for the long-term behavior of markets.
 73  “It is also too simple to say that Mandelbrot was ignored . . .”: for instance, see 
fama (1964).
 73  “Today, the best evidence indicates .  .  .”: See, for instance, cont (2001) and 
references therein; this point was also emphasized in conversation by didier Sornette, 
whose work is the subject of chapter 7.
 74  “. . . there is disagreement about how to interpret the data”: In particular, it can 
be extremely difficult to tell whether empirical data are governed by distributions that 
are Lévy-stable and distributions that are fat-tailed but not Lévy-stable, since the differ-
ences often turn on the frequency of extreme events that occur very infrequently. See, 
for instance, Weron (2001).

4. Beating the dealer

 76  “The year is 1961”: I have taken some liberties with this opening story (des 
Moines; whiskey sours), but the basics are correct; it is based on an autobiographical 
essay (thorp 1998). More generally, the biographical material on thorp is from that 
essay, as well as thorp (1966, 2004), Poundstone (2005), Patterson (2010), and Schwager 
(2012). In addition, I interviewed thorp, and he was kind enough to read and comment 
on an earlier draft of this chapter.
 78  “.  .  . the 1973 book A random Walk down Wall Street .  .  .”: this is Malkiel 
(1973).
 80  “. . . about $850 in 2012 dollars . . .”: this calculation is based on the Bureau of 
Labor Statistics’ online inflation calculator at http://www.bls.gov/data/inflation_calcula-
tor.htm.
 81  “.  .  . the pioneering mathematician profiled by Sylvia Nasar .  .  .”: See nasar 
(1998).
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 82  for more on Shannon, see Kahn (1967), Poundstone (2005), Gleick (2011), 
and the two biographies in Wyner and Sloane (1993). An excellent modern introduction 
to information theory is Gray (2011); for Shannon’s contributions specifically, see Wyner 
and Sloane (1993) and Shannon and Weaver (1949).
 85  “. . . as Shannon’s secretary would later inform Thorp . . .”: this quote is from 
thorp (1998).
 86  “.  .  . a colleague passed along a recent academic article .  .  .”: the article was 
Baldwin et al. (1956).
 86  “Cervantes . . . wrote stories in which his characters became proficient . . .”: See 
“rinconete and cortadillo” in cervantes (1881).
 88  “. . . and then offered to submit Thorp’s paper . . .”: the paper was accepted and 
published as thorp (1961).
 89  “His name was Manny Kimmel”: Kimmel’s life, including the story of how 
his parking lot business was transformed into the time Warner empire, is described in 
Poundstone (2005) and, especially, Bruck (1994). the back story told here is based on 
those sources; the story of Kimmel’s trip to vegas with thorp is based on thorp (1966).
 91  “. . . in a book, Beat the dealer . . .”: See thorp (1966).
 92  “. . . a paper written by one of Shannon’s colleagues . . .”: the paper was Kelly 
(1956). for more on the Kelly criterion, see thorp (2006), MacLean et al. (2011), and 
thorp (1984, Pt. 4).
 92  “Kelly was a pistol-loving, chain-smoking, party-going wild man . . .”: this ac-
count of Kelly is based on Poundstone (2005).
 93  “Imagine you’re in Las Vegas, betting on the Belmont Stakes . . .”: for the pur-
poses of illustration, I am intentionally ignoring federal laws on wire-based gambling 
that were in effect in the 1960s.
 94  “. . . you’re guaranteed to win one of them . . .”: Suppose you have $100 to start 
with, and you put $17 on epitaph and $83 on valentine. If valentine wins, you get back 
your original $83, plus 5/9 more, for a total of $129. But you also paid $17 for your (lost) 
bet on epitaph. So your total profit is $12. Meanwhile, if epitaph wins, you get your $17 
plus 7 times more, for a total of $136, less the $83 you bet on valentine (and lost). So in 
this case your profit is $53. In either case you win.
 96  “This would initialize the device .  .  .”: these details about the computer are 
based on thorp (1998).
