




Universitext

For other titles in this series, go to
www.springer.com/series/223



 

W.A. Coppel 

 

 

Number Theory 
 
An Introduction to Mathematics 

 
Second Edition 

 
 
 
 
 
 
 
 
 
 
 
 
 





W.A. Coppel 
3 Jansz Crescent 
2603 Griffith 
Australia 

 

 

 

 

 

 

  

 

 
 

 

 
 
 
 
ISBN 978-0-387-89485-0    e-ISBN 978-0-387-89486-7 
DOI 10.1007/978-0-387-89486-7 

All rights reserved.

or dissimilar methodology now known or hereafter developed is forbidden.

to proprietary rights.

�  

Springer Dordrecht Heidelberg London New York

© Springer Science+ Business Media, LLC 2009

Printed on acid-free paper

This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+ Business Media, LLC, 233 Spring Street, New York, NY

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject

10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection

Springer is part of Springer Science+Business Media (www.springer.com)

with any form of information storage and retrieval, electronic adaptation, computer software, or by similar

Library of Congress Control Number: 2009931687

Mathematics Subject Classification (2000): 11-xx, 05B20, 33E05 

c©

Editorial board:
Sheldon Axler, San Francisco State University
Vincenzo Capasso, Università degli Studi di Milano
Carles Casacuberta, Universitat de Barcelona
Angus MacIntyre, Queen Mary, University of London
Kenneth Ribet, University of California, Berkeley
Claude Sabbah, CNRS, École Polytechnique
Endre Süli, University of Oxford
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Preface to the Second Edition

Undergraduate courses in mathematics are commonly of two types. On the one hand
there are courses in subjects, such as linear algebra or real analysis, with which it is
considered that every student of mathematics should be acquainted. On the other hand
there are courses given by lecturers in their own areas of specialization, which are
intended to serve as a preparation for research. There are, I believe, several reasons
why students need more than this.

First, although the vast extent of mathematics today makes it impossible for any
individual to have a deep knowledge of more than a small part, it is important to have
some understanding and appreciation of the work of others. Indeed the sometimes
surprising interrelationships and analogies between different branches of mathematics
are both the basis for many of its applications and the stimulus for further develop-
ment. Secondly, different branches of mathematics appeal in different ways and require
different talents. It is unlikely that all students at one university will have the same
interests and aptitudes as their lecturers. Rather, they will only discover what their
own interests and aptitudes are by being exposed to a broader range. Thirdly, many
students of mathematics will become, not professional mathematicians, but scientists,
engineers or schoolteachers. It is useful for them to have a clear understanding of the
nature and extent of mathematics, and it is in the interests of mathematicians that there
should be a body of people in the community who have this understanding.

The present book attempts to provide such an understanding of the nature and
extent of mathematics. The connecting theme is the theory of numbers, at first sight
one of the most abstruse and irrelevant branches of mathematics. Yet by exploring
its many connections with other branches, we may obtain a broad picture. The topics
chosen are not trivial and demand some effort on the part of the reader. As Euclid
already said, there is no royal road. In general I have concentrated attention on those
hard-won results which illuminate a wide area. If I am accused of picking the eyes out
of some subjects, I have no defence except to say “But what beautiful eyes!”

The book is divided into two parts. Part A, which deals with elementary number
theory, should be accessible to a first-year undergraduate. To provide a foundation for
subsequent work, Chapter I contains the definitions and basic properties of various
mathematical structures. However, the reader may simply skim through this chapter
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and refer back to it later as required. Chapter V, on Hadamard’s determinant problem,
shows that elementary number theory may have unexpected applications.

Part B, which is more advanced, is intended to provide an undergraduate with some
idea of the scope of mathematics today. The chapters in this part are largely indepen-
dent, except that Chapter X depends on Chapter IX and Chapter XIII on Chapter XII.

Although much of the content of the book is common to any introductory work
on number theory, I wish to draw attention to the discussion here of quadratic fields
and elliptic curves. These are quite special cases of algebraic number fields and alge-
braic curves, and it may be asked why one should restrict attention to these special
cases when the general cases are now well understood and may even be developed
in parallel. My answers are as follows. First, to treat the general cases in full rigour
requires a commitment of time which many will be unable to afford. Secondly, these
special cases are those most commonly encountered and more constructive methods
are available for them than for the general cases. There is yet another reason. Some-
times in mathematics a generalization is so simple and far-reaching that the special
case is more fully understood as an instance of the generalization. For the topics
mentioned, however, the generalization is more complex and is, in my view, more
fully understood as a development from the special case.

At the end of each chapter of the book I have added a list of selected references,
which will enable readers to travel further in their own chosen directions. Since the
literature is voluminous, any such selection must be somewhat arbitrary, but I hope
that mine may be found interesting and useful.

The computer revolution has made possible calculations on a scale and with a
speed undreamt of a century ago. One consequence has been a considerable increase
in ‘experimental mathematics’—the search for patterns. This book, on the other hand,
is devoted to ‘theoretical mathematics’—the explanation of patterns. I do not wish to
conceal the fact that the former usually precedes the latter. Nor do I wish to conceal
the fact that some of the results here have been proved by the greatest minds of the past
only after years of labour, and that their proofs have later been improved and simplified
by many other mathematicians. Once obtained, however, a good proof organizes and
provides understanding for a mass of computational data. Often it also suggests further
developments.

The present book may indeed be viewed as a ‘treasury of proofs’. We concentrate
attention on this aspect of mathematics, not only because it is a distinctive feature
of the subject, but also because we consider its exposition is better suited to a book
than to a blackboard or a computer screen. In keeping with this approach, the proofs
themselves have been chosen with some care and I hope that a few may be of interest
even to those who are no longer students. Proofs which depend on general principles
have been given preference over proofs which offer no particular insight.

Mathematics is a part of civilization and an achievement in which human beings
may take some pride. It is not the possession of any one national, political or religious
group and any attempt to make it so is ultimately destructive. At the present time
there are strong pressures to make academic studies more ‘relevant’. At the same time,
however, staff at some universities are assessed by ‘citation counts’ and people are
paid for giving lectures on chaos, for example, that are demonstrably rubbish.
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I

The Expanding Universe of Numbers

For many people, numbers must seem to be the essence of mathematics. Number
theory, which is the subject of this book, is primarily concerned with the properties
of one particular type of number, the ‘whole numbers’ or integers. However, there
are many other types, such as complex numbers and p-adic numbers. Somewhat sur-
prisingly, a knowledge of these other types turns out to be necessary for any deeper
understanding of the integers.

In this introductory chapter we describe several such types (but defer the study of
p-adic numbers to Chapter VI). To embark on number theory proper the reader may
proceed to Chapter II now and refer back to the present chapter, via the Index, only as
occasion demands.

When one studies the properties of various types of number, one becomes aware
of formal similarities between different types. Instead of repeating the derivations of
properties for each individual case, it is more economical – and sometimes actually
clearer – to study their common algebraic structure. This algebraic structure may be
shared by objects which one would not even consider as numbers.

There is a pedagogic difficulty here. Usually a property is discovered in one context
and only later is it realized that it has wider validity. It may be more digestible to
prove a result in the context of number theory and then simply point out its wider
range of validity. Since this is a book on number theory, and many properties were
first discovered in this context, we feel free to adopt this approach. However, to make
the statements of such generalizations intelligible, in the latter part of this chapter we
describe several basic algebraic structures. We do not attempt to study these structures
in depth, but restrict attention to the simplest properties which throw light on the work
of later chapters.

0 Sets, Relations and Mappings

The label ‘0’ given to this section may be interpreted to stand for ‘0ptional’. We collect
here some definitions of a logical nature which have become part of the common lan-
guage of mathematics. Those who are not already familiar with this language, and who
are repelled by its abstraction, should consult this section only when the need arises.

DOI: 10.1007/978-0-387-89486-7_1, © Springer Science + Business Media, LLC 2009
1W.A. Coppel, Number Theory: An Introduction to Mathematics, Universitext, 



2 I The Expanding Universe of Numbers

We will not formally define a set, but will simply say that it is a collection of
objects, which are called its elements. We write a ∈ A if a is an element of the set A
and a /∈ A if it is not.

A set may be specified by listing its elements. For example, A = {a, b, c} is the set
whose elements are a, b, c. A set may also be specified by characterizing its elements.
For example,

A = {x ∈ R : x2 < 2}
is the set of all real numbers x such that x2 < 2.

If two sets A, B have precisely the same elements, we say that they are equal and
write A = B . (If A and B are not equal, we write A �= B .) For example,

{x ∈ R : x2 = 1} = {1,−1}.
Just as it is convenient to admit 0 as a number, so it is convenient to admit the

empty set ∅, which has no elements, as a set.
If every element of a set A is also an element of a set B we say that A is a subset

of B , or that A is included in B , or that B contains A, and we write A ⊆ B . We say
that A is a proper subset of B , and write A ⊂ B , if A ⊆ B and A �= B .

Thus ∅ ⊆ A for every set A and ∅ ⊂ A if A �= ∅. Set inclusion has the following
obvious properties:

(i) A ⊆ A;
(ii) if A ⊆ B and B ⊆ A, then A = B;

(iii) if A ⊆ B and B ⊆ C , then A ⊆ C .

For any sets A, B, the set whose elements are the elements of A or B (or both) is
called the union or ‘join’ of A and B and is denoted by A ∪ B:

A ∪ B = {x : x ∈ A or x ∈ B}.
The set whose elements are the common elements of A and B is called the intersection
or ‘meet’ of A and B and is denoted by A ∩ B:

A ∩ B = {x : x ∈ A and x ∈ B}.
If A ∩ B = ∅, the sets A and B are said to be disjoint.

A

B

A

B

A ∪ B A ∩ B

Fig. 1. Union and Intersection.
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It is easily seen that union and intersection have the following algebraic properties:

A ∪ A = A, A ∩ A = A,

A ∪ B = B ∪ A, A ∩ B = B ∩ A,

(A ∪ B) ∪ C = A ∪ (B ∪ C), (A ∩ B) ∩ C = A ∩ (B ∩ C),

(A ∪ B) ∩ C = (A ∩ C) ∪ (B ∩ C), (A ∩ B) ∪ C = (A ∪ C) ∩ (B ∪ C).

Set inclusion could have been defined in terms of either union or intersection, since
A ⊆ B is the same as A ∪ B = B and also the same as A ∩ B = A.

For any sets A, B, the set of all elements of B which are not also elements of A is
called the difference of B from A and is denoted by B\A:

B\A = {x : x ∈ B and x /∈ A}.
It is easily seen that

C\(A ∪ B) = (C\A) ∩ (C\B),

C\(A ∩ B) = (C\A) ∪ (C\B).

An important special case is where all sets under consideration are subsets of a
given universal set X . For any A ⊆ X , we have

∅ ∪ A = A, ∅ ∩ A = ∅,
X ∪ A = X, X ∩ A = A.

The set X\A is said to be the complement of A (in X ) and may be denoted by Ac for
fixed X . Evidently

∅c = X, Xc = ∅,
A ∪ Ac = X, A ∩ Ac = ∅,

(Ac)c = A.

By taking C = X in the previous relations for differences, we obtain ‘De Morgan’s
laws’:

(A ∪ B)c = Ac ∩ Bc, (A ∩ B)c = Ac ∪ Bc.

Since A ∩ B = (Ac ∪ Bc)c, set intersection can be defined in terms of unions and
complements. Alternatively, since A ∪ B = (Ac ∩ Bc)c, set union can be defined in
terms of intersections and complements.

For any sets A, B, the set of all ordered pairs (a, b) with a ∈ A and b ∈ B is called
the (Cartesian) product of A by B and is denoted by A × B .

Similarly one can define the product of more than two sets. We mention only one
special case. For any positive integer n, we write An instead of A× · · · × A for the set
of all (ordered) n-tuples (a1, . . . , an) with a j ∈ A (1 ≤ j ≤ n). We call a j the j -th
coordinate of the n-tuple.

A binary relation on a set A is just a subset R of the product set A × A. For any
a, b ∈ A, we write a Rb if (a, b) ∈ R. A binary relation R on a set A is said to be
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reflexive if a Ra for every a ∈ A;
symmetric if bRa whenever a Rb;
transitive if a Rc whenever a Rb and bRc.

It is said to be an equivalence relation if it is reflexive, symmetric and transitive.
If R is an equivalence relation on a set A and a ∈ A, the equivalence class Ra

of a is the set of all x ∈ A such that x Ra. Since R is reflexive, a ∈ Ra . Since R is
symmetric, b ∈ Ra implies a ∈ Rb. Since R is transitive, b ∈ Ra implies Rb ⊆ Ra . It
follows that, for all a, b ∈ A, either Ra = Rb or Ra ∩ Rb = ∅.

A partition C of a set A is a collection of nonempty subsets of A such that each
element of A is an element of exactly one of the subsets in C .

Thus the distinct equivalence classes corresponding to a given equivalence relation
on a set A form a partition of A. It is not difficult to see that, conversely, if C is a
partition of A, then an equivalence relation R is defined on A by taking R to be the
set of all (a, b) ∈ A × A for which a and b are elements of the same subset in the
collection C .

Let A and B be nonempty sets. A mapping f of A into B is a subset of A× B with
the property that, for each a ∈ A, there is a unique b ∈ B such that (a, b) ∈ f . We
write f (a) = b if (a, b) ∈ f , and say that b is the image of a under f or that b is the
value of f at a. We express that f is a mapping of A into B by writing f : A → B
and we put

f (A) = { f (a) : a ∈ A}.
The term function is often used instead of ‘mapping’, especially when A and B are

sets of real or complex numbers, and ‘mapping’ itself is often abbreviated to map.
If f is a mapping of A into B , and if A′ is a nonempty subset of A, then the

restriction of f to A′ is the set of all (a, b) ∈ f with a ∈ A′.
The identity map i A of a nonempty set A into itself is the set of all ordered pairs

(a, a) with a ∈ A.
If f is a mapping of A into B , and g a mapping of B into C , then the composite

mapping g ◦ f of A into C is the set of all ordered pairs (a, c), where c = g(b) and
b = f (a). Composition of mappings is associative, i.e. if h is a mapping of C into D,
then

(h ◦ g) ◦ f = h ◦ (g ◦ f ).

The identity map has the obvious properties f ◦ i A = f and iB ◦ f = f .
Let A, B be nonempty sets and f : A → B a mapping of A into B . The mapping

f is said to be ‘one-to-one’ or injective if, for each b ∈ B , there exists at most one
a ∈ A such that (a, b) ∈ f . The mapping f is said to be ‘onto’ or surjective if, for
each b ∈ B , there exists at least one a ∈ A such that (a, b) ∈ f . If f is both injective
and surjective, then it is said to be bijective or a ‘one-to-one correspondence’. The
nouns injection, surjection and bijection are also used instead of the corresponding
adjectives.

It is not difficult to see that f is injective if and only if there exists a mapping
g : B → A such that g ◦ f = i A, and surjective if and only if there exists a mapping
h : B → A such that f ◦ h = iB . Furthermore, if f is bijective, then g and h are
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unique and equal. Thus, for any bijective map f : A → B , there is a unique inverse
map f −1 : B → A such that f −1 ◦ f = i A and f ◦ f −1 = iB .

If f : A → B and g : B → C are both bijective maps, then g ◦ f : A → C is also
bijective and

(g ◦ f )−1 = f −1 ◦ g−1.

1 Natural Numbers

The natural numbers are the numbers usually denoted by 1, 2, 3, 4, 5, . . . . However,
other notations are also used, e.g. for the chapters of this book. Although one notation
may have considerable practical advantages over another, it is the properties of the
natural numbers which are basic.

The following system of axioms for the natural numbers was essentially given by
Dedekind (1888), although it is usually attributed to Peano (1889):

The natural numbers are the elements of a set N, with a distinguished element 1
(one) and map S : N → N, such that

(N1) S is injective, i.e. if m, n ∈ N and m �= n, then S(m) �= S(n);
(N2) 1 /∈ S(N);
(N3) if M ⊆ N, 1 ∈ M and S(M) ⊆ M , then M = N.

The element S(n) of N is called the successor of n. The axioms are satisfied by
{1, 2, 3, . . .} if we take S(n) to be the element immediately following the element n.

It follows readily from the axioms that 1 is the only element of N which is not in
S(N). For, if M = S(N) ∪ {1}, then M ⊆ N, 1 ∈ M and S(M) ⊆ M . Hence, by (N3),
M = N.

It also follows from the axioms that S(n) �= n for every n ∈ N. For let M be the
set of all n ∈ N such that S(n) �= n. By (N2), 1 ∈ M . If n ∈ M and n′ = S(n) then, by
(N1), S(n′) �= n′. Thus S(M) ⊆ M and hence, by (N3), M = N.

The axioms (N1)–(N3) actually determine N up to ‘isomorphism’. We will deduce
this as a corollary of the following general recursion theorem:

Proposition 1 Given a set A, an element a1 of A and a map T : A → A, there exists
exactly one map ϕ : N → A such that ϕ(1) = a1 and

ϕ(S(n)) = Tϕ(n) for every n ∈ N.

Proof We show first that there is at most one map with the required properties. Let ϕ1
and ϕ2 be two such maps, and let M be the set of all n ∈ N such that

ϕ1(n) = ϕ2(n).

Evidently 1 ∈ M . If n ∈ M , then also S(n) ∈ M , since

ϕ1(S(n)) = Tϕ1(n) = Tϕ2(n) = ϕ2(S(n)).

Hence, by (N3), M = N. That is, ϕ1 = ϕ2.
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We now show that there exists such a map ϕ. Let C be the collection of all
subsets C of N × A such that (1, a1) ∈ C and such that if (n, a) ∈ C , then also
(S(n), T (a)) ∈ C . The collection C is not empty, since it contains N× A. Moreover,
since every set in C contains (1, a1), the intersection D of all sets C ∈ C is not empty.
It is easily seen that actually D ∈ C . By its definition, however, no proper subset of
D is in C .

Let M be the set of all n ∈ N such that (n, a) ∈ D for exactly one a ∈ A and,
for any n ∈ M , define ϕ(n) to be the unique a ∈ A such that (n, a) ∈ D. If M = N,
then ϕ(1) = a1 and ϕ(S(n)) = Tϕ(n) for all n ∈ N. Thus we need only show that
M = N. As usual, we do this by showing that 1 ∈ M and that n ∈ M implies
S(n) ∈ M .

We have (1, a1) ∈ D. Assume (1, a′) ∈ D for some a′ �= a1. If D′ =
D\{(1, a′)}, then (1, a1) ∈ D′. Moreover, if (n, a) ∈ D′ then (S(n), T (a)) ∈ D′,
since (S(n), T (a)) ∈ D and (S(n), T (a)) �= (1, a′). Hence D′ ∈ C . But this is a
contradiction, since D′ is a proper subset of D. We conclude that 1 ∈ M .

Suppose now that n ∈ M and let a be the unique element of A such that (n, a) ∈ D.
Then (S(n), T (a)) ∈ D, since D ∈ C . Assume that (S(n), a′′) ∈ D for some
a′′ �= T (a) and put D′′ = D\{(S(n), a′′)}. Then (S(n), T (a)) ∈ D′′ and (1, a1) ∈ D′′.
For any (m, b) ∈ D′′ we have (S(m), T (b)) ∈ D. If (S(m), T (b)) = (S(n), a′′),
then S(m) = S(n) and T (b) = a′′ �= T (a), which implies m = n and b �= a. Thus
D contains both (n, b) and (n, a), which contradicts n ∈ M . Hence (S(m), T (b)) �=
(S(n), a′′), and so (S(m), T (b)) ∈ D′′. But then D′′ ∈ C , which is also a contradic-
tion, since D′′ is a proper subset of D. We conclude that S(n) ∈ M . �

Corollary 2 If the axioms (N1)–(N3) are also satisfied by a set N′ wth element 1′ and
map S′ : N′ → N′, then there exists a bijective map ϕ of N onto N′ such that ϕ(1) = 1′
and

ϕ(S(n)) = S′ϕ(n) for every n ∈ N.

Proof By taking A = N′, a1 = 1′ and T = S′ in Proposition 1, we see that there
exists a unique map ϕ : N → N′ such that ϕ(1) = 1′ and

ϕ(S(n)) = S′ϕ(n) for every n ∈ N.

By interchanging N and N′, we see also that there exists a unique map ψ : N′ → N
such that ψ(1′) = 1 and

ψ(S′(n′)) = Sψ(n′) for every n′ ∈ N′.

The composite map χ = ψ ◦ϕ of N into N has the properties χ(1) = 1 and χ(S(n)) =
Sχ(n) for every n ∈ N. But, by Proposition 1 again, χ is uniquely determined by these
properties. Hence ψ ◦ ϕ is the identity map on N, and similarly ϕ ◦ ψ is the identity
map on N′. Consequently ϕ is a bijection. �

We can also use Proposition 1 to define addition and multiplication of natural num-
bers. By Proposition 1, for each m ∈ N there exists a unique map sm : N → N such
that

sm(1) = S(m), sm(S(n)) = Ssm(n) for every n ∈ N.
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We define the sum of m and n to be

m + n = sm(n).

It is not difficult to deduce from this definition and the axioms (N1)–(N3) the usual
rules for addition: for all a, b, c ∈ N,

(A1) if a + c = b + c, then a = b; (cancellation law)
(A2) a + b = b + a; (commutative law)
(A3) (a + b)+ c = a + (b + c). (associative law)

By way of example, we prove the cancellation law. Let M be the set of all c ∈ N
such that a + c = b + c only if a = b. Then 1 ∈ M , since sa(1) = sb(1) implies
S(a) = S(b) and hence a = b. Suppose c ∈ M . If a+ S(c) = b+ S(c), i.e. sa(S(c)) =
sb(S(c)), then Ssa(c) = Ssb(c) and hence, by (N1), sa(c) = sb(c). Since c ∈ M , this
implies a = b. Thus also S(c) ∈ M . Hence, by (N3), M = N.

We now show that

m + n �= n for all m, n ∈ N.

For a given m ∈ N, let M be the set of all n ∈ N such that m + n �= n. Then 1 ∈ M
since, by (N2), sm(1) = S(m) �= 1. If n ∈ M , then sm(n) �= n and hence, by (N1),

sm(S(n)) = Ssm(n) �= S(n).

Hence, by (N3), M = N.
By Proposition 1 again, for each m ∈ N there exists a unique map pm : N → N

such that

pm(1) = m,
pm(S(n)) = sm(pm(n)) for every n ∈ N.

We define the product of m and n to be

m · n = pm(n).

From this definition and the axioms (N1)–(N3) we may similarly deduce the usual
rules for multiplication: for all a, b, c ∈ N,

(M1) if a · c = b · c, then a = b; (cancellation law)
(M2) a · b = b · a; (commutative law)
(M3) (a · b) · c = a · (b · c); (associative law)
(M4) a · 1 = a. (identity element)

Furthermore, addition and multiplication are connected by

(AM1) a · (b + c) = (a · b)+ (a · c). (distributive law)

As customary, we will often omit the dot when writing products and we will give
multiplication precedence over addition. With these conventions the distributive law
becomes simply

a(b + c) = ab + ac.
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We show next how a relation of order may be defined on the set N. For any
m, n ∈ N, we say that m is less than n, and write m < n, if

m + m′ = n for some m′ ∈ N.

Evidently m < S(m) for every m ∈ N, since S(m) = m + 1. Also, if m < n, then
either S(m) = n or S(m) < n. For suppose m + m ′ = n. If m′ = 1, then S(m) = n. If
m ′ �= 1, then m′ = m′′ + 1 for some m′′ ∈ N and

S(m)+ m ′′ = (m + 1)+ m′′ = m + (1+ m′′) = m + m′ = n.

Again, if n �= 1, then 1 < n, since the set consisting of 1 and all n ∈ N such that
1 < n contains 1 and contains S(n) if it contains n.

It will now be shown that the relation ‘<’ induces a total order on N, which is
compatible with both addition and multiplication: for all a, b, c ∈ N,

(O1) if a < b and b < c, then a < c; (transitive law)

(O2) one and only one of the following alternatives holds:

a < b, a = b, b < a; (law of trichotomy)

(O3) a + c < b + c if and only if a < b;

(O4) ac < bc if and only if a < b.

The relation (O1) follows directly from the associative law for addition. We now
prove (O2). If a < b then, for some a′ ∈ N,

b = a + a′ = a′ + a �= a.

Together with (O1), this shows that at most one of the three alternatives in (O2) holds.
For a given a ∈ N, let M be the set of all b ∈ N such that at least one of the three

alternatives in (O2) holds. Then 1 ∈ M , since 1 < a if a �= 1. Suppose now that
b ∈ M . If a = b, then a < S(b). If a < b, then again a < S(b), by (O1). If b < a,
then either S(b) = a or S(b) < a. Hence also S(b) ∈ M . Consequently, by (N3),
M = N. This completes the proof of (O2).

It follows from the associative and commutative laws for addition that, if a < b,
then a + c < b + c. On the other hand, by using also the cancellation law we see that
if a + c < b + c, then a < b.

It follows from the distributive law that, if a < b, then ac < bc. Finally, suppose
ac < bc. Then a �= b and hence, by (O2), either a < b or b < a. Since b < a would
imply bc < ac, by what we have just proved, we must actually have a < b.

The law of trichotomy (O2) implies that, for given m, n ∈ N, the equation

m + x = n

has a solution x ∈ N only if m < n.
As customary, we write a ≤ b to denote either a < b or a = b. Also, it is

sometimes convenient to write b > a instead of a < b, and b ≥ a instead of a ≤ b.
A subset M of N is said to have a least element m ′ if m′ ∈ M and m′ ≤ m for

every m ∈ M . The least element m ′ is uniquely determined, if it exists, by (O2). By
what we have already proved, 1 is the least element of N.
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Proposition 3 Any nonempty subset M of N has a least element.

Proof Assume that some nonempty subset M of N does not have a least element.
Then 1 /∈ M , since 1 is the least element of N. Let L be the set of all l ∈ N such that
l < m for every m ∈ M . Then L and M are disjoint and 1 ∈ L. If l ∈ L, then S(l) ≤ m
for every m ∈ M . Since M does not have a least element, it follows that S(l) /∈ M .
Thus S(l) < m for every m ∈ M , and so S(l) ∈ L. Hence, by (N3), L = N. Since
L ∩ M = ∅, this is a contradiction. �

The method of proof by induction is a direct consequence of the axioms defining N.
Suppose that with each n ∈ N there is associated a proposition Pn . To show that Pn is
true for every n ∈ N, we need only show that P1 is true and that Pn+1 is true if Pn is
true.

Proposition 3 provides an alternative approach. To show that Pn is true for every
n ∈ N, we need only show that if Pm is false for some m, then Pl is false for some
l < m. For then the set of all n ∈ N for which Pn is false has no least element and
consequently is empty.

For any n ∈ N, we denote by In the set of all m ∈ N such that m ≤ n. Thus
I1 = {1} and S(n) /∈ In . It is easily seen that

IS(n) = In ∪ {S(n)}.
Also, for any p ∈ IS(n), there exists a bijective map f p of In onto IS(n)\{p}. For, if
p = S(n) we can take f p to be the identity map on In , and if p ∈ In we can take f p to
be the map defined by

f p(p) = S(n), f p(m) = m if m ∈ In\{p}.
Proposition 4 For any m, n ∈ N, if a map f : Im → In is injective and f (Im) �= In,
then m < n.

Proof The result certainly holds when m = 1, since I1 = {1}. Let M be the set of
all m ∈ N for which the result holds. We need only show that if m ∈ M , then also
S(m) ∈ M .

Let f : IS(m) → In be an injective map such that f (IS(m)) �= In and choose
p ∈ In\ f (IS(m)). The restriction g of f to Im is also injective and g(Im) �= In . Since
m ∈ M , it follows that m < n. Assume S(m) = n. Then there exists a bijective map
gp of IS(m)\{p} onto Im . The composite map h = gp ◦ f maps IS(m) into Im and is
injective. Since m ∈ M , we must have h(Im ) = Im . But, since h(S(m)) ∈ Im and h
is injective, this is a contradiction. Hence S(m) < n and, since this holds for every
f, S(m) ∈ M . �

Proposition 5 For any m, n ∈ N, if a map f : Im → In is not injective and f (Im) =
In, then m > n.

Proof The result holds vacuously when m = 1, since any map f : I1 → In is injec-
tive. Let M be the set of all m ∈ N for which the result holds. We need only show that
if m ∈ M , then also S(m) ∈ M .
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Let f : IS(m) → In be a map such that f (IS(m)) = In which is not injective. Then
there exist p, q ∈ IS(m) with p �= q and f (p) = f (q). We may choose the notation
so that q ∈ Im . If f p is a bijective map of Im onto IS(m)\{p}, then the composite map
h = f ◦ f p maps Im onto In . If it is not injective then m > n, since m ∈ M , and
hence also S(m) > n. If h is injective, then it is bijective and has a bijective inverse
h−1 : In → Im . Since h−1(In) is a proper subset of IS(m), it follows from Proposition 4
that n < S(m). Hence S(m) ∈ M . �

Propositions 4 and 5 immediately imply

Corollary 6 For any n ∈ N, a map f : In → In is injective if and only if it is surjec-
tive.

Corollary 7 If a map f : Im → In is bijective, then m = n.

Proof By Proposition 4, m < S(n), i.e. m ≤ n. Replacing f by f −1, we obtain in the
same way n ≤ m. Hence m = n. �

A set E is said to be finite if there exists a bijective map f : E → In for some
n ∈ N. Then n is uniquely determined, by Corollary 7. We call it the cardinality of E
and denote it by #(E).

It is readily shown that if E is a finite set and F a proper subset of E , then F is
also finite and #(F) < #(E). Again, if E and F are disjoint finite sets, then their union
E ∪ F is also finite and #(E ∪ F) = #(E)+ #(F). Furthermore, for any finite sets E
and F , the product set E × F is also finite and #(E × F) = #(E) · #(F).

Corollary 6 implies that, for any finite set E , a map f : E → E is injective if and
only if it is surjective. This is a precise statement of the so-called pigeonhole principle.

A set E is said to be countably infinite if there exists a bijective map f : E → N.
Any countably infinite set may be bijectively mapped onto a proper subset F , since
N is bijectively mapped onto a proper subset by the successor map S. Thus a map
f : E → E of an infinite set E may be injective, but not surjective. It may also be
surjective, but not injective; an example is the map f : N → N defined by f (1) = 1
and, for n �= 1, f (n) = m if S(m) = n.

2 Integers and Rational Numbers

The concept of number will now be extended. The natural numbers 1, 2, 3, . . . suffice
for counting purposes, but for bank balance purposes we require the larger set . . . ,−2,
−1, 0, 1, 2, . . . of integers. (From this point of view, −2 is not so ‘unnatural’.) An
important reason for extending the concept of number is the greater freedom it gives
us. In the realm of natural numbers the equation a + x = b has a solution if and only
if b > a; in the extended realm of integers it will always have a solution.

Rather than introduce a new set of axioms for the integers, we will define them in
terms of natural numbers. Intuitively, an integer is the difference m − n of two natural
numbers m, n, with addition and multiplication defined by

(m − n)+ (p − q) = (m + p)− (n + q),

(m − n) · (p − q) = (mp + nq)− (mq + np).



2 Integers and Rational Numbers 11

However, two other natural numbers m′, n′ may have the same difference as m, n, and
anyway what does m − n mean if m < n? To make things precise, we proceed in the
following way.

Consider the set N × N of all ordered pairs of natural numbers. For any two such
ordered pairs, (m, n) and (m′, n′), we write

(m, n) ∼ (m ′, n′) if m + n′ = m′ + n.

We will show that this is an equivalence relation. It follows at once from the definition
that (m, n) ∼ (m, n) (reflexive law) and that (m, n) ∼ (m′, n′) implies (m′, n′) ∼
(m, n) (symmetric law). It remains to prove the transitive law:

(m, n) ∼ (m ′, n′) and (m ′, n′) ∼ (m ′′, n′′) imply (m, n) ∼ (m ′′, n′′).
This follows from the commutative, associative and cancellation laws for addition
in N. For we have

m + n′ = m′ + n, m′ + n′′ = m′′ + n′,

and hence

(m + n′)+ n′′ = (m′ + n)+ n′′ = (m′ + n′′)+ n = (m′′ + n′)+ n.

Thus

(m + n′′)+ n′ = (m′′ + n)+ n′,

and so m + n′′ = m′′ + n.
The equivalence class containing (1, 1) evidently consists of all pairs (m, n) with

m = n.
We define an integer to be an equivalence class of ordered pairs of natural numbers

and, as is now customary, we denote the set of all integers by Z.
Addition of integers is defined componentwise:

(m, n)+ (p, q) = (m + p, n + q).

To justify this definition we must show that it does not depend on the choice of repre-
sentatives within an equivalence class, i.e. that

(m, n) ∼ (m ′, n′) and (p, q) ∼ (p′, q ′) imply (m + p, n + q) ∼ (m ′ + p′, n′ + q ′).

However, if

m + n′ = m′ + n, p + q ′ = p′ + q,

then

(m + p)+ (n′ + q ′) = (m + n′)+ (p + q ′)
= (m′ + n)+ (p′ + q) = (m ′ + p′)+ (n + q).
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It follows at once from the corresponding properties of natural numbers that, also in
Z, addition satisfies the commutative law (A2) and the associative law (A3). Moreover,
the equivalence class 0 (zero) containing (1,1) is an identity element for addition:

(A4) a + 0 = a for every a.

Furthermore, the equivalence class containing (n,m) is an additive inverse for the
equivalence containing (m, n):

(A5) for each a, there exists − a such that a + (−a) = 0.

From these properties we can now obtain

Proposition 8 For all a, b ∈ Z, the equation a + x = b has a unique solution x ∈ Z.

Proof It is clear that x = (−a) + b is a solution. Moreover, this solution is unique,
since if a + x = a + x ′ then, by adding−a to both sides, we obtain x = x ′. �

Proposition 8 shows that the cancellation law (A1) is a consequence of (A2)–(A5).
It also immediately implies

Corollary 9 For each a ∈ Z, 0 is the only element such that a+0 = a,−a is uniquely
determined by a, and a = −(−a).

As usual, we will henceforth write b − a instead of b + (−a).
Multiplication of integers is defined by

(m, n) · (p, q) = (mp + nq,mq + np).

To justify this definition we must show that (m, n) ∼ (m ′, n′) and (p, q) ∼ (p′, q ′)
imply

(mp + nq,mq + np) ∼ (m′ p′ + n′q ′,m′q ′ + n′ p′).

From m + n′ = m′ + n, by multiplying by p and q we obtain

mp + n′ p = m′ p + np,

m′q + nq = mq + n′q,

and from p + q ′ = p′ + q , by multiplying by m′ and n′ we obtain

m′ p + m′q ′ = m′ p′ + m′q,
n′ p′ + n′q = n′ p + n′q ′.

Adding these four equations and cancelling the terms common to both sides, we get

(mp + nq)+ (m ′q ′ + n′ p′) = (m ′ p′ + n′q ′)+ (mq + np),

as required.
It is easily verified that, also in Z, multiplication satisfies the commutative law

(M2) and the associative law (M3). Moreover, the distributive law (AM1) holds and,
if 1 is the equivalence class containing (1 + 1, 1), then (M4) also holds. (In prac-
tice it does not cause confusion to denote identity elements of N and Z by the same
symbol.)
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Proposition 10 For every a ∈ Z, a · 0 = 0.

Proof We have

a · 0 = a · (0+ 0) = a · 0+ a · 0.
Adding −(a · 0) to both sides, we obtain the result. �

Proposition 10 could also have been derived directly from the definitions, but we
prefer to view it as a consequence of the properties which have been labelled.

Corollary 11 For all a, b ∈ Z,

a(−b) = −(ab), (−a)(−b)= ab.

Proof The first relation follows from

ab + a(−b) = a · 0 = 0,

and the second relation follows from the first, since c = −(−c). �

By the definitions of 0 and 1 we also have

(AM2) 1 �= 0.

(In fact 1 = 0 would imply a = 0 for every a, since a · 1 = a and a · 0 = 0.)
We will say that an integer a is positive if it is represented by an ordered pair

(m, n) with n < m. This definition does not depend on the choice of representative.
For if n < m and m + n′ = m′ + n, then m + n′ < m′ + m and hence n′ < m′.

We will denote by P the set of all positive integers. The law of trichotomy (O2)
for natural numbers immediately implies

(P1) for every a, one and only one of the following alternatives holds:

a ∈ P, a = 0, −a ∈ P.

We say that an integer is negative if it has the form −a, where a ∈ P , and we
denote by −P the set of all negative integers. Since a = −(−a), (P1) says that Z is
the disjoint union of the sets P, {0} and −P .

From the property (O3) of natural numbers we immediately obtain

(P2) if a ∈ P and b ∈ P , then a + b ∈ P .

Furthermore, we have

(P3) if a ∈ P and b ∈ P , then a · b ∈ P .

To prove this we need only show that if m, n, p, q are natural numbers such that n < m
and q < p, then

mq + np < mp + nq.

Since q < p, there exists a natural number q ′ such that q+q ′ = p. But then nq ′ < mq ′,
since n < m, and hence

mq + np = (m + n)q + nq ′ < (m + n)q + mq ′ = mp + nq.
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We may write (P2) and (P3) symbolically in the form

P + P ⊆ P, P · P ⊆ P.

We now show that there are no divisors of zero in Z:

Proposition 12 If a �= 0 and b �= 0, then ab �= 0.

Proof By (P1), either a or−a is positive, and either b or−b is positive. If a ∈ P and
b ∈ P then ab ∈ P , by (P3), and hence ab �= 0, by (P1). If a ∈ P and −b ∈ P , then
a(−b) ∈ P . Hence ab = −(a(−b)) ∈ −P and ab �= 0. Similarly if −a ∈ P
and b ∈ P . Finally, if −a ∈ P and −b ∈ P , then ab = (−a)(−b) ∈ P and
again ab �= 0. �

The proof of Proposition 12 also shows that any nonzero square is positive:

Proposition 13 If a �= 0, then a2 := aa ∈ P.

It follows that 1 ∈ P , since 1 �= 0 and 12 = 1.
The set P of positive integers induces an order relation in Z. Write

a < b if b − a ∈ P,

so that a ∈ P if and only if 0 < a. From this definition and the properties of P it
follows that the order properties (O1)–(O3) hold also in Z, and that (O4) holds in the
modified form:

(O4)′ if 0 < c, then ac < bc if and only if a < b.

We now show that we can represent any a ∈ Z in the form a = b − c, where
b, c ∈ P . In fact, if a = 0, we can take b = 1 and c = 1; if a ∈ P , we can take
b = a + 1 and c = 1; and if −a ∈ P , we can take b = 1 and c = 1− a.

An element a of Z is said to be a lower bound for a subset X of Z if a ≤ x for every
x ∈ X . Proposition 3 immediately implies that if a subset of Z has a lower bound, then
it has a least element.

For any n ∈ N, let n′ be the integer represented by (n + 1, 1). Then n′ ∈ P . We
are going to study the map n → n′ of N into P . The map is injective, since n′ = m′
implies n = m. It is also surjective, since if a ∈ P is represented by (m, n), where
n < m, then it is also represented by (p + 1, 1), where p ∈ N satisfies n + p = m. It
is easily verified that the map preserves sums and products:

(m + n)′ = m′ + n′, (mn)′ = m′n′.

Since 1′ = 1, it follows that S(n)′ = n′ + 1. Furthermore, we have

m′ < n′ if and only if m < n.

Thus the map n → n′ establishes an ‘isomorphism’ of N with P . In other
words, P is a copy of N situated within Z. By identifying n with n′, we may
regard N itself as a subset of Z (and stop talking about P). Then ‘natural num-
ber’ is the same as ‘positive integer’ and any integer is the difference of two natural
numbers.

Number theory, in its most basic form, is the study of the properties of the set Z of
integers. It will be considered in some detail in later chapters of this book, but to relieve
the abstraction of the preceding discussion we consider here the division algorithm:
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Proposition 14 For any integers a, b with a > 0, there exist unique integers q, r such
that

b = qa + r, 0 ≤ r < a.

Proof We consider first uniqueness. Suppose

qa + r = q ′a + r ′, 0 ≤ r, r ′ < a.

If r < r ′, then from

(q − q ′)a = r ′ − r,

we obtain first q > q ′ and then r ′ − r ≥ a, which is a contradiction. If r ′ < r , we
obtain a contradiction similarly. Hence r = r ′, which implies q = q ′.

We consider next existence. Let S be the set of all integers y ≥ 0 which can be
represented in the form y = b − xa for some x ∈ Z. The set S is not empty, since it
contains b− 0 if b ≥ 0 and b− ba if b < 0. Hence S contains a least element r . Then
b = qa + r , where q, r ∈ Z and r ≥ 0. Since r − a = b − (q + 1)a and r is the least
element in S, we must also have r < a. �

The concept of number will now be further extended to include ‘fractions’ or
‘rational numbers’. For measuring lengths the integers do not suffice, since the length
of a given segment may not be an exact multiple of the chosen unit of length. Similarly
for measuring weights, if we find that three identical coins balance five of the chosen
unit weights, then we ascribe to each coin the weight 5/3. In the realm of integers the
equation ax = b frequently has no solution; in the extended realm of rational numbers
it will always have a solution if a �= 0.

Intuitively, a rational number is the ratio or ‘quotient’ a/b of two integers a, b,
where b �= 0, with addition and multiplication defined by

a/b + c/d = (ad + cb)/bd,

a/b · c/d = ac/bd.

However, two other integers a′, b′ may have the same ratio as a, b, and anyway what
does a/b mean? To make things precise, we proceed in much the same way as before.

Put Z× = Z\{0} and consider the set Z×Z× of all ordered pairs (a, b) with a ∈ Z
and b ∈ Z×. For any two such ordered pairs, (a, b) and (a′, b′), we write

(a, b) ∼ (a′, b′) if ab′ = a′b.

To show that this is an equivalence relation it is again enough to verify that (a, b) ∼
(a′, b′) and (a′, b′) ∼ (a′′, b′′) imply (a, b) ∼ (a′′, b′′). The same calculation as
before, with addition replaced by multiplication, shows that (ab′′)b′ = (a′′b)b′. Since
b′ �= 0, it follows that ab′′ = a′′b.

The equivalence class containing (0, 1) evidently consists of all pairs (0, b) with
b �= 0, and the equivalence class containing (1, 1) consists of all pairs (b, b) with
b �= 0.

We define a rational number to be an equivalence class of elements of Z×Z× and,
as is now customary, we denote the set of all rational numbers by Q.
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Addition of rational numbers is defined by

(a, b)+ (c, d) = (ad + cb, bd),

where bd �= 0 since b �= 0 and d �= 0. To justify the definition we must show that

(a, b) ∼ (a′, b′) and (c, d) ∼ (c′, d ′) imply (ad + cb, bd) ∼ (a′d ′ + c′b′, b′d ′).

But if ab′ = a′b and cd ′ = c′d , then

(ad + cb)(b′d ′) = (ab′)(dd ′)+ (cd ′)(bb′)
= (a′b)(dd ′)+ (c′d)(bb′) = (a′d ′ + c′b′)(bd).

It is easily verified that, also in Q, addition satisfies the commutative law (A2)
and the associative law (A3). Moreover (A4) and (A5) also hold, the equivalence class
0 containing (0, 1) being an identity element for addition and the equivalence class
containing (−b, c) being the additive inverse of the equivalence class containing (b, c).

Multiplication of rational numbers is defined componentwise:

(a, b) · (c, d) = (ac, bd).

To justify the definition we must show that

(a, b) ∼ (a′, b′) and (c, d) ∼ (c′, d ′) imply (ac, bd) ∼ (a′c′, b′d ′).
But if ab′ = a′b and cd ′ = c′d , then

(ac)(b′d ′) = (ab′)(cd ′) = (a′b)(c′d) = (a′c′)(bd).

It is easily verified that, also in Q, multiplication satisfies the commutative law
(M2) and the associative law (M3). Moreover (M4) also holds, the equivalence class 1
containing (1, 1) being an identity element for multiplication. Furthermore, addition
and multiplication are connected by the distributive law (AM1), and (AM2) also holds
since (0, 1) is not equivalent to (1, 1).

Unlike the situation for Z, however, every nonzero element of Q has a multiplica-
tive inverse:

(M5) for each a �= 0, there exists a−1 such that aa−1 = 1.

In fact, if a is represented by (b, c), then a−1 is represented by (c, b).
It follows that, for all a, b ∈ Q with a �= 0, the equation ax = b has a unique

solution x ∈ Q, namely x = a−1b. Hence, if a �= 0, then 1 is the only solution of
ax = a, a−1 is uniquely determined by a, and a = (a−1)−1.

We will say that a rational number a is positive if it is represented by an ordered
pair (b, c) of integers for which bc > 0. This definition does not depend on the choice
of representative. For suppose 0 < bc and bc′ = b′c. Then bc′ �= 0, since b �= 0 and
c′ �= 0, and hence 0 < (bc′)2. Since (bc′)2 = (bc)(b′c′) and 0 < bc, it follows that
0 < b′c′.

Our previous use of P having been abandoned in favour of N, we will now denote
by P the set of all positive rational numbers and by −P the set of all rational numbers
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−a, where a ∈ P . From the corresponding result for Z, it follows that (P1) continues
to hold in Q. We will show that (P2) and (P3) also hold.

To see that the sum of two positive rational numbers is again positive, we observe
that if a, b, c, d are integers such that 0 < ab and 0 < cd , then also

0 < (ab)d2 + (cd)b2 = (ad + cb)(bd).

To see that the product of two positive rational numbers is again positive, we observe
that if a, b, c, d are integers such that 0 < ab and 0 < cd , then also

0 < (ab)(cd) = (ac)(bd).

Since (P1)–(P3) all hold, it follows as before that Propositions 12 and 13 also hold
in Q. Hence 1 ∈ P and (O4)′ now implies that a−1 ∈ P if a ∈ P . If a, b ∈ P and
a < b, then b−1 < a−1, since bb−1 = 1 = aa−1 < ba−1.

The set P of positive elements now induces an order relation on Q. We write a < b
if b − a ∈ P , so that a ∈ P if and only if 0 < a. Then the order relations (O1)–(O3)
and (O4)′ continue to hold in Q.

Unlike the situation for Z, however, the ordering of Q is dense, i.e. if a, b ∈ Q and
a < b, then there exists c ∈ Q such that a < c < b. For example, we can take c to be
the solution of (1+ 1)c = a + b.

Let Z′ denote the set of all rational numbers a′ which can be represented by (a, 1)
for some a ∈ Z. For every c ∈ Q, there exist a′, b′ ∈ Z′ with b′ �= 0 such that
c = a′b′−1. In fact, if c is represented by (a, b), we can take a′ to be represented by
(a, 1) and b′ by (b, 1). Instead of c = a′b′−1, we also write c = a′/b′.

For any a ∈ Z, let a′ be the rational number represented by (a, 1). The map a → a′
of Z into Z′ is clearly bijective. Moreover, it preserves sums and products:

(a + b)′ = a′ + b′, (ab)′ = a′b′.

Furthermore,

a′ < b′ if and only if a < b.

Thus the map a → a′ establishes an ‘isomorphism’ of Z with Z′, and Z′ is a copy
of Z situated within Q. By identifying a with a′, we may regard Z itself as a subset of
Q. Then any rational number is the ratio of two integers.

By way of illustration, we show that if a and b are positive rational numbers, then
there exists a positive integer l such that la > b. For if a = m/n and b = p/q , where
m, n, p, q are positive integers, then

(np + 1)a > pm ≥ p ≥ b.

3 Real Numbers

It was discovered by the ancient Greeks that even rational numbers do not suffice for
the measurement of lengths. If x is the length of the hypotenuse of a right-angled tri-
angle whose other two sides have unit length then, by Pythagoras’ theorem, x2 = 2.
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But it was proved, probably by a disciple of Pythagoras, that there is no rational
number x such that x2 = 2. (A more general result is proved in Book X, Propo-
sition 9 of Euclid’s Elements.) We give here a somewhat different proof from the
classical one.

Assume that such a rational number x exists. Since x may be replaced by −x , we
may suppose that x = m/n, where m, n ∈ N. Then m2 = 2n2. Among all pairs m, n
of positive integers with this property, there exists one for which n is least. If we put

p = 2n − m, q = m − n,

then p and q are positive integers, since clearly n < m < 2n. But

p2 = 4n2 − 4mn + m2 = 2(m2 − 2mn + n2) = 2q2.

Since q < n, this contradicts the minimality of n.
If we think of the rational numbers as measuring distances of points on a line from

a given origin O on the line (with distances on one side of O positive and distances on
the other side negative), this means that, even though a dense set of points is obtained
in this way, not all points of the line are accounted for. In order to fill in the gaps the
concept of number will now be extended from ‘rational number’ to ‘real number’.

It is possible to define real numbers as infinite decimal expansions, the rational
numbers being those whose decimal expansions are eventually periodic. However, the
choice of base 10 is arbitrary and carrying through this approach is awkward.

There are two other commonly used approaches, one based on order and the other
on distance. The first was proposed by Dedekind (1872), the second by Méray (1869)
and Cantor (1872). We will follow Dedekind’s approach, since it is conceptually sim-
pler. However, the second method is also important and in a sense more general. In
Chapter VI we will use it to extend the rational numbers to the p-adic numbers.

It is convenient to carry out Dedekind’s construction in two stages. We will first
define ‘cuts’ (which are just the positive real numbers), and then pass from cuts to
arbitrary real numbers in the same way that we passed from the natural numbers to the
integers.

Intuitively, a cut is the set of all rational numbers which represent points of the line
between the origin O and some other point. More formally, we define a cut to be a
nonempty proper subset A of the set P of all positive rational numbers such that

(i) if a ∈ A, b ∈ P and b < a, then b ∈ A;
(ii) if a ∈ A, then there exists a′ ∈ A such that a < a′.

For example, the set I of all positive rational numbers a < 1 is a cut. Similarly, the
set T of all positive rational numbers a such that a2 < 2 is a cut. We will denote the
set of all cuts by P .

For any A, B ∈P we write A < B if A is a proper subset of B . We will show that
this induces a total order on P .

It is clear that if A < B and B < C , then A < C . It remains to show that, for any
A, B ∈ P , one and only one of the following alternatives holds:

A < B, A = B, B < A.
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It is obvious from the definition by set inclusion that at most one holds. Now suppose
that neither A < B nor A = B . Then there exists a ∈ A\B . It follows from (i), applied
to B , that every b ∈ B satisfies b < a and then from (i), applied to A, that b ∈ A. Thus
B < A.

Let S be any nonempty collection of cuts. A cut B is said to be an upper bound
for S if A ≤ B for every A ∈ S , and a lower bound for S if B ≤ A for every
A ∈ S . An upper bound for S is said to be a least upper bound or supremum for S
if it is a lower bound for the collection of all upper bounds. Similarly, a lower bound
for S is said to be a greatest lower bound or infimum for S if it is an upper bound for
the collection of all lower bounds. Clearly, S has at most one supremum and at most
one infimum.

The set P has the following basic property:

(P4) if a nonempty subset S has an upper bound, then it has a least upper bound.

Proof Let C be the union of all sets A ∈ S . By hypothesis there exists a cut B such
that A ⊆ B for every A ∈ S . Since C ⊆ B for any such B , and A ⊆ C for every
A ∈ S , we need only show that C is a cut.

Evidently C is a nonempty proper subset of P , since B �= P . Suppose c ∈ C . Then
c ∈ A for some A ∈ S . If d ∈ P and d < c, then d ∈ A, since A is a cut. Furthermore
c < a′ for some a′ ∈ A. Since A ⊆ C , this proves that C is a cut. �

In the set P of positive rational numbers, the subset T of all x ∈ P such that
x2 < 2 has an upper bound, but no least upper bound. Thus (P4) shows that there is a
difference between the total order on P and that on P .

We now define addition of cuts. For any A, B ∈ P , let A+ B denote the set of all
rational numbers a + b, with a ∈ A and b ∈ B . We will show that also A + B ∈ P .
Evidently A + B is a nonempty subset of P . It is also a proper subset. For choose
c ∈ P\A and d ∈ P\B . Then, by (i), a < c for all a ∈ A and b < d for all b ∈ B .
Since a + b < c + d for all a ∈ A and b ∈ B , it follows that c + d /∈ A + B .

Suppose now that a ∈ A, b ∈ B and that c ∈ P satisfies c < a + b. If c > b, then
c = b + d for some d ∈ P , and d < a. Hence, by (i), d ∈ A and c = d + b ∈ A + B .
Similarly, c ∈ A + B if c > a. Finally, if c ≤ a and c ≤ b, choose e ∈ P so that
e < c. Then e ∈ A and c = e + f for some f ∈ P . Then f ∈ B , since f < c, and
c = e + f ∈ A + B .

Thus A + B has the property (i). It is trivial that A + B also has the property (ii),
since if a ∈ A and b ∈ B , there exists a′ ∈ A such that a < a′ and then a+b < a′ +b.
This completes the proof that A + B is a cut.

It follows at once from the corresponding properties of rational numbers that addi-
tion of cuts satisfies the commutative law (A2) and the associative law (A3).

We consider next the connection between addition and order.

Lemma 15 For any cut A and any c ∈ P, there exists a ∈ A such that a + c /∈ A.

Proof If c /∈ A, then a + c /∈ A for every a ∈ A, since c < a + c. Thus we may
suppose c ∈ A. Choose b ∈ P\A. For some positive integer n we have b < nc and
hence nc /∈ A. If n is the least positive integer such that nc /∈ A, then n > 1 and
(n − 1)c ∈ A. Consequently we can take a = (n − 1)c. �
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Proposition 16 For any cuts A, B, there exists a cut C such that A + C = B if and
only if A < B.

Proof We prove the necessity of the condition by showing that A < A + C for any
cuts A,C . If a ∈ A and c ∈ C , then a < a + c. Since A + C is a cut, it follows that
a ∈ A + C . Consequently A ≤ A + C , and Lemma 15 implies that A �= A + C .

Suppose now that A and B are cuts such that A < B , and let C be the set of all
c ∈ P such that c + d ∈ B for some d ∈ P\A. We are going to show that C is a cut
and that A + C = B .

The set C is not empty. For choose b ∈ B\A and then b′ ∈ B with b < b′. Then
b′ = b + c′ for some c′ ∈ P , which implies c′ ∈ C . On the other hand, C ≤ B , since
c + d ∈ B and d ∈ P imply c ∈ B . Thus C is a proper subset of P .

Suppose c ∈ C , p ∈ P and p < c. We have c + d ∈ B for some d ∈ P\A and
c = p + e for some e ∈ P . Since d + e ∈ P\A and p + (d + e) = c + d ∈ B , it
follows that p ∈ C .

Suppose now that c ∈ C , so that c + d ∈ B for some d ∈ P\A. Choose b ∈ B so
that c+ d < b. Then b = c+ d + e for some e ∈ P . If we put c′ = c+ e, then c < c′.
Moreover c′ ∈ C , since c′ + d = b. This completes the proof that C is a cut.

Suppose a ∈ A and c ∈ C . Then c + d ∈ B for some d ∈ P\A. Hence a < d . It
follows that a + c < c + d , and so a + c ∈ B . Thus A + C ≤ B .

It remains to show that B ≤ A+C . Pick any b ∈ B . If b ∈ A, then also b ∈ A+C ,
since A < A + C . Thus we now assume b /∈ A. Choose b′ ∈ B with b < b′.
Then b′ = b + d for some d ∈ P . By Lemma 15, there exists a ∈ A such that
a+ d /∈ A. Moreover a < b, since b /∈ A, and hence b = a + c for some c ∈ P . Since
c + (a + d) = b + d = b′, it follows that c ∈ C . Thus b ∈ A + C and B ≤ A + C . �

We can now show that addition of cuts satisfies the order relation (O3). Suppose
first that A < B . Then, by Proposition 16, there exists a cut D such that A + D = B .
Hence, for any cut C ,

A + C < (A + C)+ D = B + C.

Suppose next that A+C < B+C . Then A �= B . Since B < A would imply B+C <
A+C , by what we have just proved, it follows from the law of trichotomy that A < B .

From (O3) and the law of trichotomy, it follows that addition of cuts satisfies the
cancellation law (A1).

We next define multiplication of cuts. For any A, B ∈ P , let AB denote the set
of all rational numbers ab, with a ∈ A and b ∈ B . In the same way as for A + B , it
may be shown that AB ∈ P . We note only that if a ∈ A, b ∈ B and c < ab, then
b−1c < a. Hence b−1c ∈ A and c = (b−1c)b ∈ AB .

It follows from the corresponding properties of rational numbers that multiplication
of cuts satisfies the commutative law (M2) and the associative law (M3). Moreover
(M4) holds, the identity element for multiplication being the cut I consisting of all
positive rational numbers less than 1.

We now show that the distributive law (AM1) also holds. The distributive law for
rational numbers shows at once that

A(B + C) ≤ AB + AC.
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It remains to show that a1b + a2c ∈ A(B + C) if a1, a2 ∈ A, b ∈ B and c ∈ C . But

a1b + a2c ≤ a2(b + c) if a1 ≤ a2,

and

a1b + a2c ≤ a1(b + c) if a2 ≤ a1.

In either event it follows that a1b + a2c ∈ A(B + C).
We can now show that multiplication of cuts satisfies the order relation (O4). If

A < B , then there exists a cut D such that A+ D = B and hence AC < AC + DC =
BC . Conversely, suppose AC < BC . Then A �= B . Since B < A would imply
BC < AC , it follows that A < B .

From (O4) and the law of trichotomy (O2) it follows that multiplication of cuts
satisfies the cancellation law (M1).

We next prove the existence of multiplicative inverses. The proof will use the fol-
lowing multiplicative analogue of Lemma 15:

Lemma 17 For any cut A and any c ∈ P with c > 1, there exists a ∈ A such that
ac /∈ A.

Proof Choose any b ∈ A. We may suppose bc ∈ A, since otherwise we can take
a = b. Since b < bc, we have bc = b + d for some d ∈ P . By Lemma 15 we can
choose a ∈ A so that a + d /∈ A. Since b + d ∈ A, it follows that b + d < a + d , and
so b < a. Hence ab−1 > 1 and

a + d < a + (ab−1)d = ab−1(b + d) = ac.

Since a + d /∈ A, it follows that ac /∈ A. �

Proposition 18 For any A ∈P , there exists A−1 ∈P such that AA−1 = I .

Proof Let A−1 be the set of all b ∈ P such that b < c−1 for some c ∈ P\A. It is
easily verified that A−1 is a cut. We note only that a−1 /∈ A−1 if a ∈ A and that, if
b < c−1, then also b < d−1 for some d > c.

We now show that AA−1 = I . If a ∈ A and b ∈ A−1 then ab < 1, since a ≥ b−1

would imply a > c for some c ∈ P\A. Thus AA−1 ≤ I . On the other hand, if
0 < d < 1 then, by Lemma 17, there exists a ∈ A such that ad−1 /∈ A. Choose a′ ∈ A
so that a < a′, and put b = (a′)−1d . Then b < a−1d . Since a−1d = (ad−1)−1, it
follows that b ∈ A−1 and consequently d = a′b ∈ AA−1. Thus I ≤ AA−1. �

For any positive rational number a, the set Aa consisting of all positive rational
numbers c such that c < a is a cut. The map a → Aa of P into P is injective and
preserves sums and products:

Aa+b = Aa + Ab, Aab = Aa Ab.

Moreover, Aa < Ab if and only if a < b.
By identifying a with Aa we may regard P as a subset of P . It is a proper subset,

since (P4) does not hold in P .
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This completes the first stage of Dedekind’s construction. In the second stage we
pass from cuts to real numbers. Intuitively, a real number is the difference of two cuts.
We will deal with the second stage rather briefly since, as has been said, it is completely
analogous to the passage from the natural numbers to the integers.

On the set P×P of all ordered pairs of cuts an equivalence relation is defined by

(A, B) ∼ (A′, B ′) if A + B ′ = A′ + B.

We define a real number to be an equivalence class of ordered pairs of cuts and, as is
now customary, we denote the set of all real numbers by R.

Addition and multiplication are unambiguously defined by

(A, B)+ (C, D) = (A + C, B + D),

(A, B) · (C, D) = (AC + B D, AD + BC).

They obey the laws (A2)–(A5), (M2)–(M5) and (AM1)–(AM2).
A real number represented by (A, B) is said to be positive if B < A. If we denote

by P ′ the set of all positive real numbers, then (P1)–(P3) continue to hold with P ′ in
place of P . An order relation, satisfying (O1)–(O3), is induced on R by writing a < b
if b − a ∈ P ′. Moreover, any a ∈ R may be written in the form a = b − c, where
b, c ∈P ′. It is easily seen that P is isomorphic with P ′. By identifying P with P ′,
we may regard both P and Q as subsets of R. An element of R\Q is said to be an
irrational real number.

Upper and lower bounds, and suprema and infima, may be defined for subsets of
R in the same way as for subsets of P . Moreover, the least upper bound property (P4)
continues to hold in R. By applying (P4) to the subset −S = {−a : a ∈ S } we see
that if a nonempty subset S of R has a lower bound, then it has a greatest lower bound.

The least upper bound property implies the so-called Archimedean property:

Proposition 19 For any positive real numbers a, b, there exists a positive integer n
such that na > b.

Proof Assume, on the contrary, that na ≤ b for every n ∈ N. Then b is an
upper bound for the set {na : n ∈ N}. Let c be a least upper bound for this set. From
na ≤ c for every n ∈ N we obtain (n + 1)a ≤ c for every n ∈ N. But this implies
na ≤ c − a for every n ∈ N. Since c − a < c and c is a least upper bound, we have a
contradiction. �

Proposition 20 For any real numbers a, b with a < b, there exists a rational number
c such that a < c < b.

Proof Suppose first that a ≥ 0. By Proposition 19 there exists a positive integer n
such that n(b− a) > 1. Then b > a+ n−1. There exists also a positive integer m such
that mn−1 > a. If m is the least such positive integer, then (m − 1)n−1 ≤ a and hence
mn−1 ≤ a + n−1 < b. Thus we can take c = mn−1.

If a < 0 and b > 0 we can take c = 0. If a < 0 and b ≤ 0, then −b < d < −a for
some rational d and we can take c = −d . �

Proposition 21 For any positive real number a, there exists a unique positive real
number b such that b2 = a.



3 Real Numbers 23

Proof Let S be the set of all positive real numbers x such that x2 ≤ a. The set S is
not empty, since it contains a if a ≤ 1 and 1 if a > 1. If y > 0 and y2 > a, then
y is an upper bound for S. In particular, 1 + a is an upper bound for S. Let b be the
least upper bound for S. Then b2 = a, since b2 < a would imply (b + 1/n)2 < a for
sufficiently large n > 0 and b2 > a would imply (b− 1/n)2 > a for sufficiently large
n > 0. Finally, if c2 = a and c > 0, then c = b, since

(c − b)(c+ b) = c2 − b2 = 0. �

The unique positive real number b in the statement of Proposition 21 is said to be a
square root of a and is denoted by

√
a or a1/2. In the same way it may be shown that,

for any positive real number a and any positive integer n, there exists a unique positive
real number b such that bn = a, where bn = b · · · b (n times). We say that b is an n-th
root of a and write b = n

√
a or a1/n.

A set is said to be a field if two binary operations, addition and multiplication, are
defined on it with the properties (A2)–(A5), (M2)–(M5) and (AM1)–(AM2). A field
is said to be ordered if it contains a subset P of ‘positive’ elements with the properties
(P1)–(P3). An ordered field is said to be complete if, with the order induced by P , it
has the property (P4).

Propositions 19–21 hold in any complete ordered field, since only the above prop-
erties were used in their proofs. By construction, the set R of all real numbers is a
complete ordered field. In fact, any complete ordered field F is isomorphic to R, i.e.
there exists a bijective map ϕ : F → R such that, for all a, b ∈ F ,

ϕ(a + b) = ϕ(a)+ ϕ(b),
ϕ(ab) = ϕ(a)ϕ(b),

and ϕ(a) > 0 if and only if a ∈ P . We sketch the proof.
Let e be the identity element for multiplication in F and, for any positive integer

n, let ne = e + · · · + e (n summands). Since F is ordered, ne is positive and so has a
multiplicative inverse. For any rational number m/n, where m, n ∈ Z and n > 0, write
(m/n)e = m(ne)−1 if m > 0,= −(−m)(ne)−1 if m < 0, and = 0 if m = 0. The
elements (m/n)e form a subfield of F isomorphic to Q and we define ϕ((m/n)e) =
m/n. For any a ∈ F , we define ϕ(a) to be the least upper bound of all rational numbers
m/n such that (m/n)e ≤ a. One verifies first that the map ϕ : F → R is bijective and
that ϕ(a) < ϕ(b) if and only if a < b. One then deduces that ϕ preserves sums and
products.

Actually, any bijective map ϕ : F → R which preserves sums and products is also
order-preserving. For, by Proposition 21, b > a if and only if b − a = c2 for some
c �= 0, and then

ϕ(b)− ϕ(a) = ϕ(b − a) = ϕ(c2) = ϕ(c)2 > 0.

Those whose primary interest lies in real analysis may define R to be a complete
ordered field and omit the tour through N,Z,Q and P . That is, one takes as axioms
the 14 properties above which define a complete ordered field and simply assumes that
they are consistent.
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The notion of convergence can be defined in any totally ordered set. A sequence
{an} is said to converge, with limit l, if for any l ′, l ′′ such that l ′ < l < l ′′, there exists
a positive integer N = N(l ′, l ′′) such that

l ′ < an < l ′′ for every n ≥ N.

The limit l of the convergent sequence {an} is clearly uniquely determined; we write

lim
n→∞ an = l,

or an → l as n →∞.
It is easily seen that any convergent sequence is bounded, i.e. it has an upper bound

and a lower bound. A trivial example of a convergent sequence is the constant sequence
{an}, where an = a for every n; its limit is again a.

In the set R of real numbers, or in any totally ordered set in which each bounded
sequence has a least upper bound and a greatest lower bound, the definition of conver-
gence can be reformulated. For, let {an} be a bounded sequence. Then, for any positive
integer m, the subsequence {an}n≥m has a greatest lower bound bm and a least upper
bound cm :

bm = inf
n≥m

an, cm = sup
n≥m

an.

The sequences {bm}m≥1 and {cm}m≥1 are also bounded and, for any positive integer m,

bm ≤ bm+1 ≤ cm+1 ≤ cm .

If we define the lower limit and upper limit of the sequence {an} by

lim
n→∞

an := sup
m≥1

bm, lim
n→∞ an := inf

m≥1
cm,

then limn→∞an ≤ limn→∞an , and it is readily shown that limn→∞ an = l if and only
if

lim
n→∞

an = l = lim
n→∞ an.

A sequence {an} is said to be nondecreasing if an ≤ an+1 for every n and nonin-
creasing if an+1 ≤ an for every n. It is said to be monotonic if it is either nondecreasing
or nonincreasing.

Proposition 22 Any bounded monotonic sequence of real numbers is convergent.

Proof Let {an} be a bounded monotonic sequence and suppose, for definiteness, that
it is nondecreasing: a1 ≤ a2 ≤ a3 ≤ · · · . In this case, in the notation used above we
have bm = am and cm = c1 for every m. Hence

lim
n→∞

an = sup
m≥1

am = c1 = lim
n→∞ an. �

Proposition 22 may be applied to the centuries-old algorithm for calculating square
roots, which is commonly used today in pocket calculators. Take any real number
a > 1 and put

x1 = (1+ a)/2.
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Then x1 > 1 and x2
1 > a, since (a − 1)2 > 0. Define the sequence {xn} recursively by

xn+1 = (xn + a/xn)/2 (n ≥ 1).

It is easily verified that if xn > 1 and x2
n > a, then xn+1 > 1, x2

n+1 > a and xn+1 < xn .
Since the inequalities hold for n = 1, it follows that they hold for all n. Thus the
sequence {xn} is nonincreasing and bounded, and therefore convergent. If xn → b,
then a/xn → a/b and xn+1 → b. Hence b = (b+a/b)/2, which simplifies to b2 = a.

We consider now sequences of real numbers which are not necessarily monotonic.

Lemma 23 Any sequence {an} of real numbers has a monotonic subsequence.

Proof Let M be the set of all positive integers m such that am ≥ an for every n > m.
If M contains infinitely many positive integers m1 < m2 < · · · , then {amk } is a
nonincreasing subsequence of {an}. If M is empty or finite, there is a positive integer
n1 such that no positive integer n ≥ n1 is in M . Then an2 > an1 for some n2 > n1,
an3 > an2 for some n3 > n2, and so on. Thus {ank } is a nondecreasing subsequence of
{an}. �

It is clear from the proof that Lemma 23 also holds for sequences of elements of
any totally ordered set. In the case of R, however, it follows at once from Lemma 23
and Proposition 22 that

Proposition 24 Any bounded sequence of real numbers has a convergent subse-
quence.

Proposition 24 is often called the Bolzano–Weierstrass theorem. It was stated by
Bolzano (c. 1830) in work which remained unpublished until a century later. It became
generally known through the lectures of Weierstrass (c. 1874).

A sequence {an} of real numbers is said to be a fundamental sequence, or ‘Cauchy
sequence’, if for each ε > 0 there exists a positive integer N = N(ε) such that

−ε < ap − aq < ε for all p, q ≥ N.

Any fundamental sequence {an} is bounded, since any finite set is bounded and

aN − ε < ap < aN + ε for p ≥ N.

Also, any convergent sequence is a fundamental sequence. For suppose an → l as
n →∞. Then, for any ε > 0, there exists a positive integer N such that

l − ε/2 < an < l + ε/2 for every n ≥ N.

It follows that

−ε < ap − aq < ε for p ≥ q ≥ N.

The definitions of convergent sequence and fundamental sequence, and the preced-
ing result that ‘convergent’ implies ‘fundamental’, hold also for sequences of rational
numbers, and even for sequences with elements from any ordered field. However, for
sequences of real numbers there is a converse result:
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Proposition 25 Any fundamental sequence of real numbers is convergent.

Proof If {an} is a fundamental sequence of real numbers, then {an} is bounded and,
for any ε > 0, there exists a positive integer m = m(ε) such that

−ε/2 < ap − aq < ε/2 for all p, q ≥ m.

But, by Proposition 24, the sequence {an} has a convergent subsequence {ank }. If l is
the limit of this subsequence, then there exists a positive integer N ≥ m such that

l − ε/2 < ank < l + ε/2 for nk ≥ N.

It follows that

l − ε < an < l + ε for n ≥ N.

Thus the sequence {an} converges with limit l. �

Proposition 25 was known to Bolzano (1817) and was clearly stated in the influ-
ential Cours d’analyse of Cauchy (1821). However, a rigorous proof was impossible
until the real numbers themselves had been precisely defined.

The Méray–Cantor method of constructing the real numbers from the
rationals is based on Proposition 25. We define two fundamental sequences {an} and
{a′n} of rational numbers to be equivalent if an − a′n → 0 as n → ∞. This is indeed
an equivalence relation, and we define a real number to be an equivalence class of
fundamental sequences. The set of all real numbers acquires the structure of a field if
addition and multiplication are defined by

{an} + {bn} = {an + bn}, {an} · {bn} = {anbn}.
It acquires the structure of a complete ordered field if the fundamental sequence {an} is
said to be positive when it has a positive lower bound. The field Q of rational numbers
may be regarded as a subfield of the field thus constructed by identifying the ratio-
nal number a with the equivalence class containing the constant sequence {an}, where
an = a for every n.

It is not difficult to show that an ordered field is complete if every bounded
monotonic sequence is convergent, or if every bounded sequence has a convergent
subsequence. In this sense, Propositions 22 and 24 state equivalent forms for the least
upper bound property. This is not true, however, for Proposition 25. An ordered field
need not have the least upper bound property, even though every fundamental sequence
is convergent. It is true, however, that an ordered field has the least upper bound
property if and only if it has the Archimedean property (Proposition 19) and every
fundamental sequence is convergent.

In a course of real analysis one would now define continuity and prove those
properties of continuous functions which, in the 18th century, were assumed as
‘geometrically obvious’. For example, for given a, b ∈ R with a < b, let I = [a, b] be
the interval consisting of all x ∈ R such that a ≤ x ≤ b. If f : I → R is continuous,
then it attains its supremum, i.e. there exists c ∈ I such that f (x) ≤ f (c) for every
x ∈ I . Also, if f (a) f (b) < 0, then f (d) = 0 for some d ∈ I (the intermediate-
value theorem). Real analysis is not our primary concern, however, and we do not feel
obliged to establish even those properties which we may later use.
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4 Metric Spaces

The notion of convergence is meaningful not only for points on a line, but also for
points in space, where there is no natural relation of order. We now reformulate our
previous definition, so as to make it more generally applicable.

The absolute value |a| of a real number a is defined by

|a| = a if a ≥ 0,

|a| = −a if a < 0.

It is easily seen that absolute values have the following properties:

|0| = 0, |a| > 0 if a �= 0;
|a| = | − a|;

|a + b| ≤ |a| + |b|.
The first two properties follow at once from the definition. To prove the third, we ob-
serve first that a + b ≤ |a| + |b|, since a ≤ |a| and b ≤ |b|. Replacing a by −a and b
by −b, we obtain also −(a + b) ≤ |a| + |b|. But |a + b| is either a + b or −(a + b).

The distance between two real numbers a and b is defined to be the real number

d(a, b) = |a − b|.
From the preceding properties of absolute values we obtain their counterparts for dis-
tances:

(D1) d(a, a) = 0, d(a, b) > 0 if a �= b;
(D2) d(a, b) = d(b, a);
(D3) d(a, b) ≤ d(a, c)+ d(c, b).

The third property is known as the triangle inequality, since it may be interpreted as
saying that, in any triangle, the length of one side does not exceed the sum of the
lengths of the other two.

Fréchet (1906) recognized these three properties as the essential characteristics of
any measure of distance and introduced the following general concept. A set E is a
metric space if with each ordered pair (a, b) of elements of E there is associated a real
number d(a, b), so that the properties (D1)–(D3) hold for all a, b, c ∈ E .

We note first some simple consequences of these properties. For all a, b, a′, b′ ∈ E
we have

|d(a, b)− d(a′, b′)| ≤ d(a, a′)+ d(b, b′) (∗)
since, by (D2) and (D3),

d(a, b) ≤ d(a, a′)+ d(a′, b′)+ d(b, b′),
d(a′, b′) ≤ d(a, a′)+ d(a, b)+ d(b, b′).

Taking b = b′ in (∗), we obtain from (D1),

|d(a, b)− d(a′, b)| ≤ d(a, a′). (∗∗)
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In any metric space there is a natural topology. A subset G of a metric space E
is open if for each x ∈ G there is a positive real number δ = δ(x) such that G also
contains the whole open ball βδ(x) = {y ∈ E : d(x, y) < δ}. A set F ⊆ E is closed if
its complement E\F is open.

For any set A ⊆ E , its closure Ā is the intersection of all closed sets containing it,
and its interior int A is the union of all open sets contained in it.

A subset F of E is connected if it is not contained in the union of two open subsets
of E whose intersections with F are disjoint and nonempty. A subset F of E is (se-
quentially) compact if every sequence of elements of F has a subsequence converging
to an element of F (and locally compact if this holds for every bounded sequence of
elements of F).

A map f : X → Y from one metric space X to another metric space Y is contin-
uous if, for each open subset G of Y , the set of all x ∈ X such that f (x) ∈ G is an
open subset of X . The two properties stated at the end of §3 admit far-reaching gen-
eralizations for continuous maps between subsets of metric spaces, namely that under
a continuous map the image of a compact set is again compact, and the image of a
connected set is again connected.

There are many examples of metric spaces:

(i) Let E = Rn be the set of all n-tuples a = (α1, . . . , αn) of real numbers and define

d(b, c) = |b − c|,
where b − c = (β1 − γ1, . . . , βn − γn) if b = (β1, . . . , βn) and c = (γ1, . . . , γn), and

|a| = max
1≤ j≤n

|α j |.

Alternatively, one can replace the norm |a| by either

|a|1 =
n∑

j=1

|α j |

or

|a|2 =
( n∑

j=1

|α j |2
)1/2

.

In the latter case, d(b, c) is the Euclidean distance between b and c. The triangle in-
equality in this case follows from the Cauchy–Schwarz inequality: for any real numbers
β j , γ j ( j = 1, . . . , n) ( n∑

j=1

β jγ j

)2

≤
( n∑

j=1

β2
j

)( n∑
j=1

γ 2
j

)
.

(ii) Let E = Fn
2 be the set of all n-tuples a = (α1, . . . , αn), where α j = 0 or 1

for each j , and define the Hamming distance d(b, c) between b = (β1, . . . , βn) and
c = (γ1, . . . , γn) to be the number of j such that β j �= γ j . This metric space plays a
basic role in the theory of error-correcting codes.
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(iii) Let E = C (I ) be the set of all continuous functions f : I → R, where

I = [a, b] = {x ∈ R : a ≤ x ≤ b}
is an interval of R, and define d(g, h) = |g − h|, where

| f | = sup
a≤x≤b

| f (x)|.

(A well-known property of continuous functions ensures that f is bounded on I .)
Alternatively, one can replace the norm | f | by either

| f |1 =
∫ b

a
| f (x)|dx

or

| f |2 =
(∫ b

a
| f (x)|2dx

)1/2

.

(iv) Let E = C (R) be the set of all continuous functions f : R → R and define

d(g, h) =
∑
N≥1

dN (g, h)/2
N [1+ dN (g, h)],

where dN (g, h) = sup|x |≤N |g(x)− h(x)|. The triangle inequality (D3) follows from
the inequality

|α + β|/[1+ |α + β|] ≤ |α|/[1+ |α|]+ |β|/[1+ |β|]
for arbitrary real numbers α, β.

The metric here has the property that d( fn, f )→ 0 if and only if fn(x)→ f (x)
uniformly on every bounded subinterval of R. It may be noted that, even though E is
a vector space, the metric is not derived from a norm since, if λ ∈ R, one may have
d(λg, λh) �= |λ|d(g, h).
(v) Let E be the set of all measurable functions f : I → R, where I = [a, b] is an
interval of R, and define

d(g, h) =
∫ b

a
|g(x)− h(x)|(1+ |g(x)− h(x)|)−1dx .

In order to obtain (D1), we identify functions which take the same value at all points
of I , except for a set of measure zero.

Convergence with respect to this metric coincides with convergence in measure,
which plays a role in the theory of probability.

(vi) Let E = F∞2 be the set of all infinite sequences a = (α1, α2, . . .), where α j = 0 or
1 for every j , and define d(a, a) = 0, d(a, b) = 2−k if a �= b, where b = (β1, β2, . . .)
and k is the least positive integer such that αk �= βk .
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Here the triangle inequality holds in the stronger form

d(a, b) ≤ max[d(a, c), d(c, b)].

This metric space plays a basic role in the theory of dynamical systems.

(vii) A connected graph can be given the structure of a metric space by defining the dis-
tance between two vertices to be the number of edges on the shortest path joining them.

Let E be an arbitrary metric space and {an} a sequence of elements of E . The
sequence {an} is said to converge, with limit a ∈ E , if

d(an, a)→ 0 as n →∞,
i.e. if for each real ε > 0 there is a corresponding positive integer N = N(ε) such that
d(an, a) < ε for every n ≥ N .

The limit a is uniquely determined, since if also d(an, a′)→ 0, then

d(a, a′) ≤ d(an, a)+ d(an, a
′),

and the right side can be made arbitrarily small by taking n sufficiently large. We write

lim
n→∞ an = a,

or an → a as n →∞. If the sequence {an} has limit a, then so also does any (infinite)
subsequence.

If an → a and bn → b, then d(an, bn)→ d(a, b), as one sees by taking a′ = an

and b′ = bn in (∗).
The sequence {an} is said to be a fundamental sequence, or ‘Cauchy sequence’,

if for each real ε > 0 there is a corresponding positive integer N = N(ε) such that
d(am, an) < ε for all m, n ≥ N .

If {an} and {bn} are fundamental sequences then, by (∗), the sequence {d(an, bn)}
of real numbers is a fundamental sequence, and therefore convergent.

A set S ⊆ E is said to be bounded if the set of all real numbers d(a, b) with
a, b ∈ S is a bounded subset of R.

Any fundamental sequence {an} is bounded, since if

d(am, an) < 1 for all m, n ≥ N,

then

d(am, an) < 1+ δ for all m, n ∈ N,

where δ = max1≤ j<k≤N d(a j , ak).
Furthermore, any convergent sequence {an} is a fundamental sequence, as one sees

by taking a = limn→∞ an in the inequality

d(am, an) ≤ d(am, a)+ d(an, a).

A metric space is said to be complete if, conversely, every fundamental sequence
is convergent.
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By generalizing the Méray–Cantor method of extending the rational numbers to
the real numbers, Hausdorff (1913) showed that any metric space can be embedded in
a complete metric space. To state his result precisely, we introduce some definitions.

A subset F of a metric space E is said to be dense in E if, for each a ∈ E and each
real ε > 0, there exists some b ∈ F such that d(a, b) < ε.

A map σ from one metric space E to another metric space E ′ is necessarily injec-
tive if it is distance-preserving, i.e. if

d′(σ (a), σ (b)) = d(a, b) for all a, b ∈ E .

If the map σ is also surjective, then it is said to be an isometry and the metric spaces
E and E ′ are said to be isometric.

A metric space Ē is said to be a completion of a metric space E if Ē is complete
and E is isometric to a dense subset of Ē . It is easily seen that any two completions of
a given metric space are isometric.

Hausdorff’s result says that any metric space E has a completion Ē . We sketch the
proof. Define two fundamental sequences {an} and {a′n} in E to be equivalent if

lim
n→∞ d(an, a

′
n) = 0.

It is easily shown that this is indeed an equivalence relation. Moreover, if the funda-
mental sequences {an}, {bn} are equivalent to the fundamental sequences {a′n}, {b′n}
respectively, then

lim
n→∞ d(an, bn) = lim

n→∞ d(a′n, b′n).

We can give the set Ē of all equivalence classes of fundamental sequences the
structure of a metric space by defining

d̄({an}, {bn}) = lim
n→∞ d(an, bn).

For each a ∈ E , let ā be the equivalence class in Ē which contains the fundamental
sequence {an} such that an = a for every n. Since

d̄(ā, b̄) = d(a, b) for all a, b ∈ E,

E is isometric to the set E ′ = {ā : a ∈ E}. It is not difficult to show that E ′ is dense in
Ē and that Ē is complete.

Which of the previous examples of metric spaces are complete? In example (i), the
completeness of Rn with respect to the first definition of distance follows directly from
the completeness of R. It is also complete with respect to the two alternative definitions
of distance, since a sequence which converges with respect to one of the three metrics
also converges with respect to the other two. Indeed it is easily shown that, for every
a ∈ Rn ,

|a| ≤ |a|2 ≤ |a|1
and

|a|1 ≤ n1/2|a|2, |a|2 ≤ n1/2|a|.
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In example (ii), the completeness of Fn
2 is trivial, since any fundamental sequence

is ultimately constant.
In example (iii), the completeness of C (I ) with respect to the first definition of

distance follows from the completeness of R and the fact that the limit of a uniformly
convergent sequence of continuous functions is again a continuous function.

However, C (I ) is not complete with respect to either of the two alternative defini-
tions of distance. It is possible also for a sequence to converge with respect to the two
alternative definitions of distance, but not with respect to the first definition. Similarly,
a sequence may converge in the first alternative metric, but not even be a fundamental
sequence in the second.

The completions of the metric space C (I ) with respect to the two alternative met-
rics may actually be identified with spaces of functions. The completion for the first
alternative metric is the set L(I ) of all Lebesgue measurable functions f : I → R
such that ∫ b

a
| f (x)|dx <∞,

functions which take the same value at all points of I , except for a set of measure zero,
being identified. The completion L2(I ) for the second alternative metric is obtained
by replacing

∫ b
a | f (x)|dx by

∫ b
a | f (x)|2dx in this statement.

It may be shown that the metric spaces of examples (iv)–(vi) are all complete. In
example (vi), the strong triangle inequality implies that {an} is a fundamental sequence
if (and only if) d(an+1, an)→ 0 as n →∞.

Let E be an arbitrary metric space and f : E → E a map of E into itself. A point
x̄ ∈ E is said to be a fixed point of f if f (x̄) = x̄ . A useful property of complete metric
spaces is the following contraction principle, which was first established in the present
generality by Banach (1922), but was previously known in more concrete situations.

Proposition 26 Let E be a complete metric space and let f : E → E be a map of E
into itself. If there exists a real number θ , with 0 < θ < 1, such that

d( f (x ′), f (x ′′)) ≤ θd(x ′, x ′′) for all x ′, x ′′ ∈ E,

then the map f has a unique fixed point x̄ ∈ E.

Proof It is clear that there is at most one fixed point, since 0 ≤ d(x ′, x ′′) ≤ θd(x ′, x ′′)
implies x ′ = x ′′. To prove that a fixed point exists we use the method of successive
approximations.

Choose any x0 ∈ E and define the sequence {xn} recursively by

xn = f (xn−1) (n ≥ 1).

For any k ≥ 1 we have

d(xk+1, xk) = d( f (xk), f (xk−1)) ≤ θd(xk, xk−1).

Applying this k times, we obtain

d(xk+1, xk) ≤ θ kd(x1, x0).
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Consequently, if n > m ≥ 0,

d(xn, xm) ≤ d(xn, xn−1)+ d(xn−1, xn−2)+ · · · + d(xm+1, xm)

≤ (θn−1 + θn−2 + · · · + θm)d(x1, x0)

≤ θm(1− θ)−1d(x1, x0),

since 0 < θ < 1. It follows that {xn} is a fundamental sequence and so a convergent
sequence, since E is complete. If x̄ = limn→∞ xn , then

d( f (x̄), x̄) ≤ d( f (x̄), xn+1)+ d(xn+1, x̄)

≤ θd(x̄, xn)+ d(x̄, xn+1).

Since the right side can be made less than any given positive real number by taking n
large enough, we must have f (x̄) = x̄ . The proof shows also that, for any m ≥ 0,

d(x̄, xm) ≤ θm(1− θ)−1d(x1, x0). �

The contraction principle is surprisingly powerful, considering the simplicity of its
proof. We give two significant applications: an inverse function theorem and an exis-
tence theorem for ordinary differential equations. In both cases we will use the notion
of differentiability for functions of several real variables. The unambitious reader may
simply take n = 1 in the following discussion (so that ‘invertible’ means ‘nonzero’).
Functions of several variables are important, however, and it is remarkable that the
proper definition of differentiability in this case was first given by Stolz (1887).

A map ϕ : U → Rm , where U ⊆ Rn is a neighbourhood of x0 ∈ Rn (i.e., U
contains some open ball {x ∈ Rn : |x − x0| < ρ}), is said to be differentiable at x0 if
there exists a linear map A : Rn → Rm such that

|ϕ(x)− ϕ(x0)− A(x − x0)|/|x − x0| → 0 as |x − x0| → 0.

(The inequalities between the various norms show that it is immaterial which norm is
used.) The linear map A, which is then uniquely determined, is called the derivative of
ϕ at x0 and will be denoted by ϕ′(x0).

This definition is a natural generalization of the usual definition when m = n = 1,
since it says that the difference ϕ(x0+ h)− ϕ(x0) admits the linear approximation Ah
for |h| → 0.

Evidently, if ϕ1 and ϕ2 are differentiable at x0, then so also is ϕ = ϕ1 + ϕ2 and

ϕ′(x0) = ϕ ′1(x0)+ ϕ′2(x0).

It also follows directly from the definition that derivatives satisfy the chain rule: If
ϕ : U → Rm , where U is a neighbourhood of x0 ∈ Rn , is differentiable at x0, and if
ψ : V → Rl , where V is a neighbourhood of y0 = ϕ(x0) ∈ Rm , is differentiable at y0,
then the composite map χ = ψ ◦ ϕ : U → Rl is differentiable at x0 and

χ ′(x0) = ψ ′(y0)ϕ
′(x0),

the right side being the composite linear map.
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We will also use the notion of norm of a linear map. If A : Rn → Rm is a linear
map, its norm |A| is defined by

|A| = sup
|x |≤1

|Ax |.

Evidently

|A1 + A2| ≤ |A1| + |A2|.
Furthermore, if B : Rm → Rl is another linear map, then

|B A| ≤ |B||A|.
Hence, if m = n and |A| < 1, then the linear map I − A is invertible, its inverse being
given by the geometric series

(I − A)−1 = I + A + A2 + · · · .
It follows that for any invertible linear map A : Rn → Rn , if B : Rn → Rn is a lin-

ear map such that |B− A| < |A−1|−1, then B is also invertible and |B−1− A−1| → 0
as |B − A| → 0.

If ϕ : U → Rm is differentiable at x0 ∈ Rn , then it is also continuous at x0, since

|ϕ(x)− ϕ(x0)| ≤ |ϕ(x)− ϕ(x0)− ϕ′(x0)(x − x0)| + |ϕ′(x0)||x − x0|.
We say that ϕ is continuously differentiable in U if it is differentiable at each point of
U and if the derivative ϕ ′(x) is a continuous function of x in U . The inverse function
theorem says:

Proposition 27 Let U0 be a neighbourhood of x0 ∈ Rn and let ϕ : U0 → Rn be a
continuously differentiable map for which ϕ′(x0) is invertible.

Then, for some δ > 0, the ball U = {x ∈ Rn : |x − x0| < δ} is contained in U0
and

(i) the restriction of ϕ to U is injective;
(ii) V := ϕ(U) is open, i.e. if η ∈ V , then V contains all y ∈ Rn near η;

(iii) the inverse map ψ : V → U is also continuously differentiable and, if y = ϕ(x),
then ψ ′(y) is the inverse of ϕ′(x).

Proof To simplify notation, assume x0 = ϕ(x0) = 0 and write A = ϕ′(0). For any
y ∈ Rn , put

fy(x) = x + A−1[y − ϕ(x)].
Evidently x is a fixed point of fy if and only if ϕ(x) = y. The map fy is also contin-
uously differentiable and

f ′y(x) = I − A−1ϕ′(x) = A−1[A − ϕ′(x)].
Since ϕ′(x) is continuous, we can choose δ > 0 so that the ball U = {x ∈ Rn : |x | < δ}
is contained in U0 and

| f ′y(x)| ≤ 1/2 for x ∈ U.
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If x1, x2 ∈ U , then

| fy(x2)− fy(x1)| =
∣∣∣∣ ∫ 1

0
f ′((1− t)x1 + tx2)(x2 − x1)dt

∣∣∣∣
≤ |x2 − x1|/2.

It follows that fy has at most one fixed point in U . Since this holds for arbitrary y ∈ Rn ,
the restriction of ϕ to U is injective.

Suppose next that η = ϕ(ξ) for some ξ ∈ U . We wish to show that, if y is near η,
the map fy has a fixed point near ξ .

Choose r = r(ξ) > 0 so that the closed ball Br = {x ∈ Rn : |x − ξ | ≤ r} is
contained in U , and fix y ∈ Rn so that |y − η| < r/2|A−1|. Then

| fy(ξ)− ξ | = |A−1(y − η)|
≤ |A−1||y − η| < r/2.

Hence if |x − ξ | ≤ r , then

| f y(x)− ξ | ≤ | fy(x)− fy(ξ)| + | fy(ξ)− ξ |
≤ |x − ξ |/2+ r/2 ≤ r.

Thus fy(Br ) ⊆ Br . Also, if x1, x2 ∈ Br , then

| fy(x2)− fy(x1)| ≤ |x2 − x1|/2.
But Br is a complete metric space, with the same metric as Rn , since it is a closed
subset (if xn ∈ Br and xn → x in Rn , then also x ∈ Br ). Consequently, by the con-
traction principle (Proposition 26), fy has a fixed point x ∈ Br . Then ϕ(x) = y, which
proves (ii).

Suppose now that y, η ∈ V . Then y = ϕ(x), η = ϕ(ξ) for unique x, ξ ∈ U . Since

| fy(x)− fy(ξ)| ≤ |x − ξ |/2
and

fy(x)− fy(ξ) = x − ξ − A−1(y − η),
we have

|A−1(y − η)| ≥ |x − ξ |/2.
Thus

|x − ξ | ≤ 2|A−1||y − η|.
If F = ϕ′(ξ) and G = F−1, then

ψ(y)− ψ(η)− G(y − η) = x − ξ − G(y − η)
= −G[ϕ(x)− ϕ(ξ)− F(x − ξ)].
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Hence

|ψ(y)− ψ(η)− G(y − η)|/|y − η| ≤ 2|A−1||G||ϕ(x)− ϕ(ξ)− F(x − ξ)|/|x − ξ |.
If |y − η| → 0, then |x − ξ | → 0 and the right side tends to 0. Consequently ψ is
differentiable at η and ψ ′(η) = G = F−1.

Thus ψ is differentiable in U and, a fortiori, continuous. In fact ψ is continuously
differentiable, since F is a continuous function of ξ (by hypothesis), since ξ = ψ(η)
is a continuous function of η, and since F−1 is a continuous function of F . �

To bring out the meaning of Proposition 27 we add some remarks:

(i) The invertibility of ϕ′(x0) is necessary for the existence of a differentiable inverse
map, but not for the existence of a continuous inverse map. For example, the contin-
uously differentiable map ϕ : R → R defined by ϕ(x) = x3 is bijective and has the
continuous inverse ψ(y) = y1/3, although ϕ′(0) = 0.

(ii) The hypothesis that ϕ is continuously differentiable cannot be totally dispensed
with. For example, the map ϕ : R → R defined by

ϕ(x) = x + x2 sin(1/x) if x �= 0, ϕ(0) = 0,

is everywhere differentiable and ϕ ′(0) �= 0, but ϕ is not injective in any neighbourhood
of 0.

(iii) The inverse map may not be defined throughout U0. For example, the map
ϕ : R2 → R2 defined by

ϕ1(x1, x2) = x2
1 − x2

2 , ϕ2(x1, x2) = 2x1x2,

is everywhere continuously differentiable and has an invertible derivative at every point
except the origin. Thus the hypotheses of Proposition 27 are satisfied in any connected
open set U0 ⊆ R2 which does not contain the origin, and yet ϕ(1, 1) = ϕ(−1,−1).

It was first shown by Cauchy (c. 1844) that, under quite general conditions, an
ordinary differential equation has local solutions. The method of successive approxi-
mations (i.e., the contraction principle) was used for this purpose by Picard (1890):

Proposition 28 Let t0 ∈ R, ξ0 ∈ Rn and let U be a neighbourhood of (t0, ξ0) in
R×Rn. If ϕ : U → Rn is a continuous map with a derivative ϕ′ with respect to x that
is continuous in U, then the differential equation

dx/dt = ϕ(t, x) (1)

has a unique solution x(t) which satisfies the initial condition

x(t0) = ξ0 (2)

and is defined in some interval |t − t0| ≤ δ, where δ > 0.
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Proof If x(t) is a solution of the differential equation (1) which satisfies the initial
condition (2), then by integration we get

x(t0) = ξ0 +
∫ t

t0
ϕ[τ, x(τ )]dτ.

Conversely, if a continuous function x(t) satisfies this relation then, since ϕ is contin-
uous, x(t) is actually differentiable and is a solution of (1) that satisfies (2). Hence we
need only show that the map F defined by

(F x)(t) = ξ0 +
∫ t

t0
ϕ[τ, x(τ )]dτ

has a unique fixed point in the space of continuous functions.
There exist positive constants M, L such that

|ϕ(t, ξ)| ≤ M, |ϕ ′(t, ξ)| ≤ L

for all (t, ξ) in a neighbourhood of (t0, ξ0), which we may take to be U . If (t, ξ1) ∈ U
and (t, ξ2) ∈ U , then

|ϕ(t, ξ2)− ϕ(t, ξ1)| =
∣∣∣∣∫ 1

0
ϕ′(t, (1− u)ξ1 + uξ2)(ξ2 − ξ1)du

∣∣∣∣
≤ L|ξ2 − ξ1|.

Choose δ > 0 so that the box |t − t0| ≤ δ, |ξ − ξ0| ≤ Mδ is contained in U and
also Lδ < 1. Take I = [t0 − δ, t0 + δ] and let C (I ) be the complete metric space of
all continuous functions x : I → Rn with the distance function

d(x1, x2) = sup
t∈I
|x1(t)− x2(t)|.

The constant function x0(t) = ξ0 is certainly in C (I ). Let E be the subset of all
x ∈ C (I ) such that x(t0) = ξ0 and d(x, x0) ≤ Mδ. Evidently if xn ∈ E and xn → x
in C (I ), then x ∈ E . Hence E is also a complete metric space with the same metric.
Moreover F (E) ⊆ E , since if x ∈ E then (F x)(t0) = ξ0 and, for all t ∈ I ,

|(F x)(t)− ξ0| =
∣∣∣∣ ∫ t

t0
ϕ[τ, x(τ )]dτ

∣∣∣∣ ≤ Mδ.

Furthermore, if x1, x2 ∈ E , then d(F x1,F x2) ≤ Lδd(x1, x2), since for all t ∈ I ,

|(F x1)(t)− (F x2)(t)| =
∣∣∣∣ ∫ t

t0
{ϕ[τ, x1(τ )]− ϕ[τ, x2(τ )]}dτ

∣∣∣∣
≤ Lδ d(x1, x2).

Since Lδ < 1, the result now follows from Proposition 26. �



38 I The Expanding Universe of Numbers

Proposition 28 only guarantees the local existence of solutions, but this is in the
nature of things. For example, if n = 1, the unique solution of the differential equation

dx/dt = x2

such that x(t0) = ξ0 > 0 is given by

x(t) = {1− (t − t0)ξ0}−1ξ0.

Thus the solution is defined only for t < t0+ξ−1
0 , even though the differential equation

itself has exemplary behaviour everywhere.
To illustrate Proposition 28, take n = 1 and let E(t) be the solution of the (linear)

differential equation

dx/dt = x (3)

which satisfies the initial condition E(0) = 1. Then E(t) is defined for |t| < R,
for some R > 0. If |τ | < R/2 and x1(t) = E(t + τ ), then x1(t) is the solution of
the differential equation (3) which satisfies the initial condition x1(0) = E(τ ). But
x2(t) = E(τ )E(t) satisfies the same differential equation and the same initial condi-
tion. Hence we must have x1(t) = x2(t) for |t| < R/2, i.e.

E(t + τ ) = E(t)E(τ ). (4)

In particular,

E(t)E(−t) = 1, E(2t) = E(t)2.

The last relation may be used to extend the definition of E(t), so that it is continuously
differentiable and a solution of (3) also for |t| < 2R. It follows that the solution E(t)
is defined for all t ∈ R and satisfies the addition theorem (4) for all t, τ ∈ R.

It is instructive to carry through the method of successive approximations explicitly
in this case. If we take x0(t) to be the constant 1, then

x1(t) = 1+
∫ t

0
x0(τ )dτ = 1+ t,

x2(t) = 1+
∫ t

0
x1(τ )dτ = 1+ t + t2/2,

· · · .
By induction we obtain, for every n ≥ 1,

xn(t) = 1+ t + t2/2!+ · · · + tn/n!.

Since xn(t) → E(t) as n → ∞, we obtain for the solution E(t) the infinite series
representation

E(t) = 1+ t + t2/2!+ t3/3!+ · · · ,
valid actually for every t ∈ R. In particular,

e := E(1) = 1+ 1+ 1/2!+ 1/3!+ · · · = 2.7182818 . . . .
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Of course E(t) = et is the exponential function. We will now adopt the usual
notation, but we remark that the definition of et as a solution of a differential equa-
tion provides a meaning for irrational t , as well as a simple proof of both the addition
theorem and the exponential series.

The power series for et shows that

et > 1+ t > 1 for every t > 0.

Since e−t = (et )−1, it follows that 0 < et < 1 for every t < 0. Thus et > 0
for all t ∈ R. Hence, by (3), et is a strictly increasing function. But et → +∞ as
t → +∞ and et → 0 as t → −∞. Consequently, since it is certainly continuous,
the exponential function maps the real line R bijectively onto the positive half-line
R+ = {x ∈ R : x > 0}. For any x > 0, the unique t ∈ R such that et = x is denoted
by ln x (the natural logarithm of x) or simply log x .

5 Complex Numbers

By extending the rational numbers to the real numbers, we ensured that every posi-
tive number had a square root. By further extending the real numbers to the complex
numbers, we will now ensure that all numbers have square roots.

The first use of complex numbers, by Cardano (1545), may have had its origin in
the solution of cubic, rather than quadratic, equations. The cubic polynomial

f (x) = x3 − 3 px − 2q

has three real roots if d := q2 − p3 < 0 since then, for large X > 0,

f (−X) < 0, f (−p1/2) > 0, f (p1/2) < 0, f (X) > 0.

Cardano’s formula for the three roots,

f (x) = 3
√
(q +√d)+ 3

√
(q −√d),

gives real values, even though d is negative, because the two summands are conjugate
complex numbers. This was explicitly stated by Bombelli (1572). It is a curious fact,
first proved by Hölder (1891), that if a cubic equation has three distinct real roots, then
it is impossible to represent these roots solely by real radicals.

Intuitively, complex numbers are expressions of the form a+ ib, where a and b are
real numbers and i2 = −1. But what is i? Hamilton (1835) defined complex numbers
as ordered pairs of real numbers, with appropriate rules for addition and multiplication.
Although this approach is similar to that already used in this chapter, and actually was
its first appearance, we now choose a different method.

We define a complex number to be a 2× 2 matrix of the form

A =
(

a b
−b a

)
,
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where a and b are real numbers. The set of all complex numbers is customarily
denoted by C. We may define addition and multiplication in C to be matrix addition
and multiplication, since C is closed under these operations: if

B =
(

c d
−d c

)
,

then

A + B =
(

a + c b + d
−(b + d) a + c

)
, AB =

(
ac− bd ad + bc
−(ad + bc) ac− bd

)
.

Furthermore C contains

0 =
(

0 0
0 0

)
, 1 =

(
1 0
0 1

)
,

and A ∈ C implies −A ∈ C.
It follows from the properties of matrix addition and multiplication that addition

and multiplication of complex numbers have the properties (A2)–(A5), (M2)–(M4)
and (AM1)–(AM2), with 0 and 1 as identity elements for addition and multiplication
respectively. The property (M5) also holds, since if a and b are not both zero, and if

a′ = a/(a2 + b2), b′ = −b/(a2 + b2),

then

A−1 =
(

a′ b′
−b′ a′

)
is a multiplicative inverse of A. Thus C satisfies the axioms for a field.

The set C also contains the matrix

i =
(

0 1
−1 0

)
,

for which i2 = −1, and any A ∈ C can be represented in the form

A = a1+ bi,

where a, b ∈ R. The multiples a1, where a ∈ R, form a subfield of C isomorphic to
the real field R. By identifying the real number a with the complex number a1, we
may regard R itself as contained in C.

Thus we will now stop using matrices and use only the fact that C is a field con-
taining R such that every z ∈ C can be represented in the form

z = x + iy,

where x, y ∈ R and i ∈ C satisfies i2 = −1. The representation is necessarily unique,
since i /∈ R. We call x and y the real and imaginary parts of z and denote them by Rz
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and I z respectively. Complex numbers of the form iy, where y ∈ R, are said to be
pure imaginary.

It is worth noting that C cannot be given the structure of an ordered field, since in
an ordered field any nonzero square is positive, whereas i2 + 12 = (−1)+ 1 = 0.

It is often suggestive to regard complex numbers as points of a plane, the complex
number z = x + iy being the point with coordinates (x, y) in some chosen system of
rectangular coordinates.

The complex conjugate of the complex number z = x + iy, where x, y ∈ R, is the
complex number z̄ = x − iy. In the geometrical representation of complex numbers,
z̄ is the reflection of z in the x-axis. From the definition we at once obtain

Rz = (z + z̄)/2, I z = (z − z̄)/2i.

It is easily seen also that

z +w = z̄ + w̄, zw = z̄w̄, ¯̄z = z.

Moreover, z̄ = z if and only if z ∈ R. Thus the map z → z̄ is an ‘involutory auto-
morphism’ of the field C, with the subfield R as its set of fixed points. It follows that
−z = −z̄.

If z = x + iy, where x, y ∈ R, then

zz̄ = (x + iy)(x − iy) = x2 + y2.

Hence zz̄ is a positive real number for any nonzero z ∈ C. The absolute value |z| of
the complex number z is defined by

|0| = 0, |z| = √
(zz̄) if z �= 0,

(with the positive value for the square root). This agrees with the definition in §3 if
z = x is a positive real number.

It follows at once from the definition that |z̄| = |z| for every z ∈ C, and
z−1 = z̄/|z|2 if z �= 0.

Absolute values have the following properties: for all z, w ∈ C,

(i) |0| = 0, |z| > 0 if z �= 0;
(ii) |zw| = |z||w|;

(iii) |z +w| ≤ |z| + |w|.
The first property follows at once from the definition. To prove (ii), observe that

both sides are non-negative and that

|zw|2 = zwzw = zwz̄w̄ = zz̄ww̄ = |z|2|w|2.

To prove (iii), we first evaluate |z +w|2:

|z + w|2 = (z +w)(z̄ + w̄) = zz̄ + (zw̄ +wz̄)+ww̄ = |z|2 + 2R(zw̄)+ |w|2.
Since R(zw̄) ≤ |zw̄| = |z||w|, this yields
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|z +w|2 ≤ |z|2 + 2|z||w| + |w|2 = (|z| + |w|)2,
and (iii) follows by taking square roots.

Several other properties are consequences of these three, although they may also
be verified directly. By taking z = w = 1 in (ii) and using (i), we obtain |1| = 1. By
taking z = w = −1 in (ii) and using (i), we now obtain | − 1| = 1. Taking w = −1
and w = z−1 in (ii), we further obtain

| − z| = |z|, |z−1| = |z|−1 if z �= 0.

Again, by replacing z by z −w in (iii), we obtain

||z| − |w|| ≤ |z −w|.
This shows that |z| is a continuous function of z. In fact C is a metric space, with the
metric d(z, w) = |z − w|. By considering real and imaginary parts separately, one
verifies that this metric space is complete, i.e. every fundamental sequence is conver-
gent, and that the Bolzano–Weierstrass property continues to hold, i.e. any bounded
sequence of complex numbers has a convergent subsequence.

It will now be shown that any complex number has a square root. If w = u + iv
and z = x + iy, then z2 = w is equivalent to

x2 − y2 = u, 2xy = v.
Since

(x2 + y2)2 = (x2 − y2)2 + (2xy)2,

these equations imply

x2 + y2 =
√
(u2 + v2).

Hence

x2 = {
u +

√
(u2 + v2)

}/
2.

Since the right side is positive if v �= 0, x is then uniquely determined apart from sign
and y = v/2x is uniquely determined by x . If v = 0, then x = ±√u and y = 0 when
u > 0; x = 0 and y = ±√(−u) when u < 0, and x = y = 0 when u = 0.

It follows that any quadratic polynomial

q(z) = az2 + bz + c,

where a, b, c ∈ C and a �= 0, has two complex roots, given by the well-known formula

z = {− b ±
√
(b2 − 4ac)

}/
2a.

However, much more is true. The so-called fundamental theorem of algebra asserts
that any polynomial
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f (z) = a0zn + a1zn−1 + · · · + an,

where a0, a1, . . . , an ∈ C, n ≥ 1 and a0 �= 0, has a complex root. Thus by adjoining
to the real field R a root of the polynomial z2 + 1 we ensure that every non-constant
polynomial has a root. Today the fundamental theorem of algebra is considered to be-
long to analysis, rather than to algebra. It is useful to retain the name, however, as a
reminder that our own pronouncements may seem equally quaint in the future.

Our proof of the theorem will use the fact that any polynomial is differentiable,
since sums and products of differentiable functions are again differentiable, and hence
also continuous. We first prove

Proposition 29 Let G ⊆ C be an open set and E a proper subset (possibly empty) of
G such that each point of G has a neighbourhood containing at most one point of E.
If f : G → C is a continuous map which at every point of G\E is differentiable and
has a nonzero derivative, then f (G) is an open subset of C.

Proof Evidently G\E is an open set. We show first that f (G\E) is also an open set.
Let ζ ∈ G\E . Then f is differentiable at ζ and ρ = | f ′(ζ )| > 0. We can choose δ > 0
so that the closed disc B = {z ∈ C : |z − ζ | ≤ δ} contains no point of E , is contained
in G and

| f (z)− f (ζ )| ≥ ρ|z − ζ |/2 for every z ∈ B.

In particular, if S = {z ∈ C : |z − ζ | = δ} is the boundary of B , then

| f (z)− f (ζ )| ≥ ρδ/2 for every z ∈ S.

Choose w ∈ C so that |w − f (ζ )| < ρδ/4 and consider the minimum in the com-
pact set B of the continuous real-valued function φ(z) = | f (z)−w|. On the boundary
S we have

φ(z) ≥ | f (z)− f (ζ )| − | f (ζ )−w| ≥ ρδ/2− ρδ/4 = ρδ/4.
Since φ(ζ ) < ρδ/4, it follows that φ attains its minimum value in B at an interior
point z0. Since z0 /∈ E , we can take

z = z0 − h[ f ′(z0)]−1{ f (z0)−w},
where h > 0 is so small that |z − ζ | < δ. Then

f (z)−w = f (z0)−w + f ′(z0)(z − z0)+ o(h) = (1− h){ f (z0)−w} + o(h).

If f (z0) �= w then, for sufficiently small h > 0,

| f (z)− w| ≤ (1− h/2)| f (z0)−w| < | f (z0)−w|,
which contradicts the definition of z0. We conclude that f (z0) = w. Thus f (G\E)
contains not only f (ζ ), but also an open disc {w ∈ C : |w− f (ζ )| < ρδ/4} surround-
ing it. Since this holds for every ζ ∈ G\E , it follows that f (G\E) is an open set.

Now let ζ ∈ E and assume that f (G) does not contain any open neighbourhood of
ω := f (ζ ). Then f (z) �= ω for every z ∈ G\E . Choose δ > 0 so small that the closed
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disc B = {z ∈ C : |z−ζ | ≤ δ} is contained in G and contains no point of E except ζ . If
S = {z ∈ C : |z−ζ | = δ} is the boundary of B , there exists an open disc U with centre
ω that contains no point of f (S). It follows that if A = {z ∈ C : 0 < |z − ζ | < δ}
is the annulus B\(S ∪ {ζ }), then U\{ω} is the union of the disjoint nonempty open
sets U ∩ {C\ f (B)} and U ∩ f (A). Since U\{ω} is a connected set (because it is
path-connected), this is a contradiction. �

From Proposition 29 we readily obtain

Theorem 30 If

f (z) = zn + a1zn−1 + · · · + an

is a polynomial of degree n ≥ 1 with complex coefficients a1, . . . , an, then f (ζ ) = 0
for some ζ ∈ C.

Proof Since

f (z)/zn = 1+ a1/z + · · · + an/z
n → 1 as |z| → ∞,

we can choose R > 0 so large that

| f (z)| > | f (0)| for all z ∈ C such that |z| = R.

Since the closed disc D = {z ∈ C : |z| ≤ R} is compact, the continuous function | f (z)|
assumes its minimum value in D at a point ζ in the interior G = {z ∈ C : |z| < R}.
The function f (z) is differentiable in G and the set E of all points of G at which
the derivative f ′(z) vanishes is finite. (In fact E contains at most n − 1 points, by
Proposition II.15.) Hence, by Proposition 29, f (G) is an open subset of C. Since
| f (z)| ≥ | f (ζ )| for all z ∈ G, this implies f (ζ ) = 0. �

The first ‘proof’ of the fundamental theorem of algebra was given by d’Alembert
(1746). Assuming the convergence of what are now called Puiseux expansions, he
showed that if a polynomial assumes a value w �= 0, then it also assumes a value w′
such that |w′| < |w|. A much simpler way of reaching this conclusion, which required
only the existence of k-th roots of complex numbers, was given by Argand (1814).
Cauchy (1820) gave a similar proof and, with latter-day rigour, it is still reproduced
in textbooks. The proof we have given rests on the same general principle, but uses
neither the existence of k-th roots nor the continuity of the derivative. These may be
called differential calculus proofs.

The basis for an algebraic proof was given by Euler (1749). His proof was com-
pleted by Lagrange (1772) and then simplified by Laplace (1795). The algebraic proof
starts from the facts that R is an ordered field, that any positive element of R has a
square root in R and that any polynomial of odd degree with coefficients from R has
a root in R. It then shows that any polynomial of degree n ≥ 1 with coefficients from
C = R(i), where i2 = −1, has a root in C by using induction on the highest power of
2 which divides n.

Gauss (1799) objected to this proof, because it assumed that there were ‘roots’ and
then proved that these roots were complex numbers. The difficulty disappears if one
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uses the result, due to Kronecker (1887), that a polynomial with coefficients from an
arbitrary field K decomposes into linear factors in a field L which is a finite extension
of K . This general result, which is not difficult to prove, is actually all that is required
for many of the previous applications of the fundamental theorem of algebra.

It is often said that the first rigorous proof of the fundamental theorem of algebra
was given by Gauss (1799). Like d’Alembert, however, Gauss assumed properties of
algebraic curves which were unknown at the time. The gaps in this proof of Gauss
were filled by Ostrowski (1920).

There are also topological proofs of the fundamental theorem of algebra, e.g. using
the notion of topological degree. This type of proof is intuitively appealing, but not
so easy to make rigorous. Finally, there are complex analysis proofs, which depend
ultimately on Cauchy’s theorem on complex line integrals. (The latter proofs are more
closely related to either the differential calculus proofs or the topological proofs than
they seem to be at first sight.)

The exponential function ez may be defined, for any complex value of z, as the sum
of the everywhere convergent power series∑

n≥0

zn/n! = 1+ z + z2/2!+ z3/3!+ · · · .

It is easily verified thatw(z) = ez is a solution of the differential equation dw/dz = w
satisfying the initial condition w(0) = 1.

For any ζ ∈ C, put ϕ(z) = eζ−zez . Differentiating by the product rule, we obtain

ϕ′(z) = −eζ−zez + eζ−zez = 0.

Since this holds for all z ∈ C, ϕ(z) is a constant. Thus ϕ(z) = ϕ(0) = eζ . Replacing
ζ by ζ + z, we obtain the addition theorem for the exponential function:

eζ ez = eζ+z for all z, ζ ∈ C.

In particular, e−zez = 1 and hence ez �= 0 for every z ∈ C.
The power series for ez shows that, for any real y, e−iy is the complex conjugate

of eiy and hence

|eiy |2 = eiye−iy = 1.

It follows that, for all real x, y,

|ex+iy| = |ex ||eiy | = ex .

The trigonometric functions cos z and sin z may be defined, for any complex value
of z, by the formulas of Euler (1740):

cos z = (eiz + e−iz)/2, sin z = (eiz − e−iz)/2i.

It follows at once that

eiz = cos z + i sin z,

cos 0 = 1, sin 0 = 0,

cos(−z) = cos z, sin(−z) = − sin z,
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and the relation eize−iz = 1 implies that

cos2 z + sin2 z = 1.

From the power series for ez we obtain, for every z ∈ C,

cos z =
∑
n≥0

(−1)nz2n/(2n)! = 1− z2/2!+ z4/4!− · · · ,

sin z =
∑
n≥0

(−1)nz2n+1/(2n + 1)! = z − z3/3!+ z5/5!− · · · .

From the differential equation we obtain, for every z ∈ C,

d(cos z)/dz = − sin z, d(sin z)/dz = cos z.

From the addition theorem we obtain, for all z, ζ ∈ C,

cos(z + ζ ) = cos z cos ζ − sin z sin ζ,

sin(z + ζ ) = sin z cos ζ + cos z sin ζ.

We now consider periodicity properties. By the addition theorem for the exponen-
tial function, ez+h = ez if and only if eh = 1. Thus the exponential function has period
h if and only if eh = 1. Since eh = 1 implies h = i x for some real x , and since cos x
and sin x are real for real x , the periods correspond to those real values of x for which

cos x = 1, sin x = 0.

In fact, the second relation follows from the first, since cos2 x + sin2 x = 1.
By bracketing the power series for cos x in the form

cos x = (1− x2/2!+ x4/4!)− (1− x2/7 · 8)x6/6!− (1− x2/11 · 12)x10/10!− · · ·
and taking x = 2, we see that cos 2 < 0. Since cos 0 = 1 and cos x is a continuous
function of x , there is a least positive value ξ of x such that cos ξ = 0. Then sin2 ξ = 1.
In fact sin ξ = 1, since sin 0 = 0 and sin′ x = cos x > 0 for 0 ≤ x < ξ . Thus

0 < sin x < 1 for 0 < x < ξ

and

eiξ = cos ξ + i sin ξ = i.

As usual, we now write π = 2ξ . From eπ i/2 = i , we obtain

e2π i = i4 = (−1)2 = 1.

Thus the exponential function has period 2π i . It follows that it also has period 2nπ i ,
for every n ∈ Z. We will show that there are no other periods.
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Suppose eix ′ = 1 for some x ′ ∈ R and choose n ∈ Z so that n ≤ x ′/2π < n + 1.
If x = x ′ − 2nπ , then eix = 1 and 0 ≤ x < 2π . If x �= 0, then 0 < x/4 < π/2 and
hence 0 < sin x/4 < 1. Thus eix/4 �= ±1,±i . But this is a contradiction, since

(eix/4)4 = eix = 1.

We show next that the map x → eix maps the interval 0 ≤ x < 2π bijectively onto
the unit circle, i.e. the set of all complex numbers w such that |w| = 1. We already
know that |eix | = 1 if x ∈ R. If eix = eix ′ , where 0 ≤ x ≤ x ′ < 2π , then ei(x ′−x) = 1.
Since 0 ≤ x ′ − x < 2π , this implies x ′ = x .

It remains to show that if u, v ∈ R and u2 + v2 = 1, then

u = cos x, v = sin x

for some x such that 0 ≤ x < 2π . If u, v > 0, then also u, v < 1. Hence u = cos x for
some x such that 0 < x < π/2. It follows that v = sin x , since sin2 x = 1− u2 = v2

and sin x > 0. The other possible sign combinations for u, v may be reduced to the
case u, v > 0 by means of the relations

sin(x + π/2) = cos x, cos(x + π/2) = − sin x .

If z is any nonzero complex number, then r = |z| > 0 and |z/r | = 1. It follows
that any nonzero complex number z can be uniquely expressed in the form

z = reiθ ,

where r, θ are real numbers such that r > 0 and 0 ≤ θ < 2π . We call these r, θ the
polar coordinates of z and θ the argument of z. If z = x + iy, where x, y ∈ R, then
r = √

(x2 + y2) and

x = r cos θ, y = r sin θ.

Hence, in the geometrical representation of complex numbers by points of a plane, r
is the distance of z from O and θ measures the angle between the positive x-axis and

the ray
−→
Oz.

We now show that the exponential function assumes every nonzero complex
value w. Since |w| > 0, we have |w| = ex for some x ∈ R. If w′ = w/|w|, then
|w′| = 1 and so w′ = eiy for some y ∈ R. Consequently,

w = |w|w′ = exeiy = ex+iy .

It follows that, for any positive integer n, a nonzero complex number w has n
distinct n-th roots. In fact, if w = ez , then w has the distinct n-th roots

ζk = ζωk(k = 0, 1, . . . , n − 1),

where ζ = ez/n andω = e2π i/n . In the geometrical representation of complex numbers
by points of a plane, the n-th roots of w are the vertices of an n-sided regular polygon.
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It remains to show that π has its usual geometric significance. Since the continu-
ously differentiable function z(t) = eit describes the unit circle as t increases from 0
to 2π , the length of the unit circle is

L =
∫ 2π

0
|z′(t)|dt .

But |z′(t)| = 1, since z′(t) = ieit , and hence L = 2π .
In a course of complex analysis one would now define complex line integrals,

prove Cauchy’s theorem and deduce its numerous consequences. The miracle is that,
if D = {z ∈ C : |z| < ρ} is a disc with centre the origin, then any differentiable
function f : D → C can be represented by a power series,

f (z) = c0 + c1z + c2z2 + · · · ,
which is convergent for |z| < ρ. It follows that, if f vanishes at a sequence of dis-
tinct points converging to 0, then it vanishes everywhere. This is the basis for analytic
continuation.

A complex-valued function f is said to be holomorphic at a ∈ C if, in some
neighbourhood of a, it can be represented as the sum of a convergent power series (its
‘Taylor’ series):

f (z) = c0 + c1(z − a)+ c2(z − a)2 + · · · .
It is said to be meromorphic at a ∈ C if, for some integer n, it can be represented near
a as the sum of a convergent series (its ‘Laurent’ series):

f (z) = c0(z − a)−n + c1(z − a)−n+1 + c2(z − a)−n+2 + · · · .
If c0 �= 0, then (z − a) f ′(z)/ f (z) → −n as z → a. If also n > 0 we say that a is a
pole of f of order n with residue cn−1. If n = 1, the residue is c0 and the pole is said
to be simple.

Let G be a nonempty connected open subset of C. From what has been said, if
f : G → C is differentiable throughout G, then it is also holomorphic throughout G.
If f1 and f2 are holomorphic throughout G and f2 is not identically zero, then the
quotient f = f1/ f2 is meromorphic throughout G. Conversely, it may be shown that
if f is meromorphic throughout G, then f = f1/ f2 for some functions f1, f2 which
are holomorphic throughout G.

The behaviour of many functions is best understood by studying them in the
complex domain, as the exponential and trigonometric functions already illustrate.
Complex numbers, when they first appeared, were called ‘impossible’ numbers. They
are now indispensable.

6 Quaternions and Octonions

Quaternions were invented by Hamilton (1843) in order to be able to ‘multiply’ points
of 3-dimensional space, in the same way that complex numbers enable one to multiply
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points of a plane. The definition of quaternions adopted here will be analogous to our
definition of complex numbers.

We define a quaternion to be a 2× 2 matrix of the form

A =
(

a b
−b̄ ā

)
,

where a and b are complex numbers and the bar denotes complex conjugation. The set
of all quaternions will be denoted by H. We may define addition and multiplication in
H to be matrix addition and multiplication, since H is closed under these operations.
Furthermore H contains

0 =
(

0 0
0 0

)
, 1 =

(
1 0
0 1

)
,

and A ∈ H implies −A ∈ H.
It follows from the properties of matrix addition and multiplication that addition

and multiplication of quaternions have the properties (A2)–(A5) and (M3)–(M4), with
0 and 1 as identity elements for addition and multiplication respectively. However,
(M2) no longer holds, since multiplication is not always commutative. For example,(

0 1
−1 0

)(
0 i
i 0

)
�=
(

0 i
i 0

)(
0 1
−1 0

)
.

On the other hand, there are now two distributive laws: for all A, B,C ∈ H,

A(B + C) = AB + AC, (B + C)A = B A+ C A.

It is easily seen that A ∈ H is in the centre of H, i.e. AB = B A for every B ∈ H,
if and only if A = λ1 for some real number λ. Since the map λ→ λ1 preserves sums
and products, we can regard R as contained in H by identifying the real number λ with
the quaternion λ1.

We define the conjugate of the quaternion

A =
(

a b
−b̄ ā

)
,

to be the quaternion

Ā =
(

ā −b
b̄ a

)
.

It is easily verified that

A + B = Ā + B̄, AB = B̄ Ā, ¯̄A = A.

Furthermore,

ĀA = AĀ = n(A), A + Ā = t (A),
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where the norm n(A) and trace t (A) are both real:

n(A) = aā + bb̄, t (A) = a + ā.

Moreover, n(A) > 0 if A �= 0. It follows that any quaternion A �= 0 has a multiplica-
tive inverse: if A−1 = n(A)−1 Ā, then

A−1 A = AA−1 = 1.

Norms and traces have the following properties: for all A, B ∈ H,

t ( Ā) = t (A),

n( Ā) = n(A),

t (A + B) = t (A)+ t (B),

n(AB) = n(A)n(B).

Only the last property is not immediately obvious, and it can be proved in one line:

n(AB) = AB AB = B̄ ĀAB = n(A)B̄ B = n(A)n(B).

Furthermore, for any A ∈ H we have

A2 − t (A)A + n(A) = 0,

since the left side can be written in the form A2−(A+ Ā)A+ ĀA. (The relation is actu-
ally just a special case of the ‘Cayley–Hamilton theorem’ of linear algebra.) It follows
that the quadratic polynomial x2+1 has not two, but infinitely many quaternionic roots.

If we put

I =
(

0 1
−1 0

)
, J =

(
0 i
i 0

)
, K =

(
i 0
0 −i

)
,

then

I 2 = J 2 = K 2 = −1,

I J = K = −J I , J K = I = −K J , K I = J = −I K .

Moreover, any quaternion A can be uniquely represented in the form

A = α0 + α1 I + α2 J + α3 K ,

where α0, . . . , α3 ∈ R. In fact this is equivalent to the previous representation with

a = α0 + iα3, b = α1 + iα2.

The corresponding representation of the conjugate quaternion is

Ā = α0 − α1 I − α2 J − α3 K .

Hence Ā = A if and only if α1 = α2 = α3 = 0 and Ā = −A if and only if α0 = 0.
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A quaternion A is said to be pure if Ā = −A. Thus any quaternion can be uniquely
represented as the sum of a real number and a pure quaternion.

It follows from the multiplication table for the units I, J, K that A = α0 + α1 I +
α2 J + α3 K has norm

n(A) = α2
0 + α2

1 + α2
2 + α2

3 .

Consequently the relation n(A)n(B) = n(AB) may be written in the form

(α2
0 + α2

1 + α2
2 + α2

3)(β
2
0 + β2

1 + β2
2 + β2

3 ) = γ 2
0 + γ 2

1 + γ 2
2 + γ 2

3 ,

where

γ0 = α0β0 − α1β1 − α2β2 − α3β3,

γ1 = α0β1 + α1β0 + α2β3 − α3β2,

γ2 = α0β2 − α1β3 + α2β0 + α3β1,

γ3 = α0β3 + α1β2 − α2β1 + α3β0.

This ‘4-squares identity’ was already known to Euler (1770).
An important application of quaternions is to the parametrization of rotations in

3-dimensional space. In describing this application it will be convenient to denote
quaternions now by lower case letters. In particular, we will write i, j, k in place
of I, J, K .

Let u be a quaternion with norm n(u) = 1, and consider the mapping T : H → H
defined by

T x = uxu−1.

Evidently

T (x + y) = T x + T y,

T (xy) = (T x)(T y),

T (λx) = λT x if λ ∈ R.

Moreover, since u−1 = ū,

T x̄ = T x .

It follows that

n(T x) = n(x),

since

n(T x) = T xT x = T xT x̄ = T (x x̄) = n(x)T 1 = n(x).

Furthermore, T maps pure quaternions into pure quaternions, since x̄ = −x
implies

T x = T x̄ = −T x .
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If we write

x = ξ1i + ξ2 j + ξ3k,

then

T x = y = η1i + η2 j + η3k,

where ηµ =∑3
v=1 βµvξv for some βµv ∈ R. Since

η2
1 + η2

2 + η2
3 = ξ2

1 + ξ2
2 + ξ2

3 ,

the matrix V = (βµv ) is orthogonal: V−1 = V t .
Thus with every quaternion u with norm 1 there is associated a 3 × 3 orthogonal

matrix V = (βµv). Explicitly, if

u = α0 + α1i + α2 j + α3k,

where

α2
0 + α2

1 + α2
2 + α2

3 = 1,

then

β11 = α2
0 + α2

1 − α2
2 − α2

3, β12 = 2(α1α2 − α0α3), β13 = 2(α1α3 + α0α2),

β21 = 2(α1α2 + α0α3), β22 = α2
0 − α2

1 + α2
2 − α2

3 , β23 = 2(α2α3 − α0α1),

β31 = 2(α1α3 − α0α2), β32 = 2(α2α3 + α0α1), β33 = α2
0 − α2

1 − α2
2 + α2

3 .

This parametrization of orthogonal transformations was first discovered by Euler(1770).
We now consider the dependence of V on u, and consequently write V (u) in place

of V . Since

u1u2x(u1u2)
−1 = u1(u2xu−1

2 )u
−1
1 ,

we have

V (u1u2) = V (u1)V (u2).

Thus the map u → V (u) is a ‘homomorphism’ of the multiplicative group of all
quaternions of norm 1 into the group of all 3× 3 real orthogonal matrices. In particu-
lar, V (ū) = V (u)−1.

We show next that two quaternions u1, u2 of norm 1 yield the same orthogonal
matrix if and only if u2 = ±u1. Put u = u−1

2 u1. Then u1xu−1
1 = u2xu−1

2 if and only
if ux = xu. This holds for every pure quaternion x if and only if u is real, i.e. if and
only if u = ±1, since n(u) = 1.

The question arises whether all 3 × 3 orthogonal matrices may be represented in
the above way. It follows readily from the preceding formulas for βµv that the orthog-
onal matrix −I cannot be so represented. Consequently, if an orthogonal matrix V is
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represented, then −V is not. On the other hand, suppose u is a pure quaternion, so that
α0 = 0. Then ux + xu = ux + x̄ ū is real, and given by

ux + xu = −2(α1ξ1 + α2ξ2 + α3ξ3) = 2〈ū, x〉,
with the notation of §10 for inner products in R3. It follows that

y = uxū = 2〈ū, x〉ū − x .

But the mapping x → x − 2〈ū, x〉ū is a reflection in the plane orthogonal to the unit
vector u. Hence, for every reflection R,−R is represented. It may be shown that every
orthogonal transformation of R3 is a product of reflections. (Indeed, this is a special
case of a more general result which will be proved in Proposition 17 of Chapter VII.)
It follows that an orthogonal matrix V is represented if and only if V is a product of
an even number of reflections (or, equivalently, if and only if V has determinant 1, as
defined in Chapter V, §1).

Since, by our initial definition of quaternions, the quaternions of norm 1 are just
the 2 × 2 unitary matrices with determinant 1, our results may be summed up (cf.
Chapter X, §8) by saying that there is a homomorphism of the special unitary group
SU2(C) onto the special orthogonal group SO3(R), with kernel {±I }. (Here ‘special’
signifies ‘determinant 1’.)

Since the quaternions of norm 1 may be identified with the points of the unit sphere
S3 in R4 it follows that, as a topological space, SO3(R) is homeomorphic to S3 with
antipodal points identified, i.e. to the projective space P3(R). Similarly (cf. Chapter X,
§8), the topological group SU2(C) is the simply-connected covering space of the topo-
logical group SO3(R).

Again, by considering the map T : H → H defined by T x = vxu−1, where u, v
are quaternions with norm 1, it may be seen that that there is a homomorphism of the
direct product SU 2(C)× SU2(C) onto the special orthogonal group SO4(R) of 4× 4
real orthogonal matrices with determinant 1, the kernel being {±(I, I )}.

Almost immediately after Hamilton’s invention of quaternions Graves (1844), in a
letter to Hamilton, and Cayley (1845) invented ‘octonions’, also known as ‘octaves’ or
‘Cayley numbers’. We define an octonion to be an ordered pair (a1, a2) of quaternions,
with addition and multiplication defined by

(a1, a2)+ (b1, b2) = (a1 + b1, a2 + b2),

(a1, a2) · (b1, b2) = (a1b1 − b̄2a2, b2a1 + a2b̄1).

Then the set O of all octonions is a commutative group under addition, i.e. the laws
(A2)–(A5) hold, with 0 = (0, 0) as identity element, and multiplication is both left and
right distributive with respect to addition. The octonion 1 = (1, 0) is a two-sided iden-
tity element for multiplication, and the octonion ε = (0, 1) has the property ε2 = −1.

It is easily seen that α ∈ O is in the centre of O, i.e. αβ = βα for every β ∈ O, if
and only if α = (c, 0) for some c ∈ R.

Since the map a → (a, 0) preserves sums and products, we may regard H as con-
tained in O by identifying the quaternion a with the octonion (a, 0). This shows that
multiplication of octonions is in general not commutative. It is also in general not even
associative; for example,
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(i j)ε = kε = (0, k), i( jε) = i(0, j) = (0,−k).

It is for this reason that we defined octonions as ordered pairs, rather than as matrices.
It should be mentioned, however, that we could have used precisely the same con-
struction to define complex numbers as ordered pairs of real numbers, and quaternions
as ordered pairs of complex numbers, but the verification of the associative law for
multiplication would then have been more laborious.

Although multiplication is non-associative, O does inherit some other properties
from H. If we define the conjugate of the octonion α = (a1, a2) to be the octonion
ᾱ = (a1,−a2), then it is easily verified that

α + β = ᾱ + β̄, αβ = β̄ᾱ, ¯̄α = α.
Furthermore,

αᾱ = ᾱα = n(α),

where the norm n(α) = a1a1 + a2a2 is real. Moreover n(α) > 0 if α �= 0, and
n(ᾱ) = n(α).

It will now be shown that if α, β ∈ O and α �= 0, then the equation

ξα = β
has a unique solution ξ ∈ O. Writing α = (a1, a2), β = (b1, b2) and ξ = (x1, x2), we
have to solve the simultaneous quaternionic equations

x1a1 − a2x2 = b1,

a2x1 + x2a1 = b2.

If we multiply the second equation on the right by a1 and replace x1a1 by its value
from the first equation, we get

n(α)x2 = b2a1 − a2b1.

Similarly, if we multiply the first equation on the right by a1 and replace x2a1 by its
value from the second equation, we get

n(α)x1 = b1a1 + a2b2.

It follows that the equation ξα = β has the unique solution

ξ = n(α)−1βᾱ.

Since the equation αη = β is equivalent to η̄ᾱ = β̄, it has the unique solution
η = n(α)−1ᾱβ. Thus O is a division algebra. It should be noted that, since O is non-
associative, it is not enough to verify that every nonzero element has a multiplicative
inverse.

It follows from the preceding discussion that, for all α, β ∈ O,

(βᾱ)α = n(α)β = α(ᾱβ).
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Consequently the norm is multiplicative: for all α, β ∈ O,

n(αβ) = n(α)n(β).

For, putting γ = αβ, we have

n(γ )ᾱ = (ᾱγ )γ̄ = (ᾱ(αβ))γ̄ = n(α)βγ̄ = n(α)β(β̄ᾱ) = n(α)n(β)ᾱ.

This establishes the result when α �= 0, and when α = 0 it is obvious.
Every α ∈ O has a unique representation α = a1 + a2ε, where a1, a2 ∈ H, and

hence a unique representation

α = c0 + c1i + c2 j + c3k + c4ε + c5iε + c6 jε + c7kε,

where c0, . . . , c7 ∈ R. Since ᾱ = a1 − a2ε and n(α) = a1a1 + a2a2, it follows that

ᾱ = c0 − c1i − c2 j − c3k − c4ε − c5iε − c6 jε − c7kε

and
n(α) = c2

0 + · · · + c2
7.

Consequently the relation n(α)n(β) = n(αβ) may be written in the form

(c2
0 + · · · + c2

7)(d
2
0 + · · · + d2

7 ) = e2
0 + · · · + e2

7,

where ei =∑7
j=0

∑7
k=0 ρi j k c j dk for some real constants ρi j k which do not depend on

the c’s and d’s. An ‘8-squares identity’ of this type was first found by Degen (1818).

7 Groups

A nonempty set G is said to be a group if a binary operation ϕ, i.e. a mapping
ϕ : G × G → G, is defined with the properties

(i) ϕ(ϕ(a, b), c) = ϕ(a, ϕ(b, c)) for all a, b, c ∈ G; (associative law)
(ii) there exists e ∈ G such that ϕ(e, a) = a for every a ∈ G; (identity element)

(iii) for each a ∈ G, there exists a−1 ∈ G such that ϕ(a−1, a) = e.(inverse elements)

If, in addition,

(iv) ϕ(a, b) = ϕ(b, a) for all a, b ∈ G,(commutative law)

then the group G is said to be commutative or abelian.
For example, the set Z of all integers is a commutative group under addition, i.e.

with ϕ(a, b) = a+ b, with 0 as identity element and−a as the inverse of a. Similarly,
the set Q× of all nonzero rational numbers is a commutative group under multiplica-
tion, i.e. with ϕ(a, b) = ab, with 1 as identity element and a−1 as the inverse of a.

We now give an example of a noncommutative group. The set SA of all bijective
maps f : A → A of a nonempty set A to itself is a group under composition, i.e. with
ϕ(a, b) = a ◦ b, with the identity map i A as identity element and the inverse map f −1

as the inverse of f . If A contains at least 3 elements, then SA is a noncommutative
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group. For suppose a, b, c are distinct elements of A, let f : A → A be the bijective
map defined by

f (a) = b, f (b) = a, f (x) = x if x �= a, b,

and let g : A → A be the bijective map defined by

g(a) = c, g(c) = a, g(x) = x if x �= a, c.

Then f ◦ g �= g ◦ f , since ( f ◦ g)(a) = c and (g ◦ f )(a) = b.
For arbitrary groups, instead of ϕ(a, b) we usually write a · b or simply ab. For

commutative groups, instead of ϕ(a, b) we often write a + b.
Since, by the associative law,

(ab)c = a(bc),

we will usually dispense with brackets.
We now derive some simple properties possessed by all groups. By (iii) we have

a−1a = e. In fact also aa−1 = e. This may be seen by multiplying on the left, by the
inverse of a−1, the relation

a−1aa−1 = ea−1 = a−1.

By (ii) we have ea = a. It now follows that also ae = a, since

ae = aa−1a = ea.

For all elements a, b of the group G, the equation ax = b has the solution
x = a−1b and the equation ya = b has the solution y = ba−1. Moreover, these
solutions are unique. For from ax = ax ′ we obtain x = x ′ by multiplying on the left
by a−1, and from ya = y ′a we obtain y = y ′ by multiplying on the right by a−1.

In particular, the identity element e is unique, since it is the solution of ea = a,
and the inverse a−1 of a is unique, since it is the solution of a−1a = e. It follows that
the inverse of a−1 is a and the inverse of ab is b−1a−1.

As the preceding argument suggests, in the definition of a group we could have re-
placed left identity and left inverse by right identity and right inverse, i.e. we could have
required ae = a and aa−1 = e, instead of ea = a and a−1a = e. (However, left iden-
tity and right inverse, or right identity and left inverse, would not give the same result.)

If H, K are nonempty subsets of a group G, we denote by H K the subset of G
consisting of all elements hk, where h ∈ H and k ∈ K . If L is also a nonempty subset
of G, then evidently

(H K )L = H (K L).

A subset H of a group G is said to be a subgroup of G if it is a group under the
same group operation as G itself. A nonempty subset H is a subgroup of G if and only
if a, b ∈ H implies ab−1 ∈ H . Indeed the necessity of the condition is obvious. It is
also sufficient, since it implies first e = aa−1 ∈ H and then b−1 = eb−1 ∈ H . (The
associative law in H is inherited from G.)
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We now show that a nonempty finite subset H of a group G is a subgroup of G if
it is closed under multiplication only. For, if a ∈ H , then ha ∈ H for all h ∈ H . Since
H is finite and the mapping h → ha of H into itself is injective, it is also surjective by
the pigeonhole principle (Corollary I.6). Hence ha = a for some h ∈ H , which shows
that H contains the identity element of G. It now further follows that ha = e for some
h ∈ H , which shows that H is also closed under inversion.

A group is said to be finite if it contains only finitely many elements and to be of
order n if it contains exactly n elements.

In order to give an important example of a subgroup we digress briefly. Let n be
a positive integer and let A be the set {1, 2, . . . , n} with the elements in their natural
order. Since we regard A as ordered, a bijective map α : A → A will be called a per-
mutation. The set of all permutations of A is a group under composition, the symmetric
group Sn .

Suppose now that n > 1. An inversion of order induced by the permutation α is a
pair (i, j ) with i < j for which α(i) > α( j). The permutation α is said to be even or
odd according as the total number of inversions of order is even or odd. For example,
the permutation {1, 2, 3, 4, 5} → {3, 5, 4, 1, 2} is odd, since there are 2 + 3 + 2 = 7
inversions of order.

The sign of the permutation α is defined by

sgn(α) = 1 or −1 according as α is even or odd.

Evidently we can write

sgn(α) =
∏

1≤i< j≤n

{α( j)− α(i)}/( j − i),

from which it follows that

sgn(αβ) = sgn(α)sgn(β).

Since the sign of the identity permutation is 1, this implies

sgn(α−1) = sgn(α).

Thus sgn(ρ−1αρ) = sgn(α) for any permutation ρ of A, and so sgn(α) is actually
independent of the ordering of A.

Since the product of two even permutations is again an even permutation, the even
permutations form a subgroup of Sn , the alternating group An . The order of An is
n!/2. For let τ be the permutation {1, 2, 3, . . . , n} → {2, 1, 3, . . . , n}. Since there is
only one inversion of order, τ is odd. Since ττ is the identity permutation, a permuta-
tion is odd if and only if it has the form ατ , where α is even. Hence the number of odd
permutations is equal to the number of even permutations.

It may be mentioned that the sign of a permutation can also be determined without
actually counting the total number of inversions. In fact any α ∈ Sn may be written as
a product of v disjoint cycles, and α is even or odd according as n − v is even or odd.

We now return to the main story. Let H be a subgroup of an arbitrary group G and
let a, b be elements of G. We write a ∼r b if ba−1 ∈ H . We will show that this is an
equivalence relation.
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The relation is certainly reflexive, since e ∈ H . It is also symmetric, since if c =
ba−1 ∈ H , then c−1 = ab−1 ∈ H . Furthermore it is transitive, since if ba−1 ∈ H and
cb−1 ∈ H , then also ca−1 = (cb−1)(ba−1) ∈ H .

The equivalence class which contains a is the set H a of all elements ha, where
h ∈ H . We call any such equivalence class a right coset of the subgroup H , and any
element of a given coset is said to be a representative of that coset.

It follows from the remarks in §0 about arbitrary equivalence relations that, for any
two cosets H a and H a′, either H a = H a′ or H a ∩ H a′ = ∅. Moreover, the distinct
right cosets form a partition of G.

If H is a subgroup of a finite group G, then H is also finite and the number of
distinct right cosets is finite. Moreover, each right coset Ha contains the same number
of elements as H , since the mapping h → ha of H to H a is bijective. It follows that
the order of the subgroup H divides the order of the whole group G, a result usually
known as Lagrange’s theorem. The quotient of the orders, i.e. the number of distinct
cosets, is called the index of H in G.

Suppose again that H is a subgroup of an arbitrary group G and that a, b ∈ G. By
writing a ∼l b if a−1b ∈ H , we obtain another equivalence relation. The equivalence
class which contains a is now the set a H of all elements ah, where h ∈ H . We call
any such equivalence class a left coset of the subgroup H . Again, two left cosets either
coincide or are disjoint, and the distinct left cosets form a partition of G.

When are the two partitions, into left cosets and into right cosets, the same? Evi-
dently H a = a H for every a ∈ G if and only if a−1 H a = H for every a ∈ G or,
since a may be replaced by a−1, if and only if a−1ha ∈ H for every h ∈ H and every
a ∈ G. A subgroup H which satisfies this condition is said to be ‘invariant’ or normal.

Any group G obviously has two normal subgroups, namely G itself and the subset
{e} which contains only the identity element. A group G is said to be simple if it has
no other normal subgroups and if these two are distinct (i.e., G contains more than one
element).

We now show that if H is a normal subgroup of a group G, then the collection of
all cosets of H can be given the structure of a group. Since H a = a H and H H = H ,
we have

(H a)(H b) = H (H a)b = H ab.

Thus if we define the product H a · H b of the cosets H a and H b to be the coset H ab,
the definition does not depend on the choice of coset representatives. Clearly multipli-
cation of cosets is associative, the coset H = H e is an identity element and the coset
H a−1 is an inverse of the coset H a. The new group thus constructed is called the factor
group or quotient group of G by the normal subgroup H , and is denoted by G/H .

A mapping f : G → G ′ of a group G into a group G′ is said to be a (group)
homomorphism if

f (ab) = f (a) f (b) for all a, b ∈ G.

By taking a = b = e, we see that this implies that f (e) = e′ is the identity element
of G ′. By taking b = a−1, it now follows that f (a−1) is the inverse of f (a) in G′.
Since the subset f (G) of G′ is closed under both multiplication and inversion, it is a
subgroup of G′.
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If g : G ′ → G′′ is a homomorphism of the group G′ into a group G′′, then the
composite map g ◦ f : G → G′′ is also a homomorphism.

The kernel of the homomorphism f is defined to be the set N of all a ∈ G such
that f (a) = e′ is the identity element of G′. The kernel is a subgroup of G, since if
a ∈ N and b ∈ N , then ab ∈ N and a−1 ∈ N . Moreover, it is a normal subgroup,
since a ∈ N and c ∈ G imply c−1ac ∈ N .

For any a ∈ G, put a′ = f (a) ∈ G′. The coset Na is the set of all x ∈ G such
that f (x) = a′, and the map Na → a′ is a bijection from the collection of all cosets
of N to f (G). Since f is a homomorphism, Nab is mapped to a′b′. Hence the map
Na → a′ is a homomorphism of the factor group G/N to f (G).

A mapping f : G → G′ of a group G into a group G′ is said to be a (group) isomor-
phism if it is both bijective and a homomorphism. The inverse mapping f −1 : G′ → G
is then also an isomorphism. (An automorphism of a group G is an isomorphism of G
with itself.)

Thus we have shown that, if f : G → G′ is a homomorphism of a group G into a
group G′, with kernel N , then the factor group G/N is isomorphic to f (G).

Suppose now that G is an arbitrary group and a any element of G. We have
already defined a−1, the inverse of a. We now inductively define an , for any integer n,
by putting

a0 = e, a1 = a,

an = a(an−1), a−n = a−1(a−1)n−1 if n > 1.

It is readily verified that, for all m, n ∈ Z,

aman = am+n, (am)n = amn.

The set 〈a〉 = {an : n ∈ Z} is a commutative subgroup of G, the cyclic subgroup gen-
erated by a. Evidently 〈a〉 contains a and is contained in every subgroup of G which
contains a.

If we regard Z as a group under addition, then the mapping n → an is a homomor-
phism of Z onto 〈a〉. Consequently 〈a〉 is isomorphic to the factor group Z/N , where
N is the subgroup of Z consisting of all integers n such that an = e. Evidently 0 ∈ N ,
and n ∈ N implies −n ∈ N . Thus either N = {0} or N contains a positive integer.
In the latter case, let s be the least positive integer in N . By Proposition 14, for any
integer n there exist integers q, r such that

n = qs + r, 0 ≤ r < s.

If n ∈ N , then also r = n − qs ∈ N and hence r = 0, by the definition of s. It follows
that N = sZ is the subgroup of Z consisting of all multiples of s. Thus either 〈a〉
is isomorphic to Z, and is an infinite group, or 〈a〉 is isomorphic to the factor group
Z/sZ, and is a finite group of order s. We say that the element a itself is of infinite
order if 〈a〉 is infinite and of order s if 〈a〉 is of order s.

It is easily seen that in a commutative group the set of all elements of finite order
is a subgroup, called its torsion subgroup.

If S is any nonempty subset of a group G, then the set 〈S〉 of all finite products
aε1

1 aε1
2 · · · aεn

n , where n ∈ N, a j ∈ S and ε j = ±1, is a subgroup of G, called the
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subgroup generated by S. Clearly S ⊆ 〈S〉 and 〈S〉 is contained in every subgroup of
G which contains S.

Two elements a, b of a group G are said to be conjugate if b = x−1ax for some
x ∈ G. It is easy to see that conjugacy is an equivalence relation. For a = a−1aa,
if b = x−1ax then a = (x−1)−1bx−1, and b = x−1ax, c = y−1by together imply
c = (xy)−1axy. Consequently G may be partitioned into conjugacy classes, so that
two elements of G are conjugate if and only if they belong to the same conjugacy class.

For any element a of a group G, the set Na of all elements of G which commute
with a,

Na = {x ∈ G : xa = ax},
is closed under multiplication and inversion. Thus Na is a subgroup of G, called the
centralizer of a in G.

If y and z lie in the same right coset of Na , so that z = xy for some x ∈ Na , then
zy−1a = azy−1 and hence y−1ay = z−1az. Conversely, if y−1ay = z−1az, then y and
z lie in the same right coset of Na . If G is finite, it follows that the number of elements
in the conjugacy class containing a is equal to the number of right cosets of the sub-
group Na , i.e. to the index of the subgroup Na in G, and hence it divides the order of G.

To conclude, we mention a simple way of creating new groups from given ones.
Let G,G′ be groups and let G×G′ be the set of all ordered pairs (a, a′) with a ∈ G and
a′ ∈ G′. Then G×G ′ acquires the structure of a group if we define the product (a, a′) ·
(b, b′) of (a, a′) and (b, b′) to be (ab, a′b′). Multiplication is clearly associative, (e, e′)
is an identity element and (a−1, a′−1) is an inverse for (a, a′). The group thus con-
structed is called the direct product of G and G′, and is again denoted by G × G′.

8 Rings and Fields

A nonempty set R is said to be a ring if two binary operations, + (addition)
and · (multiplication), are defined with the properties

(i) R is a commutative group under addition, with 0 (zero) as identity element and
−a as inverse of a;

(ii) multiplication is associative: (ab)c = a(bc) for all a, b, c ∈ R;
(iii) there exists an identity element 1 (one) for multiplication: a1 = a = 1a for every

a ∈ R;
(iv) addition and multiplication are connected by the two distributive laws:

(a + b)c = (ac)+ (bc), c(a + b) = (ca)+ (cb) for all a, b, c ∈ R.

The elements 0 and 1 are necessarily uniquely determined. If, in addition, multi-
plication is commutative:

ab = ba for all a, b ∈ R,

then R is said to be a commutative ring. In a commutative ring either one of the two
distributive laws implies the other.
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It may seem inconsistent to require that addition is commutative, but not multipli-
cation. However, the commutative law for addition is actually a consequence of the
other axioms for a ring. For, by the first distributive law we have

(a + b)(1+ 1) = a(1+ 1)+ b(1+ 1) = a + a + b + b,

and by the second distributive law

(a + b)(1+ 1) = (a + b)1+ (a + b)1 = a + b + a + b.

Since a ring is a group under addition, by comparing these two relations we obtain first

a + a + b = a + b + a

and then a + b = b + a.
As examples, the set Z of all integers is a commutative ring, with the usual defi-

nitions of addition and multiplication, whereas if n > 1, the set Mn(Z) of all n × n
matrices with entries from Z is a noncommutative ring, with the usual definitions of
matrix addition and multiplication.

A very different example is the collection P(X) of all subsets of a given set X . If
we define the sum A + B of two subsets A, B of X to be their symmetric difference,
i.e. the set of all elements of X which are in either A or B , but not in both:

A + B = (A ∪ B)\(A ∩ B) = (A ∪ B) ∩ (Ac ∪ Bc),

and the product AB to be the set of all elements of X which are in both A and B:

AB = A ∩ B,

it is not difficult to verify that P(X) is a commutative ring, with the empty set ∅ as
identity element for addition and the whole set X as identity element for multiplication.
For every A ∈P(X), we also have

A + A = ∅, AA = A.

The set operations are in turn determined by the ring operations:

A ∪ B = A + B + AB, A ∩ B = AB, Ac = A + X.

A ring R is said to be a Boolean ring if aa = a for every a ∈ R. It follows that
a + a = 0 for every a ∈ R, since

a + a = (a + a)(a + a) = a + a + a + a.

Moreover, a Boolean ring is commutative, since

a + b = (a + b)(a + b) = a + b + ab + ba

and ba = −ba, by what we have already proved.
For an arbitrary set X , any nonempty subset of P(X) which is closed under union,

intersection and complementation can be given the structure of a Boolean ring in the
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manner just described. It was proved by Stone (1936) that every Boolean ring may
be obtained in this way. Thus the algebraic laws of set theory may be replaced by the
more familiar laws of algebra and all such laws are consequences of a small number
among them.

We now return to arbitrary rings. In the same way as for Z, in any ring R we have

a0 = 0 = 0a for every a

and

(−a)b = −(ab) = a(−b) for all a, b.

It follows that R contains only one element if 1 = 0. We will say that the ring R is
‘trivial’ in this case.

Suppose R is a nontrivial ring. Then, viewing R as a group under addition, the
cyclic subgroup 〈1〉 is either infinite, and isomorphic to Z/0Z, or finite of order s, and
isomorphic to Z/sZ for some positive integer s. The ring R is said to have character-
istic 0 in the first case and characteristic s in the second case.

For any positive integer n, write

na := a + · · · + a (n summands).

If R has characteristic s > 0, then sa = 0 for every a ∈ R, since

sa = (1+ · · · + 1)a = 0a = 0.

On the other hand, n1 �= 0 for every positive integer n < s, by the definition of
characteristic.

An element a of a nontrivial ring R is said to be ‘invertible’ or a unit if there exists
an element a−1 such that

a−1a = 1 = aa−1.

The element a−1 is then uniquely determined and is called the inverse of a. For
example, 1 is a unit and is its own inverse. If a is a unit, then a−1 is also a unit and
its inverse is a. If a and b are units, then ab is also a unit and its inverse is b−1a−1. It
follows that the set R× of all units is a group under multiplication.

A nontrivial ring R in which every nonzero element is invertible is said to be a
division ring. Thus all nonzero elements of a division ring form a group under multipli-
cation, the multiplicative group of the division ring. A field is a commutative division
ring.

A nontrivial commutative ring R is said to be an integral domain if it has no
‘divisors of zero’, i.e. if a �= 0 and b �= 0 imply ab �= 0. A division ring also has
no divisors of zero, since if a �= 0 and b �= 0, then a−1ab = b �= 0, and hence ab �= 0.

