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Preface

The last treatise on the theory of determinants, by T. Muir, revised and
enlarged by W.H. Metzler, was published by Dover Publications Inc. in
1960. It is an unabridged and corrected republication of the edition origi-
nally published by Longman, Green and Co. in 1933 and contains a preface
by Metzler dated 1928. The Table of Contents of this treatise is given in
Appendix 13.

A small number of other books devoted entirely to determinants have
been published in English, but they contain little if anything of importance
that was not known to Muir and Metzler. A few have appeared in German
and Japanese. In contrast, the shelves of every mathematics library groan
under the weight of books on linear algebra, some of which contain short
chapters on determinants but usually only on those aspects of the subject
which are applicable to the chapters on matrices. There appears to be tacit
agreement among authorities on linear algebra that determinant theory is
important only as a branch of matrix theory. In sections devoted entirely
to the establishment of a determinantal relation, many authors define a
determinant by first defining a matrix M and then adding the words: “Let
det M be the determinant of the matrix M” as though determinants have
no separate existence. This belief has no basis in history. The origins of
determinants can be traced back to Leibniz (1646-1716) and their prop-
erties were developed by Vandermonde (1735-1796), Laplace (1749-1827),
Cauchy (1789-1857) and Jacobi (1804-1851) whereas matrices were not in-
troduced until the year of Cauchy’s death, by Cayley (1821-1895). In this
book, most determinants are defined directly.
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It may well be perfectly legitimate to regard determinant theory as a
branch of matrix theory, but it is such a large branch and has such large
and independent roots, like a branch of a banyan tree, that it is capable
of leading an independent life. Chemistry is a branch of physics, but it
is sufficiently extensive and profound to deserve its traditional role as an
independent subject. Similarly, the theory of determinants is sufficiently
extensive and profound to justify independent study and an independent
book.

This book contains a number of features which cannot be found in any
other book. Prominent among these are the extensive applications of scaled
cofactors and column vectors and the inclusion of a large number of rela-
tions containing derivatives. Older books give their readers the impression
that the theory of determinants is almost entirely algebraic in nature. If
the elements in an arbitrary determinant A are functions of a continuous
variable z, then A possesses a derivative with respect to . The formula for
this derivative has been known for generations, but its application to the
solution of nonlinear differential equations is a recent development.

The first five chapters are purely mathematical in nature and contain old
and new proofs of several old theorems together with a number of theorems,
identities, and conjectures which have not hitherto been published. Some
theorems, both old and new, have been given two independent proofs on
the assumption that the reader will find the methods as interesting and
important as the results.

Chapter 6 is devoted to the applications of determinants in mathemat-
ical physics and is a unique feature in a book for the simple reason that
these applications were almost unknown before 1970, only slowly became
known during the following few years, and did not become widely known
until about 1980. They naturally first appeared in journals on mathemat-
ical physics of which the most outstanding from the determinantal point
of view is the Journal of the Physical Society of Japan. A rapid scan of
Section 15A15 in the Index of Mathematical Reviews will reveal that most
pure mathematicians appear to be unaware of or uninterested in the out-
standing contributions to the theory and application of determinants made
in the course of research into problems in mathematical physics. These usu-
ally appear in Section 35Q of the Index. Pure mathematicians are strongly
recommended to make themselves acquainted with these applications, for
they will undoubtedly gain inspiration from them. They will find plenty
of scope for purely analytical research and may well be able to refine the
techniques employed by mathematical physicists, prove a number of con-
jectures, and advance the subject still further. Further comments on these
applications can be found in the introduction to Chapter 6.

There appears to be no general agreement on notation among writers on
determinants. We use the notion A,, = |a;;j|, and By, = |b;;|n, where i and
7 are row and column parameters, respectively. The suffix n denotes the
order of the determinant and is usually reserved for that purpose. Rejecter
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minors of A, are denoted by ML.(;L), etc., retainer minors are denoted by

Njj, etc., simple cofactors are denoted by Ag?), etc., and scaled cofactors
are denoted by A%, etc. The n may be omitted from any passage if all the
determinants which appear in it have the same order. The letter D, some-
times with a suffix x, ¢, etc., is reserved for use as a differential operator.
The letters h, i, j, k, m, p, q, r, and s are usually used as integer param-
eters. The letter [ is not used in order to avoid confusion with the unit
integer. Complex numbers appear in some sections and pose the problem
of conflicting priorities. The notation w? = —1 has been adopted since the
letters ¢ and j are indispensable as row and column parameters, respec-
tively, in passages where a large number of such parameters are required.
Matrices are seldom required, but where they are indispensable, they ap-
pear in boldface symbols such as A and B with the simple convention
A =det A, B = det B, etc. The boldface symbols R and C, with suffixes,
are reserved for use as row and column vectors, respectively. Determinants,
their elements, their rejecter and retainer minors, their simple and scaled
cofactors, their row and column vectors, and their derivatives have all been
expressed in a notation which we believe is simple and clear and we wish
to see this notation adopted universally.

The Appendix consists mainly of nondeterminantal relations which have
been removed from the main text to allow the analysis to proceed without
interruption.

The Bibliography contains references not only to all the authors men-
tioned in the text but also to many other contributors to the theory of
determinants and related subjects. The authors have been arranged in al-
phabetical order and reference to Mathematical Reviews, Zentralblatt fiir
Mathematik, and Physics Abstracts have been included to enable the reader
who has no easy access to journals and books to obtain more details of their
contents than is suggested by their brief titles.

The true title of this book is The Analytic Theory of Determinants with
Applications to the Solutions of Certain Nonlinear FEquations of Mathe-
matical Physics, which satisfies the requirements of accuracy but lacks the
virtue of brevity. Chapter 1 begins with a brief note on Grassmann algebra
and then proceeds to define a determinant by means of a Grassmann iden-
tity. Later, the Laplace expansion and a few other relations are established
by Grassmann methods. However, for those readers who find this form of
algebra too abstract for their tastes or training, classical proofs are also
given. Most of the contents of this book can be described as complicated
applications of classical algebra and differentiation.

In a book containing so many symbols, misprints are inevitable, but we
hope they are obvious and will not obstruct our readers’ progress for long.
All reports of errors will be warmly appreciated.

We are indebted to our colleague, Dr. Barry Martin, for general advice
on computers and for invaluable assistance in algebraic computing with the



viii Preface

Maple system on a Macintosh computer, especially in the expansion and
factorization of determinants. We are also indebted by Lynn Burton for
the most excellent construction and typing of a complicated manuscript in
Microsoft Word programming language Formula on a Macintosh computer
in camera-ready form.

Birmingham, U.K. P.R. VEIN
P. DALE
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1

Determinants, First Minors, and
Cofactors

1.1 Grassmann Exterior Algebra

Let V be a finite-dimensional vector space over a field F. Then, it is known
that for each non-negative integer m, it is possible to construct a vector
space A™V. In particular, A°V = F, AV =V, and for m > 2, each vector
in A™V is a linear combination, with coefficients in F', of the products of
m vectors from V.

Ifx; € V,1 < i < m, we shall denote their vector product by x1xs - - - X,
Each such vector product satisfies the following identities:

i x1xg - Xp—1(axX + by)Xpq1 - Xp = aX1Xg +* Xpo1XXpp 1 - Xpy
+bx1Xg - Xp_1Y * - Xpy1 - - X, where a,b € F and x,y € V.

ii. If any two of the x’s in the product x1x5 - - - X,, are interchanged, then
the product changes sign, which implies that the product is zero if two
or more of the x’s are equal.

1.2 Determinants

Let dimV = n and let e, es,...,e, be a set of base vectors for V. Then,
if x; € V,1<1i<n, we can write

n

X; = Z a;xer, a;x € F. (1.2.1)
k=1
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It follows from (i) and (ii) that

n n
X1Xo Xy = E E A1k, A2ky * * * Ak, €k,1€ky * " " €L, - (1.2.2)
ki=1 kn=1

When two or more of the k’s are equal, ey, ey, - - - €k, = 0. When the k’s are
distinct, the product ey, e, - - - €k, can be transformed into te ez - - - e, by
interchanging the dummy variables k, in a suitable manner. The sign of
each term is unique and is given by the formula

(n! terms)
X1X2 " Xp = Z OnQiky Q2ky * * * Onk, | €1€2 - €y, (1.2.3)
where
_ 1 2 3 4 -+ (n—=1) n
Op = SgN { T A } (1.2.4)

and where the sum extends over all n! permutations of the numbers k,.,
1 < r < n. Notes on permutation symbols and their signs are given in
Appendix A.2.

The coefficient of ejes---e, in (1.2.3) contains all n? elements a;j,
1 < 4,5 < n, which can be displayed in a square array. The coefficient
is called a determinant of order n.

Definition.
ay; a2 G1n (n! terms)
A, = S N v Z OnQik, Aoy - Ak, - (1.2.5)
ap1  QAp2 Unpn 1y,

The array can be abbreviated to |ai;|,. The corresponding matrix is
denoted by [ai;]n. Equation (1.2.3) now becomes

X1Xo Xy = |aij\ne1e2~-~en. (126)
. 1 2 n\ . .
Exercise. If | | . .| is a fixed permutation, show that
Ju oJ2 o Jn
n! terms j ] ]
P R
An = laijln = Z ssh <k1 ky - i > Qjiky Qs *** Qjky,
k1,..kn "
n! terms . . .
Jl ]2 DRI j
= D s <k1 ko o ka) ey j1 Ohajo " " Ve

ki,....kn
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1.3 First Minors and Cofactors

Referring to (1.2.1), put

Yi = Xi — Qij€;
= (aner + - +a;j-1€j-1) + (@i j+1€j41 + -+ ainen) (1.3.1)

n—1
=" djpel, (1.3.2)
k=1

where

e, =ey 1<k<j-1

=er11, j<k<n-1 (1.3.3)
al, = aik 1<k<j-1
= Q4 k+1, ] S k § n—1. (134)

Note that each af, is a function of j.
It follows from Identity (ii) that
yiyz:--¥yn =0 (1.3.5)
since each y, is a linear combination of (n — 1) vectors ey, so that each of
the (n — 1)™ terms in the expansion of the product on the left contains at
least two identical e’s. Referring to (1.3.1) and Identities (i) and (ii),
X1 Xi—1€5Xi+1 " Xn
= (V1 +a15€;)(y2 + agje;) - (yi-1 +aio15€)
€j(Yi+1 + ait1,5€5) -~ (¥n + anje;)
= ¥Y1 Yi-1€;Yi+1" " Yn (1.3.6)
= (=D)""(y1 - ¥i-1¥i+1 - Yn)ej.
From (1.3.2) it follows that

/

Y1 Yie1Yitl - Yn = Mij(eley e, ), (1.3.8)

where
_} : / / / / /
M'L] - o—nflalk‘l a2k2 e aifl,k}i_la’i+1,ki+1 T a”n,fl,kn_l (1'3'9)

and where the sum extends over the (n — 1)! permutations of the numbers

1,2,...,(n—1). Comparing M;; with A,, it is seen that M;; is the deter-

minant of order (n — 1) which is obtained from A,, by deleting row i and

column j, that is, the row and column which contain the element a;;. M;;

is therefore associated with a;; and is known as a first minor of A4,,.
Hence, referring to (1.3.3),

X1 Xi—1€5X41 0 Xp

= (=1)"""Myj(eles---e),_))e;
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= ()" My(e} €y (€ epy)ey

= ()" 'Myjer---ej1)(ejr1---en)e;
= ()™ Mjj(eres---ep). (1.3.10)

Now, e; can be regarded as a particular case of x; as defined in (1.2.1):

n
e; = E ;L €,
k=1
where
Al — 5jk~
Hence, replacing x; by e; in (1.2.3),
X1 Xi—1€jXi41 - Xp = Aij(eleg s en), (1311)
where
Aij = Zanalkla%Q crt ikt Ok,

where

air, =0 ki #j
-1 k=]

Referring to the definition of a determinant in (1.2.4), it is seen that A,; is
the determinant obtained from |a;;|,, by replacing row ¢ by the row

[0...010...0],

where the element 1 is in column j. A;; is known as the cofactor of the
element a;; in A,.
Comparing (1.3.10) and (1.3.11),

Ajj = (1) My, (1.3.12)
Minors and cofactors should be written Mi(f) and AE;) but the parameter

n can be omitted where there is no risk of confusion.
Returning to (1.2.1) and applying (1.3.11),

n
X1X2 " Xp = X100 X1 (E aikek> Xi+1" " Xn
k=1

n
= E aik(xl e Xi—1€pXi41 0 Xn)
k=1

= lz aikAik

k=1

ejes - e,. (1.3.13)
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Comparing this result with (1.2.5),
|aij|n = ZaikAik (1.3.14)
k=1

which is the expansion of |a;;|, by elements from row ¢ and their cofactors.
From (1.3.1) and noting (1.3.5),
X1X2+Xn = (y1 + a15€;)(y2 + azje;) - (yn + anje;)
= 01€;Y2Y3 " Yn T G2;Y1€;¥Y3 " ¥n
Tt anjy1y2 Yn—1€j5

= (a1;A15 + agjAgj + -+ anjAnj)er€2-- €,

n
E aijkj

k=1

ejey---e,. (1.3.15)

Comparing this relation with (1.2.5),
|aij|n = Zaijkj (1316)
k=1

which is the expansion of |a;;|,, by elements from column j and their
cofactors.

1.4 The Product of Two Determinants — 1

Put
n
X; = E AikYk,
k=1
n
Yi = E brje;.
J=1
Then,
X1X2 Xp = |aij|ny1y2 T Yn,
Yiy2: - ¥Yn = |bij|nele2 cr€p.
Hence,
X1X9 " Xp = |aij|n|bij|neleg---en. (141)
But,

n n
X; = E ik E bije;
k=1 =1
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n
= ey,
=1

where
n
Cij = Zaikbkj- (1.4.2)
k=1

Hence,

X1Xg "+ Xn = |cij|n€1€2 " - €5 (1.4.3)
Comparing (1.4.1) and (1.4.3),

|aijlnlbijln = lcijln- (1.4.4)

Another proof of (1.4.4) is given in Section 3.3.5 by applying the Laplace
expansion in reverse.

The Laplace expansion formula is proved by both a Grassmann and a
classical method in Chapter 3 after the definitions of second and higher
rejector and retainor minors and cofactors.
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A Summary of Basic Determinant
Theory

2.1 Introduction

This chapter consists entirely of a summary of basic determinant theory, a
prerequisite for the understanding of later chapters. It is assumed that the
reader is familiar with these relations, although not necessarily with the
notation used to describe them, and few proofs are given. If further proofs
are required, they can be found in numerous undergraduate textbooks.

Several of the relations, including Cramer’s formula and the formula for
the derivative of a determinant, are expressed in terms of column vec-
tors, a notation which is invaluable in the description of several analytical
processes.

2.2 Row and Column Vectors

Let row 4 (the ith row) and column j (the jth column) of the determinant
A, =la;j|n be denoted by the boldface symbols R; and C; respectively:

R; = [ai1 aiz a3 ain),
C; = [arj azj as; - an;] (2.2.1)

where T' denotes the transpose. We may now write
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R,
R»
A, =|Rs|=1]C; C, C3---Cy. (2.2.2)
R,
The column vector notation is clearly more economical in space and will
be used exclusively in this and later chapters. However, many properties
of particular determinants can be proved by performing a sequence of row
and column operations and in these applications, the symbols R; and C;
appear with equal frequency.

If every element in C; is multiplied by the scalar k, the resulting vector
is denoted by kC;:
ij = [kalj k‘agj kagj tee k‘an]‘}T

If £ = 0, this vector is said to be zero or null and is denoted by the boldface
symbol O.

If a;; is a function of x, then the derivative of C; with respect to x is
denoted by C} and is given by the formula

/]T

- ! ! A .
Cj = [a); ay; as; - ap,;

J

2.3 Elementary Formulas

2.3.1 Basic Properties
The arbitrary determinant
A =laijl, =|C1 Cy C3--- Cy,

where the suffix n has been omitted from A,, has the properties listed
below. Any property stated for columns can be modified to apply to rows.

a. The value of a determinant is unaltered by transposing the elements
across the principal diagonal. In symbols,

|ajiln = |aij|n-

b. The value of a determinant is unaltered by transposing the elements
across the secondary diagonal. In symbols

|an+1—j,n+1—i\n = |aij|n-

c. If any two columns of A are interchanged and the resulting determinant
is denoted by B, then B = —A.
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Example.
|01 Cs3 Cy Cg| = —|01 Cy Cy Cg| = |01 C,; C; C4|.
Applying this property repeatedly,
i.
’Cm Cpni1---C, C; Cy- "Cmfl‘ = (_1)(m—1)(n—1)A’
l1<m<n.

The columns in the determinant on the left are a cyclic permutation
of those in A.
ii. |Cn Cn—l Cn—2 C2 Cl| - n(n 1)/2A

. Any determinant which contains two or more identical columns is zero.
IC1---Cj~-~Cj--~Cn\ =0.

. If every element in any one column of A is multiplied by a scalar k and
the resulting determinant is denoted by B, then B = kKA.

B=|Cy Cy---(kCj) - Cy| = kA.
Applying this property repeatedly,
|kaij|n = [(kC1) (kC2) (kCs)--- (kC,)|
= k”|aij |n
This formula contrasts with the corresponding matrix formula, namely
[kaijln = klaij]n.
Other formulas of a similar nature include the following:
A (=D agjln = laig|n,
L |iaij|n = [jailn = nllaij|n,
L (2" gl = 2" 0 ag ).

. Any determinant in which one column is a scalar multiple of another
column is zero.

|C1-+-Cj -+ (kCy)--- Cyp| = 0.

. If any one column of a determinant consists of a sum of m subcolumns,
then the determinant can be expressed as the sum of m determinants,
each of which contains one of the subcolumns.

. (chs> .. C, =Z|C1"'st"'cn|.
s=1 s=1

Applying this property repeatedly,
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m
E |(31k1 -+ Cj, -+ Cr, -
E1=1 ko=1 kn=1

The function on the right is the sum of m™ determinants. This identity
can be expressed in the form

m

o)
2 a

h. Column Operations. The value of a determinant is unaltered by adding
to any one column a linear combination of all the other columns. Thus,
if

m

n k1,k2,....kn=1

then
|C1 Cg~~~C;~~~Cn|:|Cl CQ~~~Cj~~Cn|.

C; should be regarded as a new column j and will not be confused
with the derivative of C;. The process of replacing C; by C; is called a
column operation and is extensively applied to transform and evaluate
determinants. Row and column operations are of particular importance
in reducing the order of a determinant.

Exercise. If the determinant A, = |a;;|, is rotated through 90° in the
clockwise direction so that a;; is displaced to the position (1,n), ay, is dis-
placed to the position (n,n), etc., and the resulting determinant is denoted
by By, = |bij|n, prove that

bij = @jn—i

B, = (_1)n(n—1)/2An.

2.3.2  Matriz-Type Products Related to Row and Column
Operations

The row operations

3
R;=> uyRj, wi=1 1<i<3; u;=0, i>j (2.3.1)
j=i
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namely

R| =R; +ui2Ro + uisRs

RIQ = R2 + ’LL23R3
/3 = R3a
can be expressed in the form
R/ 1 up wz| |Ra
R, | = 1wz | |Re
R} 1 R3

Denote the upper triangular matrix by Us. These operations, when per-
formed in the given order on an arbitrary determinant As = |a;;|s, have
the same effect as premultiplication of Az by the unit determinant Us. In
each case, the result is

a11 + u12a21 + u13031  a12 + U12G22 + U13A32 @13 + U12a23 + U13G33

Az = ao1 + u23asz; 22 + U23a32 ao3 + ug3ass | .
a31 a32 as3s3
(2.3.2)

Similarly, the column operations
3
C, = Zuijcja u; =1, 1<i<3; wu; =0, >}, (2.3.3)
j=i
when performed in the given order on Az, have the same effect as

postmultiplication of A3 by UJ. In each case, the result is

a1l + ui2a12 + U13013  a12 + U313 A13
Az = |a21 + u12a22 + u13a23 Q22 + U23a23 23 |. (2.34)

a31 + u12a32 + u13a33  as2 + U23A33 33

The row operations

R; = Zvinj’ v, =1 1<3<3; Vij = 0, <y, (235)
j=1
can be expressed in the form
R} 1 R,
]‘:{/2 = | v 1 R,
Rj5 v31 v3z2 1] | Rs

Denote the lower triangular matrix by V3. These operations, when per-
formed in reverse order on As, have the same effect as premultiplication of
A3 by the unit determinant V3.
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Similarly, the column operations
i
Ci=> v;Cj, vi=1, 1<i<3, v;=0, i>}, (2.3.6)
j=1

when performed on Az in reverse order, have the same effect as
postmultiplication of A3 by Vil

2.3.8 First Minors and Cofactors; Row and Column
Ezxpansions

To each element a;; in the determinant A = |a;;|,, there is associated a
subdeterminant of order (n — 1) which is obtained from A by deleting row
1 and column j. This subdeterminant is known as a first minor of A and
is denoted by M;;. The first cofactor A;; is then defined as a signed first
minor:

Ayj = (1) My, (2.3.7)

It is customary to omit the adjective first and to refer simply to minors and
cofactors and it is convenient to regard M;; and A;; as quantities which
belong to a;; in order to give meaning to the phrase “an element and its
cofactor.”

The expansion of A by elements from row ¢ and their cofactors is

n
A=) ajAj, 1<i<n (2.3.8)
j=1
The expansion of A by elements from column j and their cofactors is
obtained by summing over i instead of j:

A=) "ajAy, 1<j<n (2.3.9)
i=1
Since A;; belongs to but is independent of a;;, an alternative definition of
Aij is
0A

A = . 2.3.1
J aaij ( 3 0)

Partial derivatives of this type are applied in Section 4.5.2 on symmetric
Toeplitz determinants.

2.8.4 Alien Cofactors; The Sum Formula

The theorem on alien cofactors states that

D aijAr =0, 1<i<n, 1<k<n, k#i. (2.3.11)
j=1
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The elements come from row i of A, but the cofactors belong to the elements
in row k and are said to be alien to the elements. The identity is merely
an expansion by elements from row k of the determinant in which row k =
row ¢ and which is therefore zero.

The identity can be combined with the expansion formula for A with the
aid of the Kronecker delta function d;; (Appendix A.1) to form a single
identity which may be called the sum formula for elements and cofactors:

D aijAr; =0A, 1<i<n, 1<k<n. (2.3.12)

j=1
It follows that

n
ZAUCJZ[OOAOO}T, 1<1<n,
J=1

where the element A is in row ¢ of the column vector and all the other
elements are zero. If A = 0, then

D A;;C;=0, 1<i<n, (2.3.13)

that is, the columns are linearly dependent. Conversely, if the columns are
linearly dependent, then A = 0.

2.3.5 Cramer’s Formula
The set of equations
n
Y aiwj=bi, 1<i<n,
j=1

can be expressed in column vector notation as follows:

i Cjil’j = B7
j=1

where
T
B = [bl bo b3-~-bn] .

If A = |ai|, # 0, then the unique solution of the equations can also be
expressed in column vector notation. Let

A=|Ci Cy---Cy---C,.

Then
_1

A|Cl Cy---Cj_y BCj+1"'Cn|

L
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1 n
i=1

The solution of the triangular set of equations

i
Zaijmj:bi, i:1,2,3,...

j=1

(the upper limit in the sum is ¢, not n as in the previous set) is given by
the formula

by a1
) bz a1 a22
v — (=1 bs a1 az2  as3
11422 ** - Qg4
bi—1 @i—11 @i—12 @i—13 G141
b; ai a2 a3 Qi1

(2.3.15)
The determinant is a Hessenbergian (Section 4.6).

Cramer’s formula is of great theoretical interest and importance in solv-
ing sets of equations with algebraic coefficients but is unsuitable for reasons
of economy for the solution of large sets of equations with numerical coeffi-
cients. It demands far more computation than the unavoidable minimum.
Some matrix methods are far more efficient. Analytical applications of
Cramer’s formula appear in Section 5.1.2 on the generalized geometric se-
ries, Section 5.5.1 on a continued fraction, and Section 5.7.2 on the Hirota
operator.

Exercise. If

fi(n) = Zaijxj +ain, 1<1<n,

j=1
and
fM=o0, 1<i<n, i#r

prove that

fﬁ")—i?:;, 1<r<mn,

g = Anlin £ 1),

n—1
where
Ap = |aij|n,

provided

AW 240, 1<i<n.
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2.3.6 The Cofactors of a Zero Determinant

If A =0, then
APIQI AP2Q2 = AP2Q1 Ap1q27 (2.3.16)
that is,
Apllh A;Dlt]2 ’
:Oa 1§p17p27QI7QQ§n~
’ AP2!Z1 Apzqz
It follows that
Aplfh APle APle
A;D2q1 Apqu APQQ:; =0

P3q1 Ap:s q2 A;Dsq2

since the second-order cofactors of the elements in the last (or any) row are
all zero. Continuing in this way,

APIQI APle T Amqr
Apar Apa o Ao g 9<p < (2.3.17)
APT(II APT‘I2 Aprqr r

This identity is applied in Section 3.6.1 on the Jacobi identity.

2.3.7 The Derivative of a Determinant

If the elements of A are functions of x, then the derivative of A with respect
to x is equal to the sum of the n determinants obtained by differentiating
the columns of A one at a time:

A’:Z|Cl CQ~~-C;---C”|
j=1

=3 aj;A. (2.3.18)

i=1 j=1
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Intermediate Determinant Theory

3.1 Cyclic Dislocations and Generalizations

Define column vectors C; and C;‘» as follows:

C; = [ay; ag; as;- "a’”J]T

T
Cj = [ai; a3; a3; -+ a;,]
where
n
E3
a5 = E (1 - 6ir))\irarj7
r=1

*

that is, the element a;; in C7 is a linear combination of all the elements
in C; except a;;, the coefficients \; being independent of j but otherwise
arbitrary.

Theorem 3.1.
Z’Cl CQ-~-Cj--~Cn| —0.
j=1

PROOF.

|C1 Ca--Ch - Cu| = Y A
=1

= Z Ay Xn)(l — 8ir) Airrj.
i=1 =1
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Hence

i-
=11

1_ 17‘ )\’LTE a’l“j ij

n

Z‘Cl Cy---Cj -+ C, |:
j=1

= An Z 1 7,7‘ 27‘ zr
i=1 r=1
=0
which completes the proof. O
If
A =1,
N — 1, r=i-1, i>1
710, otherwise.
that is,
0 1
10 0
10 0
Pirln = 10 (N
1 0

n

then C7 is the column vector obtained from C; by dislocating or displacing
the elements one place downward in a cyclic manner, the last element in
C, appearing as the first element in C7, that is,
* T
C; = [an; a1j azj - an-1,4]
In this particular case, Theorem 3.1 can be expressed in words as follows:

Theorem 3.1a. Given an arbitrary determinant A,,, form n other deter-
minants by dislocating the elements in the jth column one place downward
i a cyclic manner, 1 < j < n. Then, the sum of the n determinants so
formed is zero.

If

W fim1 r=ie i>1
0, otherwise,

then
az; = (i = Dai-1;,
* T
Cj = [0 Qa1j 2a2j Sagj tee (n — 1)an,1’j] .

This particular case is applied in Section 4.9.2 on the derivatives of a
Turanian with Appell elements and another particular case is applied in
Section 5.1.3 on expressing orthogonal polynomials as determinants.
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FEzercises

1. Let 6" denote an operator which, when applied to C;, has the effect
of dislocating the elements r positions downward in a cyclic manner
so that the lowest set of r elements are expelled from the bottom and
reappear at the top without change of order.

T
"Gy = [an—r+1,j An—r42,5 " Anj A15 Q25 -~ an—r,j] )
1<r<n-1,
0 _<n L .
8°C; =o"C; = C;.

Prove that

- , 0, 1<r<n-1
Zl|cl...5cj...cn|{m4’ r=o.n.
J_

2. Prove that

Z|015TCJCn| = Sij,

r=1

where
n
S5 = E :aij’
=1
n
Sj == E A”
=1

Hence, prove that an arbitrary determinant A, = |ai;|, can be
expressed in the form

A, =

S|

Z 555;. (Trahan)
j=1

3.2 Second and Higher Minors and Cofactors

3.2.1 Rejecter and Retainer Minors

It is required to generalize the concept of first minors as defined in
Chapter 1.

Let A, = |aij|n, and let {is} and {js}, 1 < s < r < n, denote two
independent sets of r distinct numbers, 1 < i, and j; < n. Now let

i(17;)2~~-ir§j1j2--~jr denote the subdeterminant of order (n — r) which is ob-
tained from A, by rejecting rows iq,1is,...,% and columns ji,ja, ..., jr.
(n)

irin. irij1ja...j, 15 known as an rth minor of A,. It may conveniently be
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called a rejecter minor. The numbers i; and j; are known respectively as
row and column parameters.

Now, let Ny i,. . .i,:j14s...5. denote the subdeterminant of order r which is
obtained from A, by retaining rows i1, s, ..., i, and columns ji, ja, ..., jr
and rejecting the other rows and columns. Nj i, 4,:j1j,...5, May conve-
niently be called a retainer minor.

Ezxamples.

) a21 Aa23 (24
M13,25 = |G41 Q43 Q44 | = N245,1347
as1 53 a4

a2 ais

5)
M) 150 =
245,134
2137 lagy  ags

= Ni3,25.

The minors Ml(“)2 dvigigonge A0d Nijiy 425, 5,..5, are said to be mutually
complementary in A,,, that is, each is the complement of the other in A,,.
This relationship can be expressed in the form

(n) _ L
Milig...i,.;jljz...j,. = comp Niyiy. ipijrjo.jrs
P (n)
Nl112---1r§]1J2~~]7~ = comp lem AriJ1g2.Jr (3'2'1)

The order and structure of rejecter minors depends on the value of n but
the order and structure of retainer minors are independent of n provided
only that n is sufficiently large. For this reason, the parameter n has been
omitted from V.

Ezamples.

Nip = ’aip’1 = Qjip, n > 17

Nij,pq =

Nijkpgr = | @jp  ajq  ajr |, 12 3.
akp Qkq Qkr
Both rejecter and retainer minors arise in the construction of the Laplace
expansion of a determinant (Section 3.3).

Exercise. Prove that

N;
‘ . ” "= NipNijk,pgr-

zk:,pq zk,pr

3.2.2  Second and Higher Cofactors

The first cofactor AZ(-;L) is defined in Chapter 1 and appears in Chapter 2.
It is now required to generalize that concept.
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In the definition of rejecter and retainer minors, no restriction is made
concerning the relative magnitudes of either the row parameters i or the
column parameters j;. Now, let each set of parameters be arranged in
ascending order of magnitude, that is,

i5<is+1, j5<j5+1, 1§S§T’71

Then, the rth cofactor of A,, denoted by A is defined as a

- ; ; i192..9r5J102. - Jr
signed rth rejecter minor:
(n) o k (n)
Ai1i2~'7;'r§j1j2~~jr - (71) Milizmir;jljzu-jr’ (322)
where k is the sum of the parameters:
T

k= Z('Ls +js)'

s=1

However, the concept of a cofactor is more general than that of a signed
minor. The definition can be extended to zero values and to all positive and
negative integer values of the parameters by adopting two conventions:

i. The cofactor changes sign when any two row parameters or any two
column parameters are interchanged. It follows without further assump-
tions that the cofactor is zero when either the row parameters or the
column parameters are not distinct.

ii. The cofactor is zero when any row or column parameter is less than 1
or greater than n.

Illustration.

4 4 4 4 4
AgQ),QS = _Aél),23 = _Agz),sz = Aé1),32 = M1(2,)23 = N3a,14,

(6) _ (6) _ 4(6) _ A(6) _ (6) _
A135,235 = *A135,253 = A135,523 = A315,253 = —M;35,935 = —Naas,146,

(n) _ _A(") _ A(n)

i2i113;515203 1142135717273 118213351352

AM =0 ifp<0

i14293;j1j2(n—p)

orp>n
orp=n-—7

or p=n—js.

3.2.3 The Ezxpansion of Cofactors in Terms of Higher
Cofactors

Since the first cofactor Agg) is itself a determinant of order (n — 1), it can
be expanded by the (n—1) elements from any row or column and their first

cofactors. But, first, cofactors of AEZ ) are second cofactors of A,,. Hence, it
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is possible to expand AZ(-Z) by elements from any row or column and second

n . .
cofactors Al(-j ;q' The formula for row expansions is

n
Ay = Z%qAE?,) 1<j<n, j#i. (3.2.3)

Pg’
q=1

The term in which ¢ = p is zero by the first convention for cofactors. Hence,
the sum contains (n — 1) nonzero terms, as expected. The (n — 1) values of
j for which the expansion is valid correspond to the (n — 1) possible ways
of expanding a subdeterminant of order (n — 1) by elements from one row
and their cofactors.

Omitting the parameter n and referring to (2.3.10), it follows that if i < j
and p < ¢, then

- = (3.2.4)

which can be regarded as an alternative definition of the second cofactor
Aijpq-
Similarly,

AW =S Al 1<k<n, k#iorj (3.2.5)

r=1
Omitting the parameter n, it follows that if i < j < k and p < ¢ < r, then
3Aij,pq
aakr
B 0PA
 Daipdaj Oay,

Aijk,pqr
(3.2.6)

which can be regarded as an alternative definition of the third cofactor
Aijk,pgr-

Higher cofactors can be defined in a similar manner. Partial derivatives of
this type appear in Section 3.3.2 on the Laplace expansion, in Section 3.6.2
on the Jacobi identity, and in Section 5.4.1 on the Matsuno determinant.

The expansion of an rth cofactor, a subdeterminant of order (n—r), can
be expressed in the form

n
(n) _ (n)
Ai1i2~uir§j1j2~-~j1- = ZaP’IAiliz...iTp;jljz,,,j,.qa (3.2.7)
q=1
1<p<n, p#is, 1<s<r

The r terms in which ¢ = js, 1 < s < r, are zero by the first convention
for cofactors. Hence, the sum contains (n — r) nonzero terms, as expected.
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The (n — r) values of p for which the expansion is valid correspond to the
(n — r) possible ways of expanding a subdeterminant of order (n — r) by
elements from one row and their cofactors.

If one of the column parameters of an rth cofactor of A, 1 is (n + 1),
the cofactor does not contain the element a4 pn4+1. If none of the row
parameters is (n + 1), then the rth cofactor can be expanded by elements
from its last row and their first cofactors. But first cofactors of an rth
cofactor of A, 1 are (r + 1)th cofactors of A, 1 which, in this case, are
rth cofactors of A,. Hence, in this case, an rth cofactor of A, 41 can be
expanded in terms of the first n elements in the last row and rth cofactors
of A,,. This expansion is

(n+1) Z (n)
A1112 ApiJ1de.Jr—1 n+1) a”+17¢1A2112 ipij12.dr_1q" (328)

The corresponding column expansion is

(n+1) (n)
Aillz dp—1(n41)55102. 00 Zap "+1A2122 Ap—1Pij1j2.Jr” (3'2'9)
p=1

Exercise. Prove that

A %A
aaip(‘)ajq N 8aiq8ajp’
A DA DA

8aip8ajq6akr - 8akp8aiq6aﬁ o 6ajp6akq8ai,«

without restrictions on the relative magnitudes of the parameters.

3.2.4 Alien Second and Higher Cofactors; Sum Formulas

The (n — 2) elements apq, 1 < ¢ < n, ¢ # h or p, appear in the second

cofactor AEJ Lq if h # 4 or j. Hence,

ZahqAE;i;)q =0, h # i or ja

since the sum represents a determinant of order (n — 1) with two identical
rows. This formula is a generalization of the theorem on alien cofactors
given in Chapter 2. The value of the sum of 1 < h < n is given by the sum
formula for elements and cofactors, namely

n AR =g
D anAfuy = AW p— (3.2.10)

ip -
0, otherwise
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which can be abbreviated with the aid of the Kronecker delta function
[Appendix AJ:

S angAL, = AN 8 — A

i5.pq
Similarly,
Z anr A Uk par Aga pqéhk + Ajkr pq(shi + Al(c’riL,)pq5hj7
Z ahsAl(’;llzm,pqrs = Az(';’llz,pqrtshm - Ag‘zzmpqr(shi
A O — AL O (3.2.11)
etc.

Exercise. Show that these expressions can be expressed as sums as follows:

u n
Zahq wpqzzsgn{i }A( Ohs
(n) _ ] U vow n
ZahTAijk,pqr - Z 5gn{ i ik }Agv,pq(shw7
r=1

u,v,W
n
§ : (n)
Qhs Aijkm,pqrs
s=1

u vow
Z Sgn { 'L ] k m } Au’r;)'w pqréhxy
U,v,W,T
etc., where, in each case, the sums are carried out over all possible cyclic
permutations of the lower parameters in the permutation symbols. A brief
note on cyclic permutations is given in Appendix A.2.

3.2.5 Scaled Cofactors

Cofactors AZ;L), Aglpq, Aggllz’p g €tc., with both row and column parameters
written as subscripts have been defined in Section 3.2.2. They may conve-
niently be called simple cofactors. Scaled cofactors AP, AW-»pd — Auk.par
etc., with row and column parameters written as superscripts are defined

as follows:

(n)
Aip — Alp
n An )
(n)
Aidpa — P4
(m)
Aig‘k;pl]’f' — Ukqur7 (3212)

Ap
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etc. In simple algebraic relations such as Cramer’s formula, the advantage
of using scaled rather than simple cofactors is usually negligible. The Jacobi
identity (Section 3.6) can be expressed in terms of unscaled or scaled cofac-
tors, but the scaled form is simpler. In differential relations, the advantage
can be considerable. For example, the sum formula

S ai ALY = Ao
j=1

when differentiated gives rise to three terms:

> [al ALY + aig (AL)] = Al

J=1

When the cofactor is scaled, the sum formula becomes
Z az’jAlij = 0 (3.2.13)
j=1

which is only slightly simpler than the original, but when it is differentiated,
it gives rise to only two terms:
> [l AY +ay (4] = 0. (3:2.14)
Jj=1
The advantage of using scaled rather than unscaled or simple cofactors will
be fully appreciated in the solution of differential equations (Chapter 6).
Referring to the partial derivative formulas in (2.3.10) and Section 3.2.3,

AP 9 (A
8ajq - a(qu A

1 [0Ar 04
~ A2 |7 0ay, ? daj,
1
= [A Aijpg — Aip Ajq]
— AUPa _ pip pda (3.2.15)
Hence,
(qu N af) AP — Aiipa, (3.2.16)
Jja
Similarly,
(A’““ * 65 ) ATPa = Akpar, (3.2.17)
kr

The expressions in brackets can be regarded as operators which, when
applied to a scaled cofactor, yield another scaled cofactor. Formula (3.2.15)
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is applied in Section 3.6.2 on the Jacobi identity. Formulas (3.2.16) and
(3.2.17) are applied in Section 5.4.1 on the Matsuno determinant.

3.3 The Laplace Expansion

3.3.1 A Grassmann Proof

The following analysis applies Grassmann algebra and is similar in nature
to that applied in the definition of a determinant.
Let is and j5, 1 < s <r, r < n, denote r integers such that

1<t <ig <+ <1 <1,
1< <je<--<jr<n

and let

n
X; = E ajjeg, 1<i<n,
k=1

T

yi = E aj.e;,, 1<i<mn,
t=1

Zi =X —Yi-

Then, any vector product is which the number of y’s is greater than r or
the number of z’s is greater than (n — r) is zero.
Hence,

X1 Xy = (Y1 +21)(y2 +22) - (Yo + 2Zn)
- ZZl"'yil"'Yig"'yir"'znv (3.3.1)

i1y

where the vector product on the right is obtained from (z; - - - z,,) by replac-
ing z;, by yi., 1 <s <r, and the sum extends over all (?) combinations of
the numbers 1,2, ..., n taken r at a time. The y’s in the vector product can
be separated from the z’s by making a suitable sequence of interchanges
and applying Identity (ii). The result is

*

VAR .yil .o .}/i2 .. 'yi,‘ ey = (71)p(yz1 .. .yir)(zl e Zn)7 (332)
where
p=) is—3r(r+1) (3.3.3)
s=1
and the symbol * denotes that those vectors with suffixes i1,1s,...,4, are

omitted.
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Recalling the definitions of rejecter minors M, retainer minors N, and
cofactors A, each with row and column parameters, it is found that

Yip o Yi,. = Nil‘..ir;jl.“jr (ej1 s ejr),
* *
Z) -2y = Milu-ir;jl-njr (el RN en),
where, in this case, the symbol * denotes that those vectors with suffixes
J1, 42, - - -, Jr are omitted. Hence,

X1 Xp
*

= > U Niiacivigigode Misiaiviia.de (€5 €5,) (€1 -

1.l

e,).

By applying in reverse order the sequence of interchanges used to obtain
(3.3.2), it is found that

*

(ej1 .. 'ejr) (el R en) =(=1)%e;--e,),

where
q:ZjS—%r(r+1).
s=1
Hence,

— _1\pranN. .
X1 Xp = [ § (-1) NZIZZ‘NZT;J1J2~~JTM'LI'L2~~~'LT?]1J2~~JT‘| €1 -€ep

1.t

= [ E Ni1i2---ir;jlj2~~jT‘Aili2-<~i7‘§j1j2---jT] €1 €n.

i1y

Comparing this formula with (1.2.5) in the section on the definition of a
determinant, it is seen that

A = aijln = D Nijigooivijugomie Aivin.ivigrioies (3.3.4)

i1.in

which is the general form of the Laplace expansion of A,, in which the sum
extends over the row parameters. By a similar argument, it can be shown
that A, is also equal to the same expression in which the sum extends over
the column parameters.

When r = 1, the Laplace expansion degenerates into a simple expansion
by elements from column j or row ¢ and their first cofactors:

A, = Z NijAij,

i orj

Z aiinj.

i orj



3.3 The Laplace Expansion 27

When r = 2,

A, = g Nir jsAirjs, summed over 4, r or j, s,
_ Z Qij Qs
Qrj  Qprs

Air,js~

3.8.2 A Classical Proof

The following proof of the Laplace expansion formula given in (3.3.4) is
independent of Grassmann algebra.
Let

A= |a1-j|n.

Then referring to the partial derivative formulas in Section 3.2.3,

0A
Ai1j1 = Do (3.3.5)
1J1
0A;,; o S
Aiyinijngs = ﬁv i1 <z and j1 < j2,
1272
%A
=—. (3.3.6)
aa’iljlaaizjz
Continuing in this way,
oA
Aivig.ivijjo..jr , (3.3.7)

0a;, j, 04,5, - - - 0aj, j,

provided that 11 < io < - - <, and j1 < Jo < -+ < Jp.
Expanding A by elements from column j; and their cofactors and
referring to (3.3.5),

n
AZE a’illeiljl

i1=1

= A
= Z @iy jy Bars,

i1=1

- 0A
=Y ans, (3.3.8)
=1 aai2j2

HA i 9% A

iy o
1 aailjl aaizjz

80’1'1]'1 io—

n
= Z aizjzAili’z%jljz’ i1 <z and j1 < jo. (339)

ig=1
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Substituting the first line of (3.3.9 and the second line of (3.3.8),

n
Z ——
a; (7P
171 %izj2 aailjl 8ai2j2

M- ‘.M:

Il
—

MS u

Il
N

ailjlai2j2Aili2;jlj2, i1 < 1o and jl < jQ. (3310)
11 12

Continuing in this way and applying (3.3.7) in reverse,

I SDIIDS 74
al aZ .« .. a'L .
171 272 rlr 8ai1j1 aai2j2 .. aairjr

11=1 ia=1 =1
- E : E : E Qiyj1 Qiggp " ° ai7‘jrAi1i2~~-i7‘;jlj2-<~j7‘7 (3311)
11=11i2=1 =1

subject to the inequalities associated with (3.3.7) which require that the i,
and js shall be in ascending order of magnitude.

In this multiple sum, those rth cofactors in which the dummy variables
are not distinct are zero so that the corresponding terms in the sum are
zero. The remaining terms can be divided into a number of groups according
to the relative magnitudes of the dummies. Since 7 distinct dummies can
be arranged in a linear sequence in r! ways, the number of groups is r!.
Hence,

(7! terms)

E Gk‘le...,kr7

where
Gk ky = > iy iy Vg iy
igikl <ik2<"'<ikTSn
© Qi G, AiklikQ Uk 3Ty Tk e Jky (3312)
In one of these r! terms, the dummies i, 149, ...,%, are in ascending order

of magnitude, that is, is < i541, 1 < s < r — 1. However, the dummies
in the other (r! — 1) terms can be interchanged in such a way that the
inequalities are valid for those terms too. Hence, applying those properties
of rth cofactors which concern changes in sign,

A= E [E OrQiyjy Qigjy " aim] Aivig..ivijrgn...grs

1<i1<i2<---<ir<n

T:sgn{.l 203 ?”}. (3.3.13)

1 2 3 iy

where

(Appendix A.2). But,

E OrQiyjy Qiggy *** Wipjp = Nijig. ipijago...jr-
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The expansion formula (3.3.4) follows.

Hllustrations

1.

When r = 2, the Laplace expansion formula can be proved as follows:
Changing the notation in the second line of (3.3.10),

n n
A= E , E :aipaquij;pqa <)
p=1 ¢=1

This double sum contains n? terms, but the n terms in which ¢ = p are
zero by the definition of a second cofactor. Hence,

A= E QipQjgAijpq + E QipQjgAijipg-
p<q q<p

In the second double sum, interchange the dummies p and ¢ and refer
once again to the definition of a second cofactor:

A= E tip - thia Aijipg
Qjp  Qjq '
p<q
E : ijpgAijipes 1<,
p<q

which proves the Laplace expansion formula from rows ¢ and j. When
(n,i,7) = (4,1,2), this formula becomes

A = Nig21241212 + Ni2.13412.13 + Ni2,14412 14
+ Nig23A12,23 + Ni224A12,24
+ Ni234A412,34.

. When r = 3, begin with the formula

n n n
A= Z Z Z aipajqakrAijk,pqrv i< .7 < ka

p=1g=1r=1

which is obtained from the second line of (3.3.11) with a change in
notation. The triple sum contains n3 terms, but those in which p, ¢,
and r are not distinct are zero. Those which remain can be divided into
3! = 6 groups according to the relative magnitudes of p, ¢, and 7:

DD DI DIEDY

p<q<r p<r<g q<r<p q<p<r r<p<qg r<q<p

QipQjqQrrAijk,par-
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Now, interchange the dummies wherever necessary in order that p <
q < r in all sums. The result is

A= g [Qip@jq@rr — Qipjrarg + Qiqjrarp
p<g<r
= QiqUjpQkr + QirjpQkq — airajqakp]Aijk,pqr
Qip Qiq Qir

= Y lap g ajr | Aijkpgr
P<q<r|Qkp Qkq GOkpr

= E Nijk,pqrAijk,pqra 1< .7 < k7
p<g<r

which proves the Laplace expansion formula from rows ¢, j, and k.

3.3.8 Determinants Containing Blocks of Zero Elements
Let P, Q, R, S, and O denote matrices of order n, where O is null and let

P Q

2n

The Laplace expansion of A, taking minors from the first or last n rows or
the first or last n columns consists, in general, of the sum of (27:’) nonzero
products. If one of the submatrices is null, all but one of the products are
Zero.

Lemma.

P Q| _
a | g S%—PS,

O Q _, .
b. R Szn_( D"QR

PrROOF. The only nonzero term in the Laplace expansion of the first
determinant is

NlQ...n;lQ...nA12...n;12...n-
The retainer minor is signless and equal to P. The sign of the cofactor is
(—1)*, where k is the sum of the row and column parameters.
n
k= 227" =n(n+1),
r=1
which is even. Hence, the cofactor is equal to +S5. Part (a) of the lemma
follows.

The only nonzero term in the Laplace expansion of the second
determinant is

Nn+1,n+2,...,2n;12...nAn+1,n+2,...,2n;12...n'
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The retainer minor is signless and equal to R. The sign of the cofactor is

(—1)*, where
k=Y (n+2r)=2n%+n.
r=1

Hence, the cofactor is equal to (—1)"@. Part (b) of the lemma follows. O

Similar arguments can be applied to more general determinants. Let X,
Y,qs Zpg, and Oy, denote matrices with p rows and g columns, where O,
is null and let

Y,

— qu
An = ’ Oy Zr.

, (3.3.14)
n
where p + r = ¢ + s = n. The restriction p > ¢, which implies r < s, can
be imposed without loss of generality. If A,, is expanded by the Laplace
method taking minors from the first ¢ columns or the last r rows, some
of the minors are zero. Let U,, and V,,, denote determinants of order m.
Then, A,, has the following properties:

a. If r+¢q>n, then A, =0.
b. Ifr+¢=n,thenp+s=n,q=p, s=r,and 4, = X;,, Z,r.
c. If r 4+ g < n, then, in general,
A,, = sum of (’q’) nonzero products each of the form U,V;
= sum of (i) nonzero products each of the form U.,. V.
Property (a) is applied in the following examples.
Example 3.2. If r + s = n, then

E,o F (0]
Us, = n,2r ns ns =0.
an En,2r Ons Fns 2
Proor. It is clearly possible to perform n row operations in a single step
and s column operations in a single step. Regard Us,, as having two “rows”

and three “columns” and perform the operations

Rll = Rl - RQ,
C, = Cs + C;s.
The result is
_ On,?r Fns _Fns
U2n N ' En,27* Ons Fns on
_ On,27" Ons _Fns
En,2r Fns Fns 2n
=0

since the last determinant contains an n X (2r + s) block of zero elements
and n + 2r + s > 2n. o
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Example 3.3. Let

Eip Fiq
V2n = Eip qu
ij H;

Jaq

P!

iq
iq )
Jjaq 2n

=

where 2i + j = p + 2qg = 2n. Then, V5, = 0 under each of the following
independent conditions:

i. j4+p > 2n,
if. p >,
iii. Hjq + Kjq = Oj4.
PROOF. Case (i) follows immediately from Property (a). To prove case
(ii) perform row operations

Eip Fiq qu
Var = | Osp  (Gig — Fig)  (Fig — Gig)
Ojp H;, Kjq on

This determinant contains an (i + j) x p block of zero elements. But, i +
j+p>2i+j=2n. Case (ii) follows.
To prove case (iii), perform column operations on the last determinant:

Eip (Fiq + qu) qu
Von = in Oiq (Fiq - qu)
ij qu qu 2n

This determinant contains an (i + j) X (p + ¢) block of zero elements.
However, since 2(i+7j) > 2n and 2(p+q) > 2n, it follows that i+j+p-+q >
2n. Case (iii) follows. O

3.8.4  The Laplace Sum Formula

The simple sum formula for elements and their cofactors (Section 2.3.4),
which incorporates the theorem on alien cofactors, can be generalized for
the case r = 2 as follows:

E Nij,qurs,pq = 51']',7"8‘47
p<q

where ;5,5 is the generalized Kronecker delta function (Appendix A.1).
The proof follows from the fact that if r # 4, the sum represents a determi-
nant in which row r = row 4, and if, in addition, s # j, then, in addition,
row s = row j. In either case, the determinant is zero.
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FEzercises
1. If n = 4, prove that

ai1 ai2 G413 a4

G21 Q22 Q23 G24
E Nos pgA2a,pg = a =0
31 @32 G33 0a34

az1 azz aszz G34

p<q

(row 4 = row 3), by expanding the determinant from rows 2 and 3.
2. Generalize the sum formula for the case r = 3.

3.3.5 The Product of Two Determinants — 2

Let
An = |aijln
By, = |bijln-
Then
An By = |¢ijln,
where

n
Cij = E Qikbrj .-
k=1

A similar formula is valid for the product of two matrices. A proof has
already been given by a Grassmann method in Section 1.4. The following
proof applies the Laplace expansion formula and row operations but is
independent of Grassmann algebra.

Applying in reverse a Laplace expansion of the type which appears in
Section 3.3.3,

air a2 A1n
a21 Qa22 A2
_ | n1  an2 Ann
AnBp =1 b b b (3.3.15)
-1 bar  bao ban
-1 bnl bn2 bnn 2n

Reduce all the elements in the first n rows and the first n columns, at
present occupied by the a;;, to zero by means of the row operations

n
R, =R; +Zainn+j7 I<i<n.

=1

(3.3.16)
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The result is:

i1 €12 ... Cin
C21 C22 ... C2p
Cpnl Cnp2 ... Cpn
AnBp = ‘ 3.3.17
-1 b11 b12 . bln ( )
-1 b21 b22 . bgn
-1 bnl bn2 s bnn 2n

The product formula follows by means of a Laplace expansion. ¢;; is most
easily remembered as a scalar product:

b1;
ey = [an ai - an] e | (3.3.18)
bn
Let R; denote the ith row of A, and let C; denote the jth column of
B,,. Then,
cij =R; 0 Cj.

Hence

R10C1 RlOCQ R10Cn
= |R2eC RaeCe o RaeCnl 0 33.9)
R,eC; R,eCy --- R,eC,|,

Exercise. If A, = |aij|n, By = |bij|n, and Cy, = |¢ij|n, prove that

where

n n

dij = Z Zairbrscsj~

r=1 s=1

A similar formula is valid for the product of three matrices.

3.4 Double-Sum Relations for Scaled Cofactors

The following four double-sum relations are labeled (A)—(D) for easy refer-
ence in later sections, especially Chapter 6 on mathematical physics, where
they are applied several times. The first two are formulas for the derivatives
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A" and (A%)" and the other two are identities:
!/

Ijl (log A)’ i i al A",

r=1 s=1

3

(A% f: S al A AT

r=1 s=1
ZZ fr+gs arsA *Z(fr+gr)v
r=1 s=1 r=1
non
Z Z Ir +gs arsAZSAM = (fz +9J)AZJ
r=1 s=1

PROOF. (A) follows immediately from the formula for A’ in terms

35

(D)

of un-

scaled cofactors in Section 2.3.7. The sum formula given in Section 2.3.4

can be expressed in the form
Z arsAis = 57‘1‘;
s=1
which, when differentiated, gives rise to only two terms:
Za;sAis — Zars(Ais)/~
s=1 s=1
Hence, beginning with the right side of (B),
pSPIUBEVERS S SR T
r=1 s=1
o W
- S S
- Z A™) 3,

(A” )
which proves (B).

DO (et gs)ar ATAY
= frATj arsAis + gsAis arsATj
D fATY D gAY

(3.4.1)

(3.4.2)
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= > FAYS+ > g A6

= [iAY +g;AY

which proves (D). The proof of (C) is similar but simpler. O
Exercises
Prove that

n n
LY ST - - ) 4 sE (s - 1)Mag AT = 20

r=1 s=1
2y =3 Y (47

r=1 s=1

Note that (2) and (3) can be obtained formally from (B) and (D), respec-
tively, by interchanging the symbols ¢ and A and either raising or lowering
all their parameters.

3.5 The Adjoint Determinant

3.5.1 Definition
The adjoint of a matrix A = [a,;], is denoted by adj A and is defined by
adj A = [Ajz]n

The adjoint or adjugate or a determinant A = |a;;|, = det A is denoted by
adj A and is defined by

adj A = |Ajiln = |Aijln
= det(adj A). (3.5.1)

3.5.2  The Cauchy Identity
The following theorem due to Cauchy is valid for all determinants.
Theorem.

adjA = A"t

The proof is similar to that of the matrix relation

AadjA = AL



3.5 The Adjoint Determinant 37

PROOF.
Aadj A = |aij\n|Aﬁ\n
= [bij|n,

where, referring to Section 3.3.5 on the product of two determinants,

bij = ZairAjr
r=1
Hence,
=A™,

The theorem follows immediately if A # 0. If A = 0, then, applying (2.3.16)
with a change in notation, |A4;;|,, = 0, that is, adj A = 0. Hence, the Cauchy
identity is valid for all A. a

3.5.8 An Identity Involving a Hybrid Determinant

Let A,, = |ai;|n and By, = |b;j|n, and let H;; denote the hybrid determinant
formed by replacing the jth row of A,, by the ith row of B,,. Then,

n
Hy = Z bisAjs. (3.5.2)
s=1
Theorem.
H;;
|a7;j£L'7; + bz]|n = An 57,31'7, + T s An 7é 0.
n in

In the determinant on the right, the x; appear only in the principal diagonal.
PrOOF. Applying the Cauchy identity in the form
|Ajiln = A7
and the formula for the product of two determinants (Section 1.4),
|aijzi + bigln AT = laij@i + bijlnl Ajiln
= [¢ijln,

where

n

Cij = Z(aisxi +bis)Ajs

s=1

n n
= Z a;sAjs + Z bisAjs
s=1 s=1
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Hence, removing the factor A, from each row,

. H..
|Cijln = A% |0ijmi + T; )
which yields the stated result.
This theorem is applied in Section 6.7.4 on the K dV equation. O

3.6 The Jacobi Identity and Variants

3.6.1 The Jacobi Identity — 1

Given an arbitrary determinant A = |a;;|,,, the rejecter minor Mp, p,.. p,:q142.

of order (n — r) and the retainer minor Ny, ps. p,:qigs...q. Of order r are
defined in Section 3.2.1.
Define the retainer minor J of order r as follows:

J = Jpips.prigraz-gr = 3] Npips . prigigs...qr

Ap1q1 AP2<11 Aprql
Aqu Aqu T Apqu ) (3.6.1)
Apl qr APZ qr Prdqr 'r

J is a minor of adj A. For example,

J23,24 = adj Na3 24

A22 A24
a3z2 a34

_ ‘ A22 A32

= ad]j

A24 A34

The Jacobi identity on the minors of adj A is given by the following theorem:
Theorem.

_ r—1 _
Jprps-prsaranar = A Mpips prigigs.ges 1 <7 <n—1

Referring to the section on the cofactors of a zero determinant in Section
2.3.7, it is seen that if A =0, » > 1, then J = 0. The right-hand side of the
above identity is also zero. Hence, in this particular case, the theorem is
valid but trivial. When r = 1, the theorem degenerates into the definition
of Ap 4 and is again trivial. It therefore remains to prove the theorem
when A # 0, r > 1.

The proof proceeds in two stages. In the first stage, the theorem is proved
in the particular case in which

Ps=¢qs=35, 1<s<r.