 96  “. . . the calculations for that level of precision were far too complicated”: In fact, 
the calculations for where a ball will fall given just the standard roulette setup  —  a ball 
rolling around a rotating wheel  —  were not too complicated for the computer to solve. 
However, roulette wheels are designed with small bumps on the wheel that act as ran-
domizers, so that if the ball hits one of these bumps, it will bounce around and change its 
trajectory. the computer was not able to predict precisely how these randomizers would 
affect where the ball would land, thus introducing additional uncertainty.
 98  “. . . essays that featured papers by Bachelier, Osborne, and Mandelbrot”: Im-
portantly for the central argument of this book, thorp confirmed in an interview that 
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he read the paper by Mandelbrot included in the cootner volume, in addition to the 
papers by Bachelier and osborne. though he saw how the effects of fat tails could affect 
a model based on the log-normal distribution, he nonetheless decided to use osborne’s 
simpler model for returns in constructing his options pricing formula. He took tail ef-
fects into account by behaving cautiously in the applications of his pricing formula, that 
is, by remaining cognizant of the fact that it would fail under certain circumstances.
 102  “In 1967, he wrote a book . . .”: the book was thorp and Kassouf (1967).
 103  “And Princeton-Newport’s demise was particularly dramatic”: this story, that 
Princeton-newport was moving positions off its books to avoid tax losses, is based on 
the accounts in Poundstone (2005) and Stewart (1992), and in contemporary news sto-
ries such as eichenwald (1989a, b). In an interview, thorp emphasized another aspect 
of the allegations, which amounted to stock parking in the other direction: a trader at 
Milken’s firm, Bruce newberg, was using Princeton-newport to move positions off of 
his books to avoid federal reporting laws and drexel’s trading rules. regan, newberg, 
and the other defendants were initially found guilty of both varieties of charges, though 
the convictions were overturned on appeal and the defendants were cleared of wrongdo-
ing.
 104  “As the Wall Street Journal put it in 1974 . . .”: the article was Laing 
(1974).

5. Physics Hits the street

 105  “In February 1961, Fischer Black’s PhD advisor . . .”: this quote is from Meh-
rling (2005, p. 37). the biographical material on fischer Black comes mostly from the 
recent biography, Mehrling (2005), with some material from Black (1987, 1989), Merton 
and Scholes (1995), Lehmann (2005), derman (2004, 2011a), figlewski (1995), forfar 
(2007), Bernstein (2010), and Bernstein (1993), as well as from an interview with eman-
uel derman, who worked and collaborated with Black at Goldman Sachs.
 105  “Within a week, Black was in jail for participating in student riots . . .”: Strangely 
enough, the impetus for the riots was Harvard president nathan Pusey’s decision to 
print diplomas in english, rather than Latin. on one day of rioting, four thousand stu-
dents demonstrated; Harvard police dispersed them using tear gas and smoke bombs. 
the sixties had begun.
 105  “. . . remains the standard . . .”: Whether this position is just is an important 
question, but that the Black-Scholes model holds a privileged position in the first place 
seems clear. See Haug and taleb (2011).
 106  “.  .  . the American Financial Association awards the Fischer Black 
Prize . . .”: the quote is from the AfA’s website’s description of the fischer Black Prize. 
See http://www.afajof.org/association/fischerblack.asp.
 110  “. . . now known as the Capital Asset Pricing Model (CAPM)”: treynor (1961) 
was not the only person to come up with the cAPM, though it is now widely recognized 
that he was the first. others with claims to have developed the cAPM include William 
Sharpe (1964), who won the nobel Prize for his contribution to asset pricing in 1990; 
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and John Lintner (1965). See, for instance, french (2003) for more on the provenance of 
the cAPM; see also Bernstein (1993).
 111  “‘Equilibrium was the concept that attracted me . . .’”: this quote is from Black 
(1987, p. xxi).
 111  “These states are called equilibrium states . . .” that the concepts of equilibrium 
in physics and economics are so similar traces back to Samuelson’s Gibbsian heritage.
 111  “. .  . an ‘interesting fellow,’ in Jensen’s estimation”: the quote is from Merton 
and Scholes (1995, p. 121).