As examples, the set Q of rational numbers, the set R of real numbers and the set
C of complex numbers are all fields, with the usual definitions of addition and mul-
tiplication. The set H of quaternions is a division ring, and the set Z of integers is an
integral domain, but neither is a field.
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In a ring with no divisors of zero, the additive order of any nonzero element a is
the same as the additive order of 1, since ma = (m1)a = 0 if and only if m1 = 0.
Furthermore, the characteristic of such a ring is either 0 or a prime number. For assume
n = lm, where l and m are positive integers less than n. If n1 = 0, then

(l1)(m1) = n1 = 0.

Since there are no divisors of zero, either l1 = 0 or m1 = 0, and hence the character-
istic cannot be n.

A subset S of a ring R is said to be a (two-sided) ideal if it is a subgroup of R
under addition and if, for every a ∈ S and c ∈ R, both ac ∈ S and ca ∈ S.

Any ring R has two obvious ideals, namely R itself and the subset {0}. It is said to
be simple if it has no other ideals and is nontrivial.

Any division ring is simple. For if an ideal S of a division ring R contains a �= 0,
then for every c ∈ R we have c = (ca−1)a ∈ S.

Conversely, if a commutative ring R is simple, then it is a field. For, if a is any
nonzero element of R, the set

Sa = {xa : x ∈ R}
is an ideal (since R is commutative). Since Sa contains 1a = a �= 0, we must have
Sa = R. Hence 1 = xa for some x ∈ R. Thus every nonzero element of R is invertible.

If R is a commutative ring and a1, . . . , am ∈ R, then the set S consisting of all
elements x1a1 + · · · + xmam , where x j ∈ R (1 ≤ j ≤ m), is clearly an ideal of R, the
ideal generated by a1, . . . , am . An ideal of this type is said to be finitely generated.

We now show that if S is an ideal of the ring R, then the set S of all cosets S + a
of S can be given the structure of a ring. The ring R is a commutative group under
addition. Hence, as we saw in §7, S acquires the structure of a (commutative) group
under addition if we define the sum of S+a and S+b to be S+(a+b). If x = s+a and
x ′ = s′ + b for some s, s′ ∈ S, then xx ′ = s′′ + ab, where s′′ = ss ′ + as′ + sb. Since
S is an ideal, s′′ ∈ S. Thus without ambiguity we may define the product of the cosets
S + a and S + b to be the coset S + ab. Evidently multiplication is associative, S + 1
is an identity element for multiplication and both distributive laws hold. The new ring
thus constructed is called the quotient ring of R by the ideal S, and is denoted by R/S.

A mapping f : R → R′ of a ring R into a ring R′ is said to be a (ring) homomor-
phism if, for all a, b ∈ R,

f (a + b) = f (a)+ f (b), f (ab) = f (a) f (b),

and if f (1) = 1′ is the identity element for multiplication in R′.
The kernel of the homomorphism f is the set N of all a ∈ R such that f (a) = 0′

is the identity element for addition in R′. The kernel is an ideal of R, since it is a
subgroup under addition and since a ∈ N , c ∈ R imply ac ∈ N and ca ∈ N .

For any a ∈ R, put a′ = f (a) ∈ R′. The coset N + a is the set of all x ∈ R such
that f (x) = a′, and the map N +a → a′ is a bijection from the collection of all cosets
of N to f (R). Since f is a homomorphism, N + (a + b) is mapped to a′ + b′ and
N + ab is mapped to a′b′. Hence the map N + a → a′ is also a homomorphism of the
quotient ring R/N into f (R).
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A mapping f : R → R′ of a ring R into a ring R′ is said to be a (ring) isomor-
phism if it is both bijective and a homomorphism. The inverse mapping f −1 : R′ → R
is then also an isomorphism. (An automorphism of a ring R is an isomorphism of R
with itself.)

Thus we have shown that, if f : R → R′ is a homomorphism of a ring R into a
ring R′, with kernel N , then the quotient ring R/N is isomorphic to f (R).

An ideal M of a ring R is said to be maximal if M �= R and if there are no ideals
S such that M ⊂ S ⊂ R.

Let M be an ideal of the ring R. If S is an ideal of R which contains M , then the
set S′ of all cosets M + a with a ∈ S is an ideal of R/M . Conversely, if S′ is an ideal
of R/M , then the set S of all a ∈ R such that M + a ∈ S′ is an ideal of R which
contains M . It follows that M is a maximal ideal of R if and only if R/M is simple.
Hence an ideal M of a commutative ring R is maximal if and only if the quotient ring
R/M is a field.

To conclude, we mention a simple way of creating new rings from given ones. Let
R, R′ be rings and let R × R′ be the set of all ordered pairs (a, a′) with a ∈ R and
a′ ∈ R′. As we saw in the previous section, R × R′ acquires the structure of a (com-
mutative) group under addition if we define the sum (a, a′) + (b, b′) of (a, a′) and
(b, b′) to be (a+ b, a′ + b′). If we define their product (a, a′) · (b, b′) to be (ab, a′b′),
then R× R′ becomes a ring, with (0, 0′) as identity element for addition and (1, 1′) as
identity element for multiplication. The ring thus constructed is called the direct sum
of R and R′, and is denoted by R ⊕ R′.

9 Vector Spaces and Associative Algebras

Although we assume some knowledge of linear algebra, it may be useful to place the
basic definitions and results in the context of the preceding sections. A set V is said
to be a vector space over a division ring D if it is a commutative group under an
operation + (addition) and there exists a map ϕ : D × V → V (multiplication by a
scalar) such that, if ϕ(α, v) is denoted by αv then, for all α, β ∈ D and all v,w ∈ V ,

(i) α(v +w) = αv + αw,
(ii) (α + β)v = αv + βv,

(iii) (αβ)v = α(βv),
(iv) 1v = v,

where 1 is the identity element for multiplication in D. The elements of V will be
called vectors and the elements of D scalars.

For example, for any positive integer n, the set Dn of all n-tuples of elements of
the division ring D is a vector space over D if addition and multiplication by a scalar
are defined by

(α1, . . . , αn)+ (β1, . . . , βn) = (α1 + β1, . . . , αn + βn),

α(α1, . . . , αn) = (αα1, . . . , ααn).

The special cases D = R and D = C have many applications.
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As another example, the set C (I ) of all continuous functions f : I → R, where
I is an interval of the real line, is a vector space over the field R of real numbers if
addition and multiplication by a scalar are defined, for every t ∈ I , by

( f + g)(t) = f (t)+ g(t),

(α f )(t) = α f (t).

Let V be an arbitrary vector space over a division ring D. If O is the identity
element of V with respect to addition, then

αO = O for every α ∈ D,

since αO = α(O + O) = αO + αO. Similarly, if 0 is the identity element of D with
respect to addition, then

0v = O for every v ∈ V ,

since 0v = (0+ 0)v = 0v + 0v. Furthermore,

(−α)v = −(αv) for all α ∈ D and v ∈ V ,

since O = 0v = (α + (−α))v = αv + (−α)v, and

αv �= O if α �= 0 and v �= O,

since α−1(αv) = (α−1α)v = 1v = v.
From now on we will denote the zero elements of D and V by the same symbol 0.

This is easier on the eye and in practice is not confusing.
A subset U of a vector space V is said to be a subspace of V if it is a vector space

under the same operations as V itself. It is easily seen that a nonempty subset U is a
subspace of V if (and only if) it is closed under addition and multiplication by a scalar.
For then, if u ∈ U , also −u = (−1)u ∈ U , and so U is an additive subgroup of V .
The other requirements for a vector space are simply inherited from V .

For example, if 1 ≤ m < n, the set of all (α1, . . . , αn) ∈ Dn with α1 = · · · =
αm = 0 is a subspace of Dn . Also, the set C 1(I ) of all continuously differentiable
functions f : I → R is a subspace of C (I ). Two obvious subspaces of any vector
space V are V itself and the subset {0} which contains only the zero vector.

If U1 and U2 are subspaces of a vector space V , then their intersection U1 ∩ U2,
which necessarily contains 0, is again a subspace of V . The sum U1 + U2, consisting
of all vectors u1 + u2 with u1 ∈ U1 and u2 ∈ U2, is also a subspace of V . Evidently
U1 + U2 contains U1 and U2 and is contained in every subspace of V which contains
both U1 and U2. If U1 ∩U2 = {0}, the sum U1+U2 is said to be direct, and is denoted
by U1 ⊕ U2, since it may be identified with the set of all ordered pairs (u1, u2), where
u1 ∈ U1 and u2 ∈ U2.

Let V be an arbitrary vector space over a division ring D and let {v1, . . . , vm} be a
finite subset of V . A vector v in V is said to be a linear combination of v1, . . . , vm if

v = α1v1 + · · · + αmvm
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for some α1, . . . , αm ∈ D. The coefficients α1, . . . , αm need not be uniquely deter-
mined. Evidently a vector v is a linear combination of v1, . . . , vm if it is a linear
combination of some proper subset, since we can add the remaining vectors with zero
coefficients.

If S is any nonempty subset of V , then the set 〈S〉 of all vectors in V which are
linear combinations of finitely many elements of S is a subspace of V , the subspace
‘spanned’ or generated by S. Clearly S ⊆ 〈S〉 and 〈S〉 is contained in every subspace
of V which contains S.

A finite subset {v1, . . . , vm } of V is said to be linearly dependent (over D) if there
exist α1, . . . , αm ∈ D, not all zero, such that

α1v1 + · · · + αmvm = 0,

and is said to be linearly independent otherwise.
For example, in R3 the vectors

v1 = (1, 0, 1), v2 = (1, 1, 0), v3 = (1, 1/2, 1/2)
are linearly dependent, since v1 + v2 − 2v3 = 0. On the other hand, the vectors

e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1)
are linearly independent, since α1e1 + α2e2 + α3e3 = (α1, α2, α3), and this is 0 only
if α1 = α2 = α3 = 0.

In any vector space V , the set {v} containing the single vector v is linearly indepen-
dent if v �= 0 and linearly dependent if v = 0. If v1, . . . , vm are linearly independent,
then any vector v ∈ 〈v1, . . . , vm 〉 has a unique representation as a linear combination
of v1, . . . , vm , since if

α1v1 + · · · + αmvm = β1v1 + · · · + βmvm ,

then

(α1 − β1)v1 + · · · + (αm − βm)vm = 0

and hence

α1 − β1 = · · · = αm − βm = 0.

Evidently the vectors v1, . . . , vm are linearly dependent if some proper subset is
linearly dependent. Hence any nonempty subset of a linearly independent set is again
linearly independent.

A subset S of a vector space V is said to be a basis for V if S is linearly indepen-
dent and 〈S〉 = V . In the previous example, the vectors e1, e2, e3 are a basis for R3,
since they are not only linearly independent but also generate R3.

Any nontrivial finitely generated vector space has a basis. In fact if a vector space
V is generated by a finite subset T , then V has a basis B ⊆ T . Moreover, any linearly
independent subset of V is also finite and its cardinality does not exceed that of T . It
follows that any two bases contain the same number of elements.
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If V has a basis containing n elements, we say V has dimension n and we write
dim V = n. We say that V has infinite dimension if it is not finitely generated, and has
dimension 0 if it contains only the vector 0.

For example, the field C of complex numbers may be regarded as a 2-dimensional
vector space over the field R of real numbers, with basis {1, i}.

Again, Dn has dimension n as a vector space over the division ring D, since it has
the basis

e1 = (1, 0, . . . , 0), e2 = (0, 1, . . . , 0), . . . , en = (0, 0, . . . , 1).
On the other hand, the real vector space C (I ) of all continuous functions f : I → R
has infinite dimension if the interval I contains more than one point since, for any
positive integer n, the real polynomials of degree less than n form an n-dimensional
subspace.

The first of these examples is readily generalized. If E and F are fields with
F ⊆ E , we can regard E as a vector space over F . If this vector space is finite-
dimensional, we say that E is a finite extension of F and define the degree of E over
F to be the dimension [E : F] of this vector space.

Any subspace U of a finite-dimensional vector space V is again finite-dimensional.
Moreover, dim U ≤ dim V , with equality only if U = V . If U1 and U2 are subspaces
of V , then

dim(U1 + U2)+ dim(U1 ∩U2) = dim U1 + dim U2.

Let V and W be vector spaces over the same division ring D. A map T : V → W
is said to be linear, or a linear transformation, or a ‘vector space homomorphism’, if
for all v, v ′ ∈ V and every α ∈ D,

T (v + v ′) = T v + T v ′, T (αv) = α(T v).
Since the first condition implies that T is a homomorphism of the additive group of V
into the additive group of W , it follows that T 0 = 0 and T (−v) = −T v.

For example, if (τ j k) is an m×n matrix with entries from the division ring D, then
the map T : Dm → Dn defined by

T (α1, . . . , αm) = (β1, . . . , βn),

where

βk = α1τ1k + · · · + αmτmk (1 ≤ k ≤ n),

is linear. It is easily seen that every linear map of Dm into Dn may be obtained in this
way.

As another example, if C 1(I ) is the real vector space of all continuously differen-
tiable functions f : I → R, then the map T : C 1(I ) → C (I ) defined by T f = f ′
(the derivative of f ) is linear.

Let U, V ,W be vector spaces over the same division ring D. If T : V → W and
S : U → V are linear maps, then the composite map T ◦ S : U → W is again
linear. For linear maps it is customary to write T S instead of T ◦ S. The identity map
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I : V → V defined by Iv = v for every v ∈ V is clearly linear. If a linear map
T : V → W is bijective, then its inverse map T−1 : W → V is again linear.

If T : V → W is a linear map, then the set N of all v ∈ V such that T v = 0 is
a subspace of V , called the nullspace or kernel of T . Since T v = T v ′ if and only if
T (v − v ′) = 0, the map T is injective if and only if its kernel is {0}, i.e. when T is
nonsingular.

For any subspace U of V , its image T U = {T v : v ∈ U} is a subspace of W . In
particular, T V is a subspace of W , called the range of T . Thus the map T is surjective
if and only if its range is W .

If V is finite-dimensional, then the range R of T is also finite-dimensional and

dim R = dim V − dim N,

(since R ≈ V/N). The dimensions of R and N are called respectively the rank and
nullity of T . It follows that, if dim V = dim W , then T is injective if and only if it is
surjective.

Two vector spaces V ,W over the same division ring D are said to be isomorphic
if there exists a bijective linear map T : V → W . As an example, if V is an n-
dimensional vector space over the division ring D, then V is isomorphic to Dn . For if
v1, . . . , vn is a basis for V and if v = α1v1 + · · · + αnvn is an arbitrary element of V ,
the map v → (α1, . . . , αn) is linear and bijective.

Thus there is essentially only one vector space of given finite dimension over a
given division ring. However, vector spaces do not always present themselves in the
concrete form Dn . An example is the set of solutions of a system of homogeneous
linear equations with real coefficients. Hence, even if one is only interested in the
finite-dimensional case, it is still desirable to be acquainted with the abstract definition
of a vector space.

Let V and W be vector spaces over the same division ring D. We can define the
sum S + T of two linear maps S : V → W and T : V → W by

(S + T )v = Sv + T v.

This is again a linear map, and it is easily seen that with this definition of addition
the set of all linear maps of V into W is a commutative group. If D is a field, i.e. if
multiplication in D is commutative, then for any α ∈ D the map αT defined by

(αT )v = α(T v)
is again linear, and with these definitions of addition and multiplication by a scalar the
set of all linear maps of V into W is a vector space over D. (If the division ring D is not
a field, it is necessary to consider ‘right’ vector spaces over D, as well as ‘left’ ones.)

If V = W , then the product T S is also defined and it is easily verified that the set
of all linear maps of V into itself is a ring, with the identity map I as identity element
for multiplication. The bijective linear maps of V to itself are the units of this ring and
thus form a group under multiplication, the general linear group GL(V ).

Similarly to the direct product of two groups and the direct sum of two rings, one
may define the tensor product V ⊗ V ′ of two vector spaces V , V ′ and the Kronecker
product T ⊗ T ′ of two linear maps T : V → W and T ′ : V ′ → W ′.

The centre of a ring R is the set of all c ∈ R such that ac = ca for every a ∈ R. An
associative algebra A over a field F is a ring containing F in its centre. On account of
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the ring structure, we can regard A as a vector space over F . The associative algebra
is said to be finite-dimensional if it is finite-dimensional as a vector space over F .

For example, the set Mn(F) of all n × n matrices with entries from the field F
is a finite-dimensional associative algebra, with the usual definitions of addition and
multiplication, and with α ∈ F identified with the matrix α I .

More generally, if D is a division ring containing F in its centre, then the set
Mn(D) of all n × n matrices with entries from D is an associative algebra over F . It
is finite-dimensional if D itself is finite dimensional over F .

By the definition for rings, an associative algebra A is simple if A �= {0} and A
has no ideals except {0} and A. It is not difficult to show that, for any division ring D
containing F in its centre, the associative algebra Mn(D) is simple. It was proved by
Wedderburn (1908) that any finite-dimensional simple associative algebra has the form
Mn(D), where D is a division ring containing F in its centre and of finite dimension
over F .

If F = C, the fundamental theorem of algebra implies that C is the only such D. If
F = R, there are three choices for D, by the following theorem of Frobenius (1878):

Proposition 31 If a division ring D contains the real field R in its centre and is of
finite dimension as a vector space over R, then D is isomorphic to R,C or H.

Proof Suppose first that D is a field and D �= R. If a ∈ D\R then, since D is finite-
dimensional over R, a is a root of a monic polynomial with real coefficients, which
we may assume to be of minimal degree. Since a /∈ R, the degree is not 1 and the
fundamental theorem of algebra implies that it must be 2. Thus

a2 − 2λa + µ = 0

for some λ,µ ∈ R with λ2 < µ. Then µ − λ2 = ρ2 for some nonzero ρ ∈ R and
i = (a − λ)/ρ satisfies i2 = −1. Thus D contains the field R(i) = R+ iR. But, since
D is a field, the only x ∈ D such that x2 = −1 are i and −i . Hence the preceding
argument shows that actually D = R(i). Thus D is isomorphic to the field C of
complex numbers.

Suppose now that D is not commutative. Let a be an element of D which is not
in the centre of D, and let M be an R-subspace of D of maximal dimension which is
commutative and which contains both a and the centre of D. If x ∈ D commutes with
every element of M , then x ∈ M . Hence M is a maximal commutative subset of D. It
follows that if x ∈ M and x �= 0 then also x−1 ∈ M , since xy = yx for all y ∈ M im-
plies yx−1 = x−1 y for all y ∈ M . Similarly x, x ′ ∈ M implies xx ′ ∈ M . Thus M is a
field which properly contains R. Hence, by the first part of the proof, M is isomorphic
to C. Thus M = R(i), where i2 = −1, [M : R] = 2 and R is the centre of D.

If x ∈ D\M , then b = (x + i xi)/2 satisfies

bi = (xi − i x)/2 = −ib �= 0.

Hence b ∈ D\M and b2i = ib2. But, in the same way as before, N = R + Rb is
a maximal subfield of D containing b and R, and N = R( j), where j2 = −1. Thus
b2 = α+βb, where α, β ∈ R. In fact, since b2i = ib2, we must have β = 0. Similarly



70 I The Expanding Universe of Numbers

j = γ + δb, where γ, δ ∈ R and δ �= 0. Since j2 = γ 2 + 2γ δb+ δ2α = −1, we must
have γ = 0. Thus j = δb and j i = −i j.

If we put k = i j , it now follows that

k2 = −1, jk = i = −k j, ki = j = −ik.

Since no R-linear combination of 1, i, j has these properties, the elements 1, i, j, k
are R-linearly independent. But, by Proposition 32 below, [D : M] = [M : R] = 2.
Hence [D : R] = 4 and 1, i, j, k are a basis for D over R. Thus D is isomorphic to the
division ring H of quaternions. �

To complete the proof of Proposition 31 we now prove

Proposition 32 Let D be a division ring which, as a vector space over its centre C, has
finite dimension [D : C]. If M is a maximal subfield of D, then [D : M] = [M : C].

Proof Put n = [D : C] and let e1, . . . , en be a basis for D as a vector space over C .
Obviously we may suppose n > 1. We show first that if a1, . . . , an are elements of D
such that

a1xe1 + · · · + anxen = 0 for every x ∈ D,

then a1 = · · · = an = 0. Assume that there exists such a set {a1, . . . , an} with not all
elements zero and choose one with the minimal number of nonzero elements. We may
suppose the notation chosen so that ai �= 0 for i ≤ r and ai = 0 for i > r and, by
multiplying on the left by a−1

1 , we may further suppose that a1 = 1. For any y ∈ D
we have

a1yxe1 + · · · + an yxen = 0 = y(a1xe1 + · · · + anxen)

and hence

(a1 y − ya1)xe1 + · · · + (an y − yan)xen = 0.

Since ai y = yai for i = 1 and for i > r , our choice of {a1, . . . , an} implies that ai y =
yai for all i . Since this holds for every y ∈ D, it follows that ai ∈ C for all i . But this
is a contradiction, since e1, . . . , en is a basis for D over C and a1e1 + · · · + anen = 0.

The map Tjk : D → D defined by Tjkx = e j xek is a linear transformation of
D as a vector space over C . By what we have just proved, the n2 linear maps Tjk

( j, k = 1, . . . , n) are linearly independent over C . Consequently every linear transfor-
mation of D as a vector space over C is a C-linear combination of the maps Tjk .

Suppose now that T : D → D is a linear transformation of D as a vector space
over M . Since C ⊆ M , T is also a linear transformation of D as a vector space over C
and hence has the form

T x = a1xe1 + · · · + anxen

for some a1, . . . , an ∈ D. But T (bx) = b(T x) for all b ∈ M and x ∈ D. Hence

(a1b − ba1)xe1 + · · · + (anb − ban)xen = 0 for every x ∈ D,
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which implies ai b = bai (i = 1, . . . , n). Since this holds for all b ∈ M and M is a
maximal subfield of D, it follows that ai ∈ M (i = 1, . . . , n).

Let T denote the set of all linear transformations of D as a vector space over M .
By what we have already proved, every T ∈ T is an M-linear combination of the
maps T1, . . . , Tn , where Ti x = xei (i = 1, . . . , n), and the maps T1, . . . , Tn are lin-
early independent over M . Consequently the dimension of T as a vector space over M
is n. But T has dimension [D : M]2 as a vector space over M . Hence [D : M]2 = n.
Since n = [D : M][M : C], it follows that [D : M] = [M : C]. �

10 Inner Product Spaces

Let F denote either the real field R or the complex field C. A vector space V over F is
said to be an inner product space if there exists a map (u, v)→ 〈u, v〉 of V × V into
F such that for every α ∈ F and all u, u′, v ∈ V ,

(i) 〈αu, v〉 = α〈u, v〉,
(ii) 〈u + u′, v〉 = 〈u, v〉 + 〈u′, v〉,

(iii) 〈v, u〉 = 〈u, v〉,
(iv) 〈u, u〉 > 0 if u �= O.

If F = R, then (iii) simply says that 〈v, u〉 = 〈u, v〉, since a real number is its own
complex conjugate. The restriction u �= O is necessary in (iv), since (i) and (iii) imply
that

〈u, O〉 = 〈O, v〉 = 0 for all u, v ∈ V .

It follows from (ii) and (iii) that

〈u, v + v ′〉 = 〈u, v〉 + 〈u, v ′〉 for all u, v, v ′ ∈ V ,

and from (i) and (iii) that

〈u, αv〉 = ᾱ〈u, v〉 for every α ∈ F and all u, v ∈ V .

The standard example of an inner product space is the vector space Fn , with the
inner product of x = (ξ1, . . . , ξn) and y = (η1, . . . , ηn) defined by

〈x, y〉 = ξ1η̄1 + · · · + ξn η̄n.

Another example is the vector space C (I ) of all continuous functions f : I → F ,
where I = [a, b] is a compact subinterval of R, with the inner product of f and g
defined by

〈 f, g〉 =
∫ b

a
f (t)g(t)dt .

In an arbitrary inner product space V we define the norm ‖v‖ of a vector v ∈ V by

‖v‖ = 〈v, v〉1/2.
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Thus ‖v‖ ≥ 0, with equality if and only if v = O. Evidently

‖αv‖ = |α|‖v‖ for all α ∈ F and v ∈ V .

Inner products and norms are connected by Schwarz’s inequality:

|〈u, v〉| ≤ ‖u‖‖v‖ for all u, v ∈ V ,

with equality if and only if u and v are linearly dependent. For the proof we may sup-
pose that u and v are linearly independent, since it is easily seen that equality holds if
u = λv or v = λu for some λ ∈ F . Then, for all α, β ∈ F , not both 0,

0 < 〈αu + βv, αu + βv〉 = |α|2〈u, u〉 + αβ̄〈u, v〉 + ᾱβ〈u, v〉 + |β|2〈v, v〉.
If we choose α = 〈v, v〉 and β = −〈u, v〉, this takes the form

0 < ‖u‖2‖v‖4 − 2‖v‖2|〈u, v〉|2 + |〈u, v〉|2‖v‖2 = {‖u‖2‖v‖2 − |〈u, v〉|2}‖v‖2.

Hence

|〈u, v〉|2 < ‖u‖2‖v‖2,

as we wished to show. We follow common practice by naming the inequality after
Schwarz (1885), but (cf. §4) it had already been proved for Rn by Cauchy (1821) and
for C (I ) by Bunyakovskii (1859).

It follows from Schwarz’s inequality that

‖u + v‖2 = ‖u‖2 + 2R〈u, v〉 + ‖v‖2

≤ ‖u‖2 + 2|〈u, v〉| + ‖v‖2 ≤ {‖u‖ + ‖v‖}2.
Thus

‖u + v‖ ≤ ‖u‖ + ‖v‖ for all u, v ∈ V ,

with strict inequality if u and v are linearly independent.
It now follows that V acquires the structure of a metric space if we define the

distance between u and v by

d(u, v) = ‖u − v‖.
In the case V = Rn this is the Euclidean distance

d(x, y) =
( n∑

j=1

|ξ j − η j |2
)1/2

,

and in the case V = C (I ) it is the L2-norm

d( f, g) =
(∫ b

a
| f (t)− g(t)|2dt

)1/2

.
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The norm in any inner product space V satisfies the parallelogram law:

‖u + v‖2 + ‖u − v‖2 = 2‖u‖2 + 2‖v‖2 for all u, v ∈ V .

This may be immediately verified by substituting ‖w‖2 = 〈w,w〉 throughout and
using the linearity of the inner product. The geometrical interpretation is that in any
parallelogram the sum of the squares of the lengths of the two diagonals is equal to the
sum of the squares of the lengths of all four sides.

It may be shown that any normed vector space which satisfies the parallelogram
law can be given the structure of an inner product space by defining

〈u, v〉 = {‖u + v‖2 − ‖u − v‖2}/4 if F = R,

= {‖u + v‖2 − ‖u − v‖2 + i‖u + iv‖2 − i‖u − iv‖2}/4 if F = C.

(Cf. the argument for F = Q in §4 of Chapter XIII.)
In an arbitrary inner product space V a vector u is said to be ‘perpendicular’ or

orthogonal to a vector v if 〈u, v〉 = 0. The relation is symmetric, since 〈u, v〉 = 0
implies 〈v, u〉 = 0. For orthogonal vectors u, v, the law of Pythagoras holds:

‖u + v‖2 = ‖u‖2 + ‖v‖2.

More generally, a subset E of V is said to be orthogonal if 〈u, v〉 = 0 for all
u, v ∈ E with u �= v. It is said to be orthonormal if, in addition, 〈u, u〉 = 1 for
every u ∈ E . An orthogonal set which does not contain O may be converted into an
orthonormal set by replacing each u ∈ E by u/‖u‖.

For example, if V = Fn , then the basis vectors

e1 = (1, 0, . . . , 0), e2 = (0, 1, . . . , 0), . . . , en = (0, 0, . . . , 1)
form an orthonormal set. It is easily verified also that, if I = [0, 1], then in C (I ) the
functions en(t) = e2π int (n ∈ Z) form an orthonormal set.

Let {e1, . . . , em} be any orthonormal set in the inner product space V and let
U be the vector subspace generated by e1, . . . , em . Then the norm of a vector
u = α1e1 + · · · + αmem ∈ U is given by

‖u‖2 = |α1|2 + · · · + |αm |2,
which shows that e1, . . . , em are linearly independent.

To find the best approximation in U to a given vector v ∈ V , put

w = γ1e1 + · · · + γmem,

where

γ j = 〈v, e j 〉 ( j = 1, . . . ,m).

Then 〈w, e j 〉 = 〈v, e j 〉( j = 1, . . . ,m) and hence 〈v − w,w〉 = 0. Consequently, by
the law of Pythagoras,

‖v‖2 = ‖v −w‖2 + ‖w‖2.
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Since ‖w‖2 = |γ1|2 + · · · + |γm|2, this yields Bessel’s inequality:

|〈v, e1〉|2 + · · · + |〈v, em〉|2 ≤ ‖v‖2,

with strict inequality if v /∈ U . For any u ∈ U , we also have 〈v − w,w − u〉 = 0 and
so, by Pythagoras again,

‖v − u‖2 = ‖v −w‖2 + ‖w − u‖2.

This shows that w is the unique nearest point of U to v.
From any linearly independent set of vectors v1, . . . , vm we can inductively

construct an orthonormal set e1, . . . , em such that e1, . . . , ek span the same vector sub-
space as v1, . . . , vk for 1 ≤ k ≤ m. We begin by taking e1 = v1/‖v1‖. Now suppose
e1, . . . , ek have been determined. If

w = vk+1 − 〈vk+1, e1〉e1 − · · · − 〈vk+1, ek〉ek ,

then 〈w, e j 〉 = 0 ( j = 1, . . . , k). Moreoverw �= O, sincew is a linear combination of
v1, . . . , vk+1 in which the coefficient of vk+1 is 1. By taking ek+1 = w/‖w‖, we obtain
an orthonormal set e1, . . . , ek+1 spanning the same linear subspace as v1, . . . , vk+1.
This construction is known as Schmidt’s orthogonalization process, because of its use
by E. Schmidt (1907) in his treatment of linear integral equations. The (normalized)
Legendre polynomials are obtained by applying the process to the linearly independent
functions 1, t, t2, . . . in the space C (I ), where I = [−1, 1].

It follows that any finite-dimensional inner product space V has an orthonormal
basis e1, . . . , en and that

‖v‖2 =
n∑

j=1

|〈v, e j 〉|2 for every v ∈ V .

In an infinite-dimensional inner product space V an orthonormal set E may even
be uncountably infinite. However, for a given v ∈ V , there are at most countably many
vectors e ∈ E for which 〈v, e〉 �= 0. For if {e1, . . . , em} is any finite subset of E then,
by Bessel’s inequality,

m∑
j=1

|〈v, e j 〉|2 ≤ ‖v‖2

and so, for each n ∈ N, there are at most n2 − 1 vectors e ∈ E for which
|〈v, e〉| > ‖v‖/n.

If the vector subspace U of all finite linear combinations of elements of E is dense
in V then, by the best approximation property of finite orthonormal sets, Parseval’s
equality holds: ∑

e∈E

|〈v, e〉|2 = ‖v‖2 for every v ∈ V .

Parseval’s equality holds for the inner product space C (I ), where I = [0, 1], and
the orthonormal set E = {e2π int : n ∈ Z} since, by Weierstrass’s approximation the-
orem (see the references in §6 of Chapter XI), every f ∈ C (I ) is the uniform limit of
a sequence of trigonometric polynomials. The result in this case was formally derived
by Parseval (1805).
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An almost periodic function, in the sense of Bohr (1925), is a function f : R → C
which can be uniformly approximated on R by generalized trigonometric polynomials

m∑
j=1

c j e
iλ j t ,

where c j ∈ C and λ j ∈ R ( j = 1, . . . ,m). For any almost periodic functions f, g, the
limit

〈 f, g〉 = lim
T→∞(1/2T )

∫ T

−T
f (t)g(t)dt

exists. The set B of all almost periodic functions acquires in this way the structure of
an inner product space. The set E = {eiλt : λ ∈ R} is an uncountable orthonormal set
and Parseval’s equality holds for this set.

A finite-dimensional inner product space is necessarily complete as a metric space,
i.e., every fundamental sequence converges. However, an infinite-dimensional inner
product space need not be complete, as C (I ) already illustrates. An inner product
space which is complete is said to be a Hilbert space.

The case considered by Hilbert (1906) was the vector space �2 of all infinite
sequences x = (ξ1, ξ2, . . .) of complex numbers such that

∑
k≥1 |ξk |2 <∞, with

〈x, y〉 =
∑
k≥1

ξk η̄k .

Another example is the vector space L2(I ), where I = [0, 1], of all (equivalence
classes of) Lebesgue measurable functions f : I → C such that

∫ 1
0 | f (t)2dt < ∞,

with

〈 f, g〉 =
∫ 1

0
f (t)g(t)dt .

With any f ∈ L2(I ) we can associate a sequence f̂ ∈ �2, consisting of the in-
ner products 〈 f, en〉, where en(t) = e2π int (n ∈ Z), in some fixed order. The map
F : L2(I )→ �2 thus defined is linear and, by Parseval’s equality,

‖F f ‖ = ‖ f ‖.
In fact F is an isometry since, by the theorem of Riesz–Fischer (1907), it is bijective.

11 Further Remarks

A vast fund of information about numbers in different cultures is contained in
Menninger [52]. A good popular book is Dantzig [18].

The algebra of sets was created by Boole (1847), who used the symbols + and ·
instead of ∪ and ∩, as is now customary. His ideas were further developed, with appli-
cations to logic and probability theory, in Boole [10]. A simple system of axioms for



76 I The Expanding Universe of Numbers

Boolean algebra was given by Huntingdon [39]. For an introduction to Stone’s repre-
sentation theorem, referred to in §8, see Stone [69]; there are proofs in Halmos [30] and
Sikorski [66]. For applications of Boolean algebras to switching circuits see, for ex-
ample, Rudeanu [62]. Boolean algebra is studied in the more general context of lattice
theory in Birkhoff [6].

Dedekind’s axioms for N may be found on p. 67 of [19], which contains also his
earlier construction of the real numbers from the rationals by means of cuts. Some
interesting comments on the axioms (N1)–(N3) are contained in Henkin [34]. Start-
ing from these axioms, Landau [47] gives a detailed derivation of the basic properties
of N,Q,R and C.

The argument used to extend N to Z shows that any commutative semigroup sat-
isfying the cancellation law may be embedded in a commutative group. The argument
used to extend Z to Q shows that any commutative ring without divisors of zero may
be embedded in a field.

An example of an ordered field which does not have the Archimedean prop-
erty, although every fundamental sequence is (trivially) convergent, is the field ∗R of
hyperreal numbers, constructed by Abraham Robinson (1961). Hyperreal numbers are
studied in Stroyan and Luxemburg [70].

The ‘arithmetization of analysis’ had a gradual evolution, which is traced in
Chapitre VI (by Dugac) of Dieudonné et al. [22]. A modern text on real analysis
is Rudin [63]. In Lemma 7 of Chapter VI we will show that all norms on Rn are
equivalent.

The contraction principle (Proposition 26) has been used to prove the central
limit theorem of probability theory by Hamedani and Walter [32]. Bessaga (1959) has
proved a converse of the contraction principle: Let E be an arbitrary set, f : E → E a
map of E to itself and θ a real number such that 0 < θ < 1. If each iterate f n(n ∈ N)
has at most one fixed point and if some iterate has a fixed point, then a complete metric
d can be defined on E such that d( f (x ′), f (x ′′)) ≤ θd(x ′, x ′′) for all x ′, x ′′ ∈ E . A
short proof is given by Jachymski [40].

There are other important fixed point theorems besides Proposition 26. Brouwer’s
fixed point theorem states that, if B = {x ∈ Rn : |x | ≤ 1} is the n-dimensional closed
unit ball, every continuous map f : B → B has a fixed point. For an elementary
proof, see Kulpa [44]. The Lefschetz fixed point theorem requires a knowledge of al-
gebraic topology, even for its statement. Fixed point theorems are extensively treated
in Dugundji and Granas [23] (and in A. Granas and J. Dugundji, Fixed Point Theory,
Springer-Verlag, New York, 2003).

For a more detailed discussion of differentiability for functions of several variables
see, for example, Fleming [26] and Dieudonné [21]. The inverse function theorem
(Proposition 27) is a local result. Some global results are given by Atkinson [5] and
Chichilnisky [14]. For a holomorphic version of Proposition 28 and for the simple way
in which higher-order equations may be replaced by systems of first-order equations
see, e.g., Coddington and Levinson [16].

The formula for the roots of a cubic was first published by Cardano [12], but it
was discovered by del Ferro and again by Tartaglia, who accused Cardano of breaking
a pledge of secrecy. Cardano is judged less harshly by historians today than previ-
ously. His book, which contained developments of his own and also the formula for
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the roots of a quartic discovered by his pupil Ferrari, was the most significant Western
contribution to mathematics for more than a thousand years.

Proposition 29 still holds, but is more difficult to prove, if in its statement “has a
nonzero derivative” is replaced by “which is not constant”. Read [57] shows that the
basic results of complex analysis may be deduced from this stronger form of Proposi-
tion 29 without the use of complex integration.

A field F is said to be algebraically closed if every polynomial of positive degree
with coefficients from F has a root in F . Thus the ‘fundamental theorem of algebra’
says that the field C of complex numbers is algebraically closed. The proofs of this
theorem due to Argand–Cauchy and Euler–Lagrange–Laplace are given in Chapter 4
(by Remmert) of Ebbinghaus et al. [24]. As shown on p. 77 of [24], the latter method
provides, in particular, a simple proof for the existence of n-th roots.

Wall [72] gives a proof of the fundamental theorem of algebra, based on the notion
of topological degree, and Ahlfors [1] gives the most common complex analysis proof,
based on Liouville’s theorem that a function holomorphic in the whole complex plane
is bounded only if it is a constant. A form of Liouville’s theorem is easily deduced
from Proposition 29: if the power series

p(z) = a0 + a1z + a2z2 + · · ·
converges and |p(z)| is bounded for all z ∈ C, then an = 0 for every n ≥ 1.

The representation of trigonometric functions by complex exponentials appears in
§138 of Euler [25]. The various algebraic formulas involving trigonometric functions,
such as

cos 3x = 4 cos3 x − 3 cos x,

are easily established by means of this representation and the addition theorem for the
exponential function.

Some texts on complex analysis are Ahlfors [1], Caratheodory [11] and
Narasimhan [56].

The 19th century literature on quaternions is surveyed in Rothe [59]. Although
Hamilton hoped that quaternions would prove as useful as complex numbers, a quater-
nionic analysis analogous to complex analysis was first developed by Fueter (1935). A
good account is given by Sudbery [71].

One significant contribution of quaternions was indirect. After Hamilton had
shown the way, other ‘hypercomplex’ number systems were constructed, which led
eventually to the structure theory of associative algebras discussed below.

It is not difficult to show that any automorphism of H, i.e. any bijective map
T : H → H such that

T (x + y) = T x + T y, T (xy) = (T x)(T y) for all x, y ∈ H,

has the form T x = uxu−1 for some quaternion u with norm 1.
For octonions and their uses, see van der Blij [8] and Springer and Veldkamp [67].

The group of all automorphisms of the algebra O is the exceptional simple Lie group
G2. The other four exceptional simple Lie groups are also all related to O in some way.
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Of wider significance are the associative algebras introduced in 1878 by
Clifford [15] (pp. 266–276) as a common generalization of quaternions and Grassmann
algebra. Clifford algebras were used by Lipschitz (1886) to represent orthogonal trans-
formations in n-dimensional space. There is an extensive discussion of Clifford alge-
bras in Deheuvels [20]. For their applications in physics, see Salingaros and Wene [64].

Proposition 32 has many uses. The proof given here is extracted from Nagahara
and Tominaga [55].

It was proved by both Kervaire (1958) and Milnor (1958) that if a division
algebra A (not necessarily associative) contains the real field R in its centre and is of
finite dimension as a vector space over R, then this dimension must be 1,2,4 or 8
(but the algebra need not be isomorphic to R,C,H or O). All known proofs use deep
results from algebraic topology, which was first applied to the problem by H. Hopf
(1940). For more information about the proof, see Chapter 11 (by Hirzebruch) of
Ebbinghaus et al. [24].

When is the product of two sums of squares again a sum of squares? To make
the question precise, call a triple (r, s, t) of positive integers ‘admissible’ if there
exist real numbers ρi j k (1 ≤ i ≤ t, 1 ≤ j ≤ r, 1 ≤ k ≤ s) such that, for every
x = (ξ1, . . . , ξr ) ∈ Rr and every y = (η1, . . . , ηs) ∈ Rs ,

(ξ2
1 + · · · + ξ2

r )(η
2
1 + · · · + η2

s ) = ζ 2
1 + · · · + ζ 2

t ,

where

ζi =
r∑

j=1

s∑
k=1

ρi j kξ jηk .

The question then becomes, which triples (r, s, t) are admissible? It is obvious
that (1, 1, 1) is admissible and the relation n(x)n(y) = n(xy) for the norms of com-
plex numbers, quaternions and octonions shows that (t, t, t) is admissible also for
t = 2, 4, 8. It was proved by Hurwitz (1898) that (t, t, t) is admissible for no other
values of t . A survey of the general problem is given by Shapiro [65].

General introductions to algebra are provided by Birkhoff and MacLane [7] and
Herstein [35]. More extended treatments are given in Jacobson [41] and Lang [48].

The theory of groups is treated in M. Hall [29] and Rotman [60]. An especially
significant class of groups is studied in Humphreys [38].

If H is a subgroup of a finite group G, then it is possible to choose a system of left
coset representatives of H which is also a system of right coset representatives. This
interesting, but not very useful, fact belongs to combinatorics rather than to group the-
ory. We mention it because it was the motivation for the theorem of P. Hall (1935) on
systems of distinct representatives, also known as the ‘marriage theorem’. Further de-
velopments are described in Mirsky [53]. For quantitative versions, with applications
to operations research, see Ford and Fulkerson [27].

The theory of rings separates into two parts. Noncommutative ring theory, which
now incorporates the structure theory of associative algebras, is studied in the books
of Herstein [36], Kasch [42] and Lam [46]. Commutative ring theory, which grew
out of algebraic number theory and algebraic geometry, is studied in Atiyah and
Macdonald [4] and Kunz [45].
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Field theory was established as an independent subject of study in 1910 by
Steinitz [68]. The books of Jacobson [41] and Lang [48] treat also the more recent
theory of ordered fields, due to Artin and Schreier (1927).

Fields and groups are connected with one another by Galois theory. This subject
has its origin in attempts to solve polynomial equations ‘by radicals’. The founder of
the subject is really Lagrange (1770/1). By developing his ideas, Ruffini (1799) and
Abel (1826) showed that polynomial equations of degree greater than 4 cannot, in gen-
eral, be solved by radicals. Abel (1829) later showed that polynomial equations can be
solved by radicals if their ‘Galois group’ is commutative. In honour of this result,
commutative groups are often called abelian.

Galois (1831, published posthumously in 1846) introduced the concept of normal
subgroup and stated a necessary and sufficient condition for a polynomial equation to
be solvable by radicals. The significance of Galois theory today lies not in this result,
despite its historical importance, but in the much broader ‘fundamental theorem of
Galois theory’. In the form given it by Dedekind (1894) and Artin (1944), this estab-
lishes a correspondence between extension fields and groups of automorphisms, and
provides a framework for the solution of a number of algebraic problems.

Morandi [54] and Rotman [61] give modern accounts of Galois theory. The histor-
ical development is traced in Kiernan [43]. In recent years attention has focussed on
the problem of determining which finite groups occur as Galois groups over a given
field; for an introductory account, see Matzat [51].

Some texts on linear algebra and matrix theory are Halmos [31], Horn and
Johnson [37], Mal’cev [50] and Gantmacher [28].

The older literature on associative algebras is surveyed in Cartan [13]. The texts on
noncommutative rings cited above give modern introductions.

A vast number of characterizations of inner product spaces, in addition to the par-
allelogram law, is given in Amir [3]. The theory of Hilbert space is treated in the books
of Riesz and Sz.-Nagy [58] and Akhiezer and Glazman [2]. For its roots in the theory
of integral equations, see Hellinger and Toeplitz [33]. Almost periodic functions are
discussed from different points of view in Bohr [9], Corduneanu [17] and Maak [49].
The convergence of Fourier series is treated in Zygmund [73], for example.
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II

Divisibility

1 Greatest Common Divisors

In the set N of all positive integers we can perform two basic operations: addition and
multiplication. In this chapter we will be primarily concerned with the second opera-
tion.

Multiplication has the following properties:

(M1) if ab = ac, then b = c; (cancellation law)
(M2) ab = ba for all a, b; (commutative law)
(M3) (ab)c = a(bc) for all a, b, c; (associative law)
(M4) 1a = a for all a. (identity element)

For any a, b ∈ N we say that b divides a, or that b is a factor of a, or that a is a
multiple of b if a = ba′ for some a′ ∈ N. We write b|a if b divides a and b � a if b does
not divide a. For example, 2|6, since 6 = 2×3, but 4 � 6. (We sometimes use× instead
of · for the product of positive integers.) The following properties of divisibility follow
at once from the definition:

(i) a|a and 1|a for every a;
(ii) if b|a and c|b, then c|a;

(iii) if b|a, then b|ac for every c;
(iv) bc|ac if and only if b|a;
(v) if b|a and a|b, then b = a.

For any a, b ∈ N we say that d is a common divisor of a and b if d|a and d|b. We
say that a common divisor d of a and b is a greatest common divisor if every com-
mon divisor of a and b divides d . The greatest common divisor of a and b is uniquely
determined, if it exists, and will be denoted by (a, b).

The greatest common divisor of a and b is indeed the numerically greatest com-
mon divisor. However, it is preferable not to define greatest common divisors in this
way, since the concept is then available for algebraic structures in which there is no
relation of magnitude and only the operation of multiplication is defined.

W.A. Coppel, Number Theory: An Introduction to Mathematics, Universitext, 83
DOI: 10.1007/978-0-387-89486-7_2, © Springer Science + Business Media, LLC 2009
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Proposition 1 Any a, b ∈ N have a greatest common divisor (a, b).

Proof Without loss of generality we may suppose a ≥ b. If b divides a, then
(a, b) = b. Assume that there exists a pair a, b without greatest common divisor and
choose one for which a is a minimum. Then 1 < b < a, since b does not divide a.
Since also 1 ≤ a − b < a, the pair a − b, b has a greatest common divisor d . Since
any common divisor of a and b divides a − b, and since d divides (a − b)+ b = a, it
follows that d is a greatest common divisor of a and b. But this is a contradiction. �

The proof of Proposition 1 uses not only the multiplicative structure of the set N,
but also its ordering and additive structure. To see that there is a reason for this, con-
sider the set S of all positive integers of the form 4k + 1. The set S is closed under
multiplication, since

(4 j + 1)(4k + 1) = 4(4 jk + j + k)+ 1,

and we can define divisibility and greatest common divisors in S by simply replacing
N by S in our previous definitions. However, although the elements 693 and 189 of S
have the common divisors 9 and 21, they have no greatest common divisor according
to this definition.

In the following discussion we use the result of Proposition 1, but make no further
appeal to either addition or order.

For any a, b ∈ N we say that h is a common multiple of a and b if a|h and b|h.
We say that a common multiple h of a and b is a least common multiple if h divides
every common multiple of a and b. The least common multiple of a and b is uniquely
determined, if it exists, and will be denoted by [a, b].

It is evident that, for every a,

(a, 1) = 1, [a, 1] = a,

(a, a) = a = [a, a].

Proposition 2 Any a, b ∈ N have a least common multiple [a, b]. Moreover,

(a, b)[a, b] = ab.

Furthermore, for all a, b, c ∈ N,

(ac, bc) = (a, b)c, [ac, bc] = [a, b]c,

([a, b], [a, c]) = [a, (b, c)], [(a, b), (a, c)] = (a, [b, c]).

Proof We show first that (ac, bc) = (a, b)c. Put d = (a, b). Clearly cd is a common
divisor of ac and bc, and so (ac, bc) = qcd for some q ∈ N. Thus ac = qcda′,
bc = qcdb′ for some a′, b′ ∈ N. It follows that a = qda′, b = qdb′. Thus qd is a
common divisor of a and b. Hence qd divides d , which implies q = 1.

If g is any common multiple of a and b, then ab divides ga and gb, and hence ab
also divides (ga, gb). But, by what we have just proved,

(ga, gb) = (a, b)g = dg.

Hence h := ab/d divides g. Since h is clearly a common multiple of a and b, it follows
that h = [a, b]. Replacing a, b by ac, bc, we now obtain

[ac, bc] = acbc/(ac, bc)= abc/(a, b) = hc.
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If we put

A = ([a, b], [a, c]), B = [a, (b, c)],

then by what we have already proved,

A = (ab/(a, b), ac/(a, c)),

B = a(b, c)/(a, (b, c)) = (ab/(a, (b, c)), ac/(a, (b, c))).

Since any common divisor of ab/(a, b) and ac/(a, c) is also a common divisor of
ab/(a, (b, c)) and ac/(a, (b, c)), it follows that A divides B . On the other hand, a
divides A, since a divides [a, b] and [a, c], and similarly (b, c) divides A. Hence B
divides A. Thus B = A.

The remaining statement of the proposition is proved in the same way, with greatest
common divisors and least common multiples interchanged. �

The last two statements of Proposition 2 are referred to as the distributive laws,
since if the greatest common divisor and least common multiple of a and b are
denoted by a ∧ b and a ∨ b respectively, they take the form

(a ∨ b)∧ (a ∨ c) = a ∨ (b ∧ c), (a ∧ b)∨ (a ∧ c) = a ∧ (b ∨ c).

Properties (i), (ii) and (v) at the beginning of the section say that divisibility is a
partial ordering of the set N with 1 as least element. The existence of greatest common
divisors and least common multiples says that N is a lattice with respect to this partial
ordering. The distributive laws say that N is actually a distributive lattice.

We say that a, b ∈ N are relatively prime, or coprime, if (a, b) = 1. Divisibility
properties in this case are much simpler:

Proposition 3 For any a, b, c ∈ N with (a, b) = 1,

(i) if a|c and b|c, then ab|c;
(ii) if a|bc, then a|c;

(iii) (a, bc) = (a, c);
(iv) if also (a, c) = 1, then (a, bc) = 1;
(v) (am, bn) = 1 for all m, n ≥ 1.

Proof To prove (i), note that [a, b] divides c and [a, b] = ab. To prove (ii), note that
a divides (ac, bc) = (a, b)c = c. To prove (iii), note that any common divisor of a
and bc divides c, by (ii). Obviously (iii) implies (iv), and (v) follows by induction. �

Proposition 4 If a, b ∈ N and (a, b) = 1, then any divisor of ab can be uniquely
expressed in the form de, where d|a and e|b. Conversely, any product of this form is a
divisor of ab.

Proof The proof is based on Proposition 3. Suppose c divides ab and put d = (a, c),
e = (b, c). Then (d, e) = 1 and hence de divides c. If a = da′ and c = dc′, then
(a′, c′) = 1 and e|c′. On the other hand, c′|a′b and hence c′|b. Since e = (b, c), it
follows that c′ = e and c = de.

Suppose de = d ′e′, where d, d ′ divide a and e, e′ divide b. Then d|d ′, since
(d, e′) = 1, and similarly d ′|d , since (d ′, e) = 1. Hence d ′ = d and e′ = e.

The final statement of the proposition is obvious. �
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It follows from Proposition 4 that if cn = ab, where (a, b) = 1, then a = dn and
b = en for some d, e ∈ N.

The greatest common divisor and least common multiple of any finite set of ele-
ments of N may be defined in the same way as for sets of two elements. By induction
we easily obtain:

Proposition 5 Any a1, . . . , an ∈ N have a greatest common divisor (a1, . . . , an) and
a least common multiple [a1, . . . , an]. Moreover,

(i) (a1, a2, . . . , an) = (a1, (a2, . . . , an)), [a1, a2, . . . , an] = [a1, [a2, . . . , an]];
(ii) (a1c, . . . , anc) = (a1, . . . , an)c, [a1c, . . . , anc] = [a1, . . . , an]c;

(iii) (a1, . . . , an) = a/[a/a1, . . . , a/an], [a1, . . . , an] = a/(a/a1, . . . , a/an), where
a = a1 · · · an.

We can use the distributive laws to show that

([a, b], [a, c], [b, c])= [(a, b), (a, c), (b, c)].

In fact the left side is equal to {a∨ (b∧ c)} ∧ (b∨ c), whereas the right side is equal to

(b ∧ c) ∨ {a ∧ (b ∨ c)} = {(b ∧ c)∨ a} ∧ {(b ∧ c) ∨ (b ∨ c)}
= {a ∨ (b ∧ c)} ∧ (b ∨ c).

If

a = (a1, . . . , am), b = (b1, . . . , bn),

then ab is the greatest common divisor of all products a j bk , since (a j b1, . . . , a j bn) =
a j b and (a1b, . . . , amb) = ab.

Similarly, if

a = [a1, . . . , am ], b = [b1, . . . , bn],

then ab is the least common multiple of all products a j bk .
It is easily shown by induction that if (ai , a j ) = 1 for 1 ≤ i < j ≤ m, then

(a1 · · · am, c) = (a1, c) · · · (am, c), [a1 · · · am, c] = [a1, . . . , am , c].

Proposition 6 If a ∈ N has two factorizations

a = b1 · · · bm = c1 · · · cn,

then these factorizations have a common refinement, i.e. there exist d jk ∈ N (1 ≤ j ≤
m, 1 ≤ k ≤ n) such that

b j =
n∏

k=1

d jk, ck =
m∏

j=1

d jk .
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Proof We show first that if a = a1 · · · an and d|a, then d = d1 · · · dn , where di |ai

(1 ≤ i ≤ n). We may suppose that n > 1 and that the assertion holds for prod-
ucts of less than n elements of N. Put a′ = a1 · · · an−1 and d ′ = (a′, d). Then
d ′ = d1 · · · dn−1, where di |ai(1 ≤ i < n). Moreover a′′ = a′/d ′ and d ′′ = d/d ′
are coprime. Since d ′′ = d/d ′ divides a′′an = a/d ′, the greatest common divisor
an = (ana′′, and ′′) is divisible by d ′′. Thus we can take dn = d ′′.

We return now to the proposition. Since c1|∏ j b j , we can write c1 = ∏
j d j1,

where d j1|b j . Put b′j = b j/d j1. Then∏
j

b′j = a/c1 = c2 · · · cn.

Hence we can write c2 = ∏
j d j2, where d j2|b′j . Proceeding in this way, we obtain

factorizations ck =∏
j d jk such that

∏
k d jk divides b j . In fact, since∏

j,k

d jk = a =
∏

j

b j ,

we must have b j =∏
k d jk. �

Instead of defining divisibility and greatest common divisors in the set N of all
positive integers, we can define them in the set Z of all integers by simply replacing
N by Z in the previous definitions. The properties (i)–(v) at the beginning of this sec-
tion continue to hold, provided that in (iv) we require c �= 0 and in (v) we alter the
conclusion to b = ±a. We now list some additional properties:

(i)′ a|0 for every a;
(ii)′ if 0|a, then a = 0;

(iii)′ if c|a and c|b, then c|ax + by for all x, y.

Greatest common divisors and least common multiples still exist, but uniqueness
holds only up to sign. With this understanding, Propositions 2–4 continue to hold, and
so also do Propositions 5 and 6 if we require a �= 0. It is evident that, for every a,

(a, 0) = a, [a, 0] = 0.

More generally, we can define divisibility in any integral domain, i.e. a commuta-
tive ring in which a �= 0 and b �= 0 together imply ab �= 0. The properties (i)–(v) at
the beginning of the section continue to hold, provided that in (iv) we require c �= 0
and in (v) we alter the conclusion to b = ua, where u is a unit, i.e. u|1. The properties
(i)′–(iii)′ above also remain valid.

We define a GCD domain to be an integral domain in which any pair of elements
has a greatest common divisor. This implies that any pair of elements also has a least
common multiple. Uniqueness now holds only up to unit multiples. With this under-
standing Propositions 2–6 continue to hold in any GCD domain in the same way as
for Z.

An important example, which we will consider in Section 3, of a GCD domain
other than Z is the polynomial ring K [t], consisting of all polynomials in t with coef-
ficients from an arbitrary field K . The units in this case are the nonzero elements of K .
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Another example, which we will meet in §4 of Chapter VI, is the valuation ring R
of a non-archimedean valued field. In this case, for any a, b ∈ R, either a|b or b|a and
so (a, b) is either a or b.

In the same way that the ring Z of integers may be embedded in the field Q of
rational numbers, any integral domain R may be embedded in a field K , its field of
fractions, so that any nonzero c ∈ K has the form c = ab−1, where a, b ∈ R and
b �= 0. If R is a GCD domain we can further require (a, b) = 1, and a, b are then
uniquely determined apart from a common unit multiple. The field of fractions of the
polynomial ring K [t] is the field K (t) of rational functions.

In our discussion of divisibility so far we have avoided all mention of prime num-
bers. A positive integer a �= 1 is said to be prime if 1 and a are its only positive
divisors, and otherwise is said to be composite.

For example, 2, 3 and 5 are primes, but 4 = 2 × 2 and 6 = 2 × 3 are composite.
The significance of the primes is that, as far as multiplication is concerned, they are
the ‘atoms’ and the composite integers are the ‘molecules’. This is made precise in the
following so-called fundamental theorem of arithmetic:

Proposition 7 If a ∈ N and a �= 1, then a can be represented as a product of
finitely many primes. Moreover, the representation is unique, except for the order of
the factors.

Proof Assume, on the contrary, that some composite a1 ∈ N is not a product of
finitely many primes. Since a1 is composite, it has a factorization a1 = a2b2, where
a2, b2 ∈ N and a2, b2 �= 1. At least one of a2, b2 must be composite and not a product
of finitely many primes, and we may choose the notation so that a2 has these proper-
ties. The preceding argument can now be repeated with a2 in place of a1. Proceeding in
this way, we obtain an infinite sequence (ak) of positive integers such that ak+1 divides
ak and ak+1 �= ak for each k ≥ 1. But then the sequence (ak) has no least element,
which contradicts Proposition I.3.

Suppose now that

a = p1 · · · pm = q1 · · · qn

are two representations of a as a product of primes. Then, by Proposition 6, there exist
d jk ∈ N (1 ≤ j ≤ m, 1 ≤ k ≤ n) such that

p j =
n∏

k=1

d jk, qk =
m∏

j=1

d jk .

Since p1 is a prime, we must have d1k1 = p1 for some k1 ∈ {1, . . . , n}, and since qk1

is a prime, we must have qk1 = d1k1 = p1. The same argument can now be applied to

a′ =
∏
j �=1

p j =
∏

k �=k1

qk .

It follows that m = n and q1, . . . , qn is a permutation of p1, . . . , pm . �
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It should be noted that factorization into primes would not be unique if we admit-
ted 1 as a prime. The fundamental theorem of arithmetic may be reformulated in the
following way: any a ∈ N can be uniquely represented in the form

a =
∏

p

pαp ,

where p runs through the primes and the αp are non-negative integers, only finitely
many of which are nonzero. It is easily seen that if b ∈ N has the analogous represen-
tation

b =
∏

p

pβp,

then b|a if and only if βp ≤ αp for all p. It follows that the greatest common divisor
and least common multiple of a and b have the representations

(a, b) =
∏

p

pγp, [a, b] =
∏

p

pδp ,

where

γp = min{αp, βp}, δp = max{αp, βp}.
The fundamental theorem of arithmetic extends at once from N to Q: any nonzero

rational number a can be uniquely represented in the form

a = u
∏

p

pαp ,

where u = ±1 is a unit, p runs through the primes and the αp are integers (not neces-
sarily non-negative), only finitely many of which are nonzero.

The following property of primes was already established in Euclid’s Elements
(Book VII, Proposition 30):

Proposition 8 If p is a prime and p|bc, then p|b or p|c.

Proof If p does not divide b, we must have (p, b) = 1. But then p divides c, by
Proposition 3(ii). �

The property in Proposition 8 actually characterizes primes. For if a is composite,
then a = bc, where b, c �= 1. Thus a|bc, but a�b and a�c.

We consider finally the extension of these notions to an arbitrary integral domain R.
For any nonzero a, b ∈ R, we say that a divisor b of a is a proper divisor if a does
not divide b (i.e., if a and b do not differ only by a unit factor). We say that p ∈ R is
irreducible if p is neither zero nor a unit and if every proper divisor of p is a unit. We
say that p ∈ R is prime if p is neither zero nor a unit and if p|bc implies p|b or p|c.

By what we have just said, the notions of ‘prime’ and ‘irreducible’ coincide if
R = Z, and the same argument applies if R is any GCD domain. However, in an
arbitrary integral domain R, although any prime element is irreducible, an irreducible
element need not be prime. (For example, in the integral domain R consisting of all
complex numbers of the form a + b

√−5, where a, b ∈ Z, it may be seen that
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6 = 2 × 3 = (1 + √−5)(1 − √−5) has two essentially distinct factorizations into
irreducibles, and thus none of these irreducibles is prime.)

The proof of Proposition 7 shows that, in an arbitrary integral domain R, every
element which is neither zero nor a unit can be represented as a product of finitely
many irreducible elements if and only if the following chain condition is satisfied:

(#) there exists no infinite sequence (an) of elements of R such that an+1 is a proper
divisor of an for every n.

Furthermore, the representation is essentially unique (i.e. unique except for the order
of the factors and for multiplying them by units) if and only if R is also a GCD domain.

An integral domain R is said to be factorial (or a ‘unique factorization domain’)
if the ‘fundamental theorem of arithmetic’ holds in R, i.e. if every element which is
neither zero nor a unit has such an essentially unique representation as a product of
finitely many irreducibles. By the above remarks, an integral domain R is factorial if
and only if it is a GCD domain satisfying the chain condition (#).

For future use, we define an element of a factorial domain to be square-free if it
is neither zero nor a unit and if, in its representation as a product of irreducibles, no
factor is repeated. In particular, a positive integer is square-free if and only if it is a
nonempty product of distinct primes.

2 The Bézout Identity

If a, b are arbitrary integers with a �= 0, then there exist unique integers q, r such that

b = qa + r, 0 ≤ r < |a|.
In fact qa is the greatest multiple of a which does not exceed b. The integers q and r
are called the quotient and remainder in the ‘division’ of b by a.

(For a > 0 this was proved in Proposition I.14. It follows that if a and n are positive
integers, any positive integer b less than an has a unique representation ‘to the base a’:

b = b0 + b1a + · · · + bn−1an−1,

where 0 ≤ b j < a for all j . In fact bn−1 is the quotient in the division of b by an−1,
bn−2 is the quotient in the division of the remainder by an−2, and so on.)

If a, b are arbitrary integers with a �= 0, then there exist also integers q, r such that

b = qa + r, |r | ≤ |a|/2.
In fact qa is the nearest multiple of a to b. Thus q and r are not uniquely determined
if b is midway between two consecutive multiples of a.

Both these division algorithms have their uses. We will be impartial and merely
use the fact that

b = qa + r, |r | < |a|.
An ideal in the commutative ring Z of all integers is defined to be a nonempty

subset J such that if a, b ∈ J and x, y ∈ Z, then also ax + by ∈ J .
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For example, if a1, . . . , an are given elements of Z, then the set of all linear com-
binations a1x1 + · · · + anxn with x1, . . . , xn ∈ Z is an ideal, the ideal generated by
a1, . . . , an . An ideal generated by a single element, i.e. the set of all multiples of that
element, is said to be a principal ideal.

Lemma 9 Any ideal J in the ring Z is a principal ideal.

Proof If 0 is the only element of J , then 0 generates J . Otherwise there is a nonzero
a ∈ J with minimum absolute value. For any b ∈ J , we can write b = qa + r , for
some q, r ∈ Z with |r | < |a|. By the definition of an ideal, r ∈ J and so, by the
definition of a, r = 0. Thus a generates J . �

Proposition 10 Any a, b ∈ Z have a greatest common divisor d = (a, b). Moreover,
for any c ∈ Z, there exist x, y ∈ Z such that

ax + by = c

if and only if d divides c.

Proof Let J be the ideal generated by a and b. By Lemma 9, J is generated by a
single element d . Since a, b ∈ J , d is a common divisor of a and b. On the other hand,
since d ∈ J , there exist u, v ∈ Z such that d = au+bv. Hence any common divisor of
a and b also divides d . Thus d = (a, b). The final statement of the proposition follows
immediately since, by definition, c ∈ J if and only if there exist x, y ∈ Z such that
ax + by = c. �

It is readily shown that if the ‘linear Diophantine’ equation ax + by = c has a
solution x0, y0 ∈ Z, then all solutions x, y ∈ Z are given by the formula

x = x0 + kb/d, y = y0 − ka/d,

where d = (a, b) and k is an arbitrary integer.
Proposition 10 provides a new proof for the existence of greatest common divisors

and, in addition, it shows that the greatest common divisor of two integers can be rep-
resented as a linear combination of them. This representation is usually referred to as
the Bézout identity, although it was already known to Bachet (1624) and even earlier
to the Hindu mathematicians Aryabhata (499) and Brahmagupta (628).

In exactly the same way that we proved Proposition 10 – or, alternatively, by
induction from Proposition 10 – we can prove

Proposition 11 Any finite set a1, . . . , an of elements of Z has a greatest common
divisor d = (a1, . . . , an). Moreover, for any c ∈ Z, there exist x1, . . . , xn ∈ Z such that

a1x1 + · · · + anxn = c

if and only if d divides c.

The proof which we gave for Proposition 10 is a pure existence proof – it does
not help us to find the greatest common divisor. The following constructive proof was
already given in Euclid’s Elements (Book VII, Proposition 2). Let a, b be arbitrary
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integers. Since (0, b) = b, we may assume a �= 0. Then there exist integers q, r such
that

b = qa + r, |r | < |a|.
Put a0 = b, a1 = a and repeatedly apply this procedure:

a0 = q1a1 + a2, |a2| < |a1|,
a1 = q2a2 + a3, |a3| < |a2|,

· · ·
aN−2 = qN−1aN−1 + aN , |aN | < |aN−1|,
aN−1 = qN aN .

The process must eventually terminate as shown, because otherwise we would obtain
an infinite sequence of positive integers with no least element. We claim that aN is a
greatest common divisor of a and b. In fact, working forwards from the first equation
we see that any common divisor c of a and b divides each ak and so, in particular, aN .
On the other hand, working backwards from the last equation we see that aN divides
each ak and so, in particular, a and b.

The Bézout identity can also be obtained in this way, although Euclid himself
lacked the necessary algebraic notation. Define sequences (xk), (yk) by the recurrence
relations

xk+1 = xk−1 − qkxk, yk+1 = yk−1 − qk yk (1 ≤ k < N),

with the starting values

x0 = 0, x1 = 1, resp. y0 = 1, y1 = 0.

It is easily shown by induction that ak = axk + byk and so, in particular, aN =
axN + byN .

The Euclidean algorithm is quite practical. For example, the reader may use it to
verify that 13 is the greatest common divisor of 2171 and 5317, and that

49× 5317− 120× 2171 = 13.

However, the first proof given for Proposition 10 also has its uses: there is some
advantage in separating the conceptual from the computational and the proof actually
rests on more general principles, since there are quadratic number fields whose ring of
integers is a ‘principal ideal domain’ that does not possess any Euclidean algorithm.

It is not visibly obvious that the binomial coefficients

m+nCn = (m + 1) · · · (m + n)/1 · 2 · · · · · n
are integers for all positive integers m, n, although it is apparent from their combina-
torial interpretation. However, the property is readily proved by induction, using the
relation

m+nCn = m+n−1Cn + m+n−1Cn−1.
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Binomial coefficients have other arithmetic properties. Hermite observed that m+nCn

is divisible by the integers (m + n)/(m, n) and (m + 1)/(m + 1, n). In particular, the
Catalan numbers (n + 1)−1 2nCn are integers. The following proposition is a substan-
tial generalization of these results and illustrates the application of Proposition 10.

Proposition 12 Let (an) be a sequence of nonzero integers such that, for all m, n ≥ 1,
every common divisor of am and an divides am+n, and every common divisor of am

and am+n divides an. Then, for all m, n ≥ 1,

(i) (am, an) = a(m,n);
(ii) Am,n := am+1 · · · am+n/a1 · · · an ∈ Z;

(iii) Am,n is divisible by am+n/(am, an), by am+1/(am+1, an) and by an+1/(am, an+1);
(iv) (Am,n−1, Am+1,n, Am−1,n+1) = (Am−1,n, Am+1,n−1, Am,n+1).

Proof The hypotheses imply that

(am, an) = (am, am+n) for all m, n ≥ 1.

Since am = (am, am), it follows by induction that am |akm for all k ≥ 1. Moreover,

(akm , a(k+1)m) = am,

since every common divisor of akm and a(k+1)m divides am .
Put d = (m, n). Then m = dm′, n = dn′, where (m ′, n′) = 1. Thus there exist

integers u, v such that m′u − n′v = 1. By replacing u, v by u + tn′, v + tm ′ with any
t > max{|u|, |v|}, we may assume that u and v are both positive. Then

(amu, anv ) = (a(n′v+1)d, an′vd) = ad .

Since ad divides (am, an) and (am, an) divides (amu, anv ), this implies (am, an) = ad .
This proves (i).

Since a1|am+1, it is evident that Am,1 ∈ Z for all m ≥ 1. We assume that n > 1 and
Am,n ∈ Z for all smaller values of n and all m ≥ 1. Since it is trivial that A0,n ∈ Z, we
assume also that m ≥ 1 and Am,n ∈ Z for all smaller values of m. By Proposition 10,
there exist x, y ∈ Z such that

am x + an y = am+n,

since (am, an) divides am+n . Since

Am,n = am+1 · · · am+n

a1 · · · an
= amam+1 · · · am+n−1

a1 · · · an
x + am+1 · · · am+n−1

a1 · · · an−1
y,

our induction hypotheses imply that Am,n ∈ Z. This proves (ii).
Since

am+n Am,n−1 = an Am,n,

am+n divides (an, am+n)Am,n and, since (an, am+n) = (am, an), this in turn implies
that am+n/(am, an) divides Am,n .
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Similarly, since

am+1 Am+1,n = am+n+1 Am,n, am+1 Am+1,n−1 = an Am,n,

am+1 divides (an, am+n+1)Am,n and, since (an, am+n+1) = (am+1, an), it follows that
am+1/(am+1, an) divides Am,n . In the same way, since

an+1 Am,n+1 = am+n+1 Am,n, an+1 Am−1,n+1 = am Am,n,

an+1 divides (am, am+n+1)Am,n and hence an+1/(am, an+1) divides Am,n . This
proves (iii).

By multiplying by a1 · · · an+1/am+2 · · · am+n−1, we see that (iv) is equivalent to

(anan+1am+1, an+1am+nam+n+1, amam+1am+n)

= (an+1amam+1, anan+1am+n, am+1am+nam+n+1).

Since here the two sides are interchanged when m and n are interchanged, it is suf-
ficient to show that any common divisor e of the three terms on the right is also a
common divisor of the three terms on the left. We have

(an+1amam+1, anan+1am+1) = an+1am+1(am, an) = an+1am+1(am, am+n)

= (an+1amam+1, am+1an+1am+n),

and similarly

(anan+1am+n, an+1am+nam+n+1) = (anan+1am+n, am+1an+1am+n),

(am+1am+nam+n+1, amam+1am+n) = (am+1am+nam+n+1, am+1an+1am+n).

Hence if we put g = am+1an+1am+n , then

(e, g) = (e, anan+1am+1) = (e, an+1am+nam+n+1) = (e, amam+1am+n)

and if we put f = (e,g), then

1 = (e/ f, anan+1am+1/ f ) = (e/ f, an+1am+nam+n+1/ f ) = (e/ f, amam+1am+n/ f ).

Hence (e/ f, P/ f 3) = 1, where

P = anan+1am+1 · an+1am+nam+n+1 · amam+1am+n.

But P is divisible by e3, since we can also write

P = an+1amam+1 · anan+1am+n · am+1am+nam+n+1.

Hence the previous relation implies e/ f = 1. Thus e = f is a common divisor of
anan+1am+1, an+1am+nam+n+1 and amam+1am+n , as we wished to show. �

For the binomial coefficient case, i.e. an = n, the property (iv) of Proposi-
tion 12 was discovered empirically by Gould (1972) and then proved by Hillman and
Hoggatt (1972). It states that if in the Pascal triangle one picks out the hexagon sur-
rounding a particular element, then the greatest common divisor of three alternately
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chosen vertices is equal to the greatest common divisor of the remaining three vertices.
Hillman and Hoggatt also gave generalizations along the lines of Proposition 12.

The hypotheses of Proposition 12 are also satisfied if an = qn − 1, for some
integer q > 1, since in this case am+n = aman + am + an . The corresponding
q-binomial coefficients were studied by Gauss and, as mentioned in Chapter XIII, they
play a role in the theory of partitions.

We may also take (an) to be the sequence defined recurrently by

a1 = 1, a2 = c, an+2 = can+1 + ban(n ≥ 1),

where b and c are coprime positive integers. Indeed it is easily shown by induction that

(an, an+1) = (b, an+1) = 1 for all n ≥ 1.

By induction on m one may also show that

am+n = am+1an + baman−1 for all m ≥ 1, n > 1.

It follows that the hypotheses of Proposition 12 are satisfied. In particular, for
b = c = 1, they are satisfied by the sequence of Fibonacci numbers.

We consider finally extensions of our results to more general algebraic structures.
An integral domain R is said to be a Bézout domain if any a, b ∈ R have a com-
mon divisor of the form au + bv for some u, v ∈ R. Since such a common divisor
is necessarily a greatest common divisor, any Bézout domain is a GCD domain. It is
easily seen, by induction on the number of generators, that an integral domain is a
Bézout domain if and only if every finitely generated ideal is a principal ideal. Thus
Propositions 10 and 11 continue to hold if Z is replaced by any Bézout domain.

An integral domain R is said to be a principal ideal domain if every ideal is a
principal ideal.

Lemma 13 An integral domain R is a principal ideal domain if and only if it is a
Bézout domain satisfying the chain condition

(#) there exists no infinite sequence (an) of elements of R such that an+1 is a proper
divisor of an for every n.

Proof It is obvious that any principal ideal domain is a Bézout domain. Suppose R is
a Bézout domain, but not a principal ideal domain. Then R contains an ideal J which
is not finitely generated. Hence there exists a sequence (bn) of elements of J such that
bn+1 is not in the ideal Jn generated by b1, . . . , bn . But Jn is a principal ideal. If an

generates Jn , then an+1 is a proper divisor of an for every n. Thus the chain condition
is violated.

Suppose now that R is a Bézout domain containing a sequence (an) such that an+1
is a proper divisor of an for every n. Let J denote the set of all elements of R which
are divisible by at least one term of this sequence. Then J is an ideal. For if a j |b and
ak|c, where j ≤ k, then also ak|b and hence ak|bx + cy for all x, y ∈ R. If J were
generated by a single element a, we would have a|an for every n. On the other hand,
since a ∈ J , aN |a for some N . Hence aN |aN+1. Since aN+1 is a proper divisor of aN ,
this is a contradiction. Thus R is not a principal ideal domain. �
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It follows from the remarks at the end of Section 1 that a principal ideal domain
is factorial, i.e. any element which is neither zero nor a unit can be represented as a
product of finitely many irreducibles and the representation is essentially unique.

In the next section we will show that the ring K [t] of all polynomials in one inde-
terminate t with coefficients from an arbitrary field K is a principal ideal domain.

It may be shown that the ring of all algebraic integers is a Bézout domain, and
likewise the ring of all functions which are holomorphic in a nonempty connected
open subset G of the complex plane C. However, neither is a principal ideal domain.
In the former case there are no irreducibles, since any algebraic integer a has the
factorization a = √a · √a. In the latter case z − ζ is an irreducible for any ζ ∈ G, but
the chain condition is violated. For example, take

an(z) = f (z)/(z − ζ1) · · · (z − ζn),
where f (z) is a non-identically vanishing function which is holomorphic in G and has
infinitely many zeros ζ1, ζ2, . . . in G.

3 Polynomials

In this section we study the most important example of a principal ideal domain other
than Z, namely the ring K [t] of all polynomials in t with coefficients from an arbitrary
field K (e.g., K = Q or C).

The attitude adopted towards polynomials in algebra is different from that adopted
in analysis. In analysis we regard ‘t’ as a variable which can take different values; in
algebra we regard ‘t’ simply as a symbol, an ‘indeterminate’, on which we can perform
various algebraic operations. Since the concept of function is so pervasive, the alge-
braic approach often seems mysterious at first sight and it seems worthwhile taking the
time to give a precise meaning to an ‘indeterminate’.

Let R be an integral domain (e.g., R = Z or Q). A polynomial with coefficients
from R is defined to be a sequence f = (a0, a1, a2, . . .) of elements of R in which at
most finitely many terms are nonzero. The sum and product of two polynomials

f = (a0, a1, a2, . . .), g = (b0, b1, b2, . . .)

are defined by

f + g = (a0 + b0, a1 + b1, a2 + b2, . . .),

f g = (a0b0, a0b1 + a1b0, a0b2 + a1b1 + a2b0, . . .).

It is easily verified that these are again polynomials and that the set R[t] of all polyno-
mials with coefficients from R is a commutative ring with O = (0, 0, 0, . . .) as zero
element. (By dropping the requirement that at most finitely many terms are nonzero,
we obtain the ring R[[t]] of all formal power series with coefficients from R.)

We define the degree ∂( f ) of a polynomial f = (a0, a1, a2, . . .) �= O to be the
greatest integer n for which an �= 0 and we put

| f | = 2∂( f ), |O| = 0.
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It is easily verified that, for all polynomials f, g,

| f + g| ≤ max{| f |, |g|}, | f g| = | f ||g|.
Since | f | ≥ 0, with equality if and only if f = O, the last property implies that R[t] is
an integral domain. Thus we can define divisibility in R[t], as explained in Section 1.

The set of all polynomials of the form (a0, 0, 0, . . .) is a subdomain isomorphic
to R. By identifying this set with R, we may regard R as embedded in R[t]. The only
units in R[t] are the units in R, since 1 = e f implies 1 = |e|| f | and hence |e| = 1.

If we put t = (0, 1, 0, 0, . . .), then

t2 = tt = (0, 0, 1, 0, . . .), t3 = t t2 = (0, 0, 0, 1, . . .), . . . .
Hence if the polynomial f = (a0, a1, a2, . . .) has degree n, then it can be uniquely
expressed in the form

f = a0 + a1t + · · · + antn (an �= 0).

We refer to the elements a0, a1, . . . , an of R as the coefficients of f . In particular, a0
is the constant coefficient and an the highest coefficient. We say that f is monic if its
highest coefficient an = 1.

If also

g = b0 + b1t + · · · + bmtm (bm �= 0),

then the sum and product assume their familiar forms:

f + g = (a0 + b0)+ (a1 + b1)t + (a2 + b2)t
2 + · · · ,

f g = a0b0 + (a0b1 + a1b0)t + (a0b2 + a1b1 + a2b0)t
2 + · · · .

Suppose now that R = K is a field, and let

f = a0 + a1t + · · · + antn (an �= 0),

g = b0 + b1t + · · · + bmtm (bm �= 0)

be any two nonzero elements of K [t]. If |g| < | f |, i.e. if m < n, then g = q f + r ,
with q = O and r = g. Suppose on the other hand that | f | ≤ |g|. Then

g = a−1
n bmtm−n f + g†,

where g† ∈ K [t] and |g†| < |g|. If | f | ≤ |g†|, the process can be repeated with g† in
place of g. Continuing in this way, we obtain q, r ∈ K [t] such that

g = q f + r, |r | < | f |.
Moreover, q and r are uniquely determined, since if also

g = q1 f + r1, |r1| < | f |,
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then

(q − q1) f = r1 − r, |r1 − r | < | f |,
which is only possible if q = q1.

Ideals in K [t] can be defined in the same way as for Z and the proof of Lemma 9
remains valid. Thus K [t] is a principal ideal domain and, a fortiori, a GCD domain.

The Euclidean algorithm can also be applied in K [t] in the same way as for Z and
again, from the sequence of polynomials f0, f1, . . . , fN which it provides to deter-
mine the greatest common divisor fN of f0 and f1 we can obtain polynomials uk, vk

such that

fk = f1uk + f0vk (0 ≤ k ≤ N).

We can actually say more for polynomials than for integers, since if

fk−1 = qk fk + fk+1, | fk+1| < | fk |,
then | fk−1| = |qk|| fk | and hence, by induction,

| fk−1||uk | = | f0|, | fk−1||vk | = | f1| (1 < k ≤ N).

It may be noted in passing that the Euclidean algorithm can also be applied in the
ring K [t, t−1] of Laurent polynomials. A Laurent polynomial f �= O, with coefficients
from the field K , has the form

f = amtm + am+1tm+1 + · · · + antn,

where m, n ∈ Z with m ≤ n and a j ∈ K with aman �= 0. Thus we can write f = tm f0,
where f0 ∈ K [t]. Put

| f | = 2n−m , |O| = 0;
then the division algorithm for ordinary polynomials implies one for Laurent polyno-
mials: for any f, g ∈ K [t, t−1] with f �= O, there exist q, r ∈ K [t, t−1] such that
g = q f + r , |r | < | f |.

We return now to ordinary polynomials. The general definition for integral domains
in Section 1 means, in the present case, that a polynomial p ∈ K [t] is irreducible if it
has positive degree and if every proper divisor has degree zero.

It follows that any polynomial of degree 1 is irreducible. However, there may exist
also irreducible polynomials of higher degree. For example, we will show shortly that
the polynomial t2 − 2 is irreducible in Q[t]. For K = C, however, every irreducible
polynomial has degree 1, by the fundamental theorem of algebra (Theorem I.30) and
Proposition 14 below. It follows that, for K = R, every irreducible polynomial has
degree 1 or 2. (For if a real polynomial f (t) has a root α ∈ C\R, its conjugate ᾱ is
also a root and f (t) has the real irreducible factor (t − α)(t − ᾱ).)

It is obvious that the chain condition (#) of Section 1 holds in the integral domain
K [t], since if g is a proper divisor of f , then |g| < | f |. It follows that any polyno-
mial of positive degree can be represented as a product of finitely many irreducible
polynomials and that the representation is essentially unique.
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We now consider the connection between polynomials in the sense of algebra
(polynomial forms) and polynomials in the sense of analysis (polynomial functions).
Let K be a field and f ∈ K [t]:

f = a0 + a1t + · · · + antn .

If we replace ‘t’ by c ∈ K we obtain an element of K , which we denote by f (c):

f (c) = a0 + a1c + · · · + ancn.

A rapid procedure (‘Horner’s rule’) for calculating f (c) is to use the recurrence rela-
tions

f0 = an, f j = f j−1c + an− j ( j = 1, . . . , n).

It is readily shown by induction that

f j = anc j + an−1c j−1 + · · · + an− j ,

and hence f (c) = fn is obtained with just n multiplications and n additions.
It is easily seen that f = g + h implies f (c) = g(c)+ h(c), and f = gh implies

f (c) = g(c)h(c). Thus the mapping f → f (c) is a ‘homomorphism’ of K [t] into K .
A simple consequence is the so-called remainder theorem:

Proposition 14 Let K be a field and c ∈ K . If f ∈ K [t], then

f = (t − c)g + f (c),

for some g ∈ K [t].
In particular, f is divisible by t − c if and only if f (c) = 0.

Proof We already know that there exist q, r ∈ K [t] such that

f = (t − c)q + r, |r | ≤ 1.

Thus r ∈ K and the homomorphism properties imply that f (c) = r . �

We say that c ∈ K is a root of the polynomial f ∈ K [t] if f (c) = 0.

Proposition 15 Let K be a field. If f ∈ K [t] is a polynomial of degree n ≥ 0, then f
has at most n distinct roots in K .

Proof If f is of degree 0, then f = c is a nonzero element of K and f has no roots.
Suppose now that n ≥ 1 and the result holds for polynomials of degree less than n. If
c is a root of f then, by Proposition 14, f = (t − c)g for some g ∈ K [t]. Since g has
degree n − 1, it has at most n − 1 roots. But every root of f distinct from c is a root
of g. Hence f has at most n roots. �

We consider next properties of the integral domain R[t], when R is an integral
domain rather than a field (e.g., R = Z). The famous Pythagorean proof that

√
2 is

irrational is considerably generalized by the following result:
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Proposition 16 Let R be a GCD domain and K its field of fractions. Let

f = a0 + a1t + · · · + antn

be a polynomial of degree n > 0 with coefficients a j ∈ R (0 ≤ j ≤ n). If c ∈ K is a
root of f and c = ab−1, where a, b ∈ R and (a, b) = 1, then b|an and a|a0.

In particular, if f is monic, then c ∈ R.

Proof We have

a0bn + a1abn−1 + · · · + an−1an−1b + anan = 0.

Hence b|anan and a|a0bn . Since (an, b) = (a, bn) = 1, by Proposition 3(v), the result
follows from Proposition 3(ii). �

The polynomial t2−2 has no integer roots, since 0, 1,−1 are not roots and if c ∈ Z
and c �= 0, 1,−1, then c2 ≥ 4. Consequently, by Proposition 16, the polynomial t2−2
also has no rational roots. It now follows from Proposition 14 that t2 − 2 is irreducible
in Q[t], since it has no divisors of degree 1.

Proposition 16 was known to Euler (1774) for the case R = Z. In this case it shows
that to obtain all rational roots of a polynomial with rational coefficients we need test
only a finite number of possibilities, which can be explicitly enumerated. For exam-
ple, if z ∈ Z, the cubic polynomial t3 + zt + 1 has no rational roots unless z = 0 or
z = −2.

It was shown by Gauss (1801), again for the case R = Z, that Proposition 16
may itself be considerably generalized. His result may be formulated in the following
way:

Proposition 17 Let f, g ∈ R[t], where R is a GCD domain with field of fractions K .
Then g divides f in R[t] if and only if g divides f in K [t] and the greatest common
divisor of the coefficients of g divides the greatest common divisor of the coefficients
of f .

Proof For any polynomial f ∈ R[t], let c( f ) denote the greatest common divisor of
its coefficients. We say that f is primitive if c( f ) = 1. We show first that the product
f = gh of two primitive polynomials g, h is again primitive.

Let

g = b0 + b1t + · · · , h = c0 + c1t + · · · , f = a0 + a1t + · · · ,
and assume on the contrary that the coefficients ai have a common divisor d which
is not a unit. Then d does not divide all the coefficients b j , nor all the coeffi-
cients ck . Let bm , cn be the first coefficients of g, h which are not divisible by d .
Then

am+n =
∑

j+k=m+n

b j ck

and d divides every term on the right, except possibly bmcn . In fact, since d|am+n ,
d must also divide bmcn . Hence we cannot have both (d, bm) = 1 and (d, cn) = 1.
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Consequently we can replace d by a proper divisor d ′, again not a unit, for which
m′ + n′ > m + n. Since there exists a divisor d for which m + n is a maximum, this
yields a contradiction.

Now let f, g be polynomials in R[t] such that g divides f in K [t]. Thus f = gH ,
where H ∈ K [t]. We can write H = ab−1h0, where a, b are coprime elements of R
and h0 is a primitive polynomial in R[t]. Also

f = c( f ) f0, g = c(g)g0,

where f0, g0 are primitive polynomials in R[t]. Hence

bc( f ) f0 = ac(g)g0h0.

Since g0h0 is primitive, it follows that

bc( f ) = ac(g).

If H ∈ R[t], then b = 1 and so c(g)|c( f ). On the other hand, if c(g)|c( f ), then
bc( f )/c(g) = a. Since (a, b) = 1, this implies that b = 1 and H ∈ R[t]. �

Corollary 18 If R is a GCD domain, then R[t] is also a GCD domain. If, moreover,
R is a factorial domain, then R[t] is also a factorial domain.

proof Let K denote the field of fractions of R. Since K [t] is a GCD domain and
R[t] ⊆ K [t], R[t] is certainly an integral domain. If f, g ∈ R[t], then there exists
a primitive polynomial h0 ∈ R[t] which is a greatest common divisor of f and g in
K [t]. It follows from Proposition 17 that

h = (c( f ), c(g))h0

is a greatest common divisor of f and g in R[t].
This proves the first statement of the corollary. It remains to show that if R also

satisfies the chain condition (#), then R[t] does likewise. But if fn ∈ R[t] and
fn+1| fn for every n, then fn must be of constant degree for all large n. The second
statement of the corollary now also follows from Proposition 17 and the chain
condition in R. ��

It follows by induction that in the statement of Corollary 18 we may replace
R[t] by the ring R[t1, . . . , tm ] of all polynomials in finitely many indeterminates
t1, . . . , tm with coefficients from R. In particular, if K is a field, then any polyno-
mial f ∈ K [t1, . . . , tm ] such that f /∈ K can be represented as a product of finitely
many irreducible polynomials and the representation is essentially unique.

It is now easy to give examples of GCD domains which are not Bézout domains.
Let R be a GCD domain which is not a field (e.g., R = Z). Then some a0 ∈ R is
neither zero nor a unit. By Corollary 18, R[t] is a GCD domain and, by Proposition 17,
the greatest common divisor in R[t] of the polynomials a0 and t is 1. If there existed
g, h ∈ R[t] such that

a0g + th = 1,
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where g = b0 + b1t + · · · , then by equating constant coefficients we would obtain
a0b0 = 1, which is a contradiction. Thus R[t] is not a Bézout domain.

As an application of the preceding results we show that if a1, . . . , an are distinct
integers, then the polynomial

f =
n∏

j=1

(t − a j )− 1

is irreducible in Q[t]. Assume, on the contrary, that f = gh, where g, h ∈ Q[t] and
have positive degree. We may suppose without loss of generality that g ∈ Z[t] and
that the greatest common divisor of the coefficients of g is 1. Since f ∈ Z[t], it then
follows from Proposition 17 that also h ∈ Z[t]. Thus g(a j ) and h(a j ) are integers for
every j . Since g(a j )h(a j ) = −1, it follows that g(a j ) = −h(a j ). Thus the polyno-
mial g + h has the distinct roots a1, . . . , an . Since g + h has degree less than n, this is
possible only if g + h = O. Hence f = −g2. But, since the highest coefficient of f
is 1, this is a contradiction.

In general, it is not an easy matter to determine if a polynomial with rational
coefficients is irreducible in Q[t]. However, the following irreducibility criterion, due
to Eisenstein (1850), is sometimes useful:

Proposition 19 If

f (t) = a0 + a1t + · · · + an−1tn−1 + tn

is a monic polynomial of degree n with integer coefficients such that a0, a1, . . . , an−1
are all divisible by some prime p, but a0 is not divisible by p2, then f is irreducible in
Q[t].

Proof Assume on the contrary that f is reducible. Then there exist polynomials
g(t), h(t) of positive degrees l,m with integer coefficients such that f = gh. If

g(t) = b0 + b1t + · · · + blt
l ,

h(t) = c0 + c1t + · · · + cmtm ,

then a0 = b0c0. The hypotheses imply that exactly one of b0, c0 is divisible by p. With-
out loss of generality, assume it to be b0. Since p divides a1 = b0c1 + b1c0, it follows
that p|b1. Since p divides a2 = b0c2+b1c1+b2c0, it now follows that p|b2. Proceeding
in this way, we see that p divides b j for every j ≤ l. But, since blcm = 1, this yields a
contradiction. �

It follows from Proposition 19 that, for any prime p, the p-th cyclotomic polyno-
mial

Φp(x) = x p−1 + x p−2 + · · · + 1

is irreducible in Q[x]. For Φp(x) = (x p − 1)/(x − 1) and, if we put x = 1 + t , the
transformed polynomial
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{(1+ t)p − 1}/t = t p−1 + pCp−1t p−2 + · · · + pC2t + p

satisfies the hypotheses of Proposition 19.
For any field K , we define the formal derivative of a polynomial f ∈ K [t],

f = a0 + a1t + · · · + antn,

to be the polynomial

f ′ = a1 + 2a2t + · · · + nantn−1.

If the field K is of characteristic 0 (see Chapter I, §8), then ∂( f ′) = ∂( f )− 1.
Formal derivatives share the following properties with the derivatives of real

analysis:

(i) ( f + g)′ = f ′ + g′;
(ii) ( c f )′ = c f ′ for any c ∈ K ;

(iii) ( f g)′ = f ′g + f g′;
(iv) ( f k)′ = k f k−1 f ′ for any k ∈ N.

The first two properties are easily established and the last two properties then need
only be verified for monomials f = tm , g = tn .

We can use formal derivatives to determine when a polynomial is square-free:

Proposition 20 Let f be a polynomial of positive degree with coefficients from a
field K . If f is relatively prime to its formal derivative f ′, then f is a product of
irreducible polynomials, no two of which differ by a constant factor. Conversely, if f
is such a product and if K has characteristic 0, then f is relatively prime to f ′.

Proof If f = g2h for some polynomials g, h ∈ K [t] with ∂(g) > 0 then, by the rules
above,

f ′ = 2gg′h + g2h′.

Hence g| f ′ and f, f ′ are not relatively prime.
On the other hand, if f = p1 · · · pm is a product of essentially distinct irreducible

polynomials p j , then

f ′ = p′1 p2 · · · pm + p1 p′2 p3 · · · pm + · · · + p1 · · · pm−1 p′m .

If the field K has characteristic 0, then p′1 is of lower degree than p1 and is not the zero
polynomial. Thus the first term on the right is not divisible by p1, but all the other terms
are. Therefore p1� f ′, and hence ( f ′, p1) = 1. Similarly, ( f ′, p j ) = 1 for 1 < j ≤ m.
Since essentially distinct irreducible polynomials are relatively prime, it follows that
( f ′, f ) = 1. �

For example, it follows from Proposition 20 that the polynomial tn − 1 ∈ K [t] is
square-free if the characteristic of the field K does not divide the positive integer n.



104 II Divisibility

4 Euclidean Domains

An integral domain R is said to be Euclidean if it possesses a Euclidean algorithm, i.e.
if there exists a map δ : R → N ∪ {0} such that, for any a, b ∈ R with a �= 0, there
exist q, r ∈ R with the properties

b = qa + r, δ(r) < δ(a).

It follows that δ(a) > δ(0) for any a �= 0. For there exist q1, a1 ∈ R such that

0 = q1a + a1, δ(a1) < δ(a),

and if an �= 0 there exist qn+1, an+1 ∈ R such that

0 = qn+1an + an+1, δ(an+1) < δ(an).

Repeatedly applying this process, we must arrive at aN = 0 for some N , since the
sequence {δ(an)} cannot decrease forever, and we then have δ(0) = δ(aN ) < · · · <
δ(a1) < δ(a).

By replacing δ by δ − δ(0) we may, and will, assume that δ(0) = 0, δ(a) > 0 if
a �= 0.

Since the proof of Lemma 9 remains valid if Z is replaced by R and |a| by δ(a),
any Euclidean domain is a principal ideal domain.

The polynomial ring K [t] is a Euclidean domain with δ(a) = |a| = 2∂(a).
Polynomial rings are characterized among all Euclidean domains by the following
result:

Proposition 21 For a Euclidean domain R, the following conditions are equivalent:

(i) for any a, b ∈ R with a �= 0, there exist unique q, r ∈ R such that b = qa + r ,
δ(r) < δ(a);

(ii) for any a, b, c ∈ R with c �= 0,

δ(a + b) ≤ max{δ(a), δ(b)}, δ(a) ≤ δ(ac).

Moreover, if one or other of these two conditions holds, then either R is a field and
δ(a) = δ(1) for every a �= 0, or R = K [t] for some field K and δ is an increasing
function of | |.
Proof Suppose first that (i) holds. If a �= 0, c �= 0, then from 0 = 0a − 0 = ca − ac,
we obtain δ(ac) ≥ δ(a), and this holds also if a = 0. If we take c = −1 and replace a
by −a, we get δ(−a) = δ(a). Since b = 0(a + b)+ b = 1(a + b)+ (−a), it follows
that either δ(b) ≥ δ(a + b) or δ(a) ≥ δ(a + b). Thus (i)⇒ (ii).

Suppose next that (ii) holds. Assume that, for some a, b ∈ R with a �= 0, there
exist pairs q, r and q ′, r ′ such that

b = qa + r = q ′a + r ′, max{δ(r), δ(r ′)} < δ(a).
From (ii) we obtain first δ(−r) = δ(r) and then δ(r ′ − r) ≤ max{δ(r), δ(r ′)} < δ(a).
Since r ′−r = a(q−q ′), this implies q−q ′ = 0 and hence r ′−r = 0. Thus (ii)⇒ (i).



4 Euclidean Domains 105

Suppose now that (i) and (ii) both hold. Then δ(1) ≤ δ(a) for any a �= 0, since
a = 1a. Furthermore, δ(a) = δ(ae) for any unit e, since

δ(a) ≤ δ(ae) ≤ δ(aee−1) = δ(a).
On the other hand, δ(a) = δ(ae) for some a �= 0 implies that e is a unit. For from

a = qae+ r, δ(r) < δ(ae),

we obtain r = (1−qe)a, δ(r) < δ(a), and hence 1−qe = 0. In particular, δ(e) = δ(1)
if and only if e is a unit.

The set K of all a ∈ R such that δ(a) ≤ δ(1) thus consists of 0 and all units of R.
Since a, b ∈ K implies a−b ∈ K , it follows that K is a field. We assume that K �= R,
since otherwise we have the first alternative of the proposition.

Choose x ∈ R\K so that

δ(x) = min
a∈R\K

δ(a).

For any a ∈ R\K , there exist q0, r0 ∈ R such that

a = q0x + r0, δ(r0) < δ(x),

i.e. r0 ∈ K . Then δ(q0) < δ(q0x) = δ(a − r0) ≤ δ(a). If δ(q0) ≥ δ(x), i.e. if
q0 ∈ R\K , then in the same way there exist q1, r1 ∈ R such that

q0 = q1x + r1, r1 ∈ K , δ(q1) < δ(q0).

After finitely many repetitions of this process we must arrive at some qn−1 ∈ K .
Putting rn = qn−1, we obtain

a = rnxn + rn−1xn−1 + · · · + r0,

where r0, . . . , rn ∈ K and rn �= 0. Since δ(r j x j ) = δ(x j ) if r j �= 0 and δ(x j ) <
δ(x j+1) for every j , it follows that δ(a) = δ(xn). Since the representation a = qxn+r
with δ(r) < δ(xn) is unique, it follows that r0, . . . , rn are uniquely determined by a.
Define a map ψ : R → K [t] by

ψ(rn xn + rn−1xn−1 + · · · + r0) = rntn + rn−1tn−1 + · · · + r0.

Then ψ is a bijection and actually an isomorphism, since it preserves sums and prod-
ucts. Furthermore δ(a) >,=, or< δ(b) according as |ψ(a)| >,=, or < |ψ(b)|. �

Some significant examples of principal ideal domains are provided by quadratic
fields, which will be studied in Chapter III. Any quadratic number field has the form
Q(
√

d), where d ∈ Z is square-free and d �= 1. The set Od of all algebraic integers in
Q(
√

d) is an integral domain. In the equivalent language of binary quadratic forms, it
was known to Gauss that Od is a principal ideal domain for nine negative values of d ,
namely

d = −1,−2,−3,−7,−11,−19,−43,−67,−163.
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Heilbronn and Linfoot (1934) showed that there was at most one additional negative
value of d for which Od is a principal ideal domain. Stark (1967) proved that this
additional value does not in fact exist, and soon afterwards it was observed that a gap
in a previous proof by Heegner (1952) could be filled without difficulty. It is conjec-
tured that Od is a principal ideal domain for infinitely many positive values of d , but
this remains unproved.

Much work has been done on determining for which quadratic number fields
Q(
√

d) the ring of integers Od is a Euclidean domain. Although we regard being
Euclidean more as a useful property than as an important concept, we report here the
results which have been obtained for their intrinsic interest.

The ring Od is said to be norm-Euclidean if it is Euclidean when one takes δ(a) to
be the absolute value of the norm of a. It has been shown that Od is norm-Euclidean
for precisely the following values of d:

d = −11,−7,−3,−2,−1, 2, 3, 5, 6, 7, 11, 13, 17, 19, 21, 29, 33, 37, 41, 57, 73.

It is known that, for d < 0, Od is Euclidean only if it is norm-Euclidean. Comparing the
two lists, we see that for d = −19,−43,−67,−163,Od is a principal ideal domain,
but not a Euclidean domain. On the other hand it is also known that, for d = 69,Od is
Euclidean but not norm-Euclidean.

5 Congruences

The invention of a new notation often enables one to replace a long, involved argu-
ment by simple and mechanical algebraic operations. This is well illustrated by the
congruence notation.

Two integers a and b are said to be congruent modulo a third integer m if m divides
a − b, and this is denoted by a ≡ b mod m. For example,

13 ≡ 4 mod 3, 13 ≡ −7 mod 5, 19 ≡ 7 mod 4.

The notation is a modification by Gauss of the notation a = b mod m used by
Legendre, as Gauss explicitly acknowledged (D.A., §2). (If a and b are not congruent
modulo m, we write a �≡ b mod m.) Congruence has, in fact, many properties in
common with equality:

(C1) a ≡ a mod m for all a,m; (reflexive law)
(C2) if a ≡ b mod m, then b ≡ a mod m; (symmetric law)
(C3) if a ≡ b and b ≡ c mod m, then a ≡ c mod m; (transitive law)
(C4) if a ≡ a′ and b ≡ b′ mod m, then a+ b ≡ a′ + b′ and

ab ≡ a′b′mod m. (replacement laws)
The proofs of these properties are very simple. For any a,m we have a − a = 0 =

m ·0. If m divides a−b, then it also divides b−a = −(a−b). If m divides both a−b
and b − c, then it also divides (a − b) + (b − c) = a − c. Finally, if m divides both
a − a′ and b − b′, then it also divides (a − a′) + (b − b′) = (a + b)− (a′ + b′) and
(a − a′)b + a′(b − b′) = ab − a′b′.

The properties (C1)–(C3) state that congruence mod m is an equivalence relation.
Since a = b implies a ≡ b mod m, it is a coarsening of the equivalence relation of
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equality (but coincides with it if m = 0). The corresponding equivalence classes are
called residue classes. The set Z with equality replaced by congruence mod m will be
denoted by Z(m). If m > 0, Z(m) has cardinality m, since an arbitrary integer a can be
uniquely represented in the form a = qm+ r , where r ∈ {0, 1, . . . ,m− 1} and q ∈ Z.
The particular r which represents a given a ∈ Z is referred to as the least non-negative
residue of a mod m.

The replacement laws imply that the associative, commutative and distributive laws
for addition and multiplication are inherited from Z by Z(m). Hence Z(m) is a commu-
tative ring, with 0 as an identity element for addition and 1 as an identity element for
multiplication. However, Z(m) is not an integral domain if m is composite, since if
m = m′m′′ with 1 < m′ < m, then

m′m′′ ≡ 0, but m′ �≡ 0,m′′ �≡ 0 mod m.

On the other hand, if ab ≡ ac mod m and (a,m) = 1, then b ≡ c mod m, by Proposi-
tion 3(ii). Thus factors which are relatively prime to the modulus can be cancelled.

In algebraic terms, Z(m) is the quotient ring Z/mZ of Z with respect to the ideal
mZ generated by m, and the elements of Z(m) are the cosets of this ideal. For conve-
nience, rather than necessity, we suppose from now on that m > 1.

Congruences enter implicitly into many everyday problems. For example, the ring
Z(2) contains two distinct elements, 0 and 1, with the addition and multiplication tables

0+ 0 = 1+ 1 = 0, 0+ 1 = 1+ 0 = 1,

0 · 0 = 0 · 1 = 1 · 0 = 0, 1 · 1 = 1.

This is the arithmetic of odds (1) and evens (0), which is used by electronic computers.
Again, to determine the day of the week on which one was born, from the date and

day of the week today, is an easy calculation in the arithmetic of Z(7) (remembering
that 366 ≡ 2 mod 7).

The well-known tests for divisibility of an integer by 3 or 9 are easily derived by
means of congruences. Let the positive integer a have the decimal representation

a = a0 + a110+ · · · + an10n,

where a0, a1, . . . , an ∈ {0, 1, . . . , 9}. Since 10 ≡ 1 mod m, where m = 3 or 9, the
replacement laws imply that 10k ≡ 1 mod m for any positive integer k and hence

a ≡ a0 + a1 + · · · + an mod m.

Thus a is divisible by 3 or 9 if and only if the sum of its digits is so divisible.
This can be used to check the accuracy of arithmetical calculations. Any equa-

tion involving only additions and multiplications must remain valid when equality is
replaced by congruence mod m. For example, suppose we wish to check if

7714× 3036 = 23,419,804.

Taking congruences mod 9, we have on the left side 19× 12 ≡ 1 × 3 ≡ 3 and on the
right side 5 + 14 + 12 ≡ 5 + 5 + 3 ≡ 4. Since 4 �≡ 3 mod 9, the original equation is
incorrect (the 8 should be a 7).



108 II Divisibility

Since the distinct squares in Z(4) are 0 and 1, it follows that an integer a ≡ 3 mod 4
cannot be represented as the sum of two squares of integers. Similarly, since the distinct
squares in Z(8) are 0,1,4, an integer a ≡ 7 mod 8 cannot be represented as the sum of
three squares of integers.

The oldest known work on number theory is a Babylonian cuneiform text, from at
least as early as 1600 B.C., which contains a list of right-angled triangles whose side
lengths are all exact multiples of the unit length. By Pythagoras’ theorem, the problem
is to find positive integers x, y, z such that

x2 + y2 = z2.

For example, 3, 4, 5 and 5, 12, 13 are solutions. The number of solutions listed sug-
gests that the Babylonians not only knew the theorem of Pythagoras, but also had some
rule for finding such Pythagorean triples. There are in fact infinitely many, and a rule
for finding them all is given by Euclid in his Elements (Book X, Lemma 1 following
Proposition 28). This rule will now be derived.

We may assume that x and y are relatively prime since, if x, y, z is a Pythagorean
triple for which x and y have greatest common divisor d , then d2|z2 and hence d|z,
so that x/d, y/d, z/d is also a Pythagorean triple. If x and y are relatively prime, then
they are not both even and without loss of generality we may assume that x is odd. If
y were also odd, we would have

z2 = x2 + y2 ≡ 1+ 1 ≡ 2 mod 4,

which is impossible. Hence y is even and z is odd. Then 2 is a common divisor of
z+ x and z− x , and is actually their greatest common divisor, since (x, y) = 1 implies
(x, z) = 1. Since

(y/2)2 = (z + x)/2 · (z − x)/2

and the two factors on the right are relatively prime, they are also squares:

(z + x)/2 = a2, (z − x)/2 = b2,

where a > b > 0 and (a, b) = 1. Then

x = a2 − b2, y = 2ab, z = a2 + b2.

Moreover a and b cannot both be odd, since z is odd.
Conversely, if x, y, z are defined by these formulas, where a and b are relatively

prime positive integers with a > b and either a or b even, then x, y, z is a Pythagorean
triple. Moreover x is odd, since z is odd and y even, and it is easily verified that
(x, y) = 1. For given x and z, a2 and b2 are uniquely determined, and hence a and b
are also. Thus different couples a, b give different solutions x, y, z.

To return to congruences, we now consider the structure of the ring Z(m). If
a ≡ a′mod m and (a,m) = 1, then also (a′,m) = 1. Hence we may speak of an
element of Z(m) as being relatively prime to m. The set of all elements of Z(m) which
are relatively prime to m will be denoted by Z×(m). If a is a unit of the ring Z(m), then

clearly a ∈ Z×(m). The following proposition shows that, conversely, if a ∈ Z×(m), then
a is a unit of the ring Z(m).
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Proposition 22 The set Z×(m) is a commutative group under multiplication.

Proof By Proposition 3(iv), Z×(m) is closed under multiplication. Since multiplication

is associative and commutative, it only remains to show that any a ∈ Z×(m) has an

inverse a−1 ∈ Z×(m).
The elements of Z×(m) may be taken to be the positive integers c1, . . . , ch which

are less than m and relatively prime to m, and we may choose the notation so that
c1 = 1. Since ac j ≡ ack mod m implies c j ≡ ck mod m, the elements ac1, . . . , ach

are distinct elements of Z×(m) and hence are a permutation of c1, . . . , ch . In particular,
aci ≡ c1 mod m for one and only one value of i . (The existence of inverses also fol-
lows from the Bézout identity au + mv = 1, since this implies au ≡ 1 mod m. Hence
the Euclidean algorithm provides a way of calculating a−1.) �

Corollary 23 If p is a prime, then Z(p) is a finite field with p elements.

Proof We already know that Z(p) is a commutative ring, whose distinct elements are
represented by the integers 0, 1, . . . , p − 1. Since p is a prime, Z×(p) consists of all

nonzero elements of Z(p). Since Z×(p) is a multiplicative group, by Proposition 22, it
follows that Z(p) is a field. �

The finite field Z(p) will be denoted from now on by the more usual notation Fp .
Corollary 23, in conjunction with Proposition 15, implies that if p is a prime and f a
polynomial of degree n ≥ 1, then the congruence

f (x) ≡ 0 mod p

has at most n mutually incongruent solutions mod p. This is no longer true if the mod-
ulus is not a prime. For example, the congruence x2 − 1 ≡ 0 mod 8 has the distinct
solutions x ≡ 1, 3, 5, 7 mod 8.

The order of the group Z×(m), i.e. the number of positive integers less than m and rel-
atively prime to m, is traditionally denoted by ϕ(m), with the convention that ϕ(1) = 1.
For example, if p is a prime, then ϕ(p) = p − 1. More generally, for any positive
integer k,

ϕ(pk) = pk − pk−1,

since the elements of Z(pk) which are not in Z×
(pk)

are the multiples j p with 0 ≤ j <

pk−1. By Proposition 4, if m = m′m′′, where (m′,m′′) = 1, then ϕ(m) = ϕ(m′)ϕ(m′′).
Together with what we have just proved, this implies that if an arbitrary positive integer
m has the factorization

m = pk1
1 · · · pks

s

as a product of positive powers of distinct primes, then

ϕ(m) = pk1−1
1 (p1 − 1) · · · pks−1

s (ps − 1).
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In other words,

ϕ(m) = m
∏
p|m
(1− 1/p).

The function ϕ(m) was first studied by Euler and is known as Euler’s phi-function
(or ‘totient’ function), although it was Gauss who decided on the letter ϕ. Gauss (D.A.,
§39) also established the following property:

Proposition 24 For any positive integer n,∑
d |n
ϕ(d) = n,

where the summation is over all positive divisors d of n.

Proof Let d be a positive divisor of n and let Sd denote the set of all positive integers
m ≤ n such that (m, n) = d . Since (m, n) = d if and only if (m/d, n/d) = 1, the
cardinality of Sd is ϕ(n/d). Moreover every positive integer m ≤ n belongs to exactly
one such set Sd . Hence

n =
∑
d |n
ϕ(n/d) =

∑
d |n
ϕ(d),

since n/d runs through the positive divisors of n at the same time as d . �

Much of the significance of Euler’s function stems from the following property:

Proposition 25 If m is a positive integer and a an integer relatively prime to m, then

aϕ(m) ≡ 1 mod m.

Proof Let c1, . . . , ch , where h = ϕ(m), be the distinct elements of Z×(m). As we saw

in the proof of Proposition 22, the elements ac1, . . . , ach of Z×(m) are just a permu-

tation of c1, . . . , ch . Forming their product, we obtain ahc1 · · · ch ≡ c1 · · · ch mod m.
Since the c’s are relatively prime to m, they can be cancelled and we are left with
ah ≡ 1 mod m. �

Corollary 26 If p is a prime and a an integer not divisible by p, then a p−1 ≡ 1 mod p.

Corollary 26 was stated without proof by Fermat (1640) and is commonly known
as ‘Fermat’s little theorem’. The first published proof was given by Euler (1736), who
later (1760) proved the general Proposition 25.

Proposition 25 is actually a very special case of Lagrange’s theorem that the order
of a subgroup of a finite group divides the order of the whole group. In the present case
the whole group is Z×(m) and the subgroup is the cyclic group generated by a.

Euler gave also another proof of Corollary 26, which has its own interest. For any
two integers a, b and any prime p we have, by the binomial theorem,
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(a + b)p =
p∑

k=0

pCkakb p−k,

where the binomial coefficients

pCk = (p − k + 1) · · · p/1 · 2 · · · · · k

are integers. Moreover p divides pCk for 0 < k < p, since p divides pCk · k! and is
relatively prime to k! It follows that

(a + b)p ≡ a p + b p mod p.

In particular, (a + 1)p ≡ a p + 1 mod p, from which we obtain by induction a p ≡
a mod p for every integer a. If p does not divide a, the factor a can be cancelled to
give a p−1 ≡ 1 mod p.

The first part of the second proof actually shows that in any commutative ring R,
of prime characteristic p, the map a → a p is a homomorphism:

(a + b)p = a p + b p, (ab)p = a pb p.

(As defined in §8 of Chapter I, R has characteristic k if k is the least positive integer
such that the sum of k 1’s is 0, and has characteristic zero if there is no such positive
integer.) By way of illustration, we give one important application of this result.

We showed in §3 that, for any prime p, the polynomial

Φp(x) = x p−1 + x p−2 + · · · + 1

is irreducible in Q[x]. The roots in C of Φp(x) are the p-th roots of unity, other
than 1. By a quite different argument we now show that, for any positive integer n, the
‘primitive’ n-th roots of unity are the roots of a monic polynomialΦn(x) with integer
coefficients which is irreducible in Q[x]. The uniquely determined polynomial Φn(x)
is called the n-th cyclotomic polynomial.

Let ζ be a primitive n-th root of unity, i.e. ζ n = 1 but ζ k �= 1 for 0 < k < n.
It follows from Corollary 18 that ζ is a root of some monic irreducible polynomial
f (x) ∈ Z[x] which divides xn − 1. If p is a prime which does not divide n, then ζ p is
also a primitive n-th root of unity and, for the same reason, ζ p is a root of some monic
irreducible polynomial g(x) ∈ Z[x] which divides xn − 1.

We show first that g(x) = f (x). Assume on the contrary that g(x) �= f (x). Then

xn − 1 = f (x)g(x)h(x)

for some h(x) ∈ Z[x]. Since ζ is a root of g(x p), we also have

g(x p) = f (x)k(x)

for some k(x) ∈ Z[x]. If f̄ (x), . . . denotes the polynomial in Fp[x] obtained from
f (x), . . . by reducing the coefficients mod p,
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then

xn − 1 = f̄ (x)ḡ(x)h̄(x), ḡ(x p) = f̄ (x)k̄(x).

But ḡ(x p) = ḡ(x)p, since Fp[x] is a ring of characteristic p and a p = a for every
a ∈ Fp. Hence any irreducible factor ē(x) of f̄ (x) in Fp[x] also divides ḡ(x). Con-
sequently ē(x)2 divides xn − 1 in Fp[x]. But xn − 1 is relatively prime to its formal
derivative nxn−1, since p�n, and so is square-free. This is the desired contradiction.

By applying this repeatedly for the same or different primes p, we see that ζm is
a root of f (x) for any positive integer m less than n and relatively prime to n. If ω is
any n-th root of unity, then ω = ζ k for a unique k such that 0 ≤ k < n. If (k, n) �= 1,
then ωd = 1 for some proper divisor d of n (cf. Lemma 31 below). If such an ω were a
root of f (x), then f (x) would divide xd − 1, which is impossible since ζ is not a root
of xd − 1. Hence f (x) does not depend on the original choice of primitive n-th root
of unity, its roots being all the primitive n-th roots of unity. The polynomial f (x) will
now be denoted by Φn(x). Since xn − 1 is square-free, we have

xn − 1 =
∏
d |n
Φd (x).

This yields a new proof of Proposition 24, since Φd (x) has degree ϕ(d).
As an application of Fermat’s little theorem (Corollary 26) we now prove

Proposition 27 If p is a prime, then (p − 1)!+ 1 is divisible by p.

Proof Since 1! + 1 = 2, we may suppose that the prime p is odd. By Corollary 26,
the polynomial f (t) = t p−1 − 1 has the distinct roots 1, 2, . . . , p − 1 in the field Fp .
But the polynomial g(t) = (t − 1)(t − 2) · · · (t − p + 1) has the same roots. Since
f (t) − g(t) is a polynomial of degree less than p − 1, it follows from Proposition 15
that f (t) − g(t) is the zero polynomial. In particular, f (t) and g(t) have the same
constant coefficient. Since (−1)p−1 = 1, this yields the result. �

Proposition 27 is known as Wilson’s theorem, although the first published proof
was given by Lagrange (1773). Lagrange observed also that (n − 1)! + 1 is divisible
by n only if n is prime. For suppose n = n′n′′, where 1 < n′, n′′ < n. If n′ �= n′′, then
both n′ and n′′ occur as factors in (n− 1)! and hence n divides (n− 1)! If n′ = n′′ > 2
then, since n > 2n′, both n′ and 2n′ occur as factors in (n − 1)! and again n divides
(n − 1)! Finally, if n = 4, then n divides (n − 1)!+ 2.

As another application of Fermat’s little theorem, we prove Euler’s criterion for
quadratic residues. If p is a prime and a an integer not divisible by p, we say that a
is a quadratic residue, or quadratic nonresidue, of p according as there exists, or does
not exist, an integer c such that c2 ≡ a mod p. Thus a is a quadratic residue of p if
and only if it is a square in F×p . Euler’s criterion is the first statement of the following
proposition:

Proposition 28 If p is an odd prime and a an integer not divisible by p, then

a(p−1)/2 ≡ 1 or − 1 mod p,

according as a is a quadratic residue or nonresidue of p.
Moreover, exactly half of the integers 1, 2, . . . , p − 1 are quadratic residues of p.
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Proof If a is a quadratic residue of p, then a ≡ c2 mod p for some integer c and
hence, by Fermat’s little theorem,

a(p−1)/2 ≡ c p−1 ≡ 1 mod p.

Since the polynomial t(p−1)/2−1 has at most (p−1)/2 roots in the field Fp, it follows
that there are at most r := (p − 1)/2 distinct quadratic residues of p. On the other
hand, no two of the integers 12, 22, . . . , r2 are congruent mod p, since u2 ≡ v2 mod p
implies u ≡ v or u ≡ −v mod p. Hence there are exactly (p − 1)/2 distinct quadratic
residues of p and, if b is a quadratic nonresidue of p, then b(p−1)/2 �≡ 1 mod p. Since
b p−1 ≡ 1 mod p, and

b p−1 − 1 = (b(p−1)/2 − 1)(b(p−1)/2 + 1),

we must have b(p−1)/2 ≡ −1 mod p. �

Corollary 29 If p is an odd prime, then−1 is a quadratic residue of p if p ≡ 1 mod 4
and a quadratic nonresidue of p if p ≡ 3 mod 4.

Euler’s criterion may also be used to determine for what primes 2 is a quadratic
residue:

Proposition 30 For any odd prime p, 2 is a quadratic residue of p if p ≡ ±1 mod 8
and a quadratic nonresidue if p ≡ ±3 mod 8.

Proof Let A denote the set of all even integers a such that p/2 < a < p, and let B
denote the set of all even integers b such that 0 < b < p/2. Since A ∪ B is the set
of all positive even integers less than p, it has cardinality r := (p − 1)/2. Evidently
a ∈ A if and only if p− a is odd and 0 < p− a < p/2. Hence the integers 1, 2, . . . , r
are just the elements of B , together with the integers p − a(a ∈ A). If we denote the
cardinality of A by #A, it follows that

r ! =
∏
a∈A

(p − a)
∏
b∈B

b

≡ (−1)#A
∏
a∈A

a
∏
b∈B

b mod p

= (−1)#A2rr !

Thus 2r ≡ (−1)#A mod p and hence, by Proposition 28, 2 is a quadratic residue or
nonresidue of p according as #A is even or odd. But #A = k if p = 4k + 1 and
#A = k + 1 if p = 4k + 3. The result follows. �

We now introduce some simple group-theoretical concepts. Let G be a finite group
and a ∈ G. Then there exist j, k ∈ N with j < k such that a j = ak . Thus ak− j = 1,
where 1 is the identity element of G. The order of a is the least positive integer d such
that ad = 1.

Lemma 31 Let G be a finite group of order n and a an element of G of order d. Then

(i) for any k ∈ N, ak = 1 if and only if d divides k;
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(ii) for any k ∈ N, ak has order d/(k, d);
(iii) H = {1, a, . . . , ad−1} is a subgroup of G and d divides n.

Proof Any k ∈ N can be written in the form k = qd+r , where q ≥ 0 and 0 ≤ r < d .
Since aqd = (ad)q = 1, we have ak = 1 if and only if ar = 1, i.e. if and only if r = 0,
by the definition of d .

It follows that if ak has order e, then ke = [k, d]. Since [k, d] = kd/(k, d), this
implies e = d/(k, d). In particular, ak again has order d if and only if (k, d) = 1.

If 0 ≤ j, k < d , put i = j + k if j + k < d and i = j + k − d if j + k ≥ d . Then
a j ak = ai , and so H contains the product of any two of its elements. If 0 < k < d ,
then akad−k = 1, and so H contains also the inverse of any one of its elements. Finally
d divides n, by Lagrange’s theorem that the order of a subgroup divides the order of
the whole group. �

The subgroup H in Lemma 31 is the cyclic subgroup generated by a. For G =
Z×(m), the case which we will be interested in, there is no need to appeal to

Lagrange’s theorem, since Z×(m) has order ϕ(m) and d divides ϕ(m), by Proposition 25
and Lemma 31(i).

A group G is cyclic if it coincides with the cyclic subgroup generated by one of its
elements. For example, the n-th roots of unity in C form a cyclic group generated by
e2π i/n . In fact the generators of this group are just the primitive n-th roots of unity.

Our next result provides a sufficient condition for a finite group to be cyclic.

Lemma 32 A finite group G of order n is cyclic if, for each positive divisor d of n,
there are at most d elements of G whose order divides d.

Proof If H is a cyclic subgroup of G, then its order d divides n. Since all its elements
are of order dividing d , the hypothesis of the lemma implies that any element of G
whose order divides d must be in H . Furthermore, H contains exactly ϕ(d) elements
of order d since, if a generates H , ak has order d if and only if (k, d) = 1.

For each divisor d of n, let ψ(d) denote the number of elements of G of or-
der d . Then, by what we have just proved, either ψ(d) = 0 or ψ(d) = ϕ(d). But∑

d |n ψ(d) = n, since the order of each element is a divisor of n, and
∑

d |n ϕ(d) = n,
by Proposition 24. Hence we must have ψ(d) = ϕ(d) for every d|n. In particular, the
group G has ψ(n) = ϕ(n) elements of order n. �

The condition of Lemma 32 is also necessary. For let G be a finite cyclic group of
order n, generated by the element a, and let d be a divisor of n. An element x ∈ G has
order dividing d if and only if xd = 1. Thus the elements ak of G of order dividing d
are given by k = jn/d , with j = 0, 1, . . . , d − 1.

We now return from group theory to number theory.

Proposition 33 For any prime p, the multiplicative group F×p of the field Fp is cyclic.

Proof Put G = F×p and denote the order of G by n. For any divisor d of n, the

polynomial td − 1 has at most d roots in Fp . Hence there are at most d elements of G
whose order divides d . The result now follows from Lemma 32. �
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The same argument shows that, for an arbitrary field K , any finite subgroup of the
multiplicative group of K is cyclic.

In the terminology of number theory, an integer which generates Z×(m) is said to be
a primitive root of m. Primitive roots may be used to replace multiplications mod m
by additions mod ϕ(m) in the same way that logarithms were once used in analysis. If
g is a primitive root of m, then the elements of Z×(m) are precisely 1, g, g2, . . . , gn−1,

where n = ϕ(m). Thus for each a ∈ Z×(m) we have a ≡ gα mod m for a unique index
α (0 ≤ α < n). We can construct a table of these indices once and for all. If a ≡ gα

and b ≡ gβ , then ab ≡ gα+β . By replacing α + β by its least non-negative residue γ
mod n and going backwards in our table we can determine c such that ab ≡ c mod m.

For any prime p, an essentially complete proof for the existence of primitive roots
of p was given by Euler (1774). Jacobi (1839) constructed tables of indices for all
primes less than 1000.

We now use primitive roots to prove a general property of polynomials with coef-
ficients from a finite field:

Proposition 34 If f (x1, . . . , xn) is a polynomial of degree less than n in n variables
with coefficients from the finite field Fp, then the number of zeros of f in Fn

p is divisible
by the characteristic p. In particular, (0, . . . , 0) is not the only zero of f if f has no
constant term.

Proof Put K = Fp and g = 1 − f p−1. If α = (a1, . . . , an) is a zero of f , then
g(α) = 1. If α is not a zero of f , then f (α)p−1 = 1 and g(α) = 0. Hence the number
N of zeros of f satisfies

N ≡
∑
α∈K n

g(α)mod p.

We will complete the proof by showing that∑
α∈K n

g(α) = 0.

Since g has degree less than n(p − 1), it is a constant linear combination of poly-
nomials of the form xk1

1 · · · xkn
n , where k1 + · · · + kn < n(p− 1). Thus k j < p− 1 for

at least one j . Since

∑
α∈K n

ak1
1 · · · akn

n =
(∑

a1∈K

ak1
1

)
· · ·

(∑
an∈K

akn
n

)
,

it is enough to show that Sk := ∑
a∈K ak is zero for 0 ≤ k < p − 1. If k = 0, then

ak = 1 and S0 = p · 1 = 0. Suppose 1 ≤ k < p − 1 and let b be a generator for the
multiplicative group K× of K . Then c := bk �= 1 and

Sk =
p−1∑
j=1

c j = c(c p−1 − 1)/(c − 1) = 0. �



116 II Divisibility

The general case of Proposition 34 was first proved by Warning (1936), after
the particular case had been proved by Chevalley (1936). As an illustration, the par-
ticular case implies that, for any integers a, b, c and any prime p, the congruence
ax2 + by2 + cz2 ≡ 0 mod p has a solution in integers x, y, z not all divisible by p.

If m is not a prime, then Z(m) is not a field. However, we now show that the group
Z×(m) is cyclic also if m = p2 is the square of a prime.

Let g be a primitive root of p. It follows from the binomial theorem that

(g + p)p ≡ g p mod p2.

Hence, if g p ≡ g mod p2, then (g + p)p �≡ g + p mod p2. Thus, by replacing g by
g+ p if necessary, we may assume that g p−1 �≡ 1 mod p2. If the order of g in Z×

(p2)
is

d , then d divides ϕ(p2) = p(p−1). But ϕ(p) = p−1 divides d , since gd ≡ 1 mod p2

implies gd ≡ 1 mod p and g is a primitive root of p. Since p is prime and d �= p − 1,
it follows that d = p(p − 1), i.e. Z×

(p2)
is cyclic with g as generator.

We briefly state some further results about primitive roots, although we will not use
them. Gauss (D.A., §89–92) showed that the group Z×(m) is cyclic if and only if

m ∈ {2, 4, pk, 2 pk}, where p is an odd prime and k ∈ N. Evidently 1 is a primi-
tive root of 2 and 3 is a primitive root of 4. If g is a primitive root of p2, where p is an
odd prime, then g is a primitive root of pk for every k ∈ N; and if g′ = g or g + pk ,
according as g is odd or even, then g′ is a primitive root of 2 pk .

By Fermat’s little theorem, if p is prime, then a p−1 ≡ 1 mod p for every a ∈ Z
such that (a, p) = 1. With the aid of primitive roots we will now show that there
exist also composite integers n such that an−1 ≡ 1 mod n for every a ∈ Z such that
(a, n) = 1.

Proposition 35 For any integer n > 1, the following two statements are equivalent:

(i) an−1 ≡ 1 mod n for every integer a such that (a, n) = 1;
(ii) n is a product of distinct primes and, for each prime p|n, p − 1 divides n − 1.

Proof Suppose first that (i) holds and assume that, for some prime p, p2|n. As we
have just proved, there exists a primitive root g of p2. Evidently p � g. It is easily
seen that there exists c ∈ N such that a = g + cp2 is relatively prime to n; in fact we
can take c to be the product of the distinct prime factors of n, other than p, which do
not divide g. Since n divides an−1 − 1, also p2 divides an−1 − 1. But a, like g, is a
primitive root of p2, and so its order in Z×

(p2)
is ϕ(p2) = p(p − 1). Hence p(p − 1)

divides n − 1. But this contradicts p|n.
Now let p be any prime divisor of n and let g be a primitive root of p. In the same

way as before, there exists c ∈ N such that a = g+cp is relatively prime to n. Arguing
as before, we see that ϕ(p) = p − 1 divides n − 1. This proves that (i) implies (ii).

Suppose next that (ii) holds and let a be any integer relatively prime to n. If p is a
prime factor of n, then p � a and hence a p−1 ≡ 1 mod p. Since p − 1 divides n − 1,
it follows that an−1 ≡ 1 mod p. Thus an−1 − 1 is divisible by each prime factor of n
and hence, since n is squarefree, also by n itself. �

Proposition 35 was proved by Carmichael (1910), and a composite integer n with
the equivalent properties stated in the proposition is said to be a Carmichael number.
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Any Carmichael number n must be odd, since it has an odd prime factor p such that
p−1 divides n−1. Furthermore a Carmichael number must have more than two prime
factors. For assume n = pq , where 1 < p < q < n and q − 1 divides n − 1. Since
q ≡ 1 mod(q − 1), it follows that

0 ≡ pq − 1 ≡ p − 1 mod(q − 1),

which contradicts p < q .
The composite integer 561 = 3 × 11 × 17 is a Carmichael number, since 560 is

divisible by 2,10 and 16, and it is in fact the smallest Carmichael number. The taxi-
cab number 1729, which Hardy reckoned to Ramanujan was uninteresting, is also a
Carmichael number, since 1729 = 7 × 13× 19. Indeed it is not difficult to show that
if p, 2 p− 1 and 3 p− 2 are all primes, with p > 3, then their product is a Carmichael
number. Recently Alford, Granville and Pomerance (1994) confirmed a long-standing
conjecture by proving that there are infinitely many Carmichael numbers.

Our next topic is of greater importance. Many arithmetical problems require for
their solution the determination of an integer which is congruent to several given
integers according to various given moduli. We consider first a simple, but important,
special case.

Proposition 36 Let m = m′m′′, where m′ and m′′ are relatively prime integers. Then,
for any integers a′, a′′, there exists an integer a, which is uniquely determined mod m,
such that

a ≡ a′ mod m′, a ≡ a′′mod m′′.

Moreover, a is relatively prime to m if and only if a′ is relatively prime to m ′ and a′′ is
relatively prime to m ′′.

Proof By Proposition 22, there exist integers c′, c′′ such that

c′m′′ ≡ 1 mod m′, c′′m′ ≡ 1 mod m′′.

Thus e′ := c′m′′ is congruent to 1 mod m′ and congruent to 0 mod m′′. Similarly
e′′ := c′′m′ is congruent to 0 mod m′ and congruent to 1 mod m′′. It follows that
a = a′e′ + a′′e′′ is congruent to a′mod m′ and congruent to a′′mod m′′.

It is evident that if b ≡ a mod m, then also b ≡ a′mod m′ and b ≡ a′′mod m′′.
Conversely, if b satisfies these two congruences, then b − a ≡ 0 mod m′ and b − a ≡
0 mod m′′. Hence b − a ≡ 0 mod m, by Proposition 3(i).

Since m′ and m′′ are relatively prime, it follows from Proposition 3(iv) that
(a,m) = 1 if and only if (a,m′) = (a,m ′′) = 1. Since a ≡ a′mod m′ implies
(a,m′) = (a′,m′), and a ≡ a′′ mod m′′ implies (a,m′′) = (a′′,m′′), this proves the
last statement of the proposition. �

In algebraic terms, Proposition 36 says that if m = m′m′′, where m′ and m′′ are rel-
atively prime integers, then the ring Z(m) is (isomorphic to) the direct sum of the rings
Z(m′) and Z(m′′). Furthermore, the group Z×(m) is (isomorphic to) the direct product of

the groups Z×(m′) and Z×(m′′).
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Proposition 36 can be considerably generalized:

Proposition 37 For any integers m1, . . . ,mn and a1, . . . , an, the simultaneous con-
gruences

x ≡ a1 mod m1, . . . , x ≡ an mod mn

have a solution x if and only if

a j ≡ ak mod(m j ,mk) for 1 ≤ j < k ≤ n.

Moreover, y is also a solution if and only if

y ≡ x mod[m1, . . . ,mn].

proof The necessity of the conditions is trivial. For if x is a solution and if d jk =
(m j ,mk) is the greatest common divisor of m j and mk , then a j ≡ x ≡ ak mod d jk .
Also, if y is another solution, then y − x is divisible by m1, . . . ,mn and hence also by
their least common multiple [m1, . . . ,mn].

We prove the sufficiency of the conditions by induction on n. Suppose first that
n = 2 and a1 ≡ a2 mod d , where d = (m1,m2). By the Bézout identity,

d = x1m1 − x2m2

for some x1, x2 ∈ Z. Since a1 − a2 = kd for some k ∈ Z, it follows that

x := a1 − kx1m1 = a2 − kx2m2

is a solution.
Suppose next that n > 2 and the result holds for all smaller values of n. Then there

exists x ′ ∈ Z such that

x ′ ≡ ai mod mi for 1 ≤ i < n,

and x ′ is uniquely determined mod m′, where m′ = [m1, . . . ,mn−1]. Since any solu-
tion of the two congruences

x ≡ x ′ mod m′, x ≡ an mod mn

is a solution of the given congruences, we need only show that x ′ ≡ an mod(m′,mn).
But, by the distributive law connecting greatest common divisors and least common
multiples,

(m ′,mn) = [(m1,mn), . . . , (mn−1,mn)].

Since x ′ ≡ ai ≡ an mod(mi ,mn) for 1 ≤ i < n, it follows that x ′ ≡ an mod(m′,mn).
��

Corollary 38 Let m1, . . . ,mn be integers, any two of which are relatively prime, and
let m = m1 · · ·mn be their product. Then, for any given integers a1, . . . , an, there is a
unique integer x mod m such that

x ≡ a1 mod m1, . . . , x ≡ an mod mn.

Moreover, x is relatively prime to m if and only if ai is relatively prime to mi for
1 ≤ i ≤ n.
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Corollary 38 can also be proved by an extension of the argument used to prove
Proposition 36. Both Proposition 37 and Corollary 38 are referred to as the Chinese
remainder theorem. Sunzi (4th century A.D.) gave a procedure for obtaining the solu-
tion x = 23 of the simultaneous congruences

x ≡ 2 mod 3, x ≡ 3 mod 5, x ≡ 2 mod 7.

Qin Jiushao (1247) gave a general procedure for solving simultaneous congruences,
the moduli of which need not be pairwise relatively prime, although he did not state
the necessary condition for the existence of a solution. The problem appears to have
its origin in the construction of calendars.

6 Sums of Squares

Which positive integers n can be represented as a sum of two squares of integers? The
question is answered completely by the following proposition, which was stated by
Girard (1625). Fermat (1645) claimed to have a proof, but the first published proof
was given by Euler (1754).

Proposition 39 A positive integer n can be represented as a sum of two squares if and
only if for each prime p ≡ 3 mod 4 that divides n, the highest power of p dividing n is
even.

Proof We observe first that, since

(x2 + y2)(u2 + v2) = (xu + yv)2 + (xv − yu)2,

any product of sums of two squares is again a sum of two squares.
Suppose n = x2 + y2 for some integers x, y and that n is divisible by a prime

p ≡ 3 mod 4. Then x2 ≡ −y2 mod p. But −1 is not a square in the field Fp, by
Corollary 29. Consequently we must have y2 ≡ x2 ≡ 0 mod p. Thus p divides both
x and y. Hence p2 divides n and (n/p)2 = (x/p)2 + (y/p)2. It follows by induction
that the highest power of p which divides n is even.

Thus the condition in the statement of the proposition is necessary. Suppose now
that this condition is satisfied. Then n = qm2, where q is square-free and the only
possible prime divisors of q are 2 and primes p ≡ 1 mod 4. Since m2 = m2 + 02 and
2 = 12 + 12, it follows from our initial observation that n is a sum of two squares if
every prime p ≡ 1 mod 4 is a sum of two squares. Following Gauss (1832), we will
prove this with the aid of complex numbers.

A complex number γ = a+bi is said to be a Gaussian integer if a, b ∈ Z. The set
of all Gaussian integers will be denoted by G . Evidently γ ∈ G implies γ̄ ∈ G , where
γ̄ = a − bi is the complex conjugate of γ . Moreover α, β ∈ G implies α ± β ∈ G
and αβ ∈ G . Thus G is a commutative ring. In fact G is an integral domain, since it
is a subset of the field C. We are going to show that G can be given the structure of a
Euclidean domain.

Define the norm of a complex number γ = a + bi to be

N(γ ) = γ γ̄ = a2 + b2.
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Then N(γ ) ≥ 0, with equality if and only if γ = 0, and N(γ1γ2) = N(γ1)N(γ2). If
γ ∈ G , then N(γ ) is an ordinary integer. Furthermore, γ is a unit in G , i.e. γ divides 1
in G , if and only if N(γ ) = 1.

We wish to show that if α, β ∈ G and α �= 0, then there exist κ, ρ ∈ G such that

β = κα + ρ, N(ρ) < N(α).

We have βα−1 = r + si , where r, s ∈ Q. Choose a, b ∈ Z so that

|r − a| ≤ 1/2, |s − b| ≤ 1/2.

If κ = a + bi , then κ ∈ G and

N(βα−1 − κ) ≤ 1/4+ 1/4 = 1/2 < 1.

Hence if ρ = β − κα, then ρ ∈ G and N(ρ) < N(α).
It follows that we can apply to G the whole theory of divisibility in a Euclidean

domain. Now let p be a prime such that p ≡ 1 mod 4. We will show that p is a sum of
two squares by constructing β ∈ G for which N(β) = p.

By Corollary 29, there exists an integer a such that a2 ≡ −1 mod p. Put α = a+ i .
Then N(α) = αᾱ = a2 + 1 is divisible by p in Z and hence also in G . However, nei-
ther α nor ᾱ is divisible by p in G , since αp−1 and ᾱ p−1 are not in G . Thus p is not
a prime in G and consequently, since G is a Euclidean domain, it has a factorization
p = βγ , where neither β nor γ is a unit. Hence N(β) > 1, N(γ ) > 1. Since

N(β)N(γ ) = N(p) = p2,

it follows that N(β) = N(γ ) = p. �

Proposition 39 solves the problem of representing a positive integer as a sum of
two squares. What if we allow more than two squares? When congruences were first
introduced in §5, it was observed that a positive integer a ≡ 7 mod 8 could not be
represented as a sum of three squares. It was first completely proved by Gauss (1801)
that a positive integer can be represented as a sum of three squares if and only if it is
not of the form 4na, where n ≥ 0 and a ≡ 7 mod 8. The proof of this result is more
difficult, and will be given in Chapter VII.

It was conjectured by Bachet (1621) that every positive integer can be represented
as a sum of four squares. Fermat claimed to have a proof, but the first published proof
was given by Lagrange (1770), using earlier ideas of Euler (1751). The proof of the
four-squares theorem we will give is similar to that just given for the two-squares
theorem, with complex numbers replaced by quaternions.

Proposition 40 Every positive integer n can be represented as a sum of four squares.

Proof A quaternion γ = a + bi + cj + dk will be said to be a Hurwitz integer
if a, b, c, d are either all integers or all halves of odd integers. The set of all
Hurwitz integers will be denoted by H . Evidently γ ∈ H implies γ̄ ∈ H , where
γ̄ = a − bi − cj − dk. Moreover α, β ∈ H implies α ± β ∈ H . We will show that
α, β ∈H also implies αβ ∈H .
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Evidently γ ∈ H if and only if it can be written in the form γ = a0h + a1i +
a2 j + a3k, where a0, a1, a2, a3 ∈ Z and h = (1+ i + j + k)/2. It is obvious that the
product of h with i, j or k is again in H and it is easily verified that h2 = h − 1. It
follows that H is closed under multiplication and hence is a ring.

Define the norm of a quaternion γ = a + bi + cj + dk to be

N(γ ) = γ γ̄ = a2 + b2 + c2 + d2.

Then N(γ ) ≥ 0, with equality if and only if γ = 0. Moreover, since γ1γ2 = γ̄2γ̄1,

N(γ1γ2) = γ1γ2γ̄2γ̄1 = γ1γ̄1γ2γ̄2 = N(γ1)N(γ2).

If γ ∈ H , then N(γ ) = γ γ̄ ∈ H and hence N(γ ) is an ordinary integer. Further-
more, γ is a unit in H , i.e. γ divides 1 in H , if and only if N(γ ) = 1.

We now show that a Euclidean algorithm may be defined on H . Suppose α, β ∈
H and α �= 0. Then

βα−1 = r0 + r1i + r2 j + r3k,

where r0, r1, r2, r3 ∈ Q. If κ = a0h + a1i + a2 j + a3k, then

βα−1 − κ = (r0 − a0/2)+ (r1 − a0/2− a1)i + (r2 − a0/2− a2) j

+ (r3 − a0/2− a3)k.

We can choose a0 ∈ Z so that |2r0 − a0| ≤ 1/2 and then choose av ∈ Z so that
|rv − a0/2− av| ≤ 1/2 (v = 1, 2, 3). Then κ ∈ H and

N(βα−1 − κ) ≤ 1/16+ 3/4 = 13/16 < 1.

Thus if we set ρ = β − κα, then ρ ∈H and

N(ρ) = N(βα−1 − κ)N(α) < N(α).

By repeating this division process finitely many times we see that any α, β ∈ H
have a greatest common right divisor δ = (α, β)r . Furthermore, there is a left Bézout
identity: δ = ξα + ηβ for some ξ, η ∈H .

If a positive integer n is a sum of four squares, say n = a2 + b2 + c2 + d2, then
n = γ γ̄ , where γ = a+bi+cj+dk ∈H . Since the norm of a product is the product
of the norms, it follows that any product of sums of four squares is again a sum of four
squares. Hence to prove the proposition we need only show that any prime p is a sum
of four squares.

We show first that there exist integers a, b such that a2 + b2 ≡ −1 mod p. This
follows from the illustration given for Proposition 34, but we will give a direct proof.

If p = 2, we can take a = 1, b = 0. If p ≡ 1 mod 4 then, by Corollary 29, there
exists an integer a such that a2 ≡ −1 mod p and we can take b = 0. Suppose now that
p ≡ 3 mod 4. Let c be the least positive quadratic non-residue of p. Then c ≥ 2 and
c − 1 is a quadratic residue of p. On the other hand, −1 is a quadratic non-residue of
p, by Corollary 29. Hence, by Proposition 28, −c is a quadratic residue. Thus there
exist integers a, b such that

a2 ≡ −c, b2 ≡ c − 1 mod p,

and then a2 + b2 ≡ −1 mod p.



122 II Divisibility

Put α = 1 + ai + bj . Then p divides N(α) = αᾱ = 1 + a2 + b2 in Z and hence
also in H . However, p does not divide either α or ᾱ in H , since αp−1 and ᾱ p−1 are
not in H .

Let γ = (p, α)r . Then p = βγ for some β ∈ H . If β were a unit, p would be a
right divisor of γ and hence also of α, which is a contradiction. Therefore N(β) > 1.
Evidently γ ᾱ is a common right divisor of pᾱ and αᾱ, and the Bézout representation
for γ implies that γ ᾱ = (pᾱ, αᾱ)r . Since pᾱ = ᾱ p and p divides αᾱ, it follows
that p is a right divisor of γ ᾱ. Since p does not divide ᾱ, γ is not a unit and hence
N(γ ) > 1. Since

N(β)N(γ ) = N(p) = p2,

we must have N(β) = N(γ ) = p.
Thus if γ = c0 + c1i + c2 j + c3k, then c2

0 + c2
1 + c2

2 + c2
3 = p. If c0, . . . , c3 are

all integers, we are finished. Otherwise c0, . . . , c3 are all halves of odd integers. Hence
we can write cv = 2dv + ev, where dv ∈ Z and ev = ±1/2. If we put

δ = d0 + d1i + d2 j + d3k, ε = e0 + e1i + e2 j + e3k,

then γ = 2δ + ε and N(ε) = 1. Hence θ := γ ε̄ = 2δε̄ + 1 has all its coordinates
integers and N(θ) = N(γ ) = p. �

In his Meditationes Algebraicae, which also contains the first statement in print of
Wilson’s theorem, Waring (1770) stated that every positive integer is a sum of at most
4 positive integral squares, of at most 9 positive integral cubes and of at most 19 posi-
tive integral fourth powers. The statement concerning squares was proved by Lagrange
in the same year, as we have seen. The statement concerning cubes was first proved by
Wieferich (1909), with a gap filled by Kempner (1912), and the statement concerning
fourth powers was first proved by Balasubramanian, Deshouillers and Dress (1986).

In a later edition of his book, Waring (1782) raised the same question for higher
powers. Waring’s problem was first solved by Hilbert (1909), who showed that, for
each k ∈ N, there exists γk ∈ N such that every positive integer is a sum of at most
γk k-th powers. The least possible value of γk is traditionally denoted by g(k). For
example, g(2) = 4, since 7 = 22 + 3 · 12 is not a sum of less than 4 squares.

A lower bound for g(k) was already derived by Euler (c. 1772). Let m = �(3/2)k�
denote the greatest integer ≤ (3/2)k and take

n = 2km − 1.

Since 1 ≤ n < 3k , the only k-th powers of which n can be the sum are 0k, 1k and 2k .
Since the number of powers 2k must be less than m, and since n = (m − 1)2k +
(2k − 1)1k , the least number of k-th powers with sum n is m + 2k − 2. Hence
g(k) ≥ w(k), where

w(k) = �(3/2)k� + 2k − 2.

In particular,

w(2) = 4, w(3) = 9, w(4) = 19, w(5) = 37, w(6) = 73.
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By the results stated above, g(k) = w(k) for k = 2, 3, 4 and this has been shown to
hold also for k = 5 by Chen (1964) and for k = 6 by Pillai (1940).

Hilbert’s method of proof yielded rather large upper bounds for g(k). A completely
new approach was developed in the 1920’s by Hardy and Littlewood, using their ana-
lytic ‘circle’ method. They showed that, for each k ∈ N, there exists Γk ∈ N such that
every sufficiently large positive integer is a sum of at most Γk k-th powers. The least
possible value of Γk is traditionally denoted by G(k). For example, G(2) = 4, since
no positive integer n ≡ 7 mod 8 is a sum of less than four squares. Davenport (1939)
showed that G(4) = 16, but these are the only two values of k for which today G(k)
is known exactly.

It is obvious that G(k) ≤ g(k), and in fact G(k) < g(k) for all k > 2. In par-
ticular, Dickson (1939) showed that 23 and 239 are the only positive integers which
require the maximum 9 cubes. Hardy and Littlewood obtained the upper bound G(k) ≤
(k−2)2k−1+5, but this has been repeatedly improved by Hardy and Littlewood them-
selves, Vinogradov and others. For example, Wooley (1992) has shown that G(k) ≤
k(log k + log log k + O(1)).

By using the upper bound for G(k) of Vinogradov (1935), it was shown by
Dickson, Pillai and Niven (1936–1944) that g(k) = w(k) for any given k > 6,
provided that

(3/2)k − �(3/2)k� ≤ 1− �(3/2)k�/2k .

It is possible that this inequality holds for every k ∈ N. For a given k, it may be checked
by direct calculation, and Kubina and Wunderlich (1990) have verified in this way that
the inequality holds if k ≤ 471600000. Furthermore, using a p-adic extension by
Ridout (1957) of the theorem of Roth (1955) on the approximation of algebraic num-
bers by rationals, Mahler (1957) proved that there exists k0 ∈ N such that the inequality
holds for all k ≥ k0. However, the proof does not provide a means of estimating k0.

Thus we have the bizarre situation that G(k) is known for only two values of k,
that g(k) is known for a vast number of values of k and is given by a simple formula,
probably for all k, but the information about g(k) is at present derived from informa-
tion about G(k). Is it too much to hope that an examination of the numerical data will
reveal some pattern in the fractional parts of (3/2)k?

7 Further Remarks

There are many good introductory books on the theory of numbers, e.g. Davenport [4],
LeVeque [28] and Scholz [41]. More extensive accounts are given in Hardy and
Wright [15], Hua [18], Narkiewicz [33] and Niven et al. [34].

Historical information is provided by Dickson [5], Smith [42] and Weil [46], as
well as the classics Euclid [11], Gauss [13] and Dirichlet [6]. Gauss’s masterpiece is
quoted here and in the text as ‘D.A.’

The reader is warned that, besides its use in §1, the word ‘lattice’ also has quite a
different mathematical meaning, which will be encountered in Chapter VIII.

The basic theory of divisibility is discussed more thoroughly than in the usual texts
by Stieltjes [43]. For Proposition 6, see Prüfer [35]. In the theory of groups, Schreier’s
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refinement theorem and the Jordan–Hölder theorem may be viewed as generalizations
of Propositions 6 and 7. These theorems are stated and proved in Chapter I, §3 of
Lang [23]. The fundamental theorem of arithmetic (Proposition 7) is usually attributed
to Gauss (D.A., §16). However, it is really contained in Euclid’s Elements (Book VII,
Proposition 31 and Book IX, Proposition 14), except for the appropriate terminology.
Perhaps this is why Euler and his contemporaries simply assumed it without proof.

Generalizations of the fundamental theorem of arithmetic to other algebraic struc-
tures are discussed in Chap. 2 of Jacobson [21]. For factorial domains, see Samuel [39].

Our discussion of the fundamental theorem did not deal with the practical problems
of deciding if a given integer is prime or composite and, in the latter case, of obtaining
its factorization into primes. Evidently if the integer a is composite, its least prime
factor p satisfies p2 ≤ a. In former days one used this observation in conjunction with
tables, such as [24], [25], [26]. With new methods and supercomputers, the primal-
ity of integers with hundreds of digits can now be determined without difficulty. The
progress in this area may be traced through the survey articles [48], [7] and [27]. Fac-
torization remains a more difficult problem, and this difficulty has found an important
application in public-key cryptography; see Rivest et al. [37].

For Proposition 12, cf. Hillman and Hoggatt [17]. A proof that the ring of all al-
gebraic integers is a Bézout domain is given on p. 86 of Mann [31]. The ring of all
functions which are holomorphic in a given region was shown to be a Bézout domain
by Wedderburn (1915); see Narasimhan [32].

For Gauss’s version of Proposition 17, see D.A., §42. It is natural to ask if Corol-
lary 18 remains valid if the polynomial ring R[t] is replaced by the ring R[[t]] of
formal power series. The ring K [[t1, . . . , tm]] of all formal power series in finitely
many indeterminates with coefficients from an arbitrary field K is indeed a factorial
domain. However, if R is a factorial domain, the integral domain R[[t]] of all formal
power series in t with coefficients from R need not be factorial. For an example in
which R is actually a complete local ring, see Salmon [38].

For generalizations of Eisenstein’s irreducibility criterion (Proposition 19), see
Gao [12]. Proposition 21 is proved in Rhai [36]. Euclidean domains are studied further
in Samuel [40]. Quadratic fields Q(

√
d) whose ring of integers Od is Euclidean are

discussed in Clark [3], Dubois and Steger [8] and Eggleton et al. [9].
Congruences are discussed in all the books on number theory cited above. In con-

nection with Lemma 32 we mention a result of Frobenius (1895). Frobenius proved
that if G is a finite group of order n and if d is a positive divisor of n, then the number
of elements of G whose order divides d is a multiple of d . He conjectured that if the
number is exactly d , then these elements form a (normal) subgroup of G. The conjec-
ture can be reduced to the case where G is simple, since a counterexample of minimal
order must be a noncyclic simple group. By appealing to the recent classification of all
finite simple groups (see Chapter V, §7), the proof of the conjecture was completed by
Iiyori and Yamaki [20].

There is a table of primitive roots on pp. 52–56 of Hua [18]. For more extensive
tables, see Western and Miller [47].

It is easily seen that an even square is never a primitive root, that an odd square
(including 1) is a primitive root only for the prime p = 2, and that −1 is a primitive
root only for the primes p = 2, 3. Artin (1927) conjectured that if the integer a is not
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a square or −1, then it is a primitive root for infinitely many primes p. (A quantitative
form of the conjecture is considered in Chapter IX.) If the conjecture is not true, then
it is almost true, since it has been shown by Heath-Brown [16] that there are at most
3 square-free positive integers a for which it fails.

A finite subgroup of the multiplicative group of a division ring need not be cyclic.
For example, if H is the division ring of Hamilton’s quaternions, H× contains the
non-cyclic subgroup {±1,±i,± j,±k} of order 8. All possible finite subgroups of the
multiplicative group of a division ring have been determined (with the aid of class field
theory) by Amitsur [2].

For Carmichael numbers, see Alford et al. [1].
Galois (1830) showed that there were other finite fields besides Fp and indeed, as

Moore (1893) later proved, he found them all. Finite fields have the following basic
properties:

(i) The number of elements in a finite field is a prime power pn , where n ∈ N and
the prime p is the characteristic of the field.

(ii) For any prime power q = pn , there is a finite field Fq containing exactly q
elements. Moreover the field Fq is unique, up to isomorphism, and is the
splitting field of the polynomial tq − t over Fp.

(iii) For any finite field Fq , the multiplicative group F×q of nonzero elements is cyclic.
(iv) If q = pn , the map σ : a → a p is an automorphism of Fq and the distinct auto-

morphisms of Fq are the powers σ k(k = 0, 1, . . . , n − 1}.
The theorem of Chevalley and Warning (Proposition 34) extends immediately to

arbitrary finite fields. Proofs and more detailed information on finite fields may be
found in Lidl and Niederreiter [30] and in Joly [22].