-Gr
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It is required to prove that

J12.H'r;12...r = AT_IMIZ.HT;IQ...T
= A" A a2
The replacement of the minor by its corresponding cofactor is permitted

since the sum of the parameters is even. In some detail, the simplified
theorem states that

A A o0 A Qr41r41 Qr41p42 -+ Griln

Az Agp ... Apg| _ Ar-1| @2l Grezet2 o Gryzn

Alr A2r s Arr r Qp,r41 Qn,r4-2 s Qnn 1,y
(3.6.2)

Proor. Raise the order of Ji2.. r;12...» from r to n by applying the Laplace
expansion formula in reverse as follows:

All e AT'l
: : 7 TOWS
Ay oo Ay
J12...T;12...’r‘ e . (363)
Al,r+1 Ar,rJrl 1
: : ) }(n —T) TOWS
Ain, oo A 1

n

Multiply the left-hand side by A, the right-hand side by |a;;|,, apply the
formula for the product of two determinants, the sum formula for elements
and cofactors, and, finally, the Laplace expansion formula again

A . aq,r4+1 - A1n
' . : }7’ TrOws
A 0 a1 . Arn,
A1 12 = | e
Ar41,,+1  --- Qr4ln }(n _ 71) rows
An r+1 v Ann
Qr4+1,+1  --- Qr4ln
— A'f‘ . .
Qpr41 B Ann |, _,
r
=A"A12. ra2..r

The first stage of the proof follows.
The second stage proceeds as follows. Interchange pairs of rows and then
pairs of columns of adj A until the elements of J as defined in (3.6.1) appear
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as a block in the top left-hand corner. Denote the result by (adj A)*. Then,
(adj A)* = o adj A,

where

g =

(—1)Pr=D+p2=2)t -+ (pr=r) @ —1)+(a2=2)++(ar =)

(71)(101+P2+--~+pr)+(lI1+Q2+---+q7-) .

Now replace each A;; in (adj A)* by a;;, transpose, and denote the result

by \aij|*. Then,

\aij|* = O"Clij| = O’A.

Raise the order of J from r
(3.6.3), augmenting the first

to m in a manner similar to that shown in
7 columns until they are identical with the

first 7 columns of (adj A)*, denote the result by J*, and form the product

la;;|*J*. The theorem then appears. 0
Tlustration. Let (n,r) = (4,2) and let
Azy Asg
J = J =
23,24 ‘A24 A34
Then
Agy Azp Ay Ay
. Aoy Ass Al Ap
adjA)* =
GGAT =14, 4y An A
Azz Azz Az Ags
=ocadjA,
where
o= (—1)2H
and
Q22 Q24 Q21 (23
Sk _ | @32 Q34 Q31 a33
|a”| =

The first two columns of J*
(adj A)*:

J=J"

cAJ

ai2 ai4 aix ais
A4z Q44 Q41 A43
olai;| = ocA.

are identical with the first two columns of

Ay Az

_ | A2s Az
Ay Az 1 ’
Agz  Ass 1

= lag["J"
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A a2 a3
_ A a3 ass
ail  ais
a41  A43
— A2 ail as
aq1 Q43
2
= A"M>3 04
2
= UA A23’24.
Hence, transposing J,
J: A22 A24 :AA23 o4
Asgy Az '

which completes the illustration.

Restoring the parameter n, the Jacobi identity with » = 2,3 can be
expressed as follows:

() 4
r=2 j;g) jgg)‘:AnAg;;q. (3.6.4)
Jp J4q9
A A0 4
P 1q r
r=3: AP AW A = AZAT) (3.6.5)
Ay Ay AL

3.6.2 The Jacobi Identity — 2

The Jacobi identity for small values of r can be proved neatly by a technique
involving partial derivatives with respect to the elements of A. The general
result can then be proved by induction.

Theorem 3.4. For an arbitrary determinant A,, of order n,
‘ A4 Al

avi ppa| = A
n n

where the cofactors are scaled.

PROOF. The technique is to evaluate A% /da,, by two different methods
and to equate the results. From (3.2.15),
QA" i[
da,,  A?

AAip jq — Aijqu]. (3.6.6)

Applying double-sum identity (B) in Section 3.4,

OAY da . ,
E E — T2 At AT
aapq Oapq
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== S0 AT AT

— A% API
1
= —E[Aiquj]. (3.6.7)
Hence,
Aij Aig| _ g4
‘Apj Ay = AAip jq (3.6.8)

which, when the parameter n is restored, is equivalent to (3.6.4). The
formula given in the theorem follows by scaling the cofactors. a

Theorem 3.5.

Aij Aiq Aiv
API APY APV | — APWI v,
Auj Avd pAuv

where the cofactors are scaled.

PrOOF. From (3.2.4) and Theorem 3.4,

024
a. 4o — A u,qu
00 Oy pua
— AAPwav
APa APY
_ ‘Auq y (3.6.9)

Hence, referring to (3.6.7) and the formula for the derivative of a
determinant (Section 2.3.7),

DA
0a500pq 00y,
QAP? v QAPY
ST Y el Y Rl o
8aij Ava Awv S Awv Avd o
AP9 APV o | APT APV w | APT API
= Aij Avd Auwv — AAM Awd Awv —AA Ava Aud
_ 1 . Apg Apo ) Apj Apy
ﬁ A” Auq uv 7Azq Auj Auv
Ay A
+ Aiv PJ Pq :|
Auj  Auyg
1 Azj Aiq Ai'u
o5 | A vy Ap|. (3.6.10)
Ay A
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But also,
3
aa”aaa;jaauv = Aipu,qu~ (3611)
Hence,
Aij Aiq Aiv
Apj qu APU = AZAipujqin (3612)
Auj Auq Ay

which, when the parameter n is restored, is equivalent to (3.6.5). The for-
mula given in the theorem follows by scaling the cofactors. Note that those
Jacobi identities which contain scaled cofactors lack the factors A, A2,
etc., on the right-hand side. This simplification is significant in applications
involving derivatives. O

FEzercises

1. Prove that
Z AptAqr,st = 07

ep{p,q,7}

where the symbol ep{p, ¢,7} denotes that the sum is carried out over
all even permutations of {p,q,r}, including the identity permutation
(Appendix A.2).
2. Prove that
APs  APLIS
’Arq Ari,jq

Aiq Air,sq
API APTST

ATd ATPI
= Ais Aip,qs

3. Prove the Jacobi identity for general values of r by induction.

3.6.3 Variants
Theorem 3.6.

A(") A(n+1)
1p i,n+1 _A A(nJrl) —0 (A)
(n) (n+1) nAijp nti ,
A’ Ajnd
AM A s
p q —A An ‘ :O (B)
(n+1) (n+1) nAi 0t 1ipq ,
An:’Lp Anﬁl,q
A Al T
‘ A7(177L") Agﬂf*‘l) o £L+-E712A7(4n;72l+1 = 0. (C)

These three identities are consequences of the Jacobi identity but are dis-
tinct from it since the elements in each of the second-order determinants
are cofactors of two different orders, namely n — 1 and n.
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PROOF. Denote the left side of variant (A) by E. Then, applying the
Jacobi identity,

n n+1 n+1 n41
n n+1 n+1 n+1
Ajp Aj,n+1 Ajp Aj,n+1
n+1 n+1
= AL — AR, (3.6.13)
where
n+1 n
Fi = "4"1‘41("17+ ) - A7L+1A,Ep)
AERH) AEW;LHI) (n) (n+1) 4 (n+1)
= A(ZH) A(n;f) - AnHAz‘p + Ai,n+1 An+1,p
n+1,p n+1,n+1
n+1 n+1
= A'E,n-‘rl)A?(z—&-l,;'
Hence,

_ (n+1) 4(n+1) (n+1) 4(n+1)7 4(n+1)
An-‘rlE - [Ai,n+1 Aj,nJrl - Aj,n+1Ai,n+1]An+1,p

(3.6.14)

The result follows and variant (B) is proved in a similar manner. Variant
(A) appears in Section 4.8.5 on Turanians and is applied in Section 6.5.1
on Toda equations.

The proof of (C) applies a particular case of (A) and the Jacobi identity.

In (A), put (4, 7,p) = (r,n,7):

AL Al (nt1)
A(n) A(;p:i) - AnArn;T,n-l—l = 0. (Al)
nr n,n+1

Denote the left side of (C) by P

n n+1
AP=A {m AS?T) G ALY Ag‘,n+1)
AP ARy Al
n n+1 n+1
= A AT AT
n+1 n+1
® Aiwl,g A7(1+1,7)L+1
= Agj:)Gn - A;ﬁ)Grv (3.6.15)
where
(n+1) (n+1)
G,: AET 1y j?i,nlqgl
v n+ n+
An+1,r An+1,n+1
= Ap AV (3.6.16)
Hence,

n n+1 n n+1
AP = An+1 [Av(”r)A'EL,n+)1;r,n+1 - A;T)Ai,nJrl);T,n*Fl] ’



(n+1)
But Ai7n+1;j7n+1

= AE;L). Hence, A,,P = 0. The result follows.
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a

Three particular cases of (B) are required for the proof of the next

theorem.

Put (4,p,q) = (r,r,n), (n —1,r,n), (n,r,n) in turn:

A(7f+1)

n+1,r

’ A(T;)

A(n)

n—1,r
(n+1)
An+1,r

’ A(”)

WLy
n+1 n+1
A AnJrl,n

n+1,r
Theorem 3.7.
A(”H‘l)

r,n+1;rn

A(n+1)

n—1,n+1;rn

A(”+1)

n,n+1;rn

PROOF.

Qu =

Q21 =

Q31 = A, A"

AL
(n+1)
n+1l,n

A(”)

A(n_+1)

n+1l,n

n+1
- ATLAv(",n-:-l);rn =0, (Bl)

1,n _AnA(ThLl)

n—1,n+1;rn

:O7

| At

n,n+1l;rn

=0.

Al
A

n—1,n

AL

AR
A

n—1,r

A

=0.

Denote the determinant by ). Then,

A(”)

n—1,n

A

A(”)

n—1,r
ALY
AnA(n)

n—1,n;rn

A, A"D

n—1,r’

—An ALY,

(3.6.17)

rn—1;rn*

Hence, expanding @ by the elements in column 1 and applying (B1)—(Bs),

Q= A, [A1TY

+ A("+1) A(")

n,n+1l;rn‘ rn—1;rn

| AW

- “in—1,r

n+1,r

+A™

r,n—1rn

— Alnt1)

n+1ln

Ay

+1
— A

{An_lA

A(nfl)

rn+1l;rn‘n—1,r

A(nTTH) A(nT:Lll)
A o
A(T‘rll) A("+1)

rn—

(n)

rn—1lrn

A(n+1) Aln=1)

n—1,n+1l;rn* rr
] (3.6.18)

A(") _ A(n—l)

n+1,n
no

n+1l,n
ey e
Annfl,r Annfl,r

ARTY A
A("—l) A(")

n—1,r n—1,n

Lyrn

] . (3.6.19)
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The proof is completed by applying (C) and (A1) with n — n— 1. Theorem
3.7 is applied in Section 6.6 on the Matsukidaira—Satsuma equations. O
Theorem 3.8.
+1 +1
A, = AT,

n+l,r-"n
where
(n—1) (n+1)
—1 +1 n, rn—Llirn®
Ann;l,r Ann—l,j !

PrOOF. Return to (3.6.18), multiply by A, +1/A, and apply the Jacobi
identity:

A(n=D Al gl ) (n—1) Al
n—1,r | A(ntl)  4(n+1) |~ App n+1 n+1
An+1,r AnJrl.,n AgL—:f?)“ A£L++1:,L7)L
(n+1) (n+1)
(n) Anr Ann
+ Ar n—1;rn n+1 n+1 = 07
o A7(1+1,7)~ A’I(’L+1,7)l

A(n+1) [A(n—l)A(’ﬂJrl) _ A(nfl)A(n—i-l) _ A(n+1)A(n) }

n+1,r n—1,n n—1,r“‘rn rn—1;rn

_ A("+1) [A(nfl)Agl’ﬂ:rﬁz _ A£Z+1)A£:li—1i), o A(") A(n+1)],

n+1,n rr rn—1;rn‘inr
(n—1) (n+1)
n+1 Arr Arn n n
A [ Gt |- A4k

rn—1;rn

_ e [|AGTD Al
- n+1,n A(n—l) A(”+1)

n—1,r n—1,r

o A(n+1)A(") :| )

The theorem follows. ]

Exercise. Prove that

() () (n) (nt1)
n n n n+1
N N N N r— n+1
Alz]l Alz]z A7/2]rfl Alz,n-‘rl :An 1A§1i2--.)iT;j1j2..-jr71,7L+1'
A(") A(") A(n) A("“’l)

irJ1 (2 P Trfr—1 irmtl |y

When r = 2, this identity degenerates into Variant (A). Generalize Variant
(B) in a similar manner.

3.7 Bordered Determinants

3.7.1 Basic Formulas; The Cauchy Ezpansion
Let

An = laijln
=]01 Cs CB...Cnn
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and let B,, denote the determinant of order (n + 1) obtained by bordering
A, by the column
X = [zl To x3~~xn]T
on the right, the row
Y = [yl Y2 ysyn]

at the bottom and the element z in position (n+ 1,7+ 1). In some detail,

aix a2 - G1p  T1
az; Qa2 -+ A2p T2
By =1 . (3.7.1)
an1 an2 o OGpn Tn
Y1 Y2 e Yn z n+1

Some authors border on the left and at the top but this method displaces
the element a;; to the position (i + 1,5 + 1), which is undesirable for both
practical and aesthetic reasons except in a few special cases.

In the theorems which follow, the notation is simplified by discarding the
suffix n.

Theorem 3.9.

B=zA- z”: Xn:Arsmrys.

r=1 s=1
PROOF. The coefficient of ys in B is (—1)""**1F where
F = ’Cl coe Cso1 Csq1... G X

= (16,
where

= ]Cl...Cs,l X CS+1...Cn|n.
The coeflicient of z, in G is A,s. Hence, the coefficient of z,y, in B is

(—1)nbstibnts g oo 4

The only term independent of the z’s and y’s is zA. The theorem
follows. U

Let E;; denote the determinant obtained from A by

a. replacing a;; by z, 4, j fixed,
b. replacing a,; by z,, 1 <r <n, r #1,
c. replacing a;s by ys, 1 < s<n, s #j.

Theorem 3.10.

zy = ZAZj Z ZAM" jsTrlYs = Ezj

r=1 s=1
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PROOF.
aiil ai2 T ay,5-1 a1,5+1 e A1n T
a21 a22 te az j—1 a2 j+1 ce a2n T2
B = (_1>i+j aj—11 Gi—1,2 - Qi—15-1 Gi—1454+41 " Gi—1n Ti-1
—
J Qit15  Ai41,2 " Qi4l5—1 Qi1 541 " Qi4ln Titl
an1 an2 Qn,j—1 Un,j+1 Unn T
Y1 Y2 T Yj—1 Yj+1 cee Yn z

The expansion is obtained by applying arguments to B;; similar to those
applied to B in Theorem 3.9. Since the second cofactor is zero when r = ¢
or s = j the double sum contains (n — 1)? nonzero terms, as expected. It
remains to prove that B;; = E;;.

Transfer the last row of B;; to the ith position, which introduces the sign

(—=1)"~* and transfer the last column to the jth position, which introduces
the sign (—1)"77. The result is E;;, which completes the proof. O

The Cauchy expansion of an arbitrary determinant focuses attention on
one arbitrarily chosen element a;; and its cofactor.

Theorem 3.11. The Cauchy expansion

n n
A=a;;Ai; + g E Qisrj Air,sj-

r=1 s=1

First Proof. The expansion is essentially the same as that given in Theorem
3.10. Transform E;; back to A by replacing z by a;;, «, by a,; and ys by
a;s. The theorem appears after applying the relation

A’iT,jS = _Air,sj~ (372)
Second Proof. Tt follows from (3.2.3) that

ZarinT,sj = (1 —0js)Ass.
r=1

Multiply by a;s and sum over s:

n n n n
Z aisaT'inT,sj - Z aisAis - Z 5jsaisAis
r=1 s=1 s=1 s=1
= A — a;; Aij,
which is equivalent to the stated result. O

Theorem 3.12. Ify;=1,1<s<n, and z =0, then

n

j=1
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ProoOF. It follows from (3.7.2) that
Z ZAW-S =0, 1<ir<n.
j=1 s=1

Expanding B;; by elements from the last column,

Hence

n n n
B;i; = —Zﬂ?rz ZAir,js

1 r=1 j=1 s=1

=0.

n

J

Bordered determinants appear in other sections including Section 4.10.3
on the Yamazaki-Hori determinant and Section 6.9 on the Benjamin-Ono
equation. |

3.7.2 A Determinant with Double Borders
Theorem 3.13.

uyp U1
Uz V2
[as] Zn
ijln e B
- upvqxrysqu,r87
Un Un
p,q,m,s=1
1'1 xz PRI "I/‘n
Y1 Y2 - Yn L4 L4 n+2
where
A = |aij|n.

PROOF. Denote the determinant by B and apply the Jacobi identity to
cofactors obtained by deleting one of the last two rows and one of the last
two columns

Brtin+1 Bryint2 _BBn+17n+2;n+1,n+2

3.7.3
Bni2n+1 Bryon+to BA. ( :

Each of the first cofactors is a determinant with single borders

U1
V2
Bn+1,n+1 = [aij]n
Un
Y192 - Yn 1
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n n

= - Z Z vqysAqs-

q=1 s=1

Similarly,

n n
Bn+1,n+2 =+ Z Z UpysApsa

p=1 s=1
n n
Bn+2,n+1 =+ E § 'qurAqry
q=1 r=1
n o n
Bn+2,n+2 = - § § upxrApr~
p=1r=1

Note the variations in the choice of dummy variables. Hence, (3.7.3)
becomes

- Apr Ay
BA = Z UpVgTrYs AZT Ap

p,q,7,8=1

qgs

The theorem appears after applying the Jacobi identity and dividing
by A. a

FEzxercises

1. Prove the Cauchy expansion formula for A;;, namely

n n
Aij = apqAip,jq — Z Z ApslrgAipr,jgs:
r=1 s=1
where (p,q) # (i,7) but are otherwise arbitrary. Those terms in which
r = 4 or p or those in which s = j or g are zero by the definition of
higher cofactors.
2. Prove the generalized Cauchy expansion formula, namely

A = Nij niAij i + E E NijrsNpgnkAijpg,rshis
1<p<g<n 1<r<s<n

where Njjpnr is a retainer minor and A;jni is its complementary
cofactor.
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Particular Determinants

4.1 Alternants

4.1.1 Introduction

Any function of n variables which changes sign when any two of the vari-
ables are interchanged is known as an alternating function. It follows that
an alternating function vanishes if any two of the variables are equal.
Any determinant function which possess these properties is known as an
alternant.

The simplest form of alternant is

i) fa(@a) oo falan)
i)l = | 102 Sola) e el g

The interchange of any two x’s is equivalent to the interchange of two rows
which gives rise to a change of sign. If any two of the x’s are equal, the
determinant has two identical rows and therefore vanishes.

The double or two-way alternant is

flx,y)  flr,y2) - f(xa,yn)
Fan g = | fEm) SEw) o fa) |y
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If the z’s are not distinct, the determinant has two or more identical rows. If
the y’s are not distinct, the determinant has two or more identical columns.
In both cases, the determinant vanishes.

Illustration. The Wronskian |DI71(f;)],, is an alternant. The double
Wronskian [D]~" D}~ (f)l, is a double alternant, D, = 8/9z, etc.

Exercise. Define two third-order alternants ¢ and @ in column vector
notation as follows:

¢ = [c(x1) c(x2) c(a3)],
¥ = |C(x1) C(a2) C(zs)].
Apply 'Hopital’s formula to prove that
o (€ lela) ¢a) (a)
in (%) = G G oo

where the limit is carried out as x; — xz, 1 < ¢ < 3, provided the numerator
and denominator are not both zero.

4.1.2  Vandermondians
The determinant

Xn - ‘xi_1|n

1 oz a3 zp !
|1 oz 23 ap!
1 z, 22 il
=V(x1,22,...,2,) (4.1.3)

is known as the alternant of Vandermonde or simply a Vandermondian.

Theorem.
X, = H (s — xp).
1<r<s<n
The ewpression on the right is known as a difference—product and contains
(n/2) = 3n(n — 1) factors.

First Proof. The expansion of the determinant consists of the sum of n!
terms, each of which is the product of n elements, one from each row and
one from each column. Hence, X, is a polynomial in the x, of degree

0+14243+ -+ (n—1)=1inn-1).

One of the terms in this polynomial is the product of the elements in the
leading diagonal, namely

+ moxdad ol (4.1.4)
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When any two of the z, are equal, X,, has two identical rows and therefore
vanishes. Hence, very possible difference of the form (x5 — ;) is a factor
of X,,, that is,
Xn= K(zo—ax1)(xs —x1)(T4 —21) - (T — 1)
(z3 — z2) (T4 — T2) ** (Tf — T2)

(z4 —x3) -+ (Tn — 23)

=K H (s — ),

1<r<s<n

which is the product of K and in(n — 1) factors. One of the terms in the
expansion of this polynomial is the product of K and the first term in each
factor, namely

n—1

2,3
Kxozzzy - - x,,)

Comparing this term with (4.1.4), it is seen that K = 1 and the theorem
is proved.

Second Proof. Perform the column operations
C; = Cj — SCan_l

in the order j =n,n—1,n—2,...,3,2. The result is a determinant in which
the only nonzero element in the last row is a 1 in position (n,1). Hence,

X, = (_1)n_1Vn—1a

where V,,_; is a determinant of order (n — 1). The elements in row s of
V,.—1 have a common factor (x5 — x,). When all such factors are removed
from V,,_1, the result is

n—1
Xn=Xp1 H(xn - xr)a
r=1

which is a reduction formula for X,,. The proof is completed by reducing
the value of n by 1 repeatedly and noting that Xo = x5 — x7. O

FEzercises

1. Let
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Postmultiply the Vandermondian V,,(x) or V,(x1,x2,...,2,) by A,,
prove the reduction formula

Vn($17$27~~7$n) = Vn71(9€2 —X1,T3 —T1,...,Tn —xl) H(xp _xl)v

and hence evaluate V,,(x).
2. Prove that

—1 n—j Yr Ty
= ] .
1<r<s<n Ys s
3. If
z+c¢
Ty = )
p
prove that

ed = DI

nH

which is independent of z. This relation is applied in Section 6.10.3 on
the Einstein and Ernst equations.

4.1.3  Cofactors of the Vandermondian

Theorem 4.1. The scaled cofactors of the Vandermonian X, = |xij|n,

where x;; = x{71 are given by the quotient formula
X = (—1)"‘“3537]'
gni(xi)
where
n—1
gur(@) = S (—1) 01,
s=0

)

Notes on the symmetric polynomials (77(2
in Appendiz A.7.

and the function gn,-(x) are given

Proor. Denote the quotient by Fj;. Then,

n 1 n n
Zmiijk = T Z(_l)n_k";,n)kafil (Put k=n—s)
k=1 Ini\T5) 15
n—1
1 (n) n—s—1
= (—1)50, xS
gnj(x5) = e
_ gnj(xi)
(z5)
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Hence,
[ij]nlFjiln =1,
[Fyiln = i) ™"
= [X7']n
The theorem follows. O
Theorem 4.2.

X0 = (1) X100V,

n—j

PROOF. Referring to equations (A.7.1) and (A.7.3) in Appendix A.7,

X—Xn IH _mr

- anlfnfl(xn)
= anlgnn(xn)

From Theorem 4.1,

()" Xuoil

X(") — J
" gnn(mn)
= ()" X, 10
The proof is completed using equation (A.7.4) in Appendix A.7. a

4.1.4 A Hybrid Determinant

Let Y,, be a second Vandermondian defined as

= ‘yg_1|n

and let H,; denote the hybrid determinant formed by replacing the rth
row of X, by the sth row of Y,,.

Theorem 4.3.

Hrs _ 9nr (yé)
Xn gnr(mr)

PROOF.

Xo
Jj=1
1 n
= ey VTl (Putj=n—k)
nr j:1
1 n—1
o D
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This completes the proof of Theorem 4.3 which can be expressed in the
form

Hrs _ =1
X, n O
(ys - xr) 1:[1 (xr - xz)
iZr
Let
An = |U'L(lel|n
olo) ol o\,
_ ol o e s

oy ol SN

Theorem 4.4.
An — ( 1)%(”—1)/2X

PROOF.

where, from the lemma in Appendix A.7,

_1.(m) (m) _(m) (m)T
C,= [O’lj O3j O35 «ov Oy ]
J
= ZUI(]”) [v] P ol Pl L vi_p}T, Up = —Ip, o(()m) =1.
p=0

Applying the column operations

J
C; = Cj — Za,ﬁm)cj_k
k=1

in the order j = 1,2, 3, ... so that each new column created by one operation
is applied in the next operation, it is found that

Ci=[vlvjvj .. o', j=0,12....

Hence
Ay = |Ug_1|n

= (1) D2,

Theorem 4.4 follows. O
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4.1.5 The Cauchy Double Alternant
The Cauchy double alternant is the determinant

1

Ti —Yj

A, =

n
which can be evaluated in terms of the Vandermondians X, and Y,, as

follows.
Perform the column operations

C;=C;-C,, 1<j<n-1,

and then remove all common factors from the elements of rows and columns.
The result is

n—1
(yr - yn)
A, == B, (4.1.5)
Ul(xr — Yn)

where B,, is a determinant in which the last column is

[111...1)"

and all the other columns are identical with the corresponding columns of
Ap.
Perform the row operations

Ri=R;,-R,, 1<i<n-—1,

on B, which then degenerates into a determinant of order (n — 1). After
removing all common factors from the elements of rows and columns, the
result is

(Ty — )
B,="=—" A, . (4.1.6)

n—1
(ajn - yr>

1=7[1=L

Eliminating B,, from (4.1.5) and (4.1.6) yields a reduction formula for A,,
which, when applied, gives the formula

-1 n(n—l)/QX Y.
g IR
[T (zr —ys)

r,s=1
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FEzercises

1. Prove the reduction formula

n—1 n—1
A(”) A(" 1) ( - 1'7«) (ys
r—1 —Yn Ty —

r#i ;:é

w »
S

Hence, or otherwise, prove that

L f(y;)g(z:)

A e Pad )
where
) =TIt -,
r=1
g(t) =Tt —vs)
s=1
2. Let
f(x1)
f(z2)
Vn — [ai]]’ﬂ
Fa)
11 ... IR O
f(x1)
f(x2)
W, = [aij]n :
Fa)
-1 -1 -1 1
where
1 -y
(% ﬁ (2,
= H xr — yz
1=1
Show that

Un )
Ys

n+1

w=<W“WXYH i =Dy + 1),

=1
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W, = (-1)""+0/2x )y, H x4+ 1) (y; — 1).

=1

Removing f(z1), f(z2),..., f(zy), from the first n rows in V,, and W,
and expanding each determinant by the last row and column, deduce
that

1—zy;
—y;

n

— {H(ﬂ?i +1)(yi — 1)

+ H(z — 1) (y; + 1)} .

4.1.6 A Determinant Related to a Vandermondian
Let P,(x) be a polynomial defined as

-
z) = E agr st > 1.
s=1

Note that the coefficient is a,., not the usual a,.
Let

X, = |x;_1|n
Theorem.
|Pi(75)]n = (a11 a2z -+ ann) Xn-
PROOF. Define an upper triangular determinant U, as follows:
Up = |aijln, a;; =0, i>j,
= ai1 a2 Qpnp- (417)

Some of the cofactors of U; are given by

@ _ |0, j>1,
Uij —{Ui_l, j=i,Up=1.

Those cofactors for which j < ¢ are not required in the analysis which
follows. Hence, \UL(;) | is also upper triangular and

1)pr(2 n 1
\U( ), = {U1(1)U2(2) U, U =1, (4.1.8)
U Uy U, ;.

Applying the formula for the product of two determinants in Section 1.4,

U | PaC )l = laisln (4.1.9)
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where

Qij ZU@ (25)

r—1

= i Ui(:) Zasrx;_l (asr =0, s>7)
= st ! ZGMU(Z
=U; 237;71551‘

s=1

= inzil.
Hence, referring to (4.1.8),
|gijln = (Ur Uz~ Up)|zi |
= U,|UY ] X
The theorem follows from (4.1.7) and (4.1.9). O

4.1.7 A Generalized Vandermondian

et £ () )

n ki..kp=1

N

> "y

k=1

PROOF. Denote the determinant on the left by A, and put

()_yxzﬂ 2

in the last identity in Property (g) in Section 2.3.1. Then,

N

An: Z |y x;’:'_] 2’77,'
ki...kn,=1

Now remove the factor yi, xk ! from column j of the determinant, 1 < j <
n. The lemma then appears and is applied in Section 6.10.4 on the Einstein
and Ernst equations. |

4.1.8  Simple Vandermondian Identities

Lemmas.

a. V, =V,_ 1H n—2r), n>1 V(r)=1

-


Administrator
ferret
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V(@ g1, xn) = V(Ti41, Tiga, - - - Tn) H (xr — ).
r=t+1

(_1)n+1Vn

I1 (& — 1)

r=2

. V(n) = (—1)n+iV($1, ey Li—1s L1y e - ,{En)

V) = ()Y (29, 2, 1) =

.
=— ()n , 1>1
[ (zi—z) I (20 — i)
r=1 r=i+1

. If {j1 jo---jn} is a permutation of {1 2...n}, then

1 2 -+ n
Viz,x,...,x; ) =sgns . . .
( J1 J2 Jn) g {]1 J2 o In

The proofs of (a) and (b) follow from the difference—product formula

} V(Z‘l,xg, e ,xn).

61

in Section 4.1.2 and are elementary. A proof of (c¢) can be constructed as

follows. In (b), put n = m—t+1, then put , = y,44-1, 7 =1,2,3,...,
change the dummy variable in the product from r to s using the formula

and

s=r+1t— 1. The resut is (c) expressed in different symbols. When ¢ = 1,

(c) reverts to (b). The proofs of (d) and (e) are elementary. The proof

of (f) follows from Property (c) in Section 2.3.1 and Appendix A.2 on

permutations and their signs.

Let the minors of V;, be denoted by M;;. Then,

Mi = Mzn = V((El, ey Li—1, T4y - - .,(En),
M, =My, =V,_1.

Theorems.
m
V(x x R ) VA
a.HMT: (m-i-l, m+2, ) n) n ’ 1<m<n-—1
r=1 V(thﬂg,...,xm)
n
bfﬂﬂzwﬁ
r=1
m —
C. H My, = V(kaH’kaw’ e T, )V !
re1 V(Z‘kl,xkz,...,ka)
ProOOF. Use the method of induction to prove (a), which is clearly valid

when m = 1. Assume it is valid when m = s. Then, from Lemma (e) and
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referring to Lemma (a) with n — s 4+ 1 and Lemma (c) with m — s+ 1,

+1 -
SHM _ Vn V(-rs+1axs+27--~7xn)vvf !
" 5 i V(xy,xe, ..., xs)
r=1 H (zs-&-l — 177«) H (-Tr - ms-&-l)
r=1 r=s+2
o Vns V(zs-&-la L5425 axn)
- s n
[V($1,1’27...,$5) H (xs+1 _mr)] H (mr _xs+1)
r=1 r=s+2
o V(xs+27l's+3w”7xn) ﬁs
V(x1,.’1}2, e )xs-‘rl)

Hence, (a) is valid when m = s 4+ 1, which proves (a). To prove (b), put

m=mn—11n (a) and use M,, = V,,_1. The details are elementary.
The proof of (c) is obtained by applying the permutation
1 2 3 -+ n
ki ko ks -+ ky

to (a). The only complication which arises is the determination of the sign
of the expression on the right of (c). It is left as an exercise for the reader
to prove that the sign is positive. a

Exercise. Let Ag denote the determinant of order 6 defined in column
vector notation as follows:

T .
C; = [a; aja;j a;zj bj byy; bjy| . 1<j<6.
Apply the Laplace expansion theorem to prove that
Ag = Z Uaiajakbpbqbrv(xi’xﬁxk)v(ypayqyyr)»
i<j<k
p<g<r
where
o — som 1 2 3 4 5 6
IR I T

and where the lower set of parameters is a permutation of the upper set.
The number of terms in the sum is (g) = 20.
Prove also that

As¢ =0 when a; =0;, 1<j<6.

Generalize this result by giving an expansion formula for A,, from the
first m rows and the remaining (2n — m) rows using the dummy variables
k., 1 <1 < 2n. The generalized formula and Theorem (c) are applied in
Section 6.10.4 on the Einstein and Ernst equations.
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4.1.9  Further Vandermondian Identities
The notation
Ny ={12---m},
m ={J1 J27Jm}b
m = 1kt k2 kb,

where J,,, and K, are permutations of IV,,, is used to simplify the following
lemmas.

Lemma 4.5.

m

kil N
V(xl,xg,...,xm):ngn{Jm} x;:l
g m

r=1

Proor. The proof follows from the definition of a determinant in
Section 1.2 with a;; — mg_l. a

Lemma 4.6.
N
V(a:jl,sz,...,xjm) :sgn{J }V(xl,xg,...,xm).

This is Lemma (f) in Section 4.1.8 expressed in the present notation with
n—m.

Lemma 4.7.

Ny | &
ZF gy Ly ,xjm) = { J:Z } ZF(le,sz, e ,:cjm).
Im Im
In this lemma, the permutation symbol is used as a substitution operator.

The number of terms on each side is m2.

Nlustration. Put m = 2, F(x;,,7;,) = x;, + =5, and denote the left and
right sides of the lemma by P and @ respectively. Then,

P=x; + a:il + Tp, —I-.Z‘iz
Q= {kll ;2}(z1+x§+z2+x§)
=P
Theorem.

K','L
b. Z(
J.

m r=1

; ) ('Ij17$j27"'7:17jm) = [V(xl,x27...,:177,,,)]2,

\::]3 H::]

) (a?jl,xj27 e ,:ij) = [V(.’Ekl,xkz, e 7ka)]2'
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PROOF. Denote the left side of (a) by S,,. Then, applying Lemma 4.6,

N m N
S = Z (H x;-’r1> Sgn{ Jm } V(zy,22,. .., Tm)
Im \r=1 m
Np, N m
=V(z1,22,...,2Zm) ngn{ J;: } H x;—l
Im r=1
The proof of (a) follows from Lemma 4.5. The proof of (b) follows by
applying the substitution operation { ]jm } to both sides of (a). 0O

This theorem is applied in Section 6.10.4 on the Finstein and FErnst
equations.

4.2  Symmetric Determinants

If A = |aij|n, where aj; = a;;, then A is symmetric about its principal
diagonal. By simple reasoning,
Aji = Aij,
Ajs,ir = Air,jsa
etc. If ant1—jnt1—i = asj, then A is symmetric about its secondary diago-
nal. Only the first type of determinant is normally referred to as symmetric,
but the second type can be transformed into the first type by rotation
through 90° in either the clockwise or anticlockwise directions. This oper-

ation introduces the factor (71)"(”*1)/2, that is, there is a change of sign
ifn=4m+2and 4m+3, m=0,1,2,....

Theorem. If A is symmetric,
Z qu,rs =0,
ep{p,q,r}

where the symbol ep{p,q,r} denotes that the sum is carried out over all
even permutations of {p,q,r}, including the identity permutation.

In this simple case the even permutations are also the cyclic permutations
[Appendix A.2].

PROOF. Denote the sum by S. Then, applying the Jacobi identity
(Section 3.6.1),
AS = AApgrs + Algrps + AArpgs

— APT APS AQP Aqs
Aqr Aqs Arp Ars

Arq Ars

+
AP‘] APS

"
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qu Aq5
Ap'r Ars

Aqr Ars
qu APS

"

The theorem follows immediately if A # 0. However, since the identity is
purely algebraic, all the terms in the expansion of S as sums of products
of elements must cancel out in pairs. The identity must therefore be valid
for all values of its elements, including those values for which A = 0. The
theorem is clearly valid if the sum is carried out over even permutations of
any three of the four parameters. O

Notes on skew-symmetric, circulant, centrosymmetric, skew-centrosym-
metric, persymmetric (Hankel) determinants, and symmetric Toeplitz
determinants are given under separate headings.

4.3 Skew-Symmetric Determinants

4.3.1 Introduction

The determinant A, = |a;;|, in which aj; = —a;;, which implies a;; = 0,
is said to be skew-symmetric. In detail,

L4 a12 aiz ai4
—ai2 L4 a23 a24
—a13 —as: . a:
A, =| 18 23 34 : (4.3.1)

—G14 —Q24 —Qa34 i

Theorem 4.8. The square of an arbitrary determinant of order n can be
expressed as a symmetric determinant of order n if n is odd or a skew-
symmetric determinant of order n if n is even.

Proor. Let
A= |a¢j |n
Reversing the order of the rows,

n
A= (—D)Nanp1-ijln, N = [5] . (4.3.2)

Transposing the elements of the original determinant across the secondary
diagonal and changing the signs of the elements in the new rows 2,4,6, ...,

A= (_I)N‘(_1)i+1an+1—j,n+1—i‘n- (4-3-3)

Hence, applying the formula for the product of two determinants in
Section 1.4,

A% = |an+1*i,j|n|(_1)i+1an+1fj,n+1fi|n
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= |eijlns

where

n

cij = Z(*1)r+1an+1—i,r¢1n+1—j,n+1—r (putr=n+1-ys)

r=1
= (_1)n+1 Z(_1)s+1an+lfj,san+17i,n+1fs
s=1
= (—=1)"*ej (4.3.4)
The theorem follows. O

Theorem 4.9. A skew-symmetric determinant of odd order is identically
zero.

Proor. Let A5, , denote the determinant obtained from As,_; by
changing the sign of every element. Then, since the number of rows and
columns is odd,

*
A5y = —Azp-1.

But,
Appy = AzTn—1 = Azp-1.
Hence,
Asn—1 =0,
which proves the theorem. O

The cofactor AS " is also skew-symmetric of odd order. Hence,

AP = 0. (4.3.5)

i
By similar arguments,

2n) (2n)
Aji - 7Aij ’

AR = 4B, (4.3.6)

It may be verified by elementary methods that
Az = aly, (4.3.7)
Ay = (a12a34 — a13024 + a14023)°. (4.3.8)

Theorem 4.10. As, is the square of a polynomial function of its
elements.

ProoOF. Use the method of induction. Applying the Jacobi identity
(Section 3.6.1) to the zero determinant A, 1,

A=) 4@n=1)
ij

(Z3

=0
(2n—1) (2n—1) ’
Aji Ajj
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en—1)1%2 _ ,(@2n-1) 4(2n-1)
[Aij } = ARrTD g2, (4.3.9)
It follows from the section on bordered determinants (Section 3.7.1) that
T
. 2n—1 2n—1
: 2n—1
Aon1 : == 3 AP Vay,. (4.3.10)
......... Ton—1 i=1 j=1
Y- Yan—1 L4 on
Put ; = a;2, and y; = —a; 2,. Then, the identity becomes
2n—1 2n—1
Agn = Z Z Agl?n_l)awnaj,gn (4311)
i=1 j=1
2n—1 2n—1 1/2
= Z [Agn_l)Aﬁn_l)} A;.2n0j,2n
i=1 j=1
[ @12 R
2n—1 2n—1
- [ a3
i=1 j=1
2n—1 . 2
= |3 [l aml : (4.3.12)
i=1

However, each AS"_U, 1<i<(2n—1), is a skew-symmetric determinant
of even order (2n — 2). Hence, if each of these determinants is the square
of a polynomial function of its elements, then As, is also the square of a
polynomial function of its elements. But, from (4.3.7), it is known that A
is the square of a polynomial function of its elements. The theorem follows
by induction. O

This proves the theorem, but it is clear that the above analysis does not
yield a unique formula for the polynomial since not only is each square root
in the series in (4.3.12) ambiguous in sign but each square root in the series
for each Ag?”_l), 1 <i<(2n — 1), is ambiguous in sign.

A unique polynomial for A;{f, known as a Pfaffian, is defined in a later
section. The present section ends with a few theorems and the next section
is devoted to the solution of a number of preparatory lemmas.

Theorem 4.11. If
Aji = —Qij,
then

a. |ai; + xl2n = |aijlon,

b. |aij —l—.ﬁ‘grn,l =x X (

the square of a polyomial function
of the elements a;;
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PrROOF. Let A, = |a;j|n, and let E,1; and F,41 denote determinants
obtained by bordering A,, in different ways:

1 1 1 1
—X [ ] ai2 ais
Epp1=|—2 —a12 L d a23

—r —a13 —a23 @
.. N
and F,, 11 is obtained by replacing the first column of E, 1 by the column

T

0 -1 -1 1] .

Both A,, and F},; are skew-symmetric. Then,
Eni1=A, +2F,41.
Return to F,, 41 and perform the column operations
C,=C;-Cy, 2<j<n+l,

which reduces every element to zero except the first in the first row and
increases every other element in columns 2 to (n + 1) by z. The result is

B = |aij + $|n
Hence, applying Theorems 4.9 and 4.10,

|aij + xlon = Aon + TFon41
= A2n7
la;; + xlon—1 = Asn_1 + xFoy,

=akFy,.
The theorem follows. a
Corollary. The determinant
A =laijlon, where a;; +aj; =2z,
can be expressed as a skew-symmetric determinant of the same order.

PROOF. The proof begins by expressing A in the form

Y a12 a3 a14
2r — a2 x a23 a24
A=|2z— a3 2x — as3 X as4

20 —a14 2x—asy 2x—azy x
“lon
and is completed by subtracting x from each element. a
Let

A, = |aij|n7 Qi = —Qq45,
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and let B,y; denote the skew-symmetric determinant obtained by
bordering A,, by the row

-1 -1 -1.--=10]

below and by the column

T

111---10]

on the right.

Theorem 4.12 (Muir and Metzler). B,y is expressible as a skew-
symmetric determinant of order (n — 1).

PrROOF. The row and column operations
R;=R;,+a,Rnt1, 1<i<n-1,
C;=Cj+anCny1, 1<j<n-—1,

when performed on B,yi, result in the elements a;; and aj;; being

transformed into a;; and aj;, where

*
a;s

§ = Qi) — Qin +ajn, 1<i<n-—1,

* .
Qj; = Qj; — Qjn + Qin, 1<5j<n—-1,
. *
= —aj;.

In particular, aj,, = 0, so that all the elements except the last in both
column n and row n are reduced to zero. Hence, when a Laplace expansion
from the last two rows or columns is performed, only one term survives and
the formula

BnJrl - |CL:J |n71

emerges, which proves the theorem. When n is even, both sides of this
formula are identically zero. a

4.3.2  Preparatory Lemmas
Let

By, = |bijln
where
1, i<j—1
bij:{O, i=7—1

~1, i>j—1
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In detail,
-1 o 1 1 1 1
-1 -1 e 1 1 1
B, — -1 -1 -1 e 1 1
-1 -1 -1 -1 —1 o
-1 -1 -1 -1 -1 -11,
Lemma 4.13.
B, =(—-1)".

PrOOF. Perform the column operation
C,=Cy—-Cy

and then expand the resulting determinant by elements from the new Cs.
The result is

Bn = *Bn—l = Bn—2 — ... = (71)’ﬂ*1B1.
But B; = —1. The result follows. -

Lemma 4.14.

2n
a S 2,
k=1

i—1

b. Z(_l)j+k+1 = (_l)jéi,eveny
k=1
2n ) )

C. Z(_l)J+k+1 = (_1)J+15i,even;
k=1

where the § functions are defined in Appendix A.1. All three identities follow
from the elementary identity

q

Z(_l)k = (_l)péqu,even' O

k=p
Define the function E;; as follows:
(_]_)iJerrl7 ’L<_j
E;j =140, . 1=
_(_1)1-&-]—&-1’ i>j.

Lemma 4.15.

2n
a. ZEJIC = (_1)j+17
k=1
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1 . B

b. Z 74165 0ad, 1<
- ( )J+16i,cvcnv 1> .7

1 . .

C. ZEjk ]Jr 51 evens <]

= (=16 0aa, 1>

PROOF. Referring to Lemma 4.14(b,c),

ZEJk_ZEJk+E]J+ Z Ejk

Jj—1 2n
2 : j+k+1 +O+ § ]+k+1
k=1 —j+1

1) ( j,even + 6] odd)
—1y*

which proves (a).

If: <y,
2n 2n i—1
> r- Y25
k=i k=1 k=1
i—1
= ( 1)J+1 +Z(71)J+k+1
k=1
= (=1)7"(1 = & even)
= (=115, oaa-
Ifi >3,
2n 2n
ZEjk - Z(_l)J+k+1
k=i k=i

= (*1)j+16i,evena

which proves (b).

S - 323

Part (¢) now follows from (a) and (b).

Let F, be a skew-symmetric determinant defined as follows:
En = Igij|n7

where €;; = 1, 7 < j, and €;; = —¢;;, which implies ¢;; = 0.

71
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Lemma 4.16.
E,, = 0n,even-
PrROOF. Perform the column operation
C,=C,+Cy,
expand the result by elements from the new C,,, and apply Lemma 4.13

E,=(-1)""'B, 1 —E,_,
=1-E,
=1- (1 - En—2)
=F, o=F, 4=FE, g, etc.

Hence, if n is even,
and if n is odd,

which proves the result. |

Lemma 4.17. The function E;; defined in Lemma 4.15 is the cofactor of
the element ;5 in Eay,.

Proor. Let
2n
)\ij = ZsikEjk'
k=1

It is required to prove that A;; = d;;.

i—1 2n
Aij = Z&'kEjk +0+ Z eitEjk
k=1 k=i+1

i—1 2n
=- Z Ejr + Z Ejk
k=1

k=i+1

2n i—1
k=1 k=1
Ifi < j,
)\'LJ = (71)]4»1 [5’L,Odd - 5i,cvcn + (71)2]
=0.
Ifi>j,

)‘ij = (_1)j+1 [5i,even - 5i,odd — (—1)i]
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I
o

Aii

I
—_ o~

_1)i+1 [6i,odd - 6i,even}

This completes the proofs of the preparatory lemmas. The definition of a
Pfaffian follows. The above lemmas will be applied to prove the theorem
which relates it to a skew-symmetric determinant. O

4.3.8  Pfaffians

The nth-order Pfaffian Pf, is defined by the following formula, which
is similar in nature to the formula which defines the determinant A,, in
Section 1.2:

1 2 3 4. (2n-1) 2n
Pf, = sgn i i Qi i v - Qg 4

(4.3.13)
where the sum extends over all possible distinct terms subject to the
restriction

1<ig<js<n, 1<s<n. (4.3.14)

Notes on the permutations associated with Pfaffians are given in
Appendix A.2. The number of terms in the sum is

[Tes—1)= (2n)! (4.3.15)

it 2!
Hlustrations
Pf1:ngn L2 a;; (1 term)
i g
= a1z,
Ay = [Pf]?

1 2 3 4
Pfy = ngn { i i i g }ailjlaizjz (3 terms). (4.3.16)

Omitting the upper parameters,

Pfo = sgn{l 2 3 4}aj2a34 + sgn{l 3 2 4}aj3a24 + sgn{l 4 2 3}ai4a93
= Q12034 — Q13024 + Q14023
Ay = [Pfy)?. (4.3.17)

These results agree with (4.3.7) and (4.3.8).
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The coefficient of a,2,, 1 < 7 < (2n — 1), in Pf,, is found by putting
(is,Js) = (r,2n) for any value of s. Choose s = 1. Then, the coefficient is

E :O—T‘G‘iﬂ'z Qigjg " Qi g s

where
{1 2 3 4 ... (2n-1) 2n}
Opr = SgI . . . .
r 2n is jo ... in Jn ),
12 3 4 (2n—1) 2n
= sgn . .
Tt J2 13 Jno 20 f,
1 2 3 4 ... 2n-1
= sgn o ( ) ) (4.3.18)
r 12 J2 113 ... In 9
n—1
1 23 4 ... —-Dr(r+1) ... 2n—1
:(—1)T+1sgn L ( n ) ( . ) , r>1
2 J2 13 J3 ... T e In o1
12 3 4 ... (r—-Dr+1) ... 2n—-1
=(=1)"tsgn{ T 7 ( I ) ( ) ) , r>1.
12 J2 13 J3 ... In —_—
From (4.3.18),
{1 2 3 4 ... (2n—1)}
o1 = sgn . .. .
1 12 J2 13 In om—1
{2 3 4 ... (Qn—l)}
=sgnq . o . .
12 )2 13 In 2m—2
Hence,
2n—1
Pf, = > (1) ap2n PF", (4.3.19)
r=1
where
123 4 - (r—L(r+1) - 2n—-2) 2n—1
pr) ~ g 1 2 3 4 DD e 2= (2n-)
2 J2 13 J3 in In 22
XQigjoAiggg " " Qipgns 1<r<2n-1, (4320)

which is a Pfaffian of order (n — 1) in which no element contains the row
parameter 7 or the column parameter 2n. In particular,

n 1 2 3 4 - (2n-3) (2n—2)}
PEY | = o0 . .
2=t Z wen { 2 J2 13 J3 v in In P
— Pf,_,. (4.3.21)

Thus, a Pfaffian of order n can be expressed as a linear combination of
(2n — 1) Pfaffians of order (n — 1).
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In the particular case in which a;; = 1, ¢ < j, denote Pf,, by pf, and
denote Pf™ by pf(™,

Lemma.
pf, = 1.
The proof is by induction. Assume pf,, = 1, m < n, which implies
pf(™ = 1. Then, from (4.3.19),
2n—1
pfn = Z (_1)T+1 =1
r=1

Thus, if every Pfaffian of order m < n is equal to 1, then every Pfaffian of
order n is also equal to 1. But from (4.3.16), pf; = 1, hence pf, = 1, which
is confirmed by (4.3.17), pf; = 1, and so on.

The following important theorem relates Pfaffians to skew-symmetric
determinants.

Theorem.

Ay, = [Pf)2

The proof is again by induction. Assume
Ao = [PEp)?, m <,
which implies
A7V =[]
Hence, referring to (4.3.9),

[A(2n71)]2 _ A(?nfl)A@nfl)

ij i 3i
_ (n)pe(n)72
— [PV PE)]
(2n—1)
ij _
7Pf(.”)Pf(.”) +1 (4.3.22)
i J
for all elements a;; for which aj; = —a;;. Let a;; =1, i < j. Then

Az(‘?n_l) N Ei(an—l) _ (71)243"
T
Hence,
(2n—1) (2n—1)
Aij _ E;;
PEMPE™  pft pfl)

= (=1)"7, (4.3.23)
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which is consistent with (4.3.22). Hence,
(2n—1) _ i+ipe) pp(n)
ALY = ()PP (4.3.24)
Returning to (4.3.11) and referring to (4.3.19),

2n—1 2n—1
Agy = [Z (—1)i+1Pf§n)ai72n] > (PP a0,

i=1 j=1

2n—1 2
= [Z (—1)i+1Pfl(-n)ai’2n‘|

i=1

= [Pf,)%,
which completes the proof of the theorem.

The notation for Pfaffians consists of a triangular array of the elements
a;; for which 7 < j:

Pf, =lai2 a1z aus ai,.2n
a3 a24 ce as on
a3z4 cee as on . (4325)
a2n—1,2n o2n—1

Pf, is a polynomial function of the n(2n — 1) elements in the array.

Lllustrations
From (4.3.16), (4.3.17), and (4.3.25),
Pfy = |ai2| = a1z,
Pfy = |a12 a1 aius
Qaz3 A24
as4
= 12034 — (13024 + A14023.
It is left as an exercise for the reader to evaluate Pfs directly from the defini-
tion (4.3.13) with the aid of the notes given in the section on permutations
associated with Pfaffians in Appendix A.2 and to show that
Pf; = | a2 a1z Qai4 a5 Aaie
G23 G24 Q25 Q26
az4 G35 436

45 Q46

as6
= Q16| @23 Q24 G25 26| a13 @14 0A15 aze| @12 A14 Aais
34 Q35| — as4 35|+ Q24 Q25

Q45 Q45 45
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Cl46|a12 a3 ais as6| A12  a13  A14
- a3 a5 |+ a23 0G24
ass a34
5
=3 (=1)"aPfY, (4.3.26)
r=1

which illustrates (4.3.19). This formula can be regarded as an expansion
of Pf3 by the five elements from the fifth column and their associated
second-order Pfaffians. Note that the second of these five Pfaffians, which
is multiplied by agg, is not obtained from Pf3 by deleting a particular row
and a particular column. It is obtained from Pf3 by deleting all elements
whose suffixes include either 2 or 6 whether they be row parameters or
column parameters. The other four second-order Pfaffians are obtained in
a similar manner.

It follows from the definition of Pf,, that one of the terms in its expansion
is

+ 12034056 - - - A2n—1,2n (4.3.27)

in which the parameters are in ascending order of magnitude. This term is
known as the principal term. Hence, there is no ambiguity in signs in the
relations

Pf, = AL/?
P = [AZ"D]V2 (4.3.28)

Skew-symmetric determinants and Pfaffians appear in Section 5.2 on the
generalized Cusick identities.

FEzercises

1. Theorem (Muir and Metzler) An arbitrary determinant A,, = |a;j|n
can be expressed as a Pfaffian of the same order.
Prove this theorem in the particular case in which n = 3 as follows: Let

_ 1 _
bij = 5(aij + aji) = bji,
_ 1 _
cij = g(ai; — aji) = —¢ji.
Then
bzi = G4,
cii = 0,
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Applying the Laplace expansion formula (Section 3.3) in reverse,

aii a12 a13
a21 a22 a23
A2 — a3y a32 a33
37 —b —b —b
31 32 33 (A33 (23 a13
—ba1  —baa —baz azx az a2
—bi1 —biz —biz az; axzn ann

Now, perform the column and row operations
C;:Cj+C7_j, 4<j5<6,
R,=R;,+R;;, 1<i<3,
and show that the resulting determinant is skew-symmetric. Hence,
show that
Az = |012 c13 bz bz bn
C23 bz baa b:

b3z bsx  bax
C23 (13

. Theorem (Muir and Metzler) An arbitrary determinant of order 2n

can be expressed as a Pfaffian of order n.

Prove this theorem in the particular case in which n = 2 as follows:
Denote the determinant by Ay, transpose it and interchange first rows
1 and 2 and then rows 3 and 4. Change the signs of the elements in the
(new) rows 2 and 4. These operations leave the value of the determinant
unaltered. Multiply the initial and final determinants together, prove
that the product is skew-symmetric, and, hence, prove that

Ay = |(N12,12 + Nig3a) (Niz12+ Nizsa) (Nig12 + Nigza)
(Nas 12 + Naz34)  (Noa12 4+ Nog 34)
(N3a,12 + N3434)

where N;; s is a retainer minor (Section 3.2.1).

. Expand Pf3 by the five elements from the first row and their associated

second-order Pfaffians.

. A skew-symmetric determinant A,,, is defined as follows:

Agy = |aij\2m

where

Prove that the corresponding Pfaffian is given by the formula

Pfo,_1 = H Qij,

1<i<j<2n
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that is, the Pfaffian is equal to the product of its elements.

4.4 Circulants

4.4.1 Definition and Notation

A circulant A,, is denoted by the symbol A(aq,as, as, ... ,ay,) and is defined
as follows:

A, = A(ar,az,a3,...,a,)
aq a9 as cee Qp,
27 a a2 -+ Qp-1
=|ap-1 @, ai -+ Qp_2| . (4.4.1)
a2 az Qa4 - ai

n

Each row is obtained from the previous row by displacing each element,
except the last, one position to the right, the last element being displaced
to the first position. The name circulant is derived from the circular nature
of the displacements.

An = ‘aij|na
where

Aj41—1i, ] Z iv
a;; = .. 4.4.2
* { Ongjri—i, J <t ( )

4.4.2  Factors

After performing the column operation
1=Y_Cj (4.4.3)
j=1

n

it is easily seen that A, has the factor > a, but A, has other factors.
r=1

When all the a, are real, the first factor is real but some of the other

factors are complex.
Let w, denote the complex number defined as follows and let @, denote
its conjugate:

wr =exp(2rir/n) 0<r<n-1,

_ T
_wh

n __
w, =1,
wrwy =1,

wo = 1. (4.4.4)
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wy is also a function of n, but the n is suppressed to simplify the notation.
The n numbers

Lwe,w?, .o wtt (4.4.5)

are the nth roots of unity for any value of r. Two different choices of r give
rise to the same set of roots but in a different order. It follows from the
third line in (4.4.4) that

n—1
d wi=0, 0<r<n-1 (4.4.6)
s=0
Theorem.
n—1 n
A, = wf_laé
r=0 s=1
Proor. Let
n
Zp = Zwﬁflas
s=1
=a; +weag +wlaz 4+ W la,, Wt =1 (4.4.7)

Then,

WrZr = Qp +wraq + wfag + -+ w{}‘lan,l
2, 2 n—1
WiZp = Qp—1 + wWrGp +wiap + -+ w)' " “ap_2 (4.4.8)

w}?flzr =as +wraz + wfa4 4+ 4 wf’lal

Express A,, in column vector notation and perform a column operation:
A, = |C1 C, C3---Cn‘
= |C/1 CQ C3 t 'Cn|7

where
n
/I J—1¢c.
C) = E wl™ C;
=1
a1 as as Qp,
29 ai az Apn—1
= | @n-1| 4 Wy an | 4 wz ar | 4+ ... 4 w:"_l Ap—2
as as Gy a1
=z, W,,
where

W, = [lw, o?-wp 1" (4.4.9)



Hence,

A= Zr‘W»,o Cg CgCn|

It follows that each z,., 0 < r <n — 1, is a factor of A,,. Hence,

n—1
A, =K H Zr,
r=0

4.4 Circulants
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(4.4.10)

(4.4.11)

but since A,, and the product are homogeneous polynomials of degree n
in the a,, the factor K must be purely numerical. It is clear by comparing
the coefficients of af on each side that K = 1. The theorem follows from

(4.4.7).

Illustration. When n = 3, w, = exp(2rit/3), w3

w():l,

w = wy = exp(2ir/3),
2

wg = exp(4in/3) =wi =w

wi=w =w.