 113  “Black’s strategy of building a risk-free asset . . .”: It seems that there are several 
things that go by the name “dynamic hedging,” and indeed, any strategy that involves 
regularly changing one’s hedge deserves the name. throughout the text, however, I will 
mean something very specific: a strategy by which one constantly updates the propor-
tions of stocks and options in one’s portfolio so that the portfolio as a whole is risk-free.
 114  “. . . successfully urged the Journal of Political economy to reconsider . . .”: the 
article was published as Black and Scholes (1973). See also Merton (1973) and Black and 
Scholes (1972, 1974). for more on the Black-Scholes formula and its generalizations and 
extensions, see Hull (2011) and cox and rubinstein (1985).
 115  “The head of that committee was James Lorie . . .”: for more on the history of 
the cBoe, see Markham (2002) and MacKenzie (2006).
 115  “On the first day of trading . . .”: these numbers are from Markham (2002, vol. 
3, p. 52).
 115  “But volume grew at an astonishing rate . . .”: these numbers are from Ans-
bacher (2000, p. xii).
 116  “In January 1977, the European Options Exchange was established .  .  .”: for 
more on options markets in europe, see Michie (1999).
 116  “. . . Friedman wrote him a letter . . .”: this is from Milton friedman’s foreword 
to Melamed (1993).
 116  “Bretton Woods, named for the town in New Hampshire . . .”: for more on the 
Bretton Woods system, see Markham (2002) and MacKenzie (2006), as well as eichen-
green (2008) and Melamed (1993).
 117  “. . . Leo Melamed, the chairman of the Chicago Mercantile Exchange . . .”: for 
more on the history of the cMe and the IMM, see Melamed (1993).
 118  “What does the IMM have to do with Black and Scholes . . .”: I am grateful to 
John conheeney, former chief executive of Merrill Lynch futures and former board 
member of both the chicago Board of trade and the chicago Mercantile exchange, for 
pointing out the relationship between the decay of Bretton Woods and the rise of deriva-
tives trading.
 119  “The distinction may seem inconsequential . . .”: I am grateful to emanuel der-
man for pointing out to me how consequential the differences are, from the perspec-
tive of practicing bankers. See, however, derman and taleb (2005) and Haug and taleb 
(2011).
 120  “This led him to a new theory of macroeconomics . . .”: General equilibrium has 
its roots in Samuelson (1947), and in his Gibbsian heritage. Black’s contributions to the 
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idea were original, however. See Black (1987) for a collection of essays on this topic, and 
Black (2010) for his later views on the subject.
 121  “But after Sputnik was launched . . .”: for more on the effects of Sputnik on 
U.S. science, see Wang (2008), cadbury (2006), and collins (1999). the data presented 
here on physics Phds are from the American Institute of Physics Statistical research 
center, at http://www.aip.org/statistics/. the data on the nASA budget over time are 
from the office of Management and Budget, as reported by rogers (2010).
 122  “Emanuel Derman was a South African physicist who experienced . . .”: Mate-
rial on derman is from derman (2004, 2011b) and from an interview I conducted with 
him.
 123  “Beginning with the Carter administration . . .”: for more on volcker’s war on 
inflation, see Markham (2002).
 123  “Sherman McCoy . . . was an eighties-era bond trader . . .”: See Wolf (1987).
 124  “. . . the Black-Scholes model won’t get options prices right”: to his credit, Black 
understood quite clearly that his model had shortcomings, and that it was at best a first 
approximation. See, for instance, Black (1992).
 125  “Blame for the crash fell to a novel financial product . . .”: for more on portfolio 
insurance, see (for instance) Bernstein (1993). See also Markham (2002).
 125  “Markets themselves seemed to change in the wake of the crash”: See MacKenzie 
(2006).
 126  “The smile appeared suddenly and presented a major mystery .  .  .”: notably, 
clay Struve, whom I discuss below, indicated that he and his coworkers were aware of 
the volatility smile even before the crash of 1987  —  that is, it didn’t appear so suddenly 
after all, if you knew to look for it!
 126  “.  .  . Emanuel Derman came up with a way of modifying the Black-Scholes 
model . . .”: See derman and Kani (1994).