A celebrated theorem of Wedderburn (1905) states that any finite division ring is
a field, i.e. the commutative law of multiplication is a consequence of the other field
axioms if the number of elements is finite. Here is a purely algebraic proof.

Assume there exists a finite division ring which is not a field and let D be one
of minimum cardinality. Let C be the centre of D and a ∈ D\C . The set M of all
elements of D which commute with a is a field, since it is a division ring but not the
whole of D. Evidently M is a maximal subfield of D which contains a. If [D : C] = n
and [M : C] = m then, by Proposition I.32, [D : M] = m and n = m2. Thus m is
independent of a.

If C has cardinality q , then D has cardinality qn,M has cardinality qm and the
number of conjugates of a in D is (qn − 1)/(qm − 1). Since this holds for every a ∈
D\C , the partition of the multiplicative group of D into conjugacy classes shows that

qn − 1 = q − 1+ r(qn − 1)/(qm − 1)

for some positive integer r . Hence q − 1 is divisible by

(qn − 1)/(qm − 1) = 1+ qm + · · · + qm(m−1).

Since n > m > 1, this is a contradiction.
For the history of the Chinese remainder theorem (not only in China), see

Libbrecht [29].
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We have developed the arithmetic of quaternions only as far as is needed to prove
the four-squares theorem. A fuller account was given in the original (1896) paper
of Hurwitz [19]. For more information about sums of squares, see Grosswald [14]
and also Chapter XIII. For Waring’s problem, see Waring [45], Ellison [10] and
Vaughan [44].
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[33] W. Narkiewicz, Number theory, English translation by S. Kanemitsu, World Scientific,

Singapore, 1983.
[34] I. Niven, H.S. Zuckerman and H.L. Montgomery, An introduction to the theory of

numbers, 5th ed., Wiley, New York, 1991.
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III

More on Divisibility

In this chapter the theory of divisibility is developed further. The various sections of the
chapter are to a large extent independent. We consider in turn the law of quadratic reci-
procity, quadratic fields, multiplicative functions, and linear Diophantine equations.

1 The Law of Quadratic Reciprocity

Let p be an odd prime. An integer a which is not divisible by p is said to be a quadratic
residue, or quadratic nonresidue, of p according as the congruence

x2 ≡ a mod p

has, or has not, a solution x . We will speak of the quadratic nature of a mod p,
meaning whether a is a quadratic residue or nonresidue of p.

Let q be an odd prime different from p. The law of quadratic reciprocity connects
the quadratic nature of q mod p with the quadratic nature of p mod q . It states that if
either p or q is congruent to 1 mod 4, then the quadratic nature of q mod p is the same
as the quadratic nature of p mod q , but if both p and q are congruent to 3 mod 4 then
the quadratic nature of q mod p is different from the quadratic nature of p mod q .

This remarkable result plays a key role in the arithmetic theory of quadratic forms.
It was discovered empirically by Euler (1783). Legendre (1785) gave a partial proof
and later (1798) introduced the convenient ‘Legendre symbol’. The first complete
proofs were given by Gauss (1801) in his Disquisitiones Arithmeticae. Indeed the re-
sult so fascinated Gauss that during the course of his lifetime he gave eight proofs, four
of them resting on completely different principles: an induction argument, the theory
of binary quadratic forms, properties of sums of roots of unity, and a combinatorial
lemma. The proof we are now going to give is also of a combinatorial nature. Its idea
originated with Zolotareff (1872), but our treatment is based on Rousseau (1994).

Let n be a positive integer and let X be the set {0, 1, . . . , n − 1}. As in §7 of
Chapter I, a permutation α of X is said to be even or odd according as the total number
of inversions of order it induces is even or odd. If a is an integer relatively prime to n,
then the map πa : X → X defined by

πa(x) = ax mod n

W.A. Coppel, Number Theory: An Introduction to Mathematics, Universitext, 129
DOI: 10.1007/978-0-387-89486-7_3, © Springer Science + Business Media, LLC 2009
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is a permutation of X . We define the Jacobi symbol (a/n) to be sgn(πa), i.e.

(a/n) = 1 or − 1

according as the permutation πa is even or odd. Thus (a/1) = 1, for every integer
a. (The definition is sometimes extended by putting (a/n) = 0 if a and n are not
relatively prime.)

Proposition 1 For any positive integer n and any integers a,b relatively prime to n,
the Jacobi symbol has the following properties:

(i) (1/n) = 1,
(ii) (a/n) = (b/n) if a ≡ b mod n,

(iii) (ab/n) = (a/n)(b/n),
(iv) (−1/n) = 1 if n ≡ 1 or 2 mod 4 and = −1 if n ≡ 3 or 0 mod 4.

Proof The first two properties follow at once from the definition of the Jacobi sym-
bol. If a and b are both relatively prime to n, then so also is their product ab. Since
πab = πaπb, we have sgn(πab) = sgn(πa)sgn(πb), which implies (iii). We now eval-
uate (−1/n). Since the map π−1 : x → −x mod n fixes 0 and reverses the order of
1, . . . , n − 1, the total number of inversions of order is (n − 2)+ (n − 3)+ · · · + 1 =
(n − 1)(n − 2)/2. It follows that (−1/n) = (−1)(n−1)/2 or (−1)(n−2)/2 according as
n is odd or even. This proves (iv). �

Proposition 2 For any relatively prime positive integers m, n,

(i) if m and n are both odd, then (m/n)(n/m) = (−1)(m−1)(n−1)/4;
(ii) if m is odd and n even, then (m/n) = 1 or (−1)(m−1)/2 according as n ≡ 2 or

0 mod 4.

Proof The cyclic permutation τ : x → x + 1 mod n of the set X = {0, 1, . . . , n − 1}
has sign (−1)n−1, since the number of inversions of order is n − 1. Hence, for any
integer b ≥ 0 and any integer a relatively prime to n, the linear permutation

τ bπa : x → ax + b mod n

of X has sign(−1)b(n−1)(a/n).
Put Y = {0, 1, . . . ,m − 1} and P = X × Y . We consider two transformations µ

and v of P , defined by

µ(x, y) = (mx + y mod n, y), v(x, y) = (x, x + ny mod m).

For each fixed y, µ defines a permutation of the set (X, y)with sign (−1)y(n−1)(m/n).
Since

∑m−1
y=0 y = m(m − 1)/2, it follows that the permutation µ of P has sign

sgn(µ) = (−1)m(m−1)(n−1)/2(m/n)m .

Similarly the permutation v of P has sign

sgn(v) = (−1)n(m−1)(n−1)/2(n/m)n,
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and hence α := vµ−1 has sign

sgn(α) = (−1)(m+n)(m−1)(n−1)/2(m/n)m(n/m)n.

But α is the permutation (mx + y mod n, y)→ (x, x + ny mod m) and its sign can be
determined directly in the following way.

Put Z = {0, 1, . . . ,mn − 1}. By Proposition II.36, for any (x, y) ∈ P there is a
unique z ∈ Z such that

z ≡ x mod n, z ≡ y mod m.

Moreover, any z ∈ Z is obtained in this way from a unique (x, y) ∈ P . For any
z ∈ Z , we will denote by ρ(z) the corresponding element of P . Then the permutation
α can be written in the form ρ(mx + y) → ρ(x + ny). Since ρ is a bijective map,
the sign of the permutation α of P will be the same as the sign of the permutation
β = ρ−1αρ : mx + y → x + ny of Z . An inversion of order for β occurs when both
mx + y > mx ′ + y ′ and x + ny < x ′ + ny ′, i.e. when both m(x − x ′) > y ′ − y and
x − x ′ < n(y′ − y). But these inequalities imply mn(x − x ′) > x − x ′ and hence
x > x ′, y ′ > y. Conversely, if x > x ′, y ′ > y, then

m(x − x ′) ≥ m > y ′ − y, n(y′ − y) ≥ n > x − x ′.
Since the number of (x, y), (x ′, y ′) ∈ P with x > x ′, y < y ′ is m(m−1)/2·n(n−1)/2,
it follows that the sign of the permutation α is (−1)mn(m−1)(n−1)/4. Comparing this
expression with the expression previously found, we obtain

(m/n)m(n/m)n = (−1)(mn+2m+2n)(m−1)(n−1)/4.

This simplifies to the first statement of the proposition if m and n are both odd, and to
the second statement if m is odd and n even. �

Corollary 3 For any odd positive integer n, (2/n) = 1 or −1 according as n ≡ ±1
or ±5 mod 8.

Proof Since the result is already known for n = 1, we suppose n > 1. Then either n
or n − 2 is congruent to 1 mod 4 and so, by Proposition 1 and Proposition 2(i),

(2/n) = (−1/n)((n − 2)/n) = (−1/n)(n/(n − 2)) = (−1)(n−1)/2(2/(n − 2)).

Iterating, we obtain (2/n) = (−1)h , where h = (n − 1)/2 + (n − 3)/2 + · · · + 1 =
(n2 − 1)/8. The result follows. �

The value of (a/n) when n is even is completely determined by Propositions 1
and 2. The evaluation of (a/n)when n is odd reduces by these propositions and Corol-
lary 3 to the evaluation of (m/n) for odd m > 1. Although Proposition 2 does not
provide a formula for the Jacobi symbol in this case, it does provide a method for its
rapid evaluation, as we now show.

If m and n are relatively prime odd positive integers, we can write m = 2hn+ε1n1,
where h ∈ Z, ε1 = ±1 and n1 is an odd positive integer less than n. Then n and n1 are
also relatively prime and

(m/n) = (ε1/n)(n1/n).

If n1 = 1, we are finished. Otherwise, using Proposition 2(i), we obtain

(m/n) = (−1)(n1−1)(n−1)/4(ε1/n)(n/n1) = ±(n/n1),
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where the minus sign holds if and only if n and ε1n1 are both congruent to 3 mod 4.
The process can now be repeated with m, n replaced by n, n1. After finitely many steps
the process must terminate with ns = 1.

As an example, (
2985

1951

)
=
( −1

1951

)(
917

1951

)
= −

(
1951

917

)
= −

(
117

917

)
= −

(
917

117

)
= −

(−1

117

)(
19

117

)
= −

(
117

19

)
= −

(
3

19

)
=
(

19

3

)
=
(

1

3

)
= 1.

Further properties of the Jacobi symbol can be derived from those already estab-
lished.

Proposition 4 If n, n′ are positive integers and if a is an integer relatively prime to n
such that n′ ≡ n mod 4a, then (a/n′) = (a/n).

Proof If a = −1 then, since n′ ≡ n mod 4, (a/n′) = (a/n), by Proposition 1(iv). If
a = 2 then, since n and n′ are odd and n′ ≡ n mod 8, (a/n′) = (a/n), by Corollary 3.
Consequently, by Proposition 1(iii), it is sufficient to prove the result for odd a > 1.

If n is even, the result now follows from Proposition 2(ii). If n is odd, it follows
from Proposition 2(i) and Proposition 1. �

Proposition 5 If the integer a is relatively prime to the odd positive integers n and n′,
then (a/nn′) = (a/n)(a/n′).

Proof We have a ≡ a′mod nn′ for some a′ ∈ {1, 2, . . . , nn′}. Since nn′ is odd, we
can choose j ∈ {0, 1, 2, 3} so that a′′ = a′ + jnn′ satisfies a′′ ≡ 1 mod 4. Then, by
Propositions 1 and 2,

(a/nn′) = (a′′/nn′) = (nn′/a′′) = (n/a′′)(n′/a′′) = (a′′/n)(a′′/n′) = (a/n)(a/n′).
�

Proposition 5 reduces the evaluation of (a/n) for odd positive n to the evaluation of
(a/p), where p is an odd prime. This is where we make the connection with quadratic
residues:

Proposition 6 If p is an odd prime and a an integer not divisible by p, then (a/p) = 1
or−1 according as a is a quadratic residue or nonresidue of p. Moreover, exactly half
of the integers 1, . . . , p − 1 are quadratic residues of p.

Proof If a is a quadratic residue of p, there exists an integer x such that x2 ≡ a mod p
and hence

(a/p) = (x2/p) = (x/p)(x/p) = 1.
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Let g be a primitive root mod p. Then the integers 1, g, . . . , g p−2 mod p are just a
rearrangement of the integers 1, 2, . . . , p − 1. The permutation

πg : x → gx (mod p)

fixes 0 and cyclically permutes the remaining elements 1, g, . . . , g p−2. Since the num-
ber of inversions of order is p − 2, it follows that (g/p) = −1. For any integer a not
divisible by p there is a unique k ∈ {0, 1, . . . , p − 2} such that a ≡ gk mod p. Hence

(a/p) = (gk/p) = (g/p)k = (−1)k .

Thus (a/p) = 1 if and only if k is even and then a ≡ x2 mod p with x = gk/2.
This proves the first statement of the proposition. Since exactly half the integers in

the set {0, 1, . . . , p−2} are even, it also proves again (cf. Proposition II.28) the second
statement. �

The law of quadratic reciprocity can now be established without difficulty:

Theorem 7 Let p and q be distinct odd primes. Then the quadratic natures of p mod q
and q mod p are the same if p ≡ 1 or q ≡ 1 mod 4, but different if p ≡ q ≡ 3 mod 4.

Proof The result follows at once from Proposition 6 since, by Proposition 2(i),
if either p ≡ 1 or q ≡ 1 mod 4 then (p/q) = (q/p), but if p ≡ q ≡ 3 mod 4 then
(p/q) = −(q/p). �

Legendre (1798) defined (a/p) = 1 or −1 according as a was a quadratic residue
or nonresidue of p, and Jacobi (1837) extended this definition to (a/n) for any odd
positive integer n relatively prime to a by setting

(a/n) =
∏

p

(a/p),

where p runs through the prime divisors of n, each occurring as often as its multi-
plicity. Propositions 5 and 6 show that these definitions of Legendre and Jacobi are
equivalent to the definition adopted here. The relations (−1/p) = (−1)(p−1)/2 and
(2/p) = (−1)(p

2−1)/8 for odd primes p are often called the first and second supple-
ments to the law of quadratic reciprocity.

It should be noted that, if the congruence x2 ≡ a mod n is soluble then (a/n) = 1,
but the converse need not hold when n is not prime. For example, if n = 21 and
a = 5 then the congruence x2 ≡ 5 mod 21 is insoluble, since both the congruences
x2 ≡ 5 mod 3 and x2 ≡ 5 mod 7 are insoluble, but(

5

21

)
=
(

5

3

)(
5

7

)
= (−1)2 = 1.

The Jacobi symbol finds an interesting application in the proof of the following
result:

Proposition 8 If a is an integer which is not a perfect square, then there exist infinitely
many primes p not dividing a for which (a/p) = −1.
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Proof Suppose first that a = −1. Since (−1/p) = (−1)(p−1)/2, we wish to show
that there are infinitely many primes p ≡ 3 mod 4. Clearly 7 is such a prime. Let
{p1, . . . , pm} be any finite set of such primes greater than 3. Adapting Euclid’s proof
of the infinity of primes (which is reproduced at the beginning of Chapter IX), we put

b = 4 p1 · · · pm + 3.

Then b is odd, but not divisible by 3 or by any of the primes p1, . . . , pm . Since
b ≡ 3 mod 4, at least one prime divisor q of b must satisfy q ≡ 3 mod 4. Thus the
set {3, p1, . . . , pm} does not contain all primes p ≡ 3 mod 4.

Suppose next that a = ±2. Then (a/5) = −1. Let {p1, . . . , pm} be any finite set
of primes greater than 3 such that (a/pi) = −1 (i = 1, . . . ,m) and put

b = 8 p1 · · · pm ± 3,

where the ± sign is chosen according as a = ±2. Then b is not divisible by 3 or
by any of the primes p1, . . . , pm . Since b ≡ ±3 mod 8, we have (2/b) = −1 and
(a/b) = −1 in both cases. If b = q1 · · · qn is the representation of b as a product of
primes (repetitions allowed), then

(a/b) = (a/q1) · · · (a/qn)

and hence (a/q j ) = −1 for at least one j . Consequently the result holds also in this
case.

Consider now the general case. We may assume that a is square-free, since if
a = a′b2, where a′ is square-free, then (a/p) = (a′/p) for every prime p not
dividing a. Thus we can write

a = ε2er1 · · · rh ,

where ε = ±1, e = 0 or 1, and r1, . . . , rh are distinct odd primes. By what we have
already proved, we may assume h ≥ 1.

Let {p1, . . . , pm} be any finite set of odd primes not containing any of the primes
r1, . . . , rh . By Proposition 6, there exists an integer c such that (c/r1) = −1. Since the
moduli are relatively prime in pairs, by Corollary II.38 the simultaneous congruences

x ≡ 1 mod 8, x ≡ 1 mod pi(i = 1, . . . ,m),

x ≡ c mod r1, x ≡ 1 mod r j ( j = 2, . . . , h),

have a positive solution x = b. Then b is not divisible by any of the odd primes
p1, . . . , pm or r1, . . . , rh . Moreover (−1/b) = (2/b) = 1, since b ≡ 1 mod 8. Since
(r j/b) = (b/r j ) for 1 ≤ j ≤ h, it follows that

(a/b) = (ε/b)(2/b)e(r1/b) · · · (rh/b)

= (b/r1)(b/r2) · · · (b/rh) = (c/r1)(1/r2) · · · (1/rh) = −1.

As in the special case previously considered, this implies that (a/q) = −1 for some
prime q dividing b, and the result follows. �
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A second proof of the law of quadratic reciprocity will now be given. Let p be an
odd prime and, for any integer a not divisible by p, with Legendre define

(a/p) = 1 or − 1

according as a is a quadratic residue or quadratic nonresidue of p. It follows from
Euler’s criterion (Proposition II.28) that

(ab/p) = (a/p)(b/p)

for any integers a, b not divisible by p. Also, by Corollary II.29,

(−1/p) = (−1)(p−1)/2.

Now let q be an odd prime distinct from p and let K = Fq be the finite field con-
taining q elements. Since p �= q , the polynomial t p − 1 has no repeated factors in K
and thus has p distinct roots in some field L ⊇ K . If ζ is any root other than 1, then
the (cyclotomic) polynomial

f (t) = t p−1 + t p−2 + · · · + 1

has the roots ζ k(k = 1, . . . , p − 1).
Consider the Gauss sum

τ =
p−1∑
x=1

(x/p)ζ x .

Instead of summing from 1 to p− 1, we can just as well sum over any set of represen-
tatives of F×p :

τ =
∑

x �≡0 mod p

(x/p)ζ x .

Since q is odd, (x/p)q = (x/p) and hence, since L has characteristic q ,

τ q =
∑

x �≡0 mod p

(x/p)ζ xq.

If we put y = xq then, since

(x/p) = (q2x/p) = (qy/p) = (q/p)(y/p),

we obtain

τ q =
∑

y �≡0 mod p

(q/p)(y/p)ζ y = (q/p)τ.

Furthermore,

τ 2 =
∑

u,v �≡0 mod p

(u/p)(v/p)ζ uζ v =
∑

u,v �≡0 mod p

(uv/p)ζ u+v
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or, putting v = uw,

τ 2 =
∑

w �≡0 mod p

(w/p)
∑

u �≡0 mod p

ζ u(1+w).

Since the coefficients of t p−1 and t p−2 in f (t) are 1, the sum of the roots is−1 and thus∑
u �≡0 mod p

ζ au = −1 if a �≡ 0 mod p.

On the other hand, if a ≡ 0 mod p, then ζ au = 1 and∑
u �≡0 mod p

ζ au = p − 1.

Hence

τ 2 = (−1/p)(p− 1)−
∑

w �≡0,−1 mod p

(w/p) = (−1/p)p −
∑

w �≡0 mod p

(w/p).

Since there are equally many quadratic residues and quadratic nonresidues, the last
sum vanishes and we obtain finally

τ 2 = (−1)(p−1)/2 p.

Thus τ �= 0 and from the previous expression for τ q we now obtain

τ q−1 = (q/p).

But

τ q−1 = (τ 2)(q−1)/2 = {(−1)(p−1)/2 p}(q−1)/2

and p(q−1)/2 = (p/q), by Proposition II.28 again. Hence

(q/p) = (−1)(p−1)(q−1)/4(p/q),

which is the law of quadratic reciprocity.
The preceding proof is a variant of the sixth proof of Gauss (1818). Already in

1801 Gauss had shown that if p is an odd prime, then

p−1∑
k=0

e2π ik2/p = ±√p or ± i
√

p according as p ≡ 1 or p ≡ 3 mod 4.

After four more years of labour he managed to show that in fact the + signs must be
taken. From this result he obtained his fourth proof of the law of quadratic reciprocity.
The sixth proof avoided this sign determination, but Gauss’s result is of interest in it-
self. Dirichlet (1835) derived it by a powerful analytic method, which is readily gener-
alized. Although we will make no later use of it, we now present Dirichlet’s argument.

For any positive integers m, n, we define the Gauss sum G(m, n) by
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G(m, n) =
n−1∑
v=0

e2π iv2m/n .

Instead of summing from 0 to n − 1 we can just as well sum over any complete set of
representatives of the integers mod n:

G(m, n) =
∑

v mod n

e2π iv2m/n .

Gauss sums have a useful multiplicative property:

Proposition 9 If m, n, n′ are positive integers, with n and n′ relatively prime, then

G(mn′, n)G(mn, n′) = G(m, nn′).

Proof When v and v′ run through complete sets of representatives of the integers mod
n and mod n′ respectively,µ = vn′+v′n runs through a complete set of representatives
of the integers mod nn′. Moreover

µ2m = (vn′ + v′n)2m ≡ (v2n′2 + v′2n2)m mod nn′.

It follows that

G(mn′, n)G(mn, n′) =
∑

v mod n

∑
v′ mod n′

e2π i(mn′2v2+mn2v′2)/nn′

=
∑

µ mod nn′
e2π iµ2m/nn′ = G(m, nn′). �

A deeper result is the following reciprocity formula, due to Schaar (1848):

Proposition 10 For any positive integers m, n,

G(m, n) =
√

n

m
C

2m−1∑
µ=0

e−π iµ2n/2m,

where C = (1+ i)/2.

Proof Let f : R → C be a function which is continuously differentiable when
restricted to the interval [0, n] and which vanishes outside this interval. Since the sum

F(t) =
∞∑

k=−∞
f (t + k)

has only finitely many nonzero terms, the function F has period 1 and is continuously
differentiable, except possibly for jump discontinuities when t is an integer. Therefore,
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by Dirichlet’s convergence criterion in the theory of Fourier series,

{F(+0)+ F(−0)}/2 = lim
N→∞

N∑
h=−N

∫ 1

0
e−2π iht F(t)dt .

But ∫ 1

0
e−2π iht F(t)dt =

∞∑
k=−∞

∫ 1

0
e−2π iht f (t + k)dt

=
∞∑

k=−∞

∫ k+1

k
e−2π iht f (t)dt =

∫ n

0
e−2π iht f (t)dt .

Thus we obtain

f (0)/2+ f (1)+ · · · + f (n − 1)+ f (n)/2 = lim
N→∞

N∑
h=−N

∫ n

0
e−2π iht f (t)dt . (∗)

This is a simple form of Poisson’s summation formula (which makes an appearance
also in Chapters IX and X).

In particular, if we take f (t) = e2π it2m/n (0 ≤ t ≤ n), where m is also a positive
integer, then the left side of (∗) is just the Gauss sum G(m, n). We will now evaluate
the right side of (∗) for this case. Put h = 2mq + µ, where q and µ are integers and
0 ≤ µ < 2m. Then

e−2π iht f (t) = e2π im(t−nq)2/ne−2π iµt .

As h runs through all the integers, q does also and µ runs independently through the
integers 0, . . . , 2m − 1. Hence

lim
N→∞

N∑
h=−N

∫ n

0
e−2π iht f (t)dt =

2m−1∑
µ=0

lim
Q→∞

Q∑
q=−Q

∫ n

0
e2π im(t−nq)2/ne−2π iµt dt

=
2m−1∑
µ=0

lim
Q→∞

Q∑
q=−Q

∫ −(q−1)n

−qn
e2π it2m/ne−2π iµt dt

=
2m−1∑
µ=0

∫ ∞

−∞
e2π it2m/ne−2π iµt dt

=
2m−1∑
µ=0

∫ ∞

−∞
e2π im(t−µn/2m)2/ne−π iµ2n/2mdt

=
2m−1∑
µ=0

e−π iµ2n/2m
∫ ∞

−∞
e2π it2m/ndt

=
√

n

m
C

2m−1∑
µ=0

e−π iµ2n/2m ,
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where C is the Fresnel integral

C =
∫ ∞

−∞
e2π it2

dt .

(This is an important example of an infinite integral which converges, although the
integrand does not tend to zero.) From (∗) we now obtain the formula for G(m, n) in
the statement of the proposition. To determine the value of the constant C , take m = 1,
n = 3. We obtain i

√
3 = √3C(1 + i), which simplifies to C = (1+ i)/2. �

From Proposition 10 with m = 1 we obtain

G(1, n) =
n−1∑
v=0

e2π iv2/n =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(1+ i)

√
n if n ≡ 0 (mod 4),√

n if n ≡ 1 (mod 4),

0 if n ≡ 2 (mod 4),

i
√

n if n ≡ 3 (mod 4).

If m and n are both odd, it follows that

G(1,mn) = G(1,m)G(1, n) if either m ≡ 1 or n ≡ 1 mod 4,

= −G(1,m)G(1, n) if m ≡ n ≡ 3 mod 4;
i.e.

G(1,mn) = (−1)(m−1)(n−1)/4G(1,m)G(1, n).

If, in addition, m and n are relatively prime, then G(m, n) G(n,m) = G(1,mn), by
Proposition 9. Hence, if the integers m, n are odd, positive and relatively prime, then

G(m, n)G(n,m) = (−1)(m−1)(n−1)/4G(1,m)G(1, n).

For any odd, positive relatively prime integers m, n, put

ρ(m, n) = G(m, n)/G(1, n).

Then

ρ(1, n) = 1,

ρ(m, n) = ρ(m′, n) if m ≡ m′ mod n,

ρ(m, n)ρ(n,m) = (−1)(m−1)(n−1)/4.

We claim that ρ(m, n) is just the Jacobi symbol (m/n). This is evident if m = 1 and,
by Proposition 2(i), if ρ(m, n) = (m/n), then also ρ(n,m) = (n/m).

Hence if the claim is not true for all m, n, there is a pair m, n with 1 < m < n such
that

ρ(m, n) �= (m/n),

but ρ(µ, v) = (µ/v) for all odd, positive relatively prime integers µ, v with µ < m.
We can write n = km + r for some positive integers k, r with r < m.
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Then

ρ(n,m) = ρ(r,m) = (r/m) = (n/m).

Since ρ(m, n) �= (m/n), this yields a contradiction. Thus, if n is an odd positive
integer,

G(m, n) = (m/n)G(1, n)

for any odd positive integer m relatively prime to n.

In fact this relation holds also if m is negative, since

G(1, n) = (−1)(n−1)/2G(1, n) and G(−m, n) = G(m, n).

(It may be shown that the relation holds also if m is even.) As we have already obtained
an explicit formula for G(1, n), we now have also an explicit evaluation of G(m, n).

2 Quadratic Fields

Let ζ be a complex number which is not rational, but whose square is rational. Since
ζ /∈ Q, a complex number α has at most one representation of the form α = r + sζ ,
where r, s ∈ Q. Let Q(ζ ) denote the set of all complex numbers α which have a
representation of this form. Then Q(ζ ) is a field, since it is closed under subtraction
and multiplication and since, if r and s are not both zero,

(r + sζ )−1 = (r − sζ )/(r2 − s2ζ 2).

Evidently Q(ζ ) = Q(tζ ) for any nonzero rational number t . Conversely, if
Q(ζ ) = Q(ζ ∗), then ζ ∗ = tζ for some nonzero rational number t . For ζ ∗ = r + sζ ,
where r, s ∈ Q and s �= 0, and hence

r2 = ζ ∗2 − 2sζ ζ ∗ + s2ζ 2.

Thus ζ ζ ∗ is rational, and so is ζ ζ ∗/ζ 2 = ζ ∗/ζ .
It follows that without loss of generality we may assume that ζ 2 = d is a square-

free integer. Then dt2 ∈ Z for some t ∈ Q implies t ∈ Z. If ζ ∗2 = d∗ is also a
square-free integer, then Q(ζ ) = Q(ζ ∗) if and only if d = d∗ and ζ ∗ = ±ζ .

The quadratic field Q(
√

d) is said to be real if d > 0 and imaginary if d < 0. We
define the conjugate of an element α = r + s

√
d of the quadratic field Q(

√
d) to be

the element α′ = r − s
√

d . It is easily verified that

(α + β)′ = α′ + β ′, (αβ)′ = α′β ′.

Since the map σ : α → α′ is also bijective, it is an automorphism of the field Q(
√

d).
Since α′ = α if and only if s = 0, the rational field Q is the fixed point set of σ . Since
(α′)′ = α, the automorphism σ is an ‘involution’.

We define the norm of an element α = r + s
√

d of the quadratic field Q(
√

d) to
be the rational number
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N(α) = αα′ = r2 − ds2.

Evidently N(α) = N(α′), and N(α) = 0 if and only if α = 0. From the relation
(αβ)′ = α′β ′ we obtain

N(αβ) = N(α)N(β).

An element α of the quadratic field Q(
√

d) is said to be an integer of this field if it
is a root of a quadratic polynomial t2+at+b with coefficients a, b ∈ Z. (Equivalently,
the integers of Q(

√
d) are the elements which are algebraic integers.)

It follows from Proposition II.16 that α ∈ Q is an integer of the field Q(
√

d) if and
only if α ∈ Z. Suppose now that α = r + s

√
d , where r, s ∈ Q and s �= 0. Then α is

a root of the quadratic polynomial

f (x) = (x − α)(x − α′) = x2 − 2r x + r2 − ds2.

Moreover, this is the unique monic quadratic polynomial with rational coefficients
which has α as a root.

Consequently, if α is an integer of Q(
√

d), then so also is its conjugate α′ and its
norm N(α) = r2 − ds2 is an ordinary integer.

Proposition 11 Let d be a square-free integer and define ω by

ω = √d if d ≡ 2 or 3 mod 4,

= (√d − 1)/2 if d ≡ 1 mod 4.

Then α is an integer of the quadratic field Q(
√

d) if and only if α = a + bω for
some a, b ∈ Z.

Proof Suppose α = r + s
√

d , where r, s ∈ Q. As we have seen, if s = 0 then α is an
integer of Q(

√
d) if and only if r ∈ Z. If s �= 0, then α is an integer of Q(

√
d) if and

only if a = 2r and b = r2 − ds2 are ordinary integers. If a is even, i.e. if r ∈ Z, then
b ∈ Z if and only if ds2 ∈ Z and hence, since d is square-free, if and only if s ∈ Z.
If a is odd, then a2 ≡ 1 mod 4 and hence b ∈ Z if and only if 4ds2 ≡ 1 mod 4. Since
d is square-free, this implies that 2s ∈ Z, s /∈ Z. Hence 2s is odd and d ≡ 1 mod 4.
Conversely, if 2r and 2s are odd integers and d ≡ 1 mod 4, then r2 − ds2 ∈ Z. The
result follows. �

Since ω2 = −ω + (d − 1)/4 in the case d ≡ 1 mod 4, it follows directly from
Proposition 11 that the set Od of all integers of the field Q(

√
d) is closed under sub-

traction and multiplication and consequently is a ring. In fact Od is an integral domain,
since Od ⊆ Q(

√
d).

For example, O−1 = G is the ring of Gaussian integers a + bi , where a, b ∈ Z.
They form a square ‘lattice’ in the complex plane. Similarly O−3 = E is the ring of all
complex numbers a+bρ, where a, b ∈ Z and ρ = (i√3−1)/2 is a cube root of unity.
These Eisenstein integers were studied by Eisenstein (1844). They form a hexagonal
‘lattice’ in the complex plane.
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We have already seen in §6 of Chapter II that the ring G of Gaussian integers is
a Euclidean domain, with δ(α) = N(α). We now show that the ring E of Eisenstein
integers is also a Euclidean domain, with δ(α) = N(α). If α, β ∈ E and α �= 0, then

βα−1 = βα′/αα′ = r + sρ,

where r, s ∈ Q. Choose a, b ∈ Z so that

|r − a| ≤ 1/2, |s − b| ≤ 1/2.

If κ = a + bρ, then κ ∈ E and

N(βα−1 − κ) = {r − a − (s − b)/2}2 + 3{(s − b)/2}2
≤ (3/4)2 + 3(1/4)2 = 3/4 < 1.

Thus β − κα ∈ E and N(β − κα) < N(α).
Since G and E are Euclidean domains, the divisibility theory of Chapter II is valid

for them. As an application, we prove

Proposition 12 The equation x3 + y3 = z3 has no solutions in nonzero integers.

Proof Assume on the contrary that such a solution exists and choose one for which
|xyz| is a minimum. Then (x, y) = (x, z) = (y, z) = 1. If 3 did not divide xyz, then
x3, y3 and z3 would be congruent to ±1 mod 9, which contradicts x3 + y3 = z3. So,
without loss of generality, we may assume that 3|z. Then x3 + y3 ≡ 0 mod 3 and,
again without loss of generality, we may assume that x ≡ 1 mod 3, y ≡ −1 mod 3.
This implies that

x2 − xy + y2 ≡ 3 mod 9.

If x + y and x2 − xy + y2 have a common prime divisor p, then p divides 3xy, since
3xy = (x + y)2 − (x2 − xy + y2), and this implies p = 3, since (x, y) = 1. Since

(x + y)(x2 − xy + y2) = x3 + y3 = z3 ≡ 0 mod 27,

0 1 0 1

: Gaussian integers : Eisenstein integers–1 –3

i ρ

G�O E�O

Fig. 1. Gaussian and Eisenstein integers.
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it follows that

x + y = 9a3,

x2 − xy + y2 = 3b3,

where a, b ∈ Z and 3 � b.
We now shift operations to the Euclidean domain E of Eisenstein integers. We have

x2 − xy + y2 = (x + yρ)(x + yρ2),

where ρ = (i√3− 1)/2 is a cube root of unity. Put λ = 1− ρ, so that (1+ ρ)λ2 = 3.
Then λ is a common divisor of x + yρ and x + yρ2, since

x + yρ = x + y − yλ,

x + yρ2 = x − 2y + yλ

and x + y ≡ 0 ≡ x − 2y mod 3. In fact λ is the greatest common divisor of x + yρ
and x + yρ2 since, for all m, n ∈ Z,

(m + n + nρ)(x + yρ2)− (n + mρ + nρ)(x + yρ) = (mx + ny)λ

and we can choose m, n so that mx + ny = 1. Since λ2 = −3ρ and since ρ is a unit,
from (x + yρ)(x + yρ2) = 3b3 and the unique factorization of b in E , we now obtain

x + yρ = ελ(c + dρ)3,

where c, d ∈ Z and ε is a unit. From

(x + yρ)/λ = x − λ(x + y)/3 = x − 3a3λ

and

(c + dρ)3 = c3 − 3cd2 + d3 + 3cd(c− d)ρ,

by reducing mod 3 we get

ε(c3 + d3) ≡ 1 mod 3.

Since the units in E are ±1,±ρ,±ρ2 (by the following Proposition 13), this implies
ε = ±1. In fact we may suppose ε = 1, by changing the signs of c and d . Equating
coefficients of ρ, we now get

a3 = cd(c− d).

But (c, d) = 1, since (x, y) = 1, and hence also (c, c−d) = (d, c−d) = 1. It follows
that c = z3

1, d = y3
1 , c − d = x3

1 for some x1, y1, z1 ∈ Z. Thus x3
1 + y3

1 = z3
1 and

|x1y1z1| = |a| = |z/3b| < |xyz|.
But this contradicts the definition of x, y, z. �
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The proof of Proposition 12 illustrates how problems involving ordinary integers
may be better understood by viewing them as integers in a larger field of algebraic
numbers.

We now return to the study of an arbitrary quadratic field Q(
√

d), where d is a
square-free integer. For convenience of writing we put J = Od . As in Chapter II, we
say that ε ∈ J is a unit if there exists η ∈ J such that εη = 1. For example, 1 and
−1 are units. The set U of all units is evidently an abelian group under multiplication.
Moreover, if ε ∈ U , then also ε′ ∈ U .

If ε is a unit, then N(ε) = ±1, since εη = 1 implies N(ε)N(η) = 1. Conversely, if
ε ∈ J and N(ε) = ±1, then ε is a unit, since N(ε) = εε′ and ε′ ∈ J . (Note, however,
that N(α) = ±1 does not imply α ∈ J . For example, in Q(

√−1), α = (3+4i)/5 /∈ G ,
although N(α) = 1.) It follows that, when d ≡ 2 or 3 mod 4, α = a + b

√
d is a unit if

and only if a, b ∈ Z and

a2 − db2 = ±1.

On the other hand, when d ≡ 1 mod 4, α = a + b(
√

d − 1)/2 is a unit if and only if
a, b ∈ Z and

(b − 2a)2 − db2 = ±4.

But if b, c ∈ Z and c2 − db2 = ±4, then c2 ≡ b2 mod 4 and hence c ≡ b mod 2.
Consequently, the units of J are determined by the solutions of the Diophantine

equations x2 − dy2 = ±4 or x2 − dy2 = ±1, according as d ≡ 1 or d �≡ 1 mod 4.
This makes it possible to determine all units, as we now show.

Proposition 13 The units of O−1 are ±1,±i and the units of O−3 are ±1,
(±1± i

√
3)/2. For every other square-free integer d < 0, the only units of Od are±1.

For each square-free integer d > 0, there exists a unit ε0 > 1 such that all units of
Od are given by ±εn

0 (n ∈ Z).

Proof Suppose first that d < 0. Then only the Diophantine equations with the+ signs
need to be considered. If d < −4, the only solutions of x2 − dy2 = 4 are y = 0, x =
±2. If d < −4 or if d = −2, the only solutions of x2 − dy2 = 1 are y = 0, x = ±1.
In these cases the only units are ±1. (The group U is a cyclic group of order 2, with
−1 as generator.) If d = −3, the only solutions of x2 − dy2 = 4 are y = 0, x = ±2
and y = ±1, x = ±1. Hence the units are ±1, ±ρ, ±ρ2, where ρ = (i√3 − 1)/2.
(The group U is a cyclic group of order 6, with −ρ as generator.) If d = −1, the only
solutions of x2 + y2 = 1 are y = 0, x = ±1 and y = ±1, x = 0. Hence the units are
±1,±i . (The group U is a cyclic group of order 4, with i as generator.)

Suppose next that d > 0. With the aid of continued fractions it will be shown in §4
of Chapter IV that the equation x2−dy2 = 1 always has a solution in positive integers
and, by doubling them, so also does the equation x2 − dy2 = 4. Hence there always
exists a unit ε > 1. For any unit ε > 1 we have ε > ±ε′, since ε′ = ε−1 or −ε−1. If
ε = a+bω, where ω is defined as in Proposition 11 and a, b ∈ Z, then ε′ = a−bω or
a−b−bω, according as d �≡ 1 or d ≡ 1 mod 4. Sinceω is positive, ε > ε′ yields b > 0
and ε > −ε′ then yields a > 0. Thus every unit ε > 1 has the form a + bω, where
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a, b ∈ N. Consequently there is a least unit ε0 > 1. Then, for any unit ε > 1, there is
a positive integer n such that εn

0 ≤ ε < εn+1
0 . Since εε−n

0 is a unit and 1 ≤ εε−n
0 < ε0,

we must actually have ε = εn
0 . (The group U is the direct product of the cyclic group

of order 2 generated by −1 and the infinite cyclic group generated by ε0.) �

As an example, take d = 2. Then ε0 = 1+√2 is a unit. Since ε0 > 1 and all units
greater than 1 have the form a + b

√
2 with a, b ∈ N, it follows that all units are given

by ±εn
0(n ∈ Z).

Having determined the units, we now consider more generally the theory of divis-
ibility in the integral domain J . If α, β ∈ J and β is a proper divisor of α, then N(β)
is a proper divisor in Z of N(α) and hence |N(β)| < |N(α)|. Consequently the chain
condition (#) of Chapter II is satisfied. It follows that any element of J which is nei-
ther zero nor a unit is a product of finitely many irreducibles. Thus it only remains to
determine the irreducibles. However, this is not such a simple matter, as the following
examples indicate.

The ring G of Gaussian integers is a Euclidean domain. However, an ordinary
prime p may or may not be irreducible in G . For example, 2 = (1 + i)(1 − i) and
neither factor is one of the units ±1,±i . On the other hand, 3 has no proper divisor
α = a + bi which is not a unit, since N(3) = 9 and N(α) = a2 + b2 = ±3 has no
solutions in integers a, b.

Again, consider the ring O−5 of integers of the field Q(
√−5). An element α =

a + b
√−5 of O−5 cannot have norm N(α) = a2 + 5b2 equal to ±2 or ±3, since the

square of any ordinary integer is congruent to 0,1 or 4 mod 5. It follows that, in the
factorizations

6 = 2 · 3 = (1+√−5)(1−√−5),

all four factors are irreducible and the factorizations are essentially distinct, since
N(2) = 4, N(3) = 9 and N(1 ± √−5) = 6. Thus 2 is not a ‘prime’ in O−5 and
the ‘fundamental theorem of arithmetic’ does not hold.

It was shown by Kummer and Dedekind in the 19th century that uniqueness of
factorization could be restored by considering ideals instead of elements. Any nonzero
proper ideal of Od can be represented as a product of finitely many prime ideals and
the representation is unique except for the order of the factors. This result will now be
established.

A nonempty subset A of a commutative ring R is an ideal if a, b ∈ A and x, y ∈ R
imply ax + by ∈ A. For example, R and {0} are ideals. If a1, . . . , am ∈ R, then the
set (a1, . . . , am) of all elements a1x1 + · · · + am xm with x j ∈ R (1 ≤ j ≤ m) is an
ideal, the ideal generated by a1, . . . , am . An ideal generated by a single element is a
principal ideal.

If A and B are ideals in R, then the set AB of all finite sums a1b1 + · · · + anbn

with a j ∈ A and b j ∈ B (1 ≤ j ≤ n; n ∈ N) is also an ideal, the product of A and B .
For any ideals A, B,C we have

AB = B A, (AB)C = A(BC),

since multiplication in R is commutative and associative.
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An ideal A �= {0} is said to be divisible by an ideal B , and B is said to be a factor
of A, if there exists an ideal C such that A = BC . For example, A is divisible by itself
and by R, since A = AR. Thus R is an identity element for multiplication of ideals.

Now take R = Od to be the ring of all integers of the quadratic field Q(
√

d). We
will show that in this case much more can be said.

Proposition 14 Let A �= {0} be an ideal in Od . Then there exist β, γ ∈ A such that
every α ∈ A can be uniquely represented in the form

α = mβ + nγ (m, n ∈ Z).

Furthermore, if ω is defined as in Proposition 11, we may take β = a, γ = b+ cω,
where a, b, c ∈ Z, a > 0, c > 0, c divides both a and b, and ac divides γ γ ′, i.e.

b2 − dc2 ≡ 0 mod ac if d ≡ 2 or 3 mod 4,

b(b− c)− (d − 1)c2/4 ≡ 0 mod ac if d ≡ 1 mod 4.

Proof Since A is an ideal, the set J of all z ∈ Z such that y+zω ∈ A for some y ∈ Z is
an ideal in Z. Moreover J �= {0}, since A �= {0} and α ∈ A implies αω ∈ A. Since Z is
a principal ideal domain, it follows that there exists c > 0 such that J = {nc : n ∈ Z}.
Since c ∈ J , there exists b ∈ Z such that γ := b + cω ∈ A.

Moreover A contains some nonzero x ∈ Z, since α ∈ A implies αα′ ∈ A. Since the
set I of all x ∈ Z ∩ A is an ideal in Z, there exists a > 0 such that I = {ma : m ∈ Z}.
For any α = y+ zω ∈ A we have z = nc for some n ∈ Z and α− nγ = y− nb = ma
for some m ∈ Z. Thus α = mβ + nγ with β = a. The representation is unique, since
γ is irrational.

Since βω ∈ A, we have

aω = ra + s(b + cω) for unique r, s ∈ Z.

Thus a = sc and ra + sb = 0, which together imply b = −rc. Since γω ∈ A, we
have also

(b + cω)ω = ma + n(b + cω) for unique m, n ∈ Z.

If d ≡ 2 or 3 mod 4, then ω2 = d . In this case n = −r , cd = ma − rb and hence
dc2 = mac + b2. If d ≡ 1 mod 4, then ω2 = −ω + (d − 1)/4. Hence n = −(r + 1),
c(d − 1)/4 = ma − rb − b and (d − 1)c2/4 = mac+ b(b − c). �

If A is an ideal in Od , then the set A′ = {α′ : α ∈ A} of all conjugates of elements
of A is also an ideal in Od . We call A′ the conjugate of A.

Proposition 15 If A �= {0} is an ideal in Od , then AA′ = lOd for some l ∈ N.

Proof Choose β, γ so that A = {mβ + nγ : m, n ∈ Z}. Then AA′ consists of
all integral linear combinations of ββ ′, βγ ′, β ′γ and γ γ ′. Furthermore r = ββ ′,
s = βγ ′ + β ′γ and t = γ γ ′ are all in Z. If l is the greatest common divisor of
r, s and t , then l ∈ AA′, by the Bézout identity, and hence lOd ⊆ AA′.

On the other hand, βγ ′ and β ′γ are roots of the quadratic equation
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x2 − sx + r t = 0

with integer coefficients s = βγ ′ + β ′γ and r t = ββ ′γ γ ′. It follows that βγ ′/ l and
β ′γ / l are roots of the quadratic equation

y2 − (s/ l)y + r t/ l2 = 0,

which also has integer coefficients. Since βγ ′/ l and β ′γ / l are in Q(
√

d), this means
that they are in Od . Thus βγ ′ and β ′γ are in lOd . Since also ββ ′ and γ γ ′ are in lOd ,
it follows that AA′ ⊆ lOd . �

If in the proof of Proposition 15 we choose β = a and γ = b + cω as in the state-
ment of Proposition 14, then in the statement of Proposition 15 we will have l = ac.
Since the proof of this when d ≡ 1 mod 4 is similar, we give the proof only for d ≡ 2
or 3 mod 4. In this case ω = √d and hence r = a2, s = 2ab, t = b2 − dc2. We wish
to show that ac is the greatest common divisor of r, s and t . Thus if we put

a = cu, b = cv, t = acw,

then we wish to show that u, 2v and w have greatest common divisor 1. Since
uw = v2 − d and d is square-free, a common divisor greater than 1 can only be 2.
But if 2 were a common divisor, we would have v2 ≡ d mod 4, which is impossible,
because d ≡ 2 or 3 mod 4.

We can now show that multiplication of ideals satisfies the cancellation law:

Proposition 16 If A, B,C are ideals in Od with A �= {0}, then AB = AC implies
B = C.

Proof By multiplying by the conjugate A′ of A we obtain AA′B = AA′C and hence,
by Proposition 15, l B = lC for some positive integer l. But this implies B = C . �

Proposition 17 Let A and B be nonzero ideals in Od . Then A is divisible by B if and
only if A ⊆ B.

Proof If A = BC for some ideal C , then A ⊆ B , by the definition of the product of
two ideals.

Conversely, suppose A ⊆ B . By Proposition 15, B B ′ = lOd for some positive
integer l. Hence AB ′ ⊆ lOd . It follows that AB ′ = lC for some ideal C . Thus
AB ′ = B B ′C and so, by Proposition 16, A = BC . �

Corollary 18 Let A and B be nonzero ideals in Od . If D is the set of all elements
a + b, with a ∈ A and b ∈ B, then D is an ideal and is a factor of both A and B.
Moreover, every common factor of A and B is also a factor of D.

Proof It follows at once from its definition that D is an ideal. Moreover D con-
tains both A and B , since 0 is an element of any ideal. Evidently also any ideal
C which contains both A and B also contains D. The result now follows from
Proposition 17. �
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In the terminology of Chapter II, §1, this shows that any two nonzero ideals in Od

have a greatest common divisor.
In a commutative ring R, an ideal A �= R, {0} is said to be irreducible if its only

factors are A and R. It is said to be maximal if the only ideals containing A are A and
R. It is said to be prime if, whenever A divides the product of two ideals, it also divides
at least one of the factors.

By Proposition 17, an ideal in Od is irreducible if and only if it is maximal. As we
saw in §1 of Chapter II, the existence of greatest common divisors implies that an ideal
in Od is irreducible if and only if it is prime. (These equivalences do not hold in all
commutative rings, but they do hold for the ring of all algebraic integers in any given
algebraic number field, and also for the rings associated with algebraic curves.)

Proposition 19 A nonzero ideal A in Od has only finitely many factors.

Proof Since AA′ = lOd for some positive integer l, any factor B of A is also a factor
of lOd and so contains l. Proposition 14 implies, in particular, that B is generated
by two elements, say B = (β1, β2). A fortiori, B = (β1, β2, l) and hence, for any
γ1, γ2 ∈ Od , also

B = (β1 − lγ1, β2 − lγ2, l).

We can choose γ1 ∈ Od so that in the representation

β1 − lγ1 = a1 + b1ω (a1, b1 ∈ Z)

we have 0 ≤ a1, b1 < l. Similarly we can choose γ2 ∈ Od so that in the representation

β2 − lγ2 = a2 + b2ω (a2, b2 ∈ Z)

we have 0 ≤ a2, b2 < l. It follows that there are at most l4 different possibilities for
the ideal B . �

Corollary 20 There exists no infinite sequence {An} of nonzero ideals in Od such that,
for every n, An+1 divides An and An+1 �= An.

In the terminology of Chapter II, this shows that the set of all nonzero ideals in Od

satisfies the chain condition (#). Since also the conclusion of Proposition II.1 holds,
the argument in §1 of Chapter II now shows that any nonzero proper ideal in Od is a
product of finitely many prime ideals and the representation is unique apart from the
order of the factors.

It remains to determine the prime ideals. This is accomplished by the following
three propositions.

Proposition 21 For each prime ideal P in Od there is a unique prime number p such
that P divides pOd . Furthermore, for any prime number p there is a prime ideal P in
Od such that exactly one of the following alternatives holds:



2 Quadratic Fields 149

(i) pOd = P P ′ and P �= P ′;
(ii) pOd = P = P ′;

(iii) pOd = P2 and P = P ′.

Proof If P is a prime ideal in Od , then P P ′ = lOd for some positive integer l.
Moreover l > 1, since l ∈ P . If l = mn, where m and n are positive integers
greater than 1, then P divides either mOd or nOd . By repeating the argument it follows
that P divides pOd for some prime divisor p of l. The prime number p is uniquely
determined by the prime ideal P since, by the Bézout identity, if P contained distinct
primes it would also contain their greatest common divisor 1.

Now let p be any prime number and let the factorisation of pOd into a product of
positive powers of distinct prime ideals be

pOd = Pe1
1 · · · Pes

s .

If we put Q j = P ′j (1 ≤ j ≤ s), then also

pOd = Qe1
1 · · · Qes

s .

But Pj Q j = n jOd for some integer n j > 1 and hence

p2 = ne1
1 · · · nes

s .

Evidently the only possibilities are

(i)′ s = 2, n1 = n2 = p, e1 = e2 = 1;
(ii)′ s = 1, n1 = p2, e1 = 1;

(iii)′ s = 1, n1 = p, e1 = 2.

Since the factorisation is unique apart from order, this yields the three possibilities in
the statement of the proposition. �

Proposition 21 does not tell us which of the three possibilities holds for a given
prime p. For p �= 2, the next result gives an answer in terms of the Legendre
symbol.

Proposition 22 Let p be an odd prime. Then, in the statement of Proposition 21, (i),
(ii), or (iii) holds according as

p � d and (d/p) = 1, p � d and (d/p) = −1, or p|d.
Proof Suppose first that p � d and that there exists a ∈ Z such that a2 ≡ d mod p.
Then p � a and a2 − d = pb for some b ∈ Z. If P = (p, a + √d), then
P ′ = (p, a −√d) and

P P ′ = p(p, a +√d, a −√d, b).

Since (p, a + √d, a − √d, b) contains 2a, which is relatively prime to p, it also
contains 1. Hence P P ′ = pOd . Furthermore P �= P ′, since P = P ′ would
imply 2a ∈ P and hence 1 ∈ P . We do not need to prove that P is a prime ideal,
since what we have already established is incompatible with cases (ii) and (iii) of
Proposition 21.
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Suppose next that p|d . Then d = pe for some e ∈ Z and p�e, since d is square-
free. If P = (p,√d), then

P2 = p(p,
√

d, e) = pOd ,

since (p, e) = 1. Since we cannot be in cases (i) or (ii) of Proposition 21, we must be
in case (iii).

Suppose conversely that either (i) or (iii) of Proposition 21 holds. Then the corre-
sponding prime ideal P contains p. Choose β = a and γ = b+cω as in Proposition 14,
so that

P = {mβ + nγ : m, n ∈ Z}.
In the present case we must have a = p, since p ∈ P and 1 /∈ P . We must also
have c = 1, since P P ′ = pOd implies ac = p. With these values of a and c the final
condition of Proposition 14 takes the form

b2 ≡ d mod p if d ≡ 2 or 3 mod 4,

b(b− 1) ≡ (d − 1)/4 mod p if d ≡ 1 mod 4.

Thus in the latter case (2b − 1)2 ≡ d mod p. In either case if p�d , then (d/p) = 1.
This proves that if p�d and (d/p) = −1, then we must be in case (ii) of Proposi-

tion 21. �

Proposition 23 Let p = 2. Then, in the statement of Proposition 21, (i),(ii), or (iii)
holds according as

d ≡ 1 mod 8, d ≡ 5 mod 8, or d ≡ 2, 3 mod 4.

Proof Since the proof is similar to that of the previous proposition, we will omit
some of the detail. Suppose first that d ≡ 1 mod 8. If P = (2, (1−√d)/2), then P ′ =
(2, (1+√d)/2) and

P P ′ = 2(2, (1−√d)/2, (1+√d)/2, (1− d)/8).

It follows that P P ′ = 2Od and P �= P ′.
Suppose next that d ≡ 2 mod 4. Then d = 2e, where e is odd. If P = (2,√d), then

P2 = 2(2,
√

d, e) = 2Od .

Similarly, if d ≡ 3 mod 4 and P = (2, 1+√d), then

P2 = 2(2, 1+√d, (1+ d)/2+√d) = 2Od .

Suppose conversely that either (i) or (iii) of Proposition 21 holds. Then the corre-
sponding prime ideal P contains 2. Choose β = a and γ = b+cω as in Proposition 14,
so that

P = {mβ + nγ : m, n ∈ Z}.



2 Quadratic Fields 151

In the present case we must have a = 2, c = 1 and

b(b − 1) ≡ (d − 1)/4 mod 2 if d ≡ 1 mod 4.

Since b(b − 1) is even, it follows that d �≡ 5 mod 8.
This proves that if d ≡ 5 mod 8, then we must be in case (ii) of Proposition 21. �

Proposition 22 uses only Legendre’s definition of the Legendre symbol. What
does the law of quadratic reciprocity tell us? By Proposition 4, if p and q are dis-
tinct odd primes and d an integer not divisible by p such that q ≡ p mod 4d , then
(d/p) = (d/q). Consequently, by Proposition 22, whether (i) or (ii) holds in Propo-
sition 21 depends only on the residue class of p mod 4d . Thus, for given d , we need
determine the behaviour of only finitely many primes p.

We mention without proof some further properties of the ring Od . We say that
two nonzero ideals A, Ã in Od are equivalent, and we write A ∼ Ã, if there exist
nonzero principal ideals (α), (α̃) such that (α)A = (α̃) Ã. It is easily verified that this
is indeed an equivalence relation. Moreover, if A ∼ Ã and B ∼ B̃, then AB ∼ Ã B̃.
Consequently, if we call an equivalence class of ideals an ideal class, we can without
ambiguity define the product of two ideal classes. The set of ideal classes acquires in
this way the structure of a commutative group, the ideal class containing the conjugate
A′ of A being the inverse of the ideal class containing A. It may be shown that this
ideal class group is finite. The order of the group, i.e. the number of different ideal
classes, is called the class number of the quadratic field Q(

√
d) and is traditionally

denoted by h(d). The ring Od is a principal ideal domain if and only if h(d) = 1. (It
may be shown that Od is a factorial domain only if it is a principal ideal domain.)

The theory of quadratic fields has been extensively generalized. An algebraic num-
ber field K is a field containing the field Q of rational numbers and of finite dimen-
sion as a vector space over Q. An algebraic integer is a root of a monic polynomial
xn + a1xn−1+ · · · + an with coefficients a1, . . . , an ∈ Z. The set of all algebraic inte-
gers in a given algebraic number field K is a ring O(K ). It may be shown that, also in
O(K ), any nonzero proper ideal can be represented as a product of prime ideals and the
representation is unique except for the order of the factors. One may also construct the
ideal class group of K and show that it is finite, its order being the class number of K .

Some of the motivation for these generalizations came from ‘Fermat’s last theo-
rem’. Fermat (c. 1640) asserted that the equation xn+yn = zn has no solutions in posi-
tive integers x, y, z if n > 2. In Proposition 12 we proved Fermat’s assertion for n = 3.
To prove the assertion in general it is sufficient to prove it when n = 4 and when n = p
is an odd prime, since if xkm+ykm = zkm , then (xk)m+(yk)m = (zk)m . Fermat himself
gave a proof for n = 4, which is reproduced in Chapter XIII. Proofs for n = 3, 5 and 7
were given by Euler (1760–1770), Legendre (1825) and Lamé (1839) respectively.

Kummer (1850) made a remarkable advance beyond this by proving that the asser-
tion holds whenever n = p is a ‘regular’ prime. Here a prime p is said to be regular
if it does not divide the class number of the cyclotomic field Q(ζp), obtained by
adjoining to Q a p-th root of unity ζp . Kummer converted his result into a practical
test by further proving that a prime p > 3 is regular if and only if it does not divide
the numerator of any of the Bernoulli numbers B2, B4, . . . , Bp−3.

The only irregular primes less than 100 are 37, 59 and 67. Other methods for deal-
ing with irregular primes were devised by Kummer (1857) and Vandiver (1929). By
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1993 Fermat’s assertion had been established in this way for all n less than four million.
However, these methods did not lead to a complete proof of ‘Fermat’s last theorem’.
As will be seen in Chapter XIII, a complete solution was first found by Wiles (1995),
using quite different methods.

3 Multiplicative Functions

We define a function f : N → C to be an arithmetical function. The set of all arith-
metical functions can be given the structure of a commutative ring in the following
way.

For any two functions f, g : N → C, we define their convolution or Dirichlet
product f ∗ g : N → C by

f ∗ g(n) =
∑
d |n

f (d)g(n/d).

Dirichlet multiplication satisfies the usual commutative and associative laws:

Lemma 24 For any three functions f, g, h : N → C,

f ∗ g = g ∗ f, f ∗ (g ∗ h) = ( f ∗ g) ∗ h.

Proof Since n/d runs through the positive divisors of n at the same time as d ,

f ∗ g(n) =
∑
d |n

f (d)g(n/d)

=
∑
d |n

f (n/d)g(d) = g ∗ f (n).

To prove the associative law, put G = g ∗ h. Then

f ∗ G(n) =
∑

de=n

f (d)G(e) =
∑

de=n

f (d)
∑

d ′d ′′=e

g(d ′)h(d ′′)

=
∑

dd′d ′′=n

f (d)g(d ′)h(d ′′).

Similarly, if we put F = f ∗ g, we obtain

F ∗ h(n) =
∑

de=n

F(e)h(d) =
∑

de=n

∑
d ′d ′′=e

f (d ′)g(d ′′)h(d)

=
∑

dd′d ′′=n

f (d ′)g(d ′′)h(d).

Hence F ∗ h(n) = f ∗ G(n). �
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For any two functions f, g : N → C, we define their sum f + g : N → C in the
natural way:

( f + g)(n) = f (n)+ g(n).

It is obvious that addition is commutative and associative, and that the distributive law
holds:

f ∗ (g + h) = f ∗ g + f ∗ h.

The function δ : N → C, defined by

δ(n) = 1 or 0 according as n = 1 or n > 1,

acts as an identity element for Dirichlet multiplication:

δ ∗ f = f for every f : N → C,

since

δ ∗ f (n) =
∑
d |n
δ(d) f (n/d) = f (n).

Thus the set A of all arithmetical functions is indeed a commutative ring.
For any function f : N → C which is not identically zero, put | f | = v( f )−1,

where v( f ) is the least positive integer n such that f (n) �= 0, and put |O| = 0. Then

| f ∗ g| = | f ||g|, | f + g| ≤ max(| f |, |g|) for all f, g ∈ A .

Hence the ring A of all arithmetical functions is actually an integral domain. It is
readily shown that the set of all f ∈ A such that | f | < 1 is an ideal, but not a prin-
cipal ideal. (Although A is not a principal ideal domain, it may be shown that it is a
factorial domain.)

The next result shows that the functions f ∈ A such that | f | = 1 are the units in
the ring A :

Lemma 25 For any function f : N → C, there is a function f −1 : N → C such that
f −1 ∗ f = δ if and only if f (1) �= 0. The inverse f −1 is uniquely determined and
f −1(1) f (1) = 1.

Proof Suppose g : N → C has the property that g ∗ f = δ. Then g(1) f (1) = 1. Thus
g(1) is non-zero and uniquely determined. If n > 1, then∑

d |n
g(d) f (n/d) = 0.

Hence

g(n) f (1) = −
∑

d |n,d<n

g(d) f (n/d).

It follows by induction that g(n) is uniquely determined for every n ∈ N. Conversely,
if g is defined inductively in this way, then g ∗ f = δ. �
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It follows from Lemma 25 that the set of all arithmetical functions f : N → C
such that f (1) �= 0 is an abelian group under Dirichlet multiplication.

A function f : N → C is said to be multiplicative if it is not identically zero and if

f (mn) = f (m) f (n) for all m, n with (m, n) = 1.

It follows that f (1) = 1, since f (n) �= 0 for some n and f (n) = f (n) f (1). Any
multiplicative function f : N → C is uniquely determined by its values at the prime
powers, since if

m = pα1
1 · · · pαs

s ,

where p1, . . . , ps are distinct primes and α1, . . . , αs ∈ N, then

f (m) = f (pα1
1 ) · · · f (pαs

s ).

If

m =
∏

p

pαp , n =
∏

p

pβp,

where αp, βp ≥ 0, then

(m, n) =
∏

p

pγp, [m, n] =
∏

p

pδp ,

where γp = min{αp, βp} and δp = max{αp, βp}. Since either γp = αp and δp = βp ,
or γp = βp and δp = αp , it follows that, for any multiplicative function f and all
m, n ∈ N,

f ((m, n)) f ([m, n]) =
∏

p

f (pγp) f (pδp ) =
∏

p

f (pαp) f (pβp) = f (m) f (n).

As we saw in §5 of Chapter II, it follows from Proposition II.4 that Euler’s
ϕ-function is multiplicative. Also, the functions i : N → C and j : N → C, defined by

i(n) = 1, j (n) = n for every n ∈ N,

are obviously multiplicative. Further examples of multiplicative functions can be con-
structed with the aid of the next two propositions.

Proposition 26 If f, g : N → C are multiplicative functions, then their Dirichlet
product h = f ∗ g is also multiplicative.

Proof We have

h(n) =
∑
d |n

f (d)g(n/d).

Suppose n = n′n′′, where n′ and n′′ are relatively prime. Then, by Proposition II.4,
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h(n) =
∑

d ′|n′,d ′′|n′′
f (d ′d ′′)g(n′n′′/d ′d ′′)

=
∑

d ′|n′,d ′′|n′′
f (d ′) f (d ′′)g(n′/d ′)g(n′′/d ′′)

=
∑
d ′|n′

f (d ′)g(n′/d ′)
∑

d ′′|n′′
f (d ′′)g(n′′/d ′′) = h(n′)h(n′′). �

Proposition 27 If f : N → C is a multiplicative function, then its Dirichlet inverse
f −1 : N → C is also multiplicative.

Proof Assume on the contrary that g := f −1 is not multiplicative and let n′, n′′ be
relatively prime positive integers such that g(n′n′′) �= g(n′)g(n′′). We suppose n′, n′′
chosen so that the product n = n′n′′ is minimal. Since f is multiplicative, f (1) = 1
and hence g(1) = 1. Consequently n′ > 1, n′′ > 1 and

0 =
∑
d ′|n′

g(d ′) f (n′/d ′) =
∑

d ′′|n′′
g(d ′′) f (n′′/d ′′) =

∑
d |n

g(d) f (n/d).

But∑
d |n

g(d) f (n/d) = g(n) f (1)+
∑

d ′|n′,d ′′|n′′,d ′d ′′<n

g(d ′d ′′) f (n′n′′/d ′d ′′)

= g(n)+
∑

d ′|n′,d ′′|n′′,d ′d ′′<n

g(d ′)g(d ′′) f (n′/d ′) f (n′′/d ′′)

= g(n)− g(n′)g(n′′)+
∑
d ′|n′

g(d ′) f (n′/d ′) ·
∑

d ′′|n′′
g(d ′′) f (n′′/d ′′)

= g(n)− g(n′)g(n′′).

Thus we have a contradiction. �

It follows from Propositions 26 and 27 that under Dirichlet multiplication the mul-
tiplicative functions form a subgroup of the group of all functions f : N → C with
f (1) �= 0. The further subgroup generated by i and j contains some interesting func-
tions. Let τ (n) denote the number of positive divisors of n, and let σ(n) denote the
sum of the positive divisors of n:

τ (n) =
∑
d |n

1, σ (n) =
∑
d |n

d.

In other words,

τ = i ∗ i, σ = i ∗ j,

and hence, by Proposition 26, τ and σ are multiplicative functions. Thus they are
uniquely determined by their values at the prime powers. But if p is prime and α ∈ N,
the divisors of pα are 1, p, . . . , pα and hence

τ (pα) = α + 1, σ (pα) = (pα+1 − 1)/(p − 1).
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By Proposition II.24, Euler’s ϕ-function satisfies i ∗ ϕ = j . Thus ϕ = i−1 ∗ j , and
Propositions 26 and 27 provide a new proof that Euler’s ϕ-function is multiplicative.
Since

τ ∗ ϕ = i ∗ i ∗ ϕ = i ∗ j = σ,
we also obtain the new relation

σ(n) =
∑
d |n
τ (n/d)ϕ(d).

The Möbius function µ : N → C is defined to be the Dirichlet inverse i−1. Thus
µ ∗ i = δ or, in other words,∑

d |n
µ(d) = 1 or 0 according as n = 1 or n > 1.

Instead of this inductive definition, we may explicitly characterize the Möbius
function in the following way:

Proposition 28 For any n ∈ N,

µ(n) =

⎧⎪⎨⎪⎩
1 if n = 1,

(−1)s if n is a product of s distinct primes,

0 if n is divisible by the square of a prime.

Proof It is trivial that µ(1) = 1. Suppose p is prime and α ∈ N. Since the divisors of
pα are 1, p, . . . , pα, we have

µ(1)+ µ(p)+ · · · + µ(pα) = 0.

Since this holds for all α ∈ N, it follows that µ(p) = −µ(1) = −1, whereas
µ(pα) = 0 if α > 1. Since the Möbius function is multiplicative, by Proposition 27,
the general formula follows. �

The function defined by the statement of Proposition 28 had already appeared in
work of Euler (1748), but Möbius (1832) discovered the basic property which we have
adopted as a definition. From this property we can easily derive the Möbius inversion
formula:

Proposition 29 For any function f : N → C, if f̂ : N → C is defined by

f̂ (n) =
∑
d |n

f (d),

then

f (n) =
∑
d |n

f̂ (d)µ(n/d) =
∑
d |n

f̂ (n/d)µ(d).

Furthermore, for any function f̂ : N → C, there is a unique function f : N → C
such that f̂ (n) =∑

d |n f (d) for every n ∈ N.
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Proof Let f : N → C be given and put f̂ = f ∗ i . Then

f̂ ∗ µ = f ∗ i ∗ µ = f ∗ δ = f.

Conversely, let f̂ : N → C be given and put f = f̂ ∗µ. Then f ∗ i = f̂ ∗ δ = f̂ .
Moreover, by the first part of the proof, this is the only possible choice for f . �

If we apply Proposition 29 to Euler’s ϕ-function then, by Proposition II.24, we
obtain the formula

ϕ(n) = n
∑
d |n
µ(d)/d.

In particular, if n = pα, where p is prime and α ∈ N, then

ϕ(pα) = µ(1)pα + µ(p)pα−1 = pα(1− 1/p).

Since ϕ is multiplicative, we recover in this way the formula

ϕ(n) = n
∏
p|n
(1− 1/p) for every n ∈ N.

The σ -function arises in the study of perfect numbers, to which the Pythagoreans
attached much significance. A positive integer n is said to be perfect if it is the sum of
its (positive) divisors other than itself, i.e. if σ(n) = 2n.

For example, 6 and 28 are perfect, since

6 = 1+ 2+ 3, 28 = 1+ 2+ 4+ 7+ 14.

It is an age-old conjecture that there are no odd perfect numbers. However, the even
perfect numbers are characterized by the following result:

Proposition 30 An even positive integer is perfect if and only if it has the form
2t (2t+1 − 1), where t ∈ N and 2t+1 − 1 is prime.

Proof Let n be any even positive integer and write n = 2tm, where t ≥ 1 and m is
odd. Then, since σ is multiplicative, σ(n) = dσ(m), where

d := σ(2t ) = 2t+1 − 1.

If m = d and d is prime, then σ(m) = 1 + d = 2t+1 and consequently
σ(n) = 2t+1m = 2n.

On the other hand, if σ(n) = 2n, then dσ(m) = 2t+1m. Since d is odd, it follows
that m = dq for some q ∈ N. Hence

σ(m) = 2t+1q = (1+ d)q = q + m.

Thus q is the only proper divisor of m. Hence q = 1 and m = d is prime. �
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The sufficiency of the condition in Proposition 30 was proved in Euclid’s Elements
(Book IX, Proposition 36). The necessity of the condition was proved over two thou-
sand years later by Euler. The condition is quite restrictive. In the first place, if 2m−1 is
prime for some m ∈ N, then m must itself be prime. For, if m = rs, where 1 < r < m,
then with a = 2s we have

2m − 1 = ar − 1 = (a − 1)(ar−1 + ar−2 + · · · + 1).

A prime of the form Mp := 2p − 1 is said to be a Mersenne prime in honour
of Mersenne (1644), who gave a list of all primes p ≤ 257 for which, he claimed,
Mp was prime. However, he included two values of p for which Mp is composite and
omitted three values of p for which Mp is prime. The correct list is now known to be

p = 2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127.

The first four even perfect numbers, namely 6, 28, 496 and 8128, which correspond to
the values p = 2, 3, 5 and 7, were known to the ancient Greeks.

That M11 is not prime follows from 211 − 1 = 2047 = 23 × 89. The factor 23
is not found simply by guesswork. It was already known to Fermat (1640) that if p
is an odd prime, then any divisor of Mp is congruent to 1 mod 2p. It is sufficient to
establish this for prime divisors. But if q is a prime divisor of Mp , then 2p ≡ 1 mod q .
Hence the order of 2 in F×q divides p and, since it is not 1, it must be exactly p. Hence,
by Lemma II.31 with G = F×q , p divides q − 1. Thus q ≡ 1 mod p and actually
q ≡ 1 mod 2 p, since q is necessarily odd.

The least 39 Mersenne primes are now known. The hunt for more uses thousands
of linked personal computers and the following test, which was stated by Lucas (1878),
but first completely proved by D.H. Lehmer (1930):

Proposition 31 Define the sequence (Sn) recurrently by

S1 = 4, Sn+1 = S2
n − 2 (n ≥ 1).

Then, for any odd prime p, Mp := 2p − 1 is prime if and only if it divides Sp−1.

Proof Put

ω = 2+√3, ω′ = 2−√3.

Since ωω′ = 1, it is easily shown by induction that

Sn = ω2n−1 + ω′2n−1
(n ≥ 1).

Let q be a prime and let J denote the set of all real numbers of the form a + b
√

3,
where a, b ∈ Z. Evidently J is a commutative ring. By identifying two elements
a + b

√
3 and ã + b̃

√
3 of J when a ≡ ã and b ≡ b̃ mod q , we obtain a finite commu-

tative ring Jq containing q2 elements. The set J×q of all invertible elements of Jq is a

commutative group containing at most q2 − 1 elements, since 0 /∈ J×q .
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Suppose first that Mp divides Sp−1 and assume that Mp is composite. If q is the
least prime divisor of Mp , then q2 ≤ Mp and q �= 2. By hypothesis,

ω2p−2 + ω′2p−2 ≡ 0 mod q.

Now consider ω and ω′ as elements of Jq . By multiplying by ω2p−2
, we obtain

ω2p−1 = −1 and hence ω2p = 1. Thus ω ∈ J×q and the order of ω in J×q is exactly 2p.
Hence

2p ≤ q2 − 1 ≤ Mp − 1 = 2p − 2,

which is a contradiction.
Suppose next that Mp = q is prime. Then q ≡ −1 mod 8, since p ≥ 3. Since

(2/q) = (−1)(q
2−1)/8, it follows that 2 is a quadratic residue of q . Thus there exists an

integer a such that
a2 ≡ 2 mod q.

Furthermore q ≡ 1 mod 3, since 22 ≡ 1 and hence 2p−1 ≡ 1 mod 3. Thus q is a
quadratic residue of 3. Since q ≡ −1 mod 4, it follows from the law of quadratic
reciprocity that 3 is a quadratic nonresidue of q . Hence, by Euler’s criterion (Proposi-
tion II.28),

3(q−1)/2 ≡ −1 mod q.

Consider the element τ = aq−2(1+√3) of Jq . We have

τ 2 = 2q−2 · 2ω = ω,
since 2q−1 ≡ 1 mod q . On the other hand,

(1+√3)q = 1+ 3(q−1)/2
√

3 = 1−√3

and hence

τ q = aq−2(1−√3).

Consequently,

ω(q+1)/2 = τ q+1 = aq−2(1−√3) · aq−2(1+√3) = 2q−2(−2) = −1.

Multiplying by ω′(q+1)/4, we obtain ω(q+1)/4 = −ω′(q+1)/4. In other words, since
(q + 1)/4 = 2p−2,

Sp−1 = ω2p−2 + ω′2p−2 ≡ 0 mod q. �

It is conjectured that there are infinitely many Mersenne primes, and hence infi-
nitely many even perfect numbers. A heuristic argument of Gillies (1964), as modified
by Wagstaff (1983), suggests that the number of primes p ≤ x for which Mp is prime
is asymptotic to (eγ / log 2) log x , where γ is Euler’s constant (Chapter IX, §4) and
thus eγ / log 2 = 2.570 . . ..
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We turn now from the primality of 2m − 1 to the primality of 2m + 1. It is easily
seen that if 2m + 1 is prime for some m ∈ N, then m must be a power of 2. For, if
m = rs, where r > 1 is odd, then with a = 2s we have

2m + 1 = ar + 1 = (a + 1)(ar−1 − ar−2 + · · · + 1).

Put Fn := 22n + 1. Thus, in particular,

F0 = 3, F1 = 5, F2 = 17, F3 = 257, F4 = 65537.

Evidently Fn+1 − 2 = (Fn − 2)Fn , from which it follows by induction that

Fn − 2 = F0 F1 · · · Fn−1 (n ≥ 1).

Since Fn is odd, this implies that (Fm , Fn) = 1 if m �= n. As a byproduct, we have a
proof that there are infinitely many primes.

It is easily verified that Fn itself is prime for n ≤ 4. It was conjectured by Fermat
that the ‘Fermat numbers’ Fn are all prime. However, this was disproved by Euler, who
showed that 641 divides F5. In fact

641 = 5 · 27 + 1 = 54 + 24.

Thus 5 · 27 ≡ −1 mod 641 and hence 232 ≡ −54 · 228 ≡ −(−1)4 ≡ −1 mod 641.
Fermat may have been as wrong as possible, since no Fn with n > 4 is known

to be prime, although many have been proved to be composite. The Fermat numbers
which are prime found an unexpected application to the construction of regular poly-
gons by ruler and compass, the only instruments which Euclid allowed himself. It was
shown by Gauss, at the age of 19, that a regular polygon of m sides can be constructed
by ruler and compass if the order ϕ(m) of Z×(m) is a power of 2. It follows from the

formula ϕ(pα) = pα−1(p − 1), and the multiplicative nature of Euler’s function, that
ϕ(m) is a power of 2 if and only if m has the form 2k · p1 · · · ps , where k ≥ 0 and
p1, . . . , ps are distinct Fermat primes. (Wantzel (1837) showed that a regular polygon
of m sides cannot be constructed by ruler and compass unless m has this form.) Gauss’s
result, in which he took particular pride, was a forerunner of Galois theory and is today
usually established as an application of that theory.

The factor 641 of F5 is not found simply by guesswork. Indeed, we now show that
any divisor of Fn must be congruent to 1 mod 2n+1. It is sufficient to establish this for
prime divisors. But if p is a prime divisor of Fn , then 22n ≡ −1 mod p and hence
22n+1 ≡ 1 mod p. Thus the order of 2 in F×p is exactly 2n+1. Hence 2n+1 divides p− 1

and p ≡ 1 mod 2n+1.
With a little more effort we can show that any divisor of Fn must be congruent to

1 mod 2n+2 if n > 1. For, if p is a prime divisor of Fn and n > 1, then p ≡ 1 mod 8
by what we have already proved. Hence, by Proposition II.30, 2 is a quadratic residue
of p. Thus there exists an integer a such that a2 ≡ 2 mod p. Since a2n+1 ≡ −1 mod p
and a2n+2 ≡ 1 mod p, the order of a in F×p is exactly 2n+2 and hence 2n+2 divides p−1.

It follows from the preceding result that 641 is the first possible candidate for a
prime divisor of F5, since 128k + 1 is not prime for k = 1, 3, 4 and 257 = F3 is
relatively prime to F5.

The hunt for Fermat primes today uses supercomputers and the following test due
to Pépin (1877):
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Proposition 32 If m > 1, then N := 2m+1 is prime if and only if 3(N−1)/2 + 1 is
divisible by N.

Proof Suppose first that N divides a(N−1)/2 + 1 for some integer a. If p is any prime
divisor of N , then a(N−1)/2 ≡ −1 mod p and hence aN−1 ≡ 1 mod p. Thus, since p
is necessarily odd, the order of a in F×p divides N − 1 = 2m , but does not divide

(N − 1)/2 = 2m−1. Hence the order of a must be exactly 2m . Consequently, by
Lemma II.31 with G = F×p , 2m divides p − 1. Thus

2m ≤ p − 1 ≤ N − 1 = 2m,

which implies that N = p is prime.
To prove the converse we use the law of quadratic reciprocity. Suppose N = p

is prime. Then p > 3, since m > 1. From 2 ≡ −1 mod 3 we obtain p ≡
(−1)m + 1 mod 3. Since 3 � p, it follows that p ≡ −1 mod 3. Thus p is a quadratic
non-residue of 3. But p ≡ 1 mod 4, since m > 1. Consequently, by the law of quadratic
reciprocity, 3 is a quadratic non-residue of p. Hence, by Euler’s criterion, 3(p−1)/2 ≡
−1 mod p. �

By means of Proposition 32 it has been shown that F14 is composite, even though
no nontrivial factors are known!

4 Linear Diophantine Equations

A Diophantine equation is an algebraic equation with integer coefficients of which the
integer solutions are required. The name honours Diophantus of Alexandria (3rd cen-
tury A.D.), who solved many problems of this type, although the surviving books of
his Arithmetica do not treat the linear problems with which we will be concerned.

We wish to determine integers x1, . . . , xn such that

a11x1 + · · · + a1nxn = c1

a21x1 + · · · + a2nxn = c2

· · ·
am1x1 + · · · + amnxn = cm,

where the coefficients a jk and the right sides c j are given integers (1 ≤ j ≤ m,
1 ≤ k ≤ n). We may write the system, in matrix notation, as

Ax = c.

The problem may also be put geometrically. A nonempty set M ⊆ Zm is said to be
a Z–module, or simply a module, if a, b ∈ M and x, y ∈ Z imply xa+ yb ∈ M.

For example, if a1, . . . , an is a finite subset of Zm , then the set M of all linear com-
binations x1a1+· · ·+ xnan with x1, . . . , xn ∈ Z is a module, the module generated by
a1, . . . , an . If we take a1, . . . , an to be the columns of the matrix A, then M is the set
of all vectors Ax with x ∈ Zn and the system Ax = c is soluble if and only if c ∈ M.
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If a module M is generated by the elements a1, . . . , an , then it is also generated by
the elements b1, . . . , bn , where

bk = u1ka1 + · · · + unkan (u jk ∈ Z : 1 ≤ j, k ≤ n),

if the matrix U = (u jk) is invertible. Here an n × n matrix U of integers is said to
be invertible if there exists an n × n matrix U−1 of integers such that U−1U = In or,
equivalently, UU−1 = In .

For example, if ax + by = 1, then the matrix

U =
(

a b
−y x

)
is invertible, with inverse

U−1 =
(

x −b
y a

)
.

It may be shown, although we will not use it, that an n× n matrix U is invertible if
and only if its determinant det U is a unit, i.e. det U = ±1. Under matrix multiplica-
tion, the set of all invertible n × n matrices of integers is a group, usually denoted by
GLn(Z).

To solve the linear Diophantine system Ax = c we replace it by a system By = c,
where B = AU for some invertible matrix U . The idea is to choose U so that B has
such a simple form that y can be determined immediately, and then x = Uy.

We will use the elementary fact that interchanging two columns of a matrix A, or
adding an integral multiple of one column to another column, is equivalent to postmul-
tiplying A by a suitable invertible matrix U . In fact U is obtained by performing the
same column operation on the identity matrix In . In the following discussion ‘matrix’
will mean ‘matrix with entries from Z’.

Proposition 33 If A = (a1 · · · an) is a 1 × n matrix, then there exists an invertible
n × n matrix U such that

AU = (d 0 · · · 0)
if and only if d is a greatest common divisor of a1, . . . , an.

Proof Suppose first that there exists such a matrix U . Since

A = (d 0 · · · 0)U−1,

d is a common divisor of a1, . . . , an . On the other hand,

d = a1b1 + · · · + anbn,

where b1, . . . , bn is the first column of U . Hence any common divisor of a1, . . . , an

divides d . Thus d is a greatest common divisor of a1, . . . , an .
Suppose next that a1, . . . , an have greatest common divisor d . Since there is noth-

ing to do if n = 1, we assume n > 1 and use induction on n. Then if d ′ is the greatest
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common divisor of a2, . . . , an , there exists an invertible (n − 1) × (n − 1) matrix V ′
such that

(a2 · · · an)V
′ = (d ′ 0 · · · 0).

Since d is the greatest common divisor of a1 and d ′, there exist integers u, v such that

a1u + d ′v = d.

Put V = I1 ⊕ V ′ and W = W ′ ⊕ In−2, where

W ′ =
(

u −d ′/d
v a1/d

)
.

Then V and W are invertible, and

(a1 a2 · · · an)V W = (a1 d ′ 0 · · · 0)W = (d 0 · · · 0).
Thus we can take U = V W . �

Corollary 34 For any given integers a1, . . . , an, there exists an invertible n × n
matrix U with a1, . . . , an as its first row if and only if the greatest common divisor
of a1, . . . , an is 1.

Proof An invertible matrix U has a1, . . . , an as its first row if and only if

(a1 a2 · · · an) = (1 0 · · · 0)U. �

If U is invertible, then its transpose is also invertible. It follows that there exists
an invertible n × n matrix with a1, . . . , an as its first column also if and only if the
greatest common divisor of a1, . . . , an is 1.

Proposition 35 For any m × n matrix A, there exists an invertible n × n matrix U
such that B = AU has the form

B = (B1O),

where B1 is an m × r submatrix of rank r .

Proof Let A have rank r . If r = n, there is nothing to do. If r < n and we denote the
columns of A by a1, . . . , an , then there exist x1, . . . , xn ∈ Z, not all zero, such that

x1a1 + · · · + xnan = O.

Moreover, we may assume that x1, . . . , xn have greatest common divisor 1. Then,
by Corollary 34, there exists an invertible n × n matrix U ′ with x1, . . . , xn as its last
column. Hence A′ := AU ′ has its last column zero. If r < n − 1, we can apply the
same argument to the submatrix formed by the first n − 1 columns of A′, and so on
until we arrive at a matrix B of the required form. �
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The elements b1, . . . , br of a module M are said to be a basis for M if they generate
M and are linearly independent, i.e. x1b1 + · · · + xr br = O for some x1, . . . , xr ∈ Z
implies that x1 = · · · = xr = 0. If O is the only element of M, we say also that O is a
basis for M.

In geometric terms, Proposition 35 says that any finitely generated module M ⊆
Zm has a finite basis, and that a finite set of generators is a basis if and only if its ele-
ments are linearly independent over Q. Hence any two bases have the same cardinality.

Proposition 36 For any m × n matrix A, the set N of all x ∈ Zn such that Ax = O is
a module with a finite basis.

Proof It is evident that N is a module. By Proposition 35, there exists an invertible
n × n matrix U such that AU = B = (B1O), where B1 is an m × r submatrix of
rank r . Hence By = O if and only if the first r coordinates of y vanish. By taking y to
be the vector with k-th coordinate 1 and all other coordinates 0, for each k such that
r < k ≤ n, we see that the equation By = O has n − r linearly independent solutions
y(1), . . . , y(n−r) such that all solutions are given by

y = z1y(1) + · · · + zn−r y(n−r),

where z1, . . . , zn−r are arbitrary integers. If we put x( j ) = Uy( j ), it follows that
x(1), . . . , x(n−r) are a basis for the module N. �

An m× n matrix B = (b jk) will be said to be in echelon form if the following two
conditions are satisfied:

(i) b jk = 0 for all j if k > r ;
(ii) b jk �= 0 for some j if k ≤ r and, if mk is the least such j , then 1 ≤ m1 < m2 <

· · · < mr ≤ m.

Evidently r = rankB .

Proposition 37 For any m × n matrix A, there exists an invertible n × n matrix U
such that B = AU is in echelon form.

Proof By Proposition 35, we may suppose that A has the form (A1O), where A1 is
an m × r submatrix of rank r , and by replacing A1 by A we may suppose that A itself
has rank n. We are going to show that there exists an invertible n × n matrix U such
that, if AU = B = (b jk), then b jk = 0 for all j < k.

If m = 1, this follows from Proposition 33. We assume m > 1 and use in-
duction on m. Then the first m − 1 rows of A may be assumed to have already the
required triangular form. If n ≤ m, there is nothing more to do. If n > m, we can take
U = Im−1⊕U ′, where U ′ is an invertible (n−m+ 1)× (n−m+ 1)matrix such that

(am,m am,m+1 · · · am,n)U
′ = (a′ 0 · · · 0).

Replacing B by A, we now suppose that for A itself we have a jk = 0 for all
j < k. Since A still has rank n, each column of A contains a nonzero entry. If the first
nonzero entry in the k-th column appears in the mk-th row, then mk ≥ k. By permuting
the columns, if necessary, we may suppose in addition that m1 ≤ m2 ≤ · · · ≤ mn .
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Suppose m1 = m2. Let a and b be the entries in the m1-th row of the first and
second columns, and let d be their greatest common divisor. Then d �= 0 and there
exist integers u, v such that au + bv = d . If we put U = V ⊕ In−2, where

V =
(

u −b/d
v a/d

)
,

then U is invertible. Moreover, the last n − 2 columns of B = AU are the same
as in A and the first m1 − 1 entries of the first two columns are still zero. However,
bm11 = d and bm12 = 0. By permuting the last n−1 columns, if necessary, we obtain a
matrix A′, of the same form as A, with m′1 ≤ m′2 ≤ · · · ≤ m′n , where m′1 = m1 and
m′2 + · · · + m′n > m2 + · · · + mn .

By repeating this process finitely many times, we will obtain a matrix in echelon
form. �

Corollary 38 If A is an m × n matrix of rank m, then there exists an invertible n × n
matrix U such that AU = B = (b jk), where

b j j �= 0, b jk = 0 if j < k (1 ≤ j ≤ m, 1 ≤ k ≤ n).

Before proceeding further we consider the uniqueness of the echelon form. Let
T = (t j k) be any r × r matrix which is lower triangular and invertible, i.e. t j k = 0 if
j < k and the diagonal elements t j j are units. It is easily seen that if U = T ⊕ In−r ,
and if B is an echelon form for a matrix A with rank r , then BU is also an echelon form
for A. We will show that all possible echelon forms for A are obtained in this way.

Suppose B ′ = BU is in echelon form, for some invertible n×n matrix U , and write

B = (B1 O),

where B1 is an m × r submatrix. If

U =
(

U1 U2
U3 U4

)
,

then from (B1 O)U = (B ′1 O) we obtain U2 = O, since B1U2 = O and B1 has rank r .
Consequently U1 is invertible and we can equally well take U3 = O, U4 = I . Let
b1, . . . , br be the columns of B1 and b′1, . . . , b′r the columns of B ′1. If U1 = (t j k), then

b′k = t1kb1 + · · · + trkbr (1 ≤ k ≤ r).

Taking k = 1, we obtain m ′1 ≥ m1 and so, by symmetry, m′1 = m1. Since m′k > m′1
for k > 1, it follows that t1k = 0 for k > 1. Taking k = 2, we now obtain in the same
way m′2 = m2. Proceeding in this manner, we see that U1 is a lower triangular matrix.

We return now to the linear Diophantine equation

Ax = c.

The set of all c ∈ Zm for which there exists a solution x ∈ Zn is evidently a module L ⊆
Zm . If U is an invertible matrix such that B = AU is in echelon form, then x is a solu-
tion of the given system if and only if y = U−1x is a solution of the transformed system
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By = c.

But the latter system is soluble if and only if c is an integral linear combination of the
first r columns b1, . . . , br of B . Since b1, . . . , br are linearly independent, they form
a basis for L.

To determine if a given system Ax = c is soluble, we may use the customary
methods of linear algebra over the field Q of rational numbers to test if c is linearly
dependent on b1, . . . , br ; then express it as a linear combination of b1, . . . , br , and
finally check that the coefficients y1, . . . , yr are all integers. The solutions of the orig-
inal system are given by x = Uy, where y is any vector in Zn whose first r coordinates
are y1, . . . , yr .

If M1 and M2 are modules in Zm , their intersection M1 ∩M2 is again a module.
The set of all a ∈ Zm such that a = a1 + a2 for some a1 ∈ M1 and a2 ∈ M2 is also a
module, which will be denoted by M1 +M2 and called the sum of M1 and M2. If M1
and M2 are finitely generated, then M1 +M2 is evidently finitely generated. We will
show that M1 ∩M2 is also finitely generated.

Since M1+M2 is a finitely generated module in Zm , it has a basis a1, . . . , an . Since
M1 and M2 are contained in M1+M2, their generators b1, . . . , bp and c1, . . . , cq have
the form

bi =
n∑

k=1

uki ak,

c j =
n∑

k=1

vkj ak,

for some uki , vkj ∈ Z. Then a ∈ M1 ∩M2 if and only if

a =
p∑

i=1

yi bi =
q∑

j=1

z j c j

for some yi , z j ∈ Z. Since a1, . . . , an is a basis for M1 +M2, this is equivalent to

p∑
i=1

uki yi =
q∑

j=1

vkj z j

or, in matrix notation, By = Cz. But this is equivalent to the homogeneous system
Ax = O, where

A = (B − C), x =
(

y
z

)
,

and by Proposition 36 the module of solutions of this system has a finite basis.
Suppose the modules M1,M2 ⊆ Zm are generated by the columns of the m × n1,

m × n2 matrices A1, A2. Evidently M2 is a submodule of M1 if and only if each
column of A2 can be expressed as a linear combination of the columns of A1, i.e. if
and only if there exists an n1 × n2 matrix X such that
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A1 X = A2.

We say in this case that A1 is a left divisor of A2, or that A2 is a right multiple of A1.
We may also define greatest common divisors and least common multiples for

matrices. An m × p matrix D is a greatest common left divisor of A1 and A2 if it is a
left divisor of both A1 and A2, and if every left divisor C of both A1 and A2 is also a
left divisor of D. An m × q matrix H is a least common right multiple of A1 and A2
if it is a right multiple of both A1 and A2, and if every right multiple G of both A1 and
A2 is also a right multiple of H . It will now be shown that these objects exist and have
simple geometrical interpretations.

Let M1, M2 be the modules defined by the matrices A1, A2. We will show that if
the sum M1+M2 is defined by the matrix D, then D is a greatest common left divisor
of A1 and A2. In fact D is a common left divisor of A1 and A2, since M1 and M2 are
contained in M1 +M2. On the other hand, any common left divisor C of A1 and A2
defines a module which contains M1 +M2, since it contains both M1 and M2, and so
C is a left divisor of D.

A similar argument shows that if the intersection M1 ∩M2 is defined by the matrix
H , then H is a least common right multiple of A1 and A2.

The sum M1 + M2 is defined, in particular, by the block matrix (A1 A2). There
exists an invertible (n1 + n2)× (n1 + n2) matrix U such that

(A1 A2)U = (D′ O),

where D′ is an m × r submatrix of rank r . If

U =
(

U1 U2
U3 U4

)
,

is the corresponding partition of U , then

A1U1 + A2U3 = D′.

On the other hand,

(A1 A2) = (D′ O)U−1.

If

U−1 =
(

V1 V2
V3 V4

)
is the corresponding partition of U−1, then

A1 = D′V1, A2 = D′V2.

Thus D′ is a common left divisor of A1 and A2, and the previous relation implies that
it is a greatest common left divisor. It follows that any greatest common left divisor D
of A1 and A2 has a right ‘Bézout’ representation D = A1 X1 + A2 X2.

We may also define coprimeness for matrices. Two matrices A1, A2 of size
m × n1,m × n2 are left coprime if Im is a greatest common left divisor. If M1, M2
are the modules defined by A1, A2, this means that M1 + M2 = Zm . The definition
may also be reformulated in several other ways:
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Proposition 39 For any m × n matrix A, the following conditions are equivalent:

(i) for some, and hence every, partition A = (A1 A2), the submatrices A1 and A2
are left coprime;

(ii) there exists an n × m matrix A† such that AA† = Im;
(iii) there exists an (n − m)× n matrix Ac such that(

A
Ac

)
is invertible;

(iv) there exists an invertible n × n matrix V such that AV = (Im O).

Proof If A = (A1 A2) for some left coprime matrices A1, A2, then there exist X1,
X2 such that A1 X1 + A2 X2 = Im and hence (ii) holds. On the other hand, if (ii) holds
then, for any partition A = (A1 A2), there exist X1, X2 such that A1 X1 + A2 X2 = Im

and hence A1, A2 are left coprime.
Thus (i) ⇔ (ii). Suppose now that (ii) holds. Then A has rank m and hence there

exists an invertible n × n matrix U such that A = (D O)U , where the m × m matrix
D is non-singular. In fact D is invertible, since AA† = Im implies that D is a left
divisor of Im . Consequently, by changing U , we may assume D = Im . If we now take
Ac = (O In−m)U , we see that (ii)⇒ (iii).

It is obvious that (iii)⇒ (iv) and that (iv)⇒ (ii). �

We now consider the extension of these results to other rings besides Z. Let R be
an arbitrary ring. A nonempty set M ⊆ Rm is said to be an R-module if a, b ∈ M
and x, y ∈ R imply xa + yb ∈ M. The module M is finitely generated if it contains
elements a1, . . . , an such that every element of M has the form x1a1 + · · · + xnan for
some x1, . . . , xn ∈ R.

It is easily seen that if R is a Bézout domain, then the whole of the preceding dis-
cussion in this section remains valid if ‘module’ is interpreted to mean ‘R-module’ and
‘matrix’ to mean ‘matrix with entries from R’. In particular, we may take R = K [t] to
be the ring of all polynomials in one indeterminate with coefficients from an arbitrary
field K . However, both Z and K [t] are principal ideal domains. In this case further
results may be obtained.

Proposition 40 If R is a principal ideal domain and M a finitely generated
R-module, then any submodule L of M is also finitely generated. Moreover, if M is
generated by n elements, so also is L.

Proof Suppose M is generated by a1, . . . , an . If n = 1, then any b ∈ L has the form
b = xa1 for some x ∈ R and the set of all x which appear in this way is an ideal of R.
Since R is a principal ideal domain, it follows that L is generated by a single element
b1, where b1 = x ′a1 for some x ′ ∈ R.

Suppose now that n > 1 and that, for each m < n, any submodule of a module
generated by m elements is also generated by m elements. Any b ∈ L has the form

b = x1a1 + · · · + xnan

for some x1, . . . , xn ∈ R and the set of all x1 which appear in this way is an ideal
of R. Since R is a principal ideal domain, it follows that there is a fixed b1 ∈ L such
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that b = y1b1 + b′ for some y1 ∈ R and some b′ in the module M′ generated by
a2, . . . , an . The set of all b′ which appear in this way is a submodule L′ of M′. By the
induction hypothesis, L′ is generated by n − 1 elements and hence L is generated by n
elements. �

Just as it is useful to define vector spaces abstractly over an arbitrary field K , so
it is useful to define modules abstractly over an arbitrary ring R. An abelian group M,
with the group operation denoted by +, is said to be an R-module if, with any a ∈ M
and any x ∈ R, there is associated an element xa ∈ M so that the following properties
hold, for all a, b ∈ M and all x, y ∈ R:

(i) x(a+ b) = xa+ xb,
(ii) (x + y)a = xa+ ya,

(iii) (xy)a = x(ya),
(iv) 1a = a.

The proof of Proposition 40 remains valid for modules in this abstract sense. How-
ever, a finitely generated module need not now have a basis. For, even if it is generated
by a single element a, we may have xa = O for some nonzero x ∈ R. Neverthe-
less, we are going to show that, if R is a principal ideal domain, all finitely generated
R-modules can be completely characterized.

Let R be a principal ideal domain and M a finitely generated R-module, with
generators a1, . . . , an , say. The set N of all x = (x1, . . . , xn) ∈ Rn such that

x1a1 + · · · + xnan = O

is evidently a module in Rn . Hence N is finitely generated, by Proposition 40. The
given module M is isomorphic to the quotient module Rn/N.

Let f 1, . . . , f m be a set of generators for N and let e1, . . . , en be a basis for Rn .
Then

f j = a j1e1 + · · · + a jnen (1 ≤ j ≤ m),

for some a jk ∈ R. The module M is completely determined by the matrix A = (a jk).
However, we can change generators and change bases.

If we put

f ′i = vi1 f 1 + · · · + vim f m (1 ≤ i ≤ m),

where V = (vi j ) is an invertible m × m matrix, then f ′1, . . . , f ′m is also a set of gener-
ators for N. If we put

ek = uk1e′1 + · · · + ukne′n (1 ≤ k ≤ n),

where U = (uk�) is an invertible n × n matrix, then e′1, . . . , e′n is also a basis for Rn .
Moreover

f ′i = bi1e′1 + · · · + bine′n (1 ≤ i ≤ m),

where the m × n matrix B = (bi�) is given by B = VAU.
The idea is to choose V and U so that B is as simple as possible. This is made

precise in the next proposition, first proved by H.J.S. Smith (1861) for R = Z. The
corresponding matrix S is known as the Smith normal form of A.
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Proposition 41 Let R be a principal ideal domain and let A be an m × n matrix with
entries from R. If A has rank r , then there exist invertible m×m, n× n matrices V ,U
with entries from R such that S = VAU has the form

S =
(

D O
O O

)
,

where D = diag[d1, . . . , dr ] is a diagonal matrix with nonzero entries di and di |d j for
1 ≤ i ≤ j ≤ r .

Proof We show first that it is enough to obtain a matrix which satisfies all the require-
ments except the divisibility conditions for the d’s.

If a, b are nonzero elements of R with greatest common divisor d , then there exist
u, v ∈ R such that au + bv = d . It is easily verified that(

1 1
−bv/d au/d

)(
a 0
0 b

)(
u −b/d
v a/d

)
=
(

d 0
0 ab/d

)
,

and the outside matrices on the left-hand side are both invertible. By applying this
process finitely many times, a non-singular diagonal matrix D′ = diag[d ′1, . . . , d ′r ]
may be transformed into a non-singular diagonal matrix D = diag[d1, . . . , dr ] which
satisfies di |d j for 1 ≤ i ≤ j ≤ r .

Consider now an arbitrary matrix A. By applying Proposition 35 to the transpose
of A, we may reduce the problem to the case where A has rank m and then, by Corol-
lary 38, we may suppose further that a j j �= 0, a jk = 0 for all j < k.

It is now sufficient to show that, for any 2× 2 matrix

A =
(

a 0
b c

)
,

with nonzero entries a, b, c, there exist invertible 2×2 matrices U, V such that V AU is
a diagonal matrix. Moreover, we need only prove this when the greatest common divi-
sor (a, b, c) = 1. But then there exists q ∈ R such that (a, b+qc) = 1. In fact, take q to
be the product of the distinct primes which divide a but not b. For any prime divisor p
of a, if p|b, then p�c, p�q and hence p� (b+qc); if p�b, then p|q and again p� (b+qc).

If we put b′ = b+ qc, then there exist x, y ∈ R such that ax + b′y = 1, and hence
ax + by = 1− qcy. It is easily verified that(

x y
−b′ a

)(
a 0
b c

)(
1 −cy
q 1− qcy

)
=
(

1 0
0 ac

)
,

and the outside matrices on the left-hand side are both invertible. �

In the important special case R = Z, there is a more constructive proof of Proposi-
tion 41. Obviously we may suppose A �= O. By interchanges of rows and columns we
can arrange that a11 is the nonzero entry of A with minimum absolute value. If there
is an entry a1k (k > 1) in the first row which is not divisible by a11, then we can write
a1k = za11 + a′1k , where z, a′1k ∈ Z and |a′1k| < |a11|. By subtracting z times the first
column from the k-th column we replace a1k by a′1k . Thus we obtain a new matrix A
in which the minimum absolute value of the nonzero entries has been reduced.
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On the other hand, if a11 divides a1k for all k > 1 then, by subtracting multiples
of the first column from the remaining columns, we can arrange that a1k = 0 for all
k > 1. If there is now an entry a j1( j > 1) in the first column which is not divisible
by a11 then, by subtracting a multiple of the first row from the j -th row, the minimum
absolute value of the nonzero entries can again be reduced. Otherwise, by subtracting
multiples of the first row from the remaining rows, we can bring A to the form(

a11 O
O A′

)
.

Since A �= O and the minimum absolute value of the nonzero entries cannot be
reduced indefinitely, we must in any event arrive at a matrix of this form after a
finite number of steps. The same procedure can now be applied to the submatrix A′,
and so on until we obtain a matrix (

D′ O
O O

)
,

where D′ is a diagonal matrix with the same rank as A. As in the first part of the proof
of Proposition 41, we can now replace D′ by a diagonal matrix D which satisfies the
divisibility conditions.

Clearly this constructive proof is also valid for any Euclidean domain R and, in
particular, for the polynomial ring R = K [t], where K is an arbitrary field.

It will now be shown that the Smith normal form of a matrix A is uniquely deter-
mined, apart from replacing each dk by an arbitrary unit multiple. For, if S′ is another
Smith normal form, then S′ = V ′SU ′ for some invertible m×m, n×n matrices V ′,U ′.
Since d1 divides all entries of S, it also divides all entries of S′. In particular, d1|d ′1.
In the same way d ′1|d1 and hence d ′1 is a unit multiple of d1. To show that d ′k is a unit
multiple of dk , also for k > 1, it is quickest to use determinants (Chapter V, §1). Since
d1 · · · dk divides all k × k subdeterminants or minors of S, it also divides all k × k
minors of S′. In particular, d1 · · · dk|d ′1 · · · d ′k . Similarly, d ′1 · · · d ′k|d1 · · · dk and hence
d ′1 · · · d ′k is a unit multiple of d1 · · · dk . The conclusion now follows by induction on k.

The products ∆k := d1 · · · dk (1 ≤ k ≤ r) are known as the invariant factors of
the matrix A. A similar argument to that in the preceding paragraph shows that ∆k is
the greatest common divisor of all k × k minors of A.

Two m × n matrices A, B are said to be equivalent if there exist invertible m ×m,
n×n matrices V ,U such that B = V AU . Since equivalence is indeed an ‘equivalence
relation’, the uniqueness of the Smith normal form implies that two m × n matrices
A, B are equivalent if and only if they have the same rank and the same invariant
factors.

We return now from matrices to modules. Let R be a principal ideal domain and
M a finitely generated R-module, with generators a1, . . . , an . The Smith normal form
tells us that M has generators a′1, . . . , a′n , where

ak = uk1a′1 + · · · + ukna′n (1 ≤ k ≤ n)

for some invertible matrix U = (uk�), such that dka′k = O (1 ≤ k ≤ r). Moreover,

x1a′1 + · · · + xna′n = O
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implies xk = ykdk for some yk ∈ R if 1 ≤ k ≤ r and xk = 0 if r < k ≤ n. In
particular, xka′k = O for 1 ≤ k ≤ n, and thus the module M is the direct sum of the
submodules M′

1, . . . ,M
′
n generated by a′1, . . . , a′n respectively.

If Nk denotes the set of all x ∈ R such that xa′k = O, then Nk is the principal ideal
of R generated by dk for 1 ≤ k ≤ r and Nk = {0} for r < k ≤ n. The divisibility
conditions on the d ′s imply that Nk+1 ⊆ Nk (1 ≤ k < r). If Nk = R for some k, then
a′k contributes nothing as a generator and may be omitted.

Evidently the submodule M′ generated by a′1, . . . , a′r consists of all a ∈ M
such that xa = O for some nonzero x ∈ R, and the submodule M′′ generated by
a′r+1, . . . , a

′
n has a′r+1, . . . , a

′
n as a basis. Thus we have proved the structure theorem

for finitely generated modules over a principal ideal domain:

Proposition 42 Let R be a principal ideal domain and M a finitely generated
R-module. Then M is the direct sum of two submodules M′ and M′′, where M′ consists
of all a ∈ M such that xa = O for some nonzero x ∈ R and M′′ has a finite basis.

Moreover, M′ is the direct sum of s submodules Ra1, . . . , Ras , such that

0 ⊂ Ns ⊆ · · · ⊆ N1 ⊂ R,

where Nk is the ideal consisting of all x ∈ R such that xak = O (1 ≤ k ≤ s).

The uniquely determined submodule M′ is called the torsion submodule of M. The
free submodule M′′ is not uniquely determined, although the number of elements in a
basis is uniquely determined. Of course, for a particular M one may have M′ = {O} or
M′′ = {O}.

Any abelian group A, with the group operation denoted by+, may be regarded as a
Z-module by defining na to be the sum a + · · · + a with n summands if n ∈ N, to
be O if n = 0, and to be −(a + · · · + a) with −n summands if −n ∈ N. The struc-
ture theorem in this case becomes the structure theorem for finitely generated abelian
groups: any finitely generated abelian group A is the direct product of finitely many
finite or infinite cyclic subgroups. The finite cyclic subgroups have orders d1, . . . , ds ,
where d1 > 1 if s > 0 and di |d j if i ≤ j . In particular, A is the direct product of a
finite subgroup A′ (of order d1 · · · dr ), its torsion subgroup, and a free subgroup A′′.

The fundamental structure theorem also has an important application to linear
algebra. Let V be a vector space over a field K and T : V → V a linear transfor-
mation. We can give V the structure of a K [t]-module by defining, for any v ∈ V and
any f = a0 + a1t + · · · + antn ∈ K [t],

f v = a0v + a1T v + · · · + anT nv.

If V is finite-dimensional, then for any v ∈ V there is a nonzero polynomial f such
that f v = O. In this case the fundamental structure theorem says that V is the direct
sum of finitely many subspaces V1, . . . , Vs which are invariant under T . If Vi has
dimension ni ≥ 1, then there exists a vector wi ∈ Vi such that wi , Twi , . . . , T ni−1wi

are a vector space basis for Vi (1 ≤ i ≤ s). There is a uniquely determined monic
polynomial mi of degree ni such that mi (T )wi = O and, finally, mi |m j if i ≤ j .

The Smith normal form can be used to solve systems of linear ordinary differential
equations with constant coefficients. Such a system has the form
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a11(D)x1 + · · · + a1n(D)xn = c1(t)

a21(D)x1 + · · · + a2n(D)xn = c2(t)

· · ·
am1(D)x1 + · · · + amn(D)xn = cm(t),

where the coefficients a jk(D) are polynomials in D = d/dt with complex coefficients
and the right sides c j (t) are, say, infinitely differentiable functions of the time t . Since
C[s] is a Euclidean domain, we can bring the coefficient matrix A = (a jk(D)) to Smith
normal form and thus replace the given system by an equivalent system in which the
variables are ‘uncoupled’.

For the polynomial ring R = K [t] it is possible to say more about R-modules than
for an arbitrary Euclidean domain, since the absolute value

| f | = 2∂( f ) if f �= O, |O| = 0,

has not only the Euclidean property, but also the properties

| f + g| ≤ max{| f |, |g|}, | f g| = | f ||g| for any f, g ∈ R.

For any a ∈ Rm , where R = K [t], define |a| to be the maximum absolute value
of any of its coordinates. Then a basis for a module M ⊆ Rm can be obtained in the
following way. Suppose M �= O and choose a nonzero element a1 of M for which |a1|
is a minimum. If there is an element of M which is not of the form p1a1 with p1 ∈ R,
choose one, a2, for which |a2| is a minimum. If there is an element of M which is not
of the form p1a1+ p2a2 with p1, p2 ∈ R, choose one, a3, for which |a3| is a minimum.
And so on.

Evidently |a1| ≤ |a2| ≤ · · · . We will show that a1, a2, . . . are linearly independent
for as long as the the process can be continued, and thus ultimately a basis is obtained.

If this is not the case, then there exists a positive integer k ≤ m such that a1, . . . , ak

are linearly independent, but a1, . . . , ak+1 are not. Hence there exist s1, . . . , sk+1 ∈ R
with sk+1 �= 0 such that s1a1 + · · · + sk+1ak+1 = O. For each j ≤ k, there exist q j ,
r j ∈ R such that

s j = q j sk+1 + r j , |r j | < |sk+1|.

Put

a′k+1 = ak+1 + q1a1 + · · · + qkak, bk = r1a1 + · · · + rkak .

Since ak+1 is not of the form p1a1 + · · · + pkak , neither is a′k+1 and hence |a′k+1| ≥|ak+1|. Furthermore, |bk | ≤ max1≤ j≤k |r j ||a j | < |sk+1||ak+1|. Since bk = −sk+1a′k+1,
by construction, this is a contradiction.

A basis for M which is obtained in this way will be called a minimal basis.
It is not difficult to show that a basis a1, . . . , an is a minimal basis if and only if
|a1| ≤ · · · ≤ |an | and the sum |a1| + · · · + |an| is minimal. Although a minimal basis
is not uniquely determined, the values |a1|, . . . , |an| are uniquely determined.
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5 Further Remarks

For the history of the law of quadratic reciprocity, see Frei [16]. The first two proofs by
Gauss of the law of quadratic reciprocity appeared in §§125–145 and §262 of [17]. A
simplified account of Gauss’s inductive proof has been given by Brown [7]. The proofs
most commonly given use ‘Gauss’s lemma’ and are variants of Gauss’s third proof.
The first proof given here, due to Rousseau [46], is of this general type, but it does not
use Gauss’s lemma and is based on a natural definition of the Jacobi symbol. For an
extension of this definition of Zolotareff to algebraic number fields, see Cartier [9].

For Dirichlet’s evaluation of Gauss sums, see [33]. A survey of Gauss sums is given
in Berndt and Evans [6].

The extension of the law of quadratic reciprocity to arbitrary algebraic number
fields was the subject of Hilbert’s 9th Paris problem. Although such generalizations lie
outside the scope of the present work, it may be worthwhile to give a brief glimpse.
Let K = Q be the field of rational numbers and let L = Q(

√
d) be a quadratic exten-

sion of K . If p is a prime in K , the law of quadratic reciprocity may be interpreted as
describing how the ideal generated by p in L factors into prime ideals. Now let K be
an arbitrary algebraic number field and let L be any finite extension of K . Quite gener-
ally, we may ask how the arithmetic of the extension L is determined by the arithmetic
of K . The general reciprocity law, conjectured by Artin in 1923 and proved by him
in 1927, gives an answer in the form of an isomorphism between two groups, provided
the Galois group of L over K is abelian. For an introduction, see Wyman [54] and, for
more detail, Tate [51]. The outstanding problem is to find a meaningful extension to the
case when the Galois group is non-abelian. Some intriguing conjectures are provided
by the Langlands program, for which see also Gelbart [18].

The law of quadratic reciprocity has an analogue for polynomials with coefficients
from a finite field. Let Fq be a finite field containing q elements, where q is a power
of an odd prime. If g ∈ Fq [x] is a monic irreducible polynomial of positive degree,
then for any f ∈ Fq [x] not divisible by g we define ( f/g) to be 1 if f is congruent to
a square mod g, and −1 otherwise. The law of quadratic reciprocity, which in the case
of prime q was stated by Dedekind (1857) and proved by Artin (1924), says that

( f/g)(g/ f ) = (−1)mn(q−1)/2

for any distinct monic irreducible polynomials f, g ∈ Fq [x] of positive degrees m, n.
Artin also developed a theory of ideals, analogous to that for quadratic number fields,
for the field obtained by adjoining to Fq [x] an element ω with ω2 = D(x), where
D(x) ∈ Fq [x] is square-free; see [3].

Quadratic fields are treated in the third volume of Landau [30]. There is also a
useful resumé accompanying the tables in Ince [23].

A complex number is said to be algebraic if it is a root of a monic polynomial
with rational coefficients and transcendental otherwise. Hence a complex number is
algebraic if and only if it is an element of some algebraic number field.

For an introduction to the theory of algebraic number fields, see Samuel [47]. This
vast theory may be approached in a variety of ways. For a more detailed treatment
the student may choose from Hecke [22], Hasse [20], Lang [32], Narkiewicz [38] and
Neukirch [39]. There are useful articles in Cassels and Fröhlich [10], and Artin [2]
treats also algebraic functions.
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For the early history of Fermat’s last theorem, see Vandiver [52], Ribenboim [41]
and Kummer [28]. Further references will be given in Chapter XIII.

Arithmetical functions are discussed in Apostol [1], McCarthy [35] and
Sivaramakrishnan [48]. The term ‘Dirichlet product’ comes from the connection with
Dirichlet series, which will be considered in Chapter IX, §6. The ring of all arithmeti-
cal functions was shown to be a factorial domain by Cashwell and Everett (1959); the
result is proved in [48].

In the form f (a ∧ b) f (a ∨ b) = f (a) f (b), the concept of multiplicative func-
tion can be extended to any map f : L → C, where L is a lattice. Möbius inversion
can be extended to any locally finite partially ordered set and plays a significant role in
modern combinatorics; see Bender and Goldman [5], Rota [45] and Barnabei et al. [4].

The early history of perfect numbers and Fermat numbers is described in
Dickson [13]. It has been proved that any odd perfect number, if such a thing exists,
must be greater than 10300 and have at least 8 distinct prime factors. On the other
hand, if an odd perfect number N has at most k distinct prime factors, then N < 44k

and thus all such N can be found by a finite amount of computation. See te Riele [42]
and Heath-Brown [21].

The proof of the Lucas–Lehmer test for Mersenne primes follows Rosen [43] and
Bruce [8]. For the conjectured distribution of Mersenne primes, see Wagstaff [53].
The construction of regular polygons by ruler and compass is discussed in
Hadlock [19], Jacobson [24] and Morandi [36].

Much of the material in §4 is also discussed in Macduffee [34] and Newman [40].
Corollary 34 was proved by Hermite (1849), who later (1851) also proved
Corollary 38. Indeed the latter result is the essential content of Hermite’s normal form,
which will be encountered in Chapter VIII, §2.

It is clear that Corollary 34 remains valid if the underlying ring Z is replaced by
any principal ideal domain. There have recently been some noteworthy extensions to
more general rings. It may be asked, for an arbitrary commutative ring R and any
a1, . . . , an ∈ R, does there exist an invertible n×n matrix U with entries from R which
has a1, . . . , an as its first row? It is obviously necessary that there exist x1, . . . , xn ∈ R
such that

a1x1 + · · · + anxn = 1,

i.e. that the ideal generated by a1, . . . , an be the whole ring R. If n = 2, this necessary
condition is also sufficient, by the same observation as when invertibility of matrices
was first considered for R = Z. However, if n > 2 there exist even factorial domains
R for which the condition is not sufficient. In 1976 Quillen and Suslin independently
proved the twenty-year-old conjecture that it is sufficient if R = K [t1, . . . , td ] is the
ring of polynomials in finitely many indeterminates with coefficients from an arbitrary
field K .

By pursuing an analogy between projective modules in algebra and vector bundles
in topology, Serre (1955) had been led to conjecture that, for R = K [t1, . . . , td ], if an
R-module has a finite basis and is the direct sum of two submodules, then each of these
submodules has a finite basis. Seshadri (1958) proved the conjecture for d = 2 and in
the same year Serre showed that, for arbitrary d , it would follow from the result which
Quillen and Suslin subsequently proved.
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For proofs of these results and for later developments, see Lam [29], Fitchas and
Galligo [14], and Swan [50]. There is a short proof of the Quillen–Suslin theorem in
Lang [31].

For Smith’s normal form, see Smith [49] and Kaplansky [27]. It was shown by
Wedderburn (1915) that Smith’s normal form also holds for matrices of holomor-
phic functions, even though the latter do not form a principal ideal domain; see
Narasimhan [37].

Finitely generated commutative groups are important, not only because more can
be said about them, but also because they arise in practice. Dirichlet’s unit theorem
says that the units of an algebraic number field form a finitely generated commutative
group. As will be seen in Chapter XIII, §4, Mordell’s theorem says that the rational
points of an elliptic curve also form a finitely generated commutative group.

Modules over a polynomial ring K [s] play an important role in what electrical
engineers call linear systems theory. Connected accounts are given in Kalman [26],
Rosenbrock [44] and Kailath [25]. For some further mathematical developments, see
Forney [15], Coppel [11], and Coppel and Cullen [12].
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Surveys 41 (1986), no. 3, 135–188.
[5] E.A. Bender and J.R. Goldman, On the application of Möbius inversion in combinatorial
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IV

Continued Fractions and Their Uses

1 The Continued Fraction Algorithm

Let ξ = ξ0 be an irrational real number. Then we can write

ξ0 = a0 + ξ−1
1 ,

where a0 = �ξ0� is the greatest integer ≤ ξ0 and where ξ1 > 1 is again an irrational
number. Hence the process can be repeated indefinitely:

ξ1 = a1 + ξ−1
2 , (a1 = �ξ1�, ξ2 > 1),

ξ2 = a2 + ξ−1
3 , (a2 = �ξ2�, ξ3 > 1),

· · ·
By construction, an ∈ Z for all n ≥ 0 and an ≥ 1 if n ≥ 1. The uniquely determined
infinite sequence [a0, a1, a2, . . .] is called the continued fraction expansion of ξ . The
continued fraction expansion of ξn is [an, an+1, an+2, . . .].

For example, the ‘golden ratio’ τ = (1 + √5)/2 has the continued fraction
expansion [1, 1, 1, . . .], since τ = 1 + τ−1. Similarly,

√
2 has the continued fraction

expansion [1, 2, 2, . . .], since
√

2+ 1 = 2+ 1/(
√

2+ 1).
The relation between ξn and ξn+1 may be written as a linear fractional transforma-

tion:

ξn = (anξn+1 + 1)/(1ξn+1 + 0).

An arbitrary linear fractional transformation

ξ = (αξ ′ + β)/(γ ξ ′ + δ)
is completely determined by its matrix

T =
(
α β
γ δ

)
.

This description is convenient, because if we make a further linear fractional transfor-
mation

ξ ′ = (α′ξ ′′ + β ′)/(γ ′ξ ′′ + δ′)
W.A. Coppel, Number Theory: An Introduction to Mathematics, Universitext, 
DOI: 10.1007/978-0-387-89486-7_4, © Springer Science + Business Media, LLC 2009
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with matrix

T ′ =
(
α′ β ′
γ ′ δ′

)
,

then, as is easily verified, the matrix

T ′′ =
(
α′′ β ′′
γ ′′ δ′′

)
of the composite transformation

ξ = (α′′ξ ′′ + β ′′)/(γ ′′ξ ′′ + δ′′)
is given by the matrix product T ′′ = T T ′.

It follows that, if we set

Ak =
(

ak 1
1 0

)
,

then the matrix of the linear fractional transformation which expresses ξ in terms of
ξn+1 is

Tn = A0 · · · An.

It is readily verified by induction that

Tn =
(

pn pn−1
qn qn−1

)
,

i.e.,

ξ = (pnξn+1 + pn−1)/(qnξn+1 + qn−1),

where the elements pn, qn satisfy the recurrence relations

pn = an pn−1 + pn−2, qn = anqn−1 + qn−2 (n ≥ 0), (1)

with the conventional starting values

p−2 = 0, p−1 = 1, resp. q−2 = 1, q−1 = 0. (2)

In particular,

p0 = a0, p1 = a1a0 + 1, q0 = 1, q1 = a1.

Since det Ak = −1, by taking determinants we obtain

pnqn−1 − pn−1qn = (−1)n+1 (n ≥ 0). (3)

By (1) also,
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pn pn−1
qn qn−1

)(
1 1
−an 0

)
=
(

pn−2 pn

qn−2 qn

)
,

from which, by taking determinants again, we get

pnqn−2 − pn−2qn = (−1)nan (n ≥ 0). (4)

It follows from (1)–(2) that pn and qn are integers, and from (3) that they are
coprime. Since an ≥ 1 for n ≥ 1, we have

1 = q0 ≤ q1 < q2 < · · · .
Thus qn ≥ n for n ≥ 1. (In fact, since qn ≥ qn−1+ qn−2 for n ≥ 1, it is readily shown
by induction that qn > τ

n−1 for n > 1, where τ = (1+√5)/2.)
Since qn > 0 for n ≥ 0, we can rewrite (3), (4) in the forms

pn/qn − pn−1/qn−1 = (−1)n+1/qn−1qn (n ≥ 1), (3)′

pn/qn − pn−2/qn−2 = (−1)nan/qn−2qn (n ≥ 2). (4)′

It follows that the sequence {p2n/q2n} is increasing, the sequence {p2n+1/q2n+1} is
decreasing, and every member of the first sequence is less than every member of the
second sequence. Hence both sequences have limits and actually, since qn → ∞, the
limits of the two sequences are the same.

From

ξ = (pnξn+1 + pn−1)/(qnξn+1 + qn−1)

we obtain

qnξ − pn = (pn−1qn − pnqn−1)/(qnξn+1 + qn−1) = (−1)n/(qnξn+1 + qn−1).

Hence ξ > pn/qn if n is even and ξ < pn/qn if n is odd. It follows that pn/qn → ξ as
n → ∞. Consequently different irrational numbers have different continued fraction
expansions.

Since ξ lies between pn/qn and pn+1/qn+1, we have

|pn+2/qn+2 − pn/qn | < |ξ − pn/qn| < |pn+1/qn+1 − pn/qn|.
By (3)′ and (4)′ we can rewrite this in the form

an+2/qnqn+2 < |ξ − pn/qn| < 1/qnqn+1 (n ≥ 0). (5)

Hence

q−1
n+2 < |qnξ − pn| < q−1

n+1,

which shows that |qnξ − pn| decreases as n increases. It follows that |ξ − pn/qn| also
decreases as n increases.

The rational number pn/qn is called the n-th convergent of ξ . The integers an

are called the partial quotients and the real numbers ξn the complete quotients in the
continued fraction expansion of ξ .

The continued fraction algorithm can be applied also when ξ = ξ0 is rational, but
in this case it is really the same as the Euclidean algorithm. For suppose ξn = bn/cn ,
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where bn and cn are integers and cn > 0. We can write

bn = ancn + cn+1,

where an = �ξn� and cn+1 is an integer such that 0 ≤ cn+1 < cn . Thus ξn+1 is defined
if and only if cn+1 �= 0, and then ξn+1 = cn/cn+1. Since the sequence of positive
integers {cn} cannot decrease for ever, the continued fraction algorithm for a rational
number ξ always terminates. At the last stage of the algorithm we have simply

ξN = aN ,

where aN > 1 if N > 0. The uniquely determined finite sequence [a0, a1, . . . , aN ] is
called the continued fraction expansion of ξ .

Convergents and complete quotients can be defined as before; all the properties
derived for ξ irrational continue to hold for ξ rational, provided we do not go past
n = N . The relation

ξ = (pN−1ξN + pN−2)/(qN−1ξN + qN−2)

now shows that

ξ = pN/qN .

Consequently different rational numbers have different continued fraction expansions.
Now let a0, a1, a2, . . . be any infinite sequence of integers with an ≥ 1 for n ≥ 1.

If we define integers pn, qn by the recurrence relations (1)–(2), our previous argu-
ment shows that the sequence {p2n/q2n} is increasing, the sequence {p2n+1/q2n+1} is
decreasing, and the two sequences have a common limit ξ . If we put ξ0 = ξ and

ξn+1 = −(qn−1ξ − pn−1)/(qnξ − pn) (n ≥ 0),

our previous argument shows also that ξn+1 > 1 (n ≥ 0). Since

ξn = an + ξ−1
n+1,

it follows that an = �ξn�. Hence ξ is irrational and [a0, a1, a2, . . .] is its continued
fraction expansion.

Similarly it may be seen that, for any finite sequence of integers a0, a1, . . . , aN ,
with an ≥ 1 for 1 ≤ n < N and aN > 1 if N > 0, there is a rational number ξ with
[a0, a1, . . . , aN ] as its continued fraction expansion.

We will write simply ξ = [a0, a1, . . . , aN ] if ξ is rational and ξ = [a0, a1, a2, . . .]
if ξ is irrational.

We will later have need of the following result:

Lemma 0 Let ξ be an irrational number with complete quotients ξn and convergents
pn/qn. If η is any irrational number different from ξ , and if we define ηn+1 by

η = (pnηn+1 + pn−1)/(qnηn+1 + qn−1),

then −1 < ηn < 0 for all large n.
Moreover, if ξ > 1 and η < 0, then −1 < ηn < 0 for all n > 0.
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Proof We have

ηn+1 = (qn−1η − pn−1)/(pn − qnη).

Hence

θn+1 := qnηn+1 + qn−1

= (pnqn−1 − pn−1qn)/(pn − qnη)

= (−1)n+1/(pn − qnη)

= (−1)n/qn(η − pn/qn).

Since pn/qn → ξ �= η and qn →∞, it follows that θn → 0. Since

ηn+1 = −(qn−1 − θn+1)/qn,

we conclude that −1 < ηn+1 < 0 for all large n.
Suppose now that ξ > 1 and η < 0. It is readily verified that ηn = an + 1/ηn+1.

But an = �ξn� ≥ 1 for all n ≥ 0. Consequently ηn < 0 implies 1/ηn+1 < −1 and
thus −1 < ηn+1 < 0. Since η0 < 0, it follows by induction that −1 < ηn < 0 for all
n > 0. �

The complete quotients of a real number may be characterized in the following
way:

Proposition 1 If η > 1 and

ξ = (pη + p′)/(qη+ q ′),

where p, q, p′, q ′ are integers such that pq ′ − p′q = ±1 and q > q ′ > 0, then η is a
complete quotient of ξ and p′/q ′, p/q are corresponding consecutive convergents of ξ .

Proof The relation pq ′ − p′q = ±1 implies that p and q are relatively prime. Since
q > 0, p/q has a finite continued fraction expansion

p/q = [a0, a1, . . . , an−1] = pn−1/qn−1

and q = qn−1, p = pn−1. In fact, since q > 1, we have n > 1, an−1 ≥ 2 and
qn−1 > qn−2. From

pn−1qn−2 − pn−2qn−1 = (−1)n = ε(pq ′ − p′q),

where ε = ±1, we obtain

pn−1(qn−2 − εq ′) = qn−1(pn−2 − εp′).

Hence qn−1 divides qn−2−εq ′. Since 0 < qn−2 < qn−1 and 0 < q ′ < qn−1, it follows
that q ′ = qn−2 if ε = 1 and q ′ = qn−1 − qn−2 if ε = −1. Hence p′ = pn−2 if ε = 1
and p′ = pn−1 − pn−2 if ε = −1. Thus

ξ = (pn−1η + pn−2)/(qn−1η + qn−2),

resp. (pn−1η + pn−1 − pn−2)/(qn−1η + qn−1 − qn−2).
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Since η > 1, its continued fraction expansion has the form [an, an+1, . . .], where
an ≥ 1. It follows that ξ has the continued fraction expansion

[a0, a1, . . . , an−1, an, . . .], resp. [a0, a1, . . . , an−1 − 1, 1, an, . . .].

In either case p′/q ′ and p/q are consecutive convergents of ξ and η is the correspond-
ing complete quotient. �

A complex number ζ is said to be equivalent to a complex number ω if there exist
integers a, b, c, d with ad − bc = ±1 such that

ζ = (aω + b)/(cω+ d),

and properly equivalent if actually ad − bc = 1. Then ω is also equivalent, resp.
properly equivalent, to ζ , since

ω = (dζ − b)/(−cζ + a).

By taking a = d = 1 and b = c = 0, we see that any complex number ζ is
properly equivalent to itself. It is not difficult to verify also that if ζ is equivalent to ω
and ω equivalent to χ , then ζ is equivalent to χ , and the same holds with ‘equivalence’
replaced by ‘proper equivalence’. Thus equivalence and proper equivalence are indeed
‘equivalence relations’.

For any coprime integers b, d , there exist integers a, c such that ad−bc = 1. Since

b/d = (a · 0+ b)/(c · 0+ d),

it follows that any rational number is properly equivalent to 0, and hence any two
rational numbers are properly equivalent. The situation is more interesting for irra-
tional numbers:

Proposition 2 Two irrational numbers ξ, η are equivalent if and only if their con-
tinued fraction expansions [a0, a1, a2, . . .], [b0, b1, b2, . . .] have the same ‘tails’, i.e.
there exist integers m ≥ 0 and n ≥ 0 such that

am+k = bn+k for all k ≥ 0.

Proof If the continued fraction expansions of ξ and η have the same tails, then
some complete quotient ξm of ξ coincides with some complete quotient ηn of η.
But ξ is equivalent to ξm , since ξ = (pm−1ξm + pm−2)/(qm−1ξm + qm−2) and
pm−1qm−2 − pm−2qm−1 = (−1)m , and similarly η is equivalent to ηn . Hence ξ and η
are equivalent.

Suppose on the other hand that ξ and η are equivalent. Then

η = (aξ + b)/(cξ + d)

for some integers a, b, c, d such that ad − bc = ±1. By changing the signs of all four
we may suppose that cξ + d > 0. From the relation

ξ = (pn−1ξn + pn−2)/(qn−1ξn + qn−2)



2 Diophantine Approximation 185

between ξ and its complete quotient ξn it follows that

η = (anξn + bn)/(cnξn + dn),

where

an = apn−1 + bqn−1, bn = apn−2 + bqn−2,

cn = cpn−1 + dqn−1, dn = cpn−2 + dqn−2,

and hence

andn − bncn = (ad − bc)(pn−1qn−2 − pn−2qn−1) = ±1.

The inequalities

|qn−1ξ − pn−1| < 1/qn, |qn−2ξ − pn−2| < 1/qn−1

imply that

|cn − (cξ + d)qn−1| < |c|/qn, |dn − (cξ + d)qn−2| < |c|/qn−1.

Since cξ + d > 0, qn−1 > qn−2 and qn →∞ as n →∞, it follows that cn > dn > 0
for sufficiently large n. Then, by Proposition 1, ξn is a complete quotient also of η.
Thus the continued fraction expansions of ξ and η have a common tail. �

2 Diophantine Approximation

The subject of Diophantine approximation is concerned with finding integer or
rational solutions for systems of inequalities. For problems in one dimension the
continued fraction algorithm is a most helpful tool, as we will now see.

Proposition 3 Let pn/qn(n ≥ 1) be a convergent of the real number ξ . If p, q are
integers such that 0 < q ≤ qn and p �= pn if q = qn, then

|qξ − p| ≥ |qn−1ξ − pn−1| > |qnξ − pn|
and

|ξ − p/q| > |ξ − pn/qn|.
Proof It follows from (3) that the simultaneous linear equations

λpn−1 + µpn = p, λqn−1 + µqn = q,

have integer solutions, namely

λ = (−1)n−1(pnq − qn p), µ = (−1)n(pn−1q − qn−1 p).

The hypotheses on p, q imply that λ �= 0. If µ = 0, then

|qξ − p| = |λ(qn−1ξ − pn−1)| ≥ |qn−1ξ − pn−1|.
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Thus we now assume µ �= 0. Since q ≤ qn , λ and µ cannot both be positive and hence,
since q > 0, λµ < 0. Then

qξ − p = λ(qn−1ξ − pn−1)+ µ(qnξ − pn)

and both terms on the right have the same sign. Hence

|qξ − p| = |λ(qn−1ξ − pn−1)| + |µ(qnξ − pn)|
≥ |qn−1ξ − pn−1|.

This proves the first statement of the proposition. The second statement follows,
since

|ξ − p/q| = q−1|qξ − p| > q−1|qnξ − pn|
= (qn/q)|ξ − pn/qn|
≥ |ξ − pn/qn|. �

To illustrate the application of Proposition 3, consider the continued fraction ex-
pansion of π = 3.14159265358 . . . .We easily find that it begins [3, 7, 15, 1, 292, . . .].
It follows that the first five convergents of π are

3/1, 22/7, 333/106, 355/113, 103993/33102.

Using the inequality |ξ − pn/qn| < 1/qnqn+1 and choosing n = 3 so that an+1 is
large, we obtain

0 < 355/113− π < 0.000000267 · · · .
The approximation 355/113 to π was first given by the Chinese mathematician
Zu Chongzhi in the 5th century A.D. Proposition 3 shows that it is a better approx-
imation to π than any other rational number with denominator≤ 113.

In general, a rational number p′/q ′, where p′, q ′ are integers and q ′ > 0, may be
said to be a best approximation to a real number ξ if

|ξ − p/q| > |ξ − p′/q ′|
for all different rational numbers p/q whose denominator q satisfies 0 < q ≤ q ′. Thus
Proposition 3 says that any convergent pn/qn (n ≥ 1) of ξ is a best approximation
of ξ . However, these are not the only best approximations. It may be shown that, if
pn−2/qn−2 and pn−1/qn−1 are consecutive convergents of ξ , then any rational number
of the form

(cpn−1 + pn−2)/(cqn−1 + qn−2),

where c is an integer such that an/2 < c ≤ an is a best approximation of ξ . Further-
more, every best approximation of ξ has this form if, when an is even, one allows also
c = an/2.

It follows that 355/113 is a better approximation to π than any other rational num-
ber with denominator less than 16604, since 292/2 = 146 and 146 × 113 + 106 =
16604.
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The complete continued fraction expansion of π is not known. However, it was
discovered by Cotes (1714) and then proved by Euler (1737) that the complete
continued fraction expansion of e = 2.71828182459 . . . is given by e − 1 =
[1, 1, 2, 1, 1, 4, 1, 1, 6, . . .].

The preceding results may also be applied to the construction of calendars. The
solar year has a length of about 365.24219 mean solar days. The continued fraction
expansion of λ = (0.24219)−1 begins [4, 7, 1, 3, 24, . . .]. Hence the first five conver-
gents of λ are

4/1, 29/7, 33/8, 128/31, 3105/752.

It follows that

0 < 128/31− λ < 0.0000428

and 128/31 is a better approximation to λ than any other rational number with denom-
inator less than 380. The Julian calendar, by adding a day every 4 years, estimated the
year at 365.25 days. The Gregorian calendar, by adding 97 days every 400 years, esti-
mates the year at 365.2425 days. Our analysis shows that, if we added instead 31 days
every 128 years, we would obtain the much more precise estimate of 365.2421875
days.

Best approximations also find an application in the selection of gear ratios, and con-
tinued fractions were already used for this purpose by Huygens (1682) in constructing
his planetarium (a mechanical model for the solar system).

The next proposition describes another way in which the continued fraction expan-
sion provides good rational approximations.

Proposition 4 If p, q are coprime integers with q > 0 such that, for some real num-
ber ξ ,

|ξ − p/q| < 1/2q2,

then p/q is a convergent of ξ .

Proof Let pn/qn be the convergents of ξ and assume that p/q is not a convergent. We
show first that q < qN for some N > 0. This is obvious if ξ is irrational. If ξ = pN/qN

is rational, then

1/qN ≤ |qpN − pqN |/qN = |qξ − p| < 1/2q.

Hence q < qN and N > 0.
It follows that qn−1 ≤ q < qn for some n > 0. By Proposition 3,

|qn−1ξ − pn−1| ≤ |qξ − p| < 1/2q.

Hence

1/qqn−1 ≤ |qpn−1 − pqn−1|/qqn−1

= |pn−1/qn−1 − p/q|
≤ |pn−1/qn−1 − ξ | + |ξ − p/q|
< 1/2qqn−1 + 1/2q2.

But this implies q < qn−1, which is a contradiction. �
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As an application of Proposition 4 we prove

Proposition 5 Let d be a positive integer which is not a square and m an integer such
that 0 < m2 < d. If x, y are positive integers such that

x2 − dy2 = m,

then x/y is a convergent of the irrational number
√

d.

Proof Suppose first that m > 0. Then x/y >
√

d and

0 < x/y −√d = m/(xy + y2
√

d) <
√

d/2y2
√

d = 1/2y2.

Hence x/y is a convergent of
√

d , by Proposition 4.
Suppose next that m < 0. Then y/x > 1/

√
d and

0 < y/x − 1/
√

d = −m/d(xy + x2/
√

d) < 1/
√

d(xy + x2/
√

d) < 1/2x2.

Hence y/x is a convergent of 1/
√

d. But, since 1/
√

d = 0 + 1/
√

d , the convergents
of 1/

√
d are 0/1 and the reciprocals of the convergents of

√
d . �

In the next section we will show that the continued fraction expansion of
√

d has
a particularly simple form.

It was shown by Vahlen (1895) that at least one of any two consecutive convergents
of ξ satisfies the inequality of Proposition 4. Indeed, since consecutive convergents lie
on opposite sides of ξ ,

|pn/qn − ξ | + |pn−1/qn−1 − ξ | = |pn/qn − pn−1/qn−1|
= 1/qnqn−1 ≤ 1/2q2

n + 1/2q2
n−1,

with equality only if qn = qn−1. This proves the assertion, except when n = 1 and
q1 = q0 = 1. But in this case a1 = 1, 1 ≤ ξ1 < 2 and hence

|ξ − p1/q1| = |ξ − a0 − 1| = 1− ξ−1
1 < 1/2.

It was shown by Borel (1903) that at least one of any three consecutive convergents
of ξ satisfies the sharper inequality

|ξ − p/q| < 1/
√

5q2.

In fact this is obtained by taking r = 1 in the following more general result, due to
Forder (1963) and Wright (1964).

Proposition 6 Let ξ be an irrational number with the continued fraction expansion
[a0, a1, . . .] and the convergents pn/qn. If, for some positive integer r ,

|ξ − pn/qn| ≥ 1/(r2 + 4)1/2q2
n for n = m − 1,m,m + 1,

then am+1 < r .

Proof If we put s = (r2 + 4)1/2/2, then s is irrational. For otherwise 2s would be an
integer and from (2s + r)(2s − r) = 4 we would obtain 2s + r = 4, 2s − r = 1 and
hence r = 3/2, which is a contradiction.

By the hypotheses of the proposition,

1/qm−1qm = |pm−1/qm−1 − pm/qm | = |ξ − pm−1/qm−1| + |ξ − pm/qm |
≥ (q−2

m−1 + q−2
m )/2s



2 Diophantine Approximation 189

and hence

q2
m − 2sqm−1qm + q2

m−1 ≤ 0.

Furthermore, this inequality also holds when qm−1, qm are replaced by qm, qm+1. Con-
sequently qm−1/qm and qm+1/qm both satisfy the inequality t2 − 2st + 1 ≤ 0. Since

t2 − 2st + 1 = (t − s + r/2)(t − s − r/2),

it follows that

s − r/2 < qm−1/qm < qm+1/qm < s + r/2,

the first and last inequalities being strict because s is irrational. Hence

am+1 = qm+1/qm − qm−1/qm < s + r/2 − (s − r/2) = r. �

It follows from Proposition 6 with r = 1 that, for any irrational number ξ , there
exist infinitely many rational numbers p/q = pn/qn such that

|ξ − p/q| < 1/
√

5q2.

Here the constant
√

5 is best possible. For take any c >
√

5. If there exists a rational
number p/q , with q > 0 and (p, q) = 1, such that

|ξ − p/q| < 1/cq2,

then p/q is a convergent of ξ , by Proposition 4. But for any convergent pn/qn we have

|ξ − pn/qn | = 1/qn(qnξn+1 + qn−1).

If we take ξ = τ := (1+√5)/2, then also ξn+1 = τ and pn = qn+1. Hence

|τ − qn+1/qn| = 1/q2
n (τ + qn−1/qn),

where τ + qn−1/qn → τ + τ−1 = √5, since qn/qn−1 → τ . Thus, for any c >
√

5,
there exist at most finitely many rational numbers p/q such that

|τ − p/q| < 1/cq2.

It follows from Proposition 6 with r = 2 that if

|ξ − pn/qn| ≥ 1/
√

8q2
n for all large n,
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then an = 1 for all large n. The constant
√

8 is again best possible, since a similar
argument to that just given shows that if σ := 1 + √2 = [2, 2, . . .] then, for any
c >

√
8, there exist at most finitely many rational numbers p/q such that

|σ − p/q| < 1/cq2.

It follows from Proposition 6 with r = 3 that if

|ξ − pn/qn| ≥ 1/
√

13q2
n for all large n,

then an ∈ {1, 2} for all large n.
For any irrational ξ , with continued fraction expansion [a0, a1, . . .] and conver-

gents pn/qn , put

M(ξ) = lim
n→∞ q−1

n |qnξ − pn|−1.

It follows from Proposition 2 that M(ξ) = M(η) if ξ and η are equivalent. The results
just established show that M(ξ) ≥ √5 for every ξ . If M(ξ) <

√
8, then an = 1 for all

large n; hence ξ is equivalent to τ and M(ξ) = M(τ ) = √5. If M(ξ) <
√

13, then
an ∈ {1, 2} for all large n.

An irrational number ξ is said to be badly approximable if M(ξ) < ∞. The
inequalities

an+2/qnqn+2 < |ξ − pn/qn| < 1/qnqn+1

imply

an+1 ≤ qn+1/qn < q−1
n |qnξ − pn|−1

and

q−1
n |qnξ − pn|−1 < qn+2/an+2qn ≤ qn+1/qn + 1 ≤ an+1 + 2.

Hence ξ is badly approximable if and only if its partial quotients an are bounded.
It is obvious that ξ is badly approximable if there exists a constant c > 0 such that

|ξ − p/q| > c/q2

for every rational number p/q . Conversely, if ξ is badly approximable, then there
exists such a constant c > 0. This is clear when p and q are coprime integers, since if
p/q is not a convergent of ξ then, by Proposition 4,

|ξ − p/q| ≥ 1/2q2.

On the other hand, if p = λp′, q = λq ′, where p′, q ′ are coprime, then

|ξ − p/q| = |ξ − p′/q ′| ≥ c/q ′2 = λ2c/q2 ≥ c/q2.

Some of the applications of badly approximable numbers stem from the following
characterization: a real number θ is badly approximable if and only if there exists a
constant c′ > 0 such that

|e2π iqθ − 1| ≥ c′/q for all q ∈ N.
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To establish this, put qθ = p + δ, where p ∈ Z and |δ| ≤ 1/2. Then

|e2π iqθ − 1| = 2| sinπqθ | = 2| sinπδ|
and the result follows from the previous characterization, since (sin x)/x decreases
from 1 to 2/π as x increases from 0 to π/2.

3 Periodic Continued Fractions

A complex number ζ is said to be a quadratic irrational if it is a root of a monic
quadratic polynomial t2+r t+ s with rational coefficients r, s, but is not itself rational.
Since ζ /∈ Q, the rational numbers r, s are uniquely determined by ζ .

Equivalently, ζ is a quadratic irrational if it is a root of a quadratic polynomial

f (t) = At2 + Bt + C

with integer coefficients A, B,C such that B2 − 4AC is not the square of an integer.
The integers A, B,C are uniquely determined up to a common factor and are uniquely
determined up to sign if we require that they have greatest common divisor 1. The
corresponding integer D = B2 − 4AC is then uniquely determined and is called the
discriminant of ζ . A quadratic irrational is real if and only if its discriminant is positive.

It is readily verified that if a quadratic irrational ζ is equivalent to a complex num-
ber ω, i.e. if

ζ = (αω + β)/(γω + δ),
where α, β, γ, δ ∈ Z and αδ − βγ = ±1, then ω is also a quadratic irrational. More-
over, if ζ is a root of the quadratic polynomial f (t) = At2+Bt+C , where A, B,C are
integers with greatest common divisor 1, then ω is a root of the quadratic polynomial

g(t) = A′t2 + B ′t + C ′,

where

A′ = α2 A + αγ B + γ 2C,

B ′ = 2αβA+ (αδ + βγ )B + 2γ δC,

C ′ = β2 A + βδB + δ2C,

and hence

B ′2 − 4A′C ′ = B2 − 4AC = D.

Since

A = δ2 A′ − γ δB ′ + γ 2C ′,
B = −2βδA′ + (αδ + βγ )B ′ − 2αγC ′,
C = β2 A′ − αβB ′ + α2C ′,

A′, B ′,C ′ also have greatest common divisor 1.
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If ζ is a quadratic irrational, we define the conjugate ζ ′ of ζ to be the other root of
the quadratic polynomial f (t) which has ζ as a root. If

ζ = (αω + β)/(γω + δ),
where α, β, γ, δ ∈ Z and αδ − βγ = ±1, then evidently

ζ ′ = (αω′ + β)/(γω′ + δ).
Suppose now that ζ = ξ is real and that the integers A, B,C are uniquely

determined by requiring not only (A, B,C) = 1 but also A > 0. The real quadratic
irrational ξ is said to be reduced if ξ > 1 and −1 < ξ ′ < 0. If ξ is reduced then, since
ξ > ξ ′, we must have

ξ = (−B +√D)/2A, ξ ′ = (−B −√D)/2A.

Thus the inequalities ξ > 1 and −1 < ξ ′ < 0 imply

0 <
√

D + B < 2A <
√

D − B.

Conversely, if the coefficients A, B,C of f (t) satisfy these inequalities, where D =
B2 − 4AC > 0, then one of the roots of f (t) is reduced. For B < 0 < A and so the
roots ξ, ξ ′ of f (t) have opposite signs. If ξ is the positive root, then ξ and ξ ′ are given
by the preceding formulas and hence ξ > 1,−1 < ξ ′ < 0. It should be noted also that
if ξ is reduced, then B2 < D and hence C < 0.

We return now to continued fractions. If ξ is a real quadratic irrational, then its
complete quotients ξn are all quadratic irrationals and, conversely, if some complete
quotient ξn is a quadratic irrational, then ξ is also a quadratic irrational.

The continued fraction expansion [a0, a1, a2, . . .] of a real number ξ is said to be
eventually periodic if there exist integers m ≥ 0 and h > 0 such that

an = an+h for all n ≥ m.

The continued fraction expansion is then conveniently denoted by

[a0, a1, . . . , am−1, am, . . . , am+h−1].

The continued fraction expansion is said to be periodic if it is eventually periodic with
m = 0.

Equivalently, the continued fraction expansion of ξ is eventually periodic if ξm =
ξm+h for some m ≥ 0 and h > 0, and periodic if this holds with m = 0. The period of
the continued fraction expansion, in either case, is the least positive integer h with this
property.

We are going to show that there is a close connection between real quadratic irra-
tionals and eventually periodic continued fractions.

Proposition 7 A real number ξ is a reduced quadratic irrational if and only if its
continued fraction expansion is periodic.

Moreover, if ξ = [a0, . . . , ah−1], then −1/ξ ′ = [ah−1, . . . , a0].
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Proof Suppose first that ξ = [a0, . . . , ah−1] has a periodic continued fraction expan-
sion. Then a0 = ah ≥ 1 and hence ξ > 1. Furthermore, since

ξ = (ph−1ξh + ph−2)/(qh−1ξh + qh−2)

and ξh = ξ , ξ is an irrational root of the quadratic polynomial

f (t) = qh−1t2 + (qh−2 − ph−1)t − ph−2.

Thus ξ is a quadratic irrational. Since f (0) = −ph−2 < 0 and

f (−1) = qh−1 − qh−2 + ph−1 − ph−2 > 0

(even for h = 1), it follows that −1 < ξ ′ < 0. Thus ξ is reduced.
If ξ is a reduced quadratic irrational, then its complete quotients ξn , which are

all quadratic irrationals, are also reduced, by Lemma 0 with η = ξ ′. Since ξ ′n =
an + 1/ξ ′n+1 and −1 < ξ ′n < 0, we have

an = �−1/ξ ′n+1�.
Thus ξn, ξ ′n are the roots of a uniquely determined polynomial

fn(t) = Ant2 + Bnt + Cn,

where An, Bn,Cn are integers with greatest common divisor 1 and An > 0. Further-
more, D = B2

n−4AnCn is independent of n and positive. Since ξn is reduced, we have

ξn = (−Bn +
√

D)/2An, ξ ′n = (−Bn −
√

D)/2An,

where

0 <
√

D + Bn < 2An <
√

D − Bn.

If we put g = �√D�, then −Bn ∈ {1, . . . , g} and, for a given value of Bn , there are at
most −Bn possible values for An . Consequently the number of distinct pairs An, Bn

does not exceed 1+ · · · + g = g(g + 1)/2. Hence we must have

ξ j = ξk , ξ ′j = ξ ′k
for some j, k such that 0 ≤ j < k ≤ g(g+ 1)/2. If j = 0, this already proves that the
continued fraction expansion of ξ is periodic. If j > 0, then

a j−1 = �−1/ξ ′j� = �−1/ξ ′k� = ak−1

and hence

ξ j−1 = a j−1 + 1/ξ j = ak−1 + 1/ξk = ξk−1.

Repeating this argument j times, we obtain ξ0 = ξk− j . Thus ξ has a periodic continued
fraction expansion in any case.

If the period is h, so that ξ = [a0, . . . , ah−1], then ξ ′0 = ξ ′h and the relation
an = �−1/ξ ′n+1� implies that −1/ξ ′ = [ah−1, . . . , a0]. �



194 IV Continued Fractions and Their Uses

The proof of Proposition 7 shows that the period is at most g(g + 1)/2 and thus is
certainly less than D. By counting the pairs of integers A, B for which not only

0 <
√

D + B < 2A <
√

D − B,

but also D ≡ B2 mod 4A, it may be shown that the period is at most O(
√

D log D).
(The Landau order symbol used here is defined under ‘Notations’.)

Proposition 8 A real number ξ is a quadratic irrational if and only if its continued
fraction expansion is eventually periodic.

Proof Suppose first that the continued fraction expansion of ξ is eventually peri-
odic. Then some complete quotient ξm has a periodic continued fraction expansion
and hence is a quadratic irrational, by Proposition 7. But this implies that ξ also is a
quadratic irrational.

Suppose next that ξ is a quadratic irrational. We will prove that the continued
fraction expansion of ξ is eventually periodic by showing that some complete quo-
tient ξn+1 is reduced. Since we certainly have ξn+1 > 1, we need only show that
−1 < ξ ′n+1 < 0. But ξ ′ �= ξ and ξ ′ = (pnξ

′
n+1 + pn−1)/(qnξ

′
n+1 + qn−1). Hence, by

Lemma 0,−1 < ξ ′n+1 < 0 for all large n. �

It follows from Proposition 8 that any real quadratic irrational is badly approx-
imable, since its partial quotients are bounded. It follows from Propositions 7 and 8
that there are only finitely many inequivalent quadratic irrationals with a given dis-
criminant D > 0, since any real quadratic irrational is equivalent to a reduced one and
only finitely many pairs of integers A, B satisfy the inequalities

0 <
√

D + B < 2A <
√

D − B.

Proposition 8 is due to Euler and Lagrange. It was first shown by Euler (1737) that
a real number is a quadratic irrational if its continued fraction expansion is eventually
periodic, and the converse was proved by Lagrange (1770). Proposition 7 was first
stated and proved by Galois (1829), although it was implicit in the work of Lagrange
(1773) on the reduction of binary quadratic forms. Proposition 7 provides a simple
proof of the following result due to Legendre:

Proposition 9 For any real number ξ , the following two conditions are equivalent:

(i) ξ > 1, ξ is irrational and ξ2 is rational;
(ii) the continued fraction expansion of ξ has the form [a0, a1, . . . , ah], where ah =

2a0 and ai = ah−i for i = 1, . . . , h − 1.

Proof Suppose first that (i) holds. Then ξ is a quadratic irrational, since it is a root of
the polynomial t2 − ξ2. The continued fraction expansion of ξ cannot be periodic, by
Proposition 7, since ξ ′ = −ξ < −1. However, the continued fraction expansion of ξ1
is periodic, since ξ1 > 1 and 1/ξ ′1 = ξ ′ − a0 < −1. Thus ξ1 = [a1, . . . , ah] for some
h ≥ 1. By Proposition 7 also,

−1/ξ ′1 = [ah, . . . , a1].
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But

−1/ξ ′1 = ξ + a0 = [2a0, a1, . . . , ah].