Hence,
a; az ag
As=las a1 ap
Gz a3z ai

= (a1 + as + a3)(a; + wias + w?as)(ay + weay + wias)

=1.

:(Ij’

d

= (a1 + az + a3)(a; + way + w?as)(a; + was + was). (4.4.12)

Exercise. Factorize Ajy.

4.4.8 The Generalized Hyperbolic Functions

Define a matrix W as follows:

W = [w(rfl)(sfl)]n (w=uw1)
1 1 1 1
1 w w? w?
11 w? wt wb
I w3 w8 w?
1 wn—l w2n—2 an—?)
Lemma 4.18.
1
Wl=-W
n

PROOF.
W = [w—(r—l)(s—l)]

n'

n—1
2n—2
w?m—?)

w(n_1)2

(4.4.13)
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Hence,

WW = [ars]nv

where

Qe = Z W=D (E=1)—=(t=1)(s—1)

_ Zn:wafl)(rfs)?

= wk‘
t=1
=0, sF# .
Hence,
[ars] = nl,
WW = nl

The lemma follows.

(4.4.14)

(4.4.15)

a

The n generalized hyperbolic functions H,., 1 < r < n, of the (n — 1)
independent variables x,, 1 <7 < n—1, are defined by the matrix equation

H= lWE7
n
where H and E are column vectors defined as follows:
H=[H, Hy H...H,]"
E=[E B Bs...E,]",

i

E, =exp

Lemma 4.19.

PROOF. Referring to (4.4.15),

n—1
Zw(rl)txt] , 1<r<n.
t=1

(4.4.16)

(4.4.17)
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n n—1

Z Z w(r—l)txt

t=1

n—1 o i w(rl)t]

t=1 r=1
= exp(0).

= exp

1
=
I
—
| S

= exp

L—— |

The lemma follows. |
Theorem.

A= A(Hy,Hs,Hs,...,H,) =1.
PROOF. The definition (4.4.16) implies that

H, Hy Hs; --- H,

Hn H1 H2 Hn—l
A(HlaH27H3a"'aHn): anl Hn Hl Hn72

Hy, Hsy Hy --- H;

=W 'diag(E, F» F3...E,)W. (4.4.18)
Taking determinants,

n
A(Hy, Ha, Hs, ..., H,) = |[W'W| H E,.
r=1

The theorem follows from Lemma 4.19. O

IHllustrations

When n =2, w = exp(in) = —1.

1 1
vl
-1 _1
W == §W,
E, = exp[(—l)rflasl], r=1,2
Let 1 — x; then,
E1 —GI,
E2 =€ z,
H; _1 1 1 e
Hy| 2|1 —1||e®|’
Hy=chz
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the simple hyperbolic functions;

_|[Hr Haf
A(Hy Hy) = |t P =1 (4.4.19)
When n = 3, w, = exp(2rin/3),
wf =1,
w = wy = exp(2ir/3),
w? = w,
ww = 1.
1 1 1
W=|1 w w?|,
1 W w
-1_1
W™ =3W,
2
E, =exp lz W=Dty ]
t=0
= exp [wrflxl + W xg]
Let (z1,22) — (z,y). Then,
Ey = exp(z +y),
Es = exp(wx + ©y),
E3 = exp(wr + wy) = Es. (4.4.20)
Hy 1 1 1 Ey
Hy| =31 w | |E|, (4.4.21)
Hj 1 0 w FE3
H1 — %[ew-ﬁ-y + eww-&-@y + edzx-i—wy}’
Hy = §[e"TY + we™ Y e tev]
Hs = [V 4 e Y 4 wePrtev]. (4.4.22)

Since the complex terms appear in conjugate pairs, all three functions are
real:

H, H, Hj3
A(Hy, Ho, Hy) = | Hy Hy, Hy| = 1. (4.4.23)
H, Hy H,

A bibliography covering the years 1757-1955 on higher-order sine func-
tions, which are closely related to higher-order or generalized hyperbolic
functions, is given by Kaufman. Further notes on the subject are given by
Schmidt and Pipes, who refer to the generalized hyperbolic functions as
cyclical functions and by Izvercianu and Vein who refer to the generalized
hyperbolic functions as Appell functions.
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FEzercises

1. Prove that when n = 3 and (z1, z2) — (,y),

0
%[Hsz,Hg] = [Ha, H3, Hy],
0
@[Hl,H27H3] = [Hs, H, Ho]

and apply these formulas to give an alternative proof of the particular
circulant identity

A(Hy, Hs,H3) = 1.

If y = 0, prove that

H, =
'7
— (3r)
> x37‘+2
H =
? ; (3r+2)V
Sl 3r4+1
x
Hey
|
— (3r+1)

2. Apply the partial derivative method to give an alternative proof of the
general circulant identity as stated in the theorem.

4.5 Centrosymmetric Determinants

4.5.1 Definition and Factorization
The determinant A,, = |a;;|n, in which
Ant1—in+1—j = Gij (4.5.1)

is said to be centrosymmetric. The elements in row (n+1—14) are identical
with those in row 4 but in reverse order; that is, if

R; = [ail A2 ... Qin—1 ain]a
then
Rot1-i = [@in Gip—1...ai2 ai1].

A similar remark applies to columns. A4, is unaltered in form if it is trans-
posed first across one diagonal and then across the other, an operation
which is equivalent to rotating A, in its plane through 180° in either di-
rection. A, is not necessarily symmetric across either of its diagonals. The
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most general centrosymmetric determinant of order 5 is of the form

ap Gz a3z a4 Gs
b1 by bs by bs
A5= C1 C2 C3 C2 C1 |- (452)
bs by b3 b2 by
as a4 a3 a2 ap

Theorem. FEvery centrosymmetric determinant can be factorized into two
determinants of lower order. As, has factors each of order n, whereas
Agpy1 has factors of orders n and n + 1.

PROOF. In the row vector
R, +Ry1- = [(aﬂ + ain) @iz + ain—1) -+ (i1 + ai2)(ain + ail)]v

the (n + 1 — j)th element is identical to the jth element. This suggests
performing the row and column operations

R; =R; + R7L+1—i7 1<i< [ln} ;

2
C;=C;—Cni1y, [s(n+1)]+1<j<n,
where [%n] is the integer part of %n The result of these operations is
that an array of zero elements appears in the top right-hand corner of A,,,
which then factorizes by applying a Laplace expansion (Section 3.3). The
dimensions of the various arrays which appear can be shown clearly using
the notation M,.,, etc., for a matrix with r rows and s columns. 0, is an
array of zero elements.

R 1]
A2n _ nn nn

Snn Tnn on

= |R7m| ‘Tnn|> (4.5.3)
R;, 0 n

Agpy1 = ‘ bl ,TIL‘tl
n,n+1 nn  |2n+1
= |R:l+1,n+1| ‘T’TI7L| (454)

d

The method of factorization can be illustrated adequately by factorizing
the fifth-order determinant As defined in (4.5.2).

a1 +as as+as 2a3 ag+as as+a;

by +bs by +bs 2b3 by+by bs+ by
As=| Cco c3 c2 c1
bs by b3 by by

as aq as ag ay



a1 + as
b1 + bs
C1

as

a1 + as
b1 + bs

C1
3 |E|[F,

where
a1

by
C1

F[bQ
az

E =
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az +as 2as . U
by +bs  2b3 ° °
Co C3 [ ] [ ]
by bs  ba—0bs b1 —bs
Gy az G2 —a4 ap —as
as +ag 2as
by+ by 2bs by —by b1 —bs
g — a4 a1 — Qs
C2 Cc3
(4.5.5)
as as as a4 as
by b3 |+ |bs by D3|,
Cy C3 ci C2 C3
bl _|ba b5 (4.5.6)
ay a4 Qs ’ e

Two of these matrices are submatrices of As. The other two are submatrices
with their rows or columns arranged in reverse order.

Exercise. If a determinant A,, is symmetric about its principal diagonal
and persymmetric (Hankel, Section 4.8) about its secondary diagonal, prove
analytically that A, is centrosymmetric.

4.5.2  Symmetric Toeplitz Determinants

The classical Toeplitz determinant A,, is defined as follows:

An = |ai—jln
ao a_1 a_»o
aq Qo a_1
_ | a2 ay Qo
| a3 az ay
Gnp—1

a—3 a_(n—1)
a72 PR
a_1
ao
ap n

The symmetric Toeplitz determinant T, is defined as follows:

T, = |t|i—j| |n
to t1 12
11 to t
| te t1 to
st
tn—l

t3
to
ty e e
to o e |

tnfl
(4.5.7)

to

n
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which is centrosymmetric and can therefore be expressed as the prod-
uct of two determinants of lower order. T, is also persymmetric about
its secondary diagonal.

Let A, B,,, and E,, denote Hankel matrices defined as follows:

A, = [tigj-2],,

B, = [tivj-1],,
E, = [tix],- (4.5.8)
Then, the factors of T}, can be expressed as follows:
Ton—1=5|Tno1 — Enc1||Th + Ayl
Top = |Tn + By| [Ty — By (4.5.9)
Let
Py = 3|Tn = Bn| = 5[ti—j = tigjln,
Qn = 3| Tn + Anl = 3lti—j) +tivj—2ln,
Ry = 3|Tn + Bn| = 3ltji—j| + tivj-1ln,
Sn = %|Tn —B,|= %'tli—ﬂ —tivj—1ln, (4.5.10)
U, =R, + S,
Vi =R, — Sp. (4.5.11)
Then,
Ton_1 =2P, 1Q,,
Ts, = 4R, S,
=U. - V2. (4.5.12)
Theorem.

a. T2n—1 = Un—lUn - Vn—IVn;
b. T2n = PnQn + Pn—lQn+1-

PROOF. Applying the Jacobi identity (Section 3.6),

‘Tf?) Ton | o o)
T |
But
T =T =T, 4,
i) = 1),
TI(Z,)ln = In-2.
Hence,

T2 | = T,Tn o+ (TV). (4.5.13)
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The element to,,_1 does not appear in T;, but appears in the bottom right-
hand corner of B,,. Hence,

OR,
8t2n71 - Rn—l;
oS,
" =S, 1. 4.5.14
Oton—1 ! ( )

The same element appears in positions (1,2n) and (2n,1) in Ts,. Hence,
referring to the second line of (4.5.12),

(2n) 1 972"

1,2n — 2 8t2n_1

0
B 281527171 (BnSn)
— (R 150 — RnS_1). (4.5.15)

Replacing n by 2n in (4.5.13),
n)\ 2
T3, 1 = TonTan-2 + (T{5)

,2n
= 4[4RnSan—1Sn—1 =+ (Rn—lsn - RnSn—1)2]
=4(Rp_1S, + RnSn_1)>
The sign of T5, 1 is decided by putting ¢ty = 1 and ¢, = 0, » > 0. In that
case, T, =1,,B,=0,, R, =S, = % Hence, the sign is positive:

Ton_1= 2(Rn,1Sn + RnSnfl). (4516)

Part (a) of the theorem follows from (4.5.11).
The element t5,, appears in the bottom right-hand corner of E,, but does
not appear in either T,, or A,,. Hence, referring to (4.5.10),
0P,
= —In-1,
8t2n
oQn
8t2n

=Qn-1- (4.5.17)

(2nt1) 1 0Toppn
Lantl =5 Tg
0
= a Pn n
o (P

= PnQn - n—lQn—i—l- (4518)
Return to (4.5.13), replace n by 2n + 1, and refer to (4.5.12):
n 2
T3, = Topi1Ton—1 + (Tf)?Qnill))
— 4PnQn+1Pn71Qn + (PnQn - 1377,716277,Jr1)2
= (PnQn + Pnlen+1)2' (4519)
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When to =1, ¢t =0,r >0, Tz, = 1, E, = O,, A,, = diag[1 0 0...0].
Hence, P, = %, @, = 1, and the sign of Ty, is positive, which proves part
(b) of the theorem. O

The above theorem is applied in Section 6.10 on the Einstein and Ernst
equations.

Exercise. Prove that

n n n+1
T1(2) = Tv(z—)l,n = 1(n;1773+1-

4.5.8  Skew-Centrosymmetric Determinants
The determinant A,, = |a;;|, is said to be skew-centrosymmetric if

An+1—int1—j = —Qij-

In Agp41, the element at the center, that is, in position (n + 1,n + 1), is
necessarily zero, but in As,, no element is necessarily zero.

FEzercises

1. Prove that As, can be expressed as the product of two determinants of
order n which can be written in the form (P + Q)(P — Q) and hence as
the difference between two squares.

2. Prove that As,y; can be expressed as a determinant containing an
(n+1) x (n+ 1) block of zero elements and is therefore zero.

3. Prove that if the zero element at the center of Ag, 41 is replaced by z,
then As,11 can be expressed in the form z(p + q)(p — q).

4.6 Hessenbergians

4.6.1 Definition and Recurrence Relation
The determinant
H, = |aij|n7

where a;; = 0 when ¢ — j > 1 or when j —4 > 1 is known as a Hessenberg
determinant or simply a Hessenbergian. If a;; = 0 when ¢ — j > 1, the
Hessenbergian takes the form

aix a2 aiz - a1,n—1 A1n
a1 Q22 a3 - a2 n—1 a2n
agz2 ass te
H, = Qg3 - . (4.6.1)

An—1mn—1 Gn—1n

An n—1 Upn |y
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If a;; = 0 when j — 4 > 1, the triangular array of zero elements appears
in the top right-hand corner. H,, can be expressed neatly in column vector
notation.

Let
}T

er = [alj @25 G3j5...0r; On—r n’ (462)

where O; represents an unbroken sequence of i zero elements. Then
Hy, =|Ci2 Ca3 C34...Cp1n Crar, - (4.6.3)
Hessenbergians satisfy a simple recurrence relation.

Theorem 4.20.
H = nlz pr+1n T HO:]->

where

pii = QA5 5—1G5-1,7—-2 " Aj42 i+1Ai41,i Jj>i
Y Qg Jj=1.
Proor. Expanding H,, by the two nonzero elements in the last row,
H, =an,Hy_1— an,n—lKn—lv

where K, is a determinant of order (n — 1) whose last row also contains
two nonzero elements. Expanding K,,_1 in a similar manner,

Kn—l = an—l,an—Q - an—l,n—QKn—Qa

where K,,_5 is a determinant of order (n — 2) whose last row also contains
two nonzero elements. The theorem appears after these expansions are
repeated a sufficient number of times. |

Illustration.
Hs = |C12C23C34Cy5Cs5| =
|C12C23C34Csy4| =
|C12C23Cs3| = ass Ha — a3|C12Csa],

|C12Cs2| = ass Hy — az1a15Ho.

Hence,
Hs = as5Hy — (assas4)Hs + (agsasaaas) Ho
—(agsasaaqsase) Hy + (arsas4a43a32a21)Ho
= pssH4 — pasH3z + p3sHo — pasHy + p15Hp.

Muir and Metzler use the term recurrent without giving a definition of the
term. A recurrent is any determinant which satisfies a recurrence relation.
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4.6.2 A Reciprocal Power Series
Theorem 4.21. If

- —1
> (1) wtr_[Z@tT} » G0 =1t =1,
r=0
then
b1 oo
¢2 P11 o
b= 2 ,
Gn-1 Pn—2 ... ... P1 o
S S S

which is a Hessenbergian.

PrOOF. The given equation can be expressed in the form

(¢ + 1t + dot® + dst® + - ) (tho — 1t + Yat® — Y3t® + -

Equating coefficients of powers of ¢,

n

D (=) it =0

=0

from which it follows that

n

b= (1) b ithi.

i=1

In some detail,

o1 = ¢
$191 — o2 = ¢
P21 — P12 + o3 = ¢3

P11 — P2t + -+ (=1)" T dotp, = ¢

)=1

(4.6.4)

(4.6.5)

These are n equations in the n variables (—1)""11,, 1 < r < n, in which
the determinant of the coefficients is triangular and equal to 1. Hence,

Po b1
o1 9o P2
(—1)" e, = b2 1 o b3

Gn—2 Gn-3 Gna -+ G1 G0 Gn-1
Gn-1 Gn-2 Gn-3 - G2 b1 Oy

n

The proof is completed by transferring the last column to the first position,

an operation which introduces the factor (—1)"~1.

a
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In the next theorem, ¢,, and 1,, are functions of x.
Theorem 4.22. If
b = (m+a)Fdp_1, F=F(z),
then
o =(a+2—m)Fy,_1.

ProOOF. It follows from (4.6.4) that

n

wn = Z(_l)i+1¢i¢n—i~ (466)

i=1

It may be verified by elementary methods that

¢/1 = ((L+ 1)F,¢)07
wé = a’lea
Py = (a—1)Fiy,
etc., so that the theorem is known to be true for small values of m. Assume

it to be true for 1 < m < n — 1 and apply the method of induction.
Differentiating (4.6.6),

n

U =3 (1) on—i + ¢l ;)

=1
_ FZ D + a)pi—1thn—i + (@ + 2 — n+ 1) pithp_1-i]

(Sl + S + 53),

where

n

S1=> (-1 i+ a)gi—1tni,

i=1

So=(a+2—-n Z D b1 —i,
=1

n

Sy =Y (=) i1

i=1

Since the ¢ = n terms in S, and S3 are zero, the upper limits in these sums
can be reduced to (n — 1). It follows that

So=(a+2—n),_1.
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Also, adjusting the dummy variable in S; and referring to (4.6.4) with
n—n—1,

n—1
S1 = Z(—l)i(i + 14 a)gin_1-
=0
n—1
—Z 'Ld)z'(/)nlz"' 1+QZ ¢zwnlz
1=0
_ s,

Hence, ¢!, = (a + 2 — n)F,_1, which is equivalent to the stated result.
Note that if ¢}, = (m — 1)¢p—1, then ¢, = —(m — 1)hy,_1. ]

4.6.3 A Hessenberg—Appell Characteristic Polynomial
Let

An = ‘aij|na

where
Aj—i41, ] 2 iv
Q5 = _j7 .7 =1i— 17
0, otherwise.
In some detail,
ay a2 asz a4 Ap—1 ap
-1 a ax a3 Qp—2 (p—1
-2 a1 as e
A, = -3 um (4.6.7)
ai a2
_(n - 1) ar I,
Applying the recurrence relation in Theorem 4.20,
n>1 Ay=1. (4.6.8)
r=0
Let By, (z) denote the characteristic polynomial of the matrix A,,:
B, = |A, —aI]. (4.6.9)
This determinant satisfies the recurrence relation
n—1
bn_rB
_ _ | n—rr _
Bp=(n-1)Y S on=1, Bo=1, (4.6.10)

r=0

where

blzal—x,
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b, =a,, r>1.

B,(0) = A,
BN (0) = Al (4.6.11)
Theorem 4.23.
a. B, = —nB,_;.

b. Y Al =nA,_;.
r=1

c. B, = zn: (Z) A(—z)"".

r=0
PROOF.
By =—z+ Ay,
BQ = 1‘2 - 2A1$ + A27
B3 = —x® + 34,2 — 34.x + Aj, (4.6.12)

etc., which are Appell polynomials (Appendix A.4) so that (a) is valid for
small values of n. Assume that

B,,IA:—’I"Brfl, 2§7’§TL—17

and apply the method of induction.
From (4.6.10),

n—2

aTL*T‘BT
B, =n—1)Y ===+ (a1 —2)By 1,
= r!
2, B
B, =—(n-1)! z_; "_TT! =1 _ (n—1)(a; — x)Bp—2 — Bn—1
n—2 a B
n—rr—1
= —(n—l)'; =1 (n—1)(ay — x)Bp—2 — By—1
n—3 a B
=—(n—1) ZO "—17;’" " — (n—1)(ay — x)Bp_3 — Bn_1
n—2 b B
— —(n— 1) Inol-rPr
= (n 1) ZO 7“! Bn—l
= —(n=1)By_1 — By s
= _anfly

which proves (a).
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The proof of (b) follows as a corollary since, differentiating B,, by
columns,

B, =~ > B,
r=1

The given result follows from (4.6.11).
To prove (c), differentiate (a) repeatedly, apply the Maclaurin formula,
and refer to (4.6.11) again:

p _ CUE
" (n—mr)t 7’

B,
Bn:; R

_ 2: (’;) Ap_y(—2)".

Put r = n — s and the given formula appears. It follows that B,, is an
Appell polynomial for all values of n. O

Exercises
1. Let
Ap = laijln,
where

wj—i-‘rh .7 Z Z'7
aij = j7 ] =1i— 15
0, otherwise.
Prove that if A,, satisfies the Appell equation A/, = nA,_; for small
values of n, then A,, satisfies the Appell equation for all values of n and

that the elements must be of the form

1 =z +a,
Vm = Qs m > 1,
where the a’s are constants.
2. If
Ap = |aij‘na
where

(bjfia ]Z i»
Qi3 = _j7 j =1i— 17

0, otherwise,
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and where
Gy = (M+1)pm—1, o = constant,
prove that
A, =n(n—1)An_1.
3. Prove that

1 bz bigz® - o b2
T T R s
-1 1 |- 3,n+1L )
r=1 . .
-1 1 il
where
j—1
bij = H Qg
r=1
4. If
o /20 w30 w4l
u o W20 W"/3!
U, = U u u”/Q! e
U u’
n
prove that
U/
Uns1 = u'Up — qu +”1 . (Burgmeier)

4.7 Wronskians

4.7.1  Introduction

Let y» = yr(z), 1 < r < n, denote n functions each with derivatives of
orders up to (n — 1). These functions are said to be linearly dependent if
there exist coefficients A, independent of x and not all zero, such that

> Ayr=0 (4.7.1)
r=1

for all values of x.

Theorem 4.24. The necessary condition that the functions y, be linearly
dependent is that

[y ], =0
identically.
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PROOF. Equation (4.7.1) together with its first (n — 1) derivatives form
a set of n homogeneous equations in the n coefficients A,.. The condition
that not all the A, be zero is that the determinant of the coefficients of the
A be zero, that is,

A0 Y2 e Yn
Y1 A
PISERTERY RRSTLIPTERTERRS
yin ) yén )L y%n )
for all values of x, which proves the theorem. |

This determinant is known as the Wronskian of the n functions y, and is
denoted by W (y1,y2, - - -, Yn), which can be abbreviated to W,, or W where
there is no risk of confusion. After transposition, W,, can be expressed in
column vector notation as follows:

W, =W (Y1, y2,...,yn) = |C C' C"...C("7)|
where
C=[y1y 'yn]T- (4.7.2)
If W, # 0, identically the n functions are linearly independent.
Theorem 4.25. Ift=t(x),
W (ty1, tya, - ., tyn) = "W (y1,y2, - .-, Yn)-

PROOF.
W (ty1, tys, .. ., tyn) = |(tC) (tC)’ (tC)" .- (tC)"~ Y|
= ]K1 K, K;-- K,
where
K, = (tC)V"Y = pi~1(tC), D= %.

Recall the Leibnitz formula for the (j — 1)th derivative of a product and
perform the following column operations:

j—=1 ..
;77]- s 1 .
K;.:Kj+tz< s )D (t)KjS’ j=nn—1,...,3.2.
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Hence,
W (tyr,tys, ... tyn) = |(tC) (tC') (¢tC")--- (¢C"~ V)|
=¢jcc c’-.cnh)|
The theorem follows. O
Exercise. Prove that

e ()WY (02 ) )

dym 11231+ (n — 1)!(y/)n(n+1)/2 ’
where ¢/ = dy/dx, n > 2. (Mina)

4.7.2  The Deriatives of a Wronskian

The derivative of W,, with respect to x, when evaluated in column vector
notation, consists of the sum of n determinants, only one of which has
distinct columns and is therefore nonzero. That determinant is the one
obtained by differentiating the last column:

= ‘C o ¢”...cn=3) on-2) C(”)|.
Differentiating again,
W = ‘C o ¢"...cr=3) ohr-1 C(n)|
+jcc ¢t ¢ et (4.7.3)

etc. There is no simple formula for W( ") In some detail,
/ (n=2)  (n)

v 'y 0 YU Y1
) ;o 2 ()
W =192 Y2 Y2 Y2 7| . (4.7.4)
Un Yl oy oy

The first (n — 1) columns of W) are identical with the corresponding
columns of W,,. Hence, expanding W), by elements from its last column,

Z YW, (4.7.5)

Each of the cofactors in the sum is itself a Wronskian of order (n — 1):

W = (=1 W (Y1, Y2, s Yr1s Yrtds - - - s Yn)- (4.7.6)

W) is a cofactor of Wy, 41:

Wy =-wit, (4.7.7)

Repeated differentiation of a Wronskian of order n is facilitated by adopting
the notation

Wijk..r = |[C ¢ c®...c|
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=0 if the parameters are not distinct
f jk...r = the sum of the determinants obtained by increasing
the parameters one at a time by 1 and discarding

those determinants with two identical parameters. (4.7.8)
Illustration. Let
W =|CC C"| =W
Then
W' = Wos,
W' = Woia + Wozs,
W"" = Wois + 2Woos + Whas,
W = Woie + 3Wozs + 2Wosa + 3Wiag,
WO = Wiy + 4Woas + 5Wozs + 6Wias + 5Wisa, (4.7.9)

etc. Formulas of this type appear in Sections 6.7 and 6.8 on the K dV and
KP equations.

4.7.8 The Derivative of a Cofactor

In order to determine formulas for (W, jn))’ , it is convenient to change the

notation used in the previous section.
Let

W = |wij|n,
where

i . d
wij = ZU? Y= pi Y(yi), D= dz’

and where the y; are arbitrary (n — 1) differentiable functions.

Clearly,

/ —_— . .
wij = Wj j+1-

In column vector notation,
W, =|C1 Cz--- Gy,
where
Cj= [ VI
C} =Cj1.
Theorem 4.26.
a (W(.”))/ — _w™ w it

ij i,j—1 — "Win+ljn-

b. (Wi(fl))/ = _Wz(;lzill)ln
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C. (W(n ) —Wl(")

n i,n—1°

PROOF. Let Z; denote the n-rowed column vector in which the element
in row ¢ is 1 and all the other elements are zero.
Then

W(") |C1-+-Cj_3 Cj_1 Z; Cjy1---Cpy Cy| , (4.7.10)
+|C1++-Cj2 Cj_1 Z; Cj+1~-~Cn 1 cn+1| (4.7.11)

Formula (a) follows after C; and Z; in the first determinant are inter-
changed. Formulas (b) and (c) are special cases of (a) which can be proved
by a similar method but may also be obtained from (a) by referring to the
definition of first and second cofactors. Wiy = 0; W54+ = 0. a

Lemma. When 1 < j,s <n,

" W, s=j-1j#1
Z wr,s+1WT(;L) = WT(L:_TE), s=n,
= 0, otherwise.

The first and third relations are statements of the sum formula for
elements and cofactors (Section 2.3.4):

Zwr,nJergl) =|C; Cy---Cj_1 Cpy1 Cjy1- "Cn‘n

=(-1)"7|Cy Cz---Cj_1 Cjy1---Cp Cpya,-
The second relation follows.

Theorem 4.27.

(n) (n)
‘ m(if ) M(i: [ =Wy
n+1 n+1 ,n+1l;gn"
Wn+l,j Wn+1,n &

This identity is a particular case of Jacobi variant (B) (Section 3.6.3)
with (p,q) — (j,n), but the proof which follows is independent of the
variant.

PrROOF. Applying double-sum relation (B) (Section 3.4),

(w3)' i i w, WEW!I,

r=1 s=1

Reverting to simple cofactors and applying the above lemma,

wm
(U)o
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1 (n) (n)
=—m 2 Wi ween W),

N s=j—1,n r

n)\/ n n n n+1
W, (WY = wwh = —w, w4+ wihwi,
Hence, referring to (4.7.7) and Theorem 4.26(a),
n n+1 n n+1 n n
W’L(j )Wﬁﬂ,ﬁ - Wi(rL)W1S+1,j) =Wy [(WZ(J ))/ + WZ(J)—l]
n+1
= W”Wi(,n+1);jn’

which proves Theorem 4.27. a

4.7.4  An Arbitrary Determinant

Since the functions y; are arbitrary, we may let y; be a polynomial of degree
(n—1). Let

-1

- airx”
P = , 4.7.12

where the coeflicients a;, are arbitrary. Furthermore, since x is arbitrary,
we may let x = 0 in algebraic identities. Then,

wij = y;’~(0)
= Q5. (4713)

Hence, an arbitrary determinant A, = |a;;|, can be expressed in the
form (W,,).—0 and any algebraic identity which is satisfied by an arbitrary
Wronskian is valid for A,,.

4.7.5 Adjunct Functions

Theorem.
W (y1,y2, -, yu )W (W W2 W) = 1.

PROOF. Since

0, 0<r<n-—2

1.2 o] =
icc'c”---C c| {W, rem 1,

it follows by expanding the determinant by elements from its last column
and scaling the cofactors that

zn: yl(T)Wzn = 5r,n71~

i=1
Let

n
e =3y (Wi, (4.7.14)
=1
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Then,
E’/I"S =Eptl,s T Ers+1 (4715)
and
Ero = 6r,n71~ (4716)
Differentiating (4.7.16) repeatedly and applying (4.7.15), it is found that
0, r+s<n-—1
Ers = { (=1, r+s=n-1 (4.7.17)
Hence,
W(yla Y2,... 7yn)W(W1n7 WQ”a ey Wnn)
o Yo . Un win (Wln)/ . (Wln)(n—l)
A A A N LU0 U L
PRAPTRRES ERETERTIRERY X REREEESES ERVERERREES e
TR L T ey (e
€00 €01 €02 €0,n—2 €0,n—1
€10 €11 €12 €1,n—3 €1,n—2 *
_| €20 €21 €22 €2n—3 * * (4.7.18)
€n—-2,0 €n-2,1 E * * *
€n—1,0 * * s * * * n

From (4.7.17), it follows that those elements which lie above the secondary
diagonal are zero: those on the secondary diagonal from bottom left to top
right are

1,-1,1,...,(=1)"*!

and the elements represented by the symbol x are irrelevant to the value of
the determinant, which is 1 for all values of n. The theorem follows. a

The set of functions {W", W2" ... W""} are said to be adjunct to the
set {ylayQa ey yn}

Exercise. Prove that

W(yhva AR 7yn)W(WT’+1,TL’ WT+27”) R WTLTL) = W(yh Y2, - .- 7y7‘)7
1<r<n-—1,

by raising the order of the second Wronskian from (n—r) to n in a manner
similar to that employed in the section of the Jacobi identity.

4.7.6  Two-Way Wronskians
Let

Wn - ‘f(i+j72)|n = |Di+j72f‘na D = d73
X
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f f/ f// L. f(n—l)
I N e
=| f 1 f(4) ... ... . (4.7.19)
fo=n o f(@2ne2) .
Then, the rows and columns satisfy the relation
R; =Riy1,
C;=Cj, (4.7.20)

which contrasts with the simple Wronskian defined above in which only one
of these relations is valid. Determinants of this form are known as two-way
or double Wronskians. They are also Hankelians. A more general two-way
Wronskian is the determinant

W, = D7 DN, (4.7.21)
in which
D3(Ri) = Ry,
Dy(C;j) = Cjpa. (4.7.22)

Two-way Wronskians appear in Section 6.5 on Toda equations.

Exercise. Let A and B denote Wronskians of order n whose columns are
defined as follows:

In A,

Ci=[lza®-2"'], Cj=D,(Cj).
In B,

Ci=[lyy’y"'], Cj=Dy(Cj1).

Now, let E denote the hybrid determinant of order n whose first » columns
are identical with the first r columns of A and whose last s columns are
identical with the first s columns of B, where r + s = n. Prove that

E=[or1r2r(r=1tJ0r 1120 (s = 1)!](y —2)"*.  (Corduneanu)

4.8 Hankelians 1

4.8.1 Definition and the ¢,, Notation
A Hankel determinant A,, is defined as

A, = \aij|m
where
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It follows that
Aj; = Qij,
so that Hankel determinants are symmetric, but it also follows that
Qitk,j—k = Qij, k=41,42,.... (4.8.2)

In view of this additional property, Hankel determinants are described as
persymmetric. They may also be called Hankelians.

A single-suffix notation has an advantage over the usual double-suffix
notation in some applications.

Put
aij = Pitj—2- (4.8.3)
Then,
b0 b1 P2 Gn—1
¢ d2 Pz o Pn
An=| ¢2 ¢3 b1 - Dpp1 |, (4.8.4)

which may be abbreviated to
Ap = |dmln, 0<m<2n—2. (4.8.5)
In column vector notation,
A, =|CyCy Cy---Cpy ,
where

T .
Cj=[¢; bjr1 djr2 bjun—] , 0<j<n-—1 (4.8.6)

The cofactors satisfy Aj;; = A;j;, but A;; # F(i + j) in general, that is,
adj A is symmetric but not Hankelian except possibly in special cases.

The elements ¢ and ¢2,,_4 each appear in three positions in A,,. Hence,
the cofactor

G2 o Ppa

: : (4.8.7)
¢n—1 o ¢2n—4

also appears in three positions in A,,, which yields the identities

Agg;)nfl,n = A(n) = Aﬁ1,n;12~

In,ln

Similarly

Aggg’);nfznfl,n = Aggl;l,n,nfl = Agz),nfl;IQn = Aglnf)2,n71,n;123' (488)
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Let
An:|¢1+—2|n: ‘d)m‘n, O§m§2n72,
" (4.8.9)
B, = |xl+]72¢i+j—2|’n = ‘xmgbm‘na 0<m<2n—2.
Lemma.

a. B, =ann=14 .
b. B?n) — pn(n=1)—(i+j-2) 4 ()
ij

c. B = g-Gti-2 g
PROOF OF (A). Perform the following operations on B,,: Remove the factor
2~ from row 4, 1 < i < n, and the factor 27! from column j, 1 < j < n.
The effect of these operations is to remove the factor zt7=2 from the
element in position (1, 7).

The result is

Bn _ m2(1+2+3+~~~+n—1)An
)

which yields the stated result. Part (b) is proved in a similar manner, and
(c), which contains scaled cofactors, follows by division. O

4.8.2  Hankelians Whose Elements are Differences
The h difference operator Ay, is defined in Appendix A.8.

Theorem.

|¢m|n = ‘ATQSO‘?L;
that is, a Hankelian remains unaltered in value if each ¢., is replaced by
Ao

PROOF. First Proof. Denote the determinant on the left by A and perform
the row operations

1—1 .
R;=> (-h)" <Z ; 1) Ri_,, i=nn—-1n-2,...,2, (4.8.10)

on A. The result is

A=A ] (4.8.11)
Now, restore symmetry by performing the same operations on the columns,
that is,

j—1

C; =Y (~h) (J - 1) C,_r, j=nn—1n—-2..2 (4812)

r
r=0

The theorem appears. Note that the values of ¢ and j are taken in
descending order of magnitude.
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The second proof illustrates the equivalence of row and column op-
erations on the one hand and matrix-type products on the other
(Section 2.3.2).

Second Proof. Define a triangular matrix P(x) as follows:

- [(172) ],

rl
T 1
=]z 2z 1 . (4.8.13)

Since |P(x)| = |PT ()| = 1 for all values of .
A= ‘P(_h)APT(_h)‘n
|iri—2ln

oo () o (23),

= laij|n (4.8.14)

where, applying the formula for the product of three determinants at the
end of Section 3.3.5,

@ =y Zj:(—h)i_r (:,:i) Gras—a(—h)~* <‘; - 1)
= (Z . 1) (—h)i_l_’”g (j B 1) (—hY T s
()

= AFI=24,. (4.8.15)

The theorem follows. Simple differences are obtained by putting
h=1. a

Exercise. Prove that

n

DY WAL () = An(z — h).

r=1 s=1
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4.8.3 Two Kinds of Homogeneity

The definitions of a function which is homogeneous in its variables and of
a function which is homogeneous in the suffixes of its variables are given in
Appendix A.9.

Lemma. The determinant A, = |dm|n is

a. homogeneous of degree n in its elements and
b. homogeneous of degree n(n — 1) in the suffizes of its elements.

PROOF. Each of the n! terms in the expansion of A, is of the form

14k 2024k -2 Prtk, —2,

where {k, }7 is a permutation of {r}?. The number of factors in each term
is n, which proves (a). The sum of the suffixes in each term is

n

Z(r+kr—2):2ir—2n

r=1 r=1

= TL(TL - 1)7

which is independent of the choice of {k,}}, that is, the sum is the same
for each term, which proves (b). O

Exercise. Prove that AE?) is homogeneous of degree (n—1) in its elements
and homogeneous of degree (n? —n+2—i—j) in the suffixes of its elements.
Prove also that the scaled cofactor A% is homogeneous of degree (—1) in
its elements and homogeneous of degree (2 — i — j) in the suffixes of its
elements.

4.8.4  The Sum Formula

The sum formula for general determinants is given in Section 3.2.4. The
sum formula for Hankelians can be expressed in the form

> bmir2 AT =0p, 1<T,5< 0. (4.8.16)
m=1
Exercise. Prove that, in addition to the sum formula,

n
E +1 .

a. ¢77L+7L—1AZ('ZL) = —AET:LJFI), 1 <1< n,
m=1

b. Z ¢m+nA£:1Lm) = AgT:L+1)’
m=1

where the cofactors are unscaled. Show also that there exist further sums
of a similar nature which can be expressed as cofactors of determinants of
orders (n + 2) and above.
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4.8.5  Turanians

A Hankelian in which a;; = ¢;4j_24r is called a Turanian by Karlin and
Szego and others.

Let
|t lns 0<m<2n—2,
|Prmlns r<m<2n—24r,

e T (4517
Gn—14r ° Gap_2gr

n

|C'r Cr+1 Cr+2 o Cn—1+r|~

Theorem 4.28.

’ T(n,r—i—l) T(n,r)

T(n,r) Tlnr—1) | = T+l r=1)p(n—1,r+1)

PROOF. Denote the determinant by T. Then, each of the Turanian ele-
ments in 7" is of order n and is a minor of one of the corner elements in
T +1Lr=1) Applying the Jacobi identity (Section 3.6),

(n+1,r—1) (n+1,r—1)
T Ty o
(n+1,r—1) (n+1,r—1)
Tn+1,1 Tn+1,n+1
_ mp(n+1,r—1) (n+1,r—1)
=T Tl,n+1;1,n+1

— T(TL+1,7’—1)T(7L—1,T+1)

which proves the theorem. O
Let
A, =TM™0 = |Gitj—2|ns
Fo =T =¢isj1ln,
Gn =T = ¢4 . (4.8.18)

Then, the particular case of the theorem in which » = 1 can be expressed
in the form

AnGy — Api1Gry = F2. (4.8.19)

This identity is applied in Section 4.12.2 on generalized geometric series.
Omit the parameter 7 in 7(™") and write T),.

Theorem 4.29. For all values of r,
n n+1
) T

n n+1
Ty T

+1
- TanZ;l,iﬂ =0.
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PROOF. The identity is a particular case of Jacobi variant (A) (Sec-
tion 3.6.3),

Ti(:) E(Zill) _ ot 0 4.8.20
Tj(;) Tj(zjrrll) n=igipntl J ( )
where (7, 7,p) = (1,n,1).
Let
A, =TM"),
B,, = T+,
Then Theorem 4.29 is satisfied by both A,, and B,,. O

Theorem 4.30. For all values of r,

a. A4,B") _p A LA B =0.

n+1,n n+1,n
b. B, AU — 4,B" |+ A, 1B, =0.
PROOF.
B, = (-1)"Al"1Y,
BI = (~1)m AT,
By = (-1)" Ay
= (_l)nA$z1,l:-&1-)1;1,n+1v
Aﬁﬂllﬂ = Agnn—l
= ()" B, (4.8.21)

Denote the left-hand side of (a) by Y,,. Then, applying the Jacobi identity
to An+17

+1 +1
A Ay

n+1 n+1
AT AT
0,

_ An+1A("+1)

(71)nYH = n,n+1;1,n+1

which proves (a).
The particular case of (4.8.20) in which (¢,j,p) = (n,1,n) and T is
replaced by A is

Apor ATY (n+1)
el I I (o = 0. (4.8.22)
+1 n<inlin,n+1
AR AR
The application of (4.8.21) yields (b). O

This theorem is applied in Section 6.5.1 on Toda equations.
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4.8.6  Partial Deriwatives with Respect to ¢,

In A, the elements ¢y, Pon—2-m, 0 < m < n — 2, each appear in (m + 1)
positions. The element ¢,,_1 appears in n positions, all in the secondary
diagonal. Hence, 0A,, /0, is the sum of a number of cofactors, one for
each appearance of ¢,,. Discarding the suffix n,

0A
0. = > A (4.8.23)
™ ptg=m+2
For example, when n > 4,
0A
a9 = Z qu
ad)g p+qg=5

= Ag1 + Aso + Aoz + Ay,

By a similar argument,

ZAU = D Awje (4.8.24)
Om p+ag=m+2
Air IS
867” = > Aipjeg (4.8.25)
dm =

Partial derivatives of the scaled cofactors A% and A7 can be obtained
from (4.8.23)—(4.8.25) with the aid of the Jacobi identity:

0AY - -
=— A AP 4.8.2
Bom ~ 2 (4520
ptg=m+2
Al Al
= Y P (4.8.27)
prg=m-+2
The proof is simple.
Lemma.
o Al Als Aia
OAIIS )
= AT AT AT 4.8.2
o > : (4.8.28)

prg=m+2 | APT  APS o
which is a development of (4.8.27).

PROOF.
_ L gs 4 0A
Odm A2 Odm T2 O pom,

1
= ﬁ Z [AA“'PJSQ - AiT,jsqu]
p,q

QA 1 { 0Air

= [Airpasa — gids Ape) (4.8.29)

p,q
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The lemma follows from the second-order and third-order Jacobi identi-
ties. O

4.8.7 Double-Sum Relations

When A, is a Hankelian, the double-sum relations (A)—(D) in Section 3.4

with f. =g, = % can be expressed as follows. Discarding the suffix n,

A 2n—2

T =DlogA)y =3 ¢, > A (A1)

m=0 ptHg=m+2

(A9 == ¢, Y AP (B1)

m=0 p+g=m-+2

2n—2
Z d)m Z APT = n, (Cl)
m=0 p+g=m+2

2n—2

S om Y, APAT=AY. (D1)
m=0 ptHg=m-+2
Equations (C;) and (D7) can be proved by putting a;; = ¢;4;_2 in (C)
and (D), respectively, and rearranging the double sum, but they can also
be proved directly by taking advantage of the first kind of homogeneity of
Hankelians and applying the Euler theorem in Appendix A.9.
A, and AZ(-;L) are homogeneous polynomial functions of their elements of
degrees n and n — 1, respectively, so that A% is a homogeneous function of
degree (—1). Hence, denoting the sums in (C;) and (Dy) by Sy and Ss,

2n—2

0A
AS1= > my,—
m=0 a¢m
=nA,
2n—2 i
0AY
So== D ¢ms —
m=0 6¢77L
=AY,

which prove (C;) and (D).
Theorem 4.31.

2n—2

Z MPy, Z APl = p(n —1), (Cq)

m=1 ptHg=m+2
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2n—2
D mom D APA = (i) —2)A7, (D2)
m=1 p+g=m-+1

These can be proved by putting a;; = ¢;4+;_2 and f, = g, =r—11in (C)
and (D), respectively, and rearranging the double sum, but they can also
be proved directly by taking advantage of the second kind of homogeneity
of Hankelians and applying the modified Euler theorem in Appendix A.9.

PROOF. A, and A% are homogeneous functions of degree n(n — 1) and
(2 — i — j), respectively, in the suffixes of their elements. Hence, denoting
the sums by S; and Ss. respectively,

2n—2

0A
ASy =) mémo—
m=1 a¢m

n(n —1)A,
2n—2 Aij

sz=—2m¢ma¢

=—(2—i—j)AY.

The theorem follows. O

Theorem 4.32.

n

Z Z(’I’ +s— 2)¢T+873Ars =0, (E)

r=1 s=1

which can be rearranged in the form

2n—2
Y mémor Y, AM=0 (E1)
m=1 ptHg=m-+2

and

3

M:

’I“ +s— 2)¢r+s—3AirASj = iAH’l’j + in’j+1
' (F)

=0, (i,7) = (n,n).

r=1 s

which can be rearranged in the form

2n—2
Z M@y —1 Z AP ATE = AL AL
m=1 prg=m+2 (Fy)

=0, (4) = (n,n).
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Proor oOF (F). Denote the sum by S and apply the Hankelian relation
¢r+573 =0Ors—1 = Gr_1,s-

n

S = Z(s —1)A% z”: ar s 1 A" + zn:(r —1)A™ Zn: ar_1,sA%
s=1 r=1 r=1 s=1

n n

= Z(S - 1)A8j5571,i + Z(T - 1)Ai7.(5’r,17j.

s=1 r=1

The proof of (F) follows. Equation (E) is proved in a similar manner. [

FEzxercises

Prove the following:

1. Z APa =,

p+q=m+2
2n—2
2. Z Pm Z Aipjq = (n— 1) Aj;.
m=0 g+gq=m+2
2n—2
2 . .
3. Z quﬁm Z Aip,jq = (TL —ﬂ—Z—j—FQ)AZ]
m=1 ptq=m+2
2n—2
4. Z bm Z Aiiphkq _ ) pidihk
m=0 pHg=m+2
2n—2
5. Z m¢m Z Alji%hkq — (?12 —n—q— ] —h—k— 4)Alj,hk.
m=1 ptHg=m+2
2n—2
6. Z MP—1 Z Atip.hkq
m=1 pt+qg=m-+2
= jATLIhE +in,j+1;hk 4 hAWRALE 4 J Aidihok+1
2n—2

7. Z Z Optr—10g+r—1 AP = ¢op, 0<7r <mn—1

m=0 p+qg=m-+2
2n—2

8. Z m Z Dptr—1Pgir—1 AP = 2r¢s,, 0<r<n-—1.

m=1 p+qg=m-+2
9. Prove that

n—1 n
§ ’I"AT+1’] E ¢m+r72Azm _ z’AH—LJ
r=1 m=1

by applying the sum formula for Hankelians and, hence, prove (Fi)
directly. Use a similar method to prove (E;) directly.
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4.9 Hankelians 2

4.9.1 The Deriwatives of Hankelians with Appell Elements
The Appell polynomial

Om = Zm: (T) apr™" (4.9.1)

r=0

and other functions which satisfy the Appell equation
¢ =mem_1, m=1273 ..., (4.9.2)

m

play an important part in the theory of Hankelians. Extensive notes on
these functions are given in Appendix A.4.

Theorem 4.33. If
An = |¢m|n7 0<m<2n-2,
where ¢., satisfies the Appell equation, then
A, = ALY

PRrROOF. Split off the m = 0 term from the double sum in relation (A;) in
Section 4.8.7:

2n—2

A/
RS S DA
p+qg=2 m=1 p+g=m-+2
2n—2

_ ¢6A11 + Z MPrm_1 Z APY.

m=1 pHqg=m-+2

The theorem follows from (E;) and remains true if the Appell equation is
generalized to

@, =mF¢,_1, F=F(z). (4.9.3)
O

Corollary. If ¢, is an Appell polynomial, then ¢y = ag = constant, A’ =
0, and, hence, A is independent of x, that is,

This identity is one of a family of identities which appear in Section 5.6.2
on distinct matrices with nondistinct determinants.

If ¢, satisfies (4.9.3) and ¢y = constant, it does not follows that ¢, is
an Appell polynomial. For example, if

bm = (1—a?) "2 Py,
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where P, is the Legendre polynomial, then ¢,, satisfies (4.9.3) with
F=(1-qa2)32

and ¢g = Py = 1, but ¢,, is not a polynomial. These relations are applied
in Section 4.12.1 to evaluate | Py, |-

Ezxamples
1. If
mHZb {f(@) + e},
k
where > b. = 0, b, and ¢, are independent of z, and k is arbitrary,
then =

qb;'n = mf,(x)¢m—17

k
¢ = Z b.c, = constant.

r=1
Hence, A = |¢m |, is independent of z.
2. If
Om(2,8) = = [(€+ )™ = cl€ — )™ (e — 1EmH],
then
3;;; = Mpm-_1,
do =1z +c.

Hence, A is independent of £. This relation is applied in Section 4.11.4
on a nonlinear differential equation.

FEzxercises

1. Denote the three cube roots of unity by 1, w, and w?, and letA = ¢y, |,
0 <m < 2n — 2, where

1
& om = 3(m+1) (@ +b0+ )™+ w(@ +we)™ + WPz + wPe)™ ],
1
b. ¢ = m [(l’ Ty C)m-‘rl +UJ2($ + wc)m-‘rl +w(x +w20)m+1]’
1
C. (bm = [(.73 + C)m+2 + w2(x +wc)m+2 +w(x +w2c)m+2]_

3(m+1)(m+2)

Prove that ¢,, and hence also A is real in each case, and that in cases
(a) and (b), A is independent of x, but in case (¢), A" = cAj;.
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2. The Yamazaki—Hori determinant A,, is defined as follows:

Ap = |pmln, 0<m<2n—2,

where
1
bOm = m [p2(1,2 o 1)m+1 + q2(y2 _ 1)m+1}7 p2 + q2 — 1
Let
B":|¢m|n7 0<m < 2n—2,
where
¢7Yl
Un = @
Prove that
0
S = i,
where
po -
(22 — y2)2 "
Hence, prove that
8Bn n
or FB§1)7
0A .
(% —y?) 8:: =2z [nQAn — (y* - 1)A§1)]'

Deduce the corresponding formulas for 9B,, /0y and dA,,/dy and hence
prove that A, satisfies the equation

21 21
(ac >Zx+<y )ZyZnQZ.
T Y

3. If A, = |dm|n, 0 < m < 2n—2, where ¢,, satisfies the Appell equation,
prove that

a. (A7) = =g AL AL — (LA + GAHY), (i 5) # (n,m),
b. (A7) = —4(Ay")?.

4. Apply Theorem 4.33 and the Jacobi identity to prove that

n 2
An ' (AR
An—l 0 An—l

Hence, prove (3b).
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CIf

An ::|¢an7 0 < WLS;QH'—Q,
F%::|¢an, 1<m<2n-1,
G%::|¢an7 2 S WLS;QH,

where ¢,, is an Appell polynomial, apply Exercise 3a in which the
cofactors are scaled to prove that

D(AF) = ~ (AL} + AT )
in which the cofactors are unscaled. Hence, prove that

Dr(Fy) = (-1 AT 0<r <

D"(F,) =nlA,;

F,, is a polynomial of degree n;

D" (G,) = (-1l > A(n+1), 0<r<2n;
pt+q=r+2

D™ (G,) = (2n)!A,;

G, is a polynomial of degree 2n.

LoTp

= @

. Let B,, denote the determinant of order (n + 1) obtained by bordering
Ay (0) by the row

R= [1 — gz 22 7173~~-(7x)”71 .]n+1

at the bottom and the column R7” on the right. Prove that

2n—2
By==> (=a) > 470
r=0 p+qg=r+2

Hence, by applying a formula in the previous exercise and then the
Maclaurin expansion formula, prove that

B, =-G,_1.
. Prove that
t+r—s=—1DI(j+s—-1)
D Ai’ = Ai r—s,j+s-
(4i5) (zfl ],112 sl(r —s)! eI

. Apply the double-sum relation (A;) in Section 4.8.7 to prove that G,,
satisfies the differential equation

=0.

2n—1
(=1)"¢m D™ *1(Gy)

m)!



4.9 Hankelians 2 119
4.9.2  The Derwatives of Turanians with Appell and Other
Elements
Let
T=T"" =|C, Cri1 Criyn- - Crpnoa] (4.9.5)
where
Cj = [6; din1 dyaz yen]
Oy = mF 1.
Theorem 4.34.
T'=rF|Cr_1 Cri1 Crya - Crpp|.
PrOOF.
Cj = F(jCj-1 + Cj),
where
C; = [0 6; 26511 30542+ (0 = Djan—2]
Hence,
r+n—1
T = Z |Cr Crq1---Cj1 C;- - Crin1|
rnet

Jj=r

=F > |C.Crp1-+-Cj1(jCj1 4+ C) -+ Cryna

= TF|C’I“71 Cr+1 Cr+2 t C'H»nfl‘
r4+n—1

+F Y |C, Crpr €l Crpp
Jj=r
after discarding determinants with two identical columns. The sum is zero

by Theorem 3.1 in Section 3.1 on cyclic dislocations and generalizations.
The theorem follows.

O
The column parameters in the above definition of T are consecutive. If
they are not consecutive, the notation

Tjrjo..jn = |Cjy Cjp -+ Cj, -~ Cy, | (4.9.6)
is convenient.
!
lejQ---jn

=F>» j:|Cj, Cj,---Cj—1y-+- Cy, |
r=1

(4.9.7)
Higher derivatives may be found by repeated application of this formula,
but no simple formula for D*(T},;,. j.) has been found. However, the
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method can be illustrated adequately by taking the particular case in which

(n,7) = (4,3) and ¢,, is an Appell polynomial so that F' = 1.

Let
T = |Cs C4 Cs Cg| = Tsuse.
Then
D(T') = 3T»456,
D?*(T)/2! = 3T 1456 + 6T 2356,
)/3! = Toase + 811356 + 1072346,

DY(T)/10! = 3Tp125 + 670134,
D' (T)/11! = 3Tp124,
D'*(T) /12! = Tp1s,
=|¢mls, 0<m<6
= constant.

(4.9.8)

The array of coeflicients is symmetric about the sixth derivative. This result
and several others of a similar nature suggest the following conjecture.

Conjecture.

DV{T™ Y} = (nr)|pmln, 0<m < 2n—2

= constant.

Assuming this conjecture to be valid, T("") is a polynomial of degree
nr and not n(n + r — 1) as may be expected by examining the product of
the elements in the secondary diagonal. Hence, the loss of degree due to

cancellations is n(n — 1).

Let
T — 7r) — ‘CT Cri1Crpg--- CT+n71|n,
where
T
Cj= [wrwﬂ?l Yrgj Yrayjyr - wr+j+n*2}n
(m)
Ym = ! '(:v) ., f(x) arbitrary
m!

w;n = (m+1)Ymq1.
Theorem 4.35.
T/ = (2n -1+ T)’CT Cr+1 te Cr+n72 Cr+n’n

=—@2n—1+7r)T0t0,

(4.9.9)
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PrOOF. The sum formula for 7" can be expressed in the form

Z%Hﬂ‘fleﬁ’T) = —5z‘nT7(lT1r,1ﬁr)a (4.9.10)
j=1

C) = [(r+5)ras (r+i+Dbrger - (40— rsgini], . (49.11)
Let
C;=Cj—(r+j)Cjn
= [0 $rpse1 2Wragir - (0= Db jgnoa] - (4.9.12)

Differentiating the columns of T,

where

Uj=|Cy C2---Cj Cjy1---Cpl , 1<j<n.
Let

V; = |Ci Cy---C} Cj+1...Cn|n’ 1<j<n

= Z(i = Dprgigj—1T35- (4.9.13)
1=2

Then, performing an elementary column operation on Uj,
U;=V;, 1<j<n-1
U, = ’Cl Cy---Cpq C;L‘
= |01 Cy---Cpq C:| + (r+n)|Cl Cy---Cpq Cn+1‘
=V — (r + )4, (4.9.14)

Hence,

I

n+1,r
T+ (r +n)TE " v;

<
Il
—

(1)) CryipjaTy

i=1 j=1

I
NE

<
Il

n

= —TUHLINT G )5,

n+1,n
=2
_ (n+1,r)
- _(n - 1)T'n-‘,-l,n .

The theorem follows. ]
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Theorem 4.36.
DTGy = —@2n +r — 1)1,

n,n—1
ProOOF.
Tl(;lﬂ") — T(n— 1,r+2) )

The theorem follows by adjusting the parameters in Theorem 4.35.
Both these theorems are applied in Section 6.5.3 on the Milne-Thomson
equation. O

4.9.8  Determinants with Simple Derivatives of All Orders

Let Z, denote the column vector with (n 4+ 1) elements defined as

Z, = [Or bo 41 G2 "¢n—r]:+1’ l<r<m, (4.9.15)

where 0, denotes an unbroken sequence of r zero elements and ¢,, is an
Appell polynomial.
Let

B=|Z1CyCi Cy---Cpa, (4.9.16)
where C; is defined in (4.9.5). Differentiating B repeatedly, it is found that,
apart from a constant factor, only the first column changes:

D"(B) = (—1)"r!|Zy+1 Cy C; Cy- -.cn_lynH, 0<r<n-1.
Hence
D" (B) = (=1)"""(n = 1)!¢o|Cy C1 C3---Cp 1],
= (=" n = 1)¢oldmln, 0<m<2n—2
= constant;

that is, B is a polynomial of degree (n — 1) and not (n? — 1), as may
be expected by examining the product of the elements in the secondary
diagonal of B. Once again, the loss of degree due to cancellations is n(n—1).

FEzercise

Let
Sm = Z ¢r¢s~
r+s=m

This function appears in Exercise 2 at the end of Appendix A.4 on Appell
polynomials. Also, let

Cj = [Sj-1 S Sjs1+- Sjpn-2]

T
K= [' Sop 51 Sa - "Sn—2]

n7

E=1|Suln, 0<m<2n-—2.

T o1<j<n,

n7 — —
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Prove that
D"(E) = (-1)"*'r! Zsi—zEw

1=2

= (—1)T+1’I“!’01 CQ R Cr—l K Cr—i—l te Cn’n

4.10 Henkelians 3

4.10.1 The Generalized Hilbert Determinant
The generalized Hilbert determinant K, is defined as
K, = Kn(h) = ‘kij|nv

where
1
kii=————, h#l1l—i—j, 1<i,j<n. 4.10.1
=TT MAl-id 1ijse (4100
In some detail,
1 1 _1
h+1 h+2 h+n
1 1 o 1
K, = | ht2 +3 hbntl | | (4.10.2)
SRREEREE R '. ...... s
h+n h+n+1 h+2n—1 In

K, is of fundamental importance in the evaluation of a number of de-
terminants, not necessarily Hankelians, whose elements are related to k;;.
The values of such determinants and their cofactors can, in some cases,
be simplified by expressing them in terms of K, and its cofactors. The
given restrictions on h are the only restrictions on h which may therefore
be regarded as a continuous variable. All formulas in A given below on the
assumption that h is zero, a positive integer, or a permitted negative in-
teger can be modified to include other permitted values by replacing, for
example, (h+n)! by I'(h +n+1).