 126  “There’s an interesting, and rarely told, twist to the story . . .”: this story is based 
on an interview I performed with clay Struve, as well as a published interview with Mi-
chael Greenbaum (Jung 2007), and cone (1999). Greenbaum mentions that o’connor 
was using jump diffusion models in the late 1970s; Struve confirmed it. cone (1999), 
meanwhile, described how Struve saved o’connor in october 1987.
 127  “Models have failed in other market disasters as well . . .”: for more on Long-
term capital Management, see Lowenstein (2000).

6. the Prediction company

 130  “When the Santa Fe Trail .  .  .”: for more on the Santa fe trail, see duffus 
(1972).
 130  “A century and a half later, two men . . .”: the narrative history of the founding 
of the Prediction company is from Bass (1999). Additional biographical details con-
cerning the founders of the Prediction company come from Bass (1985, 1999), Gleick 
(1987), Kelly (1994a, b), and Kaplan (2002), as well as interviews and e-mail exchanges 
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with doyne farmer and others knowledgeable about the early history of the company.
 131  “In Packard’s words . . .”: the expression “the edge of chaos” comes from Pack-
ard (1988).
 132  “As head of the Manhattan Project . . .”: for more on frank oppenheimer, see 
cole (2009). for more on J. robert oppenheimer, see Bird and Sherwin (2005), conant 
(2005), and Pais (2006), as well as the references given above on the Manhattan Project: 
Baggott (2009), rhodes (1995), Jones (1985), and Groves (1962).
 132  “. . . the Washington times-Herald reported . . .”: this was in the July 12, 1947, 
issue of the newspaper.
 133  “. . . a young graduate student named Tom Ingerson”: the story of Ingerson, 
oppenheimer, farmer, and Packard is from Bass (1985, 1999).
 133  “Jobs at the top universities were filled . . .”: for an example of the kind of rec-
ommendation I have in mind, see Wheeler (2011). this letter is the origin of the quote 
“best men” in the next sentence.
 134  “. . . Silver City was a paradigm Western mining town”: this background on 
Silver city is from Wallis (2007).
 136  “. . . first developed by a man named Edward Lorenz”: the biographical and 
historical details concerning Lorenz and the history of chaos theory are from Gleick 
(1987) and Lorenz (1993).
 138  “. . . the work of two physicists named James Yorke and Tien-Yien Li . . .”: the 
article is Li and Yorke (1975).
 139  “. . . the so-called butterfly effect . . .”: the paper is Lorenz (2000). Lorenz never 
used the metaphor of a butterfly flapping its wings, though he sometimes used a similar 
metaphor involving a seagull.
 139  “.  .  . Farmer through reading A. H. Morehead .  .  .”: farmer read Morehead 
(1967); Packard read thorp (1966).
 143  “.  .  . where the ball lands is sensitive to the initial conditions .  .  .”: Although 
there is some controversy concerning just what should count as a truly chaotic system, 
virtually everyone would agree that roulette is not chaotic. the reason is that the ball 
and wheel always come to rest in a small number of possible configurations, and so there 
is a strong sense in which all initial conditions lead to a small number of possible final 
states. But there is a precise mathematical sense in which roulette is “almost” chaotic, 
since if you ignore loss of energy from things like friction, the system becomes chaotic. 
for more on what it means for a system to be chaotic, see, for instance, Strogatz (1994) 
or Guggenheimer and Holmes (1983).
 143  “.  .  . the Dynamical Systems Collective and the Chaos Cabal”: In fact, they 
published papers with the dynamical Systems collective as their “official” affiliation: for 
instance, see Packard et al. (1980).
 144  “. . . these attractors have a highly intricate fractal structure”: In addi-
tion to Strogatz (1994) and Guggenheimer and Holmes (1983), see Mandelbrot (2004b).
 144  “The Collective’s most important paper . . .”: this is “Geometry from 
a time Series” (Packard et al. 1980).



244 • t h e  p h y s i c s  o f  wa l l  s t r e e t

 146  “The Santa Fe Institute hosted its first conference on economics . . .”: 
the proceedings of these conferences were published as Anderson et al. (1988), Arthur 
et al. (1997), and Blume (2006).