Comparing this with the previous expression, we see that (ii) holds.
Suppose, conversely, that (ii) holds. Then ξ is irrational, a0 > 0 and hence ξ > 1.

Moreover ξ1 = [a1, . . . , ah] is a reduced quadratic irrational and

−1/ξ ′1 = [ah, . . . , a1] = [2a0, a1, . . . , ah] = a0 + ξ.
Hence ξ ′ = a0 + 1/ξ ′1 = −ξ and ξ2 = −ξξ ′ is rational. �

4 Quadratic Diophantine Equations

We are interested in finding all integers x, y such that

ax2 + bxy + cy2 + dx + ey + f = 0, (6)

where a, . . . , f are given integers. Writing (6) as a quadratic equation for x ,

ax2 + (by + d)x + cy2 + ey + f = 0,

we see that if a solution exists for some y, then the discriminant

(by + d)2 − 4a(cy2 + ey + f )

must be a perfect square. Thus

(b2 − 4ac)y2 + 2(bd − 2ae)y + d2 − 4a f = z2

for some integer z. If we put

p := b2 − 4ac, q := bd − 2ae, r := d2 − 4a f,

we have a quadratic equation for y,

py2 + 2qy + r − z2 = 0,

whose discriminant must also be a perfect square. Thus

q2 − p(r − z2) = w2

for some integer w. Thus if (6) has a solution in integers, so also does the equation

w2 − pz2 = q2 − pr.

Moreover, from all solutions in integers of the latter equation we may obtain, by
retracing our steps, all solutions in integers of the original equation (6).

Thus we now restrict our attention to finding all integers x, y such that

x2 − dy2 = m, (7)

where d and m are given integers.
The equation (7) has the remarkable property, which was known to Brahmagupta

(628) and later rediscovered by Euler (1758), that if we have solutions for two values
m1,m2 of m, then we can derive a solution for their product m1m2. This follows from
the identity

(x2
1 − dy2

1)(x
2
2 − dy2

2) = x2 − dy2,
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where

x = x1x2 + dy1y2, y = x1y2 + y1x2.

(In fact, Brahmagupta’s identity is just a restatement of the norm relation N(αβ) =
N(α)N(β) for elements α, β of a quadratic field.) In particular, from two solutions of
the equation

x2 − dy2 = 1, (8)

a third solution can be obtained by composition in this way.
Composition of solutions is evidently commutative and associative. In fact the

solutions of (8) form an abelian group under composition, with the trivial solution 1, 0
as identity element and the solution x , −y as the inverse of the solution x, y. Also, by
composing an arbitrary solution x, y of (8) with the trivial solution −1, 0 we obtain
the solution −x,−y.

Suppose first that d < 0. Evidently (7) is insoluble if m < 0 and x = y = 0 is
the only solution if m = 0. If m > 0, there are at most finitely many solutions and we
may find them all by testing, for each non-negative integer y ≤ (−m/d)1/2, whether
m + dy2 is a perfect square.

Suppose now that d > 0. If d = e2 is a perfect square, then (7) is equivalent to the
finite set of simultaneous linear Diophantine equations

x − ey = m′, x + ey = m′′,

where m′,m′′ are any integers such that m′m′′ = m. Thus we now suppose also that d
is not a perfect square. Then ξ = √d is irrational.

If 0 < m2 < d then, by Proposition 5, any positive solution x, y of (7) has the form
x = pn , y = qn , where pn/qn is a convergent of ξ . In particular, all positive solutions
of x2 − dy2 = ±1 are obtained in this way.

On the other hand, as we now show, if pn/qn is any convergent of ξ then

|p2
n − dq2

n | < 2
√

d.

If n = 0, then |p2
0 − dq2

0 | = |a2
0 − d|, where a0 <

√
d < a0 + 1 and so

0 < d−a2
0 <

√
d+a0 < 2

√
d . Now suppose n > 0. Then |pn−qnξ | < q−1

n+1 and hence

|p2
n − dq2

n | = |pn − qnξ ||pn − qnξ + 2qnξ |
< q−1

n+1(q
−1
n+1 + 2qnξ) < 2ξ.

An easy congruence argument shows that the equation

x2 − dy2 = −1 (9)

has no solutions in integers unless d ≡ 1 mod 4 or d ≡ 2 mod 8. It will now be shown
that the equation (8), on the other hand, always has solutions in positive integers.
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Proposition 10 Let d be a positive integer which is not a perfect square. Suppose
ξ = √d has complete quotients ξn, convergents pn/qn, and continued fraction expan-
sion [a0, a1, . . . , ah] of period h.

Then p2
n − dq2

n = ±1 if and only if n = kh − 1 for some integer k > 0 and in this
case

p2
kh−1 − dq2

kh−1 = (−1)kh .

Proof From ξ = (pnξn+1 + pn−1)/(qnξn+1 + qn−1) we obtain

(pn − qnξ)ξn+1 = qn−1ξ − pn−1.

Multiplying by (−1)n+1(pn + qnξ), we get

snξn+1 = ξ + rn,

where

sn = (−1)n+1(p2
n − dq2

n), rn = (−1)n(pn−1 pn − dqn−1qn).

Thus sn and rn are integers. Moreover, since ξn+1+kh = ξn+1 and ξ is irrational,
sn+kh = sn and rn+kh = rn for all positive integers k.

If p2
n − dq2

n = ±1, then actually p2
n − dq2

n = (−1)n+1, since pn/qn is less than or
greater than ξ according as n is even or odd. Hence sn = 1 and ξn+1 = ξ + rn . Taking
integral parts, we get an+1 = a0 + rn . Consequently

ξ−1
n+2 = ξn+1 − an+1 = ξ − a0 = ξ−1

1 .

Thus ξn+2 = ξ1, which implies that n = kh − 1 for some positive integer k.
On the other hand, if n = kh − 1 for some positive integer k, then ξn+2 = ξ1 and

hence

ξn+1 − an+1 = ξ − a0.

Thus ξn+1 = ξ + an+1 − a0, which implies that sn = 1, since ξ is irrational. �

It follows from Proposition 10 that, if d is a positive integer which is not a perfect
square, then the equation (8) always has a solution in positive integers and all such
solutions are given by

x = pkh−1, y = qkh−1 (k = 1, 2, . . .) if h is even,

x = p2kh−1, y = q2kh−1 (k = 1, 2, . . .) if h is odd.

The least solution in positive integers, obtained by taking k = 1, is called the funda-
mental solution of (8).

On the other hand, the equation (9) has a solution in positive integers if and only if
h is odd and all such solutions are then given by

x = pkh−1, y = qkh−1 (k = 1, 3, 5, . . .).
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The least solution in positive integers, obtained by taking k = 1, is called the funda-
mental solution of (9).

To illustrate these results, suppose d = a2+1 for some a ∈ N. Since
√

d = [a, 2a],
the equation x2− dy2 = −1 has the fundamental solution x = a, y = 1 and the equa-
tion x2− dy2 = 1 has the fundamental solution x = 2a2+ 1, y = 2a. Again, suppose
d = a2+a for some a ∈ N. Since

√
d = [a, 2, 2a], the equation x2−dy2 = −1 is in-

soluble, but the equation x2−dy2 = 1 has the fundamental solution x = 2a+1, y = 2.
It is not difficult to obtain upper bounds for the fundamental solutions. Since

ξ = √
d is a root of the polynomial t2 − d and since its complete quotients ξn are

reduced for n ≥ 1, they have the form

ξn = (−Bn +
√

D)/2An,

where D = 4d, 0 < −Bn <
√

D and An ≥ 1. Therefore a0 = �ξ� < √
d and

an = �ξn� < 2
√

d for n ≥ 1. If we put α = �√d�, it is easily shown by induction that

pn ≤ (α + α−1)n+1/2, qn ≤ (α + α−1)n (n ≥ 0).

These inequalities may now be combined with any upper bound for the period h
(cf. §3).

Under composition, the fundamental solution of (8) generates an infinite cyclic
group C of solutions of (8). Furthermore, by composing the fundamental solution
of (9) with any element of C we obtain infinitely many solutions of (9). We are go-
ing to show that, by composing also with the trivial solution −1, 0 of (8), all integral
solutions of (8) and (9) are obtained in this way. This can be proved by means of con-
tinued fractions, but the following argument due to Nagell (1950) provides additional
information.

Proposition 11 Let d be a positive integer which is not a perfect square, let m be a
positive integer, and let x0, y0 be the fundamental solution of the equation (8).

If the equation

u2 − dv2 = m (10)

has an integral solution, then it actually has one for which u2 ≤ m(x0 + 1)/2,
dv2 ≤ m(x0 − 1)/2.

Similarly, if the equation

u2 − dv2 = −m (11)

has an integral solution, then it actually has one for which u2 ≤ m(x0 − 1)/2,
dv2 ≤ m(x0 + 1)/2.

Proof By composing a given solution of (10) with any solution in the subgroup C of
solutions of (8) which is generated by the solution x0, y0 we obtain again a solution
of (10). Let u0, v0 be the solution of (10) obtained in this way for which v0 has its least
non-negative value. Then u2

0 = m + dv2
0 also has its least value and by changing the

sign of u0 we may suppose u0 > 0. By composing the solution u0, v0 of (10) with the
inverse of the fundamental solution x0, y0 of (8) we obtain the solution

u = x0u0 − dy0v0, v = x0v0 − y0u0
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of (10). Since

u = x0u0 − dy0v0 = x0u0 − [(x2
0 − 1)(u2

0 − m)]1/2 > 0,

we must have

x0u0 − dy0v0 ≥ u0.

Hence

(x0 − 1)2u2
0 ≥ d2y2

0v
2
0 = (x2

0 − 1)(u2
0 − m).

Thus

(x0 − 1)/(x0 + 1) ≥ 1− m/u2
0,

which implies u2
0 ≤ m(x0 + 1)/2 and hence dv2

0 ≤ m(x0 − 1)/2.
For the equation (11) we begin in the same way. Then from

(x0v0)
2 = (y2

0 + 1/d)(u2
0 + m) > y2

0u2
0

we obtain v = x0v0 − y0u0 > 0 and hence x0v0 − y0u0 ≥ v0. Thus

d(x0 − 1)2v2
0 ≥ dy2

0u2
0

and hence

(x0 − 1)2(u2
0 + m) ≥ (x2

0 − 1)u2
0.

The argument can now be completed in the same way as before. �

The proof of Proposition 11 shows that if (10), or (11), has an integral solution,
then we obtain all solutions by finding the finitely many solutions u, v which satisfy
the inequalities in the statement of Proposition 11 and composing them with all solu-
tions in C of (8).

The only solutions x, y of (8) for which x2 ≤ (x0 + 1)/2 are the trivial ones x =
±1, y = 0. Hence any solution of (8) is in C or is obtained by reversing the signs of a
solution in C .

If u, v is a positive solution of (9) such that u2 ≤ (x0 − 1)/2, dv2 ≤ (x0 + 1)/2,
then x = u2 + dv2, y = 2uv is a positive solution of (8) such that x ≤ x0.
Hence (x, y) = (x0, y0) is the fundamental solution of (8) and u2 = (x0 − 1)/2,
dv2 = (x0+ 1)/2. Thus (u, v) is uniquely determined and is the fundamental solution
of (9). Hence, if (9) has a solution, any solution is obtained by composing the funda-
mental solution of (9) with an element of C or by reversing the signs of such a solution.

A necessary condition for the solubility in integers of the equation (9) is that d
may be represented as a sum of two squares. For the period h of the continued fraction
expansion ξ = √d = [a0, a1, . . . , ah] must be odd, say h = 2m + 1. It follows from
Proposition 9 that

ξm+1 = [am, . . . , a1, 2a0, a1 . . . , am],
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and then from Proposition 7 that ξm+1 = −1/ξ ′m+1. But, by the proof of Proposi-
tion 10,

smξm+1 = ξ + rm ,

where sm and rm are integers. Hence

−1 = ξm+1ξ
′
m+1 = (ξ + rm)(−ξ + rm)/s

2
m = (r2

m − d)/s2
m,

and thus d = r2
m + s2

m . The formulas for sm and rm show that, if pn/qn are the conver-
gents of

√
d , then d = x2 + y2 with

x = pm−1 pm − dqm−1qm, y = p2
m − dq2

m.

Unfortunately, the equation (9) may be insoluble, even though d is a sum of two
squares. As an example, take d = 34 = 52 + 32. It is easily verified that the funda-
mental solution of the equation x2 − 34y2 = 1 is x0 = 35, y0 = 6. If the equation
u2 − 34v2 = −1 were soluble in integers, then, by Proposition 11, it would have a
solution u, v such that 34v2 ≤ 18, which is clearly impossible.

As already observed, the equation (9) has no integral solutions if d ≡ 3 mod 4.
It will now be shown that (9) does have integral solutions if d = p is prime and
p ≡ 1 mod 4. For let x, y be the fundamental solution of the equation (8). Since any
square is congruent to 0 or 1 mod 4, we must have y2 ≡ 0 and x2 ≡ 1. Thus y = 2z
for some positive integer z and

(x − 1)(x + 1) = 4 pz2.

Since x is odd, x − 1 and x + 1 have greatest common divisor 2. It follows that there
exist positive integers u, v such that

either x − 1 = 2 pu2, x + 1 = 2v2 or x − 1 = 2u2, x + 1 = 2 pv2.

In the first case v2 − pu2 = 1, which contradicts the choice of x, y as the funda-
mental solution of (8), since v < x . Thus only the second case is possible and then
u2 − pv2 = −1. (In fact, u, v is the fundamental solution of (9).)

This proves again that any prime p ≡ 1 mod 4 may be represented as a sum of
two squares, and moreover shows that an explicit construction for this representation
is provided by the continued fraction expansion of

√
p.

The representation of a prime p ≡ 1 mod 4 in the form x2 + y2 is actually unique,
apart from interchanging x and y and changing their signs. For suppose

x2 + y2 = p = u2 + v2,

where x, y, u, v are all positive integers. Then

y2u2 − x2v2 = (p − x2)u2 − x2(p − u2) = p(u2 − x2).

Hence yu ≡ εxv mod p, where ε = ±1. On the other hand,

p2 = (x2 + y2)(u2 + v2) = (xu + εyv)2 + (xv − εyu)2.
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Since the second term on the right is divisible by p2, we must have xv = εyu or
xu = −εyv. Evidently ε = 1 in the first case and ε = −1 in the second case. Since
(x, y) = (u, v) = 1, it follows that either x = u, y = v or x = v, y = u.

The equation x2 − dy2 = 1, where d is a positive integer which is not a per-
fect square, is generally known as Pell’s equation, following an erroneous attribution
of Euler. The problem of finding its integral solutions was issued as a challenge by
Fermat (1657). In the same year Brouncker and Wallis gave a method of solution which
is essentially the same as the solution by continued fractions. The first complete proof
that a nontrivial solution always exists was given by Lagrange (1768).

Unknown to them all, the problem had been considered centuries earlier by Hindu
mathematicians. Special cases of Pell’s equation were solved by Brahmagupta (628)
and a general method of solution, which was described by Bhascara II (1150), was
known to Jayadeva at least a century earlier. No proofs were given, but their method
is a modification of the solution by continued fractions and is often faster in practice.
Bhascara found the fundamental solution of the equation x2 − 61y2 = 1, namely

x = 1766319049, y = 226153980,

a remarkable achievement for the era.

5 The Modular Group

We recall that a complex number w is said to be equivalent to a complex number z if
there exist integers a, b, c, d with ad − bc = ±1 such that

w = (az + b)/(cz + d).

Since we can write

w = (az + b)(cz̄ + d)/|cz + d|2,
the imaginary parts are related by

Iw = (ad − bc)I z/|cz + d|2.
Consequently Iw and I z have the same sign if ad − bc = 1 and opposite signs if
ad − bc = −1. Since the map z → −z interchanges the upper and lower half-planes,
we may restrict attention to z’s in the upper half-plane H = {z ∈ C : I z > 0} and
to w’s which are properly equivalent to them, i.e. with ad − bc = 1.

A modular transformation is a map f : H → H of the form

f (z) = (az + b)/(cz + d),

where a, b, c, d ∈ Z and ad − bc = 1. Such a map is bijective and its inverse is again
a modular transformation:

f −1(z) = (dz − b)/(−cz + a).
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Furthermore, if

g(z) = (a′z + b′)/(c′z + d ′)

is another modular transformation, then the composite map h = g ◦ f is again a mod-
ular transformation:

h(z) = (a′′z + b′′)/(c′′z + d ′′),

where

a′′ = a′a + b′c, b′′ = a′b + b′d,
c′′ = c′a + d ′c, d ′′ = c′b + d ′d,

and hence

a′′d ′′ − b′′c′′ = (a′d ′ − b′c′)(ad − bc) = 1.

It follows that the set Γ of all modular transformations is a group. Moreover, compo-
sition of modular transformations corresponds to multiplication of the corresponding
matrices: (

a′′ b′′
c′′ d ′′

)
=
(

a′ b′
c′ d ′

)(
a b
c d

)
.

However, the same modular transformation is obtained if the signs of a, b, c, d are all
changed (and in no other way). It follows that the modular group Γ is isomorphic to
the factor group SL2(Z)/{±I } of the special linear group SL2(Z) of all 2× 2 integer
matrices with determinant 1 by its centre {±I }.
Proposition 12 The modular group Γ is generated by the transformations

T (z) = z + 1, S(z) = −1/z.

Proof It is evident that S, T ∈ Γ and S2 = I is the identity transformation. Any
g ∈ Γ has the form

g(z) = (az + b)/(cz + d),

where a, b, c, d ∈ Z and ad − bc = 1. If c = 0, then a = d = ±1 and g = T m ,
where m = b/d ∈ Z. Similarly if a = 0, then b = −c = ±1 and g = ST m , where
m = d/c ∈ Z. Suppose now that ac �= 0. For any n ∈ Z we have

ST −n g(z) = (a′z + b′)/(c′z + d ′),

where a′ = −c, b′ = −d , c′ = a − nc and d ′ = b − nd . We can choose n = m1 so
that for g1 = ST −m1 g we have |c′| < |a| and hence |a′| + |c′| < |a| + |c|. If a′c′ �= 0,
the argument can be repeated with g1 in place of g. After finitely many repetitions we
must obtain

ST −mk · · · ST −m1 g = T m or ST m .
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Since S−1 = S and (T n)−1 = T−n , it follows that

g = T m1 S · · · T mk ST m or g = T m1 S · · · T mk T m . �

The proof of Proposition 12 may be regarded as an analogue of the continued
fraction algorithm, since

T m1 S · · · T mk ST m z = m1 − 1

m2 − . . .
− 1

mk − 1

m + z

.

Obviously Γ is also generated by S and R := ST . The transformation R has
order 3, since

R(z) = −1/(z + 1), R2(z) = −(z + 1)/z, R3(z) = z.

We are going to show that all other relations between the generators S and R are
consequences of the relations S2 = R3 = I , so that Γ is the free product of a cyclic
group of order 2 and a cyclic group of order 3.

Partition the upper half-plane H by putting

A = {z ∈H : Rz < 0}, B = {z ∈ H : Rz ≥ 0}.
It is easily verified that

S A ⊂ B, RB ⊂ A, R2 B ⊂ A

(where the inclusions are strict). If g′ = S Rε1 S Rε2 · · · S Rεn for some n ≥ 1, where
ε j ∈ {1, 2}, it follows that g′B ⊂ B and g′S A ⊂ B . Similarly, if g′′ = Rε1 S · · · Rεn ,
then g′′B ⊂ A and g′′S A ⊂ A. By taking account of the relations S2 = R3 = I , every
g ∈ Γ can be written in one of the forms

I, S, g′, g′′, g′S, g′′S.

But, by what has just been said, no element except the first is the identity transforma-
tion.

The modular group is discrete, since there exists a neighbourhood of the identity
transformation which contains no other element of Γ .

Proposition 13 The open set

F = {z ∈ H : −1/2 < Rz < 1/2, |z| > 1}
(see Figure 1) is a fundamental domain for the modular group Γ , i.e. distinct points
of F are not equivalent and each point of H is equivalent to some point of F or its
boundary ∂F.
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Proof For any z ∈ C we write z = x + iy, where x, y ∈ R. We show first that no
two points of F are equivalent. Assume on the contrary that there exist distinct points
z, z′ ∈ F with y′ ≥ y such that

z′ = (az + b)/(cz + d)

for some a, b, c, d ∈ Z with ad − bc = 1. If c = 0, then a = d = ±1, b �= 0 and
z′ = z + b/d , which is impossible for z, z′ ∈ F . Hence c �= 0. Since

y′ = y/|cz + d|2,
we have |cz + d| ≤ 1. Thus |z + d/c| ≤ 1/|c|, which is impossible not only if |c| ≥ 2
but also if c = ±1.

We now show that any z0 ∈ H is equivalent to a point of the closure F̄ = F ∪∂F .
We can choose m0 ∈ Z so that z1 = z0 + m0 satisfies |x1| ≤ 1/2. If |z1| ≥ 1, there is
nothing more to do. Thus we now suppose |z1| < 1. Put z2 = −1/z1. Then

y2 = y1/|z1|2 > y1

and actually y2 ≥ 2y1 if y1 ≤ 1/2, since then |z1|2 ≤ 1/4 + 1/4 = 1/2. We now
repeat the process, with z2 in place of z0, and choose m2 ∈ Z so that z3 = z2 + m2
satisfies |x3| ≤ 1/2. From z3 = (m2z1 − 1)/z1 we obtain

|z3|2 = {(m2x1 − 1)2 + (m2y1)
2}/(x2

1 + y2
1).

Assume |z3| < 1. Then m2 �= 0 and also m2 �= ±1, since |1 ± x1| ≥ 1/2 ≥ |x1|.
If |m2| ≥ 2, then |z3|2 ≥ 4|y1|2 and hence y1 < 1/2. Thus in passing from z1 to z3
we obtain either z3 ∈ F̄ or y3 = y2 ≥ 2y1. Hence, after repeating the process finitely
many times we must obtain a point z2k+1 ∈ F̄ . �

Proposition 13 implies that the sets {g(F̄) : g ∈ Γ } form a tiling of H , since

H = ∪
g∈Γ g(F̄), g(F) ∩ g′(F) = ∅ if g, g′ ∈ Γ and g �= g′.

–1 –1/2 1/2 10

F

Fig. 1. Fundamental domain for Γ .
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This is illustrated in Figure 2, where the domain g(F) is represented simply by the
group element g.

There is an interesting connection between the modular group and binary quadratic
forms. The discriminant of a binary quadratic form

f = ax2 + bxy + cy2

with coefficients a, b, c ∈ R is D := b2 − 4ac. The quadratic form is indefinite (i.e.
assumes both positive and negative values) if and only if D > 0, and positive definite
(i.e. assumes only positive values unless x = y = 0) if and only if D < 0, a > 0,
which implies also c > 0. (If D = 0, the quadratic form is proportional to the square
of a linear form.)

If we make a linear change of variables

x = αx ′ + βy ′, y = γ x ′ + δy′,
where α, β, γ, δ ∈ Z and αδ − βγ = 1, the quadratic form f is transformed into the
quadratic form

f ′ = a′x ′2 + b′x ′y ′ + c′y ′2,

where

a′ = aα2 + bαγ + cγ 2,

b′ = 2aαβ + b(αδ + βγ )+ 2cγ δ,

c′ = aβ2 + bβδ + cδ2,

and hence

b′2 − 4a′c′ = b2 − 4ac = D.

The quadratic forms f and f ′ are said to be properly equivalent.

I T

S TS
ST TSTS TST

–1 –1/2 0 1/2 1 3/2 2

Fig. 2. Tiling of H by Γ .
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Thus properly equivalent forms have the same discriminant. As the name implies,
proper equivalence is indeed an equivalence relation. Moreover, any form properly
equivalent to an indefinite form is again indefinite, and any form properly equivalent
to a positive definite form is again positive definite.

We will now show that any binary quadratic form is properly equivalent to one
which is in some sense canonical. The indefinite and positive definite cases will be
treated separately.

Suppose first that f is positive definite, so that D < 0, a > 0 and c > 0. With the
quadratic form f we associate a point τ ( f ) of the upper half-plane H , namely

τ ( f ) = (−b + i
√−D)/2a.

Thus τ ( f ) is the root with positive imaginary part of the polynomial at2+bt+c. Con-
versely, for any given D < 0 and τ ∈ H , there is a unique positive definite quadratic
form f with discriminant D such that τ ( f ) = τ . In fact, if τ = ξ+ iη, where ξ, η ∈ R
and η > 0, we must take

a = √
(−D)/2η, b = −2aξ, c = (b2 − D)/4a.

Let f ′, as above, be a form properly equivalent to f . If t = (αt ′+β)/(γ t ′+δ), then

at2 + bt + c = (a′t ′2 + b′t ′ + c′)/(γ t ′ + δ)2.
It follows that if τ = τ ( f ) and τ ′ = τ ( f ′), then τ = (ατ ′ + β)/(γ τ ′ + δ). Thus τ ′ is
properly equivalent to τ , in the terminology introduced in Section 1.

By Proposition 13 we may choose the change of variables so that τ ′ ∈ F̄ , i.e.

−1/2 ≤ Rτ ′ ≤ 1/2, |τ ′| ≥ 1.

It is easily verified that this is the case if and only if for f ′ we have

|b′| ≤ a′, 0 < a′ ≤ c′.

Such a quadratic form f ′ is said to be reduced. Thus every positive definite binary
quadratic form is properly equivalent to a reduced form. (It is possible to ensure
that every positive definite binary quadratic form is properly equivalent to a unique
reduced form by slightly restricting the definition of ‘reduced’, but we will have no
need of this.)

If the coefficients of f are integers, then so also are the coefficients of f ′ and τ, τ ′
are complex quadratic irrationals. There are only finitely many reduced forms f with
integer coefficients and with a given discriminant D < 0. For, if f is reduced, then

4b2 ≤ 4a2 ≤ 4ac = b2 − D

and hence b2 ≤ −D/3. Since 4ac = b2 − D, for each of the finitely many possible
values of b there are only finitely many possible values for a and c.

A quadratic form f = ax2 + bxy + cy2 is said to be primitive if the coefficients
a, b, c are integers with greatest common divisor 1. For any integer D < 0, let h†(D)
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denote the number of primitive positive definite quadratic forms with discriminant D
which are properly inequivalent. By what has been said, h†(D) is finite.

Consider next the indefinite case:

f = ax2 + bxy + cy2

where a, b, c ∈ R and D > 0. If a �= 0, we can write

f = a(x − ξy)(x − ηy),

where ξ, η are the distinct real roots of the polynomial at2 + bt + c. It follows from
Lemma 0 that, if ξ and η are irrational, then f is properly equivalent to a form f ′
for which ξ ′ > 1 and −1 < η′ < 0. Such a quadratic form f ′ is said to be reduced.
Evidently f ′ is reduced if and only if − f ′ is reduced. Thus we may suppose a′ > 0,
and then f ′ is reduced if and only if

0 <
√

D + b′ < 2a′ <
√

D − b′.

If the coefficients of f are integers and the positive integer D is not a square, then
a �= 0 and ξ, η are conjugate real quadratic irrationals. In this case, as we already
saw in Section 3, there are only finitely many reduced forms with discriminant D. For
any integer D > 0 which is not a square, let h†(D) denote the number of primitive
quadratic forms with discriminant D which are properly inequivalent. By what has
been said, h†(D) is finite.

It should be noted that, for any quadratic form f with integer coefficients, the
discriminant D ≡ 0 or 1 mod 4. Moreover, for any D ≡ 0 or 1 mod 4, there is a
quadratic form f with integer coefficients and with discriminant D; for example,

f = x2 − Dy2/4 if D ≡ 0 mod 4,

f = x2 + xy + (1− D)y2/4 if D ≡ 1 mod 4.

The preceding results for quadratic forms can also be restated in terms of quadratic
fields. By making correspond to the ideal with basis β = a, γ = b+cω in the quadratic
field Q(

√
d) the binary quadratic form

{ββ ′x2 + (βγ ′ + β ′γ )xy + γ γ ′y2}/ac,

one can establish a bijective map between ‘strict’ equivalence classes of ideals in
Q(
√

d) and proper equivalence classes of binary quadratic forms with discriminant D,
where

D = 4d if d ≡ 2 or 3 mod 4,

D = d if d ≡ 1 mod 4.

(The middle coefficient b of f = ax2+bxy+cy2 was not required to be even in order
to obtain this one-to-one correspondence.) Since any ideal class is either a strict ideal
class or the union of two strict ideal classes, the finiteness of the class number h(d) of
the quadratic field Q(

√
d) thus follows from the finiteness of h†(D).
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6 Non-Euclidean Geometry

There is an important connection between the modular group and the non-Euclidean
geometry of Bolyai (1832) and Lobachevski (1829). It was first pointed out by
Beltrami (1868) that their hyperbolic geometry is the geometry on a manifold of con-
stant curvature. In the model of Poincaré (1882) for two-dimensional hyperbolic geom-
etry the underlying space is taken to be the upper half-plane H . A ‘line’ is either a
semi-circle with centre on the real axis or a half-line perpendicular to the real axis. It
follows that through any two distinct points there passes exactly one ‘line’. However,
through a given point not on a given ‘line’ there passes more than one ‘line’ having no
point in common with the given ‘line’.

Although Euclid’s parallel axiom fails to hold, all the other axioms of Euclidean
geometry are satisfied. Poincaré’s model shows that if Euclidean geometry is free from
contradiction, then so also is hyperbolic geometry. Before the advent of non-Euclidean
geometry there had been absolute faith in Euclidean geometry. It is realized today that
it is a matter for experiment to determine what kind of geometry best describes our
physical world.

Poincaré’s model will now be examined in more detail (with the constant
curvature normalized to have the value−1). A curve γ in H is specified by a continu-
ously differentiable function z(t) = x(t)+ iy(t) (a ≤ t ≤ b). The (hyperbolic) length
of γ is defined to be

�(γ ) =
∫ b

a
y(t)−1|dz/dt|dt .

It follows from this definition that the ‘line’ segment joining two points z, w of H has
length

d(z, w) = ln
|z − w̄| + |z −w|
|z − w̄| − |z −w| .

It may be shown that any other curve joining z and w has greater length. Thus the
‘lines’ are geodesics.

For any z0 ∈ H , there is a unique geodesic through z0 in any specified direction.
Also, for any distinct real numbers ξ, η, there is a unique geodesic which intersects the
real axis at ξ, η, namely the semicircle with centre at (ξ +η)/2. (By abuse of language
we say ‘ξ ’, for example, when we mean the point (ξ, 0).)

A linear fractional transformation

z′ = f (z) = (az + b)/(cz + d),

where a, b, c, d ∈ R and ad − bc = 1, maps the upper half-plane H onto itself and
maps ‘lines’ onto ‘lines’. Moreover, if the curve γ is mapped onto the curve γ ′, then
�(γ ) = �(γ ′), since I f (z) = I z/|cz + d|2 and d f/dz = 1/|cz + d|2. In particular,

d(z, w) = d(z′, w′).

Thus a linear fractional transformation of the above form is an isometry. It may be
shown that any isometry is either a linear fractional transformation of this form or is
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obtained by composing such a transformation with the (orientation-reversing) trans-
formation x + iy →−x+ iy. For any two ‘lines’ L and L ′, there is an isometry which
maps L onto L ′.

We may define angles to be the same as in Euclidean geometry, since any linear
fractional transformation is conformal. The (hyperbolic) area of a domain D ⊂ H ,
defined by

µ(D) =
∫∫

D
y−2dxdy,

is invariant under any isometry. In particular, this gives π − (α + β + γ ) for the area
of a ‘triangle’ with angles α, β, γ . Since the angles are non-negative, the area of a ‘tri-
angle’ is at most π and, since the area is necessarily positive, the sum of the angles of
a ‘triangle’ is less than π .

For example, if F is the fundamental domain of the modular group Γ , then F̄ is a
‘triangle’ with angles π/3, π/3, 0 and hence the area of F̄ is π − 2π/3 = π/3. For
any fixed z0 ∈ F on the imaginary axis, we may characterize F as the set of all z ∈ H
such that, for every g ∈ Γ with g �= I ,

d(z, z0) < d(z, g(z0)) = d(g−1(z), z0).

By identifying two points z, z′ of H if z′ = g(z) for some g ∈ Γ we obtain the
quotient space M = H /Γ . Equivalently, we may regard M as the closure F̄ of the
fundamental domain F with the boundary point −1/2+ iy identified with the bound-
ary point 1/2 + iy (1 ≤ y < ∞) and the boundary point −e−iθ identified with the
boundary point eiθ (0 < θ < π/2).

Since the elements of Γ are isometries of H , the metric on H induces a metric on
M in which the geodesics are the projections onto M of the geodesics in H . Thus if
we regard M as F̄ with appropriate boundary points identified, then a geodesic in M
will be a sequence of geodesic arcs in F , each with initial point and endpoint on the
boundary of F , so that the initial point of one arc is the point identified to the endpoint
of the preceding arc.

Let L be a geodesic in H which intersects the real axis in irrational points ξ, η
such that ξ > 1,−1 < η < 0 and let

ξ = [a0, a1, a2, . . .], −1/η = [a−1, a−2, . . .]

be the continued fraction expansions of ξ and −1/η. If we choose ξ and η = ξ ′ to be
conjugate quadratic irrationals then, by Proposition 7, the doubly-infinite sequence

[. . . , a−2, a−1, a0, a1, a2, . . .]

is periodic and it is not difficult to see that the geodesic in M obtained by projection
from L is closed. Artin (1924) showed that there are other geodesics which behave
very differently. Let the convergents of ξ be pn/qn and put

ξ = (pn−1ξn + pn−2)/(qn−1ξn + qn−2), η = (pn−1ηn + pn−2)/(qn−1ηn + qn−2).
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Then

ξn = [an, an+1, . . .], −1/ηn = [an−1, an−2, . . .],

and ξn > 1,−1 < ηn < 0. Moreover, if n is even, then ξ and η are properly equivalent
to ξn and ηn respectively. If we choose ξ so that the sequence a0, a1, a2, . . . contains
each finite sequence of positive integers (and hence contains it infinitely often), then
the corresponding geodesic in M passes arbitrarily close to every point of M and to
every direction at that point.

Some much-studied subgroups of the modular group are the congruence subgroups
Γ (n), consisting of all linear fractional transformations z → (az + b)/(cz + d) in Γ
congruent to the identity transformation, i.e.

a ≡ d ≡ ±1, b ≡ c ≡ 0 mod n.

We may in the same way investigate the geodesics in the quotient space H /Γ (n). In
the case n = 3 it has been shown by Lehner and Sheingorn (1984) that there is an
interesting connection with the Markov spectrum.

In Section 2 we defined, for any irrational number ξ with convergents pn/qn ,

M(ξ) = lim
n→∞ q−1

n |qnξ − pn|−1,

and we noted that M(ξ) = M(η) if ξ and η are equivalent. It is not difficult to show
that there are uncountably many inequivalent ξ for which M(ξ) = 3. However, it was
shown by Markov (1879/80) that there is a sequence of real quadratic irrationals ξ(k)

such that M(ξ) < 3 if and only if ξ is equivalent to ξ(k) for some k. If µk = M(ξ (k)),
then µ1 < µ2 < µ3 < · · · and µk → 3 as k → ∞. Although µk is irrational, µ2

k is
rational. The first few values are

µ1 = 51/2 = 2.236 . . . , µ2 = 81/2 = 2.828 . . . ,

µ3 = (221)1/2/5 = 2.973 . . . , µ4 = (1517)1/2/13 = 2.996 . . . .

As we already showed in Section 2, we can take ξ(1) = (1+√5)/2 and ξ(2) = 1+√2.
Lehner and Sheingorn showed that the simple closed geodesics in H /Γ (3) are

just the projections of the geodesics in H whose endpoints ξ, η on the real axis are
conjugate quadratic irrationals equivalent to ξ(k) for some k.

There is a recursive procedure for calculating the quantitiesµk and ξ(k). A Markov
triple is a triple (u, v,w) of positive integers such that

u2 + v2 +w2 = 3uvw.

If (u, v,w) is a Markov triple, then so also are (3uw − v, u, w) and (3uv − w, u, v).
They are distinct from the original triple if u = max(u, v,w), since then u < 3uw− v
and u < 3uv − w. They are also distinct from one another if w < v. Starting from
the trivial triple (1, 1, 1), all Markov triples can be obtained by repeated applications
of this process. The successive values of u = max(u, v,w) are 1, 2, 5, 13, 29, . . .. The
numbers µk and ξ(k) are the corresponding successive values of (9 − 4/u2)1/2 and
(9− 4/u2)1/2/2+ 1/2+ v/uw.
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It was conjectured by Frobenius (1913) that a Markov triple is uniquely determined
by its greatest element. This has been verified whenever the greatest element does not
exceed 10140. It has also been proved when the greatest element is a prime (and in
some other cases) by Baragar (1996), using the theory of quadratic fields.

7 Complements

There is an important analogue of the continued fraction algorithm for infinite series.
Let K be an arbitrary field and let F denote the set of all formal Laurent series

f =
∑
n∈Z

αntn

with coefficients αn ∈ K such that αn �= 0 for at most finitely many n > 0. If

g =
∑
n∈Z

βntn

is also an element of F , and if we define addition and multiplication by

f + g =
∑
n∈Z

(αn + βn)t
n, f g =

∑
n∈Z

γntn,

where γn = ∑
j+k=n α jβk , then F acquires the structure of a commutative ring. In

fact, F is a field. For, if f = ∑
n≤v αntn , where αv �= 0, we obtain g = ∑

n≤−v βntn

such that f g = 1 by solving successively the equations

αvβ−v = 1

αvβ−v−1 + αv−1β−v = 0

αvβ−v−2 + αv−1β−v−1 + αv−2β−v = 0

· · · · ·
Define the absolute value of an element f =∑

n∈Z αntn of F by putting

|O| = 0, | f | = 2v( f ) if f �= O,

where v( f ) is the greatest integer n such that αn �= 0. It is easily verified that

| f g| = | f ||g|, | f + g| ≤ max(| f |, |g|),
and | f + g| = max(| f |, |g|) if | f | �= |g|.

For any f =∑
n∈Z αntn ∈ F , let

� f � =
∑
n≥0

αntn, { f } =
∑
n<0

αntn

denote respectively its polynomial and strictly proper parts. Then |{ f }| < 1, and
|� f �| = | f | if | f | ≥ 1, i.e. if � f � �= O.
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If f0 := f is not the formal Laurent series of a rational function, we can write

f0 = a0 + 1/ f1,

where a0 = � f0� and | f1| > 1. In the same way,

f1 = a1 + 1/ f2,

where a1 = � f1� and | f2| > 1. Continuing in this way, we obtain the continued frac-
tion expansion [a0, a1, a2, . . .] of f . In the same way as for real numbers, if we define
polynomials pn, qn by the recurrence relations

pn = an pn−1 + pn−2, qn = anqn−1 + qn−2 (n ≥ 0),

with p−2 = q−1 = 0, p−1 = q−2 = 1, then

pnqn−1 − pn−1qn = (−1)n+1 (n ≥ 0),

f = (pn fn+1 + pn−1)/(qn fn+1 + qn−1) (n ≥ 0),

and so on. In addition, however, we now have

|an| = | fn| > 1 (n ≥ 1),

from which we obtain by induction

|pn| = |an||pn−1| > |pn−1|, |qn| = |an||qn−1| > |qn−1| (n ≥ 1).

Hence

|pn| = |a0a1 · · · an|, |qn| = |a1 · · · an| (n ≥ 1).

From the relation qn f − pn = (−1)n/(qn fn+1 + qn−1) we further obtain

|qn f − pn| = |qn+1|−1,

since

|qn fn+1 + qn−1| = |qn fn+1| = |qn||an+1| = |qn+1|.
In particular, |qn f − pn| < 1 and hence

pn = �qn f �, |{qn f }| = |qn+1|−1 (n ≥ 1).

Thus pn is readily determined from qn . Furthermore,

| f − pn/qn| = |qn|−1|qn+1|−1 → 0 as n →∞.
The rational function pn/qn is called the n-th convergent of f . The polynomials an are
called the partial quotients, and the Laurent series fn the complete quotients, in the
continued fraction expansion of f .

The continued fraction algorithm can also be applied when f is the formal Laurent
expansion of a rational function, but in this case the process terminates after a finite
number of steps. If a0, a1, a2, . . . is any finite or infinite sequence of polynomials with
|an| > 1 for n ≥ 1, there is a unique formal Laurent series f with [a0, a1, a2, . . .] as
its continued fraction expansion.

For formal Laurent series there are sharper Diophantine properties than for real
numbers:
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Proposition 14 Let f be a formal Laurent series with convergents pn/qn and let p, q
be polynomials with q �= O.

(i) If |q| < |qn+1| and p/q �= pn/qn, then

|qf − p| ≥ |qn−1 f − pn−1| = |qn|−1.

(ii) If |q f − p| < |q|−1, then p/q is a convergent of f .

Proof (i) Assume on the contrary that |q f − p| < |qn|−1. Since

qn(q f − p)− q(qn f − pn) = qpn − pqn �= O

and |qn||q f − p| < 1, we must have

|q||qn+1|−1 = |q||qn f − pn| = |qpn − pqn | ≥ 1,

which is contrary to hypothesis.
(ii) Assume that p/q is not a convergent of f . If f = pN/qN is a rational function
then |q| < |qN |, since

1 ≤ |qpN − pq N | = |q f − p||qN | < |q|−1|qN |.
Thus, whether or not f is rational, we can choose n so that |qn| ≤ |q| < |qn+1|. Hence,
by (i),

|q f − p| ≥ |qn|−1 ≥ |q|−1,

which is a contradiction. �

It was shown by Abel (1826) that, for any complex polynomial D(t) which is not a
square, the ‘Pell’ equation X2 − D(t)Y 2 = 1 has a solution in polynomials X (t),Y (t)
of positive degree if and only if

√
D(t) may be represented as a periodic continued

fraction:
√

D(t) = [a0, a1, . . . , ah ], where ah = 2a0 and ai = ah−i (i = 1, . . . , h− 1)
are polynomials of positive degree. By differentiation one obtains

X X ′/Y = Y ′D + (1/2)Y D′.

It follows that Y divides X ′, since X and Y are relatively prime, and

(X + Y
√

D)′ = (X + Y
√

D)X ′/Y
√

D.

Thus the ‘abelian’ integral ∫
X ′(t)dt/Y (t)

√
D(t)

is actually the elementary function log{X (t)+ Y (t)
√

D(t)}.
Some remarkable results have recently been obtained on the approximation of alge-

braic numbers by rational numbers, which deserve to be mentioned here, even though
the proofs are beyond our scope.
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A complex number ζ is said to be an algebraic number, or simply algebraic, of
degree d if it is a root of a polynomial of degree d with rational coefficients which is
irreducible over the rational field Q. Thus an algebraic number of degree 2 is just a
quadratic irrational.

For any irrational number ξ , there exist infinitely many rational numbers p/q such
that

|ξ − p/q| < 1/q2,

since the inequality is satisfied by any convergent of ξ . It was shown by Roth (1955)
that if ξ is a real algebraic number of degree d ≥ 2 then, for any given ε > 0, there
exist only finitely many rational numbers p/q with q > 0 such that

|ξ − p/q| < 1/q2+ε.

The proof does not provide a bound for the magnitude of the rational numbers which
satisfy the inequality, but it does provide a bound for their number. Roth’s result was
the culmination of a line of research that was begun by Thue (1909), and further
developed by Siegel (1921) and Dyson (1947).

A sharpening of Roth’s result has been conjectured by Lang (1965): if ξ is a real
algebraic number of degree d ≥ 2 then, for any given ε > 0, there exist only finitely
many rational numbers p/q with q > 1 such that

|ξ − p/q| < 1/q2(log q)1+ε.

An even stronger sharpening has been conjectured by P.M. Wong (1989) in which
(log q)1+ε is replaced by (log q)(log log q)1+ε with q > 2.

For real algebraic numbers of degree 2 we already know more than this. For, if ξ is a
real quadratic irrational, its partial quotients are bounded and so there exists a constant
c = c(ξ) > 0 such that |ξ − p/q| > c/q2 for every rational number p/q . It is a long-
standing conjecture that this is false for any real algebraic number ξ of degree d > 2.

It is not difficult to show that Roth’s theorem may be restated in the following
homogeneous form: if

L1(u, v) = αu + βv, L2(u, v) = γ u + δv,
are linearly independent linear forms with algebraic coefficients α, β, γ, δ, then, for
any given ε > 0, there exist at most finitely many integers x, y, not both zero, such that

|L1(x, y)L2(x, y)| < max(|x |, |y|)−ε.
The subspace theorem of W. Schmidt (1972) generalizes Roth’s theorem in this

form to higher dimensions. In the stronger form given it by Vojta (1989) it says:
if L1(u), . . . , Ln(u) are linearly independent linear forms in n variables
u = (u1, . . . , un) with (real or complex) algebraic coefficients, then there exist
finitely many proper linear subspaces V1, . . . , Vh of Qn such that every nonzero
x = (x1, . . . , xn) ∈ Zn for which

|L1(x) · · · Ln(x)| < ‖x‖−ε,
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where ‖x‖ = max(|x1|, . . . , |xn|), is contained in some subspace Vi , except for finitely
many points whose number may depend on ε. A new proof of Schmidt’s subspace the-
orem has been given by Faltings and Wüstholz (1994). The subspace theorem has also
been given a more quantitative form by Schmidt (1989) and Evertse (1996). These
results have immediate applications to the simultaneous approximation of several
algebraic numbers.

Vojta (1987) has developed a remarkable analogy between the approximation of
algebraic numbers by rationals and the theory of Nevanlinna (1925) on the value dis-
tribution of meromorphic functions, in which Roth’s theorem corresponds to Nevan-
linna’s second main theorem. Although the analogy is largely formal, it is suggestive in
both directions. It has already led to new proofs for the theorems of Roth and Schmidt,
and to a proof of the Mordell conjecture (discussed below) which is quite different
from the original proof by Faltings.

Roth’s theorem has an interesting application to Diophantine equations. Let

f (z) = a0zn + a1zn−1 + · · · + an

be a polynomial of degree n ≥ 3 with integer coefficients whose roots are distinct and
not rational. Let

f (u, v) = a0un + a1un−1v + · · · + anv
n

be the corresponding homogeneous polynomial and let g(u, v) be a polynomial of
degree m ≥ 0 with integer coefficients. We will deduce from Roth’s theorem that the
equation

f (x, y) = g(x, y)

has at most finitely many solutions in integers if m ≤ n − 3. This was already proved
by Thue for m = 0.

Assume on the contrary that there exist infinitely many solutions in integers. With-
out loss of generality we may assume that there exist infinitely many integer solutions
x, y for which |x | ≤ |y|. Then there exists a constant c1 > 0 such that

|g(x, y)| ≤ c1|y|m .
Over the complex field C the homogeneous polynomial f (u, v) has a factorization

f (u, v) = a0

n∏
j=1

(u − ζ jv),

where ζ1, . . . , ζn are distinct algebraic numbers which are not rational. For at least one
j we must have, for infinitely many x, y,

|a0||x − ζ j y|n ≤ c1|y|m

and hence

|x − ζ j y| ≤ c2|y|m/n,
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where c2 = (c1/|a0|)1/n . If k �= j , then

|x − ζk y| ≥ |(ζ j − ζk)y| − |x − ζ j y|
≥ c3|y| − c2|y|m/n ≥ c4|y|,

where c3, c4 are positive constants. It follows that

|a0||x − ζ j y|cn−1
4 |y|n−1 ≤ | f (x, y)| = |g(x, y)| ≤ c1|y|m

and hence

|ζ j − x/y| ≤ c5/|y|n−m,

where the positive constant c5 depends only on the coefficients of f and g. Evidently
this implies that ζ j is real. Since ζ j is not rational and m ≤ n − 3, we now obtain a
contradiction to Roth’s theorem.

It is actually possible to characterize all polynomial Diophantine equations with
infinitely many solutions. Let F(x, y) be a polynomial with rational coefficients which
is irreducible over C. It was shown by Siegel (1929), by combining his own results on
the approximation of algebraic numbers with results of Mordell and Weil concerning
the rational points on elliptic curves and Jacobian varieties, that if the equation

F(x, y) = 0 (∗)
has infinitely many integer solutions, then there exist polynomials or Laurent poly-
nomials φ(t), ψ(t) (not both constant) with coefficients from either the rational field
Q or a real quadratic field Q(

√
d), where d > 0 is a square-free integer, such that

F(φ(t), ψ(t)) is identically zero. If φ(t), ψ(t) are Laurent polynomials with coeffi-
cients from Q(

√
d), they may be chosen to be invariant when t is replaced by t−1 and

the coefficients are replaced by their conjugates in Q(
√

d).
This implies, in particular, that the algebraic curve defined by (∗) may be trans-

formed by a birational transformation with rational coefficients into either a linear
equation ax + by + c = 0 or a Pellian equation x2 − dy2 − m = 0. It is not signif-
icant that the birational transformation has rational, rather than integral, coefficients
since, by combining a result of Mahler (1934) with the Mordell conjecture, it may be
seen that the same conclusions hold if the equation (∗) has infinitely many solutions
in rational numbers whose denominators involve only finitely many primes.

The conjecture of Mordell (1922) says that the equation (∗) has at most finitely
many rational solutions if the algebraic curve defined by (∗) has genus g > 1. (The
concept of genus will not be formally defined here, but we mention that the genus of an
irreducible plane algebraic curve may be calculated by a procedure due to M. Noether.)
The conjecture has now been proved by Faltings (1983), as will be mentioned in
Chapter XIII. As mentioned also at the end of Chapter XIII, if the algebraic curve
defined by (∗) has genus 1, then explicit bounds may be obtained for the number of
integral points. It was already shown by Hilbert and Hurwitz (1890) that the algebraic
curve defined by (∗) has genus 0 if and only if it is birationally equivalent over Q
either to a line or to a conic. There then exist rational functions φ(t), ψ(t) (not both
constant) with coefficients either from Q or from a quadratic extension of Q such that
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F(φ(t), ψ(t)) is identically zero. The coefficients may be taken from Q if the curve
has at least one non-singular rational point.

Thus in retrospect, and quite unfairly, Siegel’s remarkable result may be seen as
simply picking out those curves of genus 0 which have infinitely many integral points,
a problem which had already been treated by Maillet (1919).

In this connection it may be mentioned that the formula for Pythagorean triples
given in §5 of Chapter II may be derived from the parametrization of the unit circle
x2 + y2 = 1 by the rational functions

x(t) = (1− t2)/(1+ t2), y(t) = 2t/(1+ t2).

8 Further Remarks

More extensive accounts of the theory of continued fractions are given in the books
of Rockett and Szusz [45] and Perron [41]. Many historical references are given in
Brezinski [12]. The first systematic account of the subject, which it is still a delight to
read, was given in 1774 by Lagrange [32] in his additions to the French translation of
Euler’s Algebra.

The continued fraction algorithm is such a useful tool that there have been many
attempts to generalize it to higher dimensions. Jacobi, in a paper published posthu-
mously (1868), defined a continued fraction algorithm in R2. Perron (1907) extended
his definition to Rn and proved that convergence holds in the following weak sense:
for a given nonzero x ∈ Rn , the Jacobi-Perron algorithm constructs recursively a
sequence of bases Bk = {bk

1, . . . , b
k
n} of Zn such that, for each j ∈ {1, . . . , n}, the

angle between the line Obk
j and the line Ox tends to zero as k → ∞. More recently,

other algorithms have been proposed for which convergence holds in the strong sense
that, for each j ∈ {1, . . . , n}, the distance of bk

j from the line Ox tends to zero as
k →∞. See Brentjes [11], Ferguson [22], Just [28] and Lagarias [31].

Proposition 2 was first proved by Serret [51]. Proposition 3 was proved by
Lagrange. The complete characterization of best approximations is proved in the book
of Perron.

Lambert (1766) proved that π was irrational by using a continued fraction expan-
sion for tan x . For the continued fraction expansion of π , see Choong et al. [15]. Badly
approximable numbers are thoroughly surveyed by Shallit [52].

The theory of Diophantine approximation is treated more comprehensively in the
books of Koksma [30], Cassels [13] and Schmidt [47].

The estimate O(
√

D log D) for the period of the continued fraction expansion of a
quadratic irrational with discriminant D is proved by elementary means in the book of
Rockett and Szusz. Further references are given in Podsypanin [42].

The ancient Hindu method of solving Pell’s equation is discussed in Selenius [49].
Tables for solving the Diophantine equation x2 − dy2 = m, where m2 < d , are
given in Patz [39]. Pell’s equation plays a role in the negative solution of Hilbert’s
tenth problem, which asks for an algorithm to determine whether an arbitrary polyno-
mial Diophantine equation is solvable in integers. See Davis et al. [18] and Jones and
Matijasevic [26].
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The continued fraction construction for the representation of a prime p ≡ 1 mod 4
as a sum of two squares is due to Legendre. Some other constructions are given in
Chapter V of Davenport [17] and in Wagon [61]. A construction for the representation
of any positive integer as a sum of four squares is given by Rousseau [46].

The modular group is the basic example of a Fuchsian group, i.e. a discrete sub-
group of the group PSL2(R) of all linear fractional transformations z → (az +
b)/(cz + d), where a, b, c, d ∈ R and ad − bc = 1. Fuchsian groups are studied
from different points of view in the books of Katok [29], Beardon [7], Lehner [36],
and Vinberg and Shvartsman [58].

The significance of Fuchsian groups stems in part from the uniformization theo-
rem, which characterizes Riemann surfaces. A Riemann surface is a 1-dimensional
complex manifold. Two Riemann surfaces are conformally equivalent if there is a
bijective holomorphic map from one to the other. The uniformization theorem, first
proved by Koebe and Poincaré independently in 1907, says that any Riemann surface
is conformally equivalent to exactly one of the following:

(i) the complex plane C,
(ii) the Riemann sphere C ∪ {∞},

(iii) the cylinder C/G, where G is the cyclic group generated by the translation
z → z + 1,

(iv) a torus C/G, where G is the abelian group generated by the translations z → z+1
and z → z + τ for some τ ∈H (the upper half-plane),

(v) a quotient space H /G, where G is a Fuchsian group which acts freely on H ,
i.e. if z ∈H , g ∈ G and g �= I , then g(z) �= z.

(It should be noted that, since the modular group does not act freely on H , the cor-
responding ‘Riemann surface’ is ramified.) For more information on the uniformiza-
tion theorem, see Abikoff [1], Bers [9], Farkas and Kra [21], Jost [27], Beardon and
Stephenson [8], and He and Schramm [24].

For the equivalence between quadratic fields and binary quadratic forms, see
Zagier [63]. The class number h(d) of the quadratic field Q(

√
d) has been deeply

investigated, originally by exploiting this equivalence. Dirichlet (1839) obtained an
analytic formula for h(d) with the aid of his theorem on primes in an arithmetic pro-
gression (which will be proved in Chapter X). A clearly motivated proof of Dirichlet’s
formula is given in Hasse [23], and there are some interesting observations on the
formula in Stark [56].

It was conjectured by Gauss (1801), in the language of quadratic forms, that
h(d) → ∞ as d → −∞. This was first proved by Heilbronn (1934). Siegel (1935)
showed that actually

log h(d)/ log |d| → 1/2 as d →−∞.
Generalizations of these results to arbitrary algebraic number fields are given in books
on algebraic number theory, e.g. Narkiewicz [38].

Siegel (1943) has given a natural generalization of the modular group to higher
dimensions. Instead of the upper half-plane H , we consider the space Hn of all com-
plex n × n matrices Z = X + iY , where X,Y are real symmetric matrices and Y is
positive definite. If the real 2n × 2n matrix
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M =
(

A B
C D

)
is symplectic, i.e. if Mt J M = J , where

J =
(

O I
−I O

)
,

then the linear fractional transformation Z → (AZ + B)(C Z + D)−1, maps Hn onto
itself. Siegel’s modular group Γn is the group of all such transformations. The gener-
alized upper half-plane Hn is itself just a special case of the vast theory of symmetric
Riemannian spaces initiated by E. Cartan (1926/7). See Siegel [54] and Helgason [25].

The development of non-Euclidean geometry is traced in Bonola [10]. (This
edition also contains translations of works by Bolyai and Lobachevski.) The basic
properties of Poincaré’s model, here only stated, are proved in the books of Katok [29]
and Beardon [7].

For the connection between continued fractions and geodesics, see Artin [5] and
Sheingorn [53]. For the Markov spectrum see not only the books of Cassels [13] and
Rockett and Szusz [45], but also Cusick and Flahive [16] and Baragar [6].

The theory of continued fractions for formal Laurent series is developed further in
de Mathan [37]. The corresponding theory of Diophantine approximation is surveyed
in Lasjaunias [35]. The polynomial Pell equation is discussed by Schmidt [48]. For for-
mal Laurent series there is a multidimensional generalization which is quite different
from those for real numbers; see Antoulas [4].

Roth’s theorem and Schmidt’s subspace theorem are proved in Schmidt [47]. See
also Faltings and Wüstholz [20] and Evertse [19]. Nevanlinna’s theory of the value dis-
tribution of meromorphic functions is treated in the recent book of Cherry and Ye [14].
For Vojta’s work see, for example, [59] and [60]. It should be noted, though, that
this area is still in a state of flux, besides using techniques beyond our scope. For an
overview, see Lang [34].

Siegel’s theorem on Diophantine equations with infinitely many solutions is proved
with the aid of non-standard analysis by Robinson and Roquette [44]; the proof is re-
produced in Stepanov [57]. The theorem is discussed from the standpoint of Diophan-
tine geometry in Serre [50]. Any algebraic curve over Q of genus zero which has a
nonsingular rational point can be parametrized by rational functions effectively; see
Poulakis [43].

It is worth noting that if F(x, y) is a polynomial with rational coefficients which
is irreducible over Q, but not over C, then the curve F(x, y) = 0 has at most finitely
many rational points. For any rational point is a common root of at least two distinct
complex-irreducible factors of F and any two such factors have at most finitely many
common complex roots.

In conclusion we mention some further applications of continued fractions. A pro-
cedure, due to Vincent (1836), for separating the roots of a polynomial with integer
coefficients has acquired some practical value with the advent of modern computers.
See Alesina and Galuzzi [3].

Continued fractions play a role in the small divisor problems of classical mechan-
ics. As an example, suppose the function f is holomorphic in some neighbourhood
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of the origin and f (z) = λz + O(z2), where λ = e2π iθ for some irrational θ . It
is readily shown that there exists a formal power series h which linearizes f , i.e.
f (h(z)) = h(λz). Brjuno (1971) proved that this formal power series converges in
a neighbourhood of the origin if

∑
n≥0(log qn+1)/qn < ∞, where qn is the denomi-

nator of the n-th convergent of θ . It was shown by Yoccoz (1995) that this condition
is also necessary. In fact, if

∑
n≥0(log qn+1)/qn = ∞, the conclusion fails even for

f (z) = λz(1− z). See Yoccoz [62] and Pérez-Marco [40].
Our discussion of continued fractions has neglected their analytic theory. The out-

standing work of Stieltjes (1894) on the problem of moments, which was extended by
Hamburger (1920) and R. Nevanlinna (1922) from the half-line to the whole line, not
only gave birth to the Stieltjes integral but also contributed to the development of func-
tional analysis. For modern accounts, see Akhiezer [2], Landau [33] and Simon [55].
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V

Hadamard’s Determinant Problem

It was shown by Hadamard (1893) that, if all elements of an n × n matrix of complex
numbers have absolute value at mostµ, then the determinant of the matrix has absolute
value at most µnnn/2. For each positive integer n there exist complex n × n matrices
for which this upper bound is attained. For example, the upper bound is attained for
µ = 1 by the matrix (ω jk)(1 ≤ j, k ≤ n), where ω is a primitive n-th root of unity.
This matrix is real for n = 1, 2. However, Hadamard also showed that if the upper
bound is attained for a real n × n matrix, where n > 2, then n is divisible by 4.

Without loss of generality one may suppose µ = 1. A real n × n matrix for which
the upper bound nn/2 is attained in this case is today called a Hadamard matrix. It
is still an open question whether an n × n Hadamard matrix exists for every positive
integer n divisible by 4.

Hadamard’s inequality played an important role in the theory of linear integral
equations created by Fredholm (1900), and partly for this reason many proofs and
generalizations were soon given. Fredholm’s approach to linear integral equations has
been superseded, but Hadamard’s inequality has found connections with several other
branches of mathematics, such as number theory, combinatorics and group theory.
Hadamard matrices have been used to enhance the precision of spectrometers, to
design agricultural experiments and to correct errors in messages transmitted by
spacecraft.

The moral is that a good mathematical problem will in time find applications.
Although the case where n is divisible by 4 has a richer theory, we will also treat
other cases of Hadamard’s determinant problem, since progress with them might lead
to progress also for Hadamard matrices.

1 What is a Determinant?

The system of two simultaneous linear equations

α11ξ1 + α12ξ2 = β1

α21ξ1 + α22ξ2 = β2

W.A. Coppel, Number Theory: An Introduction to Mathematics, Universitext, 223
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has, if δ2 = α11α22 − α12α21 is nonzero, the unique solution

ξ1 = (β1α22 − β2α12)/δ2, ξ2 = −(β1α21 − β2α11)/δ2.

If δ2 = 0, then either there is no solution or there is more than one solution.
Similarly the system of three simultaneous linear equations

α11ξ1 + α12ξ2 + α13ξ3 = β1

α21ξ1 + α22ξ2 + α23ξ3 = β2

α31ξ1 + α32ξ2 + α33ξ3 = β3

has a unique solution if and only if δ3 �= 0, where

δ3 = α11α22α33 + α12α23α31 + α13α21α32

− α11α23α32 − α12α21α33 − α13α22α31.

These considerations may be extended to any finite number of simultaneous linear
equations. The system

α11ξ1 + α12ξ2 + · · · + α1nξn = β1

α21ξ1 + α22ξ2 + · · · + α2nξn = β2

· · ·
αn1ξ1 + αn2ξ2 + · · · + αnnξn = βn

has a unique solution if and only if δn �= 0, where

δn =
∑

± α1k1α2k2 · · ·αnkn ,

the sum being taken over all n! permutations k1, k2, . . . , kn of 1, 2, . . . , n and the sign
chosen being + or − according as the permutation is even or odd, as defined in Chap-
ter I, §7.

It has been tacitly assumed that the given quantities α j k, β j ( j, k = 1, . . . , n) are
real numbers, in which case the solution ξk(k = 1, . . . , n) also consists of real num-
bers. However, everything that has been said remains valid if the given quantities are
elements of an arbitrary field F , in which case the solution also consists of elements
of F . Since δn is an element of F which is uniquely determined by the matrix

A =
⎡⎣α11 · · · α1n

· · ·
αn1 · · · αnn

⎤⎦ ,
it will be called the determinant of the matrix A and denoted by det A.

Determinants appear in the work of the Japanese mathematician Seki (1683) and
in a letter of Leibniz (1693) to l’Hospital, but neither had any influence on later
developments. The rule which expresses the solution of a system of linear equations by
quotients of determinants was stated by Cramer (1750), but the study of determinants
for their own sake began with Vandermonde (1771). The word ‘determinant’ was first
used in the present sense by Cauchy (1812), who gave a systematic account of their
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theory. The diffusion of this theory throughout the mathematical world owes much to
the clear exposition of Jacobi (1841).

For the practical solution of linear equations Cramer’s rule is certainly inferior to
the age-old method of elimination of variables. Even many of the theoretical uses to
which determinants were once put have been replaced by simpler arguments from
linear algebra, to the extent that some have advocated banning determinants from
the curriculum. However, determinants have a geometrical interpretation which makes
their survival desirable.

Let Mn(R) denote the set of all n × n matrices with entries from the real field R.
If A ∈ Mn(R), then the linear map x → Ax of Rn into itself multiplies the volume of
any parallelotope by a fixed factor µ(A) ≥ 0. Evidently

(i)′′ µ(AB) = µ(A)µ(B) for all A, B ∈ Mn(R),
(ii)′′ µ(D) = |α| for any diagonal matrix D = diag[1, . . . , 1, α] ∈ Mn(R).

(A matrix A = (α j k) is denoted by diag[α11, α22, . . . , αnn ] if α j k = 0 whenever j �= k
and is then said to be diagonal.) It may be shown (e.g., by representing A as a product
of elementary matrices in the manner described below) that µ(A) = | det A|. The sign
of the determinant also has a geometrical interpretation: det A ≷ 0 according as the
linear map x → Ax preserves or reverses orientation.

Now let F be an arbitrary field and let Mn = Mn(F) denote the set of all n × n
matrices with entries from F . We intend to show that determinants, as defined above,
have the properties:

(i)′ det(AB) = det A · det B for all A, B ∈ Mn ,
(ii)′ det D = α for any diagonal matrix D = diag[1, . . . , 1, α] ∈ Mn ,

and, moreover, that these two properties actually characterize determinants. To avoid
notational complexity, we consider first the case n = 2.

Let E denote the set of all matrices A ∈ M2 which are products of finitely many
matrices of the form Uλ, Vµ, where

Uλ =
[

1 λ
0 1

]
, Vµ =

[
1 0
µ 1

]
,

and λ,µ ∈ F . The set E is a group under matrix multiplication, since multiplication
is associative, I ∈ E , E is obviously closed under multiplication and Uλ, Vµ have
inverses U−λ, V−µ respectively.

We are going to show that, if A ∈ M2 and A �= O, then there exist S, T ∈ E and
δ ∈ F such that S AT = diag[1, δ].

For any ρ �= 0, put

W =
[

0 −1
1 0

]
, Rρ =

[
ρ−1 0

0 ρ

]
.

Then W = U−1V1U−1 ∈ E and also Rρ ∈ E since, if σ = 1 − ρ, ρ′ = ρ−1 and
τ = ρ2 − ρ, then

Rρ = V−1UσVρ′Uτ .
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Let

A =
[
α β
γ δ

]
,

where at least one of α, β, γ, δ is nonzero. By multiplying A on the left, or on the right,
or both by W we may suppose that α �= 0. Now, by multiplying A on the right or left
by Rα , we may suppose that α = 1. Next, by multiplying A on the right by U−β , we
may further suppose that β = 0. Finally, by multiplying A on the left by V−γ , we may
also suppose that γ = 0.

The preceding argument is valid even if F is a division ring. In what follows we
will use the commutativity of multiplication in F .

We are now going to show that if d : E → F is a map such that d(ST ) =
d(S)d(T ) for all S, T ∈ E , then either d(S) = 0 for every S ∈ E or d(S) = 1 for
every S ∈ E .

If d(T ) = 0 for some T ∈ E , then d(I ) = d(T )d(T−1) = 0 and d(S) =
d(I )d(S) = 0 for every S ∈ E . Thus we now suppose d(S) �= 0 for every S ∈ E .
Then, in the same way, d(I ) = 1 and d(S−1) = d(S)−1 for every S ∈ E .

It is easily verified that

UλUµ = Uλ+µ, VλVµ = Vλ+µ,
W−1 = −W, W−1VµW = U−µ.

It follows that

d(Vµ) = d(U−µ) = d(Uµ)
−1.

Also, for any ρ �= 0,

R−1
ρ UλRρ = Uλρ2 .

Hence d(Uλρ2) = d(Uλ) and d(Uλ(ρ2−1)) = 1.
If the field F contains more than three elements, then ρ2−1 �= 0 for some nonzero

ρ ∈ F . Since λ(ρ2− 1) runs through the nonzero elements of F at the same time as λ,
it follows that d(Uλ) = 1 for every λ ∈ F . Hence also d(Vµ) = 1 for every µ ∈ F
and d(S) = 1 for all S ∈ E .

If F contains 2 elements, then d(S) = 1 for every S ∈ E is the only possibility. If
F contains 3 elements, then d(S) = ±1 for every S ∈ E . Hence d(S−1) = d(S) and
d(S2) = 1. Since U2 = U2

1 and U1 = U−1
2 , this implies d(Uλ) = 1 for every λ ∈ F ,

and the rest follows as before.
The preceding discussion is easily extended to higher dimensions. Put

Uij (λ) = In + λEij ,

for any i, j ∈ {1, . . . , n} with i �= j , where Eij is the n × n matrix with all entries 0
except the (i, j)-th, which is 1, and let SLn(F) denote the set of all A ∈ Mn which
are products of finitely many matrices Uij (λ). Then SLn(F) is a group under matrix
multiplication.

If A ∈ Mn and A �= O, then there exist S, T ∈ SLn(F) and a positive integer
r ≤ n such that
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S AT = diag[1r−1, δ, 0n−r ]

for some nonzero δ ∈ F . The matrix A is singular if r < n and nonsingular if r = n.
Hence A = (α j k) is nonsingular if and only if its transpose At = (αkj ) is nonsingular.
In the nonsingular case we need multiply A on only one side by a matrix from SLn(F)
to bring it to the form

Dδ = diag[1n−1, δ].

For if S AT = Dδ , then S A = DδT−1 and this implies S A = S′Dδ for some
S′ ∈ SLn(F), since

DδUij (λ) = Uij (λδ
−1)Dδ if i < j = n,

DδUij (λ) = Uij (δλ)Dδ if j < i = n,

DδUij (λ) = Uij (λ)Dδ if i, j �= n and i �= j.

In the same way as for n = 2 it may be shown that, if d : SLn(F)→ F is a map
such that d(ST ) = d(S)d(T ) for all S, T ∈ SLn(F), then either d(S) = 0 for every S
or d(S) = 1 for every S.

Theorem 1 There exists a unique map d : Mn → F such that

(i)′ d(AB) = d(A)d(B) for all A, B ∈ Mn,
(ii)′ for any α ∈ F, if Dα = diag[1n−1, α], then d(Dα) = α.

Proof We consider first uniqueness. Since d(I ) = d(D1) = 1, we must have d(S) = 1
for every S ∈ SLn(F), by what we have just said. Also, if

H = diag[η1, . . . , ηn−1, 0],

then d(H ) = 0, since H = D0 H . In particular, d(O) = 0. If A ∈ Mn and A �= O,
there exist S, T ∈ SLn(F) such that

S AT = diag[1r−1, δ, 0n−r ],

where 1 ≤ r ≤ n and δ �= 0. It follows that d(A) = 0 if r < n, i.e. if A is singular. On
the other hand if r = n, i.e. if A is nonsingular, then S AT = Dδ and hence d(A) = δ.
This proves uniqueness.

We consider next existence. For any A = (α j k) ∈ Mn , define

det A =
∑
σ∈Sn

(sgn σ)α1σ1α2σ2 · · ·αnσn ,

where σ is a permutation of 1, 2, . . . , n, sgn σ = 1 or −1 according as the permu-
tation σ is even or odd, and the summation is over the symmetric group Sn of all
permutations. Several consequences of this definition will now be derived.

(i) if every entry in some row of A is 0, then det A = 0.

Proof Every summand vanishes in the expression for det A. �
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(ii) if the matrix B is obtained from the matrix A by multiplying all entries in one row
by λ, then det B = λ det A.

Proof This is also clear, since in the expression for det A each summand contains
exactly one factor from any given row. �

(iii) if two rows of A are the same, then det A = 0.

Proof Suppose for definiteness that the first and second rows are the same, and let τ
be the permutation which interchanges 1 and 2 and leaves fixed every k > 2. Then τ
is odd and we can write

det A =
∑
σ∈An

α1σ1α2σ2 · · ·αnσn −
∑
σ∈An

α1στ1α2στ2 · · ·αnστn ,

where An is the alternating group of all even permutations. In the second sum

α1στ1α2στ2 · · ·αnστn = α1σ2α2σ1α3σ3 · · ·αnσn = α2σ2α1σ1α3σ3 · · ·αnσn ,

because the first and second rows are the same. Hence the two sums cancel. �

(iv) if the matrix B is obtained from the matrix A by adding a scalar multiple of one
row to a different row, then det B = det A.

Proof Suppose for definiteness that B is obtained from A by adding λ times the sec-
ond row to the first. Then

det B =
∑
σ∈S n

(sgn σ)α1σ1α2σ2 · · ·αnσn + λ
∑
σ∈S n

(sgn σ)α2σ1α2σ2 · · ·αnσn .

The first sum is det A and the second sum is 0, by (iii), since it is the determinant of
the matrix obtained from A by replacing the first row by the second. �

(v) if A is singular, then det A = 0.

Proof If A is singular, then some row of A is a linear combination of the remaining
rows. Thus by subtracting from this row scalar multiples of the remaining rows we can
replace it by a row of 0’s. For the new matrix B we have det B = 0, by (i). On the
other hand, det B = det A, by (iv). �

(vi) if A = diag[δ1, . . . , δn], then det A = δ1 · · · δn . In particular, det Dα = α.

Proof In the expression for det A the only possible nonzero summand is that for which
σ is the identity permutation, and the identity permutation is even. �

(vii) det(AB) = det A · det B for all A, B ∈ Mn .

Proof If A is singular, then AB is also and so, by (v), det(AB) = 0 = det A · det B .
Thus we now suppose that A is nonsingular. Then there exists S ∈ SLn(F) such
that S A = Dδ for some nonzero δ ∈ F . Since, by the definition of SLn(F), left
multiplication by S corresponds to a finite number of operations of the type
considered in (iv) we have
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det A = det(S A) = det Dδ

and
det(AB) = det(S AB) = det(DδB).

But det Dδ = δ, by (vi), and det(DδB) = δ det B , by (ii). Therefore det(AB) =
det A · det B .

This completes the proof of existence. �

Corollary 2 If A ∈ Mn and if At is the transpose of A, then det At = det A.

Proof The map d : Mn → F defined by d(A) = det At also has the properties
(i)′, (ii)′. �

The proof of Theorem 1 shows further that SLn(F) is the special linear group,
consisting of all A ∈ Mn with det A = 1.

We do not propose to establish here all the properties of determinants which we
may later require. However, we note that if

A =
[

B 0
C D

]
is a partitioned matrix, where B and D are square matrices of smaller size, then

det A = det B · det D.

It follows that if A = (α j k) is lower triangular (i.e. α j k = 0 for all j, k with j < k)
or upper triangular (i.e. α j k = 0 for all j, k with j > k), then

det A = α11α22 · · ·αnn .

2 Hadamard Matrices

We begin by obtaining an upper bound for det(At A), where A is an n×m real matrix. If
m = n, then det(At A) = (det A)2 and bounding det(At A) is the same as Hadamard’s
problem of bounding | det A|. However, as we will see in §3, the problem is of interest
also for m < n.

In the statement of the following result we denote by ‖v‖ the Euclidean norm of
a vector v = (α1, . . . , αn) ∈ Rn . Thus ‖v‖ ≥ 0 and ‖v‖2 = α2

1 + · · · + α2
n . The

geometrical interpretation of the result is that a parallelotope with given side lengths
has maximum volume when the sides are orthogonal.

Proposition 3 Let A be an n × m real matrix with linearly independent columns
v1, . . . , vm. Then

det(At A) ≤
m∏

k=1

‖vk‖2,

with equality if and only if At A is a diagonal matrix.
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Proof We are going to construct inductively mutually orthogonal vectorsw1, . . . , wm

such that wk is a linear combination of v1, . . . , vk in which the coefficient of vk is 1
(1 ≤ k ≤ m). Take w1 = v1 and suppose w1, . . . , wk−1 have been determined. If we
take

wk = vk − α1w1 − · · · − αk−1wk−1,

where α j = 〈vk, w j 〉, then 〈wk , w j 〉 = 0 (1 ≤ j < k). Moreover, wk �= 0, since
v1, . . . , vk are linearly independent. (This is the same process as in §10 of Chapter I,
but without the normalization.)

If B is the matrix with columns w1, . . . , wm then, by construction,

Bt B = diag[δ1, . . . , δm]

is a diagonal matrix with diagonal entries δk = ‖wk‖2 and AT = B for some upper
triangular matrix T with 1’s in the main diagonal. Since det T = 1, we have

det(At A) = det(Bt B) =
m∏

k=1

‖wk‖2.

But

‖vk‖2 = ‖wk‖2 + |α1|2‖w1‖2 + · · · + |αk−1|2‖wk−1‖2

and hence ‖wk‖2 ≤ ‖vk‖2, with equality only if wk = vk . The result follows. �

Corollary 4 Let A = (α j k) be an n × m real matrix such that |α j k| ≤ 1 for all j, k.
Then

det(At A) ≤ nm ,

with equality if and only if α j k = ±1 for all j, k and At A = nIm.

Proof We may assume that the columns of A are linearly independent, since
otherwise det(At A) = 0. If vk is the k-th column of A, then ‖vk‖2 ≤ n, with equality
if and only if |α j k| = 1 for 1 ≤ j ≤ n. The result now follows from Proposition 3. �

An n×m matrix A = (α j k) will be said to be an H-matrix if α j k = ±1 for all j, k
and At A = nIm . If, in addition, m = n then A will be said to be a Hadamard matrix
of order n.

If A is an n × m H -matrix, then m ≤ n. Furthermore, if A is a Hadamard matrix
of order n then, for any m < n, the submatrix formed by the first m columns of A is an
H -matrix. (This distinction between H -matrices and Hadamard matrices is con-
venient, but not standard. It is an unproven conjecture that any H -matrix can be
completed to a Hadamard matrix.)

The transpose At of a Hadamard matrix A is again a Hadamard matrix, since
At = n A−1 commutes with A. The 1 × 1 unit matrix is a Hadamard matrix, and
so is the 2× 2 matrix
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1 1
1 −1

]
.

There is one rather simple procedure for constructing H -matrices. If A = (α j k) is
an n ×m matrix and B = (βi�) a q × p matrix, then the nq × mp matrix⎡⎢⎢⎣

α11 B α12 B · · · α1m B
α21 B α22 B · · · α2m B

· · · · · ·
αn1 B αn2 B · · · αnm B

⎤⎥⎥⎦ ,
with entries α j kβi�, is called the Kronecker product of A and B and is denoted by
A ⊗ B . It is easily verified that

(A ⊗ B)(C ⊗ D) = AC ⊗ B D

and

(A ⊗ B)t = At ⊗ Bt .

It follows directly from these rules of calculation that if A1 is an n1×m1 H -matrix and
A2 an n2 ×m2 H -matrix, then A1 ⊗ A2 is an n1n2 ×m1m2 H -matrix. Consequently,
since there exist Hadamard matrices of orders 1 and 2, there also exist Hadamard
matrices of order any power of 2. This was already known to Sylvester (1867).

Proposition 5 Let A = (α j k) be an n×m H -matrix. If n > 1, then n is even and any
two distinct columns of A have the same entries in exactly n/2 rows. If n > 2, then n
is divisible by 4 and any three distinct columns of A have the same entries in exactly
n/4 rows.

Proof If j �= k, then

α1 jα1k + · · · + αnjαnk = 0.

Since αi jαik = 1 if the j -th and k-th columns have the same entry in the i -th row and
= −1 otherwise, the number of rows in which the j -th and k-th columns have the same
entry is n/2.

If j, k, � are all different, then

n∑
i=1

(αi j + αik )(αi j + αi�) =
n∑

i=1

α2
i j = n.

But (αi j + αik )(αi j + αi�) = 4 if the j -th, k-th and �-th columns all have the same
entry in the i -th row and = 0 otherwise. Hence the number of rows in which the j -th,
k-th and �-th columns all have the same entry is exactly n/4. �

Thus the order n of a Hadamard matrix must be divisible by 4 if n > 2. It is
unknown if a Hadamard matrix of order n exists for every n divisible by 4. However,
it is known for n ≤ 424 and for several infinite families of n. We restrict attention here
to the family of Hadamard matrices constructed by Paley (1933).

The following lemma may be immediately verified by matrix multiplication.
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Lemma 6 Let C be an n × n matrix, with 0’s on the main diagonal and all other
entries 1 or −1, such that

Ct C = (n − 1)In.

If C is skew-symmetric (i.e. Ct = −C), then C + I is a Hadamard matrix of order
n, whereas if C is symmetric (i.e. Ct = C), then[

C + I C − I
C − I −C − I

]
is a Hadamard matrix of order 2n.

Proposition 7 If q is a power of an odd prime, there exists a (q + 1)× (q + 1) matrix
C with 0’s on the main diagonal and all other entries 1 or −1, such that

(i) Ct C = q Iq+1,
(ii) C is skew-symmetric if q ≡ 3 mod 4 and symmetric if q ≡ 1 mod 4.

Proof Let F be a finite field containing q elements. Since q is odd, not all elements
of F are squares. For any a ∈ F , put

χ(a) =

⎧⎪⎨⎪⎩
0 if a = 0,

1 if a �= 0 and a = c2 for some c ∈ F,

−1 if a is not a square.

If q = p is a prime, then F is the field of integers modulo p and χ(a) = (a/p) is the
Legendre symbol studied in Chapter III. The following argument may be restricted to
this case, if desired.

Since the multiplicative group of F is cyclic, we have

χ(ab) = χ(a)χ(b) for all a, b ∈ F.

Since the number of nonzero elements which are squares is equal to the number which
are non-squares, we also have ∑

a∈F

χ(a) = 0.

It follows that, for any c �= 0,∑
b∈F

χ(b)χ(b + c) =
∑
b �=0

χ(b)2χ(1+ cb−1) =
∑
x �=1

χ(x) = −1.

Let 0 = a0, a1, . . . , aq−1 be an enumeration of the elements of F and define a
q × q matrix Q = (q jk) by

q jk = χ(a j − ak) (0 ≤ j, k < q).

Thus Q has 0’s on the main diagonal and ±1’s elsewhere. Also, by what has been said
in the previous paragraph, if Jm denotes the m ×m matrix with all entries 1, then
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Q Jq = 0, Qt Q = q Iq − Jq .

Furthermore, since χ(−1) = (−1)(q−1)/2, Q is symmetric if q ≡ 1 mod 4 and skew-
symmetric if q ≡ 3 mod 4. If em denotes the 1×m matrix with all entries 1, it follows
that the matrix

C =
[

0 eq

±et
q Q

]
,

where the ± sign is chosen according as q ≡ ±1 mod 4, satisfies the various
requirements. �

By combining Lemma 6 with Proposition 7 we obtain Paley’s result that, for any
odd prime power q , there exists a Hadamard matrix of order q + 1 if q ≡ 3 mod 4 and
of order 2(q + 1) if q ≡ 1 mod 4. Together with the Kronecker product construction,
this establishes the existence of Hadamard matrices for all orders n ≡ 0 mod 4 with
n ≤ 100, except n = 92.

A Hadamard matrix of order 92 was found by Baumert, Golomb and Hall (1962),
using a computer search and the following method proposed by Williamson (1944).
Let A, B,C, D be d × d matrices with entries ±1 and let

H =

⎡⎢⎢⎣
A D B C
−D A −C B
−B C A −D
−C −B D A

⎤⎥⎥⎦ ,
i.e. H = A ⊗ I + B ⊗ i + C ⊗ j + D ⊗ k, where the 4 × 4 matrices I, i, j, k are
matrix representations of the unit quaternions. It may be immediately verified that H
is a Hadamard matrix of order n = 4d if

At A + Bt B + Ct C + Dt D = 4d Id

and

Xt Y = Y t X

for every two distinct matrices X,Y from the set {A, B,C, D}. The first infinite class
of Hadamard matrices of Williamson type was found by Turyn (1972), who showed
that they exist for all orders n = 2(q + 1), where q is a prime power and q ≡ 1 mod 4.
Lagrange’s theorem that any positive integer is a sum of four squares suggests that
Hadamard matrices of Williamson type may exist for all orders n ≡ 0 mod 4.

The Hadamard matrices constructed by Paley are either symmetric or of the form
I + S, where S is skew-symmetric. It has been conjectured that in fact Hadamard
matrices of both these types exist for all orders n ≡ 0 mod 4.

3 The Art of Weighing

It was observed by Yates (1935) that, if several quantities are to be measured, more
accurate results may be obtained by measuring suitable combinations of them than
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by measuring each separately. Suppose, for definiteness, that we have m objects
whose weights are to be determined and we perform n ≥ m weighings. The whole
experiment may be represented by an n × m matrix A = (α j k). If the k-th object is
not involved in the j -th weighing, then α j k = 0; if it is involved, then α j k = +1
or −1 according as it is placed in the left-hand or right-hand pan of the balance. The
individual weights ξ1, . . . , ξm are connected with the observed results η1, . . . , ηn of
the weighings by the system of linear equations

y = Ax, (1)

where x = (ξ1, . . . , ξm)t ∈ Rm and y = (η1, . . . , ηn)
t ∈ Rn .

We will again denote by ‖y‖ the Euclidean norm (|η1|2 + · · · + |ηn |2)1/2 of the
vector y. Let x̄ ∈ Rm have as its coordinates the correct weights and let ȳ = Ax̄ . If,
because of errors of measurement, y ranges over the ball ‖y − ȳ‖ ≤ ρ in Rn , then
x ranges over the ellipsoid (x − x̄)t At A(x − x̄) ≤ ρ2 in Rm . Since the volume of
the ellipsoid is [det(At A)]−1/2 times the volume of the ball, we may regard the best
choice of the design matrix A to be that for which the ellipsoid has minimum volume.
Thus we are led to the problem of maximizing det(At A) among all n × m matrices
A = (α j k) with α j k ∈ {0,−1, 1}.

A different approach to the best choice of design matrix leads (by §2) to a similar
result. If n > m the linear system (1) is overdetermined. However, the least squares
estimate for the solution of (1) is

x = Cy,

where C = (At A)−1 At . Let ak ∈ Rn be the k-th column of A and let ck ∈ Rn be the
k-th row of C . Since C A = Im , we have ckak = 1. If y ranges over the ball ‖y− ȳ‖ ≤ ρ
in Rn , then ξk ranges over the real interval |ξk − ξ̄k | ≤ ρ‖ck‖. Thus we may regard the
optimal choice of the design matrix A for measuring ξk to be that for which ‖ck‖ is a
minimum.

By Schwarz’s inequality (Chapter I, §4),

‖ck‖‖ak‖ ≥ 1,

with equality only if ct
k is a scalar multiple of ak . Also ‖ak‖ ≤ n1/2, since all elements

of A have absolute value at most 1. Hence ‖ck‖ ≥ n−1/2, with equality if and only if all
elements of ak have absolute value 1 and ct

k = ak/n. It follows that the design matrix A
is optimal for measuring each of ξ1, . . . , ξm if all elements of A have absolute value 1
and At A = nIm . Moreover, in this case the least squares estimate for the solution
of (1) is simply x = At y/n. Thus the individual weights are easily determined from
the observed measurements by additions and subtractions, followed by a division by n.

Suppose, for example, that m = 3 and n = 4. If we take

A =

⎡⎢⎢⎣
+++
++−
−++
+−+

⎤⎥⎥⎦ ,
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where + and − stand for 1 and −1 respectively, then At A = 4I3. With this experi-
mental design the individual weights may all be determined with twice the accuracy
of the weighing procedure.

The next result shows, in particular, that if we wish to maximize det(At A) among
the n×m matrices A with all entries 0, 1 or−1, then we may restrict attention to those
with all entries 1 or −1.

Proposition 8 Let α, β be real numbers with α < β and let S be the set of all n ×m
matrices A = (α j k) such that α ≤ α j k ≤ β for all j, k. Then there exists an n × m
matrix M = (µ j k) such that µ j k ∈ {α, β} for all j, k and

det(Mt M) = max
A∈S

det(At A).

Proof For any n × m real matrix A, either the symmetric matrix At A is positive
definite and det(At A) > 0, or At A is positive semidefinite and det(At A) = 0. Since
the result is obvious if det(At A) = 0 for every A ∈ S , we assume that det(At A) > 0
for some A ∈ S . This implies m ≤ n. Partition such an A in the form

A = (vB),

where v is the first column of A and B is the remainder. Then

At A =
[
v t v v t B
Btv Bt B

]
and Bt B is also a positive definite symmetric matrix. By multiplying At A on the left by[

I −v t B(Bt B)−1

O I

]
and taking determinants, we see that

det(At A) = f (v) det(Bt B),

where

f (v) = v tv − v t B(Bt B)−1 Btv.

We can write f (v) = v t Qv, where

Q = I − P, P = B(Bt B)−1 Bt .

From Pt = P = P2 we obtain Qt = Q = Q2. Hence Q = Qt Q is a positive
semidefinite symmetric matrix.

If v = θv1 + (1− θ)v2, where v1 and v2 are fixed vectors and θ ∈ R, then f (v) is
a quadratic polynomial q(θ) in θ whose leading coefficient

v t
1 Qv1 − v t

2 Qv1 − v t
1 Qv2 + v t

2 Qv2

is nonnegative, since Q is positive semidefinite. It follows that q(θ) attains its maxi-
mum value in the interval 0 ≤ θ ≤ 1 at an endpoint.
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Put

µ = sup
A∈S

det(At A).

Since det(At A) is a continuous function of the mn variables α j k and S may be re-
garded as a compact set in Rmn , µ is finite and there exists a matrix A ∈ S for which
det(At A) = µ. By repeatedly applying the argument of the preceding paragraph to
this A we may replace it by one for which every entry in the first column is either α or
β and for which also det(At A) = µ. These operations do not affect the submatrix B
formed by the last m − 1 columns of A. By interchanging the k-th column of A with
the first, which does not alter the value of det(At A), we may apply the same argument
to every other column of A. �

The proof of Proposition 8 actually shows that if C is a compact subset of Rn and
if S is the set of all n × m matrices A whose columns are in C , then there exists an
n × m matrix M whose columns are extreme points of C such that

det(Mt M) = sup
A∈S

det(At A).

Here e ∈ C is said to be an extreme point of C if there do not exist distinct v1, v2 ∈ C
and θ ∈ (0, 1) such that e = θv1 + (1− θ)v2.

The preceding discussion concerns weighings by a chemical balance. If instead
we use a spring balance, then we are similarly led to the problem of maximizing
det(Bt B) among all n×m matrices B = (β j k) with β j k = 1 or 0 according as the k-th
object is or is not involved in the j -th weighing. Moreover other types of measurement
lead to the same problem. A spectrometer sorts electromagnetic radiation into bundles
of rays, each bundle having a characteristic wavelength. Instead of measuring the
intensity of each bundle separately, we can measure the intensity of various combi-
nations of bundles by using masks with open or closed slots.

It will now be shown that in the case m = n the chemical and spring balance
problems are essentially equivalent.

Lemma 9 If B is an (n − 1) × (n − 1) matrix of 0’s and 1’s, and if Jn is the n × n
matrix whose entries are all 1, then

A = Jn −
[

O O
O 2B

]
,

is an n × n matrix of 1’s and −1’s, whose first row and column contain only 1’s, such
that

det A = (−2)n−1 det B.

Moreover, every n×n matrix of 1’s and−1’s, whose first row and column contain only
1’s, is obtained in this way.



4 Some Matrix Theory 237

Proof Since

A =
[

1 O
et

n−1 I

] [
1 en−1
O −2B

]
,

where em denotes a row of m 1’s, the matrix A has determinant (−2)n−1 det B . The
rest of the lemma is obvious. �

Let A be an n × n matrix with entries ±1. By multiplying rows and columns of A
by −1 we can make all elements in the first row and first column equal to 1 without
altering the value of det(At A). It follows from Lemma 9 that if αn is the maximum
of det(At A) among all n × n matrices A = (α j k) with α j k ∈ {−1, 1}, and if βn−1
is the maximum of det(Bt B) among all (n − 1) × (n − 1) matrices B = (β j k) with
β j k ∈ {0, 1}, then

αn = 22n−2βn−1.

4 Some Matrix Theory

In rectangular coordinates the equation of an ellipse with centre at the origin has the
form

Q := ax2 + 2bxy + cy2 = const. (∗)

This is not the form in which the equation of an ellipse is often written, because of the
‘cross product’ term 2bxy. However, we can bring it to that form by rotating the axes,
so that the major axis of the ellipse lies along one coordinate axis and the minor axis
along the other. This is possible because the major and minor axes are perpendicular
to one another. These assertions will now be verified analytically.

In matrix notation, Q = zt Az, where

A =
[

a b
b c

]
, z =

[
x
y

]
.

A rotation of coordinates has the form z = Tw, where

T =
[

cos θ − sin θ
sin θ cos θ

]
, w =

[
u
v

]
.

Then Q = wt Bw, where B = T t AT . Multiplying out, we obtain

B =
[

a′ b′
b′ c′

]
,

where

b′ = b(cos2 θ − sin2 θ)− (a − c) sin θ cos θ.

To eliminate the cross product term we choose θ so that b(cos2 θ − sin2 θ) =
(a − c) sin θ cos θ ; i.e., 2b cos 2θ = (a − c) sin 2θ , or

tan 2θ = 2b/(a − c).
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The preceding argument applies equally well to a hyperbola, since it is also
described by an equation of the form (∗). We now wish to extend this result to higher
dimensions. An n-dimensional conic with centre at the origin has the form

Q := x t Ax = const.,

where x ∈ Rn and A is an n× n real symmetric matrix. The analogue of a rotation is a
linear transformation x = T y which preserves Euclidean lengths, i.e. x t x = yt y. This
holds for all y ∈ Rn if and only if

T t T = I.

A matrix T which satisfies this condition is said to be orthogonal. Then T t = T−1 and
hence also T T t = I .

The single most important fact about real symmetric matrices is the principal axes
transformation:

Theorem 10 If H is an n × n real symmetric matrix, then there exists an n × n real
orthogonal matrix U such that Ut HU is a diagonal matrix:

Ut HU = diag[λ1, . . . , λn ].

Proof Let f : Rn → R be the map defined by

f (x) = xt H x .

Since f is continuous and the unit sphere S = {x ∈ Rn : xt x = 1} is compact,

λ1 := sup
x∈S

f (x)

is finite and there exists an x1 ∈ S such that f (x1) = λ1. We are going to show that, if
x ∈ S and xt x1 = 0, then also xt H x1 = 0.

For any real ε, put

y = (x1 + εx)/(1+ ε2)1/2.

Then also y ∈ S, since x and x1 are orthogonal vectors of unit length. Hence f (y) ≤
f (x1), by the definition of x1. But x t

1 H x = x t H x1, since H is symmetric, and hence

f (y) = { f (x1)+ 2εxt H x1 + ε2 f (x)}/(1+ ε2).

For small |ε| it follows that

f (y) = f (x1)+ 2εxt H x1 + O(ε2).

If xt H x1 were different from zero, we could choose ε to have the same sign as it and
obtain the contradiction f (y) > f (x1).

On the intersection of the unit sphere S with the hyperplane xt x1 = 0, the function
f attains its maximum value λ2 at some point x2. Similarly, on the intersection of the
unit sphere S with the (n−2)-dimensional subspace of all x such that xt x1 = xt x2 = 0,
the function f attains its maximum value λ3 at some point x3. Proceeding in this way
we obtain n mutually orthogonal unit vectors x1, . . . , xn . Moreover xt

j H x j = λ j and,
by the argument of the previous paragraph, xt

j H xk = 0 if j > k. It follows that the
matrix U with columns x1, . . . , xn satisfies all the requirements. �
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It should be noted that, if U is any orthogonal matrix such that Ut HU =
diag[λ1, . . . , λn] then, since UU t = I , the columns x1, . . . , xn of U satisfy

H x j = λ j x j (1 ≤ j ≤ n).

That is, λ j is an eigenvalue of H and x j a corresponding eigenvector (1 ≤ j ≤ n).
A real symmetric matrix A is positive definite if x t Ax > 0 for every real vector

x �= 0 (and positive semi-definite if xt Ax ≥ 0 for every real vector x with equal-
ity for some x �= 0). It follows from Theorem 10 that two real symmetric matrices
can be simultaneously diagonalized, if one of them is positive definite, although the
transforming matrix may not be orthogonal:

Proposition 11 If A and B are n×n real symmetric matrices, with A positive definite,
then there exists an n × n nonsingular real matrix T such that T t AT and T t BT are
both diagonal matrices.

Proof By Theorem 10, there exists a real orthogonal matrix U such that Ut AU is a
diagonal matrix:

Ut AU = diag[λ1, . . . , λn].

Moreover, λ j > 0 (1 ≤ j ≤ n), since A is positive definite. Hence there exists δ j > 0
such that δ2

j = 1/λ j . If D = diag[δ1, . . . , δn], then Dt Ut AU D = I . By Theorem 10
again, there exists a real orthogonal matrix V such that

V t (Dt Ut BU D)V = diag[µ1, . . . , µn]

is a diagonal matrix. Hence we can take T = U DV . �

Proposition 11 will now be used to obtain an inequality due to Fischer (1908):

Proposition 12 If G is a positive definite real symmetric matrix, and if

G =
[

G1 G2
Gt

2 G3

]
is any partition of G, then

det G ≤ det G1 · det G3,

with equality if and only if G2 = 0.

Proof Since G3 is also positive definite, we can write G = Qt H Q, where

Q =
[

I 0
G−1

3 Gt
2 I

]
, H =

[
H1 0
0 G3

]
,

and H1 = G1 − G2G−1
3 Gt

2. Since det G = det H1 · det G3, we need only show that
det H1 ≤ det G1, with equality only if G2 = 0.

Since G1 and H1 are both positive definite, they can be simultaneously diagonal-
ized. Thus, if G1 and H1 are p × p matrices, there exists a nonsingular real matrix T
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such that

T t G1T = diag[γ1, . . . , γp], T t H1T = diag[δ1, . . . , δp].

Since G−1
3 is positive definite, ut (G1 − H1)u ≥ 0 for any u ∈ Rp . Hence γi ≥ δi > 0

for i = 1, . . . , p and det G1 ≥ det H1. Moreover det G1 = det H1 only if γi = δi for
i = 1, . . . , p.

Hence if det G1 = det H1, then G1 = H1, i.e. G2G−1
3 Gt

2 = 0. Thus wt G−1
3 w = 0

for any vector w = Gt
2v. Since wt G−1

3 w = 0 implies w = 0, it follows that
G2 = 0. �

From Proposition 12 we obtain by induction

Proposition 13 If G = (γ j k) is an m×m positive definite real symmetric matrix, then

det G ≤ γ11γ22 · · · γmm,

with equality if and only if G is a diagonal matrix.

By applying Proposition 13 to the matrix G = At A, we obtain again Proposition 3.
Proposition 13 may be sharpened in the following way:

Proposition 14 If G = (γ j k) is an m×m positive definite real symmetric matrix, then

det G ≤ γ11

m∏
j=2

(γ j j − γ 2
1 j/γ11),

with equality if and only if γ j k = γ1 jγ1k/γ11 for 2 ≤ j < k ≤ m.

Proof If

T =
[

1 g
0 Im−1

]
,

where g = (−γ12/γ11, . . . ,−γ1m/γ11), then

T t GT =
[
γ11 0
0 H

]
,

where H = (η j k) is an (m− 1)× (m− 1) positive definite real symmetric matrix with
entries

η j k = γ j k − γ1 jγ1k/γ11 (2 ≤ j ≤ k ≤ m).

Since det G = γ11 det H , the result now follows from Proposition 13. �

Some further inequalities for the determinants of positive definite matrices will
now be derived, which will be applied to Hadamard’s determinant problem in the next
section. We again denote by Jm the m ×m matrix whose entries are all 1.
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Lemma 15 If C = α Im + β Jm for some real α, β, then

det C = αm−1(α + mβ).

Moreover, if det C �= 0, then C−1 = γ Im + δ Jm, where δ = −βα−1(α + mβ)−1 and
γ = α−1.

Proof Subtract the first row of C from each of the remaining rows, and then add to the
first column of the resulting matrix each of the remaining columns. These operations
do not alter the determinant and replace C by an upper triangular matrix with main
diagonal entries α + mβ (once) and α (m − 1 times). Hence det C = αm−1(α + mβ).

If det C �= 0 and if γ, δ are defined as in the statement of the lemma, then from
J 2

m = m Jm it follows directly that

(α Im + β Jm)(γ Im + δ Jm) = Im . �

Proposition 16 Let G = (γ j k) be an m × m positive definite real symmetric matrix
such that |γ j k| ≥ β for all j, k and γ j j ≤ α + β for all j , where α, β > 0. Then

det G ≤ αm−1(α + mβ). (2)

Moreover, equality holds if and only if there exists a diagonal matrix D, with main
diagonal elements ±1, such that

DG D = α Im + β Jm .

Proof The result is trivial if m = 1 and is easily verified if m = 2. We assume m > 2
and use induction on m. By replacing G by DG D, where D is a diagonal matrix
whose main diagonal elements have absolute value 1, we may suppose that γ1k ≥ 0
for 2 ≤ k ≤ m. Since the determinant is a linear function of its rows, we have

det G = (γ11 − β)δ + η,
where δ is the determinant of the matrix obtained from G by omitting the first row and
column and η is the determinant of the matrix H obtained from G by replacing γ11
by β. By the induction hypothesis,

δ ≤ αm−2(α + mβ − β).
If η ≤ 0, it follows that

det G ≤ αm−1(α + mβ − β) < αm−1(α + mβ).

Thus we now suppose η > 0. Then H is positive definite, since the submatrix
obtained by omitting the first row and column is positive definite. By Proposition 14,

η ≤ β
m∏

j=2

(γ j j − γ 2
1 j/β),
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with equality only if γ j k = γ1 jγ1k/β for 2 ≤ j < k ≤ m. Hence η ≤ αm−1β, with
equality only if γ j j = α + β for 2 ≤ j ≤ m and γ j k = β for 1 ≤ j < k ≤ m.
Consequently

det G ≤ αm−1(α + mβ − β)+ αm−1β = αm−1(α + mβ),

with equality only if G = α Im + β Jm . �

A square matrix will be called a signed permutation matrix if each row and column
contains only one nonzero entry and this entry is 1 or −1.

Proposition 17 Let G = (γ j k) be an m × m positive definite real symmetric matrix
such that γ j j ≤ α + β for all j and either γ j k = 0 or |γ j k| ≥ β for all j, k, where
α, β > 0.

Suppose in addition that γik = γ j k = 0 implies γi j �= 0. Then

det G ≤ αm−2(α + mβ/2)2 if m is even,

det G ≤ αm−2(α + (m + 1)β/2)(α + (m − 1)β/2) if m is odd.
(3)

Moreover, equality holds if and only if there is a signed permutation matrix U such that

Ut GU =
[

L 0
0 M

]
,

where

L = M = α Im/2 + β Jm/2 if m is even,

L = α I(m+1)/2 + β J(m+1)/2,M = α I(m−1)/2 + β J(m−1)/2 if m is odd.

Proof We are going to establish the inequality

det G ≤ αm−2(α + sβ)(α + mβ − sβ), (4)

where s is the maximum number of zero elements in any row of G. Since, as a function
of the real variable s, the quadratic on the right of (4) attains its maximum value for
s = m/2, and has the same value for s = (m + 1)/2 as for s = (m − 1)/2, this will
imply (3). It will also imply that if equality holds in (3), then s = m/2 if m is even and
s = (m + 1)/2 or (m − 1)/2 if m is odd.

For m = 2 it is easily verified that (4) holds. We assume m > 2 and use induction.
By performing the same signed permutation on rows and columns, we may suppose
that the second row of G has the maximum number s of zero elements, and that all
nonzero elements of the first row are positive and precede the zero elements. All the
hypotheses of the proposition remain satisfied by the matrix G after this operation.

Let s′ be the number of zero elements in the first row and put r ′ = m − s′. As in
the proof of Proposition 16, we have

det G = (γ11 − β)δ + η,
where δ is the determinant of the matrix obtained from G by omitting the first row and
column and η is the determinant of the matrix H obtained from G by replacing γ11 by
β. We partition H in the form
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H =
[

L N
Nt M

]
,

where L,M are square matrices of orders r ′, s′ respectively. By construction all ele-
ments in the first row of L are positive and all elements in the first row of N are zero.
Furthermore, by the hypotheses of the proposition, all elements of M have absolute
value ≥ β.

By the induction hypothesis,

δ ≤ αm−3(α + sβ)(α + mβ − β − sβ).

If η ≤ 0, it follows immediately that (4) holds with strict inequality. Thus we now
suppose η > 0. Then H is positive definite and hence, by Fischer’s inequality (Propo-
sition 12), η ≤ det L · det M , with equality only if N = 0. But, by Proposition 14,

det L ≤ β
r ′∏

j=2

(γ j j − γ 2
1 j/β) ≤ αr ′−1β

and, by Proposition 16,

det M ≤ αs ′−1(α + s′β).

Hence

det G ≤ αm−2(α + sβ)(α + mβ − β − sβ)+ αm−2β(α + s′β),

Since s′ ≤ s, it follows that (4) holds and actually with strict inequality if s′ �= s.
If equality holds in (4) then, by Proposition 14, we must have L = α Ir ′ + β Jr ′ ,

and by Proposition 16 after normalization we must also have M = α Is ′ + β Js ′ . �

5 Application to Hadamard’s Determinant Problem

We have seen that, if A is an n×m real matrix with all entries±1, then det(At A) ≤ nm ,
with strict inequality if n > 2 and n is not divisible by 4. The question arises, what
is the maximum value of det(At A) in such a case? In the present section we use the
results of the previous section to obtain some answers to this question. We consider
first the case where n is odd.

Proposition 18 Let A = (α j k) be an n × m matrix with α j k = ±1 for all j, k. If n is
odd, then

det(At A) ≤ (n − 1)m−1(n − 1+ m).

Moreover, equality holds if and only if n ≡ 1 mod 4 and, after changing the signs of
some columns of A,

At A = (n − 1)Im + Jm .
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Proof We may assume det(At A) �= 0 and thus m ≤ n. Then At A = G = (γ j k) is a
positive definite real symmetric matrix. For all j, k,

γ j k = α1 jα1k + · · · + αnjαnk

is an integer and γ j j = n. Moreover γ j k is odd for all j, k, being the sum of an odd
number of ±1’s. Hence the matrix G satisfies the hypotheses of Proposition 16 with
α = n − 1 and β = 1. Everything now follows from Proposition 16, except for the
remark that if equality holds we must have n ≡ 1 mod 4.

But if G = (n − 1)Im + Jm , then γ j k = 1 for j �= k. It now follows, by the
argument used in the proof of Proposition 5, that any two distinct columns of A have
the same entries in exactly (n + 1)/2 rows, and any three distinct columns of A have
the same entries in exactly (n + 3)/4 rows. Thus n ≡ 1 mod 4. �

Even if n ≡ 1 mod 4 there is no guarantee that that the upper bound in Propo-
sition 18 is attained. However the question may be reduced to the existence of
H -matrices if m �= n. For suppose m ≤ n − 1 and there exists an (n − 1) × m
H -matrix B . If we put

A =
[

B
em

]
,

where em again denotes a row of m1’s, then At A = (n − 1)Im + Jm .
On the other hand if m = n, then equality in Proposition 18 can hold only under

very restrictive conditions. For in this case

(det A)2 = det At A = (n − 1)n−1(2n − 1)

and, since n is odd, it follows that 2n − 1 is the square of an integer. It is an open
question whether the upper bound in Proposition 18 is always attained when m = n
and 2n− 1 is a square. However the nature of an extremal matrix, if one exists, can be
specified rather precisely:

Proposition 19 If A = (α j k) is an n× n matrix with n > 1 odd and α j k = ±1 for all
j, k, then

det(At A) ≤ (n − 1)n−1(2n − 1).

Moreover if equality holds, then n ≡ 1 mod 4, 2n − 1 = s2 for some integer s and,
after changing the signs of some rows and columns of A, the matrix A must satisfy

At A = (n − 1)In + Jn, AJn = s J n.

Proof By Proposition 18 and the preceding remarks, it only remains to show that if
there exists an A such that At A = (n − 1)In + Jn then, by changing the signs of some
rows, we can ensure that also AJ n = s J n .

Since det(AAt ) = det(At A), it follows from Proposition 18 that there exists a
diagonal matrix D with D2 = In such that

D AAt D = (n − 1)In + Jn = At A.
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Replacing A by D A, we obtain AAt = At A. Then A commutes with At A and
hence also with Jn . Thus the rows and columns of A all have the same sum s and
AJ n = s J n = At Jn . Moreover s2 = 2n − 1, since

s2 Jn = s At Jn = At AJ n = (2n − 1)Jn. �

The maximum value of det(At A) when n ≡ 3 mod 4 is still a bit of a mystery. We
now consider the remaining case when n is even, but not divisible by 4.

Proposition 20 Let A = (α j k) be an n × m matrix with 2 ≤ m ≤ n and α j k = ±1
for all j, k. If n ≡ 2 mod 4 and n > 2, then

det(At A) ≤ (n − 2)m−2(n − 2+ m)2 if m is even,

det(At A) ≤ (n − 2)m−2(n − 1+ m)(n − 3+ m) if m is odd.

Moreover, equality holds if and only if there is a signed permutation matrix U such that

Ut At AU =
[

L 0
0 M

]
,

where

L = M = (n − 2)Im/2 + 2Jm/2 if m is even,

L = (n − 2)I(m+1)/2 + 2J(m+1)/2,M = (n − 2)I(m−1)/2 + 2J(m−1)/2 if m is odd.

Proof We need only show that G = At A satisfies the hypotheses of Proposition 17
with α = n − 2 and β = 2. We certainly have γ j j = n. Moreover all γ j k are even,
since n is even and

γ j k = α1 jα1k + · · · + αnjαnk .

Hence |γ j k| ≥ 2 if γ j k �= 0. Finally, if j, k, �, are all different and γ j� = γk� = 0, then

n∑
i=1

(αi j + αik )(αi j + αi�) = n + γ j k.

Since n ≡ 2 mod 4, it follows that also γ j k ≡ 2 mod 4 and thus γ j k �= 0. �

Again there is no guarantee that the upper bound in Proposition 20 is attained.
However the question may be reduced to the existence of H -matrices if m �= n, n − 1.
For suppose m ≤ n − 2 and there exists an (n − 2)× m H -matrix B . If we put

A =
[

B
C

]
,

where

C =
[

er es

er −es

]
,
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and r + s = m, then

At A =
[
(n − 2)Ir + 2Jr 0

0 (n − 2)Is + 2Js

]
.

Thus the upper bound in Proposition 20 is attained by taking r = s = m/2 when m is
even and r = (m + 1)/2, s = (m − 1)/2 when m is odd.

Suppose now that m = n and

At A =
[

L 0
0 L

]
,

where L = (n − 2)In/2 + 2Jn/2. If B is the n × (n − 1) submatrix of A obtained by
omitting the last column, then

Bt B =
[

L 0
0 M

]
,

where M = (n − 2)In/2−1 + 2Jn/2−1. Thus if the upper bound in Proposition 20 is
attained for m = n, then it is also attained for m = n − 1. Furthermore, since

det(AAt ) = det(At A),

it follows from Proposition 20 that there exists a signed permutation matrix U such that

U AAtUt = At A.

Replacing A by U A, we obtain AAt = At A. Then A commutes with At A. If

A =
[

X Y
Z W

]
,

is the partition of A into square submatrices of order n/2, it follows that X,Y, Z ,W
all commute with L and hence with Jn/2. This means that the entries in any row or
any column of X have the same sum, which we will denote by x . Similarly the entries
in any row or any column of Y, Z ,W have the same sum, which will be denoted by
y, z, w respectively. We may assume x, y, w ≥ 0 by replacing A by[

In/2 0
0 ±In/2

]
A

[±In/2 0
0 ±In/2

]
,

We have

Xt X + Zt Z = Y t Y +W t W = L, Xt Y + Zt W = 0,

and

X X t + Y Y t = Z Zt +W W t = L, X Z t + Y W t = 0.

Postmultiplying by J , we obtain

x2 + z2 = y2 +w2 = 2n − 2, xy + zw = 0,
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and

x2 + y2 = z2 +w2 = 2n − 2, xz + yw = 0.

Adding, we obtain x2 = w2 and hence x = w. Thus z2 = y2 and actually z = −y,
since xy + zw = 0.

This shows, in particular, that if the upper bound in Proposition 20 is attained for
m = n ≡ 2 mod 4, then 2n − 2 = x2 + y2, where x and y are integers. By Proposi-
tion II.39, such a representation is possible if and only if, for every prime p ≡ 3 mod 4,
the highest power of p which divides n − 1 is even. Hence the upper bound in Propo-
sition 20 is never attained if m = n = 22. On the other hand if m = n = 6, then
2n − 2 = 10 = 9 + 1 and an extremal matrix A is obtained by taking W = X = J3
and Z = −Y = 2I3 − J3.

It is an open question whether the upper bound in Proposition 20 is always
attained when m = n and 2n − 2 is a sum of two squares. It is also unknown if,
when an extremal matrix exists, one can always take W = X and Z = −Y .

6 Designs

A design (in the most general sense) is a pair (P,B), where P is a finite set of ele-
ments, called points, and B is a collection of subsets of P , called blocks. If p1, . . . , pv
are the points of the design and B1, . . . , Bb the blocks, then the incidence matrix of
the design is the v × b matrix A = (αi j ) of 0’s and 1’s defined by

αi j =
{

1 if pi ∈ B j ,

0 if pi �∈ B j .

Conversely, any v × b matrix A = (αi j ) of 0’s and 1’s defines in this way a design.
However, two such matrices define the same design if one can be obtained from the
other by permutations of the rows and columns.

We will be interested in designs with rather more structure. A 2-design or, espe-
cially in older literature, a ‘balanced incomplete block design’ (BIBD) is a design, with
more than one point and more than one block, in which each block contains the same
number k of points, each point belongs to the same number r of blocks, and every pair
of distinct points occurs in the same number λ of blocks.

Thus each column of the incidence matrix contains k 1’s and each row contains
r 1’s. Counting the total number of 1’s in two ways, by columns and by rows, we obtain

bk = vr .
Similarly, by counting in two ways the 1’s which lie below the 1’s in the first row, we
obtain

r(k − 1) = λ(v − 1).

Thus if v, k, λ are given, then r and b are determined and we may speak of a 2-(v, k, λ)
design. Since v > 1 and b > 1, we have

1 < k < v, 1 ≤ λ < r.
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Fig. 1. The Fano plane.

A v × b matrix A = (αi j ) of 0’s and 1’s is the incidence matrix of a 2-design if
and only if, for some positive integers k, r, λ,

v∑
i=1

αi j = k,
b∑

k=1

α2
ik = r,

b∑
k=1

αikα j k = λ if i �= j (1 ≤ i, j ≤ v),

or in other words,

ev A = keb, AAt = (r − λ)Iv + λJv , (5)

where en is the 1× n matrix with all entries 1, In is the n× n unit matrix and Jn is the
n × n matrix with all entries 1.

Designs have been used extensively in the design of agricultural and other experi-
ments. To compare the yield of v varieties of a crop on b blocks of land, it would be
expensive to test each variety separately on each block. Instead we can divide each
block into k plots and use a 2-(v, k, λ) design, where λ = bk(k − 1)/v(v − 1). Then
each variety is used exactly r = bk/v times, no variety is used more than once in any
block, and any two varieties are used together in exactly λ blocks. As an example, take
v = 4, b = 6, k = 2 and hence λ = 1, r = 3.

Some examples of 2-designs are the finite projective planes. In fact a projective
plane of order n may be defined as a 2-(v, k, λ) design with

v = n2 + n + 1, k = n + 1, λ = 1.

It follows that b = v and r = k. The blocks in this case are called ‘lines’. The projec-
tive plane of order 2, or Fano plane, is illustrated in Figure 1. There are seven points
and seven blocks, the blocks being the six triples of collinear points and the triple of
points on the circle.

Consider now an arbitrary 2-(v, k, λ) design. By (5) and Lemma 15,

det(AAt ) = (r − λ)v−1(r − λ+ λv) > 0,

since r > λ. This implies the inequality b ≥ v, due to Fisher (1940), since AAt would
be singular if b < v.
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A 2-design is said to be square or (more commonly, but misleadingly) ‘symmetric’
if b = v, i.e. if the number of blocks is the same as the number of points. Thus any
projective plane is a square 2-design.

For a square 2-(v, k, λ) design, k = r and the incidence matrix A is itself nonsin-
gular. The first relation (5) is now equivalent to Jv A = k Jv . Since k = r , the sum of
the entries in any row of A is also k and thus Jv At = k Jv . By multiplying the second
relation (5) on the left by A−1 and on the right by A, we further obtain

At A = (r − λ)Iv + λJv .

Thus At is also the incidence matrix of a square 2-(v, k, λ) design, the dual of the
given design.

This partly combinatorial argument may be replaced by a more general matrix one:

Lemma 21 Let a, b, k be real numbers and n > 1 an integer. There exists a nonsin-
gular real n × n matrix A such that

AAt = a I + b J, J A = k J, (6)

if and only if a > 0, a + bn > 0 and k2 = a + bn. Moreover any such matrix A also
satisfies

At A = a I + b J, J At = k J. (7)

Proof We show first that if A is any real n×n matrix satisfying (6), then a+bn = k2.
In fact, since J 2 = n J , the first relation in (6) implies J AAt J = (a+bn)n J , whereas
the second implies J AAt J = k2n J .

We show next that the symmetric matrix G := a I + b J is positive definite if and
only if a > 0 and a + bn > 0. By Lemma 15, det G = an−1(a + bn). If G is positive
definite, its determinant is positive. Since all principal submatrices are also positive
definite, we must have ai−1(a + bi) > 0 for 1 ≤ i ≤ n. In particular, a + b > 0,
a(a + 2b) > 0, which is only possible if a > 0. It now follows that also a + bn > 0.

Conversely, suppose a > 0 and a+bn > 0. Then det G > 0 and there exist nonzero
real numbers h, k such that a = h2, a + bn = k2. If we put C = h I + (k − h)n−1 J ,
then JC = k J and

C2 = h2 I + {2h(k − h)+ (k − h)2}n−1 J = a I + b J = G.

Since det G > 0, this shows that G = CCt is positive definite and C is nonsingular.
Finally, let A be any nonsingular real n×n matrix satisfying (6). Since A is nonsin-

gular, AAt is a positive definite symmetric matrix and hence a > 0, a+ bn > 0. Since
AAt = C2 and Ct = C , we have A = CU , where U is orthogonal. Hence At = Ut C
and C = U At . From JC = k J we obtain k J = J A = JCU = k JU . Thus J = JU
and J At = JU At = JC = k J . Moreover U t JU = J , since J t = J , and hence

At A = Ut C2U = Ut (a I + b J )U = a I + b J. �

In Chapter VII we will derive necessary and sufficient conditions for the existence
of a nonsingular rational n×n matrix A such that AAt = aI+bJ, and thus in particular
obtain some basic restrictions on the parameters v, k, λ for the existence of a square
2-(v, k, λ) design. These were first obtained by Bruck, Ryser and Chowla (1949/50).
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We now consider the relationship between designs and Hadamard’s determinant
problem. By passing from A to B = (Jn − At )/2, it may be seen immediately that
equality holds in Proposition 19 if and only if there exists a 2-(n, k, λ) design, where
k = (n − s)/2, λ = (n + 1− 2s)/4 and s2 = 2n − 1.

We now show that with any Hadamard matrix A = (α j k) of order n = 4d there is
associated a 2-(4d − 1, 2d − 1, d − 1) design. Assume without loss of generality that
all elements in the first row and column of A are 1. We take P = {2, . . . , n} as the set
of points and B = {B2, . . . , Bn} as the set of blocks, where Bk = {j ∈ P : α j k = 1}.
Then Bk has cardinality |Bk| = n/2−1 for k = 2, . . . , n. Moreover, if T is any subset
of P with |T | = 2, then the number of blocks containing T is n/4− 1. The argument
may also be reversed to show that any 2-(4d − 1, 2d − 1, d − 1) design is associated
in this way with a Hadamard matrix of order 4d .

In particular, for d = 2, the 2-(7, 3, 1) design associated with the Hadamard matrix
H2 ⊗ H2 ⊗ H2, where

H2 =
[

1 1
1 −1

]
,

is the projective plane of order 2 (Fano plane) illustrated in Figure 1.
The connection between Hadamard matrices and designs may also be derived by a

matrix argument. If

A =
[

1 en−1

et
n−1 Ã

]
,

is a Hadamard matrix of order n = 4d , normalized so that its first row and column
contain only 1’s, then B = (Jn−1 + Ã)/2 is a matrix of 0’s and 1’s such that

J4d−1 B = (2d − 1)J4d−1, BBt = dI4d−1 + (d − 1)J4d−1.

The optimal spring balance design of order 4d − 1, which is obtained by taking
C = (Jn−1 − Ã)/2, is a 2-(4d − 1, 2d, d) design, since

J4d−1C = 2dJ4d−1, CCt = dI4d−1 + dJ4d−1.

The notion of 2-design will now be generalized. Let t, v, k, λ be positive integers
with v ≥ k ≥ t . A t-(v, k, λ) design, or simply a t-design, is a pair (P,B), where P
is a set of cardinality v and B is a collection of subsets of P , each of cardinality k,
such that any subset of P of cardinality t is contained in exactly λ elements of B. The
elements of P will be called points and the elements of B will be called blocks. A t-
(v, k, λ) design with λ = 1 is known as a Steiner system. The automorphism group of
a t-design is the group of all permutations of the points which map blocks onto blocks.

If t = 1, then each point is contained in exactly λ blocks and so the number of
blocks is λv/k. Suppose now that t > 1. Let S be a fixed subset of P of cardinality
t−1 and let λ′ be the number of blocks which contain S. Consider the number of pairs
(T ,B), where B ∈ B, S ⊆ T ⊆ B and |T | = t . By first fixing B and varying T we
see that this number is λ′(k − t + 1). On the other hand, by first fixing T and varying
B we see that this number is λ(v − t + 1). Hence
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λ′ = λ(v − t + 1)/(k − t + 1)

does not depend on the choice of S and a t-(v, k, λ) design (P,B) is also a (t − 1)-
(v, k, λ′) design. By repeating this argument, we see that each point is contained in
exactly r blocks, where

r = λ(v − t + 1) · · · (v − 1)/(k − t + 1) · · · (k − 1),

and the total number of blocks is b = rv/k. In particular, any t-design with t > 2 is
also a 2-design.

With any Hadamard matrix A = (α j k) of order n = 4d there is, in addition,
associated a 3-(4d, 2d, d − 1) design. For assume without loss of generality that all
elements in the first column of A are 1. We take P = {1, 2, . . . , n} as the set of points
and {B2, . . . , Bn, B ′2, . . . , B ′n} as the set of blocks, where Bk = {j ∈ P : α j k = 1}
and B ′k = {j ∈ P : α j k = −1}. Then, by Proposition 5, |Bk| = |B ′k| = n/2 for
k = 2, . . . , n. If T is any subset of P with |T | = 3, say T = {i, j, �}, then the number
of blocks containing T is the number of k > 1 such that αik = α j k = α�k . But, by
Proposition 5 again, the number of columns of A which have the same entries in rows
i, j, � is n/4 and this includes the first column. Hence T is contained in exactly n/4−1
blocks. Again the argument may be reversed to show that any 3-(4d, 2d, d−1) design
is associated in this way with a Hadamard matrix of order 4d .

7 Groups and Codes

A group is said to be simple if it contains more than one element and has no nor-
mal subgroups besides itself and the subgroup containing only the identity element.
The finite simple groups are in some sense the building blocks from which all finite
groups are constructed. There are several infinite families of them: the cyclic groups
Cp of prime order p, the alternating groups An of all even permutations of n objects
(n ≥ 5), the groups PSLn(q) derived from the general linear groups of all invertible
linear transformations of an n-dimensional vector space over a finite field of q = pm

elements (n ≥ 2 and q > 3 if n = 2), and some other families similar to the last which
are analogues for a finite field of the simple Lie groups.

In addition to these infinite families there are 26 sporadic finite simple groups.
(The classification theorem states that there are no other finite simple groups besides
those already mentioned. The proof of the classification theorem at present occupies
thousands of pages, scattered over a variety of journals, and some parts are actually
still unpublished.) All except five of the sporadic groups were found in the years
1965–1981. However, the first five were found by Mathieu (1861,1873): M12 is a
5-fold transitive group of permutations of 12 objects of order 12 · 11 · 10 · 9 · 8 and
M11 the subgroup of all permutations in M12 which fix one of the objects; M24 is a
5-fold transitive group of permutations of 24 objects of order 24 · 23 · 22 · 21 · 20 · 48,
M23 the subgroup of all permutations in M24 which fix one of the objects and M22 the
subgroup of all permutations which fix two of the objects. The Mathieu groups may
be defined in several ways, but the definitions by means of Hadamard matrices that we
are going to give are certainly competitive with the others.
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Two n × n Hadamard matrices H1, H2 are said to be equivalent if one may be
obtained from the other by interchanging two rows or two columns, or by changing
the sign of a row or a column, or by any finite number of such operations. Otherwise
expressed, H2 = P H1 Q, where P and Q are signed permutation matrices. An auto-
morphism of a Hadamard matrix H is an equivalence of H with itself: H = P H Q.
Since P = H Q−1 H−1, the automorphism is uniquely determined by Q. Under
matrix multiplication all admissible Q form a group G , the automorphism group of
the Hadamard matrix H . Evidently −I ∈ G and −I commutes with all elements of
G . The factor group G /{±I }, obtained by identifying Q and −Q, may be called the
reduced automorphism group of H .

To illustrate these concepts we will show that all Hadamard matrices of order 12
are equivalent. In fact rather more is true:

Proposition 22 Any Hadamard matrix of order 12 may be brought to the form

+++ +++ +++ +++
+++ +++ −−− −−−
+++ −−− +++ −−−
+−+ −+− −+− +−+
++− −−+ −−+ +−+
−++ +−− +−− +−+
+−+ −−+ +−− ++−
+−+ +−− −−+ −++
++− −+− +−− −++
−++ −+− −−+ ++−
++− +−− −+− ++−
−++ −−+ −+− −++

(∗)

(where+ stands for 1 and− for−1) by changing the signs of some rows and columns,
by permuting the columns, and by permuting the first three rows and the last seven
rows.

Proof Let A = (α j k) be a Hadamard matrix of order 12. By changing the signs of
some columns we may assume that all elements of the first row are +1. Then, by the
orthogonality relations, half the elements of any other row are +1. By permuting the
columns we may assume that all elements in the first half of the second row are +1. It
now follows from the orthogonality relations that in any row after the second the sum
of all elements in each half is zero. Hence, by permuting the columns within each half
we may assume that the third row is the same as the third row of the array (∗) displayed
above. In the r -th row, where r > 3, let ρk be the sum of the entries in the k-th block
of three columns (k = 1, 2, 3, 4). The orthogonality relations now imply that

ρ1 = ρ4 = −ρ2 = −ρ3.

In the s-th row, where s > 3 and s �= r , let σk be the sum of the entries in the k-th
block of three columns. Then also

σ1 = σ4 = −σ2 = −σ3.
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If ρ1 = ±3, then all elements of the same triple of columns in the r -th row have the
same sign and orthogonality to the s-th row implies σ1 = 0, which is impossible be-
cause σ1 is odd. Hence ρ1 = ±1. By changing the signs of some rows we may assume
that ρ1 = 1 for every r > 3. By permuting columns within each block of three we may
also normalize the 4-th row, so that the first four rows are now the same as the first four
rows of the array (∗).

In any row after the third, within a given block of three columns two elements have
the same sign and the third element the opposite sign. Moreover, these signs depend
only on the block and not on the row, since ρ1 = 1. The scalar product of the triples
from two different rows belonging to the same block of columns is 3 if the exceptional
elements have the same position in the triple and is −1 otherwise. Since the two rows
are orthogonal, the exceptional elements must have the same position in exactly one
of the four blocks of columns. Thus if two rows after the 4-th have the same triple of
elements in the k-th block as the 4-th row, then they have no other triple in common
with the 4-th row or with one another. But this implies that if one of the two rows is
given, then the other is uniquely determined. Hence no other row besides these two
has the same triple of elements in the k-th block as the 4-th row. Since there are eight
rows after the 4-th, and since each has exactly one triple in common with the 4-th row,
it follows that, for each k ∈ {1, 2, 3, 4}, exactly two of them have the same triple in the
k-th block as the 4-th row.

The first four rows are unaltered by the following operations:

(i) interchange of the first and last columns of any triple of columns,
(ii) interchange of the second and third triple of columns, and then interchange of the

second and third rows,
(iii) interchange of the first and fourth triple of columns, then interchange of the sec-

ond and third rows and change of sign of these two rows,
(iv) interchange of the second and fourth triple of columns and change of their signs,

then interchange of the first and third rows.

If we denote the elements of the r -th row (r > 4) by ξ1, . . . , ξ12, then we have

ξ1 + ξ2 + ξ3 = 1 = ξ10 + ξ11 + ξ12,

ξ4 + ξ5 + ξ6 = −1 = ξ7 + ξ8 + ξ9,
ξ2 − ξ5 − ξ8 + ξ11 = 2.

In particular in the 5-th row we have α52 − α55 − α58 + α5,11 = 2. Thus α52 and α5,11
cannot both be −1 and by an operation (iii) we may assume that α52 = 1. Similarly
α55 and α58 cannot both be 1 and by an operation (ii) we may assume that α58 = −1.
Then α55 = α5,11 and by an operation (iv) we may assume that α55 = α5,11 = −1. By
operations (i) we may finally assume that the 5-th row is the same as the 5-th row of
the array (∗).

As we have already shown, exactly one row after the 5-th row has the same triple
+ − + in the last block of columns as the 4-th and 5-th rows and this row must be
the same as the 6-th row of the array (∗). By permuting the last seven rows we may
assume that this row is also the 6-th row of the given matrix, that the 7-th and 8-th rows
have the same first triple of elements as the 4-th row, that the 9-th and 10-th rows have
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the same second triple of elements as the 4-th row, and that the 11-th and 12-th rows
have the same third triple of elements as the 4-th row.

In any row after the 6-th we have, in addition to the relations displayed above,
ξ11 = 1, ξ10 + ξ12 = 0 and

ξ1 − ξ4 − ξ7 = ξ2 − ξ5 − ξ8 = ξ3 − ξ6 − ξ9 = 1.

In the 7-th and 8-th rows we have ξ1 = ξ3 = 1, ξ2 = −1, and hence ξ5 = ξ8 = −1,
ξ4 = −ξ6 = −ξ7 = ξ9. Since the first six rows are still unaltered by an operation (ii),
and also by interchanging the first and third columns of the last block, we may assume
that α74 = −1, α7,10 = 1. The 7-th and 8-th rows are now uniquely determined and
are the same as the 7-th and 8-th rows of the array (∗).

In any row after the 8-th we have

ξ2 − ξ6 − ξ7 + ξ12 = 2 = ξ2 − ξ4 − ξ9 + ξ10.

In the 9-th and 10-th rows we have ξ5 = ξ11 = 1 and ξ4 = ξ6 = −1. Hence
ξ2 = −ξ8 = 1, ξ1 = ξ7 = −ξ3 = −ξ9, and finally ξ9 = ξ10 = −ξ12. Thus the
9-th and 10-th rows are together uniquely determined and may be ordered so as to
coincide with the corresponding rows of the array (∗). Similarly the 11-th and 12-th
rows are together uniquely determined and may be ordered so as to coincide with the
corresponding rows of the displayed array. �

It follows from Proposition 22 that, for any five distinct rows of a Hadamard ma-
trix of order 12, there exists exactly one pair of columns which either agree in all these
rows or disagree in all these rows. Indeed, by permuting the rows we may arrange that
the five given rows are the first five rows. Now, by Proposition 22, we may assume that
the matrix has the form (∗). But it is evident that in this case there is exactly one pair
of columns which either agree or disagree in all the first five rows, namely the 10-th
and 12-th columns.

Hence a 5-(12, 6, 1) design is obtained by taking the points to be elements of the
set P = {1, . . . , 12} and the blocks to be the 12 · 11 subsets B jk, B ′j k with j, k ∈ P
and j �= k, where

B jk = {i ∈ P : αi j = αik}, B ′j k = {i ∈ P : αi j �= αik}.
The Mathieu group M12 may be defined as the automorphism group of this design or
as the reduced automorphism group of any Hadamard matrix of order 12.

It is certainly not true in general that all Hadamard matrices of the same order n
are equivalent. For example, there are 60 equivalence classes of Hadamard matrices of
order 24. The Mathieu group M24 is connected with the Hadamard matrix of order 24
which is constructed by Paley’s method, described in §2. The connection is not as
immediate as for M12, but the ideas involved are of general significance, as we now
explain.

A sequence x = (ξ1, . . . , ξn) of n 0’s and 1’s may be regarded as a vector in the
n-dimensional vector space V = Fn

2 over the field of two elements. If we define the
weight |x | of the vector x to be the number of nonzero coordinates ξk , then

(i) |x | ≥ 0 with equality if and only if x = 0,



7 Groups and Codes 255

(ii) |x + y| ≤ |x | + |y|.
The vector space V acquires the structure of a metric space if we define the (Hamming)
distance between the vectors x and y to be d(x, y) = |x − y|.

A binary linear code is a subspace U of the vector space V . If U has dimension
k, then a generator matrix for the code is a k × n matrix G whose rows form a basis
for U . The automorphism group of the code is the group of all permutations of the n
coordinates which map U onto itself. An [n, k, d]-binary code is one for which V has
dimension n, U has dimension k and d is the least weight of any nonzero vector in U .

There are useful connections between codes and designs. Corresponding to any
design with incidence matrix A there is the binary linear code generated over F2 by
the rows of A. Given a binary linear code U , on the other hand, a theorem of Assmus
and Mattson (1969) provides conditions under which the nonzero vectors in U with
minimum weight form the rows of the incidence matrix of a t-design.

Suppose now that H is a Hadamard matrix of order n, normalized so that all el-
ements in the first row are 1. Then A = (H + Jn)/2 is a matrix of 0’s and 1’s with
all elements in the first row 1. The code C(H ) defined by the Hadamard matrix H is
the subspace generated by the rows of A, considered as vectors in the n-dimensional
vector space V = Fn

2.
In particular, take H = H24 to be the Hadamard matrix of order 24 formed by

Paley’s construction:

H24 = I24 +
[

0 e23
−et

23 Q

]
,

where Q = (q jk) with q jk = 0 if j = k and otherwise = 1 or −1 according as j − k
is or is not a square mod 23 (0 ≤ j, k ≤ 22). It may be shown that the extended binary
Golay code G24 = C(H24) is a 12-dimensional subspace of F24

2 , that the minimum
weight of any nonzero vector in G24 is 8, and that the sets of nonzero coordinates
of the vectors x ∈ G24 with |x | = 8 form the blocks of a 5-(24, 8, 1) design. The
Mathieu group M24 may be defined as the automorphism group of this design or as the
automorphism group of the code G24.

Again, suppose that H (m) is the Hadamard matrix of order n = 2m defined by

H (m) = H2 ⊗ · · · ⊗ H2 (m factors),

where

H2 =
[

1 1
1 −1

]
.

The first-order Reed–Muller code R(1,m) = C(H (m)) is an (m+1)-dimensional sub-
space of Fn

2 and the minimum weight of any nonzero vector in R(1,m) is 2m−1. It may
be mentioned that the 3-(2m, 2m−1, 2m−2 − 1) design associated with the Hadamard
matrix H (m) has a simple geometrical interpretation. Its points are the points of
m-dimensional affine space over the field of two elements, and its blocks are the
hyperplanes of this space (not necessarily containing the origin).

In electronic communication a message is sent as a sequence of ‘bits’ (an abbrevi-
ation for binary digits), which may be realised physically by off or on and which may
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be denoted mathematically by 0 or 1. On account of noise the message received may
differ slightly from that transmitted, and in some situations it is extremely important to
detect and correct the errors. One way of doing so would be to send the same message
many times, but it is an inefficient way. Instead suppose the message is composed of
codewords of length n, taken from a subspace U of the vector space V = Fn

2. There are
2k different codewords, where k is the dimension of U . If the minimum weight of any
nonzero vector in U is d , then any two distinct codewords differ in at least d places.
Hence if a codeword u ∈ U is transmitted and the received vector v ∈ V contains
less than d/2 errors, then v will be closer to u than to any other codeword. Thus if we
are confident that any transmitted codeword will contain less than d/2 errors, we can
correct them all by replacing each received vector by the codeword nearest to it.

The Golay code and the first-order Reed–Muller codes are of considerable practical
importance in this connection. For the first-order Reed–Muller codes there is a fast al-
gorithm for finding the nearest codeword to any received vector. Photographs of Mars
taken by the Mariner 9 spacecraft were transmitted to Earth, using the code R(1, 5).

Other error-correcting codes are used with compact discs to ensure high quality
sound reproduction by eliminating imperfections due, for example, to dust particles.

8 Further Remarks

Kowalewski [22] gives a useful traditional account of determinants. Muir [28] is a
storehouse of information on special types of determinants; the early Japanese work is
described in Mikami [27].

Another approach to determinants, based on the work of Grassmann (1844), should
be mentioned here, as it provides easy access to their formal properties and is used in
the theory of differential forms. If V is an n-dimensional vector space over a field F ,
then there exists an associative algebra E , of dimension 2n as a vector space over F ,
such that

(a) V ⊆ E ,
(b) v2 = 0 for every v ∈ V ,
(c) V generates E , i.e. each element of E can be expressed as a sum of a scalar mul-

tiple of the unit element 1 and of a finite number of products of elements of V .

The associative algebra E , which is uniquely determined by these properties, is
called the Grassmann algebra or exterior algebra of the vector space V . It is easily
seen that any two products of n elements of V differ only by a scalar factor. Hence, for
any linear transformation A : V → V , there exists d(A) ∈ F such that

(Av1) · · · (Avn) = d(A)v1 · · · vn for all v1, . . . , vn ∈ V .

Evidently d(AB) = d(A)d(B) and in fact d(A) = det A, if we identify A with
its matrix with respect to some fixed basis of V . This approach to determinants is
developed in Bourbaki [6]; see also Barnabei et al. [4].

Dieudonné (1943) has extended the notion of determinant to matrices with entries
from a division ring; see Artin [1] and Cohn [9]. For a very different method, see
Gelfand and Retakh [13].
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Hadamard’s original paper of 1893 is reproduced in [16]. Surveys on Hadamard
matrices have been given by Hedayat and Wallis [19], Seberry and Yamada [34], and
Craigen and Wallis [11]. Weighing designs are treated in Raghavarao [31]. For appli-
cations of Hadamard matrices to spectrometry, see Harwit and Sloane [18]. The proof
of Proposition 8 is due to Shahriari [35].

Our proof of Theorem 10 is a pure existence proof. A more constructive approach
was proposed by Jacobi (1846). If one applies to n × n matrices the method which we
used for 2×2 matrices, one can annihilate a symmetric pair of off-diagonal entries. By
choosing at each step an off-diagonal pair with maximum absolute value, one obtains
a sequence of orthogonal transforms of the given symmetric matrix which converges
to a diagonal matrix.

Calculating the eigenvalues of a real symmetric matrix has important practical
applications, e.g. to problems of small oscillations in dynamical systems. House-
holder [21] and Golub and van Loan [14] give accounts of the various computational
methods available.

Gantmacher [12] and Horn and Johnson [20] give general treatments of matrix
theory, including the inequalities of Hadamard and Fischer. Our discussion of the
Hadamard determinant problem for matrices of order not divisible by 4 is mainly based
on Wojtas [37]. Further references are given in Neubauer and Ratcliffe [29].

Results of Brouwer (1983) are used in [29] to show that the upper bound in Propo-
sition 19 is attained for infinitely many values of n. It follows that the upper bound in
Proposition 20, with m = n, is also attained for infinitely many values of n. For if the
n × n matrix A satisfies

At A = (n − 1)In + Jn,

then the 2n × 2n matrix

Ā =
[

A A
A −A

]
satisfies

Ãt Ã =
[

L O
O L

]
,

where L = 2At A = (2n − 2)In + 2Jn .
There are introductions to design theory in Ryser [33], Hall [17], and van Lint and

Wilson [25]. For more detailed information, see Brouwer [7], Lander [23] and Beth
et al. [5]. Applications of design theory are treated in Chapter XIII of [5].

We mention two interesting results which are proved in Chapter 16 of Hall [17].
Given positive integers v, k, λ with λ < k < v:

(i) If k(k − 1) = λ(v − 1) and if there exists a v × v matrix A of rational numbers
such that

AAt = (k − λ)I + λJ,

then A may be chosen so that in addition J A = k J .
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(ii) If there exists a v × v matrix A of integers such that

AAt = (k − λ)I + λJ, J A = k J,

then every entry of A is either 0 or 1, and thus A is the incidence matrix of a square
2-design.

For introductions to the classification theorem for finite simple groups, see
Aschbacher [2] and Gorenstein [15]. Detailed information about the finite simple
groups is given in Conway et al. [10]. There is a remarkable connection between
the largest sporadic simple group, nicknamed the ‘Monster’, and modular forms; see
Ray [32].

Good introductions to coding theory are given by van Lint [24] and Pless [30].
MacWilliams and Sloane [26] is more comprehensive, but less up-to-date. Assmus and
Mattson [3] is a useful survey article. Connections between codes, designs and graphs
are treated in Cameron and van Lint [8]. The historical account in Thompson [36]
recaptures the excitement of scientific discovery.
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VI

Hensel’s p-adic Numbers

The ring Z of all integers has a very similar algebraic structure to the ring C[z] of
all polynomials in one variable with complex coefficients. This similarity extends to
their fields of fractions: the field Q of rational numbers and the field C(z) of rational
functions in one variable with complex coefficients. Hensel (1899) had the bold idea
of pushing this analogy even further. For any ζ ∈ C, the ring C[z] may be embedded in
the ring Cζ [[z]] of all functions f (z) =∑

n≥0 αn(z−ζ )n with complex coefficients αn

which are holomorphic at ζ , and the field C(z)may be embedded in the field Cζ ((z)) of
all functions f (z) =∑

n∈Z αn(z − ζ )n with complex coefficients αn which are mero-
morphic at ζ , i.e. αn �= 0 for at most finitely many n < 0. Hensel constructed, for each
prime p, a ring Zp of all ‘p-adic integers’

∑
n≥0 αn pn , where αn ∈ {0, 1, . . . , p − 1},

and a field Qp of all ‘p-adic numbers’
∑

n∈Z αn pn , where αn ∈ {0, 1, . . . , p − 1}
and αn �= 0 for at most finitely many n < 0. This led him to arithmetic analogues of
various analytic results and even to analytic methods of proving them. Hensel’s idea
of concentrating attention on one prime at a time has proved very fruitful for algebraic
number theory. Furthermore, his methods enable the theory of algebraic numbers and
the theory of algebraic functions of one variable to be developed completely in parallel.

Hensel simply defined p-adic integers by their power series expansions. We will
adopt a more general approach, due to Kürschák (1913), which is based on absolute
values.

1 Valued Fields

Let F be an arbitrary field. An absolute value on F is a map | | : F → R with the
following properties:

(V1) |0| = 0, |a| > 0 for all a ∈ F with a �= 0;
(V2) |ab| = |a||b| for all a, b ∈ F ;
(V3) |a + b| ≤ |a| + |b| for all a, b ∈ F .

A field with an absolute value will be called simply a valued field.
A non-archimedean absolute value on F is a map | | : F → R with the properties

(V1), (V2) and

(V3)′ |a + b| ≤ max(|a|, |b|) for all a, b ∈ F .
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DOI: 10.1007/978-0-387-89486-7_6, © Springer Science + Business Media, LLC 2009

261



262 VI Hensel’s p-adic Numbers

A non-archimedean absolute value is indeed an absolute value, since (V1) implies that
(V3)′ is a strengthening of (V3). An absolute value is said to be archimedean if it is
not non-archimedean.

The inequality (V3) is usually referred to as the triangle inequality and (V3)′ as
the ‘strong triangle’, or ultrametric, inequality.

If F is a field with an absolute value | |, then the set of real numbers |a| for all
nonzero a ∈ F is clearly a subgroup of the multiplicative group of positive real num-
bers. This subgroup will be called the value group of the valued field.

Here are some examples to illustrate these definitions:

(i) An arbitrary field F has a trivial non-archimedean absolute value defined by

|0| = 0, |a| = 1 if a �= 0.

(ii) The ordinary absolute value

|a| = a if a ≥ 0, |a| = −a if a < 0,

defines an archimedean absolute value on the field Q of rational numbers. We will
denote this absolute value by | |∞ to avoid confusion with other absolute values on Q
which will now be defined.

If p is a fixed prime, any rational number a �= 0 can be uniquely expressed
in the form a = epvm/n, where e = ±1, v = v p(a) is an integer and m, n are
relatively prime positive integers which are not divisible by p. It is easily verified that
a non-archimedean absolute value is defined on Q by putting

|0|p = 0, |a|p = p−v p(a) if a �= 0.

We call this the p-adic absolute value.

(iii) Let F = K (t) be the field of all rational functions in one indeterminate with
coefficients from some field K . Any rational function f �= 0 can be uniquely
expressed in the form f = g/h, where g and h are relatively prime polynomials
with coefficients from K and h is monic (i.e., has leading coefficient 1). If we denote
the degrees of g and h by ∂(g) and ∂(h), then a non-archimedean absolute value is
defined on F by putting, for a fixed q > 1,

|0|∞ = 0, | f |∞ = q∂(g)−∂(h) if f �= 0.

Other absolute values on F can be defined in the following way. If p ∈ K [t]
is a fixed irreducible polynomial, then any rational function f �= 0 can be uniquely
expressed in the form f = pvg/h, where v = v p( f ) is an integer, g and h are
relatively prime polynomials with coefficients from K which are not divisible by p,
and h is monic. It is easily verified that a non-archimedean absolute value is defined
on F by putting, for a fixed q > 1,

|0|p = 0, | f |p = q−∂(p)v p( f ) if f �= 0.



1 Valued Fields 263

(iv) Let F = K ((t)) be the field of all formal Laurent series f (t) = ∑
n∈Z αntn

with coefficients αn ∈ K such that αn �= 0 for at most finitely many n < 0. A non-
archimedean absolute value is defined on F by putting, for a fixed q > 1,

|0| = 0, | f | = q−v( f ) if f �= 0,

where v( f ) is the least integer n such that αn �= 0.

(v) Let F = Cζ ((z)) denote the field of all complex-valued functions f (z) =∑
n∈Z αn(z−ζ )n which are meromorphic at ζ ∈ C. Any f ∈ F which is not identically

zero can be uniquely expressed in the form f (z) = (z − ζ )vg(z), where v = vζ ( f ) is
an integer, g is holomorphic at ζ and g(ζ ) �= 0. A non-archimedean absolute value is
defined on F by putting, for a fixed q > 1,

|0|ζ = 0, | f |ζ = q−vζ ( f ) if f �= 0.

It should be noted that in examples (iii) and (iv) the restriction of the absolute value
to the ground field K is the trivial absolute value, and the same holds in example (v)
for the restriction of the absolute value to C. For all the absolute values considered in
examples (iii)–(v) the value group is an infinite cyclic group.

We now derive some simple properties common to all absolute values. The
notation in the statement of the following lemma is a bit sloppy, since we use
the same symbol to denote the unit elements of both F and R (as we have already
done for the zero elements).

Lemma 1 In any field F with an absolute value | | the following properties hold:

(i) |1| = 1, | − 1| = 1 and, more generally, |a| = 1 for every a ∈ F which is a root
of unity;

(ii) | − a| = |a| for every a ∈ F;
(iii) ||a| − |b||∞ ≤ |a − b| for all a, b ∈ F, where | |∞ is the ordinary absolute value

on R;
(iv) |a−1| = |a|−1 for every a ∈ F with a �= 0.

Proof By taking a = b = 1 in (V2) and using (V1), we obtain |1| = 1. If an = 1 for
some positive integer n, it now follows from (V2) that α = |a| satisfies αn = 1. Since
α > 0, this implies α = 1. In particular, | − 1| = 1. Taking b = −1 in (V2), we now
obtain (ii).

Replacing a by a − b in (V3), we obtain

|a| − |b| ≤ |a − b|.
Since a and b may be interchanged, by (ii), this implies (iii). Finally, if we take
b = a−1 in (V2) and use (i), we obtain (iv). �

It follows from Lemma 1(i) that a finite field admits only the trivial absolute value.
We show next how non-archimedean and archimedean absolute values may be dis-

tinguished from one another. The notation in the statement of the following proposition
is very sloppy, since we use the same symbol to denote both the positive integer n and
the sum 1 + 1 + · · · + 1 (n summands), although the latter may be 0 if the field has
prime characteristic.
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Proposition 2 Let F be a field with an absolute value | |. Then the following properties
are equivalent:

(i) |2| ≤ 1;
(ii) |n| ≤ 1 for every positive integer n;

(iii) the absolute value | | is non-archimedean.

Proof It is trivial that (iii) ⇒ (i). Suppose now that (i) holds. Then |2k| = |2|k ≤ 1
for any positive integer k. An arbitrary positive integer n can be written to the base 2
in the form

n = a0 + a12+ · · · + ag2g,

where ai ∈ {0, 1} for all i < g and ag = 1. Then

|n| ≤ |a0| + |a1| + · · · + |ag| ≤ g + 1.

Now consider the powers nk . Since n < 2g+1, we have nk < 2k(g+1) and hence

nk = b0 + b12+ · · · + bh2h,

where b j ∈ {0, 1} for all j < h, bh = 1 and h < k(g + 1). Thus

|n|k = |nk | ≤ h + 1 ≤ k(g + 1).

Taking k-th roots and letting k → ∞, we obtain |n| ≤ 1, since k1/k = e(log k)/k → 1
and likewise (g + 1)1/k = e(log(g+1))/k → 1. Thus (i)⇒ (ii).

Suppose next that (ii) holds. Then, since the binomial coefficients are positive
integers,

|x + y|n = |(x + y)n| =
∣∣∣∣ n∑

k=0

(
n

k

)
xk yn−k

∣∣∣∣
≤

n∑
k=0

|x |k|y|n−k

≤ (n + 1)ρn,

where ρ = max(|x |, |y|). Taking n-th roots and letting n →∞, we obtain |x+ y| ≤ ρ.
Thus (ii)⇒ (iii). �

It follows from Proposition 2 that for an archimedean absolute value the sequence
(|n|) is unbounded, since |2k | → ∞ as k →∞. Consequently, for any a, b ∈ F with
a �= 0, there is a positive integer n such that |na| > |b|. The name ‘archimedean’
is used because of the analogy with the archimedean axiom of geometry. It follows
also from Proposition 2 that any absolute value on a field of prime characteristic is
non-archimedean, since there are only finitely many distinct values of |n|.
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2 Equivalence

If λ,µ, α are positive real numbers with α < 1, then(
λ

λ+ µ
)α
+
(

µ

λ+ µ
)α
>

λ

λ+ µ +
µ

λ+ µ = 1

and hence

λα + µα > (λ+ µ)α.
It follows that if | | is an absolute value on a field F and if 0 < α < 1, then | |α is also
an absolute value, since

|a + b|α ≤ (|a| + |b|)α ≤ |a|α + |b|α.
Actually, if | | is a non-archimedean absolute value on a field F , then it follows directly
from the definition that, for any α > 0, | |α is also a non-archimedean absolute value
on F . However, if | | is an archimedean absolute value on F then, for all large α > 0,
| |α is not an absolute value on F . For |2| > 1 and hence, if α > log 2/ log |2|,

|1+ 1|α > 2 = |1|α + |1|α.
Proposition 3 Let | |1 and | |2 be absolute values on a field F such that |a|2 < 1 for
any a ∈ F with |a|1 < 1. If | |1 is nontrivial, then there exists a real number ρ > 0
such that

|a|2 = |a|ρ1 for every a ∈ F.

Proof By taking inverses we see that also |a|2 > 1 for any a ∈ F with |a|1 > 1.
Choose b ∈ F with |b|1 > 1. For any nonzero a ∈ F we have |a|1 = |b|γ1 , where

γ = log |a|1/ log |b|1.
Let m, n be integers with n > 0 such that m/n > γ . Then |a|n1 < |b|m1 and hence
|an/bm |1 < 1. Therefore also |an/bm |2 < 1 and by reversing the argument we obtain

m/n > log |a|2/ log |b|2.
Similarly if m′, n′ are integers with n′ > 0 such that m′/n′ < γ , then

m ′/n′ < log |a|2/ log |b|2.
It follows that

log |a|2/ log |b|2 = γ = log |a|1/ log |b|1.

Thus if we put ρ = log |b|2/ log |b|1, then ρ > 0 and |a|2 = |a|ρ1 . This holds trivially
also for a = 0. �
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Two absolute values, | |1 and | |2, on a field F are said to be equivalent when, for
any a ∈ F ,

|a|1 < 1 if and only if |a|2 < 1.

This implies that |a|1 > 1 if and only if |a|2 > 1 and hence also that |a|1 = 1 if and
only if |a|2 = 1. Thus if one absolute value is trivial, so also is the other. It now follows
from Proposition 3 that two absolute values, | |1 and | |2, on a field F are equivalent if
and only if there exists a real number ρ > 0 such that |a|2 = |a|ρ1 for every a ∈ F .

We have seen that the field Q of rational numbers admits the p-adic absolute
values | |p in addition to the ordinary absolute value | |∞. These absolute values are
all inequivalent since, if p and q are distinct primes,

|p|p < 1, |p|q = 1, |p|∞ = p > 1.

It was first shown by Ostrowski (1918) that these are essentially the only absolute
values on Q:

Proposition 4 Every nontrivial absolute value | | of the rational field Q is equivalent
either to the ordinary absolute value | |∞ or to a p-adic absolute value | |p for some
prime p.

Proof Let b, c be integers> 1. By writing c to the base b, we obtain

c = cmbm + cm−1bm−1 + · · · + c0,

where 0 ≤ c j < b ( j = 0, . . . ,m) and cm �= 0. Then m ≤ log c/ log b, since cm ≥ 1.
If we put µ = max1≤d<b |d|, it follows from the triangle inequality that

|c| ≤ µ(1+ log c/ log b){max(1, |b|)}logc/ log b.