Let V,, = Vpr(h) denote a determinantal ratio (not a scaled cofactor)
defined as

1 1 1

h+1 h+2 h+n

1 1

1 +2 h+3 h+n+1

Vool A row - 4103
UK, 1 1 1 ’ ( )

e T e o

h+n h+n+1 h+2n—1 In

where every element in row 7 is 1 and all the other elements are identical
with the corresponding elements in K,,. The following notes begin with the
evaluation of V,,,. and end with the evaluation of K, and its scaled cofactor
Kre.
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Identities 1.

Vir = zn:K;;j, 1<r<n. (4.10.4)
j=1
_1\ntr _
Vi, = (}E ;2 — S&jj _1|—)'72n _1):)!, 1<r<n. (4.10.5)
_ |
Van = 35 ihn”g! (nl)' o (4.10.7)
K)° = %, 1<r,s<n. (4.10.8)
Kt = Vf;LW—FVZl' (4.10.9)
2
K" = K[Zl = h:;’;;_ - (4.10.10)
rl sl
Krs = (h(;ri)ﬁ;kg)%vgn . (4.10.11)
—1)12 —1)12
Kn= (h(—Ti—L 2n11. 2()];(2-7: 2nll -t (4.10.12)
12131... — 1)N2p! l... —1)!
(n =)W+ (h+n+7r—1)V, 1, =0. (4.10.14)
K, ﬁ Vir = (=1)(n=1/2, (4.10.15)
r=1

PrOOF. Equation (4.10.4) is a simple expansion of V,,, by elements from
row 7. The following proof of (4.10.5) is a development of one due to Lane.
Perform the row operations

R;=R;,—-R,, 1<i<n, i#r,
on K,, that is, subtract row r from each of the other rows. The result is
K, = |k£j|m
where
k/’:ﬂj = ij7
kij = kij — ko

T—1
- 7 . . . 4 ki'v 1<7§ 9 ] .
(h+r+j—1> j <ij<n, i#r

After removing the factor (r — i) from each row ¢, i # r, and the factor
(h+7+3j—1)""! from each column j and then canceling K,, the result can
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be expressed in the form

-1

Vm:H(h—i—r—i-j—l) | J G
Jj=1 2;
~ (h+r)(h+r—=1)--(h+r+n—1)
R i (G EcIRR )
which leads to (4.10.5) and, hence, (4.10.6) and (4.10.7), which are

particular cases.
Now, perform the column operations

S

C;:Cj_csa ]-Sjénv j?éS,

on V,,.. The result is a multiple of a determinant in which the element in
position (r,s) is 1 and all the other elements in row r are 0. The other
elements in this determinant are given by

ki = kij — kis

s—3 .. .
= (h—l—z—l—s—l) kij, 1<i,j<n, (i,j)#(rs).

After removing the factor (s — j) from each column j, j # s, and the
factor (h + 44 s — 1) from each row 4, the cofactor K5 appears and gives
the result

-1
n

Vm,:Kff”(s—j) ||(h+i—|—s—1) ,
j=1 i=1
J#s 7T

which leads to (4.10.8) and, hence, (4.10.9) and (4.10.10), which are par-
ticular cases. Equation (4.10.11) then follows easily. Equation (4.10.12) is
a recurrence relation in K, which follows from (4.10.10) and (4.10.7) and
which, when applied repeatedly, yields (4.10.13), an explicit formula for
K,,. The proofs of (4.10.14) and (4.10.15) are elementary. O

FEzxercises

Prove that

1. K,(—2n—h) = (—=1)"K,(h), h=0,1,2,....
B g

2. Ly — -
an v Vm;h—&—r—kt
B

n—1
1 1 1
3. 2R — K - .
on'tn = e l;(h+r+t+h+s+t> h+7’+3—1]
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. (=) n(r+n—1)!
42 Ko (0) = =i =

b. K;S(O):%(Z:i) (Z:i) (r—H:—l) <s+z—1>.

112130 - (n — )13

. K, (0) = .
¢ K0 = o i o 2n =1
5.
1 . 1
K”(Q)_2 2 +2j— 1],

@+ DI+ n)!

=22 23l (n - D)2 [ .
Sy ri2r + 20+ 1)

[Apply the Legendre duplication formula in Appendix A.1].
6. By choosing h suitably, evaluate |1/(2i + 25 — 3)|,.

The next set of identities are of a different nature. The parameter n is
omitted from V,,,, K7, and so forth.

Identities 2.

K Ors; 1 4.10.16
—_— = <r<n 10.
Zh+T+j_1 TS8)H sSrsn ( )

Vi
ZthrJrj—l » S=TSHh (4.10.17)
‘/j 67‘8
=9 1< s < n.(4.10.18
zj:(h+r+jfl)(h+s+j—1) o s )
IS Vi— hén, 1 4.10.19
- < <n. . .
Zh"’r"‘]_l 1 rl, STrsn ( )
Y Vi=>"3 K9 =n(n+h). (4.10.20)
J i
D_ iKY = (n* +nh = h)Vi. (4.10.21)

J

Proor. Equation (4.10.16) is simply the identity
D kK =6,
J
To prove (4.10.17), apply (4.10.9) with » — j and (4.10.4): and (4.10.12),

(h+ j)Kt
V;
1Zh+r+y—1 Zh+r+]—1

= 1=l \gn
; h+r+j5—-1
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Kl
—V -y
1= Zh+r+3—1
=Vi—(r—-161, 1<r<n.

The second term is zero. The result follows.
The proof of (4.10.18) when s # r follows from the identity

1 1 1 1
(h+r+j—1(h+s+j—1) s—r <h+r+j—1 B h+s+j—1>
and (4.10.15). When s = r, the proof follows from (4.10.8) and (4.10.16):

Vzm Zh+r+s—1 L
To prove (4.10.19), apply (4.10.4) and (4.10.16):
Zh JKY Z(l_ h—|—7‘—.1 )Klj
+r+j-1 7 h4+r+j5-1
=V —hépp — (r—1)0,1, 1<r<n.

The third term is zero. The result follows.

Equation (4.10.20) follows from (4.10.4) and the double-sum identity (C)
(Section 3.4) with f, = r and gs = s + h — 1, and (4.10.21) follows from
the identity (4.10.9) in the form

jKY =ViV; — hKY
by summing over j and applying (4.10.4) and (4.10.20). O

4.10.2  Three Formulas of the Rodrigues Type
Let

n
— § Kljgjjfl
Jj=1

1 T x? ikt
:i ka1 koo ko3 kan
Koy | oo
knl an knB knn n
Theorem 4.37.
(h+n)!

R(x) = (L - )Y,

(n — 1)12plgh+1

PROOF. Referring to (4.10.9), (4.10.5), and (4.10.6),

Dn—l[xh+n(1 _ x)n—l] _ i:(_l) (’I’L - 1) D 1( h+n+i)

)
=0
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3
|
—

3

i (n—1Y\ (h+n+i) i+1
<_1)( i )(h+i+1)!xh++

I
o

i

I
M=

(—1)7 71 (” - 1) (htntj—D! i

- j—1 (h+4)!

J
(n—)Phlzhtt IS
~ T (h+n) 2 KM

j=1
The theorem follows.
Let
Sp(w,h) =Y K ()™
j=1
ki1 k12 kiz o -e k1n
ko1 koo ko - kan
kn—11 kn—12 kn-13 -0 kp—inm
1 —x x? v (=)t

The column operations
C,=C;+2Cj_;, 2<j<n,

remove the x’s from the last row and yield the formula

1
Sp(w h) = (—1)"+|— 2y
(@,h) = (=1) h+i+j—1 h+i+j|,
Let
1 1
To(e,h) = (~1)" | — 2 L
h+i+j—1 h+i+j|,

Theorem 4.38.
(h+n—1)2 S,(x,h)
hl(n—1)! S,(0,h)
(h+n—1)! T,(x,h)
M(n—1)! T,(0,h)

_ Dh+n—1[xn—1(1 +$)h+n—1].

b.

_ Dh+n_1[l‘h+n_1(1 _’_x)n—l].

PROOF.

S (0, 1) = K
— Kn(h)vnnvnl
h+n

v (M),
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j 1
Sz, h) = V""Zh+n+j—1
Hence
h+n—1 Sn( ah _ n+l nj
( h )Sn(07 B Zh+n+]—1
72”: 1 [(h+n+j2)!xj1}
2 =)+ j—1)! G-

- 1 ~(h+n-1 htn—1(_ h+n+j—2
(h+n—1)!_zl<h+j—1)D ("),
iz

(h+n—1" Su(x,h) h4n—1 e (b =1 i
:D n n . J
Mn—1)! S,(0,h) DY htj—1)7

h+n—1
:Dh+n—1 lxn—l Z (h+f—1>xr]

r=h
_ Dh+n71 [£n71(1 + x)thnfl _ph+n—2(1‘)}a

where p,.(z) is a polynomial of degree r. Formula (a) follows. To prove (b),
put x = —1 — t. The details are elementary. o

Further formulas of the Rodrigues type appear in Section 4.11.4.

4.10.8 Bordered Yamazaki—Hori Determinants — 1
Let

A= ‘aij|n = |9m|n7

B = ‘bij|n =|omln, 0<m<2n—1, (4.10.22)
denote two Hankelians, where
1 2 2itj—1) 2 2(i+j—1)
i = T ! ’ =1,
aij Zﬂ_l[pw +a%y ]
1 2 2m+2 2m—+2
omzmi—i-l[p +qy _1]7
1 L L
bi' — 2X’L+_]—1 2Y’L+]—1
1 2
= Xm—‘rl 2ym+1
¢ m+1 lp +a I
P’ +q’ =1,
X =z?-1,

Y =y? 1. (4.10.23)
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Referring to the section on differences in Appendix A.8,
Pm = A"
so that
B=A.

The Hankelian B arises in studies by M. Yamazaki and Hori of the Ernst
equation of general relativity and A arises in a related paper by Vein.
Define determinants U(x), V(z), and W, each of order (n + 1), by bor-
dering A in different ways. Since a;; is a function of z and y, it follows that
U(z) and V(z) are also functions of y. The argument x in U(z) and V(z)
refers to the variable which appears explicitly in the last row or column.

X
x3/3
. 5
Ulx) = i3] /5
2?n=1/(2n — 1)
111 - 1 . -
n n A»,-Sl'2r_1
==Y T (4.10.24)
r=1 s=1
1
1/3
Via) = sl V5
1/(2n—1)
T .’1,‘3 $5 . x2n—1 ° -
n n ArstSfl
=-> T (4.10.25)
r=1 s=1
W =U(1)=V(1). (4.10.26)

PROOF.
A 2=l AL 251
U2 — 18 Jr
() Z % — 1 ; 2 —1
AisAchQ(”j’l)
B Z @i-1@Ej-1)
Hence,

P*U?(z) + U (y) — W?
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AisAjr 2 2(i+j—1) 2, 2(i+j—1)
= -1
P TR L ]
2,7,7,S

('L +] - 1)aiinsAT'j
2 i@ -

4,3518

1 1
=1 i'AisAr'
22(2i—1+2j—1)aj J

1,7,7,8

AL A,
=2 aJQi— T

',jre

=25 ZZ% g
2@ Z(SW

_ aw

which proves the theorem. |
Theorem 4.40.
PVi(x)+ Vi(y) = W2 — AW.

This theorem resembles Theorem 4.39 closely, but the following proof
bears little resemblance to the proof of Theorem 4.39. Applying double-sum
identity (D) in Section 3.4 with f,. = r and g5 = s — 1,

ZZ 2 2 (r+s—1) _|_q2y2(r+s—1) _ I]AisArj — (Z +,] _ I)Aij,

p2 ZAiSZCZSil ZArjx%”fl +q2 ZAisy2sl‘| ZArjy2r1]
SAEN Y AT = (i+j - 1)AY.
Put
x) = ZAU.T%_l.
J
Then,

P ()N () + @ Xi(y) A (y) — X)X (1) = (i + 5 — 1)AY.
Divide by (2i — 1)(2j — 1), sum over ¢ and j and note that

2i—1 A

Ni(x Viz
S~ M) Vi),
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The result is
1 +i—1 y
PV + V) - W] = Z > ot A

e (20 —1)(25 — 1)
1
-1 A4
2222232(21—1 2]—1)
W
A

The theorem follows. The determinant W appears in Section 5.8.6.
Theorem 4.41. In the particular case in which (p,q) = (1,0),
V(z) = (=1)""U(z).

PrOOF.
220451 _
A A
which is independent of y. Let
1
1
7 [€ijln 1 ’
O e e

n+1
where
cij = (i = J)ai
= —Cji.
The proof proceeds by showing that U and V are each simple multiples of
Z. Perform the column operations

C; = Cj — $2‘jilcn+1, 1 S] S n,

on U. This leaves the last column and the last row unaltered, but [a,;], is
replaced by [a;;],, where

) 22G+i—1)
AR T
Now perform the row operations
1
Ri=R,+ ——R,41, 1<i<n.
2i —1

The last column and the last row remain unaltered, but [a;;], is replaced
by [a};]n, where
" !/

AR T
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2i—1°

After removing the factor (2i — 1)~ from row i, 1 <14 < n, the result is

T
23
_ 2! [¢ij]n a’
(2n)!
x2n71
111 - 1 L
Transposing,
1
1
(2n)! e
1
x z® 2P 2 e

Now, change the signs of columns 1 to n and row (n + 1). This introduces
(n + 1) negative signs and gives the result

(—1)nti2np!
gz e 4.10.27
(2n)! ( )
Perform the column operations
C;-:Cj+cn+17 ISJSH,
on V. The result is that [a;;], is replaced by [a};],, where
Perform the row operations
221
Rngi*.iRn+lv ]-SZSna
2;—1
which results in [a};],, being replaced by [a;7],, where
. . 220Hi-D)
T T e
2i—1°
After removing the factor (2 — 1)_1 from row i, 1 < i < n, the result is
2"n]!
V=—%+2 4.10.28
(2n)! ( )

The theorem follows from (4.10.27) and (4.10.28). O
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Let
A:|¢m|n7 0<m<2n-2,
where
x2m+2 -1
bm =
m+1

A is identical to |aij\n, where a;; is defined in Theorem 4.41. Let Y denote
the determinant of order (n + 1) obtained by bordering A by the row

111...1e]

11 1
1-=... °
{ 35 2n —1 ]

below and the column
T

n+1
on the right.
Theorem 4.42.

n o 52i—1 Sy
_ n(n—1) 2 : 2 (n+i-1! .,
Y= nkndo B O IC R

where K,, is the simple Hilbert determinant.

PROOF. Perform the column operations

C;- =C,;,-C;
in the order j = n,n—1,n—2,...,2. The result is a determinant in which
the only nonzero element in the last row is a 1 in position (n+1,1). Hence,
Apg  Ad1  Ags - Adp2 1
Apr Ada  Ags -+ Adp %
Y=(-1)" Aga A¢s Agy -+ Agy £
A(b’n—l A¢n Aan-i-l Tt A¢2n—3 2n1_1 n

Perform the row operations

R, =R~ R

in the order i =n,n —1,n—2,...,2. The result is

Agg Agy Agy -+ Adp2 1

A2y A2¢y A2y - A9 A

V= (-1)"| A% A2y A3 - Ao, Aay |
Ahy_y A’¢,_y A9, A¢on_y Aay_sl,
where
1
Q=
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Now, perform the row and column operations

1—2 .

;L oy 1—2 _ . _ _

Ri,zo( 1) ( . >R2_T, i=n,n—1,n—-2,...,3,
=

i1 ,
C;ZZ(_1)*(J_1>CM, j=n—1n-2,..2

r
r=0

The result is

AN A2¢g Adpy - ATl 1
A2¢0 A3¢0 A4¢0 e An¢0 Aao
Y = (71)" A3¢0 A4¢0 A5¢O L. An+1¢0 A2()éo ’
An¢0 An+1¢0 An+2¢0 . AQn—2¢O An_lao .
where
gl-‘rl
Am = .
$o =" 1

Transfer the last column to the first position, which introduces the sign
(—1)"*1, and then remove powers of ¢ from all rows and columns except
the first column, which becomes

|:1 Aag A2a0 . An_lao}T
o 3 ot

The other (n — 1) columns are identical with the corresponding columns of
the Hilbert determinant K,,. Hence, expanding the determinant by elements
from the first column,

Y = 7¢g(n—1) Z [KZ.(IL)AiflaO] ¢6L—l

i=1
The proof is completed with the aid of (4.10.5) and (4.10.8) and the formula
for A" 1oy in Appendix A.8. |

Further notes on the Yamazaki—Hori determinant appear in Section 5.8
on algebraic computing.

4.10.4 A Particular Case of the Yamazaki—Hori Determinant
Let
An: ‘¢7n|na OSmSQn_Za

where
x2m+2 -1

m = 4.10.2
¢ m+1 (4.10.29)
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Theorem.

Proor.
qf)o = 332 —1.
Referring to Example A.3 (with ¢ = 1) in the section on differences in

Appendix A.8,

m+1
AMpy = 20 .
%0 m+1
Hence, applying the theorem in Section 4.8.2 on Hankelians whose elements
are differences,

An = ‘Amd)O‘n

m—+1
0

m+1 n

1.2 1 1
b0 595 3P - = dp
1,2 1.3 144
§¢O §¢(] Z(ZSO

= | 1,3 1.4 1.5
3%0 Z¢O

Lm0 L 1 p2n—1
n 70 2n—170 n

Remove the factor ¢} from row i, 1 < i < n, and then remove the factor
qbf)_l from column j, 2 < j < n. The simple Hilbert determinant K,
appears and the result is

(142434 4+n) (14+243+-+n—T)
An = n¢0

2
= n¢g y

which proves the theorem. |

Ezxercises

1. Define a triangular matrix [a;;], 1 <7 < 2n—1,1 < j < 2n —14, as
follows:

)

column 1= [1 uu?- - u2n—2]T

row 1= [1 v v?- ~-v2”_2].
The remaining elements are defined by the rule that the difference be-
tween consecutive elements in any one diagonal parallel to the secondary
diagonal is constant. For example, one diagonal is

1 1
u? §(2u3 +03) g(ug' + 20%) v3



4.11 Hankelians 4 137

in which the column difference is $ (v — u?).
Let the determinant of the elements in the first n rows and the first n
columns of the matrix be denoted by A,. Prove that

K,n!3
(2n)!

An — )n(n+1).

(u—wv

2. Define a Hankelian B,, as follows:

_ Pm

By=|—" |  0<m<2n-2,
‘(m+1)(m+2)

n

where
Om = Z(m +1—r)u™ """
r=0
Prove that
B - An+1
"l (u—v)2n

where A,, is defined in Exercise 1.

4.11 Hankelians 4

Throughout this section, K, = K, (0), the simple Hilbert determinant.

4.11.1 v-Numbers

The integers v,,; defined by

(=) i (n+i—1)!
(i — D2 (n—1)!

:(_1)”“1'(’;:11) (”“_1), 1<i<n, (4112)

n—1

Vi = Vni(0) = (4.11.1)

are of particular interest and will be referred to as v-numbers.
A few values of the v-numbers v,; are given in the following table:

1

—24 30
—4 60 —180 140
5 =120 630 —1120 630

G W N =S
w
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v-Numbers satisfy the identities

Unk .

— =1 1< < 4.11.
P N R (4.113)
k=1

- Unk
Uni ; ; = 045, 4.11.4

;(z+k—1)(k+g—1) J ( )

Uni Un—1,i
= — > 4.11.5
n+i—1 n—i’ ( )

> i =n?, (4.11.6)
=1

and are related to K, and its scaled cofactors by

. VniUni
Ki = 4.11.7

i ( )

Ky [ [ ons = (—1)0 =072, (4.11.8)

The proofs of these identities are left as exercises for the reader.

4.11.2  Some Determinants with Determinantal Factors

This section is devoted to the factorization of the Hankelian

B, =detB,,
where
Bn = [bij]ru
22G+i—1) _ 42
by = —— 4.11.
] Z+] -1 ’ ( 9)
and to the function
Z 271 4 1) By, (4.11.10)

which can be expressed as the determinant |g;;|, whose first (n — 1) rows
are identical to the first (n — 1) rows of B,,. The elements in the last row
are given by

gnj =¥+t 1<j<n.

The analysis employs both matrix and determinantal methods.
Define five matrices K,,, Q,, S», H,,, and H,, as follows:

1
K, = [] , (4.11.11)
t+5-—1],



4.11 Hankelians 4 139

Q. =Qn(z) = [Wl

Both K,, and Q,, are Hankelians and Q,(1) = K,,, the simple Hilbert

matrix.

2(i+j—1)
z } . (4.11.12)

'Um‘l'zjil
S,=S =|— , 4.11.1
where the v,,; are v-numbers.
H,=H,(z,t) =S, (z) + tL,
_ [pn)
- [hlj }rﬂ
where
251
(n) UniT
(¥ Z+] —1 + 61] ’
H, = H,(z,~t) = S,(z) - tI,
=[] (4.11.14)
where
7(n) _ 7(n)
hij (z,t) = hij (z, 1),
H,(z,—t) = (=1)"H,(—x,1). (4.11.15)

Theorem 4.43.
K. 'Q, =52

PROOF. Referring to (4.11.7) and applying the formula for the product
of two matrices,

= [t ] [0
i+ -1, [i:+7j—1],
_i o x2(k+j1)]
_k:1i+k‘—1 k+j—1 .
e
st i+k—1 kE+j5—-1 .,
=s2. O
Theorem 4.44.
B, =K,H,H,,

where the symbols can be interpreted as matrices or determinants.
PrOOF. Applying Theorem 4.43,
B, = Qn - tan
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= Kn (K:LlQn - t2In)

=K, (S} - #1,)
=K, (S +tL,)(S, — tI,)

=K,H,H,,. O
Corollary.
Bl-H H K
[B5Y] = [H,) ] [H] [K)
Lemma.

The proof applies (4.11.3) and is elementary.
Let E, 1 denote the determinant of order (n+ 1) obtained by bordering
H,, as follows:

hir hiz -+ hi, Unl/n
hai  hoa -+ hap  wp2/(n+1)
En+1 B T

hni hna hnn  Unn/(2n —1)

11 1 . .
n n
=y VnrHrs (4.11.16)

r=1 s=1 n+r— 1

Theorem 4.45.
En+1 == (-1)”Fn71.
The proof consists of a sequence of row and column operations.

PrROOF. Perform the column operation

C, =C,—z"'C, (4.11.17)
and apply (6b) with j = n. The result is
hit hia -+ hip_1 o Un1/M
hor hoa -+ hop—1 e wUne/(n+1)
Bt = | oo o (4.11.18)
hnl hn2 e hn,n—l t vnn/(2n - 1)
1 1 - 1 1 °

n+1

Remove the element in position (n,n) by performing the row operation

R, =R, — tRp41. (4.11.19)
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The only element which remains in column n is a 1 in position (n + 1,n).
Hence,

hi1 hio T hl,n—l Unl/n
B ha1 haa e han—1 Un2/(n+1)
n+1 —
(hp1 —t) (hp2 —1t) (hnp—1—1) Upn/(2n—1)1,

It is seen from (4.11.3) (with ¢ = n) that the sum of the elements in the
last column is unity and it is seen from the lemma that the sum of the
elements in column j is %=1, 1 < j < n — 1. Hence, after performing the
row operation

=> R, (4.11.21)
i=1

the result is

hi1 hio T hl,n—1 Unl/n
ho1 haog -+ hapn1 Vpa/(n+1)
e (4.11.22)
hnfl 1 hn71,2 hnfl,nfl Un,n 1/(2n - 2)
T .’173 x2n—3 1 N
The final set of column operations is
C;, :ijxzjflcn, 1<5j<n—1, (4.11.23)

which removes the z’s from the last row. The result can then be expressed
in the form

Eper=—|h3" |, ., (4.11.24)
where, referring to (4.11.5),
R _ ) _ Onit?
Y Jon4i-1
; 1 1
= vniz® ! - 5t
it (H—j—l z’+n-1)+ i
. 261
Sy —— (n. ].)x + 0t
1+n—1 i —l—] -1
2] 1
Un—1,i
= 05t
(n—Z) H‘J—l )+ !
27—1
_ ( ) (“?“.x w)
n—1 i+75—1
n—j 7(n—1)
=— 3%
<n—i> w0
n)* 7(n—1
L R R (4.11.25)
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Theorem 4.45 now follows from (4.11.24). O
Theorem 4.46.

Gp=(-1)""0pn K HpHy,
where Gy, is defined in (4.11.10).

PROOF. Perform the row operation
n
R =R,
k=1
on H,, and refer to the lemma. Row i becomes

[(x + 1), (IES +1), (2 +1),..., (xzn*l + t)]

Hence,

=Y @+ 0H,, 1<i<n (4.11.26)

1] )
j=1
It follows from the corollary to Theorem 4.44 that

(n) _ g(n) _ (") pr(n) e (n)
B =B = ZZH HDK]. (4.11.27)

r=1 s=1

Hence, applying (4.11.7),

UneH'S? H(n)

= nvmzz F—— (4.11.28)

r=1 s=1

Put i = n, substitute the result into (4.11.10), and apply (4.11.16) and
(4.11.24):

n n vné n 2] L (n)
w2 T ]Zf +0H,
Uns

- n nnH

SN 9) ppLLLE P

r=1 s=1
= - nvnnFnEnJrL (41129)
The theorem follows from Theorem 4.45. |

4.11.8  Some Determinants with Binomial and Factorial
Elements

Theorem 4.47.

n+j—2
n—1

_ (71)n(n71)/2

2’

n
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1
(i+j—2)

nl(n+ 1) (2n —2)!

The second determinant is Hankelian.

PROOF. Denote the first determinant by A,. Every element in the last
row of A, is equal to 1. Perform the column operations

C,=C;~Cj_1, j=nn-1n-2,...,2 (4.11.30)

which remove all the elements in the last row except the one in position
(n,1). After applying the binomial identity

(1)-(2) -5,
(nra?)

Once again, every element in the last row is equal to 1. Repeat the column

operations with j = n — 1,n — 2,...,2 and apply the binomial identity
again. The result is

the result is

A, = (—1)"H (4.11.31)

n—1

|fnt+i—=2
A, = ‘(ni2>n_2 (4.11.32)
Continuing in this way,
_ n+j—2
_ |fn+j—2
- n—i—=6/|
SRR
n—i— -
- (")
— )
= +1, (4.11.33)
. . 1 whenn=4m,4m +1
blgn(A")_{—l when n = 4m — 2,4m — 1, (4.11.34)

which proves (a).
Denote the second determinant by B,,. Divide R; by (n—i)!,1 < i < n—1,
and multiply C; by (n+ j — 2)!, 1 <j < n. The result is
(n—Dnln+1)!--2n-2)! & (n+j—2)

(n—!n—-2)(n=3)!---1 7" " |(n—i)(i+j—2),
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which proves (b).

FEzercises

Apply similar methods to prove that

L (")

1

(_l)n(nfl)/Q

n

)

(_1)n(n—l)/2Kn

G+i-D!,

Define the number v; as follows:

Then

Let

where

Theorem 4.48.

PROOF. Let

ZATL 1,j—1Vitj-2 =

An =

(142)712 =
—1)¢
Vi = (22i)

A, = |Vm|n7

:‘0102...

12030 (n— D2

ZVZ

(%)

0<m<2n—2,

Cj = [Vj,1 vj...

Cnfl Cn|n

T
Vn+j73 Vn+j72] n

(n—1)(2n—1) .

A, =2
Anr: n
n+r

2*(27173)|C1 Cy---
= 2—(271—3)|C1 Cy- -

Oin,

22(n— 1) ’

n+r 2r
( N )2 |

Then, it is shown in Appendix A.10 that

1<

C,_1 C,|

1 < n,

Cn—l (>\n—1,7t—1cn) |n’

n’

(4.11.35)

(4.11.36)

(4.11.37)

(4.11.38)

(4.11.39)

(4.11.40)

(4.11.41)
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where
n—1
C,=X-17-1Cp + Z An-1,j—1C;
j=1
n—1 T
= Z >\n—1,j—1 [Vj—1 Vi Vnij-3 Vn+j—2]n
7=1
=2-("9[00...01]". (4.11.42)
Hence,
An _ 2_4(n_1)+1An71
Apy =274072%0 4, (4.11.43)

Ay =2740F 4 (A =19 =1).

The theorem follows by equating the product of the left-hand sides to the
product of the right-hand sides. O

It is now required to evaluate the cofactors of A,,.
Theorem 4.49.
a. Ag}) — 9—(n—1)(2n-3) )
b. Aiﬁ) _ 27(7171)(277,73)7
C. AZJ = 22(7171))\71,1,]‘,1.

n—1,j—1;

PROOF. The n equations in (4.11.40) can be expressed in matrix form as
follows:

A,L,=C', (4.11.44)
where
Lo = [A0 At A Anni] - (4.11.45)
Hence,
L,=A,'C,
= 4.1[A],C,
= 20 DC=D=2 =D (A Ay At A, (4.11.46)

which yields part (a) of the theorem. Parts (b) and (c) then follow
easily. O

Theorem 4.50.
n—1

AE?) = 27n(2n73) 22173/\1‘_173'_1 + Z )\r—l,i—l)\r—l,j—l , 1<i1<n—1.
r=i+1
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PROOF. Apply the Jacobi identity (Section 3.6.1) to A,., where r > i+ 1:

(r) (r)
Aij Agy — A4
A(f) A(T) et gr
rj rr
— (r=1)
—ArAij )

(r) (r=1) _ 4(r) 4()
A gAY — A, AT = A A

Scale the cofactors and refer to Theorems 4.48 and 4.49a:

Ay
Ar—l
_ 27(4r75)A:z’A:j

=2\ 111,51

A, = e

Hence,

n

23 Ariidngo = 3 (A7 - A7)

r=i+1 r=i+1
_AiG Al

= A7 - 2207V, 5,

(4.11.47)

(4.11.48)

(4.11.49)

which yields a formula for the scaled cofactor A%. The stated formula for

the simple cofactor Ag?) follows from Theorem 4.49a.

Let

E, = |Pm(0)‘m 0<m<2n-2,

where P,,(z) is the Legendre polynomial [Appendix A.5]. Then,

P3,41(0) =0,
sz(O) = UVUm-

Hence,

1% L] %1 [ ] 1]

141 [ ] Vo ° Vs

Theorem 4.51.

a

(4.11.50)

(4.11.51)

(4.11.52)
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PrROOF. By interchanging first rows and then columns in a suitable
manner it is easy to show that

Vo 1 12
vy V2 U3
170} V3 |20 e
Ep=| i, . (4.11.53)
Vi Vg -
Vs Vs

Hence, referring to Theorems 4.11.5 and 4.11.6b,

BEon = (=1)" Au A

( 1)n2 (2n— 1)2
"

Eonir = (= 7L+1A7(1T13
= (—1)"2 4" (4.11.54)
These two results can be combined into one as shown in the theorem which
is applied in Section 4.12.1 to evaluate | Py, (x)|y. O
Exercise. If
B, = ‘(27”) ., 0<m<2n-2,
m n

prove that

B, =2""1,

B(”) 22[n(n 1)—(i+5—2)] A(n)

4.11.4 A Nonlinear Differential Equation
Let
Gn($7 h7 k) = |g7,j|n7
where
htitk—1 i i
) hwiRer I T
9ij = : (4.11.55)
j { e 1 #E

Every column in G,, except column k is identical with the corresponding
column in the generalized Hilbert determinant K, (h). Also, let
Gnlx,h) =Y Gn(x,h,k). (4.11.56)

k=1
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Theorem 4.52.
(zG!

n

) = Kn(h)a" P (x, h),

where
Dh+n [xn (1 4 m)h—‘—n—l]

P,(x,h) =

(h+n—1)!
PROOF. Referring to (4.10.8),
Pl h + i+j5—1
n h+i+j—1
Z % (4.11.57)
P (h+i+j—1)2"
Hence,
(2G)) = Kn(h)a" Y "> ViVia 2
i=1 j=1
= K, (h)z"P?(x, h), (4.11.58)
where
Po(z,h) = (=1)" V2"
i=1
7% (h+n+i—1)lax*1
N — (i—= D' n—i)l(h+i-1)
n Dh+n h+n+i—1
=> (= ) (4.11.59)
P (n—i)l(h+i-1)
S (hAn =1\ Shing hintio
— 1)
(h+n—1)! Py(z,h) = z;(h_H._l)D (x )
“(h4+n-—1 i—
o h+n n h+i—1
=D [le(thzl)x 1
h+n—
h+n-1
o h+n n r
e )]
=DM [2"(142)" " — ppin-1(2)], (4.11.60)
where p,(x) is a polynomial of degree r. The theorem follows. O
Let

E(x) = leij(2)|n-1,
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where

(1 + x)i+j+1 — pttitl
ij = — . 4.11.61
ey (@) e (111.61)

Theorem 4.53. The polynomial determinant E satisfies the nonlinear
differential equation

[{x(1 +2)E}Y")” = 4n?(zE) {(1 + 2)E}'.
PrROOF. Let

A($7£) = |¢1’7’L($7£)‘n7 0<m < 2n -2,

where
bm(,8) = — < [(E+ 2™ —el€ = )™ + (e - gL (11162)
Then,
a J—
aif(ﬁm(mvg) = m¢m71($,f)7
po(x,8) =x +c (4.11.63)

Hence, from Theorem 4.33 in Section 4.9.1, A is independent of £. Put
¢ =0 and —z in turn and denote the resulting determinants by U and V,
respectively. Then,

A=U=YV, (4.11.64)
where
Uz, c) = [¢m(2,0)n
merl + (_1)mc
m+1 n
Tl 4 (—1)e
i+5—1

, 0<m<2n—-2

(4.11.65)

n

Put
V() = P (z, —2)
_

er)l [e(142)™ T 4+ (1 — ¢)a™H) (4.11.66)
V(z,c) = [¢hm(z)|n,
c(1+z)mH + (1 — )™+t
m+1 n
c(14z)™=1 + (1 —c)atti~!
t+j—1

(4.11.67)
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Note that U;; # Vi; in general. Since

w;n = _mwM717
Yo =z +c (4.11.68)
it follows that
V=V
1 i+l (] — o) gititl
_ |t + A=)z (4.11.69)
t+7+1 1
Expand U and V' as a polynomial in c:
U(z,c) =V(x,c) = Zfr(x)c"_r. (4.11.70)
r=0
However, since
'l/)m = YmC + Zms
where z,, is independent of c,
(1 + aj)m+1 _ xm-&-l
m = (—1)™ , 4.11.71
= (- |2 (1117)
y;n = —MYm-1,
Yo =1, (4.11.72)

it follows from the first line of (4.11.67) that fy, the coefficient of ¢ in V|
is given by

fo = lymln
= constant. (4.11.73)
n—1
TV (2, et = focTt St Z Jry1c”,
r=1
where
/ n—1 1 a
fi=[""'DV(z,c Y] _y Da= e
= [Cnilvll(ﬂf,cil)]czo
— |nt 1A 4 z) I 4 (1 — ¢ )ittt
i+j5+1 -
-5 (4.11.74)
Furthermore,

DAc"U(z,¢c N} = DAV (z,¢c )}, Do= =
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=D, i frc"
r=0

=fi +zn:rchT—1. (4.11.75)

r=2
Hence,
fi = [D AU (z,c7")}] e—0
giti=1 — (—1)i+ie!
i+7—1
cxiti=l — (—1)iti

i+j—1

=D, [C”

_ [DC

n:| c=0
= Gu(x,0,k)

= G'rn(xao): (41176)

where G, (z, h, k) and G,,(z, h) are defined in the first line of (4.11.55) and
(4.11.56), respectively.

n:| c=0
n

—

E =",
(zE)" = (2G")'
= K,P2, (4.11.77)
where
Kn = Kn(o)a
P, = P,(z,0)
_ D"a™(1+ z)" 1
= R . (4.11.78)
Let
Qn = ] (4.11.79)
Then,
P, (-1—2)=(-1)"Qn.
Since

it follows that

{1+2)EY = K, Q3
{xEY{(1 +2)EY = (K, P,Qn)>. (4.11.80)
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The identity
eD" 2" (1 4+ 2)"] = n D"z (1 + 2)" (4.11.81)

can be proved by showing that both sides are equal to the polynomial

S0 ()

It follows by differentiating (4.11.79) that

(2Qn)" = nPy. (4.11.82)
Hence,
{z(l+2)E}Y =1 +z)E+z{(1+z)E}
=(1+2)FE+ K,zQ?, (4.11.83)
{z(1+2)E}Y" = KaQ7, + Kn(Q} +22Q,Q,)
= QKnQn(xQn)/
= 2K, P, Q. (4.11.84)
The theorem follows from (4.11.80). O

A polynomial solution to the differential equation in Theorem 4.47, and
therefore the expansion of the determinant F, has been found by Chalkley
using a method based on an earlier publication.

FEzxercises
1. Prove that

1+z)"t+ce—1
m+1

=U=YV, 0<m<2n—2.

2. Prove that

(1+2)D"[2"(1 +2)" " = nD" 2" (1 + 2)"]

(14 2)Pa]’ = nQn.
Hence, prove that
[X%(X?E)") = 4n*X(XE),
where

X =zl +2x).
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4.12 Hankelians 5

Notes in orthogonal and other polynomials are given in Appendices A.5 and
A.6. Hankelians whose elements are polynomials have been evaluated by a
variety of methods by Geronimus, Beckenbach et al., Lawden, Burchnall,
Seidel, Karlin and Szego, Das, and others. Burchnall’s methods apply the
Appell equation but otherwise have little in common with the proof of the
first theorem in which L,,(x) is the simple Laguerre polynomial.

4.12.1  Orthogonal Polynomials
Theorem 4.54.

(=1)™r=D/201 112! - (n — 2)! (=)

(@)l = e T T 1 2 20 = 2)] n22
0<m<2n-2
ProOOF. Let
. 1

Gm(x) = 3" Ly <x> ;
then

O (@) = MPrm—_1(2),

Po = 1. (4.12.1)

Hence, ¢, is an Appell polynomial in which
=Hm
ml

Om (0) -

Applying Theorem 4.33 in Section 4.9.1 on Hankelians with Appell polyno-
mial elements and Theorem 4.47b in Section 4.11.3 on determinants with
binomial and factorial elements,

1
xmLm ()
x

= |¢7n(x)‘na OSWSQ’R—Q

n

= [ (0)]n
_ ’(—1)’”
ml |,
1
== )
B (=1)(=D/2011121. .. (n — 2)!
~nl (n+ D! (n+2)!--(2n—2)! : (4.12.2)
But
" L <1) ="V Ly, <1> (4.12.3)
x n x n
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The theorem follows from (4.12.2) and (4.12.3) after replacing = by
z L. O

In the next theorem, P,,(x) is the Legendre polynomial.
Theorem 4.55.
| P (2)|n = 2—(n—1)2 (xQ - 1)n(n—1)/2.
0<m<2n-—2

First Proof. Let

Gm (@) = (1 =) "2 Py (2).
Then

O (7) = ME 1 ()
where
F=(1-2%7372
¢o = Po(z) = 1. (4.12.4)
Hence, if A = |¢,(z)|n, then A" =0 and A = |¢,,(0)],.
[P (@) = |(1 = 2*)™ ¢ ()], 0<m<2n—2
= (1 —a?)" D2 (@)

=(1- x2)n(n_l)/2|¢mw)‘n
= (1= 2"V |P,, (0)] -

The formula
|Pm(0)|n — (_1)n(n—1)/22—(n_1)2

is proved in Theorem 4.50 in Section 4.11.3 on determinants with binomial
and factorial elements. The theorem follows. O

Other functions which contain orthogonal polynomials and which satisfy
the Appell equation are given by Carlson.

The second proof, which is a modified and detailed version of a proof
outlined by Burchnall with an acknowledgement to Chaundy, is preceded
by two lemmas.

Lemma 4.56. The Legendre polynomial P, (x) is equal to the coefficient
of t™ in the polynomial expansion of [(u + t)(v + t)]", where u = (x + 1)

and v = F(z —1).

PROOF. Applying the Rodrigues formula for P,(z) and the Cauchy
integral formula for the nth derivative of a function,
1

Po(z) = 2np!

D" (z? —1)"
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1 (¢ -n" _
/C( d¢ (put ¢ =z + 2t)

= ontigg ¢ —x)ntl

B 1 / [(+1+2t)(x—142t)]" it

Co2ntlng [, (2t)n+1

1
_ L[ e®
27TZ c! thrl

~9™(0)

ol
where

9(t) = [{3@+ 1) +t} {3 -1 +}]". (4.12.5)
The lemma follows. O

[(U+ ’U+t Z Z( > < > n— T,UnfstrJrs
r=0 s=0

where

p
— n n n—s, n—p+s < <
Z<s><p—s>“ v , 0<p<2n, (4.12.6)

s=0

which, by symmetry, is unaltered by interchanging u and v.
In particular,

/\00 = 1, )\nO = (uv)", )\n,gn = 1, /\rm = Pn(x) (4127)
Lemma 4.57.

a. Aii—r = (u0)" A igr,
b. Aii—rAjj+r = AijigrAjj—r-

PROOF.

n—+r
n n n—s, s—r
An,n-&-T—Z(S)(n_i_T_S)U v

s=0

n+r
Z n n _ _
B < ) ( ) un SUS T.
S sS—rT
s=r

Changing the sign of r,

o= 5 () (1 ) wemno

S=—T
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S () e
= ()’ % (Z) (U " T) u " (4.12.8)

oO=T

Part (a) follows after interchanging u and v and replacing n by 4. Part (b)
then follows easily. a

It follows from Lemma 4.56 that P;1;(z) is equal to the coefficient of
7 in the expansion of the polynomial

(w4 t) (v + 8] =[(u+t)(v+ )] [(u+t)(v+1)
21 27
=D Xipt” Y Nt (4.12.9)
r=0 s=0

Each sum consists of an odd number of terms, the center terms being \;;t’
and Aj;;t/ respectively. Hence, referring to Lemma 4.57,

min(i,j) min(i,j)
Pij(@)= > Micedjgr +Nidg + > iAo
r=1 r=1
min(i,j)
=2 > NiprAijor (4.12.10)
r=0

where the symbol { denotes that the factor 2 is omitted from the r = 0
term. Replacing ¢ by ¢ — 1 and j by j — 1,
min (i,5)

PH_J‘_Q(JT) =2 ZTAi—l,i—l-'rT)\j—l,j—l—T' (41211)
r=0

Preparations for the second proof are now complete. Adjusting the dummy
variable and applying, in reverse, the formula for the product of two
determinants (Section 1.4),

min(z,5)
|[Piyj—2ln = |2 ZT)\ifl,ijLsz/\jijfs
s=1
= ’2Ar—1,i+j—2|n|)\j—1,j—i|n, (4.12.12)

where the symbol * denotes that the factor 2 is omitted when j = 1. Note
that A,p = 0if p < 0 or p > 2n. The first determinant is lower triangular
and the second is upper triangular so that the value of each determinant
is given by the product of the elements in its principal diagonal:

n
-1
|Piyj—2ln =2" H Ai—1,2i—2Aj-1,0

=1
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_ 2n71 H(uv)ifl
i=2
_ 2n—1(uv)1+2+3+m+ﬁ
= 2—(n—1)2(x2 _ 1)%n(n—1).
which completes the proof.
Exercises
1. Prove that
|Hpp (2)],, = (=2)"(=D/21121 31 (0 — 1)1,
0<m<2n—2
where H,,,(z) is the Hermite polynomial.
2. If
P,.1 P
An = i " ’
‘ Pn Pn+1
prove that
n(n+1)AL = 2(P)>. (Beckenbach et al.)

4.12.2  The Generalized Geometric Series and Eulerian
Polynomials

Notes on the generalized geometric series ¢, (), the closely related function
Um(2), the Eulerian polynomial A,,(x), and Lawden’s polynomial S,,(x) are

given in Appendix A.6.

Um(2) = ZrmxT7
r=1
2 (2) = Ym (2), (4.12.13)
Sp(x) = (1 —2)" 4, m >0, (4.12.14)
Ap(z) = Sp(z), m >0,
Ag=1, Sp=u. (4.12.15)
Theorem (Lawden).
Az (nD)/2

En = ‘¢i+j—2|n - W:

)\nn!xn(n+1)/2
Fo = [dirj-1ln = 0 = )

)\n(n|)2xn(n+1)/2(1 _ xn-&-l)
Gn = "l/}i+j|n = (1 — I)(n+1)2 y
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Hy, = |Siyj—aln = Az H1/2]
T = |Aigj—2ln = Az D/2)
where
A = [112031- (n— D).
The following proofs differ from the originals in some respects.

PRrROOF. It is proved using a slightly different notation in Theorem 4.28
in Section 4.8.5 on Turanians that

EnGn - En+1G7L—1 = F,?L,

which is equivalent to

E, 121Gy 1 —E,G,_»=F?_,. (4.12.16)
Put z = €' in (4.12.5) so that
Dac = BitDt
Dy=zD,, D,= %, ete. (4.12.17)
Also, put
em( ) = 1pm( t)
Z mrt
61.(8) = s 0. (4.12.18)

Define the column vector C;(t) as follows:

C;(t) = [0;(t) 0;41(1) O540(1)...]"
so that
C) = Cji (). (4.12.19)

The number of elements in C; is equal to the order of the determinant of
which it is a part, that is, n, n — 1, or n — 2 in the present context.

Let
Qn t 7' ’Co Cl( ) Cg(t) cee Cn_l(t) (41220)

where the argument in the first column is 7 and the argument in each of
the other columns is ¢. Then,

Qn(t,t) = Eny. (4.12.21)

n’

Differentiate @,, repeatedly with respect to 7, apply (4.12.19), and put
T =1.

DAQn(t, )} =0, 1<r<n-1, (4.12.22)
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DM{Qn(t,1)} = |Cu(t) Ci(t) Ca(t) - Cpor(t)],
= (-1)"" 1|c ) Ca(t) -+ Cpa(t) Calt)],
(-1 g (4.12.23)

The cofactors Qu , 1 <i < n, are independent of 7.
W) = By =G,
Q1) = (1" [Cu(t) Calt) Cs(t) -+ Cpoa (1)
= (*1)n+1Fn—1
(=)™ Cu(7) Ca(t) Cs(t)--- Cna(t)], ,.(4.12.24)

n—1

™(t,7)

Hence,
D™t ) =0, 1<r<n-—2
DEHQI (1, 1)} = (—1)™Cu(t) Calt) Ca(t) -+ Croa(t)],

n—1
= —|Cy(t) Cs(t) - Cpa(t) Cult)| _,
=—Gp-1,
DMHQ (8,1)} = —Dy(Gn-1),
QW) (8,7) = Qu-a(t,7),
QU (t,1) = By,
0, 1<r<n-2
Di{QG) (t,1)} = {( D" Fo-n, r=n-—1 (4.12.25)
(=1)"Dy(Fp—1), r=n.
Qi) = Gra. (4.12.26)

Applying the Jacobi identity to the cofactors of the corner elements of
Q@n,

Q) Q)
QW) QWt,7)
‘ Gs My 1)
()™ Fy QuR(t,T)

= Qn(t,7)Gn-2. (4.12.27)

The first column of the determinant is independent of 7, hence, differenti-
ating n times with respect to 7 and putting 7 = ¢,

Gn—l Dt(Gn—l)
(~1)"F,y (~1)"Dy(Foy)
anlDt(anl) - anlDt(anl) = _FnGn727

Gn—l FnGn—2
D = .
' [Fnl ] F’rgfl

= (_1)n+1FnGn—27
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Reverting to x and referring to (4.12.17),

Gn—l o FnGn—2
F,_.|  F? ’

n—1

zD, [ (4.12.28)

where the elements in the determinants are now ¢,,(x), m =0,1,2,....
The difference formula
A™po = 2, m=1,2,3,..., (4.12.29)

is proved in Appendix A.8. Hence, applying the theorem in Section 4.8.2
on Hankelians whose elements are differences,

= [A"g|n
o w1 T
o :1:”1)[} :1:”1)[} :L"l/} DY
= w; ij wi - (4.12.30)

Every element except the one in position (1, 1) contains the factor x. Hence,
removing these factors and applying the relation

’(/)O/Z‘ = wO + 17
Yo+1 Y1 o
n| Y1 Y2 s
B, =
o o V3 Py
— 2"(E, + E). (4.12.31)
Hence
n 11—z
E™W =Gpq = < mf )En. (4.12.32)
Put
LG
n = F, >
En—l
n = 4.12.
v B ( 33)

The theorem is proved by deducing and solving a differential-difference
equation satisfied by wu,:

Un EnflEn+1

Un+1 E%
From (4.12.32),

= . (4.12.34)
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From (4.12.28) and (4.12.33),

.’EU/ o anl 2 & Gn72 Gn
nte Fn—l Gn Gn—l Gn—l ’

/ _ pen—1 _ en+l
eSS (L-2""){ = ) { Un ] . (4.12.35)
Uz _4 z(1 —zn) Unt1
From (4.12.16),
anl 2 o Enfl B En Gn72
Gn—l B Gn—l Gn—l Gn—l
o Enfl En 1 En Gn72
B En Gn—l En—l Gn—l
21 Un< " ) [1x(1—x”1)}
Uy _q 1—2zn 1—2zn
(1 —x)
T —anz’™
Replacing n by n + 1,
1 n+1 1—
i k) (4.12.36)

2
Un

2 2
" 1 1— n+1 n
( u > :( i ) [ Y } (4.12.37)
Up—1 z\ 1—2an Un+1

Eliminating v, /v,41 from (4.12.35) yields the differential-difference equa-

tion
1— n+1
Un = (x) . (4.12.38)

= 7(1 — xn+1)2 Un+1.

Hence,

1—an—1
Evaluating u,, as defined by (4.12.33) for small values of n, it is found that
(1 —2?) 211 —a®) ~ 31 —at)

= — " = —" = . 4.12.
“ (1—x)2’ 2 (1—2z)3" us (1—z)t ( 39)
The solution which satifies (4.12.38) and (4.12.39) is
G, nl(1—a"th
n = = 4.12.40
Un = B = gy ( )
From (4.12.36),
B En—l B (1 _ )Zn—l
Un E, (n—1)12gn”
which yields the difference equation
— 1)1z
E, = (n= %% (4.12.41)

(1—z)2n1 n—1-
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Evaluating F,, for small values of n, it is found that

x 11223 [1!21]225
Fi=—— F=———— FE3=-—"—. 4.12.42
1 1—1', 2 (1—3})4’ 3 (1_$)9 ( )

The solution which satisfies (4.12.41) and (4.12.42) is as given in the the-
orem. It is now a simple exercise to evaluate F,, and G,. G,, is found in
terms of E, 11 by replacing n by n + 1 in (4.12.32) and then F,, is given
in terms of Gy, by (4.12.40). The results are as given in the theorem. The
proof of the formula for H,, follows from (4.12.14).

Hp = |Smln

= |1 = 2)"ln

= (1=2)" fmln

= (1-2)"E,. (4.12.43)
The given formula follows. The formula for .J,, is proved as follows:

In = [Am|n-
Since
Ag=1=(1—-2)(¢o +1), (4.12.44)

it follows by applying the second line of (4.12.31) that

(I—2)(o+1) Q=2 (1—x)%P
oo | Q=2 (L=’ (1-2)%s
" (1—2)3y  (1—z)3 (1—2)%

Yo+1 Pr P
_ _an? 77[]1 1/}2 '@[13
=(1-2) Yo 3 Yy
=(1- Q:)nzaann
— " H,, (4.12.45)

which yields the given formula and completes the proofs of all five parts of
Lawden’s theorem. O

4.12.8 A Further Generalization of the Geometric Series
Let A,, denote the Hankel-Wronskian defined as

Ap =D, D= %, Ap =1, (4.12.46)
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where f is an arbitrary function of ¢. Then, it is proved that Section 6.5.2
on Toda equations that

Apt1An—
D?(log A,) = =2t (4.12.47)
A7
Put
gn = D*(log A,,). (4.12.48)
Theorem 4.58. g, satisfies the differential-difference equation
n—1
gn =Ng1 + Z(n - ’I“)DQ(IOggT).
r=1
PRrROOF. From (4.12.47),
Ar+1Ar71
T
> Ar+1 > Ar—l -
H A H A, H rs
r=1 Tor=1 r r=1
which simplifies to
A, z
A+1 = A H g (4.12.49)
s r=1
Hence,
n—1 n—1 s
As+1 n—
A, M T o
s=1 s s=1r=1
n—1
A=At T
r=1
n—1
= A" [ 90 (4.12.50)
r=1
n—1
log A, = nlog A1 + Z(n —r)log g,. (4.12.51)
r=1

The theorem appears after differentiating twice with respect to ¢ and
referring to (4.12.48). O

In certain cases, the differential-difference equation can be solved and
A,, evaluated from (4.12.50). For example, let

et p
/= <1_>
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where

®)r=pp+1)P+2)--(p+r-1)
and denote the corresponding determinant by Ey(lp ),
EP =[P, 0<m<2n-2,
where

PP = Dmf

- Z o et

Theorem 4.59.

en(2p+n71)t/2 n—1

w_-__=- -
By = (1— et)n(p+n—1) H ri(p)r-
r=1

PROOF. Put

ayet

r = ————5, , constant
g (1 _ et)27 b
and note that, from (4.12.48),
= D*(log f)
__pe
(1 —et)?’

so that a; = p and

log g, = log v, + t — 21og(1 — €'),

2¢t
D2(10g gr) = m .

(4.12.52)

(4.12.53)

(4.12.54)

Substituting these functions into the differential-difference equation, it is

found that
n—1
=nay + 2 Z(n —r
r=1
(p+n—-1)
Hence,
_n(p+n—1)
g’rb - (1 _ et)Q )

_(n—r)p+n—r—1)
Gnr = o :

(4.12.55)

(4.12.56)
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Substituting this formula into (4.12.50) with A,, — E,(Lp) and E{Y = 7,

t p n—1 ¢ r
(») _ (& _ o (&
EWP = (1 — et) lel [(n rp+n—r 1)7(1 —E| (4.12.57)
which yields the stated formula. |

Note that the substitution z = e’ yields

i) = P,
E{ = E,,

so that wﬁ}? ) may be regarded as a further generalization of the geometric
series ¥, and E,(lp )is a generalization of Lawden’s determinant F,,.

Exercise. If
_ {secpx
cosecPx

prove that

n—1

_ Secn(p"l'n_l)x '

An = {cosec"(P+"_1) H )
r=1

4.13 Hankelians 6

4.13.1  Two Matrix Identities and Their Corollaries

Define three matrices M, K, and N of order n as follows:

M = [ov;]n (symmetric),
K =[2""""kiy;j ]y (Hankel), (4.13.1)
N = [Bijln (lower triangular),
where
(=17 i+ Uiz, j <
ij = i .. 4.13.2
i { (1) ujs +wigjr2, J >4 ( )
N
Ur = Z aj fr(x;), a; arbitrary; (4.13.3)
j=1
f@ =3 {@+ VIt +@- Vit (@134
N
ke =) ajaf; (4.13.5)
j=1

Bij =0, j>idori+jodd,
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B2i,2i = Aiis ©>1,

Baivi2j41 = Nijy  0<j <4,
Paitazy = Niv1j =Ny 1<j<itl, (4.13.6)
i (i+]
Tt ( 2j )
Ni=g, >0, Ag=1,i>0. (4.13.7)

The functions A;; and f,(x) appear in Appendix A.10.
Theorem 4.60.

M = NKN7.
ProoFr. Let
G = [vijln = NKNT. (4.13.8)
Then
GT = NK'NT
= NKN7T
=G.

Hence, G is symmetric, and since M is also symmetric, it is sufficient to
prove that a;; = v;; for j <+4. There are four cases to consider:

i. 4,7 both odd,

ii. 7 odd, j even,
iii. 7 even, j odd,
iv. i, both even.
To prove case (i), put i = 2p+1 and j = 2¢+1 and refer to Appendix A.10,
where the definition of g,(x) is given in (A.10.7), the relationships between
fr(x) and g.(x) are given in Lemmas (a) and (b) and identities among the
gr(x) are given in Theorem 4.61.

Q2py1,2q+1 = U2g42p + U2g-2p

N
=" ai{Faaran(ws) + fag-20(e1)}

j=1

N
Zaj{gtﬁ-p z;) + gq— p(xj)}
Jj=1

N
ZZa]gp (x)gq(z;). (4.13.9)
j=1

It follows from (4.13.8) and the formula for the product of three matrices
(the exercise at the end of Section 3.3.5) with appropriate adjustments to
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the upper limits that

4 J
Yijg = Z Zﬁir2T+S_lkr+572ﬁjs~
r=1

s=1
Hence,

2p+12q+1
V2p+1,2¢+1 = 2 Z Z ﬁ2p+1,7’2T+8_2k37‘+57262q+1,s~ (41310)

r=1 s=1

From the first line of (4.13.6), the summand is zero when r and s are even.
Hence, replace r by 2r + 1, replace s by 2s + 1 and refer to (4.13.5) and
(4.13.6),

P
Yop+1,.2¢+1 = 2 E
0

q
T s=0
q N
2r+2s
E pr}‘qSE :a] (2z;)
0

s=
p q
Z (22 2TZ/\q9 2:6]
r=0

242
Bop+1,2r+1P2¢41,25+12° T kartas
A

2

Mz 1t

Jj=1 s=0
N
=2 a;g,(x;)g4(x;)
j=1
= Qi2p+1,2¢+15 (4.13.11)
which completes the proof of case (i). Cases (ii)—(iv) are proved in a similar
manner. O
Corollary.

|tijln = M = [NI7 K],

= |Bi;1212 kit j—aln
(Hﬁ) M2 2k ol (4.13.12)

But, f11 =1 and B = 3, 2 < i < n. Hence, referring to Property (e) in
Section 2.3.1,
il = 27 722 ki o). (4.13.13)

Thus, M can be expressed as a Hankelian.
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Define three other matrices M/, K’, and N’ of order n as follows:

M’ = [o]n (symmetric),
K' =277 ki + kiyj—2)]n  (Hankel), (4.13.14)
Il .
N’ = [8};]n (lower triangular),
where k, is defined in (4.13.5);
—l)j_lu;‘ +uiyg, j<i
ol = { (=177 iy iy, < 413.15
TN T i iy, G2, ( )
Bl =0, j >iori+jodd,
/Béi,2j = %/«Lij» 1< <y,
Boit10j41 = Nij + 3hi5,  0<j <. (4.13.16)

The functions A;; and %uij appear in Appendix A.10. p;; = (25/i)\i;.
Theorem 4.61.
M = N'K(N)T.
The details of the proof are similar to those of Theorem 4.60.
Let
2vdi NT __ /
N'K'(N')" = h/ij]n
and consider the four cases separately. It is found with the aid of
Theorem A.8(e) in Appendix A.10 that

N

Vopt+1.2q+1 = Z aij{9g—p(x5) + ggrpr1(25)}
i=1

= 0119441 (4.13.17)
and further that ~;; = o}, for all values of 7 and j.
Corollary.
ot ln = M|y, = N[ K,
= ‘ﬂz{j|i2n‘2i+j72(ki+j + ki+j—2)‘n
= 2n2|ki+j +kivj—2ln (4.13.18)

since ), = 1 for all values of i. Thus, M’ can also be expressed as a
Hankelian.