 148  “Things got even better after the new York times . . .”: the article was Broad 
(1992).
 149  “. . . this is how their enterprise is usually characterized . . .”: one cer-
tainly gets this impression from Bass (1999); likewise, Broad (1992) writes that farmer 
and Packard are “private entrepreneurs using world-class skills in chaos theory to pre-
dict the rise and fall of stocks and bonds.”
 149  “Farmer and Packard didn’t use chaos theory .  .  .”: this section in 
particular is based on an interview with farmer. the closest thing from farmer’s and 
Packard’s days as physicists that was helpful in their early days with the Prediction com-
pany was the work in farmer and Sidorowich (1987), where they present a method for 
making short-term predictions based on a particular algorithmic approximation.
 149  “One strategy they used was something called statistical arbitrage 
. . .”: for more on the history of statistical arbitrage, see Bookstaber (2007). ed thorp 
also played a significant role in the early development of the idea; for more on his con-
tribution, see thorp (2004).
 150  “. . . a variety of computer programs known as genetic algorithms”: for more on 
genetic algorithms, see, for instance, Mitchell (1998). for Packard’s early contributions, 
see Packard (1988, 1990).
 154  “. . . over the firm’s first fifteen years . . .”: More specifically, this person told me 
that the company had a Sharpe ratio of 3.

7. tyranny of the dragon King

 159  “Didier Sornette looked at the data again”: the opening story, which plays 
out throughout the chapter, is a dramatization, but the basic details are correct. In late 
summer 1997, Sornette observed a pattern in U.S. financial data that he had previously 
argued could be used to predict financial crashes; he contacted his colleagues olivier 
Ledoit and Anders Johansen and proceeded as described here. the story is told briefly, 
for instance, in chapman (1998) and alluded to in Sornette (2003); further details are 
from an interview and numerous e-mail exchanges with Sornette. More generally, bio-
graphical material on Sornette is based on this interview and on Sornette’s story of how 
he became interested in finance in Sornette (2003). Sornette generously read an earlier 
draft of this chapter and offered helpful comments to improve its clarity and accuracy.
 161  “Imagine inflating a balloon”: Sornette offers a very clear account of how criti-
cal phenomena may be used to understand market crashes, including an explanation of 
the mechanisms that lead to self-organization in markets, in Sornette (2003). for more 
on Sornette’s work on critical ruptures, and the application of these ideas to other con-
texts, see also Sornette (2000).
 162  “He has also written four books .  .  .”: these are Sornette (2003), Sornette 
(2000), Malevergne and Sornette (2006), and Saichev et al. (2010).
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 164  “But by the mid-1960s, the leaders of several western European nations . . .”: the 
definitive history of the european Space Agency, from 1973 through 1987, is to be found 
in Krige et al. (2000).
 166  “This kind of conspiracy is sometimes called self-organization .  .  .”: 
Self-organization is an old idea, though its modern form originates in the work of 
the 1977 nobel laureate for chemistry, Ilya Prigogine (Glansdorff and Prigogine 1971; 
Prigogine and nicolis 1977). the idea described in the text is more specifically described 
as “self-organized criticality,” which is due to Bak et al. (1987); see also Bak (1996).
 167  “Together, they began to think about . . .”: Sauron’s thesis, Sauron (1990), in-
volved constructing a small (physical) model of the earth’s crust using sand, Silly Putty, 
and honey, and then using it to perform experiments on how the crust buckles when 
plates collide. Sauron and Sornette showed that these collisions exhibited a character-
istic fractal pattern. this work is described in davy et al. (1990), Sornette and Sornette 
(1990), Sornette et al. (1990a, b), and Sornette (2000). for more on the history of the 
study of tectonic plates, see oreskes and Le Grand (2003).
 168  “The ancient Roman historian Aelian . . .”: Aelian makes these remarks in On 
Animals, translated as Aelian (1959 [200 a.d.]).
 168  “An ancient Indian astrologer . . .”: See Bhat (1981).