Taking c = an we obtain, for any a > 1,

|a| ≤ µ1/n(1+ n log a/ log b)1/n{max(1, |b|)}loga/ log b

and hence, letting n →∞,

|a| ≤ {max(1, |b|)}loga/ log b.

Suppose first that |a| > 1 for some a > 1. It follows that |b| > 1 for every b > 1
and

|b|1/ logb ≥ |a|1/ loga .

In fact, since a and b may now be interchanged,

|b|1/ logb = |a|1/ loga.

Thus ρ = log |a|/ log a is a positive real number independent of a > 1 and |a| = aρ .
It follows that |a| = |a|ρ∞ for every rational number a. Thus the absolute value is
equivalent to the ordinary absolute value.
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Suppose next that |a| ≤ 1 for every a > 1 and so for every a ∈ Z. Since the
absolute value on Q is nontrivial, we must have |a| < 1 for some integer a �= 0. The
set M of all a ∈ Z such that |a| < 1 is a proper ideal in Z and hence is generated by
an integer p > 1. We will show that p must be a prime. Suppose p = bc, where b
and c are positive integers. Since |b||c| = |p| < 1, we may assume without loss of
generality that |b| < 1. Then b ∈ M and thus b = pd for some d ∈ Z. Hence cd = 1
and so c = 1. Thus p has no nontrivial factorization.

Every rational number a �= 0 can be expressed in the form a = pvb/c, where v is
an integer and b, c are integers not divisible by p. Hence |b| = |c| = 1 and |a| = |p|v .
We can write |p| = p−ρ , for some real number ρ > 0. Then |a| = p−vρ = |a|ρp, and
thus the absolute value is equivalent to the p-adic absolute value. �

Similarly, the absolute values on the field F = K (t) considered in example (iii)
of §1 are all inequivalent and it may be shown that any nontrivial absolute value on F
whose restriction to K is trivial is equivalent to one of these absolute values.

In example (ii) of §1 we have made a specific choice in each class of equivalent
absolute values. The choice which has been made ensures the validity of the product
formula: for any nonzero a ∈ Q,

|a|∞
∏

p

|a|p = 1,

where |a|p �= 1 for at most finitely many p.
Similarly, in example (iii) of §1 the absolute values have been chosen so that, for

any nonzero f ∈ K (t), | f |∞∏
p | f |p = 1, where | f |p �= 1 for at most finitely

many p.
The following approximation theorem, due to Artin and Whaples (1945), treats

several absolute values simultaneously. For p-adic absolute values of the rational field
Q the result also follows from the Chinese remainder theorem (Corollary II.38).

Proposition 5 Let | |1, . . . , | |m be nontrivial pairwise inequivalent absolute values of
an arbitrary field F and let x1, . . . , xm be any elements of F. Then for each real ε > 0
there exists an x ∈ F such that

|x − xk|k < ε for 1 ≤ k ≤ m.

Proof During the proof we will more than once use the fact that if fn(x) =
xn(1+ xn)−1, then | fn(a)| → 0 or 1 as n →∞ according as |a| < 1 or |a| > 1.

We show first that there exists an a ∈ F such that

|a|1 > 1, |a|k < 1 for 2 ≤ k ≤ m.

Since | |1 and | |2 are nontrivial and inequivalent, there exist b, c ∈ F such that

|b|1 < 1, |b|2 ≥ 1,

|c|1 ≥ 1, |c|2 < 1.
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If we put a = b−1c, then |a|1 > 1, |a|2 < 1. This proves the assertion for m = 2. We
now assume m > 2 and use induction. Then there exist b, c ∈ F such that

|b|1 > 1, |b|k < 1 for 1 < k < m,

|c|1 > 1, |c|m < 1.

If |b|m < 1 we can take a = b. If |b|m = 1 we can take a = bnc for sufficiently large n.
If |b|m > 1 we can take a = fn(b)c for sufficiently large n.

Thus for each i ∈ {1, . . . ,m} we can choose ai ∈ F so that

|ai |i > 1, |ai |k < 1 for all k �= i.

Then

x = x1 fn(a1)+ · · · + xm fn(am)

satisfies the requirements of the proposition for sufficiently large n. �

It follows from Proposition 5, that if | |1, . . . , | |m are nontrivial pairwise inequiv-
alent absolute values of a field F , then there exists an a ∈ F such that |a|k > 1 (k =
1, . . . ,m). Consequently the absolute values are multiplicatively independent, i.e. if
ρ1, . . . , ρm are nonnegative real numbers, not all zero, then for some nonzero a ∈ F ,

|a|ρ1
1 · · · |a|ρm

m �= 1.

3 Completions

Any field F with an absolute value | | has the structure of a metric space, with the
metric

d(a, b) = |a − b|,
and thus has an associated topology. Since |a| < 1 if and only if an → 0 as n →∞,
it follows that two absolute values are equivalent if and only if the induced topologies
are the same.

When we use topological concepts in connection with valued fields we will always
refer to the topology induced by the metric space structure. In this sense addition and
multiplication are continuous operations, since

|(a + b)− (a0 + b0)| ≤ |a − a0| + |b − b0|,
|ab− a0b0| ≤ |a − a0||b| + |a0||b − b0|.

Inversion is also continuous at any point a0 �= 0, since if |a − a0| < |a0|/2 then
|a0| < 2|a| and

|a−1 − a−1
0 | = |a − a0||a|−1|a0|−1 < 2|a0|−2|a − a0|.

Thus a valued field is a topological field.
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It will now be shown that the procedure by which Cantor extended the field of
rational numbers to the field of real numbers can be generalized to any valued field.

Let F be a field with an absolute value | |. A sequence (an) of elements of F is said
to converge to an element a of F , and a is said to be the limit of the sequence (an), if
for each real ε > 0 there is a corresponding positive integer N = N(ε) such that

|an − a| < ε for all n ≥ N.

It is easily seen that the limit of a convergent sequence is uniquely determined.
A sequence (an) of elements of F is said to be a fundamental sequence if for each

ε > 0 there is a corresponding positive integer N = N(ε) such that

|am − an| < ε for all m, n ≥ N.

Any convergent sequence is a fundamental sequence, since

|am − an| ≤ |am − a| + |an − a|,
but the converse need not hold. However, any fundamental sequence is bounded since,
if m = N(1), then for n ≥ m we have

|an| ≤ |am − an | + |am | < 1+ |am |.
Thus |an| ≤ µ for all n, where µ = max{|a1|, . . . , |am−1|, 1 + |am|}.

The preceding definitions are specializations of the definitions for an arbitrary met-
ric space (cf. Chapter I, §4). We now take advantage of the algebraic structure of F . Let
A = (an) and B = (bn) be two fundamental sequences. We write A = B if an = bn

for all n, and we define the sum and product of A and B to be the sequences

A + B = (an + bn), AB = (anbn).

These are again fundamental sequences. For we can choose µ ≥ 1 so that |an| ≤ µ,
|bn| ≤ µ for all n and then choose a positive integer N so that

|am − an| < ε/2µ, |bm − bn| < ε/2µ for all m, n ≥ N.

It follows that, for all m, n ≥ N ,

|(am + bm)− (an + bn)| ≤ |am − an| + |bm − bn| < ε/2µ+ ε/2µ ≤ ε,
and similarly

|ambm − anbn| ≤ |am − an||bm| + |an||bm − bn| < (ε/2µ)µ+ (ε/2µ)µ = ε.
It is easily seen that the set F of all fundamental sequences is a commutative ring

with respect to these operations. The subset of all constant sequences (a), i.e. an = a
for all n, forms a field isomorphic to F . Thus we may regard F as embedded in F .

Let N denote the subset of F consisting of all sequences (an) which converge
to 0. Evidently N is a subring of F and actually an ideal, since any fundamental
sequence is bounded. We will show that N is even a maximal ideal.
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Let (an) be a fundamental sequence which is not in N . Then there exists µ > 0
such that |av| ≥ µ for infinitely many v. Since |am − an| < µ/2 for all m, n ≥ N , it
follows that |an| > µ/2 for all n ≥ N . Put bn = a−1

n if an �= 0, bn = 0 if an = 0.
Then (bn) is a fundamental sequence since, for m, n ≥ N ,

|bm − bn| = |(an − am)/aman| ≤ 4µ−2|an − am |.
Since (1) − (bnan) ∈ N , the ideal generated by (an) and N contains the constant
sequence (1) and hence every sequence in F . Since this holds for each sequence
(an) ∈ F\N , the ideal N is maximal.

Consequently (see Chapter I, §8) the quotient F̄ = F/N is a field. Since (0) is
the only constant sequence in N , by mapping each constant sequence into the coset
of N which contains it we obtain a field in F̄ isomorphic to F . Thus we may regard
F as embedded in F̄ .

It follows from Lemma 1(iii), and from the completeness of the field of real
numbers, that |A| = limn→∞ |an| exists for any fundamental sequence A = (an).
Moreover,

|A| ≥ 0, |AB| = |A||B|, |A + B| ≤ |A| + |B|.
Furthermore |A| = 0 if and only if A ∈ N . It follows that |B| = |C| if B − C ∈ N ,
since

|B| ≤ |B − C| + |C| = |C| ≤ |C − B| + |B| = |B|.
Thus we may consider | | as defined on F̄ = F/N , and it is then an absolute value
on the field F̄ which coincides with the original absolute value when restricted to the
field F .

If A = (an) is a fundamental sequence, and if Am is the constant sequence (am),
then |A − Am | can be made arbitrarily small by taking m sufficiently large. It follows
that F is dense in F̄ , i.e. for any α ∈ F̄ and any ε > 0 there exists a ∈ F such that
|α − a| < ε.

We show finally that F̄ is complete as a metric space, i.e. every fundamental
sequence of elements of F̄ converges to an element of F̄ . For let (αn) be a funda-
mental sequence in F̄ . Since F is dense in F̄ , for each n we can choose an ∈ F so that
|αn − an| < 1/n. Since

|am − an| ≤ |am − αm | + |αm − αn | + |αn − an|,
it follows that (an) is also a fundamental sequence. Thus there exists α ∈ F̄ such that
limn→∞ |an − α| = 0. Since

|αn − α| ≤ |αn − an| + |an − α|,
we have also limn→∞ |αn − α| = 0. Thus the sequence (αn) converges to α.

Summing up, we have proved

Proposition 6 If F is a field with an absolute value | |, then there exists a field F̄
containing F, with an absolute value | | extending that of F, such that F̄ is complete
and F is dense in F̄.
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It is easily seen that F̄ is uniquely determined, up to an isomorphism which
preserves the absolute value. The field F̄ is called the completion of the valued field F .
The density of F in F̄ implies that the absolute value on the completion F̄ is non-
archimedean or archimedean according as the absolute value on F is non-archimedean
or archimedean.

It is easy to see that in example (iv) of §1 the valued field F = K ((t)) of all formal
Laurent series is complete, i.e. it is its own completion. For let { f (k)} be a fundamental
sequence in F . Given any positive integer N , there is a positive integer M = M(N)
such that | f (k) − f ( j )| < q−N for j, k ≥ M . Thus we can write

f (k)(t) =
∑
n≤N

αntn +
∑
n>N

α(k)n tn for all k ≥ M.

If f (t) =∑
n∈Z αntn , then limk→∞ | f (k) − f | = 0.

On the other hand, given any f (t) =∑
n∈Z αntn ∈ K ((t)), we have | f (k)− f | → 0

as k → ∞, where f (k)(t) = ∑
n≤k αntn ∈ K (t). It follows that K ((t)) is the com-

pletion of the field K (t) of rational functions considered in example (iii) of §1, with
the absolute value | |t corresponding to the irreducible polynomial p(t) = t (for which
∂(p) = 1).

The completion of the rational field Q with respect to the p-adic absolute value | |p
will be denoted by Qp , and the elements of Qp will be called p-adic numbers.

The completion of the rational field Q with respect to the ordinary absolute value
| |∞ is of course the real field R. In §6 we will show that the only fields with a com-
plete archimedean absolute value are the real field R and the complex field C, and the
absolute value has the form | |ρ∞ for some ρ > 0. In fact ρ ≤ 1, since 2ρ ≤ 1ρ+1ρ = 2.
Thus an arbitrary archimedean valued field is equivalent to a subfield of C with the
usual absolute value. (Hence, for a field with an archimedean absolute value | |, |n| > 1
for every integer n > 1 and |n| → ∞ as n →∞.) Since this case may be considered
well-known, we will in the following devote our attention primarily to the peculiarities
of non-archimedean valued fields.

We will later be concerned with extending an absolute value on a field F to a field
E which is a finite extension of F . Since all that matters for some purposes is that E
is a vector space over F , it is useful to introduce the following definition.

Let F be a field with an absolute value | | and let E be a vector space over F .
A norm on E is a map ‖ ‖ : E → R with the following properties:

(i) ‖a‖ > 0 for every a ∈ E with a �= 0;
(ii) ‖αa‖ = |α|‖a‖ for all α ∈ F and a ∈ E ;

(iii) ‖a + b‖ ≤ ‖a‖ + ‖b‖ for all a, b ∈ E .

It follows from (ii) that ‖O‖ = 0. We will require only one result about normed vector
spaces:

Lemma 7 Let F be a complete valued field and let E be a finite-dimensional vector
space over F. If ‖ ‖1 and ‖ ‖2 are both norms on E, then there exist positive constants
σ,µ such that

σ‖a‖1 ≤ ‖a‖2 ≤ µ‖a‖1 for every a ∈ E .
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Proof Let e1, . . . , en be a basis for the vector space E . Then any a ∈ E can be
uniquely represented in the form

a = α1e1 + · · · + αnen,

where α1, . . . , αn ∈ F . It is easily seen that

‖a‖0 = max
1≤i≤n

|αi |

is a norm on E , and it is sufficient to prove the proposition for ‖ ‖2 = ‖‖0. Since

‖a‖1 ≤ ‖a‖0(‖e1‖1 + · · · + ‖en‖1),

we can take σ = (‖e1‖1 + · · · + ‖en‖1)
−1. To establish the existence of µ we assume

n > 1 and use induction, since the result is obviously true for n = 1.
Assume, contrary to the assertion, that there exists a sequence a(k) ∈ E such that

‖a(k)‖1 < εk‖a(k)‖0,

where εk > 0 and εk → 0 as k →∞. We may suppose, without loss of generality, that

|α(k)n | = ‖a(k)‖0

and also, by replacing a(k) by (α(k)n )−1a(k), that α(k)n = 1. Thus a(k) = b(k)+en , where

b(k) = α(k)1 e1 + · · · + α(k)n−1en−1,

and ‖a(k)‖1 → 0 as k → ∞. The sequences α(k)i (i = 1, . . . , n − 1) are fundamental
sequences in F , since

‖b( j ) − b(k)‖1 ≤ ‖b( j ) + en‖1 + ‖b(k) + en‖1 = ‖a( j )‖1 + ‖a(k)‖1

and, by the induction hypothesis,

|α( j )
i − α(k)i | ≤ µn−1‖b( j ) − b(k)‖1 (i = 1, . . . , n − 1).

Hence, since F is complete, there exist αi ∈ F such that |α(k)i − αi | → 0 (i = 1, . . . ,
n − 1). Put

b = α1e1 + · · · + αn−1en−1.

Since ‖b(k)−b‖1 ≤ σ−1
n−1‖b(k)−b‖0, it follows that ‖b(k)−b‖1 → 0. But if a = b+en,

then

‖a‖1 ≤ ‖a − a(k)‖1 + ‖a(k)‖1 = ‖b − b(k)‖1 + ‖a(k)‖1.

Letting k →∞, we obtain a = 0, which contradicts the definition of a. �
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4 Non-Archimedean Valued Fields

Throughout this section we denote by F a field with a non-archimedean absolute value
| |.A basic property of such fields is the following simple lemma. It may be interpreted
as saying that in ultrametric geometry every triangle is isosceles.

Lemma 8 If a, b ∈ F and |a| < |b|, then |a + b| = |b|.
Proof We certainly have

|a + b| ≤ max{|a|, |b|} = |b|.
On the other hand, since b = (a + b)− a, we have

|b| ≤ max{|a + b|, | − a|}
and, since | − a| = |a| < |b|, this implies |b| ≤ |a + b|. �

It may be noted that if a �= 0 and b = −a, then |a| = |b| and |a + b| < |b|. From
Lemma 8 it follows by induction that if a1, . . . , an ∈ F and |ak| < |a1| for 1 < k ≤ n,
then

|a1 + · · · + an| = |a1|.
As an application we show that if a field E is a finite extension of a field F , then

the trivial absolute value on E is the only extension to E of the trivial absolute value
on F . By Proposition 2, any extension to E of the trivial absolute value on F must be
non-archimedean. Suppose α ∈ E and |α| > 1. Then α satisfies a polynomial equation

αn + cn−1α
n−1 + · · · + c0 = 0

with coefficients ck ∈ F . Since |ck | = 0 or 1 and since |αk | < |αn | if k < n, we obtain
the contradiction |αn | = |αn + cn−1α

n−1 + · · · + c0| = 0.
As another application we prove

Proposition 9 If a field F has a non-archimedean absolute value | |, then the
valuation on F can be extended to the polynomial ring F[t] by defining the absolute
value of f (t) = a0 + a1t + · · · + antn to be | f | = max{|a0|, . . . , |an|}.
Proof We need only show that | f g| = | f ||g|, since it is evident that | f | = 0 if and
only if f = 0 and that | f + g| ≤ | f | + |g|. Let g(t) = b0 + b1t + · · · + bmtm . Then
f (t)g(t) = c0 + c1t + · · · + cl tl , where

ci = a0bi + a1bi−1 + · · · + ai b0.

If r is the least integer such that |ar | = | f | and s the least integer such that
|bs| = |g|, then ar bs has strictly greatest absolute value among all products a j bk

with j + k = r + s. Hence |cr+s | = |ar ||bs | and | f g| ≥ | f ||g|. On the other hand,

| f g| = max
i
|ci | ≤ max

j,k
|a j ||bk| = | f ||g|.

Consequently | f g| = | f ||g|. Clearly also | f | = |a| if f = a ∈ F . (The absolute
value on F can be further extended to the field F(t) of rational functions by defining
| f (t)/g(t)| to be | f |/|g|.) �
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It also follows at once from Lemma 8 that if a sequence (an) of elements of F
converges to a limit a �= 0, then |an| = |a| for all large n. Hence the value group of
the field F is the same as the value group of its completion F̄ . The next lemma has an
especially appealing corollary.

Lemma 10 Let F be a field with a non-archimedean absolute value | |. Then a
sequence (an) of elements of F is a fundamental sequence if and only if
limn→∞ |an+1 − an| = 0.

Proof If |an+1 − an| → 0, then for each ε > 0 there is a corresponding positive
integer N = N(ε) such that

|an+1 − an| < ε for n ≥ N.

For any integer k > 1,

an+k − an = (an+1 − an)+ (an+2 − an+1)+ · · · + (an+k − an+k−1)

and hence

|an+k − an| ≤ max{|an+1 − an|, |an+2 − an+1|, . . . , |an+k − an+k−1|} < ε for n ≥ N.

Thus (an) is a fundamental sequence. The converse follows at once from the definition
of a fundamental sequence. �

Corollary 11 In a field F with a complete non-archimedean absolute value | |, an
infinite series

∑∞
n=1 an of elements of F is convergent if and only if |an| → 0.

Let F be a field with a nontrivial non-archimedean absolute value | | and put

R = {a ∈ F : |a| ≤ 1},
M = {a ∈ F : |a| < 1},
U = {a ∈ F : |a| = 1}.

Then R is the union of the disjoint nonempty subsets M and U . It follows from the de-
finition of a non-archimedean absolute value that R is a (commutative) ring containing
the unit element of F and that, for any nonzero a ∈ F , either a ∈ R or a−1 ∈ R (or
both). Moreover M is an ideal of R and U is a multiplicative group, consisting of all
a ∈ R such that also a−1 ∈ R. Thus a proper ideal of R cannot contain an element of
U and hence M is the unique maximal ideal of R. Consequently (see again Chapter I,
§8) the quotient R/M is a field.

We call R the valuation ring, M the valuation ideal, and R/M the residue field of
the valued field F .

We draw attention to the fact that the ‘closed unit ball’ R is both open and closed
in the topology induced by the absolute value. For if a ∈ R and |b − a| < 1, then also
b ∈ R. Furthermore, if an ∈ R and an → a then a ∈ R, since |an| = |a| for all large n.
Similarly, the ‘open unit ball’ M is also both open and closed.

In particular, let F = Q be the field of rational numbers and | | = | |p the p-adic
absolute value. In this case the valuation ring R = Rp is the set of all rational numbers
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m/n, where m and n are relatively prime integers, n > 0 and p does not divide n. The
valuation ideal is M = pRp and the residue field Fp = Rp/pRp is the finite field with
p elements.

As another example, let F = K (t) be the field of rational functions with
coefficients from an arbitrary field K and let | | = | |t be the absolute value
considered in example (iii) of §1 for the irreducible polynomial p(t) = t . In this
case the valuation ring R is the set of all rational functions f = g/h, where g and h
are relatively prime polynomials and h has nonzero constant term. The valuation ideal
is M = t R and the residue field R/M is isomorphic to K , since f (t) ≡ f (0)mod M
(i.e., f (t)− f (0) ∈ M).

Let F̄ be the completion of F . If R̄ and M̄ are the valuation ring and valuation
ideal of F̄ , then evidently

R = R̄ ∩ F, M = M̄ ∩ F.

Moreover R is dense in R̄ since, if 0 < ε ≤ 1, for any α ∈ R̄ there exists a ∈ F
such that |α − a| < ε and then a ∈ R (and α − a ∈ M̄). Furthermore the residue
fields R/M and R̄/M̄ are isomorphic. For the map a + M → a + M̄(a ∈ R) is an
isomorphism of R/M onto a subfield of R̄/M̄ and this subfield is not proper (by the
preceding bracketed remark).

The valuation ring of the field Qp of p-adic numbers will be denoted by Zp and
its elements will be called p-adic integers. The ring Z of ordinary integers is dense in
Zp , and the residue field of Qp is the finite field Fp with p elements, since this is the
residue field of Q.

Similarly, the valuation ring of the field K ((t)) of all formal Laurent series is the
ring K [[t]] of all formal power series

∑
n≥0 αntn . The polynomial ring K [t] is dense

in K [[t]], and the residue field of K ((t)) is K , since this is the residue field of K (t)
with the absolute value | |t .

A non-archimedean absolute value | | on a field F will be said to be discrete if
there exists some δ ∈ (0, 1) such that a ∈ F and |a| �= 1 implies either |a| < 1− δ or
|a| > 1+ δ. (This situation cannot arise for archimedean absolute values.)

A non-archimedean absolute value need not be discrete, but the examples of non-
archimedean absolute values which we have given are all discrete.

Lemma 12 Let F be a field with a nontrivial non-archimedean absolute value | |,
and let R and M be the corresponding valuation ring and valuation ideal. Then the
absolute value is discrete if and only if M is a principal ideal. In this case the only
nontrivial proper ideals of R are the powers Mk(k = 1, 2, . . .).

Proof Suppose first that the absolute value | | is discrete and put µ = supa∈M |a|.
Then 0< µ< 1 and the supremum is attained, since |an| → µ implies |an+1a−1

n | → 1.
Thus µ = |π | for some π ∈ M . For any a ∈ M we have |aπ−1| ≤ 1 and hence
a = πa′, where a′ ∈ R. Thus M is a principal ideal with generating element π .

Suppose next that M is a principal ideal with generating element π . If |a| < 1,
then a ∈ M . Thus a = πa′, where a′ ∈ R, and hence |a| ≤ |π |. Similarly if |a| > 1,
then a−1 ∈ M . Thus |a−1| ≤ |π | and hence |a| ≥ |π |−1. This proves that the absolute
value is discrete.
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We now show that, for any nonzero a ∈ M , there is a positive integer k such that
|a| = |π |k . In fact we can choose k so that

|π |k+1 < |a| ≤ |π |k .

Then |π | < |aπ−k | ≤ 1, which implies |aπ−k| = 1 and hence |a| = |π |k . Thus
the value group of the valued field F is the infinite cyclic group generated by |π |. The
final statement of the lemma follows immediately. �

It is clear that if an absolute value | | on a field F is discrete, then its extension to
the completion F̄ of F is also discrete. Moreover, if π is a generating element for the
valuation ideal of F , then it is also a generating element for the valuation ideal of F̄ .

Suppose now that not only is M = (π) a principal ideal, but the residue field
k = R/M is finite. Then there exists a finite set S ⊆ R, with the same cardinality as
k, such that for each a ∈ R there is a unique α ∈ S for which |α − a| < 1. Since the
elements of k are the cosets α+M , where α ∈ S, we call S a set of representatives in R
of the residue field. It is convenient to choose α = 0 as the representative for M itself.

Under these hypotheses a rather explicit representation for the elements of the
valued field can be derived:

Proposition 13 Let F be a field with a non-archimedean absolute value | |, and let R
and M be the corresponding valuation ring and valuation ideal. Suppose the absolute
value is discrete, i.e. M = (π) is a principal ideal. Suppose also that the residue field
k = R/M is finite, and let S ⊆ R be a set of representatives of k with 0 ∈ S.

Then for each a ∈ F there exists a unique bi-infinite sequence (αn)n∈Z , where
αn ∈ S for all n ∈ Z and αn �= 0 for at most finitely many n < 0, such that

a =
∑
n∈Z

αnπ
n .

If N is the least integer n such that αn �= 0, then |a| = |π |N . In particular, a ∈ R if
and only if αn = 0 for all n < 0.

If F is complete then, for any such bi-infinite sequence (αn), the series
∑

n∈Z αnπ
n

is convergent with sum a ∈ F.

Proof Suppose a ∈ F and a �= 0. Then |a| = |π |N for some N ∈ Z and hence
|aπ−N | = 1. There is a unique αN ∈ S such that |aπ−N − αN | < 1. Then |αN | = 1,
|aπ−N − αN | ≤ |π | and

aπ−N = αN + a1π,

where a1 ∈ R. Similarly there is a unique αN+1 ∈ S such that

a1 = αN+1 + a2π,

where a2 ∈ R. Continuing in this way we obtain, for any positive integer n,

a = αNπ
N + αN+1π

N+1 + · · · + αN+nπ
N+n + an+1π

N+n+1,
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where αN , αN+1, . . . , αN+n ∈ S and an+1 ∈ R. Since |an+1π
N+n+1| → 0 as n →∞,

the series
∑

n≥N αnπ
n converges with sum a.

On the other hand, it is clear that if a =∑
n≥N αnπ

n , where αn ∈ S and αN �= 0,
then the coefficients αn must be determined in the above way.

If F is complete then, by Corollary 11, any series
∑

n≥N αnπ
n is convergent, since

|αnπ
n | → 0 as n →∞. �

Corollary 14 Every a ∈ Qp can be uniquely expressed in the form

a =
∑
n∈Z

αn pn,

where αn ∈ {0, 1, . . . , p− 1} and αn �= 0 for at most finitely many n < 0. Conversely,
any such series is convergent with sum a ∈ Qp. Furthermore a ∈ Zp if and only if
αn = 0 for all n < 0.

Thus we have now arrived at Hensel’s starting-point. It is not difficult to show
that if a = ∑

n∈Z αn pn ∈ Qp , then actually a ∈ Q if and only if the sequence of
coefficients (αn) is eventually periodic, i.e. there exist integers h > 0 and m such that
αn+h = αn for all n ≥ m.

From Corollary 14 we can deduce again that the ring Z of ordinary integers is
dense in the ring Zp of p-adic integers. For, if

a =
∑
n≥0

αn pn ∈ Zp,

where αn ∈ {0, 1, . . . , p − 1}, then

ak =
k∑

n=0

αn pn ∈ Z

and |a − ak | < p−k .

5 Hensel’s Lemma

The analogy between p-adic absolute values and ordinary absolute values suggests
that methods well-known in analysis may be applied also to arithmetic problems. We
will illustrate this by showing how Newton’s method for finding the real or complex
roots of an equation can also be used to find p-adic roots. In fact the ultrametric
inequality makes it possible to establish a stronger convergence criterion than in the
classical case. The following proposition is modestly known as ‘Hensel’s lemma’.

Proposition 15 Let F be a field with a complete non-archimedean absolute value | |
and let R be its valuation ring. Let

f (x) = cn xn + cn−1xn−1 + · · · + c0
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be a polynomial with coefficients c0, . . . , cn ∈ R and let

f1(x) = ncn xn−1 + (n − 1)cn−1xn−2 + · · · + c1

be its formal derivative. If | f (a0)| < | f1(a0)|2 for some a0 ∈ R, then the equation
f (a) = 0 has a unique solution a ∈ R such that |a − a0| < | f1(a0)|.
Proof We consider first the existence of a and postpone discussion of its uniqueness.
Put

σ := | f1(a0)| > 0, θ0 := σ−2| f (a0)| < 1,

and let Dθ denote the set

{a ∈ R : | f1(a)| = σ, | f (a)| ≤ θσ 2}.
Thus a0 ∈ Dθ0 and Dθ ′ ⊆ Dθ if θ ′ ≤ θ . We are going to show that, if θ ∈ (0, 1), then
the ‘Newton’ map

T a = a∗ := a − f (a)/ f1(a)

maps Dθ into Dθ2 .
We can write

f (x + y) = f (x)+ f1(x)y + · · · + fn(x)y
n,

where f1(x) has already been defined and f2(x), . . . , fn(x) are also polynomials with
coefficients from R. We substitute

x = a, y = b := − f (a)/ f1(a),

where a ∈ Dθ . Then | f j (a)| ≤ 1, since a ∈ R and f j (x) ∈ R[x] ( j = 1, . . . , n).
Furthermore

|b| = σ−1| f (a)| ≤ θσ < σ.
Thus b ∈ R. Since f (a)+ f1(a)b = 0, it follows that a∗ = a + b satisfies

| f (a∗)| ≤ max
2≤ j≤n

| f j (a)b
j | ≤ |b|2 = σ−2| f (a)|2 ≤ θ2σ 2.

Similarly, since f1(a+b)− f1(a) can be written as a polynomial in b with coefficients
from R and with no constant term,

| f1(a + b)− f1(a)| ≤ |b| < σ = | f1(a)|
and hence | f1(a∗)| = σ . This completes the proof that T Dθ ⊆ Dθ2 .

Now put ak = T ka0, so that

ak+1 − ak = − f (ak)/ f1(ak).

It follows by induction from what we have proved that
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| f (ak)| ≤ θ2k

0 σ
2.

Since θ0 < 1 and |ak+1 − ak| = σ−1| f (ak)|, this shows that {ak} is a fundamental
sequence. Hence, since F is complete, ak → a for some a ∈ R. Evidently f (a) = 0
and | f1(a)| = σ . Since, for every k ≥ 1,

|ak − a0| ≤ max
1≤ j≤k

|a j − a j−1| ≤ θ0σ,

we also have |a − a0| ≤ θ0σ < σ .
To prove uniqueness, assume f (ã) = 0 for some ã �= a such that |ã − a0| < σ . If

we put b = ã − a, then

0 = f (ã)− f (a) = f1(a)b + · · · + fn(a)b
n.

From b = ã − a0 − (a − a0) we obtain |b| < σ . Since b �= 0 and | f j (a)| ≤ 1, it
follows that, for j ≥ 2,

| f j (a)b
j | ≤ |b|2 < σ |b| = | f1(a)b|.

But this implies

| f (ã)− f (a)| = | f1(a)b| > 0,

which is a contradiction. �

As an application of Proposition 15 we will determine which elements of the field
Qp of p-adic numbers are squares. Since b = a2 implies b = p2vb′, where v ∈ Z and
|b′|p = 1, we may restrict attention to the case |b|p = 1.

Proposition 16 Suppose b ∈ Qp and |b|p = 1.
If p �= 2, then b = a2 for some a ∈ Qp if and only if |b−a2

0|p < 1 for some a0 ∈ Z.
If p = 2, then b = a2 for some a ∈ Q2 if and only if |b − 1|2 ≤ 2−3.

Proof Suppose first that p �= 2. If b = a2 for some a ∈ Qp , then |a|p = 1 and
|a − a0|p < 1 for some a0 ∈ Z, since Z is dense in Zp . Hence |a0|p = 1 and

|b − a2
0 |p = |a − a0|p|a + a0|p ≤ |a − a0|p < 1.

Conversely, suppose |b − a2
0 |p < 1 for some a0 ∈ Z. Then |a2

0|p = 1 and so
|a0|p = 1. In Proposition 15 take F = Qp and f (x) = x2 − b. The hypotheses of the
proposition are satisfied, since | f (a0)|p < 1 and | f1(a0)|p = |2a0|p = 1, and hence
b = a2 for some a ∈ Qp.

Suppose next that p = 2. If b = a2 for some a ∈ Q2, then |a|2 = 1 and
|a − a0|2 ≤ 2−3 for some a0 ∈ Z, since Z is dense in Z2. Hence |a0|2 = 1 and

|b − a2
0 |2 = |a − a0|2|a + a0|2 ≤ |a − a0|2 ≤ 2−3.

Since a0 is odd, we have a0 ≡ ±1 mod 4 and a2
0 ≡ 1 mod 8. Hence

|b − 1|2 ≤ max{|b − a2
0 |2, |a2

0 − 1|2} ≤ 2−3.
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Conversely, suppose |b − 1|2 ≤ 2−3. In Proposition 15 take F = Q2 and
f (x) = x2 − b. The hypotheses of the proposition are satisfied, since | f (1)|2 ≤ 2−3

and | f1(1)|2 = 2−1, and hence b = a2 for some a ∈ Q2. �

Corollary 17 Let b be an integer not divisible by the prime p.
If p �= 2, then b = a2 for some a ∈ Qp if and only if b is a quadratic residue

mod p.
If p = 2, then b = a2 for some a ∈ Q2 if and only if b ≡ 1 mod 8.

It follows from Corollary 17 that Qp cannot be given the structure of an ordered
field. For, if p is odd, then 1− p = a2 for some a ∈ Qp and hence

a2 + 1+ · · · + 1 = 0,

where there are p − 1 1’s. Similarly, if p = 2, then 1− 23 = a2 for some a ∈ Q2 and
the same relation holds with 7 1’s.

Suppose again that F is a field with a complete non-archimedean absolute value | |.
Let R and M be the corresponding valuation ring and valuation ideal, and let k = R/M
be the residue field. For any a ∈ R we will denote by ā the corresponding element
a + M of k, and for any polynomial

f (x) = cn xn + cn−1xn−1 + · · · + c0

with coefficients c0, . . . , cn ∈ R, we will denote by

f̄ (x) = c̄n xn + c̄n−1xn−1 + · · · + c̄0

the polynomial whose coefficients are the corresponding elements of k.
The hypotheses of Proposition 15 are certainly satisfied if | f (a0)| < 1 = | f1(a0)|.

In this case Proposition 15 says that if

f̄ (x) = (x − ā0)h̄0(x),

where a0 ∈ R, h0(x) ∈ R[x] and h0(a0) /∈ M , then

f (x) = (x − a)h(x),

where a − a0 ∈ M , and h(x) ∈ R[x]. In other words, the factorization of f̄ (x) in k[x]
can be ‘lifted’ to a factorization of f (x) in R[x]. This form of Hensel’s lemma can
be generalized to factorizations where neither factor is linear, and the result is again
known as Hensel’s lemma!

Proposition 18 Let F be a field with a complete non-archimedean absolute value | |.
Let R and M be the valuation ring and valuation ideal of F, and k = R/M the residue
field.

Let f ∈ R[x] be a polynomial with coefficients in R and suppose there exist rela-
tively prime polynomials φ,ψ ∈ k[x], with φ monic and ∂(φ) > 0, such that f̄ = φψ .

Then there exist polynomials g, h ∈ R[x], with g monic and ∂(g) = ∂(φ), such
that ḡ = φ, h̄ = ψ and f = gh.
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Proof Put n = ∂( f ) and m = ∂(φ). Then ∂(ψ) = ∂( f̄ )− ∂(φ) ≤ n−m. There exist
polynomials g1, h1 ∈ R[x], with g1 monic, ∂(g1) = m and ∂(h1) ≤ n − m, such that
ḡ1 = φ, h̄1 = ψ . Since φ,ψ are relatively prime, there exist polynomials χ,ω ∈ k[x]
such that

χφ + ωψ = 1,

and there exist polynomials u, v ∈ R[x] such that ū = χ , v̄ = ω. Thus

f − g1h1 ∈ M[x], ug1 + vh1 − 1 ∈ M[x].

If f = g1h1, there is nothing more to do. Otherwise, let π be the coefficient of f−g1h1
or of ug1 + vh1 − 1 which has maximum absolute value. Then

f − g1h1 ∈ πR[x], ug1 + vh1 − 1 ∈ πR[x].

We are going to construct inductively polynomials g j , h j ∈ R[x] such that

(i) ḡ j = φ, h̄ j = ψ;
(ii) g j is monic and ∂(g j ) = m, ∂(h j ) ≤ n − m;

(iii) g j − g j−1 ∈ π j−1 R[x], h j − h j−1 ∈ π j−1 R[x];
(iv) f − g j h j ∈ π j R[x].

This holds already for j = 1 with g0 = h0 = 0. Assume that, for some k ≥ 2, it
holds for all j < k and put f − g j h j = π j� j , where � j ∈ R[x]. Since g1 is monic,
the Euclidean algorithm provides polynomials qk, rk ∈ R[x] such that

�k−1v = qkg1 + rk, ∂(rk) < ∂(g1) = m.

Let wk ∈ R[x] be a polynomial of minimal degree such that all coefficients of
�k−1u + qkh1 −wk have absolute value at most |π |. Then

wk g1 + rkh1 − �k−1 = (ug1 + vh1 − 1)�k−1 − (�k−1u + qkh1 − wk)g1 ∈ πR[x].

We will show that ∂(wk) ≤ n − m. Indeed otherwise

∂(wk g1) > n ≥ ∂(rkh1 − �k−1)

and hence, since g1 is monic, wk g1 + rkh1 − �k−1 has the same leading coefficient as
wk . Consequently the leading coefficient ofwk is in πR. Thus the polynomial obtained
from wk by omitting the term of highest degree satisfies the same requirements as wk ,
which is a contradiction.

If we put

gk = gk−1 + πk−1rk, hk = hk−1 + πk−1wk,

then (i)–(iii) are evidently satisfied for j = k. Moreover

f − gkhk = −πk−1(wk gk−1 + rkhk−1 − �k−1)− π2k−2rkwk

and

wk gk−1 + rkhk−1 − �k−1

= wk g1 + rkh1 − �k−1 +wk(gk−1 − g1)+ rk(hk−1 − h1) ∈ πR[x].

Hence also (iv) is satisfied for j = k.



282 VI Hensel’s p-adic Numbers

Put

g j (x) = xm +
m−1∑
i=0

α
( j )
i x i , h j (x) =

n−m∑
i=0

β
( j )
i x i .

By (iii), the sequences (α( j )
i ) and (β( j )

i ) are fundamental sequences for each i and
hence, since F is complete, there exist αi , βi ∈ R such that

α
( j )
i → αi , β

( j )
i → βi as j →∞.

If

g(x) = xm +
m−1∑
i=0

αi x i , h j (x) =
n−m∑
i=0

βi x i ,

then, for each j ≥ 1,

g − g j ∈ π j R[x], h − h j ∈ π j R[x].

Since

f − gh = f − g j h j − (g − g j )h − g j (h − h j ),

it follows that f − gh ∈ π j R[x] for each j ≥ 1. Hence f = gh. It is obvious that g
and h have the other required properties. �

As an application of this form of Hensel’s lemma we prove

Proposition 19 Let F be a field with a complete non-archimedean absolute value | |
and let

f (t) = cntn + cn−1tn−1 + · · · + c0 ∈ F[t].

If c0cn �= 0 and, for some m such that 0 < m < n,

|c0| ≤ |cm |, |cn| ≤ |cm |,
with at least one of the two inequalities strict, then f is reducible over F.

Proof Suppose first that |c0| < |cm | and |cn| ≤ |cm |. Evidently we may choose m so
that |cm | = max0<i<n |ci | and |ci | < |cm | for 0 ≤ i < m. By multiplying f by c−1

m we
may further assume that, if R is the valuation ring of F , then f (t) ∈ R[t], cm = 1 and
|ci | < 1 for 0 ≤ i < m. Hence

f̄ (t) = tm(c̄ntn−m + c̄n−1tn−m−1 + · · · + 1).

Since the two factors are relatively prime, it follows from Proposition 18 that f is
reducible.

If |cn| < |cm | and |c0| ≤ |cm |, then the same argument also applies to the
polynomial tn f (t−1). �
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Proposition 19 shows that if a quadratic polynomial at2 + bt + c is irreducible,
then |b| ≤ max{|a|, |c|}, with strict inequality if |a| �= |c|. Proposition 19 will now be
used to extend an absolute value on a given field to a finite extension of that field.

Proposition 20 Let F be a field with a complete non-archimedean absolute value | |.
If the field E is a finite extension of F, then the absolute value on F can be extended
to an absolute value on E.

Proof We will not only show that an extension of the absolute value exists, but we
will provide an explicit expression for it.

Regard E as a vector space over F of finite dimension n, and with any a ∈ E
associate the linear transformation La : E → E defined by La(x) = ax . Then
det La ∈ F and we claim that an extended absolute value is given by the formula

|a| = | det La |1/n.

Evidently |a| ≥ 0, and equality holds only if a = 0, since ax = 0 for some
x �= 0 implies a = 0. Furthermore |ab| = |a||b|, since Lab = La Lb and hence
det Lab = (det La)(det Lb). If a ∈ F , then La = a In and hence the proposed absolute
value coincides with the original absolute value on F . It only remains to show that

|a − b| ≤ max(|a|, |b|) for all a, b ∈ F.

In fact we may suppose |a| ≤ |b| and then, by dividing by b, we see that it is sufficient
to show that 0 < |a| ≤ 1 implies |1− a| ≤ 1.

To simplify notation, write A = La and let

f (t) = det(t I − A) = tn + cn−1tn−1 + · · · + c0

be the characteristic polynomial of A. Then ci ∈ F for all i and c0 = (−1)n det A. Let
g(t) be the monic polynomial in F[t] of least positive degree such that g(a) = 0.
Then g(t) is irreducible, since the field E has no zero divisors. Evidently g(t) is
also the minimal polynomial of A. But, for an arbitrary linear transformation of an
n-dimensional vector space, the characteristic polynomial divides the n-th power of
the minimal polynomial (see M. Deuring, Algebren, p.4). It follows in the present case
that f (t) = g(t)r for some positive integer r .

Suppose

g(t) = tm + bm−1tm−1 + · · · + b0

and let a ∈ E satisfy |a| ≤ 1 with respect to the proposed absolute value. Then
|c0| = | det A| ≤ 1 and hence, since br

0 = c0, |b0| ≤ 1. Since g is irreducible, it
follows from Proposition 19 that |b j | ≤ 1 for all j . Since

g(1) = 1+ bm−1 + · · · + b0,

this implies |g(1)| ≤ 1 and hence | f (1)| ≤ 1. Since f (1) = det(I − A), this proves
that |1− a| ≤ 1. �

Finally we show that there is no other extension to E of the given absolute value
on F besides the one constructed in the proof of Proposition 20.
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Proposition 21 Let F be a complete field with respect to the absolute value | | and
let the field E be a finite extension of F. Then there is at most one extension of the
absolute value on F to an absolute value on E, and E is necessarily complete with
respect to the extended absolute value.

Proof Let e1, . . . , en be a basis for E , regarded as a vector space over F . Then any
a ∈ E can be uniquely expressed in the form

a = α1e1 + · · · + αnen,

where α1, . . . , αn ∈ F . By Lemma 7, for any extended absolute value there exist
positive real numbers σ,µ such that

σ |a| ≤ max
i
|αi | ≤ µ|a| for every a ∈ E .

It follows at once that E is complete. For if a(k) is a fundamental sequence, then α(k)i is
a fundamental sequence in F for i = 1, . . . , n. Since F is complete, there exist αi ∈ F
such that α(k)i → αi (i = 1, . . . , n) and then a(k)→ a, where a = α1e1 + · · · + αnen .

It will now be shown that there is at most one extension to E of the absolute value
on F . Since we saw in §4 that the trivial absolute value on E is the only extension of
the trivial absolute value on F , we may assume that the given absolute value on F is
nontrivial. For a fixed a ∈ E , consider the powers a, a2, . . .. For each k we can write

ak = α(k)1 e1 + · · · + α(k)n en.

Since |a| < 1 if and only if |ak| → 0, it follows from the remarks at the beginning
of the proof that |a| < 1 if and only if |α(k)i | → 0 (i = 1, . . . , n). This condition is
independent of the absolute value on E . Thus if there exist two absolute values, | |1
and | |2, which extend the absolute value on F , then |a|1 < 1 if and only if |a|2 < 1.
Hence, by Proposition 3, there exists a positive real number ρ such that

|a|2 = |a|ρ1 for every a ∈ E .

In fact ρ = 1, since for some a ∈ F we have |a|2 = |a|1 > 1. �

6 Locally Compact Valued Fields

We prove first a theorem of Ostrowski (1918):

Theorem 22 A complete archimedean valued field F is (isomorphic to) either the real
field R or the complex field C, and its absolute value is equivalent to the usual absolute
value.

Proof Since the valuation on it is archimedean, the field F has characteristic 0 and
thus contains Q. Since an archimedean absolute value on Q is equivalent to the usual
absolute value, by replacing the given absolute value on F by an equivalent one we
may assume that it reduces to the usual absolute value on Q. Since the valuation on F
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is complete, it now follows that F contains (a copy of) R and that the absolute value
on F reduces to the usual absolute value on R. If F contains an element i such that
i2 = −1, then F contains (a copy of) C and, by Proposition 21, the absolute value on
F reduces to the usual absolute value on C.

We now show that if a ∈ F and |a| < 1, then 1 − a is a square in F . Let B be the
set of all x ∈ F such that |x | ≤ |a| and, for any x ∈ B , put

T x = (x2 + a)/2.

Then also T x ∈ B , since

|T x | ≤ (|x |2 + |a|)/2 ≤ (|a|2 + |a|)/2 ≤ |a|.
Moreover, the map T is a contraction since, for all x, y ∈ B ,

|T x − T y| = |x2 − y2|/2 = |x − y||x + y|/2 ≤ |a||x − y|.
Since F is complete and B is a closed subset of F , it follows from the contraction
principle (Proposition I.26) that the map T has a fixed point x̄ ∈ B . Evidently
x̄ = (x̄2 + a)/2 and

1− a = 1− 2x̄ + x̄2 = (1− x̄)2.

We show next that, if the polynomial t2 + 1 does not have a root in F , then the
valuation on F can be extended to the field E = F(i), where i2 = −1. Each γ ∈ E has
a unique representation γ = a + ib, where a, b ∈ F . We claim that |γ | = √|a2 + b2|
is an extension to E of the given valuation on F .

The only part of this claim which is not easily established is the triangle inequality.
To prove it, we need only show that

|1+ γ | ≤ 1+ |γ | for every γ ∈ E .

That is, we need only show that

|(1+ a)2 + b2| ≤ 1+ 2
√
|a2 + b2| + |a2 + b2| for all a, b ∈ F.

Since, by the triangle inequality in F ,

|(1+ a)2 + b2| ≤ 1+ 2|a| + |a2 + b2|,
it is enough to show that

|a| ≤
√
|a2 + b2| for all a, b ∈ F

or, since we may suppose a �= 0,

1 ≤ |1+ c2| for every c ∈ F.

Assume, on the contrary, that |1 + c2| < 1 for some c ∈ F . Then, by the previous
part of the proof,

−c2 = 1− (1+ c2) = x2 for some x ∈ F .

Since c �= 0, this implies that −1 = i2 for some i ∈ F , which is a contradiction.
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Now E = F(i) contains C and the absolute value on E reduces to the usual
absolute value on C. To prove the theorem it is enough to show that E = C. For
then R ⊆ F ⊆ C and F has dimension 1 or 2 as a vector space over R according as
i /∈ F or i ∈ F .

Assume on the contrary that there exists ζ ∈ E\C. Consider the function
ϕ : C → R defined by

ϕ(z) = |z − ζ |
and put r = infz∈C ϕ(z). Since ϕ(0) = |ζ | and ϕ(z) > |ζ | for |z| > 2|ζ |, and since
ϕ is continuous, the compact set {z ∈ C : |z| ≤ 2|ζ |} contains a point w such that
ϕ(w) = r .

Thus if we put ω = ζ −w, then ω �= 0 and

0 < r = |ω| ≤ |ω − z| for every z ∈ C.

We will show that |ω − z| = r for every z ∈ C such that |z| < r .
If ε = e2π i/n , then

ωn − zn = (ω − z)(ω − εz) · · · (ω − εn−1z)

and hence

|ωn − zn | ≥ rn−1|ω − z|.
Thus |ω−z| ≤ r |1−zn/ωn|. Since |z| < |ω|, by letting n →∞we obtain |ω−z| ≤ r .
But this is possible only if |ω − z| = r .

Thus if 0 < |z| < r , then ω may be replaced by ω− z. It follows that |ω− nz| = r
for every positive integer n. Hence r ≥ n|z| − r , which yields a contradiction for
sufficiently large n. �

If a field F is locally compact with respect to an archimedean absolute value, then
it is certainly complete and so, by Theorem 22, it is equivalent either to R or to C with
the usual absolute value. It will now be shown that a field F is locally compact with
respect to a non-archimedean absolute value if and only if it is a complete field of the
type discussed in Proposition 13. It should be observed that a non-archimedean valued
field F is locally compact if and only if its valuation ring R is compact, since then any
closed ball in F is compact.

Proposition 23 Let F be a field with a non-archimedean absolute value | |. Then F is
locally compact with respect to the topology induced by the absolute value if and only
if the following three conditions are satisfied:

(i) F is complete,
(ii) the absolute value | | is discrete,

(iii) the residue field is finite.

Proof As we have just observed, F is locally compact if and only if its valuation ring
R is compact. Moreover, since R is a subset of the metric space F , it is compact if and
only if any sequence of elements of R has a convergent subsequence.
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The field F is certainly complete if it is locally compact, since any fundamental
sequence is bounded. If the residue field is infinite, then there exists an infinite
sequence (ak) of elements of R such that |ak − a j | = 1 for j �= k. Since the sequence
(ak) has no convergent subsequence, R is not compact. If the absolute value | | is not
discrete, then there exists an infinite sequence (ak) of elements of R with

|a1| < |a2| < · · ·
and |ak| → 1 as k →∞. If k > j , then |ak − a j | = |ak| and again the sequence (ak)
has no convergent subsequence. Thus the conditions (i)–(iii) are all necessary for F to
be locally compact.

Suppose now that the conditions (i)–(iii) are all satisfied and let σ = (ak) be a
sequence of elements of R. In the notation of Proposition 13, let

ak =
∑
n≥0

α(k)n πn,

where α(k)n ∈ S. Since S is finite, there exists α0 ∈ S such that α(k)0 = α0 for infinitely

many ak ∈ σ . If σ0 is the subsequence of σ containing those ak for which α(k)0 = α0,

then there exists α1 ∈ S such that α(k)1 = α1 for infinitely many ak ∈ σ0. Similarly, if

σ1 is the subsequence of σ0 containing those ak for which α(k)1 = α1, then there exists

α2 ∈ S such that α(k)2 = α2 for infinitely many ak ∈ σ1. And so on. If a( j ) ∈ σ j , then

a( j ) = α0 + α1π + · · · + α jπ
j +

∑
n≥0

αn( j)π j+1+n.

But a = ∑
n≥0 αnπ

n ∈ F , since F is complete, and |a( j ) − a| ≤ |π | j+1. Thus the
subsequence (a( j )) of σ converges to a. �

Corollary 24 The field Qp of p-adic numbers is locally compact, and the ring Zp of
p-adic integers is compact.

Corollary 25 If K is a finite field, then the field K ((t)) of all formal Laurent series is
locally compact, and the ring K [[t]] of all formal power series is compact.

We now show that all locally compact valued fields F with a non-archimedean
absolute value can in fact be explicitly determined. It is convenient to treat the cases
where F has prime characteristic and zero characteristic separately, since the argu-
ments in the two cases are quite different.

Lemma 26 Let F be a locally compact valued field with a nontrivial valuation. A
normed vector space E over F is locally compact if and only if it is finite-dimensional.

Proof Suppose first that E is finite-dimensional over F . If e1, . . . , en is a basis for the
vector space E , then any a ∈ E can be uniquely represented in the form

a = α1e1 + · · · + αnen,

where α1, . . . , αn ∈ F , and
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‖a‖0 = max
1≤i≤n

|αi |

is a norm on E . Since the field F is locally compact, it is also complete. Hence, by
Lemma 7, there exist positive real constants σ,µ such that

σ‖a‖0 ≤ ‖a‖ ≤ µ‖a‖0 for every a ∈ E .

Consequently, if {ak} is a bounded sequence of elements of E then, for each j ∈
{1, . . . , n}, the corresponding coefficients {αkj } form a bounded sequence of elements
of F . Hence, since F is locally compact, there exists a subsequence {akv } such that
each of the sequences {αkv j } converges in F , with limit β j say ( j = 1, . . . , n). It fol-
lows that the subsequence {akv } converges in E with limit b = β1e1+· · ·+βnen . Thus
E is locally compact.

Suppose next that E is infinite-dimensional over F . Since the valuation on F is
nontrivial, there exists α ∈ F such that r = |α| satisfies 0 < r < 1. Let V be any
finite-dimensional subspace of E , let u′ ∈ E\V and let

d = inf
v∈V

‖u′ − v‖.

Since V is locally compact, d > 0 and d = ‖u′ − v ′‖ for some v ′ ∈ V . Choose k ∈ Z
so that rk+1 < d ≤ rk and put w′ = α−k(u′ − v ′). For any v ∈ V ,

‖αkv + v ′ − u′‖ ≥ d

and hence

‖w′ − v‖ ≥ dr−k > r.

On the other hand,

‖w′‖ = dr−k ≤ 1.

We now define a sequence {wm} of elements of E in the following way. Taking
V = {O} we obtain a vector w1 with r < ‖w1‖ ≤ 1. Suppose we have defined
w1, . . . , wm ∈ E so that, for 1 ≤ j ≤ m, ‖w j‖ ≤ 1 and ‖w j − v j‖ > r for all v j

in the vector subspace Vj−1 of E spanned by w1, . . . , w j−1. Then, taking V = Vm ,
we obtain a vector wm+1 such that ‖wm+1‖ ≤ 1 and ‖wm+1 − vm+1‖ > r for all
vm+1 ∈ Vm . Thus the process can be continued indefinitely. Since ‖wm‖ ≤ 1 for all m
and ‖wm − w j‖ > r for 1 ≤ j < m, the bounded sequence {wm} has no convergent
subsequence. Thus E is not locally compact. �

Proposition 27 A non-archimedean valued field E with zero characteristic is locally
compact if and only if, for some prime p, E is isomorphic to a finite extension of the
field Qp of p-adic numbers.

Proof If E is a finite extension of the p-adic field Qp then, since Qp is locally com-
pact, so also is E , by Lemma 26.

Suppose on the other hand that E is a locally compact valued field with zero char-
acteristic. Then Q ⊆ E . By Proposition 23, the residue field k = R/M is finite and
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thus has prime characteristic p. It follows from Proposition 4 that the restriction to Q
of the absolute value on E is (equivalent to) the p-adic absolute value. Hence, since E
is necessarily complete, Qp ⊆ E . If E were infinite-dimensional as a vector space over
Qp then, by Lemma 26, it would not be locally compact. Hence E is a finite extension
of Qp. �

We consider next locally compact valued fields of prime characteristic.

Proposition 28 A valued field F with prime characteristic p is locally compact if and
only if F is isomorphic to the field K ((t)) of formal Laurent series over a finite field
K of characteristic p, with the absolute value defined in example (iv) of §1. The finite
field K is the residue field of F.

Proof We need only prove the necessity of the condition, since (Corollary 25) we have
already established its sufficiency. Since F has prime characteristic, the absolute value
on F is non-archimedean. Hence, by Proposition 23 and Lemma 12, the absolute value
on F is discrete and the valuation ideal M is a principal ideal. Let π be a generating
element for M . By Proposition 23 also, the residue field k = R/M is finite. Evidently
the characteristic of k must also be p. Let q = p f be the number of elements in k.
Since F has characteristic p, for any a, b ∈ F ,

(b − a)p = b p − a p

and hence, by induction,

(b − a)pn = b pn − a pn
for all n ≥ 1.

The multiplicative group of k is a cyclic group of order q − 1. Choose a ∈ R so that
a + M generates this cyclic group. Then |aq − a| < 1. By what we have just proved,

aqn+1 − aqn = (aq − a)q
n
,

and hence (aqn
) is a fundamental sequence, by Lemma 10. Since F is complete, by

Proposition 23, it follows that aqn → α ∈ R. Moreover αq = α, since

lim
n→∞(a

qn
)q = lim

n→∞ aqn+1
,

and α − a ∈ M , since aqn+1 − aqn ∈ M for every n ≥ 0. Hence α �= 0 and αq−1 = 1.
Moreover α j �= 1 for 1 ≤ j < q − 1, since α j ≡ a j mod M . It follows that the set
S consisting of 0 and the powers 1, α, . . . , αq−1 is a set of representatives in R of the
residue field k.

Since F has characteristic p, α generates a finite subring K of R. In fact K is a
field, since βq = β for every β ∈ K and so ββq−2 = 1 if β �= 0. Since S ⊆ K and the
polynomial xq − x has at most q roots in K , we conclude that S = K . Thus K has q
elements and is isomorphic to the residue field k.

Every element a of F has a unique representation

a =
∑
n∈Z

αnπ
n,



290 VI Hensel’s p-adic Numbers

where π is a generating element for the principal ideal M , αn ∈ S and αn �= 0 for at
most finitely many n < 0. The map

a′ =
∑
n∈Z

αntn → a =
∑
n∈Z

αnπ
n

is a bijection of the field K ((t)) onto F . Since S is closed under addition this map pre-
serves sums, and since S is also closed under multiplication it also preserves products.
Finally, if N is the least integer such that αN �= 0, then |a| = |π |N and |a′| = ρ−N

for some fixed ρ > 1. Hence the map is an isomorphism of the valued field K ((t))
onto F . �

7 Further Remarks

Valued fields are discussed in more detail in the books of Cassels [1], Endler [3] and
Ribenboim [5].

For still more forms of Hensel’s lemma, see Ribenboim [6]. There are also gen-
eralizations to polynomials in several variables and to power series. The algorithmic
implementation of Hensel’s lemma is studied in von zur Gathen [4]. Newton’s method
for finding real or complex zeros is discussed in Stoer and Bulirsch [7], for example.

Proposition 20 continues to hold if the word ‘complete’ is omitted from its state-
ment. However, the formula given in the proof of Proposition 20 defines an absolute
value on E if and only if there is a unique extension of the absolute value on F to an
absolute value on E ; see Viswanathan [8].

Ostrowski’s Theorem 22 has been generalized by weakening the requirement
|ab| = |a||b| to |ab| ≤ |a||b|. Mazur (1938) proved that the only normed associative
division algebras over R are R,C and H, and that the only normed associative division
algebra over C is C itself. An elegant functional-analytic proof of the latter result was
given by Gelfand (1941). See Chapter 8 (by Koecher and Remmert) of Ebbinghaus
et al. [2].

8 Selected References

[1] J.W.S. Cassels, Local fields, Cambridge University Press, 1986.
[2] H.-D. Ebbinghaus et al., Numbers, English transl. of 2nd German ed. by H.L.S. Orde,

Springer-Verlag, New York, 1990.
[3] O. Endler, Valuation theory, Springer-Verlag, Berlin, 1972.
[4] J. von zur Gathen, Hensel and Newton methods in valuation rings, Math. Comp. 42 (1984),

637–661.
[5] P. Ribenboim, The theory of classical valuations, Springer-Verlag, New York, 1999.
[6] P. Ribenboim, Equivalent forms of Hensel’s lemma, Exposition. Math. 3 (1985), 3–24.
[7] J. Stoer and R. Bulirsch, Introduction to numerical analysis, 3rd ed. (English transl.),

Springer-Verlag, New York, 2002.
[8] T.M. Viswanathan, A characterisation of Henselian valuations via the norm, Bol. Soc.

Brasil. Mat. 4 (1973), 51–53.



VII

The Arithmetic of Quadratic Forms

We have already determined the integers which can be represented as a sum of
two squares. Similarly, one may ask which integers can be represented in the form
x2 + 2y2 or, more generally, in the form ax2 + 2bxy + cy2, where a, b, c are given
integers. The arithmetic theory of binary quadratic forms, which had its origins in
the work of Fermat, was extensively developed during the 18th century by Euler,
Lagrange, Legendre and Gauss. The extension to quadratic forms in more than two
variables, which was begun by them and is exemplified by Lagrange’s theorem that
every positive integer is a sum of four squares, was continued during the 19th cen-
tury by Dirichlet, Hermite, H.J.S. Smith, Minkowski and others. In the 20th century
Hasse and Siegel made notable contributions. With Hasse’s work especially it be-
came apparent that the theory is more perspicuous if one allows the variables to be
rational numbers, rather than integers. This opened the way to the study of quadratic
forms over arbitrary fields, with pioneering contributions by Witt (1937) and Pfister
(1965–67).

From this vast theory we focus attention on one central result, the Hasse–Minkowski
theorem. However, we first study quadratic forms over an arbitrary field in the geo-
metric formulation of Witt. Then, following an interesting approach due to Fröhlich
(1967), we study quadratic forms over a Hilbert field.

1 Quadratic Spaces

The theory of quadratic spaces is simply another name for the theory of quadratic
forms. The advantage of the change in terminology lies in its appeal to geometric
intuition. It has in fact led to new results even at quite an elementary level. The new
approach had its debut in a paper by Witt (1937) on the arithmetic theory of quadratic
forms, but it is appropriate also if one is interested in quadratic forms over the real field
or any other field.

For the remainder of this chapter we will restrict attention to fields for which
1+ 1 �= 0. Thus the phrase ‘an arbitrary field’ will mean ‘an arbitrary field of charac-
teristic �= 2’. The proofs of many results make essential use of this restriction on the
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characteristic. For any field F , we will denote by F× the multiplicative group of all
nonzero elements of F . The squares in F× form a subgroup F×2 and any coset of this
subgroup is called a square class.

Let V be a finite-dimensional vector space over such a field F . We say that V is a
quadratic space if with each ordered pair u, v of elements of V there is associated an
element (u, v) of F such that

(i) (u1 + u2, v) = (u1, v)+ (u2, v) for all u1, u2, v ∈ V ;
(ii) (αu, v) = α(u, v) for every α ∈ F and all u, v ∈ V ;

(iii) (u, v) = (v, u) for all u, v ∈ V .

It follows that

(i)′ (u, v1 + v2) = (u, v1)+ (u, v2) for all u, v1, v2 ∈ V ;
(ii)′ (u, αv) = α(u, v) for every α ∈ F and all u, v ∈ V .

Let e1, . . . , en be a basis for the vector space V . Then any u, v ∈ V can be uniquely
expressed in the form

u =
n∑

j=1

ξ j e j , v =
n∑

j=1

η j e j ,

where ξ j , η j ∈ F( j = 1, . . . , n), and

(u, v) =
n∑

j,k=1

α j kξ jηk,

where α j k = (e j , ek) = αkj . Thus

(u, u) =
n∑

j,k=1

α j kξ j ξk

is a quadratic form with coefficients in F . The quadratic space is completely deter-
mined by the quadratic form, since

(u, v) = {(u + v, u + v)− (u, u)− (v, v)}/2. (1)

Conversely, for a given basis e1, . . . , en of V , any n × n symmetric matrix
A = (α j k) with elements from F , or the associated quadratic form f (x) = xt Ax ,
may be used in this way to give V the structure of a quadratic space.

Let e′1, . . . , e′n be any other basis for V . Then

ei =
n∑

j=1

τ j i e
′
j ,

where T = (τi j ) is an invertible n × n matrix with elements from F . Conversely, any
such matrix T defines in this way a new basis e′1, . . . , e′n . Since
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(ei , ek) =
n∑

j,h=1

τ j iβ j hτhk ,

where β j h = (e′j , e′h), the matrix B = (β j h) is symmetric and

A = T t BT . (2)

Two symmetric matrices A, B with elements from F are said to be congruent if (2)
holds for some invertible matrix T with elements from F . Thus congruence of sym-
metric matrices corresponds to a change of basis in the quadratic space. Evidently
congruence is an equivalence relation, i.e. it is reflexive, symmetric and transitive. Two
quadratic forms are said to be equivalent over F if their coefficient matrices are con-
gruent. Equivalence over F of the quadratic forms f and g will be denoted by f ∼F g
or simply f ∼ g.

It follows from (2) that

det A = (det T )2 det B.

Thus, although det A is not uniquely determined by the quadratic space, if it is nonzero,
its square class is uniquely determined. By abuse of language, we will call any repre-
sentative of this square class the determinant of the quadratic space V and denote it by
det V .

Although quadratic spaces are better adapted for proving theorems, quadratic
forms and symmetric matrices are useful for computational purposes. Thus a famil-
iarity with both languages is desirable. However, we do not feel obliged to give two
versions of each definition or result, and a version in one language may later be used
in the other without explicit comment.

A vector v is said to be orthogonal to a vector u if (u, v) = 0. Then also u is
orthogonal to v. The orthogonal complement U⊥ of a subspace U of V is defined to
be the set of all v ∈ V such that (u, v) = 0 for every u ∈ U . Evidently U⊥ is again a
subspace. A subspace U will be said to be non-singular if U ∩U⊥ = {0}.

The whole space V is itself non-singular if and only if V⊥ = {0}. Thus V is
non-singular if and only if some, and hence every, symmetric matrix describing it is
non-singular, i.e. if and only if det V �= 0.

We say that a quadratic space V is the orthogonal sum of two subspaces V1 and
V2, and we write V = V1⊥V2, if V = V1 + V2, V1 ∩ V2 = {0} and (v1, v2) = 0 for all
v1 ∈ V1, v2 ∈ V2.

If A1 is a coefficient matrix for V1 and A2 a coefficient matrix for V2, then

A =
(

A1 0
0 A2

)
is a coefficient matrix for V = V1⊥V2. Thus det V = (det V1)(det V2). Evidently V is
non-singular if and only if both V1 and V2 are non-singular.

If W is any subspace supplementary to the orthogonal complement V⊥ of the
whole space V , then V = V⊥⊥W and W is non-singular. Many problems for arbitrary
quadratic spaces may be reduced in this way to non-singular quadratic spaces.
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Proposition 1 If a quadratic space V contains a vector u such that (u, u) �= 0, then

V = U⊥U⊥,

where U = 〈u〉 is the one-dimensional subspace spanned by u.

Proof For any vector v ∈ V , put v ′ = v − αu, where α = (v, u)/(u, u). Then (v ′, u) =
0 and hence v ′ ∈ U⊥. Since U∩ U⊥ = {0}, the result follows. �

A vector space basis u1, . . . , un of a quadratic space V is said to be an orthogonal
basis if (u j , uk) = 0 whenever j �= k.

Proposition 2 Any quadratic space V has an orthogonal basis.

Proof If V has dimension 1, there is nothing to prove. Suppose V has dimension
n > 1 and the result holds for quadratic spaces of lower dimension. If (v, v) = 0 for
all v ∈ V , then any basis is an orthogonal basis, by (1). Hence we may assume that
V contains a vector u1 such that (u1, u1) �= 0. If U1 is the 1-dimensional subspace
spanned by u1 then, by Proposition 1,

V = U1⊥U⊥
1 .

By the induction hypothesis U⊥
1 has an orthogonal basis u2, . . . , un , and u1, u2, . . . , un

is then an orthogonal basis for V . �

Proposition 2 says that any symmetic matrix A is congruent to a diagonal matrix,
or that the corresponding quadratic form f is equivalent over F to a diagonal form
δ1ξ

2
1 + · · · + δnξ2

n . Evidently det f = δ1 · · · δn and f is non-singular if and only if
δ j �= 0 (1 ≤ j ≤ n). If A �= 0 then, by Propositions 1 and 2, we can take δ1 to be any
element of F× which is represented by f .

Here γ ∈ F× is said to be represented by a quadratic space V over the field F if
there exists a vector v ∈ V such that (v, v) = γ .

As an application of Proposition 2 we prove

Proposition 3 If U is a non-singular subspace of the quadratic space V , then
V = U⊥U⊥.

Proof Let u1, . . . , um be an orthogonal basis for U . Then (u j , u j ) �= 0 (1 ≤ j ≤ m),
since U is non-singular. For any vector v ∈ V , let u = α1u1 + · · · + αmum , where
α j = (v, u j )/(u j , u j ) for each j . Then u ∈ U and (u, u j ) = (v, u j ) (1 ≤ j ≤ m).
Hence v − u ∈ U⊥. Since U ∩U⊥ = {0}, the result follows. �

It may be noted that if U is a non-singular subspace and V = U⊥W for some
subspace W , then necessarily W = U⊥. For it is obvious that W ⊆ U⊥ and
dim W = dim V − dim U = dim U⊥, by Proposition 3.

Proposition 4 Let V be a non-singular quadratic space. If v1, . . . , vm are linearly
independent vectors in V then, for any η1, . . . , ηm ∈ F, there exists a vector v ∈ V
such that (v j , v) = η j (1 ≤ j ≤ m).

Moreover, if U is any subspace of V , then
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(i) dim U + dim U⊥ = dim V ;
(ii) U⊥⊥ = U;

(iii) U⊥ is non-singular if and only if U is non-singular.

Proof There exist vectors vm+1, . . . , vn ∈ V such that v1, . . . , vn form a basis for V .
If we put α j k = (v j , vk) then, since V is non-singular, the n × n symmetric matrix
A = (α j k) is non-singular. Hence, for any η1, . . . , ηn ∈ F, there exist unique
ξ1, . . . , ξn ∈ F such that v = ξ1v1 + · · · + ξnvn satisfies

(v1, v) = η1, . . . , (vn, v) = ηn.

This proves the first part of the proposition.
By taking U = 〈v1, . . . , vm〉 and η1 = · · · = ηm = 0, we see that dim U⊥ = n−m.

Replacing U by U⊥, we obtain dim U⊥⊥ = dim U . Since it is obvious that U ⊆ U⊥⊥,
this implies U = U⊥⊥. Since U non-singular means U ∩ U⊥ = {0}, (iii) follows at
once from (ii). �

We now introduce some further definitions. A vector u is said to be isotropic if
u �= 0 and (u, u) = 0. A subspace U of V is said to be isotropic if it contains an
isotropic vector and anisotropic otherwise. A subspace U of V is said to be totally
isotropic if every nonzero vector in U is isotropic, i.e. if U ⊆ U⊥. According to these
definitions, the trivial subspace {0} is both anisotropic and totally isotropic.

A quadratic space V over a field F is said to be universal if it represents every
γ ∈ F×, i.e. if for each γ ∈ F× there is a vector v ∈ V such that (v, v) = γ .

Proposition 5 If a non-singular quadratic space V is isotropic, then it is universal.

Proof Since V is isotropic, it contains a vector u �= 0 such that (u, u) = 0. Since
V is non-singular, it contains a vector w such that (u, w) �= 0. Then w is linearly
independent of u and by replacing w by a scalar multiple we may assume (u, w) = 1.
If v = αu +w, then (v, v) = γ for α = {γ − (w,w)}/2. �

On the other hand, a non-singular universal quadratic space need not be isotropic.
As an example, take F to be the finite field with three elements and V the
2-dimensional quadratic space corresponding to the quadratic form ξ2

1 + ξ2
2 .

Proposition 6 A non-singular quadratic form f (ξ1, . . . , ξn) with coefficients from a
field F represents γ ∈ F× if and only if the quadratic form

g(ξ0, ξ1, . . . , ξn) = −γ ξ2
0 + f (ξ1, . . . , ξn)

is isotropic.

Proof Obviously if f (x1, . . . , xn) = γ and x0 = 1, then g(x0, x1, . . . , xn) = 0.
Suppose on the other hand that g(x0, x1, . . . , xn) = 0 for some x j ∈ F , not all zero.
If x0 �= 0, then f certainly represents γ . If x0 = 0, then f is isotropic and hence, by
Proposition 5, it still represents γ . �

Proposition 7 Let V be a non-singular isotropic quadratic space. If V = U⊥W, then
there exists γ ∈ F× such that, for some u ∈ U and w ∈ W,

(u, u) = γ, (w,w) = −γ.



296 VII The Arithmetic of Quadratic Forms

Proof Since V is non-singular, so also are U and W , and since V contains an isotropic
vector v ′, there exist u′ ∈ U , w′ ∈ W , not both zero, such that

(u′, u′) = −(w′, w′).
If this common value is nonzero, we are finished. Otherwise either U or W is
isotropic. Without loss of generality, suppose U is isotropic. Since W is non-singular,
it contains a vector w such that (w,w) �= 0, and U contains a vector u such that
(u, u) = −(w,w), by Proposition 5. �

We now show that the totally isotropic subspaces of a quadratic space are impor-
tant for an understanding of its structure, even though they are themselves trivial as
quadratic spaces.

Proposition 8 All maximal totally isotropic subspaces of a quadratic space have the
same dimension.

Proof Let U1 be a maximal totally isotropic subspace of the quadratic space V . Then
U1 ⊆ U⊥

1 and U⊥
1 \U1 contains no isotropic vector. Since V⊥ ⊆ U⊥

1 , it follows that
V⊥ ⊆ U1. If V ′ is a subspace of V supplementary to V⊥, then V ′ is non-singular
and U1 = V⊥ +U ′

1, where U ′
1 ⊆ V ′. Since U ′

1 is a maximal totally isotropic subspace
of V ′, this shows that it is sufficient to establish the result when V itself is non-singular.

Let U2 be another maximal totally isotropic subspace of V . Put W = U1 ∩U2 and
let W1, W2 be subspaces supplementary to W in U1, U2 respectively. We are going to
show that W2 ∩W⊥

1 = {0}.
Let v ∈ W2 ∩ W⊥

1 . Since W2 ⊆ U2, v is isotropic and v ∈ U⊥
2 ⊆ W⊥. Hence

v ∈ U⊥
1 and actually v ∈ U1, since v is isotropic. Since W2 ⊆ U2 this implies v ∈ W ,

and since W ∩W2 = {0} this implies v = 0.
It follows that dim W2 + dim W⊥

1 ≤ dim V . But, since V is now assumed non-
singular, dim W1 = dim V − dim W⊥

1 , by Proposition 4. Hence dim W2 ≤ dim W1
and, for the same reason, dim W1 ≤ dim W2. Thus dim W2 = dim W1, and hence
dim U2 = dim U1. �

We define the index, ind V , of a quadratic space V to be the dimension of any
maximal totally isotropic subspace. Thus V is anisotropic if and only if ind V = 0.

A field F is said to be ordered if it contains a subset P of positive elements, which
is closed under addition and multiplication, such that F is the disjoint union of the sets
{0}, P and −P = {−x : x ∈ P}. The rational field Q and the real field R are ordered
fields, with the usual interpretation of ‘positive’. For quadratic spaces over an ordered
field there are other useful notions of index.

A subspace U of a quadratic space V over an ordered field F is said to be
positive definite if (u, u) > 0 for all nonzero u ∈ U and negative definite if (u, u) < 0
for all nonzero u ∈ U . Evidently positive definite and negative definite subspaces are
anisotropic.

Proposition 9 All maximal positive definite subspaces of a quadratic space V over an
ordered field F have the same dimension.
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Proof Let U+ be a maximal positive definite subspace of the quadratic space V . Since
U+ is certainly non-singular, we have V = U+⊥W , where W = U⊥+ , and since U+ is
maximal, (w,w) ≤ 0 for all w ∈ W . Since U+ ⊆ V , we have V⊥ ⊆ W . If U− is a
maximal negative definite subspace of W , then in the same way W = U−⊥U0, where
U0 = U⊥− ∩ W . Evidently U0 is totally isotropic and U0 ⊆ V⊥. In fact U0 = V⊥,
since U− ∩ V⊥ = {0}. Since (v, v) ≥ 0 for all v ∈ U+⊥V⊥, it follows that U− is a
maximal negative definite subspace of V .

If U ′+ is another maximal positive definite subspace of V , then U ′+ ∩W = {0} and
hence

dim U ′+ + dim W = dim(U ′+ +W ) ≤ dim V .

Thus dim U ′+ ≤ dim V − dim W = dim U+. But U+ and U ′+ can be interchanged. �

If V is a quadratic space over an ordered field F , we define the positive index
ind+ V to be the dimension of any maximal positive definite subspace. Similarly all
maximal negative definite subspaces have the same dimension, which we will call the
negative index of V and denote by ind− V . The proof of Proposition 9 shows that

ind+V + ind−V + dim V⊥ = dim V .

Proposition 10 Let F denote the real field R or, more generally, an ordered field in
which every positive element is a square. Then any non-singular quadratic form f in
n variables with coefficients from F is equivalent over F to a quadratic form

g = ξ2
1 + · · · + ξ2

p − ξ2
p+1 − · · · − ξ2

n ,

where p ∈ {0, 1, . . . , n} is uniquely determined by f . In fact,

ind+ f = p, ind− f = n − p, ind f = min(p, n − p).

Proof By Proposition 2, f is equivalent over F to a diagonal form δ1η2
1 + · · · + δnη2

n ,
where δ j �= 0 (1 ≤ j ≤ n). We may choose the notation so that δ j > 0 for j ≤ p and

δ j < 0 for j > p. The change of variables ξ j = δ1/2
j η j ( j ≤ p), ξ j = (−δ j )

1/2η j

( j > p) now brings f to the form g. Since the corresponding quadratic space has a
p-dimensional maximal positive definite subspace, p = ind+ f is uniquely deter-
mined. Similarly n − p = ind− f , and the formula for ind f follows readily. �

It follows that, for quadratic spaces over a field of the type considered in Proposi-
tion 10, a subspace is anisotropic if and only if it is either positive definite or negative
definite.

Proposition 10 completely solves the problem of equivalence for real quadratic
forms. (The uniqueness of p is known as Sylvester’s law of inertia.) It will now be
shown that the problem of equivalence for quadratic forms over a finite field can also
be completely solved.

Lemma 11 If V is a non-singular 2-dimensional quadratic space over a finite field
Fq , of (odd) cardinality q, then V is universal.
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Proof By choosing an orthogonal basis for V we are reduced to showing that if α, β,
γ ∈ F×q , then there exist ξ, η ∈ Fq such that αξ2 + βη2 = γ . As ξ runs through Fq ,

αξ2 takes (q + 1)/2 = 1+ (q − 1)/2 distinct values. Similarly, as η runs through Fq ,
γ − βη2 takes (q + 1)/2 distinct values. Since (q + 1)/2+ (q + 1)/2 > q , there exist
ξ, η ∈ Fq for which αξ2 and γ − βη2 take the same value. �

Proposition 12 Any non-singular quadratic form f in n variables over a finite field Fq

is equivalent over Fq to the quadratic form

ξ2
1 + · · · + ξ2

n−1 + δξ2
n ,

where δ = det f is the determinant of f .
There are exactly two equivalence classes of non-singular quadratic forms in n

variables over Fq , one consisting of those forms f whose determinant det f is a square
in F×q , and the other those for which det f is not a square in F×q .

Proof Since the first statement of the proposition is trivial for n = 1, we assume that
n > 1 and it holds for all smaller values of n. It follows from Lemma 11 that f repre-
sents 1 and hence, by the remark after the proof of Proposition 2, f is equivalent over
Fq to a quadratic form ξ2

1 + g(ξ2, . . . , ξn). Since f and g have the same determinant,
the first statement of the proposition now follows from the induction hypothesis.

Since F×q contains (q−1)/2 distinct squares, every element of F×q is either a square
or a square times a fixed non-square. The second statement of the proposition now fol-
lows from the first. �

We now return to quadratic spaces over an arbitrary field. A 2-dimensional quadratic
space is said to be a hyperbolic plane if it is non-singular and isotropic.

Proposition 13 For a 2-dimensional quadratic space V , the following statements are
equivalent:

(i) V is a hyperbolic plane;
(ii) V has a basis u1, u2 such that (u1, u1) = (u2, u2) = 0, (u1, u2) = 1;

(iii) V has a basis v1, v2 such that (v1, v1) = 1, (v2, v2) = −1, (v1, v2) = 0;
(iv) − det V is a square in F×.

Proof Suppose first that V is a hyperbolic plane and let u1 be any isotropic
vector in V . If v is any linearly independent vector, then (u1, v) �= 0, since V is
non-singular. By replacing v by a scalar multiple we may assume that (u1, v) = 1. If
we put u2 = v + αu1, where α = −(v, v)/2, then

(u2, u2) = (v, v) + 2α = 0, (u1, u2) = (u1, v) = 1,

and u1, u2 is a basis for V .
If u1, u2 are isotropic vectors in V such that (u1, u2) = 1, then the vectors v1 =

u1 + u2/2 and v2 = u1 − u2/2 satisfy (iii), and if v1, v2 satisfy (iii) then det V = −1.
Finally, if (iv) holds then V is certainly non-singular. Let w1, w2 be an orthogonal

basis for V and put δ j = (w j , w j ) ( j = 1, 2). By hypothesis, δ1δ2 = −γ 2, where
γ ∈ F×. Since γw1 + δ1w2 is an isotropic vector, this proves that (iv) implies (i). �
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Proposition 14 Let V be a non-singular quadratic space. If U is a totally isotropic
subspace with basis u1, . . . , um, then there exists a totally isotropic subspace U ′ with
basis u′1, . . . , u′m such that

(u j , u
′
k) = 1 or 0 according as j = k or j �= k.

Hence U ∩U ′ = {0} and

U + U ′ = H1⊥ · · ·⊥Hm,

where H j is the hyperbolic plane with basis u j , u′j (1 ≤ j ≤ m).

Proof Suppose first that m = 1. Since V is non-singular, there exists a vector v ∈ V
such that (u1, v) �= 0. The subspace H1 spanned by u1, v is a hyperbolic plane and
hence, by Proposition 13, it contains a vector u′1 such that (u′1, u′1) = 0, (u1, u′1) = 1.
This proves the proposition for m = 1.

Suppose now that m > 1 and the result holds for all smaller values of m. Let W
be the totally isotropic subspace with basis u2, . . . , um . By Proposition 4, there exists
a vector v ∈ W⊥ such that (u1, v) �= 0. The subspace H1 spanned by u1, v is a
hyperbolic plane and hence it contains a vector u′1 such that (u′1, u′1) = 0, (u1, u′1) = 1.
Since H1 is non-singular, H⊥

1 is also non-singular and V = H1⊥H⊥
1 . Since W ⊆ H⊥

1 ,
the result now follows by applying the induction hypothesis to the subspace W of the
quadratic space H⊥

1 . �

Proposition 15 Any quadratic space V can be represented as an orthogonal sum

V = V⊥⊥H1⊥ · · ·⊥Hm⊥V0,

where H1, . . . , Hm are hyperbolic planes and the subspace V0 is anisotropic.

Proof Let V1 be any subspace supplementary to V⊥. Then V1 is non-singular, by the
definition of V⊥. If V1 is anisotropic, we can take m = 0 and V0 = V1. Otherwise V1
contains an isotropic vector and hence also a hyperbolic plane H1, by Proposition 14.
By Proposition 3,

V1 = H1⊥V2,

where V2 = H⊥
1 ∩V1 is non-singular. If V2 is anisotropic, we can take V0 = V2. Other-

wise we repeat the process. After finitely many steps we must obtain a representation
of the required form, possibly with V0 = {0}. �

Let V and V ′ be quadratic spaces over the same field F . The quadratic spaces
V , V ′ are said to be isometric if there exists a linear map ϕ : V → V ′ which is an
isometry, i.e. it is bijective and

(ϕv, ϕv) = (v, v) for all v ∈ V .

By (1), this implies

(ϕu, ϕv) = (u, v) for all u, v ∈ V .
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The concept of isometry is only another way of looking at equivalence. For if
ϕ : V → V ′ is an isometry, then V and V ′ have the same dimension. If u1, . . . , un

is a basis for V and u′1, . . . , u′n a basis for V ′ then, since (u j , uk) = (ϕu j , ϕuk), the
isometry is completely determined by the change of basis in V ′ from ϕu1, . . . , ϕun to
u′1, . . . , u′n .

A particularly simple type of isometry is defined in the following way. Let V be a
quadratic space and w a vector such that (w,w) �= 0. The map τ : V → V defined by

τv = v − {2(v,w)/(w,w)}w
is obviously linear. If W is the non-singular one-dimensional subspace spanned by w,
then V = W⊥W⊥. Since τv = v if v ∈ W⊥ and τv = −v if v ∈ W , it follows that τ
is bijective. Writing α = −2(v,w)/(w,w), we have

(τv, τv) = (v, v) + 2α(v,w) + α2(w,w) = (v, v).
Thus τ is an isometry. Geometrically, τ is a reflection in the hyperplane orthogonal
to w. We will refer to τ = τw as the reflection corresponding to the non-isotropic
vector w.

Proposition 16 If u, u′ are vectors of a quadratic space V such that (u, u) =
(u′, u′) �= 0, then there exists an isometry ϕ : V → V such that ϕu = u′.

Proof Since

(u + u′, u + u′)+ (u − u′, u − u′) = 2(u, u)+ 2(u′, u′) = 4(u, u),

at least one of the vectors u + u′, u − u′ is not isotropic. If u − u′ is not isotropic,
the reflection τ corresponding to w = u − u′ has the property τu = u′, since
(u−u′, u−u′) = 2(u, u−u′). If u+u′ is not isotropic, the reflection τ corresponding
to w = u + u′ has the property τu = −u′. Since u′ is not isotropic, the corresponding
reflection σ maps u′ onto −u′, and hence the isometry στ maps u onto u′. �

The proof of Proposition 16 has the following interesting consequence:

Proposition 17 Any isometry ϕ : V → V of a non-singular quadratic space V is a
product of reflections.

Proof Let u1, . . . , un be an orthogonal basis for V . By Proposition 16 and its proof,
there exists an isometry ψ , which is either a reflection or a product of two reflections,
such that ψu1 = ϕu1. If U is the subspace with basis u1 and W the subspace with
basis u2, . . . , un , then V = U⊥W and W = U⊥ is non-singular. Since the isometry
ϕ1 = ψ−1ϕ fixes u1, we have also ϕ1W = W . But if σ : W → W is a reflection,
the extension τ : V → V defined by τu = u if u ∈ U , τw = σw if w ∈ W , is also
a reflection. By using induction on the dimension n, it follows that ϕ1 is a product of
reflections, and hence so also is ϕ = ψϕ1. �

By a more elaborate argument E. Cartan (1938) showed that any isometry of an
n-dimensional non-singular quadratic space is a product of at most n reflections.
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Proposition 18 Let V be a quadratic space with two orthogonal sum representations

V = U⊥W = U ′⊥W ′.

If there exists an isometry ϕ : U → U ′, then there exists an isometry ψ : V → V such
that ψu = ϕu for all u ∈ U and ψW = W ′. Thus if U is isometric to U ′, then W is
isometric to W ′.

Proof Let u1, . . . , um and um+1, . . . , un be bases for U and W respectively. If
u′j = ϕu j (1 ≤ j ≤ m), then u′1, . . . , u′m is a basis for U ′. Let u′m+1, . . . , u

′
n be a basis

for W ′. The symmetric matrices associated with the bases u1, . . . , un and u′1, . . . , u′n
of V have the form (

A 0
0 B

)
,

(
A 0
0 C

)
,

which we will write as A ⊕ B , A ⊕ C . Thus the two matrices A ⊕ B , A ⊕ C are
congruent. It is enough to show that this implies that B and C are congruent. For
suppose C = St BS for some invertible matrix S = (σi j ). If we define u′′m+1, . . . , u

′′
n by

u′i =
n∑

j=m+1

σ j iu
′′
j (m + 1 ≤ i ≤ n),

then (u′′j , u′′k ) = (u j , uk) (m+1 ≤ j, k ≤ n) and the linear mapψ : V → V defined by

ψu j = u′j (1 ≤ j ≤ m), ψu j = u′′j (m + 1 ≤ j ≤ n),

is the required isometry.
By taking the bases for U,W,W ′ to be orthogonal bases we are reduced to the

case in which A, B,C are diagonal matrices. We may choose the notation so that
A = diag[a1, . . . , am], where a j �= 0 for j ≤ r and a j = 0 for j > r . If a1 �= 0, i.e.
if r > 0, and if we write A′ = diag[a2, . . . , am], then it follows from Propositions 1
and 16 that the matrices A′ ⊕ B and A′ ⊕ C are congruent. Proceeding in this way, we
are reduced to the case A = O.

Thus we now suppose A = O. We may assume B �= O, C �= O, since other-
wise the result is obvious. We may choose the notation also so that B = Os ⊕ B ′ and
C = Os ⊕ C ′, where B ′ is non-singular and 0 ≤ s < n − m. If T t (Om+s ⊕ C ′)T =
Om+s ⊕ B ′, where

T =
(

T1 T2
T3 T4

)
,

then T t
4 C ′T4 = B ′. Since B ′ is non-singular, so also is T4 and thus B ′ and C ′ are

congruent. It follows that B and C are also congruent. �

Corollary 19 If a non-singular subspace U of a quadratic space V is isometric to
another subspace U ′, then U⊥ is isometric to U ′⊥.
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Proof This follows at once from Proposition 18, since U ′ is also non-singular and

V = U⊥U⊥ = U ′⊥U ′⊥. �

The first statement of Proposition 18 is known as Witt’s extension theorem and
the second statement as Witt’s cancellation theorem. It was Corollary 19 which was
actually proved by Witt (1937).

There is also another version of the extension theorem, stating that if ϕ : U → U ′
is an isometry between two subspaces U,U ′ of a non-singular quadratic space V ,
then there exists an isometry ψ : V → V such that ψu = ϕu for all u ∈ U . For
non-singular U this has just been proved, and the singular case can be reduced to the
non-singular by applying (several times, if necessary) the following lemma.

Lemma 20 Let V be a non-singular quadratic space. If U,U ′ are singular subspaces
of V and if there exists an isometry ϕ : U → U ′, then there exist subspaces Ū , Ū ′,
properly containing U,U ′ respectively and an isometry ϕ̄ : Ū → Ū ′ such that
ϕ̄u = ϕu for all u ∈ U.

Proof By hypothesis there exists a nonzero vector u1 ∈ U∩ U⊥. Then U has a basis
u1, . . . , um with u1 as first vector. By Proposition 4, there exists a vector w ∈ V such
that

(u1, w) = 1, (u j , w) = 0 for 1 < j ≤ m.

Moreover we may assume that (w,w) = 0, by replacing w by w − αu1, with
α = (w,w)/2. If W is the 1-dimensional subspace spanned by w, then U ∩ W = {0}
and Ū = U +W contains U properly.

The same construction can be applied to U ′, with the basis ϕu1, . . . , ϕum , to
obtain an isotropic vector w′ and a subspace Ū ′ = U ′ + W ′. The linear map
ϕ̄ : Ū → Ū ′ defined by

ϕ̄u j = ϕu j (1 ≤ j ≤ m), ϕ̄w = w′,
is easily seen to have the required properties. �

As an application of Proposition 18, we will consider the uniqueness of the repre-
sentation obtained in Proposition 15.

Proposition 21 Suppose the quadratic space V can be represented as an orthogonal
sum

V = U⊥H⊥V0,

where U is totally isotropic, H is the orthogonal sum of m hyperbolic planes, and the
subspace V0 is anisotropic.

Then U = V⊥, m = ind V − dim V⊥, and V0 is uniquely determined up to an
isometry.

Proof Since H and V0 are non-singular, so also is W = H⊥V0. Hence, by the remark
after the proof of Proposition 3, U = W⊥. Since U ⊆ U⊥, it follows that U ⊆ V⊥. In
fact U = V⊥, since W ∩ V⊥ = {0}.
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The subspace H has two m-dimensional totally isotropic subspaces U1,U ′
1 such

that

H = U1 +U ′
1, U1 ∩U ′

1 = {0}.
Evidently V1 := V⊥ + U1 is a totally isotropic subspace of V . In fact V1 is maximal,
since any isotropic vector in U ′

1⊥V0 is contained in U ′
1. Thus m = ind V − dim V⊥ is

uniquely determined and H is uniquely determined up to an isometry. If also

V = V⊥⊥H ′⊥V ′0,

where H ′ is the orthogonal sum of m hyperbolic planes and V ′0 is anisotropic then,
by Proposition 18, V0 is isometric to V ′0. �

Proposition 21 reduces the problem of equivalence for quadratic forms over an ar-
bitrary field to the case of anisotropic forms. As we will see, this can still be a difficult
problem, even for the field of rational numbers.

Two quadratic spaces V , V ′ over the same field F may be said to be
Witt-equivalent, in symbols V ≈ V ′, if their anisotropic components V0, V ′0 are iso-
metric. This is certainly an equivalence relation. The cancellation law makes it pos-
sible to define various algebraic operations on the set W (F) of all quadratic spaces
over the field F , with equality replaced by Witt-equivalence. If we define−V to be the
quadratic space with the same underlying vector space as V but with (v1, v2) replaced
by −(v1, v2), then

V⊥(−V ) ≈ {O}.
If we define the sum of two quadratic spaces V and W to be V⊥W , then

V ≈ V ′, W ≈ W ′ ⇒ V⊥W ≈ V ′⊥W ′.

Similarly, if we define the product of V and W to be the tensor product V ⊗ W of the
underlying vector spaces with the quadratic space structure defined by

({v1, w1}, {v2, w2}) = (v1, v2)(w1, w2),

then

V ≈ V ′, W ≈ W ′ ⇒ V ⊗ W ≈ V ′ ⊗ W ′.

It is readily seen that in this way W (F) acquires the structure of a commutative ring,
the Witt ring of the field F .

2 The Hilbert Symbol

Again let F be any field of characteristic �= 2 and F× the multiplicative group of all
nonzero elements of F . We define the Hilbert symbol (a, b)F , where a, b ∈ F×, by

(a, b)F = 1 if there exist x, y ∈ F such that ax2 + by2 = 1,

= −1 otherwise.

By Proposition 6, (a, b)F = 1 if and only if the ternary quadratic form aξ2+bη2− ζ 2

is isotropic.
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The following lemma shows that the Hilbert symbol can also be defined in an
asymmetric way:

Lemma 22 For any field F and any a, b ∈ F×, (a, b)F = 1 if and only if the binary
quadratic form fa = ξ2 − aη2 represents b. Moreover, for any a ∈ F×, the set Ga of
all b ∈ F× which are represented by fa is a subgroup of F×.

Proof Suppose first that ax2 + by2 = 1 for some x, y ∈ F . If a is a square, the
quadratic form fa is isotropic and hence universal. If a is not a square, then y �= 0 and
(y−1)2 − a(xy−1)2 = b.

Suppose next that u2 − av2 = b for some u, v ∈ F . If −ba−1 is a square, the
quadratic form aξ2 + bη2 is isotropic and hence universal. If −ba−1 is not a square,
then u �= 0 and a(vu−1)2 + b(u−1)2 = 1.

It is obvious that if b ∈ Ga , then also b−1 ∈ Ga , and it is easily verified that if

ζ1 = ξ1η1 + aξ2η2, ζ2 = ξ1η2 + ξ2η1,

then

ζ 2
1 − aζ 2

2 = (ξ2
1 − aξ2

2 )(η
2
1 − aη2

2).

(In fact this is just Brahmagupta’s identity, already encountered in §4 of Chapter IV.)
It follows that Ga is a subgroup of F×. �

Proposition 23 For any field F, the Hilbert symbol has the following properties:

(i) (a, b)F = (b, a)F ,
(ii) (a, bc2)F = (a, b)F for any c ∈ F×,

(iii) (a, 1)F = 1,
(iv) (a,−ab)F = (a, b)F ,
(v) if (a, b)F = 1, then (a, bc)F = (a, c)F for any c ∈ F×.

Proof The first three properties follow immediately from the definition. The fourth
property follows from Lemma 22. For, since Ga is a group and fa represents −a, fa

represents−ab if and only if it represents b. The proof of (v) is similar: if fa represents
b, then it represents bc if and only if it represents c. �

The Hilbert symbol will now be evaluated for the real field R = Q∞ and the p-adic
fields Qp studied in Chapter VI. In these cases it will be denoted simply by (a, b)∞,
resp. (a, b)p. For the real field, we obtain at once from the definition of the Hilbert
symbol

Proposition 24 Let a, b ∈ R×. Then (a, b)∞ = −1 if and only if both a < 0 and
b < 0.

To evaluate (a, b)p, we first note that we can write a = pαa′, b = pβb′, where
α, β ∈ Z and |a′|p = |b′|p = 1. It follows from (i), (ii) of Proposition 23 that we may
assume α, β ∈ {0, 1}. Furthermore, by (ii), (iv) of Proposition 23 we may assume that
α and β are not both 1. Thus we are reduced to the case where a is a p-adic unit and
either b is a p-adic unit or b = pb′, where b′ is a p-adic unit. To evaluate (a, b)p under
these assumptions we will use the conditions for a p-adic unit to be a square which
were derived in Chapter VI. It is convenient to treat the case p = 2 separately.
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Proposition 25 Let p be an odd prime and a, b ∈ Qp with |a|p = |b|p = 1. Then

(i) (a, b)p = 1,
(ii) (a, pb)p = 1 if and only if a = c2 for some c ∈ Qp.

In particular, for any integers a,b not divisible by p, (a, b)p = 1 and (a, pb)p =
(a/p), where (a/p) is the Legendre symbol.

Proof Let S ⊆ Zp be a set of representatives, with 0 ∈ S, of the finite residue field
Fp = Zp/pZp. There exist non-zero a0, b0 ∈ S such that

|a − a0|p < 1, |b − b0|p < 1.

But Lemma 11 implies that there exist x0, y0 ∈ S such that

|a0x2
0 + b0y2

0 − 1|p < 1.

Since |x0|p ≤ 1, |y0|p ≤ 1, it follows that

|ax2
0 + by2

0 − 1|p < 1.

Hence, by Proposition VI.16, ax2
0 + by2

0 = z2 for some z ∈ Qp . Since z �= 0, this
implies (a, b)p = 1. This proves (i).

If a = c2 for some c ∈ Qp , then (a, pb)p = 1, by Proposition 23. Conversely,
suppose there exist x, y ∈ Qp such that ax2+pby2 = 1. Then |ax2|p �= |pby2|p , since
|a|p = |b|p = 1. It follows that |x |p = 1, |y|p ≤ 1. Thus |ax2 − 1|p < 1 and
hence ax2 = z2 for some z ∈ Q×p . This proves (ii).

The special case where a and b are integers now follows from Corollary VI.17. �

Corollary 26 If p is an odd prime and if a, b, c ∈ Qp are p-adic units, then the
quadratic form aξ2 + bη2 + cζ 2 is isotropic.

Proof In fact, the quadratic form −c−1aξ2 − c−1bη2 − ζ 2 is isotropic, since
(−c−1a,−c−1b)p = 1, by Proposition 25. �

Proposition 27 Let a, b ∈ Q2 with |a|2 = |b|2 = 1. Then

(i) (a, b)2 = 1 if and only if at least one of a, b, a − 4, b − 4 is a square in Q2;
(ii) (a, 2b)2 = 1 if and only if either a or a + 2b is a square in Q2.

In particular, for any odd integers a, b, (a, b)2 = 1 if and only if a ≡ 1 or
b ≡ 1 mod 4, and (a, 2b)2 = 1 if and only if a ≡ 1 or a + 2b ≡ 1 mod 8.

Proof Suppose there exist x, y ∈ Q2 such that ax2 + by2 = 1 and assume, for exam-
ple, that |x |2 ≥ |y|2. Then |x |2 ≥ 1 and |x |2 = 2α, where α ≥ 0. By Corollary VI.14,

x = 2α(x0 + 4x ′), y = 2α(y0 + 4y ′),

where x0 ∈ {1, 3}, y0 ∈ {0, 1, 2, 3} and x ′, y ′ ∈ Z2. If a and b are not squares in Q2
then, by Proposition VI.16, |a − 1|2 > 2−3 and |b − 1|2 > 2−3. Thus

a = a0 + 8a′, b = b0 + 8b′,
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where a0, b0 ∈ {3, 5, 7} and a′, b′ ∈ Z2. Hence

1 = ax2 + by2 = 22α(a0 + b0y2
0 + 8z′),

where z′ ∈ Z2. Since a0,b0 are odd and y2
0 ≡ 0, 1 or 4 mod 8, we must have α = 0,

y2
0 ≡ 4 mod 8 and a0 = 5. Thus, by Proposition VI.16 again, a − 4 is a square in Q2.

This proves that the condition in (i) is necessary.
If a is a square in Q2, then certainly (a, b)2 = 1. If a − 4 is a square, then

a = 5 + 8a′, where a′ ∈ Z2, and a + 4b = 1 + 8c′, where c′ ∈ Z2. Hence a + 4b
is a square in Q2 and the quadratic form aξ2 + bη2 represents 1. This proves that the
condition in (i) is sufficient.

Suppose next that there exist x, y ∈ Q2 such that ax2 + 2by2 = 1. By the same
argument as for odd p in Proposition 25, we must have |x |2 = 1, |y|2 ≤ 1. Thus
x = x0 + 4x ′, y = y0 + 4y ′, where x0 ∈ {1, 3}, y0 ∈ {0, 1, 2, 3} and x ′, y ′ ∈ Z2.
Writing a = a0 + 8a′, b = b0 + 8b′, where a0, b0 ∈ {1, 3, 5, 7} and a′, b′ ∈ Z2, we
obtain a0x2

0 + 2b0y2
0 ≡ 1 mod 8. Since 2y2

0 ≡ 0 or 2 mod 8, this implies either a0 ≡ 1
or a0 + 2b0 ≡ 1 mod 8. Hence either a or a + 2b is a square in Q2. It is obvious that,
conversely, (a, 2b)2 = 1 if either a or a + 2b is a square in Q2.

The special case where a and b are integers again follows from Corollary VI.17. �

For F = R, the factor group F×/F×2 is of order 2, with 1 and −1 as rep-
resentatives of the two square classes. For F = Qp, with p odd, it follows from
Corollary VI.17 that the factor group F×/F×2 is of order 4. Moreover, if r is
an integer such that (r/p) = −1, then 1, r, p, r p are representatives of the four
square classes. Similarly for F = Q2, the factor group F×/F×2 is of order 8 and
1, 3, 5, 7, 2, 6, 10, 14 are representatives of the eight square classes. The Hilbert sym-
bol (a, b)F for these representatives, and hence for all a, b ∈ F×, may be determined
directly from Propositions 24, 25 and 27. The values obtained are listed in Table 1,
where ε = (−1/p) and thus ε = ±1 according as p ≡ ±1 mod 4.

It will be observed that each of the three symmetric matrices in Table 1 is a
Hadamard matrix! In particular, in each row after the first row of+’s there are equally
many + and − signs. This property turns out to be of basic importance and prompts
the following definition:

A field F is a Hilbert field if some a ∈ F× is not a square and if, for every such a,
the subgroup Ga has index 2 in F×.

Thus the real field R = Q∞ and the p-adic fields Qp are all Hilbert fields. We now
show that in Hilbert fields further properties of the Hilbert symbol may be derived.

Proposition 28 A field F is a Hilbert field if and only if some a ∈ F× is not a square
and the Hilbert symbol has the following additional properties:

(i) if (a, b)F = 1 for every b ∈ F×, then a is a square in F×;
(ii) (a, bc)F = (a, b)F(a, c)F for all a, b, c ∈ F×.

Proof Let F be a Hilbert field. Then (i) holds, since Ga �= F× if a is not a square.
If (a, b)F = 1 or (a, c)F = 1, then (ii) follows from Proposition 23(v). Suppose
now that (a, b)F = −1 and (a, c)F = −1. Then a is not a square and fa does not
represent b or c. Since F is a Hilbert field and b, c /∈ Ga , it follows that bc ∈ Ga . Thus
(a, bc)F = 1. The converse is equally simple. �
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Table 1. Values of the Hilbert symbol (a, b)F for F = Qv

Q∞ = R Qp : p odd

a\b 1 −1 a\b 1 p r p r
1 + + 1 + + + +
−1 + − p + ε −ε −

r p + −ε ε −
r + − − +

where r is a primitive root mod p and
ε = (−1)(p−1)/2

Q2

a\b 1 3 6 2 14 10 5 7
1 + + + + + + + +
3 + − + − + − + −
6 + + − − + + − −
2 + − − + + − − +

14 + + + + − − − −
10 + − + − − + − +
5 + + − − − − + +
7 + − − + − + + −

The definition of a Hilbert field can be reformulated in terms of quadratic forms. If
f is an anisotropic binary quadratic form with determinant d , then −d is not a square
and f is equivalent to a diagonal form a(ξ2 + dη2). It follows that F is a Hilbert field
if and only if there exists an anisotropic binary quadratic form and for each such form
there is, apart from equivalent forms, exactly one other whose determinant is in the
same square class. We are going to show that Hilbert fields can also be characterized
by means of quadratic forms in 4 variables.

Lemma 29 Let F be an arbitrary field and a, b elements of F× with (a, b)F = −1.
Then the quadratic form

fa,b = ξ2
1 − aξ2

2 − b(ξ2
3 − aξ2

4 )

is anisotropic. Morover, the set Ga,b of all elements of F× which are represented by
fa,b is a subgroup of F×.

Proof Since (a, b)F = −1, a is not a square and hence the binary form fa is
anisotropic. If fa,b were isotropic, some c ∈ F× would be represented by both fa

and bfa . But then (a, c)F = 1 and (a, bc)F = 1. Since (a, b)F = −1, this contradicts
Proposition 23.

Clearly if c ∈ Ga,b, then also c−1 ∈ Ga,b, and it is easily verified that if

ζ1 = ξ1η1 + aξ2η2 + bξ3η3 − abξ4η4, ζ2 = ξ1η2 + ξ2η1 − bξ3η4 + bξ4η3,

ζ3 = ξ1η3 + ξ3η1 + aξ2η4 − aξ4η2, ζ4 = ξ1η4 + ξ4η1 + ξ2η3 − ξ3η2,
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then

ζ 2
1 − aζ 2

2 − bζ 2
3 + abζ 2

4 = (ξ2
1 − aξ2

2 − bξ2
3 + abξ2

4 )(η
2
1 − aη2

2 − bη2
3 + abη2

4).

It follows that Ga,b is a subgroup of F×. �

Proposition 30 A field F is a Hilbert field if and only if one of the following mutually
exclusive conditions is satisfied:

(A) F is an ordered field and every positive element of F is a square;
(B) there exists, up to equivalence, one and only one anisotropic quaternary quadratic

form over F.

Proof Suppose first that the field F is of type (A). Then −1 is not a square, since
−1 + 1 = 0 and any nonzero square is positive. By Proposition 10, any anisotropic
binary quadratic form is equivalent over F to exactly one of the forms ξ2+η2,−ξ2−η2

and therefore F is a Hilbert field. Since the quadratic forms ξ2
1 + ξ2

2 + ξ2
3 + ξ2

4 and
−ξ2

1 − ξ2
2 − ξ2

3 − ξ2
4 are anisotropic and inequivalent, the field F is not of type (B).

Suppose next that the field F is of type (B). The anisotropic quaternary quadratic
form must be universal, since it is equivalent to any nonzero scalar multiple. Hence,
for any a ∈ F× there exists an anisotropic diagonal form

−aξ2
1 − b′ξ2

2 − c′ξ2
3 − d ′ξ2

4 ,

where b′, c′, d ′ ∈ F×. In particular, for a = −1, this shows that not every element
of F× is a square. The ternary quadratic form h = −b′ξ2

2 − c′ξ2
3 − d ′ξ2

4 is certainly
anisotropic. If h does not represent 1, the quaternary quadratic form −ξ2

1 + h is also
anisotropic and hence, by Witt’s cancellation theorem, a must be a square. Conse-
quently, if a ∈ F× is not a square, then there exists an anisotropic form

−aξ2
1 + ξ2

2 − bξ2
3 − cξ2

4 .

Thus for any a ∈ F× which is not a square, there exists b ∈ F× such that
(a, b)F = −1. If (a, b)F = (a, b′)F = −1 then, by Lemma 29, the forms

ξ2
1 − aξ2

2 − b(ξ2
3 − aξ2

4 ), ξ
2
1 − aξ2

2 − b′(ξ2
3 − aξ2

4 )

are anisotropic and thus equivalent. It follows from Witt’s cancellation theorem that
the binary forms b(ξ2

3 − aξ2
4 ) and b′(ξ2

3 − aξ2
4 ) are equivalent. Consequently ξ2

3 − aξ2
4

represents bb′ and (a, bb′)F = 1. Thus Ga has index 2 in F× for any a ∈ F× which
is not a square, and F is a Hilbert field.

Suppose now that F is a Hilbert field. Then there exists a ∈ F× which is not a
square and, for any such a, there exists b ∈ F× such that (a, b)F = −1. Consequently,
by Lemma 29, the quaternary quadratic form fa,b is anisotropic and represents 1. Con-
versely, any anisotropic quaternary quadratic form which represents 1 is equivalent to
some form

g = ξ2
1 − aξ2

2 − b(ξ2
3 − cξ2

4 )
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with a, b, c ∈ F×. Evidently a and c are not squares, and if d is represented by
ξ2

3 −cξ2
4 , then bd is not represented by ξ2

1 −aξ2
2 . Thus (c, d)F = 1 implies (a, bd)F =

−1. In particular, (a, b)F = −1 and hence (c, d)F = 1 implies (a, d)F = 1.
By interchanging the roles of ξ2

1 − aξ2
2 and ξ2

3 − cξ2
4 , we see that (a, d)F = 1 also

implies (c, d)F = 1. Hence (ac, d)F = 1 for all d ∈ F×. Thus ac is a square and g is
equivalent to

fa,b = ξ2
1 − aξ2

2 − b(ξ2
3 − aξ2

4 ).

We now show that fa,b and fa′,b′ are equivalent if (a, b)F = (a′, b′)F = −1.
Suppose first that (a, b′)F = −1. Then (a, bb′)F = 1 and there exist x3, x4 ∈ F such
that b′ = b(x2

3 − ax2
4). Since

(x2
3 − ax2

4)(ξ
2
3 − aξ2

4 ) = η2
3 − aη2

4,

where η3 = x3ξ3 + ax4ξ4, η4 = x4ξ3 + x3ξ4, it follows that fa,b′ is equivalent to fa,b.
For the same reason fa,b′ is equivalent to fa′,b′ and thus fa,b is equivalent to fa′,b′ . By
symmetry, the same conclusion holds if (a′, b)F = −1. Thus we now suppose

(a, b′)F = (a′, b)F = 1.

But then (a, bb′)F = (a′, bb′)F = −1 and so, by what we have already proved,

fa,b ∼ fa,bb′ ∼ fa′,bb′ ∼ fa′,b′ .

Together, the last two paragraphs show that if F is a Hilbert field, then all
anisotropic quaternary quadratic forms which represent 1 are equivalent. Hence the
Hilbert field F is of type (B) if every anisotropic quaternary quadratic form repre-
sents 1.

Suppose now that some anisotropic quaternary quadratic form does not represent 1.
Then some scalar multiple of this form represents 1, but is not universal. Thus fa,b is
not universal for some a, b ∈ F× with (a, b)F = −1. By Lemma 29, the set Ga,b of
all c ∈ F× which are represented by fa,b is a subgroup of F×. In fact Ga,b = Ga ,
since Ga ⊆ Ga,b, Ga,b �= F× and Ga has index 2 in F×. Since fa,b ∼ fb,a , we have
also Ga,b = Gb. Thus (a, c)F = (b, c)F for all c ∈ F×, and hence (ab, c)F = 1 for
all c ∈ F×. Thus ab is a square and (a, a)F = (a, b)F = −1. Since (a,−a)F = 1, it
follows that (a,−1)F = −1. Hence fa,b ∼ fa,a ∼ fa,−1. Replacing a, b by −1, a we
now obtain (−1,−1)F = −1 and fa,−1 ∼ f−1,−1.

Thus the form

f = ξ2
1 + ξ2

2 + ξ2
3 + ξ2

4

is not universal and the subgroup P of all elements of F× represented by f coincides
with the set of all elements of F× represented by ξ2 + η2. Hence P + P ⊆ P and P
is the set of all c ∈ F× such that (−1, c)F = 1. Consequently −1 /∈ P and F is the
disjoint union of the sets {O}, P and −P . Thus F is an ordered field with P as the set
of positive elements.

For any c ∈ F×, c2 ∈ P . It follows that if a, b ∈ P then (−a,−b)F = −1,
since aξ2 + bη2 does not represent −1. Hence it follows that, if a, b ∈ P ,
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then (−a,−b)F = −1 = (−1,−b)F and (−a, b)F = 1 = (−1, b)F . Thus, for
all c ∈ F×, (−a, c)F = (−1, c)F and hence (a, c)F = 1. Therefore a is a square and
the Hilbert field F is of type (A). �

Proposition 31 If F is a Hilbert field of type (B), then any quadratic form f in more
than 4 variables is isotropic.

For any prime p, the field Qp of p-adic numbers is a Hilbert field of type (B).

Proof The quadratic form f is equivalent to a diagonal form a1ξ
2
1 +· · ·+anξ

2
n , where

n > 4. If g = a1ξ
2
1 + · · · + a4ξ

2
4 is isotropic, then so also is f . If g is anisotropic then,

since F is of type (B), it is universal and represents −a5. This proves the first part of
the proposition.

We already know that Qp is a Hilbert field and we have already shown, after the
proof of Corollary VI.17, that Qp is not an ordered field. Hence Qp is a Hilbert field of
type (B). �

Proposition 10 shows that two non-singular quadratic forms in n variables, with
coefficients from a Hilbert field of type (A), are equivalent over F if and only if they
have the same positive index. We consider next the equivalence of quadratic forms
with coefficients from a Hilbert field of type (B). We will show that they are classified
by their determinant and their Hasse invariant.

If a non-singular quadratic form f , with coefficients from a Hilbert field F , is
equivalent to a diagonal form a1ξ

2
1 + · · · + anξ

2
n , then its Hasse invariant is defined to

be the product of Hilbert symbols

sF ( f ) =
∏

1≤ j<k≤n

(a j , ak)F .

We write sp( f ) for sF ( f ) when F = Qp . (It should be noted that some authors define
the Hasse invariant with

∏
j≤k in place of

∏
j<k). It must first be shown that this is

indeed an invariant of f , and for this we make use of Witt’s chain equivalence theorem:

Lemma 32 Let V be a non-singular quadratic space over an arbitrary field F. If
B = {u1, . . . , un} and B′ = {u′1, . . . , u′n} are both orthogonal bases of V , then there
exists a chain of orthogonal bases B0,B1, . . . ,Bm, with B0 = B and Bm = B′,
such that B j−1 and B j differ by at most 2 vectors for each j ∈ {1, . . . ,m}.
Proof Since there is nothing to prove if dim V = n ≤ 2, we assume that n ≥ 3 and
the result holds for all smaller values of n. Let p = p(B) be the number of nonzero
coefficients in the representation of u′1 as a linear combination of u1, . . . , un . Without
loss of generality we may suppose

u′1 =
p∑

j=1

a j u j ,

where a j �= 0 (1 ≤ j ≤ p). If p = 1, we may replace u1 by u′1 and the result now
follows by applying the induction hypothesis to the subspace of all vectors orthogonal
to u′1. Thus we now assume p ≥ 2. We have
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a2
1(u1, u1)+ · · · + a2

p(u p, u p) = (u′1, u′1) �= 0,

and each summand on the left is nonzero. If the sum of the first two terms is zero, then
p > 2 and either the sum of the first and third terms is nonzero or the sum of the second
and third terms is nonzero. Hence we may suppose without loss of generality that

a2
1(u1, u1)+ a2

2(u2, u2) �= 0.

If we put

v1 = a1u1 + a2u2, v2 = u1 + bu2, v j = u j for 3 ≤ j ≤ n,

where b = −a1(u1, u1)/a2(u2, u2), then B1 = {v1, . . . , vn} is an orthogonal basis
and u′1 = v1 + a3v3 + · · · + apv p . Thus p(B1) < p(B). By replacing B by B1 and
repeating the procedure, we must arrive after s < n steps at an orthogonal basis Bs for
which p(Bs) = 1. The induction hypothesis can now be applied to Bs in the same way
as for B. �

Proposition 33 Let F be a Hilbert field. If the non-singular diagonal forms
a1ξ

2
1 + · · · + anξ

2
n and b1ξ

2
1 + · · · + bnξ

2
n are equivalent over F, then∏

1≤ j<k≤n

(a j , ak)F =
∏

1≤ j<k≤n

(b j , bk)F .

Proof Suppose first that n = 2. Since a1ξ
2
1 + a2ξ

2
2 represents b1, ξ

2
1 + a−1

1 a2ξ
2
2 rep-

resents a−1
1 b1 and hence (−a−1

1 a2, a
−1
1 b1)F = 1. Thus (a1b1,−a1a2b2

1)F = 1 and
hence (a1b1, a2b1)F = 1. But (Proposition 28 (ii)) the Hilbert symbol is multiplicative,
since F is a Hilbert field. It follows that (a1, a2)F (b1, a1a2b1)F = 1. Since the deter-
minants a1a2 and b1b2 are in the same square class, this implies (a1, a2)F = (b1, b2)F ,
as we wished to prove.

Suppose now that n > 2. Since the Hilbert symbol is symmetric, the product∏
1≤ j<k≤n(a j , ak)F is independent of the ordering of a1, . . . , an . It follows from

Lemma 32 that we may restrict attention to the case where a1ξ
2
1 + a2ξ

2
2 is equiva-

lent to b1ξ
2
1 + b2ξ

2
2 and a j = b j for all j > 2. Then (a1, a2)F = (b1, b2)F , by what

we have already proved, and it is enough to show that

(a1, c)F (a2, c)F = (b1, c)F (b2, c)F for any c ∈ F×.

But this follows from the multiplicativity of the Hilbert symbol and the fact that a1a2
and b1b2 are in the same square class. �

Proposition 33 shows that the Hasse invariant is well-defined.

Proposition 34 Two non-singular quadratic forms in n variables, with coefficients
from a Hilbert field F of type (B), are equivalent over F if and only if they have the
same Hasse invariant and their determinants are in the same square class.

Proof Only the sufficiency of the conditions needs to be proved. Since this is trivial
for n = 1, we suppose first that n = 2. It is enough to show that if

f = a(ξ2
1 + dξ2

2 ), g = b(η2
1 + dη2

2),
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where (a, ad)F = (b, bd)F , then f is equivalent to g. The hypothesis implies
(−d, a)F = (−d, b)F and hence (−d, ab)F = 1. Thus ξ2

1 + dξ2
2 represents ab and

f represents b. Since det f and det g are in the same square class, it follows that f is
equivalent to g.

Suppose next that n ≥ 3 and the result holds for all smaller values of n. Let
f (ξ1, . . . , ξn) and g(η1, . . . , ηn) be non-singular quadratic forms with det f = det g =
d and sF ( f ) = sF (g). By Proposition 31, the quadratic form

h(ξ1, . . . , ξn, η1, . . . , ηn) = f (ξ1, . . . , ξn)− g(η1, . . . , ηn)

is isotropic and hence, by Proposition 7, there exists some a1 ∈ F× which is repre-
sented by both f and g. Thus

f ∼ a1ξ
2
1 + f ∗, g ∼ a1η

2
1 + g∗,

where

f ∗ = a2ξ
2
2 + · · · + anξ

2
n , g∗ = b2η

2
2 + · · · + bnη

2
n .

Evidently det f ∗ and det g∗ are in the same square class and sF ( f ) = csF ( f ∗),
sF (g) = c′sF (g∗), where

c = (a1, a2 · · · an)F = (a1, a1)F (a1, d)F = (a1, b2 · · · bn)F = c′.

Hence sF ( f ∗) = sF (g∗). It follows from the induction hypothesis that f ∗ ∼ g∗, and
so f ∼ g. �

3 The Hasse–Minkowski Theorem

Let a, b, c be nonzero squarefree integers which are relatively prime in pairs. It was
proved by Legendre (1785) that the equation

ax2 + by2 + cz2 = 0

has a nontrivial solution in integers x, y, z if and only if a, b, c are not all of the same
sign and the congruences

u2 ≡ −bc mod a, v2 ≡ −ca mod b, w2 ≡ −ab mod c

are all soluble.
It was first completely proved by Gauss (1801) that every positive integer which is

not of the form 4n(8k+ 7) can be represented as a sum of three squares. Legendre had
given a proof, based on the assumption that if a and m are relatively prime positive
integers, then the arithmetic progression

a, a + m, a + 2m, . . .

contains infinitely many primes. Although his proof of this assumption was faulty,
his intuition that it had a role to play in the arithmetic theory of quadratic forms
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was inspired. The assumption was first proved by Dirichlet (1837) and will be
referred to here as ‘Dirichlet’s theorem on primes in an arithmetic progression’. In
the present chapter Dirichlet’s theorem will simply be assumed, but it will be proved
(in a quantitative form) in Chapter X.

It was shown by Meyer (1884), although the published proof was incomplete, that
a quadratic form in five or more variables with integer coefficients is isotropic if it is
neither positive definite nor negative definite.

The preceding results are all special cases of the Hasse–Minkowski theorem, which
is the subject of this section. Let Q denote the field of rational numbers. By Ostrowski’s
theorem (Proposition VI.4), the completions Qv of Q with respect to an arbitrary ab-
solute value | |v are the field Q∞ = R of real numbers and the fields Qp of p-adic
numbers, where p is an arbitrary prime. The Hasse–Minkowski theorem has the
following statement:

A non-singular quadratic form f (ξ1, . . . , ξn) with coefficients from Q is isotropic
in Q if and only if it is isotropic in every completion of Q.

This concise statement contains, and to some extent conceals, a remarkable amount
of information. (Its equivalence to Legendre’s theorem when n = 3 may be established
by elementary arguments.) The theorem was first stated and proved by Hasse (1923).
Minkowski (1890) had derived necessary and sufficient conditions for the equivalence
over Q of two non-singular quadratic forms with rational coefficients by using known
results on quadratic forms with integer coefficients. The role of p-adic numbers was
taken by congruences modulo prime powers. Hasse drew attention to the simplifica-
tions obtained by studying from the outset quadratic forms over the field Q, rather
than the ring Z, and soon afterwards (1924) he showed that the theorem continues to
hold if the rational field Q is replaced by an arbitrary algebraic number field (with its
corresponding completions).

The condition in the statement of the theorem is obviously necessary and it is only
its sufficiency which requires proof. Before embarking on this we establish one more
property of the Hilbert symbol for the field Q of rational numbers.

Proposition 35 For any a, b ∈ Q×, the number of completions Qv for which one has
(a, b)v = −1 (where v denotes either∞ or an arbitrary prime p) is finite and even.

Proof By Proposition 23, it is sufficient to establish the result when a and b are
square-free integers such that ab is also square-free. Then (a, b)r = 1 for any
odd prime r which does not divide ab, by Proposition 25. We wish to show that∏
v (a, b)v = 1. Since the Hilbert symbol is multiplicative, it is sufficient to estab-

lish this in the following special cases: for a = −1 and b = −1, 2, p; for a = 2 and
b = p; for a = p and b = q , where p and q are distinct odd primes. But it follows
from Propositions 24, 25 and 27 that∏

v

(−1,−1)v = (−1,−1)∞(−1,−1)2 = (−1)(−1) = 1;∏
v

(−1, 2)v = (−1, 2)∞(−1, 2)2 = 1 · 1 = 1;
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v

(−1, p)v = (−1, p)p(−1, p)2 = (−1/p)(−1)(p−1)/2;∏
v

(2, p)v = (2, p)p(2, p)2 = (2/p)(−1)(p
2−1)/8;∏

v

(p, q)v = (p, q)p(p, q)q(p, q)2 = (q/p)(p/q)(−1)(p−1)(q−1)/4.

Hence the proposition holds if and only if

(−1/p) = (−1)(p−1)/2, (2/p) = (−1)(p
2−1)/8, (q/p)(p/q) = (−1)(p−1)(q−1)/4.

Thus it is actually equivalent to the law of quadratic reciprocity and its two
‘supplements’. �

We are now ready to prove the Hasse–Minkowski theorem:

Theorem 36 A non-singular quadratic form f (ξ1, . . . , ξn) with rational coefficients
is isotropic in Q if and only if it is isotropic in every completion Qv .

Proof We may assume that the quadratic form is diagonal:

f = a1ξ
2
1 + · · · + anξ

2
n ,

where ak ∈ Q×(k = 1, . . . , n). Moreover, by replacing ξk by rkξk , we may assume
that each coefficient ak is a square-free integer.

The proof will be broken into three parts, according as n = 2, n = 3 or n ≥ 4. The
proofs for n = 2 and n = 3 are quite independent. The more difficult proof for n ≥ 4
uses induction on n and Dirichlet’s theorem on primes in an arithmetic progression.

(i) n = 2: We show first that if a ∈ Q× is a square in Q×v for all v, then a is already
a square in Q×. Since a is a square in Q×∞, we have a > 0. Let a = ∏

p pαp be the
factorization of a into powers of distinct primes, where αp ∈ Z and αp �= 0 for at most
finitely many primes p. Since |a|p = p−αp and a is a square in Qp, αp must be even.
But if αp = 2βp then a = b2, where b =∏

p pβp .

Suppose now that f = a1ξ
2
1 + a2ξ

2
2 is isotropic in Qv for all v. Then a := −a1a2

is a square in Qv for all v and hence, by what we have just proved, a is a square in Q.
But if a = b2, then a1a2

2 + a2b2 = 0 and thus f is isotropic in Q.

(ii) n = 3: By replacing f by−a3 f and ξ3 by a3ξ3, we see that it is sufficient to prove
the theorem for

f = aξ2 + bη2 − ζ 2,

where a and b are nonzero square-free integers. The quadratic form f is isotropic in Qv
if and only if (a, b)v = 1. If a = 1 or b = 1, then f is certainly isotropic in Q. Since
f is not isotropic in Q∞ if a = b = −1, this proves the result if |ab| = 1. We will as-
sume that the result does not hold for some pair a, b and derive a contradiction. Choose
a pair a, b for which the result does not hold and for which |ab| has its minimum value.
Then a �= 1, b �= 1 and |ab| ≥ 2. Without loss of generality we may assume |a| ≤ |b|,
and then |b| ≥ 2.
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We are going to show that there exists an integer c such that c2 ≡ a mod b.
Since ±b is a product of distinct primes, it is enough to show that the congruence
x2 ≡ a mod p is soluble for each prime p which divides b (by Corollary II.38). Since
this is obvious if a ≡ 0 or 1 mod p, we may assume that p is odd and a not divisible
by p. Then, since f is isotropic in Qp, (a, b)p = 1. Hence a is a square mod p by
Proposition 25.

Consequently there exist integers c, d such that a = c2− bd . Moreover, by adding
to c a suitable multiple of b we may assume that |c| ≤ |b|/2. Then

|d| = |c2 − a|/|b| ≤ |b|/4+ 1 < |b|
and d �= 0, since a is square-free and a �= 1. We have

bd(aξ2 + bη2 − ζ 2) = a X2 + dY 2 − Z2,

where

X = cξ + ζ, Y = bη, Z = aξ + cζ.

Moreover the linear transformation ξ, η, ζ → X,Y, Z is invertible in any field of zero
characteristic, since c2 − a �= 0. Hence, since f is isotropic in Qv for all v, so also is
g = aξ2 + dη2 − ζ 2. Since f is not isotropic in Q, by hypothesis, neither is g. But
this contradicts the original choice of f , since |ad| < |ab|.

It may be noted that for n = 3 it need only be assumed that f is isotropic in Qp for
all primes p. For the preceding proof used the fact that f is isotropic in Q∞ only to
exclude from consideration the quadratic form −ξ2 − η2 − ζ 2 and this quadratic form
is anisotropic also in Q2, by Proposition 27. In fact for n = 3 it need only be assumed
that f is isotropic in Qv for all v with at most one exception since, by Proposition 35,
the number of exceptions must be even.

(iii) n ≥ 4: We have

f = a1ξ
2
1 + · · · + anξ

2
n ,

where a1, . . . , an are square-free integers. We write f = g − h, where

g = a1ξ
2
1 + a2ξ

2
2 , h = −a3ξ

2
3 − · · · − anξ

2
n .

Let S be the finite set consisting of ∞ and all primes p which divide 2a1 · · · an . By
Proposition 7, for each v ∈ S there exists cv ∈ Q×v which is represented in Qv by both
g and h. We will show that we can take cv to be the same nonzero integer c for every
v ∈ S.

Let v = p be a prime in S. By multiplying by a square in Q×p we may assume that
cp = pεp c′p , where εp = 0 or 1 and |c′p|p = 1. If p is odd and if bp is an integer

such that |cp − bp|p ≤ p−εp−1, then |bp|p = |cp|p and |bpc−1
p − 1|p ≤ p−1. Hence

bpc−1
p is a square in Q×p , by Proposition VI.16, and we can replace cp by bp. Similarly

if p = 2 and if b2 is an integer such that |c2 − b2|2 ≤ 2−ε2−3, then |b2|2 = |c2|2 and
|b2c−1

2 − 1|2 ≤ 2−3. Hence b2c−1
2 is a square in Q×2 and we can replace c2 by b2.
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By the Chinese remainder theorem (Corollary II.38), the simultaneous congruences

c ≡ b2 mod 2ε2+3, c ≡ bp mod pεp+1 for every odd p ∈ S,

have a solution c ∈ Z, that is uniquely determined mod m, where m = 4
∏

p∈S pεp+1.
In exactly the same way as before we can replace bp by c for all primes p ∈ S. By
choosing c to have the same sign as c∞, we can take cv = c for all v ∈ S.

If d = ∏
p∈S pεp is the greatest common divisor of c and m then, by Dirichlet’s

theorem on primes in an arithmetic progression, there exists an integer k with the same
sign as c such that

c/d + km/d = ±q,

where q is a prime. If we put

a = c + km = ±dq,

then q is the only prime divisor of a which is not in S and the quadratic forms

g∗ = −aξ2
0 + a1ξ

2
1 + a2ξ

2
2 , h∗ = a3ξ

2
3 + · · · + anξ

2
n + aξ2

n+1

are isotropic in Qv for every v ∈ S, since c−1a is a square in Q×v .
For all primes p not in S, except p = q , a is not divisible by p. Hence, by the

definition of S and Corollary 26, g∗ is isotropic in Qv for all v, except possibly v = q .
Consequently, by the final remark of part (ii) of the proof, g∗ is isotropic in Q.

Suppose first that n = 4. In this case, in the same way, h∗ = a3ξ
2
3 + a4ξ

2
4 + aξ2

5 is
also isotropic in Q. Hence, by Proposition 6, there exist y1, . . . , y4 ∈ Q such that

a1y2
1 + a2y2

2 = a = −a3y2
3 − a4y2

4 .

Thus f is isotropic in Q.
Suppose next that n ≥ 5 and the result holds for all smaller values of n. Then the

quadratic form h∗ is isotropic in Qv , not only for v ∈ S, but for all v. For if p is a
prime which is not in S, then a3, a4, a5 are not divisible by p. It follows from Corol-
lary 26 that the quadratic form a3ξ

2
3 + a4ξ

2
4 + a5ξ

2
5 is isotropic in Qp, and hence h∗ is

also. Since h∗ is a non-singular quadratic form in n − 1 variables, it follows from the
induction hypothesis that h∗ is isotropic in Q. The proof can now be completed in the
same way as for n = 4. �

Corollary 37 A non-singular rational quadratic form in n ≥ 5 variables is isotropic
in Q if and only if it is neither positive definite nor negative definite.

Proof This follows at once from Theorem 36, on account of Propositions 10
and 31. �

Corollary 38 A non-singular quadratic form over the rational field Q represents a
nonzero rational number c in Q if and only if it represents c in every completion Qv .
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Proof Only the sufficiency of the condition requires proof. But if the rational quadratic
form f (ξ1, . . . , ξn) represents c in Qv for all v then, by Theorem 36, the quadratic form

f ∗(ξ0, ξ1, . . . , ξn) = −cξ2
0 + f (ξ1, . . . , ξn)

is isotropic in Q. Hence f represents c in Q, by Proposition 6. �

Proposition 39 Two non-singular quadratic forms with rational coefficients are equiv-
alent over Q if and only if they are equivalent over all completions Qv .

Proof Again only the sufficiency of the condition requires proof. Let f and g be non-
singular rational quadratic forms in n variables which are equivalent over Qv for all v.

Suppose first that n = 1 and that f = aξ2, g = bη2. By hypothesis, for every v
there exists tv ∈ Q×v such that b = at2

v . Thus ba−1 is a square in Q×v for every v, and
hence ba−1 is a square in Q×, by part (i) of the proof of Theorem 36. Therefore f is
equivalent to g over Q.

Suppose now that n > 1 and the result holds for all smaller values of n. Choose
some c ∈ Q× which is represented by f in Q. Then f certainly represents c in Qv and
hence g represents c in Qv , since g is equivalent to f over Qv . Since this holds for all
v, it follows from Corollary 38 that g represents c in Q.

Thus, by the remark after the proof of Proposition 2, f is equivalent over Q to a
quadratic form cξ2

1 + f ∗(ξ2, . . . , ξn) and g is equivalent over Q to a quadratic form
cξ2

1 + g∗(ξ2, . . . , ξn). Since f is equivalent to g over Qv , it follows from Witt’s can-
cellation theorem that f ∗(ξ2, . . . , ξn) is equivalent to g∗(ξ2, . . . , ξn) over Qv . Since
this holds for every v, it follows from the induction hypothesis that f ∗ is equivalent to
g∗ over Q, and so f is equivalent to g over Q. �

Corollary 40 Two non-singular quadratic forms f and g in n variables with rational
coefficients are equivalent over the rational field Q if and only if

(i) (det f )/(det g) is a square in Q×,
(ii) ind+ f = ind+g,

(iii) sp( f ) = sp(g) for every prime p.

Proof This follows at once from Proposition 39, on account of Propositions 10
and 34. �

The strong Hasse principle (Theorem 36) says that a quadratic form is isotropic
over the global field Q if (and only if) it is isotropic over all its local completions Qv .
The so-named weak Hasse principle (Proposition 39) says that two quadratic forms are
equivalent over Q if (and only if) they are equivalent over all Qv . These local-global
principles have proved remarkably fruitful. They organize the subject, they can be
extended to other situations and, even when they fail, they are still a useful guide. We
describe some results which illustrate these remarks.

As mentioned at the beginning of this section, the strong Hasse principle continues
to hold when the rational field is replaced by any algebraic number field. Waterhouse
(1976) has established the weak Hasse principle for pairs of quadratic forms: if over
every completion Qv there is a change of variables taking both f1 to g1 and f2 to g2,
then there is also such a change of variables over Q. For quadratic forms over the field
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F = K (t) of rational functions in one variable with coefficients from a field K , the
weak Hasse principle always holds, and the strong Hasse principle holds for K = R,
but not for all fields K .

The strong Hasse principle also fails for polynomial forms over Q of degree > 2.
For example, Selmer (1951) has shown that the cubic equation 3x3 + 4y3 + 5z3 = 0
has no nontrivial solutions in Q, although it has nontrivial solutions in every comple-
tion Qv . However, Gusić (1995) has proved the weak Hasse principle for non-singular
ternary cubic forms.

Finally, we draw attention to a remarkable local-global principle of Rumely (1986)
for algebraic integer solutions of arbitrary systems of polynomial equations

f1(ξ1, . . . , ξn) = · · · = fr (ξ1, . . . , ξn) = 0

with rational coefficients.
We now give some applications of the results which have been established.

Proposition 41 A positive integer can be represented as the sum of the squares of
three integers if and only if it is not of the form 4nb, where n ≥ 0 and b ≡ 7 mod 8.

Proof The necessity of the condition is easily established. Since the square of any
integer is congruent to 0,1 or 4 mod 8, the sum of three squares cannot be congruent to
7. For the same reason, if there exist integers x, y, z such that x2+y2+z2 = 4nb, where
n ≥ 1 and b is odd, then x, y, z must all be even and thus (x/2)2+ (y/2)2+ (z/2)2 =
4n−1b. By repeating the argument n times, we see that there is no such representation
if b ≡ 7 mod 8.

We show next that any positive integer which satisfies this necessary condition is
the sum of three squares of rational numbers. We need only show that any positive
integer a �≡ 7 mod 8, which is not divisible by 4, is represented in Q by the quadratic
form

f = ξ2
1 + ξ2

2 + ξ2
3 .

For every odd prime p, f is isotropic in Qp, by Corollary 26, and hence any integer
is represented in Qp by f , by Proposition 5. By Corollary 38, it only remains to show
that f represents a in Q2.

It is easily seen that if a ≡ 1, 3 or 5 mod 8, then there exist integers x1, x2, x3 ∈
{0, 1, 2} such that

x2
1 + x2

2 + x2
3 ≡ a mod 8.

Hence a−1(x2
1 + x2

2 + x2
3 ) is a square in Q×2 and f represents a in Q2.

Again, if a ≡ 2 or 6 mod 8, then a ≡ 2, 6, 10 or 14 mod 24 and it is easily seen that
there exist integers x1, x2, x3 ∈ {0, 1, 2, 3} such that

x2
1 + x2

2 + x2
3 ≡ a mod 24.

Hence a−1(x2
1 + x2

2 + x2
3 ) is a square in Q×2 and f represents a in Q2.

To complete the proof of the proposition we show, by an elegant argument due to
Aubry (1912), that if f represents c in Q then it also represents c in Z.
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Let

(x, y) = { f (x + y)− f (x)− f (y)}/2
be the symmetric bilinear form associated with f , so that f (x) = (x, x), and assume
there exists a point x ∈ Q3 such that (x, x) = c ∈ Z. If x /∈ Z3, we can choose
z ∈ Z3 so that each coordinate of z differs in absolute value by at most 1/2 from
the corresponding coordinate of x . Hence if we put y = x − z, then y �= 0 and
0 < (y, y) ≤ 3/4.

If x ′ = x − λy, where λ = 2(x, y)/(y, y), then x ′ ∈ Q3 and (x ′, x ′) = (x, x) = c.
Substituting y = x − z, we obtain

(y, y)x ′ = (y, y)x − 2(x, y)y = {(z, z)− (x, x)}x + 2{(x, x)− (x, z)}z.
If m > 0 is the least common denominator of the coordinates of x , so that mx ∈ Z3, it
follows that

m(y, y)x ′ = {(z, z)− c)}mx + 2{mc− (mx, z)}z ∈ Z3.

But

m(y, y) = m{(x, x)− 2(x, z)+ (z, z)} = mc− 2(mx, z)+ m(z, z) ∈ Z.

Thus if m′ > 0 is the least common denominator of the coordinates of x ′, then m′
divides m(y, y). Hence m′ ≤ (3/4)m. If x ′ /∈ Z3, we can repeat the argument with
x replaced by x ′. After performing the process finitely many times we must obtain a
point x∗ ∈ Z3 such that (x∗, x∗) = c. �

As another application of the preceding results we now prove

Proposition 42 Let n, a, b be integers with n > 1. Then there exists a nonsingular
n × n rational matrix A such that

At A = a In + b Jn, (3)

where Jn is the n×n matrix with all entries 1, if and only if a > 0, a+bn > 0 and

(i) for n odd: a + bn is a square and the quadratic form

aξ2 + (−1)(n−1)/2bη2 − ζ 2

is isotropic in Q;
(ii) for n even: a(a + bn) is a square and either n ≡ 0 mod 4, or n ≡ 2 mod 4 and a

is a sum of two squares.

Proof If we put

B =

⎡⎢⎢⎢⎢⎣
1 1 . . . 1 1
−1 1 . . . 1 1
0 −2 . . . 1 1

. . . . . . . . .
0 0 . . . 1− n 1

⎤⎥⎥⎥⎥⎦ ,
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then D := Bt B and E := Bt J B are diagonal matrices:

D = diag[d1, . . . , dn−1, n], E = diag[0, . . . , 0, n2],

where d j = j ( j + 1) for 1 ≤ j < n. Hence, if C = D−1 Bt AB , then

Ct DC = Bt At AB.

Thus the rational matrix A satisfies (3) if and only if the rational matrix C satisfies

Ct DC = a D + bE,

and consequently if and only if the diagonal quadratic forms

f = d1ξ
2
1 + · · · + dn−1ξ

2
n−1 + nξ2

n , g = ad1η
2
1 + · · · + adn−1η

2
n−1 + n(a + bn)η2

n

are equivalent over Q.
We now apply Corollary 40. Since (det g)/(det f ) = an−1(a + bn), the condition

that det g/ det f be a square in Q× means that a+bn is a nonzero square if n is odd and
a(a+bn) is a nonzero square if n is even. Since ind+ f = n, the condition that ind+g =
ind+ f means that a > 0 and a + bn > 0. The relation sp(g) = sp( f ) takes the form∏

1≤i< j<n

(adi , ad j )p

∏
1≤i<n

(adi , n(a + bn))p =
∏

1≤i< j<n

(di , d j )p

∏
1≤i<n

(di , n)p.

The multiplicativity and symmetry of the Hilbert symbol imply that

(adi , ad j )p = (a, a)p(a, di d j )p(di , d j )p.

Since (a, a)p = (a,−1)p, it follows that sp(g) = sp( f ) if and only if

(a,−1)(n−1)(n−2)/2
p (a, n)n−1

p

∏
1≤i<n

(adi , a + bn)p

∏
1≤i< j<n

(a, di d j )p = 1.

But ∏
1≤i< j<n

di d j = (d1 · · · dn−1)
n−2

and, by the definition of d j , d1 · · · dn−1 is in the same rational square class as n. Hence
sp(g) = sp( f ) if and only if

(a,−1)(n−1)(n−2)/2
p (a, n)p(an, a + bn)p = 1. (4)

If n is odd, then a + bn is a square and (4) reduces to (a, (−1)(n−1)/2n)p = 1.
But, since a + bn is a square, the quadratic form aξ2 + bnη2 − ζ 2 is isotropic in Q
and thus (a, bn)p = 1 for all p. Hence (a, (−1)(n−1)/2n)p = 1 for all p if and only if
(a, (−1)(n−1)/2b)p = 1 for all p. Since a > 0, this is equivalent to (i).

If n is even, then a(a + bn) is a square and (4) reduces to (a, (−1)(n−2)/2a)p = 1.
Since a > 0, this holds for all p if and only if the ternary quadratic form
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aξ2 + (−1)(n−2)/2aη2 − ζ 2,

is isotropic in Q. Thus it is certainly satisfied if n ≡ 0 mod 4. If n ≡ 2 mod 4 it is
satisfied if and only if the quadratic form ξ2+η2−aζ 2 is isotropic. Thus it is satisfied
if a is a sum of two squares. It is not satisfied if a is not a sum of two squares since
then, by Proposition II.39, for some prime p ≡ 3 mod 4, the highest power of p which
divides a is odd and

(a, a)p = (a,−1)p = (p,−1)p = (−1)(p−1)/2 = −1. �

It is worth noting that the last part of this proof shows that if a positive integer a is
a sum of two rational squares, then it is also a sum of two squares of integers.

It follows at once from Proposition 42 that, for any positive integer n, there is an
n × n rational matrix A such that At A = nIn if and only if either n is an odd square,
or n ≡ 2 mod 4 and n is a sum of two squares, or n ≡ 0 mod 4 (the Hadamard matrix
case).

In Chapter V we considered not only Hadamard matrices, but also designs. We
now use Proposition 42 to derive the necessary conditions for the existence of square
2-designs which were obtained by Bruck, Ryser and Chowla (1949/50). Let v, k, λ be
integers such that 0 < λ < k < v and k(k − 1) = λ(v − 1). Since k − λ + λv = k2,
it follows from Proposition 42 that there exists a v × v rational matrix A such that

At A = (k − λ)Iv + λJv

if and only if, either v is even and k−λ is a square, or v is odd and the quadratic form

(k − λ)ξ2 + (−1)(v−1)/2λη2 − ζ 2

is isotropic in Q.
A projective plane of order d corresponds to a (d2 + d + 1, d + 1, 1) (square)

2-design. In this case Proposition 42 tells us that there is no projective plane of order
d if d is not a sum of two squares and d ≡ 1 or 2 mod 4. In particular, there is no
projective plane of order 6.

The existence of projective planes of any prime power order follows from the
existence of finite fields of any prime power order. (All known projective planes are of
prime power order, but even for d = 9 there are projective planes of the same order d
which are not isomorphic.) Since there is no projective plane of order 6, the least order
in doubt is d = 10. The condition derived from Proposition 42 is obviously satisfied
in this case, since

10ξ2 − η2 − ζ 2 = 0

has the solution ξ = η = 1, ζ = 3. However, Lam, Thiel and Swiercz (1989) have
announced that, nevertheless, there is no projective plane of order 10. The result was
obtained by a search involving thousands of hours time on a supercomputer and does
not appear to have been independently verified.
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4 Supplements

It was shown in the proof of Proposition 41 that if an integer can be represented as a
sum of 3 squares of rational numbers, then it can be represented as a sum of 3 squares
of integers. A similar argument was used by Cassels (1964) to show that if a poly-
nomial can be represented as a sum of n squares of rational functions, then it can be
represented as a sum of n squares of polynomials. This was immediately generalized
by Pfister (1965) in the following way:

Proposition 43 For any field F, if there exist scalars α1, . . . , αn ∈ F and rational
functions r1(t), . . . , rn(t) ∈ F(t) such that

p(t) = α1r1(t)
2 + · · · + αnrn(t)

2

is a polynomial, then there exist polynomials p1(t), . . . , pn(t) ∈ F[t] such that

p(t) = α1 p1(t)
2 + · · · + αn pn(t)

2.

Proof Suppose first that n = 1. We can write r1(t) = p1(t)/q1(t), where p1(t) and
q1(t) are relatively prime polynomials and q1(t) has leading coefficient 1. Since

p(t)q1(t)
2 = α1 p1(t)

2,

we must actually have q1(t) = 1.
Suppose now that n > 1 and the result holds for all smaller values of n. We may

assume that α j �= 0 for all j , since otherwise the result follows from the induction
hypothesis. Suppose first that the quadratic form

φ = α1ξ
2
1 + · · · + αnξ

2
n

is isotropic over F . In this case there exists an invertible linear transformation
ξ j =∑n

k=1 τ j kηk with τ j k ∈ F(1 ≤ j, k ≤ n) such that

φ = η2
1 − η2

2 + β3η
2
3 + · · · + βnη

2
n,

where β j ∈ F for all j > 2. If we substitute

η1 = {p(t)+ 1}/2, η2 = {p(t)− 1}/2, η j = 0 for all j > 2,

we obtain a representation for p(t) of the required form.
Thus we now suppose that φ is anisotropic over F . This implies that φ is also

anisotropic over F(t), since otherwise there would exist a nontrivial representation

α1q1(t)
2 + · · · + αnqn(t)

2 = 0,

where q j (t) ∈ F[t] (1 ≤ j ≤ n), and by considering the terms of highest degree we
would obtain a contradiction.

By hypothesis there exists a representation

p(t) = α1{ f1(t)/ f0(t)}2 + · · · + αn{ fn(t)/ f0(t)}2,
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where f0(t), f1(t), . . . , fn(t) ∈ F[t]. Assume that f0 does not divide f j for some
j ∈ {1, . . . , n}. Then d := deg f0 > 0 and we can write

f j (t) = g j (t) f0(t)+ h j (t),

where g j (t), h j (t) ∈ F[t] and deg h j < d (1 ≤ j ≤ n).
Let

(x, y) = {φ(x + y)− φ(x)− φ(y)}/2
be the symmetric bilinear form associated with the quadratic form φ and put

f = ( f1, . . . , fn), g = (g1, . . . , gn), h = (h1, . . . , hn).

If

f ∗0 = {(g, g)− p} f0 − 2{( f, g)− p f0}, f ∗ = {(g, g)− p} f − 2{( f, g)− p f0}g,

and f ∗ = ( f ∗1 , . . . , f ∗n ), then clearly f ∗0 , f ∗1 , . . . , f ∗n ∈ F[t]. Since ( f, f ) = p f 2
0 and

g = ( f − h)/ f0, we can also write

f ∗0 = (h, h)/ f0, f ∗ = {(h, h) f − 2( f, h)h}/ f 2
0 .

It follows that deg f ∗0 < d and ( f ∗, f ∗) = p f ∗2
0 . Also f ∗0 �= 0, since h �= 0 and φ is

anisotropic. Thus

p(t) = α1{ f ∗1 (t)/ f ∗0 (t)}2 + · · · + αn{ f ∗n (t)/ f ∗0 (t)}2.
If f ∗0 does not divide f ∗j for some j ∈ {1, . . . , n}, we can repeat the process. After at
most d steps we must obtain a representation for p(t) of the required form. �

It was already known to Hilbert (1888) that there is no analogue of Proposition 43
for polynomials in more than one variable. Motzkin (1967) gave the simple example

p(x, y) = 1− 3x2y2 + x4y2 + x2y4,

which is a sum of 4 squares in R(x, y), but is not a sum of any finite number of squares
in R[x, y].

In the same paper in which he proved Proposition 43 Pfister introduced his
multiplicative forms. The quadratic forms fa , fa,b in §2 are examples of such forms.
Pfister (1966) used his multiplicative forms to obtain several new results on the
structure of the Witt ring and then (1967) to give a strong solution to Hilbert’s 17th
Paris problem. We restrict attention here to the latter application.

Let g(x), h(x) ∈ R[x] be polynomials in n variables x = (ξ1, . . . , ξn) with real
coefficients. The rational function f (x) = g(x)/h(x) is said to be positive definite if
f (a) ≥ 0 for every a ∈ Rn such that h(a) �= 0. Hilbert’s 17th problem asks if every
positive definite rational function can be represented as a sum of squares:

f (x) = f1(x)
2 + · · · + fs(x)

2,
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where f1(x), . . . , fs (x) ∈ R(x). The question was answered affirmatively by
Artin (1927). Artin’s solution allowed the number s of squares to depend on the
function f , and left open the possibility that there might be no uniform bound.
Pfister showed that one can always take s = 2n .

Finally we mention a conjecture of Oppenheim (1929–1953), that if f (ξ1, . . . , ξn)
is a non-singular isotropic real quadratic form in n ≥ 3 variables, which is not a scalar
multiple of a rational quadratic form, then f (Zn) is dense in R, i.e. for each α ∈ R and
ε > 0 there exist z1, . . . , zn ∈ Z such that | f (z1, . . . , zn)− α| < ε. (It is not difficult
to show that this is not always true for n = 2.) Raghunathan (1980) made a general
conjecture about Lie groups, which he observed would imply Oppenheim’s conjec-
ture. Oppenheim’s conjecture was then proved in this way by Margulis (1987), using
deep results from the theory of Lie groups and ergodic theory. The full conjecture of
Raghunathan has now also been proved by Ratner (1991).

5 Further Remarks

Lam [18] gives a good introduction to the arithmetic theory of quadratic spaces. The
Hasse–Minkowski theorem is also proved in Serre [29]. Additional information is
contained in the books of Cassels [4], Kitaoka [16], Milnor and Husemoller [20],
O’Meara [22] and Scharlau [28].

Quadratic spaces were introduced (under the name ‘metric spaces’) by Witt [32].
This noteworthy paper also made several other contributions: Witt’s cancellation theo-
rem, the Witt ring, Witt’s chain equivalence theorem and the Hasse invariant in its most
general form (as described below). Quadratic spaces are treated not only in books on
the arithmetic of quadratic forms, but also in works of a purely algebraic nature, such
as Artin [1], Dieudonné [8] and Jacobson [15].

An important property of the Witt ring was established by Merkur’ev (1981). In
one formulation it says that every element of order 2 in the Brauer group of a field
F is represented by the Clifford algebra of some quadratic form over F . For a clear
account, see Lewis [19].

Our discussion of Hilbert fields is based on Fröhlich [9]. It may be shown that any
locally compact non-archimedean valued field is a Hilbert field. Fröhlich gives other
examples, but rightly remarks that the notion of Hilbert field clarifies the structure of
the theory, even if one is interested only in the p-adic case. (The name ‘Hilbert field’
is also given to fields for which Hilbert’s irreducibility theorem is valid.)

In the study of quadratic forms over an arbitrary field F , the Hilbert symbol
(a, b/F) is a generalized quaternion algebra (more strictly, an equivalence class of
such algebras) and the Hasse invariant is a tensor product of Hilbert symbols. See, for
example, Lam [18].

Hasse’s original proof of the Hasse–Minkowski theorem is reproduced in
Hasse [13]. In principle it is the same as that given here, using a reduction argument
due to Lagrange for n = 3 and Dirichlet’s theorem on primes in an arithmetic progres-
sion for n ≥ 4.

The book of Cassels contains a proof of Theorem 36 which does not use
Dirichlet’s theorem, but it uses intricate results on genera of quadratic forms and is
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not so ‘clean’. However, Conway [6] has given an elementary approach to the equiva-
lence of quadratic forms over Q (Proposition 39 and Corollary 40).

The book of O’Meara gives a proof of the Hasse–Minkowski theorem over any
algebraic number field which avoids Dirichlet’s theorem and is ‘cleaner’ than ours, but
it uses deep results from class field theory. For the latter, see Cassels and Fröhlich [5],
Garbanati [10] and Neukirch [21].