4.13.2  The Factors of a Particular Symmetric Toeplitz
Determinant

The determinants

P, = %|pij|n7
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Qn = 11¢ijln (4.13.19)
where
Pij = ti—j) — ity
Qij = t)i—j| + tivj—2, (4.13.20)

appear in Section 4.5.2 as factors of a symmetric Toeplitz determinant.
Put

tr=wu,, (W2 =-1).
Then,
Dij = wi+j_204§j,
qij = w2 ay;, (4.13.21)

where «;; and a;; are defined in (4.13.15) and (4.13.2), respectively. Hence,
referring to the corollaries in Theorems 4.60 and 4.61,

= 1yiti2g!
Py = 2|(U Yijiln

%w"("_l)Iaéj\n
= (=1)" D29 ko). (4.13.22)
Qn = 3l a1l
= (=1)(=D/290 =D (4.13.23)
Since P, and @, each have a factor w™”~1) and n(n — 1) is even for all

values of n, these formulas remain valid when w is replaced by (—w) and
are applied in Section 6.10.5 on the Einstein and Ernst equations.

4.14 Casoratians — A Brief Note

The Casoratian K, (z), which arises in the theory of difference equations,
is defined as follows:

Kn(z) = |f1(17 +J- 1)|n
filz) filz+1) - filz+n-1)
fo(z)  falz+1) - folw+n—1)

fal@) folz+1) - falztn-1)1,

The role played by Casoratians in the theory of difference equations is
similar to the role played by Wronskians in the theory of differential equa-
tions. Examples of their applications are given by Milne-Thomson, Brand,
and Browne and Nillsen. Some applications of Casoratians in mathematical
physics are given by Hirota, Kajiwara et al., Liu, Ohta et al., and Yuasa.
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Further Determinant Theory

5.1 Determinants Which Represent Particular
Polynomials

5.1.1 Appell Polynomial

Notes on Appell polynomials are given in Appendix A.4.

Let

Theorem.

a. tn(z) =

Vn

Qo Qg

1

)= 13 (1) anerla

r=0

Q2 Q3 o Qp_1 Qo

n+1

(5.1.1)
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Qo 851 a2 Q3 0 Qp-1 Qp

1
b. Yn(z) = n! n—2 3z

Both determinants are Hessenbergians (Section 4.6).

PROOF OF (A). Denote the determinant by H, 1, expand it by the two
elements in the last row, and repeat this operation on the determinants of
lower order which appear. The result is

n

Hoa(e) = 32 (1) Hoool=a) + (-1,

r=1

The H, 41 term can be absorbed into the sum, giving

(1= (1) Hororo

r=0

This is an Appell polynomial whose inverse relation is

Hoa) =3 (1) 1,

r=0

which is equivalent to the stated result.

PROOF OF (B). Denote the determinant by H,, ; and note that some
of its elements are functions of n, so that the minor obtained by removing
its last row and column is not equal to H: and hence there is no obvious
recurrence relation linking H;,,, H;, H)_,, etc.

The determinant H; | can be obtained by transforming H, 1 by a series
of row operations which reduce some of its elements to zero. Multiply R;
by (n4+2—1),2 <i<n+1, and compensate for the unwanted factor n! by

dividing the determinant by that factor. Now perform the row operations

i —1
Ri =R - (n—&—l—) Rt

first with 2 < ¢ < n, which introduces (n — 1) zero elements into C,, 1,
then with 2 < ¢ < n — 1, which introduces (n — 2) zero elements into C,,,
then with 2 < ¢ < n — 2, etc., and, finally, with ¢ = 2. The determinant
H; ., appears. O

n
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5.1.2 The Generalized Geometric Series and Eulerian
Polynomials

Notes on the generalized geometric series v, (z) and the Eulerian
polynomials A,,(z) are given in Appendix A.6.

Ap(z) = (1 — 2)" e, (2). (5.1.2)
Theorem (Lawden).
1 1—2

1/2! 1 1-=
A, |13 1/2! 1 1-z
T T

/(n—=1! 1/(n=2)! .- 1 1-=z
n! 1/(n—1 - /21 1

The determinant is a Hessenbergian.

PRrOOF. It is proved in the section on differences (Appendix A.8) that

Ay = i(l)ms <T:> Vs = TP (5.1.3)
Put
Vs = (=1)°s! ¢ (5.1.4)
Then,
m—1 qj)s
Szom+(1_g¢)¢m:0, m=1,23,.... (5.1.5)
In some detail,
po  +(1—z)¢ =0,
$0/2! + ¢1 + (1 —2)p2 =0,
b0/3! + ¢1/2 + ¢ +(1—1x)¢3 =0, (5.1.6)

Go/nl + ¢1/(n— 1)l + do/(n =2+ -+ + dnoy + (1 = 2)pp = 0

When these n equations in the (n + 1) variables ¢,., 0 < r < n, are
augmented by the relation

(1 —2)¢o ==, (5.1.7)

the determinant of the coefficients is triangular so that its value is
(1 — z)"*L. Solving the (n + 1) equations by Cramer’s formula (Sec-
tion 2.3.5),
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1
(1 —z)ntl

2)!

173

(5.1.8)

n+1

After expanding the determinant by the single nonzero element in the last
column, the theorem follows from (5.1.2) and (5.1.4).

FErercises
Prove that
ap 1 Qg Q3 Unp—1 Qp
—y
n
1. o ‘,I:nfr T -y €
; 22"y BT
—y z
1 =z 22 2 21 "
_ y xy ny wn—Qy xn—ly
-1 y xy "By 2" 2%y
n __
2. (l‘—|—y) - 1 y xn74y zn73y
-1 y
b
3. (=b)"2Fp <x7n;>
a a
—C1 b
a —cCo b
2a —c3 b
= 3a  —cg )
—Cp—1 b
(n—1a —cnl,
where

cr=(r—Da+b+uz.

and o Fp is the generalized hypergeometric function.

a

(Frost and Sackfield)
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5.1.83 Orthogonal Polynomials

Determinants which represent orthogonal polynomials (Appendix A.5)
have been constructed using various methods by Pandres, Rosler, Yahya,
Stein et al., Schleusner, and Singhal, Frost and Sackfield and others. The
following method applies the Rodrigues formulas for the polynomials.

Let

A, = \aij|n,

where
(I e (1Y ju-e (r _ pr
/
u= "% = u(logy)" (5.1.9)
Yy
In some detail,
u u u! " . u(n72) u("fl)
v u— v/ 2u/ _ 1)// 3u// _ U///
—v u—2v  3u — 3
Ay = —v u — 30’
—v
—v u—(n—1)0v1,
(5.1.10)
Theorem.
a. AT = A,
nDn
b, 4, = UP"W)
Yy
PRrROOF. Express A, in column vector notation:
An = |Cl 02 Cd .. (jn|n7
where
T
Cj = [arj azj asj -~ aj15 On—j-1], (5.1.11)

where O,. represents an unbroken sequence of r zero elements.

Let C; denote the column vector obtained by dislocating the elements
of C; one position downward, leaving the uppermost position occupied by
a zero element:

* T
C; = [0 aij azj -+ ajj aj15 On—j2],,. (5.1.12)

Then,
T

C) + Cj = [ay; (ay; + ary) (ag; +az;) - (415 +aj5) a1,y On—js], -
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But
, /-1 j—1 j—i+1
aij+ail,j_[(i—1>+<i—2>:|uo )
Clfi-1 Jj—1 (G—i+2)
()= ()]
_ J (j—i+1) _ J (G—i+2)
_(z’—1>“ (i—Z)U
= i1 (5.1.13)
Hence,
C;- I Cj =Cj41, (5.1.14)
A;’L :Z’Cl CQC; Cj+1"'cn71 C’I’L n’
Jj=1
Agﬁli =—|C1 C2-+-C; Cjy1--Cpoy Cpya| . (5.1.15)
Hence,

A+ ATHD =37|C1 Co (€)= Cjya) Cja -+ Ca,
j=1

_§:|C1 Cg---C;“-~-~Cn|
j=1

=0
by Theorem 3.1 on cyclic dislocations and generalizations in Section 3.1,
which proves (a).
Expanding A,,+1 by the two elements in its last row,
Api1 = (u—nv")A, — vAgfllr)L
= (u—nv")A, +vA,

!
U{AH(“"”)AH],
) v v
YA _ Y [ (Y
pntl - g [A" + < v A”

=W (L) 4,

vn

-D <yAn)
vn

Dr(yAﬁ””ﬂ”)7 0<r<n

,Un—r-i-l




176 5. Further Determinant Theory

/
(). (4-e-2)
v Y

_ Dn+1 (y) .
Hence,

vn+1Dn+1
An+1 = y (y) 9

which is equivalent to (b).
The Rodrigues formula for the generalized Laguerre polynomial lea)(x)
is

:L.nDn(efwxn+a)

(a) _
LY (x) = e ignta (5.1.16)
Hence, choosing
v =z,
y — efzvl,njLa’
so that
U=r—n-—a, (5.1.17)
formula (b) becomes
L (z) = RN (5.1.18)
N o 1.
n+oa—x 1
—T n+a—x—1 2
—T n+a—x—2 3
24a—=x n—1
—x l+a—-=xl,
O
FErercises
Prove that
n+a—x n—+a«a n—+aoa n-+aoa
1 1 n+oa—zx n—+ « n—+ o
1. Lgf‘)(x):—' 2 n+a—r nt+o
n. 3 n+a—=x



C,+C;=Cjy,

n+1
A+ A£H>1,2L

and hence prove that

Ay

(—1)"*iynpn-t (7) .

=0

u
v
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20 2
1 2z 4
1 2z 6
H,(z) = 1 2z 8
2¢ 2n—2
1 2z |,
z 1
1 3z 2
1 2 bx 3
Pn(x):a 3 Tz 4
(2n — 3)x n—1
n—1 2n -1z,
(Muir and Metzler).
1
Pn =
(z) 21!
2nx 2n
1—22 2n—22 4n-—2
1—22 (@2n—-4)x 6n—6
1—22 (2n—6)x
4z n>4+n—2
1 — 22 2x
. Let
Ay, = |aijln = |C1 Cy Cs--- Cy,
where
aij = w1
- (i:;) WUTHD 2 < <41,
0, otherwise,
and let
* T
Cj = [02 a2j agj . 'CLn_Lj:I .
Prove that
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6. Prove that the determinant A,, in (5.1.10) satisfies the relation
Api1 =vAL + (u—nv')A,.
Put v =1 to get
Apir = Al + A1A,

where

These functions appear in a paper by Yebbou on the calculation of
determining factors in the theory of differential equations. Yebbou uses
the notation o™ in place of A,,.

5.2 The Generalized Cusick Identities

The principal Cusick identity in its generalized form relates a particular
skew-symmetric determinant (Section 4.3) to two Hankelians (Section 4.8).

5.2.1 Three Determinants

Let ¢, and ¥, 7 > 1, be two sets of arbitrary functions and define three
power series as follows:

oo
®; =) ot izl
r=i

oo
=) gt i
r=i

Gi = ®,0,. (5.2.1)
Let
Gi= Y ayt/"7' ix1. (5.2.2)
j=i+1

Then, equating coefficients of ¢t/ ¢~

j—i
aij = Z Psti—1Vj—s, 1 <] (5.2.3)

s=1
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In particular,

2n—1i

Gign = Y Gspi-1¥on-s, 1<i<2m— 1 (5.2.4)

s=1
Let Asg, denote the skew-symmetric determinant of order 2n defined as
Aoy = |aijon, (5.2.5)

where a;; is defined by (5.2.3) for 1 <14 < j < 2n and aj; = —a;j, which
implies a;; = 0.
Let H, and K,, denote Hankelians of order n defined as

_ S Pijlas hij = Gigj
= |]€'LJ‘TL7 k’L] = wi+j,1
fon = { [Vmln, 1<m<2n—1. (5.2.7)

All the elements ¢, and 1, which appear in H,, and K, respectively, also
appear in aj 2, and therefore also in Asg,. The principal identity is given
by the following theorem.

Theorem 5.1.
Ay, = H2K2.
Howewver, since
As, = Pf2,

where Pt,, is a Pfaffian (Section 4.5.3), the theorem can be expressed in the
form

Pf, = H,K,,. (5.2.8)

Since Pfaffians are uniquely defined, there is no ambiguity in sign in this
relation.

The proof uses the method of induction. It may be verified from (4.3.25)
and (5.2.3) that

Pty = a13 = o191 = H1 Ky,

Pfy = g1t @12 + dathr P13 + Gathe + Pt

2102 P23 + P31
¢33
_ |91 P2||t1 Y
p2 G3| |2 U3
— HyK, (5.2.9)

so that the theorem is known to be true when n = 1 and 2.
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Assume that
Pf,=H,K, m<n. (5.2.10)

The method by which the theorem is proved for all values of n is outlined
as follows.
Pf,, is expressible in terms of Pfaffians of lower order by the formula
2n—1
P, = Y (1P a; 0, (5.2.11)

i=1

where, in this context, a; 2, is defined as a sum in (5.2.4) so that Pf,
is expressible as a double sum. The introduction of a variable x enables
the inductive assumption (5.2.10) to be expressed as the equality of two
polynomials in x. By equating coefficients of one particular power of x, an
identity is found which expresses Pfgn) as the sum of products of cofactors
of H, and K,, (Lemma 5.5). Hence, Pf,, is expressible as a triple sum
containing the cofactors of H,, and K, . Finally, with the aid of an identity
in Appendix A.3, it is shown that the triple sum simplifies to the product
H,K,.
The following Pfaffian identities will also be applied.

P = (A2 )2 (5.2.12)

i ppm pp(n) _ g(2n-1)
(—1)HPEMPE = 4B, (5.2.13)
P =Pf,_;. (5.2.14)

The proof proceeds with a series of lemmas.

5.2.2 Four Lemmas

Let aj; be the function obtained from a;; by replacing each ¢, by
(¢r — ¢,41) and by replacing each ¢, by (, — xth41).

Lemma 5.2.

* _— 2
ai; = aij — (@ijp1 + aig15)T + Gip1 j12”.

PROOF.
j—i
aj; =Y (Gayio1 — Tasi)(j—s — Tj_at1)
s=1
=a;; — (81 + s2)x + s322,
where
i
51 = Z¢s+i—1¢j—s+1
s=1

= 04,41 — Py,
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S2 = a;11,5 + Piy,
83 = Aj41,5+1-
The lemma follows.
Let
on = |aijl2n,
PE; = (45,)"%

Lemma 5.3.

2n—1
Z (71)i+1Pf§")x2n7i71 =P .
i=1

181

(5.2.15)

PROOF. Denote the sum by Fj,. Then, referring to (5.2.13) and Section 3.7

on bordered determinants,

2n—12n—1
2 _ _1\i+ipe(Mpe(n) dan—i—j—2
F; = g E ( 1) P, Pfj x
i=1 j=1
2n—12n—1
_ } : } : (2n—1) 4n—i—j—2
= ij x
i=1 j=1
2n—2
ai @12 a1,2n—1 "
2n—3
ag1 a22 e agop—1  T"
A2n—1,1 QA2n—12 **° Q2p—12n—1 1
$2n—2 .272"_3 . 1 ° o

(It is not necessary to put a;; = 0, etc., in order to prove the lemma.)
Eliminate the x’s from the last column and row by means of the row and

column operations

C;:Cj—$Cj+1, 1<5<2n-2.

The result is

* * *
a1y aio T a1.2n—1
* * *
) Qg1 Qg2 g 2n—1 b
F = — |
a a 5 1
2n—1,1 2n—1,2 A2pn—12n—1
° . cen 1 ol
_ *
= +|a7;j|2n—2
_ *
- A2n—2'

The lemma follows by taking the square root of each side.

(5.2.17)
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Let H}_, and K _, denote the determinants obtained from H,_; and
K, _1, respectively, by again replacing each ¢, by (¢, — x¢,+1) and by
replacing each ¥, by (¢, — zt,41). In the notation of the second and
fourth lines of (5.2.6),

Hy_y = |¢m 1<m<2n-3,

Ky = |tm —athme| . 1<m<2n-3. (5.2.18)

Lemma 5.4.

a. zn:Hi(Z)x"_i H |,
iil
b. ZKi(S)x” =K.

PROOF OF (A).

o1 ¢2 © o1 a™t
n G2 ¢3 ¢ a2
Z H;Z)xn_’ B
i=1 Gn-1 o P2p_3 X
Gn Pny1 0 Qam—2 1 |

The result follows by eliminating the z’s from the last column by means of
the row operations:

R;:Ri—Z'RH,l, 1§z§n—1
Part (b) is proved in a similar manner. O

Lemma 5.5.

(—1)Pe" ZH(" KM, . 1<i<a-1.

Since Kﬁ:ﬁ =0 when m < 1 and when m > n, the true upper limit in the
sum is i, but it is convenient to retain n in order to simplify the analysis
involved in its application.

Proor. It follows from the inductive assumption (5.2.10) that
Pt _=H, K ;. (5.2.19)
Hence, applying Lemmas 5.3 and 5.4,

2n—1 n
Z (_1)i+1PfZ(n)m2n7i71 _ lz Hl(g)znz] [Z KJ? n— s]

i=1 =1

Z ZH(”)K(n) 2n—j—s

7j=1 s=1

s=1—j+1
s —1
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n nt+j—1

_Z Z Kz(n]+1nx2n_i_1
2n—1

=Y g 12}1(" K" (5.2.20)
i=1

Note that the changes in the limits of the i-sum have introduced only zero
terms. The lemma follows by equating coefficients of z2" ¢~ 1, a

5.2.8  Proof of the Principal Theorem

A double-sum identity containing the symbols ¢;;, f;, and g¢; is given in
Appendix A.3. It follows from Lemma 5.5 that the conditions defining the
validity of the double-sum identity are satisfied if

fi= (~prpr
cij = H(”)K(")

jn o
gi = Qi 2n-
Hence,
2n—1 n n
ST D) FPE a0, =Y S T HW K ai 1 0n
i=1 i=1 j=1

2n—i—j+1
Hi(:)K]('Z) Z Pstitj—2¥2n—s-
s=1

I
NE
NE

i=1

<.
Il
—_

From (5.2.11), the sum on the left is equal to Pf,,. Also, since the interval
(1,2n—i—j+1) can be split into the intervals (1,n+1—7) and (n+2—j,
2n —1i —j+ 1), it follows from the note in Appendix A.3 on a triple sum
that

S KX, + Z Hiy;,
j=1 i=1

where
n n+1—j
Xj = ZHZ(:) Z ¢s+i+j721/]2nfs
L s=1
n+1l—j
- Z 1p2n SZ¢S+’L+] 2H
n+1l—j

Z an 5Zh15+] 1H(
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n+1—j
- Hn Z wansas,nfjJrl
s=1
= Hp¥nyj1, 1<7<n;
2n—i—j+1
n
Y; = ZKj-n) ST Grrisation—s,
j=1 s=n+2—j
n 2n—1i+1
n
= ZKJ(n) Z ¢t+i—27/12n+j—t
j=1 t=n+2
2n—i+1
n
j{: ¢t+z 22{:¢Qn+j t}( )
t=n+2
2n—i+1
Z ¢t+z 22k3+n+1 tn
t=n+2
2n—1+1
=Kn Y ¢rri-2ini
t=n+2
=0, 1<i:<n-—1,

since t > n + 1. Hence,

an::fﬂzizzkéz)wn+jfl

= H, Zkme("

::1{n}(n7

which completes the proof of Theorem 5.1.

5.2.4  Three Further Theorems

The principal theorem, when expressed in the form

2n—1

ST (=)HPEY a5, = H, K,

=1

)

(5.2.22)

(5.2.23)

yields two corollaries by partial differentiation. Since the only elements
in Pf,, which contain ¢9,—1 and tg,_1 are a;2,, 1 < ¢ < 2n — 1, and

Pfg") is independent of a; 2,,, it follows that Pfg”) is independent of ¢o,_1
and 9, _1. Moreover, these two functions occur only once in H,, and K,

respectively, both in position (n,n).
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From (5.2.4),
aai,Qn —
a¢2n71 v
Also,
0H, _ )
a¢2nfl A
Hence,
2n—1
> (=) ey = Hyoy K. (5.2.24)
i=1
Similarly,
2n—1
ST ()P gy = Ho Ko, (5.2.25)
i=1

The following three theorems express modified forms of |a;j|, in terms of
the Hankelians.

Let B, (¢) denote the determinant which is obtained from |a;;|,, by
replacing the last row by the row

(61 ¢2 ¢3... 0]

Theorem 5.6.
a. B2n 1(¢) - Hn 1H Kn 1’
b. an 1 ) s 1Kn 1Kn;

(¢
C. B2n( ) _Han lKru
) = n_1Hp K

ProoF. Expanding Bs,_1(¢) by elements from the last row and their
cofactors and referring to (5.2.13), (5.2.14), and (5.2.25),

2n—1

2n—1
Bop—1( Z QS_]Aén 1,J)

2n—1

=P S (1P,

=Pf, 1 H,Kp_1. (5.2.26)

Part (a) now follows from Theorem 5.1 and (b) is proved in a similar
manner.

Expanding Ba, (¢) with the aid of Theorem 3.9 on bordered determinants
(Section 3.7) and referring to (5.2.11) and (5.2.25),

2n—1 2n—1

B2n = Z Z Qs 2n¢jA(2n 2

=1 gj=1
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2n—1 2n—1
= — | 2 (UM PE Y agan | | Y (<17 PEY,
i=1 j=1
= Pl H,K,_1. (5.2.27)

Part (c) now follows from Theorem 5.1 and (d) is proved in a similar
manner. O

Let R(¢) denote the row vector defined as

R(¢) = [¢1 ¢2 d3- - Pan—1 @]

and let B, (¢,1) denote the determinant of order 2n which is obtained
from |a;j|2, by replacing the last row by —R(¢) and replacing the last
column by RT(¢).

Theorem 5.7.
B2n(¢ 'l/}) n 1H Kn 1K

PRrooOF.
2n—1 2n—1
2n—
Bon(¢,0) = > ZmA( Y.
i=1 gj=1
The theorem now follows (5.2.13), (5.2.24), and (5.2.25). O

Theorem 5.8.

Bon(9,9) = Ay .
PROOF. Applying the Jacobi identity (Section 3.6),

2n 2n
Aén—)1,2n—1 Aén—)l,Qn

= Ay, ACY . (5.2.28)
2n 2n n<2n—1,2n;2n—1,2n
Agn,%nfl Aén,%n
But, Agn), 1 = 2n — 1, 2n, are skew-symmetric of odd order and are

therefore zero. The other two first cofactors are equal in magnitude but
opposite in sign. Hence,

(Aéi”)l gn) = AspAon—2,
A, 5, = PELPE, . (5.2.29)
Theorem 5.8 now follows from Theorems 5.1 and 5.7. O

If ¢ = ¢, then K,, = H, and Theorems 5.1, 5.6a and ¢, and 5.7
degenerate into identities published in a different notation by Cusick,
namely,

As, = H?

n’

Bon_1(¢) = H)_ | Hy,
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BQn(¢) = - n—le;a
Baou(6,0) = H2_, H2, (5.2.30)

These identities arose by a by-product in a study of Littlewood’s
Diophantime approximation problem.

The negative sign in the third identity, which is not required in Cusick’s
notation, arises from the difference between the methods by which B,,(¢)
and Cusick’s determinant T;, are defined. Note that Ba,(¢,¢) is skew-
symmetric of even order and is therefore expected to be a perfect square.

FEzxercises
1. Prove that
2n n n
A = HL KK

1n >
AL = B K (KT
2. Let V,,(¢) be the determinant obtained from A?;l ) by replacing the last

n

row by Ra, (¢) and let W,,(¢) be the determinant obtained from A%ﬁ:i
by replacing the last row by Ra,_1(¢). Prove that

V(o) = —H, H{W K, 1K\,
W) = —Ho ot H{V Ky K.
3. Prove that

ACY — (—1)itipt, P,

1,2n

5.3 The Matsuno Identities

Some of the identities in this section appear in Appendix II in a book on
the bilinear transformation method by Y. Matsuno, but the proofs have
been modified.

5.3.1 A General Identity

Let
Ay =aijln,
where
Wij, J#Fi
Gij = § T — il Uir, J =14, (5.3.1)
=

r;i
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and
1

.’I?i—l’j

= 7Uj1', (532)

Uij =

where the x; are distinct but otherwise arbitrary.

Illustration.
T — U2 — U3 U2 U3
Az = U1 T — Uzl — U3 U3
u31 u32 T — U331 — U32
Theorem.
A, ="

[This theorem appears in a section of Matsuno’s book in which the z;
are the zeros of classical polynomials but, as stated above, it is valid for all
x;, provided only that they are distinct.)

PROOF. The sum of the elements in each row is x. Hence, after performing
the column operations

—z[111.--1]7,

it is seen that A,, is equal to x times a determinant in which every element
in the last column is 1. Now, perform the row operations

R,=R,-R,, 1<i<n-—1,

which remove every element in the last column except the element 1 in
position (n,n). The result is

An = -TBn—h
where
anl = |bij|n717

R o WijUng ; ;
Ui —Unj = T F

b — n—1
ij T — > U, j=1

r=1

r#i

It is now found that, after row 7 has been multiplied by the factor wuy,;,
1 < i < n—1, the same factor can be canceled from column i, 1 <i <n-—1,
to give the result

B, = An71~
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Hence,
An == C(,‘An,1 .

But Ay = 22. The theorem follows. O

5.3.2 Particular Identities

It is shown in the previous section that A,, = x™ provided only that the x;
are distinct. It will now be shown that the diagonal elements of A,, can be
modified in such a way that A, = x™ as before, but only if the x; are the
zeros of certain orthogonal polynomials. These identities supplement those
given by Matsuno.

It is well known that the zeros of the Laguerre polynomial L, (z), the
Hermite polynomial H,(z), and the Legendre polynomial P, (z) are dis-
tinct. Let p,(z) represent any one of these polynomials and let its zeros be
denoted by z;, 1 < i <n. Then,

v)=k[[(z- =), (5.3.3)
r=1
where k is a constant. Hence,

log pn(z) =logk + Y _ log(x — z,),

r=1

p;(w)zz LI (5.3.4)

polz) -

It follows that

n

S L _ (@ w)ph(@) —pal2) (5.3.5)

—r— (x — xi)pn(z)
r#i
Hence, applying the I’'Hopital limit theorem twice,
~ L [x—xz P pn(ﬂc)}
= lim
omp -z eowm (x = xi)pn(x)
r#i

= i Z‘—l‘l p;‘/bl )+pn(m)
1m
( — zi)py (x) + 2p), ()

T—T;

_ a(@) (5.3.6)

2pn (xl)

The sum on the left appears in the diagonal elements of A,,. Now redefine
A,, as follows:

A, = \aij|m
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where

Ugj, JFi
ai; = qen; . 5.3.7
’ { Gy = (337)

This A, clearly has the same value as the original A, since the left-
hand side of (5.3.6) has been replaced by the right-hand side, its algebraic
equivalent.

The right-hand side of (5.3.6) will now be evaluated for each of the three
particular polynomials mentioned above with the aid of their differential
equations (Appendix A.5).

Laguerre Polynomials.
xL(x)+ (1 — )L (z) + nL,(x) =0,

Lo(z:) =0, 1<i<n,
LV(z)  xi—1

2L (n1) = (5.3.8)
Hence, if
0 = {giﬁ . i
then
A, = aijln = 2. (5.3.9)
Hermite Polynomials.
H)(z) — 2zH, (z) 4+ 2nH,(x) = 0,
H,(z;) =0, 1<i<n,
"
% = ;. (5.3.10)
Hence if,
oy ={r, A0
then
A, = laijln =™ (5.3.11)
Legendre Polynomials.
(1 —2*)P/(z) — 2zP! (x) + n(n + 1)P,(x) = 0,
P,(z;)=0, 1<i<n,
Polw) _ _ 2 (5.3.12)

2P (v;) 1—a?’
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Hence, if
Wijs J#
dij = {1' 1f;§7 J=1,
then
A, = laijln = 2™ (5.3.13)
FExercises

1. Let A, denote the determinant defined in (5.3.9) and let

where

2 . .
bij:{wimj’ JF

1 . .
x+;ﬂ J=1

where, as for A, (z), the x; denote the zeros of the Laguerre polynomial.
Prove that

By(z —1) = 2"A, (f)
2
and, hence, prove that

B,(z) = (z+ 1)".

2. Let
AP =10,
where
ug;, JFi
(p) _ n . .
Qi =Y xz— > ub., j=i,
r=1
r#i
1
Yij = T —x; L

and the z; are the zeros of the Hermite polynomial H,,(z). Prove that

n

AP =Tl - (=),

r=1

AW = ﬁ [sc - %(ﬂ - 1)} .

r=1
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5.4 The Cofactors of the Matsuno Determinant

5.4.1  Introduction

Let
E, = |eij|n7
where
1 . .
€ij = { amgr 7 (5.4.1)
Ty, J=1

and where the ¢’s are distinct but otherwise arbitrary and the z’s are
arbitrary. In some detail,

2 1 1 . 1
c1—cC2 c1—cs3 C1—Cn
. ! - T2 . ! -
ca2—cC1 C2—C3
E,=|_1_ _1_ .. . . (5.4.2)
c3—C1 Cc3—C2
1
cp—cC1 Tn n

This determinant is known here as the Matsuno determinant in recognition
of Matsuno’s solutions of the Kadomtsev—Petviashvili (KP) and Benjamin—
Omno (BO) equations (Sections 6.8 and 6.9), where it appears in modified
forms. It is shown below that the first and higher scaled cofactors of E
satisfy a remarkably rich set of algebraic multiple-sum identities which can
be applied to simplify the analysis in both of Matsuno’s papers.

It is convenient to introduce the symbol t into a double sum to denote
that those terms in which the summation variables are equal are omitted
from the sum. Thus,

ZZ Tu” = Z Zurs - Zurr- (5.4.3)

It follows from the partial derivative formulae in the first line of (3.2.4),
(3.6.7), (3.2.16), and (3.2.17) that

0Ep,
8xi = Lipjiqs
OE,; 45
. = Ez r,iqs
8Ii prd
O™ _ i i
a(L‘i ’
9 , o
E 4+ — EPY — Ell)a“l7
3xi

B 4 i EPT4s — EPTHigs
8$i ’
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. 0 ; ;
<Eu + ax) EPTwasv — ezpru,zqsv’ (544)
A

etc.

5.4.2  First Cofactors

When f, + g, = 0, the double-sum identities (C) and (D) in Section 3.4
become

D 2 Ut gs)ansA™ =0, (ch)

r=1 s=1
n

SN+ gs)ans ATAT = (fi + g;) AV (D)
s=1

r=1

Applying (CT) to E with f, = —g, = ¢,

Syt <crc> E™ =0. (5.4.5)
Cr — Cs
Putting m = 1,2, 3 yields the following particular cases:

m=1: S tETS =0,

r

which is equivalent to
ZZE = ZE”" (5.4.6)
m=2: S Her 4 ¢s)E™ =0,
which is equivalent to
> (er+c) B =2 ¢, B (5.4.7)
m=3: S5 (@2 + epes + 2)ET =0,

T

which is equivalent to
Z Z +epes + )E™ =3 Z AE". (5.4.8)

Applying (D7) to E, again with f,. = —g, = ¢,

Sy (T

Putting m = 1, 2 yields the following particular cases:

> E"E" = (¢* - ¢]")EY. (5.4.9)

S
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m=1: ZZTE”E” = (¢; — ¢j)EY,

which is equivalent to
S S EFEY -3 ETEY = (c; — ¢j)EV; (5.4.10)

m=2: Y3 Her +¢)ESET = (¢ — ¢3)EY,

T S

which is equivalent to
D> (er+ o) EFET —2) ¢, BTEY = (¢} — ¢})EY, (5.4.11)

etc. Note that the right-hand side of (5.4.9) is zero when j = ¢ for all values
of m. In particular, (5.4.10) becomes

S > EE" =) ETE" (5.4.12)
and the equation in item m = 2 becomes

> (er+e)EPE" =2 ¢, ETE". (5.4.13)

5.4.8 First and Second Cofactors

The following five identities relate the first and second cofactors of E: They
all remain valid when the parameters are lowered.

ZTE““’” = —(ci —¢;)EY, (5.4.14)

> Ter + ) BT = —(cf = )EY, (5.4.15)

T8

D (er—c)E™ =) E™T, (5.4.16)

T,8 3
23 e, BT =2 Te, BT =) ET (5.4.17)

D (eE™ + ¢ BT+ E™7%) = 0. (5.4.18)

r<s

To prove (5.4.14), apply the Jacobi identity to E'™/ and refer to (5.4.6)
and the equation in item m = 1.

i Ei R
S =g
7,8 T8

:EijZTErs_ZTEisErj
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7(61' — Cj)Eij.

Equation (5.4.15) can be proved in a similar manner by appling (5.4.7) and
the equation in item m = 2. The proof of (5.4.16) is a little more difficult.
Modify (5.4.12) by making the following changes in the parameters. First
i — k, then (r,s) — (4,7), and, finally, kK — r. The result is

> TEVET =Y E"E". (5.4.19)

i

Now sum (5.4.10) over 4, j and refer to (5.4.19) and (5.4.6):

S ¥ pe Y [

,J 1,J,7,8 r %]
SR ENSER RS 3 Szt
e S

@7

_ Eir,ir

- )
1,7

which is equivalent to (5.4.16). The symbol  can be attached to the sum
on the left without affecting its value. Hence, this identity together with
(5.4.7) yields (5.4.17), which can then be expressed in the symmetric form
(5.4.18) in which r < s.

5.4.4 Third and Fourth Cofactors

The following identities contain third and fourth cofactors of E:

> (er —c) BT = Z Erstrst, (5.4.20)

T8

Z(CT _ C.s Ertu stu Z st rstu (5421)

T8

(@ -2)E™ =2 Z e BT, (5.4.22)

D (er =)’ BT = BT, (5.4.23)
7,8 7,8,t

Z(CT _ Cs Eru ,SU Z Erstu, rstu (5424)

7,8 r,8,t
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ZTCT T = 72 (C +c )Ers
=1 ZET“ st (5.4.25)

T,8,t
1
a SErs _ 2E'rr = Er‘st,'r‘st? 5.4.26
P i P 420
Y@+ R)E™ =2 Z EET + - Z ErstTst (5.4.27)
r,8 7,8,t
1
T .2prs rst,rst TS rs
; B = ZtE + Zc E (5.4.28)
Z TcgErs — Z Erstirst Z c, ETSTS (5429)
T,8 r,8,t
To prove (5.4.20), apply the second equation of (5.4.4) and (5.4.16).
OF,
Eyrps = .
prp Oz,

Multiply by (¢, — ¢s) and sum over r and s:

0
Z(Cr - Cs)Epr,ps = 5 Z(CT - CS)ETS

T,

= E Ep7$ prs;s

which is equivalent to (5.4.20). The application of the fifth equation in
(5.4.4) with the modification (i,p,r,q,s) — (u,r,t,s,t) to (5.4.20) yields
(5.4.21).

To prove (5.4.22), sum (5.4.11) over ¢ and j, change the dummy variables
as indicated

(@ -ET=F-G

,J

where, referring to (5.4.6) and (5.4.7),

F=|Y E* ZcE” ZE” > e E
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_ZE”Z ¢+ cs)E
= QZE“ZC E™, (5.4.30)

=2 Z e, ETE", (5.4.31)
©,7,T

Modify (5.4.10) with j = ¢ by making the changes i <> r and s — j. This

gives
G=2> ¢y E"E"™ (5.4.32)

Hence,

Eii Eir
Eri ErT

_ T
=23 Em
1,7

Z(C% — C?)Eij = QZC,«

,J

which is equivalent to (5.4.22).
To prove (5.4.23) multiply (5.4.10) by (¢; —¢;), sum over ¢ and j, change
the dummy variables as indicated, and refer to (5.4.6):
> (ci—¢)’EY =H - J, (5.4.33)
,J

where

H = Z(CL - Cj) ZEiSETj
1,7 7,8

STEV Y aET| - ) E® Z ¢;E"
rj i i,s

(s-37) (7’4)1)

= ZEM Z ¢ — Cj)Eij7 _
i.j
J= Z —¢j Z Eir g -
Hence, referring to (5.4.20) with suitable changes in the dummy variables,
Z(Ci - cj)2Eij _ Z(Cz e B g

J) Erj ET
(%] 4,3,1

— Z . Ew,_}r

1,4,
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_ 1JT, 1T
=2 B,

27,7

which is equivalent to (5.4.23). The application of a suitably modified the
fourth line of (5.4.4) to (5.4.23) yields (5.4.24). Identities (5.4.27)—(5.4.29)

follow from (5.4.8), (5.4.22), (5.4.24), and the identities

3crcs = (24 cres + %) — (cp — c5)?,
662 = 2(% + cra + ) + (r — o) +3(c2 — ¢2),
6c2 = 2(c? + cres +¢2) + (e —c5)? = 3(c2 — c2).

5.4.5 Three Further Identities
The identities

S+ e )BT =2 Y

r,s r,s
1 § : TSUV,TSUV
+§ FE ’ s
T,8,U,V
E (672“ _ Cg)(cr + cs)Ers -9 E CT‘(CT’ + CS)Ers,rs
r,8 s
1 TSuv,Tsuv
_6 ,
7,8,U,V

E CrCs( cr Ers § :CTCSET‘; TS
r,8
- § Ersuv,Tsuv
4

T,8,U,V

(5.4.36)

(5.4.37)

(5.4.38)

are more difficult to prove than those in earlier sections. The last one has
an application in Section 6.8 on the KP equation, but its proof is linked to

those of the other two.

Denote the left sides of the three identities by P, @, and R, respectively.
To prove (5.4.36), multiply the second equation in (5.4.10) by (¢} + ¢),

sum over ¢ and j and refer to (5.4.4), (5.4.6), and (5.4.27):

P= Z (c?+c? EZSE”—i—Z HETE

4,578 4,7

ZE” Z EES| + ZE*’S Z GE"
— , , .

(s%j) (rd)

0,57
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—ZE”Z; ¢; +c)EY —I—Za zzj:(c +c3)EY
(e ) T e

0,J
= Z (EW + ) [2 Z 2Err Z Frst.rst
r,s,t
=92 Z C2Erv o - Z Ersturste,

rstv

which is equivalent to (5.4.36).
Since

(Ci - Cg)(cr +¢s) — 2¢pe5(cr —¢5) = (CE + Ci)(cr —¢s),
it follows immedately that
Q—-2R=P. (5.4.39)

A second relation between @ and R is found as follows. Let
U= Z ¢ E™,
1 TSs,TS
=3 S B, (5.4.40)

It follows from (5.4.17) that

V= Z o BT — Z o B
= Z e B — Z csE™°.

Hence
Z G E =U+YV,
Y BT =U-V. (5.4.41)
To obtain a formula for R, multiply (5.4.10) by ¢;c;, sum over ¢ and j, and
apply the third equation of (5.4.4):
R= Y ¢i¢;E¥EY =Y cic;ETE"

4,3518 (Vs

oGBS Y B +Zai;cmE”

1,8 7,r
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2
—VZiy Z 8xr (5.4.42)

where

S=> cic;EY. (5.4.43)

This function is identical to the left-hand side of (5.4.26). Let

T = (ci+c)er+co) EPEY. (5.4.44)

,7,758

Then, applying (5.4.6),
T = chE” Zc E" 4 ZE” ZCZCSEH
ZE“ZCJCTE J —|—Zc E”Zc Es

(U+v +QSZE” + (U -V)?

=22 +V?) + QSZE”. (5.4.45)
Eliminating V from (5.4.42),
)
T+ 2R =4U% +2 E™ : 5.4.46
+2R=4U% + Z: < + 3:@) S ( )

To obtain a formula for @, multiply (5.4.11) by (¢; + ¢;), sum over ¢ and
j, and apply (5.4.13) with the modifications (i,5) <> (r,s) on the left and
(i,7) = (r,s) on the right:

Q= > (ci+c)(er+c)E®ET =2 co(c;+¢;)ETEY

1,7,7,8 ©,7,T
=T-2 Z Cr Z(cz +¢;)ETET
T i,
=T-4 Z ¢ cs ETSEST. (5.4.47)

TS

Eliminating T from (5.4.46) and applying (5.4.26) and the fourth and sixth
lines of (5.4.4),

Q+2R=4) c.co(EE* — EVE"™)

r,s

T 8 SS 1 stu,stu
+22T:(E +8xr> [Z&E DI

s,t,u
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—4 E CTCSETS,TS ) E CEE’I“S,TS
r,s T8

2 T
-3 D pretwrste, (5.4.48)

T,8,t,u

This is the second relation between @ and R, the first being (5.4.39). Iden-
tities (5.4.37), (5.4.38), and (5.3) follow by solving these two equations for
Q@ and R, where P is given by (5.1).

Exercise. Prove that

> (er = c)onler, c)E™ =Y dnler,ca) B, n=1,2,

r,8
where
¢1(CT,CS) =c¢ + Cs,
da(cr,cs) = 303 +4e,cs + 3c§.

Can this result be generalized?

5.5 Determinants Associated with a Continued
Fraction

5.5.1 Continuants and the Recurrence Relation

Define a continued fraction f, as follows:

1 bl b2 bnf 1 bn

Jn = ﬁ a1+ as+ . Ap—1+ a

. n=1,23,.... (5.5.1)

fn is obtained from f,,_1 by adding b, /a, to a,_1.

Examples.

flz by

f2=17b1

ajas + ba + ashy’
1
fs=————

B
azt 22
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arazas + a1bs + azbs
aiagas + a163 + (lgbg + agagbl + b1b3 ’

Each of these fractions can be expressed in the form Hy1/H, where H is a
tridiagonal determinant:

_
fl_ 1 b] )
-1 aj
a; by
-1 a9
=i, ’
-1 aq bg
—1 as
ay b2
-1 a9 b3
-1 as
fs =3 b
-1 aq b2
-1 as b3
-1 as
Theorem 5.9.
n+1
f _Hl(l )
n — )
HnJrl
where
1 b
-1 aiq bg
-1 as bg
Hpyr = . (5.5.2)

-1 Ap—2 bn—l
-1 Gp—1 bn

-1 a, ntl

Proor. Use the method of induction. Assume that

e
n—1 Hn )
which is known to be true for small values of n. Hence, adding b, /a, to
Qp—1,
fn= =2 (5.5.3)

Ky
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where
1 b
-1 ay bg
-1 a b3
K, = SR . (5.54)
-1 An_3 bn,Q
-1 Ap—2 bn,1

-1 apn—1+ (bn/an)l,
Return to H, 1, remove the factor a, from the last column, and then
perform the column operation

C/, =C,+Cpy1.

The result is a determinant of order (n 4 1) in which the only element in
the last row is 1 in the right-hand corner.
It then follows that

Hn+1 = anKn.
Similarly,
n+1 n—1
H£1 ) = aanl g
The theorem follows from (5.5.3). O

Tridiagonal determinants of the form H,, are called continuants. They are
also simple Hessenbergians which satisfy the three-term recurrence relation.
Expanding H,,+1 by the two elements in the last row, it is found that

Hn+1 = aan + ann—1~

Similarly,
HY =g, 5B 4 b, HIY, (5.5.5)
The theorem can therefore be reformulated as follows:
fn= %:, (5.5.6)
where P, and @Q,, each satisfy the recurrence relation
R, =apRy_1 +b,Ry_2 (5.5.7)

with the initial values Py =1, Py = a1 + b1, Qo = 1, and Q1 = a;.

5.5.2  Polynomials and Power Series

In the continued fraction f, defined in (5.5.1) in the previous section,
replace a, by 1 and replace b, by a,x. Then,

1 a1z asx Ap—1T GpT

(L Fuk T N FR
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_Qn
=B (5.5.8)
where P, and @Q),, each satisfy the recurrence relation
R,=R,_1+a,zR,_> (559)

with Pp =1, P, =14+ a1z, Qo = 1, and @1 = 1. It follows that
Py =1+ (a1 + a2)z,
Q2 =1+ asz,
Py =1+ (a1 + ag + a3)x + ajazz?,
Q3 =1+ (a2 +a3z)z,
Py =1+ (a1 + as + a3 + ag)z + (aya3 + a1ag + agay)z?,
Qi =14 (az + a3 + ag)x + agasx®. (5.5.10)

It also follows from the previous section that P, = H,1, etc., where

1 a1z
-1 1 asx
-1 1  asz
S — . (5.5.11)
-1 1 ap_sz
-1 1 Ap_1T
-1 1 n+1
The alternative formula
1 T
—aq 1 T
—as 1 x
Hyq = (5.5.12)
—Qp—3 1 x
—Qp_o 1 T
—Qp—1 1 n+1

can be proved by showing that the second determinant satisfies the same
recurrence relation as the first determinant and has the same initial values.
Also,
Qn = H"Y, (5.5.13)
Using elementary methods, it is found that
fi=1—ax+ala?+---,
fo=1—ax+ai(a; + az)x? — ay(a® + 2a1a0 + )z + - -,
fa=1—aix+ai(ar + az)x* — ai(a® + 2a1as + a3 + agaz)z® + - - -
+ay(a? + 3a2ay + 3a1a? + 2a3 + 2a3a3
+a2a§ + 2&1@2&3)%4 4+ .- 5 (5514)
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etc. These formulas lead to the following theorem.
Theorem 5.10.
fo = a1 = (=1)"(a1a2a3 - - - a)2z" + O(a" ),

that is, the coefficients of x7, 1 < r < n — 1, in the series expansion of fy,
are identical to those in the expansion of f,_1.

PrROOF. Applying the recurrence relation (5.5.9),
Pn—lQn - PnQn—l = Pn—l(Qn—l + aann—2) - (Pn—l + anxPn—Q)Qn—l

= 7an$(Pn—2Qn—1 - Pn—lQn—2)
= anflanxQ(Pnfi’)anZ - Pn72Qn73)

= (—1)"(a1az - a,)x" (5.5.15)
_ Qn anl
fn fn—l - Pn Pn—l
_ Pnlen - Pnanl
PnPn—l
(—D)™(araz - - an)x"”
= . 5.1
PP (5.5.16)
The theorem follows since P, (x) is a polynomial with P,(0) = 1. O
Let
fulx) = Zcra?T. (5.5.17)
r=0
From the third equation in (5.5.14),
Co = 1,
€1 = —ay,

c2 = ar(a1 + az),
2 2
c3 = —ay(ay + 2a1a2 + a3 + aza3),
2 2 3 2 2 2
¢y = ayr(ajaz + 2a1a5 + a3 + 2a3a3 + ajag + 2a1a2a3 + aza;

+a2ay + ajazay + asazay), (5.5.18)

etc. Solving these equations for the a,,

a; = _|C1‘,
Ch C1
C1 C2
as = )

|e1]
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C C
|CO| C1 Cz
az = B B 5 (5519)
0 1
|Cl| C C2

etc. Determinantal formulas for as,,_1, as,, and two other functions will be
given shortly.
Let

A, = |Ci+j—2|n7
B, = [citj—-1ln, (5.5.20)

with Ay = By = 1. Identities among these determinants and their cofactors
appear in Hankelians 1.

It follows from the recurrence relation (5.5.9) and the initial values of P,
and Q,, that Pe,_1, Pap, Qant1, and Qa, are polynomials of degree n. In
all four polynomials, the constant term is 1. Hence, we may write

n

r

Py = E P2n—1,T ,
r=0

n
Q2n+1 = Z q2n+1,rl'ra

r=0

n

r

Py, = § P2n,rT ,
r=0

Qon = Z QQn,rCET, (5521)
r=0

where both p,,, and g, satisfy the recurrence relation
Umyr = Um—1,r + A Um —2,r—1
and where
Pm0 = gm0 = 17 all m,
(5.5.22)
Pon—1,r = P2n,r = Oa r<0orr>n.

Theorem 5.11.

A(n—i—l)
n+ln+1l—r
a. p2n—1,r:A7a OSTSTL;
n
B("H‘l)
n+ln+l—r
b. Panr = —p— 0<r<mn,
n
c. a _ Aan+1
e W2n+1 — — 7 5
A An+Ban;
n+1Pn—1
d. agy, = —F——7—.

A’I’LBTL
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Proor. Let
o0
fon-1Pan-1 = Qan-1 =Y  hpp”, (5.5.23)
r=0

where f,, is defined by the infinite series (5.5.17). Then, from (5.5.8),
hpr =0, all nandr,

where

> CretPon—1t — Qon—1,, 0<r<n—1
hnr = =0 (5524)

T
> Cr—tPon—1t, r>n.
t=0

The upper limit n in the second sum arises from (5.5.22).
The n equations

hpr =0, n<r<2n-—1,
yield
Z Cr—tP2n—1,t + ¢ = 0. (5525)
t=1

Solving these equations by Cramer’s formula yields part (a) of the theorem.
Part (b) is proved in a similar manner. Let

f2nP2n - Q2n = Z knr-rr- (5526)

r=0
Then,

knr =0, all n and r,

where

Z Cr—tP2n,t — 42n,r; 0<r<n
krn =4 %0 (5.5.27)
Z Cr—tP2n,t, r Z n+ 1.
t=0
The n equations
knr=0, n+1<r<2n,
yield
n
> Cripons e =0, (5.5.28)
t=1

Solving these equations by Cramer’s formula yields part (b) of the theorem.
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The equation

hn,2n+1 =0
yields
n+1
Z Cont1—tP2nt1,¢ = 0. (5.5.29)
=0

Applying the recurrence relation (5.5.22) and then parts (a) and (b) of the
theorem,

n+1
Z Con+1—tP2n,t T A2n+t1 Z Can+1-tPan—1,t—1 =0,
t=0 t=1
1 n a n+1
2n-+1
B, 2 Con41— tBn+1 a1t T 1, tzl Con4+1— tAn+1 nt2—t = 0,
Bn—i—l An+1
——+a =0,
Bn 2n+1 An
which proves part (c).
Part (d) is proved in a similar manner. The equation
kn,2n =0
yields
n
> conipans =0 (5.5.30)

Applying the recurrence relation (5.5.22) and then parts (a) and (b) of the
theorem,

n
E Con—tPan—1,t T A2n g Con—tP2n—2,t—1 = 0,

t=0 t=1

1 n ( a
n+1 2

A Z CQW_tATL-i-l,ZL-‘rl—t + = ZC% tB;L 7)L+1 ¢ =0,

=0
AnJrl Bn
n = 07
An + 2 Bn—l
which proves part (d). O

Exercise. Prove that

6—1+3:Za7~+x22ar Z aS—I—x?’Zar Z Qg Z a;

r=1 s=r+2 r=1 s=r+2 t=s+2

and find the corresponding formula for Q7.
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5.5.3 Further Determinantal Formulas
Theorem 5.12.

Co C1 C2 Cn
1 C1 C2 C3 Cn+1
a P2n—1 il T T
Ay, ’
Cn—1 Cn Cn+1 Con—1
—1 n—2
z" " T 1
n+1
C1 C2 C3 Cn+1
1 | ©2 C3 Cq Cn+2
b- P2'r7, — Bf ............................
" Cn Cn+4+1 Cn+2 et Con
" xn—l xn—Q .. 1 _—

PROOF. Referring to the first line of (5.5.21) and to Theorem 5.11a,

(n+1 .
Py 1—A ZAn+12L+1 o

n+1
(n+1) n+1
A Z An+1 »J 7

Part (a) follows and part (b) is proved in a similar manner with the aid of
the third line in (5.5.21) and Theorem 5.11b. O

Lemmas.

n—1 T n J—1
a. § Uy E Cr—tUn+41—t = § Vj41 § CrUn+4r—j,
b. E U E Cr—tUn+41—t = E Vj41 § CrUn4r—j-

r=0 t=0

These two lemmas differ only in some of their limits and could be re-
garded as two particular cases of one lemma whose proof is elementary and
consists of showing that both double sums represent the sum of the same
triangular array of terms.

Let
m
Yom = Z cra. (5.5.31)
r=0
Theorem 5.13.
Co Cc1 C2 Cn
1 C1 C2 Cc3 Cn+1
a Q2n71 i B T T s
A,
Cn—1 Cn Cn+1 Con—1
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Cc1 Cc2 C3 Cn+1
1] e c3 ¢4 Cnv2
b. an == F ...................................
" Cn Cn+1 Cn+2 Con
—1 -2
pox™ Y1z o™ RV

PROOF. From the second equation in (5.5.24) in the previous section and
referring to Theorem 5.11a,

P2n—1,r = Z Cr—tP2n—1,t, 0<r<n-1
t=0

(n+1)
72 :CT tAn—i—l n+l-—t-

Hence, from the second equation in (5.5.21) with n — n — 1 and applying

Lemma (a) with u, — 2" and vy — Aniﬁlzy

(n+1)
AnQon—1 = E E Cr— tAn+1 n+1—t
(n+1) n-+r—j
= ZA"‘HJ‘HZC z
n
_ n—j 4(n+1)
—Zx A +1J+1ZCT
j=1

r=0
n
_ . n—j 4 (n+1)
= § :1/1],1:3 An-l—l,j-‘rl‘

This sum represents a determinant of order (n + 1) whose first n rows are
identical with the first n rows of the determinant in part (a) of the theorem
and whose last row is

[O woxnfl 1/111’”72 1)[}23371*3 e 'l/)n—l] .
The proof of part (a) is completed by performing the row operation
n+1 = Rag1 +2"Ra.

The proof of part (b) of the theorem applies Lemma (b) and gives the
required result directly, that is, without the necessity of performing a
row operation. From (5.5.27) in the previous section and referring to
Theorem 5.11b,

Q2on,r = Zcrftp%z,t, 0<r<n
t=0
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1 . n+1
- B Zcr tB1(1+1 7)z+1 t
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Hence, from the fourth equation in (5.5.11) and applying Lemma (b) and

(5.5.31),

(n+1)
BnQan = Z Z Cr—tBp i1 i1t
_ ("+1) ntr—j
Z n+1,j+1 Z Cr

Jj=0
n
o e j p(n+1)
*E Y™ By -
Jj=0

This sum is an expansion of the determinant in part (b) of the theorem.

This completes the proofs of both parts of the theorem.

Exercise. Show that the equations

hn,2n+] = 07 .7 Z 27
kn,2n+j = 07 ] 2 17

lead respectively to

Sny2 =0, alln,

Th+1 =0, alln,

a

(X)

(Y)

where S, 12 denotes the determinant obtained from A, o by replacing its

last row by the row

[Cn+j71 Cn+j Cntj+1- " 02n+j]n+2

and T),4+1 denotes the determinant obtained from B,, 11 by replacing its last

row by the row

[Cn+j Cntj+1 Cntj+2° " C2n+j]n+1-

Regarding (X) and (Y) as conditions, what is their significance?

5.6 Distinct Matrices with Nondistinct

Determinants

5.6.1 Introduction

Two matrices [ai;]n and [b;;], are equal if and only if m = n and a;; =
bij, 1 < 4,7 < n. No such restriction applies to determinants. Consider
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determinants with constant elements. It is a trivial exercise to find two
determinants A = |a;;|, and B = |b;;|, such that a;; # b;; for any pair
(4,7) and the elements a;; are not merely a rearrangement of the elements
bij, but A = B. It is an equally trivial exercise to find two determinants of
different orders which have the same value. If the elements are polynomials,
then the determinants are also polynomials and the exercises are more
difficult.

It is the purpose of this section to show that there exist families of
distinct matrices whose determinants are not distinct for the reason that
they represent identical polynomials, apart from a possible change in sign.
Such determinants may be described as equivalent.

5.6.2 Determinants with Binomial Elements

Let ¢, (x) denote an Appell polynomial (Appendix A.4):

Pm(x) = i <T) u— (5.6.1)

The inverse relation is

QO = z::o (T) Gm—r(z)(—2)". (5.6.2)

Define infinite matrices P(z), PT(z), A, and ®(z) as follows:

P(z) = [Hxﬂ

where the symbol <— denotes that the order of the columns is to be
reversed. PT denotes the transpose of P. Both A and ® are defined in
Hankelian notation (Section 4.8):

. 0>, (5.6.3)

A =[], m >0,
O(x) = [pm(x)], m>0. (5.6.4)
Now define block matrices M and M* as follows:
_[ O Pz
M= {p(@ B() ] ’ (565)
. (0] PT(-x)
M* = [P(—x) A } . (5.6.6)

These matrices are shown in some detail below. They are triangular, sym-
metric, and infinite in all four directions. Denote the diagonals containing
the unit elements in both matrices by diag(1).