 168  “. . . he and Sauron published a paper . . .”: this paper was Sornette and Sor-
nette (1996).
 169  “It was not the very first paper . . .”: the most important precursors 
to the Sornettes’ idea were vere-Jones (1977), Allegre et al. (1982), Smalley and turcotte 
(1985), and voight (1988).
 169  “The moment of inspiration came two years later . . .”: this moment 
occurred while Sornette was working for Aérospatiale. It was developed in conjunction 
with pressure tanks in a series of publications over the following years, beginning with 
Sornette and vanneste (1992), followed by Sornette et al. (1992), vanneste and Sornette 
(1992), and Sornette and vanneste (1994). the discovery of the log-periodic acoustic 
emissions before a critical rupture was first presented in detail in Anifrani (1995). this 
idea was then tested experimentally, and results were presented in Lamaignère et al. 
(1996, 1997) and Johansen and Sornette (2000).
 170  “. . . predict a critical earthquake . . .”: Sornette and collaborators first intro-
duced the idea of a critical earthquake in Sornette and Sammis (1995), building on ideas 
presented by Bufe and varnes (1993). the idea was then elaborated in Sammis et al. 
(1996), Saleur et al. (1996a, b), Johansen et al. (1996), and Huang et al. (1998). the idea 
was tested experimentally in Bowman et al. (1998).
 170  “On Monday, October 27, 1997 . . .”: these numbers are from the U.S. Securities 
and exchange commission (1998).
 171  “Sornette and Ledoit, however, made a 400% profit”: See Sornette (2003, p. 
250).
 171  “Historians now explain the worldwide crash .  .  .”: See, for instance, radelet 
and Sachs (2000).
 172  “Critical phenomena often have . . .”: See, for instance, Batterman (2002) and 
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references therein for a detailed account of the role of universality in the study of critical 
phenomena.
 173  “Sornette’s first foray into economics . . .”: the first paper with Bouchaud was 
Bouchaud and Sornette (1994).
 173  “. . . realized that Sornette’s earlier work . . .”: the first paper on this topic was 
Sornette (1996); it was greatly expanded the following year in Sornette and Johansen 
(1997).
 174  “. . . in 1841, Charles Mackay wrote a book . . .”: this is Mackay (1841).
 174  “Perhaps the most striking example . . .”: for more on tulip mania, see dash 
(1999) and Goldgar (2007); for another, more skeptical perspective, see thompson 
(2007).
 175  “That winter, a single bulb . . .”: these numbers are from dash (1999).
 176  “Since first predicting the October 1997 crash .  .  .”: See the description of his 
predictions in Sornette (2003); my reports on his more recent successes are from private 
communication.
 178  “. . . he calls them ‘dragon kings’”: See Sornette (2009).

8. A new Manhattan Project

 181  “Pia Malaney put her arms on the table . . .”: Again, this opening section is a 
dramatization, but the essential facts are correct. Malaney and Weinstein’s story has not 
been told before. the version presented here is told from their point of view  —  including 
their speculations about the motivations of some of the principal characters involved  —  
and is based primarily on numerous interviews with Weinstein, as well as an interview 
with Malaney and an interview with Lee Smolin. Malaney and Weinstein read an earlier 
draft of the chapter and offered helpful comments on tone and accuracy.
 183  “How much is money worth?”: for background on index numbers, see 
Mankiw (2012) and Krugman and Wells (2009). for more detailed discussions, see tur-
vey (2004), Barnett and chauvet (2010), Handa (2000), or Allen (1975).
 185  “In June 1995 the U.S. Senate appointed . . .”: See Boskin et al. (1996) for the 
final report, as well as Boskin et al. (1998). Histories of the Boskin commission can be 
found in Sheehan (2010), Baker (1998), Baker and Weisbrot (1999), and Gordon (2006). 
An account of how the Bureau of Labor Statistics responded to the Boskin report can be 
found in Greenlees (2006).
 185  “. . . soon-to-be-disgraced Senator Bob Packwood . . .”: Packwood resigned from 
the Senate on September 7, 1995, under a cloud of alleged sexual misconduct.