To determine if a rational quadratic form f (ξ1, . . . , ξn) = ∑n
j,k=1 a jkξ j ξk is

isotropic by means of Theorem 36 one has to show that it is isotropic in infinitely
many completions. Nevertheless, the problem is a finite one. Clearly one may assume
that the coefficients a jk are integers and, if the equation f (x1, . . . , xn) = 0 has a non-
trivial solution in rational numbers, then it also has a nontrivial solution in integers.
But Cassels has shown by elementary arguments that if f (x1, . . . , xn) = 0 for some
x j ∈ Z, not all zero, then the x j may be chosen so that

max
1≤ j≤n

|x j | ≤ (3H )(n−1)/2,

where H =∑n
j,k=1 |a jk|. See Lemma 8.1 in Chapter 6 of [4].

Williams [31] gives a sharper result for the ternary quadratic form

g(ξ, η, ζ ) = aξ2 + bη2 + cζ 2,

where a, b, c are integers with greatest common divisor d > 0. If g(x, y, z) = 0 for
some integers x, y, z, not all zero, then these integers may be chosen so that

|x | ≤ |bc|1/2/d, |y| ≤ |ca|1/2/d, |z| ≤ |ab|1/2/d.
The necessity of the Bruck–Ryser–Chowla conditions for the existence of

symmetric block designs may also be established in a more elementary way, without
also proving their sufficiency for rational equivalence. See, for example, Beth et al. [2].
For the non-existence of a projective plane of order 10, see C. Lam [17].

For various manifestations of the local-global principle, see Waterhouse [30],
Hsia [14], Gusić [12] and Green et al. [11].

The work of Pfister instigated a flood of papers on the algebraic theory of quadratic
forms. The books of Lam and Scharlau give an account of these developments. For
Hilbert’s 17th problem, see also Pfister [23], [24] and Rajwade [25].

Although a positive integer which is a sum of n rational squares is also a sum of n
squares of integers, the same does not hold for higher powers. For example,

5906 = (149/17)4 + (25/17)4,

but there do not exist integers m, n such that 5906 = m4 + n4, since 94 > 5906,
2 · 74 < 5906 and 5906− 84 = 1810 is not a fourth power. For the representation of a
polynomial as a sum of squares of polynomials, see Rudin [27].

For Oppenheim’s conjecture, see Dani and Margulis [7], Borel [3] and Ratner [26].
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[8] J. Dieudonné, La géométrie des groupes classiques, 2nd ed., Springer-Verlag, Berlin, 1963.
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VIII

The Geometry of Numbers

It was shown by Hermite (1850) that if

f (x) = xt Ax

is a positive definite quadratic form in n real variables, then there exists a vector x with
integer coordinates, not all zero, such that

f (x) ≤ cn(det A)1/n,

where cn is a positive constant depending only on n. Minkowski (1891) found a new
and more geometric proof of Hermite’s result, which gave a much smaller value for the
constant cn . Soon afterwards (1893) he noticed that his proof was valid not only for an
n-dimensional ellipsoid f (x) ≤ const., but for any convex body which was symmetric
about the origin. This led him to a large body of results, to which he gave the somewhat
paradoxical name ‘geometry of numbers’. It seems fair to say that Minkowski was the
first to realize the importance of convexity for mathematics, and it was in his lattice
point theorem that he first encountered it.

1 Minkowski’s Lattice Point Theorem

A set C ⊆ Rn is said to be convex if x1, x2 ∈ C implies θx1 + (1 − θ)x2 ∈ C for
0 < θ < 1. Geometrically, this means that whenever two points belong to the set the
whole line segment joining them is also contained in the set.

The indicator function or ‘characteristic function’ of a set S ⊆ Rn is defined by
χ(x) = 1 or 0 according as x ∈ S or x /∈ S. If the indicator function is Lebesgue
integrable, then the set S is said to have volume

λ(S) =
∫

Rn
χ(x)dx .

The indicator function of a convex set C is actually Riemann integrable. It is easily
seen that if a convex set C is not contained in a hyperplane of Rn , then its interior
int C (see §4 of Chapter I) is not empty. It follows that λ(C) = 0 if and only if C is

W.A. Coppel, Number Theory: An Introduction to Mathematics, Universitext, 
DOI: 10.1007/978-0-387-89486-7_8, © Springer Science + Business Media, LLC 2009
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contained in a hyperplane, and 0 < λ(C) <∞ if and only if C is bounded and is not
contained in a hyperplane.

A set S ⊆ Rn is said to be symmetric (with respect to the origin) if x ∈ S implies
−x ∈ S. Evidently any (nonempty) symmetric convex set contains the origin.

A point x = (ξ1, . . . , ξn) ∈ Rn whose coordinates ξ1, . . . , ξn are all integers will
be called a lattice point. Thus the set of all lattice points in Rn is Zn .

These definitions are the ingredients for Minkowski’s lattice point theorem:

Theorem 1 Let C be a symmetric convex set in Rn. If λ(C) > 2n, or if C is compact
and λ(C) = 2n, then C contains a nonzero point of Zn.

The proof of Theorem 1 will be deferred to §3. Here we illustrate the utility of the
result by giving several applications, all of which go back to Minkowski himself.

Proposition 2 If A is an n×n positive definite real symmetric matrix, then there exists
a nonzero point x ∈ Zn such that

x t Ax ≤ cn(det A)1/n,

where cn = (4/π){(n/2)!}2/n.

Proof For any ρ > 0 the ellipsoid xt Ax ≤ ρ is a compact symmetric convex
set. By putting A = T t T , for some nonsingular matrix T , it may be seen that the
volume of this set is κnρ

n/2(det A)−1/2, where κn is the volume of the n-dimensional
unit ball. It follows from Theorem 1 that the ellipsoid contains a nonzero lattice point
if κnρ

n/2(det A)−1/2 = 2n . But, as we will see in §4 of Chapter IX, κn = πn/2/(n/2)!,
where x! = Γ (x + 1). This gives the value cn for ρ. �

It follows from Stirling’s formula (Chapter IX, §4) that cn ∼ 2n/πe for n → ∞.
Hermite had proved Proposition 2 with cn = (4/3)(n−1)/2. Hermite’s value is smaller
than Minkowski’s for n ≤ 8, but much larger for large n.

As a second application of Theorem 1 we prove Minkowski’s linear forms theorem:

Proposition 3 Let A be an n × n real matrix with determinant ±1. Then there exists
a nonzero point x ∈ Zn such that Ax = y = (ηk) satisfies

|η1| ≤ 1, |ηk | < 1 for 1 < k ≤ n.

Proof For any positive integer m, let Cm be the set of all x ∈ Rn such that Ax ∈ Dm ,
where

Dm = {y = (ηk) ∈ Rn : |η1| ≤ 1+ 1/m, |ηk | < 1 for 2 ≤ k ≤ n}.
Then Cm is a symmetric convex set, since A is linear and Dm is symmetric and convex.
Moreover λ(Cm ) = 2n(1 + 1/m), since λ(Dm ) = 2n(1 + 1/m) and A is volume-
preserving. Therefore, by Theorem 1, Cm contains a lattice point xm �= O. Since
Cm ⊂ C1 for all m > 1 and the number of lattice points in C1 is finite, there exist only
finitely many distinct points xm . Thus there exists a lattice point x �= O which belongs
to Cm for infinitely many m. Evidently x has the required properties. �
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The continued fraction algorithm enables one to find rational approximations to
irrational numbers. The subject of Diophantine approximation is concerned with the
more general problem of solving inequalities in integers. From Proposition 3 we can
immediately obtain a result in this area due to Dirichlet (1842):

Proposition 4 Let A = (α j k) be an n×m real matrix and let t > 1 be real. Then there
exist integers q1, . . . , qm, p1, . . . , pn, with 0 < max(|q1|, . . . , |qm |) < tn/m , such that∣∣∣∣ m∑

k=1

α j kqk − p j

∣∣∣∣ ≤ 1/t (1 ≤ j ≤ n).

Proof Since the matrix (
t−n/m Im 0

t A t I n

)
has determinant 1, it follows from Proposition 3 that there exists a nonzero vector

x =
(

q
−p

)
∈ Zn+m

such that

|qk| < tn/m (k = 1, . . . ,m),∣∣∣∣ m∑
k=1

α j kqk − p j

∣∣∣∣ ≤ 1/t ( j = 1, . . . , n).

Since q = O would imply |p j | < 1 for all j and hence p = O, which contradicts
x �= O, we must have maxk |qk | > 0. �

Corollary 5 Let A = (α j k) be an n×m real matrix such that Az /∈ Zn for any nonzero
vector z ∈ Zm. Then there exist infinitely many (m+ n)-tuples q1, . . . , qm, p1, . . . , pn

of integers with greatest common divisor 1 and with arbitrarily large values of

‖q‖ = max(|q1|, . . . , |qm |)
such that ∣∣∣∣ m∑

k=1

α j kqk − p j

∣∣∣∣ < ‖q‖−m/n (1 ≤ j ≤ n).

Proof Let q1, . . . , qm, p1, . . . , pn be integers satisfying the conclusions of Proposi-
tion 4 for some t > 1. Evidently we may assume that q1, . . . , qm, p1, . . . , pn have
no common divisor greater than 1. For given q1, . . . , qm , let δ j be the distance of∑m

k=1 α j kqk from the nearest integer and put δ = max δ j (1 ≤ j ≤ n). By hypothesis
0 < δ < 1, and by construction

δ ≤ 1/t < ‖q‖−m/n .
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Choosing some t ′ > 2/δ, we find a new set of integers q ′1, . . . , q ′m, p′1, . . . , p′n sat-
isfying the same requirements with t replaced by t ′, and hence with δ′ ≤ 1/t ′ <
δ/2. Proceeding in this way, we obtain a sequence of (m + n)-tuples of integers
q(v)1 , . . . , q

(v)
m , p(v)1 , . . . , p(v)n for which δ(v) → 0 and hence ‖q(v)‖ → ∞, since we

cannot have q(v) = q for infinitely many v. �

The hypothesis of the corollary is certainly satisfied if 1, α j1, . . . , α jm are linearly
independent over the field Q of rational numbers for some j ∈ {1, . . . , n}.

Minkowski also used his lattice point theorem to give the first proof that the dis-
criminant of any algebraic number field, other than Q, has absolute value greater
than 1. The proof is given in most books on algebraic number theory.

2 Lattices

In the previous section we defined the set of lattice points to be Zn . However, this de-
finition is tied to a particular coordinate system in Rn . It is useful to consider lattices
from a more intrinsic point of view. The key property is ‘discreteness’.

With vector addition as the group operation, Rn is an abelian group. A subgroupΛ
is said to be discrete if there exists a ball with centre O which contains no other point
of Λ. (More generally, a subgroup H of a topological group G is said to be discrete if
there exists an open set U ⊆ G such that H ∩U = {e}, where e is the identity element
of G.)

If Λ is a discrete subgroup of Rn , then any bounded subset of Rn contains at most
finitely many points of Λ since, if there were infinitely many, they would have an
accumulation point and their differences would accumulate at O. In particular, Λ is a
closed subset of Rn .

Proposition 6 If x1, . . . , xm are linearly independent vectors in Rn, then the set

Λ = {ζ1x1 + · · · + ζm xm : ζ1, . . . , ζm ∈ Z}
is a discrete subgroup of Rn.

Proof It is clear that Λ is a subgroup of Rn , since x, y ∈ Λ implies x − y ∈ Λ. If Λ
is not discrete, then there exist y(v) ∈ Λ with |y(1)| > |y(2)| > · · · and |y(v)| → 0 as
v →∞. Let V be the vector subspace of Rn with basis x1, . . . , xm and for any vector

x = α1x1 + · · · + αm xm,

where αk ∈ R (1 ≤ k ≤ m), put

‖x‖ = max(|α1|, . . . , |αm |).
This defines a norm on V . We have

y(v) = ζ (v)1 x1 + · · · + ζ (v)m xm,

where ζ (v)k ∈ Z (1 ≤ k ≤ m). Since any two norms on a finite-dimensional vector

space are equivalent (Lemma VI.7), it follows that ζ (v)k → 0 as v →∞ (1 ≤ k ≤ m).

Since ζ (v)k is an integer, this is only possible if y(v) = O for all large v, which is a
contradiction. �
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The converse of Proposition 6 is also valid. In fact we will prove a sharper result:

Proposition 7 If Λ is a discrete subgroup of Rn, then there exist linearly independent
vectors x1, . . . , xm in Rn such that

Λ = {ζ1x1 + · · · + ζm xm : ζ1, . . . , ζm ∈ Z}.
Furthermore, if y1, . . . , ym is any maximal set of linearly independent vectors in Λ,
we can choose x1, . . . , xm so that

Λ ∩ 〈y1, . . . , yk〉 = {ζ1x1 + · · · + ζk xk : ζ1, . . . , ζk ∈ Z} (1 ≤ k ≤ m),

where 〈Y 〉 denotes the vector subspace generated by the set Y .

Proof Let S1 denote the set of all α1 > 0 such that α1 y1 ∈ Λ and let µ1 be the infi-
mum of all α1 ∈ S1. We are going to show that µ1 ∈ S1. If this is not the case there
exist α(v)1 ∈ S1 with α(1)1 > α

(2)
1 > · · · and α(v)1 → µ1 as v → ∞. Since the ball

|x | ≤ (1+ µ1)|y1| contains only finitely many points of Λ, this is a contradiction.
Any α1 ∈ S1 can be written in the form α1 = pµ1+θ , where p is a positive integer

and 0 ≤ θ < µ1. Since θ > 0 would imply θ ∈ S1, contrary to the definition of µ1,
we must have θ = 0. Hence if we put x1 = µ1y1, then

Λ ∩ 〈y1〉 = {ζ1x1 : ζ1 ∈ Z}.
Assume that, for some positive integer k (1 ≤ k < m), we have found vectors
x1, . . . , xk ∈ Λ such that

Λ ∩ 〈y1, . . . , yk〉 = {ζ1x1 + · · · + ζkxk : ζ1, . . . , ζk ∈ Z}.
We will prove the proposition by showing that this assumption continues to hold when
k is replaced by k + 1.

Any x ∈ Λ ∩ 〈y1, . . . , yk+1〉 has the form

x = α1x1 + · · · + αk xk + αk+1 yk+1,

where α1, . . . , αk+1 ∈ R. Let Sk+1 denote the set of all αk+1 > 0 which arise in such
representations and let µk+1 be the infimum of all αk+1 ∈ Sk+1. We are going to show
that µk+1 ∈ Sk+1. If µk+1 /∈ Sk+1, there exist α(v)k+1 ∈ Sk+1 with α(1)k+1 > α

(2)
k+1 > · · ·

and α(v)k+1 → µk+1 as v →∞. ThenΛ contains a point

x (v) = α(v)1 x1 + · · · + α(v)k xk + α(v)k+1 yk+1,

where α(v)j ∈ R (1 ≤ j ≤ k). In fact, by subtracting an integral linear combination of

x1, . . . , xk we may assume that 0 ≤ α(v)j < 1 (1 ≤ j ≤ k). Since only finitely many
points of Λ are contained in the ball |x | ≤ |x1| + · · · + |xk| + (1 + µk+1)|yk+1|, this
is a contradiction.

Hence µk+1 > 0 and Λ contains a vector

xk+1 = α1x1 + · · · + αk xk + µk+1 yk+1.
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As for S1, it may be seen that Sk+1 consists of all positive integer multiples of µk+1.
Hence any x ∈ Λ ∩ 〈y1, . . . , yk+1〉 has the form

x = ζ1x1 + · · · + ζk xk + ζk+1xk+1,

where ζ1, . . . , ζk ∈ R and ζk+1 ∈ Z. Since

x − ζk+1xk+1 ∈ Λ ∩ 〈y1, . . . , yk〉,
we must actually have ζ1, . . . , ζk ∈ Z. �

By being more specific in the proof of Proposition 7 it may be shown that there is
a unique choice of x1, . . . , xm such that

y1 = p11x1

y2 = p21x1 + p22x2

· · ·
ym = pm1x1 + pm2x2 + · · · + pmm xm,

where pi j ∈ Z, pii > 0, and 0 ≤ pi j < pii if j < i (Hermite’s normal form).
It is easily seen that in Proposition 7 we can choose xi = yi (1 ≤ i ≤ m) if and

only if, for any x ∈ Λ and any positive integer h, x is an integral linear combination
of y1, . . . , ym whenever hx is.

By combining Propositions 6 and 7 we obtain

Proposition 8 For a set Λ ⊆ Rn the following two conditions are equivalent:

(i) Λ is a discrete subgroup of Rn and there exists R > 0 such that, for each y ∈ Rn,
there is some x ∈ Λ with |y − x | < R;

(ii) there exist n linearly independent vectors x1, . . . , xn in Rn such that

Λ = {ζ1x1 + · · · + ζnxn : ζ1, . . . , ζn ∈ Z}.
Proof If (i) holds, then in the statement of Proposition 7 we must have m = n, i.e.
(ii) holds. On the other hand, if (ii) holds then Λ is a discrete subgroup of Rn , by
Proposition 6. Moreover, for any y ∈ Rn we can choose x ∈ Λ so that

y − x = θ1x1 + · · · + θnxn,

where 0 ≤ θ j < 1( j = 1, . . . , n), and hence

|y − x | < |x1| + · · · + |xn|. �

A set Λ ⊆ Rn satisfying either of the two equivalent conditions of Proposition 8
will be called a lattice and any element of Λ a lattice point. The vectors x1, . . . , xn

in (ii) will be said to be a basis for the lattice.
A lattice is sometimes defined to be any discrete subgroup of Rn , and what we

have called a lattice is then called a ‘nondegenerate’ lattice. Our definition is chosen
simply to avoid repetition of the word ‘nondegenerate’. We may occasionally use the
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more general definition and, with this warning, believe it will be clear from the context
when this occurs.

The basis of a lattice is not uniquely determined. In fact y1, . . . , yn is also a basis if

y j =
n∑

k=1

α j k xk ( j = 1, . . . , n),

where A = (α j k) is an n × n matrix of integers such that det A = ±1, since A−1 is
then also a matrix of integers. Moreover, every basis y1, . . . , yn is obtained in this way.
For if

y j =
n∑

k=1

α j k xk, xi =
n∑

j=1

βi j y j , (i, j = 1, . . . , n),

where A = (α j k) and B = (βi j ) are n×n matrices of integers, then B A = I and hence
(det B)(det A) = 1. Since det A and det B are integers, it follows that det A = ±1.

Let x1, . . . , xn be a basis for a lattice Λ ⊆ Rn . If

xk =
n∑

j=1

γ j ke j (k = 1, . . . , n),

where e1, . . . , en is the canonical basis for Rn then, in terms of the nonsingular matrix
T = (γ j k), the lattice Λ is just the set of all vectors T z with z ∈ Zn . The absolute
value of the determinant of the matrix T does not depend on the choice of basis. For if
x ′1, . . . , x ′n is any other basis, then

x ′i =
n∑

j=1

αi j x j (i = 1, . . . , n),

where A = (αi j ) is an n × n matrix of integers with det A = ±1. Thus

x ′k =
n∑

j=1

γ ′j ke j (k = 1, . . . , n),

where T ′ = (γ ′j k) satisfies T ′ = T At and hence

| det T ′| = | det T |.
The uniquely determined quantity | det T | will be called the determinant of the lattice
Λ and denoted by d(Λ). (Some authors, e.g. Conway and Sloane [14], call | det T |2
the determinant of Λ, but others prefer to call this the discriminant ofΛ.)

The determinant d(Λ) has a simple geometrical interpretation. In fact it is the
volume of the parallelotopeΠ , consisting of all points y ∈ Rn such that

y = θ1x1 + · · · + θnxn,

where 0 ≤ θk ≤ 1 (k = 1, . . . , n). The interior of Π is a fundamental domain for the
subgroupΛ, since
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Rn = ∪
x∈Λ(Π + x),

int(Π + x) ∩ int(Π + x ′) = ∅ if x, x ′ ∈ Λ and x �= x ′.

For any lattice Λ ⊆ Rn , the set Λ∗ of all vectors y ∈ Rn such that yt x ∈ Z for
every x ∈ Λ is again a lattice, the dual (or ‘polar’ or ‘reciprocal’) of Λ. In fact,

if Λ = {T z : z ∈ Zn}, then Λ∗ = {(T t )−1w : w ∈ Zn}.
Hence Λ is the dual of Λ∗ and d(Λ)d(Λ∗) = 1. A lattice Λ is self-dual if Λ∗ = Λ.

3 Proof of the Lattice Point Theorem; Other Results

In this section we take up the proof of Minkowski’s lattice point theorem. The proof
will be based on a very general result, due to Blichfeldt (1914), which is not restricted
to convex sets.

Proposition 9 Let S be a Lebesgue measurable subset of Rn, Λ a lattice in Rn with
determinant d(Λ) and m a positive integer.

If λ(S) > m d(Λ), or if S is compact and λ(S) = m d(Λ), then there exist m + 1
distinct points x1, . . . , xm+1 of S such that the differences x j − xk (1 ≤ j, k ≤ m + 1)
all lie in Λ.

Proof Let b1, . . . , bn be a basis for Λ and let P be the half-open parallelotope
consisting of all points x = θ1b1 + · · · + θnbn , where 0 ≤ θi < 1 (i = 1, . . . , n).
Then λ(P) = d(Λ) and

Rn = ∪
z∈Λ(P + z), (P + z) ∩ (P + z′) = ∅ if z �= z′.

Suppose first that λ(S) > m d(Λ). If we put

Sz = S ∩ (P + z), Tz = Sz − z,

then Tz ⊆ P , λ(Tz) = λ(Sz) and

λ(S) =
∑
z∈Λ

λ(Sz).

Hence ∑
z∈Λ

λ(Tz) = λ(S) > m d(Λ) = mλ(P).

Since Tz ⊆ P for every z, it follows that some point y ∈ P is contained in at least
m + 1 sets Tz . (In fact this must hold for all y in a subset of P of positive measure.)
Thus there exist m + 1 distinct points z1, . . . , zm+1 ofΛ and points x1, . . . , xm+1 of S
such that y = x j − z j ( j = 1, . . . ,m + 1). Then x1, . . . , xm+1 are distinct and
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x j − xk = z j − zk ∈ Λ (1 ≤ j, k ≤ m + 1).

Suppose next that S is compact and λ(S) = m d(Λ). Let {εv} be a decreasing
sequence of positive numbers such that εv → 0 as v →∞, and let Sv denote the set of
all points of Rn distant at most εv from S. Then Sv is compact, λ(Sv) > λ(S) and

S1 ⊃ S2 ⊃ · · · , S =∩
v

Sv.

By what we have already proved, there exist m + 1 distinct points x (v)1 , . . . , x (v)m+1

of Sv such that x (v)j − x (v)k ∈ Λ for all j, k. Since Sv ⊆ S1 and S1 is compact, by

restricting attention to a subsequence we may assume that x (v)j → x j as v →∞ ( j =
1, . . . ,m + 1). Then x j ∈ S and x (v)j − x (v)k → x j − xk . Since x (v)j − x (v)k ∈ Λ, this

is only possible if x j − xk = x (v)j − x (v)k for all large v. Hence x1, . . . , xm+1 are
distinct. �

Siegel (1935) has given an analytic formula which underlies Proposition 9 and
enables it to be generalized. Although we will make no use of it, this formula will now
be established. For notational simplicity we restrict attention to the (self-dual) lattice
Λ = Zn .

Proposition 10 If Ψ : Rn → C is a bounded measurable function which vanishes
outside some compact set, then∫

Rn
Ψ (x)φ(x)dx =

∑
w∈Zn

∣∣∣∣ ∫
Rn
Ψ (x)e−2π iwt xdx

∣∣∣∣2,
where

φ(x) =
∑
z∈Zn

Ψ (x + z).

Proof Since Ψ vanishes outside a compact set, there exists a finite set T ⊆ Zn such
that Ψ (x + z) = 0 for all x ∈ Rn if z ∈ Zn\T . Thus the sum defining φ(x) has
only finitely many nonzero terms and φ also is a bounded measurable function which
vanishes outside some compact set.

If we write

x = (ξ1, . . . , ξn), z = (ζ1, . . . , ζn),
then the sum defining φ(x) is unaltered by the substitution ζ j → ζ j + 1 and hence φ
has period 1 in each of the variables ξ j ( j = 1, . . . , n). LetΠ denote the fundamental
parallelotope

Π = {x = (ξ1, . . . , ξn) ∈ Rn : 0 ≤ ξ j ≤ 1 for j = 1, . . . , n}.

Since the functions e2π iwt x (w ∈ Zn) are an orthogonal basis for L2(Π), Parseval’s
equality (Chapter I, §10) holds:
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Π
|φ(x)|2dx =

∑
w∈Zn

|cw|2,

where

cw =
∫
Π
φ(x)e−2π iwt x dx .

But

cw =
∫
Π

∑
z∈Zn

Ψ (x + z)e−2π iwt xdx

=
∫
Π

∑
z∈Zn

Ψ (x + z)e−2π iwt (x+z)dx,

since e2kπ i = 1 for any integer k. Hence

cw =
∫

Rn
Ψ (y)e−2π iwt ydy.

On the other hand,∫
Π
|φ(x)|2dx =

∫
Π

∑
z′,z′′∈Zn

Ψ (x + z′)Ψ (x + z′′)dx

=
∫
Π

∑
z,z′∈Zn

Ψ (x + z′)Ψ (x + z′ + z)dx

=
∫

Rn

∑
z∈Zn

Ψ (y)Ψ (y + z)dy =
∫

Rn
Ψ (y)φ(y)dy.

Substituting these expressions in Parseval’s equality, we obtain the result. �

Suppose, in particular, that Ψ takes only real nonnegative values. Then so also does
φ and ∫

Rn
Ψ (x)φ(x)dx ≤ sup

x∈Rn
φ(x)

∫
Rn
Ψ (x)dx.

On the other hand, omitting all terms with w �= 0 we obtain

∑
w∈Zn

∣∣∣∣ ∫
Rn
Ψ (x)e−2π iwt xdx

∣∣∣∣2 ≥ (∫
Rn
Ψ (x)dx

)2

.
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Hence, by Proposition 10,

sup
x∈Rn

φ(x) ≥
∫

Rn
Ψ (x)dx .

For example, let S ⊆ Rn be a measurable set with λ(S) > m. Then there exists
a bounded measurable set S′ ⊆ S with λ(S′) > m. If we take Ψ to be the indicator
function of S′, then ∫

Rn
Ψ (x)dx = λ(S′) > m

and we conclude that there exists y ∈ Rn such that∑
z∈Zn

Ψ (y + z) = φ(y) > m.

Since the only possible values of the summands on the left are 0 and 1, it follows that
there exist m+1 distinct points z1, . . . , zm+1 ∈ Zn = Λ such that y+ z j ∈ S for all j .
The proof of Proposition 9 can now be completed in the same way as before.

Let {Kα} be a family of subsets of Rn , where each Kα is the closure of a nonempty
open set Gα , i.e. Kα is the intersection of all closed sets containing Gα . The family
{Kα} is said to be a packing of Rn if α �= α′ implies Gα ∩ Gα′ = ∅ and is said to be
a covering of Rn if Rn = ⋃

α Kα . It is said to be a tiling of Rn if it is both a packing
and a covering.

For example, if Π is a fundamental parallelotope of a lattice Λ, then the family
{Π + a : a ∈ Λ} is a tiling of Rn . More generally, if G is a nonempty open sub-
set of Rn with closure K , we may ask whether the family {K + a : a ∈ Λ} of all
Λ-translates of K is either a packing or a covering of Rn . Some necessary conditions
may be derived with the aid of Proposition 9:

Proposition 11 Let K be the closure of a bounded nonempty open set G ⊆ Rn and
let Λ be a lattice in Rn.

If theΛ-translates of K are a covering of Rn then λ(K ) ≥ d(Λ), and the inequality
is strict if they are not also a packing.

If theΛ-translates of K are a packing of Rn then λ(K ) ≤ d(Λ), and the inequality
is strict if they are not also a covering.

Proof Suppose first that theΛ-translates of K cover Rn . Then every point of a funda-
mental parallelotopeΠ of Λ has the form x − a, where x ∈ K and a ∈ Λ. Hence

λ(K ) =
∑
a∈Λ

λ(K ∩ (Π + a))

=
∑
a∈Λ

λ((K − a) ∩Π) ≥ λ(Π) = d(Λ).

Suppose, in addition, that theΛ-translates of K are not a packing of Rn . Then there
exist distinct points x1, x2 in the interior G of K such that a = x1 − x2 ∈ Λ. Let

Bε = {x ∈ Rn : |x | ≤ ε}.
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We can choose ε > 0 so small that the balls Bε + x1 and Bε + x2 are disjoint and
contained in G. Then G ′ = G\(Bε+ x1) is a bounded nonempty open set with closure
K ′ = K\(intBε + x1). Since

Bε + x1 = Bε + x2 + a ⊆ K ′ + a,

theΛ-translates of K ′ contain K and therefore also cover Rn . Hence, by what we have
already proved, λ(K ′) ≥ d(Λ). Since λ(K ) > λ(K ′), it follows that λ(K ) > d(Λ).

Suppose now that the Λ-translates of K are a packing of Rn . Then Λ does not
contain the difference of two distinct points in the interior G of K , since G + a and
G + b are disjoint if a, b are distinct points of Λ. It follows from Proposition 9 that

λ(K ) = λ(G) ≤ d(Λ).

Suppose, in addition, that theΛ-translates of K do not cover Rn . Thus there exists
a point y ∈ Rn which is not in anyΛ-translate of K . We will show that we can choose
ε > 0 so small that y is not in anyΛ-translate of K + Bε.

If this is not the case then, for any positive integer v, there exists av ∈ Λ such that

y ∈ K + B1/v + av.

Evidently the sequence av is bounded and hence there exists a ∈ Λ such that av = a
for infinitely many v. But then y ∈ K + a, which is contrary to hypothesis.

We may in addition assume ε chosen so small that |x | > 2ε for every nonzero
x ∈ Λ. Then the set S = G ∪ (Bε + y) has the property that Λ does not contain the
difference of any two distinct points of S. Hence, by Proposition 9, λ(S) ≤ d(Λ). Since

λ(K ) = λ(G) < λ(S),
it follows that λ(K ) < d(Λ). �

We next apply Proposition 9 to convex sets. Minkowski’s lattice point theorem
(Theorem 1) is the special case m = 1 (and Λ = Zn) of the following generalization,
due to van der Corput (1936):

Proposition 12 Let C be a symmetric convex subset of Rn, Λ a lattice in Rn with
determinant d(Λ), and m a positive integer.

If λ(C) > 2nm d(Λ), or if C is compact and λ(C) = 2nm d(Λ), then there exist
2m distinct nonzero points±y1, . . . ,±ym of Λ such that

y j ∈ C (1 ≤ j ≤ m),

y j − yk ∈ C (1 ≤ j, k ≤ m).

Proof The set S = {x/2 : x ∈ C} has measure λ(S) = λ(C)/2n . Hence, by Proposi-
tion 9, there exist m + 1 distinct points x1, . . . , xm+1 ∈ C such that (x j − xk)/2 ∈ Λ
for all j, k.

The vectors of Rn may be totally ordered by writing x > x ′ if x − x ′ has its first
nonzero coordinate positive. We assume the points x1, . . . , xm+1 ∈ C numbered so that

x1 > x2 > · · · > xm+1.
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Put

y j = (x j − xm+1)/2 ( j = 1, . . . ,m).

Then, by construction, y j ∈Λ( j = 1, . . . ,m). Moreover y j ∈ C , since x1, . . . , xm+1∈
C and C is symmetric, and similarly y j − yk = (x j − xk)/2 ∈ C . Finally, since

y1 > y2 > · · · > ym > O,

we have y j �= O and y j �= ±yk if j �= k. �

The conclusion of Proposition 12 need no longer hold if C is not compact and
λ(C) = 2nm d(Λ). For example, take Λ = Zn and let C be the symmetric convex set

C = {x = (ξ1, . . . , ξn) ∈ Rn : |ξ1| < m, |ξ j | < 1 for 2 ≤ j ≤ n}.

Then d(Λ) = 1 and λ(C) = 2nm. However, the only nonzero points of Λ in C are the
2(m − 1) points (± k, 0, . . . , 0) (1 ≤ k ≤ m − 1).

To provide a broader view of the geometry of numbers we now mention
without proof some further results. A different generalization of Minkowski’s lattice
point theorem was already proved by Minkowski himself. LetΛ be a lattice in Rn and
let K be a compact symmetric convex subset of Rn with nonempty interior. Then ρK
contains no nonzero point of Λ for small ρ > 0 and contains n linearly independent
points of Λ for large ρ > 0. Let µi denote the infimum of all ρ > 0 such that ρK
contains at least i linearly independent points of Λ (i = 1, . . . , n). Clearly the
successive minima µi = µi (K ,Λ) satisfy the inequalities

0 < µ1 ≤ µ2 ≤ · · · ≤ µn <∞.

Minkowski’s lattice point theorem says that

µn
1λ(K ) ≤ 2nd(Λ).

Minkowski’s theorem on successive minima strengthens this to

2n d(Λ)/n! ≤ µ1µ2 · · ·µnλ(K ) ≤ 2nd(Λ).

The lower bound is quite easy to prove, but the upper bound is more deep-lying —
notwithstanding simplifications of Minkowski’s original proof. If Λ = Zn , then
equality holds in the upper bound for the cube K = {(ξ1, . . . , ξn) ∈ Rn : |ξi | ≤
1 for all i} and in the lower bound for the cross-polytope K = {(ξ1, . . . , ξn) ∈ Rn :∑n

i=1 |ξi | ≤ 1}.
If K is a compact symmetric convex subset of Rn with nonempty interior, we

define its critical determinant ∆(K ) to be the infimum, over all lattices Λ with no
nonzero point in the interior of K , of their determinants d(Λ). A lattice Λ for which
d(Λ) = ∆(K ) is called a critical lattice for K . It will be shown in §6 that a critical
lattice always exists.
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It follows from Proposition 12 that ∆(K ) ≥ 2−nλ(K ). A conjectured sharpening
of Minkowski’s theorem on successive minima, which has been proved by Minkowski
(1896) himself for n = 2 and for n-dimensional ellipsoids, and by Woods (1956) for
n = 3, claims that

µ1µ2 · · ·µn∆(K ) ≤ d(Λ).

The successive minima of a convex body are connected with those of its dual body.
If K is a compact symmetric convex subset of Rn with nonempty interior, then its dual

K ∗ = {y ∈ Rn : yt x ≤ 1 for all x ∈ K }

has the same properties, and K is the dual of K ∗. Mahler (1939) showed that the
successive minima of the dual body K ∗ with respect to the dual lattice Λ∗ are related
to the successive minima of K with respect to Λ by the inequalities

1 ≤ µi (K ,Λ)µn−i+1(K
∗,Λ∗) (i = 1, . . . , n),

and hence, by applying Minkowski’s theorem on successive minima also to K ∗ and
Λ∗, he obtained inequalities in the opposite direction:

µi (K ,Λ)µn−i+1(K
∗,Λ∗) ≤ 4n/λ(K )λ(K ∗) (i = 1, . . . , n).

By further proving that λ(K )λ(K ∗) ≥ 4n(n!)−2, he deduced that

µi (K ,Λ)µn−i+1(K
∗,Λ∗) ≤ (n!)2 (i = 1, . . . , n).

Dramatic improvements of these bounds have recently been obtained. Banaszczyk
(1996), with the aid of techniques from harmonic analysis, has shown that there is
a numerical constant C > 0 such that, for all n ≥ 1 and all i ∈ {1, . . . , n),

µi (K ,Λ)µn−i+1(K
∗,Λ∗) ≤ Cn(1 + log n).

He had shown already (1993) that if K = B1 is the n-dimensional closed unit ball,
which is self-dual, then for all n ≥ 1 and all i ∈ {1, . . . , n),

µi (B1,Λ)µn−i+1(B1,Λ
∗) ≤ n.

This result is close to being best possible, since there exists a numerical constant
C ′ > 0 and self-dual lattices Λn ⊆ Rn such that

µ1(B1,Λn)µn(B1,Λn) ≥ µ1(B1,Λn)
2 ≥ C ′n.

Two other applications of Minkowski’s theorem on successive minima will be men-
tioned here. The first is a sharp form, due to Bombieri and Vaaler (1983), of ‘Siegel’s
lemma’. In his investigations on transcendental numbers Siegel (1929) used Dirichlet’s
pigeonhole principle to prove that if A = (α j k) is an m × n matrix of integers, where
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m < n, such that |α j k| ≤ β for all j, k, then the system of homogeneous linear
equations

Ax = 0

has a solution x = (ξk) in integers, not all 0, such that |ξk | ≤ 1+ (nβ)m/(n−m) for all k.
Bombieri and Vaaler show that, if A has rank m and if g > 0 is the greatest common
divisor of all m × m subdeterminants of A, then there are n − m linearly independent
integral solutions x j = (ξ j k) ( j = 1, . . . , n − m) such that

n−m∏
j=1

‖x j‖ ≤ [det(AAt )]1/2/g,

where ‖x j‖ = maxk |ξ j k |.
The second application, due to Gillet and Soulé (1991), may be regarded as an

arithmetic analogue of the Riemann–Roch theorem for function fields. Again let K be
a compact symmetric convex subset of Rn with nonempty interior and let µi denote
the infimum of all ρ > 0 such that ρK contains at least i linearly independent points
of Zn(i = 1, . . . , n). If M(K ) is the number of points of Zn in K , and if h is the maxi-
mum number of linearly independent points of Zn in the interior of K , then Gillet and
Soulé show that µ1 · · ·µh/M(K ) is bounded above and below by positive constants,
which depend on n but not on K .

A number of results in this section have dealt with compact symmetric convex sets
with nonempty interior. Since such sets may appear rather special, it should be pointed
out that they arise very naturally in connection with normed vector spaces.

The vector space Rn is said to be normed if with each x ∈ Rn there is associated a
real number |x | with the properties

(i) |x | ≥ 0, with equality if and only if x = O,
(ii) |x + y| ≤ |x | + |y| for all x, y ∈ Rn ,

(iii) |αx | = |α||x | for all x ∈ Rn and all α ∈ R.

Let K denote the set of all x ∈ Rn such that |x | ≤ 1. Then K is bounded, since all
norms on a finite-dimensional vector space are equivalent. In fact K is compact, since
it follows from (ii) that K is closed. Moreover K is convex and symmetric, by (ii) and
(iii). Furthermore, by (i) and (iii), x/|x | ∈ K for each nonzero x ∈ Rn . Hence the
interior of K is nonempty and is actually the set of all x ∈ Rn such that |x | < 1.

Conversely, let K be a compact symmetric convex subset of Rn with nonempty
interior. Then the origin is an interior point of K and for each nonzero x ∈ Rn there is a
unique ρ > 0 such that ρx is on the boundary of K . If we put |x | = ρ−1, and |O| = 0,
then (i) obviously holds. Furthermore, since |−x | = |x |, it is easily seen that (iii) holds.
Finally, if y ∈ Rn and |y| = σ−1, then ρx, σ y ∈ K and hence, since K is convex,

ρσ(ρ + σ)−1(x + y) = σ(ρ + σ)−1ρx + ρ(ρ + σ)−1σ y ∈ K .

Hence

|x + y| ≤ (ρ + σ)/ρσ = |x | + |y|.
Thus Rn is a normed vector space and K the set of all x ∈ Rn such that |x | ≤ 1.
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4 Voronoi Cells

Throughout this section we suppose Rn equipped with the Euclidean metric:

d(y, z) = ‖y − z‖,
where ‖x‖ = (xt x)1/2. We call ‖x‖2 = x t x the square-norm of x and we denote the
scalar product yt z by (y, z).

Fix some point x0 ∈ Rn . For any point x �= x0, the set of all points which are
equidistant from x0 and x is the hyperplane Hx which passes through the midpoint of
the segment joining x0 and x and is orthogonal to this segment. Analytically, Hx is the
set of all y ∈ Rn such that

(x − x0, y) = (x − x0, x + x0)/2,

which simplifies to

2(x − x0, y) = ‖x‖2 − ‖x0‖2.

The set of all points which are closer to x0 than to x is the open half-space Gx consist-
ing of all points y ∈ Rn such that

2(x − x0, y) < ‖x‖2 − ‖x0‖2.

The closed half-space Ḡx = Hx∪Gx is the set of all points at least as close to x0 as to x .
Let X be a subset of Rn containing more than one point which is discrete, i.e. for

each y ∈ Rn there exists an open set containing y which contains at most one point
of X . It follows that each bounded subset of Rn contains only finitely many points of
X since, if there were infinitely many, they would have an accumulation point. Hence
for each y ∈ Rn there exists an x0 ∈ X whose distance from y is minimal:

d(x0, y) ≤ d(x, y) for every x ∈ X. (1)

For each x0 ∈ X we define its Voronoi cell V (x0) to be the set of all y ∈ Rn for
which (1) holds. Voronoi cells are also called ‘Dirichlet domains’, since they were
used by Dirichlet (1850) in R2 before Voronoi (1908) used them in Rn .

If we choose r > 0 so that the open ball

βr (x0) := {y ∈ Rn : d(x0, y) < r}
contains no point of X except x0, then βr/2(x0) ⊆ V (x0). Thus x0 is an interior point
of V (x0).

Since

Ḡx = {y ∈ Rn : d(x0, y) ≤ d(x, y)},
we have V (x0) ⊆ Ḡx and actually

V (x0) = ∩
x∈X\x0

Ḡx . (2)
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It follows at once from (2) that V (x0) is closed and convex. Hence V (x0) is the closure
of its nonempty interior.

According to the definitions of §3, the Voronoi cells form a tiling of Rn , since

Rn = ∪
x∈X

V (x),

intV (x) ∩ intV (x ′) = ∅ if x, x ′ ∈ X and x �= x ′.

A subset A of a convex set C is said to be a face of C if A is convex and, for
any c, c′ ∈ C , (c, c′) ∩ A �= ∅ implies c, c′ ∈ A. The tiling by Voronoi cells has the
additional property that V (x) ∩ V (x ′) is a face of both V (x) and V (x ′) if x, x ′ ∈ X
and x �= x ′. We will prove this by showing that if y1, y2 are distinct points of V (x)
and if z ∈ (y1, y2) ∩ V (x ′), then y1 ∈ V (x ′).

Since z ∈ V (x)∩ V (x ′), we have d(x, z) = d(x ′, z). Thus z lies on the hyperplane
H which passes through the midpoint of the segment joining x and x ′ and is orthogo-
nal to this segment. If y1 /∈ V (x ′), then d(x, y1) < d(x ′, y1). Thus y1 lies in the open
half-space G associated with the hyperplane H which contains x . But then y2 lies in
the open half-space G′ which contains x ′, i.e. d(x ′, y2) < d(x, y2), which contradicts
y2 ∈ V (x).

We now assume that the set X is not only discrete, but also relatively dense, i.e.

(†) there exists R > 0 such that, for each y ∈ Rn , there is some x ∈ X with
d(x, y) < R.

It follows at once that V (x0) ⊆ βR(x0). Thus V (x0) is bounded and, since it is
closed, even compact. The ball β2R(x0) contains only finitely many points x1, . . . , xm

of X apart from x0. We are going to show that

V (x0) =
m∩

i=1
Ḡxi . (3)

By (2) we need only show that if y ∈⋂m
i=1 Ḡxi , then y ∈ Ḡx for every x ∈ X .

Assume that d(x0, y) ≥ R and choose z on the segment joining x0 and y so that
d(x0, z) = R. For some x ∈ X we have d(x, z) < R and hence 0 < d(x0, x) < 2R.
Consequently x = xi for some i ∈ {1, . . . ,m}. Since d(xi , z) < R = d(x0, z), we
have z /∈ Ḡxi . But this is a contradiction, since x0, y ∈ Ḡxi and z is on the segment
joining them.

We conclude that d(x0, y) < R. If x ∈ X and x �= x0, x1, . . . , xm , then

d(x, y) ≥ d(x0, x)− d(x0, y)

≥ 2R − R = R > d(x0, y).

Consequently y ∈ Ḡx for every x ∈ X .
It follows from (3) that V (x0) is a polyhedron. Since V (x0) is bounded and has a

nonempty interior, it is actually an n-dimensional polytope.
The faces of a polytope are an important part of its structure. An (n − 1)-

dimensional face of an n-dimensional polytope is said to be a facet and a 0-dimensional
face is said to be a vertex. We now apply to V (x0) some properties common to all poly-
topes.
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In the representation (3) it may be possible to omit some closed half-spaces Ḡxi

without affecting the validity of the representation. By omitting as many half-spaces as
possible we obtain an irredundant representation, which by suitable choice of notation
we may take to be

V (x0) =
l∩

i=1
Ḡxi

for some l ≤ m. The intersections V (x0) ∩ Hxi (1 ≤ i ≤ l) are then the distinct facets
of V (x0). Any nonempty proper face of V (x0) is contained in a facet and is the inter-
section of those facets which contain it. Furthermore, any nonempty face of V (x0) is
the convex hull of those vertices of V (x0) which it contains.

It follows that for each xi (1 ≤ i ≤ l) there is a vertex vi of V (x0) such that

d(x0, vi ) = d(xi , vi ).

For d(x0, v) ≤ d(xi , v) for every vertex v of V (x0). Assume that d(x0, v) < d(xi , v)
for every vertex v of V (x0). Then the open half-space Gxi contains all vertices v and
hence also their convex hull V (x0). But this is a contradiction, since V (x0) ∩ Hxi is a
facet of V (x0).

To illustrate these results take X = Zn and x0 = O. Then the Voronoi cell
V (O) is the cube consisting of all points y = (η1, . . . , ηn) ∈ Rn with |ηi | ≤ 1/2
(i = 1, . . . , n). It has the minimal number 2n of facets.

In fact any lattice Λ in Rn is discrete and has the property (†). For a lattice Λ we
can restrict attention to the Voronoi cell V (Λ) := V (O), since an arbitrary Voronoi
cell is obtained from it by a translation: V (x0) = V (O) + x0. The Voronoi cell of
a lattice has extra properties. Since x ∈ Λ implies −x ∈ Λ, y ∈ V (Λ) implies
−y ∈ V (Λ). Furthermore, if xi is a lattice vector determining a facet of V (Λ) and if
y ∈ V (Λ) ∩ Hxi , then ‖y‖ = ‖y − xi‖. Since x ∈ Λ implies xi − x ∈ Λ, it follows
that y ∈ V (Λ) ∩ Hxi implies xi − y ∈ V (Λ) ∩ Hxi . Thus the Voronoi cell V (Λ) and
all its facets are centrosymmetric.

In addition, any orthogonal transformation of Rn which maps onto itself the lattice
Λ also maps onto itself the Voronoi cell V (Λ). Furthermore the Voronoi cell V (Λ)
has volume d(Λ), by Proposition 11, since the lattice translates of V (Λ) form a tiling
of Rn .

We define a facet vector or ‘relevant vector’ of a lattice Λ to be a vector xi ∈ Λ
such that V (Λ) ∩ Hxi is a facet of the Voronoi cell V (Λ). If V (Λ) is contained in the
closed ball BR = {x ∈ Rn : ‖x‖ ≤ R}, then every facet vector xi satisfies ‖xi‖ ≤ 2R.
For, if y ∈ V (Λ) ∩ Hxi then, by Schwarz’s inequality (Chapter I, §4),

‖xi‖2 = 2(xi , y) ≤ 2‖xi‖‖y‖.
The facet vectors were characterized by Voronoi (1908) in the following way:

Proposition 13 A nonzero vector x ∈ Λ is a facet vector of the lattice Λ ⊆ Rn if and
only if every vector x ′ ∈ x + 2Λ, except ±x, satisfies ‖x ′‖ > ‖x‖.
Proof Suppose first that ‖x‖ < ‖x ′‖ for all x ′ �= ± x such that (x ′ − x)/2 ∈ Λ. If
z ∈ Λ and x ′ = 2z − x , then (x ′ − x)/2 ∈ Λ. Hence if z �= O, x then
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‖x/2‖ < ‖z − x/2‖,
i.e. x/2 ∈ Gz . Since ‖x/2‖ = ‖x − x/2‖, it follows that x/2 ∈ V (Λ) and x is a facet
vector.

Suppose next that there exists x ′ �= ±x such that w = (x ′ − x)/2 ∈ Λ and
‖x ′‖ ≤ ‖x‖. Then also z = (x ′ + x)/2 ∈ Λ and z, w �= O. If y ∈ Ḡz ∩ Ḡ−w, then

2(z, y) ≤ ‖z‖2, −2(w, y) ≤ ‖w‖2.

Hence, by the parallelogram law (Chapter I, §10),

2(x, y) = 2(z, y)− 2(w, y) ≤ ‖z‖2 + ‖w‖2

= ‖x‖2/2+ ‖x ′‖2/2 ≤ ‖x‖2.

That is, y ∈ Ḡx . Thus Ḡx is not needed to define V (Λ) and x is not a facet vector. �

Any lattice Λ contains a nonzero vector with minimal square-norm. Such a vector
will be called a minimal vector. Its square-norm will be called the minimum of Λ and
will be denoted by m(Λ).

Proposition 14 If Λ ⊆ Rn is a lattice with minimum m(Λ), then any nonzero vector
inΛ with square-norm< 2m(Λ) is a facet vector. In particular, any minimal vector is
a facet vector.

Proof Put r = m(Λ) and let x be a nonzero vector in Λ with ‖x‖2 < 2r . If x is not
a facet vector, there exists y �= ±x with (y − x)/2 ∈ Λ such that ‖y‖ ≤ ‖x‖. Since
(y ± x)/2 ∈ Λ, ‖x ± y‖2 ≥ 4r . Thus

4r ≤ ‖x‖2 + ‖y‖2 ± 2(x, y) < 4r ± 2(x, y),

which is impossible. �

Proposition 15 For any latticeΛ ⊆ Rn, the number of facets of its Voronoi cell V (Λ)
is at most 2(2n − 1).

Proof Let x1, . . . , xn be a basis for Λ. Then any vector x ∈ Λ has a unique represen-
tation x = x ′ + x ′′, where x ′ ∈ 2Λ and

x ′′ = α1x1 + · · · + αn xn,

with α j ∈ {0, 1} for j = 1, . . . , n. Thus the number of cosets of 2Λ in Λ is 2n . But,
by Proposition 13, each coset contains at most one pair ±y of facet vectors. Since 2Λ
itself does not contain any facet vectors, the total number of facet vectors is at most
2(2n − 1). �

There exist lattices Λ ⊆ Rn for which the upper bound of Proposition 15 is
attained, e.g. the lattice Λ = {T z : z ∈ Zn} with T = I + β J , where J denotes
the n × n matrix every element of which is 1 and β = {(1+ n)1/2 − 1}/n.

Proposition 16 Every vector of a lattice Λ ⊆ Rn is an integral linear combination of
facet vectors.
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Proof Let b1, . . . , bm be the facet vectors of Λ and put

Λ′ = {x = β1b1 + · · · + βmbm : β1, . . . , βm ∈ Z}.
EvidentlyΛ′ is a subgroup of Rn and actually a discrete subgroup, sinceΛ′ ⊆ Λ. IfΛ′
were contained in a hyperplane of Rn any point on the line through the origin orthog-
onal to this hyperplane would belong to the Voronoi cell V of Λ, which is impossible
because V is bounded. Hence Λ′ contains n linearly independent vectors.

ThusΛ′ is a sublattice ofΛ. It follows that the Voronoi cell V ofΛ is contained in
the Voronoi cell V ′ of Λ′. But if y ∈ V ′, then

‖y‖ ≤ ‖bi − y‖, (i = 1, . . . ,m)

and hence y ∈ V . Thus V ′ = V . Hence the Λ′-translates of V and the Λ-translates of
V are both tilings of Rn . Since Λ′ ⊆ Λ, this is possible only if Λ′ = Λ. �

Since every integral linear combination of facet vectors is in the lattice, Proposi-
tion 16 implies

Corollary 17 Distinct lattices in Rn have distinct Voronoi cells.

Proposition 16 does not say that the lattice has a basis of facet vectors. It is known
that every lattice in Rn has a basis of facet vectors if n ≤ 6, but if n > 6 this is still an
open question. It is known also that every lattice in Rn has a basis of minimal vectors
when n ≤ 4 but, when n > 4, there are lattices with no such basis. In fact a lattice may
have no basis of minimal vectors, even though every lattice vector is an integral linear
combination of minimal vectors.

Lattices and their Voronoi cells have long been used in crystallography. An
n-dimensional crystal may be defined mathematically to be a subset of Rn of the form

F +Λ = {x + y : x ∈ F, y ∈ Λ},
where F is a finite set and Λ a lattice. Crystals may be studied by means of their
symmetry groups.

An isometry of Rn is an invertible affine transformation which leaves unaltered the
Euclidean distance between any two points. For example, any orthogonal transforma-
tion is an isometry and so is a translation by an arbitrary vector v. Any isometry is the
composite of a translation and an orthogonal transformation. The symmetry group of a
set X ⊆ Rn is the group of all isometries of Rn which map X to itself.

We define an n-dimensional crystallographic group to be a group G of isometries
of Rn such that the vectors corresponding to translations in G form an n-dimensional
lattice. It is not difficult to show that a subset of Rn is an n-dimensional crystal if and
only if it is discrete and its symmetry group is an n-dimensional crystallographic group.

It was shown by Bieberbach (1911) that a group G of isometries of Rn is a crys-
tallographic group if and only if it is discrete and has a compact fundamental domain
D, i.e. the sets {g(D) : g ∈ G} form a tiling of Rn . He could then show that the
translations in a crystallographic group form a torsion-free abelian normal subgroup
of finite index. He showed later (1912) that two crystallographic groups G1,G2 are
isomorphic if and only if there exists an invertible affine transformation A such that
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G2 = A−1G1 A. With the aid of results of Minkowski and Jordan it follows that,
for a given dimension n, there are only finitely many non-isomorphic crystallographic
groups. These results provided a positive answer to the first part of the 18th Problem
of Hilbert (1900).

The structure of physical crystals is analysed by means of the corresponding
3-dimensional crystallographic groups. A stronger concept than isomorphism is useful
for such applications. Two crystallographic groups G1,G2 may be said to be properly
isomorphic if there exists an orientation-preserving invertible affine transformation A
such that G2 = A−1G1 A. An isomorphism class of crystallographic groups either
coincides with a proper isomorphism class or splits into two distinct proper isomor-
phism classes.

Fedorov (1891) showed that there are 17 isomorphism classes of 2-dimensional
crystallographic groups, none of which splits. Collating earlier work of Sohncke
(1879), Schoenflies (1889) and himself, Fedorov (1892) also showed that there are 219
isomorphism classes of 3-dimensional crystallographic groups, 11 of which split. More
recently, Brown et al. (1978) have shown that there are 4783 isomorphism classes of
4-dimensional crystallographic groups, 112 of which split.

5 Densest Packings

The result of Hermite, mentioned at the beginning of the chapter, can be formulated
in terms of lattices instead of quadratic forms. For any real non-singular matrix T , the
matrix

A = T t T

is a real positive definite symmetric matrix. Conversely, by a principal axes transfor-
mation, or more simply by induction, it may be seen that any real positive definite
symmetric matrix A may be represented in this way.

Let Λ be the lattice

Λ = {y = T x ∈ Rn : x ∈ Zn}
and put

γ (Λ) = m(Λ)/d(Λ)2/n,

where d(Λ) is the determinant and m(Λ) the minimum of Λ. Then γ (ρΛ) = γ (Λ)
for any ρ > 0. Hermite’s result that there exists a positive constant cn , depending only
on n, such that 0 < xt Ax ≤ cn(det A)1/n for some x ∈ Zn may be restated in the form

γ (Λ) ≤ cn .

Hermite’s constant γn is defined to be the least positive constant cn such that this
inequality holds for all Λ ⊆ Rn .

It may be shown that γ n
n is a rational number for each n. It follows from Proposi-

tion 2 that limn→∞γn/n ≤ 2/πe. Minkowski (1905) showed also that
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limn→∞γn/n ≥ 1/2πe = 0.0585 . . . ,

and it is possible that actually limn→∞ γn/n = 1/2πe. The significance of Hermite’s
constant derives from its connection with lattice packings of balls, as we now explain.

Let Λ be a lattice in Rn and K a subset of Rn which is the closure of a nonempty
open set G. We say that Λ gives a lattice packing for K if the family of translates
K + x (x ∈ Λ) is a packing of Rn , i.e. if for any two distinct points x, y ∈ Λ the inte-
riors G + x and G + y are disjoint. This is the same as saying that Λ does not contain
the difference of any two distinct points of the interior of K , since g + x = g′ + y if
and only if g′ − g = x − y. If K is a compact symmetric convex set with nonempty
interior G, it is the same as saying that the interior of the set 2K contains no nonzero
point of Λ, since in this case g, g′ ∈ G implies (g′ − g)/2 ∈ G and 2g = g − (−g).

The density of the lattice packing, i.e. the fraction of the total space which is
occupied by translates of K , is clearly λ(K )/d(Λ). Hence the maximum density of
any lattice packing for K is

δ(K ) = λ(K )/∆(2K ) = 2−nλ(K )/∆(K ),

where ∆(K ) is the critical determinant of K , as defined in §3. The use of the word
‘maximum’ is justified, since it will be shown in §6 that the infimum involved in the
definition of critical determinant is attained.

Our interest is in the special case of a closed ball: K = Bρ = {x ∈ Rn : ‖x‖ ≤ ρ}.
By what we have said, Λ gives a lattice packing for Bρ if and only if the interior of
B2ρ contains no nonzero point of Λ, i.e. if and only if m(Λ)1/2 ≥ 2ρ. Hence

δ(Bρ) = sup{λ(Bρ)/d(Λ) : m(Λ)1/2 = 2ρ}
= κnρ

n sup{d(Λ)−1 : m(Λ)1/2 = 2ρ},

where κn = πn/2/(n/2)! again denotes the volume of the unit ball in Rn . By virtue of
homogeneity it follows that

δn := δ(Bρ) = 2−nκn sup
Λ
γ (Λ)n/2,

where the supremum is now over all lattices Λ ⊆ Rn ; that is, in terms of Hermite’s
constant γn ,

δn = 2−nκnγ
n/2
n .

Thus γn , like δn , measures the densest lattice packing of balls. A lattice Λ ⊆ Rn for
which γ (Λ) = γn , i.e. a critical lattice for a ball, will be called simply a densest lattice.

The densest lattice in Rn is known for each n ≤ 8, and is uniquely determined apart
from isometries and scalar multiples. In fact these densest lattices are all examples of
indecomposable root lattices. These terms will now be defined.

A lattice Λ is said to be decomposable if there exist additive subgroups Λ1,Λ2
of Λ, each containing a nonzero vector, such that (x1, x2) = 0 for all x1 ∈ Λ1 and
x2 ∈ Λ2, and every vector in Λ is the sum of a vector in Λ1 and a vector in Λ2. Since
Λ1 andΛ2 are necessarily discrete, they are lattices in the wide sense (i.e. they are not
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full-dimensional). We say also that Λ is the orthogonal sum of the lattices Λ1 andΛ2.
The orthogonal sum of any finite number of lattices is defined similarly. A lattice is
indecomposable if it is not decomposable.

The following result was first proved by Eichler (1952).

Proposition 18 Any lattice Λ is an orthogonal sum of finitely many indecomposable
lattices, which are uniquely determined apart from order.

Proof (i) Define a vector x ∈ Λ to be ‘decomposable’ if there exist nonzero vectors
x1, x2 ∈ Λ such that x = x1 + x2 and (x1, x2) = 0. We show first that every nonzero
x ∈ Λ is a sum of finitely many indecomposable vectors.

By definition, x is either indecomposable or is the sum of two nonzero orthogonal
vectors inΛ. Both these vectors have square-norm less than the square-norm of x , and
for each of them the same alternative presents itself. Continuing in this way, we must
eventually arrive at indecomposable vectors, since there are only finitely many vectors
in Λ with square-norm less than that of x .

(ii) If Λ is the orthogonal sum of finitely many lattices Lv then, by the definition
of an orthogonal sum, every indecomposable vector of Λ lies in one of the sublat-
tices Lv. Hence if two indecomposable vectors are not orthogonal, they lie in the same
sublattice Lv.

(iii) Call two indecomposable vectors x, x ′ ‘equivalent’ if there exist indecompos-
able vectors x = x0, x1, . . . , xk−1, xk = x ′ such that (x j , x j+1) �= 0 for 0 ≤ j < k.
Clearly ‘equivalence’ is indeed an equivalence relation and thus the set of all indecom-
posable vectors is partitioned into equivalence classes Cµ. Two vectors from different
equivalence classes are orthogonal and, if Λ is an orthogonal sum of lattices Lv as in
(ii), then two vectors from the same equivalence class lie in the same sublattice Lv .

(iv) LetΛµ be the subgroup ofΛ generated by the vectors in the equivalence class
Cµ. Then, by (i), Λ is generated by the sublattices Λµ. Since, by (iii), Λµ is orthogo-
nal to Λµ′ if µ �= µ′, Λ is actually the orthogonal sum of the sublattices Λµ. If Λ is
an orthogonal sum of lattices Lv as in (ii), then each Λµ is contained in some Lv . It
follows that eachΛµ is indecomposable and that these indecomposable sublattices are
uniquely determined apart from order. �

LetΛ be a lattice in Rn . IfΛ ⊆ Λ∗, i.e. if (x, y) ∈ Z for all x, y ∈ Λ, thenΛ is said
to be integral. If (x, x) is an even integer for every x ∈ Λ, then Λ is said to be even.
(It follows that an even lattice is also integral.) IfΛ is even and every vector in Λ is an
integral linear combination of vectors in Λ with square-norm 2, then Λ is said to be a
root lattice.

Thus in a root lattice the minimal vectors have square-norm 2. It may be shown by a
long, but elementary, argument that any root lattice has a basis of minimal vectors such
that every minimal vector is an integral linear combination of the basis vectors with
coefficients which are all nonnegative or all nonpositive. Such a basis will be called a
simple basis. The facet vectors of a root lattice are precisely the minimal vectors, and
hence its Voronoi cell is the set of all y ∈ Rn such that (y, x) ≤ 1 for every minimal
vector x .

Any root lattice is an orthogonal sum of indecomposable root lattices. It was shown
by Witt (1941) that the indecomposable root lattices can be completely enumerated;
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Table 1. Indecomposable root lattices

An = {x = (ξ0, ξ1, . . . , ξn) ∈ Zn+1 : ξ0 + ξ1 + · · · + ξn = 0} (n ≥ 1);
Dn = {x = (ξ1, . . . , ξn) ∈ Zn : ξ1 + · · · + ξn even} (n ≥ 3);

E8 = D8 ∪ D†
8, where D†

8 = (1/2, 1/2, . . . , 1/2) + D8;
E7 = {x = (ξ1, . . . , ξ8) ∈ E8 : ξ7 = −ξ8};
E6 = {x = (ξ1, . . . , ξ8) ∈ E8 : ξ6 = ξ7 = −ξ8}.

they are all listed in Table 1. We give also their minimal vectors in terms of the canon-
ical basis e1, . . . , en of Rn .

The lattice An has n(n + 1) minimal vectors, namely the vectors ±(e j − ek)
(0 ≤ j < k ≤ n), and the vectors e0 − e1, e1 − e2, . . . , en−1 − en form a simple
basis. By calculating the determinant of Bt B , where B is the (n+1)×n matrix whose
columns are the vectors of this simple basis, it may be seen that the determinant of the
lattice An is (n + 1)1/2.

The lattice Dn has 2n(n − 1) minimal vectors, namely the vectors ±e j ± ek

(1 ≤ j < k ≤ n). The vectors e1 − e2, e2 − e3, . . . , en−1 − en, en−1 + en form a
simple basis and hence the lattice Dn has determinant 2.

The lattice E8 has 240 minimal vectors, namely the 112 vectors ±e j ± ek (1 ≤
j < k ≤ 8) and the 128 vectors (±e1 ± · · · ± e8)/2 with an even number of minus
signs. The vectors

v1 = (e1 − e2 − · · · − e7 + e8)/2, v2 = e1 + e2,

v3 = e2 − e1, v4 = e3 − e2, . . . , v8 = e7 − e6,

form a simple basis and hence the lattice has determinant 1.
The lattice E7 has 126 minimal vectors, namely the 60 vectors±e j ± ek (1 ≤ j <

k ≤ 6), the vectors ±(e7 − e8) and the 64 vectors ±
(∑6

i=1(±ei ) − e7 + e8

)
/2 with

an odd number of minus signs in the sum. The vectors v1, . . . , v7 form a simple basis
and the lattice has determinant

√
2.

The lattice E6 has 72 minimal vectors, namely the 40 vectors ±e j ± ek (1 ≤ j <

k ≤ 5) and the 32 vectors ±
(∑5

i=1(±ei )− e6 − e7 + e8

)
/2 with an even number of

minus signs in the sum. The vectors v1, . . . , v6 form a simple basis and the lattice has
determinant

√
3.

We now return to lattice packings of balls. The densest lattices for n ≤ 8 are given
in Table 2. These lattices were shown to be densest by Lagrange (1773) for n = 2,
by Gauss (1831) for n = 3, by Korkine and Zolotareff (1872,1877) for n = 4, 5 and
by Blichfeldt (1925,1926,1934) for n = 6, 7, 8.

Although the densest lattice in Rn is unknown for every n > 8, there are plausible
candidates in some dimensions. In particular, a lattice discovered by Leech (1967) is
believed to be densest in 24 dimensions. This lattice may be constructed in the follow-
ing way. Let p be a prime such that p ≡ 3 mod 4 and let Hn be the Hadamard matrix
of order n = p + 1 constructed by Paley’s method (see Chapter V, §2). The columns
of the matrix
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Table 2. Densest lattices in Rn

n Λ γn δn

1 A1 1 1
2 A2 (4/3)1/2= 1.1547 . . . 31/2π/6= 0.9068 . . .
3 D3 21/3= 1.2599 . . . 21/2π/6= 0.7404 . . .
4 D4 21/2= 1.4142 . . . π2/16= 0.6168 . . .
5 D5 81/5= 1.5157 . . . 21/2π2/30= 0.4652 . . .
6 E6 (64/3)1/6= 1.6653 . . . 31/2π3/144= 0.3729 . . .
7 E7 (64)1/7= 1.8114 . . . π3/105= 0.2952 . . .
8 E8 2 π4/384= 0.2536 . . .

T = (n/4+ 1)−1/2
(
(n/4 + 1)In Hn − In

0n In

)

generate a lattice in R2n . For p = 3 we obtain the root lattice E8 and for p = 11 the
Leech lattice Λ24.

Leech’s lattice may be characterized as the unique even lattice Λ in R24 with
d(Λ) = 1 and m(Λ) > 2. It was shown by Conway (1969) that, if G is the group
of all orthogonal transformations of R24 which map the Leech lattice Λ24 onto itself,
then the factor group G/{±I24} is a finite simple group, and two more finite simple
groups are easily obtained as (stabilizer) subgroups. These are three of the 26 sporadic
simple groups which were mentioned in §7 of Chapter V.

Leech’s lattice has 196560 minimal vectors of square-norm 4. Thus the packing of
unit balls associated with Λ24 is such that each ball touches 196560 other balls. It has
been shown that 196560 is the maximal number of nonoverlapping unit balls in R24

which can touch another unit ball and that, up to isometry, there is only one possible
arrangement.

Similarly, since E8 has 240 minimal vectors of square-norm 2, the packing of balls
of radius 2−1/2 associated with E8 is such that each ball touches 240 other balls. It has
been shown that 240 is the maximal number of nonoverlapping balls of fixed radius in
R8 which can touch another ball of the same radius and that, up to isometry, there is
only one possible arrangement.

In general, one may ask what is the kissing number of Rn , i.e. the maximal number
of nonoverlapping unit balls in Rn which can touch another unit ball? The question,
for n = 3, first arose in 1694 in a discussion between Newton, who claimed that the
answer was 12, and Gregory, who said 13. It was first shown by Hoppe (1874) that
Newton was right, but in this case the arrangement of the 12 balls in R3 is not unique
up to isometry. One possibility is to take the centres of the 12 balls to be the vertices
of a regular icosahedron, the centre of which is the centre of the unit ball they touch.

The kissing number of R1 is clearly 2. It is not difficult to show that the kissing
number of R2 is 6 and that the centres of the six unit balls must be the vertices of a
regular hexagon, the centre of which is the centre of the unit ball they touch. For n > 3
the kissing number of Rn is unknown, except for the two cases n = 8 and n = 24
already mentioned.
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6 Mahler’s Compactness Theorem

It is useful to study not only individual lattices, but also the family Ln of all lattices
in Rn . A sequence of lattices Λk ∈ Ln will be said to converge to a lattice Λ ∈ Ln ,
in symbolsΛk → Λ, if there exist bases bk1, . . . , bkn of Λk(k = 1, 2, . . .) and a basis
b1, . . . , bn of Λ such that

bkj → b j as k →∞ ( j = 1, . . . , n).

Evidently this implies that d(Λk) → d(Λ) as k → ∞. Also, for any x ∈ Λ there
exist xk ∈ Λk such that xk → x as k →∞. In fact if x = α1b1 + · · · + αnbn , where
αi ∈ Z (i = 1, . . . , n), we can take xk = α1bk1 + · · · + αnbkn .

It is not obvious from the definition that the limit of a sequence of lattices is
uniquely determined, but this follows at once from the next result.

Proposition 19 Let Λ be a lattice in Rn and let {Λk} be a sequence of lattices in Rn

such that Λk → Λ as k →∞. If xk ∈ Λk and xk → x as k →∞, then x ∈ Λ.

Proof With the above notation,

x = α1b1 + · · · + αnbn,

where αi ∈ R (i = 1, . . . , n), and similarly

xk = αk1b1 + · · · + αknbn,

where αki ∈ R and αki → αi as k →∞ (i = 1, . . . , n).
The linear transformation Tk of Rn which maps bi to bki (i = 1, . . . , n) can be

written in the form

Tk = I − Ak,

where Ak → O as k →∞. It follows that

T−1
k = (I − Ak)

−1 = I + Ak + A2
k + · · · = I + Ck,

where also Ck → O as k →∞. Hence

xk = T−1
k (αk1bk1 + · · · + αknbkn)

= (αk1 + ηk1)bk1 + · · · + (αkn + ηkn)bkn,

where ηki → 0 as k → ∞ (i = 1, . . . , n). But αki + ηki ∈ Z for every k. Letting
k →∞, we obtain αi ∈ Z. That is, x ∈ Λ. �

It is natural to ask if the Voronoi cells of a convergent sequence of lattices also
converge in some sense. The required notion of convergence is in fact older than the
notion of convergence of lattices and applies to arbitrary compact subsets of Rn .

The Hausdorff distance h(K , K ′) between two compact subsets K , K ′ of Rn is
defined to be the infimum of all ρ > 0 such that every point of K is distant at most
ρ from some point of K ′ and every point of K ′ is distant at most ρ from some point
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of K . We will show that this defines a metric, the Hausdorff metric, on the space of all
compact subsets of Rn .

Evidently

0 ≤ h(K , K ′) = h(K ′, K ) <∞.
Moreover h(K , K ′) = 0 implies K = K ′. For if x ′ ∈ K ′, there exist xk ∈ K such that
xk → x ′ and hence x ′ ∈ K , since K is closed. Thus K ′ ⊆ K , and similarly K ⊆ K ′.

Finally we prove the triangle inequality

h(K , K ′′) ≤ h(K , K ′)+ h(K ′, K ′′).

To simplify writing, put ρ = h(K , K ′) and ρ′ = h(K ′, K ′′). For any ε > 0, if
x ∈ K there exist x ′ ∈ K ′ such that ‖x − x ′‖ < ρ + ε and then x ′′ ∈ K ′′ such
that ‖x ′ − x ′′‖ < ρ′ + ε. Hence

‖x − x ′′‖ < ρ + ρ′ + 2ε.

Similarly, if x ′′ ∈ K ′′ there exists x ∈ K for which the same inequality holds. Since ε
can be arbitrarily small, this completes the proof.

The definition of Hausdorff distance can also be expressed in the form

h(K , K ′) = inf{ρ ≥ 0 : K ⊆ K ′ + Bρ, K ′ ⊆ K + Bρ},
where Bρ = {x ∈ Rn : ‖x‖ ≤ ρ}. A sequence K j of compact subsets of Rn converges
to a compact subset K of Rn if h(K j , K )→ 0 as j →∞.

It was shown by Hausdorff (1927) that any uniformly bounded sequence of com-
pact subsets of Rn has a convergent subsequence. In particular, any uniformly bounded
sequence of compact convex subsets of Rn has a subsequence which converges to
a compact convex set. This special case of Hausdorff’s result, which is all that we
will later require, had already been established by Blaschke (1916) and is known as
Blaschke’s selection principle.

Proposition 20 Let {Λk} be a sequence of lattices in Rn and let Vk be the Voronoi
cell of Λk . If there exists a compact convex set V with nonempty interior such that
Vk → V in the Hausdorff metric as k →∞, then V is the Voronoi cell of a lattice Λ
andΛk → Λ as k →∞.

Proof Since every Voronoi cell Vk is symmetric, so also is the limit V . Since V has
nonempty interior, it follows that the origin is itself an interior point of V . Thus there
exists δ > 0 such that the ball Bδ = {x ∈ Rn : ‖x‖ ≤ δ} is contained in V .

It follows that Bδ/2 ⊆ Vk for all large k. The quickest way to see this is to use
Rådström’s cancellation law, which says that if A, B,C are nonempty compact con-
vex subsets of Rn such that A+C ⊆ B +C , then A ⊆ B . In the present case we have

Bδ/2 + Bδ/2 ⊆ Bδ ⊆ V ⊆ Vk + Bδ/2 for k ≥ k0,

and hence Bδ/2 ⊆ Vk for k ≥ k0. Since also Vk ⊆ V + Bδ/2 for all large k, there exists
R > 0 such that Vk ⊆ BR for all k.
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The lattice Λk has at most 2(2n − 1) facet vectors, by Proposition 15. Hence, by
restriction to a subsequence, we may assume that all Λk have the same number m of
facet vectors. Let xk1, . . . , xkm be the facet vectors of Λk and choose the notation so
that xk1, . . . , xkn are linearly independent. Since they all lie in the ball B2R , by restric-
tion to a further subsequence we may assume that

xkj → x j as k →∞ ( j = 1, . . . ,m).

Evidently ‖x j‖ ≥ δ ( j = 1, . . . ,m) since, for k ≥ k0, all nonzero x ∈ Λk have
‖x‖ ≥ δ.

The set Λ of all integral linear combinations of x1, . . . , xm is certainly an additive
subgroup of Rn . MoreoverΛ is discrete. For suppose y ∈ Λ and ‖y‖ < δ. We have

y = α1x1 + · · · + αm xm,

where α j ∈ Z ( j = 1, . . . ,m). If

yk = α1xk1 + · · · + αm xkm ,

then yk → y as k →∞ and hence ‖yk‖ < δ for all large k. Since yk ∈ Λk , it follows
that yk = O for all large k and hence y = O.

Since the lattice Λ′k with basis xk1, . . . , xkn is a sublattice of Λk , we have

d(Λ′k) ≥ d(Λk) = λ(Vk) ≥ λ(Bδ/2).
Since d(Λ′k) = | det(xk1, . . . , xkn)|, it follows that also

| det(x1, . . . , xn)| ≥ λ(Bδ/2) > 0.

Thus the vectors x1, . . . , xn are linearly independent. HenceΛ is a lattice.
Let b1, . . . , bn be a basis of Λ. Then, by the definition ofΛ,

bi = αi1x1 + · · · + αim xm,

where αi j ∈ Z (1 ≤ i ≤ n, 1 ≤ j ≤ m). Put

bki = αi1xk1 + · · · + αim xkm .

Then bki ∈ Λk and bki → bi as k → ∞ (i = 1, . . . , n). Hence, for all large k, the
vectors bk1, . . . , bkn are linearly independent. We are going to show that bk1, . . . , bkn

is a basis of Λk for all large k.
Since b1, . . . , bn is a basis of Λ, we have

x j = γ j1b1 + · · · + γ j nbn,

where γ j i ∈ Z (1 ≤ i ≤ n, 1 ≤ j ≤ m). Hence, if

ykj = γ j1bk1 + · · · + γ j nbkn,

then ykj ∈ Λk and ykj → x j as k →∞ ( j = 1, . . . ,m). Thus, for all large k,
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‖ykj − xkj ‖ < δ ( j = 1, . . . ,m).

Since ykj − xkj ∈ Λk , this implies that, for all large k, ykj = xkj ( j = 1, . . . ,m). Thus
every facet vector of Λk is an integral linear combination of bk1, . . . , bkn and hence,
by Proposition 16, every vector ofΛk is an integral linear combination of bk1, . . . , bkn .
Since bk1, . . . , bkn are linearly independent, this shows that they are a basis of Λk .

Let W be the Voronoi cell of Λ. We wish to show that V = W . If v ∈ V , then
there exist vk ∈ Vk such that vk → v. Assume v /∈ W . Then ‖v‖ > ‖z − v‖ for some
z ∈ Λ, and so

‖v‖ = ‖z − v‖ + ρ,
where ρ > 0. There exist zk ∈ Λk such that zk → z. Then, for all large k,

‖v‖ > ‖zk − v‖ + ρ/2
and hence, for all large k,

‖vk‖ > ‖zk − vk‖.
But this contradicts vk ∈ Vk .

This proves that V ⊆ W . On the other hand, V has volume

λ(V ) = lim
k→∞ λ(Vk) = lim

k→∞ d(Λk)

= lim
k→∞ | det(bk1, . . . , bkn)|

= | det(b1, . . . , bn)| = d(Λ) = λ(W ).
It follows that every interior point of W is in V , and hence W = V . Corollary 17 now
shows that the same lattice Λ would have been obtained if we had restricted attention
to some other subsequence of {Λk}.

Let a1, . . . , an be any basis ofΛ. We are going to show that, for the sequence {Λk}
originally given, there exist aki ∈ Λk such that

aki → ai as k →∞ (i = 1, . . . , n).

If this is not the case then, for some i ∈ {1, . . . , n} and some ε > 0, there exist
infinitely many k such that

‖x − ai‖ > ε for all x ∈ Λk .

From this subsequence we could as before pick a further subsequence Λkv → Λ.
Then every y ∈ Λ is the limit of a sequence yv ∈ Λkv . Taking y = ai , we obtain a
contradiction.

It only remains to show that ak1, . . . , akn is a basis of Λk for all large k. Since

lim
k→∞ | det(ak1, . . . , akn)| = | det(a1, . . . , an)|

= d(Λ) = λ(V ) = lim
k→∞ λ(Vk),
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for all large k we must have

0 < | det(ak1, . . . , akn)| < 2λ(Vk).

But if ak1, . . . , akn were not a basis ofΛk for all large k, then for infinitely many k we
would have

| det(ak1, . . . , akn)| ≥ 2d(Λk) = 2λ(Vk). �

Proposition 20 has the following counterpart:

Proposition 21 Let {Λk} be a sequence of lattices in Rn and let Vk be the Voronoi cell
ofΛk . If there exists a latticeΛ such thatΛk → Λ as k →∞, and if V is the Voronoi
cell of Λ, then Vk → V in the Hausdorff metric as k →∞.

Proof By hypothesis, there exists a basis b1, . . . , bn of Λ and a basis bk1, . . . , bkn of
each Λk such that bkj → b j as k → ∞ ( j = 1, . . . , n). Choose R > 0 so that the
fundamental parallelotope of Λ is contained in the ball BR = {x ∈ Rn : ‖x‖ ≤ R}.
Then, for all k ≥ k0, the fundamental parallelotope of Λk is contained in the ball B2R .
It follows that, for all k ≥ k0, every point of Rn is distant at most 2R from some point
of Λk and hence Vk ⊆ B2R .

Consequently, by Blaschke’s selection principle, the sequence {Vk} has a subse-
quence {Vkv} which converges in the Hausdorff metric to a compact convex set W .
Moreover,

λ(W ) = lim
v→∞ λ(Vkv ) = lim

v→∞ d(Λkv ) = d(Λ) > 0.

Consequently, since W is convex, it has nonempty interior. It now follows from Propo-
sition 20 that W = V .

Thus any convergent subsequence of {Vk} has the same limit V . If the whole
sequence {Vk} did not converge to V , there would exist ρ > 0 and a subsequence
{Vkv} such that

h(Vkv , V ) ≥ ρ for all v.

By the Blaschke selection principle again, this subsequence would itself have a con-
vergent subsequence. Since its limit must be V , this yields a contradiction. �

Suppose Λk ∈ Ln and Λk → Λ as k → ∞. We will show that not only
d(Λk)→ d(Λ), but also m(Λk)→ m(Λ) as k → ∞. Since every x ∈ Λ is the limit
of a sequence xk ∈ Λk , we must have limk→∞m(Λk) ≤ m(Λ). On the other hand, by
Proposition 19, if xk ∈ Λk and xk → x, then x ∈ Λ. Hence limk→∞m(Λ) ≥ m(Λ),
since x �= 0 if xk �= 0 for large k.

Suppose now that a subset F of Ln has the property that any infinite sequenceΛk

of lattices in F has a convergent subsequence. Then there exist positive constants ρ,
σ such that

m(Λ) ≥ ρ2, d(Λ) ≤ σ for all Λ ∈ F .
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For otherwise there would exist a sequence Λk of lattices in F such that either
m(Λk) → 0 or d(Λk) → ∞, and clearly this sequence could have no convergent
subsequence.

We now prove the fundamental compactness theorem of Mahler (1946), which says
that this necessary condition on F is also sufficient.

Proposition 22 If {Λk} is a sequence of lattices in Rn such that

m(Λk) ≥ ρ2, d(Λk) ≤ σ for all k,

where ρ, σ are positive constants, then the sequence {Λk} certainly has a convergent
subsequence.

Proof Let Vk denote the Voronoi cell of Λk . We show first that the ball Bρ/2 = {x ∈
Rn : ‖x‖ ≤ ρ/2} is contained in every Voronoi cell Vk . In fact if ‖x‖ ≤ ρ/2 then, for
every nonzero y ∈ Λk ,

‖x − y‖ ≥ ‖y‖ − ‖x‖ ≥ ρ − ρ/2 = ρ/2 ≥ ‖x‖,
and hence x ∈ Vk .

Let vk be a point of Vk which is furthest from the origin. Then Vk contains the
convex hull Ck of the set vk ∪ Bρ/2. Since the volume of Vk is bounded above by σ , so
also is the volume of Ck . But this implies that the sequence vk is bounded. Thus there
exists R > 0 such that the ball BR contains every Voronoi cell Vk .

By Blaschke’s selection principle, the sequence {Vk} has a subsequence {Vkv}
which converges in the Hausdorff metric to a compact convex set V . Since Bρ/2 ⊆ V ,
it follows from Proposition 20 thatΛkv → Λ, whereΛ is a lattice with Voronoi cell V .

�

To illustrate the utility of Mahler’s compactness theorem, we now show that, as
stated in Section 3, any compact symmetric convex set K with nonempty interior has
a critical lattice.

By the definition of the critical determinant ∆(K ), there exists a sequence Λk

of lattices with no nonzero points in the interior of K such that d(Λk) → ∆(K ) as
k →∞. Since K contains a ball Bρ with radius ρ > 0, we have m(Λk) ≥ ρ2 for all k.
Hence, by Proposition 22, there is a subsequence Λkv which converges to a lattice Λ
as v → ∞. Since every point of Λ is a limit of points of Λkv , no nonzero point of Λ
lies in the interior of K . Furthermore,

d(Λ) = lim
v→∞ d(Λkv) = ∆(K ),

and hence Λ is a critical lattice for K .

7 Further Remarks

The geometry of numbers is treated more extensively in Cassels [11], Erdős et al. [22]
and Gruber and Lekkerkerker [27]. Minkowski’s own account is available in [42].
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Numerous references to the earlier literature are given in Keller [34]. Lagarias [36]
gives an overview of lattice theory. For a simple proof that the indicator function of a
convex set is Riemann integrable, see Szabo [57].

Diophantine approximation is studied in Cassels [12], Koksma [35] and
Schmidt [50]. Minkowski’s result that the discriminant of an algebraic number field
other than Q has absolute value greater than 1 is proved in Narkiewicz [44],
for example.

Minkowski’s theorem on successive minima is proved in Bambah et al. [3]. For the
results of Banaszczyk mentioned in §3, see [4] and [5]. Sharp forms of Siegel’s lemma
are proved not only in Bombieri and Vaaler [7], but also in Matveev [40]. The result of
Gillet and Soulé appeared in [25]. Some interesting results and conjectures concerning
the product λ(K )λ(K ∗) are described on pp. 425–427 of Schneider [51].

An algorithm of Lovász, which first appeared in Lenstra, Lenstra and Lovász [38],
produces in finitely many steps a basis for a lattice Λ in Rn which is ‘reduced’.
Although the first vector of a reduced basis is in general not a minimal vector, it has
square-norm at most 2n−1m(Λ). This suffices for many applications and the algorithm
has been used to solve a number of apparently unrelated computational problems,
such as factoring polynomials in Q[t], integer linear programming and simultaneous
Diophantine approximation. There is an account of the basis reduction algorithm in
Schrijver [52]. The algorithmic geometry of numbers is surveyed in Kannan [33].

Mahler [39] has established an analogue of the geometry of numbers for formal
Laurent series with coefficients from an arbitrary field F , the roles of Z,Q and R
being taken by F[t], F(t) and F((t)). In particular, Eichler [19] has shown that the
Riemann–Roch theorem for algebraic functions may be thus derived by geometry of
numbers arguments.

There is also a generalization of Minkowski’s lattice point theorem to locally com-
pact groups, with Haar measure taking the place of volume; see Chapter 2 (Lemma 1)
of Weil [60].

Voronoi diagrams and their uses are surveyed in Aurenhammer [1]. Proofs of the
basic properties of polytopes referred to in §4 may be found in Brøndsted [9] and
Coppel [15]. Planar tilings are studied in detail in Grünbaum and Shephard [28].

Mathematical crystallography is treated in Schwarzenberger [53] and Engel [21].
For the physicist’s point of view, see Burckhardt [10], Janssen [32] and Birman [6].
There is much theoretical information, in addition to tables, in [31].

For Bieberbach’s theorems, see Vince [59], Charlap [13] and Milnor [41].
Various equivalent forms for the definitions of crystal and crystallographic group
are given in Dolbilin et al. [17]. It is shown in Charlap [13] that crystallographic
groups may be abstractly characterized as groups containing a finitely generated max-
imal abelian torsion-free subgroup of finite index. (An abelian group is torsion-free
if only the identity element has finite order.) The fundamental group of a compact
flat Riemannian manifold is a torsion-free crystallographic group and all torsion-
free crystallographic groups may be obtained in this way. For these connections with
differential geometry, see Wolf [61] and Charlap [13].

In more than 4 dimensions the complete enumeration of all crystallographic groups
is no longer practicable. However, algorithms for deciding if two crystallographic
groups are equivalent in some sense have been developed by Opgenorth et al. [45].
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An interesting subset of all crystallographic groups consists of those generated by
reflections in hyperplanes, since Stiefel (1941/2) showed that they are in 1-1 corre-
spondence with the compact simply-connected semi-simple Lie groups. See the ‘Note
historique’ in Bourbaki [8].

There has recently been considerable interest in tilings of Rn which, although not
lattice tilings, consist of translates of finitely many n-dimensional polytopes. The first
example, in R2, due to Penrose (1974), was explained more algebraically by de Bruijn
(1981). A substantial generalization of de Bruijn’s construction was given by Katz
and Duneau (1986), who showed that many such ‘quasiperiodic’ tilings may be ob-
tained by a method of cut and projection from ordinary lattices in a higher-dimensional
space. The subject gained practical significance with the discovery by Shechtman et al.
(1984) that the diffraction pattern of an alloy of aluminium and magnesium has icosa-
hedral symmetry, which is impossible for a crystal. Many other ‘quasicrystals’ have
since been found. The papers referred to are reproduced, with others, in Steinhardt and
Ostlund [56]. The mathematical theory of quasicrystals is surveyed in Le et al. [37].

Skubenko [54] has given an upper bound for Hermite’s constant γn . Somewhat
sharper bounds are known, but they have the same asymptotic behaviour and the proofs
are much more complicated. A lower bound for γn was obtained with a new method
by Ball [2].

For the densest lattices in Rn(n ≤ 8), see Ryshkov and Baranovskii [49]. The
enumeration of all root lattices is carried out in Ebeling [18]. (A more general prob-
lem is treated in Chap. 3 of Humphreys [30] and in Chap. 6 of Bourbaki [8].) For the
Voronoi cells of root lattices, see Chap. 21 of Conway and Sloane [14] and Moody and
Patera [43]. For the Dynkin diagrams associated with root lattices, see also Reiten [47].

Rajan and Shende [46] characterize root lattices as those lattices for which every
facet vector is a minimal vector, but their definition of root lattice is not that adopted
here. Their argument shows that if every facet vector of a lattice is a minimal vector
then, after scaling to make the minimal vectors have square-norm 2, it is a root lattice
in our sense.

There is a fund of information about lattice packings of balls in Conway and
Sloane [14]. See also Thompson [58] for the Leech lattice and Coxeter [16] for the
kissing number problem.

We have restricted attention to lattice packings and, in particular, to lattice pack-
ings of balls. Lattice packings of other convex bodies are discussed in the books on
geometry of numbers cited above. Non-lattice packings have also been much studied.
The notion of density is not so intuitive in this case and it should be realized that the
density is unaltered if finitely many sets are removed from the packing.

Packings and coverings are discussed in the texts of Rogers [48] and
Fejes Tóth [23], [24]. For packings of balls, see also Zong [62]. Sloane [55] and
Elkies [20] provide introductions to the connections between lattice packings of balls
and coding theory.

The third part of Hilbert’s 18th problem, which is surveyed in Milnor [41], deals
with the densest lattice or non-lattice packing of balls in Rn . It is known that, for
n = 2, the densest lattice packing is also a densest packing. The original proof by
Thue (1882/1910) was incomplete, but a complete proof was given by L. Fejes Tóth
(1940). The famous Kepler conjecture asserts that, also for n = 3, the densest lattice
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packing is a densest packing. A computer-aided proof has recently been announced by
Hales [29]. It is unknown if the same holds for any n > 3.

Propositions 20 and 21 are due to Groemer [26], and are of interest quite apart from
the application to Mahler’s compactness theorem. Other proofs of the latter are given
in Cassels [11] and Gruber and Lekkerkerker [27]. Blaschke’s selection principle and
Rådström’s cancellation law are proved in [15] and [51], for example.
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IX

The Number of Prime Numbers

1 Finding the Problem

It was already shown in Euclid’s Elements (Book IX, Proposition 20) that there are
infinitely many prime numbers. The proof is a model of simplicity: let p1, . . . , pn be
any finite set of primes and consider the integer N = p1 · · · pn + 1. Then N > 1 and
each prime divisor p of N is distinct from p1, . . . , pn , since p = p j would imply that
p divides N − p1 · · · pn = 1. It is worth noting that the same argument applies if we
take N = pα1

1 · · · pαn
n + 1, with any positive integers α1, . . . , αn .

Euler (1737) gave an analytic proof of Euclid’s result, which provides also quanti-
tative information about the distribution of primes:

Proposition 1 The series
∑

p 1/p, where p runs through all primes, is divergent.

Proof For any prime p we have

(1− 1/p)−1 = 1+ p−1 + p−2 + · · ·
and hence ∏

p≤x

(1− 1/p)−1 =
∏
p≤x

(1+ p−1 + p−2 + · · · ) >
∑
n≤x

1/n,

since any positive integer n ≤ x is a product of powers of primes p ≤ x . Since∑
n≤x

1/n >
∑
n≤x

∫ n+1

n
dt/t > log x,

it follows that ∏
p≤x

(1− 1/p)−1 > log x .

On the other hand, since the representation of any positive integer as a product of
prime powers is unique,∏

p≤x

(1− 1/p2)−1 =
∏
p≤x

(1+ p−2 + p−4 + · · · ) ≤
∞∑

n=1

1/n2 =: S,

W.A. Coppel, Number Theory: An Introduction to Mathematics, Universitext, 
DOI: 10.1007/978-0-387-89486-7_9, © Springer Science + Business Media, LLC 2009
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and

S = 1+
∞∑

n=1

1/(n + 1)2 < 1+
∞∑

n=1

∫ n+1

n
dt/t2 = 1+

∫ ∞

1
dt/t2 = 2.

(In fact S = π2/6, as Euler (1735) also showed.) Since 1−1/p2 = (1−1/p)(1+1/p),
and since 1+ x ≤ ex , it follows that∏

p≤x

(1− 1/p)−1 ≤ S
∏
p≤x

(1+ 1/p) < S e
∑

p≤x 1/p.

Combining this with the inequality of the previous paragraph, we obtain∑
p≤x

1/p > log log x − log S. �

Since the series
∑∞

n=1 1/n2 is convergent, Proposition 1 says that ‘there are more
primes than squares’. Proposition 1 can be made more precise. It was shown by
Mertens (1874) that ∑

p≤x

1/p = log log x + c + O(1/ log x),

where c is a constant (c = 0.261497 . . .).
Let π(x) denote the number of primes ≤ x :

π(x) =
∑
p≤x

1.

It may be asked whether π(x) has some simple asymptotic behaviour as x → ∞. It
is not obvious that this is a sensible question. The behaviour of π(x) for small values
of x is quite irregular. Moreover the sequence of positive integers contains arbitrarily
large blocks without primes; for example, none of the integers

n!+ 2, n!+ 3, . . . , n!+ n

is a prime. Indeed Euler (1751) expressed the view that “there reigns neither order nor
rule” in the sequence of prime numbers.

From an analysis of tables of primes Legendre (1798) was led to conjecture that,
for large values of x, π(x) is given approximately by the formula

x/(A log x − B),

where A, B are constants and log x again denotes the natural logarithm of x (i.e., to
the base e). In 1808 he proposed the specific values A = 1, B = 1.08366.

The first significant results on the asymptotic behaviour of π(x) were obtained by
Chebyshev (1849). He proved that, for each positive integer n,

lim
x→∞

(
π(x)−

∫ x

2
dt/ log t

)
logn x/x ≤ 0

≤ lim
x→∞

(
π(x)−

∫ x

2
dt/ log t

)
logn x/x,
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where logn x = (log x)n . By repeatedly integrating by parts it may be seen that, for
each positive integer n,∫ x

2
dt/ log t = {1+ 1!/ log x + 2!/ log2 x + · · · + (n − 1)!/ logn−1 x}x/ log x

+ n!
∫ x

2
dt/ logn+1 t + cn,

where cn is a constant. Moreover, using the Landau order symbol defined under
‘Notations’, ∫ x

2
dt/ logn+1 t = O(x/ logn+1 x),

since∫ x1/2

2
dt/ logn+1 t < x1/2/ logn+1 2,

∫ x

x1/2
dt/ logn+1 t < 2n+1x/ logn+1 x .

Thus Chebyshev’s result shows that A = B = 1 are the best possible values for a
formula of Legendre’s type and suggests that

Li(x) =
∫ x

2
dt/ log t

is a better approximation to π(x).
If we interpret this approximation as an asymptotic formula, then it implies that

π(x) log x/x → 1 as x →∞, i.e., using another Landau order symbol,

π(x) ∼ x/ log x . (1)

The validity of the relation (1) is now known as the prime number theorem. If the n-th
prime is denoted by pn, then the prime number theorem can also be stated in the form
pn ∼ n log n:

Proposition 2 π(x) ∼ x/ log x if and only if pn ∼ n log n.

Proof If π(x) log x/x → 1, then

logπ(x)+ log log x − log x → 0

and hence

logπ(x)/ log x → 1.

Consequently

π(x) logπ(x)/x = π(x) log x/x · logπ(x)/ log x → 1.

Since π(pn) = n, this shows that pn ∼ n log n.
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Conversely, suppose pn/n log n → 1. Since

(n + 1) log(n + 1)/n log n = (1+ 1/n){1+ log(1+ 1/n)/ log n} → 1,

it follows that pn+1/pn → 1. Furthermore

log pn − log n − log log n → 0,

and hence

log pn/ log n → 1.

If pn ≤ x < pn+1, then π(x) = n and

n log pn/pn+1 ≤ π(x) log x/x ≤ n log pn+1/pn.

Since

n log pn/pn+1 = pn/pn+1 · n log n/pn · log pn/ log n → 1

and similarly n log pn+1/pn → 1, it follows that also π(x) log x/x → 1. �

Numerical evidence, both for the prime number theorem and for the fact that Li(x)
is a better approximation than x/ log x to π(x), is provided by Table 1.

In a second paper Chebyshev (1852) made some progress towards proving the
prime number theorem by showing that

a ≤ lim
x→∞

π(x) log x/x ≤ lim
x→∞π(x) log x/x ≤ 6a/5,

where a = 0.92129. He used his results to give the first proof of Bertrand’s postulate:
for every real x > 1, there is a prime between x and 2x .

New ideas were introduced by Riemann (1859), who linked the asymptotic behav-
iour of π(x) with the behaviour of the function

ζ(s) =
∞∑

n=1

1/ns

Table 1.

x π(x) x/ log x Li(x) π(x) log x/x π(x)/Li(x)

103 168 144. 177. 1.16 0.94
104 1 229 1 085. 1 245. 1.132 0.987
105 9 592 8 685. 9 629. 1.1043 0.9961
106 78 498 72 382. 78 627. 1.08449 0.99835
107 664 579 620 420. 664 917. 1.07117 0.99949
108 5 761 455 5 428 681. 5 762 208. 1.06130 0.99987
109 50 847 534 48 254 942. 50 849 234. 1.05373 0.999966
1010 455 052 511 434 294 481. 455 055 614. 1.04780 0.999993
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for complex values of s. By developing these ideas, and by showing especially that
ζ(s) has no zeros on the line Rs = 1, Hadamard and de la Vallée Poussin proved
the prime number theorem (independently) in 1896. Shortly afterwards de la Vallée
Poussin (1899) confirmed that Li(x) was a better approximation than x/ log x to π(x)
by proving (in particular) that

π(x) = Li(x)+ O(x/ logα x) for every α > 0. (2)

Better error bounds than de la Vallée Poussin’s have since been obtained, but they still
fall far short of what is believed to be true.

Another approach to the prime number theorem was found by Wiener (1927–
1933), as an application of his general theory of Tauberian theorems. A convenient
form for this application was given by Ikehara (1931), and Bochner (1933) showed
that in this case Wiener’s general theory could be avoided.

It came as a great surprise to the mathematical community when in 1949 Selberg,
assisted by Erdős, found a new proof of the prime number theorem which uses only
the simplest facts of real analysis. Though elementary in a technical sense, this proof
was still quite complicated. As a result of several subsequent simplifications it can
now be given quite a clear and simple form. Nevertheless the Wiener–Ikehara proof
will be presented here on account of its greater versatility. The error bound (2) can be
obtained by both the Wiener and Selberg approaches, in the latter case at the cost of
considerable complication.

2 Chebyshev’s Functions

In his second paper Chebyshev introduced two functions

θ(x) =
∑
p≤x

log p, ψ(x) =
∑
pα≤x

log p,

which have since played a major role. Although ψ(x) has the most complicated
definition, it is easier to treat analytically than either θ(x) or π(x). As we will show,
the asymptotic behaviour of θ(x) is essentially the same as that of ψ(x), and the
asymptotic behaviour of π(x) may be deduced without difficulty from that of θ(x).

Evidently

θ(x) = ψ(x) = 0 for x < 2

and

0 < θ(x) ≤ ψ(x) for x ≥ 2.

Lemma 3 The asymptotic behaviours of ψ(x) and θ(x) are connected by

(i) ψ(x)− θ(x) = O(x1/2 log2 x);
(ii) ψ(x) = O(x) if and only if θ(x) = O(x), and in this case ψ(x) − θ(x) =

O(x1/2 log x).
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Proof Since

ψ(x) =
∑
p≤x

log p +
∑
p2≤x

log p + · · ·

and k > log x/ log 2 implies x1/k < 2, we have

ψ(x) = θ(x)+ θ(x1/2)+ · · · + θ(x1/m),

where m = �log x/ log 2�. (As is now usual, we denote by �y� the greatest integer
≤ y.) But it is obvious from the definition of θ(x) that θ(x) = O(x log x). Hence

ψ(x)− θ(x) = O

( ∑
2≤k≤m

x1/k log x

)
= O(x1/2 log2 x).

If θ(x) = O(x) the same argument yields ψ(x) − θ(x) = O(x1/2 log x) and thus
ψ(x) = O(x). It is trivial that ψ(x) = O(x) implies θ(x) = O(x). �

The proof of Lemma 3 shows also that

ψ(x) = θ(x)+ θ(x1/2)+ O(x1/3 log2 x).

Lemma 4 ψ(x) = O(x) if and only if π(x) = O(x/ log x), and then

π(x) log x/x = ψ(x)/x + O(1/ log x).

Proof Although their use can easily be avoided, it is more suggestive to use Stieltjes
integrals. Suppose first that ψ(x) = O(x). For any x > 2 we have

π(x) =
∫ x+

2−
1/ log t dθ(t)

and hence, on integrating by parts,

π(x) = θ(x)/ log x +
∫ x

2
θ(t)/t log2 t dt .

But ∫ x

2
θ(t)/t log2 t dt = O(x/ log2 x),

since θ(t) = O(t) and, as we saw in §1,∫ x

2
dt/ log2 t = O(x/ log2 x).

Since

θ(x)/ log x = ψ(x)/ log x + O(x1/2),
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by Lemma 3, it follows that

π(x) = ψ(x)/ log x + O(x/ log2 x).

Suppose next that π(x) = O(x/ log x). For any x > 2 we have

θ(x) =
∫ x+

2−
log t dπ(t)

= π(x) log x −
∫ x

2
π(t)/t dt = O(x),

and hence also ψ(x) = O(x), by Lemma 3. �

It follows at once from Lemma 4 that the prime number theorem, π(x) ∼ x/ log x ,
is equivalent to ψ(x) ∼ x .

The method of argument used in Lemma 4 can be carried further. Put

θ(x) = x + R(x), π(x) =
∫ x

2
dt/ log t + Q(x).

Subtracting ∫ x

2
dt/ log t = x/ log x − 2/ log 2+

∫ x

2
dt/ log2 t

from

π(x) = θ(x)/ log x +
∫ x

2
θ(t)/t log2 t dt,

we obtain

Q(x) = R(x)/ log x +
∫ x

2
R(t)/t log2 t dt + 2/ log 2. (3)1

Also, adding ∫ x

2

(∫ t

2
du/ log u

)
dt/t =

∫ x

2

(∫ x

u
dt/t

)
du/ log u

=
∫ x

2
(log x − log u)du/ log u

= log x
∫ x

2
dt/ log t − x + 2

to

θ(x) = π(x) log x −
∫ x

2
π(t)/t dt

we obtain

R(x) = Q(x) log x −
∫ x

2
Q(t)/t dt − 2. (3)2
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It follows from (3)1–(3)2 that R(x) = O(x/ logα x) for some α > 0 if and only if
Q(x) = O(x/ logα+1 x). Consequently, by Lemma 3,

ψ(x) = x + O(x/ logα x) for every α > 0

if and only if

π(x) =
∫ x

2
dt/ log t + O(x/ logα x) for every α > 0,

and π(x) then has the asymptotic expansion

π(x) ∼ {1+ 1!/ log x + 2!/ log2 x + · · · }x/ log x,

the error in breaking off the series after any finite number of terms having the order of
magnitude of the first term omitted.

It follows from (3)1–(3)2 also that, for a given α such that 1/2 ≤ α < 1,

ψ(x) = x + O(xα log2 x),

if and only if

π(x) =
∫ x

2
dt/ log t + O(xα log x).

The definition of ψ(x) can be put in the form

ψ(x) =
∑
n≤x

Λ(n),

where the von Mangoldt functionΛ(n) is defined by

Λ(n) = log p if n = pα for some prime p and some α > 0,

= 0 otherwise.

For any positive integer n we have

log n =
∑
d |n
Λ(d), (4)

since if n = pα1
1 · · · pαs

s is the factorization of n into powers of distinct primes, then

log n =
s∑

j=1

α j log p j .

3 Proof of the Prime Number Theorem

The Riemann zeta-function is defined by

ζ(s) =
∞∑

n=1

1/ns . (5)
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This infinite series had already been considered by Euler, Dirichlet and Chebyshev,
but Riemann was the first to study it for complex values of s. As customary, we write
s = σ + i t , where σ and t are real, and n−s is defined for complex values of s by

n−s = e−s log n = n−σ (cos(t log n)− i sin(t log n)).

To show that the series (5) converges in the half-plane σ > 1 we compare as
in §1 the sum with an integral. If �x� denotes again the greatest integer ≤ x , then on
integrating by parts we obtain∫ N

1
x−sdx −

N∑
n=1

n−s =
∫ N+

1−
x−sd{x − �x�}

= −1+ s
∫ N

1
x−s−1{x − �x�} dx .

Since ∫ N

1
x−sdx = (1− N1−s )/(s − 1),

by letting N →∞ we see that ζ(s) is defined for σ > 1 and

ζ(s) = 1/(s − 1)+ 1− s
∫ ∞

1
x−s−1{x − �x�} dx .

But, since x − �x� is bounded, the integral on the right is uniformly convergent in any
half-plane σ ≥ δ > 0. It follows that the definition of ζ(s) can be extended to the half-
plane σ > 0, so that it is holomorphic there except for a simple pole with residue 1 at
s = 1.

The connection between the zeta-function and prime numbers is provided by
Euler’s product formula, which may be viewed as an analytic version of the funda-
mental theorem of arithmetic:

Proposition 5 ζ(s) =∏
p(1− p−s)−1 for σ > 1, where the product is taken over all

primes p.

Proof For σ > 0 we have

(1− p−s)−1 = 1+ p−s + p−2s + · · · .
Since each positive integer can be uniquely expressed as a product of powers of distinct
primes, it follows that ∏

p≤x

(1− p−s)−1 =
∑

n≤Nx

n−s ,

where Nx is the set of all positive integers, including 1, whose prime factors are all
≤ x . But Nx contains all positive integers ≤ x . Hence∣∣∣∣ζ(s)−∏

p≤x

(1− p−s)−1
∣∣∣∣ ≤∑

n>x

n−σ for σ > 1,

and the sum on the right tends to zero as x →∞. �
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It follows at once from Proposition 5 that ζ(s) �= 0 for σ > 1, since the infinite
product is convergent and each factor is nonzero.

Proposition 6 −ζ ′(s)/ζ(s) = ∑∞
n=1Λ(n)/ns for σ > 1, where Λ(n) denotes von

Mangoldt’s function.

Proof The series ω(s) = ∑∞
n=1Λ(n)n

−s converges absolutely and uniformly in any
half-plane σ ≥ 1+ ε, where ε > 0, since

0 ≤ Λ(n) ≤ log n < nε/2 for all large n.

Hence

ζ(s)ω(s) =
∞∑

m=1

m−s
∞∑

k=1

Λ(k)k−s

=
∞∑

n=1

n−s
∑
d |n
Λ(d).

Since
∑

d |nΛ(d) = log n, by (4), it follows that

ζ(s)ω(s) =
∞∑

n=1

n−s log n = −ζ ′(s).

Since ζ(s) �= 0 for σ > 1, the result follows. However, we can also prove directly that
ζ(s) �= 0 for σ > 1, and thus make the proof of the prime number theorem independent
of Proposition 5.

Obviously if ζ(s0) = 0 for some s0 with Rs0 > 1 then ζ ′(s0) = 0, and it follows
by induction from Leibniz’ formula for derivatives of a product that ζ (n)(s0) = 0 for
all n ≥ 0. Since ζ(s) is holomorphic for σ > 1 and not identically zero, this is a
contradiction. �

Proposition 6 may be restated in terms of Chebyshev’s ψ-function:

−ζ ′(s)/ζ(s) =
∫ ∞

1
u−sdψ(u) =

∫ ∞

0
e−sxdψ(ex ) for σ > 1. (6)

We are going to deduce from (6) that the function ζ(s) has no zeros on the line Rs = 1.
Actually we will prove a more general result:

Proposition 7 Let f (s) be holomorphic in the closed half-plane Rs ≥ 1, except for a
simple pole at s = 1. If, for Rs > 1, f (s) �= 0 and

− f ′(s)/ f (s) =
∫ ∞

0
e−sxdφ(x),

where φ(x) is a nondecreasing function for x ≥ 0, then

f (1+ it) �= 0 for every real t �= 0.
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Proof Put s = σ + i t , where σ and t are real, and let

g(σ, t) = −R{ f ′(s)/ f (s)}.
Thus

g(σ, t) =
∫ ∞

0
e−σ x cos(tx) dφ(x) for σ > 1.

Hence, by Schwarz’s inequality (Chapter I, §10),

g(σ, t)2 ≤
∫ ∞

0
e−σ x dφ(x)

∫ ∞

0
e−σ x cos2(tx) dφ(x)

= g(σ, 0)
∫ ∞

0
e−σ x{1+ cos(2tx)} dφ(x)/2

= g(σ, 0){g(σ, 0)+ g(σ, 2t)}/2.
Since f (s) has a simple pole at s = 1, by comparing the Laurent series of f (s) and
f ′(s) at s = 1 (see Chapter I, §5) we see that

(σ − 1)g(σ, 0)→ 1 as σ → 1+ .
Similarly if f (s) has a zero of multiplicity m(t) ≥ 0 at 1 + i t , where t �= 0, then by
comparing the Taylor series of f (s) and f ′(s) at s = 1+ i t we see that

(σ − 1)g(σ, t)→−m(t) as σ → 1+ .
Thus if we multiply the inequality for g(σ, t)2 by (σ − 1)2 and let σ → 1+, we obtain

m(t)2 ≤ {1− m(2t)}/2 ≤ 1/2.

Therefore, since m(t) is an integer, m(t) = 0. �

For f (s) = ζ(s), Proposition 7 gives the result of Hadamard and de la Vallée
Poussin:

Corollary 8 ζ(1+ i t) �= 0 for every real t �= 0.

The use of Schwarz’s inequality to prove Corollary 8 seems more natural than the
usual proof by means of the inequality 3 + 4 cos θ + cos 2θ ≥ 0. It follows from
Corollary 8 that −ζ ′(s)/ζ(s) − 1/(s − 1) is holomorphic in the closed half-plane
σ ≥ 1. Hence, by (6), the hypotheses of the following theorem, due to Ikehara (1931),
are satisfied with

F(s) = −ζ ′(s)/ζ(s), φ(x) = ψ(ex ), h = A = 1.

Theorem 9 Let φ(x) be a nondecreasing function for x ≥ 0 such that the Laplace
transform

F(s) =
∫ ∞

0
e−sxdφ(x)
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is defined for Rs > h, where h > 0. If there exists a constant A and a function G(s),
which is continuous in the closed half-plane Rs ≥ h, such that

G(s) = F(s)− Ah/(s − h) for Rs > h,

then

φ(x) ∼ Aehx for x →+∞.

Proof For each X > 0 we have∫ X

0
e−sxdφ(x) = e−sX{φ(X)− φ(0)} + s

∫ X

0
e−sx{φ(x)− φ(0)} dx .

For real s = ρ > h both terms on the right are nonnegative and the integral on the left
has a finite limit as X → ∞. Hence e−ρXφ(X) is a bounded function of X for each
ρ > h. It follows that if Rs > h we can let X → ∞ in the last displayed equation,
obtaining

F(s) = s
∫ ∞

0
e−sx{φ(x)− φ(0)} dx for Rs > h.

Hence

[G(s)− A]/s = F(s)/s − A/(s − h) =
∫ ∞

0
e−(s−h)x{α(x)− A} dx,

where α(x) = e−hx{φ(x) − φ(0)}. Thus we will prove the theorem if we prove the
following statement:

Let α(x) be a nonnegative function for x ≥ 0 such that

g(s) =
∫ ∞

0
e−sx{α(x)− A} dx,

where s = σ + i t , is defined for every σ > 0 and the limit

γ (t) = lim
σ→+0

g(s)

exists uniformly on any finite interval −T ≤ t ≤ T . If, for some h > 0, ehxα(x) is a
nondecreasing function, then

lim
x→∞α(x) = A.

In the proof of this statement we will use the fact that the Fourier transform

k̂(u) =
∫ ∞

−∞
eiut k(t)dt
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of the function

k(t) = 1− |t| for |t| ≤ 1, = 0 for |t| ≥ 1,

has the properties

k̂(u) ≥ 0 for−∞ < u <∞, C :=
∫ ∞

−∞
k̂(u)du <∞.

Indeed

k̂(u) =
∫ 1

−1
eiut (1− |t|) dt

= 2
∫ 1

0
(1− t) cos ut dt

= 2(1− cos u)/u2.

Let ε, λ, y be arbitrary positive numbers. If s = ε + iλt , then

λ

∫ 1

−1
eiλt yk(t)g(s) dt = λ

∫ 1

−1
eiλt yk(t)

∫ ∞

0
e−εxe−iλt x{α(x)− A} dxdt

= λ
∫ ∞

0
e−εx{α(x)− A}

∫ 1

−1
eiλt (y−x)k(t) dtdx

= λ
∫ ∞

0
e−εxα(x)k̂(λ(y − x)) dx

− λA
∫ ∞

0
e−εx k̂(λ(y − x)) dx .

When ε→+0 the left side has the limit

χ(y) := λ
∫ 1

−1
eiλt yk(t)γ (λt) dt

and the second term on the right has the limit

λA
∫ ∞

0
k̂(λ(y − x)) dx .

Consequently the first term on the right also has a finite limit. It follows that

λ

∫ ∞

0
α(x)k̂(λ(y − x)) dx

is finite and is the limit of the first term on the right. Thus

χ(y) = λ
∫ ∞

0
{α(x)− A}k̂(λ(y − x)) dx

=
∫ λy

−∞
{α(y − v/λ) − A}k̂(v) dv.
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By the ‘Riemann–Lebesgue lemma’, χ(y) → 0 as y → ∞. In fact this may be
proved in the following way. We have

χ(y) =
∫ ∞

−∞
eiλt yω(t) dt

where

ω(t) = λk(t)γ (λt).

Changing the variable of integration to t + π/λy, we obtain

χ(y) = −
∫ ∞

−∞
eiλt yω(t + π/λy) dt .

Hence

2χ(y) =
∫ ∞

−∞
eiλt y{ω(t) − ω(t + π/λy)} dt

and

2|χ(y)| ≤
∫ ∞

−∞
|ω(t)− ω(t + π/λy)| dt .

Since ω(t) is continuous and vanishes outside a finite interval, it follows that
χ(y)→ 0 as y →∞.

Since ∫ λy

−∞
k̂(v) dv → C as y →∞,

we deduce that

lim
y→∞ =

∫ λy

−∞
α(y − v/λ) k̂(v) dv = AC for every λ > 0.

We now make use of the fact that ehxα(x) is a nondecreasing function. Choose any
δ ∈ (0, 1). If y = x + δ, where x ≥ 0, then for |v| ≤ λδ

α(y − v/λ) ≥ e−h(δ−v/λ)α(x) ≥ e−2hδα(x)

and hence ∫ λy

−∞
α(y − v/λ)k̂(v) dv ≥ e−2hδα(x)

∫ λδ

−λδ
k̂(v) dv.

We can choose λ = λ(δ) so large that the integral on the right exceeds (1− δ)C . Then,
letting x →∞ we obtain

AC ≥ e−2hδ(1− δ)C lim
x→∞α(x).
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Since this holds for arbitrarily small δ > 0, it follows that

lim
x→∞α(x) ≤ A.

Thus there exists a positive constant M such that

0 ≤ α(x) ≤ M for all x ≥ 0.

On the other hand, if y = x − δ, where x ≥ δ, then for |v| ≤ λδ
α(y − v/λ) ≤ eh(δ+v/λ)α(x) ≤ e2hδα(x)

and hence∫ λy

−∞
α(y − v/λ)k̂(v) dv ≤ e2hδα(x)

∫ λδ

−λδ
k̂(v) dv + M

∫
|v |≥λδ

k̂(v) dv.

We can choose λ = λ(δ) so large that the second term on the right is less than δC .
Then, letting x →∞ we obtain

AC ≤ e2hδC lim
x→∞

α(x)+ δC.

Since this holds for arbitrarily small δ > 0, it follows that

A ≤ lim
x→∞

α(x).

Combining this with the inequality of the previous paragraph, we conclude that
limx→∞ α(x) = A. �

Applying Theorem 9 to the special case mentioned before the statement of the
theorem, we obtain ψ(ex ) ∼ ex . As we have already seen in §2, this is equivalent to
the prime number theorem.

4 The Riemann Hypothesis

In his celebrated paper on the distribution of prime numbers Riemann (1859) proved
only two results. He showed that the definition of ζ(s) can be extended to the
whole complex plane, so that ζ(s) − 1/(s − 1) is everywhere holomorphic, and he
proved that the values of ζ(s) and ζ(1 − s) are connected by a certain functional
equation. This functional equation will now be derived by one of the two methods
which Riemann himself used. It is based on a remarkable identity which Jacobi (1829)
used in his treatise on elliptic functions.

Proposition 10 For any t, y ∈ R with y > 0,

∞∑
n=−∞

e−(t+n)2πy = y−1/2
∞∑

n=−∞
e−n2π/ye2π int. (7)

In particular,

∞∑
n=−∞

e−n2πy = y−1/2
∞∑

n=−∞
e−n2π/y . (8)
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Proof Put f (v) = e−v2πy and let

g(u) =
∫ ∞

−∞
f (v)e−2π iuvdv

be the Fourier transform of f (v). We are going to show that

∞∑
n=−∞

f (v + n) =
∞∑

n=−∞
g(n)e2π inv .

Let

F(v) =
∞∑

n=−∞
f (v + n).

This infinite series is uniformly convergent for 0 ≤ v ≤ 1, and so also is the series
obtained by term by term differentiation. Hence F(v) is a continuously differentiable
function. Consequently, since it is periodic with period 1, it is the sum of its own
Fourier series:

F(v) =
∞∑

m=−∞
cme2π imv ,

where

cm =
∫ 1

0
F(v)e−2π imvdv.

We can evaluate cm by term by term integration:

cm =
∞∑

n=−∞

∫ 1

0
f (v + n)e−2π imvdv =

∞∑
n=−∞

∫ n+1

n
f (v)e−2π imvdv

=
∫ ∞

−∞
f (v)e−2π imvdv = g(m).

The argument up to this point is an instance of Poisson’s summation formula. To
evaluate g(u) in the case f (v) = e−v2πy we differentiate with respect to u and integrate
by parts, obtaining

g′(u) = −2π i
∫ ∞

−∞
e−v2πyve−2π iuvdv

= (i/y)
∫ ∞

−∞
e−2π iuvde−v2πy

= −(i/y)
∫ ∞

−∞
e−v2πyde−2π iuv

= −(2πu/y)g(u).
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The solution of this first order linear differential equation is

g(u) = g(0)e−πu2/y .

Moreover

g(0) =
∫ ∞

−∞
e−v2πydv = (πy)−1/2 J,

where

J =
∫ ∞

−∞
e−v2

dv.

Thus we have proved that

∞∑
n=−∞

e−(v+n)2πy = (πy)−1/2 J
∞∑

n=−∞
e−n2π/ye2π inv .

Substituting v = 0, y = 1, we obtain J = π1/2. �

The theta function

ϑ(x) =
∞∑

n=−∞
e−n2πx (x > 0)

arises not only in the theory of elliptic functions, as we will see in Chapter XII, but
also in problems of heat conduction and statistical mechanics. The transformation law

ϑ(x) = x−1/2ϑ(1/x)

is very useful for computational purposes since, when x is small, the series for ϑ(x)
converges extremely slowly but the series for ϑ(1/x) converges extremely rapidly.

Since the functional equation of Riemann’s zeta function involves Euler’s gamma
function, we summarize here the main properties of the latter. Euler (1729) defined his
function Γ (z) by

1/Γ (z) = lim
n→∞ z(z + 1) · · · (z + n)/n! nz,

where nz = exp(z log n) and the limit exists for every z ∈ C. It follows from the
definition that 1/Γ (z) is everywhere holomorphic and that its only zeros are simple
zeros at the points z = 0,−1,−2, . . .. Moreover Γ (1) = 1 and

Γ (z + 1) = zΓ (z).

Hence Γ (n+1) = n! for any positive integer n. By puttingΓ (z+1) = z! the definition
of the factorial function may be extended to any z ∈ C which is not a negative integer.
Wielandt (1939) has characterized Γ (z) as the only solution of the functional equation

F(z + 1) = z F(z)
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with F(1) = 1 which is holomorphic in the half-plane Rz > 0 and bounded for
1 < Rz < 2.

It follows from the definition of Γ (z) and the product formula for the sine function
that

Γ (z)Γ (1− z) = π/ sinπz.

Many definite integrals may be evaluated in terms of the gamma function. By repeated
integration by parts it may be seen that, if Rz > 0 and n ∈ N, then

n!nz/z(z + 1) · · · (z + n) =
∫ n

0
(1− t/n)nt z−1dt,

where t z−1 = exp{(z−1) log t}. Letting n →∞, we obtain the integral representation

Γ (z) =
∫ ∞

0
e−t t z−1dt for Rz > 0. (9)

It follows that Γ (1/2) = π1/2, since∫ ∞

0
e−t t−1/2dt =

∫ ∞

−∞
e−v2

dv = π1/2,

by the proof of Proposition 10. It was already shown by Euler (1730) that

B(x, y) :=
∫ 1

0
t x−1(1− t)y−1dt = Γ (x)Γ (y)/Γ (x + y),

the relation holding for Rx > 0 and Ry > 0. The unit ball in Rn has volume
κn := πn/2/(n/2)! and surface content nκn . Stirling’s formula, n! ≈ (n/e)n

√
2πn,

follows at once from the integral representation

logΓ (z) = (z − 1/2) log z − z + (1/2) log 2π −
∫ ∞

0
(t − �t� − 1/2)(z + t)−1dt,

valid for any z ∈ C which is not zero or a negative integer. Euler’s constant

γ = lim
n→∞(1+ 1/2+ 1/3+ · · · + 1/n − log n) ≈ 0.5772157

may also be defined by γ = −Γ ′(1).
We now return to the Riemann zeta function.

Proposition 11 The function Z(s) = π−s/2Γ (s/2)ζ(s) satisfies the functional equa-
tion

Z(s) = Z(1− s) for 0 < σ < 1.

Proof From the representation (9) of the gamma function we obtain, for σ > 0 and
n ≥ 1,
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0
xs/2−1e−n2πx dx = π−s/2Γ (s/2)n−s .

Hence, if σ > 1,

Z(s) =
∞∑

n=1

∫ ∞

0
xs/2−1e−n2πx dx

=
∫ ∞

0
xs/2−1φ(x)dx,

where

φ(x) =
∞∑

n=1

e−n2πx .

By Proposition 10,

2φ(x)+ 1 = x−1/2[2φ(1/x)+ 1].

Hence

Z(s) =
∫ ∞

1
xs/2−1φ(x) dx +

∫ 1

0
xs/2−1{x−1/2φ(1/x)+ (1/2)x−1/2 − 1/2} dx

=
∫ ∞

1
xs/2−1φ(x) dx +

∫ 1

0
xs/2−3/2φ(1/x) dx + 1/(s − 1)− 1/s

=
∫ ∞

1
(xs/2−1 + x−s/2−1/2)φ(x) dx + 1/s(s − 1).

The integral on the right is convergent for all s and thus provides the analytic continu-
ation of Z(s) to the whole plane. Moreover the right side is unchanged if s is replaced
by 1− s. �

The function Z(s) in Proposition 11 is occasionally called the completed zeta
function. In its product representation

Z(s) = π−s/2Γ (s/2)Πp(1− p−s)−1

it makes sense to regard π−s/2Γ (s/2) as an Euler factor at ∞, complementing the
Euler factors (1− p−s)−1 at the primes p.

It follows from Proposition 11 and the previously stated properties of the gamma
function that the definition of ζ(s) may be extended to the whole complex plane, so
that ζ(s)−1/(s−1) is everywhere holomorphic and ζ(s) = 0 if s = −2,−4,−6, . . . .
Since ζ(s) �= 0 for σ ≥ 1 and ζ(0) = −1/2, the functional equation shows that these
‘trivial’ zeros of ζ(s) are its only zeros in the half-plane σ ≤ 0. Hence all ‘nontrivial’
zeros of ζ(s) lie in the strip 0 < σ < 1 and are symmetrically situated with respect
to the line σ = 1/2. The famous Riemann hypothesis asserts that all zeros in this strip
actually lie on the line σ = 1/2.
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Since ζ(s̄) = ζ(s), the zeros of ζ(s) are also symmetric with respect to the real
axis. Furthermore ζ(s) has no real zeros in the strip 0 < σ < 1, since

(1− 2−1−σ )ζ(σ ) = (1− 2−σ )+ (3−σ − 4−σ )+ · · · > 0 for 0 < σ < 1.

It has been verified by van de Lune et al. (1986), with the aid of a supercomputer,
that the 1.5 × 109 zeros of ζ(s) in the rectangle 0 < σ < 1, 0 < t < T , where
T = 545439823.215, are all simple and lie on the line σ = 1/2.

The location of the zeros of ζ(s) is intimately connected with the asymptotic
behaviour of π(x). Let α∗ denote the least upper bound of the real parts of all zeros
of ζ(s). Then 1/2 ≤ α∗ ≤ 1, since it is known that ζ(s) does have zeros in the strip
0 < σ < 1, and the Riemann hypothesis is equivalent to α∗ = 1/2. It was shown by
von Koch (1901) that

ψ(x) = x + O(xα
∗

log2 x)

and hence

π(x) = Li(x)+ O(xα
∗

log x).

(Actually von Koch assumed α∗ = 1/2, but his argument can be extended without
difficulty.) It should be noted that these estimates are of interest only if α∗ < 1.

On the other hand if, for some α such that 0 < α < 1,

π(x) = Li(x)+ O(xα log x),

then

θ(x) = x + O(xα log2 x).

By the remark after the proof of Lemma 3, it follows that

ψ(x) = x + x1/2 + O(xα log2 x)+ O(x1/3 log2 x).

But for σ > 1 we have

−ζ ′(s)/ζ(s) =
∫ ∞

1
x−sdψ(x) = s

∫ ∞

1
ψ(x)x−s−1dx

and hence

−ζ ′(s)/ζ(s)− s/(s − 1)− s/(s − 1/2) = s
∫ ∞

1
{ψ(x)− x − x1/2}x−s−1dx .

The integral on the right is uniformly convergent in the half-plane σ ≥ ε+max(α, 1/3),
for any ε > 0, and represents there a holomorphic function. It follows that
1/2 ≤ α∗ ≤ max(α, 1/3). Consequently α∗ ≤ α and ψ(x) = x + O(xα log2 x).

Combining this with von Koch’s result, we see that the Riemann hypothesis is
equivalent to

π(x) = Li(x)+ O(x1/2 log x)
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and to

ψ(x) = x + O(x1/2 log2 x).

Since it is still not known if α∗ < 1, the error terms here are substantially smaller than
any that have actually been established.

It has been shown by Cramér (1922) that

(log x)−1
∫ x

2
(ψ(t)/t − 1)2dt

has a finite limit as x → ∞ if the Riemann hypothesis holds, and is unbounded if it
does not. Similarly, for each α < 1,

x−2(1−α)
∫ x

2
(ψ(t) − t)2t−2αdt

is bounded but does not have a finite limit as x →∞ if the Riemann hypothesis holds,
and is unbounded otherwise.

For all values of x listed in Table 1 we have π(x) < Li(x), and at one time it
was conjectured that this inequality holds for all x > 0. However, Littlewood (1914)
disproved the conjecture by showing that there exists a constant c > 0 such that

π(xn)− Li(xn) > cx1/2
n log log log xn/ log xn

for some sequence xn →∞ and

π(ξn)− Li(ξn) < −cξ1/2
n log log log ξn/ log ξn

for some sequence ξn → ∞. This is a quite remarkable result, since no actual value
of x is known for which π(x) > Li(x). However, it is known that π(x) > Li(x) for
some x between 1.398201× 10316 and 1.398244× 10316.

In this connection it may be noted that Rosser and Schoenfeld (1962) have shown
that π(x) > x/ log x for all x ≥ 17. It had previously been shown by Rosser (1939)
that pn > n log n for all n ≥ 1.

Not content with not being able to prove the Riemann hypothesis, Montgomery
(1973) has assumed it and made a further conjecture. For given β > 0, let NT (β) be
the number of zeros 1/2+ iγ, 1/2+ iγ ′ of ζ(s) with 0 < γ ′ < γ ≤ T such that

γ − γ ′ ≤ 2πβ/ log T .

Montgomery’s conjecture is that, for each fixed β > 0,

NT (β) ∼ (T/2π) log T
∫ β

0
{1− (sinπu/πu)2} du as T →∞.

Goldston (1988) has shown that this is equivalent to∫ T β

1
{ψ(x + x/T )− ψ(x)− x/T }2x−2dx ∼ (β − 1/2) log2 T/T as T →∞,

for each fixed β ≥ 1, where ψ(x) is Chebyshev’s function.
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In the language of physics Montgomery’s conjecture says that 1 − (sinπu/πu)2

is the pair correlation function of the zeros of ζ(s). Dyson pointed out that this is
also the pair correlation function of the normalized eigenvalues of a random N × N
Hermitian matrix in the limit N → ∞. A great deal more is known about this so-
called Gaussian unitary ensemble, which Wigner (1955) used to model the statistical
properties of the spectra of complex nuclei. For example, if the eigenvalues are nor-
malized so that the average difference between consecutive eigenvalues is 1, then the
probability that the difference between an eigenvalue and the least eigenvalue greater
than it does not exceed β converges as N →∞ to∫ β

0
p(u) du,

where the density function p(u) can be explicitly specified.
It has been further conjectured that the spacings of the normalized zeros of the

zeta-function have the same distribution. To make this precise, let the zeros 1/2+ iγn

of ζ(s) with γn > 0 be numbered so that

γ1 ≤ γ2 ≤ · · · .
Since it is known that the number of γ ’s in an interval [T, T + 1] is asymptotic to
(log T )/2π as T →∞, we put

γ̃n = (γn log γn)/2π,

so that the average difference between consecutive γ̃n is 1. If δn = γ̃n+1 − γ̃n , and if
vN (β) is the number of δn ≤ β with n ≤ N , then the conjecture is that for each β > 0

vN (β)/N →
∫ β

0
p(u) du as N →∞.

This nearest neighbour conjecture and the Montgomery pair correlation conjecture
have been extensively tested by Odlyzko (1987/9) with the aid of a supercomputer.
There is good agreement between the conjectures and the numerical results.

5 Generalizations and Analogues

The prime number theorem may be generalized to any algebraic number field in the
following way. Let K be an algebraic number field, i.e. a finite extension of the field
Q of rational numbers. Let R be the ring of all algebraic integers in K , I the set of all
nonzero ideals of R, and P the subset of prime ideals. For any A ∈ I , the quotient
ring R/A is finite; its cardinality will be denoted by |A| and called the norm of A.

It may be shown that the Dedekind zeta-function

ζK (s) =
∑
A∈I

|A|−s

is defined for Rs > 1 and that the product formula
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ζK (s) =
∏

P∈P

(1− |P|−s)−1

holds in this open half-plane. Furthermore the definition of ζK (s) may be extended
so that it is nonzero and holomorphic in the closed half-plane Rs ≥ 1, except for a
simple pole at s = 1. By applying Ikehara’s theorem we can then obtain the prime
ideal theorem, which was first proved by Landau (1903):

πK (x) ∼ x/ log x,

where πK (x) denotes the number of prime ideals of R with norm ≤ x .
It was shown by Hecke (1917) that the definition of the Dedekind zeta-function

ζK (s) may also be extended so that it is holomorphic in the whole complex plane,
except for the simple pole at s = 1, and so that, for some constant A > 0 and non-
negative integers r1, r2 (which can all be explicitly described in terms of the structure
of the algebraic number field K ),

Z K (s) = AΓ (s/2)r1Γ (s)r2ζK (s)

satisfies the functional equation

Z K (s) = Z K (1− s).

The extended Riemann hypothesis asserts that, for every algebraic number field K ,

ζK (s) �= 0 for Rs > 1/2.

The numerical evidence for the extended Riemann hypothesis is favourable, although
in the nature of things it cannot be tested as extensively as the ordinary Riemann
hypothesis. The extended Riemann hypothesis implies error bounds for the prime ideal
theorem of the same order as those which the ordinary Riemann hypothesis implies
for the prime number theorem. However, it also has many other consequences. We
mention only two.

It has been shown by Bach (1990), making precise an earlier result of Ankeny
(1952), that if the extended Riemann hypothesis holds then, for each prime p, there is a
quadratic non-residue a mod p with a < 2 log2 p. Thus we do not have to search far in
order to find a quadratic non-residue, or to disprove the extended Riemann hypothesis.

It will be recalled from Chapter II that if p is a prime and a an integer not divisible
by p, then a p−1 ≡ 1 mod p. For each prime p there exists a primitive root, i.e. an
integer a such that ak �≡ 1 mod p for 1 ≤ k < p − 1. It is easily seen that an even
square is never a primitive root, that an odd square (including 1) is a primitive root
only for the prime p = 2, and that−1 is a primitive root only for the primes p = 2, 3.

Assuming the extended Riemann hypothesis, Hooley (1967) has proved a famous
conjecture of Artin (1927): if the integer a is not a square or −1, then there exist
infinitely many primes p for which a is a primitive root. Moreover, if Na(x) denotes
the number of primes p ≤ x for which a is a primitive root, then

Na(x) ∼ Aax/ log x for x →∞,
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where Aa is a positive constant which can be explicitly described. (The expression for
Aa which Artin conjectured requires modification in some cases.)

There are also analogues for function fields of these results for number fields. Let
K be an arbitrary field. A field of algebraic functions of one variable over K is a field
L which satisfies the following conditions:

(i) K ⊆ L,
(ii) L contains an element υ which is transcendental over K , i.e. υ satisfies no monic

polynomial equation

un + a1un−1 + · · · + an = 0

with coefficients a j ∈ K ,
(iii) L is a finite extension of the field K (υ) of rational functions of υ with coeffients

from K , i.e. L is finite-dimensional as a vector space over K (υ).

Let R be a ring with K ⊆ R ⊂ L such that x ∈ L\R implies x−1 ∈ R. Then the
set P of all a ∈ R such that a = 0 or a−1 /∈ R is an ideal of R, and actually the unique
maximal ideal of R. Hence the quotient ring R/P is a field. Since R is the set of all
x ∈ L such that x P ⊆ P , it is uniquely determined by P . The ideal P will be called a
prime divisor of the field L and R/P its residue field. It may be shown that the residue
field R/P is a finite extension of (a field isomorphic to) K .

An arbitrary divisor of the field L is a formal product A =∏
P PvP over all prime

divisors P of L, where the exponents vP are integers only finitely many of which are
nonzero. The divisor is integral if vP ≥ 0 for all P .

The set K ′ of all elements of L which satisfy monic polynomial equations with co-
efficients from K is a subfield containing K , and L is also a field of algebraic functions
of one variable over K ′. It is easily shown that no element of L\R satisfies a monic
polynomial equation with coefficients from R. Consequently K ′ ⊆ R and the notion
of prime divisor is the same whether we consider L to be over K or over K ′. Since
(K ′)′ = K ′, we may assume from the outset that K ′ = K . The elements of K will
then be called constants and the elements of L functions.

Suppose now that the field of constants K is a finite field Fq containing q elements.
We define the norm N(P) of a prime divisor P to be the cardinality of the associated
residue field R/P and the norm of an integral divisor A =∏

P PvP to be

N(A) =
∏

P

N(P)vP .

It may be shown that, for each positive integer m, there exist only finitely many prime
divisors of norm qm . Moreover, for Rs > 1 the zeta-function of L can be defined by

ζL(s) =
∑

A

N(A)−s ,

where the sum is over all integral divisors of L, and then

ζL(s) =
∏

P

(1− N(P)−s )−1,

where the product is over all prime divisors of L.
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This seems quite similar to the number field case, but the function field case is
actually simpler. F.K. Schmidt (1931) deduced from the Riemann–Roch theorem that
there exists a polynomial p(u) of even degree 2g, with integer coefficients and constant
term 1, such that

ζL(s) = p(q−s)/(1− q−s)(1− q1−s),

and that the zeta-function satisfies the functional equation

q(g−1)sζL(s) = q(g−1)(1−s)ζL(1− s).

The non-negative integer g is the genus of the field of algebraic functions.
The analogue of the Riemann hypothesis, that all zeros of ζL(s) lie on the line

Rs = 1/2, is equivalent to the statement that all zeros of the polynomial p(u) have
absolute value q−1/2, or that the number N of prime divisors with norm q satisfies the
inequality

|N − (q + 1)| ≤ 2gq1/2.

This analogue has been proved by Weil (1948). A simpler proof has been given by
Bombieri (1974), using ideas of Stepanov (1969).

The theory of function fields can also be given a geometric formulation. The prime
divisors of a function field L with field of constants K can be regarded as the points
of a non-singular projective curve over K , and vice versa. Weil (1949) conjectured
far-reaching generalizations of the preceding results for curves over a finite field to
algebraic varieties of higher dimension.

Let V be a nonsingular projective variety of dimension d , defined by homogeneous
polynomials with coefficients in Z. For any prime p, let Vp be the (possibly singular)
variety defined by reducing the coefficients mod p and consider the formal power
series

Z p(T ) := exp

(∑
n≥1

Nn(p)T
n/n

)
,

where Nn(p) denotes the number of points of Vp defined over the finite field Fpn .
Weil conjectured that, if Vp is a nonsingular projective variety of dimension d over
Fp, then

(i) Z p(T ) is a rational function of T ,
(ii) Z p(1/pd T ) = ±pde/2T e Z p(T ) for some integer e,

(iii) Z p(T ) has a factorization of the form

Z p(T ) = P1(T ) · · · P2d−1(T )/P0(T )P2(T ) · · · P2d (T ),

where P0(T ) = 1− T, P2d (T ) = 1− pd T and Pj (T ) ∈ Z[T ] (0 < j < 2d),

(iv) Pj (T ) =∏b j
k=1(1− α j kT ), where |α j k| = p j/2 for 1 ≤ k ≤ b j , (0 < j < 2d).
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The Weil conjectures have a topological significance, since the integer e in (ii) is
the Euler characteristic of the original variety V , regarded as a complex manifold, and
b j in (iv) is its j -th Betti number.

Conjecture (i) was proved by Dwork (1960). The remaining conjectures were
proved by Deligne (1974), using ideas of Grothendieck. The most difficult part is
the proof that |α j k| = p j/2 (the Riemann hypothesis for varieties over finite fields).
Deligne’s proof is a major achievement of 20th century mathematics, but unfortunately
of a different order of difficulty than anything which will be proved here.

An analogue for function fields of Artin’s primitive root conjecture was already
proved by Bilharz (1937), assuming the Riemann hypothesis for this case. Function
fields have been used by Goppa (1981) to construct linear codes. Good codes are
obtained when the number of prime divisors is large compared to the genus, and this
can be guaranteed by means of the Riemann ‘hypothesis’.

Carlitz and Uchiyama (1957) used the Riemann hypothesis for function fields
to obtain useful estimates for exponential sums in one variable, and Deligne (1977)
showed that these estimates could be extended to exponential sums in several variables.
Let Fp be the field of p elements, where p is a prime, and let f ∈ Fp[u1, . . . , un] be
a polynomial in n variables of degree d ≥ 1 with coefficients from Fp which is not
of the form g p − g + b, where b ∈ Fp and g ∈ Fp[u1, . . . , un]. (This condition is
certainly satisfied if d < p.) Then∣∣∣∣ ∑

x1,...,xn∈Fp

e2π i f (x1,...,xn)/p
∣∣∣∣ ≤ (d − 1)pn−1/2.

We mention one more application of the Weil conjectures. Ramanujan’s tau-
function is defined by

q
∞∏

n=1

(1− qn)24 =
∞∑

n=1

τ (n)qn.

It was conjectured by Ramanujan (1916), and proved by Mordell (1920), that

∞∑
n=1

τ (n)/ns =
∏

p

(1− τ (p)p−s + p11−2s)−1,

where the product is over all primes p. Ramanujan additionally conjectured that
|τ (p)| ≤ 2 p11/2 for all p, and Deligne (1968/9) showed that this was a consequence
of the (at that time unproven) Weil conjectures.

The prime number theorem also has an interesting analogue in the theory of
dynamical systems. Let M be a compact Riemannian manifold with negative sectional
curvatures, and let N(T ) denote the number of different (oriented) closed geodesics
on M of length ≤ T . It was first shown by Margulis (1970) that

N(T ) ∼ ehT /hT as T →∞,
where the positive constant h is the topological entropy of the associated geodesic flow.

Although much of the detail is specific to the problem, a proof may be given which
has the same structure as the proof in §3 of the prime number theorem. If P is an
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arbitrary closed orbit of the geodesic flow and λ(P) its least period, one shows that the
zeta-function

ζM (s) =
∏

P

(1− e−sλ(P))−1

is nonzero and holomorphic for Rs ≥ h, except for a simple pole at s = h, and then
applies Ikehara’s theorem. The study of geodesics on a surface of negative curvature
was initiated by Hadamard (1898), but it is unlikely that he realized there was a
connection with the prime number theorem which he had proved two years earlier!

6 Alternative Formulations

There is an intimate connection between the Dirichlet products considered in §3 of
Chapter III and Dirichlet series. It is easily seen that if the Dirichlet series

f (s) =
∞∑

n=1

a(n)/ns, g(s) =
∞∑

n=1

b(n)/ns,

are absolutely convergent for Rs > α, then the product h(s) = f (s)g(s) may also be
represented by an absolutely convergent Dirichlet series for Rs > α:

h(s) =
∞∑

n=1

c(n)/ns,

where c = a ∗ b, i.e.

c(n) =
∑
d |n

a(d)b(n/d) =
∑
d |n

a(n/d)b(d).

This implies, in particular, that for Rs > 1

ζ 2(s) =
∞∑

n=1

τ (n)/ns, ζ(s − 1)ζ(s) =
∞∑

n=1

σ(n)/ns ,

where as in Chapter III (not as in §5),

τ (n) =
∑
d |n

1, σ (n) =
∑
d |n

d,

denote respectively the number of positive divisors of n and the sum of the positive
divisors of n. The relation for Euler’s phi-function,

σ(n) =
∑
d |n
τ (n/d)ϕ(d),

which was proved in Chapter III, now yields for Rs > 1
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ζ(s − 1)/ζ(s) =
∞∑

n=1

ϕ(n)/ns .

From the property by which we defined the Möbius function we obtain also, for
Rs > 1,

1/ζ(s) =
∞∑

n=1

µ(n)/ns .

In view of this relation it is not surprising that the distribution of prime numbers is
closely connected with the behaviour of the Möbius function. Put

M(x) =
∑
n≤x

µ(n).

Since |µ(n)| ≤ 1, it is obvious that |M(x)| ≤ �x� for x > 0. The next result is not so
obvious:

Proposition 12 M(x)/x → 0 as x →∞.

Proof The function f (s) := ζ(s) + 1/ζ(s) is holomorphic for σ ≥ 1, except for a
simple pole with residue 1 at s = 1. Moreover

f (s) =
∞∑

n=1

{1+ µ(n)}/ns =
∫ ∞

1−
x−sdφ(x) for σ > 1,

where φ(x) = �x� + M(x) is a nondecreasing function. Since

f (s) =
∫ ∞

0−
e−sudφ(eu),

it follows from Ikehara’s Theorem 9 that φ(x) ∼ x . �

Proposition 12 is equivalent to the prime number theorem in the sense that either of
the relations M(x) = o(x), ψ(x) ∼ x may be deduced from the other by elementary
(but not trivial) arguments.

The Riemann hypothesis also has an equivalent formulation in terms of the func-
tion M(x). Suppose

M(x) = O(xα) as x →∞,
for some α such that 0 < α < 1. For σ > 1 we have

1/ζ(s) =
∫ ∞

1−
x−sd M(x) = s

∫ ∞

1
x−s−1M(x) dx .

But for σ > α the integral on the right is convergent and defines a holomorphic func-
tion. Consequently it is the analytic continuation of 1/ζ(s). Thus if α∗ again denotes
the least upper bound of all zeros of ζ(s), then α ≥ α∗ ≥ 1/2. On the other hand,
Littlewood (1912) showed that
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M(x) = O(xα
∗+ε) for every ε > 0.

It follows that the Riemann hypothesis holds if and only if M(x) = O(xα) for every
α > 1/2.

It has already been mentioned that the first 1.5 × 109 zeros of ζ(s) on the line
σ = 1/2 are all simple. It is likely that the Riemann hypothesis does not tell the
whole story and that all zeros of ζ(s) on the line σ = 1/2 are simple. Thus it is
of interest that this is guaranteed by a sufficiently sharp bound for M(x). We will
show that if

M(x) = O(x1/2 logα x) as x →∞,

for some α < 1, then not only do all nontrivial zeros of ζ(s) lie on the line σ = 1/2
but they are all simple.

Let ρ = 1/2 + iγ be a zero of ζ(s) of multiplicity m ≥ 1 and take s = ρ + h,
where h > 0. Then σ = 1/2+ h and, since

1/ζ(s) = s
∫ ∞

1
x−s−1M(x) dx for σ > 1/2,

we have

|1/ζ(s)| ≤ |s|
∫ ∞

1
x−σ−1|M(x)| dx = O(|s|)

∫ ∞

1
x−h−1 logα x dx

= O(|s|)
∫ ∞

0
e−huuαdu = O(|s|)Γ (α + 1)/hα+1.

Thus hα+1|1/ζ(s)| is bounded for h →+0 and hence m ≤ α+1. Since m is an integer
and α < 1, this implies m = 1 and α ≥ 0.

The prime number theorem, in the form M(x) = o(x), says that asymptotically
µ(n) takes the values +1 and −1 with equal probability. By assuming that actually
the values µ(n) asymptotically behave like independent random variables Good and
Churchhouse (1968) have been led to two striking conjectures, analogous to the central
limit theorem and the law of the iterated logarithm in the theory of probability:

Conjecture A If N(n)→∞ and log N/ log n → 0, then

Pn

{
M(m + N) − M(m)

(6N/π2)1/2
< t

}
→ (2π)−1/2

∫ t

−∞
e−u2/2du,

where

Pn{ f (m) < t} = #{m ≤ n : f (m) < t}/n.
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Conjecture B

lim
x→∞ M(x)(2x log log x)−1/2 = √6/π

= − lim
x→∞

M(x)(2x log log x)−1/2.

By what has been said, Conjecture B implies not only the Riemann hypothesis,
but also that the zeros of ζ(s) are all simple. These probabilistic conjectures provide
a more interesting reason than symmetry for believing in the validity of the Riemann
hypothesis, but no progress has so far been made towards proving them.

7 Some Further Problems

A prime p is said to be a twin prime if p + 2 is also a prime. For example, 41 is a
twin prime since both 41 and 43 are primes. It is still not known if there are infinitely
many twin primes. However Brun (1919), using the sieve method which he devised
for the purpose, showed that, if infinite, the sum of the reciprocals of all twin primes
converges. Since the sum of the reciprocals of all primes diverges, this means that few
primes are twin primes.

By a formal application of their circle method Hardy and Littlewood (1923) were
led to conjecture that

π2(x) ∼ L2(x) for x →∞,
where π2(x) denotes the number of twin primes ≤ x ,

L2(x) = 2C2

∫ x

2
dt/ log2 t

and

C2 =
∏
p≥3

(1− 1/(p − 1)2) = 0.66016181 . . . .

This implies that π2(x)/π(x) ∼ 2C2/ log x . Table 2, adapted from Brent (1975),
shows that Hardy and Littlewood’s formula agrees well with the facts. Brent also
calculates ∑

twinp≤1010

(1/p + 1/(p + 2)) = 1.78748 . . .

and, using the Hardy–Littlewood formula for the tail, obtains the estimate∑
all twin p

(1/p + 1/(p + 2)) = 1.90216 . . . .

His calculations have been considerably extended by Nicely (1995).
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Table 2.

x π2 (x) L2(x) π2 (x)/L2(x)

103 35 46 0.76
104 205 214 0.96
105 1224 1249 0.980
106 8169 8248 0.9904
107 58980 58754 1.0038
108 440312 440368 0.99987
109 3424506 3425308 0.99977
1010 27412679 27411417 1.000046

Besides the twin prime formula many other asymptotic formulae were conjectured
by Hardy and Littlewood. Most of them are contained in a general conjecture, which
will now be described.

Let f (t) be a polynomial in t of positive degree with integer coefficients. If f (n)
is prime for infinitely many positive integers n, then f has positive leading coeffi-
cient, f is irreducible over the field Q of rational numbers and, for each prime p,
there is a positive integer n for which f (n) is not divisible by p. It was conjectured by
Bouniakowsky (1857) that conversely, if these three conditions are satisfied, then f (n)
is prime for infinitely many positive integers n. Schinzel (1958) extended the conjec-
ture to several polynomials and Bateman and Horn (1962) gave Schinzel’s conjecture
the following quantitative form.

Let f j (t) be a polynomial in t of degree d j ≥ 1, with integer coefficients and posi-
tive leading coefficient, which is irreducible over the field Q of rational numbers ( j =
1, . . . ,m). Suppose also that the polynomials f1(t), . . . , fm(t) are distinct and that,
for each prime p, there is a positive integer n for which the product f1(n) · · · fm(n) is
not divisible by p. Bateman and Horn’s conjecture states that, if N(x) is the number
of positive integers n ≤ x for which f1(n), . . . , fm(n) are all primes, then

N(x) ∼ (d1 · · · dm)
−1C( f1, . . . , fm )

∫ x

2
dt/ logm t,

where

C( f1, . . . , fm ) =
∏

p

{(1− 1/p)−m(1− ω(p)/p)},

the product being taken over all primes p andω(p) denoting the number of u ∈ Fp (the
field of p elements) such that f1(u) · · · fm(u) = 0. (The convergence of the infinite
product when the primes are taken in their natural order follows from the prime ideal
theorem.)

The twin prime formula is obtained by taking m = 2 and f1(t) = t, f2(t) = t + 2.
By taking instead f1(t) = t, f2(t) = 2t + 1, the Bateman–Horn conjecture gives the
same asymptotic formula πG(x) ∼ L2(x) for the number πG(x) of primes p ≤ x for
which 2 p+1 is also a prime (‘Sophie Germain’ primes). By taking m = 1 and f1(t) =
t2+ 1 one obtains an asymptotic formula for the number of primes of the form n2+ 1.
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Bateman and Horn gave a heuristic derivation of their formula. However, the only
case in which the formula has actually been proved is m = 1, n1 = 1. This is the case
of primes in an arithmetic progression which will be considered in the next chapter.
When one considers the vast output of mathematical papers today compared with
previous eras, it is salutary to recall that we still do not know as much about twin
primes as Euclid knew about primes.

8 Further Remarks

The historical development of the prime number theorem is traced in Landau [33]. The
original papers of Chebyshev are available in [56]. Pintz [48] has given a simple proof
of Chebyshev’s result that π(x) = x/(A log x − B + o(1)) implies A = B = 1.

There is an English translation of Riemann’s memoir in Edwards [20]. Complex
variable proofs of the prime number theorem, with error term, are contained in the
books of Ayoub [4], Ellison and Ellison [21], and Patterson [47]. For a simple complex
variable proof without error term, due to Newman (1980), see Zagier [63].

A proof with error term by the Wiener–Ikehara method is given in C̆iz̆ek [12].
Wiener’s general Tauberian theorem is proved in Rudin [52]. For its algebraic
interpretation, see the resumé of Fourier analysis in [13]. The development of Selberg’s
method is surveyed in Diamond [18]. An elementary proof of the prime number
theorem which is quite different from that of Selberg and Erdős has been given by
Daboussi [15].

A clear account of Stieltjes integrals is given in Widder [62]. However, we do not
use Stieltjes integrals in any essential way, but only for the formal convenience of
treating integration by parts and summation by parts in the same manner. Widder’s
book also contains the Wiener–Ikehara proof of the prime number theorem.

By a theorem of S. Bernstein (1928), proved in Widder’s book and also in
Mattner [38], the hypotheses of Proposition 7 can be stated without reference to
the function φ(x). Bernstein’s theorem says that a real-valued function F(σ ) can be
represented in the form

F(σ ) =
∫ ∞

0
e−σ xdφ(x),

where φ(x) is a nondecreasing function for x ≥ 0 and the integral is convergent for
every σ > 1, if and only if F(σ ) has derivatives of all orders and

(−1)k F (k)(σ ) ≥ 0 for every σ > 1 (k = 0, 1, 2, . . .).

For the Poisson summation formula see, for example, Lasser [34] and Durán
et al. [19]. There is a useful n-dimensional generalization, discussed more fully in
§7 of Chapter XII, in which a sum over all points of a lattice is related to a sum over
all points of the dual lattice. Further generalizations are mentioned in Chapter X.

More extended treatments of the gamma function are given in Andrews et al. [3]
and Remmert [49].

More information about the Riemann zeta-function is given in the books of
Patterson [47], Titchmarsh [57], and Karatsuba and Voronin [30]. For numerical data,
see Rosser and Schoenfeld [50], van de Lune et al. [37] and Rumely [53].
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For a proof that π(x) − Li(x) changes sign infinitely often, see Diamond [17].
Estimates for values of x such that π(x) > Li(x) are obtained by a technique due to
Lehman [35]; for the most recent estimate, see Bays and Hudson [8].

For the pair correlation conjecture, see Montgomery [40], Goldston [24] and
Odlyzko [45]. Random matrices are thoroughly discussed by Mehta [39]; for a nice
introduction, see Tracy and Widom [58].