It is now required to define a number of determinants of submatrices of
either M or M*. Many statements are abbreviated by omitting references
to submatrices and referring directly to subdeterminants.
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Define a Turanian T, (Section 4.9.2) as follows:

¢r72n+2 o ¢r7n+2
T = , r>2n-—2, (5.6.7)
¢r7n+1 cee ¢r n
which is a subdeterminant of M.
1
1 4x
1 3z 622
1 2z 322 428
1 =z 22 2 2t
I ¢0 o1 ¢2 ¢3¢
I = ¢1 ¢2 93 ¢4 ¢35
1 2c 2* ¢ ¢3 da ¢5 P
1 3z 32° 2° ¢3 ¢s ¢5 s o1
1 4z 62® 42® 2 ¢4 o5 ds 7 ¢

The infinite matrix M

1
1 —4x
1 -3z 622
1 —2z 322 —4a3
1 -z a2 —3 xt
1 (7)) (e5] (%) a3 Qg
1 —r o Qg a3 oy as
1 —2x 22 as a3 ou as Qg
1 -3z 3z2 —2® a3 a4 s o fo%s
1 —4z 622 —42° 2* a4 a5 ag az ag

The infinite matrix M*

The element a, occurs (r + 1) times in M*. Consider all the subdeter-
minants of M* which contain the element <, in the bottom right-hand
corner and whose order n is sufficiently large for them to contain the el-
ement g but sufficiently small for them not to have either unit or zero
elements along their secondary diagonals. Denote these determinants by
B}, s=1,2,3,.... Some of them are symmetric and unique whereas oth-
ers occur in pairs, one of which is the transpose of the other. They are
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coaxial in the sense that all their secondary diagonals lie along the same
diagonal parallel to diag(1) in M*.

Theorem 5.14. The determinants B}", where n and r are fized,

s=1,2,3,..., represent identical polynomials of degree (r+2—n)(2n—2—r).
Denote their common polynomial by B,

Theorem 5.15.
Trvonr=(—1)*Bn,, r>2n—-2 n=123...
where
k=n+r+[3(r+2)].

Both of these theorems have been proved by Fiedler using the theory
of S-matrices but in order to relate the present notes to Fiedler’s, it is
necessary to change the sign of z.

When r = 2n — 2, Theorem 5.15 becomes the symmetric identity

Thon-2 = Bnon—2,
that is
o0 .- Op-1 ag ... Qpq
: : =| : : (degree 0)
Gn-1 .. Pan—2|, |Qn-1 ... Qan-2|,
|[omln = lamln, 0<m<2n—2

which is proved by an independent method in Section 4.9 on Hankelians 2.

Theorem 5.16. To each identity, except one, described in Theorems 5.14
and 5.15 there corresponds a dual identity obtained by reversing the role
of M and M*, that is, by interchanging ¢, (x) and o, and changing the
sign of each x where it occurs explicitly. The exceptional identity is the
symmetric one described above which is its own dual.

The following particular identities illustrate all three theorems. Where
n = 1, the determinants on the left are of unit order and contain a single
element. Each identity is accompanied by its dual.

(n,r) = (1,1):
1 T
al=|a 27|
jaal = |+ T (5.6.8)
Y0 e 0
(n,r):(3,2)
1 -2z 1 -z
|pol =—| 1 —z 2® |=—| 1 ap 1| (symmetric),

(67} a1 (6% —Tr o1 (65)
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1 2z 1 T
lag/=—|1 2z 2?|=—|1 ¢o ¢1| (symmetric); (5.6.9)
b0 1 P2 T ¢1 @2

(n,r) = (4,3):
1 -2z 1 -3z
1 —z 22 1 -2z 3x2
|¢3| = = - . 2 .3
1 a o (o2 1 r x T
—Tr Q1 (65) (0% (67)) (&3] (65)] Q3
1 2z 1 3x
1 x  x? 1 2z 322
‘a3|__ 1 ¢o 1 ¢o -~ 1 r x2 3 (5610)
T 1 P2 ¢3 b0 ¢1 P2 @3
(n,7) = (3,3):
1 _ 2
b1 P2 | _ v
¢ ¢ = | Qo a1 az |,
2 3 (6751 (6%) (6%}
o o 1 x a2
a | = [%0 91 Sz (5.6.11)
$1 P2 @3
(n,r) = (4,4):
1 =2z 322 1 —z 22
o2 P3| 1 -2 22 —23 |1 o a1
3 Q4 ap a1 a2 Qg - a1 oz agl|’
(5] 9 Q3 (a7} $2 [6%) Qs (o7}
1 2z 322 1 z  xz?
ax oz _ |1 @ 2® 2| _|1 ¢o ¢1 ¢2 (5.6.12)
az g b0 1 P2 P3 T 91 P2 @3
¢1 P2 @3 P4 z? P2 3 ¢

The coaxial nature of the determinants B}" is illustrated for the case
(n,r) = (6,6) as follows:

each of the three determinants of order 6

b4 P5
o5 b6

= < enclosed within overlapping dotted frames

in the following display:
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1 —4x 1022

1 —3x 622 —1022

1 —2r 322 —4a3 5at
2 4

1 —z = -3 —a (5.6.13)

1 ayg a1 Qg Qs Qy as

1 —r @ Qg Q3 Qyq Qs Qg
-2z 22 ay as ay Qs o6

322 —2% a3 a4 as Qg

These determinants are B¢, s = 1,2, 3, as indicated at the corners of the

frames. BYS is symmetric and is a bordered Hankelian. The dual identities
are found in the manner described in Theorem 5.16.

All the determinants described above are extracted from consecutive rows
and columns of M or M*. A few illustrations are sufficient to demonstrate
the existence of identities of a similar nature in which the determinants are
extracted from nonconsecutive rows and columns of M or M*.

In the first two examples, either the rows or the columns are nonconsec-
utive:

1 -2z
2[1) Z; = — |y Q1 (65) 5 (5614)
ap Q2 Qg
1 -2z 1 -3z
o1 @3 _ 1 oy a1 o _ 1 —x 22 -3 (5.6.15)
P2 P4 -r a1 az a3 a a1 oy az |0
1‘2 Qo (O3 Qg (651 (%) Qs Qg

In the next example, both the rows and columns are nonconsecutive:
1 -2z
- R (5.6.16)
1 a1 Q9 (6 %3
—2r ay a3 Qg

b0 P2
d2 ¢4

The general form of these identities is not known and hence no theorem is
known which includes them all.

In view of the wealth of interrelations between the matrices M and M*,
each can be described as the dual of the other.

Exercise. Verify these identities and their duals by elementary methods.
The above identities can be generalized by introducing a second variable
y. A few examples are sufficient to demonstrate their form.

. 1 -z | 1 —y
¢1(“y)—’¢o<y> 0| = | do@) a@] G617
1 @
¢1(y)‘¢o(x+y) bi(z )| (5.6.18)
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1 —x 22
d1(r+y) @2 +y)
=|¢0(y) ¢1(y) o2(v)|,
¢2(37+y) (/)3(96-1-2;)‘ (b(l)(y) ¢2(y) ¢2(y)
1 -y Y
=|¢o(z) o¢1(x) ¢2(x) (5.6.19)
d1(z)  ¢P2(z) ¢3(x)
1 —x 2
P2z +y) ¢3(9:+y)‘ 1 ¢o(y) é1(y) ¢2(y)
d3(z+y) ¢alr+y) —x ¢1(y) d2(y) b3(y)
2 da(y) 9s(y)  daly)
1 -2z 312
1 —x x2 —z3
=lo0ly) orly) daly) daly)| O620
d1(y)  d2(y) ¢3(y) a(y)

Do these identities possess duals?

5.0.3 Determinants with Stirling Elements

Matrices sy (z) and S,(z) whose elements contain Stirling numbers of
the first and second kinds, s;; and S;;, respectively, are defined in
Appendix A.1.
Let the matrix obtained by rotating S,(z) through 90° in the
)

anticlockwise direction be denotes by S,,(z). For example,

1
. 1 10x
S5(z)= 1 6x 2522
1 3z 7z® 1523

1 =z 22 28 xt

Define another nth-order triangular matrix B, (z) as follows:

—
B, (z) = [bix"™7], n>2, 1<i,j<n,

where

j—1
1 X (i1 i1
bij = T > (1) ( L= iz (5.6.21)
r=0
These numbers are integers and satisfy the recurrence relation
bij = bi—1,j-1+ (n — j)bi—j;,

where

by = 1. (5.6.22)
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Once again the symbol <— denotes that the columns are arranged in
reverse order.

Hllustrations

1 =z
i 1
Bs(z) = 1 2z |,
i 1 3z 4a?
M 1
1 3z
By(z) = 1 5z 922 |°
L1 6z 1922 27z°
M 1
1 4x
Bs(z) = 1 Tz 1622
1 9x 3722 64x®
L1 10z 5522 17523 2562

Since b;; is a function of n, B,, is not a submatrix of B,,4. Finally, define
a block matrix Ny, of order 2n as follows:

No,=| O  Sul@)|, 5.6.23
o B.(z) A, ] ( )
where A,, = [am]n, as before.
Illustrations
r 1
N4 = ! “ )
1 Qp Q4
L1 = a1 o
r 1
1 3z
1 x  x?
N6 - 1 ap o1 Q2
1 2x a1 Q9 Q3
L1 3z 42° as a3 ou

Ny, is symmetric only when n = 2.