 186  “Hermann Weyl was offered the position of chair . . .”: for more on Weyl’s biog-
raphy and contributions to geometry, see Atiyah (2003) and Scholz (1994).
 186  “One of these was a prominent young physicist .  .  .”: for more on einstein’s 
biography, see Isaacson (2007), Galison (2003), and Pais (1982).
 187  “The basic idea underlying general relativity . . .”: for more on general relativ-
ity, see Misner et al. (1973) and Wald (1984). the best nontechnical introduction to the 
subject is Geroch (1981).
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 191  “Weyl called his new theory a gauge theory”: for more on the history of gauge 
theory, including Weyl’s early contributions, see o’raifeartaigh (1997).
 192  “. . . accelerated when Yang, in collaboration with Jim Simons . . .”: Simons and 
Yang describe their collaboration in Zimmerman (2009); see also the famous Wu-Yang 
dictionary (Wu and Yang 1975).
 192  “This framework was called the Standard Model . . .”: for more on the Stan-
dard Model, see Hoddeson et al. (1997) for the history and cottingham and Greenwood 
(2007) for the physics.
 193  “Afterward, she and Maskin met . . .”: the version of events described here is 
due to Weinstein and Malaney. I contacted Maskin to confirm the story, but he indicated 
that he did not remember the sequence of events clearly enough to comment.
 194  “Jorgenson replied by throwing her out of his office”: Again, this is Weinstein 
and Malaney’s account. they recall that Jorgenson’s criticism of Malaney’s thesis project 
was that (he claimed) she had merely found a new way to derive something called the 
divisia index. divisia indices (or divisia monetary aggregates) provide an alternative 
method of measuring economic variables like inflation. though these methods were 
already well known (but not widely used) when Malaney presented her ideas to Jorgen-
son, Malaney and Weinstein’s novel approach to deriving the divisia index had already 
yielded significant new results. for more on the divisia index, see divisia (1925), Barnett 
and chauvet (2010), and Handa (2000). In particular, see Barnett (2012), which argues 
that U.S. monetary policy is plagued by significant problems stemming from the use of 
inappropriate statistical measures, and in particular from not using divisia indices more 
widely. In other words, there is a political question, closely related to the question that 
the Boskin commission was set to work on, concerning the divisia index.
 194  “. . . a classic result in economics known as Coase’s theorem”: coase’s theorem is 
originally described in coase (1960). See also Krugman and Wells (2009).
 197  “To solve the index number problem . . .”: this proposal is described in detail 
in Malaney’s thesis (Malaney 1996) and (in somewhat modified form) in Smolin (2009). 
See also Illinski (2001), which takes a rather different approach to applying gauge theory 
in economics, as well as didier Sornette’s criticism of Illinski’s book (Sornette 1998).
 197  “One day, late in 2005, Lee Smolin . . .”: the story told in this section is based 
in part on an interview with Smolin.
 198  “. . . Smolin had published an article in the magazine Physics today . . .”: the 
article was Smolin (2005).
 198  “. . . a book Smolin was just finishing . . .”: this book was Smolin (2006).
 199  “He gave a talk on the way gauge-theoretic ideas . . .”: this talk, and Weinstein’s 
talks at the conferences described in the text, are available through Perimeter’s online 
archive. See Weinstein (2006, 2008, 2009).
 200  “Social Security . . . was first signed into law . . .”: for a history of the 
politics surrounding Social Security, see Beland (2005), Altman (2005), or Baker and 
Weisbrot (1999).
 201  “. . . until Daniel Patrick Moynihan and Bob Packwood . . . shared a moment of 
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inspiration . . .”: See Sheehan (2010), Moynihan (1996), and Katzmann (2008) for various 
perspectives on the origins of the Boskin commission.
 201  “According to notes written by Robert Gordon . . .”: the notes I am alluding to 
are Gordon (2002). Gordon also tells the story of the Boskin commission and its critics 
in Gordon (2006), though this narrative version does not include Moynihan’s role.
 202  “The Boskin Commission’s findings were criticized from all corners”: 
See especially Sheehan (2010), as well as triplett (2006) and Bosworth (1997).