For Dedekind zeta functions see Stark [54], besides the books on algebraic number
theory referred to in Chapter III. The prime ideal theorem is proved in Narkiewicz [44],
for example. For consequences of the extended Riemann hypothesis, see Bach [5],
Goldstein [23] and M.R. Murty [41]. Many other generalizations of the zeta function
are discussed in the article on zeta functions in [22].

Function fields are treated in the books of Chevalley [11] and Deuring [16]. The
lengthy review of Chevalley’s book by Weil in Bull. Amer. Math. Soc. 57 (1951),
384–398, is useful but over-critical. Even if geometric methods are better adapted for
algebraic varieties of higher dimension, the algebraic methods available for curves
are essentially simpler. Moreover it was the close analogy with number fields that
suggested the possibility of a Riemann hypothesis for function fields. For a proof of
the latter, see Bombieri [9]. For the Weil conjectures, see Weil [61] and Katz [32].

Stichtenoth [55] gives a good account of the theory of function fields with spe-
cial emphasis on its applications to coding theory. For these applications, see also
Goppa [26], Tsfasman et al. [60], and Tsfasman and Vladut [59]. Curves with a given
genus which have the maximal number of Fq -points are discussed by Cossidente
et al. [14].

For introductions to Ramanujan’s tau-function, see V.K. Murty [42] and Rankin’s
article (pp. 245–268) in Andrews et al. [2]. For analogues of the prime number the-
orem in the theory of dynamical systems, see Katok and Hasselblatt [31] and Parry
and Pollicott [46]. Hadamard’s pioneering study of geodesics on a surface of negative
curvature and his proof of the prime number theorem are both reproduced in [27].

The ‘equivalence’ of Proposition 12 with the prime number theorem is proved in
Ayoub [4]. A proof that the Riemann hypothesis is equivalent to M(x) = O(xα) for
every α > 1/2 is contained in the book of Titchmarsh [57]. Good and Churchhouse’s
probabilistic conjectures appeared in [25]. For the central limit theorem and the law of
the iterated logarithm see, for example, Adams [1], Kac [29], Bauer [7] and Loève [36].

Brun’s theorem on twin primes is proved in Narkiewicz [43]. For numerical results,
see Brent [10]. For conjectural asymptotic formulas, see Hardy and Littlewood [28]
and Bateman and Horn [6]. There are several heuristic derivations of the twin prime
formula, the most recent being Rubenstein [51]. It would be useful to try to analyse
these heuristic derivations, so that the conclusion is seen as a consequence of precisely
stated assumptions.
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X

A Character Study

1 Primes in Arithmetic Progressions

Let a and m be integers with 1 ≤ a < m. If a and m have a common divisor d > 1,
then no term after the first of the arithmetic progression

a, a + m, a + 2m, . . . (∗)

is a prime. Legendre (1788) conjectured, and later (1808) attempted a proof, that if
a and m are relatively prime, then the arithmetic progression (∗) contains infinitely
many primes.

If a1, . . . , ah are the positive integers less than m and relatively prime to m, and if
π j (x) denotes the number of primes ≤ x in the arithmetic progression

a j , a j + m, a j + 2m, . . . ,

then Legendre’s conjecture can be stated in the form

π j (x)→∞ as x →∞ ( j = 1, . . . , h).

Legendre (1830) subsequently conjectured, and again gave a faulty proof, that

π j (x)/πk(x)→ 1 as x →∞ for all j, k.

Since the total number π(x) of primes ≤ x satisfies

π(x) = π1(x)+ · · · + πh(x)+ c,

where c is the number of different primes dividing m, Legendre’s second conjecture is
equivalent to

π j (x)/π(x)→ 1/h as x →∞ ( j = 1, . . . , h).

Here h = ϕ(m) is the number of positive integers less than m and relatively prime to m.
If one assumes the truth of the prime number theorem, then the second conjecture is

W.A. Coppel, Number Theory: An Introduction to Mathematics, Universitext, 
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also equivalent to

π j (x) ∼ x/ϕ(m) log x ( j = 1, . . . , ϕ(m)).

The validity of the second conjecture in this form is known as the prime number theo-
rem for arithmetic progressions.

Legendre’s first conjecture was proved by Dirichlet (1837) in an outstanding pa-
per which combined number theory, algebra and analysis. His algebraic innovation
was the use of characters to isolate the primes belonging to a particular residue class
mod m. Legendre’s second conjecture, which implies the first, was proved by de la
Vallée Poussin (1896), again using characters, at the same time that he proved the
ordinary prime number theorem.

Selberg (1949), (1950) has given proofs of both conjectures which avoid the use of
complex analysis, but they are not very illuminating. The prime number theorem for
arithmetic progressions will be proved here by an extension of the method used in the
previous chapter to prove the ordinary prime number theorem.

For any integer a, with 1 ≤ a < m and (a,m) = 1, let

π(x ; m, a) =
∑

p≤x,p≡a mod m

1.

Also, generalizing the definition of Chebyshev’s functions in the previous chapter, put

θ(x ; m, a) =
∑

p≤x,p≡a mod m

log p, ψ(x ; m, a) =
∑

n≤x,n≡a mod m

Λ(n).

Exactly as in the last chapter, we can show that the prime number theorem for arith-
metic progressions,

π(x ; m, a) ∼ x/ϕ(m) log x as x →∞,
is equivalent to

ψ(x ; m, a) ∼ x/ϕ(m) as x →∞.
It is in this form that the theorem will be proved.

2 Characters of Finite Abelian Groups

Let G be an abelian group with identity element e. A character of G is a function
χ : G → C such that

(i) χ(ab) = χ(a)χ(b) for all a, b ∈ G,
(ii) χ(c) �= 0 for some c ∈ G.

Since χ(c) = χ(ca−1)χ(a), by (i), it follows from (ii) that χ(a) �= 0 for every
a ∈ G. (Thus χ is a homomorphism of G into the multiplicative group C× of nonzero
complex numbers.) Moreover, since χ(a) = χ(a)χ(e), we must have χ(e) = 1. Since
χ(a)χ(a−1) = χ(e), it follows that χ(a−1) = χ(a)−1.
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The function χ1 : G → C defined by χ1(a) = 1 for every a ∈ G is obviously a
character of G, the trivial character (also called the principal character!). Moreover,
for any character χ of G, the function χ−1 : G → C defined by χ−1(a) = χ(a)−1 is
also a character of G. Furthermore, if χ ′ and χ ′′ are characters of G, then the function
χ ′χ ′′ : G → C defined by χ ′χ ′′(a) = χ ′(a)χ ′′(a) is a character of G. Since

χ1χ = χ, χ ′χ ′′ = χ ′′χ ′, χ(χ ′χ ′′) = (χχ ′)χ ′′,
it follows that the set Ĝ of all characters of G is itself an abelian group, the dual group
of G, with the trivial character as identity element.

Suppose now that the group G is finite, of order g say. Then χ(a) is a g-th root of
unity for every a ∈ G, since ag = e and hence

χ(a)g = χ(ag) = χ(e) = 1.

It follows that |χ(a)| = 1 and χ−1(a) = χ(a). Thus we will sometimes write χ̄
instead of χ−1.

Proposition 1 The dual group Ĝ of a finite abelian group G is a finite abelian group
of the same order. Moreover, if a ∈ G and a �= e, then χ(a) �= 1 for some χ ∈ Ĝ.

Proof Let g denote the order of G. Suppose first that G is a cyclic group, generated
by the element c. Then any character χ of G is uniquely determined by the value χ(c),
which is a g-th root of unity. Conversely if ω j = e2π i j/g(0 ≤ j < g) is a g-th root
of unity, then the functions χ( j ) : G → C defined by χ( j )(ck) = ωk

j are distinct

characters of G and χ(1)(ck) �= 1 for 1 ≤ k < g. It follows that the proposition is true
when G is cyclic. The general case can be reduced to this by using the fact (see §4 of
Chapter III) that any finite abelian group is a direct product of cyclic groups. However,
it can also be treated directly in the following way.

We use induction on g and suppose that G is not cyclic. Let H be a maximal proper
subgroup of G and let h be the order of H . Let a ∈ G\H and let r be the least positive
integer such that b = ar ∈ H . Since G is generated by H and a, and an ∈ H if and
only if r divides n, each x ∈ G can be uniquely expressed in the form

x = ak y,

where y ∈ H and 0 ≤ k < r . Hence g = rh.
If χ is any character of G, its restriction to H is a character ψ of H . Moreover χ

is uniquely determined by ψ and the value χ(a), since

χ(ak y) = χ(a)kψ(y).
Since χ(a)r = ψ(b) is a root of unity,ω = χ(a) is a root of unity such thatωr = ψ(b).

Conversely, it is easily verified that, for each character ψ of H and for each of
the r roots of unity ω such that ωr = ψ(b), the function χ : G → C defined by
χ(ak y) = ωkψ(y) is a character of G. Since H has exactly h characters by the induc-
tion hypothesis, it follows that G has exactly rh = g characters. It remains to show
that if ak y �= e, then χ(ak y) �= 1 for some χ . But if ωkψ(y) = 1 for all ω, then k = 0;
hence y �= e and χ(y) = ψ(y) �= 1 for some ψ , by the induction hypothesis. �
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Proposition 2 Let G be a finite abelian group of order g and Ĝ its dual group. Then

(i) ∑
a∈G

χ(a) =
{

g if χ = χ1,

0 if χ �= χ1.

(ii) ∑
χ∈Ĝ

χ(a) =
{

g if a = e,

0 if a �= e.

Proof Put

S =
∑
a∈G

χ(a).

Since it is obvious that S = g if χ = χ1, we assume χ �= χ1. Then χ(b) �= 1 for some
b ∈ G. Since ab runs through all elements of G at the same time as a,

χ(b)S =
∑
a∈G

χ(a)χ(b) =
∑
a∈G

χ(ab) = S.

Since χ(b) �= 1, it follows that S = 0.
Now put

T =
∑
χ∈Ĝ

χ(a).

Evidently T = g if a = e since, by Proposition 1, Ĝ also has order g. Thus we now
assume a �= e. By Proposition 1 also, for some ψ ∈ Ĝ we have ψ(a) �= 1. Since χψ
runs through all elements of Ĝ at the same time as χ ,

ψ(a)T =
∑
χ∈Ĝ

χ(a)ψ(a) =
∑
χ∈Ĝ

χψ(a) = T .

Since ψ(a) �= 1, it follows that T = 0. �

Since the product of two characters is again a character, and since ψ is the inverse
of the character ψ , Proposition 2(i) can be stated in the apparently more general form

(i)′ ∑
a∈G

χ(a)ψ(a) =
{

g if χ = ψ ,

0 if χ �= ψ .

Similarly, since χ̄(b) = χ(b−1), Proposition 2(ii) can be stated in the form

(ii)′ ∑
χ∈Ĝ

χ(a)χ̄(b) =
{

g if a = b,

0 if a �= b.

The relations (i)′ and (ii)′ are known as the orthogonality relations, for the characters
and elements respectively, of a finite abelian group.
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3 Proof of the Prime Number Theorem for Arithmetic Progressions

The finite abelian group in which we are interested is the multiplicative group Z×(m) of
integers relatively prime to m, where m > 1 will be fixed from now on. The group
Gm = Z×(m) has order ϕ(m), where ϕ(m) denotes as usual the number of positive
integers less than m and relatively prime to m.

A Dirichlet character mod m is defined to be a function χ : Z → C with the
properties

(i) χ(ab) = χ(a)χ(b) for all a, b ∈ Z,
(ii) χ(a) = χ(b) if a ≡ b mod m,

(iii) χ(a) �= 0 if and only if (a,m) = 1.

Any character χ of Gm can be extended to a Dirichlet character mod m by putting
χ(a) = 0 if a ∈ Z and (a,m) �= 1. Conversely, on account of (ii), any Dirichlet
character mod m uniquely determines a character of Gm .

To illustrate the definition, here are some examples of Dirichlet characters. In each
case we set χ(a) = 0 if (a,m) �= 1.

(I) m = p is an odd prime and χ(a) = (a/p) if p�a, where (a/p) is the Legendre
symbol;

(II) m = 4 and χ(a) = 1 or −1 according as a ≡ 1 or −1 mod 4;
(III) m = 8 and χ(a) = 1 or −1 according as a ≡ ±1 or±3 mod 8.

We now return to the general case. By the results of the previous section we have

m∑
n=1

χ(n) ≡
{
ϕ(m) if χ = χ1,

0 if χ �= χ1,

and ∑
χ

χ(a) =
{
ϕ(m) if a ≡ 1 mod m,

0 otherwise,

where χ runs through all Dirichlet characters mod m. Furthermore

m∑
n=1

χ(n)ψ(n) =
{
ϕ(m) if χ = ψ ,

0 if χ �= ψ ,

and ∑
χ

χ(a)χ̄(b) =
{
ϕ(m) if (a,m) = 1 and a ≡ b mod m,

0 otherwise.

Lemma 3 If χ �= χ1 is a Dirichlet character mod m then, for any positive
integer N, ∣∣∣∣ N∑

n=1

χ(n)

∣∣∣∣ ≤ ϕ(m)/2.
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Proof Any positive integer N can be written in the form N = qm + r , where q ≥ 0
and 1 ≤ r ≤ m. Since χ(a) = χ(b) if a ≡ b mod m, we have

N∑
n=1

χ(n) =
( m∑

n=1

+
2m∑

n=m+1

+ · · · +
qm∑

n=(q−1)m+1

)
χ(n)+

qm+r∑
n=qm+1

χ(n)

= q
m∑

n=1

χ(n)+
r∑

n=1

χ(n).

But
∑m

n=1 χ(n) = 0, since χ �= χ1. Hence

N∑
n=1

χ(n) =
r∑

n=1

χ(n) = −
m∑

n=r+1

χ(n).

Since |χ(n)| = 1 or 0 according as (n,m) = 1 or (n,m) �= 1, and since ϕ(m) is the
number of positive integers n ≤ m such that (n,m) = 1, the result follows. �

With each Dirichlet character χ , there is associated a Dirichlet L-function

L(s, χ) =
∞∑

n=1

χ(n)/ns .

Since |χ(n)| ≤ 1 for all n, the series is absolutely convergent for σ := Rs > 1. We
are going to show that if χ �= χ1, then the series is also convergent for σ > 0. (It does
not converge if σ ≤ 0, since then |χ(n)/ns | ≥ 1 for infinitely many n.)

Put

H (x) =
∑
n≤x

χ(n).

Then ∑
n≤x

χ(n)n−s =
∫ x+

1−
t−sd H(t)

= H (x)x−s + s
∫ x

1
H (t)t−s−1dt .

Since H (x) is bounded, by Lemma 3, on letting x →∞ we obtain

L(s, χ) = s
∫ ∞

1
H (t)t−s−1dt for σ > 0.

Moreover the integral on the right is uniformly convergent in any half-plane σ ≥ δ,
where δ > 0, and hence L(s, χ) is a holomorphic function for σ > 0.

The following discussion of Dirichlet L-functions and the prime number theorem
for arithmetic progressions runs parallel to that of the Riemann ζ -function and the
ordinary prime number theorem in the previous chapter. Consequently we will be more
brief.
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Proposition 4 L(s, χ) = Πp(1− χ(p)p−s)−1 for σ > 1, where the product is taken
over all primes p.

Proof The property χ(ab) = χ(a)χ(b) for all a, b ∈ N enables the proof of Euler’s
product formula for ζ(s) to be carried over to the present case. For σ > 0 we have

(1− χ(p)p−s)−1 = 1+ χ(p)p−s + χ(p2)p−2s + χ(p3)p−3s + · · ·
and hence for σ > 1 ∏

p≤x

(1− χ(p)p−s)−1 =
∑

n≤Nx

χ(n)n−s ,

where Nx is the set of all positive integers whose prime factors are all ≤ x . Letting
x →∞, we obtain the result. �

It follows at once that

L(s, χ1) = ζ(s)
∏
p|m
(1− p−s)

and that, for any Dirichlet character χ , L(s, χ) �= 0 for σ > 1.

Proposition 5 −L ′(s, χ)/L(s, χ) =∑∞
n=1 χ(n)Λ(n)/ns for σ > 1.

Proof The series ω(s, χ) =∑∞
n=1 χ(n)Λ(n)n

−s converges absolutely and uniformly
in any half-plane σ ≥ 1 + ε, where ε > 0. Moreover, as in the proof of Proposi-
tion IX.6,

L(s, χ)ω(s, χ) =
∞∑

j=1

χ( j) j−s
∞∑

k=1

χ(k)Λ(k)k−s =
∞∑

n=1

n−s
∑
j k=n

χ( j)χ(k)Λ(k)

=
∞∑

n=1

n−sχ(n)
∑
d |n
Λ(d) =

∞∑
n=1

n−sχ(n) log n = −L ′(s, χ). �

As in the proof of Proposition IX.6, we can also prove directly that L(s, χ) �= 0
for σ > 1, and thus make the proof of the prime number theorem for arithmetic
progressions independent of Proposition 4.

The following general result, due to Landau (1905), considerably simplifies the
subsequent argument (and has other applications).

Proposition 6 Let φ(x) be a nondecreasing function for x ≥ 0 such that the integral

f (s) =
∫ ∞

0
e−sxdφ(x) (†)

is convergent for Rs > β. Thus f is holomorphic in this half-plane. If the definition
of f can be extended so that it is holomorphic on the real segment (α, β], then the
integral in (†) is convergent also for Rs > α. Thus f is actually holomorphic, and (†)
holds, in this larger half-plane.
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Proof Since f is holomorphic at β, we can choose δ > 0 so that f is holomorphic
in the disc |s − (β + δ)| < 2δ. Thus its Taylor series converges in this disc. But for
Rs > β the n-th derivative of f is given by

f (n)(s) = (−1)n
∫ ∞

0
e−sxxndφ(x).

Hence, for any σ such that β − δ < σ < β + δ,

f (σ ) =
∞∑

n=0

(σ − β − δ)n f (n)(β + δ)/n!

=
∞∑

n=0

(σ − β − δ)n(−1)n
∫ ∞

0
e−(β+δ)x xndφ(x)/n!

=
∞∑

n=0

∫ ∞

0
e−(β+δ)x(β + δ − σ)n xn/n! dφ(x).

Since the integrands are non-negative, we can interchange the orders of summation
and integration, obtaining

f (σ ) =
∫ ∞

0
e−(β+δ)x

∞∑
n=0

(β + δ − σ)nxn/n! dφ(x)

=
∫ ∞

0
e−(β+δ)xe(β+δ−σ)xdφ(x)

=
∫ ∞

0
e−σ xdφ(x).

Thus the integral in (†) converges for real s > β − δ.
Let γ be the greatest lower bound of all real s ∈ (α, β) for which the integral

in (†) converges. Then the integral in (†) is also convergent for Rs > γ and defines
there a holomorphic function. Since this holomorphic function coincides with f (s) for
Rs > β, it follows that (†) holds for Rs > γ . Moreover γ = α, since if γ > α we
could replace β by γ in the preceding argument and thus obtain a contradiction to the
definition of γ . �

The punch-line is the following proposition:

Proposition 7 L(1+ i t, χ) �= 0 for every real t and every χ �= χ1.

Proof Assume on the contrary that L(1 + iα, χ) = 0 for some real α and some
χ �= χ1. Then also L(1− iα, χ̄) = 0. If we put

f (s) = ζ 2(s)L(s + iα, χ)L(s − iα, χ̄),

then f is holomorphic and nonzero for σ > 1. Furthermore f is holomorphic on the
real segment [1/2, 1], since the double pole of ζ 2(s) at s = 1 is cancelled by the zeros
of the other two factors. By logarithmic differentiation we obtain, for σ > 1,
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− f ′(s)/ f (s)

= −2ζ ′(s)/ζ(s)− L ′(s + iα, χ)/L(s + iα, χ)−L ′(s−iα, χ̄)/L(s − iα, χ̄)

= 2
∞∑

n=1

Λ(n)n−s +
∞∑

n=1

χ(n)Λ(n)n−s−iα +
∞∑

n=1

χ̄(n)Λ(n)n−s+iα

=
∞∑

n=2

cnn−s ,

where

cn = {2+ χ(n)n−iα + χ̄(n)niα}Λ(n) = 2{1+R(χ(n)n−iα)}Λ(n).

Since |χ(n)| ≤ 1 and |n−iα | = 1, it follows that cn ≥ 0 for all n ≥ 2. If we put

g(s) =
∞∑

n=2

cnn−s/ log n,

then g′(s) = f ′(s)/ f (s) for σ > 1 and so the derivative of e−g(s) f (s) is

{ f ′(s)− g′(s) f (s)}e−g(s) = 0.

Thus f (s) = Ceg(s), where C is a constant. In fact C = 1, since g(σ ) → 0 and
f (σ ) → 1 as σ → +∞. Since g(s) is the sum of an absolutely convergent Dirichlet
series with nonnegative coefficients, so also are the powers gk(s) (k = 2, 3, . . .).
Hence also

f (s) = eg(s) = 1+ g(s)+ g2(s)/2!+ · · · =
∞∑

n=1

an n−s for σ > 1,

where an ≥ 0 for every n. It follows from Proposition 6 that the series
∑∞

n=1 ann−σ
must actually converge with sum f (σ ) for σ ≥ 1/2. We will show that this leads to a
contradiction.

Take n = p2, where p is a prime. Then, by the manner of its formation,

an ≥ cn/ log n + c2
p/2 log2 p

= {2+ χ(p)2 p−2iα + χ̄(p)2 p2iα}/2+ {2+ χ(p)p−iα + χ̄ (p)piα}2/2
= 2− χ(p)χ̄(p)+ {1+ χ(p)p−iα + χ̄(p)piα}2 ≥ 1,

since |χ(p)| ≤ 1. Hence

f (1/2) =
∞∑

n=1

an/n1/2 ≥
∑

n=p2

an/n1/2 ≥
∑

p

1/p.

Since
∑

p 1/p diverges, this is a contradiction. �
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Proposition 8
∑

n≤x χ1(n)Λ(n) ∼ x,
∑

n≤x χ(n)Λ(n) = o(x) if χ �= χ1.

Proof For any Dirichlet character χ , put

g(s) = −ζ ′(s)/ζ(s)− L ′(s, χ)/2L(s, χ) − L ′(s, χ̄ )/2L(s, χ̄ ),

h(s) = −ζ ′(s)/ζ(s)− L ′(s, χ)/2i L(s, χ) + L ′(s, χ̄ )/2i L(s, χ̄).

For σ = Rs > 1 we have

g(s) =
∞∑

n=1

{1+Rχ(n)}Λ(n)n−s ,

h(s) =
∞∑

n=1

{1+I χ(n)}Λ(n)n−s .

If χ �= χ1 then, by Proposition 7, g(s)− 1/(s − 1) and h(s)− 1/(s − 1) are holomor-
phic for Rs ≥ 1. Since the coefficients of the Dirichlet series for g(s) and h(s) are
nonnegative, it follows from Ikehara’s theorem (Theorem IX.9) that∑

n≤x

{1+Rχ(n)}Λ(n) ∼ x,

∑
n≤x

{1+I χ(n)}Λ(n) ∼ x .

On the other hand, if χ = χ1 then g(s)−2/(s−1) and h(s)−1/(s−1) are holomorphic
for Rs ≥ 1, from which we obtain in the same way∑

n≤x

{1+ χ1(n)}Λ(n) ∼ 2x,

∑
n≤x

Λ(n) ∼ x .

The result follows. �

The prime number theorem for arithmetic progressions can now be deduced
immediately. For, by the orthogonality relations and Proposition 8, if 1 ≤ a < m
and (a,m) = 1, then

ψ(x ; m, a) =
∑

n≤x,n≡a mod m

Λ(n)

=
∑
χ

χ̄(a)
∑
n≤x

χ(n)Λ(n)/ϕ(m)

∼ x/ϕ(m).

It is also possible to obtain error bounds in the prime number theorem for arith-
metic progressions of the same type as those in the ordinary prime number theorem.
For example, it may be shown that for each α > 0,
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ψ(x ; m, a) = x/ϕ(m)+ O(x/ logα x),

π(x ; m, a) = Li(x)/ϕ(m)+ O(x/ logα x),

where the constants implied by the O-symbols depend on α, but not on m or a.
In the same manner as for the Riemann zeta-function ζ(s) it may be shown that the

Dirichlet L-function L(s, χ) satisfies a functional equation, provided χ is a primitive
character. (Here a Dirichlet character χ mod m is primitive if for each proper divisor d
of m there exists an integer a ≡ 1 mod d with (a,m) = 1 and χ(a) �= 1.) Explicitly,
if χ is a primitive character mod m and if one puts

Λ(s, χ) = (m/π)s/2Γ ((s + δ)/2)L(s, χ),
where δ = 0 or 1 according as χ(−1) = 1 or −1, then

Λ(1− s, χ̄ ) = εχΛ(s, χ),
where

εχ = i−δm−1/2
m∑

k=1

χ̄(k)e2π ik/m .

It follows from the functional equation that |εχ | = 1. Indeed, by taking complex
conjugates we obtain, for real s,

Λ(1− s, χ) = ε̄χΛ(s, χ̄ )
and hence, on replacing s by 1− s,

Λ(s, χ) = ε̄χΛ(1− s, χ̄ ) = εχ ε̄χΛ(s, χ).
The extended Riemann hypothesis implies that no Dirichlet L-function L(s, χ) has

a zero in the half-plane Rs > 1/2, since f (s) = ∏
χ L(s, χ) is the Dedekind zeta-

function of the algebraic number field K = Q(e2π i/m). Hence it may be shown that if
the extended Riemann hypothesis holds, then

ψ(x ; m, a) = x/ϕ(m)+ O(x1/2 log2 x)

and

π(x ; m, a) = Li(x)/ϕ(m)+ O(x1/2 log x),

where the constants implied by the O-symbols are independent of m and a.
Assuming the extended Riemann hypothesis, Bach and Sorenson (1996) have shown
that, for any a,m with 1 ≤ a < m and (a,m) = 1, the least prime p ≡ a mod m
satisfies p < 2(m log m)2.

Without any hypothesis, Linnik (1944) proved that there exists an absolute
constant L such that the least prime in any arithmetic progression a, a+m, a+2m, . . . ,
where 1 ≤ a < m and (a,m) = 1, does not exceed mL if m is sufficiently large.
Heath-Brown (1992) has shown that one can take any L > 11/2.
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4 Representations of Arbitrary Finite Groups

The problem of extending the character theory of finite abelian groups to arbitrary
finite groups was proposed by Dedekind and solved by Frobenius (1896). Simplifi-
cations were afterwards found by Frobenius himself, Burnside and Schur (1905). We
will follow Schur’s treatment, which is distinguished by its simplicity. It turns out that
for nonabelian groups the concept of ‘representation’ is more fundamental than that of
‘character’.

A representation of a group G is a mapping ρ of G into the set of all linear trans-
formations of a finite-dimensional vector space V over the field C of complex numbers
which preserves products, i.e.

ρ(st) = ρ(s)ρ(t) for all s, t ∈ G, (1)

and maps the identity element of G into the identity transformation of V : ρ(e) =
I . The dimension of the vector space V is called the degree of the representation
(although ‘dimension’ would be more natural).

It follows at once from (1) that

ρ(s)ρ(s−1) = ρ(s−1)ρ(s) = I.

Thus, for every s ∈ G, ρ(s) is an invertible linear transformation of V and ρ(s−1) =
ρ(s)−1. (Hence a representation of G is a homomorphism of G into the group GL(V )
of all invertible linear transformations of V .)

Any group has a trivial representation of degree 1 in which every element of the
group is mapped into the scalar 1.

Also, with any group G of finite order g a representation of degree g may be de-
fined in the following way. Let s1, . . . , sg be an enumeration of the elements of G and
let e1, . . . , eg be a basis for a g-dimensional vector space V over C. We define a linear
transformation A(si ) of V by its action on the basis elements:

A(si )e j = ek if si s j = sk .

Then, for all s, t ∈ G,

A(s−1)A(s) = I, A(st) = A(s)A(t).

Thus the mapping ρR : si → A(si ) is a representation of G, known as the regular
representation.

By choosing a basis for the vector space we can reformulate the preceding defini-
tions in terms of matrices. A representation of a group G is then a product-preserving
map s → A(s) of G into the group of all n × n non-singular matrices of complex
numbers. The positive integer n is the degree of the representation. However, we must
regard two matrix representations s → A(s) and s → B(s) as equivalent if one is
obtained from the other simply by changing the basis of the vector space, i.e. if there
exists a non-singular matrix T such that

T−1 A(s)T = B(s) for every s ∈ G.
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It is easily verified that if s → A(s) is a matrix representation of degree n of a
group G, then s → A(s−1)t (the transpose of A(s−1)) is a representation of the same
degree, the contragredient representation. Furthermore, s → det A(s) is a representa-
tion of degree 1.

Again, if ρ : s → A(s) and σ : s → B(s) are matrix representations of a group
G, of degrees m and n respectively, then the Kronecker product mapping

s → A(s)⊗ B(s)

is also a representation of G, of degree mn, since

(A(s)⊗ B(s))(A(t)⊗ B(t)) = A(st)⊗ B(st).

We will call this representation simply the product of the representations ρ and σ , and
denote it by ρ ⊗ σ .

The basic problem of representation theory is to determine all possible representa-
tions of a given group. As we will see, all representations may in fact be built up from
certain ‘irreducible’ ones.

Let ρ be a representation of a group G by linear transformations of a vector space
V . If a subspace U of V is invariant under G, i.e. if

ρ(s)U ⊆ U for every s ∈ G,

then the restrictions to U of the given linear transformations provide a representation
ρU of G by linear transformations of the vector space U . If it happens that there exists
another subspace W invariant under G such that V is the direct sum of U and W , i.e.
V = U +W and U ∩W = {0}, then the representation ρ is completely determined by
the representations ρU and ρW and will be said simply to be their sum.

A representation ρ of a group G by linear transformations of a vector space V is
said to be irreducible if no nontrivial proper subspace of V is invariant under G, and
reducible otherwise. Evidently any representation of degree 1 is irreducible.

A matrix representation s → A(s), of degree n, of a group G is reducible if it is
equivalent to a representation in which all matrices have the block form(

P(s) Q(s)
0 R(s)

)
,

where P(s) is a square matrix of order m, 0 < m < n. Then s → P(s) and s → R(s)
are representations of G of degrees m and n−m respectively. The given representation
is the sum of these representations if there exists a non-singular matrix T such that

T−1 A(s)T =
(

P(s) 0
0 R(s)

)
for every s ∈ G.

The following theorem of Maschke (1899) reduces the problem of finding all
representations of a finite group to that of finding all irreducible representations.

Proposition 9 Every representation of a finite group is (equivalent to) a sum of
irreducible representations.
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Proof We give a constructive proof due to Schur. Let s → A(s), where

A(s) =
(

P(s) Q(s)
0 R(s)

)
,

be a reducible representation of a group G of finite order g. Since the mapping
s → A(s) preserves products, we have

P(st) = P(s)P(t), R(st) = R(s)R(t), Q(st) = P(s)Q(t) + Q(s)R(t). (2)

The non-singular matrix

T =
(

I M
0 I

)
satisfies (

P(t) Q(t)
0 R(t)

)
T = T

(
P(t) 0

0 R(t)

)
(3)

if and only if

M R(t) = P(t)M + Q(t).

Take

M = g−1
∑
s∈G

Q(s)R(s−1).

Then, by (2),

P(t)M = g−1
∑
s∈G

{Q(ts)− Q(t)R(s)}R(s−1)

= g−1
∑
s∈G

Q(ts)R(s−1t−1)R(t)− Q(t) = M R(t) − Q(t),

and hence (3) holds.
Thus the given reducible representation s → A(s) is the sum of two representa-

tions s → P(s) and s → R(s) of lower degree. The result follows by induction on the
degree. �

Maschke’s original proof of Proposition 9 depended on showing that every repre-
sentation of a finite group is equivalent to a representation by unitary matrices. We
briefly sketch the argument. Let ρ : s → A(s) be a representation of a finite group G
by linear transformations of a finite-dimensional vector space V . We may suppose V
equipped with a positive definite inner product (u, v). It is easily verified that

(u, v)G = g−1
∑
t∈G

(A(t)u, A(t)v)
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is also a positive definite inner product on V and that it is invariant under G, i.e.

(A(s)u, A(s)v)G = (u, v)G for every s ∈ G.

If U is a subspace of V which is invariant under G, and if U⊥ is the subspace
consisting of all vectors v ∈ V such that (u, v)G = 0 for every u ∈ U , then U⊥
is also invariant under G and V is the direct sum of U and U⊥. Thus ρ is the sum of
its restrictions to U and U⊥.

The basic result for irreducible representations is Schur’s lemma, which comes in
two parts:

Proposition 10 (i) Let s → A1(s) and s → A2(s) be irreducible representations of
a group G by linear transformations of the vector spaces V1 and V2. If there exists a
linear transformation T �= 0 of V1 into V2 such that

T A1(s) = A2(s)T for every s ∈ G,

then the spaces V1 and V2 have the same dimension and T is invertible, so that the
representations are equivalent.

(ii) Let s → A(s) be an irreducible representation of a group G by linear transforma-
tions of a vector space V . A linear transformation T of V has the property

T A(s) = A(s)T for every s ∈ G (4)

if and only if T = λI for some λ ∈ C.

Proof (i) The image of V1 under T is a subspace of V2 which is invariant under the
second representation. Since T �= 0 and the representation is irreducible, it must be
the whole space: T V1 = V2. On the other hand, those vectors in V1 whose image
under T is 0 form a subspace of V1 which is invariant under the first representation.
Since T �= 0 and the representation is irreducible, it must contain only the zero vector.
Hence distinct vectors of V1 have distinct images in V2 under T . Thus T is a one-to-one
mapping of V1 onto V2.

(ii) By the fundamental theorem of algebra, there exists a complex number λ such
that det(λI − T ) = 0. Hence T − λI is not invertible. But if T has the property (4),
so does T − λI . Therefore T − λI = 0, by (i) with A1 = A2. It is obvious that,
conversely, (4) holds if T = λI . �

Corollary 11 Every irreducible representation of an abelian group is of degree 1.

Proof By Proposition 10 (ii) all elements of the group must be represented by scalar
multiples of the identity transformation. But such a representation is irreducible only
if its degree is 1. �
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5 Characters of Arbitrary Finite Groups

By definition, the trace of an n × n matrix A = (αi j ) is the sum of its main diagonal
elements:

trA =
n∑

i=1

αii .

It is easily verified that, for any n × n matrices A, B and any scalars λ,µ, we have

tr(λA + µB) = λtr A + µtr B,

tr(AB) = tr(B A), tr(A ⊗ B) = (tr A)(tr B).

Let ρ : s → A(s) be a matrix representation of a group G. By the character of the
representation ρ we mean the mapping χ : G → C defined by

χ(s) = trA(s).

Since tr(T−1 AT ) = tr(AT T−1) = trA, equivalent representations have the same char-
acter. The significance of characters stems from the converse, which will be proved
below.

Clearly the character χ of a representation ρ is a class function, i.e.

χ(st) = χ(ts) for all s, t ∈ G.

The degree n of the representation ρ is determined by its character χ , since A(e) = In

and hence χ(e) = n.
If the representation ρ is the sum of two representations ρ′ and ρ′′, the correspond-

ing characters χ, χ ′, χ ′′ evidently satisfy

χ(s) = χ ′(s)+ χ ′′(s) for every s ∈ G.

On the other hand, if the representation ρ is the product of the representations ρ′ and
ρ′′, then

χ(s) = χ ′(s)χ ′′(s) for every s ∈ G.

Thus the set of all characters of a group is closed under addition and multiplication.
The character of an irreducible representation will be called simply an irreducible
character.

Let G be a group and ρ a representation of G of degree n with character χ . If
s is an element of G of finite order m, then by restriction ρ defines a representation
of the cyclic group generated by s. By Proposition 9 and Corollary 11, this represen-
tation is equivalent to a sum of representations of degree 1. Thus if S is the matrix
representing s, there exists an invertible matrix T such that

T−1ST = diag[ω1, . . . , ωn]
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is a diagonal matrix. Moreover, since

T−1Sk T = diag[ωk
1, . . . , ω

k
n],

ω1, . . . , ωn are all m-th roots of unity. Thus

χ(s) = ω1 + · · · + ωn

is a sum of n m-th roots of unity. Since the inverse of a root of unity ω is its complex
conjugate ω̄, it follows that

χ(s−1) = ω−1
1 + · · · + ω−1

n = χ(s).
Now let G be a group of finite order g, and let ρ : s → A(s) and σ : s → B(s) be

irreducible matrix representations of G of degrees n and m respectively. For any n×m
matrix C , form the matrix

T =
∑
s∈G

A(s)C B(s−1).

Since ts runs through the elements of G at the same time as s,

A(t)T = T B(t) for every t ∈ G.

Therefore, by Schur’s lemma, T = O if ρ is not equivalent to σ and T = λI if ρ = σ .
In particular, take C to be any one of the mn matrices which have a single entry 1 and
all other entries 0. Then if A = (αi j ), B = (βkl ), we get

∑
s∈G

αi j (s)βkl(s
−1) =

{
0 if ρ, σ are inequivalent,

λ j kδil if ρ = σ ,

where δil = 1 or 0 according as i = l or i �= l (‘Kronecker delta’). Since for
(αi j ) = (βi j ) the left side is unchanged when i is interchanged with k and j with
l, we must have λ j k = λδ j k . To determine λ set i = l, j = k and sum with respect
to k. Since the matrices representing s and s−1 are inverse, we get g1 = nλ. Thus

∑
s∈G

αi j (s)αkl (s
−1) =

{
g/n if j = k and i = l,

0 otherwise.

If µ, v run through an index set for the inequivalent irreducible representations of
G, then the relations which have been obtained can be rewritten in the form

∑
s∈G

α
(µ)
i j (s)α

(v)
kl (s

−1) =
{

g/nµ if µ = v, j = k, i = l,

0 otherwise.
(5)

The orthogonality relations (5) for the irreducible matrix elements have several corol-
laries:

(i) The functions α(µ)i j : G → C are linearly independent.
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For suppose there exist λ(µ)i j ∈ C such that∑
i, j,µ

λ
(µ)
i j α

(µ)
i j (s) = 0 for every s ∈ G.

Multiplying by α(v)kl (s
−1) and summing over all s ∈ G, we get (g/nv)λ

(v)
lk = 0. Hence

every coefficient λ(v)lk vanishes.

(ii) ∑
s∈G

χµ(s)χv(s
−1) = gδµv. (6)

This follows from (5) by setting i = j , k = l and summing over j, l.

(iii) The irreducible characters χµ are linearly independent.

In fact (iii) follows from (6) in the same way that (i) follows from (5).
The orthogonality relations (6) for the irreducible characters enable us to decom-

pose a given representation ρ into irreducible representations. For if ρ = ⊕mµρµ is a
direct sum decomposition of ρ into irreducible components ρµ, where the coefficients
mµ are non-negative integers, and if ρ has character χ , then

χ(s) =
∑
µ

mµχµ(s).

Multiplying by χv(s−1) and summing over all s ∈ G, we deduce from (6) that

g−1
∑
s∈G

χ(s)χv(s
−1) = mv. (7)

Thus the multiplicities mv are uniquely determined by the character χ of the represen-
tation ρ. It follows that two representations are equivalent if and only if they have the
same character.

In the same way we find

g−1
∑
s∈G

χ(s)χ(s−1) =
∑
µ

mµ
2. (8)

Hence a representation ρ with character χ is irreducible if and only if

g−1
∑
s∈G

χ(s)χ(s−1) = 1.

The procedure for decomposing a representation into its irreducible components
may be applied, in particular, to the regular representation. Evidently the g× g matrix
representing an element s has all its main diagonal elements 0 if s �= e and all its main
diagonal elements 1 if s = e. Thus the character χR of the regular representation ρR

is given by

χR(e) = g, χR(s) = 0 if s �= e.
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Since χv(e) = nv is the degree of the v-th irreducible representation, it follows from (7)
that mv = nv. Thus every irreducible representation is contained in the direct sum
decomposition of the regular representation, and moreover each occurs as often as its
degree.

It follows that ∑
µ

nµ
2 = g,

∑
µ

nµχµ(s) = 0 if s �= e. (9)

Thus the total number of functions α(µ)i j is
∑
µ nµ2 = g. Therefore, since they are

linearly independent, every function φ : G → C is a linear combination of functions
α
(µ)
i j occurring in irreducible matrix representations.

We show next that every class function φ : G → C is a linear combination of
irreducible characters χµ. By what we have just proved φ =∑

µ φµ, where

φµ =
nµ∑

i, j=1

λ
(µ)
i j α

(µ)
i j

and λ(µ)i j ∈ C. But φ(st) = φ(ts) and

φµ(st) =
∑
i, j,k

λ
(µ)
ik α

(µ)
i j (s)α

(µ)
j k (t), φµ(ts) =

∑
i, j,k

λ
(µ)
kj α

(µ)
ki (t)α

(µ)
i j (s).

Since the functions α(µ)i j are linearly independent, we must have∑
k

λ
(µ)
ik α

(µ)
j k (t) =

∑
k

λ
(µ)
kj α

(µ)
ki (t).

If we denote by T (µ) the transpose of the matrix (λ(µ)ik ), we can rewrite this in the form

A(µ)(t)T (µ) = T (µ)A(µ)(t).

Consequently, by Schur’s lemma, T (µ) = λµ Inµ and hence φµ = λµχµ. Thus
φ =∑

µ λµχµ.

Two elements u, v of a group G are said to be conjugate if v = s−1us for some
s ∈ G. It is easily verified that conjugacy is an equivalence relation. Consequently G
is the union of pairwise disjoint subsets, called conjugacy classes, such that two ele-
ments belong to the same subset if and only if they are conjugate. The inverses of all
elements in a conjugacy class again form a conjugacy class, the inverse class.

In this terminology a function φ : G → C is a class function if and only if
φ(u) = φ(v) whenever u and v belong to the same conjugacy class. Thus the number
of linearly independent class functions is just the number of conjugacy classes in G.
Since the characters χµ form a basis for the class functions, it follows that the number
of inequivalent irreducible representations is equal to the number of conjugacy classes
in the group.

If a group of order g has r conjugacy classes then, by (9), g = n2
1 + · · · + n2

r .
Since it is abelian if and only if every conjugacy class contains exactly one element,
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i.e. if and only if r = g, it follows that a finite group is abelian if and only if every
irreducible representation has degree 1.

Let C1, . . . ,Cr be the conjugacy classes of the group G and let hk be the number
of elements in Ck (k = 1, . . . , r). Changing notation, we will now denote by χik the
common value of the character of all elements in the k-th conjugacy class in the i -th
irreducible representation. Then, since χ(s−1) = χ(s), the orthogonality relations (6)
can be rewritten in the form

g−1
r∑

j=1

h jχi jχkj =
{

1 if i = k,

0 if i �= k.
(10)

Thus the r × r matrices A = (χik), B = (g−1hiχki ) satisfy AB = I . Therefore also
B A = I , i.e.

r∑
j=1

χ j iχ j k =
{

g/hk if i = k,

0 if i �= k.
(11)

It may be noted that hk divides g since, for any sk ∈ Ck , g/hk is the order of the
subgroup formed by all elements of G which commute with sk . We are going to show
finally that the degree of any irreducible representation divides the order of the group.

Any representation ρ : s → A(s) of a finite group G may be extended by linearity
to the set of all linear combinations of elements of G:

ρ

(∑
s∈G

αss

)
=
∑
s∈G

αs A(s).

In particular, let Ck denote the sum of all elements in the k-th conjugacy class Ck of G.
For any t, u ∈ G,

u−1skut = t (t−1u−1skut)

and hence

ρ(Ck)A(t) =
∑
s∈Ck

A(st) =
∑
s∈Ck

A(ts) = A(t)ρ(Ck).

If ρ = ρi is an irreducible representation, it follows from Schur’s lemma that
ρi (Ck) = λik Ini . Moreover, since

trρi (Ck) = hkχik ,

where hk again denotes the number of elements in Ck , we must have λik = hkχik/ni .
Now let

C =
r∑

k=1

(g/hk)CkCk′ ,

where Ck′ is the conjugacy class inverse to Ck . (Otherwise expressed,
C =∑

s,t∈G sts−1t−1). Then ρi (C) = γi Ini , where

γi =
r∑

k=1

(g/hk)λikλik = (g/n2
i )

r∑
k=1

hkχikχik = (g/ni)
2,
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by (10). If ρR(C) is the matrix representing C in the regular representation, it fol-
lows that there exists an invertible matrix T such that T−1ρR(C)T is a diagonal ma-
trix, consisting of the matrices (g/ni )

2 Ini , repeated ni times, for every i . In partic-
ular, (g/ni )

2 is a root of the characteristic polynomial φ(λ) = det(λIg − ρR(C))
for every i . But ρR(C) is a matrix with integer entries and hence the polynomial
φ(λ) = λg + a1λ

g−1 + · · · + ag has integer coefficients a1, . . . , ag . The following
lemma, already proved in Proposition II.16 but reproved for convenience of reference
here, now implies that (g/ni )

2 is an integer and hence that ni divides g.

Lemma 12 If φ(λ) = λn + a1λ
n−1 + · · · + an is a monic polynomial with integer co-

efficients a1, . . . , an and r a rational number such that φ(r) = 0, then r is an integer.

Proof We can write r = b/c, where b and c are relatively prime integers and c > 0.
Then

bn + a1bn−1c + · · · + ancn = 0

and hence c divides bn. Since c and b have no common prime factor, this implies c = 1.
�

If we apply the preceding argument to Ck , rather than to C , we see that there
exists an invertible matrix Tk such that T−1

k ρR(Ck)Tk is a diagonal matrix, consisting
of the matrices (hkχik/ni )Ini repeated ni times, for every i . Thus hkχik/ni is a root
of the characteristic polynomial φk(λ) = det(λIg − ρR(Ck)). Since this is a monic
polynomial with integer coefficients, it follows that hkχik/ni is an algebraic integer.

6 Induced Representations and Examples

Let H be a subgroup of finite index n of a group G, i.e. G is the disjoint union of
n left cosets of H :

G = s1 H ∪ · · · ∪ sn H.

Also, let there be given a representation σ : t → A(t) of H by linear transformations
of a vector space V . The representation σ̃ : s → Ã(s) of G induced by the given
representation σ of H is defined in the following way:

Take the vector space Ṽ to be the direct sum of n subspaces Vi , where Vi consists
of all formal products si · v (v ∈ V ) with the rules of combination

si · (v + v ′) = si · v + si · v ′, si · (λv) = λ(si · v).
Then we set

Ã(s)si · v = s j · A(t)v,

where t and s j are determined from s and si by requiring that t = s−1
j ssi ∈ H .

The degree of the induced representation of G is thus n times the degree of the original
representation of H .
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With respect to a given basis of V let A(t) now denote the matrix representing
t ∈ H and put A(s) = O if s ∈ G\H . If one adopts corresponding bases for each of
the subspaces Vi , then the matrix Ã(s) representing s ∈ G in the induced representa-
tion is the block matrix

Ã(s) =

⎛⎜⎜⎝
A(s−1

1 ss1) A(s−1
1 ss2) · · · A(s−1

1 ssn)

A(s−1
2 ss1) A(s−1

2 ss2) · · · A(s−1
2 ssn)

· · · · · · · · · · · ·
A(s−1

n ss1) A(s−1
n ss2) · · · A(s−1

n ssn)

⎞⎟⎟⎠ .
Evidently each row and each column contains exactly one nonzero block. It

should be noted also that a different choice of coset representatives s′i = si ti , where
ti ∈ H (i = 1, . . . , n), yields an equivalent representation, since⎛⎝A(t1)−1 · · · 0

· · · · · · · · ·
0 · · · A(tn)−1

⎞⎠ Ã(s)

⎛⎝A(t1) · · · 0
· · · · · · · · ·
0 · · · A(tn)

⎞⎠
=
⎛⎝A(s′−1

1 ss′1) · · · A(s′−1
1 ss ′n)· · · · · · · · ·

A(s′−1
n ss′1) · · · A(s′−1

n ss ′n)

⎞⎠ .
Furthermore, changing the order of the cosets corresponds to performing the same
permutation on the rows and columns of Ã(s), and thus also yields an equivalent rep-
resentation.

It follows that if ψ is the character of the original representation σ of H , then the
character ψ̃ of the induced representation σ̃ of G is given by

ψ̃(s) =
n∑

i=1

ψ(s−1
i ssi ),

where we set ψ(s) = 0 if s /∈ H . If H is of finite order h, this can be rewritten in the
form

ψ̃(s) = h−1
∑
u∈G

ψ(u−1su), (12)

since ψ(t−1s−1
i ssi t) = ψ(s−1

i ssi ) if t ∈ H .
From any representation of a group G we can also obtain a representation of a

subgroup H simply by restricting the given representation to H . We will say that
the representation of H is deduced from that of G. There is a remarkable reciprocity
between induced and deduced representations, discovered by Frobenius (1898):

Proposition 13 Let ρ : s → A(s) be an irreducible representation of the finite group
G and σ : t → B(t) an irreducible representation of the subgroup H . Then the number
of times that σ occurs in the representation of H deduced from the representation ρ of
G is equal to the number of times that ρ occurs in the representation of G induced by
the representation σ of H .
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Proof Let χ denote the character of the representation ρ of G and ψ the character of
the representation σ of H . By (7), the number of times that ρ occurs in the complete
reduction of the induced representation σ̃ is

g−1
∑
s∈G

ψ̃(s)χ(s−1) = (gh)−1
∑

s,u∈G

ψ(u−1su)χ(s−1).

If we put u−1s−1u = t , u−1 = v, then s−1 = v−1tv and (t, v) runs through all
elements of G × G at the same time as (s, u). Therefore

g−1
∑
s∈G

ψ̃(s)χ(s−1) = (gh)−1
∑

t,v∈G

χ(v−1tv)ψ(t−1)

= h−1
∑
t∈G

χ(t)ψ(t−1) = h−1
∑
t∈H

χ(t)ψ(t−1),

which is the number of times that σ occurs in the complete reduction of the restriction
of ρ to H . �

Corollary 14 Each irreducible representation of a finite group G is contained in a
representation induced by some irreducible representation of a given subgroup H .

A simple, but still significant, application of these results is to the case where the
order of the subgroup H is half that of the whole group G. The subgroup H is then nec-
essarily normal (as defined in Chapter I, §7) since, for any v ∈ G\H , the elements of
G\H form both a single left coset vH and a single right coset Hv. Hence if s → A(s)
is a representation of H , then so also is s → A(v−1sv), its conjugate representation.
Since v2 ∈ H , the conjugate of the conjugate is equivalent to the original representa-
tion. Evidently a representation is irreducible if and only if its conjugate representation
is irreducible.

On the other hand G has a nontrivial character λ of degree 1, defined by

λ(s) = 1 or−1 according as s ∈ H or s /∈ H .

If χ is an irreducible character of G, then the character χλ of the product representa-
tion is also irreducible, since

1 = g−1
∑
s∈G

χ(s)χ(s−1) =
∑
s∈G

χ(s)λ(s)χ(s−1)λ(s−1).

Evidently χ and χλ have the same degree.
If ψi is the character of an irreducible representation of H , we will denote by ψvi

the character of its conjugate representation. Thus

ψvi (s) = ψi (v
−1sv).

The representation and its conjugate are equivalent if and only if ψvi (s) = ψi (s) for
every s ∈ H .



422 X A Character Study

Consider now the induced representation ψ̃i of G. Since H is a normal subgroup,
it follows from (12) that

ψ̃i (s) = ψ̃vi (s) = 0 if s ∈ G\H ,

ψ̃i (s) = ψ̃vi (s) = ψi (s)+ ψvi (s) if s ∈ H .

Hence ψ̃i = ψ̃vi and∑
s∈G

ψ̃i (s)ψ̃i (s
−1) =

∑
s∈H

{ψi (s)+ ψvi (s)}{ψi (s
−1)+ ψvi (s−1)}

=
∑
s∈H

ψi (s)ψi (s
−1)+

∑
s∈H

ψvi (s)ψ
v
i (s

−1)

+
∑
s∈H

{ψi (s)ψ
v
i (s

−1)+ ψi (s
−1)ψvi (s)}.

Consequently, by the orthogonality relations for H ,∑
s∈G

ψ̃i (s)ψ̃i (s
−1) = 2h + 2

∑
s∈H

ψi (s)ψ
v
i (s

−1).

If ψi and ψvi are inequivalent, the second term on the right vanishes and we obtain∑
s∈G

ψ̃i (s)ψ̃i (s
−1) = g.

Thus the induced representation ψ̃i of G is irreducible, its degree being twice that
of ψi .

On the other hand, if ψi and ψvi are equivalent, then∑
s∈G

ψ̃i (s)ψ̃i (s
−1) = 2g.

If ψ̃i =∑
j m jχ j is the decomposition of ψ̃i into irreducible characters χ j of G, it fol-

lows from (8) that
∑

j m2
j = 2. This implies that ψ̃i decomposes into two inequivalent

irreducible characters of G, say ψ̃i = χk + χl . We will show that in fact χl = χkλ.
If χk(s) = 0 for all s /∈ H , then∑

s∈H

χk(s)χk(s
−1) =

∑
s∈G

χk(s)χk(s
−1) = g = 2h

and hence, by the same argument as that just used, the restriction of χk to H decom-
poses into two inequivalent irreducible characters of H . Since the restriction of ψ̃i to
H is 2ψi , this is a contradiction. We conclude that χk(s) �= 0 for some s /∈ H , i.e.
χkλ �= χk . Since χk occurs once in the decomposition of ψ̃i , and ψ̃i (s) = 0 if s /∈ H ,
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1 = g−1
∑
s∈G

ψ̃i (s)χk(s
−1)

= g−1
∑
s∈H

ψ̃i (s)χk(s
−1)

= g−1
∑
s∈H

ψ̃i (s)χk(s
−1)λ(s−1)

= g−1
∑
s∈G

ψ̃i (s)χk(s
−1)λ(s−1).

Thus χkλ also occurs once in the decomposition of ψ̃i , and since χkλ �= χk we must
have χkλ = χl .

In the relation
∑

i ψi (1)2 = h, partition the sum into a sum over pairs of distinct
conjugate characters and a sum over self-conjugate characters:

Σ ′{ψi (1)
2 + ψvi (1)2} +Σ ′′ψi (1)

2 = h.

Then for the corresponding characters of G we have

Σ ′ψ̃i (1)
2 +Σ ′′{χk(1)

2 + χl(1)
2} = 2Σ ′{ψi (1)

2 + ψvi (1)2} + 2Σ ′′ψi (1)
2 = 2h = g.

Since, by Corollary 14, each irreducible character of G appears in the sum on the left,
it follows from (9) that each occurs exactly once. Thus we have proved

Proposition 15 Let the finite group G have a subgroup H of half its order. Then each
pair of distinct conjugate characters of H yields by induction a single irreducible char-
acter of G of twice the degree, whereas each self-conjugate character of H yields by
induction two distinct irreducible characters of G of the same degree, which coincide
on H and differ in sign on G\H . The irreducible characters of G thus obtained are all
distinct, and every irreducible character of G is obtained in this way.

We will now use Proposition 15 to determine the irreducible characters of several
groups of mathematical and physical interest. Let Sn denote the symmetric group con-
sisting of all permutations of the set {1, 2, . . . , n}, An the alternating group consisting
of all even permutations, and Cn the cyclic group consisting of all cyclic permutations.
Thus Sn has order n!, An has order n!/2 and Cn has order n.

The irreducible characters of the abelian group A3 = C3 are all of degree 1 and
can be arranged as a table in the following way, where ω is a primitive cube root of
unity, say ω = e2π i/3 = (−1+ i

√
3)/2.

A3

e (123) (132)

ψ1 1 1 1
ψ2 1 ω ω2

ψ3 1 ω2 ω

The group S3 contains A3 as a subgroup of index 2. The elements of S3 form three
conjugacy classes: C1 containing only the identity element e, C2 containing the three
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elements (12),(13),(23) of order 2, and C3 containing the two elements (123),(132) of
order 3. The irreducible characterψ1 of A3 is self-conjugate and yields two irreducible
characters of S3 of degree 1, the trivial character χ1 and the sign character χ2 = χ1λ.
The irreducible characters ψ2, ψ3 of A3 are conjugate and yield a single irreducible
character χ3 of S3 of degree 2. Thus we obtain the character table:

S3

C1 C2 C3

χ1 1 1 1
χ2 1 −1 1
χ3 2 0 −1

The elements of A4 form four conjugacy classes: C1 containing only the iden-
tity element e, C2 containing the three elements t1 = (12)(34), t2 = (13)(24), t3 =
(14)(23) of order 2, C3 containing four elements of order 3, namely c, ct1, ct2, ct3,
where c = (123), and C4 containing the remaining four elements of order 3, namely
c2, c2t1, c2t2, c2t3. Moreover N = C1 ∪ C2 is a normal subgroup of order 4, H =
{e, c, c2} is a cyclic subgroup of order 3, and

A4 = H N, H ∩ N = {e}.
If χ is a character of degree 1 of H , then a character ψ of degree 1 of A4 is defined by

ψ(hn) = χ(h) for all h ∈ H, n ∈ N.

Since H is isomorphic to A3, we obtain in this way three characters ψ1, ψ2, ψ3 of A4
of degree 1. Since A4 has order 12, and 12 = 1 + 1 + 1 + 9, the remaining
irreducible character ψ4 of A4 has degree 3. The character table of A4 can be
completed by means of the orthogonality relations (11) and has the following form,
where again ω = (−1+ i

√
3)/2.

A4

|C | 1 3 4 4

C C1 C2 C3 C4
ψ1 1 1 1 1
ψ2 1 1 ω ω2

ψ3 1 1 ω2 ω
ψ4 3 −1 0 0

The group S4 contains A4 as a subgroup of index 2 and v = (12) ∈ S4\A4. The
elements of S4 form five conjugacy classes: C1 containing only the identity element
e, C2 containing six transpositions ( jk) (1 ≤ j < k ≤ 4), C3 containing the three
elements of order 2 in A4, C4 containing eight elements of order 3, and C5 containing
six elements of order 4.

The self-conjugate character ψ1 of A4 yields two characters of S4 of degree 1,
the trivial character χ1 and the sign character χ2 = χ1λ; the pair of conjugate char-
acters ψ2, ψ3 of A4 yields an irreducible character χ3 of S4 of degree 2; and the
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self-conjugate character ψ4 of A4 yields two irreducible characters χ4, χ5 of S4 of
degree 3. The rows of the character table corresponding to χ4, χ5 must have the form

3 x z w y
3 −x z w −y

and from the orthogonality relations (11) we obtain z = −1, w = 0, xy = −1. From
the orthogonality relations (10) we further obtain x + y = 0. Hence x2 = 1 and the
complete character table is

S4

|C | 1 6 3 8 6

C C1 C2 C3 C4 C5
χ1 1 1 1 1 1
χ2 1 −1 1 1 −1
χ3 2 0 2 −1 0
χ4 3 1 −1 0 −1
χ5 3 −1 −1 0 1

The physical significance of these groups derives from the fact that A4 (resp. S4)
is isomorphic to the group of all rotations (resp. orthogonal transformations) of R3

which map a regular tetrahedron onto itself. Similarly A3 (resp. S3) is isomorphic to
the group of all plane rotations (resp. plane rotations and reflections) which map an
equilateral triangle onto itself.

An important property of induced representations was proved by R. Brauer (1953):
each character of a finite group is a linear combination with integer coefficients (not
necessarily non-negative) of characters induced from characters of elementary sub-
groups. Here a group is said to be elementary if it is the direct product of a group
whose order is a power of a prime and a cyclic group whose order is not divisible by
that prime.

It may be deduced without difficulty from Brauer’s theorem that, if G is a finite
group and m the least common multiple of the orders of its elements, then (as had long
been conjectured) any irreducible representation of G is equivalent to a representation
in the field Q(e2π i/m). Green (1955) has shown that Brauer’s theorem is actually best
possible: if each character of a finite group G is a linear combination with integer coef-
ficients of characters induced from characters of subgroups belonging to some family
F , then each elementary subgroup of G is contained in a conjugate of some subgroup
in F .

7 Applications

Character theory has turned out to be an invaluable tool in the study of abstract groups.
We illustrate this by two results of Burnside (1904) and Frobenius (1901). It is remark-
able, first that these applications were found so soon after the development of character
theory and secondly that, one century later, there are still no proofs known which do
not use character theory.
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Lemma 16 If ρ : s → A(s) is a representation of degree n of a finite group G, then
the character χ of ρ satisfies

|χ(s)| ≤ n for any s ∈ G.

Moreover, equality holds for some s if and only if A(s) = ωIn, where ω ∈ C.

Proof If s ∈ G has order m, there exists an invertible matrix T such that

T−1 A(s)T = diag[ω1, . . . , ωn ],

where ω1, . . . , ωn are m-th roots of unity. Hence χ(s) = ω1 + · · · + ωn and

|χ(s)| ≤ |ω1| + · · · + |ωn | = n.

Moreover |χ(s)| = n only if ω1, . . . , ωn all lie on the same ray through the origin
and hence only if they are all equal, since they lie on the unit circle. But then
A(s) = ωIn . �

The kernel of the representation ρ is the set Kρ of all s ∈ G for which ρ(s) = In .
Evidently Kρ is a normal subgroup of G. By Lemma 16, Kρ may be characterized as
the set of all s ∈ G such that χ(s) = n.

Lemma 17 Let ρ : s → A(s) be an irreducible representation of degree n of a finite
group G, with character χ , and let C be a conjugacy class of G containing h elements.
If h and n are relatively prime then, for any s ∈ C , either χ(s) = 0 or A(s) = ωIn for
some ω ∈ C.

Proof Since h and n are relatively prime, there exist integers a, b such that ah+bn =
1. Then

χ(s)/n = ahχ(s)/n + bχ(s).

Since hχ(s)/n and χ(s) are algebraic integers, it follows that χ(s)/n is an algebraic
integer. We may assume that |χ(s)| < n, since otherwise the result follows from
Lemma 16.

Suppose s has order m. If (k,m) = 1, then the conjugacy class containing sk also
has cardinality h and thus χ(sk)/n is an algebraic integer, by what we have already
proved. Hence

α =
∏

k

χ(sk)/n,

where k runs through all positive integers less than m and relatively prime to m, is also
an algebraic integer. But χ(sk) = f (ωk), where ω is a primitive m-th root of unity and

f (x) = xr1 + · · · + xrn

for some non-negative integers r1, . . . , rn less than m. Thus α is a symmetric function
of the primitive roots ωk . Since the cyclotomic polynomial
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Φn(x) =
∏

k

(x − ωk)

has integer coefficients, it follows that α ∈ Q. Consequently, by Lemma 12, α ∈ Z.
But |α| < 1, since |χ(s)| < n and |χ(sk)| ≤ n for every k. Hence α = 0, and thus

χ(sk) = 0 for some k with (k,m) = 1. If g(x) is the monic polynomial in Q[x] of
least positive degree such that g(ωk) = 0, then any polynomial in Q[x] with ωk as a
root must be divisible by g(x). Since we showed in Chapter II, §5 that the cyclotomic
polynomial Φn(x) is irreducible over the field Q, it follows that g(x) = Φn(x) and
that Φn(x) divides f (x). Hence also χ(s) = f (ω) = 0. �

Before stating the next result we recall from Chapter I, §7 that a group is said to
be simple if it contains more than one element and has no nontrivial proper normal
subgroup.

Proposition 18 If a finite group G has a conjugacy class C of cardinality pa, for some
prime p and positive integer a, then G is not a simple group.

Proof If s ∈ C then, by (9), ∑
µ

nµχµ(s) = 0.

Assume the notation chosen so that χ1 is the character of the trivial representation.
If χµ(s) = 0 for every µ > 1 for which p does not divide nµ, then the displayed
equation has the form 1 + pζ = 0, where ζ is an algebraic integer. Since −1/p is not
an integer, this contradicts Lemma 12. Consequently, by Lemma 17, for some v > 1
we must have A(v)(s) = ωInv , where ω ∈ C. The set Kv of all elements of G which
are represented by the identity transformation in the v-th irreducible representation is a
normal subgroup of G. Moreover Kv �= {e}, since Kv contains all elements u−1s−1us,
and Kv �= G, since v > 1. Thus G is not simple. �

Corollary 19 If G is a group of order paqb, where p, q are distinct primes and a, b
non-negative integers such that a + b > 1, then G is not simple.

Proof Let C1, . . . ,Cr be the conjugacy classes of G, with C1 = {e}, and let hk be the
cardinality of Ck (k = 1, . . . , r). Then hk divides the order g of G and

g = h1 + · · · + hr .

Suppose first that h j = 1 for some j > 1. Then C j = {s j }, where s j commutes
with every element of G. Thus the cyclic group H generated by s j is a normal sub-
group of G. Then G is not simple even if H = G, since a + b > 1 and any proper
subgroup of a cyclic group is normal.

Suppose next that hk �= 1 for every k > 1. If G is simple then, by Proposition 18,
q divides hk for every k > 1. Since q divides g, it follows that q divides h1 = 1, which
is a contradiction. �
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It has been shown by Kazarin (1990) that the normal subgroup generated by the
elements of the conjugacy class C in Proposition 18 is solvable. Although no proof of
Burnside’s Proposition 18 is known which does not use character theory, Goldschmidt
(1970) and Matsuyama (1973) have given a rather intricate proof of the important
Corollary 19 which is purely group theoretic.

The restriction to two distinct primes in the statement of Corollary 19 is essential,
since the alternating group A5 of order 60 = 22 ·3 ·5 is simple. It follows at once from
Corollary 19, by induction on the order, that any finite group whose order is divisible
by at most two distinct primes is solvable. P. Hall (1928/1937) has used Corollary 19 to
show that a finite group G of order g is solvable if and only if G has a subgroup H of
order h for every factorization g = pah, where a > 0 and p is a prime not dividing h.

The second application of group characters, due to Frobenius, has the following
statement:

Proposition 20 If the finite group G has a nontrivial proper subgroup H such that

x−1 H x ∩ H = {e} for every x ∈ G\H ,

then G contains a normal subgroup N such that G is the semidirect product of H and
N, i.e.

G = N H, H ∩ N = {e}.
Proof Obviously x−1 H x = y−1 H y if y ∈ H x and the hypotheses imply that
x−1 H x ∩ y−1 H y = {e} if y /∈ H x . If g, h are the orders of G, H respectively, it
follows that the number of distinct conjugate subgroups x−1 H x (including H itself) is
n = g/h. Furthermore the number of elements of G which belong to some conjugate
subgroup is n(h − 1) + 1 = g − (n − 1). Thus the set S of elements of G which do
not belong to any conjugate subgroup has cardinality n − 1.

Let ψµ be the character of an irreducible representation of H and ψ̃µ the character
of the induced representation of G. By (12) and the hypotheses,

ψ̃µ(e) = nψµ(e), ψ̃µ(s) = 0 if s ∈ S, ψ̃µ(s) = ψµ(s) if s ∈ H\e.
For any fixed µ, form the class function

χ = ψ̃µ − ψµ(e){ψ̃1 − χ1},
where ψ1 and χ1 are the characters of the trivial representations of H and G respec-
tively. Then χ is a generalized character of G, i.e. χ = ∑

v mvχv is a linear com-
bination of irreducible characters χv with integral, but not necessarily non-negative,
coefficients mv. Moreover

χ(e) = ψµ(e), χ(s) = ψµ(e) if s ∈ S, χ(s) = ψµ(s) if s ∈ H\e.
Hence ∑

s∈H\e
χ(s)χ(s−1) =

∑
s∈H\e

ψµ(s)ψµ(s
−1) = h − ψµ(e)2.
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Since S has cardinality n − 1, it follows that∑
s∈G

χ(s)χ(s−1) = n{h − ψµ(e)2} + ψµ(e)2 + (n − 1)ψµ(e)2 = g.

But the formula (8) holds also for generalized characters. Since χ(e) > 0, we conclude
that χ is in fact an irreducible character of G. Thus we have an irreducible representa-
tion of degree χ(e) in which the matrices representing elements of S have trace χ(e).
The elements of S must therefore be represented by the unit matrix, i.e. they belong to
the kernel Kµ of the representation.

On the other hand, for any t ∈ H\e we have∑
µ

ψµ(e)ψµ(t) = 0

and hence ψµ(t) �= ψµ(e) for some µ. Thus the intersection of the kernels Kµ for
varying µ contains just the elements of S and e. Since Kµ is a normal subgroup of G,
it follows that N = S∪{e} is also a normal subgroup. Furthermore, since H∩N = {e},
H N has cardinality hn = g and hence H N = G. �

A finite group G which satisfies the hypotheses of Proposition 20 is said to be a
Frobenius group. The subgroup H is said to be a Frobenius complement and the normal
subgroup N a Frobenius kernel. It is readily shown that a finite permutation group is a
Frobenius group if and only if it is transitive and no element except the identity fixes
more than one symbol. Another characterization follows from Proposition 20: a finite
group G is a Frobenius group if and only if it has a nontrivial proper normal subgroup
N such that, if x ∈ N and x �= e, then xy �= yx for all y ∈ G\N .

Frobenius groups are of some general significance and much is known about their
structure. It is easily seen that h divides n−1, so that the subgroups H and N have rel-
atively prime orders. It has been shown by Thompson (1959) that the normal subgroup
N is a direct product of groups of prime power order. The structure of H is known
even more precisely through the work of Burnside (1901) and others.

Applications of group characters of quite a different kind arise in the study of mole-
cular vibrations. We describe one such application within classical mechanics, due to
Wigner (1930). However, there are further applications within quantum mechanics,
e.g. to the determination of the possible spectral lines in the Raman scattering of light
by a substance whose molecules have a particular symmetry group.

A basic problem of classical mechanics deals with the small oscillations of a sys-
tem of particles about an equilibrium configuration. The equations of motion have the
form

Bẍ + Cx = 0, (13)

where x ∈ Rn is a vector of generalized coordinates and B,C are positive definite real
symmetric matrices. In fact the kinetic energy is (1/2)ẋ t B ẋ and, as a first approxima-
tion for x near 0, the potential energy is (1/2)xtCx .

Since B and C are positive definite, there exists (see Chapter V, §4) a non-singular
matrix T such that

T t BT = I, T t CT = D,
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where D is a diagonal matrix with positive diagonal elements. By the linear transfor-
mation x = T y the equations of motion are brought to the form

ÿ + Dy = 0.

These ‘decoupled’ equations can be solved immediately: if

y = (η1, . . . , ηn)
t , D = diag [ω2

1, . . . , ω
2
n],

with ωk > 0 (k = 1, . . . , n), then

ηk = αk cosωk t + βk sinωk t,

where αk, βk(k = 1, . . . , n) are arbitrary constants of integration. Hence there exist
vectors ak, bk ∈ Rn such that every solution of (13) is a linear combination of solu-
tions of the form

ak cosωk t, bk sinωk t (k = 1, . . . , n),

the so-called normal modes of oscillation. The eigenvalues of the matrix B−1C are the
squares of the normal frequencies ω1, . . . , ωn .

An important example is the system of particles formed by a molecule of N atoms.
Since the displacement of each atom from its equilibrium position is specified by three
coordinates, the internal configuration of the molecule without regard to its position
and orientation in space may be specified by n = 3N − 6 internal coordinates. The de-
termination of the corresponding normal frequencies ω1, . . . , ωn may be a formidable
task even for moderate values of N . However, the problem is considerably reduced by
taking advantage of the symmetry of the molecule.

A symmetry operation is an isometry of R3 which sends the equilibrium position
of any atom into the equilibrium position of an atom of the same type. The set of all
symmetry operations is clearly a group under composition, the symmetry group of the
molecule.

For example, the methane molecule C H4 has four hydrogen atoms at the vertices
of a regular tetrahedron and a carbon atom at the centre, from which it follows that
the symmetry group of C H4 is isomorphic to S4. Similarly, the ammonia molecule
N H3 has three hydrogen atoms and a nitrogen atom at the four vertices of a regular
tetrahedron, and hence the symmetry group of N H3 is isomorphic to S3.

We return now to the general case. If G is the symmetry group of the molecule,
then to each s ∈ G there corresponds a linear transformation A(s) of the configuration
space Rn . Moreover the map ρ : s → A(s) is a representation of G. Since the kinetic
and potential energies are unchanged by a symmetry operation, we have

A(s)t B A(s) = B, A(s)t C A(s) = C for every s ∈ G.

It follows that

B−1C A(s) = A(s)B−1C for every s ∈ G.

Assume the notation chosen so that the distinct ω’s are ω1, . . . , ωp and ωk occurs
mk times in the sequence ω1, . . . , ωn (k = 1, . . . , p). Thus n = m1 + · · · + m p . If Vk

is the set of all v ∈ Rn such that

B−1Cv = ω2
kv,
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then Vk is an mk-dimensional subspace of Rn(k = 1, . . . , p) and Rn is the direct sum
of V1, . . . , Vp . Moreover each eigenspace Vk is invariant under A(s) for every s ∈ G.
Hence, by Maschke’s theorem (which holds also for representations in a real vector
space), Vk is a direct sum of real-irreducible invariant subspaces. It follows that there
exists a real non-singular matrix T such that, for every s ∈ G,

T−1 A(s)T =

⎛⎜⎜⎝
A1(s) 0 · · · 0

0 A2(s) · · · 0
· · · · · · · · · · · ·
0 0 · · · Aq(s)

⎞⎟⎟⎠ ,
where s → Ak(s) is a real-irreducible representation of G, of degree nk say (k =
1, . . . , q), and

T−1 B−1CT =

⎛⎜⎜⎝
λ1 In1 0 · · · 0

0 λ2 In2 · · · 0
· · · · · · · · · · · ·
0 0 · · · λq Inq

⎞⎟⎟⎠ .
If the real-irreducible representations s → Ak(s) (k = 1, . . . , q) are also complex-
irreducible, then their degrees and multiplicities can be found by character theory.
Thus by decomposing the representation ρ of G into its irreducible components we
can determine the degeneracy of the normal frequencies.

We will not consider here the modifications needed when some real-irreducible
component is not also complex-irreducible. Also, it should be noted that it may
happen ‘accidentally’ that λ j = λk for some j �= k.

As a simple illustration of the preceding discussion we consider the ammonia
molecule N H3. Its internal configuration may be described by the six internal coor-
dinates r1, r2, r3 and α23, α31, α12, where r j is the change from its equilibrium value
of the distance from the nitrogen atom to the j -th hydrogen atom, and α j k is the change
from its equilibrium value of the angle between the rays joining the nitrogen atom to
the j -th and k-th hydrogen atoms.

We will determine the character χ of the corresponding representation ρ of the
symmetry group S3. In the notation of the character table previously given for S3,
there is an element s ∈ C3 for which the symmetry operation A(s) cyclically permutes
r1, r2, r3 and α23, α31, α12. Consequently χ(s) = 0 if s ∈ C3. Also, there is an element
t ∈ C2 for which the symmetry operation A(t) interchanges r1 with r2 and α23 with
α31, but fixes r3 and α12. Consequently χ(t) = 2 if t ∈ C2. Since it is obvious that
χ(e) = 6, this determines χ and we adjoin it to the character table of S3:

|C | 1 3 2

C C1 C2 C3
χ1 1 1 1
χ2 1 −1 1
χ3 2 0 −1
χ 6 2 0



432 X A Character Study

Decomposing the character χ into its irreducible components by means of (7),
we obtain χ = 2χ1 + 2χ3. Since the irreducible representations of S3 are all real,
this means that the configuration space R6 is the direct sum of four irreducible invari-
ant subspaces, two of dimension 1 and two of dimension 2. Knowing what to look
for, we may verify that the one-dimensional subspaces spanned by r1 + r2 + r3 and
α23 + α31 + α12 are invariant. Also, the two-dimensional subspace formed by all vec-
tors µ1r1 + µ2r2 + µ3r3 with µ1 + µ2 + µ3 = 0 is invariant and irreducible, and
so is the two-dimensional subspace formed by all vectors v1α23 + v2α31 + v3α12 with
v1 + v2 + v3 = 0. Hence we can find a real non-singular matrix T such that

T−1 B−1CT =

⎛⎜⎜⎝
λ1 I1 0 0 0

0 λ2 I1 0 0
0 0 λ3 I2 0
0 0 0 λ4 I2

⎞⎟⎟⎠ .
This shows that the ammonia molecule N H3 has two nondegenerate normal frequen-
cies and two doubly degenerate normal frequencies.

8 Generalizations

During the past century the character theory of finite groups has been extensively gen-
eralized to infinite groups with a topological structure. It may be helpful to give an
overview here, without proofs, of this vast development. The reader wishing to pursue
some particular topic may consult the references at the end of the chapter.

A topological group is a group G with a topology such that the map (s, t)→ st−1

of G × G into G is continuous. Throughout the following discussion we will assume
that G is a topological group which, as a topological space, is locally compact and
Hausdorff, i.e. any two distinct points are contained in open sets whose closures are
disjoint compact sets. (A closed set E in a topological space is compact if each open
cover of E has a finite subcover. In a metric space this is consistent with the definition
of sequential compactness in Chapter I, §4.)

Let C0(G) denote the set of all continuous functions f : G → C such that
f (s) = 0 for all s outside some compact subset of G (which may depend on f ).
A map M : C0(G)→ C is said to be a nonnegative linear functional if

(i) M( f1 + f2) = M( f1)+ M( f2) for all f1, f2 ∈ C0(G),
(ii) M(λ f ) = λM( f ) for all λ ∈ C and f ∈ C0(G),

(iii) M( f ) ≥ 0 if f (s) ≥ 0 for every s ∈ G.

It is said to be a left (resp. right) Haar integral if, in addition, it is nontrivial, i.e.
M( f ) �= 0 for some f ∈ C0(G), and left (resp. right) invariant, i.e.

(iv) M(t f ) = M( f ) for every t ∈ G and f ∈ C0(G), where t f (s) = f (t−1s), (resp.
M( ft ) = M( f ) for every t ∈ G and f ∈ C0(G), where ft (s) = f (st)).

It was shown by Haar (1933) that a left Haar integral exists on any locally
compact group; it was later shown to be uniquely determined apart from a positive
multiplicative constant. By defining M∗( f ) = M( f ∗), where f ∗(s) = f (s−1) for
every s ∈ G, it follows that a right Haar integral also exists and is uniquely determined
apart from a positive multiplicative constant.
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The notions of left and right Haar integral obviously coincide if the group G is
abelian, and it may be shown that they also coincide if G is compact or is a semi-
simple Lie group.

We now restrict attention to the case of a left Haar integral. It is easily seen that

M( f̄ ) = M( f ),

where f̄ (s) = f (s) for every s ∈ G. If we set ( f, g) = M( f ḡ), then the usual inner
product properties hold:

( f1 + f2, g) = ( f1, g)+ ( f2, g),

(λ f, g) = λ( f, g),

( f, g) = (g, f ),

( f, f ) ≥ 0, with equality only if f ≡ 0.

By the Riesz representation theorem, there is a unique positive measure µ on the
σ -algebra M generated by the compact subsets of G (cf. Chapter XI, §3) such that
µ(K ) is finite for every compact set K ⊆ G, µ(E) is the supremum of µ(K ) over all
compact K ⊆ E for each E ∈M , and

M( f ) =
∫

G
f dµ for every f ∈ C0(G).

The measure µ is necessarily left invariant:

µ(E) = µ(s E) for all E ∈M and s ∈ G,

where s E = {sx : x ∈ E}.
For p = 1 or 2, let L p(G) denote the set of all µ-measurable functions f : G → C

such that ∫
G
| f |pdµ <∞.

The definition of M can be extended to L1(G) by setting

M( f ) =
∫

G
f dµ,

and the inner product can be extended to L2(G) by setting

( f, g) =
∫

G
f ḡ dµ.

Moreover, with this inner product L2(G) is a Hilbert space. If we define the convolu-
tion product f ∗ g of f, g ∈ L1(G) by

f ∗ g(s) =
∫

G
f (st)g(t−1) dµ(t),
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then L1(G) is a Banach algebra and

M( f ∗ g) = M( f )M(g) for all f, g ∈ L1(G).

A unitary representation of G in a Hilbert space H is a map ρ of G into the set
of all linear transformations of H which maps the identity element e of G into the
identity transformation of H :

ρ(e) = I,

which preserves not only products in G:

ρ(st) = ρ(s)ρ(t) for all s, t ∈ G,

but also inner products in H :

(ρ(s)u, ρ(s)v) = (u, v) for all s ∈ G and all u, v ∈ H ,

and for which the map (s, v) → ρ(s)v of G ×H into H is continuous (or, equiv-
alently, for which the map s → (ρ(s)v, v) of G into C is continuous at e for every
v ∈H ).

For example, any locally compact group G has a unitary representationρ in L2(G),
its regular representation, defined by

(ρ(t) f )(s) = f (t−1s) for all f ∈ L2(G) and all s, t ∈ G.

If ρ is a unitary representation of G in a Hilbert space H , and if a closed subspace
V of H is invariant under ρ(s) for every s ∈ G, then so also is its orthogonal comple-
ment V⊥. The representation ρ is said to be irreducible if the only closed subspaces of
H which are invariant under ρ(s) for every s ∈ G are H and {0}. It has been shown
by Gelfand and Raikov (1943) that, for any locally compact group G and any s ∈ G\e,
there is an irreducible unitary representation ρ of G with ρ(s) �= I .

Consider now the case in which the locally compact group G is abelian. Then
any irreducible unitary representation of G is one-dimensional. Hence if we define a
character of G to be a continuous function χ : G → C such that

(i) χ(st) = χ(s)χ(t) for all s, t ∈ G,
(ii) |χ(s)| = 1 for every s ∈ G,

then every irreducible unitary representation is a character, and vice versa.
If multiplication and inversion of characters are defined pointwise, then the set Ĝ

of all characters of G is again an abelian group, the dual group of G. Moreover, we
can put a topology on Ĝ by defining a subset of Ĝ to be open if it is a union of sets of
the form

N(ψ, ε, K ) = {χ ∈ Ĝ : |χ(s)/ψ(s) − 1| < ε for all s ∈ K },

where ψ ∈ Ĝ, ε > 0 and K is a compact subset of G. Then Ĝ is not only abelian, but
also a locally compact topological group.
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For each fixed s ∈ G, the map ŝ : χ → χ(s) is a character of Ĝ. Moreover the map
s → ŝ is one-to-one, by the theorem of Gelfand and Raikov, and every character of
Ĝ is obtained in this way. In fact the duality theorem of Pontryagin and van Kampen
(1934/5) states that G is isomorphic and homeomorphic to the dual group of Ĝ.

The Fourier transform of a function f ∈ L1(G) is the function f̂ : Ĝ → C defined
by

f̂ (χ) =
∫

G
f (s)χ(s) dµ(s),

where µ is the Haar measure on G. If f1, f2 ∈ L1(G) ∩ L2(G), then f̂1, f̂2 ∈ L2(Ĝ)
and, with a suitable fixed normalization of the Haar measure µ̂ on Ĝ,

( f1, f2)G = ( f̂1, f̂2)Ĝ .

Furthermore, the map f → f̂ can be uniquely extended to a unitary map of L2(G)
onto L2(Ĝ). This generalizes Plancherel’s theorem for Fourier integrals on the real
line.

If f = g ∗ h, where g, h ∈ L1(G), then f ∈ L1(G) and

f̂ (χ) = ĝ(χ)ĥ(χ) for every χ ∈ Ĝ.

If, in addition, g, h ∈ L2(G), then f̂ ∈ L1(Ĝ) and, with the same choice as before for
the Haar measure µ̂ on Ĝ, the Fourier inversion formula holds:

f (s) =
∫

Ĝ
f̂ (χ)χ(s) dµ̂(χ).

The Poisson summation formula can also be extended to this general setting. Let
H be a closed subgroup of G and let K denote the factor group G/H . If the Haar
measures µ, v̂ on H, K̂ are suitably chosen then, with appropriate hypotheses on
f ∈ L1(G), ∫

H
f (t) dµ(t) =

∫
K̂

f̂ (ψ) dv̂(ψ).

We now give some examples (without spelling out the topologies). If G = R is the
additive group of all real numbers, then its characters are the functions χt : R → C,
with t ∈ R, defined by

χt (s) = eits .

In this case G is isomorphic and homeomorphic to Ĝ itself under the map t → χt . The
Haar integral of f ∈ L1(G) is the ordinary Lebesgue integral

M( f ) =
∫ ∞

−∞
f (s) ds,
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the Fourier transform of f is

f̂ (t) =
∫ ∞

−∞
f (s)e−it sds,

and the Fourier inversion formula has the form

f (s) = (1/2π)
∫ ∞

−∞
f̂ (t)eitsdt .

If G = Z is the additive group of all integers, then its characters are the functions
χz : Z → C, with z ∈ C and |z| = 1, defined by

χz(n) = zn.

Thus Ĝ is the multiplicative group of all complex numbers of absolute value 1. The
Haar integral of f ∈ L1(G) is

M( f ) =
∞∑

n=−∞
f (n),

the Fourier transform of f is

f̂ (eiφ) =
∞∑

n=−∞
f (n)e−inφ,

and the Fourier inversion formula has the form

f (n) = (1/2π)
∫ 2π

0
f̂ (eiφ)einφdφ.

Thus the classical theories of Fourier integrals and Fourier series are just special
cases. As another example, let G = Qp be the additive group of all p-adic numbers.
The characters in this case are the functions χt : Qp → C, with t ∈ Qp , defined by

χt (s) = e2π iλ(st),

where λ(x) = ∑
j<0 x j p j if x ∈ Qp is given by x = ∑∞

j=−∞ x j p j , x j ∈
{0, 1, . . . , p− 1} and x j = 0 for all large j < 0. Also in this case G is isomorphic and
homeomorphic to Ĝ itself under the map t → χt . If we choose the Haar measure on
G so that the measure of the compact set Zp of all p-adic integers is 1, then the same
choice for Ĝ is the appropriate one for Plancherel’s theorem and the Fourier inversion
formula.

Consider next the case in which the group G is compact, but not necessarily
abelian. In this case C0(G) coincides with the set C (G) of all continuous functions
f : G → C. The Haar integral is both left and right invariant, and we suppose it nor-
malized so that the integral of the constant 1 has the value 1. Then the integral M( f )
of any f ∈ C (G), or L1(G), may be called the invariant mean of f .
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It may be shown that if ρ is a unitary representation of a compact group G in
a Hilbert space H , then H may be represented as a direct sum H = ⊕αHα of
mutually orthogonal finite-dimensional invariant subspaces Hα such that, for every α,
the restriction of ρ to Hα is irreducible.

In particular, any irreducible unitary representation of a compact group is finite-
dimensional. Consequently it is possible to talk about matrix elements and traces,
i.e. characters, of irreducible unitary representations. The orthogonality relations for
matrix elements and for characters of irreducible representations of finite groups
remain valid for irreducible unitary representations of compact groups if one replaces
g−1 ∑

s∈G f (s) by the invariant mean M( f ).
Furthermore, any function f ∈ C (G) can be uniformly approximated by fi-

nite linear combinations of matrix elements of irreducible unitary representations,
and any class function f ∈ C (G) can be uniformly approximated by finite lin-
ear combinations of characters of irreducible unitary representations. Finally, in the
direct sum decomposition of the regular representation into finite-dimensional irre-
ducible unitary representations, each irreducible representation occurs as often as its
dimension.

Thus the representation theory of compact groups is completely analogous to that
of finite groups. Indeed we may regard the representation theory of finite groups as
a special case, since any finite group is compact with the discrete topology and any
representation is equivalent to a unitary representation.

An example of a compact group which is neither finite nor abelian is the group
G = SU(2) of all 2× 2 unitary matrices with determinant 1. The elements of G have
the form

g =
[
γ δ

−δ̄ γ̄

]
,

where γ, δ are complex numbers such that |γ |2 + |δ|2 = 1. Writing γ = ξ0 + iξ3,
δ = ξ1 + iξ2, we see that topologically SU(2) is homeomorphic to the sphere

S3 = {x = (ξ0, ξ1, ξ2, ξ3} ∈ R4 : ξ2
0 + ξ2

1 + ξ2
2 + ξ2

3 = 1}
and hence is compact and simply-connected (i.e. it is path-connected and any closed
path can be continuously deformed to a point).

For any integer n ≥ 0, let Vn denote the vector space of all polynomials f (z1, z2)
with complex coefficients which are homogeneous of degree n. Writing z = (z1, z2),
we have

zg = (γ z1 − δ̄z2, δz1 + γ̄ z2).

Hence if we define a linear transformation Tg of Vn by (Tg f )(z) = f (zg), then
ρn : g → Tg is a representation of SU(2) in Vn . It may be shown that this repre-
sentation is irreducible and is unitary with respect to the inner product( n∑

k=0

αk zk
1zn−k

2 ,

n∑
k=0

βkzk
1zn−k

2

)
=

n∑
k=0

k!(n − k)!αk β̄k .
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Moreover, every irreducible representation of SU(2) is equivalent to ρn for some
n ≥ 0.

To determine the character χn of ρn we observe that any g ∈ G is conjugate in G
to a diagonal matrix

t =
(

eiθ 0
0 e−iθ

)
,

where θ ∈ R. If fk(z1, z2) = zk
1zn−k

2 (0 ≤ k ≤ n), then

(Tt fk)(z1, z2) = (eiθ z1)
k(e−iθ z2)

n−k = ei(2k−n)θ fk(z1, z2).

Since the polynomials f0, . . . , fn are a basis for Vn it follows that

χn(g) = χn(t) =
n∑

k=0

ei(2k−n)θ .

Thus χn(I ) = n + 1, χn(−I ) = (−1)n(n + 1) and

χn(g) = {ei(n+1)θ − e−i(n+1)θ }/{eiθ − e−iθ } = sin(n + 1)θ/ sin θ if g �= I,−I.

From this formula we can easily deduce the decomposition of the product repre-
sentation ρm ⊗ ρn into irreducible components. Since

χm(g)χn(g) = (einθ + ei(n−2)θ + · · · + e−inθ ){ei(m+1)θ − e−i(m+1)θ }/{eiθ − e−iθ }
= χm+n(g)+ χm+n−2(g)+ · · · + χ|m−n|(g),

we have the Clebsch–Gordan formula

ρm ⊗ ρn = ρm+n + ρm+n−2 + · · · + ρ|m−n|.

This formula is the group-theoretical basis for the rule in atomic physics which
determines the possible values of the angular momentum when two systems with given
angular momenta are coupled.

The complex numbers γ, δ with |γ |2 + |δ|2 = 1 which specify the matrix
g ∈ SU(2) can be uniquely expressed in the form

γ = ei(ψ+ϕ)/2 cos θ/2, δ = ei(ψ−ϕ)/2 sin θ/2,

where 0 ≤ θ ≤ π , 0 ≤ ϕ < 2π , −2π ≤ ψ < 2π . Then the invariant mean of any
continuous function f : SU(2)→ C is given by

M( f ) = (1/16π2)

∫ 2π

−2π

∫ 2π

0

∫ π

0
f (θ, ϕ,ψ) sin θ dθ dϕ dψ.

Another example of a compact group which is neither finite nor abelian is the group
SO(3) of all 3 × 3 real orthogonal matrices with determinant 1. The representations
of SO(3) may actually be obtained from those of SU(2), since the two groups are
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intimately related. This was already shown in §6 of Chapter I, but another version of
the proof will now be given.

The set V of all 2× 2 matrices v which are skew-Hermitian and have zero trace,

v =
(
α β

−β̄ ᾱ

)
, where Rα = 0,

is a three-dimensional real vector space which may be identified with R3 by
writing α = iξ3, β = ξ1 + iξ2. Any g ∈ G = SU(2) defines a linear transformation
Tg : v → gvg−1 of R3. Moreover Tg is an orthogonal transformation, since if

Tgv = v1 =
(
α1 β1

−β̄1 ᾱ1

)
then, by the product rule for determinants,

|α1|2 + |β1|2 = |α|2 + |β|2.
Hence det Tg = ±1. In fact, since Tg is a continuous function of g and SU(2) is
connected, we must have det Tg = det Te = 1 for every g ∈ G. Thus Tg ∈ SO(3).
Since Tgh = Tg Th , the map g → Tg is a representation of G.

Every element of SO(3) is represented in this way, since

if gϕ =
(

e−iϕ/2 0
0 eiϕ/2

)
then Tgϕ = Bϕ =

⎛⎝ cosϕ sin ϕ 0
− sinϕ cosϕ 0

0 0 1

⎞⎠ ,
if hθ =

(
cos θ/2 − sin θ/2
sin θ/2 cos θ/2

)
then Thθ = Cθ =

⎛⎝1 0 0
0 cos θ sin θ
0 − sin θ cos θ

⎞⎠ ,
and every A ∈ SO(3) can be expressed as a product A = BψCθ Bϕ , where ϕ, θ,ψ are
Euler’s angles.

If Tg = I3 is the identity matrix, i.e. if gv = vg for every v ∈ V , then g = ±I2,
since any 2× 2 matrix which commutes with both the matrices(

0 1
−1 0

)
,

(
i 0
0 −i

)
must be a scalar multiple of the identity matrix. It follows that SO(3) is isomorphic to
the factor group SU(2)/{±I2}.

These examples, and higher-dimensional generalizations, can be treated systemat-
ically by the theory of Lie groups. A Lie group is a group G with the structure of a
finite-dimensional real analytic manifold such that the map (x, y)→ xy−1 of G × G
into G is real analytic.

Some examples of Lie groups are

(i) a Euclidean space Rn under vector addition;
(ii) an n-dimensional torus (or n-torus) Tn , i.e. the direct product of n copies of the

multiplicative group T1 of all complex numbers of absolute value 1;
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(iii) the general linear group GL(n) of all real nonsingular n×n matrices under matrix
multiplication;

(iv) the orthogonal group O(n) of all matrices X ∈ GL(n) such that Xt X = In ;
(v) the unitary group U(n) of all complex n × n matrices X such that X∗X = In ,

where X∗ is the conjugate transpose of X ; (U(n)may be viewed as a subgroup of
GL(2n))

(vi) the unitary symplectic group Sp(n) of all quaternion n × n matrices X such that
X∗X = In , where X∗ is the conjugate transpose of X . (Sp(n) may be viewed as
a subgroup of GL(4n))

The definition implies that any Lie group is a locally compact topological group.
The fifth Paris problem of Hilbert (1900) asks for a characterization of Lie groups
among all topological groups. A complete solution was finally given by Gleason,
Montgomery and Zippin (1953): a topological group can be given the structure of a
Lie group if and only if it is locally Euclidean, i.e. there is a neighbourhood of the
identity which is homeomorphic to Rn for some n.

The advantage of Lie groups over arbitrary topological groups is that, by replacing
them by their Lie algebras, they can be studied by the methods of linear analysis.

A real (resp. complex) Lie algebra is a finite-dimensional real (resp. complex) vec-
tor space L with a map (u, v)→ [u, v] of L × L into L, which is linear in u and in v
and has the properties

(i) [v, v] = 0 for every v ∈ L,
(ii) [u, [v,w]]+ [v, [w, u]]+ [w, [u, v]] = 0 for all u, v,w ∈ L. (Jacobi identity)

It follows from (i) and the linearity of the bracket product that

[u, v]+ [v, u] = 0 for all u, v ∈ L .

An example of a real (resp. complex) Lie algebra is the vector space gl(n,R) (resp.
gl(n,C)) of all n× n real (resp. complex) matrices X with [X,Y ] = XY − Y X . Other
examples are easily constructed as subalgebras.

A Lie subalgebra of a Lie algebra L is a vector subspace M of L such that u ∈ M
and v ∈ M imply [u, v] ∈ M . Some Lie subalgebras of gl(n,C) are

(i) the set An of all X ∈ gl(n + 1,C) with tr X = 0,
(ii) the set Bn of all X ∈ gl(2n + 1,C) such that Xt + X = 0,

(iii) the set Cn of all X ∈ gl(2n,C) such that Xt J + J X = 0, where

J =
(

0 In

−In 0

)
,

(iv) the set Dn of all X ∈ gl(2n,C) such that Xt + X = 0.

The manifold structure of a Lie group G implies that with each s ∈ G there is asso-
ciated a real vector space, the tangent space at s. The group structure of the Lie group
G implies that the tangent space at the identity e of G is a real Lie algebra, which will
be denoted by L(G). For example, if G = GL(n) then L(G) = gl(n,R). The proper-
ties of Lie groups are mirrored by those of their Lie algebras in the following way.
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For every real Lie algebra L, there is a simply-connected Lie group G̃ such that
L(G̃) = L. Moreover, G̃ is uniquely determined up to isomorphism by L. A connected
Lie group G has L(G) = L if and only if G is isomorphic to a factor group G̃/D,
where D is a discrete subgroup of the centre of G̃.

A Lie subgroup of a Lie group G is a real analytic submanifold H of G which
is also a Lie group under the restriction to H of the group structure on G. It may be
shown that a subgroup H of a Lie group G is a Lie subgroup if it is a closed subset of
G, and is a connected Lie subgroup if and only if it is path-connected. Thus any closed
subgroup of GL(n) is a Lie group.

If H is a Lie subgroup of the Lie group G, then L(H ) is a Lie subalgebra of L(G).
Moreover, if M is a Lie subalgebra of L(G), there is a unique connected Lie subgroup
H of G such that L(H ) = M .

If G1,G2 are Lie groups, then a map f : G1 → G2 is a Lie group homomorphism
if it is an analytic map, regarding G1,G2 as manifolds, and a homomorphism, regard-
ing G1,G2 as groups. It may be shown that any continuous map f : G1 → G2 which
is a group homomorphism is actually a Lie group homomorphism. (It follows that a
locally Euclidean topological group can be given the structure of a Lie group in only
one way.)

If L1, L2 are Lie algebras, then a map T : L1 → L2 is a Lie algebra homomor-
phism if it is linear and T [u, v] = [T u, T v] for all u, v ∈ L1. If G1,G2 are Lie groups
and if f : G1 → G2 is a Lie group homomorphism, then the derivative of f at the
identity, f ′(e) : L(G1)→ L(G2), is a Lie algebra homomorphism. Moreover, if G1 is
connected then distinct Lie group homomorphisms give rise to distinct Lie algebra ho-
momorphisms, and if G1 is simply-connected then every Lie algebra homomorphism
L(G1)→ L(G2) arises from some Lie group homomorphism. (In particular, the rep-
resentations of a connected Lie group are determined by the representations of its Lie
algebra.)

A Lie algebra L is abelian if [u, v] = 0 for all u, v ∈ L. A connected Lie group
is abelian if and only if its Lie algebra is abelian. Since the Euclidean space Rn is
a simply-connected Lie group with an n-dimensional abelian Lie algebra, it follows
that any n-dimensional connected abelian Lie group is isomorphic to a direct product
Rn−k × Tk (where Tk is a k-torus) for some k such that 0 ≤ k ≤ n.

An ideal of a Lie algebra L is a vector subspace M of L such that u ∈ L and
v ∈ M imply [u, v] ∈ M . A connected Lie subgroup H of a connected Lie group G is
a normal subgroup if and only if L(H ) is an ideal of L(G).

A Lie algebra L is simple if it has no ideals except {0} and L and is not one-
dimensional, and semisimple if it has no abelian ideal except {0}. It may be shown that
a Lie algebra is semisimple if and only if it is the direct sum of finitely many ideals,
each of which is a simple Lie algebra.

A Lie group is semisimple if it is connected and has no connected abelian normal
Lie subgroup except {e}. It follows that a connected Lie group G is semisimple if and
only if its Lie algebra L(G) is semisimple.

We turn our attention now to compact Lie groups. It may be shown that a compact
topological group can be given the structure of a Lie group if and only if it is finite-
dimensional and locally connected. Furthermore, a compact Lie group is isomorphic
to a closed subgroup of GL(n) for some n. Other basic results are:
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(i) a compact Lie group, and even any compact topological group, has only finitely
many connected components;

(ii) a connected compact Lie group is abelian if and only if it is an n-torus Tn for
some n;

(iii) a semisimple connected compact Lie group G has a finite centre. Moreover the
simply-connected Lie group G̃ such that L(G̃) = L(G) is not only semisimple
but also compact;

(iv) an arbitrary connected compact Lie group G has the form G = Z H , where Z , H
are connected compact Lie subgroups, H is semisimple and Z is the component
of the centre of G which contains the identity e.

These results essentially reduce the classification of arbitrary compact Lie groups
to the classification of those which are semisimple and simply-connected. It may be
shown that the latter are in one-to-one correspondence with the semisimple com-
plex Lie algebras. Since a semisimple Lie algebra is a direct sum of finitely many
simple Lie algebras, we are thus reduced to the classification of the simple com-
plex Lie algebras. The miracle is that these can be completely enumerated: the
non-isomorphic simple complex Lie algebras consist of the four infinite families
An(n ≥ 1), Bn(n ≥ 2), Cn(n ≥ 3), Dn(n ≥ 4), of dimensions n(n + 2), n(2n + 1),
n(2n+1), n(2n−1) respectively, and five exceptional Lie algebras G2, F4, E6, E7, E8
of dimensions 14, 52, 78, 133, 248 respectively.

To the simple complex Lie algebra An corresponds the compact Lie group
SU(n + 1) of all matrices in U(n + 1) with determinant 1; to Bn corresponds the
compact Lie group SO(2n + 1) of all matrices in O(2n + 1) with determinant 1; to
Cn corresponds the compact Lie group Sp(n) (whose matrices all have determinant 1),
and to Dn corresponds the compact Lie group SO(2n) of all matrices in O(2n) with
determinant 1. The groups SU(n) and Sp(n) are simply-connected if n ≥ 2, whereas
SO(n) is connected but has index 2 in its simply-connected covering group Spin(n) if
n ≥ 5. The compact Lie groups corresponding to the five exceptional simple complex
Lie algebras are all related to the algebra of octonions or Cayley numbers.

Space does not permit consideration here of the methods by which this classifi-
cation has been obtained, although the methods are just as significant as the result.
Indeed they provide a uniform approach to many problems involving the classical
groups, giving explicit formulas for the invariant mean and for the characters of all
irreducible representations. There is also a notable connection with groups generated
by reflections.

The classification of arbitrary semisimple Lie groups reduces similarly to the clas-
sification of simple real Lie algebras, which have also been completely enumerated.
The irreducible unitary representations of non-compact semisimple Lie groups have
been extensively studied, notably by Harish-Chandra. However, the non-compact case
is essentially more difficult than the compact, since any nontrivial representation is
infinite-dimensional, and the results are still incomplete. Much of the motivation for
this work has come from elementary particle physics where, in the original formula-
tion of Wigner (1939), a particle (specified by its mass and spin) corresponds to an
irreducible unitary representation of the inhomogeneous Lorentz group.
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9 Further Remarks

The history of Legendre’s conjectures on primes in arithmetic progressions is
described in Vol. I of Dickson [13]. Dirichlet’s original proof is contained in [33],
pp. 313–342. Although no simple general proof of Dirichlet’s theorem is known,
simple proofs have been given for the existence of infinitely many primes congruent
to 1 mod m; see Sedrakian and Steinig [41].

If all arithmetic progressions a, a + m, . . . with (a,m) = 1 contain a prime,
then they all contain infinitely many, since for any k > 1 the arithmetic progression
a + mk, a + 2mk, . . . contains a prime.

It may be shown that any finite abelian group G is isomorphic to its dual group Ĝ
(although not in a canonical way) by expressing G as a direct product of cyclic groups;
see, for example, W. & F. Ellison [15].

In the final step of the proof of Proposition 7 we have followed Bateman [3]. Other
proofs that L(1, χ) �= 0 for every χ �= χ1, which do not use Proposition 6, are given
in Hasse [21]. The functional equation for Dirichlet L-functions was first proved by
Hurwitz (1882). For proofs of some of the results stated at the end of §3, see Bach and
Sorenson [1], Davenport [12], W. & F. Ellison [15] and Prachar [40]. Funakura [18]
characterizes Dirichlet L-functions by means of their analytic properties.

The history of the theory of group representations and group characters is de-
scribed in Curtis [10]. More complete expositions of the subject than ours are given by
Serre [42], Feit [16], Huppert [27], and Curtis and Reiner [11]. The proof given here
that the degree of an irreducible representation divides the order of the group is not
Frobenius’ original proof. It first appeared in a footnote of a paper by Schur (1904) on
projective representations, where it is attributed to Frobenius. Zassenhaus [50] gives
an interpretation in terms of Casimir operators.

A character-free proof of Corollary 19 is given in Gagen [19]. P. Hall’s theorem is
proved in Feit [16], for example. Frobenius groups are studied further in Feit [16] and
Huppert [27].

For physical and chemical applications of group representations, see Cornwell [9],
Janssen [29], Meijer [36], Birman [4] and Wilson et al. [48].

Dym and McKean [14] give an outward-looking introduction to the classical theory
of Fourier series and integrals. The formal definition of a topological group is due to
Schreier (1926). The Haar integral is discussed by Nachbin [37]. General introductions
to abstract harmonic analysis are given by Weil [46], Loomis [34] and Folland [17].
More detailed information on topological groups and their representations is contained
in Pontryagin [39], Hewitt and Ross [23] and Gurarii [20]. A simple proof that the ad-
ditive group Qp of all p-adic numbers is isomorphic to its dual group is given by
Washington [45]. In the adelic approach to algebraic number theory this isomorphism
lies behind the functional equation of the Riemann zeta function; see, for example,
Lang [31].

For Hilbert’s fifth problem, see Yang [49] and Hirschfeld [24]. The correspondence
between Lie groups and Lie algebras was set up by Sophus Lie (1873–1893) in a purely
local way, i.e. between neighbourhoods of the identity in the Lie group and of zero
in the Lie algebra. Over half a century elapsed before the correspondence was made
global by Cartan, Pontryagin and Chevalley. A basic property of solvable Lie algebras
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was established by Lie, but we owe to Killing (1888–1890) the remarkable classifica-
tion of simple complex Lie algebras. Some gaps and inaccuracies in Killing’s pioneer-
ing work were filled and corrected in the thesis of Cartan (1894). The classification of
simple real Lie algebras is due to Cartan (1914). The representation theory of semisim-
ple Lie algebras and compact semisimple Lie groups is the creation of Cartan (1913)
and Weyl (1925–7). The introduction of groups generated by reflections is due to Weyl.

For the theory of Lie groups, see Chevalley [7], Warner [44], Varadarajan [43],
Helgason [22] and Barut and Raczka [2]. The last reference also has information
on representations of noncompact Lie groups and applications to quantum theory.
The purely algebraic theory of Lie algebras is discussed by Jacobson [28] and
Humphreys [25]. Niederle [38] gives a survey of the applications of the exceptional
Lie algebras and Lie superalgebras in particle physics. Groups generated by reflections
are treated by Humphreys [26], Bourbaki [5] and Kac [30], while Cohen [8] gives a
useful overview.

The character theory of locally compact abelian groups, whose roots lie in
Dirichlet’s theorem on primes in arithmetic progressions, has given something back to
number theory in the adelic approach to algebraic number fields; see the thesis of Tate,
reproduced (pp. 305–347) in Cassels and Fröhlich [6], Lang [31] and Weil [47]. For a
broad historical perspective and future plans, see Mackey [35] and Langlands [32].
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XI

Uniform Distribution and Ergodic Theory

A trajectory of a system which is evolving with time may be said to be ‘recurrent’ if it
keeps returning to any neighbourhood, however small, of its initial point, and ‘dense’
if it passes arbitrarily near to every point. It may be said to be ‘uniformly distributed’
if the proportion of time it spends in any region tends asymptotically to the ratio of the
volume of that region to the volume of the whole space. In the present chapter these
notions will be made precise and some fundamental properties derived. The subject of
dynamical systems has its roots in mechanics, but we will be particularly concerned
with its applications in number theory.

1 Uniform Distribution

Before introducing our subject, we establish the following interesting result:

Lemma 0 Let J = [a, b] be a compact interval and fn : J → R a sequence of non-
decreasing functions. If fn(t)→ f (t) for every t ∈ J as n →∞, where f : J → R
is a continuous function, then fn(t)→ f (t) uniformly on J .

Proof Evidently f is also nondecreasing. Furthermore, since J is compact, f is
uniformly continuous on J . It follows that, for any ε > 0, there is a subdivision
a = t0 < t1 < · · · < tm = b such that

f (tk)− f (tk−1) < ε (k = 1, . . . ,m).

We can choose a positive integer p so that, for all n > p,

| fn(tk)− f (tk)| < ε (k = 0, 1, . . . ,m).

If t ∈ J , then t ∈ [tk−1, tk] for some k ∈ {1, . . . ,m}. Hence

fn(t)− f (t) ≤ fn(tk)− f (tk)+ f (tk)− f (tk−1) < 2ε

and similarly

fn(t)− f (t) ≥ fn(tk−1)− f (tk−1)+ f (tk−1)− f (tk) > −2ε.

Thus | fn(t)− f (t)| < 2ε for every t ∈ J if n > p. �

W.A. Coppel, Number Theory: An Introduction to Mathematics, Universitext, 
DOI: 10.1007/978-0-387-89486-7_11, © Springer Science + Business Media, LLC 2009

447



448 XI Uniform Distribution and Ergodic Theory

For any real number ξ , let �ξ� denote again the greatest integer ≤ ξ and let

{ξ} = ξ − �ξ�
denote the fractional part of ξ . We are going to prove that, if ξ is irrational, then the
sequence ({nξ}) of the fractional parts of the multiples of ξ is dense in the unit interval
I = [0, 1], i.e. every point of I is a limit point of the sequence.

It is sufficient to show that the points zn = e2π inξ (n = 1, 2, . . .) are dense on the
unit circle. Since ξ is irrational, the points zn are all distinct and zn �= ±1. Conse-
quently they have a limit point on the unit circle. Thus, for any given ε > 0, there exist
positive integers m, r such that

|zm+r − zm | < ε.
But

|zm+r − zm | = |zr − 1| = |zn+r − zn| for every n ∈ N.

If we write zr = e2π iθ , where 0 < θ < 1, then zkr = e2π ikθ (k = 1, 2, . . .). Define the
positive integer N by 1/(N + 1) < θ < 1/N . Then the points zr , z2r , . . . , zNr follow
one another in order on the unit circle and every point of the unit circle is distant less
than ε from one of these points.

It may be asked if the sequence ({nξ}) is not only dense in I , but also spends
‘the right amount of time’ in each subinterval of I . To make the question precise we
introduce the following definition:

A sequence (ξn) of real numbers is said to be uniformly distributed mod 1 if, for
all α, β with 0 ≤ α < β ≤ 1,

ϕα,β(N)/N → β − α as N →∞,
where ϕα,β(N) is the number of positive integers n ≤ N such that α ≤ {ξn} < β.

In this definition we need only require that ϕ0,α(N)/N → α for every α ∈ (0, 1),
since

ϕα,β(N) = ϕ0,β(N) − ϕ0,α(N)

and hence

|ϕα,β(N)/N − (β − α)| ≤ |ϕ0,β(N)/N − β| + |ϕ0,α(N)/N − α|.
It follows from Lemma 0, with fn(t) = ϕ0,t (n)/n and f (t) = t , that the sequence (ξn)
is uniformly distributed mod 1 if and only if

ϕα,β(N)/N → β − α as N →∞
uniformly for all α, β with 0 ≤ α < β ≤ 1.

It was first shown by Bohl (1909) that, if ξ is irrational, the sequence (nξ) is uni-
formly distributed mod 1 in the sense of our definition. Later Weyl (1914,1916) estab-
lished this result by a less elementary, but much more general argument, which was
equally applicable to multi-dimensional problems. The following two theorems, due to
Weyl, replace the problem of showing that a sequence is uniformly distributed mod 1
by a more tractable analytic problem.
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Theorem 1 A real sequence (ξn) is uniformly distributed mod 1 if and only if, for
every function f : I → C which is Riemann integrable,

N−1
N∑

n=1

f ({ξn})→
∫

I
f (t) dt as N →∞. (1)

Proof For any α, β ∈ I with α < β, let χα,β denote the indicator function of the
interval [α, β), i.e.

χα,β(t) = 1 for α ≤ t < β,

= 0 otherwise.

Since ∫
I
χα,β(t) dt = β − α,

the definition of uniform distribution can be rephrased by saying that the sequence (ξn)
is uniformly distributed mod 1 if and only if, for all choices of α and β,

N−1
N∑

n=1

χα,β({ξn})→
∫

I
χα,β(t) dt as N →∞.

Thus the sequence (ξn) is certainly uniformly distributed mod 1 if (1) holds for every
Riemann integrable function f .

Suppose now that the sequence (ξn) is uniformly distributed mod 1. Then (1) holds
not only for every function f = χα,β , but also for every finite linear combination
of such functions, i.e. for every step-function f . But, for any real-valued Riemann
integrable function f and any ε > 0, there exist step-functions f1, f2 such that

f1(t) ≤ f (t) ≤ f2(t) for every t ∈ I

and ∫
I
( f2(t)− f1(t)) dt < ε.

Hence

N−1
N∑

n=1

f ({ξn})−
∫

I
f (t) dt ≤ N−1

N∑
n=1

f2({ξn})−
∫

I
f2(t) dt + ε

< 2ε for all large N,

and similarly

N−1
N∑

n=1

f ({ξn})−
∫

I
f (t) dt > −2ε for all large N.

Thus (1) holds when the Riemann integrable function f is real-valued and also, by
linearity, when it is complex-valued. �
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A converse of Theorem 1 has been proved by de Bruijn and Post (1968): if a func-
tion f : I → C has the property that

lim
N→∞ N−1

N∑
n=1

f ({ξn})

exists for every sequence (ξn)which is uniformly distributed mod 1, then f is Riemann
integrable.

In the statement of the next result, and throughout the rest of the chapter, we use
the abbreviation

e(t) = e2π it .

In the proof of the next result we use the Weierstrass approximation theorem: any con-
tinuous function f : I → C of period 1 is the uniform limit of a sequence ( fn) of
trigonometric polynomials. In fact, as Fejér (1904) showed, one can take fn to be the
arithmetic mean (S0 + · · · + Sn−1)/n, where

Sm = Sm(x) :=
m∑

h=−m

che(hx)

is the m-th partial sum of the Fourier series for f . This yields the explicit formula

fn(x) =
∫

I
Kn(x − t) f (t) dt,

where

Kn(u) = (sin2 nπu)/(n sin2 πu).

Theorem 2 A real sequence (ξn) is uniformly distributed mod 1 if and only if, for
every integer h �= 0,

N−1
N∑

n=1

e(hξn)→ 0 as N →∞. (2)

Proof If the sequence (ξn) is uniformly distributed mod 1 then, by taking f (t) =
e(ht) in Theorem 1 we obtain (2) since, for every integer h �= 0,∫

I
e(ht) dt = 0.

Conversely, suppose (2) holds for every nonzero integer h. Then, by linearity, for
any trigonometric polynomial

g(t) =
m∑

h=−m

bhe(ht)

we have

N−1
N∑

n=1

g({ξn})→ b0 =
∫

I
g(t) dt as N →∞.
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If f is a continuous function of period 1 then, by the Weierstrass approximation
theorem, for any ε > 0 there exists a trigonometric polynomial g(t) such that
| f (t)− g(t)| < ε for every t ∈ I . Hence∣∣∣∣N−1

N∑
n=1

f ({ξn})−
∫

I
f (t) dt

∣∣∣∣
≤
∣∣∣∣N−1

N∑
n=1

( f ({ξn})− g({ξn}))
∣∣∣∣+ ∣∣∣∣N−1

N∑
n=1

g({ξn})−
∫

I
g(t) dt

∣∣∣∣
+
∣∣∣∣ ∫

I
(g(t)− f (t)) dt

∣∣∣∣
< 2ε +

∣∣∣∣N−1
N∑

n=1

g({ξn})−
∫

I
g(t) dt

∣∣∣∣
< 3ε for all large N.

Thus (1) holds for every continuous function f of period 1.
Finally, if χα,β is the function defined in the proof of Theorem 1 then, for any

ε > 0, there exist continuous functions f1, f2 of period 1 such that

f1(t) ≤ χα,β(t) ≤ f2(t) for every t ∈ I

and ∫
I
( f2(t)− f1(t)) dt < ε,

from which it follows similarly that

N−1
N∑

n=1

χα,β({ξn})→
∫

I
χα,β(t) dt as N →∞.

Thus the sequence (ξn) is uniformly distributed mod 1. �

Weyl’s criterion, as Theorem 2 is usually called, immediately implies Bohl’s result:

Proposition 3 If ξ is irrational, the sequence (nξ) is uniformly distributed mod 1.

Proof For any nonzero integer h,

e(hξ)+ e(2hξ)+ · · · + e(Nhξ) = (e((N + 1)hξ)− e(hξ))/(e(hξ)− 1).

Hence ∣∣∣∣N−1
N∑

n=1

e(hnξ)

∣∣∣∣ ≤ 2|e(hξ)− 1|−1 N−1,

and the result follows from Theorem 2. �
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These results can be immediately extended to higher dimensions. A sequence
(xn) of vectors in Rd is said to be uniformly distributed mod 1 if, for all vectors
a = (α1, . . . , αd ) and b = (β1, . . . , βd) with 0 ≤ αk < βk ≤ 1 ( k = 1, . . . , d),

ϕa,b(N)/N →
d∏

k=1

(βk − αk) as N →∞,

where xn = (ξ
(1)
n , . . . , ξ

(d)
n ) and ϕa,b(N) is the number of positive integers n ≤ N

such that αk ≤ {ξ(k)n } < βk for every k ∈ {1, . . . , d}. Let I d be the set of all
x = (ξ (1), . . . , ξ (d)) such that 0 ≤ ξ(k) ≤ 1 (k = 1, . . . , d) and, for an arbitrary
vector x = (ξ (1), . . . , ξ (d)), put

{x} = ({ξ(1)}, . . . , {ξ(d)}).
Then Theorems 1 and 2 have the following generalizations:

Theorem 1′ A sequence (xn) of vectors in Rd is uniformly distributed mod 1 if and
only if, for every function f : I d → C which is Riemann integrable,

N−1
N∑

n=1

f ({xn})→
∫

I
· · ·

∫
I

f (t1, . . . , td) dt1 · · · dtd as N →∞.

Theorem 2′ A sequence (xn) of vectors in Rd is uniformly distributed mod 1 if and
only if, for every nonzero vector m = (µ1, . . . , µd) ∈ Zd ,

N−1
N∑

n=1

e(m · xn)→ 0 as N →∞,

where m · xn = µ1ξ
(1)
n + · · · + µdξ

(d)
n .

Proposition 3 can also be generalized in the following way:

Proposition 3′ If x = (ξ (1), . . . , ξ (d)) is any vector in Rd such that 1, ξ (1), . . . , ξ (d)

are linearly independent over the field Q of rational numbers, then the sequence (nx)
is uniformly distributed mod 1.

In particular, the sequence ({nx}) = ({nξ(1)}, . . . , {nξ(d)}) is dense in the
d-dimensional unit cube if 1, ξ (1), . . . , ξ (d) are linearly independent over the field Q
of rational numbers. This much weaker assertion had already been proved before Weyl
by Kronecker (1884).

It is easily seen that the linear independence of 1, ξ (1), . . . , ξ (d) over the field Q of
rational numbers is also necessary for the sequence ({nx}) to be dense in the
d-dimensional unit cube and, a fortiori, for the sequence (nx) to be uniformly dis-
tributed mod 1. For if 1, ξ (1), . . . , ξ (d) are linearly dependent over Q there exists a
nonzero vector m = (µ1, . . . , µd) ∈ Zd such that

m · x = µ1ξ
(1) + · · · + µdξ

(d) ∈ Z.
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It follows that each point of the sequence (nx) lies on some hyperplane m · y = h,
where h ∈ Z. Without loss of generality, suppose µ1 �= 0. Then no point of the
d-dimensional unit cube which is sufficiently close to the point (|2µ1|−1, 0, . . . , 0)
lies on such a hyperplane.

We now return to the one-dimensional case. Weyl used Theorem 2 to prove, not
only Proposition 3, but also a deeper result concerning the uniform distribution of
the sequence ( f (n)), where f is a polynomial of any positive degree. We will derive
Weyl’s result by a more general argument due to van der Corput (1931), based on the
following inequality:

Lemma 4 If ζ1, . . . , ζN are arbitrary complex numbers then, for any positive integer
M ≤ N,

M2
∣∣∣∣ N∑
n=1

ζn

∣∣∣∣2≤ M(M + N − 1)
N∑

n=1

|ζn|2 + 2(M + N − 1)
M−1∑
m=1

(M − m)

∣∣∣∣N−m∑
n=1

ζnζn+m

∣∣∣∣.
Proof Put ζn = 0 if n ≤ 0 or n > N . Then it is easily verified that

M
N∑

n=1

ζn =
M+N−1∑

h=1

( M−1∑
k=0

ζh−k

)
.

Applying Schwarz’s inequality (Chapter I, §4), we get

M2
∣∣∣∣ N∑

n=1

ζn

∣∣∣∣2 ≤ (M + N − 1)
M+N−1∑

h=1

∣∣∣∣ M−1∑
k=0

ζh−k

∣∣∣∣2

= (M + N − 1)
M+N−1∑

h=1

M−1∑
j,k=0

ζh−kζh− j .

On the right side any term |ζn|2 occurs exactly M times, namely for h−k = h− j = n.
A term ζnζn+m or ζnζn+m , where m > 0, occurs only if m < M and then it occurs
exactly M − m times. Thus the right side is equal to

M(M + N − 1)
N∑

n=1

|ζn|2 + (M + N − 1)
M−1∑
m=1

(M − m)
N−m∑
n=1

(ζnζn+m + ζnζn+m).

The lemma follows. �

Corollary 5 If (ξn) is a real sequence such that, for each positive integer m,

N−1
N∑

n=1

e(ξn+m − ξn)→ 0 as N →∞,

then

N−1
N∑

n=1

e(ξn)→ 0 as N →∞.



454 XI Uniform Distribution and Ergodic Theory

Proof By taking ζn = e(ξn) in Lemma 4 we obtain, for 1 ≤ M ≤ N ,

N−2
∣∣∣∣ N∑

n=1

e(ξn)

∣∣∣∣2 ≤ 2(M + N − 1)M−2 N−2
M−1∑
m=1

(M − m)

∣∣∣∣ N−m∑
n=1

e(ξn+m − ξn)
∣∣∣∣

+ (M + N − 1)M−1 N−1.

Keeping M fixed and letting N →∞, we get

lim
N→∞ N−2

∣∣∣∣ N∑
n=1

e(ξn)

∣∣∣∣2 ≤ M−1.

But M can be chosen as large as we please. �

An immediate consequence is van der Corput’s difference theorem:

Proposition 6 The real sequence (ξn) is uniformly distributed mod 1 if, for each pos-
itive integer m, the sequence (ξn+m − ξn) is uniformly distributed mod 1.

Proof If the sequences (ξn+m − ξn) are uniformly distributed mod 1 then, by
Theorem 2,

N−1
N∑

n=1

e(h(ξn+m − ξn))→ 0 as N →∞

for all integers h �= 0,m > 0. Replacing ξn by hξn in Corollary 5 we obtain, for all
integers h �= 0,

N−1
N∑

n=1

e(hξn)→ 0 as N →∞.

Hence, by Theorem 2 again, the sequence (ξn) is uniformly distributed mod 1. �

The sequence (nξ), with ξ irrational, shows that we cannot replace ‘if’ by ‘if and
only if’ in the statement of Proposition 6. Weyl’s result will now be derived from
Proposition 6:

Proposition 7 If

f (t) = αr tr + αr−1tr−1 + · · · + α0

is any polynomial with real coefficients αk such that αk is irrational for at least one
k > 0, then the sequence ( f (n)) is uniformly distributed mod 1.

Proof If r = 1, then the result holds by the same argument as in Proposition 3. We
assume that r > 1, αr �= 0 and the result holds for polynomials of degree less than r .

For any positive integer m,

gm(t) = f (t + m)− f (t)
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is a polynomial of degree r − 1 with leading coefficient rmαr . If αr is irrational, then
rmαr is also irrational and hence, by the induction hypothesis, the sequence (gm(n))
is uniformly distributed mod 1. Consequently, by Proposition 6, the sequence ( f (n))
is also uniformly distributed mod 1.

Suppose next that the leading coefficient αr is rational, and let αs(1 ≤ s < r) be
the coefficient nearest to it which is irrational. Then the coefficients of tr−1, . . . , ts of
the polynomial gm(t) are rational, but the coefficient of ts−1 is irrational. If s > 1,
it follows again from the induction hypothesis and Proposition 6 that the sequence
( f (n)) is uniformly distributed mod 1.

Suppose finally that s = 1 and put

F(t) = αr tr + αr−1tr−1 + · · · + α2t2.

If q > 0 is a common denominator for the rational numbers α2, . . . , αr then, for any
integer h �= 0 and any nonnegative integers j, k,

e(h F( jq + k)) = e(h F(k)).

Write N = �q + k, where � = �N/q� and 0 ≤ k < q . Since f (t) = F(t)+ α1t + α0,
we obtain

N−1
N−1∑
n=0

e(h f (n)) = N−1
q−1∑
k=0

�−1∑
j=0

e(h f ( jq + k))+ N−1
N∑

n=�q
e(h f (n))

= N−1�N/q�
q−1∑
k=0

e(h F(k))
�−1∑
j=0

�−1e(h( jqα1 + kα1 + α0))

+ N−1
N∑

n=�q
e(h f (n)).

The last term tends to zero as N → ∞, since the sum contains at most q terms, each
of absolute value 1. By Theorem 2, each of the q inner sums in the first term also tends
to zero as N → ∞, because the result holds for r = 1. Hence, by Theorem 2 again,
the sequence ( f (n)) is uniformly distributed mod 1. �

An interesting extension of Proposition 6 was derived by Korobov and Postnikov
(1952):

Proposition 8 If, for every positive integer m, the sequence (ξn+m − ξn) is uniformly
distributed mod 1 then, for all integers q > 0 and r ≥ 0, the sequence (ξqn+r ) is
uniformly distributed mod 1.

Proof We may suppose q > 1, since the assertion follows at once from Proposition 6
if q = 1. By Theorem 2 it is enough to show that, for every integer m �= 0,

S := N−1
N∑

n=1

e(mξqn+r )→ 0 as N →∞.
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Since

q−1
q∑

k=1

e(nk/q) = 1 if n ≡ 0 mod q,

= 0 if n �≡ 0 mod q ,

we can write

S = (q N)−1
q N∑
n=1

e(mξn+r )

q∑
k=1

e(nk/q)

= (q N)−1
q∑

k=1

q N∑
n=1

e(mη(k)n ),

where we have put

η(k)n = ξn+r + nk/mq.

By hypothesis, for every positive integer h, the sequence

η
(k)
n+h − η(k)n = ξn+h+r − ξn+r − hk/mq

is uniformly distributed mod 1. Hence η(k)n is uniformly distributed mod 1, by Propo-
sition 6. Thus, for each k ∈ {1, . . . , q},

(q N)−1
q N∑
n=1

e(mη(k)n )→ 0 as N →∞,

and consequently also S → 0 as N →∞. �

As an application of Proposition 8 we prove

Proposition 9 Let A be a d × d matrix of integers, no eigenvalue of which is a root
of unity. If, for some x ∈ Rd , the sequence (An x) is uniformly distributed mod 1 then,
for any integers q > 0 and r ≥ 0, the sequence (Aqn+r x) is also uniformly distributed
mod 1.

Proof It follows from Theorem 2′ that, for any nonzero vector m ∈ Zd , the scalar
sequence ξn = m · Anx is uniformly distributed mod 1. For any positive integer h, the
sequence

ξn+h − ξn = m · (Ah − I )Anx = (Ah − I )t m · Anx

has the same form as the sequence ξn , since the hypotheses ensure that (Ah − I )t m is
a nonzero vector in Zd . Hence the sequence ξn+h − ξn is uniformly distributed mod 1.
Therefore, by Proposition 8, the sequence ξqn+r = m · Aqn+r x is uniformly distributed
mod 1, and thus the sequence Aqn+r x is uniformly distributed mod 1. �
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It may be noted that the matrix A in Proposition 9 is necessarily non-singular.
For if det A = 0, there exists a nonzero vector z ∈ Zd such that At z = 0. Then,
for any x ∈ Rd and any positive integer n, e(z · Anx) = e((At)nz · x) = 1. Thus
N−1 ∑N

n=1 e(z · Anx) = 1 and therefore, by Theorem 2′, the sequence Anx is not
uniformly distributed mod 1.

Further examples of uniformly distributed sequences are provided by the following
result, which is due to Fejér (c. 1924):

Proposition 10 Let (ξn) be a sequence of real numbers such that ηn := ξn+1 − ξn
tends to zero monotonically as n → ∞. Then (ξn) is uniformly distributed mod 1 if
n|ηn| → ∞ as n →∞.

Proof By changing the signs of all ξn we may restrict attention to the case where the
sequence (ηn) is strictly decreasing. For any real numbers α, β we have

|e(α)− e(β)− 2π i(α − β)e(β)| = |e(α − β)− 1− 2π i(α − β)|

= 4π2
∣∣∣∣ ∫ α−β

0
(α − β − t)e(t) dt

∣∣∣∣
≤ 4π2

∣∣∣∣ ∫ α−β

0
(α − β − t) dt

∣∣∣∣
= 2π2(α − β)2.

If we take α = hξn+1 and β = hξn , where h is any nonzero integer, this yields

|e(hξn+1)/ηn − e(hξn)/ηn − 2π ihe(hξn)| ≤ 2π2h2ηn

and hence

|e(hξn+1)/ηn+1 − e(hξn)/ηn − 2π ihe(hξn)| ≤ 1/ηn+1 − 1/ηn + 2π2h2ηn.

Taking n = 1, . . . , N and adding, we obtain

∣∣∣∣2πh
N∑

n=1

e(hξn)

∣∣∣∣ ≤ 1/ηN+1 + 1/η1 +
N∑

n=1

(1/ηn+1 − 1/ηn)+ 2π2h2
N∑

n=1

ηn

= 2/ηN+1 + 2π2h2
N∑

n=1

ηn .

Thus

N−1
∣∣∣∣ N∑

n=1

e(hξn)

∣∣∣∣ ≤ (π |h|NηN+1)
−1 + π |h|N−1

N∑
n=1

ηn .

But the right side of this inequality tends to zero as N → ∞, since NηN → ∞ and
ηN → 0. �
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By the mean value theorem, the hypotheses of Proposition 10 are certainly satisfied
if ξn = f (n), where f is a differentiable function such that f ′(t)→ 0 monotonically
as t → ∞ and t| f ′(t)| → ∞ as t → ∞. Consequently the sequence (anα) is uni-
formly distributed mod 1 if a �= 0 and 0 < α < 1, and the sequence (a(log n)α) is
uniformly distributed mod 1 if a �= 0 and α > 1. By using van der Corput’s difference
theorem and an inductive argument starting from Proposition 10, it may be further
shown that the sequence (anα) is uniformly distributed mod 1 for any a �= 0 and any
α > 0 which is not an integer.

It has been shown by Kemperman (1973) that ‘if’ may be replaced by ‘if and only
if’ in the statement of Proposition 10. Consequently the sequence (a(log n)α) is not
uniformly distributed mod 1 if 0 < α ≤ 1.

The theory of uniform distribution has an application, and its origin, in astronomy.
In his investigations on the secular perturbations of planetary orbits Lagrange (1782)
was led to the problem of mean motion: if

z(t) =
n∑

k=1

ρke(ωkt + αk),

where ρk > 0 and αk, ωk ∈ R (k = 1, . . . , n), does t−1 arg z(t) have a finite limit
as t → +∞? It is assumed that z(t) never vanishes and arg z(t) is then defined by
continuity. (Zeros of z(t) can be admitted by writing z(t) = ρ(t)e(φ(t)), where ρ(t)
and φ(t) are continuous real-valued functions and ρ(t) is required to change sign at a
zero of z(t) of odd multiplicity.)

In the astronomical application arg z(t)measures the longitude of the perihelion of
the planetary orbit. Lagrange showed that the limit

µ = lim
t→+∞ t−1 arg z(t)

does exist when n = 2 and also, for arbitrary n, when some ρk exceeds the sum of all
the others. The only planets which do not satisfy this second condition are Venus and
Earth. Lagrange went on to say that, when neither of the two conditions was satisfied,
the problem was “very difficult and perhaps impossible”.

There was no further progress until the work of Bohl (1909), who took n = 3
and considered the non-Lagrangian case when there exists a triangle with sidelengths
ρ1, ρ2, ρ3. He showed that the limit µ exists if ω1, ω2, ω3 are linearly independent
over the rational field Q and then µ = λ1ω1 + λ2ω2 + λ3ω3, where πλ1, πλ2, πλ3
are the angles of the triangle with sidelengths ρ1, ρ2, ρ3. In the course of the proof he
stated and proved Proposition 3 (without formulating the general concept of uniform
distribution).

Using his earlier results on uniform distribution, Weyl (1938) showed that the limit
µ exists if ω1, . . . , ωn are linearly independent over the rational field Q and then

µ = λ1ω1 + · · · + λnωn,

where λk ≥ 0 (k = 1, . . . , n) and
∑n

k=1 λk = 1. The coefficients λk depend only on
the ρ’s, not on the α’s or ω’s, and there is even an explicit expression for λk , involving
Bessel functions, which is derived from the theory of random walks.

Finally, it was shown by Jessen and Tornehave (1945) that the limit µ exists for
arbitrary ωk ∈ R.
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2 Discrepancy

The star discrepancy of a finite set of points ξ1, . . . , ξN in the unit interval I = [0, 1]
is defined to be

D∗N = D∗N (ξ1, . . . , ξN ) = sup
0<α≤1

|ϕα(N)/N − α|,

where ϕα(N) = ϕ0,α(N) denotes the number of positive integers n ≤ N such that
0 ≤ ξn < α. Here we will omit the qualifier ‘star’, since we will not be concerned with
any other type of discrepancy and the notation D∗N should provide adequate warning.

It was discovered only in 1972, by Niederreiter, that the preceding definition may
be reformulated in the following simple way:

Proposition 11 If ξ1, . . . , ξN are real numbers such that 0 ≤ ξ1 ≤ · · · ≤ ξN ≤ 1, then

D∗N = D∗N (ξ1, . . . , ξN ) = max
1≤k≤N

max(|ξk − k/N |, |ξk − (k − 1)/N |)
= (2N)−1 + max

1≤k≤N
|ξk − (2k − 1)/2N |.

Proof Put ξ0 = 0, ξN+1 = 1. Since the distinct ξk with 0 ≤ k ≤ N + 1 define a
subdivision of the unit interval I , we have

D∗N = max
k:ξk<ξk+1

sup
ξk≤α<ξk+1

|ϕα(N)/N − α|

= max
k:ξk<ξk+1

sup
ξk≤α<ξk+1

|k/N − α|.

But the function fk(t) = |k/N − t| attains its maximum in the interval ξk ≤ t ≤ ξk+1
at one of the endpoints of this interval. Consequently

D∗N = max
k:ξk<ξk+1

max(|k/N − ξk |, |k/N − ξk+1|).

We are going to show that in fact

D∗N = max
0≤k≤N

max(|k/N − ξk |, |k/N − ξk+1|).

Suppose ξk < ξk+1 = ξk+2 = · · · = ξk+r < ξk+r+1 for some r ≥ 2. By
applying the same reasoning as before to the function gk(t) = |t−ξk+1| we obtain, for
1 ≤ j < r ,

|(k + j)/N − ξk+ j | = |(k + j)/N − ξk+ j+1| = |(k + j)/N − ξk+1|
< max(|k/N − ξk+1|, |(k + r)/N − ξk+1|)
= max(|k/N − ξk+1|, |(k + r)/N − ξk+r |).

Since both terms in the last maximum appear in the expression already obtained for
D∗N , it follows that this expression is not altered by dropping the restriction to those k
for which ξk < ξk+1.

Since |0/N − ξ0| = |N/N − ξN+1| = 0, we can now also write
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D∗N = max
1≤k≤N

max(|k/N − ξk |, |(k − 1)/N − ξk |).

The second expression for D∗N follows immediately, since

max(|k/N − α|, |(k − 1)/N − α|) = |(k − 1/2)/N − α| + 1/2N. �

Corollary 12 If ξ1, . . . , ξN are real numbers such that 0 ≤ ξ1 ≤ · · · ≤ ξN ≤ 1,
then D∗N ≥ (2N)−1. Moreover, equality holds if and only if ξk = (2k − 1)/N for
k = 1, . . . , N.

Thus Proposition 11 says that the discrepancy of any set of N points of I is
obtained by adding to its minimal value 1/2N the maximum deviation of the set from
the unique minimizing set, when both sets are arranged in order of magnitude.

The next result shows that the discrepancy D∗N (ξ1, . . . , ξN ) is a continuous func-
tion of ξ1, . . . , ξN .

Proposition 13 If ξ1, . . . , ξN and η1, . . . , ηN are two sets of N points of I , with the
discrepancies D∗N and E∗N respectively, then

|D∗N − E∗N | ≤ max
1≤k≤N

|ξk − ηk |.

Proof Let x1 ≤ · · · ≤ xN and y1 ≤ · · · ≤ yN be the two given sets rearranged in
order of magnitude. It is enough to show that

max
1≤k≤N

|xk − yk | ≤ δ := max
1≤k≤N

|ξk − ηk |,

since it then follows from Proposition 11 that

D∗N ≤ δ + E∗N , E∗N ≤ δ + D∗N .

Assume, on the contrary, that |xk − yk | > δ for some k. Then either xk > yk + δ
or yk > xk + δ. Without loss of generality we restrict attention to the first case. By
hypothesis, for each yi with 1 ≤ i ≤ k there exists an x ji with 1 ≤ ji ≤ N such that
|yi − x ji | ≤ δ and such that the subscripts ji are distinct. Since y1 ≤ · · · ≤ yk , it
follows that

x ji ≤ yi + δ ≤ yk + δ < xk .

But this is a contradiction, since there are at most k − 1 x’s less than xk . �

We now show how the notion of discrepancy makes it possible to obtain estimates
for the accuracy of various methods of numerical integration.

Proposition 14 If the function f satisfies the ‘Lipschitz condition’

| f (t2)− f (t1)| ≤ L|t2 − t1| for all t1, t2 ∈ I,

then for any finite set ξ1, . . . , ξN ∈ I with discrepancy D∗N ,∣∣∣∣N−1
N∑

n=1

f (ξn)−
∫

I
f (t) dt

∣∣∣∣ ≤ L D∗N .
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Proof Without loss of generality we may assume ξ1 ≤ · · · ≤ ξN . Writing

∫
I

f (t) dt =
N∑

n=1

∫ n/N

(n−1)/N
f (t) dt,

we obtain ∣∣∣∣N−1
N∑

n=1

f (ξn)−
∫

I
f (t) dt

∣∣∣∣ ≤ N∑
n=1

∫ n/N

(n−1)/N
| f (ξn)− f (t)| dt

≤ L
N∑

n=1

∫ n/N

(n−1)/N
|ξn − t| dt .

But for (n − 1)/N ≤ t ≤ n/N we have

|ξn − t| ≤ max(|ξn − n/N |, |ξn − (n − 1)/N |) ≤ D∗N ,

by Proposition 11. The result follows. �

As Koksma (1942) first showed, Proposition 14 can be sharpened in the following
way:

Proposition 15 If the function f has bounded variation on the unit interval I , with
total variation V , then for any finite set ξ1, . . . , ξN ∈ I with discrepancy D∗N ,

∣∣∣∣N−1
N∑

n=1

f (ξn)−
∫

I
f (t) dt

∣∣∣∣ ≤ V D∗N .

Proof Without loss of generality we may assume ξ1 ≤ · · · ≤ ξN and we put ξ0 = 0,
ξN+1 = 1. By integration and summation by parts we obtain

N∑
n=0

∫ ξn+1

ξn

(t − n/N) d f (t) =
∫

I
t d f (t)− N−1

N∑
n=0

n( f (ξn+1)− f (ξn))

= [t f (t)]1
0 −

∫
I

f (t) dt − f (1)+ N−1
N−1∑
n=0

f (ξn+1)

= N−1
N∑

n=1

f (ξn)−
∫

I
f (t) dt .

The result follows, since for ξn ≤ t ≤ ξn+1 we have

|t − n/N | ≤ max(|ξn − n/N |, |ξn+1 − n/N |) ≤ D∗N . �
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As an application of Proposition 15 we prove

Proposition 16 If ξ1, . . . , ξN are points of the unit interval I with discrepancy D∗N
then, for any integer h �= 0, ∣∣∣∣N−1

N∑
n=1

e(hξn)

∣∣∣∣ ≤ 4|h|D∗N .

Proof We can write

N−1
N∑

n=1

e(hξn) = ρe(α),

where ρ ≥ 0 and α ∈ I . Thus

ρ = N−1
N∑

n=1

e(hξn − α).

Adding this relation to its complex conjugate, we obtain

ρ = N−1
N∑

n=1

cos 2π(hξn − α).

The result follows by applying Proposition 15 to the function f (t) = cos 2π(ht − α),
which has bounded variation on I with total variation

∫
I | f ′(t)| dt = 4|h|. �

An inequality in the opposite direction to Proposition 16 was obtained by Erdős
and Turan (1948) who showed that, for any positive integer m,

D∗N ≤ C

(
m−1 +

m∑
h=1

h−1
∣∣∣∣N−1

N∑
n=1

e(hξn)

∣∣∣∣),
where the positive constant C is independent of m, N and the ξ ’s. Niederreiter and
Philipp (1973) showed that one can take C = 4. Furthermore they generalized the
result and simplified the proof.

The connection between these results and the theory of uniform distribution is
close at hand. Let (ξn) be an arbitrary sequence of real numbers and let δN denote the
discrepancy of the fractional parts {ξ1}, . . . , {ξN }. By the remark after the definition of
uniform distribution in §1, the sequence (ξn) is uniformly distributed mod 1 if and only
if δN → 0 as N →∞. It follows from Proposition 16 and the inequality of Erdős and
Turan (in which m may be arbitrarily large) that δN → 0 as N → ∞ if and only if,
for every integer h �= 0,

N−1
N∑

n=1

e(hξn)→ 0 as N →∞.

This provides a new proof of Theorem 2. Furthermore, from bounds for the exponential
sums we can obtain estimates for the rapidity with which δN tends to zero.
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Propositions 14 and 15 show that in a formula for numerical integration the nodes
(ξn) should be chosen to have as small a discrepancy as possible. For a given finite
number N of nodes Corollary 12 shows how this can be achieved. In practice, how-
ever, one does not know in advance an appropriate choice of N , since universal error
bounds may grossly overestimate the error in a specific case. Consequently it is also of
interest to consider the problem of choosing an infinite sequence (ξn) of nodes so that
the discrepancy δN of ξ1, . . . , ξN tends to zero as rapidly as possible when N → ∞.
There is a limit to what can be achieved in this way. W. Schmidt (1972), improving
earlier results of van Aardenne-Ehrenfest (1949) and Roth (1954), showed that there
exists an absolute constant C > 0 such that

lim
N→∞ NδN / log N ≥ C

for every infinite sequence (ξn). Kuipers and Niederreiter (1974) showed that a pos-
sible value for C was (132 log 2)−1 = 0.0109 . . ., which Bejian (1979) improved to
(24 log 2)−1 = 0.0601 . . ..

Schmidt’s result is best possible, apart from the value of the constant. Ostrowski
(1922) had already shown that for the sequence ({nα}), where α ∈ (0, 1) is irrational,
one has

s∗(α) := lim
N→∞ NδN / log N <∞

if in the continued fraction expansion

α = [0; a1, a2, . . .] = 1

a1 + 1

a2 + · · ·
the partial quotients ak are bounded. Dupain and Sós (1984) have shown that the mini-
mum value of s∗(α), for all such α, is (4 log(1+√2))−1 = 0.283 . . . and the minimum
is attained for α = √2− 1 = [0; 2, 2, . . .]. Schoessengeier (1984) has proved that, for
any irrational α ∈ (0, 1), one has NδN = O(log N) if and only if the partial quotients
ak satisfy

∑n
k=1 ak = O(n).

There are other low discrepancy sequences. Haber (1966) showed that, for a
sequence (ξn) constructed by van der Corput (1935),

lim
N→∞ NδN / log N = (3 log 2)−1 = 0.481 . . . .

van der Corput’s sequence is defined as follows: if n − 1 = am2m + · · · + a121 + a0,
where ak ∈ {0, 1}, then ξn = a02−1 + a12−2 + · · · + am2−m−1. In other words,
the expression for ξn in the base 2 is obtained from that for n − 1 by reflection
in the ‘decimal’ point, a construction which is easily implemented on a computer.
Various generalizations of this construction have been given, and Faure (1981) defined
in this way a sequence (ξn) for which

lim
N→∞ NδN / log N = (1919)(3454 log12)−1 = 0.223 . . . .
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Thus if C∗ is the least upper bound for all admissible values of C in Schmidt’s
result then, by what has been said, 0.060 . . . ≤ C∗ ≤ 0.223 . . .. It is natural to ask:
what is the exact value of C∗, and is there a sequence (ξn) for which it is attained?

The notion of discrepancy is easily extended to higher dimensions by defining
the discrepancy of a finite set of vectors x1, . . . , xN in the d-dimensional unit cube
I d = I × · · · × I to be

D∗N (x1, . . . , xN ) = sup
0<αk≤1 (k=1,...,d)

|ϕa(N)/N − α1 · · ·αd |,

where xn = (ξ (1)n , . . . , ξ
(d)
n ), a = (α1, . . . , αd ) and ϕa(N) is the number of positive

integers n ≤ N such that 0 ≤ ξ(k)n < αk for every k ∈ {1, . . . , d}.
For d > 1 there is no simple reformulation of the definition analogous to Proposi-

tion 11, but many results do carry over. In particular, Proposition 15 was generalized
and applied to the numerical evaluation of multiple integrals by Hlawka (1961/62).
Indeed this application has greater value in higher dimensions, where other methods
perform poorly.

For the application one requires a set of vectors x1, . . . , xN ∈ I d whose discrep-
ancy D∗N (x1, . . . , xN ) is small. A simple procedure for obtaining such a set, which is
most useful when the integrand is smooth and has period 1 in each of its variables, is
the method of ‘good lattice points’ introduced by Korobov (1959). Here, for a suitably
chosen g ∈ Zd , one takes xn = {(n−1)g/N} (n = 1, . . . , N). A result of Niederreiter
(1986) implies that, for every d ≥ 2 and every N ≥ 2, one can choose g so that

N D∗N ≤ (1+ log N)d + d2d .

The van der Corput sequence has also been generalized to any finite number of
dimensions by Halton (1960). He defined an infinite sequence (xn) of vectors in Rd for
which

lim
N→∞ NδN /(log N)d <∞.

It is conjectured that for each d > 1 (as for d = 1) there exists an absolute constant
Cd > 0 such that

lim
N→∞ NδN /(log N)d ≥ Cd

for every infinite sequence (xn) of vectors in Rd . However, the best known result
remains that of Roth (1954), in which the exponent d is replaced by d/2.

3 Birkhoff’s Ergodic Theorem

In statistical mechanics there is a procedure for calculating the physical properties of
a system by simply averaging over all possible states of the system. To justify this
procedure Boltzmann (1871) introduced what he later called the ‘ergodic hypothesis’.
In the formulation of Maxwell (1879) this says that “the system, if left to itself in its
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actual state of motion, will, sooner or later, pass through every phase which is con-
sistent with the equation of energy”. The word ergodic, coined by Boltzmann (1884),
was a composite of the Greek words for ‘energy’ and ‘path’. It was recognized by
Poincaré (1894) that it was too much to ask that a path pass through every state on the
same energy surface as its initial state, and he suggested instead that it pass arbitrarily
close to every such state. Moreover, he observed that it would still be necessary to
exclude certain exceptional initial states.

A breakthrough came with the work of G.D. Birkhoff (1931), who showed that
Lebesgue measure was the appropriate tool for treating the problem. He established a
deep and general result which says that, apart from a set of initial states of measure
zero, there is a definite limiting value for the proportion of time which a path spends in
any given measurable subset B of an energy surface X . The proper formulation for the
ergodic hypothesis was then that this limiting value should coincide with the ratio of
the measure of B to that of X , i.e. that ‘the paths through almost all initial states should
be uniformly distributed over arbitrary measurable sets’. It was not difficult to deduce
that this was the case if and only if ‘any invariant measurable subset of X either had
measure zero or had the same measure as X ’.

Birkhoff proved his theorem in the framework of classical mechanics and for flows
with continuous time. We will prove his theorem in the abstract setting of probability
spaces and for cascades with discrete time. The abstract formulation makes possible
other applications, for which continuous time is not appropriate.

Let B be a σ -algebra of subsets of a given set X , i.e. a nonempty family of subsets
of X such that

(B1) the complement of any set in B is again a set in B,
(B2) the union of any finite or countable collection of sets in B is again a set in B.

It follows that X ∈ B, since B ∈ B implies Bc := X\B ∈ B and X = B ∪ Bc.
Hence also ∅ = Xc ∈ B. Furthermore, the intersection of any finite or countable
collection of sets in B is again a set in B, since

⋂
n Bn = X\(⋃n Bc

n

)
. Hence if

A, B ∈ B, then

B\A = B ∩ Ac ∈ B

and the symmetric difference

A∆B := (B\A) ∪ (A\B) ∈ B.

The family of all subsets of X is certainly a σ -algebra. Furthermore, the intersec-
tion of any collection of σ -algebras is again a σ -algebra. It follows that, for any family
A of subsets of X , there is a σ -algebra σ(A ) which contains A and is contained
in every σ -algebra which contains A . We call σ(A ) the σ -algebra of subsets of X
generated by A .

Suppose B is a σ -algebra of subsets of X and a function µ : B → R is defined
such that

(Pr1) µ(B) ≥ 0 for every B ∈ B,
(Pr2) µ(X) = 1,
(Pr3) if (Bn) is a sequence of pairwise disjoint sets in B, then µ

(⋃
n Bn

) =∑
n µ(Bn).
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Then µ is said to be a probability measure and the triple (X,B, µ) is said to be a
probability space.

It is easily seen that the definition implies

(i) µ(∅) = 0,
(ii) µ(Bc) = 1− µ(B),

(iii) µ(A) ≤ µ(B) if A, B ∈ B and A ⊆ B ,
(iv) µ(Bn)→ µ(B) if (Bn) is a sequence of sets in B such that B1 ⊇ B2 ⊇ · · · and

B =⋂
n Bn .

If a property of points in a probability space (X,B, µ) holds for all x ∈ B , where
B ∈ B and µ(B) = 1, then the property is said to hold for (µ-) almost all x ∈ X , or
simply almost everywhere (a.e.).

A function f : X → R is measurable if, for every α ∈ R, the set
{x ∈ X : f (x) < α} is in B. Let f : X → [0,∞) be measurable and for any
partition P of X into finitely many pairwise disjoint sets B1, . . . , Bn ∈ B, put

LP ( f ) =
n∑

k=1

fk µ(Bk),

where fk = inf{ f (x) : x ∈ Bk}. We say that f is integrable if∫
X

f dµ := sup
P

LP ( f ) <∞.

The set of all measurable functions f : X → R such that | f | is integrable is denoted
by L(X,B, µ).

A map T : X → X is said to be a measure-preserving transformation of the prob-
ability space (X,B, µ) if, for every B ∈ B, the set T−1 B = {x ∈ X : T x ∈ B} is
again in B and µ(T−1 B) = µ(B). This is equivalent to µ(T B) = µ(B) for every
B ∈ B if the measure-preserving transformation T is invertible, i.e. if T is bijective
and T B ∈ B for every B ∈ B. However, we do not wish to restrict attention to the
invertible case. Several important examples of measure-preserving transformations of
probability spaces will be given in the next section.

Birkhoff’s ergodic theorem, which is also known as the ‘individual’ or ‘pointwise’
ergodic theorem, has the following statement:

Theorem 17 Let T be a measure-preserving transformation of the probability space
(X,B, µ). If f ∈ L(X,B, µ) then, for almost all x ∈ X, the limit

f ∗(x) = lim
n→∞ n−1

n−1∑
k=0

f (T k x)

exists and f ∗(T x) = f ∗(x). Moreover, f ∗ ∈ L(X,B, µ) and
∫

X f ∗dµ = ∫
X f dµ.

Proof It is sufficient to prove the theorem for nonnegative functions, since we can
write f = f+ − f−, where

f+(x) = max{ f (x), 0}, f−(x) = max{− f (x), 0},
and f+, f− ∈ L(X,B, µ).
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Put

f̄ (x) = lim
n→∞ n−1

n−1∑
k=0

f (T k x), f (x) = lim
n→∞

n−1
n−1∑
k=0

f (T k x).

Then f̄ and f are µ-measurable functions since, for any sequence (gn),

lim
n→∞ gn(x) = inf

m
(sup
n≥m

gn(x)), lim
n→∞

gn(x) = sup
m
( inf
n≥m

gn(x)).

Moreover f̄ (x) = f̄ (T x), f (x) = f (T x) for every x ∈ X , since

(n + 1)−1
n∑

k=0

f (T kx) = (n + 1)−1 f (x)+ (1+ 1/n)−1n−1
n−1∑
k=0

f (T k+1x).

It is sufficient to show that∫
X

f̄ dµ ≤
∫

X
f dµ ≤

∫
X

f dµ.

For then, since f ≤ f̄ , it follows that f̄ (x) = f (x) = f ∗(x) for µ-almost all x ∈ X
and ∫

X
f ∗dµ =

∫
X

f dµ.