A subset of Ny is:
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SN .
: :
: :
: :
| X
1 . :
~~~~~~~ Avvv v .
. \ » *
. 0y Al M
1 Yoy oo
Al A N
AT 1
Cvwwva Nevsvra» M
: )
: N 2
; :
X 0(1 N
: :
: :
.............. \1

Each of the two overlapping coaxial second-order matrices indicated by
frames has a determinant equal to

2
—~ (px — aq) = ZSQTaT_1x2_’". (5.6.24)

r=1

In this case, the equality is a trivial one, as one matrix is merely the
transpose of the other.
A subset of Ng is

K
v Ay
. .
:
: 1 3x
N
2 s Tanarraararsaansaas ~ :
A . LY .
R S x 1 x2 o
N N . Y
1 N : N N
vrvevaaa N N . N :
N : : N N N
:
: ' Og + O Oy
N N N . N R
11111111111 NevsvrvyryryasNvrrvaas
N : N N 3
N 1 2 . N
: : X oy :az :
N N e anraaan N
N N N 2
D3k ax2 =
: X X (1.2 '
N .
Nr s s s v rvs vy vy v vy 3y 3333 v e e kY

Each of the three distinct overlapping coaxial third-order matrices indicated
by frames has a determinant equal to

3
— (200%° — 301z + ag) = Z S3rQr_12° . (5.6.25)

r=1

A subset of Ng is
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YA A RAYA A AN ASAIIAA YIS IasIsYYAssAASS A
3 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ .
.
: l 3‘72:
.
N
. X 3 X<
N . . M
2 : : :
R RRER e saaas DR A R Y .~ N N
N
. s N N 2: 3_
A} . *
N N | X « X< 2 X2
. . . . . N
l . ~ NN N N
Snassaass AR e . . N N
. .
. N N . N N
N N N o oy v Oy v Oy
: > N : 0 1 2 32
. N s : N .
N s N B D R N
v N ‘: )
. N N . N
: 1 03 (0 a (0
: : y 3x 1 2 1 O
N N N . D
~ R R T T TR T T S N N TR RN
N N 3
N .
N .
.
-
N

oex 19x2 27x3 oy

Each of the four distinct overlapping coaxial fourth-order matrices
indicated by frames has a determinant equal to

4
- (600[1)3 — 110(11}2 -+ 6@21’ - a3) = Z 84',«&7«,.1.’1?4_7'. (5626)
r=1

It does not appear to be possible to construct dual families of determinantal
identities by interchanging the roles of s;; and S;;, but there exists the
following simple identity in which the elements of the determinant contain
Stirling numbers of the first kind and the sum contains Stirling numbers of
the second kind:

(8 %)) 1

(7} 891X 1

(6] 831£L'2 832 1 -1 = -
— (_l)n ZSnrar~—l$n

On-2 Sp_11Z"2 1 =

Qn—1  SpmZ™ ' 0 o sy

(5.6.27)
The determinant is a Hessenbergian (Section 4.6) and is obtained from
sp () by removing the last column, which contains a single nonzero element,
and adding a column of a’s on the left. The proof is left as an exercise for
the reader.
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5.7 The One-Variable Hirota Operator

5.7.1 Definition and Taylor Relations

Several nonlinear equations of mathematical physics, including the Korteweg—
de Vries, Kadomtsev—Petviashvili, Boussinesq, and Toda equations, can be
expressed neatly in terms of multivariable Hirota operators. The ability of
an equation to be expressible in Hirota form is an important factor in the
investigation of its integrability.

The one-variable Hirota operator, denoted here by H", is defined as
follows: If f = f(z) and g = g(x), then

w9 = (55~ 35) @)

n n d
=>» (=" D" (f)D"(g), D=—. (5.7.1)
r=0 < ) ! dz

r

The factor (—1)" distinguishes this sum from the Leibnitz formula for
D™(fg). The notation H,, H,,, etc., is convenient in some applications.

Examples.
Ho(f,9) = H'(f,9) = fog — f9:
= —H.(g, f),
Hoo(f9) = H*(f,9) = foxg = 2fo9s + [9us
= Hoyo(f, 9)-
Lemma.

(f.9) = flz +2)g(x — 2).

ProOF. Using the notation » =i (— j) defined in Appendix A.1,

(f9) = ST H"(f.9)

n=0
=35 (1) o
n=0 r=0

0 —1)"D" 0 L pn—T f
:ZM 3 2 D7(f)

=) (put s=n—r)

r=0 n=0(—r)

L (=1)"2"D"(g) ~= 2°D*(f
:Z( ) (g)z ()_

s!

r=0 ’ s=0

These sums are Taylor expansions of g(z — z) and f(z + z), respectively,
which proves the lemma. O
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Applying Taylor’s theorem again,

Z2n+1 D2n+1 (¢)

2{0le+2) —dw -2} =) 5 ey

n=0
> 2nD2n )

Hb(z +2) + ¢z — 2) Z (5.7.2)
5.7.2 A Determinantal Identity
Define functions ¢, v, u,, and a Hessenbergian F,, as follows:
¢ =log(fg),
¥ =log(f/g) (5.7.3)
U2n = D2n(¢)7
uzni1 = D¥H(Y), (5.7.4)
En = leij‘na
where
j—1 L
<Z 1 ) Uj—itl, J 274,
eij = 717 j i 1’ (575)
0, otherwise.
It follows from (5.7.3) that
f=elet¥)/2
g=eld=9)/2
fg=e’. (5.7.6)
Theorem.
H’n
(£9) _ g
fg
U U2 U3 Ug -+ Up—1 Unp
-1
—1 Ul 2u2 3u3 (2_2)7'“1—1
-1
= —1 Ul 3u2 e e (Z_3>un2
1 .
-1 Ul

n

This identity was conjectured by one of the authors and proved by Cau-
drey in 1984. The correspondence was private. Two proofs are given below.
The first is essentially Caudrey’s but with additional detail.
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First proof (Caudrey). The Hessenbergian satisfies the recurrence

PRrooF.
relation (Section 4.6)
TS (:}) Up i1 Epo. (5.7.7)
r=0
Let
(5.7.8)

HUT9) - f_ pa), g = gla), Fo=1.

B, =29
" fg

The theorem will be proved by showing that F,, satisfies the same
recurrence relation as F,, and has the same initial values.

Let
zH(f

e
Oofg
™ H"(f,9)
K= 2 T fg
n=0

2" F,

n!

.9)

(5.7.9)

n=0

Then,
0K S N
— = 7.1
5z = 2 o1l (57.10)

(5.7.11)

From the lemma and (5.7.6),
Jatge—) )
K= o9 =exp[3{o(z + 2) + ¢(z — 2)
+ip(z + 2) — Y(z — 2) — 2¢(x)}]. (5.7.12)
Differentiate with respect to z, refer to (5.7.11), note that
D.(¢(z — 2)) = —Dz(¢(z — 2))

etc., and apply the Taylor relations (5.7.2) from the previous section. The

result is
ST - D[4 +2) — blo — 2) +pla + )+ e - 2 K
n=0 ’
=, g2 pant(y)
S T

2n+1 2
22t U2n+-2 Z z "U2n+11 K

(2n)!

[ 0 22+ D242 ()
[ (2n+1)!
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_ Z:O men";“ 3 Zf . (5.7.13)

Equating coefficients of 2",

n

Fn+1 _ Z ur—i—an—T
n! rl(n—r)l’

Foj1=) <2) Upi1Fpy. (5.7.14)

r=0

This recurrence relation in Fj, is identical in form to the recurrence relation
in E, given in (5.7.7). Furthermore,

Ey =F = uy,
Ey =Fy :uf—i—ug.
Hence,
E,=F,
which proves the theorem.

Second proof. Express the lemma in the form

Z%Hi(f,g) = f(z+ 2)g(z — 2). (5.7.15)
i=0
Hence,
H'(f,9) = [DL{f(z +2)g(z — 2)}],_,- (5.7.16)
Put
fla) = e,
g(x) = )
w=F(zx+z)+ Gz — 2)
Then,
Hi(el %) = [Di(ew)]z_o
= [P (e w.)],
1—1 i—1 i o
-3 (15") prwnien..,
_i_l LN e HI(F G
- j=0 ( J ) Vi H (e, e”), >1, (5.7.17)
where
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d

=D"{F(z)+ (-1)"G(x)}, = (5.7.18)
Hence,
P2, = D* log(fg)
= D*(¢)
= U2y
Similarly,
Yor41 = Upt1-
Hence, v, = u, for all values of r.
In (5.7.17), put
H; = Hi(el', %),
so that
HO _ €F+G
and put
1—1
Q5 = < - >wi—ja 7 <z,
J
a; = —1
Then,
a0 =i =y
and (5.7.17) becomes
ZainjZO, iZl,
§=0
which can be expressed in the form
(2
Zainj = —a;0Hy
j=1
= —ef"Cy,, i>1. (5.7.19)

This triangular system of equations in the H; is similar in form to the
triangular system in Section 2.3.5 on Cramer’s formula. The solution of
that system is given in terms of a Hessenbergian. Hence, the solution of
(5.7.19) is also expressible in terms of a Hessenbergian,

U1 -1
U Ul -1
H; = ef+@ us 2us u; —1 ,
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which, after transposition, is equivalent to the stated result. ]

FEzxercises
1. Prove that

i
> biguy, = H;,
k=1

,— 1
bi = (;_1)Hi—k

and hence express uy as a Hessenbergian whose elements are the H;.
2. Prove that

where

n n

H(A™, A7) =3 "> "al,

p=1g¢=1

Aiq Air,sq
API APTsST

5.8 Some Applications of Algebraic Computing

5.8.1 Introduction

In the early days of electronic digital computing, it was possible to per-
form, in a reasonably short time, long and complicated calculations with
real numbers such as the evaluation of 7 to 1000 decimal places or the
evaluation of a determinant of order 100 with real numerical elements, but
no system was able to operate with complex numbers or to solve even the
simplest of algebraic problems such as the factorization of a polynomial or
the evaluation of a determinant of low order with symbolic elements.

The first software systems designed to automate symbolic or algebraic
calculations began to appear in the 1950s, but for many years, the only
people who were able to profit from them were those who had easy access
to large, fast computers. The situation began to improve in the 1970s and
by the early 1990s, small, fast personal computers loaded with sophisticated
software systems had sprouted like mushrooms from thousands of desktops
and it became possible for most professional mathematicians, scientists, and
engineers to carry out algebraic calculations which were hitherto regarded
as too complicated even to attempt.

One of the branches of mathematics which can profit from the use of
computers is the investigation into the algebraic and differential properties
of determinants, for the work involved in manipulating determinants of or-
ders greater than 5 is usually too complicated to tackle unaided. Remember
that the expansion of a determinant of order n whose elements are mono-
mials consists of the sum of n! terms each with n factors and that many
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formulas in determinant theory contain products and quotients involving
several determinants of order n or some function of n.

Computers are invaluable in the initial stages of an investigation. They
can be used to study the behavior of determinants as their orders increase
and to assist in the search for patterns. Once a pattern has been observed,
it may be possible to formulate a conjecture which, when proved analyti-
cally, becomes a theorem. In some cases, it may be necessary to evaluate
determinants of order 10 or more before the nature of the conjecture be-
comes clear or before a previously formulated conjecture is realized to be
false.

In Section 5.6 on distinct matrices with nondistinct determinants, there
are two theorems which were originally published as conjectures but which
have since been proved by Fiedler. However, that section also contains a set
of simple isolated identities which still await unification and generalization.
The nature of these identities is comparatively simple and it should not be
difficult to make progress in this field with the aid of a computer.

The following pages contain several other conjectures which await proof
or refutation by analytic methods and further sets of simple isolated iden-
tities which await unification and generalization. Here again the use of a
computer should lead to further progress.

5.8.2  Hankel Determinants with Hessenberg Elements

Define a Hessenberg determinant H,, (Section 4.6) as follows:

hi hy hs hg -+ hpor hy
1 hl h2 h3 A Ce A
1 hy he
H, = 1 hy ;
1 hyl,
Hy=1. (5.8.1)
Conjecture 1.
Hn—i—r Hn-‘rr-l-l Tt H2n+7'—1 hn hn-i—l Tt h2n+7'—1
Hn+r—1 Hn+r Tt H2n+7’—2 _ hn—l hn Tt h2n+r—2
HrJrl Hr+2 T Hn+r n hlfr h27'r hn n4r

ho=1, hy, =0, m < 0.

Both determinants are of Hankel form (Section 4.8) but have been ro-
tated through 90° from their normal orientations. Restoration of normal
orientations introduces negative signs to determinants of orders 4m and
4m + 1, m > 1. When r = 0, the identity is unaltered by interchanging
H, and hy, s =1,2,3.... The two determinants merely change sides. The
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identities in which r = +1 form a dual pair in the sense that one can be
transformed into the other by interchanging Hs and hg, s =0,1,2,....

Examples.
(n,7) =(2,0):
Hy, Hs :’h2 hs |
H, H, hi he|’
(n,7) =(3,0):

Hy H, ho hs hy

H H = hl h2 h3 )

20 1 hy hy

(n,r) = (3,-1):

H, H; Hy

Hy Hy Hy =‘23 .

1 H, H, S

Conjecture 2.

ho hs ha hs oo hn o b

1 hi hy h3 -+ hpo hy
Hn Hn+1 1 hl h2 o hn73 hn72
1 Hy | 1 ht - hpog hyps

1 hy
Note that, in the determinant on the right, there is a break in the sequence
of suffixes from the first row to the second.

n

The following set of identities suggest the existence of a more general
relation involving determinants in which the sequence of suffixes from one
row to the next or from one column to the next is broken.

H, Hs| |h1 hs
1 Hy| |1 hel’
o, H, hi hs hy
H Hy|™ 1 hy hsf,

hi hs

hi hz hy hs

Hy Hs| |1 hy hy ha
Hy Hy|l hi hy hs|’

1 hi he



5.8 Some Applications of Algebraic Computing 229

H2 H4 H5 h2 h4 h5
H1 H3 H4:h1 h3 h47
1 H, Hs 1 hy hs
hi hs hs hs
H; Hpy o 1 hy hy hg
T ol (5.8.2)
1 M
5.8.8 Hankel Determinants with Hankel Elements
Let
An = |¢)r+m|na 0 S m § 2n — 27 (583)
which is an Hankelian (or a Turanian).
Let
B, = A,
(br ¢7’+1
= . 5.8.4
¢r+1 ¢r+2 ( )

Then B,, B,4+1, and B,;2 are each Hankelians of order 2 and are each
minors of As:

B, = Aé?’) )
3 3
By = A:(Bl) = A§3),
Brys =AY, (5.8.5)

Hence, applying the Jacobi identity (Section 3.6),

‘ Br+2 Br+1 _ ‘ Ag?i) Ag?
B B |7 la Al
3
= A3A§3),13
= P2 A3. (5.8.6)

Now redefine B,.. Let B, = As. Then, B;., By41,. .., Bry4 are each second
minors of As:

5
B, = Az(15),45a
5 5
B,y = _A§5),45 = _Az(15),15>
5 5 5
Byio = A§2{45 = A§5),15 = Az(15),12>

5 5
Byi3 = _A§2),15 = _A§5),12»

Brys =AY, (5.8.7)
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Hence,

5 5 5
Byi4 Brys DBryo Agz),m Agz),w Agz),45

Bri3 Bryo Bryi|= A§55),12 Ag?’m A(155)745 . (5.8.8)
5 5 5
Brvz Bran By Az(15),12 Az(;5),15 A515),45

Denote the determinant on the right by V3. Then, V5 is not a standard
third-order Jacobi determinant which is of the form

Ay or AT, 1, p=igik, g=rst.

However, V3 can be regarded as a generalized Jacobi determinant in which
the elements have vector parameters:

Vs = [AGY |3, (5.8.9)

where u and v = [1, 2], [1, 5], and [4, 5], and AS{, is interpreted as a second
cofactor of As. It may be verified that

Vs = Ag)5;12514§i)5;145‘45 + ¢4(Ag55))2 (5-8~10)
and that if
Vs = [AR s, (5.8.11)

where u and v = [1,2], [1,4], and [3,4], then
4 4 4
Vs = A§2)4;124A53)4;134A4 + (A§4))2- (5.8.12)
These results suggest the following conjecture:

Conjecture. If

Vs = |A8L\)7|37
where u and v = [1,2], [1,n], and [n — 1, n], then
V3 = A(132L;12nA§?7)171,n;1,n71,nAn + Agg?nfl,n;IQ,nfl,n(Agz))2'
Exercise. If
4
Vs = AR,
where
u=[1,2],[1,3], and [2,4],
v =11,2],[1,3], and [2, 3]
prove that
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5.8.4 Hankel Determinants with Symmetric Toeplitz Elements
The symmetric Toeplitz determinant 7T, (Section 4.5.2) is defined as follows:

Tn = |t\i7j\|na
with
Ty =1. (5.8.13)

For example,

T = to,

Ty =t5 — 13,

_ 43 2 2 2
T5 =ty — 2tot] — tots + 2t7to, (5.8.14)

etc. In each of the following three identities, the determinant on the left
is a Hankelian with symmetric Toeplitz elements, but when the rows
or columns are interchanged they can also be regarded as second-order
subdeterminants of |7};_j[,, which is a symmetric Toeplitz determinant
with symmetric Toeplitz elements. The determinants on the right are
subdeterminants of T}, with a common principal diagonal.

TIop Ti| _ e
Tl 112 1l >
Ty To|_ |t1 %o ?
T, T3|  |t2 ti|’
2
t te t
T T
13 1? = |ty t1 to . (5.8.15)
8 ty ty t
Conjecture.
t1 to t1 ts ot
ta 4 to ty1 0 tp—s
Thr Tn |_ _ |tz i to 0 tn-a
Tn Thia ty  t3 to ti o tns
tn th—1 tn—2 tn—B e ty n
Other relations of a similar nature include the following:
nonfon
- 1 0 1]
T, T3 th
Ty Ty T to t1 t2
T, T3 T,| hasafactor |t; to t3]. (5.8.16)

T3 T4 T5 t2 t3 t4
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5.8.5 Hessenberg Determinants with Prime Elements

Let the sequence of prime numbers be denoted by {p,} and define a
Hessenberg determinant H,, (Section 4.6) as follows:

b1 P2 P3 P4

1 p1 p2 p3

H, = I p1 p2
I m

This determinant satisfies the recurrence relation

A short list of primes and their associated Hessenberg numbers is given
in the following table:

nif1 2 © 3 4 5 6 7 8 9 10
pell2 3 7 5 7 11 13 17 19 23 29
H,|2 1 : 1 2 3 7 10 13 21 26

n || 11 12 13 14 15 16 17 18 19 20
pn || 31 37 41 43 47 53 59 61 67 71
H, || 33 53 80 127 193 254 355 527 764 1149

Conjecture. The sequence {H,} is monotonic from Hs onward.

This conjecture was contributed by one of the authors to an article en-
titled “Numbers Count” in the journal Personal Computer World and was
published in June 1991. Several readers checked its validity on computers,
but none of them found it to be false. The article is a regular one for com-
puter buffs and is conducted by Mike Mudge, a former colleague of the
author.

Exercise. Prove or refute the conjecture analytically.

5.8.6 Bordered Yamazaki—-Hori Determinants — 2

A bordered determinant W of order (n+1) is defined in Section 4.10.3 and
is evaluated in Theorem 4.42 in the same section. Let that determinant be
denoted here by W,, 1 and verify the formula

Wiy = —%(ﬁ ) (@ D) — (2 — 1))

for several values of n. K, is the simple Hilbert determinant.
Replace the last column of W, 1 by the column

[135---(2n—1)e]"
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and denote the result by Z, 1. Verify the formula
Znir = —n2K, (2% — 1) "2(2? — n?)

for several values of n.
Both formulas have been proved analytically, but the details are
complicated and it has been decided to omit them.

Exercise. Show that

air aiz2 - Qin T
2
a21 az2 e a2n x
_ 1 L1,

I _iKnF (na —n; 2 Z‘) )
ap1 Ap2 -+ dpn x"
1 z ., 20 1
3 2n—1 2

where
(14 2)i+i-1 — piti—1
i+5—1

and where F'(a,b; ¢; x) is the hypergeometric function.

aij =

5.8.7 Determinantal Identities Related to Matriz Identities

If M,, 1 <r <s, denote matrices of order n and
S
> M. =0, s>2,
r=1

then, in general,

S

S OIM[#£0, s>2,
r=1
that is, the corresponding determinantal identity is not valid. However,
there are nontrivial exceptions to this rule.
Let P and Q denote arbitrary matrices of order n. Then

1. a. (PQ+QP)+ (PQ—-QP)—-2PQ =0, all n,
b. |PQ+ QP|+|PQ— QP|—|2PQ| =0, n = 2.

2.a. (P-QP+Q) —(P?2-Q%) - (PQ—-QP)=0,all n,
b. |[(P-Q)(P+Q)-|P*-Q* - |[PQ-QP|=0,n=2.

3. . P-Q)(P+Q) — (P2-Q?)+ (PQ+QP)—2PQ =0, all n,
b. [(P-Q)(P+ Q)| - |P* - Q% + [PQ+QP| - 2PQ| =0, n=2.

The matrix identities 1(a), 2(a), and 3(a) are obvious. The corresponding
determinantal identities 1(b), 2(b), and 3(b) are not obvious and no neat
proofs have been found, but they can be verified manually or on a computer.
Identity 3(b) can be obtained from 1(b) and 2(b) by eliminating |[PQ—QP].
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It follows that there exist at least two solutions of the equation
X+Y|=|X+]Y], n=2,
namely

X=PQ+QP or P?-Q?
Y =PQ - QP.
Furthermore, the equation
X-Y+Z =X -|Y|+]|Z], n=2
is satisfied by

X:PQ_Q27
Y = PQ+QP,
7 = 2PQ.

Are there any other determinantal identities of a similar nature?
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Applications of Determinants in
Mathematical Physics

6.1 Introduction

This chapter is devoted to verifications of the determinantal solutions of
several equations which arise in three branches of mathematical physics,
namely lattice, relativity, and soliton theories. All but one are nonlinear.

Lattice theory can be defined as the study of elements in a two- or
three-dimensional array under the influence of neighboring elements. For
example, it may be required to determine the electromagnetic state of one
loop in an electrical network under the influence of the electromagnetic
field generated by neighboring loops or to study the behavior of one atom
in a crystal under the influence of neighboring atoms.

Einstein’s theory of general relativity has withstood the test of time and
is now called classical gravity. The equations which appear in this chapter
arise in that branch of the theory which deals with stationary axisymmetric
gravitational fields.

A soliton is a solitary wave and soliton theory can be regarded as a
branch of nonlinear wave theory.

The term determinantal solution needs clarification since it can be ar-
gued that any function can be expressed as a determinant and, hence, any
solvable equation has a solution which can be expressed as a determinant.
The term determinantal solution shall mean a solution containing a deter-
minant which has not been evaluated in simple form and may possibly be
the simplest form of the function it represents. A number of determinants
have been evaluated in a simple form in earlier chapters and elsewhere, but
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they are exceptional. In general, determinants cannot be evaluated in sim-
ple form. The definition of a determinant as a sum of products of elements
is not, in general, a simple form as it is not, in general, amenable to many
of the processes of analysis, especially repeated differentiation.

There may exist a section of the mathematical community which believes
that if an equation possesses a determinantal solution, then the determinant
must emerge from a matrix like an act of birth, for it cannot materialize
in any other way! This belief has not, so far, been justified. In some cases,
the determinants do indeed emerge from sets of equations and hence, by
implication, from matrices, but in other cases, they arise as nonlinear alge-
braic and differential forms with no mother matrix in sight. However, we
do not exclude the possibility that new methods of solution can be devised
in which every determinant emerges from a matrix.

Where the integer n appears in the equation, as in the Dale and Toda
equations, n or some function of n appears in the solution as the order of
the determinant. Where n does not appear in the equation, it appears in
the solution as the arbitrary order of a determinant.

The equations in this chapter were originally solved by a variety of meth-
ods including the application of the Gelfand-Levitan—-Marchenko (GLM)
integral equation of inverse scattering theory, namely

in which the kernel R(u,t) is given and K(z,y,t) is the function to be
determined. However, in this chapter, all solutions are verified by the purely
determinantal techniques established in earlier chapters.

6.2 Brief Historical Notes

In order to demonstrate the extent to which determinants have entered the
field of differential and other equations we now give brief historical notes on
the origins and solutions of these equations. The detailed solutions follow
in later sections.

6.2.1 The Dale Equation

The Dale equation is

/
(y//)2 — y/ (g)/ Yy + 477,2
x 1+z )7
where n is a positive integer. This equation arises in the theory of stationary

axisymmetric gravitational fields and is the only nonlinear ordinary equa-
tion to appear in this chapter. It was solved in 1978. Two related equations,
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which appear in Section 4.11.4, were solved in 1980. Cosgrove has published
an equation which can be transformed into the Dale equation.

6.2.2 The Kay-Moses Equation
The one-dimensional Schrédinger equation, which arises in quantum theory,
is
D4 - V@)y=0, D=
dx

and is the only linear ordinary equation to appear in this chapter.

The solution for arbitrary V(z) is not known, but in a paper published in
1956 on the reflectionless transmission of plane waves through dielectrics,
Kay and Moses solved it in the particular case in which

V(z) = —2D?*(log A),

where A is a certain determinant of arbitrary order whose elements are
functions of x. The equation which Kay and Moses solved is therefore

[D? 4+ % +2D*(log A)]y = 0.

6.2.3 The Toda Equations

The differential-difference equations
D(Rn) = eXp(_Rnfl) - eXp(_RnJrl)a
d

D*(R,) = 2exp(—R,,) — exp(—R,—1) — exp(—Rn41), D= o
arise in nonlinear lattice theory. The first appeared in 1975 in a paper by
Kac and van Moerbeke and can be regarded as a discrete analog of the
KdV equation (Ablowitz and Segur, 1981). The second is the simplest of
a series of equations introduced by Toda in 1967 and can be regarded as a
second-order development of the first. For convenience, these equations are
referred to as first-order and second-order Toda equations, respectively.

The substitutions

Rn = 10g Yn
Yn = D(logu,)
transform the first-order equation into
D(log yn) = Yn+1 — Yn-1 (621)

and then into

UnpUn+1

D(uy,) = (6.2.2)

Un—1
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The same substitutions transform the second-order equation first into

D2(10g yn) = Ynt1 — 2Un + Yn—1

and then into
D*(log u,) = —nt1in=l (6.2.3)
uj,
Other equations which are similar in nature to the transformed second-
order Toda equations are

D,D,(loguy) = %,
Uyt 1 Uy —

(Dz + DZ) logu, = %7
1 Un41Un—1

All these equations are solved in Section 6.5.
Note that (6.2.1) can be expressed in the form

D(yn) = Yn(Yn+1 — Yn—-1), (6.2.1a)

which appeared in 1974 in a paper by Zacharov, Musher, and Rubenchick
on Langmuir waves in a plasma and was solved in 1987 by S. Yamazaki
in terms of determinants Ps,_1 and P, of order n. Yamazaki’s analysis
involves a continued fraction. The transformed equation (6.2.2) is solved
below without introducing a continued fraction but with the aid of the
Jacobi identity and one of its variants (Section 3.6).

The equation

D,D,(R,) = exp(Rp+1 — Ry) —exp(R, — Rn—1) (6.2.5)

appears in a 1991 paper by Kajiwara and Satsuma on the g-difference
version of the second-order Toda equation.

The substitution
R, = log (Un+1)
U,

reduces it to the first line of (6.2.4).
In the chapter on reciprocal differences in his book Calculus of Finite
Differences, Milne-Thomson defines an operator r,, by the relations

rof(z) = f(z),
rif(z) = .

f(z)’
[Tn+1 —Tp—1— (n+ l)rlrn]f(x) =0

Put

Tnf = Yn-
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Then,

Ynt1 — Yn—1 — (n+ 1)11(yn) =0,
that is,

y;z(yn+1 —Yn-1) =n+L

This equation will be referred to as the Milne-Thomson equation. Its origin
is distinct from that of the Toda equations, but it is of a similar nature and
clearly belongs to this section.

6.2.4 The Matsukidaira—Satsuma FEquations

The following pairs of coupled differential-difference equations appeared in
a paper on nonlinear lattice theory published by Matsukidaira and Satsuma
in 1990.

The first pair is

/
q, = QT(UT+1 - ur)a
/ /
Uy _ q,

Upr — Up—1 qr — 4r—1

These equations contain two dependent variables ¢ and u, and two indepen-
dent variables, x which is continuous and r which is discrete. The solution
is expressed in terms of a Hankel-Wronskian of arbitrary order n whose
elements are functions of z and r.

The second pair is

(%’s)y = QTs(Ur—i-l,s - Urs)a
(urs)z _ QTs(vr+1,s - Urs)

Urs — Up s—1 qrs — qr,s—1

These equations contain three dependent variables, ¢, u, and v, and four
independent variables, x and y which are continuous and r and s which
are discrete. The solution is expressed in terms of a two-way Wronskian of
arbitrary order n whose elements are functions of x, y, r, and s.

In contrast with Toda equations, the discrete variables do not appear in
the solutions as orders of determinants.

6.2.5 The Korteweg—de Vries Equation
The Korteweg—de Vries (KdV) equation, namely
Ut + 6UUy + Ugzr = 0,

where the suffixes denote partial derivatives, is nonlinear and first arose in
1895 in a study of waves in shallow water. However, in the 1960s, interest in
the equation was stimulated by the discovery that it also arose in studies
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of magnetohydrodynamic waves in a warm plasma, ion acoustic waves,
and acoustic waves in an anharmonic lattice. Of all physically significant
nonlinear partial differential equations with known analytic solutions, the
KdV equation is one of the simplest. The KdV equation can be regarded
as a particular case of the Kadomtsev—Petviashvili (KP) equation but it is
of such fundamental importance that it has been given detailed individual
attention in this chapter.

A method for solving the KdV equation based on the GLM integral
equation was described by Gardner, Greene, Kruskal, and Miura (GGKM)
in 1967. The solution is expressed in the form

0

Or’

However, GGKM did not give an explicit solution of the integral equation
and the first explicit solution of the KdV equation was given by Hirota
in 1971 in terms of a determinant with well-defined elements but of arbi-
trary order. He used an independent method which can be described as
heuristic, that is, obtained by trial and error. In another pioneering pa-
per published the same year, Zakharov solved the KdV equation using the
GGKM method. Wadati and Toda also applied the GGKM method and,
in 1972, published a solution which agrees with Hirota’s.

In 1979, Satsuma showed that the solution of the KdV equation can
be expressed in terms of a Wronskian, again with well-defined elements
but of arbitrary order. In 1982, P6ppe transformed the KdV equation into
an integral equation and solved it by the Fredholm determinant method.
Finally, in 1983, Freeman and Nimmo solved the KdV equation directly in
Wronskian form.

u=2D,{K(z,z,t)}, D,=

6.2.6 The Kadomtsev—Petviashvili Equation
The Kadomtsev—Petviashvili (KP) equation, namely

(ut + 6UlUy + Uzzg)z + Buyy =0,

arises in a study published in 1970 of the stability of solitary waves in
weakly dispersive media. It can be regarded as a two-dimensional gen-
eralization of the KdV equation to which it reverts if w is independent
of y.

The non-Wronskian solution of the KP equation was obtained from in-
verse scattering theory (Lamb, 1980) and verified in 1989 by Matsuno using
a method based on the manipulation of bordered determinants. In 1983,
Freeman and Nimmo solved the KP equation directly in Wronskian form,
and in 1988, Hirota, Ohta, and Satsuma found a solution containing a
two-way (right and left) Wronskian. Again, all determinants have well-
defined elements but are of arbitrary order. Shortly after the Matsuno
paper appeared, A. Nakamura solved the KP equation by means of four
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linear operators and a determinant of arbitrary order whose elements are
defined as integrals.

The verifications given in Sections 6.7 and 6.8 of the non-Wronskian
solutions of both the KdV and KP equations apply purely determinantal
methods and are essentially those published by Vein and Dale in 1987.

6.2.7 The Benjamin—Ono Equation

The Benjamin-Ono (BO) equation is a nonlinear integro-differential equa-
tion which arises in the theory of internal waves in a stratified fluid of great
depth and in the propagation of nonlinear Rossby waves in a rotating fluid.
It can be expressed in the form

up + duny + H{ug, } =0,
where H{f(z)} denotes the Hilbert transform of f(z) defined as

sy - 2p [~ 1,

and where P denotes the principal value.

In a paper published in 1988, Matsuno introduced a complex substitution
into the BO equation which transformed it into a more manageable form,
namely

where A* is the complex conjugate of A, and found a solution in which
A is a determinant of arbitrary order whose diagonal elements are linear
in  and ¢ and whose nondiagonal elements contain a sequence of distinct
arbitrary constants.

6.2.8 The Finstein and Ernst Equations

In the particular case in which a relativistic gravitational field is axially
symmetric, the Einstein equations can be expressed in the form

0 oP 0 oP
. 7P_1 . 7P_1 —
p (p dp > + 0z (p 0z ) 0,

where the matrix P is defined as

1
P- H} (/)wa} . (6.2.6)

¢ is the gravitational potential and is real and 1 is either real, in which
case it is the twist potential, or it is purely imaginary, in which case it has
no physical significance. (p, z) are cylindrical polar coordinates, the angular
coordinate being absent as the system is axially symmetric.
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Since det P =1,
Lg%+ y? —w]
Pl==
-3 ’

_w 1

83 _ i |: _¢p ¢wp - w¢p

Op 2 WYy — by PP+ 2000, — 30, |
P, _M
% &
oP__, N
20 T

where
M = _(¢¢p + wwp) ’(/Jp

B (¢2 - ¢2)"/)p - 2¢w¢p ¢¢p + Wbp

and N is the matrix obtained from M by replacing ¢, by ¢. and 1, by ..
The equation above (6.2.6) can now be expressed in the form

% - %(@,M +¢:N)+ (M, +N.)=0 (6.2.7)
where
P(93 + 62) }
6,M + 6N = BTN 1t + 9.}
? : { (0 — V) (Pptp + ¢212) } { d(92 + ¢2) } ’
M, + N,

2+ ¢F + ) + U2 {Wop + 92}

{ (¢ - )(wpp + ¢'z2) 2¢¢(¢50 + ¢zz) } { ¢(¢pp + ¢z2) + ¢(¢pp + ¢22)
72w(¢p+¢z+wp+¢z) +¢p+¢z+¢p+wz

The Einstein equations can now be expressed in the form

fir fi2| _
|:f21 fzz}o’

[ { D (Ppp + ¢zz) + w(%p + ¢zz) }

where
fa=3 {cﬁ (wpp g+ %) 26y + qszwz)} o,
fll = *wfm - |:¢ <¢pp + %pr + ¢zz> - ¢,2) - ‘Zﬁ +¢§ +7;/}3:| = 07

f21 = (¢2 *11)2).]612 *21/1 |:¢ <¢pp + %pr +¢zz> - ¢,2) - Qﬁ +7/},2; +¢§:| = 07
f22 = _fll = 07
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which yields only two independent scalar equations, namely
1

¢ (wpp + %wp + wzz> —2(¢ppthp + ¢21.) = 0. (6.2.9)

The second equation can be rearranged into the form

9 (pY 9 (pY.\
5(3)-5(3)-

Historically, the scalar equations (6.2.8) and (6.2.9) were formulated before
the matrix equation (6.2.1), but the modern approach to relativity is to
formulate the matrix equation first and to derive the scalar equations from
them.

Equations (6.2.8) and (6.2.9) can be contracted into the form

oV2p — (V) + (V)? =0, (6.2.10)
¢Vh — 2V ¢ - Vip = 0, (6.2.11)
which can be contracted further into the equations
3G+ Ve = (VEe)?, (6.2.12)
where
C+ = ¢+ wih,
CC=¢—wp (w?=-1). (6.2.13)
The notation
C=¢+wy,
=0 —wy, (6.2.14)

where (* is the complex conjugate of (, can be used only when ¢ and 1) are
real. In that case, the two equations (6.2.12) reduce to the single equation

3(C+CIVEC= (V)™ (6.2.15)

In 1983, Y. Nakamura conjectured the existence two related infinite sets of
solutions of (6.2.8) and (6.2.9). He denoted them by

Gy Upy M2,
Py Y, N =2, (6.2.16)

and deduced the first few members of each set with the aid of the pair of
coupled difference—differential equations given in Appendix A.11 and the
Bécklund transformations § and v given in Appendix A.12. The general
Nakamura solutions were given by Vein in 1985 in terms of cofactors as-
sociated with a determinant of arbitrary order whose elements satisfy the
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difference—differential equations. These solutions are reproduced with mi-
nor modifications in Section 6.10.2. In 1986, Kyriakopoulos approached the
same problem from another direction and obtained the same determinant
in a different form.

The Nakamura—Vein solutions are of great interest mathematically but
are not physically significant since, as can be seen from (6.10.21) and
(6.10.22), ¢, and 1,, can be complex functions when the elements of B,, are
complex. Even when the elements are real, 1,, and v/, are purely imaginary
when n is odd. The Nakamura—Vein solutions are referred to as intermediate
solutions.

The Neugebauer family of solutions published in 1980 contains as a par-
ticular case the Kerr-Tomimatsu—Sato class of solutions which represent
the gravitational field generated by a spinning mass. The Ernst complex
potential £ in this case is given by the formula

¢=F/G (6.2.17)

where F and G are determinants of order 2n whose column vectors are
defined as follows:

In F,
Ci=In am & 1o &ocfl,, (6.2.18)
and in G,
Ci=1[r o ' 1 e &g, (6.2.19)
where
5= e P4 (4 )7 (W= 1) (6.2.20)

and 1 < j < 2n. The ¢; and 6; are arbitrary real constants which can be
specialized to give particular solutions such as the Yamazaki—Hori solutions
and the Kerr-Tomimatsu—Sato solutions.

In 1993, Sasa and Satsuma used the Nakamura—Vein solutions as a start-
ing point to obtain physically significant solutions. Their analysis included
a study of Vein’s quasicomplex symmetric Toeplitz determinant A,, and a
related determinant F,. They showed that A, and E, satisfy two equa-
tions containing Hirota operators. They then applied these equations to
obtain a solution of the Einstein equations and verified with the aid of
a computer that their solution is identical with the Neugebauer solution
for small values of n. The equations satisfied by A, and E,, are given as
exercises at the end of Section 6.10.2 on the intermediate solutions.

A wholly analytic method of obtaining the Neugebauer solutions is
given in Sections 6.10.4 and 6.10.5. It applies determinantal identities and
other relations which appear in this chapter and elsewhere to modify the
Nakamura—Vein solutions by means of algebraic Backlund transformations.
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The substitution

_1-¢

= — 6.2.21

(= 1r¢ (6:221)
transforms equation (6.2.15) into the Ernst equation, namely

(667 — 1)V€ = 267(VE - VE) (6.2.22)

which appeared in 1968.
In 1977, M. Yamazaki conjectured and, in 1978, Hori proved that a
solution of the Ernst equation is given by

g = P W (2 ),

6.2.23
= (6:2.23)

where x and y are prolate spheroidal coordinates and u,, v,, and w, are
determinants of arbitrary order n in which the elements in the first columns
of u, and v, are polynomials with complicated coefficients. In 1983, Vein
showed that the Yamazaki—Hori solutions can be expressed in the form

_ PUn+1 — wqVhp1
Wn+1

where Uy 41, Vg1, and W, 41 are bordered determinants of order n+1 with
comparatively simple elements. These determinants are defined in detail in
Section 4.10.3.

Hori’s proof of (6.2.23) is long and involved, but no neat proof has yet
been found. The solution of (6.2.24) is stated in Section 6.10.6, but since
it was obtained directly from (6.2.23) no neat proof is available.

&n (6.2.24)

6.2.9 The Relativistic Toda Equation

The relativistic Toda equation, namely

5o (. B R, exp(Rn—1 — Rn)
B = (1 * c > <1+ c > 14 (1/c?) exp(Rpn—1 — Rn)

Rn Rn—f—l eXP(Rn — Rn-‘rl)
(1= 1 6.2.25
( : ) ( T ) T (/) exp(R — Ror) 0 2%)
where R, = dR, /dt, etc., was introduced by Rujisenaars in 1990. In the
limit as ¢ — oo, (6.2.25) degenerates into the equation

R, =exp(R,-1 — R,,) —exp(R,, — Ryy1)- (6.2.26)
The substitution

Up_
R, = log{ i 1} (6.2.27)

reduces (6.2.26) to (6.2.3).
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Equation (6.2.25) was solved by Ohta, Kajiwara, Matsukidaira, and
Satsuma in 1993. A brief note on the solutions is given in Section 6.11.

6.3 The Dale Equation

Theorem. The Dale equation, namely

2 /
M2 _ g)/ y+4n
W) =y (x < o )
where n is a positive integer, is satisfied by the function

y=4(c— 1)xA7111,

where ALl is a scaled cofactor of the Hankelian A, = |a;;|n in which
Tt 4 (—1) e

i+j5—1
and c is an arbitrary constant. The solution is clearly defined when n > 2

but can be made valid when n = 1 by adopting the convention A1 =1 so
that A™ = (z +¢)~ 1.

aij =

ProOF. Using Hankelian notation (Section 4.8),
A:|¢m|n7 0<m<2n-2,

where
b = % (6.3.1)
Let
P = |thmln,
where
Ym = (1+2)"" P,
Then,
1/4” = mF iy
(the Appell equation), where
F=(142)"2 (6.3.2)

Hence, by Theorem 4.33 in Section 4.9.1 on Hankelians with Appell
elements,
P' =Py
(1 — C)P11

=07 (6.3.3)
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Note that the theorem cannot be applied to A directly since ¢,, does not
satisfy the Appell equation for any F'(x).
Using the identity

679 2ag]n = 7 Vlagj,
it is found that

2

P=(1+x) ™A,

Py = (1+2)" 14y, (6.3.4)
Hence,
(1+2)A =n*A—(c—1)A;. (6.3.5)
Let
=> a"lAm, (6.3.6)
Bi=> (1) A", (6.3.7)
A= Z(—l)rar
_ Z Z(_l)rxsflArs
= stflﬂsv (638)
where 7 and s = 1,2,3,...,n in all sums.

Applying double-sum identity (D) in Section 3.4 with f. = r and g; =
s — 1, then (B),

(i +j— I)Azg — ZZ[IrJrsfl )r+s }A’I“ZAS.]

= rTo05 + Cﬁiﬁj (639)
A’Lj Z Z lerJ 2A15Arj
= —Q;Q;. (6310)

Hence,
2(A9) + (i +j — 1)AY = cBif;,
(27T ATY = (i) (91 y).
In particular,
(1Y = —ad,
(xAM™Y = ¢33 (6.3.11)
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Applying double-sum identities (C) and (A),

n

Z Z[x7’+s—1 )r+€ ]Are _ Z@r _ 1)

r=1 s=1 r=1

=n? (6.3.12)

‘IA/ i Zn:l,rﬁneflArs

r=1 s=1

ci i(—l)"*s/{"s. (6.3.13)

r=1 s=1

Differentiating and using (6.3.10),

(JJA/) Z Z 1) aa,

= c)\2. (6.3.14)
It follows from (6.3.5) that
x A 1
TA 2 (e — 1Al
A [ 1+ x} " = (e = 1)AT]
1)z Al 42
—n?_ {(c Jed” +n ] . (6.3.15)
1+
Hence, eliminating 2 A’/A and using (6.3.14),
1ALl 27/
{(C JeA” +n ] = —c)2. (6.3.16)
1+x
Differentiating (6.3.7) and using (6.3.10) and the first equation in (6.3.8),
B = Aa. (6.3.17)
Differentiating the second equation in (6.3.11) and using (6.3.17),
(z A" = 2chaq By (6.3.18)

All preparations for proving the theorem are now complete.
Put

y=4(c —1)zA,
Referring to the second equation in (6.3.11),
y =4(c—1)(z Aty
=4c(c—1)62. (6.3.19)
Referring to the first equation in (6.3.11),

(9)' — d(c—1)(AMY

T
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= —dc(c—1)a?. (6.3.20)
Referring to (6.3.16),
<y+4n2)/ 4[(6—1)$A11+n2 '

14+ 1+
= —4e)?. (6.3.21)
Differentiating (6.3.19) and using (6.3.17),
y" = 8c(c — 1) a1 . (6.3.22)
The theorem follows from (6.3.19) and (6.3.22). O

6.4 The Kay—Moses Equation
Theorem. The Kay—Moses equation, namely

[D? + & +2D?(log A) ]y = 0 (6.4.1)
is satisfied by the equation

n e(c,i-i-cj-)wewAij

y=e “F|1- E o . w?=—1,
i,j=1 /
where
A= |ars|na
e(cr+cs)wsz
Qrs = 67'sb7' +
Ccr + Cs

The b,., r > 1, are arbitrary constants and the c., r > 1, are constants such
that c; #1, 1 < j<mnandc, +¢cs #0, 1 <15 < n, but are otherwise
arbitrary.

The analysis which follows differs from the original both in the form of
the solution and the method by which it is obtained.

ProOOF. Let A = |a,s(u)|, denote the symmetric determinant in which

e(c,~+c§)u
Qrs = (srsbr + — =agr,

Cr + Cs
al, = elertes)u, (6.4.2)
Then the double-sum relations (A)—(D) in Section 3.4 with f, = g, = ¢,
become

(log A)' =) "elerteugrs, (6.4.3)

T8
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(Aij)/ — 72 eCru ATI Z csuAis’ (644)
2 Z b, AT + Z (ertes)ugrs — 9 Z Cr, (6.4.5)

QZb cp AT AT 4 Z ert AT Z €U A = (¢; 4+ ¢;) AT, (6.4.6)

Put
G =Y emAN, (6.4.7)
Then (6.4.4) and (6.4.6) become
(A7) = —¢;p;, (6.4.8)
23 " bper ATAY 4 iy = (c; + ;) AY. (6.4.9)

Eliminating the ¢;¢; terms,
(A7) + (ci+¢j) A7 =2 bpe, AT AT,

[elertenu 4i7]" = gelecteu N p e, ATAY. (6.4.10)

Differentiating (6.4.3),
(log A)" = 3 _[e(crrerad]’

=2 Z b.c, Z eCit AT Z eIt AT
T % J
=2 Z bycr 2. (6.4.11)

Replacing s by 7 in (6.4.7),
eCil b = Z (citer) qur

CJu(]S _2Zb CT clqur Zec]uArj
=2 Z bycrpreSit AT,
(b; + Ci¢i =2 Z brcr¢rAir~

Interchange i and 7, multiply by b.c, A", sum over r, and refer to (6.4.9):

D brerAT(S +erdy) =2 bicigi Y bre, AT AT
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= Z bicigi|(ci + ¢j)AY — ¢ioj]
= brerdrl(er + ) AT = dr5],
> bee, AT = Z brcrdrlcj AT — 5], (6.4.12)
Zbrcr;l”(ab; —r) = Zb crér(c; — DA™ — Zb er g0
Multiply by e%"/(¢; — 1), sum over j, and refer to (6.4.7):
= bocy e = St = St 3 fi‘b{
=F> b}

1 F(log A)", (6.4.13)

where

e(CH‘Cj )quy

=1- _— 6.4.14
Z Cj — 1 ( )
i
Differentiate and refer to (6.4.9):

CjuArj

F = _9 ZchT Z ec- — Z eciuAir

(']uATj

=230, Z ore AT (6.4.15)
Differentiate again and refer to (6.4.8):

—ZZb CTZ

—P-Q-— R, (6.4.16)

W@ cjpr A" — ¢ A7 ]

where

eCju .
P = 22 . _(b{ Zbrcrqbg
i T
=(1-F)(log A)” (6.4.17)
byc,c; c/)r cjuATI
— QZ J—
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=23 berde e AT 23 crzd”“
:QZbrcrqbﬁfF’

= (logA)" — F', (6.4.18)

B 22 eCit Zb CT¢ e
= QZ o — 1 Zbrcr¢r[chTj - ¢T¢j]
7 i

CJuAT‘j

—Q-P (6.4.19)
Hence, eliminating P, @, and R from (6.4.16)—(6.4.19),
d*F dF
—— —2— +2F(log A)" = 0. 6.4.20
2 4 ap(og a) (6.4.20)
Put
F =ey. (6.4.21)
Then, (6.4.20) is transformed into
d?y d?
— = 2y—(log A) = 0. 6.4.22
dz Y2 s (log ) ( )
Finally, put u = wex, (w? = —1). Then, (6.4.22) is transformed into
d*y d?
) +e y+2yd 5 (log A) =0,
which is identical with (6.4.1), the Kay—Moses equation. This completes
the proof of the theorem. |

6.5 The Toda Equations

6.5.1 The First-Order Toda FEquation

Define two Hankel determinants (Section 4.8) A,, and B,, as follows:

Ay = |pmln, 0<m<2n-2,
Bp = |pmln, 1<m<2n-1,

The algebraic identities
A, B — B, AT 4+ Ay By =0, (6.5.2)
Bu 1 A = AnBY) 4 Ay 1By =0 (6.5.3)



6.5 The Toda Equations 253

are proved in Theorem 4.30 in Section 4.8.5 on Turanians.
Let the elements in both A,, and B,, be defined as

Om(x) = f(m) (z), f(x) arbitrary,
so that
G = Pm+1 (6.5.4)

and both A, and B, are Wronskians (Section 4.7) whose derivatives are
given by

n+1
A;’L = _Agz-&-l,v)w
B, =B, (6.5.5)
Theorem 6.1. The equation
r UpUn+1
tn = Unp—1

is satisfied by the function defined separately for odd and even values of n
as follows:

Ay,
U2pn—1 = ’
anl

B,

v =,

n

PROOF.
2 / / /
B:_quy,_1 =B,_14, — A,B

n—1

_anlA(n+1) +AnB(n)

n+1,n n,n—1
U2p—1U
2 2n—1U2n
Bn—l ( ) = An—an~

U2n—2
Hence, referring to (6.5.3),
BQ

n—1

|:u2n1u2n /
n,n—1

- u2n1:| =Ap_1Bp + anlAgﬁili)’L - AnB(n)

U2n—2

= 0,
which proves the theorem when n is odd.

A%ul, = A,B! — B,A,

+1 +1
= —AnBIY) + Badl

9 [ U2nU2n+1

U2n—1

Hence, referring to (6.5.2),

U2nU2 1 1 1
A [ g | By 4 AGBUS), — Bl
2n—1
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= ()’
which proves the theorem when n is even. o

Theorem 6.2. The function

d
v = D(logu,), D=
is given separately for odd and even values of n as follows:
o An—an
Yon—1 = m,
_ AnnBa
Y= TALB,

PROOF.

Ay
Yan—1 = Dlog (Bnl)

1
= dap,y P = ABa)

1 n
- Aan—l[ n- 1An+ﬁ-1n+A Bnn 1]

The first part of the theorem follows from (6.5.3).

B,
Yon = Dlog <An>

1

AB
1

~ A,B,
The second part of the theorem follows from (6.5.2). O

(A, B, — B,A,)

[ A B(n+1) +BnA(n+1)].

n+1ln n+1l,n

6.5.2 The Second-Order Toda Equations
Theorem 6.3. The equation

Up+4+1Un—1

D,D,(loguy,) = 2

, Dgp=—, etc.
T

is satisfied by the two-way Wronskian
Unp = An = ’D;:_lDé_l(f”

n’

where the function f = f(x,y) is arbitrary.
PRrROOF. The equation can be expressed in the form

Dy Dy(An)  Di(An)

Dy (An) L= A A (6.5.6)
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The derivative of A, with respect to x, as obtained by differentiating the
rows, consists of the sum of n determinants, only one of which is nonzero.
That determinant is a cofactor of A, 41:

D, (An) = _A(n—H)

n,n+1°

Differentiating the columns with respect to y and then the rows with respect
to x,

D, (4,) = *A(nﬂ)

n+1,n?
DyDy(An) = ALY, (6.5.7)

Denote the determinant in (6.5.6) by E. Then, applying the Jacobi identity
(Section 3.6) to A,41,

n+1 n+1

E= Ag“b("Jr i) _(A’El,l’l';:"r)l
n—+ n—+

_An+1,n An+1,n+1

= An+1A£:,l:—i1-)1;n,n+l
which simplifies to the right side of (6.5.6).
It follows as a corollary that the equation
Up1Un—1 d
D2(10gun)=T, D=—,
n
is satisfied by the Hankel-Wronskian
Uy = Ap = |Di+j72(f)‘na
where the function f = f(z) is arbitrary. O

Theorem 6.4. The equation

1 Un4+1Un—1 d
—-D,|pD,(loguy)| = ————, D,=—,
pr [/) p(logu )] u2 "= dp
is satisfied by the function
Up = A, = e V2R (6.5.8)

where

B, = |(PDp)i+j72f(P)|n7 f(p) arbitrary.
PROOF. Put p=e®. Then, pD, = D, and the equation becomes

2
14 An lAnfl
D2(log A,) = %. (6.5.9)

Applying (6.5.8) to transform this equation from A,, to B,
D3 (log By) = D3 (log An)

_ pQBTH*lBﬂ*le—[(n+1)n+(n—1)(n—2)—2n(n—1)]$
B
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xr

_ szn+an—1€_2
— iF
_ Bnt1Bna
==

This equation is identical in form to the equation in the corollary to
Theorem 6.3. Hence,

B, = |D,"7 ()

, g(z) arbitrary,

n

which is equivalent to the stated result. a

Theorem 6.5. The equation

2 2 _ Up41Up—1
(D; + Dy) log u,, = T

is satisfied by the function
Up = An = ’DZz_lDJ,Eil(f”

n’

where z = %(a: +1iy), z is the complex conjugate of z and the function
f=f(z,2) is arbitrary.

ProoF.
DZ(log A,) = 2(D? +2D.D; + D?) log A,
D2(log A,) = —3(D2 — 2D.D: + D?) log Ay.
Hence, the equation is transformed into
An+1An—l
D.Dx(log A,,) = Az

which is identical in form to the equation in Theorem 6.3. The present
theorem follows. a

6.5.3 The Milne-Thomson Equation
Theorem 6.6. The equation

y’l/’L(yﬂJrl —Yn-1) =n+1
is satisfied by the function defined separately for odd and even values of n
as follows:

By

Yoan—1 = B :B}Il»

n

An+1 1

Yon = = 11
" AP AL
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where A,, and B,, are Hankelians defined as
An = [dmln, 0<m<2n-2,
B, = |pmln, 1<m<2n-1,
Oy = (M + 1)1

Proor.

B = (—1)" 1Ay,

AL = (1) B, (6.5.10)

It follows from Theorems 4.35 and 4.36 in Section 4.9.2 on derivatives of
Turanians that

—(2n—1)A"Y

D(A”) n+1,n°
n n+1
D(Agl)) = —(2TL - 1)A§,7;L+%;1n7
D(BY) = —2nB{" 1, .. (6.5.11)

The algebraic identity in Theorem 4.29 in Section 4.8.5 on Turanians is
satisfied by both A, and B,,.

B2yb, 1 = BuD(B) — B{{ D(B,)
= o[BIV B Y - BB Y]
=2nB{W B{"HY)
= —2nAP AT,

Applying the Jacobi identity,
AP AT (g — y2n—2) = Ann AP — A, ATV
n+1 n n+1
= AnJrlAg,nJri;l,nle - Ani%,n«klAgl )
n+1)72
= - [Ag,nJrH
=-B2.
Hence,
y/2n—1(y2n - y2n72) = 2”7
which proves the theorem when n is odd.
n+1)72 n+1 n+1
(A7) b = ATV D(As1) = Aun D(ATTY)
n+2 n+1 n+2
=(2n+1) [An-‘rlA(l,r:,-%;l,n—i-l - A§1+ )A’SL—‘,-—Z,T)?,—‘y-l]

= —@n+ 1Al A
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Hence, referring to the first equation in (4.5.10),
n+1)12
[B§,nt~1)] yIQn = (277' + 1)B7an+1;
Ban+1(y2n71 - y2n+1) = BnBYll—i_l) - BnJrlBYf)

_ pntl) (n+1) (n+1)
- Bn+1,n+lBll - Bn+1Bl,n+1;1,n+1

_ [p(nt1)]2
= [Bial™
Hence,
Yo (Y2n—1 — Yony1) = 2n + 1,
which proves the theorem when n is even. |

6.6 The Matsukidaira—Satsuma Equations

6.6.1 A System With One Continuous and One Discrete
Variable

Let A (r) denote the Turanian-Wronskian of order n defined as follows:

A () = | fryivi—al, (6.6.1)
where fs = fs(z) and f, = fs+1. Then,
A (r) = A" D(r +2),
A () = AP (4 1),
Let
=AM (r). (6.6.2)
Theorem 6.7.
Tr41 T | |7 T Tig1 Tr+1|| Ty T
Tr  Te—1||TL T 7] T || 7Th_y Tro1

for all values of n and all differentiable functions fs(x).

PRrOOF. Each of the functions

/ 1 !
Tr+1ly Tr+42s Tpy Tpy Tpgn

can be expressed as a cofactor of A"*t1) with various parameters:

n+1
Tr = A£1+1,7)L+1(7")v

o1 = (1" A ()
= (—1)" AN ()

Tr+2 = A§711+1)(7")~
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Hence applying the Jacobi identity (Section 3.6),

Tr4+2 Tr41| _ A&?Jrl) (T) (_1)TLA:(L’CLTZL':% (’I")
- n A(n+1 n+1
Tr41  Tr (-1) AgL:i,%(T) A;:l,r)wl(r)
= AT (1) APV (r 4 2).
Replacing r by r — 1,
Tr4l Tr | _ A(”'H)(T _ 1)A(n—1)(7a +1) (6.6.3)
Tr Tr—1
= AL
1
= AL
= AR ().
Hence,
o] AT Al )
/ - n n+1
T, T Ag:ll,)l (r) A5L++1,7)z+1(7”)
= A(n+1) (T)Aggfrj:i)l;n,nJrl(r)
= A () A=) (), (6.6.4)
Similarly,
T = AU ()
1
- 7A5::1,%(T)7
n n+1
Trp1 = (=1) +1Agn+ )(T)v
/
T;_Jlrl 7'7:1 = AT (A (r 4 1), (6.6.5)

Replacing r by r — 1,

/

T Tr n ne
TL = AT (1) A1 (), (6.6.6)
Theorem 6.7 follows from (6.6.3)—(6.6.6). O
Theorem 6.8.
Tr Trdl Tyg
Tr—1 Ty 7, | =0.
AN

PrROOF. Denote the determinant by F. Then, Theorem 6.7 can be
expressed in the form

Fs3 Fy = F31 Fis.
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Applying the Jacobi identity,
Fyy s
F3y I33

F Fiz13 = ’
0.

But Fi313 # 0. The theorem follows. ]

Theorem 6.9. The Matsukidaira—Satsuma equations with one continuous
mdependent variable, one discrete independent variable, and two dependent
variables, namely

a. q} = QT(UT+1 - Ur)/;

b u, q

Upr — Up—1 qr — qr—1

)

where q, and u, are functions of x, are satisfied by the functions

Tr+1
qr = )
Tr
!/
-
U, = —
Tr

for all values of n and all differentiable functions fs(x).

PRrROOF.
/o F31
qr - 7_72 )
Iy
qr — Qr—1 = — )
Tr—1Tr
/o Fll
ur - TTQ 9
Fi3
Ur — Up—1 = )
Tr—1Tr
Iy
Up41 — Up = —
TrTr41
Hence,
/
q’r T’l"+1
= = d{r,
Up41 — Up Tr

which proves (a) and

ur(qr — Gr—1) _ Fyy F33
q.(ur —up—1)  F31 Fi3
=1,

which proves (b). O



6.6 The Matsukidaira—Satsuma Equations

261

6.6.2 A System With Two Continuous and Two Discrete

Variables

Let A (r,s) denote the two-way Wronskian of order n defined as follows:

A(n)(T, 8) = |fr+i71,s+j71 n

where frs = frs(xay)7 (frs)ac = fr,s—i—l, and (frs)y = fr+17s-
Let

Trs = A (1, 5).
Theorem 6.10.

Tr4+1,s  Tr4l,s—1 (TTS)xy (Trs)y

Trs Tr,s—l (Trs)m Trs
(TTS)y (TT7S_1)y (TT+1,s)a: Tr4+1,s
Trs Tr,s—1 (Trs)x Trs

for all values of n and all differentiable functions f.s(x,y).

PROOF.

_ A(n+1)
Trs = An—&-l,n—i—l(rﬁ 8)’

_ (n+1)
Tr4l,s = _Al,n+1(r7 8)7
_ (n+1)

Tr,s+1 = 7An+1,1(7’7 S)’

Tra = A s).
Hence, applying the Jacobi identity,

Tr+1,s+1 7_7“—5-1,s+1

— 1 (n+1)
Tr,s+1 Trs o A(n+ )(T7 S)Al?n‘f’l;lan#’l (r7 S)

= AP AP (r 41,5+ 1).
Replacing s by s — 1,

Tr—i—l,s Tr+1,s—1

= A (s — DA (r 41, 5),

Trs Tr,s—1
n+1
(Trs)e = _A5z++1,2L(ra s),
n+1
(Trs)y = — A1 (r,9),

(Trs)ay = A,({;‘fl)(r, s).
Hence, applying the Jacobi identity,

(Trs)zy  (Trs)y

T’I‘S €T T’I‘S

A AL )

= AP () A (1 5)

(Trss1)y = —AL(r,5).

(6.6.7)

(6.6.8)

(6.6.9)

(6.6.10)
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Hence,

(Trs+1)y  (Trs)y
Tr,s+1 Trs

= A () ATTD L s)

= A (r, ) A (1, 5)
= AMD () A (15 4 1).
Replacing s by s — 1,

(TTS)y (TT,S—l)y
Trs Tr,s—1

(Trsrs)e = ATV (1, 5).

_ A(n+1) (T, s — 1)A(n71)(7’, 5), (6611)

Hence,

(TTJrl,s)z Tr41,s

e T = AT ) AT e (9)

1,n+1;n,n+1

= A (2 AP D(r 4 1,5).  (6.6.12)
Theorem 6.10 follows from (6.6.9)—-(6.6.12). O
Theorem 6.11.

Tr4+1,5—1  Tr,s—1 (Tr,s—l)y

Tr41,s Trs (TTS)ZJ =0.

(TrJrl,s)x (Trs)z (Trs)zy
PrOOF. Denote the determinant by G. Then, Theorem 6.10 can be
expressed in the form

Gsz G11 = G31 Gas. (6.6.13)
Applying the Jacobi identity,
G Gis
GG =
19,13 ’ G311 Gs3
=0.
But Gi3,13 # 0. The theorem follows. ]

Theorem 6.12. The Matsukidaira—Satsuma equations with two contin-
uous independent variables, two discrete independent variables, and three
dependent variables, namely

a. (qTS)y = qrs(ur+175 — UTS),
b (UTQ)JC _ (UT+1,S - Urs)‘]rs

Urs — Upr,s—1 qrs — qr;s—1

7

where qrs, Urs, and vys are functions of x and y, are satisfied by the
functions
o T’r‘+1,s

qTS - )
Trs
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Trs

o (Trs)x

rs T Y
TTS

for all values of n and all differentiable functions f.s(x,y).

PROOF.

(qm)y = L

2
Trs

_ Tr41,s |:(Tr+1,s)y B (Trs)y:|
Trs

(7-7'+1,s)y (Trs)y
Tr+1,s Trs

Tr+1,s Trs
= qrs(urJrl,s - urs)»

which proves (a).

_ Gn
(urs)z 2
Trs
G13
'Ur+1,s Urs = — )
T’r‘+1,s7—rs
G31
Urs — Uprs—1 = — >
TrsTr,s—1
B Gi33
qrs — qr,s—1 = — .
TrsTr,s—1
Hence, referring to (6.2.13),
(qTS - qr,s—l)(urs)x o Gll G33
qrs(urs - ur,sfl)(vr+1,s - vrs) G31 G13

= 1’
which proves (b).

6.7 The Korteweg—de Vries Equation

6.7.1 Introduction
The KdV equation is

U + 6uUy + Ugpgy = 0.
The substitution v = 2v, transforms it into

vy + 602 + vypy = 0.

263

(6.7.1)

(6.7.2)

Theorem 6.13. The KdV equation in the form (6.7.2) is satisfied by the

function

v = D,(log A),
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where
A= |ars |n7

ars = Opser + = Qgr,

by + bs
e, = exp(—byx + b2t + ;).

The €, are arbitrary constants and the b, are constants such that the b, +
bs # 0 but are otherwise arbitrary.

Two independent proofs of this theorem are given in Sections 6.7.2 and
6.7.3. The method of Section 6.7.2 applies nonlinear differential recurrence
relations in a function of the cofactors of A. The method of Section 6.7.3
involves partial derivatives with respect to the exponential functions which
appear in the elements of A.

It is shown in Section 6.7.4 that A is a simple multiple of a Wronskian and
Section 6.7.5 consists of an independent proof of the Wronskian solution.

6.7.2 The First Form of Solution

FIrRsT PROOF OF THEOREM 6.1.3. The proof begins by extracting a wealth
of information about the cofactors of A by applying the double-sum rela-
tions (A)—(D) in Section 3.4 in different ways. Apply (A) and (B) with
/' interpreted first as f, and then as f;. Apply (C) and (D) first with
fr = gr = by, then with f, = g, = b3. Later, apply (D) with f, = —g, = b2.
Appling (A) and (B),
v=D,(log A) Z Z Opsbre, A”°
= Zb e AT (6.7.3)

»(AY) Zb er AT AT (6.7.4)

Applying (C) and (D) with f, = g, = b,
ZZ rs(br + bs)e, + 2] AT = QZb“
which simplifies to
Z bre, AT + Z Z AT = Z by, (6.7.5)
Zb e, ATAT 4 ZZA“A” = 2(b; + b;)AY. (6.7.6)



6.7 The Korteweg—de Vries Equation 265

Eliminating the sum common to (6.7.3) and (6.7.5) and the sum common
0 (6.7.4) and (6.7.6),

v = D,(log A) = ZZA” Zbr, (6.7.7)
Dy (AY) = %(bi +b;)AY — ZZA”A” (6.7.8)
Returning to (A) and (B),
D,(log A) = Z ble AT, (6.7.9)
(A7) Z ble, A AT, (6.7.10)

Now return to (C) and (D) with f,. = g, = b2.

ZbBeTA”” +ZZ (b2 — byby + b2)A™ = Zb (6.7.11)
Zb% AT AT +ZZ (b7 — by +b2)A“A”

=17 + b?)A”. (6.7.12)

Eliminating the sum common to (6.7.9) and (6.7.11) and the sum common
0 (6.7.10) and (6.7.12),

Dy(log A) = Zzﬁ ZZ (b7 — bybs + b2)A™, (6.7.13)
(A1) Z Z — bybs + b2) A AT — 1(b7 +b7) A (6.7.14)

The derivatives v, and v; can be evaluated in a convenient form with the
aid of two functions ;s and ¢;; which are defined as follows:

=> bLA™, (6.7.15)
Gij = bltis,

= Z > biblATe

= ¢; 8 (6.7.16)

They are definitions of ¥;, and ¢;;. O

Lemma. The function ¢;; satisfies the three nonlinear recurrence rela-
tions:

a. giodj1 — djodin = 2(diraj — diji2),
b. Dy(¢ij) = 5(dit1,j + bij+1) — diodjo,
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c. Dy(¢ij) = diodj2 — dindj1 + dindjo — 3(ditsj + dijrs)-
PROOF. Put f. = —g, = b? in identity (D).

(b2 _ b2 Al — ZZ re b2 6T + 2(b )] A#S ATI
:0+QZZ (b, — by)A™ A"
- 22A“Zb A 2SS "
(1/101'%] oY1)
It follows that if
Fyj = 2hoihrj — b7 AV,
then
Fj; = Fi;.
Furthermore, if G;; is any function with the property
Gji = —Gij,
then

> > GiF;=0. (6.7.17)
toJ

The proof is trivial and is obtained by interchanging the dummy suffixes.
The proof of (a) can now be obtained by expanding the quadruple series

S= > (bb) — bjbi)b APIA™
p,q,7,s8

in two different ways and equating the results.

8= bLAPTY “bIb AT = B APTS bl AT
p,q T8 »,q T,8

= io¢j1 — Pjodit,
which is identical to the left side of (a). Also, referring to (6.7.17) with

G,j—=p,r,
S= (bibl —bIbl) > APTY b A"
q S

p,r

= Z(b;bi - b;{)bi)qﬁo;nwlr

p,r

_! Z ) (Fpr + b2APT)
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1 . . . )
= 045 (0526 — b2 A7
T

1
= §(¢i+2,j — 0ij+2)s

which is identical with the right side of (a). This completes the proof of

(a).
Referring to (6.7.8) with r,s — p,q and 4,j — 7, s,
D, (¢35) ZZb’ biD,(A™)
= ZZbeﬂ (by + by) A —ZZA“IAPG

fZZb (b +bs)A™ = > BLATIY "Bl AP?

a.r ps
= §(¢>i+1,j + ¢ij+1) — diodjo,
which proves (b). Part (c) is proved in a similar manner. O
Particular cases of (a)—(c) are
bood11 — ¢io = 3(P21 — Po3), (6.7.18)
Dy (¢00) = 10 — Po-
Di(¢00) = 2¢00¢20 — P39 — P30- (6.7.19)

The preparations for finding the derivatives of v are now complete. The
formula for v given by (6.7.7) can be written

v = ¢gg — constant.

Differentiating with the aid of parts (b) and (c¢) of the lemma,
Vg = ¢10 - ¢(2JO>
Vgz = (P20 + b1 — 60010 + 4d(),
Vpzz = (030 + 321 — 8dood20 — 143,
+48¢30b10 — Gbond11 — 24¢g,)
v = 2000620 — $lo — Ps0- (6.7.20)
Hence, referring to (6.7.18),
401 + 607 + vozs) = 3[(d21 — d30) — 2(Pood11 — 61o)]
= O’

which completes the verification of the first form of solution of the KdV
equation by means of recurrence relations.
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6.7.3 The First Form of Solution, Second Proof

Second Proof of Theorem 6.13. It can be seen from the definition of
A that the variables z and ¢ occur only in the exponential functions e,
1 < r < n. It is therefore possible to express the derivatives A;, v, A;,
and v; in terms of partial derivatives of A and v with respect to the e,.
The basic formulas are as follows.
If

Yy = 9(61,627 e >€n)7

then

dy Ode,

Yo = XT: e, Ox
_ %

— Er:brera?r, (6.7.21)

Yz

Yz = — Z bsesai

S

_Zb est 3es< aer)
0%y
_bees{rs 8er869}

0%y
_ Zb - + Zb boeres oo (6.7.22)

Further derivatives of this nature are not required. The double-sum rela-
tions (A)—(D) in Section 3.4 are applied again but this time f’ is interpreted
as a partial derivative with respect to an e,.

The basic partial derivatives are as follows:

de,

— . .2
9. Ors, (6.7.23)
dars 0
e, Ors oem
= 6y0rm. (6.7.24)

Hence, applying (A) and (B),
1o} 0ars s
@(log A) = TES —A

= Z (srsérm A"

= Amm (6.7.25)
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%(Aiﬁ) = —A"MmA™I, (6.7.26)
Let

Uy =Y A (6.7.27)
Then, (6.7.26) can be written
> bre  ATAY = L(b; + b;) AT — ;. (6.7.28)

From (6.7.27) and (6.7.26),
% — _AP9 ZASQ

Oeg
= —1h AP, (6.7.29)
Let
Op =12 (6.7.30)
Then,
a0, -
8—% = =299, A (6.7.31)
04,
= — . . 2
Je,’ (6.7.32)
920, _ —2i(z/1 o AT
OepOeq o Oep arr

= 2(thphg AP AT + 1hqihp AT AP + aprafp ATIAPY),

which is invariant under a permutation of p, ¢, and r. Hence, if G4, is any
function with the same property,

2
pRE . D Gpgribpthg APT AT (6.7.33)

par g
e, 0e
p.q,r Lot | p,q,T

The above relations facilitate the evaluation of the derivatives of v which,
from (6.7.7) and (6.7.27) can be written

V= Z(wm - bm)'

m

Referring to (6.7.29),
ov
7 AmT
e, T

= —q?
= —0,. (6.7.34)
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Hence,
Ov
— ZT: breraier
= Z b7-€7-67-. (67.35)
Similarly,
ve=—Y bleb. (6.7.36)

From (6.7.35) and (6.7.23),

8111; 80r

a. - br 0, rer r e

deq ; ( wrlr e aeq)

= b0, + E bTerfaer . (6.7.37)
- Oeg
Referring to (6.7.32),
0?v, 00, 90, 9%,
=b,— by | Opr
Dendey  1de, +2 (p e, 7€ ae,,aeq)
— (b, § by —— a aeq (6.7.38)

To obtain a formula for v,,,, put y = v, in (6.7.22), apply (6.7.37) with
g — p and r — ¢, and then apply (6.7.38):

2

Ovg 0%vy
Vgzax = pr pa +Zb b epeqa 6eq

p,q
00
= bley |bplbp+ Y bqeqaeq]
p q p

+Zb bgepeq

P.q R Zbrera 86(1]

—Q+R+S+T (6.7.39)
where, from (6.7.36), (6.7.32), and (6.7.31),

Q= Z bie,0,
p
= 7’Ut

0
R = Zbe epqu P

p,q
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=2 b2bgepeqiypthg AT,
p,q
S =2R. (6.7.40)
Referring to (6.7.33), (6.7.28), and (6.7.35),
920,
T =" bybgbr G e
p,q,r

=6> byb epeq¢p¢q2b e, AP AT

p,q
=6 Z bpbgepeqpiq [E(bp + bg) AP — d’zﬂ/’q]

b,q
=6 bbgepeqbpthg AP — 6> byeyty Y beqty

p.q p q
= —(3R+ 6v2).

Hence,
Vgzz = —Vt + R + 2R — (3R -+ 61)2)
—(vr + 61}5),

which completes the verification of the first form of solution of the KdV
equation by means of partial derivatives with respect to the exponential
functions.

6.7.4 The Wronskian Solution

Theorem 6.14. The determinant A in Theorem 6.7.1 can be expressed
in the form

A= kn(el €g - en)l/QW

where k, is independent of x and t, and W is the Wronskian defined as
follows:

W = |Di ()], (6.7.41)
where
¢i = A-e”z + ey 2, (6.7.42)
e; = exp(—bjx + b3t +¢;), (6.7.43)
1 n
A= ];[ (by + b;)

pi =[] 0y —b3) (6.7.44)
o
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PROOF.
Di(¢3) = (3b:)” e P [(=1) Nies + i)

so that every element in row ¢ of W contains the factor e,
all these factors from the determinant,

(e1 ea... en)l/QW

Arer + lbl(*>\1€1 + 1) (%51)2()\161 + 1)
Xoeg + 2 5ba(—Aez + p2) (?52)2()\262 + p2)
Ases +pz  gbs(—Ases +pu3) (3

1/

2 .
. Removing

(6.7.45)

Now remove the fractions from the elements of the determinant by mul-
tiplying column j by 2/~!, 1 < j < n, and compensate for the change in
the value of the determinant by multiplying the left side by

9l+2+3-+(n-1) _ gn(n—1)/2

The result is
27D/ (g ey e,)V2W = Javujeq + Bijlns (6.7.46)
where
Q;j = (=b:)7 71\,
By = b (6.7.47)

The determinants |aj|n, |Bij|n are both Vandermondians. Denote them by
U,, and V,,, respectively, and use the notation of Section 4.1.2:

Up = |aijln = (A1 A2~ ")\n)|(_bi)j_1 "
= (1 Ao M) Kol (6.7.48)

The determinant on the right-hand side of (6.7.46) is identical in form
with the determinant |a¢jx¢ + bij|n which appears in Section 3.5.3. Hence,
applying the theorem given there with appropriate changes in the symbols,

laije; + Bijln = Un|Eij|n,

)

where

E;; = 6.e; ) 6.7.49
j jei + U, ( )

and where Kl(Jn) is the hybrid determinant obtained by replacing row ¢
of U, by row j of V,,. Removing common factors from the rows of the
determinant,
Ki(;t) = (M1 Ao ")\n)%[H(”)
i

j ]yi:_xi:bi.
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Hence, from (6.7.48),

U, N | Xn
[T (b +05)
T
i n
(bi + ;) T1 (bp — ;)
p=1
pFi
215
=g 6.7.50
(bi +bj) Aipi ( )
Hence,
O\
Eijln = |0ije; + ——22—| . 6.7.51
1E| st (bi +bj)Nigsi |, ( )

Multiply row ¢ of this determinant by A\;u;, 1 <14 < n, and divide column
j by Ajuj, 1 <5 < n. These operations do not affect the diagonal elements
or the value of the determinant but now

Eijln = |6s5ei + ——
‘ 1J|’ﬂ 61Jel+ b1+b] N
= A (6.7.52)
It follows from (6.7.46) and (6.7.49) that
2 =1/2(ey ey e,) 2W = UL A, (6.7.53)

which completes the proof of the theorem since U, is independent of z and
t. O

It follows that

1
log A = constant + 3 Z(—bix + b2t) 4 log W. (6.7.54)
i

Hence,
u = 2D2(log A) = 2D2(log W) (6.7.55)

so that solutions containing A and W have equally valid claims to be
determinantal solutions of the KdV equation.

6.7.5 Direct Verification of the Wronskian Solution
The substitution

u = 2D?(logw)
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into the KdV equation yields

F
U + 6ully + Uppe = 2D (wQ) , (6.7.56)

where
F = wwyy — wewg + 3w, — 4w Wape + Waprs.
Hence, the KdV equation will be satisfied if
F=0. (6.7.57)

Theorem 6.15. The KdV equation in the form (6.7.56) and (6.7.57) is
satisfied by the Wronskian w defined as follows:

w = DI (i),
where

¥ = exp (3b72) ¢,
b = piey* + qie;
e; = exp(—bjz + bt).

z s independent of x and t but is otherwise arbitrary. b;, p;, and q; are
constants.

When 2z =0, p; = \;, and ¢; = u;, then ¢¥; = ¢; and w = W so that this
theorem differs little from Theorem 6.14 but the proof of Theorem 6.15
which follows is direct and independent of the proofs of Theorems 6.13 and
6.14. It uses the column vector notation and applies the Jacobi identity.

PRrROOF. Since

(Di +4D3)¢; =0,
it follows that

(D¢ +4D3)e; = 0. (6.7.58)
Also

(D, — D2)y; = 0. (6.7.59)
Since each row of w contains the factor exp (1b7z),

w = eBW,

where

W =|Di (¢4)],,

and is independent of z and

B:ibe.



6.7 The Korteweg—de Vries Equation 275

2 _
Hence, ww,, —wi =0,

F = wwg; — wew; + 3w, — 4WpWepy + Wppes + 3(ww,, — w?)
= w[(wt + 4wxmz)x - S(wxmc:c - wzz)]
—we (W + dWege) + 3(w2, — w?). (6.7.60)
The evaluation of the derivatives of a Wronskian is facilitated by expressing

it in column vector notation.
Let

(6.7.61)

n’

where
, , ‘ T
C; = [DJ(¢1) Di(tha)--- Di(wn)] -
The significance of the row of dots above the (n — 3) columns Cq to C,,_4
will emerge shortly. It follows from (6.7.58) and (6.7.59) that
Dm(CJ) = Cj+1a
D.(Cj) = D3(C;) = Cja,
C;) = —4D3(C;) = —4C; 3. (6.7.62)
6

Hence, differentiating
identical columns,

.7.61) and discarding determinants with two

+|Co C1++-Cnos Cp_3 Cnoz Cppa

"’L’
etc. The significance of the row of dots above columns Cy to C,_4 is
beginning to emerge. These columns are common to all the determinants
which arise in all the derivatives which appear in the second line of (6.7.60).
They can therefore be omitted without causing confusion.

Let