 202  “Ultimately, the Boskin Commission’s recommendations were 
squashed . . .”: for an account of how the Bureau of Labor Statistics incorporated some 
of the Boskin commission’s recommendations, see Greenlees (2006). the nAS report 
was published as Schultze and Mackie (2002).
 203  “The plan was to use this conference . . .”: for a discussion of Wein-
stein’s idea, with comments by Weinstein, see Brown et al. (2008). See also Weinstein 
(2009).

1. epilogue: send Physics, Math, and Money!

 206  “. . . to pen the ‘Financial Modelers’ Manifesto’”: this is derman and 
Wilmott (2009).
 210  “In the words of sociologist Donald MacKenzie . . .”: I am alluding to 
the title of MacKenzie (2006), An Engine, Not a Camera. MacKenzie’s central point here 
is that financial markets are shaped by the models that we use to understand them. this 
strikes me as exactly right, and it presents a special difficulty for scientists and mathema-
ticians trying to study markets.
 212  “In a 1965 Supreme Court decision . . .”: this decision was Lamont v. Postmaster 
General; it can be found in Sepinuck and treuthart (1999, ch. 2). for more on Brennan’s 
ideas about expression, see the other opinions in that collection or Hopkins (1991).
 213  “. . . an argument from psychology and human behavior”: for a sample of this 
view, see Brooks (2010). It is closely related to arguments concerning behavioral eco-
nomics, as seen (for instance) in Ariely (2008), Akerlof (2009), or Shiller (2005). for 
more scholarly work on behavioral finance, one might start with thaler (1993, 2005). 
However, as should be clear in the text, I want to distinguish between behavioral eco-
nomics as a discipline  —  which has clearly made enormous progress in understanding 
the psychology and sociology of economic decision making  —  and a specific argument 
based on some results of behavioral economics to the effect that mathematical modeling 
in finance is impossible, or that, as Brooks puts it, economics should be “an art, not a 
science.” It is only the latter argument that I object to here; behavioral economics more 
generally, I think, plays an essential role in identifying how certain assumptions regard-
ing rational behavior are unrealistic and guides the way in the construction of future 
models that (one hopes) are able to account for the “predictably irrational” behaviors of 
real investors.
 214  “. . . has found its biggest champion in Nassim Taleb”: See in particular taleb 
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(2004, 2007a). But see also taleb (2007b), where (it seems to me) taleb is more moder-
ate.
 216  “. . . Warren Buffett, who has famously warned . . .”: Buffett appears to express 
these opinions regularly, but the specific quote about geeks bearing formulas is from 
Buffett (2008, p. 14).
 217  “. . . it’s not as though market crashes . . . are a new phenomenon . . .”: Indeed, 
financial crisis has plagued us for as long as we’ve had economies. for excellent histo-
ries of financial calamity, see reinhart and rogoff (2009) and Kindleberger and Aliber 
(2005).
 218  “. . . the SEC has charged Goldman Sachs . . .”: for more on the Sec accusa-
tions and the settlement reached with Goldman Sachs, see U.S. Securities and exchange 
commission (2010a, b).
 219  “. . . in Buffett’s words, ‘financial weapons of mass destruction’ . . .”: this quote 
is from Buffett (2002, p. 15).
 220  “. . . because in 1934 the U.S. government instituted the Federal De-
posit Insurance Corporation . . .”: for more on the history of the fdIc, and other changes 
in the financial regulation in the United States, see Markham (2002).
 220  “But what caused the quant crisis?”: there remain many views on 
what caused the financial crisis, including the quant crisis. for instance, see Shiller 
(2008), Krugman (2008), Zandi (2008), McLean and nocera (2010), or the financial 
crisis Inquiry commission (2011). the analysis presented here is heavily indebted to 
Gorton (2010).
 222  “First was Renaissance . . .”: this part of the story is from Patterson 
(2010).
 222  “The securitization procedure by which subprime mortgages . . .”: the 
model is presented in Li (2000). See also Salmon (2009).
 224  “. . . it seems poised for another collapse”: for a picture of the deep 
financial and economic problems lurking under the surface of the world’s economies, 
see rajan (2010).
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