Vogr =|Co C1+--Cps C, C, Gy . (6.7.63)
Then, Vpqr = 0if p, ¢, and r are not distinct and Vgp, = —V)qr, etc. In this
notation,
w=V,_3n-2n-1,
Wy = Vin_3.n—2.n,
Wez = V-3 n—1,n + Vo—3n—2n+1,

Wrzx = Vn—2,n—1,n + 2Vn73,n71,n+1 + Vn73,n72,n+27
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Wargzz = 2Vn—3nn+1 + 3Va—zn—1n+2 + 3Va—2 n—1.n+1 + Va—zn—2.n+3,
W, = —Vu_3n—1,n + Va—zn—2n+1,
Wor = 2V 3 nnt1 — Va—szn—1,n+2 — Va—2,n—1,n+1,
wy = —4Vh—2n—1n — Va—sn—1.n+1 + Va—3.n-2.n+2),
Wyt = 4(Vn_3,n7n+1 — Vn_37n_27n+3). (6.7.64)
Each of the sections in the second line of (6.7.60) simplifies as follows:
Wy + 4Waae = 12V 3 -1 41,
(Wi + 4Weaz)e = 12(Vi2n-1,n41 + Vst + Vs n—1n42),
Wazgs — Wz = 4(Vi—2n—1,n+1 + V—3.n—1,n+2)s
(W + 4Waps)e — 3(Wagze — Waz) = 12V, 3 5 ny1

wgzcz - wg = 4Vn73,n71,nvn73,n72,n+1~ (6765)
Hence,
1
EF Vn 3,n—2,n— lvn dnn+1+Vn 3,n— 2nVn 3,n—1,n+1
+Vn73,n717nVn73,n72,n+1- (6766)
Let
T
Cn+1 = [Oél a9 .. .Oén] 5
T
Cn+2 = [ﬁl 62 .. 5n] s
where
ar = DI ()
ﬂr = D;l+1(7/]r)
Then

Vn 3.n—2,n— I—A
n
Ve 3,n—2n — E %Agn)7

Vn73,n71,n+1 g ﬂs rn 1
E n
Vn—3,n—2,n+1 = BsAgn 3
s
E : (n)
Vn—?),n—l,n = - arArn 1

Viosmmi = D 3 anB Al (6.7.67)
T S
Hence, applying the Jacobi identity,

—F A, Z Z B AL, o+ Y AW ST A
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=D Al YA

A(,n) Aﬁ,’ﬁ)
=D b A 1~ )
T s / As,n—l Asn
= O,
which completes the proof of the theorem. O

Exercise. Prove that
logw =k + log W,

where k is independent of z and, hence, that w and W yield the same
solution of the KdV equation.

6.8 The Kadomtsev—Petviashvili Equation

6.8.1 The Non-Wronskian Solution
The KP equation is
(ur + 6uly + Upgs )z + Suyy = 0. (6.8.1)
The substitution v = 2v, transforms it into
(V¢ + 602 + Vg ) + 30y, = 0. (6.8.2)

Theorem 6.16. The KP equation in the form (6.8.2) is satisfied by the
function

v = D,(log A),
where

A= |ars|na

Qs = Ops€ ,
TS T8 T+br+cg

er = exp[—(by +¢)z + (b2 — Py + 403 + )t + ¢,
= exp[-A\@ + Apptey + AN (b2 — bpcr + )+ €],
Ar =br +cp,
por = by — ¢y
The €, are arbitrary constants and the b, and cs are constants such that

b +cs 0,1 <r s<n, but are otherwise arbitrary.

PROOF. The proof consists of a sequence of relations similar to those
which appear in Section 6.7 on the KdV equation. Those identities which
arise from the double-sum relations (A)—(D) in Section 3.4 are as follows:
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Applying (A),

v=D,(logA) = Z Arer AT (6.8.3)
y(log A) = Z Arpirer AT (6.8.4)
Dy(log A) = 4 Z A (02 = byey 4 2)e, AT (6.8.5)

Applying (B),

2 (A7) Z)\ er AT AT (6.8.6)
D, (A7) = ZAHM ATATT (6.8.7)
Dy(AY) = 4Z>\ (b2 = bpey + e, AT AT (6.8.8)

Applying (C) with

i fr:bra 9r = Cr;

0 _ 12 _ 2.
11. fr_brv gr = —Cp;
s — 13 — 3.
111. fT - br7 g7" - Crv
in turn,

Z Arer AT+ Z AT = Z Ar, (6.8.9)
Z)\rurerA + Z (by —cs)A™ = ZA’““’"’ (6.8.10)
D OA(BE = brey + cBer AT Y (B2 = byes + 1) A

=3 A(b2 = bre, + cF). (6.8.11)

Applying (D) with (i)—(iii) in turn,

Z)\ e, ATATT 4N T AR AT = (b 4 ¢;) AV, (6.8.12)

> Aprer ATA 4 Z(b, - c:)A’SA” = (b} — c3)A"Y, (6.8.13)
Z/\ (b2 = brer + €2)e AT AT 4 Z (b7 = bycs + ¢2) A AT

= (b3 +chAY. (6.8.14)

Eliminating the sum common to (6.8.3) and (6.8.9), the sum common to
(6.8.4) and (6.8.10) and the sum common to (6.8.5) and (6.8.11), we find
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new formulae for the derivatives of log A:

v = D,(log A) = ZA” Z Ar, (6.8.15)
Dy(log A) = = (b — c) A™ + Z Arflr (6.8.16)

T8

D;(log A) = —42 (b2 = bycs + c2) A
+4 Z Ar (b2 = bre, 4 ¢2). (6.8.17)

Equations (6.8.16) and (6.8.17) are not applied below but have been
included for their interest.

Eliminating the sum common to (6.8.6) and (6.8.12), the sum common
0 (6.8.7) and (6.8.13), and the sum common to (6.8.8) and (6.8.14), we
find new formulas for the derivatives of A¥:

Do (A7) = (b + ¢;) AV =Y~ A AT,

Dy(A7) = —(b7 = ) AT +3 (b, — c,) AP A",
Dy(A7) = —4(b} + ) AT + 43 (b2 = breg + ¢}) AP AT, (6.8.18)

r,s

Define functions h;;, H;;

ijy L1ig, and Hij as follows:

hij = iibich”,

r=1s=1
Hij = hi; + hj; = Hy;,
Fi]‘ = hij — h’_]l = —ﬁji. (6819)

The derivatives of these functions are found by applying (6.8.18):

hij) = Zb:;cg‘ (by + o) A™ =Y ATIAPS

p.q
—szca bt e A7 = S HA S

= hi+1,j + hij+1 — h¢0h037
which is a nonlinear differential recurrence relation. Similarly,
Dy (hij) = hioh1j — hithoj — hiy2j + hi jia,
Dy(hij) = 4(hioh2j — hithij + hizhoj — hiys j — hij+3),
D, (H;;) = Hiy1,j + H; j11 — hiohoj — hoihjo,
(F i) = (hioh1; + hoihj1) — (hithoj + hiihjo)
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—Hit2;+ Hi jio. (6.8.20)
From (6.8.15),
v = hgg — constant.

The derivatives of v can now be found in terms of the h;; and H;; with the
aid of (6.8.20):
vy = Hioh,
Vgw = Hao + Hi1 — 3hooH1o + 2h{y,
Vpww = 12030 H1o — 3H?7y — 4hooHao — 3hoo Hyy + 3Hz
+Hso — 2hiohor — 6k,
vy = hooHio — Hap
Vyy = 2(h1ohao + horhoz2) — (hioho2 + hoihao)
—hoo(hy = hiohor + h3y) + 2hgoh1a
—2hooHa1 + Haz + hooHso — Hyo,

vy = 4(hooH20 — h1oho1 — Hso).- (6.8.21)

Hence,
Vg + 602 + Vygw = 3(h3g + 3y — hooHi1 + Hoy — Hap). (6.8.22)
The theorem appears after differentiating once again with respect tox. O

6.8.2 The Wronskian Solution
The substitution
u = 2D?(logw)

into the KP equation yields

(ug + 6utty + Upyy )z + 3y, = 2D? ( ¢ ) , (6.8.23)

w?
where
G = Wwes — Wewy + 3w, — 40 Wepr + WWepre + 3(wwyy — wg)
Hence, the KP equation will be satisfied if
G =0. (6.8.24)

The function G is identical in form with the function F' in the first line
of (6.7.60) in the section on the KdV equation, but the symbol y in this
section and the symbol z in the KdV section have different origins. In this
section, y is one of the three independent variables x, y, and ¢t in the KP
equation whereas x and t are the only independent variables in the KdV
section and z is introduced to facilitate the analysis.
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Theorem. The KP equation in the form (6.8.2) is satisfied by the
Wronskian w defined as follows:

w =D ()],
where

1/2 —1/2
(bi:piei/ + qie; /a

e; = exp(—bjz + bt)
and b;, p;, and q; are arbitrary functions of i.

The proof is obtained by replacing z by ¥y in the proof of the first line of
(6.7.60) with F' = 0 in the KdV section. The reverse procedure is invalid. If
the KP equation is solved first, it is not possible to solve the KdV equation
by putting y = 0.

6.9 The Benjamin—Ono Equation

6.9.1 Introduction

The notation w? = —1 is used in this section, as ¢ and j are indispensable

as row and column parameters.
Theorem. The Benjamin—Ono equation in the form
A AL — %[A*(Am +wA;) + A(Ags + wAt)*] =0, (6.9.1)

where A* is the complex conjugate of A, is satisfied for all values of n by
the determinant

A= |aij|n7
where
26i N N
oy ={ 5, I (6.9.2)
14+wb;,, j=1
Hi = G — C?t — )\1’, (693)

and where the c; are distinct but otherwise arbitrary constants and the \;
are arbitrary constants.

The proof which follows is a modified version of the one given by
Matsuno. It begins with the definitions of three determinants B, P, and Q.
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6.9.2 Three Determinants

The determinant A and its cofactors are closely related to the Matsuno

determinant E and its cofactor (Section 5.4)

A=K,E,
2CT‘A’I"S = KnE'r‘sv
4crcsArs7rs = KnErs,TS7

where

K, =2" ﬁ Cr.
r=1

The proofs are elementary. It has been proved that

r=1 r=1 s=1
n n n n
DD Brors=-23 ) ek
r=1 s=1 r=1 s—1
It follows that
n n n
Cr Ar'r‘ - Z C 'Ars
r=1 r=1 s=1

n n n

n
Z ZCTCSA’I‘SJ‘S = - Z TCTCSATS

r=1 s=1 r=1 s=1
Define the determinant B as follows:
B = [bij|n,
where
a;; —1
bij =1 ot A
2

wb;, j=1i (w?=-1).

It may be verified that, for all values of 7 and j,

bji = —=bij,  JF#1,
;ia
CL;} —-1= —bﬂ

bij—lz—a

When j # 4, aj; = aij, ete.

(6.9.4)

(6.9.5)

(6.9.6)

(6.9.7)

(6.9.8)

Notes on bordered determinants are given in Section 3.7. Let P denote
the determinant of order (n + 2) obtained by bordering A by two rows and



two columns as follows:
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p_ [aij]n
—C1 — Cg — Cp,
-1 -1 -1

C1 1
Co 1
¢, 1
0 0
0 0

n+2

283

(6.9.9)

and let @ denote the determinant of order (n + 2) obtained by bordering
B in a similar manner. Four of the cofactors of P are

Pn+1,n+1 -

-1

Pn+1,n+2 = -

-1

Pn+2,n+1

—C1

Pn+2,n+2

—cy

-1

[@ij]n

-1

CT‘ A’I”S b

[ij]n

— Cy

[aij]n

—

1
1

C1
C2

C1
C2

—cn

n+1

, (6.9.10)
n+1
n+1
(6.9.11)
1
1
, (6.9.12)
1
0 n+1
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= ZZCTCSATS. (6.9.13)

The determinants A, B, P, and @, their cofactors, and their complex
conjugates are related as follows:

B = Qni1ni2miint2, (6.9.14)

A= B+ Qntin+1; (6.9.15)

A" = (=1)"(B = Qn+1,n+1); (6.9.16)
Potint2 = Qnt1nt2, (6.9.17)
12 = (=)' Qni2,nt1s (6.9.18)
Puyonte = Quianiz +Q, (6.9.19)
Priopio = (=" (Quizniz — Q). (6.9.20)

The proof of (6.9.14) is obvious. Equation (6.9.15) can be proved as follows:

1
1
B+ Qnt1nt1 = [bij]n o . (6.9.21)
1
1 -1 - —1 1

n+1

Note the element 1 in the bottom right-hand corner. The row operations

R;=R;—R,y1, 1<i<n, (6.9.22)
yield
0
0
B+ Qni1ny1 = [bij + 1]n e : (6.9.23)
0
1 =1 - =1 1,

Equation (6.9.15) follows by applying (6.9.7) and expanding the determi-
nant by the single nonzero element in the last column. Equation (6.9.16) can
be proved in a similar manner. Express Qp+1.n+1 — B as a bordered deter-
minant similar to (6.9.21) but with the element 1 in the bottom right-hand
corner replaced by —1. The row operations

R;=R;+R,, 1<i<n, (6.9.24)

leave a single nonzero element in the last column. The result appears after
applying the second line of (6.9.8).
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To prove (6.9.17), perform the row operations (6.9.24) on P41 n+2
and apply (6.9.7). To prove (6.9.18), perform the same row operations on
P} 11 42, apply the third equation in (6.9.8), and transpose the result.

n

To prove (6.9.19), note that

C1 1
Co 1
[bij]n
Q@+ Qni2nt2 = I (6.9.25)
¢, 1
—¢p —c¢y -+ —c¢p O 0
-1 -1 --- =1 0 1140

The row operations
R,/L':Ri_RnJrQ, 1§Z§TL,

leave a single nonzero element in the last column. The result appears after
applying the second equation in (6.9.7).

To prove (6.9.20), note that Q@ — Q42,42 can be expressed as a deter-
minant similar to (6.9.25) but with the element 1 in the bottom right-hand
corner replaced by —1. The row operations

R;:Ri+Rn+27 1§Z§na

leave a single nonzero element in the last column. The result appears after
applying the second equation of (6.9.8) and transposing the result.

6.9.3 Proof of the Main Theorem

Denote the left-hand side of (6.9.1) by F. Then, it is required to prove that
F = 0. Applying (6.9.3), (6.9.5), (6.9.11), and (6.9.17),

A, =

(6.9.26)

I I

S
M aﬁﬁ

£

= an+1,n+2
= an_l’_l’nJ'_Q. (6927)

Taking the complex conjugate of (6.9.27) and referring to (6.9.18),

* *
A:v - _wpn+1,n+2

= (_1)ann+2,n+1.
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Hence, the first term of F' is given by

A-LA:, = (_1)n+1Qn+1,’n+2Qn+2,n+1- (6928)
Differentiating (6.9.26) and referring to (6.9.6),

OA,,
App =w XT: Cr o

= - Z Z CrcsArs,rs
= CrCsArs, (6.9.29)
T
s

04 09,
o — 09, Ot

=-w> A (6.9.30)

Ay

Hence, applying (6.9.13) and (6.9.19),

Ape + wAy = Z Z Jfc?"CsArs + Z CzArT
= Z Z CrCsArs

= I'n4+2,n+2
= Qn+2,n+2 + Q (6931)
Hence, the second term of F' is given by
A" (Age + wAy) = (=1)"(B — Qnt1,n+1)(Qni2,nt2 + Q). (6.9.32)

Taking the complex conjugate of (6.9.31) and applying (6.9.20) and
(6.9.15),

(A:cac + WAt)* = P7t+2,n+2
= (_1)n+1(Qn+2,n+2 - Q) (6933)
Hence, the third term of F' is given by
A(Aze +wA)* = (-1)"" (B + Qui1nt1) Quizniz — Q). (6.9.34)
Referring to (6.9.14),
%(—1)” [A*(Am +wAy) + A(Age + cuAt)*]
= BQ - Qn+1,n+1Qn+2,n+2
= QQn+1,n+2;n+1,n+2 - Qn+1,n+1Qn+2,n+2'
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Hence, referring to (6.9.28) and applying the Jacobi identity,

(—1)”F _ Qn+1,n+1 Qn+1,n+2
Qn+2,n+1 Qn+2,n+2
= 0’

- QQn+1,n+2;n+1,n+2

which completes the proof of the theorem.

6.10 The Einstein and Ernst Equations

6.10.1 Introduction

This section is devoted to the solution of the scalar Einstein equations,
namely

¢ (¢pp + %cép + ¢Zz) — g2 — ¢F + P2+ Y2 =0, (6.10.1)

b (wpp Ly, wzz) a6y + ) =0, (6102)

but before the theorems can be stated and proved, it is necessary to define
a function u,., three determinants A, B, and E, and to prove some lemmas.
The notation w? = —1 is used again as 7 and j are indispensable as row
and column parameters, respectively.

6.10.2 Preparatory Lemmas

Let the function u,(p,z) be defined as any real solution of the coupled
equations

atgp“ + a;; = —m;“, r=0,1,2,..., (6.10.3)
Our—1  Oup  TUpq
op 9z p

which are solved in Appendix A.11.
Define three determinants A,,, B,,, and FE,, as follows.

r=1,2,3..., (6.10.4)

An - |ar5 ‘n
where

ars = Wy, g, (w? = -1). (6.10.5)

Bn = ‘st|n7

where

b — J Ur—s r>s
rSs (_1>s—ru877‘, r S s
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brs =W Ta,,. (6.10.6)
Ep = lersln = ()" AU = (1) AT (6.10.7)
In some detail,
Ug wup —Uz —wWus
wu Uy WU —Us2
A, =| —uy wui ug wuy (w?=—-1), (6.10.8)
—Wus —UuUz2 WUl (')
.............................. n
Up —Ur U2 —U3
U Uo —Uu1 U2 te
B, =|us w ug —uy | (6.10.9)
us U2 Ui uo
wu1 Ug wup  —uz -
—U2 wuq Uug wuq e
E,=|—-wus —uz wu; up --- (w? = —1), (6.10.10)
Uy —Wwuz —Uz WU
A = (—1)" B, (6.10.11)

A, is a symmetric Toeplitz determinant (Section 4.5.2) in which ¢, =
w"u,-. All the elements on and below the principal diagonal of B, are
positive. Those above the principal diagonal are alternately positive and
negative.

The notation is simplified by omitting the order n from a determinant

or cofactor where there is no risk of confusion. Thus A,, A", A#

ii Ay, ete.,

may appear as A, A;;, AY, etc. Where the order is not equal to n, the
appropriate order is shown explicitly.
A and E, and their simple and scaled cofactors are related by the
following identities:
A = Apn = An—1,

Ay = Apy = (=1)" " En_y,

Epy = (_1)n_1AIm»

Eng = (_1)n71A1q7

B = (—1)""'4,_ 4, (6.10.12)
A 2 Enl 2
E2EPIE™ = AZAP" AT, (6.10.14)

Lemma 6.17.
A= DB.
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PrOOF. Multiply the rth row of A by w™", 1 < r < n and the sth column
by w®, 1 < s < n. The effect of these operations is to multiply A by the
factor 1 and to multiply the element a,s by w*~". Hence, by (6.10.6), A is
transformed into B and the lemma is proved. a

Unlike A, which is real, the cofactors of A are not all real. An example
is given in the following lemma.

Lemma 6.18.

Proor.
A = (=1)""Heps|n—1,
where
€rs Ar41,s
Wl SH‘U\T -
= Qp,s—1
and
Bin = (=1)"Brs]p-1,
where
Brs = bry1s
= by s—1,
that is,

s—r—1
ﬁrs =w Ers-.

Multiply the rth row of AEZ) by w ™! 1 <r <n—1 and the sth column

by w?®, 1 < s <n — 1. The effect of these operations is to multiply Agz) by
the factor

— (2434 +n)+(1424+3+4n—1) _ 1-n

w w

and to multiply the element e,; by w* ""!. The lemma follows. O

Both A and B are persymmetric (Hankel) about their secondary diag-
onals. However, A is also symmetric about its principal diagonal, whereas
B is neither symmetric nor skew-symmetric about its principal diagonal.
In the analysis which follows, advantage has been taken of the fact that A
with its complex elements possesses a higher degree of symmetry than B
with its real elements. The expected complicated analysis has been avoided
by replacing B and its cofactors by A and its cofactors.
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Lemma 6.19.
Oepq dapg  (q—p
a. ap +w 9 p €pgs
da de p—q+1
b. Pq P _ 2 _ _q).
ap + w az ( p ) Cbpq (w )

ProOOF. If p > g — 1, then, applying (6.10.3) with r — p — ¢,

0 p—q 0 p—q -
(ap " P) €pg = (‘90 " P) (WP~ g 1)

= 0 e O q+1upfq)

0z
Oapq
0z
If p < ¢ — 1, then, applying (6.10.4) with r» — g — p,

d pq> (3 qp) —po1
—+ epg=|75—— ) (WP ug_p_
(8;} 0 Pq 8p 0 ( qpl)

0
8Z(Wq . 1“!1*1))
_ Oapq
0z’
which proves (a). To prove (b) with p > ¢ — 1, apply (6.10.4) with r —
p—q+ 1. When p < ¢ — 1, apply (6.10.3) with r - g —p — 1. O
Lemma 6.20.
nl nl 2 nl
a EQ@E wAzaA :( 1)E*E ,
ap 0z P
Anl Enl -2 A2Anl
b. A2(9 —|—uJE‘2a = (n—2) (w? = —1)
ap 0z p
Proor.

A = |apg|n, Zaqu P =0grs

FE = |€pq‘na Z@pquT = 5(1
p=1

Applying the double-sum identity (B) (Section 3.4) and (6.10.12),

PRS-
q

T
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Op

Hence, referring to Lemma 6.19,

35711 o (g) Anl ZZ <aepq 8apq) FPa pna
I
== Z Z(p — q)epg EPTE™

P p q

291

= % Z:pEp1 Z epg " — Z qE™ Z epqu]
p q q p

L[S 5 S gy
p q

— %(nEnl _ Enl)’

which is equivalent to (a).

aAnl Aln

8p Z Z aapq ApnAlq
Enl — Z Z aepq EplEnq
< > ZZ 861"1 ApnAlq'

Hence,

aAnl N E 2 aEnl
“\a
— (aaiﬂq aepl]) ApnAlq
= 7221') q+1ap Ap’ﬂAlq
p q
D gAY ap AT =Y (p+ DAY ap, Al
q p p q

D a4 0 = 3 (p+ Aoy
q

p

bl—\

SR

b\i—\ =

(nAln 2A1n) (Aln _ Anl)’
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which is equivalent to (b). This completes the proof of Lemma 6.20. a

Exercise. Prove that

( 0 pql) A oA 0 (Aé’iﬁ?f> | oAp

Yoo o A4, 02 "o\ A, 9z

n n+1
waAﬁq Agt-:rll; < 9 _ TL) APd _ Alq < 0 _ 1) Al()-i:;,l)

0z A, ap p)m " \dp p A,
_ (8 _4- 1) APa—1 _ (p+ 1) Aptla
dp P " P "
(w? = —-1).

Note that some cofactors are scaled but others are unscaled. Hence, prove
that

0 n—-2\E,1 FE,0 (A, A,_10 (E,
<wap P > Ap Anﬁz(An) An 52<An)’
o () (5 5)
0z \ A, A, \9p p) A,

An_1<8 1)En
+ — =)=,

6.10.3 The Intermediate Solutions

The solutions given in this section are not physically significant and are
called intermediate solutions. However, they are used as a starting point in
Section 6.10.5 to obtain physically significant solutions.

Theorem. FEquations (6.10.1) and (6.10.2) are satisfied by the function
pairs Pp(én,¥n) and P (&L, 1)), where

n72A n—2
a. ¢, = p n-t _ P

An72 B A7111—17
b w B wp”*2En_1 B (71)nwpn72 B (71)n71wpn72A1n
Con Ao Er P An_s ’
All
c. ¢, = P7
(_1)nwA1n
p
The first two formulas are equivalent to the pair Ppi1(dnt1, Yni1), where
n—1
€. Pni1 = AL

(_1)n+1wpn71

f‘ ¢n+1 = Enl
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PrOOF. The proof is by induction and applies the Backlund transforma-
tion theorems which appear in Appendix A.12 where it is proved that if
P(,1) is a solution and

¢

¢_¢2+/¢27

w’f—L (6.10.15)
PPy o

then P’(¢’,4') is also a solution. Transformation [ states that if P(¢,1))
is a solution and

r_ P
¢_¢a
W _wp Oy
op  ¢% 0z’
ot _wp Y o
9 =g, @=D (6.10.16)

then P’(¢’,4") is also a solution. The theorem can therefore be proved by
showing that the application of transformation v to P, gives P/ and that
the application of Transformation 3 to P/ gives Pp,11.
Applying the Jacobi identity (Section 3.6) to the cofactors of the corner
elements of A,
A2 1 A2

in

— A A, . (6.10.17)
Hence, referring to (6.10.15),

o5 + Ui

n—2\ 2
(=) “a-e)

An72
n—2

2
p
(=) w2 -at)

2n—4
_ P A
= (6.10.18)
¢n _ An—l
RHUR A,
All

(An—l = All)

wn _ WEnfl
Tt A,
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Hence, the application of transformation ~ to P, gives P..
In order to prove that the application of transformation 3 to P, gives
P, 41, it is required to prove that

p
¢n+l = ¢7/a
which is obviously satisfied, and
8wn-i-l - _ wp 81#;;
Ip (¢.)?
8'@[JnJrl wp 31%
P = G E Bp (6.10.19)
that is,
2 (_1)n+1wpn71 . pn72 2 o (_ )n Aln
ap Enl =wp All 62 pn 2 ’
0 (_1)n+1wpn—1 B wAln
Oz [ Enl =wp A11

(6.10.20)

But when the derivatives of the quotients are expanded, these two relations
are found to be identical with the two identities in Lemma 6.10.4 which
have already been proved. Hence, the application of transformation § to
P! gives P11 and the theorem is proved. a

The solutions of (6.10.1) and (6.10.2) can now be expressed in terms of
the determinant B and its cofactors. Referring to Lemmas 6.17 and 6.18,

6o =B
B2
VY = —W (W? =—1), n>3, (6.10.21)
b= otk
Py, = (;ﬁ%, n>2. (6.10.22)

The first few pairs of solutions are

Pito) = (£.722),
P2(¢71/’):(u07— 1)7
Pz’(as,w):( B 2),

ug +uy ug + uy

Py(¢,9) = (p(u% - )  wpluous - u%)) : (6.10.23)

Uo Uo
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Exercise. The one-variable Hirota operators H, and H,, are defined in
Section 5.7 and the determinants A,, and E,,, each of which is a function of
p and z, are defined in (6.10.8) and (6.10.10). Apply Lemma 6.20 to prove
that

—1
z ) AnflEna
p

n—2

Hp(AnflaEn) - sz(AnvEn71> = (

Using the notation

K¥(f,9) = (Hop + L, + .. (£0),

where f = f(p,z) and g = g(p, z), prove also that

K*(E,, A,) = n(niz_Q)EnAn,
p
K2 2, Ay = - A,
P p?

Kz{ n(n=2)/2p n(n /24 }
K2 {p(n2—4n+2)/2An pr(n=2/2 4 }
p=o

K2{ (n%?-2)/2 A — pn(n 2) /ZA

(Sasa and Satsuma)

6.10.4 Preparatory Theorems
Define a Vandermondian (Section 4.1.2) V,(x) as follows:
‘/Qn(X) = ’xg_1‘2n

- V($1,$2,...71’2n), (61024)
and let the (unsigned) minors of V5, (c) be denoted by Mi(f")(c). Also, let

Ml(c) = M(Qn)(c) = V(017627 <oy Ci—15Ci4 1, - - 'aCQn)v

7,2n
Mo, (c) = My, () = Vap_1(c). (6.10.25)
z+ ¢y
Tj = ——",
! p
gj =%\ [1+a? (W =-1)

Tj
-5 6.10.26
P ( )
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where 7; is a function which appears in the Neugebauer solution and is
defined in (6.2.20).

w, = i w . (6.10.27)

Then,
—c .
x; —x; = —, independent of z,
gief =1+a. (6.10.28)

Now, let H. é;") (¢) denote the determinant of order 2n whose column vectors
are defined as follows:

C;m)(s): ej cigj gl 1 ¢ C?"'cinimil]zTn’
1<j<2n. (6.10.29)
Hence,
T
1 1 2t
cf™ (e) B L—:» L1 G (6.00.30)
J J J J 2n
9 _1 2 on—m—1_1T
:?[1 ¢ el Tl g gigy g T g,
j
But,
CEM(e) = [e; ¢je; Fejer ey Loy 2o T (6.1031)
5 = &5 Cj&j CjEj € S deer A

The elements in the last column vector are a cyclic permutation of the
elements in the previous column vector. Hence, applying Property (c(i))
in Section 2.3.1 on the cyclic permutation of columns (or rows, as in this
case),

-1

2n
m 1 — 2n—m
HY (2) = amer IIs) e

Hy (1/e) _ H VG

: = ~ (6.10.32)
H2(n) (1/6) HZ(TL) (5)
Theorem.
a. Wit + Witjlm = (_p2)—m(m—l)/2{‘/2n(c)}m—1H2(Zb) (e),
m 1
b. [wisjalm = (=p?) """V 2{Vap ()} HYY (a)

The determinants on the left are Hankelians.
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PROOF. Proof of (a). Denote the determinant on the left by W,,.

+5—2
Witj—2 T Witj = E ykmk =2

where
yr = (=) ep My (c). (6.10.33)

Hence, applying the lemma in Section 4.1.7 with N — 2n and n — m,

Zy xz-‘r] 2
2n
= Z L (ka ) ‘xk m’

k17k27---7km=

Wi,

where
=[] w.- (6.10.34)
r=1

Hence, applying Identity 4 in Appendix A.3,

2n ki1,ka,...km

Wm:% Z Yin Z (Hx§r1> V(levxjw"'vxjm)'
m \Tr=2

" k1,ka,. o km =1 J1:J250e057

(6.10.35)
Applying Theorem (b) in Section 4.1.9 on Vandermondian identities,
1 2n )
Wi = — > Yl Vi ok} (6.10.36)
K1,k km=1

Due to the presence of the squared Vandermondian factor, the conditions of
Identity 3 in Appendix A.3 with N — 2n are satisfied. Also, eliminating the
a’s using (6.10.26) and (6.10.28) and referring to Exercise 3 in Section 4.1.2,

{(V(Ikmxkzv cee 7l‘km)}2 = pim(mil){v(cklvckza AR Ck’m)}2' (61037)

Hence,

Wy, = p~mm=1) 3 Yo {V (Chys Chys - - cx,) }. (6.10.38)
1<k1<k2<...<km<2n

From (6.10.33) and (6.10.34),

Yoo = (=1)% Ep [] M, ()

r=1
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where

=1

Em €k

r?

ﬁ
I
—

M-

K (ky — 1). (6.10.39)

Il
_

:
Applying Theorem (c) in Section 4.1.8 on Vandermondian identities,

V(Ckm+1 ) Chimyny s+ 1 Chap ){Vén(c)}m_l

V(Ckuckm sy Ck"m,)

Y,, = (-1)XE,, (6.10.40)

Hence,

_ (=D)F{Van(e)pm !
W, = pm(mfl) Z
1<k1<ke<..<km<2n

-EmV(Ck1 3 Cloy vy Ck )V(Ck

m m+19 Ck cey Ck2"). (61041)

m+27 "

Using the Laplace formula (Section 3.3) to expand HQ(?)(E) by the first
m rows and the remaining (2n — m) rows and referring to the exercise at
the end of Section 4.1.8,

HéT) (e) = Z Nioemikr ko, ke A120misks koo ko s
1<k <ko< - <km<2n
(6.10.42)
where
N12---m;k:1,k2,m,km = Emv(ckl 3 Choy o vy Ckm)7
Avoemiky kgoders = (1) Moty o o
= (=1)V (Chypy1» Chimszs - -+ Chan )y (6.10.43)
where M is the unsigned minor associated with the cofactor A and R is
the sum of their parameters. Referring to (6.10.39),

R=Jmm+1)+> k
r=1

=K+ im(m—1). (6.10.44)
Hence,
HiD(e) = (-1 > EnV(Chy, Chas- - - i)
1<k1<ka< - <km<2n
’V(Ckm-u ) Ck2n)

(7p2)m(m71)/2 -
— {Vaa(e)pmt T

which proves part (a) of the theorem. Part (b) can be proved in a similar
manner. u

(6.10.45)
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6.10.5 Physically Significant Solutions

From the theorem in Section 6.10.2 on the intermediate solution,

qs _ p2n71A2n
2n+1 A2n—1 )
wp2n—1 42n+D)
Yons1 = % (W% = —1). (6.10.46)
2n—1

Hence the functions ¢ and {_ introduced in Section 6.2.8 can be expressed
as follows:

C+ = Pont1 + wioni1
n— 2n+1
- P2 1(A2n - Ag,2n+b

7 6.10.47
A2n71 ( )
(- = bans1 — wibanss
214, 4 AT
_ p ( 2n 1,2n+1) ) (61048)

Azn—1
It is shown in Section 4.5.2 on symmetric Toeplitz determinants that if
An = |t"L*J‘|n? then
A2n71 = 2Pn71Qna
A2n = PnQn + Pn—lQTH-la

Afgrj-:% = PnQn - n—lQn-{-la (61049)
where
P =t —tonl,
Qn = 5 [tji—j) +tivj-2|,- (6.10.50)
Hence,
_ pzn_lQn—i-l
G = 0,
2n71P
¢ = 7‘)13 " (6.10.51)
n—1
In the present problem, t, = w™u, (w? = —1), where u, is a solution of the

coupled equations (6.10.3) and (6.10.4). In order to obtain the Neugebauer
solutions, it is necessary first to choose the solution given by equations
(A.11.8) and (A.11.9) in Appendix A.11, namely

wp = () S Gfe@) 2l (6.10.52)

ej = (—1)7 71 M;(c)e?. (6.10.53)
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Denote this particular solution by U,.. Then,

tr == (*W)TUra
where
2n i
T i 11\51(0)#(%) (6.10.54)
j=1 J

and the symbol % denotes the complex conjugate. This function is of the
form (4.13.3), where

(=1)' "' M;(c)

J

(6.10.55)

a; =
J e

and N = 2n. These choices of a; and N modify the function k, defined in
(4.13.5). Denote the modified k, by w,, which is given explicitly in (6.10.3).

Since the results of Section 4.13.2 are unaltered by replacing w by (—w),
it follows from (4.13.22) and (4.13.23) with n — m that

P = (*1)m(m71)/22m271|wi+]’ +wirjoal,,
Qu = (—1)™m=D/29m=D% 1y, o] (6.10.56)
Applying the theorem in Section 6.10.4,
By =27 p D {1, ()" (o),

m=1_(m) [ 1
Qm = 2(m—1)2p—m(m—1){V2n(c)} 1H2(n) (€*> ) (6.10.57)

Hence,
= 22n—1p—2<"—1>v'2n(c)(3+1<)5>. (6.10.58)
n—l H2n (E)
Also, applying (6.10.32),
+1 *
Qnt1 _ oon—1 —o2n H2(Z )(1/5)
0, 2 p Vgn(C)T
n H;, (1/6*)
H(”fl) *
= —22"_1p_2"‘/2n(c)272?(5) : (6.10.59)
H2n (6*)

Since 7; = pe;, (the third line of (6.10.26)), the functions F' and G defined
in Section 6.2.8 are given by

F=H{(pe) = p"tHE V(o)
G = H{M (pe) = p"HSM (e). (6.10.60)
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Hence,

F
QQn:rLl _ {i}%l Van(c) {Gi } (6.10.61)
)

C-&- = 22”71V27L(C) {g: ’
¢ =2""11%,(c) {g} . (6.10.62)

Finally, applying the Béacklund transformation ¢ in Appendix A.12 with
b= 22’”71‘/2”(0)7

C— _ 227171‘/2"((:)

Cfi- = C* + 227L—1V'2n<c)
_1-(F/G)
1+ (F/G)
Similarly,
;1= (F"/GY)
= 15 (F~/G") . (6.10.63)

Discarding the primes, (_ = (. Hence, referring to (6.2.13),
¢=3(C +¢) =3(¢ + ),
b= 5 (G ()= 5 (G -C) W =-1),  (61064)
which are both real. It follows that these solutions are physically significant.
Exercise. Prove the following identities:
Asy = a,(GG* — FF™),
Aspt1 = B F7G,
Agp—1 = Bn1 FG™,
AP = an(GGT + FF),
where

no2n(n— 2(n—1
(~pme2ntn Dy

Qp = on )
p2n(n71) H €;
i=1
P

) 2n

2n?—1 *

] e
i=1



302 6. Applications of Determinants in Mathematical Physics

6.10.6 The Ernst Equation

The Ernst equation, namely

(€6 = 1)V2E = 267(VE)?,
is satisfied by each of the functions

_ pUn(2) = wqUn(y)
Un(1)

where Uy, (z) is a determinant of order (n + 1) obtained by bordering an
nth-order Hankelian as follows:

gn (w2:71)’ n:1a2537"'7

T
x3/3
iy 5
Un(a) = | 120] o ,
2?2"=1/(2n —1)
1111 . -
where

L o o(itjo1) 2 2(i+i-1)
i = T ’ ’ -1},
@i Zﬂ_l[px +a'y ]

P+ =1,

and z and y are prolate spheriodal coordinates. The argument x in U, (z)
refers to the elements in the last column, so that U, (1) is the determinant
obtained from U,(x) by replacing the x in the last column only by 1.
A note on this solution is given in Section 6.2 on brief historical notes.
Some properties of U, (x) and a similar determinant V,,(z) are proved in
Section 4.10.3.

6.11 The Relativistic Toda Equation — A Brief
Note

The relativistic Toda equation in a function R, and a substitution for R,
in terms of U,,_1 and U, are given in Section 6.2.9. The resulting equation
can be obtained by eliminating V,, and W,, from the equations

H®(U,,U,) = 2(V,W,, — U?), (6.11.1)
aH® (U, Un_1) = aUpUp_1 + VoW _1, (6.11.2)
Vi itWio1 — U2 = a*(Upgr1Up_q — U?), (6.11.3)

where Hg(f) is the one-variable Hirota operator (Section 5.7),
1
V1t

a =
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¢
z:t\/l—aQZ\/%. (6.11.4)

Equations (6.11.1)—(6.11.3) are satisfied by the functions
Un = |ui,n+jfl‘m7
Vn = |vi,n+j—1|ma
Wy = |Wintj—1]m, (6.11.5)

where the determinants are Casoratians (Section 4.14) of arbitrary order
m whose elements are given by

uij = Fij + Gij,
1

vij = a;iF; + ;Gi]w
7

1
Wij = ;Flj + aiGij, (6116)

7

where

Fij ( ! )jexp(fi%

a; —a
J
a
Gij = ‘ i)
J (1_aai> exp(1;)
x
gi =—+ b’iv
a;
n; = a;x + ¢, (6.11.7)

and where the a;, b;, and ¢; are arbitrary constants.



Appendix A

A.1 Miscellaneous Functions

The Kronecker Delta Function

q
0,
ij(sﬁ = { 0
Jj=p ’

q
> 2i650(1 = 650) = ;.
Jj=p

j=i
J#i.

p<r<gq,
otherwise.

I, = [6;j]n, the unit matrix,

i fr 51'7" f] 1

—1 9r 6j'r i 1)’
no | Qip Qg Sir Aip Qg
S lajy ajq G| =|ap ajg
r=1 Qkp Okq 51@7' Qkp Okq

1<4,5 <n,

L,
Oseven = {0, i odd.
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—_

5 oqd = , 1 odd,
He 0, ¢ even.

PP B (J1,72) = (i1,12)
120172 0, otherwise.

—_

The Binomial Coefficient and Gamma Function

<n){r'(7?|7‘)'7 0<r<n
T 0, otherwise.
n _(n
n—r - r ’
() (7))
r r r—1

The lower or upper limit » = i (— j) in a sum denotes that the limit
was originally ¢, but ¢ can be replaced by j without affecting the sum since
the additional or rejected terms are all zero. For example,

oo

Z W denotes that Z r—in) can be replaced by Z m;

r=0(—n)

n n n
570 (r) a, denotes that E,O (T) a, can be replaced by 570 (7‘) ar.

This notation has applications in simplifying multiple sums by changing
the order of summation. For example,

>3 ()e=2(001)w

n=0 p=0

PRrROOF. Denote the sum on the left by S, and apply the well-known

identity
zq: n\_(a+ 1
D p+1

n( oo;l_pn
-2y (j)a=te ¥ ()
n=0 p=0 n=0(—p)
(—q)
+1
=2 W (]qp+1)
p=0

The result follows. O
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Other applications are found in Appendix A.4 on Appell polynomials.

I'(z) = /OO ettt
MNx+1)= m%(x)
'n+1)=n!l, n=123,....
The Legendre duplication formula is
VaT(2z) =22 7'T(2)T (z + 3),
which is applied in Appendix A.8 on differences.

Stirling Numbers

The Stirling numbers of the first and second kinds, denoted by s;; and S
respectively, are defined by the relations

¥R
r
2 k
(x)r = Srgd -, Sro = 57"0,
k=0

xl = Z Srk(x)ka STO = 57"0,
k=0

where (z), is the falling factorial function defined as
(@)r=2z(z-1)(z—-2)---(z—r+1), r=1,23,....
Stirling numbers satisfy the recurrence relations

sij = Si-1,5-1— (1 = 1)si—1
Sij = Si—1,j-1 + JSi-1,5-

Some values of these numbers are given in the following short tables:

Sij
J
) 1 2 3 4 5
1 1
2 -1 1
3 2 -3 1
4 —6 11 -6 1
5 24 =50 35 —-10 1
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U W N S

1 2 3 4 5
1

1 1

1 3 1

1 7 6 1

1 15 25 10 1

Further values are given by Abramowitz and Stegun. Stirling numbers ap-
pear in Section 5.6.3 on distinct matrices with nondistinct determinants

and in Appendix A.6.

The matrices s, (z) and S,,(z) are defined as follows:

A.2 Permutations

1
—x 1
22 —3x 1

—62%  11a? —6x 1 ’
24z*  —50x% 3522 —10z 1

1

x 1
22 3z 1
3 Ta? 6x 1
z* 1523 2522 10z 1

Inversions, the Permutation Symbol

The first n positive integers 1,2,3,...,n, can be arranged in a linear se-
quence in n! ways. For example, the first three integers can be arranged in

3! = 6 ways, namely

W NN~ =
_ W =W N
N =W N W

3 2

Let NV,, denote the set of the first n integers arranged in ascending order of

magnitude,

Ny

={123---n},
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and let I, and J, denote arrangements or permutations of the same n
integers

Iy = {iy iz iz in},

Jn = {1 j2 js--Jn}-
There are n! possible sets of the form I, or J, including N,,. The num-
bers within the set are called elements. The operation which consists of
interchanging any two elements in a set is called an inversion. Assuming
that J, # I,, that is, j,. # i, for at least two values of r, it is possible to
transform J,, into I,, by means of a sequence of inversions. For example, it

is possible to transform the set {3 5 2 1 4} into the set N5 in four steps,
that is, by means of four inversions, as follows:

3 5 2 1 4
1: 1 5 2 3 4
2: 1 2 5 3 4
3: 1 2 3 5 4
4: 1 2 3 4 5

The choice of inversions is clearly not unique for the transformation can
also be accomplished as follows:

3 5 2 1 4
1 34 2 15
2 31 2 45
3: 21 3 4 5
4: 1 2 3 4 5

No steps have been wasted in either method, that is, the methods are
efficient and several other efficient methods can be found. If steps are wasted
by, for example, removing an element from its final position at any stage
of the transformation, then the number of inversions required to complete
the transformation is increased.

However, it is known that if the number of inversions required to trans-
form J, into I,, is odd by one method, then it is odd by all methods, and
Jy, is said to be an odd permutation of I,,. Similarly, if the number of in-
versions required to transform J,, into I, is even by one method, then it is
even by all methods, and J, is said to be an even permutation of I,,.

The permutation symbol is an expression of the form

I\ _ Jir i2 i3 - g
In Ji1 J2 Jz3 0 gn )’

which enables I,, to be compared with J,,.
The sign of the permutation symbol, denoted by o, is defined as follows:

In 7:1 Z‘2 i3 ’Ln} m
o =sgn =sgng . . . = (-1
& {Jn} s {91 J2 Js 0 n (=)
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where m is the number of inversions required to transform .J,, into I, or
vice versa, by any method. o = 0 if J,, is not a permutation of I,,.

-] n 1
Sg 9

ol 12
13 5

Permutations Associated with Pfaffians

Examples.

N W =N

— s = oW
= Ot
—

I

Let the 2n-set {i1 j1 @2 j2 - - in Jn}on denote a permutation of Ny, subject
to the restriction that iy < js, 1 < s < n. However, if one permutation
can be transformed into another by repeatedly interchanging two pairs
of parameters of the form {i,j,} and {isjs} then the two permutations
are not considered to be distinct in this context. The number of distinct
permutations is (2n)!/(2"n!).

Examples.
a. Put n = 2. There are three distinct permitted permutations of Ny,

including the identity permutation, which, with their appropriate signs,
are as follows: Omitting the upper row of integers,

sgn{1234} =1, sgn{l1324}=-1, sgn{1423}=1.

The permutation P;{2 3 1 4}, for example, is excluded since it can be
transformed into P{1 4 2 3} by interchanging the first and second pairs
of integers. P, is therefore not distinct from P in this context.

b. Put n = 3. There are 15 distinct permitted permutations of Ng, includ-
ing the identity permutation, which, with their appropriate signs, are
as follows:
sgn{123456} =1, sgn{l123546}=-1, sgn{123645}=1,
sgn{132456}=-1, sgn{132546}=1, sgn{132645}=—1,
sgn{142356}=1, sgn{l142536}=-1, sgn{142635}=1,
sen{152346} =—1, sgn{152436} =1, sgn{l52634}=—1,
sgn{162345} =1, sgn{162435}=-1, sgn{162534}=1.
The permutations P1{1 43 6 2 5} and P,{3 6 1 4 2 5}, for example,
are excluded since they can be transformed into P{1 4 2 5 3 6} by

interchanging appropriate pairs of integers. P, and P, are therefore not
distinct from P in this context.

Lemma.

{1 2 3 4 ... m}
sgn
iomoryg T4 ... Tm
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2 .. (@-D@E+1) ... (m—l)}

; 1
_ (_1\i+m+1
=(-1) Sgn{rg T4 ... T,

where 1 <rp, <m—2,ry #Z4, and 3 < k <m.

PROOF. The cases i =1 and ¢ > 1 are considered separately. When ¢ = 1,
then 2 < rp, < m — 1. Let p denote the number of inversions required to
transform the set {rs r4...r, }m—o into the set {2 3...(m —1)},,—2, that

is,

(—l)pzsgn{z 3 ... (m—l)} .
rs T4 ... T'm m—2
Hence
{ 2 3 4 m}
sgn
T M T3 T4 Tm m
1 2 3 4 m
— (_1\P«
= (=D bgn{z‘ m 2 3 (m—l)}m
_ 1 2 3 4 (m—1)m
_ (_1\pt+tm—2
(=1) Sgn{l 2 3 4 (ml)m}m
= (-1
(1)mzsgn{2 3 ... (ml)} ’
rs r4 ... T'm m—2

which proves the lemma when 7 = 1.
When i > 1, let ¢ denote the number of inversions required to transform

the set {rsg rq- - 7m}m—o into theset {1 2---(i—1)(i+1) - (m—1)} -2
Then,

(—1)? =sgn { :3 7?4 v 1,).(? w (mr; ! } o
Hence,
1 2 3 4 m
sgn{z m r3 T4 Tm }m
Y 1 2 3 4 (m—=1) m
(=1) sgn{i m 1 2 (i—1)(i+1) (m—=2) (m-1)
_ g+m 123 4 (m—1) m
(= bgn{z 12 3 (i—1)(+1) (m—1) m}m
_ ( 1)q+m+z 1 sgn { } 3 g j Z}
_ (_1)q+m+ifl "
_ (_Umﬂ_lsgn{:g 7«24 (i=1)(i+1) (mr; 1)} R
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which proves the lemma when ¢ > 1. a

Cyclic Permutations

The cyclic permutations of the r-set {i; iz i3 ... i} are alternately odd
and even when 7 is even, and are all even when r is odd. Hence, the signs as-
sociated with the permutations alternate when r is even but are all positive
when r is odd.

Examples. If

sgnfi j} =1,
then
sgn{j i} = —1.
If
sgn{i j k} =1,
then
sen{j k i} =1,
sen{k i j} =1
If
sgn{i j km} =1,
then

sgn{j km i} =-1,
sen{k mij} =1,
sgn{m i j k} = -1

Cyclic permutations appear in Section 3.2.4 on alien second and higher
cofactors and in Section 4.2 on symmetric determinants.

Exercise. Prove that

T r2 T3z - Tn
|0r;s;|n = sgn{ .
31 ...

1<ij<n

A.3  Multiple-Sum Identities
1. If

n
fi= ZciJrlfj,j? 1<i<2n -1,
=1
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where ¢;; = 0 when 4,5 <1 or ¢,j > n, then

2n—1 7 2n—1
E figi = E gz§ + § 9i E Cit1—j,j
=1 j=1 1=n—+1 j=i+l—n
n n
= g CijGitj—1-
i=1 j=1

The last step can be checked by writing out the terms in the last dou-
ble sum in a square array and collecting them together again along
diagonals parallel to the secondary diagonal.

2. The interval (1,2n+41—14— j) can be split into the two intervals (1,n+
1—j)and (n+2—7j,2n+1—i—j). Let

Then, splitting off the ¢ = n term temporarily,

-1 n 2n+l—i—j n nt+l—j
ZZ > Fust) > Fuis
=1 s=1 j=1 s=1

n n+1l—j 2n+1—i—j

n—1 n n+l—j
D59l DRI S TS o st
i=1 j= s=1 j=1 s=

s=n+2—j
The first and third sums can be recombined. Hence,

n n+l—j n—1 Int1—i—j

=§:Z ZFijs+;Zn: > Fj.

1 j=1 s=1 1 j=1 s=n+2—j

The identities given in 1 and 2 are applied in Section 5.2 on the
generalized Cusick identities.

3. If Fi,k,. &, is invariant under any permutation of the parameters k,,
1 <r <m, and is zero when the parameters are not distinct, then

Z Friky.ten, = m! > Friky. ks m < N.

kl 7’”71 1<k1<k2<"'<k7nSN

PrOOF. Denote the sum on the left by S and the sum on the right by
T. Then, S consists of all the terms in which the parameters are distinct,
whereas T consists only of those terms in which the parameters are in
ascending order of magnitude. Hence, to obtain all the terms in S, it is
necessary to permute the m parameters in each term of 7. The number of
these permutations is m!. Hence, S = m!T', which proves the identity. O
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4. If Fy k. k,, is invariant under any permutation of the parameters k,,
1 <r <m, then

1 ki,k2,....k
E Fiko o b Ghika. ko, = oo E Fierko.. ko E sz G
k11k27~--1k7n ’ k17k27---7km, J15J253Im

where the sum on the left ranges over the m! permutations of the param-
eters and, in the inner sum on the right, the parameters j,., 1 <r < m,
range over the m! permutations of the k.

PrOOF. Denote the sum on the left by S. The m! permutations of the
parameters k, give m! alternative formulae for S, which differ only in the
order of the parameters in G, k,.. k,, . The identity appears after summing
these m! formulas. a

Illustration. Put m = 3 and use a simpler notation. Let

S=Y" FijxGijr.

.4,k
Then,
S=Y FijGixj = Y FijuGirj
i,k,J .5,k
S = E Fk?jZGk?jl § FZ]k:Gk)]Z
k,j,i i,k

Summing these 3! formulas for S,

318 = Z Fijk(Gijk + Gikj + -+ iji)7

1,5,k
1,5,k
3 Z Fiji Z Gpar-
1,5,k P,q,T
5.
n
> Friog.obn Ghikoz. b,
k1,ko,....km=1
1 n k1,k2,....km
= ﬁ Z Fklkz‘..km ‘ Z ‘ Gjl]émjm'
ki,ka,....km=1 J1,725--30m

The inner sum on the right is identical with the inner sum on the right
of Identity 4 and the proof is similar to that of Identity 4. In this case,
the number of terms in the sum on the left is m™, but the number of
alternative formulas for this sum remains at m!.

The identities given in 3-5 are applied in Section 6.10.3 on the Einstein
and Ernst equations.
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A.4 Appell Polynomials

Appell polynomials ¢,,(z) may be defined by means of the generating
function relation

:zztG Z (ybm
tm 1

- Z m"”” i , (A.41)

where
[e’] Oé»,‘tr
Git)y=> <l (A.4.2)
r=0 ’

Differentiating the first line of (A.4.1) with respect to = and dividing the
result by t,

/ tm 1
et =y Sl
m=0
/ tm 1

% + Z I (@) (A.4.3)
Comparing the last relation with the second line of (A.4.1), it is seen that
¢o = constant, (A.4.4)
D = M1, (A.4.5)

which is a differential-difference equation known as the Appell equation.
Substituting (A.4.2) into the first line of (A.4.1) and using the upper and
lower limit notation introduced in Appendix A.1,

>\ D ()t L apt” = xt)™ "
Z % - l Z ((m)—r)'

m=0 r=0 " m=r(—=0)
_ m—r
-Y 0 (T )aw
m=0 r=0

Hence,

G (0) = . (A.4.6)
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TABLE A.1. Particular Appell Polynomials and Their Generating Functions

S arpt” U m m—
Qr G(t) =3 ,’Zut Pm(z) = arx
r=0 =0 r
1 Or 1 z™
2 1 el 1+z)™
3 ' tet m(l +m)m—1
ot _ (14az)m+1_gm+1
4 == tl TS
5 ﬁiﬁ)r Jo(2v/t) (Bessel) ™ Ly, (%) (Laguerre)
(=1"(@2r)!
Qar = T 92 —t? —m .
6 227! } e 27" Hp(z) (Hermite)
azry1 =0
7 == By, (z) (Bernoulli)
8 ﬁ E,.(z) (Euler)

Note: Further examples are given by Carlson.

The first four polynomials are

(z) = ao,
$1(z) = oz + a1,
ba(z) = apx® + 2017 + a,
b3(z) = apx® 4+ 3122 + 3oz + az.

(A.4.7)

Particular cases of these polynomials and their generating functions are
given in Table 1. When expressed in matrix form, equations (A.4.7) become

bo(z) 1 o

o1 () z 1 a1

o) | = |22 22 1 Qo
(x) 23 3x? 3z 1

(A.4.8)
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The infinite triangular matrix in (A.4.8) can be expressed in the form
ezQ, where

Identities among this and other triangular matrices have been developed
by Vein. The triangular matrix in (8) with its columns arranged in reverse
order appears in Section 5.6.2.

Denote the column vector on the left of (A.4.8) by ®(z). Then,

O(z) = e”’Q(I)(O).

Hence,
o(0) = e_’”QCI)(x)
that is,
o 1 Po()
a1 -z 1 o1 (x)
ap | = | 2* -2z 1 P2(z) |
o -3 32?2 -3z 1| | ¢3(2)

which yields the relation which is inverse to the first line of (A.4.6), namely

an=3 (1) 6uta) (A1)

r=0

¢m(z) is also given by the following formulas but with a lower limit for
m in each case:

m—1
onie) =3[ Tt e
r=0
m=2| Qu 2ar+1 Qpry2
Gm(x) = -1 T ™2 m > 2, (A.4.10)
r=0 -1 T

etc. The polynomials ¢,, and the constants a,, are related by the two-
parameter identity

P q
Z(_l)r (f) QSPJFQ*T‘,ET = Z (z) aerT’xqirv p,q = Oa 1727 EEREE

r=0
(A.4.11)
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Appell Sets

Any sequence of polynomials {¢,,(x)} where ¢, () is of exact degree m
and satisfies the Appell equation (A.4.5) is known as an Appell set.
The sequence in which

S

-1
b () = <m+8) @+, s=123,...,

satisfies (A.4.5), but its members are not of degree m. The sequence in

which

22l (m 4 1) (2 + c)mt(1/2)
m(@) = (2m + 2)!

satisfies (A.4.5), but its members are not polynomials. Hence, neither
sequence is an Appell set.
Carlson proved that if {¢,,} and {¢,,} are each Appell sets and

O =273 (T) T —
r=0

then {6,,} is also an Appell set.
In a paper on determinants with hypergeometric elements, Burchnall
proved that if {¢,,} and {¢,,} are each Appell sets and

n

S (i

r=0

then {6,,} is also an Appell set for each value of n. Burchnall’s formula can
be expressed in the form

n

Om =Y (-1)"

r=0

wr ¢m+n7r

, n=0,1,2,....
’(/)rJrl ¢m+nfr+1

The generalized Appell equation

9;71 = mflemfh f = f({l?),
is satisfied by

where ¢, () is any solution of (A.4.5). For example, the equation
0[ _ mgm—l
™ (14 )2

is satisfied by

1
gm:¢m (1+.Z‘)
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If
(1+z)m+t — cgm !
O = m+1 ’
then
0 — ™t 4 (—1)me
T (m A D) (1 x)mtl?
r+c
% = 1+’

The Taylor Series Solution

Functions ¢,,(z) which satisfy the Appell equation (A.4.5) but are not
Appell sets according to the strict definition given above may be called
Appell functions, but they should not be confused with the four Appell
hypergeometric series in two variables denoted by Fi, Fs, Fs, and Fy, which
are defined by Whittaker and Watson and by Erdelyi et al.

The most general Taylor series solution of (A.4.5) for given ¢ which is
valid in the neighborhood of the origin is expressible in the form

m

Om = Z (?) Ozrxmfr—i-m/gjqﬁo(u)(m—u)m*l du, m=1,2,3,....
0

r=1
A proof is given by Vein and Dale. Hildebrand obtained a similar result by
means of the substitution ¢,, = m! f,,, which reduces (A.4.5) to

fyln = f’m—l-

Multiparameter and Multivariable Appell Polynomials

The Appell equation (A.4.5) can be generalized in several ways. The two-
parameter equation

ugj = ’L'ul'_Lj +jui7j_1 (A412)

is a differential partial difference equation whose general polynomial
solution is

i g . .
v i+j—r—s )
u”(x):ZZ(r> <i)arsx+J , 1,7=0,1,2,...,

r=0 s=0
where the ;.5 are arbitrary constants.

Upo = 00,
uij (0) = o

A proof can be constructed by applying the identity

()G C) e (G) ()
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These polynomials can be displayed in matrix form as follows:
Let

Upo U0l U2
U(a:) _ | U0 U1 U2
U20 U221 U22

Then,
Uz) = e"QU(0) (* Q).
Hence,
U(0) = e *QU(z) (),
that is,
=33 (z>(1)“ (—2)™7T0 qi=0,1,2
1] r s T8 ) yJ =U L, 4.
r=0 s=0

Other solutions of (A.4.12) can be expressed in terms of simple Appell
polynomials; for example,

Ui = ¢idj,
S TR Y
Y g Gjt1 |

Solutions of the three-parameter Appell equation, namely
Wigp, = i1 gk + JUi -1k + Kuijr1,
include
Uijk = 9iPj Pk,
bi  Oj Pk

Uik = | Pit1  Pj+1  Prt1
bit2 Pjr2 k2

Carlson has studied polynomials ¢, (z,y, 2, . ..) which satisfy the relation

0
(Dx+Dy+Dz+)¢m :m¢m717 Dm: %a etc.,

and Carlitz has studied polynomials @np.. (,y,2,...) which satisfy the
relations

Dm(¢mnp) = m¢m—1,np...v
y(¢mnp) = n(bm,n—l,p‘..;
Dz(¢mnp) = pgbmn,pfl,...o

>
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The polynomial
" /m
1pmn('r) = Z < r ) an+1‘xT
r=0
satisfies the relations
Mnn = mwmfl,nJrl»
’(/)mn - d}mfl,n - xw;nn

= m$¢m—1,n+1~

FErxercises
1. Prove that

bulz D)= (") ot

r
r=0
= A} ¢o.
2. If
Sm(x) = Z Or@s,
r4+s=m
Tm(x) = Z DrDs i,
r+s+t=m
prove that

S;n = (m + I)Sm_l,

3 (mj 1) W Sr (),

r=0
T = (m+2)Tp_1,

Sm(z + h)

m

Tz +h) =S (m:2> W T ().

r=0
3. Prove that

1 0
—1
m 72(_1)n0'ﬂmxn7
M n=0
where
cmo = 1,
1 m
Cmn = — A Ol — i — n > 1.
mn Oé% (m—l-l—_]—].) m—i+) 1n7 =

This determinant is of Hessenberg form, is symmetric about its sec-
ondary diagonal, and contains no more than (m + 1) nonzero diagonals
parallel to and including the principal diagonal.
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4. Prove that the vector Appell equation, namely
C;:jC]‘,l, .]>07

is satisfied by the column vector

—1 —1
] +1 )+ 2
C,; = (‘é) oy (p ) bj+1 (‘] 9 ) bjt2
T
J+n—1 !
‘ n—1 Gjn—1| , n=>1
5. If
m , m
fnm = ZO(*]-) < r > ¢T¢n—?”a n>m,
prove that

f’r/Lm = (n - m)fnflmv

A.5 Orthogonal Polynomials

The following brief notes relate to the Laguerre, Hermite, and Legendre
polynomials which appear in the text.

Laguerre Polynomials L™ (z) and L, (z)
Definition.

L) = “1+“'§:rvn(:??f+a>

Ly(z) =

ﬁ
M:

/\
=

\_/
3
—-z

Rodrigues formula.

Li()=$D"e ", D=

Generating function relation.

( ) 1 —lt/(l t) _ ZL tn

Recurrence relations.

(n+1)Lpt1(z) — 2n+1—2)Ly(x) = +nl,_1(z) =0,
vl (x) = n[Ln(z) = Ln-1(2)];
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Differential equation.

oL () + (1 —x)L, (z) + nL,(z) = 0;

0u0) =L (1)

O () = o1 ().

¢n(z) is the Laguerre polynomial with its coefficients arranged in reverse
order.

Appell relation. If

then

Hermite Polynomial H,(x)

Definition.

Generating function relation.

e2ut— t? Z

Recurrence relation.
Hp1(z) — 22Hy(z) + 2nHy—1(x) = 0;
Differential equation.
H/!(z) — 2zH] (z) + 2nH,(z) = 0;
Appell relation.
H! (z) = 2nH,_ ().

Legendre Polynomials P, (x)

Definition.
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Rodrigues formula.
1
~ onpl

Generating function relation.

d
D" 2_1n D=—:
(@ =1, D=

Pn(x)

(1—2ch+h*) "2 =3 P(a)h™
n=0

Recurrence relations.
(n+1)Pyyi(z) — 2n+ DazPy(x) + nPp_1(z) =0,

(2 = 1)P; () = nfzPa(z) — Pooa(2)];
Differential equation.

(1 —2%)P!(x) — 2zP.(x) + n(n + 1)P,(z) = 0;
Appell relation. If

Pn(z) = (1 - x2)_"/2Pn(x),
then
O (@) = nFdn_1(x),

where

F=(1-22)732
A.6 The Generalized Geometric Series and

Fulerian Polynomials

The generalized geometric series ¢,,(x) and the closely related function
Um(z) are defined as follows:

Pm(w) =D ra’, (A.6.1)
r=0
Gm(z) =D r"a. (A.6.2)

The two sums differ only in their lower limits:

Om () = Y (), m >0,

Po(z) = 7 i ot
bol(@) = 7 f o
= x¢o(x)

= ¢o(z) — 1. (A.6.3)
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It follows from (A.6.2) that

TP, = Ymy1, m 0. (A.6.4)
The formula

A"y = 2P, m >0,

is proved in the section on differences in Appendix A.8.
Other formulas for v, include the following:

C (=)™l S,
V= E_O: ( >(1 — x)rﬁl’ L m >0 (Comtet), (A.6.5)
x Zm (=)™ S,
= > A. .
wm lf‘rrzl (171’)7« ’ m_O, ( 66)

where the S,,, are Stirling numbers of the second kind (Appendix A.1).

1 .
U = [D (1 — xeu)]u_o, D= Pu (Zeitlin). (A.6.7)
Let
1
t= ¢ = T

Then,

Yo = _(1 - t)7

P = —t 413

= —t(1 — ),

o =t —3t2 + 263
=t(1—1t)(1 - 2t),

g = —t + Tt2 — 12t3 + 6t
= —t(1 —t)(1 — 6t + 6t2),

g =t — 15t% + 5063 — 60t* 4 24¢°
=t(1 —t)(1 — 14t + 36t% — 24¢%).

The function v, satisfies the linear recurrence relations

Vm =2 1+§;(T>m], m >0 (A.6.8)
m—1
:1fx 1+;0(T)¢r], m>1 (A.6.9)

:cijj (T) Grnr = (=1 (T) Yrotr

r=0
= A"y, (A.6.10)
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Lawden’s function Sy, (x) is defined as follows:
Spm(z) = (1 —2)" 4, (z), m>0. (A.6.11)

It follows from (A.6.5) that S,, is a polynomial of degree m in (1 — ) and
hence is also a polynomial of degree m in x. Lawden’s investigation into
the properties of 1, and S,, arose from the application of the z-transform
to the solution of linear difference equations in the theory of sampling
servomechanisms.

The Eulerian polynomial A,,(z), not to be confused with the Euler
polynomial E,,(x), is defined as follows:

Ap(z) = (1 —2)™" Mo (z), m>0, (A.6.12)
Ap(z) = Sp(x), m >0,

Ao(z) =1,

So(z) = =z, (A.6.13)
Am(z) = i Amnz™, (A.6.14)

where the coefficients A,,, are the Eulerian numbers which are given by
the formula

n—1
A = (1) (m“> (=)™ m>0,n>1,
r=0

T
= Ammi1on- (A.6.15)
These numbers satisfy the recurrence relation
Apn=m—-—n+1)An_1n-1+nAn_1n. (A.6.16)
The first few Eulerian polynomials are
Ai(z) = Si(x) = =z,
Ag(x) = So(x) = = + 22,
Az(x) = S3(x) = = + 4a? + 23,
Ay(x) = Sy(x) = x + 112 + 112® + 2%,
As(x) = S5(x) = x + 2622 + 662° + 262" + 2.

S, satisfies the linear recurrence relation

125 =t S ey () e,

r=0

and the generating function relation

v — r(x—1) i S (x)u™

x — eul@=1) m!
m=0

b
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ov

from which it follows that S,, satisfies the nonlinear recurrence relation

A
r=0
It then follows that

A'(/)m = "/’m-ﬁ-l - "/)m = Z (T:) ¢r¢m—r-

r=0

A.7 Symmetric Polynomials

Let the function f,(x) and the polynomials U,(,") in the n variables x;,

1 < i < n, be defined as follows:

n n

fu@) =J@ =) =D (=1)Po{Ma". (A.7.1)
i=1 p=0
Ezamples
0(()n) =1,

aén)z Z T,

1<r<s<n

(n) _
03 " = Ly slt,

1<r<s<t<n

These polynomials are known as symmetric polynomials.
Let the function g,,,(z) and the polynomials o™ in the (n—1) variables
x;, 1 <i<m,is#r, be defined as follows:

gur(®) = 7T = g(—l)sox)x”*l*, (A.7.2)
Gnn(2) = fr—1(z) (A.7.3)

for all values of z. Hence,
oW =gnh), (A.7.4)
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Also,
Gnj(xi) =0, j#1i. (A.7.5)
Ezramples
(3) = T1T2 + T1T3 + T23,
(") =1, 1<r<n,
Ug?{) =z + T3,
a§2) = x123,
O'gi) =T + T2 + 24,
O’:(é) =T1T2 + X104 + T2Zy,
0§3) = T1T2Ty4.
Lemma.

=3 ol
p=0

PROOF. Since

@
3
&

||
/—\
\a

Il

|
é?
Mg
~—— B

2
;i)v

q=0
it follows that
n—1 n oo n) Zn—p+a
1 —-1—
S et =y 3 s
s=0 p=0 ¢=0

Equating coefficients of "~ 179,

n

(_1)s+10_7(";l) — Z (_1)p01(gn)xi—11_

p=s+1
Hence
(-1 S+1 (n) Z paé”)xﬁ_p — Z(—l)paén)xi_p
p=0
=z, " f(z,)
=0.
The lemma follows. O

Symmetric polynomials appear in Section 4.1.2 on Vandermondians.
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A.8 Differences

Given a sequence {u,}, the nth h-difference of ug is written as Ajlug and
is defined as

Afug = zn: (:}) (—h)" " u,

r=0
n
= Z (:) (=h) Uy —p.
r=0
The first few differences are
A%uo = Uy,
A}luo = u1 — huy,
A%uo = uy — 2huy + h2ug,
A;g’luo = uz — 3hus + 3h%u; — h3up.
The inverse relation is

o= (1) @i,

r=0
which is an Appell polynomial with o, = Ajug. Simple differences are
obtained by putting h = 1 and are denoted by A"uy.

Example A.1. If
U =2a',
then
Afug = (x — h)™.
The proof is elementary.

Example A.2. If

1
r = 5 > 170
e T
then
1 n22n !2
Ay, (D27
(2n+1)!
PROOF.
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where
n . (n m27”—}-1
=3 (1) g
re =3 (7)o
=(1—2%)"

fa) = / -y,
o= [ a-era

/2
= / cos?™ 1 0 do
0

L(3)T(n+1)
2T (n + 3)

The proof is completed by applying the Legendre duplication formula for
the Gamma function (Appendix A.1). This result is applied at the end of
Section 4.10.3 on bordered Yamazaki-Hori determinants. O

Example A.3. If

£L'2T+2—C
Up = ———,
r+1
then
@1 (<D (e =)
A"y = .
n+1
PROOF.
n 2r+2
n x -1 c—1
A" _ —1)nr _
Ug TZO( ) (,r>|: ,,,_,_1 ,],,_'_1
= (—=1)"[S(z) + (¢ = 1)S(0)],
where
n 1.27’+2 1
= —1)"
s =300 (1) S
_ 1 . _1\" TL+1 2r+2
_n+1;0( )(7"—1-1)( 2
n+1
_ 1 r+1 n+]— 2r _ .
n+12( 1) ( , )( 1), (The r = 0 term is zero)
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1 n+1 . n+1 o n+1 . n+ 1
=g () e ()
1
—— 1— 2\n+1 _ O
(-2 0]
1
S(0) = — .
) n+1
The result follows. It is applied with ¢ = 1 in Section 4.10.4 on a particular
case of the Yamazaki—Hori determinant. a

Example A.4. If

(oo}
Ym = Z 'z’
r=1
then
A" =zt
¥ is the generalized geometric series (Appendix A.6).

PROOF.

(r—1)"= i(_nm*s (TZ) r.

s=0

Multiply both sides by 2" and sum over r from 1 to co. (In the sum on the
left, the first term is zero and can therefore be omitted.)

xi(T —)ma Tl = iz” i(—l)m* (T) e,
r=2 . r;l s=0 N
f”sgsmﬂfs => (" (T) >

s=0 r=1
- m—s [ T
T ;(—1) ( ) ) Vs
= A™y.
This result is applied in Section 5.1.2 to prove Lawden’s theorem. O

A.9 The Euler and Modified Euler Theorems on
Homogeneous Functions

The two theorems which follow concern two distinct kinds of homogeneity
of the function

f:f(m()axl?xQ;”wxn)' (Agl)
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The first is due to Euler. The second is similar in nature to Euler’s and can
be obtained from it by means of a change of variable.
The function f is said to be homogeneous of degree s in its variables if

F(Azo, A1, Axa, ..., Axy) = A°f. (A.9.2)

Theorem A.5 (Euler). If the variables are independent and f is differ-
entiable with respect to each of its variables and is also homogeneous of
degree s in its variables, then

n af
;}xraw = Sf

T

The proof is well known.
The function f is said to be homogeneous of degree s in the suffizes of
its variables if

Flzo, Az, N2wg, ... A" xy,) = ASf. (A.9.3)

Theorem A.6 (Modified Euler). If the variables are independent and f
is differentiable with respect to each of its variables and is also homogeneous
of degree s in the suffizes of its variables, then

Z Ty axr

Proor. Put
up =Nz, 0<r<n [in (A.9.3)].
Then,
flug,ur,ug, ... uy) = A f.
Differentiating both sides with respect to A,

Z 8f dur _ S/\Sﬁlf,

Z of rA e, = sASTL

Put A = 1. Then, u, = z,- and the theorem appears. ]

A proof can also be obtained from Theorem A.5 with the aid of the
change of variable

r

Vp = T

Both these theorems are applied in Section 4.8.7 on double-sum relations
for Hankelians.
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Illustration. The function

Brozorizs  Calxixl + Dal

[ = Arorozsze + (A.9.4)

x1 Exdzy + Fai

is homogeneous of degree 4 in its variables and homogeneous of degree 12
in the suffixes of its variables. Hence,

>0 2
St

*4f7

= 12f.

A.10 Formulas Related to the Function

(z 4+ V1 + 22)

Define functions A, and p,, as follows. If n is a positive integer,

(x4 V14 22)" ZAnrx2T+\/1+xQZumx -1 (A.10.1)

r=0

where
L n—+r o
Anr = T < o ) 2°" (A.10.2)
)\nr
L (A.10.3)
n

Define the function v; as follows:

(142712 = Zuz (A.10.4)
Then
(1) (2i
Vi= o i
= P21(0)7
vo = 1, (A.10.5)
where P, (z) is the Legendre polynomial.
Theorem A.7.
din .
Z)\n 1,j—1Vi4j—2 = 22(n 1 1§Z§n
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PRrROOF. Replace z by —x~! in (A.10.1), multiply by 2?7, and put 2% = 2.
The result is

(—1+VIT2)2 =

n n
2" 4 Z /\mznz‘| _ (1 + Z)% Z/‘niznii
1=1 =1
n+1 n
P 1 -
= A1 = (14 2)2 Y ppnji12?
j=1

j=1
Rearrange, multiply by (1 4+ 2)~'/2 and apply (A.10.4):

(e’ n+1 n
Z viz! Z Ann—jrrz’ Th = Z fnn—ji12) A (142) T (=1 VT + 2)"
=0 j=1

j=1
In some detail,

(1 +uviz+ V222 + - )(Ann + )\n,n—lz +-+ >\nlzn71 + )\nOZn)

_ 2\ 2n _ 1
= (tnn + Pnp-12 + -+ + pn12" D+ (5) (1+2) i <1 a ZZ A >

Note that there are no terms containing 2", z"*1, ..., 22"~ on the right-
hand side and that the coefficient of 22" is 272". Hence, equating coefficients
of 21T 1 <i<n41,

1 .
nz+ 0, 1<i1<n
=1 ’ '

The theorem appears when n is replaced by (n — 1) and is ap-
plied in Section 4.11.3 in connection with a determinant with binomial
elements. a

It is convenient to redefine the functions A, and pu,, for an application
in Section 4.13.1, which, in turn, is applied in Section 6.10.5 on the Einstein
and Ernst equations.

If n is a positive integer,

(x+ V14 22)°" = g, + hy V1 + 22, (A.10.6)

where
gn = En: Anr(22)?",  an even function,
r=0
g0 =1;
hn(x) = i pinr (22)%"71, an odd function,
r=1

ho = 0. (A.10.7)

2n
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Ay = (”+r>7 1<r<n,

n+r\ 2r
Ao=1, n=>0;
27 A
Unr = ) 1 S r S n,
n
tno =0, n>0. (A.10.8)
Changing the sign of z in (A.10.6),
(x— 14+ 22)°" =g, —h,V/1+22. (A.10.9)
Hence,
gn = 3{(x+ V1+22)" + (z — V1+22)*"},
hnp = 2{(z+ V1422 — (z — V1 +22)*" }(V/1 + 22)7(A.10.10)

These functions satisfy the recurrence relations

gn+1 = (1 + 2x2)gn +2z(1+ x2)hn,

hni1 = (14 22%)hy, + 229, (A.10.11)
Let
fo=H@+ V142" + (z — V1+22)"). (A.10.12)
Lemmas.
a. fon =gn
b. fantr = P

PROOF. The proof of (a) is trivial. To prove (b), note that

Fon1 = ${(@+ V1+2%)(gn + ha V1 +2?)
+a = VI+a?) (g0 — haV/1+27)}

=g, + (1 + 2%)hy,. (A.10.13)

The result is obtained by eliminating h,, from the first line of (A.10.11). O

In the next theorem, A is the finite-difference operator (Appendix A.8).
Theorem A.8.

m+n + Gm—n = 29m0n,

A(ngrnfl + gmfnfl) = 2gnAgmfl}

2x2(gm+n—1 - gm—n) = Agm—lAgn—h

A(gm-i-n—l - gm—n) = 29mAgn_1,

Im4n+1 + 9m-—n = 2(1 + xz)(gm + th)(gn + xhn)y
A(gm—n + gm—n) = 42(1 + %) hpn(gn — Thy),
Im+n — 9m—n = 2(1 + xQ)hmhrw

A(Gmin—1 = Gm-—n-1) = 4o(1 + xQ)hn(gm — zhp,).

PR om0 0 TP
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PROOF OF (A). Put  =sh 6. Then,
gn = %(62719 +em2n0)
= ch 2n#,
Imtn + Gm-n = ch(2m + 2n)0 + ch(2m — 2n)0
=2 ch 2m# ch 2né
= 29m3n-
The other identities can be verified in a similar manner. ]
It will be observed that
gn(x) = " T (ix),

where T, (z) is the Chebyshev polynomial of the first kind (Abramowitz
and Stegun), but this relation has not been applied in the text.

A.11 Solutions of a Pair of Coupled Equations

The general solution of the coupled equations which appear in Sec-
tion 6.10.2 on the Einstein and Ernst equations, namely,

Oury1  Ouy _ MU , r=0,1,2,..., (A.11.1)
8p 0z P
Oy Ouy r—

Uy Our _Tu L =1,2,3,..., (A.11.2)

Op 0z p

can be obtained in the form of a contour integral by applying the theory
of the Laurent series. The solution is

1—r 2,2
0 prw® —2zw—1Y\ dw
=0 , A113
“ 27 /Cf( w ) wltr ( )

where C is a contour embracing the origin in the w-plane and f(v) is an
arbitrary function of v.
The particular solution corresponding to f(v) = v~!is

" — p T / dw
"2 Jo wr(pPw? — 2zw — 1)
—1—7r
P dw
= Al14
2mi /er(w—a)(w—ﬁ)’ ( )

where

o= p%{z + VPP + 22},
3= ;7{2_ VT 2} (A.11.5)
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This solution can be particularized still further using Cauchy’s theorem.
First, allow C to embrace o but not § and then allow C' to embrace 8 but
not . This yields the solutions
p—l—r _p—l—'r'
fria=p)" ar(a=p)’

but since the coupled equations are linear, the difference between these two
solutions is also a solution. This solution is

p I (a” + BT) _ (=" fr-(2/p) (A.11.6)

(af)"(a —p) V1+22/p2

where
fal@) =@+ V1+22)" + (z—V1+22)"}. (A.11.7)

Since z does not appear in the coupled equations except as a differential
operator, another particular solution is obtained by replacing z by z + c;,
where c¢; is an arbitrary constant. Denote this solution by u,;:

D folzy) _zte (A.11.8)

Urj = ——F— J
\/1+a23 p

Finally, a linear combination of these solutions, namely
2n
Up = Z €Uy, (A.11.9)
j=1

where the e; are arbitrary constants, can be taken as a more general series
solution of the coupled equations.

A highly specialized series solution of (A.11.1) and (A.11.2) can be ob-
tained by replacing r by (r—1) in (A.11.1) and then eliminating w,_; using
(A.11.2). The result is the equation

Pu, 10u, (> —1Du, 0%u,

oo = All1
o> p Op P 0 ( 0

which is satisfied by the function

Uy = pZ{anJ,.(np) + b, Yy (np)}etn2, (A.11.11)

where J,. and Y,. are Bessel functions of order r and the coefficients a,, and
b, are arbitrary. This solution is not applied in the text.
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Backlund Transformations

A.12
It is shown in Section 6.2.8 on brief historical notes on the Einstein and

Ernst equations that the equations
2 4+ )V = (V(1)?,

where
(e=0Fwy (v =-1), (A.12.1)
are equivalent to the coupled equations

¢V2 — (V)* + (V¢)* =0 (A.12.2)

¢V —2V¢ - Vip = ,0 (A.12.3)
which, in turn, are equivalent to the pair
1
(A.12.5)

9 (py 9 (p.
— | == — =0.
ap ( ) o\ @

Given one pair of solutions of (A.12.1), it is possible to construct other

solutions by means of Bécklund transformations.

Transformation ¢
If {4 and (_ are solutions of (A.12.1) and
Cf&- = CLC_ - b7

C/— = aC-‘r +ba

where a,b are arbitrary constants, then ¢, and ¢’ are also solutions of

(A.12.1). The proof is elementary.

Transformation ~y

If ¢4 and ¢_ are solution of (A.12.1) and
c

C/ = = + da

TG

c d.

L=

where ¢ and d are arbitrary constants, then ¢, and ¢’ are also solutions of

(A.12.1).

PROOF.
c(Cy +¢-)

2+ =50

9
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vgz—gvg,
Vi, = c Vi - —(m)
+
Hence,
2
B+ VAL = (V) = =g (36 + ¢V = (V]
=0.

This identity remains valid when (', and ¢’ are interchanged, which proves
the validity of transformation ~. It follows from the particular case in which
¢ = 1 and d = 0 that if the pair P(¢, 1) is a solution of (A.12.4) and (A.12.5)
and

¢
0+ P2
/ %/J
then the pair P'(¢’,1’) is also a solution of (A.12.4) and (A.12.5). This
relation is applied in Section 6.10.2 on the intermediate solution of the
Einstein equations. a

¢/

Transformation

Combining transformation v and § with a = d = 1 and ¢ = —2b, it is found
that if (4 and (_ are solutions of (A.12.1) and
C_—=b
! p—
C-i,- - Cf +b7
C/ _ b+ CJr
TG

then ¢/ and ¢’ are also solutions of (A.12.1). This transformation is ap-
plied in Section 6.10.4 on physically significant solutions of the Einstein
equations.

The following formulas are well known and will be applied later. (p, z)
are cylindrical polar coordinates:

oV oV
10 OF,
2 2
vy = 2V . v + cad (A.12.8)

dp2  p Op 022’
V.(VF)=VV.F+F.VV, (A.12.9)
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v. (Zjﬁ) - %(w% —Vé- Vi), (A.12.10)
v- (V;/’> = %wv% —2V¢ - Vi), (A12.11)
VE(log d) = 3 0V20 — (Vo)) (A12.12)
V2(log p) = 0. (A.12.13)

Applying (A.12.12) and (A.12.11), the coupled equations (A.12.2) and
(A.12.3) become

$*V?(log ¢) + (V)? = 0, (A.12.14)

Vi
v (%)
Transformation 3 (Ehlers)

If the pair P(¢,) is a solution of (A.12.4) and (A.12.5), and ¢’ and ¢ are
functions which satisfy the relations

0. (A.12.15)

p
a. ¢ = =,
v=5
b, QW _wp 0¥
T op #9202’
o W _wp 0y

= pa—t
0z  ¢% 9p’ w )
then the pair P’(¢',4’) is also a solution.
PROOF. Applying (A.12.6) and (A.12.7) to (A.12.15),

19y 1 9y
V(g a) =0

o (p 9 (p Y\ _
7 (5 50) o (G 5e) o

which is satisfied by (b) and (¢). Eliminating ¢ from (b) and (c),

8 <¢2 51”’) L9 <¢2 aﬂ") _0
dp \ p Op 0z \ p 0z ’
Py 1oy . oy 2 <3¢> ' . 99 3¢')
0p2  p Op 022 o \Op Op 0z 0z )
Hence, referring to (A.12.8) and (a),
o 20[(1 p 09\ W  p 3¢
Vg KQS ¢ ap) }

Op @2 0z 0z

_20[0 (p\OU O p)aw'}
p{ap@ ap*az@ R
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2 (H, oy
¢ \ Op Op 0z 0z

Hence,

¢’V —2V¢' - Vi = 0. (A.12.16)
Referring to (a) and applying (A.12.13),

log ¢’ = log p — log ¢,

V2(log ¢) = ~V*(log ).

From (b) and (c),

().

(V’lﬁ,)2 = ¢4

Hence, referring to (A.12.14),
¢’V — (V¢')? + (Vy')? = '2v2(1og ¢') +(Vy')?
= ¢4[¢>2V2<log¢) + (V)]
=0. (A.12.17)

Equations (A.12.17) and (A.12.16) are respectively identical in form with
(A.12.2) and (A.12.3), which proves the validity of transformation 3. O

A third transformation denoted by « is merely v (with ¢ = 1 and d = 0)
followed by g:

a=pfon.
Note that
(Bov)Py = Ppyy,
whereas
(yo B)Pn = Ppy.

The solutions P, n > 1, and P,, n > 2, and their relationships with

transformations a, 3, and v (with ¢ = 1 and d = 0) are displayed in the
following diagram:

o o
PZ - P3 — Pn_’ Pn+1— “““
B |y /B Y// Y B 'Y/
P 4«——P 4——P 4— — P @ P —-
2 o 3 n o n+1



A.13 Muir and Metzler, A Treatise on the Theory of Determinants 341

A.13 Muir and Metzler, A Treatise on the Theory
of Determinants
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