Fix some M > 0 and define the ‘cut-off’ function f̄M by

f̄M (x) = min{M, f̄ (x)}.
Then f̄M is bounded and f̄M (T x) = f̄M (x) for every x ∈ X . Fix also any ε > 0. By
the definition of f̄ (x), for each x ∈ X there exists a positive integer n such that

f̄M (x) ≤ n−1
n−1∑
k=0

f (T k x)+ ε. (∗)

Thus if Fn is the set of all x ∈ X for which (∗) holds and if En = ⋃n
k=1 Fk , then

E1 ⊆ E2 ⊆ · · · and X = ⋃
n≥1 En . Since the sets En are µ-measurable, we can

choose N so large that µ(EN ) > 1− ε/M .
Put

f̃ (x) = f (x) if x ∈ EN ,

= max{ f (x),M} if x /∈ EN .

Also, let τ (x) be the least positive integer n ≤ N for which (∗) holds if x ∈ EN , and
let τ (x) = 1 if x /∈ EN . Since f̄M is T -invariant, (∗) implies

n−1∑
k=0

f̄M (T
k x) ≤

n−1∑
k=0

f (T k x)+ nε
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and hence

τ (x)−1∑
k=0

f̄M (T
k x) ≤

τ (x)−1∑
k=0

f̃ (T k x)+ τ (x)ε.

To estimate the sum
∑L−1

k=0 f̄M (T k x) for any L > N , we partition it into blocks of
the form

τ (y)−1∑
k=0

f̄M (T
k y)

and a remainder block. More precisely, define inductively

n0(x) = 0, nk(x) = nk−1(x)+ τ (T nk−1 x) (k = 1, 2, . . .)

and define h by nh(x) < L ≤ nh+1(x). Then

n1(x)−1∑
k=0

f̄M (T
k x) ≤

n1(x)−1∑
k=0

f̃ (T k x)+ τ (x)ε,

n2(x)−1∑
k=n1(x)

f̄M (T
k x) ≤

n2(x)−1∑
k=n1(x)

f̃ (T k x)+ τ (T n1 x)ε,

· · ·
nh (x)−1∑

k=nh−1(x)

f̄M (T
k x) ≤

nh (x)−1∑
k=nh−1(x)

f̃ (T k x)+ τ (T nh−1 x)ε.

Since nh(x) < L, we obtain by addition

nh (x)−1∑
k=0

f̄M (T
k x) ≤

nh (x)−1∑
k=0

f̃ (T k x)+ Lε.

On the other hand, since L ≤ nh+1(x) ≤ nh(x)+ N , we have

L−1∑
k=nh (x)

f̄M (T
k x) ≤ N M .

Since f̃ ≥ 0, it follows that

L−1∑
k=0

f̄M (T
k x) ≤

L−1∑
k=0

f̃ (T k x)+ Lε + N M .

Dividing by L and integrating over X , we obtain∫
X

f̄M dµ ≤
∫

X
f̃ dµ+ ε + N M/L,



3 Birkhoff’s Ergodic Theorem 469

since the measure-preserving nature of T implies that, for any g ∈ L(X,B, µ),∫
X

g(T x) dµ(x) =
∫

X
g(x) dµ(x).

Since ∫
X

f̃ dµ ≤
∫

X
f dµ+

∫
X\EN

M dµ ≤
∫

X
f dµ+ ε,

it follows that ∫
X

f̄M dµ ≤
∫

X
f dµ+ 2ε + N M/L .

Since L may be chosen arbitrarily large and then ε arbitrarily small, we conclude that∫
X

f̄M dµ ≤
∫

X
f dµ.

Now letting M →∞, we obtain∫
X

f̄ dµ ≤
∫

X
f dµ.

The proof that ∫
X

f dµ ≤
∫

X
f dµ

is similar. Given ε > 0, there exists for each x ∈ X a positive integer n such that

n−1
n−1∑
k=0

f (T k x) ≤ f (x)+ ε. (∗∗)

If Fn is the set of all x ∈ X for which (∗∗) holds and if En =⋃n
k=1 Fk , we can choose

N so large that ∫
X\EN

f dµ < ε.

Put

f̃ (x) = f (x) if x ∈ EN ,

= 0 if x /∈ EN .

Let τ (x) be the least positive integer n for which (∗∗) holds if x ∈ EN , and τ (x) = 1
otherwise. The proof now goes through in the same way as before. �
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It should be noticed that the preceding proof simplifies if the function f is bounded.
In Birkhoff’s original formulation the function f was the indicator function χB of an
arbitrary set B ∈ B. In this case the theorem says that, if vn(x) is the number of k < n
for which T k x ∈ B , then limn→∞ vn(x)/n exists for almost all x ∈ X . That is, ‘almost
every point has an average sojourn time in any measurable set’.

A measure-preserving transformation T of the probability space (X,B, µ) is said
to be ergodic if, for every B ∈ B with T−1 B = B , either µ(B) = 0 or µ(B) = 1.
Part (ii) of the next proposition says that this is the case if and only if ‘time means and
space means are equal’.

Proposition 18 Let T be a measure-preserving transformation of the probability
space (X,B, µ). Then T is ergodic if and only if one of the following equivalent
properties holds:

(i) if f ∈ L(X,B, µ) satisfies f (T x) = f (x) almost everywhere, then f is constant
almost everywhere;

(ii) if f ∈ L(X,B, µ) then, for almost all x ∈ X,

n−1
n−1∑
k=0

f (T k x)→
∫

X
f dµ as n →∞;

(iii) if A, B ∈ B, then

n−1
n−1∑
k=0

µ(T−k A ∩ B)→ µ(A)µ(B) as n →∞;

(iv) if C ∈ B and µ(C) > 0, then µ(
⋃

n≥1 T−nC) = 1;
(v) if A, B ∈ B and µ(A) > 0, µ(B) > 0, then µ(T−n A ∩ B) > 0 for some n > 0.

Proof Suppose first that T is ergodic and let f ∈ L(X,B, µ) satisfy f (T x) = f (x)
a.e. Put

f̄ (x) = lim
n→∞ n−1

n−1∑
k=0

f (T k x).

Then f̄ (T x) = f̄ (x) for every x ∈ X and f̄ (x) = f (x) a.e. For any α ∈ R, let

Aα = {x ∈ X : f̄ (x) < α}.

Then µ(Aα) = 0 or 1, since T−1 Aα = Aα and T is ergodic. Since µ(Aα) is a nonde-
creasing function of α and µ(Aα)→ 0 as α→−∞, µ(Aα)→ 1 as α→ +∞, there
exists β ∈ R such that µ(Aα) = 0 for α < β and µ(Aα) = 1 for α > β. It follows
that µ(Aβ) = 0 and µ(Bβ) = 1, where

Bβ = {x ∈ X : f̄ (x) ≤ β}.
Hence f (x) = β a.e. and (i) holds.
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Suppose now that (i) holds and let f ∈ L(X,B, µ). Then the function f ∗ in the
statement of Theorem 17 must be constant a.e. Moreover, if γ is its constant value, we
must have

γ =
∫

X
f ∗ dµ =

∫
X

f dµ.

Thus (i) implies (ii).
Suppose next that (ii) holds and let A, B ∈ B. Then, for almost all x ∈ X ,

lim
n→∞ n−1

n−1∑
k=0

χA(T
k x) =

∫
X
χA dµ = µ(A).

Hence, for almost all x ∈ X ,

lim
n→∞ n−1

n−1∑
k=0

χA(T
k x)χB(x) = µ(A)χB(x)

and so, by the dominated convergence theorem,

µ(A)µ(B) =
∫

X
lim

n→∞ n−1
n−1∑
k=0

χA(T
k x)χB(x) dµ(x)

= lim
n→∞ n−1

n−1∑
k=0

∫
X
χA(T

k x)χB(x) dµ(x)

= lim
n→∞ n−1

n−1∑
k=0

µ(T−k A ∩ B).

Thus (ii) implies (iii).
Suppose now that (iii) holds and choose C ∈ B with µ(C) > 0. Put A =⋃

n≥0 T−nC and B = (⋃n≥1 T−nC)c. Then, for every k ≥ 1, T−k A ⊆ ⋃
n≥1 T−nC

and hence µ(T−k A ∩ B) = 0. Thus

n−1
n−1∑
k=0

µ(T−k A ∩ B) = µ(A ∩ B)/n → 0 as n →∞.

Since µ(A) ≥ µ(C) > 0, it follows from (iii) that µ(B) = 0. Thus (iii) implies (iv).
Next choose any A, B ∈ B such that µ(A) > 0, µ(B) > 0. If (iv) holds, then

µ(
⋃

n≥1 T−n A) = 1 and hence

µ(B) = µ
(

B ∩ ∪
n≥1

T−n A

)
= µ

(∪
n≥1
(B ∩ T−n A)

)
.

Since µ(B) > 0, it follows that µ(B ∩ T−n A) > 0 for some n > 0. Thus (iv) implies
(v).

Finally choose A ∈ B with T−1 A = A and put B = Ac. Then, for every n ≥ 1,
we have µ(T−n A ∩ B) = µ(A ∩ B) = 0. If (v) holds, it follows that either µ(A) = 0
or µ(B) = 0. Hence (v) implies that T is ergodic. �
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4 Applications

We now give some examples to illustrate the general concepts and results of the
previous section.

(i) Suppose X = Rd/Zd is a d-dimensional torus, B is the family of Borel subsets of
X (i.e., the σ -algebra of subsets generated by the family of open sets), and µ = λ is
Lebesgue measure, i.e. µ(B) = ∫

X χB(x) dx for any B ∈ B, where χB is the indica-
tor function of B . Every x ∈ X is represented by a unique vector (ξ1, . . . , ξd ), where
0 ≤ ξk < 1 (k = 1, . . . , d), and X is an abelian group with addition z = x+ y defined
by ζk ≡ ξk + ηk mod 1 (k = 1, . . . , d).

For any a ∈ X , the translation Ta : X → X defined by Ta x = x + a is a measure-
preserving transformation of the probability space (X,B, λ).

Proposition 19 The translation Ta : X → X of the d-dimensional torus X = Rd/Zd

is ergodic if and only if 1, α1, . . . , αd are linearly independent over the rational field
Q, where (α1, . . . , αd ) is the vector which represents a.

Proof Suppose first that 1, α1, . . . , αd are not linearly independent over Q. Then there
exists a nonzero vector n ∈ Zd such that

n · a = v1α1 + · · · + vdαd ∈ Z.

Hence if f (x) = e(n · x), then f (Tax) = f (x) for all x . Since f is not constant a.e.,
it follows from part (i) of Proposition 18 that Ta is not ergodic.

Suppose on the other hand that 1, α1, . . . , αd are linearly independent over Q and
let f be an integrable function such that f (Tax) = f (x) a.e. Then f (Tax) and f (x)
have the same Fourier coefficients:∫

X
f (x)e(−n · x) dx =

∫
X

f (x + a)e(−n · x) dx = e(n · a)
∫

X
f (x)e(−n · x) dx .

Since e(n · a) �= 1 for all n �= 0, it follows that∫
X

f (x)e(−n · x) dx = 0 for all n �= 0.

Since integrable functions with the same Fourier coefficients must agree almost
everywhere, this proves that f is constant a.e. Hence, by Proposition 18 again, Ta

is ergodic. �

If we compare Proposition 3′ and the remarks after its proof with Proposition 19,
then we see from Theorems 1′-2′ and Proposition 18 that the following five statements
are equivalent for X = Rd/Zd and any a ∈ X :

(α) the sequence ({na}) is dense in X ;
(β) for every x ∈ X , the sequence (x + na) is uniformly distributed in X ;
(γ ) the translation Ta : X → X is ergodic;
(δ) for each continuous function f : X → C, limn→∞ n−1 ∑n−1

k=0 f (T k
a x) = ∫

X f dλ
for all x ∈ X ;
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(ε) for each function f ∈ L(X,B, λ), limn→∞ n−1 ∑n−1
k=0 f (T k

a x) = ∫
X f dλ for

almost all x ∈ X .

(ii) Again suppose X = Rd/Zd is a d-dimensional torus, B is the family of Borel
subsets of X and µ = λ is Lebesgue measure. For any d × d matrix A = (α j k) of
integers, let RA : X → X be the map defined by RAx = x ′, where

ξ ′j ≡
d∑

k=1

α j kξk mod 1 ( j = 1, . . . , d).

If det A = 0 then RA is not measure-preserving, since the image of Rd under A is con-
tained in a hyperplane of Rd . However, if det A �= 0 then RA is measure-preserving,
since each point of X is the image under RA of | det A| distinct points of X , and a
small region B of X is the image under RA of | det A| disjoint regions, each with vol-
ume | det A|−1 times that of B . (This argument is certainly valid if A is a diagonal
matrix, and the general case may be reduced to this by Proposition III.41.) Thus RA is
an endomorphism of the torus Rd/Zd if and only if A is nonsingular, and an automor-
phism if and only if det A = ±1.

Proposition 20 The endomorphism RA : X → X of the d-dimensional torus X =
Rd/Zd is ergodic if and only if no eigenvalue of the nonsingular matrix A is a root of
unity.

Proof For any n ∈ Zd we have

e(n · RAx) = e(n · Ax) = e(Dn · x),

where D = At is the transpose of A.
Suppose first that A, and hence also D, has an eigenvalueω which is a root of unity:

ωp = 1 for some positive integer p. Then (D p − I )z = 0 for some nonzero vector z.
Moreover, since D is a matrix of integers, we may assume that z = m ∈ Zd . We may
further assume that Di m �= D j m for 0 ≤ i < j < p, by choosing p to have its least
possible value. If we put

f (x) = e(m · x)+ e(m · Ax)+ · · · + e(m · Ap−1x),

then f (RAx) = f (x), but f is not constant a.e. Hence RA is not ergodic, by Proposi-
tion 18.

Suppose next that RA is not ergodic. Then, by Proposition 18 again, there exists a
function f ∈ L(X,B, λ) such that f (RAx) = f (x) a.e., but f (x) is not constant a.e.
If the Fourier series of f (x) is ∑

n∈Zd

cn e(n · x),

then the Fourier series of f (RAx) is∑
n∈Zd

cn e(n · Ax) =
∑

n∈Zd

cn e(Dn · x) =
∑

n∈Zd

cD−1n e(n · x)
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and hence

cn = cD−1n for every n ∈ Zd .

But cm �= 0 for some nonzero m ∈ Zd , since f is not constant a.e., and |cn | → 0
as |n| → ∞, since f ∈ L(X,B, λ). Since cD−km = cm for every positive integer k,
it follows that the subscripts D−km are not all distinct. Hence D pm = m for some
positive integer p and A has an eigenvalue which is a root of unity. �

(There are generalizations of Propositions 19 and 20 to translations and endomor-
phisms of any compact abelian group X , with Haar measure in place of Lebesgue
measure.)

The preceding results have an application to the theory of ‘normal numbers’. In
fact, without any extra effort, we will consider also higher-dimensional generaliza-
tions. A vector x ∈ Rd is said to be normal with respect to the matrix A, where A is a
d × d matrix of integers, if the sequence (Anx) is uniformly distributed mod 1.

Proposition 21 Let A be a d × d matrix of integers. Then (λ-) almost all vectors
x ∈ Rd are normal with respect to A if and only if A is nonsingular and no eigenvalue
of A is a root of unity.

Proof If A is nonsingular and no eigenvalue of A is a root of unity then, by Proposi-
tion 20, RA is an ergodic measure-preserving transformation of the torus X = Rd/Zd .
Hence, by Proposition 18(ii), for each nonzero m ∈ Zd ,

n−1
n−1∑
k=0

e(m · An x)→ 0 as n →∞ for almost all x ∈ Rd .

Since Zd is countable, and the union of a countable number of sets of measure zero is
again a set of measure zero, it follows that, for almost all x ∈ Rd ,

n−1
n−1∑
k=0

e(m · An x)→ 0 as n →∞ for every nonzero m ∈ Zd .

Hence, by Theorem 2′, almost all x ∈ Rd are normal with respect to A.
If A is singular then, by the remark following the proof of Proposition 9, no x ∈ Rd

is normal with respect to A. Suppose finally that some eigenvalue of A is a root of unity.
Then there exists a positive integer p and a nonzero vector z ∈ Zd such that D pz = z,
where D = At . If

f (x) = e(z · x)+ e(z · Ax)+ · · · + e(z · A p−1x),

then f (Ax) = f (x) and hence

n−1
n−1∑
k=0

f (Akx) = f (x).

But if x is normal with respect to A then, by Theorem 1′,
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n−1
n−1∑
k=0

f (Ak x)→
∫

X
f dλ = 0.

Since f is not zero a.e., it follows that the set of all x which are normal with respect
to A does not have full measure. �

We consider next when normality with respect to one matrix coincides with
normality with respect to another matrix.

Proposition 22 Let A be a d × d nonsingular matrix of integers, no eigenvalue of
which is a root of unity. Then, for any positive integer q, the vector x ∈ Rd is normal
with respect to Aq if and only if it is normal with respect to A.

Proof It follows at once from Proposition 9 that if x is normal with respect to A, then
it is also normal with respect to Aq .

Suppose, on the other hand, that x is normal with respect to Aq . Then, by Theorem
2′, for every nonzero vector m ∈ Zd ,

N−1
N−1∑
n=0

e(m · Anq x)→ 0 as N →∞.

Put D = At . Since D is a nonsingular matrix of integers, D j m is a nonzero vector in
Zd for any integer j ≥ 0 and hence

N−1
N−1∑
n=0

e(m · Anq+ j x) = N−1
N−1∑
n=0

e(D j m · Anq x)→ 0 as N →∞.

Adding these relations for j = 0, 1, . . . , q − 1 and dividing by q , we obtain

(Nq)−1
Nq−1∑
n=0

e(m · An x)→ 0 as N →∞.

Since the sum of at most q terms e(m · Anx) has absolute value at most q it follows
that, also without restricting N to be a multiple of q ,

N−1
N−1∑
n=0

e(m · Anx)→ 0 as N →∞.

Hence, by Theorem 2′, x is normal with respect to A. �

Corollary 23 Let A be a d×d nonsingular integer matrix, no eigenvalue of which is a
root of unity, and let B be a d × d integer matrix such that A p = Bq for some positive
integers p, q. Then x ∈ Rd is normal with respect to A if and only if x is normal with
respect to B.

Proof This follows at once from Proposition 22, since the hypotheses imply that also
B is nonsingular and has no eigenvalue which is a root of unity. �



476 XI Uniform Distribution and Ergodic Theory

Brown and Moran (1993) have shown, conversely, that if A, B are commuting d×d
nonsingular integer matrices, no eigenvalues of which are roots of unity, such that the
set of all vectors normal with respect to A coincides with the set of all vectors normal
with respect to B , then A p = Bq for some positive integers p, q .

These results will now be specialized to the scalar case. A real number x is said to
be normal to the base a, where a is an integer ≥ 2, if the sequence (anx) is uniformly
distributed mod 1. It is readily shown that x is normal to the base a if and only if, in
the expansion of x to the base a:

x = �x� + x1/a + x2/a
2 + · · · ,

where xi ∈ {0, 1, . . . , a − 1} for all i ≥ 1 and xi = a − 1 for at most finitely many i ,
every block of digits occurs with the proper frequency; i.e., for any positive integer k
and any a1, . . . , ak ∈ {0, 1, . . . , a−1}, the number v(N) of i with 1 ≤ i ≤ N such that

xi = a1, xi+1 = a2, . . . , xi+k−1 = ak,

satisfies v(N)/N → a−k as N → ∞. By Proposition 21, almost all real numbers x
are normal to a given base a. The original proof of this by Borel (1909) was a forerun-
ner of Birkhoff’s ergodic theorem. (In fact Borel’s proof was faulty, but his paper was
influential. Borel used a different definition of normal number, but Wall (1949) showed
that it was equivalent to the definition in terms of uniform distribution adopted here.)

The first published proof of the scalar case of Corollary 23 was given by Schmidt
(1960), who also proved the scalar version of the result of Brown and Moran: the set
of all numbers normal to the base a coincides with the set of all numbers normal to
the base b, where a and b are integers ≥ 2, if and only if a p = bq for some positive
integers p, q .

Although almost all real numbers are normal to every base a, it is still not
known if such familiar irrational numbers as

√
2, e or π are normal to some base.

There are, however, various explicit constructions of normal numbers. In particular,
Champernowne (1933) showed that the real number θ whose expansion to the base
10 is composed of the positive integers in their natural order, in other words,
θ = 0.123456789101112 . . . , is itself normal to the base 10.

(iii) Let A be a set of finite cardinality r , which for definiteness we take to be the set
{1, . . . , r}, and let p1, . . . , pr be positive real numbers with sum 1. If B0 is the family
of all subsets of the finite set A and if, for any B0 ∈ B0, we put µ0(B0) =∑

a∈B0
pa ,

then µ0 is a probability measure and (A,B0, µ0) is a probability space.
Now let X be the set of all bi-infinite sequences x = (. . . , x−2, x−1, x0, x1, x2, . . .)

with xi ∈ A for every i ∈ Z. Thus X is the product of infinitely many copies of A. We
construct a product measure on X in the following way.

For any finite sequence (a−m, . . . , a0, . . . , am ) with ai ∈ A for −m ≤ i ≤ m,
define the (special) cylinder set [a−m, . . . , am] of order m to be the set of all x ∈ X
such that xi = ai for −m ≤ i ≤ m. There are r2m+1 distinct cylinder sets of order m,
distinct cylinder sets are disjoint and X is the union of them all.

Let Cm denote the collection of all unions of distinct cylinder sets of order m. Thus
X ∈ Cm and, if B ∈ Cm , then Bc = X\B ∈ Cm . Moreover B,C ∈ Cm implies
B ∪ C ∈ Cm and B ∩ C ∈ Cm . If B ∈ Cm , say
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B = [a−m, . . . , am] ∪ · · · ∪ [a′−m, . . . , a
′
m],

we define

µm(B) = pa−m · · · pam + · · · + pa′−m
· · · pa′m .

Then µm(X) = 1, µm(B) ≥ 0 for every B ∈ Cm , and

µm(B ∪ C) = µm(B)+ µm(C) if B,C ∈ Cm and B ∩ C = ∅.
Every union of cylinder sets of order m is also a union of cylinder sets of order

m + 1, since

[a−m, . . . , am] =∪a,a′∈A[a, a−m, . . . , am, a
′].

Thus Cm ⊆ Cm+1. Moreover µm+1 continues µm , since

µm+1([a−m, . . . , am]) =
r∑

j, j ′=1

p j p j ′ pa−m · · · pam

= µm([a−m, . . . , am])

( r∑
j=1

p j

)( r∑
j ′=1

p j ′
)

= µm([a−m, . . . , am]).

Let µ denote the continuation of all µm to C = C0 ∪ C1 ∪ . . . . If B,C ∈ C , then
B,C ∈ Cm for some m. Hence, for given C ∈ C , there are only finitely many distinct
B ∈ C such that B ⊆ C . Consequently, if C is the union of a sequence of disjoint sets
Cn ∈ C (n = 1, 2, . . .), then Cn = ∅ for all large n and µ(C) = ∑

n≥1 µ(Cn).
It follows, by a construction due to Carathéodory (1914), that µ can be uniquely
extended to the σ -algebra B of subsets of X generated by C so that (X,B, µ) is a
probability space. For any ε > 0 there exists, for each B ∈ B, some C ∈ C such that
µ(B∆C) < ε.

The two-sided Bernoulli shift Bp1,...,pr is the map σ : X → X defined by σ x = x ′,
where x ′i = xi+1 for every i ∈ Z. It is a measure-preserving transformation of the
probability space (X,B, µ), since

σ−1[a−m, . . . , am] =∪a,a′∈A[a, a′, a−m , . . . , am]

and hence

µ(σ−1[a−m, . . . , am ]) =
r∑

j, j ′=1

p j p j ′ pa−m · · · pam

=
r∑

j, j ′=1

p j p j ′µ([a−m, . . . , am]) = µ([a−m, . . . , am]).

The Bernoulli shift B1/2,1/2 is a model for the random process consisting of bi-infinite
sequences of coin-tossings.
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We may define the general cylinder set Ca1...ak
i1...ik

, where i1, . . . , ik are distinct inte-
gers, to be the set of all x ∈ X such that

xi1 = a1, . . . , xik = ak .

In particular, Ca
i = σ−i [a] and hence µ(Ca

i ) = pa . It follows by induction on k that

µ(Ca1...ak
i1...ik

) = pa1 · · · pak .

Proposition 24 For any given positive numbers p1, . . . , pr with sum 1, the two-sided
Bernoulli shift Bp1,...,pr is ergodic.

Proof Suppose B ∈ B and σ−1 B = B . For any ε > 0 there exists a set C ∈ C such
that

µ(B∆C) = µ(B\C)+ µ(C\B) < ε.

Then

|µ(B)− µ(C)| = |µ(C ∩ B)+ µ(B\C)− µ(C ∩ B)− µ(C\B)|
≤ µ(B\C)+ µ(C\B) < ε

and hence

|µ(B)2 − µ(C)2| = {µ(C)+ µ(B)} |µ(B)− µ(C)| < 2ε.

We may suppose that C is the union of finitely many special cylinder sets of order m.
Since

σ−n[a−m, . . . , am] = Ca−m ,...,am−m+n,...,m+n,

for n > 2m we have

[a′−m, . . . , a
′
m] ∩ σ−n[a−m, . . . , am] = C

a′−m,...,a
′
m ,a−m,...,am

−m,...,m,−m+n,...,m+n,

and hence

µ([a′−m, . . . , a
′
m] ∩ σ−n[a−m, . . . , am]) = pa′−m

· · · pa′m pa−m · · · pam ,

= µ([a′−m, . . . , a
′
m ])µ([a−m, . . . , am]).

It follows that if n > 2m, then

µ(C ∩ σ−nC) = µ(C)2.
But

µ(B\(C ∩ σ−nC)) ≤ 2µ(B\C),
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since

B\(C ∩ σ−nC) ⊆ (B\C) ∪ (B\σ−nC) ⊆ (B\C) ∪ σ−n(B\C),
and similarly

µ((C ∩ σ−nC)\B) ≤ 2µ(C\B).

Hence

|µ(B)− µ(C ∩ σ−nC)| ≤ µ(B\(C ∩ σ−nC))+ µ((C ∩ σ−nC)\B) < 2ε.

Thus

0 ≤ µ(B)− µ(B)2 = µ(B)− µ(C ∩ σ−nC)+ µ(C ∩ σ−nC)− µ(B)2
< 2ε + µ(C)2 − µ(B)2 < 4ε.

Since ε is arbitrary, we conclude that µ(B) = µ(B)2. Hence µ(B) = 0 or 1, and σ is
ergodic. �

Similarly, if Y is the set of all infinite sequences y = (y1, y2, y3, . . .) with yi ∈ A
for every i ∈ N, then the one-sided Bernoulli shift B+p1,...,pr

, i.e. the map τ : Y → Y
defined by τ y = y ′, where y ′i = yi+1 for every i ∈ N, is a measure-preserving transfor-
mation of the analogously constructed probability space (Y,B, µ). It should be noted
that, although τY = Y , τ is not invertible. In the same way as for the two-sided shift,
it may be shown that the one-sided Bernoulli shift B+p1,...,pr

is always ergodic.

(iv) An example of some historical interest is the ‘continued fraction’ or Gauss map.
Let X = [0, 1] be the unit interval and T : X → X the map defined (in the notation of
§1) by

T ξ = {ξ−1} if ξ ∈ (0, 1),
= 0 if ξ = 0 or 1.

Thus T acts as the shift operator on the continued fraction expansion of ξ : if

ξ = [0; a1, a2, . . .] = 1

a1 + 1

a2 + · · ·
,

then T ξ = [0; a2, a3, . . .]. (In the terminology of Chapter IV, the complete quotients
of ξ are ξn+1 = 1/T nξ .)

It is not difficult to show that T is a measure-preserving transformation of the prob-
ability space (X,B, µ), where B is the family of Borel subsets of X = [0, 1] and µ
is the ‘Gauss’ measure defined by

µ(B) = (log 2)−1
∫

B
(1+ x)−1 dx .

It may further be shown that T is ergodic. Hence, by Birkhoff’s ergodic theorem, if f
is an integrable function on the interval X then, for almost all ξ ∈ X ,

lim
n→∞ n−1

n−1∑
k=0

f (T kξ) = (log 2)−1
∫

X
f (x)(1+ x)−1 dx .
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Here it makes no difference if ‘integrable’ and ‘almost all’ refer to the invariant
measure µ or to Lebesgue measure, since 1/2 ≤ (1+ x)−1 ≤ 1.

Taking f to be the indicator function of the set {ξ ∈ X : a1 = m}, we see that
the asymptotic relative frequency of the positive integer m among the partial quotients
a1, a2, . . . is almost always

(log 2)−1
∫ m−1

(m+1)−1
(1+ x)−1 dx = (log 2)−1 log((m + 1)2/(m(m + 2)).

It follows, in particular, that almost all ξ ∈ X have unbounded partial quotients.
Again, by taking f (ξ) = log ξ it may be shown that, for almost all ξ ∈ X ,

lim
n→∞(1/n) log qn(ξ) = π2/(12 log 2),

where qn(ξ) is the denominator of the n-th convergent pn/qn of ξ . This was first proved
by Lévy (1929).

In a letter to Laplace, Gauss (1812) stated that, for each x ∈ (0, 1), the proportion
of ξ ∈ X for which T nξ < x converges as n →∞ to log(1+ x)/(log 2) and he asked
if Laplace could provide an estimate for the rapidity of convergence. If one writes

rn(x) = mn(x)− log(1+ x)/(log 2),

where mn(x) is the Lebesgue measure of the set of all ξ ∈ X such that T nξ < x , then
Gauss’s statement is that rn(x)→ 0 as n →∞ and his question is, how fast?

Gauss’s statement was first proved by Kuz’min (1928), who also gave an estimate
for the rapidity of convergence. If one regards Gauss’s statement as a proposition in
ergodic theory, then one needs to know that T is not only ergodic but even mixing, i.e.
for all A, B ∈ B,

µ(T−n A ∩ B)→ µ(A)µ(B) as n →∞.

Kuz’min’s estimate rn(x) = O(q
√

n) for some q ∈ (0, 1) was improved by Lévy
(1929) and Szüsz (1961) to rn(x) = O(qn) with q = 0.7 and q = 0.485 respec-
tively. A substantial advance was made by Wirsing (1974). By means of an infinite-
dimensional generalization of a theorem of Perron (1907) and Frobenius (1908) on
positive matrices, he showed that

rn(x) = (−λ)nψ(x)+ O(x(1− x)µn),

where ψ is a twice continuously differentiable function with ψ(0) = ψ(1) = 0,
0 < µ < λ and λ = 0.303663 . . . . Wirsing’s analysis has been extended by Babenko
(1978) and Mayer (1990).

(v) Suppose we are given a system of ordinary differential equations

dx/dt = f (x), (†)

where x ∈ Rd and f : Rd → Rd is a continuously differentiable function. Then, for
any x ∈ Rd , there is a unique solution ϕt (x) of (†) such that ϕ0(x) = x .
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Suppose further that there exists an invariant region X ⊆ Rd . That is, X is the
closure of a bounded connected open set and x ∈ X implies ϕt (x) ∈ X . Then the
map Tt : X → X given by Tt x = ϕt (x) is defined for every t ∈ R and satisfies
Tt+s x = Tt (Ts x).

Suppose finally that div f = 0 for every x ∈ Rd , where x = (x1, . . . , xd),
f = ( f1, . . . , fd ) and

div f :=
d∑

k=1

∂ fk/∂xk .

Then, by a theorem due to Liouville, the map Tt sends an arbitrary region into a region
of the same volume. (For the statement and proof of Liouville’s theorem see, for exam-
ple, V.I. Arnold, Mathematical methods of classical mechanics, Springer-Verlag, New
York, 1978.) It follows that if B is the family of Borel subsets of X and µ Lebesgue
measure, normalized so that µ(X) = 1, then Tt is a measure-preserving transformation
of the probability space (X,B, µ).

An important special case is the Hamiltonian system of ordinary differential equa-
tions

dpi/dt = −∂H/∂qi, dqi/dt = ∂H/∂pi (i = 1, . . . , n),

where H (p1, . . . , pn, q1, . . . , qn) is a twice continuously differentiable real-valued
function. The divergence does indeed vanish identically in this case, since

−
n∑

i=1

∂2 H/∂pi∂qi +
n∑

i=1

∂2 H/∂qi∂pi = 0.

Furthermore, for any h ∈ R, the energy surface X : H (p, q) = h is invariant, since

d H [ p(t), q(t)]/dt =
n∑

i=1

∂H/∂pi(−∂H/∂qi)+
n∑

i=1

∂H/∂qi∂H/∂pi = 0.

It is not difficult to show that if σ is the volume element on X induced by the Euclidean
metric ‖ ‖ on R2n , and if

∇H = (∂H/∂p1, . . . , ∂H/∂pn, ∂H/∂q1, . . . , ∂H/∂qn)

is the gradient of H , then the maps Tt preserve the measure µ on X defined by

µ(B) =
∫

B
dσ/‖∇H‖.

If X is compact, this measure can be normalized and we obtain a family of measure-
preserving transformations Tt (t ∈ R) of the corresponding probability space.

(vi) Many problems arising in mechanics may be reduced by a change of variables to
the geometric problem of geodesic flow. If M is a smooth Riemannian manifold then
the set of all pairs (x, v), where x ∈ M and v is a unit vector in the tangent space to
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M at x , can be given the structure of a Riemannian manifold, the unit tangent bundle
T1M . Evidently T1 M is a (2n−1)-dimensional manifold if M is n-dimensional. There
is a natural measure µ on T1 M such that dµ = dvq dωq , where dvq is the volume
element at q of the Riemannian manifold M and ωq is Lebesgue measure on the unit
sphere Sn−1 in the tangent space to M at x . If M is compact, then the measure µ can
be normalized so that µ(T1M) = 1.

A geodesic on M is a curve γ ⊆ M such that the length of every curve in M
joining a point x ∈ γ to any sufficiently close point y ∈ γ is not less than the length
of the arc of γ which joins x and y. Given any point (x, v) ∈ T1M , there is a unique
geodesic passing through x in the direction of v. The geodesic flow on T1 M is the
flow ϕt : T1 M → T1M defined by ϕt (x, v) = (xt , vt ), where xt is the point of M
reached from x after time t by travelling with unit speed along the geodesic deter-
mined by (x, v) and vt is the unit tangent vector to this geodesic at xt . If M is compact
then, for every real t , ϕt is defined and is a measure-preserving transformation of the
corresponding probability space (T1M,B, µ).

The geodesics on a compact 2-dimensional manifold M whose curvature at each
point is negative were profoundly studied by Hadamard (1898). It was first shown by
E. Hopf (1939) that in this case ϕt is ergodic for every t > 0. (We must exclude
t = 0, since ϕ0 is the identity map.) This result has been considerably generalized by
Anosov (1967) and others. In particular, the geodesic flow on a compact n-dimensional
Riemannian manifold is ergodic if at each point the curvature of every 2-dimensional
section is negative.

Although the preceding examples look quite different, some of them are not
‘really’ different, i.e. apart from sets of measure zero. More precisely, if (X1,B1, µ1)
and (X2,B2, µ2) are probability spaces with measure-preserving transformations
T1 : X1 → X1 and T2 : X2 → X2, we say that T1 is isomorphic to T2 if there exist sets
X ′1 ∈ B1, X ′2 ∈ B2 with µ1(X ′1) = 1, µ2(X ′2) = 1 and T1 X ′1 ⊆ X ′1, T2 X ′2 ⊆ X ′2, and
a bijective map ϕ of X ′1 onto X ′2 such that

(i) for any B1 ⊆ X ′1, B1 ∈ B1 if and only if ϕ(B1) ∈ B2 and then µ1(B1) =
µ2(ϕ(B1));

(ii) ϕ(T1x) = T2ϕ(x) for every x ∈ X ′1.

For example, it is easily shown that the Bernoulli shift Bp1,...,pr is isomorphic
to the following transformation of the unit square, equipped with Lebesgue measure.
Divide the square into r vertical strips of width p1, . . . , pr ; then contract the height of
the i -th strip and expand its width so that it has height pi and width 1; finally combine
these rectangles to form the unit square again by regarding them as horizontal strips
of height p1, . . . , pr . (For r = 2 and p1 = p2 = 1/2, this transformation of the unit
square is allegedly used by bakers when kneading dough.)

It is easily shown also that isomorphism is an equivalence relation and that it
preserves ergodicity. However, it is usually quite difficult to show that two measure-
preserving transformations are indeed isomorphic. A period of rapid growth was ini-
tiated with the definition by Kolmogorov (1958), and its practical implementation by
Sinai (1959), of a new numerical isomorphism invariant, the entropy of a measure-
preserving transformation. For the formal definition of entropy we refer to the texts on
ergodic theory cited at the end of the chapter. Here we merely state its value for some
of the preceding examples.
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Any translation Ta of the torus Rd/Zd has entropy zero, whereas the endomor-
phism RA of Rd/Zd has entropy ∑

i : |λi |>1

log |λi |,

where λ1, . . . , λd are the eigenvalues of the matrix A and the summation is over those
of them which lie outside the unit circle.

The two-sided Bernoulli shift Bp1,...,pr has entropy

−
r∑

j=1

p j log p j ,

and the entropy of the one-sided Bernoulli shift B+p1,...,pr
is given by the same formula.

It follows that B1/2,1/2 is not isomorphic to B1/3,1/3,1/3, since the first has entropy
log 2 and the second has entropy log 3. Ornstein (1970) established the remarkable re-
sult that two-sided Bernoulli shifts are completely classified by their entropy: Bp1,...,pr

is isomorphic to Bq1,...,qs if and only if

−
r∑

j=1

p j log p j = −
s∑

k=1

qk log qk .

This is no longer true for one-sided Bernoulli shifts. Walters (1973) has shown that
B+p1,...,pr

is isomorphic to B+q1,...,qs
if and only if r = s and q1, . . . , qs is a permutation

of p1, . . . , pr .
The Gauss map T x = {x−1} has entropy π2/6 log 2. Although it is mixing, it is

not isomorphic to a Bernoulli shift.
Katznelson (1971) showed that any ergodic automorphism of the torus Rd/Zd is

isomorphic to a two-sided Bernoulli shift, and Lind (1977) has extended this result to
ergodic automorphisms of any compact abelian group.

Ornstein and Weiss (1973) showed that, if ϕt is the geodesic flow on a smooth
(of class C3) compact two-dimensional Riemannian manifold whose curvature at each
point is negative, then ϕt is isomorphic to a two-sided Bernoulli shift for every t > 0.
Although, as Hilbert showed, a compact surface of negative curvature cannot be imbed-
ded in R3, the geodesic flow on a surface of negative curvature can be realized as the
motion of a particle constrained to move on a surface in R3 subject to centres of at-
traction and repulsion in the ambient space. The isomorphism with a Bernoulli shift
shows that a deterministic mechanical system can generate a random process. Thus
philosophical objections to ‘Laplacian determinism’ or to ‘God playing dice’ do not
seem to have much point.

5 Recurrence

It was shown by Poincaré (1890) that the paths of a Hamiltonian system of differential
equations almost always return to any neighbourhood, however small, of their initial
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points. Poincaré’s proof was inevitably incomplete, since at the time measure theory
did not exist. However, Carathéodory (1919) showed that his argument could be made
rigorous with the aid of Lebesgue measure:

Proposition 25 Let T : X → X be a measure-preserving transformation of the prob-
ability space (X,B, µ). Then almost all points of any B ∈ B return to B infinitely
often, i.e. for each x ∈ B, apart from a set ofµ-measure zero, there exists an increasing
sequence (nk) of positive integers such that T nk x ∈ B (k = 1, 2, . . .).

Furthermore, if µ(B) > 0, then µ(B ∩ T−n B) > 0 for infinitely many n ≥ 1.

Proof For any N ≥ 0, put BN =⋃
n≥N T−n B . Then

A := ∩
N≥0

BN

is the set of all points x ∈ X such that T nx ∈ B for infinitely many positive integers
n. Since BN+1 = T−1 BN , we have µ(BN+1) = µ(BN ) and hence µ(BN ) = µ(B0)
for all N ≥ 1. Since BN+1 ⊆ BN , it follows that

µ(A) = lim
N→∞µ(BN ) = µ(B0).

Since A ⊆ B0, this implies

µ(B0\A) = µ(B0)− µ(A) = 0

and hence, since B ⊆ B0, µ(B\A) = 0.
This proves the first statement of the proposition. If µ(B ∩ T−n B) = 0 for all

n ≥ m, then µ(B ∩ BN ) = 0 for all N ≥ m and hence

µ(B ∩ A) = lim
N→∞µ(B ∩ BN ) = 0.

Consequently

µ(B) = µ(B\A)+ µ(B ∩ A) = 0,

which proves the second statement of the proposition. �

Furstenberg (1977) extended Proposition 25 in the following way:
Let T be a measure-preserving transformation of the probability space (X,B, µ).

If B ∈ B with µ(B) > 0 and if p ≥ 2, then µ(B ∩ T−n B ∩ · · · ∩ T−(p−1)n B) > 0
for some n ≥ 1.

His proof of this theorem made heavy use of ergodic theory and, in particular,
of a new structure theory for measure-preserving transformations. From his theorem
he was able to deduce quite easily a result for which Szemeredi (1975) had given a
complicated combinatorial proof:

Let S be a subset of the set N of positive integers which has positive upper density;
i.e., for some α ∈ (0, 1), there exist arbitrarily long intervals I ⊆ N containing at least
α|I | elements of S. Then S contains arithmetic progressions of arbitrary finite length.
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Furstenberg’s approach to this result is not really shorter than Szemeredi’s, but it is
much more systematic. In fact the following generalization of Furstenberg’s theorem
was given soon afterwards by Furstenberg and Katznelson (1978):

If T1, . . . , Tp are commuting measure-preserving transformations of the probabil-
ity space (X,B, µ) and if B ∈ B withµ(B) > 0, thenµ(B∩T−n

1 B∩· · ·∩T−n
p B) > 0

for infinitely many n ≥ 1.
Furstenberg and Katznelson could then deduce quite easily a multi-dimensional

extension of Szemeredi’s theorem which is still beyond the reach of combinatorial
methods. Szemeredi’s theorem was itself a far-reaching generalization of a famous
theorem of van der Waerden (1927):

If N = S1 ∪ · · · ∪ Sr is a partition of the set of all positive integers into finitely
many subsets, then one of the subsets S j contains arithmetic progressions of arbitrary
finite length.

Szemeredi’s result further indicates how the subset Sj should be chosen.
Poincaré’s measure-theoretic recurrence theorem has a topological counterpart due

to Birkhoff (1912):
If X is a compact metric space and T : X → X a continuous map, then there exists

a point z ∈ X and an increasing sequence (nk) of positive integers such that T nk z → z
as k →∞.

Before Furstenberg and Katznelson proved their measure-theoretic theorem,
Furstenberg and Weiss (1978) had already proved its topological counterpart:

If X is a compact metric space and T1, . . . , Tp commuting continuous maps of X
into itself, then there exists a point z ∈ X and an increasing sequence (nk) of positive
integers such that T nk

i z → z as k →∞ (i = 1, . . . , p).
From their theorem Furstenberg and Weiss were able to deduce quite easily both

van der Waerden’s theorem and a known multi-dimensional generalization of it, due
to Grünwald. It would take too long to prove here Szemeredi’s theorem by the method
of Furstenberg and Katznelson, but we will prove van der Waerden’s theorem by the
method of Furstenberg and Weiss. The proof illustrates how results in one area of
mathematics can find application in another area which is apparently unrelated.

Proposition 26 Let (X,d) be a compact metric space and T : X → X a continuous
map. Then, for any real ε > 0 and any p ∈ N, there exists some z ∈ X and n ∈ N
such that

d(T nz, z) < ε, d(T 2nz, z) < ε, . . . , d(T pnz, z) < ε.

Proof (i) A subset A of X is said to be invariant under T if T A ⊆ A. The closure Ā of
an invariant set A is again invariant since, by the continuity of T , T Ā ⊆ T A. Let F be
the collection of all nonempty closed invariant subsets of X . Clearly F is not empty,
since X ∈ F . If we regard F as partially ordered by inclusion then, by Hausdorff’s
maximality theorem, F contains a maximal totally ordered subcollection T . The in-
tersection Z of all the subsets in T is both closed and invariant. It is also nonempty,
since X is compact. Hence Z ∈ T and, by construction, no nonempty proper closed
subset of Z is invariant.

By replacing X by its compact subset Z we may now assume that the only closed
invariant subsets of X itself are X and ∅.
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(ii) For any given z ∈ X , the closure of the set (T nz)n≥1 is a nonempty closed in-
variant subset of X and therefore coincides with X . Thus for every ε > 0 there exists
n = n(ε) ≥ 1 such that d(T nz, z) < ε. This proves the proposition for p = 1.

We suppose now that p > 1 and the proposition holds with p replaced by p − 1.

(iii) We show next that, for any ε > 0, there exists a finite set K of positive integers
such that, for all x, x ′ ∈ X ,

d(T k x ′, x) < ε/2 for some k ∈ K .

If B is a nonempty open subset of X , then for every z ∈ X there exists some n ≥ 1
such that T nz ∈ B . Hence X = ⋃

n≥1 T−n B . Since X is compact and the sets T−n B
are open, there is a finite set K (B) of positive integers such that

X = ∪
k∈K (B)

T−k B.

Since X is compact again, there exist finitely many open balls B1, . . . , Br with radius
ε/4 such that X = B1 ∪ · · · ∪ Br . If x, x ′ ∈ X , then x ∈ Bi for some i ∈ {1, . . . , r}
and x ′ ∈ T−k Bi for some k ∈ K (Bi). Thus we can take K = K (B1) ∪ · · · ∪ K (Br ).

(iv) We now show that, for any ε > 0 and any x ∈ X , there exists y ∈ X and n ≥ 1
such that

d(T n y, x) < ε, d(T 2n y, x) < ε, . . . , d(T pn y, x) < ε.

In fact, since each T k(k ∈ K ) is uniformly continuous on X , we can choose ρ > 0
so that d(x1, x2) < ρ implies d(T kx1, T k x2) < ε/2 for all x1, x2 ∈ X and all k ∈ K .
By the induction hypothesis, there exist x ′ ∈ X and n ≥ 1 such that

d(T n x ′, x ′) < ρ, . . . , d(T (p−1)nx ′, x ′) < ρ.

But the invariant set T X is closed, since X is compact, and so T X = X . Hence
T n X = X and we can choose y ′ ∈ X so that T n y ′ = x ′. Thus

d(T n y ′, x ′) = 0, d(T 2n y ′, x ′) < ρ, . . . , d(T pn y ′, x ′) < ρ.

It follows that, for all k ∈ K ,

d(T n+k y ′, T k x ′) < ε/2, . . . , d(T pn+k y ′, T k x ′) < ε/2.

For each x ∈ X there is a k ∈ K such that d(T k x ′, x) < ε/2. Thus if y = T k y ′, then

d(T n y, x) < ε, . . . , d(T pn y, x) < ε.

(v) Let ε0 > 0 and x0 ∈ X be given. By (iv) there exist x1 ∈ X and n1 ≥ 1 such that

d(T n1 x1, x0) < ε0, . . . , d(T pn1 x1, x0) < ε0.

We can now choose ε1 ∈ (0, ε0) so that d(x, x1) < ε1 implies

d(T n1 x, x0) < ε0, . . . , d(T pn1 x, x0) < ε0.
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Suppose we have defined points x1, . . . , xk , positive integers n1, . . . , nk , and
ε1, . . . , εk ∈ (0, ε0) such that, for i = 1, . . . , k,

d(T ni xi , xi−1) < εi−1, . . . , d(T pni xi , xi−1) < εi−1,

and d(x, xi ) < εi implies

d(T ni x, xi−1) < εi−1, . . . , d(T
pni x, xi−1) < εi−1.

By (iv) there exist xk+1 ∈ X and nk+1 ≥ 1 such that

d(T nk+1 xk+1, xk) < εk, . . . , d(T pnk+1 xk+1, xk) < εk,

and we can then choose εk+1 ∈ (0, ε0) so that d(x, xk+1) < εk+1 implies

d(T nk+1 x, xk) < εk, . . . , d(T pnk+1 x, xk) < εk .

Thus the process can be continued indefinitely.
By taking successively i = j − 1, j − 2, . . . we see that, if i < j , then

d(T ni+1+···+n j−1+n j x j , xi ) < εi , . . . , d(T p(ni+1+···+n j−1+n j )x j , xi ) < εi .

Since X is compact, it is covered by a finite number r of open balls with radius ε0/2.
Hence there exist i, j with 0 ≤ i < j ≤ r such that d(xi , x j ) < ε0. If we put
n = ni+1+· · ·+n j−1+n j then, since εi < ε0, we obtain from the triangle inequality

d(T nx j , x j ) < 2ε0, . . . , d(T pn x j , x j ) < 2ε0.

But ε0 > 0 was arbitrary. �

It may be deduced from Proposition 26, by means of Baire’s category theorem,
that under the same hypotheses there exists a point z ∈ X and an increasing sequence
(nk) of positive integers such that T ink z → z as k →∞ (i = 1, . . . , p). However, as
we now show, Proposition 26 already suffices to proves van der Waerden’s theorem.

The set X∗ of all infinite sequences x = (x1, x2, . . .), where xi ∈ {1, 2, . . . , r}
for every i ≥ 1, can be given the structure of a compact metric space by defining
d(x, x) = 0 and d(x, y) = 2−k if x �= y and k is the least positive integer such that
xk �= yk . The shift map τ : X∗ → X∗, defined by τ ((x1, x2, . . .)) = (x2, x3, . . .), is
continuous, since

d(τ (x), τ (y)) ≤ 2 d(x, y).

With the partition N = S1 ∪ · · · ∪ Sr in the statement of van der Waerden’s theorem
we associate the infinite sequence x ∈ X∗ defined by xi = j if i ∈ Sj .

Let X denote the closure of the set (τ n x)n≥1. Then X is a closed subset of X∗
which is invariant under τ . By Proposition 26, there exists a point z ∈ X and a positive
integer n such that

d(τ nz, z) < 1/2, d(τ 2nz, z) < 1/2, . . . , d(τ pnz, z) < 1/2;
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i.e. z1 = zn+1 = z2n+1 = · · · = z pn+1. Since z ∈ X , there is a positive integer m such
that d(τm x, z) < 2−pn−1, i.e. xm+i = zi for 1 ≤ i ≤ pn + 1. It follows that

xm+1 = xm+n+1 = · · · = xm+pn+1.

Thus for every positive integer p there is a set Sj (p) which contains an arithmetic
progression of length p. Since there are only r possible values for j (p), one of the sets
Sj must contain arithmetic progressions of arbitrary finite length.

A far-reaching generalization of van der Waerden’s theorem has been given by
Hales and Jewett (1963). Let A = {a1, . . . , aq} be a finite set and let An be the set
of all n-tuples with elements from A. A set W = {w1, . . . , wq } ⊆ An of q n-tuples
wk = (wk

1, . . . , w
k
n) is said to be a combinatorial line if there exists a partition

{1, . . . , n} = I ∪ J, I ∩ J = ∅,
such that

wk
i = ak (k = 1, . . . , q) for i ∈ I ; w1

j = · · · = wq
j for j ∈ J.

The Hales–Jewett theorem says that, for any positive integer r , there exists a posi-
tive integer N = N(q, r) such that, if AN is partitioned into r classes, then at least one
of these classes contains a combinatorial line.

If one takes A = {0, 1, . . . , q−1} and interprets An as the set of expansions to base
q of all non-negative integers less than qn , then a combinatorial line is an arithmetic
progression. On the other hand, if one takes A = Fq to be a finite field with q elements
and interprets An as the n-dimensional vector space Fn

q , then a combinatorial line is
an affine line. The interesting feature of the Hales–Jewett theorem is that it is purely
combinatorial and does not involve any notion of addition.

6 Further Remarks

Uniform distribution and discrepancy are thoroughly discussed in Kuipers and Nieder-
reiter [30]. For later results, see Drmota and Tichy [13]. Since these two books have
extensive bibliographies, we will be sparing with references. However, it would be re-
miss not to recommend the great paper of Weyl [52], which remains as fresh as when
it was written.

Lemma 0 is often attributed to Polya (1920), but it was already proved by Buchanan
and Hildebrandt [9].

Fejér’s proof that continuous periodic functions can be uniformly approximated by
trigonometric polynomials is given in Dym and McKean [15]. The theorem also fol-
lows directly from the the theorem of Weierstrass (1885) on the uniform approximation
of continuous functions by ordinary polynomials. A remarkable generalization of both
results was given by Stone (1937); see Stone [49]. The ‘Stone–Weierstrass theorem’ is
also proved in Rudin [44], for example.

Chen [11] gives a quantitative version of Kronecker’s theorem of a different type
from Proposition 3′.
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The converse of Proposition 10 is proved by Kemperman [27]. For the history of
the problem of mean motion, and generalizations to almost periodic functions, see
Jessen and Tornehave [24]. Methods for estimating exponential sums were developed
in connection with the theory of uniform distribution, but then found other applica-
tions. See Chandrasekharan [10] and Graham and Kolesnik [21].

For applications of discrepancy to numerical integration, see Niederreiter [36, 37].
For the basic properties of functions of bounded variation and the definition of total
variation see, for example, Riesz and Sz.-Nagy [42].

Sharper versions of the original Erdős–Turan inequality are proved by Niederreiter
and Philipp [38] and in Montgomery [35]. The discrepancy of the sequence ({nα}),
where α is an irrational number whose continued fraction expansion has bounded
partial quotients (i.e., is badly approximable), is discussed by Dupain and Sós [14].
The discrepancy of the sequence ({nα}), where α ∈ Rd , has been deeply studied by
Beck [3]. The work of Roth, Schmidt and others is treated in Beck and Chen [4].

For accounts of measure theory, see Billingsley [6], Halmos [22], Loève [32]
and Saks [46]. More detailed treatments of ergodic theory are given in the books of
Petersen [39], Walters [51] and Cornfeld et al. [12]. The prehistory of ergodic theory
is described by the Ehrenfests [16]. However, they do not refer to the paper of Poincaré
(1894), which is reproduced in [41].

The proof of Birkhoff’s ergodic theorem given here follows Katznelson and
Weiss [26]. A different proof is given in the book of Walters.

Many other ergodic theorems besides Birkhoff’s are discussed in Krengel [29]. We
mention only the subadditive ergodic theorem of Kingman (1968): if T is a measure-
preserving transformation of the probability space (X,B, µ) and if (gn) is a sequence
of functions in L(X,B, µ) such that infn n−1

∫
X gn dµ > −∞ and, for all m, n ≥ 1,

gn+m(x) ≤ gn(x)+ gm(T
nx) a.e.,

then n−1gn(x)→ g∗(x) a.e., where g∗(T x) = g∗(x) a.e., g∗ ∈ L(X,B, µ) and∫
X

g∗dµ = lim
n→∞ n−1

∫
X

gn dµ = inf
n

n−1
∫

X
gn dµ.

Birkhoff’s ergodic theorem may be regarded as a special case by taking gn(x) =∑n−1
k=0 f (T k x). A simple proof of Kingman’s theorem is given by Steele [48]. For

applications of Kingman’s theorem to percolation processes and products of random
matrices, see Kingman [28]. The multiplicative ergodic theorem of Oseledets is de-
rived from Kingman’s theorem by Ruelle [45].

The book of Kuipers and Niederreiter cited above has an extensive discussion of
normal numbers. For normality with respect to a matrix, see also Brown and Moran [8].

Proofs of Gauss’s statement on the continued fraction map are contained in the
books by Billingsley [7] and Rockett and Szusz [43]. For more recent work, see
Wirsing [53], Babenko [2] and Mayer [33]. For the deviation of (1/n) log qn(ξ)
from its (a.e.) limiting value π2/(12 log 2) there are analogues of the central limit
theorem and the law of the iterated logarithm; see Philipp and Stackelberg [40]. For
higher-dimensional generalizations of Gauss’s invariant measure, see Hardcastle and
Khanin [23].
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Applications of ergodic theory to classical mechanics are discussed in the books of
Arnold and Avez [1] and Katok and Hasselblatt [25]. For connections between ergodic
theory and the ‘3x + 1 problem’, see Lagarias [31].

Ergodic theory has been used to generalize considerably some of the results on lat-
tices in Chapter VIII. A lattice in a locally compact group G is a discrete subgroup Γ
such that the G-invariant measure of the quotient space G/Γ is finite. (In Chapter VIII,
G = Rn and Γ = Zn .) Zimmer [54] gives a good introduction to the results which
have been obtained in this area.

An attractive account of the work of Furstenberg and his collaborators is given in
Furstenberg [17]. See also Graham et al. [20] and the book of Petersen cited above.
The discovery of van der Waerden’s theorem is described in van der Waerden [50]. For
a recent direct proof, see Mills [34].

The direct proofs reduce the theorem to an equivalent finite form: for any positive
integer p, there exists a positive integer N such that, whenever the set {1, 2, . . . , N}
is partitioned into two subsets, at least one subset contains an arithmetic progression
of length p. The original proofs provided an upper bound for the least possible value
N(p) of N , but it was unreasonably large. Some progress towards obtaining reasonable
upper bounds has recently been made by Shelah [47] and Gowers [19].

The Hales–Jewett theorem is proved, and then extensively generalized, in
Bergelson and Leibman [5]. Furstenberg and Katznelson [18] prove a density ver-
sion of the Hales–Jewett theorem, analogous to Szemeredi’s density version of van der
Waerden’s theorem.
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XII

Elliptic Functions

Our discussion of elliptic functions may be regarded as an essay in revisionism, since
we do not use Liouville’s theorem, Riemann surfaces or the Weierstrassian functions.
We wish to show that the methods used by the founding fathers of the subject provide
a natural and rigorous approach, which is very well suited for applications.

The work is arranged so that the initial sections are mutually independent, although
motivation for each section is provided by those which precede it. To some extent we
have also separated the discussion for real and for complex parameters, so that those
interested only in the real case may skip the complex one.

1 Elliptic Integrals

After the development of the integral calculus in the second half of the 17th century,
it was natural to apply it to the determination of the arc length of an ellipse since, by
Kepler’s first law, the planets move in elliptical orbits with the sun at one focus.

An ellipse is described in rectangular coordinates by an equation

x2/a2 + y2/b2 = 1,

where a and b are the semi-axes of the ellipse (a > b > 0). It is also given parametri-
cally by

x = a sin θ, y = b cos θ (0 ≤ θ ≤ 2π).

The arc length s(Θ) from θ = 0 to θ = Θ is given by

s(Θ) =
∫ Θ

0
[(dx/dθ)2 + (dy/dθ)2]1/2dθ

=
∫ Θ

0
(a2 cos2 θ + b2 sin2 θ)1/2dθ

=
∫ Θ

0
[a2 − (a2 − b2) sin2 θ ]1/2dθ.
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If we put b2 = a2(1− k2), where k (0 < k < 1) is the eccentricity of the ellipse, this
takes the form

s(Θ) = a
∫ Θ

0
(1− k2 sin2 θ)1/2dθ.

If we further put z = sin θ = x/a and restrict attention to the first quadrant, this
assumes the algebraic form

a
∫ Z

0
[(1− k2z2)/(1− z2)]1/2dz.

Since the arc length of the whole quadrant is obtained by taking Z = 1, the arc length
of the whole ellipse is

L = 4a
∫ 1

0
[(1− k2z2)/(1− z2)]1/2dz.

Consider next Galileo’s problem of the simple pendulum. If θ is the angle of de-
flection from the downward vertical, the equation of motion of the pendulum is

d2θ/dt2 + (g/ l) sin θ = 0,

where l is the length of the pendulum and g is the gravitational constant. This differ-
ential equation has the first integral

(dθ/dt)2 = (2g/ l)(cos θ − a),

where a is a constant. In fact a < 1 for a real motion, and for oscillatory motion we
must also have a > −1. We can then put a = cosα (0 < α < π), where α is the
maximum value of θ , and integrate again to obtain

t = (l/2g)1/2
∫ Θ

0
(cos θ − cosα)−1/2dθ

= (l/4g)1/2
∫ Θ

0
(sin2 α/2− sin2 θ/2)−1/2dθ.

Putting k = sin α/2 and kx = sin θ/2, we can rewrite this in the form

t = (l/g)1/2
∫ X

0
[(1− k2x2)(1− x2)]−1/2dx .

The angle of deflection θ attains its maximum value α when X = 1, and the motion is
periodic with period

T = 4(l/g)1/2
∫ 1

0
[(1− k2x2)(1− x2)]−1/2dx .

Attempts to evaluate the integrals in both these problems in terms of algebraic and
elementary transcendental functions proved fruitless. Thus the idea arose of treating
them as fundamental entities in terms of which other integrals could be expressed.
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An example is the determination of the arc length of a lemniscate. This curve,
which was studied by Jacob Bernoulli (1694), has the form of a figure of eight and is
the locus of all points z ∈ C such that |2z2 − 1| = 1 or, in polar coordinates,

r2 = cos 2θ (−π/4 ≤ θ ≤ π/4 ∪ 3π/4 ≤ θ ≤ 5π/4).

If −π/4 ≤ Θ ≤ 0, the arc length s(Θ) from θ = −π/4 to θ = Θ is given by

s(Θ) =
∫ Θ

−π/4
[r2 + (dr/dθ)2]1/2dθ

=
∫ Θ

−π/4
[r2 + (1− r4)/r2]1/2dθ

=
∫ R

0
(1− r4)−1/2dr .

If we make the change of variables x = √
2r/(1 + r2)1/2, then on account of

dx/dr = √2/(1+ r2)3/2 we obtain

s(Θ) = 2−1/2
∫ X

0
[(1− x2/2)(1− x2)]−1/2dx .

Another example is the determination of the surface area of an ellipsoid. Suppose
the ellipsoid is described in rectangular coordinates by the equation

x2/a2 + y2/b2 + z2/c2 = 1,

where a > b > c > 0. The total surface area is 8S, where S is the surface area of the
part contained in the positive octant. In this octant we have

z = c[1− (x/a)2 − (y/b)2]1/2

and hence

1+ (∂z/∂x)2 + (∂z/∂y)2 = [1− (αx/a)2 − (βy/b)2]/[1− (x/a)2 − (y/b)2],

where

α = (a2 − c2)1/2/a, β = (b2 − c2)1/2/b.

Consequently

S =
∫ a

0

∫ b(1−(x/a)2)1/2

0
[1− (αx/a)2 − (βy/b)2]1/2[1− (x/a)2 − (y/b)2]−1/2dydx.

If we make the change of variables

x = ar cos θ, y = br sin θ,

with Jacobian J = abr , we obtain

S = ab
∫ π/2

0
dθ

∫ 1

0
(1− σr2)1/2(1− r2)−1/2rdr ,
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where

σ = α2 cos2 θ + β2 sin2 θ.

If we now put

u2 = (1− r2)/(1− σr2),

then r2 = (1− u2)/(1− σu2) and

rdr/du = −(1− σ)u/(1− σu2)2.

Hence

S = ab
∫ π/2

0
dθ

∫ 1

0
(1− σ)(1 − σu2)−2du.

Inverting the order of integration and giving σ its value, we obtain

S = ab
∫ 1

0
du

∫ π/2

0
[(1− α2) cos2 θ + (1− β2) sin2 θ ]

× [(1− α2u2) cos2 θ + (1− β2u2) sin2 θ ]−2dθ.

It is readily verified that∫ π/2

0
cos2 θ(m cos2 θ + n sin2 θ)−2dθ = π/4m(mn)1/2,∫ π/2

0
sin2 θ(m cos2 θ + n sin2 θ)−2dθ = π/4n(mn)1/2.

Thus we obtain finally

S = (πab/4)
∫ 1

0
[(1− α2)/(1− α2u2)+ (1− β2)/(1− β2u2)]

× [(1− α2u2)(1− β2u2)]−1/2du.

By an elliptic integral one understands today any integral of the form∫
R(x, w) dx,

where R(x, w) is a rational function of x andw, and wherew2 = g(x) is a polynomial
in x of degree 3 or 4 without repeated roots. The elliptic integral is said to be complete
if it is a definite integral in which the limits of integration are distinct roots of g(x).

The case of a quartic is easily reduced to that of a cubic. In the preceding examples
we can simply put y = x2. Thus, for the lemniscate,

s(Θ) = 2−1/2
∫ Y

0
[4y(1− y)(1− y/2)]−1/2dy.
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In general, suppose g(x) = (x − α)h(x), where h is a cubic. If

h(x) = h0(x − α)3 + h1(x − α)2 + h2(x − α)+ h3

and we make the change of variables x = α + 1/y, then g(x) = g∗(y)/y4, where

g∗(y) = h0 + h1 y + h2 y2 + h3 y3,

and ∫
R(x, w) dx =

∫
R∗(y, v) dy,

where R∗(y, v) is a rational function of y and v, and v2 = g∗(y).
Since any even power of w is a polynomial in x , the integrand can be written in

the form R(x, w) = (A + Bw)/(C + Dw), where A, B,C, D are polynomials in x .
Multiplying numerator and denominator by (C − Dw)w, we obtain

R(x, w) = N/L + M/Lw,

where L,M, N are polynomials in x . By decomposing the rational function N/L into
partial fractions its integral can be evaluated in terms of rational functions and (real or
complex) logarithms. By similarly decomposing the rational function M/L into partial
fractions, we are reduced to evaluating the integrals

I0 =
∫

dx/w, In =
∫

xndx/w, Jn(γ ) =
∫
(x − γ )−ndx/w,

where n ∈ N and γ ∈ C.
The argument of the preceding paragraph is actually valid if w2 = g is any poly-

nomial. Suppose now that g is a cubic without repeated roots, say

g(x) = a0x3 + a1x2 + a2x + a3.

By differentiation we obtain, for any integer m ≥ 0,

(xmw)′ = mxm−1w + xm g′/2w = (2mxm−1g + xm g′)/2w.

Since the numerator on the right is the polynomial

(2m + 3)a0xm+2 + (2m + 2)a1xm+1 + (2m + 1)a2xm + 2ma3xm−1,

it follows on integration that

2xmw = (2m + 3)a0 Im+2 + (2m + 2)a1 Im+1 + (2m + 1)a2 Im + 2ma3 Im−1.

It follows by induction that, for each integer n > 1,

In = pn(x)w + cn I0 + c′n I1,

where pn(x) is a polynomial of degree n − 2 and cn, c′n are constants. Thus the evalu-
ation of In for n > 1 reduces to the evaluation of I0 and I1.
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Consider now the integral Jn(γ ). In the same way as before, for any integer m ≥ 1,

d{(x − γ )−mw}/dx = −m(x − γ )−m−1w + (x − γ )−m g′/2w
= {−2mg + (x − γ )g′}/2w(x − γ )m+1.

We can write

g(x) = b0 + b1(x − γ )+ b2(x − γ )2 + b3(x − γ )3

and the numerator on the right of the previous equation is then

−2mb0 + (1− 2m)b1(x − γ )+ (2− 2m)b2(x − γ )2 + (3− 2m)b3(x − γ )3.
It follows on integration that

2(x − γ )−mw = −2mb0 Jm+1(γ )+ (1− 2m)b1 Jm(γ )

+ (2− 2m)b2 Jm−1(γ )+ (3− 2m)b3 Jm−2(γ ),

where J−1(γ ) =
∫
(x − γ ) dx/w is a constant linear combination of I0 and I1. Since

g does not have repeated roots, b1 �= 0 if b0 = 0.
It follows by induction that if g(γ ) = b0 �= 0 then, for any n > 1,

Jn(γ ) = qn((x − γ )−1)w + dn J1(γ )+ d ′n I0 + d ′′n I1,

where qn(t) is a polynomial of degree n − 1 and dn, d ′n, d ′′n are constants. On the other
hand, if g(γ ) = 0 then g′(γ ) = b1 �= 0 and, for any n ≥ 1,

Jn(γ ) = rn((x − γ )−1)w + en I0 + e′n I1,

where rn(t) is a polynomial of degree n and en, e′n are constants.
Thus the evaluation of an arbitrary elliptic integral can be reduced to the evalua-

tion of

I0 =
∫

dx/w, I1 =
∫

xdx/w, J1(γ ) =
∫
(x − γ )−1dx/w,

where w2 = g is a cubic without repeated roots, γ ∈ C and g(γ ) �= 0. Following
Legendre (1793), to whom this reduction is due, integrals of these types are called
respectively elliptic integrals of the first, second and third kinds.

The cubic g can itself be simplified. If α is a root of g then, by replacing x by
x − α, we may assume that g(0) = 0. If β is now another root of g then, by replacing
x by x/β, we may further assume that g(1) = 0. Thus the evaluation of an arbitrary
elliptic integral may be reduced to one for which g has the form

gλ(x) := 4x(1− x)(1− λx),

where λ ∈ C and λ �= 0, 1. This normal form, which was used by Riemann (1858)
in lectures, is obtained from the normal form of Legendre by the change of variables
x = sin2 θ . To draw attention to the difference, it is convenient to call it Riemann’s
normal form.
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The range of λ can be further restricted by linear changes of variables. The trans-
formation y = (1− λx)/(1− λ) replaces Riemann’s normal form by one of the same
type with λ replaced by Uλ = 1−λ. Similarly, the transformation y = 1−λx replaces
Riemann’s normal form by one of the same type with λ replaced by Vλ = 1/(1− λ).
The transformations U and V together generate a group G of order 6 (isomorphic to
the symmetric group S3 of all permutations of three letters), since

U2 = V 3 = (U V )2 = I.

The values of λ corresponding to the elements I, V , V 2,U,U V ,U V 2 of G are

λ, 1/(1− λ), (λ− 1)/λ, 1− λ, λ/(λ− 1), 1/λ.

The region F of the complex plane C defined by the inequalities

|λ− 1| < 1, 0 < Rλ < 1/2,

is a fundamental domain for the group G ; i.e., no point of F is mapped to a different
point of F by an element of G and each point of C is mapped to a point of F or its
boundary ∂F by some element of G . Consequently the sets {G(F ) : G ∈ G } form a
tiling of C; i.e.,

C = ∪
G∈G

G(F ∪ ∂F ), G(F ) ∩ G ′(F ) = ∅ if G,G′ ∈ G and G �= G ′.

This is illustrated in Figure 1, where the set G(F ) is represented simply by the group
element G and, in particular, F is represented by I . It follows that in Riemann’s
normal form we may suppose λ ∈ F ∪ ∂F .

The changes of variable in the preceding reduction to Riemann’s normal form may
be complex, even though the original integrand was real. It will now be shown that any
real elliptic integral can be reduced by a real change of variables to one in Riemann’s
normal form, where 0 < λ < 1 and the independent variable is restricted to the interval
0 ≤ x ≤ 1.

UV U VIV UV
2 2

0 1 2–1 1/2

Fig. 1. Fundamental domain for λ.
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If g is a cubic or quartic with only real roots, this can be achieved by a linear frac-
tional transformation, mapping roots of g to roots of gλ. Appropriate transformations
are listed in Tables 1 and 2. It should be noted that λ is always a cross-ratio of the four
roots of g in Table 2, and that λ is always a cross-ratio of the three roots of g and the
point ‘∞’ in Table 1.

Table 1. Reduction to Riemann’s normal form, g a cubic with all roots real

dx/g(x)1/2 = dy/µgλ(y)
1/2

g(x) = A(x − α1)(x − α2)(x − α3), where α1 > α2 > α3; α j k = α j − αk

gλ(y) = 4y(1− y)(1− λy), where 0 < λ < 1, y ∈ (0, 1)
µ = (α13)

1/2/2, λ0 = α23/α13, 1− λ0 = α12/α13.

A λ Range Transformation Corresponding values

+1 λ0 x ≥ α1 y = (x − α1)/(x − α2) x = ∞ y = 1
α1 0

−1 1− λ0 α2 ≤ x ≤ α1 = α13(x − α2)/α12(x − α3) α1 1
α2 0

+1 λ0 α3 ≤ x ≤ α2 = (x − α3)/α23 α2 1
α3 0

−1 1− λ0 x ≤ α3 = α13/(α1 − x) α3 1
−∞ 0

Table 2. Reduction to Riemann’s normal form, g a quartic with all roots real

dx/g(x)1/2 = dy/µgλ(y)
1/2

g(x) = A(x − α1)(x − α2)(x − α3)(x − α4), where α1 > α2 > α3 > α4; α j k = α j − αk

gλ(y) = 4y(1− y)(1− λy), where 0 < λ < 1, y ∈ (0, 1)
µ = (α13α24)

1/2/2, λ0 = α23α14/α13α24, 1− λ0 = α12α34/α13α24.

A λ Range Transformation Corresponding values

+1 λ0 x ≥ α1 y = α24(x − α1)/α14(x − α2) x = ∞ y = α24/α14
α1 0

−1 1− λ0 α2 ≤ x ≤ α1 = α13(x − α2)/α12(x − α3) α1 1
α2 0

+1 λ0 α3 ≤ x ≤ α2 = α24(x − α3)/α23(x − α4) α2 1
α3 0

−1 1− λ0 α4 ≤ x ≤ α3 = α13(x − α4)/α34(α1 − x) α3 1
α4 0

+1 λ0 x ≤ α4 = α24(x − α1)/α14(x − α2) α4 1
−∞ α24/α14
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Suppose now that g is a real cubic or quartic with a pair of conjugate complex
roots. Then we can write

g(x) = Q1 Q2 = (a1x2 + 2b1x + c1)(a2x2 + 2b2x + c2),

where the coefficients are real, a1c1 − b2
1 > 0 and a2c2 − b2

2 �= 0, but a2 may be zero.
Consider first the case where a2 �= 0 and b1 = b2a1/a2. Then

Q1 = a1(x + b1/a1)
2 + b′1, Q2 = a2(x + b1/a1)

2 + b′2,

where

b′1 = (a1c1 − b2
1)/a1, b′2 = (a2c2 − b2

2)/a2.

If we put y = (x + b1/a1)
2, then

R(x) = R1(y)+ R2(y)y
1/2,

where the rational functions R1, R2 are determined by the rational function R, and

dx/g(x)1/2 = ±dy/2[y(a1y + b′1)(a2y + b′2)]1/2.

Thus we are reduced to the case of a cubic with 3 distinct real roots.
In the remaining cases there exist distinct real values s1, s2 of s such that the poly-

nomial Q1 + s Q2 is proportional to a perfect square. For Q1 + s Q2 is proportional to
a perfect square if

D(s) := (a1 + sa2)(c1 + sc2)− (b1 + sb2)
2 = 0.

We have D(0) = a1c1 − b2
1 > 0. If a2 = 0, then b2 �= 0 and D(±∞) = −∞. On the

other hand, if a2 �= 0, then D(−a1/a2) < 0, since b1 �= b2a1/a2, and D(s) has the
sign of a2c2 − b2

2 for both large positive and large negative s. Thus the quadratic D(s)
has distinct real roots s1, s2. Hence

Q1 + s1 Q2 = (a1 + s1a2)(x + d1)
2, Q1 + s2 Q2 = (a1 + s2a2)(x + d2)

2,

where a1 + s j a2 �= 0 ( j = 1, 2) and

d1 = (b1 + s1b2)/(a1 + s1a2), d2 = (b1 + s2b2)/(a1 + s2a2).

Consequently

Q1 = A1(x + d1)
2 + B1(x + d2)

2, Q2 = A2(x + d1)
2 + B2(x + d2)

2,

where

A1 = −s2(a1 + s1a2)/(s1 − s2), B1 = s1(a1 + s2a2)/(s1 − s2),

A2 = (a1 + s1a2)/(s1 − s2), B2 = −(a1 + s2a2)/(s1 − s2).
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If we put y = {(x + d1)/(x + d2)}2, then

R(x) = R1(y)+ R2(y)y
1/2,

where again the rational functions R1, R2 are determined by the rational function R,
and

dx/g(x)1/2 = ±dy/2|d2 − d1|[y(A1y + B1)(A2y + B2)]1/2.

Thus we are again reduced to the case of a cubic with 3 distinct real roots.
The preceding argument may be applied also when g has only real roots, provided

the factors Q1 and Q2 are chosen so that their zeros do not interlace. Suppose (without
loss of generality) that g = gλ is in Riemann’s normal form and take

Q1 = (1− x)(1− λx), Q2 = 4x .

In this case we can write

Q1 = {(1+
√
λ)2(x − 1/

√
λ)2 − (1−√λ)2(x + 1/

√
λ)2}√λ/4,

Q2 = −
√
λ{(x − 1/

√
λ)2 − (x + 1/

√
λ)2}.

If we put

1− 4
√
λy/(1+√λ)2 = {(x − 1/

√
λ)/(x + 1/

√
λ)}2,

we obtain

dx/gλ(x)
1/2 = dy/µgρ(y)

1/2,

where

µ = 1+√λ, ρ = 4
√
λ/(1+√λ)2.

The usefulness of this change of variables will be seen in the next section.

2 The Arithmetic-Geometric Mean

Let a and b be positive real numbers, with a > b, and let

a1 = (a + b)/2, b1 = (ab)1/2

be respectively their arithmetic and geometric means. Then

a1 < (a + a)/2 = a, b1 > (bb)1/2 = b,

and

a1 − b1 = (a1/2 − b1/2)2/2 > 0.
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Thus a1, b1 satisfy the same hypotheses as a, b and the procedure can be repeated. If
we define sequences {an}, {bn} inductively by

a0 = a, b0 = b,

an+1 = (an + bn)/2, bn+1 = (anbn)
1/2 (n = 0, 1, . . .),

then

0 < b0 < b1 < b2 < · · · < a2 < a1 < a0.

It follows that an → λ and bn → µ as n →∞, where λ ≥ µ > 0. In fact λ = µ, as
one sees by letting n → ∞ in the relation an+1 = (an + bn)/2. The convergence of
the sequences {an} and {bn} to their common limit is extremely rapid, since

an − bn = (an−1 − bn−1)
2/8an+1.

(As an example, if a = √2 and b = 1, calculation shows that a4 and b4 differ by only
one unit in the 20th decimal place.)

The common limit of the sequences {an} and {bn} will be denoted by M(a, b).
The definition can be extended to arbitrary positive real numbers a, b by putting

M(a, a) = a, M(b, a) = M(a, b).

Following Gauss (1818), M(a, b) is known as the arithmetic-geometric mean of a
and b. However, the preceding algorithm, which we will call the AGM algorithm, was
first introduced by Lagrange (1784/5), who showed that it had a remarkable applica-
tion to the numerical calculation of arbitrary elliptic integrals. The first tables of elliptic
integrals, which made them as accessible as logarithms, were constructed in this way
under the supervision of Legendre (1826). Today the algorithm can be used directly by
electronic computers.

By putting 1−λx = t2/a2 in Riemann’s normal form, it may be seen that any real
elliptic integral may be brought to the form∫

ϕ(t)[(a2 − t2)(t2 − b2)]−1/2dt,

where ϕ(t) is a rational function of t2 with real coefficients, a > b > 0 and t ∈ [b, a].
We will restrict attention here to the complete elliptic integral

J =
∫ a

b
ϕ(t)[(a2 − t2)(t2 − b2)]−1/2dt,

but at the cost of some complication the discussion may be extended to incomplete
elliptic integrals (where the interval of integration is a proper subinterval of [b, a]).

If we make the change of variables

t2 = a2 sin2 θ + b2 cos2 θ (0 ≤ θ ≤ π/2),
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then

tdt/dθ = (a2 − b2) sin θ cos θ = [(a2 − t2)(t2 − b2)]1/2

and

J =
∫ π/2

0
ϕ((a2 sin2 θ + b2 cos2 θ)1/2)dθ/(a2 sin2 θ + b2 cos2 θ)1/2.

Now put

t1 = (1/2)(t + ab/t)

and, as before,

a1 = (a + b)/2, b1 = (ab)1/2.

Then

a2
1 − t2

1 = (a2 − t2)(t2 − b2)/4t2,

t2
1 − b2

1 = (t2 − ab)2/4t2,

dt1/dt = (t2 − ab)/2t2.

As t increases from b to b1, t1 decreases from a1 to b1, and as t further increases from
b1 to a, t1 increases from b1 back to a1. Since

t = t1 ± (t2
1 − b2

1)
1/2,

it follows from these observations that∫ a

b
ϕ(t)[(a2 − t2)(t2 − b2)]−1/2dt =

∫ a1

b1

ψ(t1)[(a2
1 − t2

1 )(t
2
1 − b2

1)]
−1/2dt1,

where

ψ(t1) = (1/2){ϕ[(t1 + (t2
1 − b2

1)
1/2]+ ϕ[(t1 − (t2

1 − b2
1)

1/2]}.
In particular, if we take ϕ(t) = 1 and put

K (a, b) :=
∫ a

b
[(a2 − t2)(t2 − b2)]−1/2dt,

we obtain

K (a, b) = K (a1, b1).

Hence, by repeating the process, K (a, b) = K (an, bn). But

K (an, bn) =
∫ π/2

0
(a2

n sin2 θ + b2
n cos2 θ)−1/2dθ
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and

bn ≤ (a2
n sin2 θ + b2

n cos2 θ)1/2 ≤ an.

Consequently, by letting n →∞ we obtain

K (a, b) = π/2M(a, b). (1)

Now take ϕ(t) = a2 − t2 and put

E (a, b) :=
∫ a

b
[(a2 − t2)/(t2 − b2)]1/2dt .

In this case

ψ(t1) = (a2 − b2)/2+ 2(a2
1 − t2

1 )

and hence

E (a, b) = (a2 − b2)K (a, b)/2+ 2E (a1, b1).

If we write

en = 2n(a2
n − b2

n)

then, since K (a, b) = K (an, bn), by repeating the process we obtain

E (a, b)/K (a, b) = (e0 + e1 + · · · + en−1)/2+ 2nE (an, bn)/K (an, bn).

But

2nE (an, bn) = en

∫ π/2

0
cos2 θ(a2

n sin2 θ + b2
n cos2 θ)−1/2dθ

and en → 0 (rapidly) as n →∞, since

en = 2n(an−1 − bn−1)
2/4 = en−1(an−1 − bn−1)/4an.

Hence

E (a, b)/K (a, b) = (e0 + e1 + e2 + · · · )/2. (2)

To avoid taking differences of nearly equal quantities, the constants en may be calcu-
lated by means of the recurrence relations

en = e2
n−1/2

n+2a2
n (n = 1, 2, . . .).

Next take

ϕ(t) = p[(p2 − a2)(p2 − b2)]1/2/(p2 − t2),

where either p > a or 0 < p < b, and put

P(a, b, p) :=
∫ a

b
p[(p2 − a2)(p2 − b2)]1/2dt/(p2 − t2)[(a2 − t2)(t2 − b2)]1/2.
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In this case

ψ(t1) = q1 ± p1[(p2
1 − a2

1)(p
2
1 − b2

1)]
1/2/(p2

1 − t2
1 ),

where

p1 = (1/2)(p + ab/p),

q1 = (p2
1 − a2

1)
1/2 = [(p2 − a2)(p2 − b2)]1/2/2 p,

and the+ or− sign is taken according as p > a or 0 < p < b. Since p1 > a1 in either
event, without loss of generality we now assume that p > a. Then also p1 < p and

P(a, b, p) = q1K (a, b)+P(a1, b1, p1).

Define the sequence {pn} inductively by

p0 = p, pn+1 = (1/2)(pn + anbn/pn) (n = 0, 1, . . .),

and put

qn+1 = (p2
n+1 − a2

n+1)
1/2 = [(p2

n − a2
n)(p

2
n − b2

n)]
1/2/2 pn.

Then pn → v ≥ M(a, b) as n → ∞, since an < pn < pn−1. In fact v = M(a, b),
as one sees by letting n → ∞ in the recurrence relation defining the sequence {pn}.
Moreover

δn := (a2
n − b2

n)/(p
2
n − a2

n)→ 0 as n →∞,
since

δn+1 = δn
(

p2
n

4a2
n+1

)(
a2

n − b2
n

p2
n − b2

n

)
< δn p2

n/4a2
n+1.

Hence

(p2
n − b2

n)/(p
2
n − a2

n) = 1+ δn → 1.

Since P(an, bn, pn)

= pn[(p2
n − a2

n)(p
2
n − b2

n)]
1/2

∫ π/2

0

(a2
n sin2 θ + b2

n cos2 θ)−1/2dθ

(p2
n − a2

n) sin2 θ + (p2
n − b2

n) cos2 θ
,

it follows that P(an, bn, pn)→ π/2 as n →∞. Hence

P(a, b, p) = (q1 + q2 + · · · )K (a, b)+ π/2. (3)

To avoid taking differences of nearly equal quantities, the constants qn may be calcu-
lated by means of the recurrence relations

δn+1 = δ2
n p2

n/4a2
n+1(1+ δn), qn+1 = (1+ δn)1/2q2

n/2 pn (n = 1, 2, . . .).
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Using (1)–(3), complete elliptic integrals of all three kinds can be calculated by
the AGM algorithm. We now consider another application, the utility of which will be
seen in §6.

By putting t1 = (1/2)(t + ab/t) again, one sees that∫ ∞

a
[(t2 − a2)(t2 − b2)]−1/2dt = (1/2)

∫ ∞

a1

[(t2
1 − a2

1)(t
2
1 − b2

1)]
−1/2dt1.

But the change of variables u = a(1− b2/t2)1/2 shows that∫ ∞

a
[(t2 − a2)(t2 − b2)]−1/2dt = K (a, c),

where c = (a2 − b2)1/2. It follows that

K (a, c) = K (a1, c1)/2 = · · · = K (an, cn)/2n,

where cn = (a2
n − b2

n)
1/2. The asymptotic behaviour of K (an, cn) may be determined

in the following way.
If we put s = ac/t , then s decreases from a to c as t increases from c to a, and

ds/dt = −[(a2 − s2)(s2 − c2)]1/2/[(a2 − t2)(t2 − c2)]1/2.

Since s = t when t = h := (ac)1/2, it follows that

K (a, c) = 2
∫ h

c
[(a2 − t2)(t2 − c2)]−1/2dt .

But, for c ≤ t ≤ h,

b−1 = (a2 − c2)−1/2 ≤ (a2 − t2)−1/2 ≤ (a2 − h2)−1/2 = a−1(1− c/a)−1/2.

Hence

2b−1L ≤K (a, c) ≤ 2a−1(1− c/a)−1/2L,

where

L :=
∫ h

c
(t2 − c2)−1/2dt = log{(a/c)1/2 + (a/c− 1)1/2}.

If we now replace a, b, c by an, bn, cn then, since an/cn → ∞ and moreover
an, bn → M(a, b), we deduce that

2nK (a, c)/ log(4an/cn)→ 1/M(a, b) = 2K (a, b)/π.

But 4an/cn = (4an/cn−1)
2, since cn = (an−1 − bn−1)/2, and hence

2−n log(4an/cn)

= 21−n log(4an−1/cn−1)− 21−n log(an−1/an)

= · · ·
= log(4a0/c0)− log(a0/a1)− 2−1 log(a1/a2)− · · · − 21−n log(an−1/an).



508 XII Elliptic Functions

It follows that

πK (a, c)/2K (a, b) = log(4a1/c0)−
∞∑

n=1

2−n log(an/an+1). (4)

Finally, to determine E (a, c) we can use the relation

K (a, b)E (a, c)+K (a, c)E (a, b)− a2K (a, b)K (a, c) = π/2.
By homogeneity we need only establish this relation for a = 1. Since

K (1, (1− λ)1/2) =
∫ 1

0
[4x(1− x)(1− λx)]−1/2dx,

E (1, (1− λ)1/2) =
∫ 1

0
[(1− λx)/4x(1− x)]1/2dx,

it is in fact equivalent to the following relation, due to Legendre, between the complete
elliptic integrals of the first and second kinds:

Proposition 1 If

K (λ) =
∫ 1

0
[4x(1− x)(1− λx)]−1/2dx, E(λ) =

∫ 1

0
[(1− λx)/4x(1− x)]1/2dx,

then

K (λ)E(1− λ)+ K (1− λ)E(λ)− K (λ)K (1− λ) = π/2 for 0 < λ < 1. (5)

Proof We show first that the derivative of the left side of (5) is zero. Evidently

d E/dλ = −(1/2)
∫ 1

0
x[4x(1− x)(1− λx)]−1/2dx = [E(λ)− K (λ)]/2λ.

Similarly,

d K/dλ = (1/2)
∫ 1

0
x(1− λx)−1[4x(1− x)(1− λx)]−1/2dx .

Substituting x = (1− u)/(1− λu) and writing λ′ = 1− λ, we obtain

d K/dλ = (1/2λ′)
∫ 1

0
[(1− u)/4u(1− λu)]1/2du

= [E(λ)− λ′K (λ)]/2λλ′.
It follows that

d(λλ′d K/dλ)/dλ = K/4.

Thus y1(λ) = K (λ) is a solution of the second order linear differential equation

d(λλ′dy/dλ)/dλ− y/4 = 0. (6)
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By symmetry, y2(λ) = K (λ′) is also a solution. It follows that the ‘Wronskian’

W = λλ′(y2dy1/dλ− y1dy2/dλ)

has derivative zero and so is constant. But, writing

K ′(λ) = K (1− λ), E ′(λ) = E(1− λ),
we have

2W = K ′(E − λ′K )+ K (E ′ − λK ′) = K E ′ + K ′(E − K ).

To evaluate this constant we let λ→ 0. Putting x = sin2 θ , we obtain

K (λ) =
∫ π/2

0
(1− λ sin2 θ)−1/2dθ, E(λ) =

∫ π/2

0
(1− λ sin2 θ)1/2dθ

and hence, as λ→ 0,

K (λ)→ π/2, E(λ)→ π/2, E(λ′)→ 1.

Moreover

K (λ′)[E(λ)− K (λ)] → 0,

since

K (λ)− E(λ) = λ
∫ 1

0
x[4x(1− x)(1− λx)]−1/2dx = O(λ)

and

0 ≤ K (λ′) ≤
∫ π/2

0
[1− (1− λ)]−1/2dθ = O(λ−1/2).

It follows that 2W = π/2. �

If λ = 1/2, then λ′ = λ and (5) takes the simple form

K (1/2)[2E(1/2)− K (1/2)] = π/2.
By the remarks preceding the statement of Proposition 1, the left side can be
evaluated by the AGM algorithm. In this way π has recently been calculated to
millions of decimal places. (It will be recalled that the value λ = 1/2 occurred in
the rectification of the lemniscate.)

3 Elliptic Functions

According to Jacobi, the theory of elliptic functions was conceived on 23 December
1751, the day on which the Berlin Academy asked Euler to report on the Produzioni
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Matematiche of Count Fagnano, a copy of which had been sent them by the author.
The papers which aroused Euler’s interest had in fact already appeared in an obscure
Italian journal between 1715 and 1720. Fagnano had shown first how a quadrant of a
lemniscate could be halved, then how it could be divided algebraically into 2m, 3 · 2m

or 5 · 2m equal parts. He had also established an algebraic relation between the length
of an elliptic arc, the length of another suitably chosen arc and the length of a quadrant.
By analysing and extending his arguments, Euler was led ultimately (1761) to a general
addition theorem for elliptic integrals. An elegant proof of Euler’s theorem was given
by Lagrange (1768/9), using differential equations. We follow this approach here.

Let

gλ(x) = 4x(1− x)(1− λx) = 4λx3 − 4(1+ λ)x2 + 4x

be Riemann’s normal form and let 2 fλ(x) be its derivative:

fλ(x) = 6λx2 − 4(1+ λ)x + 2.

By the fundamental existence and uniqueness theorem for ordinary differential equa-
tions, the second order differential equation

x ′′ = fλ(x) (7)

has a unique solution S(t) = S(t, λ), defined (and holomorphic) for |t| sufficiently
small, which satisfies the initial conditions

S(0) = S′(0) = 0. (8)

The solution S(t, λ) is an elementary function if λ = 0 or 1:

S(t, 0) = sin2 t, S(t, 1) = tanh2 t .

(For other values of λ, S(t) coincides with the Jacobian elliptic function sn2t .)
Evidently S(t) is an even function of t , since S(−t) is also a solution of (7) and

satisfies the same initial conditions (8).
For any solution x(t) of (7), the function x ′(t)2 − gλ[x(t)] is a constant, since its

derivative is zero. In particular,

S′(t)2 = gλ[S(t)], (9)

since both sides vanish for t = 0.
If |τ | is sufficiently small, then x1(t) = S(t+τ ) and x2(t) = S(t−τ ) are solutions

of (7) near t = 0. Moreover,

x ′j (t)2 = gλ[x j (t)] ( j = 1, 2),

since these relations hold for t = 0. From

(x1x ′2 + x ′1x2)
′ = x1 fλ(x2)+ x2 fλ(x1)+ 2x ′1x ′2

and

(x1x ′2 + x ′1x2)
2 = x2

1 gλ(x2)+ x2
2 gλ(x1)+ 2x1x2x ′1x ′2
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we obtain

2x1x2(x1x ′2 + x ′1x2)
′ − (x1x ′2 + x ′1x2)

2 − 2x1x2x ′1x ′2
= x2

1{2x2 fλ(x2)− gλ(x2)} + x2
2{2x1 fλ(x1)− gλ(x1)}.

But if gλ(x) = αx3 + βx2 + γ x and fλ(x) = g′λ(x)/2, then

2x fλ(x)− gλ(x) = x2(2αx + β).
Hence

2x1x2(x1x ′2 + x ′1x2)
′ − (x1x ′2 + x ′1x2)

2 = 2x2
1 x2

2{α(x1 + x2)+ β} + 2x1x2x ′1x ′2.

On the other hand,

(x ′1 − x ′2)(x1x ′2 + x ′1x2) = x2gλ(x1)− x1gλ(x2)+ (x1 − x2)x
′
1x ′2

= x1x2(x1 − x2){α(x1 + x2)+ β} + (x1 − x2)x
′
1x ′2.

Comparing these two relations, we obtain

{2x1x2(x1x ′2 + x ′1x2)
′ − (x1x ′2 + x ′1x2)

2}(x1 − x2) = 2x1x2(x
′
1 − x ′2)(x1x ′2 + x ′1x2).

If we divide by 2x1x2(x1 − x2)(x1x ′2 + x ′1x2), this takes the form

(x1x ′2 + x ′1x2)
′

x1x ′2 + x ′1x2
− x1x ′2 + x ′1x2

2x1x2
= x ′1 − x ′2

x1 − x2
,

which can be integrated to give

(x1x ′2 + x ′1x2)
2 = C(τ )x1x2(x1 − x2)

2,

where the constant C(τ ) depends on τ . Equivalently,

[S(u)S′(v)− S′(u)S(v)]2 = C((u + v)/2)S(u)S(v)[S(u) − S(v)]2.

To evaluate the constant, we divide throughout by S(v) and let v → 0. By (9), this
yields C(u/2) = γ /S(u). Since γ = 4 (for Riemann’s normal form), we obtain finally

S(u + v) = 4S(u)S(v)[S(u)− S(v)]2/[S(u)S′(v)− S′(u)S(v)]2. (10)

Thus S(u + v) is a rational function of S(u), S(v), S′(u), S′(v). Moreover, since
(S′)2 = gλ(S), there exists a polynomial p(x, y, z), not identically zero and with coef-
ficients independent of u and v, such that p[S(u+v), S(u), S(v)] = 0. In other words,
the function S(u) has an algebraic addition theorem.

The relation (10) can also be written in the form

S(u + v) = [S(u)S′(v)+ S′(u)S(v)]2/4S(u)S(v)[1 − λS(u)S(v)]2, (11)
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since

S(u)2S′(v)2 − S′(u)2S(v)2 = S(u)2gλ[S(v)]− S(v)2gλ[S(u)]

= 4S(u)S(v)[S(u)− S(v)][1 − λS(u)S(v)].

Replacing v by −v in (11) and subtracting the result from (11), we obtain

S(u + v) − S(u − v) = S′(u)S′(v)/[1− λS(u)S(v)]2. (12)

In particular, for v = u,

S(2u) = gλ[S(u)]/[1− λS2(u)]2. (13)

We recall that a function is meromorphic in a connected open set D if it is holomor-
phic throughout D, except for isolated singularities which are poles. Since, by (13),
S(2t) is a rational function of S(t), it follows that if S(t) is meromorphic and a
solution (wherever it is finite) of the differential equation (7) in an open disc |t| < R,
then its definition can be extended so that it is meromorphic and a solution (wherever it
is finite) of the differential equation (7) also in the disc |t| < 2R. But the fundamental
existence and uniqueness theorem guarantees that S(t) is holomorphic in a neighbour-
hood of the origin. Consequently we can extend its definition so that it is meromorphic
and a solution of (7) in the whole complex plane C.

Further properties of the function S(t) may be derived from the differential equa-
tion (7). For any constants α, β, if y(t) = αS(βt), then y(0) = y ′(0) = 0. It is readily
seen that y(t) satisfies a differential equation of the form (7) if and only if either α = 1,
β = ±1 or α = λ, λβ2 = 1, and in the latter case with λ replaced by 1/λ in (7). It
follows that, for any λ �= 0,

S(t, 1/λ) = λS(λ−1/2t, λ). (14)

By differentiation it may be shown also that S(i t, λ)/[S(i t, λ)−1], where i2 = −1,
is a solution of the differential equation (7) with λ replaced by 1− λ. It follows that

S(t, 1 − λ) = S(i t, λ)/[S(i t, λ)− 1]. (15)

By combining (14) and (15) we obtain, for any λ �= 0, 1, three more relations:

S(t, 1/(1− λ)) = (1− λ)S(i(1− λ)−1/2t, λ)/[S(i(1− λ)−1/2t, λ)− 1], (16)

S(t, (λ − 1)/λ) = λS(iλ−1/2t, λ)/[λS(iλ−1/2t, λ)− 1], (17)

S(t, λ/(λ − 1)) = (1− λ)S((1− λ)−1/2t, λ)/[1− λS((1 − λ)−1/2t, λ)]. (18)

As in §1, it follows from (14)–(18) that the evaluation of S(t, λ) for all t, λ ∈ C
reduces to its evaluation for λ in the region |λ − 1| ≤ 1, 0 ≤ Rλ ≤ 1/2. Similarly
it follows from (14) and (18) that the evaluation of S(t, λ) for all t, λ ∈ R reduces to
its evaluation for λ in the interval 0 < λ < 1. We now show that S(t, λ) can then be
calculated by the AGM algorithm.

It is easily verified that if

z(t) = (1+√λ)2S(t, λ)/[1+√λS(t, λ)]2,
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then

(dz/dt)2 = (1+√λ)2{4λ0z3 − 4(1+ λ0)z
2 + 4z},

where

λ0 = 4
√
λ/(1+√λ)2. (19)

Since z(0) = z′(0) = 0 and z′′(0) �= 0, it follows that z(t) = S((1+√λ)t, λ0). Thus

S((1 +√λ)t, λ0) = (1+
√
λ)2S(t, λ)/[1+√λS(t, λ)]2. (20)

The inequality 0 < λ < 1 implies λ < λ0 < 1. Hence, by regarding (19) as a quadratic
equation for

√
λ, we obtain

√
λ = [1− (1− λ0)

1/2]2/λ0. (21)

If we write
√
λ0 = c0/a0, where c0 = (a2

0 − b2
0)

1/2 and 0 < b0 < a0, then
√
λ = (a0 − b0)/(a0 + b0) = c1/a1,

where

a1 = (a0 + b0)/2, b1 = (a0b0)
1/2, c1 = (a2

1 − b2
1)

1/2.

Since 1+√λ = a0/a1, we can rewrite (20) in the form

S(a0t, λ0) = (1+ c1/a1)
2S(a1t, λ1)/[1+ (c1/a1)S(a1t, λ1)]

2,

where λ1 = λ = (c1/a1)
2. Repeating the process, we obtain

S(an−1t, λn−1) = (1+ cn/an)
2S(ant, λn)/[1+ (cn/an)S(ant, λn)]

2,

where λn = (cn/an)
2. As n →∞,

an → µ := M(a, b), cn → 0, λn → 0.

Since S(t, 0) = sin2 t , for some (not very large) n = N we have S(aN t, λN ) ≈ sin2 µt ,
which may be considered as known. Then, by taking successively n = N , N−1, . . . , 1
we can calculate S(a0t, λ0). Moreover, we can start the process by taking a0 = 1,
b0 = (1− λ0)

1/2.
We now consider periodicity properties. If λ �= 1 and S(h) = 1 for some nonzero

h ∈ C then, by (13), S(2h) = 0. Furthermore S′(2h) = 0, by (9). It follows that
S(t) has period 2h, since S(t + 2h) is a solution of the differential equation (7) which
satisfies the same initial conditions (8) as S(t). It remains to show that there exists such
an h.

Suppose first that λ ∈ R and 0 < λ < 1. Since S′′(0) = 2, we have S′(t) > 0 for
small t > 0. If S′(t) > 0 for 0 < t < T , then S(t) is a positive increasing function for
0 < t < T . Since gλ[S(t)] > 0, we must also have S(t) < 1 for 0 < t < T . From the
relation

t =
∫ S(t)

0
dx/gλ(x)

1/2,
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it follows that T ≤ K (λ), where

K (λ) :=
∫ 1

0
dx/gλ(x)

1/2.

Hence S′(t) vanishes for some t such that 0 < t ≤ K (λ) and we can now take T to be
the least t > 0 for which S′(t) = 0. Then S′(T ) = 0, S(T ) = 1 and by letting t → T
we obtain T = K (λ).

This shows that S(u) maps the interval [0, K (λ)] bijectively onto [0, 1], and if

u(ξ) =
∫ ξ

0
dx/gλ(x)

1/2 (0 ≤ ξ ≤ 1),

then S[u(ξ)] = ξ . Thus, in the real domain, the elliptic integral of the first kind is
inverted by the function S(u).

Since λ �= 1, it follows that S(t) = S(t, λ) has period 2K (λ). Since λ �= 0, it
follows from (15) that S(t, λ) also has period 2i K (1 − λ). Thus S(t, λ) is a doubly-
periodic function, with a real period and a pure imaginary period. We will show that
all periods are given by

2mK (λ)+ 2ni K (1− λ) (m, n ∈ Z).

The periods of a nonconstant meromorphic function f form a discrete additive
subgroup of C. If f has two periods whose ratio is not real then, by the simple case
n = 2 of Proposition VIII.7, it has periods ω1, ω2 such that all periods are given by

mω1 + nω2 (m, n ∈ Z).

In the present case we can take ω1 = 2K (λ), ω2 = 2i K (1− λ) since, by construction,
2K (λ) is the least positive period.

Suppose next that λ ∈ R and either λ > 1 or λ < 0. Then, by (14) and (15), S(t, λ)
is again a doubly-periodic function with a real period and a pure imaginary period.

Suppose finally that λ ∈ C\R. Without loss of generality, we assume I λ > 0.
Then gλ(z) does not vanish in the upper half-plane H . It follows that there exists a
unique function hλ(z), holomorphic for z ∈ H with Rhλ(z) > 0 for z near 0, such
that

hλ(z)
2 = gλ(z). (22)

Moreover, we may extend the definition so that hλ(z) is continuous and (22) continues
to hold for z ∈H ∪ R.

We can write S(t) = ψ(t2), where

ψ(w) = w + a2w
2 + · · ·

is holomorphic at the origin. By inversion of series, there exists a function

φ(z) = z + b2z2 + · · · ,
which is holomorphic at the origin, such that ψ[φ(z)] = z. For z ∈H near 0, put
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u(z) = φ(z)1/2,
where the square root is chosen so that Ru(z) > 0. Then S[u(z)] = z. Differentiating
and then squaring, we obtain

S′[u(z)]u′(z) = 1, u′(z)2 = 1/gλ(z).

But u′(z) also has positive real part, since S′[u(z)] ∼ 2u(z) for z → 0. Consequently
u′(z) = 1/hλ(z). Since u(z)→ 0 as z → 0, we conclude that

u(z) =
∫ z

0
dζ/hλ(ζ ), (23)

where the path of integration is (say) a straight line segment. However, the function on
the right is holomorphic for all z ∈ H . Consequently, if we define u(z) by (23) then,
by analytic continuation, the relation S[u(z)] = z continues to hold for all z ∈ H .
Letting z → 1, we now obtain S(h) = 1 for h = K (λ), where

K (λ) :=
∫ 1

0
dx/gλ(x)

1/2

and the square root is chosen so that gλ(x)1/2 is continuous and has positive real part
for small x > 0 and actually, as we will see in a moment, for 0 < x < 1. Hence S(t)
has period 2K (λ). Furthermore, by (15), S(t) also has period 2i K (1− λ).

For 0 < x < 1 we have

1/gλ(x)
1/2 = (1− λ̄x)1/2/[4x(1− x)]1/2|1− λx |.

If λ = µ+ iv, where v > 0, then 1− λ̄x = γ + iδ, where γ = 1−µx and δ = vx > 0
for 0 < x < 1. Hence

(1− λ̄x)1/2 = α + iβ,

where

α = {γ + (γ 2 + δ2)1/2}1/2/√2, 2αβ = δ,
first for small x > 0 and then, by continuity, for 0 < x < 1. Thus α and β are positive
for 0 < x < 1. Consequently Rgλ(x)1/2 > 0 for 0 < x < 1 and

K (λ) = A + i B,

where A > 0, B > 0.
Similarly, for 0 < y < 1 we have

1/g1−λ(y)1/2 = (1− (1− λ̄)y)1/2/[4y(1− y)]1/2|1− (1− λ)y|
and 1− (1− λ̄)y = γ ′ − iδ′, where γ ′ = 1− (1−µ)y and δ′ = vy > 0 for 0 < y < 1.
Hence

(1− (1− λ̄)y)1/2 = α′ − iβ ′,
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where

α′ = {γ ′ + (γ ′2 + δ′2)1/2}1/2/√2, 2α′β ′ = δ′.
Thus α′ and β ′ are positive for 0 < y < 1, and

K (1− λ) = A′ − i B ′,

where A′ > 0, B ′ > 0.
We will now show that the period ratio i K (1−λ)/K (λ) is not real by showing that

the quotient K (1− λ)/K (λ) has positive real part. Since this is equivalent to showing
that

AA′ − B B ′ > 0,

it is sufficient to show that αα′ − ββ ′ > 0 for all x, y ∈ (0, 1). The inequality is cer-
tainly satisfied for all x, y near 0, since α→ 1, β → 0 as x → 0 and α′ → 1, β ′ → 0
as y → 0. Thus we need only show that we never have αα′ = ββ ′. But

2α2 = (γ 2 + δ2)1/2 + γ, 2β2 = (γ 2 + δ2)1/2 − γ,

with analogous expressions for 2α′2, 2β ′2. Hence, if αα′ = ββ ′, then by squaring we
obtain

[(γ 2 + δ2)1/2 + γ ][(γ ′2 + δ′2)1/2 + γ ′] = [(γ 2 + δ2)1/2 − γ ][(γ ′2 + δ′2)1/2 − γ ′],
which reduces to

γ (γ ′2 + δ′2)1/2 = −γ ′(γ 2 + δ2)1/2.

Squaring again, we obtain γ 2δ′2 = γ ′2δ2. Since the previous equation shows that γ
and γ ′ do not have the same sign, it follows that

γ δ′ + γ ′δ = 0.

Giving γ, δ, γ ′, δ′ their explicit expressions, this takes the form v(x + y − xy) = 0.
Hence x(1− y)+ y = 0, which is impossible if 0 < y < 1 and x > 0.

The relation S[u(z)] = z, where u(z) is defined by (23), shows that the elliptic
integral of the first kind is inverted by the elliptic function S(u). We may use this to
simplify other elliptic integrals. The change of variables x = S(u) replaces the integral∫

R(x) dx/gλ(x)
1/2

by
∫

R[S(u)]du. Following Jacobi, we take

E(u) :=
∫ u

0
[1− λS(v)]dv (24)
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as the standard elliptic integral of the second kind, and

Π(u, a) := (λ/2)
∫ u

0
S′(a)S(v)dv/[1− λS(a)S(v)] (25)

as the standard elliptic integral of the third kind.
Many properties of these functions may be obtained by integration from corre-

sponding properties of the function S(u). By way of example, we show that

E(u + a)− E(u − a)− 2E(a) = −λS′(a)S(u)/[1− λS(a)S(u)]. (26)

Indeed it is evident that both sides vanish when u = 0, and it follows from (12) that
they have the same derivative with respect to u. Integrating (26) with respect to u, we
further obtain

Π(u, a) = u E(a)− (1/2)
∫ u+a

u−a
E(v)dv. (27)

Thus the function Π(u, a), which depends on two variables (as well as the parame-
ter λ) can be expressed in terms of functions of only one variable. Furthermore, we
have the interchange property (due, in other notation, to Legendre)

Π(u, a)− u E(a) = Π(a, u)− a E(u). (28)

If we take u = 2K = 2K (λ), then S′(u) = 0 and henceΠ(a, u) = 0. Thus

Π(2K , a) = 2K E(a)− a E(2K ), (29)

which shows that the complete elliptic integral of the third kind can be expressed in
terms of complete and incomplete elliptic integrals of the first and second kinds.

In order to justify takingΠ(u, a) as the standard elliptic integral of the third kind,
we show finally that S(a) takes all complex values. Otherwise, if S(u) �= c for all
u ∈ C, then c �= 0 and

f (u) = S(u)/[S(u)− c]

is holomorphic in the whole complex plane. Furthermore, it is doubly-periodic with
two periodsω1, ω2 whose ratio is not real. Since it is bounded in the parallelogram with
vertices 0, ω1, ω2, ω1 + ω2, it follows that it is bounded in C. Hence, by Liouville’s
theorem, f is a constant. Since S is not constant and c �= 0, this is a contradiction.

4 Theta Functions

Theta functions arise not only in connection with elliptic functions (as we will see),
but also in problems of heat conduction, statistical mechanics and number theory.

Consider the bi-infinite series

∞∑
n=−∞

qn2
zn = 1+

∞∑
n=1

qn2
zn +

∞∑
n=1

qn2
z−n,
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where q, z ∈ C and z �= 0. Both series on the right converge if |q| < 1, both diverge
if |q| > 1, and at most one converges if |q| = 1. Thus we now assume |q| < 1.

A remarkable representation for the series on the left was given by Jacobi (1829),
in §64 of his Fundamenta Nova, and is now generally known as Jacobi’s triple product
formula:

Proposition 2 If |q| < 1 and z �= 0, then

∞∑
n=−∞

qn2
zn =

∞∏
n=1

(1+ q2n−1z)(1+ q2n−1z−1)(1− q2n). (30)

Proof Put

fN (z) =
N∏

n=1

(1+ q2n−1z)(1+ q2n−1z−1).

Then we can write

fN (z) = cN
0 + cN

1 (z + z−1)+ · · · + cN
N (z

N + z−N ). (31)

To determine the coefficients cN
n we use the functional relation

fN (q
2z) = (1+ q2N+1z)(1+ q−1z−1) fN (z)/(1+ qz)(1+ q2N−1z−1)

= (1+ q2N+1z) fN (z)/(qz + q2N ).

Multiplying both sides by qz + q2N and equating coefficients of zn+1 we get,
for n = 0, 1, . . . , N − 1,

q2n+1cN
n + q2N+2n+2cN

n+1 = cN
n+1 + q2N+1cN

n ,

i.e.,

q2n+1(1− q2N−2n)cN
n = (1− q2N+2n+2)cN

n+1.

But, since
∑N

n=1(2n−1) = N2, it follows from the definition of fN (z) that cN
N = q N2

.
Hence, for 0 ≤ n ≤ N ,

cN
n = (1− q2N+2n+2)(1− q2N+2n+4) · · · (1− q4N )qn2

/D,

where D = (1− q2)(1− q4) · · · (1− q2N−2n).
If |q| < 1 and z �= 0, then the infinite products

∞∏
n=1

(1+ q2n−1z),
∞∏

n=1

(1+ q2n−1z−1),

∞∏
n=1

(1− q2n)

are all convergent. From the convergence of the last it follows that, for each fixed n,

lim
N→∞ cN

n = qn2
/ ∞∏

k=1

(1− q2k).
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Moreover, there exists a constant A > 0, depending on q but not on n or N , such that

|cN
n | ≤ A|q|n2

.

For we can choose B > 0 so that |∏m
k=1(1 − q2k)| ≥ B for all m, we can choose

C > 0 so that |∏m
k=1(1− q2k)| ≤ C for all m, and we can then take A = C/B2. Since

the series
∑∞

n=−∞ qn2
zn is absolutely convergent, it follows that we can proceed to

the limit term by term in (31) to obtain (30). �

In the series
∑∞

n=−∞ qn2
zn we now put

q = eπ iτ , z = e2π iv ,

so that |q| < 1 corresponds to I τ > 0, and we define the theta function

θ(v; τ ) =
∞∑

n=−∞
eπ iτn2

e2π ivn.

The function θ(v; τ ) is holomorphic in v and τ for all v ∈ C and τ ∈ H (the upper

half-plane). Since initially we will be more interested in the dependence on v, with τ
just a parameter, we will often write θ(v) in place of θ(v; τ ). Furthermore, we will still
use q as an abbreviation for eπ iτ .

Evidently

θ(v + 1) = θ(v) = θ(−v).
Moreover,

θ(v + τ ) =
∞∑

n=−∞
qn2+2ne2π ivn

= q−1e−2π iv
∞∑

n=−∞
q(n+1)2e2π iv(n+1)

= e−π i(2v+τ )θ(v).

It may be immediately verified that

∂2θ/∂v2 = −4π2q∂θ/∂q = 4π i∂θ/∂τ,

which becomes the partial differential equation of heat conduction in one dimension
on putting τ = 4π i t .

By Proposition 2, we have also the product representation

θ(v) =
∞∏

n=1

(1+ q2n−1e2π iv )(1+ q2n−1e−2π iv )(1− q2n).

It follows that the points

v = 1/2+ τ/2+ m + nτ (m, n ∈ Z)

are simple zeros of θ(v), and that these are the only zeros.



520 XII Elliptic Functions

One important property of the theta function is almost already known to us:

Proposition 3 For all v ∈ C and τ ∈H ,

θ(v; −1/τ) = (τ/ i)1/2eπ iτv2
θ(τv; τ ), (32)

where the square root is chosen to have positive real part.

Proof Suppose first that τ = iy, where y > 0. We wish to show that

∞∑
n=−∞

e−n2π/ye2nπ iv = y1/2
∞∑

n=−∞
e−(v+n)2πy .

But this was already proved in Proposition IX.10.
Thus (32) holds when τ is pure imaginary. Since, with the stated choice of square

root, both sides of (32) are holomorphic functions for v ∈ C and τ ∈ H , the relation
continues to hold throughout this extended domain, by analytic continuation. �

Following Hermite (1858), for any integers α, β we now put

θα,β(v) = θα,β(v; τ ) =
∞∑

n=−∞
(−1)βneπ iτ (n+α/2)2e2π iv(n+α/2).

(The factor (−1)βn may be made less conspicuous by writing it as eπ iβn .) Since

θα+2,β(v) = (−1)βθα,β(v), θα,β+2(v) = θα,β(v),
there are only four essentially distinct functions, namely

θ00(v) =
∞∑

n=−∞
eπ iτn2

e2π ivn,

θ01(v) =
∞∑

n=−∞
(−1)neπ iτn2

e2π ivn,

θ10(v) =
∞∑

n=−∞
eπ iτ (n+1/2)2eπ iv(2n+1),

θ11(v) =
∞∑

n=−∞
(−1)neπ iτ (n+1/2)2eπ iv(2n+1).

(33)

Moreover,

θ00(v; τ ) = θ(v; τ ), θ01(v; τ ) = θ(v + 1/2; τ ),
θ10(v; τ ) = eπ i(v+τ/4)θ(v + τ/2; τ ), θ11(v; τ ) = eπ i(v+τ/4)θ(v + 1/2+ τ/2; τ ).

In fact, for all integers m, n,

θα,β(v + mτ/2+ n/2) = θα+m,β+n(v)e
−π i(mv+m2τ/4−αn/2). (34)
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Since the zeros of θ(v; τ ) are the points v = 1/2+ τ/2+mτ + n, the zeros of θα,β(v)
are the points

v = (β + 1)/2+ (α + 1)τ/2+ mτ + n (m, n ∈ Z).

The notation for theta functions is by no means standardized. Hermite’s notation
reflects the underlying symmetry, but for purposes of comparison we indicate its
connection with the more commonly used notation in Whittaker and Watson [29]:

θ00(v; τ ) = ϑ3(πv, q), θ01(v; τ ) = ϑ4(πv, q),

θ10(v; τ ) = ϑ2(πv, q), θ11(v; τ ) = iϑ1(πv, q).

It follows from the definitions that θ00(v; τ ), θ01(v; τ ) and θ10(v; τ ) are even func-
tions of v, whereas θ11(v; τ ) is an odd function of v. Moreover θ00(v; τ ) and θ01(v; τ )
are periodic with period 1 in v, but θ10(v; τ ) and θ11(v; τ ) change sign when v is
increased by 1.

All four theta functions satisfy the same partial differential equation as θ(v; τ ).
From the product expansion of θ(v; τ ) we obtain the product expansions

θ00(v) = Q0

∞∏
n=1

(1+ q2n−1e2π iv )(1+ q2n−1e−2π iv ),

θ01(v) = Q0

∞∏
n=1

(1− q2n−1e2π iv )(1− q2n−1e−2π iv ),

θ10(v) = 2Q0eπ iτ/4 cosπv
∞∏

n=1

(1+ q2ne2π iv )(1+ q2ne−2π iv ),

θ11(v) = 2i Q0eπ iτ/4 sinπv
∞∏

n=1

(1− q2ne2π iv )(1− q2ne−2π iv ),

(35)

where q = eπ iτ and

Q0 =
∞∏

n=1

(1− q2n).

In particular,

θ00(0) = Q0

∞∏
n=1

(1+ q2n−1)2,

θ01(0) = Q0

∞∏
n=1

(1− q2n−1)2,

θ10(0) = 2q1/4Q0

∞∏
n=1

(1+ q2n)2.
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By differentiating with respect to v and then putting v = 0, we obtain in addition
θ ′11(0) = 2π iq1/4Q3

0. But

Q0 =
∞∏

n=1

(1− qn)(1+ qn)

=
∞∏

n=1

(1− q2n)(1− q2n−1)(1+ q2n)(1+ q2n−1),

which implies

∞∏
n=1

(1− q2n−1)(1+ q2n)(1+ q2n−1) = 1.

It follows that

θ00(0)θ01(0)θ10(0) = 2q1/4Q3
0

and hence

θ ′11(0) = π iθ00(0)θ01(0)θ10(0). (36)

It is evident from their series definitions that, when q is replaced by −q , the func-
tions θ00 and θ01 are interchanged, whereas the functions q−1/4θ10 and q−1/4θ11 are
unaltered. Hence

θ00(v; τ + 1) = θ01(v; τ ), θ10(v; τ + 1) = eπ i/4θ10(v; τ ),
θ01(v; τ + 1) = θ00(v; τ ), θ11(v; τ + 1) = eπ i/4θ11(v; τ ).

(37)

From Proposition 3 we obtain also the transformation formulas

θ00(v; −1/τ) = (τ/ i)1/2eπ iτv2
θ00(τv; τ ),

θ10(v; −1/τ) = (τ/ i)1/2eπ iτv2
θ01(τv; τ ),

θ01(v; −1/τ) = (τ/ i)1/2eπ iτv2
θ10(τv; τ ),

θ11(v; −1/τ) = −i(τ/ i)1/2eπ iτv2
θ11(τv; τ ).

(38)

Up to this point we have used Hermite’s notation just to dress up old results in new
clothes. The next result breaks fresh ground.

Proposition 4 For all v,w ∈ C and τ ∈ H ,

θ00(v; τ )θ00(w; τ ) = θ00(v +w; 2τ )θ00(v −w; 2τ )+ θ10(v +w; 2τ )θ10(v −w; 2τ ),

θ10(v; τ )θ10(w; τ ) = θ10(v +w; 2τ )θ00(v −w; 2τ )+ θ00(v +w; 2τ )θ10(v −w; 2τ ),

θ00(v; τ )θ01(w; τ ) = θ01(v +w; 2τ )θ01(v −w; 2τ )+ θ11(v +w; 2τ )θ11(v −w; 2τ ),

θ01(v; τ )θ01(w; τ ) = θ00(v +w; 2τ )θ00(v −w; 2τ )− θ10(v +w; 2τ )θ10(v −w; 2τ ),

θ10(v; τ )θ11(w; τ ) = θ11(v +w; 2τ )θ01(v −w; 2τ )− θ01(v +w; 2τ )θ11(v −w; 2τ ),

θ11(v; τ )θ11(w; τ ) = θ10(v +w; 2τ )θ00(v −w; 2τ )− θ00(v +w; 2τ )θ10(v −w; 2τ ).
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Proof From the definition of θ00,

θ00(v; τ )θ00(w; τ ) =
∑
j,k

eπ iτ ( j 2+k2)e2π iv j e2π iwk =
∑

j+k even

+
∑

j+k odd

.

In the first sum on the right we can write j + k = 2m, j − k = 2n. Then j = m + n,
k = m − n and ∑

j+k even

=
∑

m,n∈Z

e2π iτ (m2+n2)e2π i(v+w)me2π i(v−w)n

= θ00(v + w; 2τ )θ00(v −w; 2τ ).

In the second sum we can write j+ k = 2m+1, j− k = 2n+1. Then j = m+n+1,
k = m − n and∑

j+k odd

=
∑

m,n∈Z

e2π iτ{(m+1/2)2+(n+1/2)2}e2π iv(m+n+1)e2π iw(m−n)

= θ10(v + w; 2τ )θ10(v −w; 2τ ).

Adding, we obtain the first relation of the proposition.
We obtain the second relation from the first by replacing v by v + τ/2 and w by

w+τ/2. The remaining relations are obtained from the first two by increasing v and/or
w by 1/2. �

By taking w = v in Proposition 4, and adding or subtracting pairs of equations
whose right sides differ only in one sign, we obtain the duplication formulas:

Proposition 5 For all v ∈ C and τ ∈H ,

θ00(2v; 2τ ) = [θ2
00(v; τ )+ θ2

01(v; τ )]/2θ00(0; 2τ )

= [θ2
10(v; τ )− θ2

11(v; τ )]/2θ10(0; 2τ ),

θ10(2v; 2τ ) = [θ2
00(v; τ )− θ2

01(v; τ )]/2θ10(0; 2τ )

= [θ2
10(v; τ )+ θ2

11(v; τ )]/2θ00(0; 2τ ),

θ01(2v; 2τ ) = θ00(v; τ )θ01(v; τ )/θ01(0; 2τ ),

θ11(2v; 2τ ) = θ10(v; τ )θ11(v; τ )/θ01(0; 2τ ).

From Proposition 4 we can also derive the following addition formulas:

Proposition 6 For all v,w ∈ C and τ ∈ H ,

θ2
01(0)θ01(v +w)θ01(v − w)
= θ2

01(v)θ
2
01(w)− θ2

11(v)θ
2
11(w) = θ2

00(v)θ
2
00(w)− θ2

10(v)θ
2
10(w),

θ00(0)θ01(0)θ00(v +w)θ01(v −w)
= θ00(v)θ01(v)θ00(w)θ01(w)+ θ10(v)θ11(v)θ10(w)θ11(w),

θ01(0)θ10(0)θ10(v +w)θ01(v −w)
= θ01(v)θ10(v)θ01(w)θ10(w)+ θ00(v)θ11(v)θ00(w)θ11(w),

θ00(0)θ10(0)θ11(v +w)θ01(v −w)
= θ01(v)θ11(v)θ00(w)θ10(w)+ θ00(v)θ10(v)θ01(w)θ11(w),

where all theta functions have the same second argument τ .
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Proof Consider the second relation. If we use the first and fourth relations of Propo-
sition 4 to evaluate the products θ00(v)θ00(w) and θ01(v)θ01(w), we obtain

θ00(v)θ01(v)θ00(w)θ01(w) = θ2
00(v +w; 2τ )θ2

00(v −w; 2τ )

− θ2
10(v +w; 2τ )θ2

10(v − w; 2τ ).

Similarly, if we use the second and sixth relations of Proposition 4 to evaluate the
products θ10(v)θ10(w) and θ11(v)θ11(w), we obtain

θ10(v)θ11(v)θ10(w)θ11(w) = θ2
10(v +w; 2τ )θ2

00(v −w; 2τ )

− θ2
00(v +w; 2τ )θ2

10(v − w; 2τ ).

Hence, in the second relation of the present proposition the right side is equal to

[θ2
00(v +w; 2τ )+ θ2

10(v +w; 2τ )][θ2
00(v −w; 2τ )− θ2

10(v −w; 2τ )].

On the other hand, if we use the first and fourth relations of Proposition 4 to evaluate
the products θ00(0)θ00(v+w) and θ01(0)θ01(v−w), we see that the left side is likewise
equal to

[θ2
00(v +w; 2τ )+ θ2

10(v +w; 2τ )][θ2
00(v −w; 2τ )− θ2

10(v −w; 2τ )].

This proves the second relation of the proposition, and the others may be proved
similarly. �

Corollary 7 For all v ∈ C and τ ∈H ,

θ2
00(0)θ

2
01(v)+ θ2

10(0)θ
2
11(v) = θ2

01(0)θ
2
00(v), (39)

θ2
10(0)θ

2
01(v)+ θ2

00(0)θ
2
11(v) = θ2

01(0)θ
2
10(v). (40)

Moreover, for all τ ∈H ,

θ4
00(0) = θ4

01(0)+ θ4
10(0). (41)

Proof We get (39) and (40) from the first relation of Proposition 6 by takingw = 1/2
and w = (1+ τ )/2 respectively. We obtain (41) from (39) by taking v = 1/2. �

If we regard (39) and (40) as a system of simultaneous linear equations for the
unknowns θ2

01(v), θ
2
11(v), then the determinant of this system is θ4

00(0) − θ4
10(0) =

θ4
01(0) �= 0. It follows that the square of any theta function may be expressed as a

linear combination of the squares of any other two theta functions.
By substituting for the theta functions their expansions as infinite products, the

formula (41) may be given the following remarkable form:

∞∏
n=1

(1+ q2n−1)8 =
∞∏

n=1

(1− q2n−1)8 + 16q
∞∏

n=1

(1+ q2n)8.
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Proposition 8 For all v ∈ C and τ ∈H ,

{θ00(v)/θ01(v)}′ = π iθ2
10(0)θ10(v)θ11(v)/θ

2
01(v), (42)

{θ10(v)/θ01(v)}′ = π iθ2
00(0)θ00(v)θ11(v)/θ

2
01(v), (43)

{θ11(v)/θ01(v)}′ = π iθ2
01(0)θ00(v)θ10(v)/θ

2
01(v), (44)

{θ ′01(v)/θ01(v)}′ = θ ′′01(0)/θ01(0)+ π2θ2
00(0)θ

2
10(0)θ

2
11(v)/θ

2
01(v). (45)

Proof By differentiating the second relation of Proposition 6 with respect to w and
then putting w = 0, we obtain

θ00(0)θ01(0)[θ
′
00(v)θ01(v)− θ00(v)θ

′
01(v)] = θ10(0)θ

′
11(0)θ10(v)θ11(v),

since not only θ11(0) = 0 but also θ ′00(0) = θ ′01(0) = θ ′10(0) = 0. Dividing by θ2
01(v)

and recalling the expression (36) for θ ′11(0), we obtain (42). Similarly, from the third
and fourth relations of Proposition 6 we obtain (43) and (44).

In the same way, if we differentiate the first relation of Proposition 6 twice with
respect to w and then put w = 0, we obtain

θ2
01(0)[θ

′′
01(v)θ01(v)− θ ′01(v)

2] = θ01(0)θ ′′01(0)θ
2
01(v)− θ ′11(0)

2θ2
11(v).

Hence, using (36) again, we obtain (45). �

We are now in a position to make the connection between theta functions and
elliptic functions.

5 Jacobian Elliptic Functions

The behaviour of the theta functions when their argument is increased by 1 or τ makes
it clear that doubly-periodic functions may be constructed from their quotients. We put

sn u = sn (u; τ ) := −iθ00(0)θ11(v)/θ10(0)θ01(v),

cn u = cn (u; τ ) := θ01(0)θ10(v)/θ10(0)θ01(v),

dn u = dn (u; τ ) := θ01(0)θ00(v)/θ00(0)θ01(v),

(46)

where u = πθ2
00(0)v.

The constant multiples are chosen so that, in addition to sn 0 = 0, we have
cn 0 = dn 0 = 1. The independent variable is scaled so that, by (42)–(44),

d(sn u)/du = cn u dn u,

d(cn u)/du = −sn u dn u,

d(dn u)/du = −λsn u cn u,

(47)

where
λ = λ(τ) := θ4

10(0; τ )/θ4
00(0; τ ). (48)

It follows at once from the definitions that sn u is an odd function of u, whereas
cn u and dn u are even functions of u. It follows from (41) that
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1− λ(τ) = θ4
01(0; τ )/θ4

00(0; τ ), (49)

and from (39)–(40) that

cn2u = 1− sn2u, dn2u = 1− λsn2u. (50)

Evidently (47) implies

d(sn2u)/du = 2sn u cn u dn u,

d2(sn2u)/du2 = 2(cn2u dn2u − sn2u dn2u − λsn2u cn2u).

If we write S(u) = S(u; τ ) := sn2u and use (50), we can rewrite this in the form

d2S/du2 = 2[(1− S)(1 − λS)− S(1 − λS)− λS(1− S)]

= 6λS2 − 4(1+ λ)S + 2.

Since S(0) = S′(0) = 0, we conclude that S(u) coincides with the function denoted
by the same symbol in §3. However, it should be noted that now λ is not given, but is
determined by τ . Thus the question arises: can we choose τ ∈ H (the upper half-
plane) so that λ(τ) is any prescribed complex number other than 0 or 1?

For many applications it is sufficient to know that we can choose τ ∈ H so that
λ(τ) is any prescribed real number between 0 and 1. Since this case is much simpler,
we will deal with it now and defer treatment of the general case until the next section.
We have

λ(τ) = 1− θ4
01(0; τ )/θ4

00(0; τ ) = 1−
∞∏

n=1

{(1− q2n−1)/(1+ q2n−1)}8,

where q = eπ iτ . If τ = iy, where y > 0, then 0 < q < 1. Moreover, as y increases
from 0 to ∞, q decreases from 1 to 0 and the infinite product increases from 0 to 1.
Thus λ(τ) decreases continuously from 1 to 0 and, for each w ∈ (0, 1), there is a
unique pure imaginary τ ∈H such that λ(τ) = w.

It should be mentioned that, also with our previous approach, S(u) could have
been recognized as the square of a meromorphic function by defining sn u, cn u, dn u
to be the solution, for given λ ∈ C, of the system of differential equations (47) which
satisfies the initial condition sn 0 = 0, cn 0 = dn 0 = 1.

Elliptic functions were first defined by Abel (1827) as the inverses of elliptic
integrals. His definitions were modified by Jacobi (1829) to accord with Legendre’s
normal form for elliptic integrals, and the functions sn u, cn u, dn u are generally
known as the Jacobian elliptic functions. The actual notation is due to Gudermann
(1838). The definition by means of theta functions was given later by Jacobi (1838) in
lectures.

Several properties of the Jacobian elliptic functions are easy consequences of the
later definition. In the first place, all three are meromorphic in the whole u-plane, since
the theta functions are everywhere holomorphic. Their poles are determined by the
zeros of θ01(v) and are all simple. Similarly, the zeros of sn u, cn u and dn u are
determined by the zeros of θ11(v), θ10(v) and θ00(v) respectively and are all simple. If
we put
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K = K(τ ) := πθ2
00(0; τ )/2, K′ = K′(τ ) := τK(τ )/ i, (51)

then we have

Poles o f sn u, cn u, dn u : u = 2mK+ (2n + 1)iK′ (m, n ∈ Z). (52)

Zeros of sn u : u = 2mK+ 2niK′,
cn u : u = (2m + 1)K+ 2niK′, (m, n ∈ Z) (53)

dn u : u = (2m + 1)K+ (2n + 1)iK′.

From the definitions (46) of the Jacobian elliptic functions and the behaviour of
the theta functions when v is increased by 1 or τ we further obtain

sn u = −sn (u + 2K) = sn (u + 2iK′),
cn u = −cn (u + 2K) = −cn (u + 2iK′),
dn u = dn (u + 2K) = −dn (u + 2iK′).

(54)

It follows that all three functions are doubly-periodic. In fact sn u has periods 4K and
2iK′, cn u has periods 4K and 2K+ 2iK′, and dn u has periods 2K and 4iK′. In each
case the ratio of the two periods is not real, since τ ∈H .

Since any period must equal a difference between two poles, it must have the form
2mK + 2niK′ for some m, n ∈ Z. Since 4K and 2iK′ are periods of sn u, but 2K
is not, and since any integral linear combination of periods is again a period, it fol-
lows that the periods of sn u are precisely the integral linear combinations of 4K and
2iK′. Similarly the periods of cn u are the integral linear combinations of 4K and
2K + 2iK′, and the periods of dn u are the integral linear combinations of 2K and
4iK′.

It was shown in §3 that, if 0 < λ < 1, then S(t, λ) has least positive period 2K (λ),
where

K (λ) =
∫ 1

0
dx/gλ(x)

1/2.

But, as we have seen, there is a unique pure imaginary τ ∈H such that λ = λ(τ), and
2K [λ(τ)] is then the least positive period of sn2(u; τ ). Since the periods of sn2(u; τ )
are 2mK + 2niK′(m, n ∈ Z), and since K,K′ are real and positive when τ is pure
imaginary, it follows that

K [λ(τ)] = K(τ ).

The domain of validity of this relation may be extended by appealing to results which
will be established in §6. In fact it holds, by analytic continuation, for all τ in the region
D illustrated in Figure 3, since λ(τ) ∈H for τ ∈ D .

From the definitions (46) of the Jacobian elliptic functions, the addition formulas
for the theta functions (Proposition 6) and the expression (48) for λ, we obtain addition
formulas for the Jacobian functions:

sn (u1 + u2) = (sn u1cn u2dn u2 + sn u2cn u1dn u1)/(1− λsn2u1sn2u2),

cn (u1 + u2) = (cn u1cn u2 − sn u1sn u2dn u1dn u2)/(1− λsn2u1sn2u2),

dn (u1 + u2) = (dn u1dn u2 − λsn u1sn u2cn u1cn u2)/(1− λsn2u1sn2u2).

(55)
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The addition formulas show that the evaluation of the Jacobian elliptic functions for
arbitrary complex argument may be reduced to their evaluation for real and pure imag-
inary arguments.

The usual addition formulas for the sine and cosine functions may be regarded as
limiting cases of (55). For if τ = iy and y → ∞, the product expansions (35) show
that

θ00(v)→ 1, θ01(v)→ 1,

θ10(v) ∼ 2eπ iτ/4 cosπv, θ11(v) ∼ 2ieπ iτ/4 sinπv,

and hence

λ→ 0, u → πv,

sn u → sin u, cn u → cos u, dn u → 1.

The definitions (46) of the Jacobian elliptic functions and the transformation
formulas (37)–(38) for the theta functions imply also transformation formulas for the
Jacobian functions:

Proposition 9 For all u ∈ C and τ ∈H ,

sn (u; τ + 1) = (1− λ(τ))1/2sn (u′; τ )/dn (u′; τ ),
cn (u; τ + 1) = cn (u′; τ )/dn (u′; τ ),
dn (u; τ + 1) = 1/dn (u′; τ ),

where

u′ = u/(1− λ(τ))1/2

and

(1− λ(τ))1/2 = θ2
01(0; τ )/θ2

00(0; τ ).
Furthermore,

λ(τ + 1) = λ(τ)/[λ(τ)− 1],

K(τ + 1) = (1− λ(τ))1/2K(τ ).

Proof With v = u/πθ2
00(0; τ + 1) we have, by (37),

dn (u; τ + 1) = θ00(0; τ )θ01(v; τ )/θ01(0; τ )θ00(v; τ ) = 1/dn (u′; τ ),
where

u′ = πθ2
00(0; τ )v = θ2

00(0; τ )u/θ2
01(0; τ ) = u/(1− λ(τ))1/2.

Similarly, from (37) and (48)-(49), we obtain

λ(τ + 1) = −θ4
10(0; τ )/θ4

01(0; τ ) = λ(τ)/[λ(τ)− 1].

The other relations are established in the same way. �
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Proposition 10 For all u ∈ C and τ ∈ H ,

sn (u; −1/τ) = −isn (iu; τ )/cn (iu; τ ),
cn (u; −1/τ) = 1/cn(iu; τ ),
dn (u; −1/τ) = dn(iu; τ )/cn(iu; τ ),

Furthermore,

λ(−1/τ) = 1− λ(τ),
K(−1/τ) = K′(τ ).

Proof With v = u/πθ2
00(0; −1/τ) we have, by (38),

sn (u; −1/τ) = −iθ00(0; −1/τ)θ11(v; −1/τ)/θ10(0; −1/τ)θ01(v; −1/τ)

= −θ00(0; τ )θ11(τv; τ )/θ01(0; τ )θ10(τv; τ ).
On the other hand, with v ′ = iu/πθ2

00(0; τ ) we have

sn (iu; τ )/cn (iu; τ ) = −iθ00(0; τ )θ11(v
′; τ )/θ01(0; τ )θ10(v

′; τ ).
Since τv = v ′, by comparing these two relations we obtain the first assertion of the
proposition.

The next two assertions may be obtained in the same way. The final two assertions
follow from (38), together with (48), (49) and (51). �

It follows from Proposition 10 that the evaluation of the Jacobian elliptic functions
for pure imaginary argument and parameter τ may be reduced to their evaluation for
real argument and parameter −1/τ .

From the definition (46) of the Jacobian elliptic functions and the duplication for-
mulas for the theta functions we can also obtain formulas for the Jacobian functions
when the parameter τ is doubled (‘Landen’s transformation’):

Proposition 11 For all u ∈ C and τ ∈ H ,

sn (u′′; 2τ ) = [1+ (1− λ(τ))1/2]sn (u; τ )cn (u; τ )/dn (u; τ ),
cn (u′′; 2τ ) = {1− [1+ (1− λ(τ))1/2]sn2(u; τ )}/dn (u; τ ),
dn (u′′; 2τ ) = {1− [1− (1− λ(τ))1/2]sn2(u; τ )}/dn (u; τ ),

where u′′ = [1+ (1− λ(τ))1/2]u and (1− λ(τ))1/2 = θ2
01(0; τ )/θ2

00(0; τ ).
Furthermore,

λ(2τ ) = λ2(τ )/[1+ (1− λ(τ))1/2]4,

K(2τ ) = [1+ (1− λ(τ))1/2]K(τ )/2.

Proof If u = πθ2
00(0; τ )v and u′′ = πθ2

00(0; 2τ )2v then, by Proposition 5,

u′′ = 2θ2
00(0; 2τ )u/θ2

00(0; τ )
= [θ2

00(0; τ )+ θ2
01(0; τ )]u/θ2

00(0; τ ).



530 XII Elliptic Functions

Hence, by (49),

u′′ = [1+ (1− λ(τ))1/2]u.

By Proposition 5 also,

sn (u′′; 2τ ) = −iθ00(0; 2τ )θ10(v; τ )θ11(v; τ )/θ10(0; 2τ )θ00(v; τ )θ01(v; τ ).
On the other hand,

sn (u; τ )cn (u; τ )/dn (u; τ ) = −iθ2
00(0; τ )θ10(v; τ )θ11(v; τ )/D,

where D = θ2
10(0; τ )θ00(v; τ )θ01(v; τ ).

Since 2θ00(0; 2τ )θ10(0; 2τ ) = θ2
10(0; τ ), it follows that

sn (u′′; 2τ ) = 2θ2
00(0; 2τ ) sn (u; τ ) cn (u; τ )/θ2

00(0; τ ) dn (u; τ ).
Since 2θ2

00(0; 2τ )/θ2
00(0; τ ) = u′′/u, this proves the first assertion of the proposition.

The remaining assertions may be proved similarly. �

We show finally how the standard elliptic integrals of the second and third kinds,
defined by (24) and (25), may be expressed in terms of theta functions. If we put

Θ(u) = θ01(v), (56)

where u = πθ2
00(0)v, then since

λS(u) = λsn2u = −θ2
10(0)θ

2
11(v)/θ

2
00(0)θ

2
01(v),

we can rewrite (45) in the form

d{Θ ′(u)/Θ(u)}/du = −α + 1− λS(u),

where α is independent of u and the prime on the left denotes differentiation with
respect to u. Since Θ ′(0) = 0, by integrating we obtain

E(u) = Θ ′(u)/Θ(u)+ αu.

To determine α we take u = K. Since θ ′01(1/2) = θ ′00(1) = θ ′00(0) = 0, we obtain
α = E/K, where

E = E(K) =
∫ K

0
{1− λS(u)} du =

∫ 1

0
(1− λx) dx/gλ(x)

1/2

is a complete elliptic integral of the second kind. Thus

E(u) = Θ ′(u)/Θ(u)+ uE/K. (57)

Substituting this expression for E(u) in (27), we further obtain

Π(u, a) = uΘ ′(a)/Θ(a)+ (1/2) log{Θ(u − a)/Θ(u + a)}. (58)
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6 The Modular Function

The function

λ(τ) := θ4
10(0; τ )/θ4

00(0; τ ),
which was introduced in §5, is known as the modular function. In this section we study
its remarkable properties. (The term ‘modular function’, without the definite article, is
also used in a more general sense, which we do not consider here.)

The modular function is holomorphic in the upper half-plane H . Furthermore, we
have

Proposition 12 For any τ ∈ H ,

λ(τ + 1) = λ(τ)/[λ(τ)− 1],

λ(−1/τ) = 1− λ(τ),
λ(−1/(τ + 1)) = 1/[1− λ(τ)],
λ((τ − 1)/τ ) = [λ(τ)− 1]/λ(τ),

λ(τ/(τ + 1)) = 1/λ(τ).

Proof The first two relations have already been established in Propositions 9 and 10.
If, as in §1, we put

Uλ = 1− λ, Vλ = 1/(1− λ),
and if we also put T τ = τ + 1, Sτ = −1/τ , then they may be written in the
form

λ(T τ ) = U Vλ(τ), λ(Sτ ) = Uλ(τ).

It follows that

λ(−1/(τ + 1)) = λ(ST τ ) = Uλ(T τ ) = U2Vλ(τ) = Vλ(τ) = 1/[1− λ(τ)].
Similarly,

λ((τ − 1)/τ ) = λ(T Sτ ) = V 2λ(τ) = [λ(τ)− 1]/λ(τ),

λ(τ/(τ + 1)) = λ(T ST τ ) = U V 2λ(τ) = 1/λ(τ). �

As we saw in Proposition IV.12, together the transformations Sτ = −1/τ and
T τ = τ + 1 generate the modular group Γ , consisting of all linear fractional transfor-
mations

τ ′ = (aτ + b)/(cτ + d),

where a, b, c, d ∈ Z and ad−bc = 1. Consequently we can deduce the effect on λ(τ)
of any modular transformation on τ . However, Proposition 12 contains the only cases
which we require.

We will now study in some detail the behaviour of the modular function in the
upper half-plane. We first observe that we need only consider the behaviour of λ(τ)
in the right half of H . For, from the definitions of the theta functions as infinite
series,

θ00(0; τ ) = θ00(0; −τ̄ ), θ01(0; τ ) = θ01(0; −τ̄ ),
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where the bar denotes complex conjugation, and hence

λ(−τ̄ ) = λ(τ). (59)

We next note that, by taking τ = i in the relation λ(−1/τ) = 1 − λ(τ), we
obtain λ(i) = 1/2. We have already seen in §5 that λ(τ) is real on the imaginary
axis τ = iy (y > 0), and decreases from 1 to 0 as y increases from 0 to ∞.
Since λ(τ + 1) = λ(τ)/[λ(τ) − 1], it follows that λ(τ) is real also on the half-line
τ = 1 + iy (y > 0), and increases from −∞ to 0 as y increases from 0 to ∞. More-
over, λ(1+ i) = −1.

The linear fractional map τ = (τ ′ − 1)/τ ′ maps the half-line Rτ ′ = 1,I τ ′ > 0
onto the semi-circle |τ − 1/2| = 1/2,I τ > 0, and τ ′ = 1 + i is mapped to
τ = (1+ i)/2. Since

λ((τ ′ − 1)/τ ′) = [λ(τ ′)− 1]/λ(τ ′),

it follows from what we have just proved that, as τ traverses this semi-circle from
0 to 1, λ(τ) is real and increases from 1 to∞. Moreover, λ((1 + i)/2) = 2.

If Rτ = 1/2, then τ̄ = 1− τ and hence, by (59),

λ(τ) = λ(τ − 1) = λ(τ)/[λ(τ)− 1],

which implies

|λ(τ)− 1|2 = 1.

Thus w = λ(τ) maps the half-line Rτ = 1/2, I τ > 0 into the circle |w − 1| = 1.
Furthermore, the map is injective. For if λ(τ1) = λ(τ2), then λ(2τ1) = λ(2τ2), by
Proposition 11, and the map is injective on the half-line Rτ = 1, I τ > 0. If
τ = 1/2+ iy, where y →+∞, then

θ00(0; τ )→ 1, θ10(0; τ ) ∼ 2eπ iτ/4

and hence

λ(τ) ∼ 16ie−πy.

In particular, λ(τ) ∈ H and λ(τ) → 0. Since λ((1 + i)/2) = 2, it follows that
w = λ(τ) maps the half-line τ = 1/2+ iy (y > 1/2) bijectively onto the semi-circle
|w − 1| = 1, Iw > 0.

If |τ | = 1, I τ > 0 and τ ′ = τ/(1 + τ ), then Rτ ′ = 1/2, I τ ′ > 0 and
λ(τ ′) = 1/λ(τ). Consequently, by what we have just proved, w = λ(τ) maps
the semi-circle |τ | = 1, I τ > 0 bijectively onto the half-line Rw = 1/2,
Iw > 0.

The point eπ i/3 = (1 + i
√

3)/2 is in H and lies on both the line Rτ = 1/2 and
the circle |τ | = 1. Hence λ(eπ i/3) lies on both the semi-circle |w − 1| = 1, Iw > 0
and the line Rw = 1/2, which implies that

λ(eπ i/3) = eπ i/3.
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0 11/2 0 1 21/2
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'

Fig. 2. w = λ(τ) maps T onto T ′.

Again, since λ(τ − 1) = λ(τ)/[λ(τ) − 1], w = λ(τ) maps the semi-circle
|τ − 1| = 1, I τ > 0 bijectively onto the semi-circle |w| = 1, Iw > 0.

In particular, we have the behaviour illustrated in Figure 2: w = λ(τ) maps the
boundary of the (non-Euclidean) ‘triangle’ T with vertices A = 0, B = (1 + i)/2,
C = eπ i/3 bijectively onto the boundary of the ‘triangle’ T ′ with vertices A′ = 1,
B ′ = 2, C ′ = eπ i/3. We are going to deduce from this that the region inside T is
mapped bijectively onto the region inside T ′. The reasoning here does not depend on
special properties of the function or the domain, but is quite general (the ‘principle
of the argument’). To emphasize this, we will temporarily denote the independent
variable by z, instead of τ .

Choose any w0 ∈ C which is either inside or outside the ‘triangle’ T ′, and let
∆ denote the change in the argument of w − w0 as w traverses T ′ in the direction
A′B ′C ′. Thus∆ = 2π or 0 according as w0 is inside or outside T ′. But ∆ is also the
change in the argument of λ(z) − w0 as z traverses T in the direction ABC . Since
λ(z) is a nonconstant holomorphic function, the number of times that it assumes the
value w0 inside T is either zero or a positive integer p.

Suppose the latter, and let z = ζ1, . . . , ζp be the points inside T for which
λ(z) = w0. In the neighbourhood of ζ j we have, for some positive integer m j and
some a0 j �= 0,

λ(z)−w0 = a0 j (z − ζ j )
m j + a1 j (z − ζ j )

m j+1 + · · ·
and

λ′(z) = m j a0 j (z − ζ j )
m j−1 + (m j + 1)a1 j (z − ζ j )

m j + · · · .
Hence

λ′(z)/[λ(z)− w0] = m j/(z − ζ j )+ f j (z),

where f j (z) is holomorphic at ζ j . Consequently

f (z) := λ′(z)/[λ(z)−w0]−
p∑

j=1

m j/(z − ζ j )
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is holomorphic at every point z inside T . Hence, by Cauchy’s theorem,∫
T

f (z) dz = 0.

But, since log λ(z) = log |λ(z)| + i argλ(z),∫
T
λ′(z) dz/[λ(z)−w0] = i∆.

Similarly, since ζ j is inside T ,∫
T

dz/(z − ζ j ) = 2π i.

It follows that

∆ = 2π
p∑

j=1

m j .

If w0 is outside T ′, then ∆ = 0 and we have a contradiction. Hence λ(z) is never
outside T ′ if z is inside T . If w0 is inside T ′, then ∆ = 2π . Hence λ(z) assumes
each value inside T ′ at exactly one point z inside T , and at this point λ′(z) �= 0.

Finally, if λ(z) assumed a value w0 on T ′ at a point z0 inside T , then it would
assume all values near w0 in the neighbourhood of z0. In particular, it would assume
values outside T ′, which we have shown to be impossible. It follows that w = λ(z)
maps the region inside T bijectively onto the region inside T ′, and λ′(z) �= 0 for all
z inside T .

We must also have λ′(z) �= 0 for all z �= 0 on T . Otherwise, if λ(z0) = w0 and
λ′(z0) = 0 for some z0 ∈ T ∩H then, for some m > 1 and c �= 0,

λ(z)− w0 ∼ c(z − z0)
m as z → z0.

But this implies that λ(z) takes values outside T ′ for some z near z0 inside T .
By putting together the preceding results we see that w = λ(τ) maps the domain

D = {τ ∈H : 0 < Rτ < 1, |τ − 1/2| > 1/2}
bijectively onto the upper half-plane H , with the subdomain k of D mapped onto the
subdomain k ′ of H (k = 1, . . . , 6), as illustrated in Figure 3. Moreover, the boundary
in H of D is mapped bijectively onto the real axis, with the points 0 and 1 omitted.

If we denote by D̄ the closure of D in H and by D∗ the reflection of D in the
imaginary axis, then it follows from (59) that w = λ(τ) maps the region

D̄ ∪D∗ = {τ ∈ H : 0 ≤ Rτ ≤ 1, |τ − 1/2| ≥ 1/2}
∪ {τ ∈H : − 1 < Rτ < 0, |τ + 1/2| > 1/2}

bijectively onto the whole complex plane C, with the points 0 and 1 omitted. This
answers the question raised in §5.
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There remains the practical problem, for a given w ∈ C, of determining τ ∈ H
such that λ(τ) = w. If 0 < w < 1, we can calculate τ by the AGM algorithm, using
the formula (4), since τ = i K (1−w)/K (w). For complex w we can use an extension
of the AGM algorithm, or proceed in the following way.

Since

(1− λ(τ))1/4 = θ01(0; τ )/θ00(0; τ )
and

θ00(0; τ ) = 1+ 2
∞∑

n=1

qn2
, θ01(0; τ ) = 1+ 2

∞∑
n=1

(−1)nqn2
,

we have

[1− (1− λ(τ))1/4]/[1+ (1− λ(τ))1/4]

= [θ00(0; τ )− θ01(0; τ )]/[θ00(0; τ )+ θ01(0; τ )]
= 2(q + q9 + q25 + · · · )/(1+ 2q4 + 2q16 + · · · ).

Thus if we put

� := [1− (1−w)1/4]/[1+ (1−w)1/4],

we have to solve for q the equation

�/2 = (q + q9 + q25 + · · · )/(1+ 2q4 + 2q16 + · · · ).
Expanding the right side as a power series in q and inverting the relationship, we obtain

q = �/2+ 2(�/2)5 + 15(�/2)9 + 150(�/2)13 + O(�/2)17.

To ensure rapid convergence we may suppose that, in Figure 3, w is situated in
the region 5′ or on its boundary, since the general case may be reduced to this by a
linear fractional transformation. It is not difficult to show that in this region |�| takes
its maximum value when w = eπ i/3, and then

0 11/2 0 1 21/2

τ-plane w-plane

–1

5 4

36
21

3' 2'

1'4'
5' 6'

Fig. 3. w = λ(τ) maps D onto H .
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� = (1− e−π i/12)/(1+ e−π i/12) = i tanπ/24.

Thus |�| ≤ tanπ/24 < 2/15 and |�/2|4 < 2× 10−5. Since I τ ≥ √3/2 for τ in the
region 5, for the solution q we have

|q| ≤ e−π
√

3/2 < 1/15.

Having determined q , we may calculate K(τ ), sn u, . . . from their representations by
theta functions.

7 Further Remarks

Numerous references to the older literature on elliptic integrals and elliptic functions
are given by Fricke [12]. The more important original contributions are readily avail-
able in Euler [10], Lagrange [21], Legendre [22], Gauss [13], Abel [1] and Jacobi [16],
which includes his lecture course of 1838.

It was shown by Landen (1775) that the length of arc of a hyperbola could be ex-
pressed as the difference of the lengths of two elliptic arcs. The change of variables
involved is equivalent to that used by Lagrange (1784/5) in his application of the AGM
algorithm. However, Lagrange used the transformation in much greater generality,
and it was his idea that elliptic integrals could be calculated numerically by iterat-
ing the transformation. The connection with the result of Landen was made explicit by
Legendre (1786).

By bringing together his own results and those of others the treatise of
Legendre [22], and his earlier Exercices de calcul integral (1811/19), contributed sub-
stantially to the discoveries of Abel and Jacobi. The supplementary third volume of his
treatise, published in 1828 when he was 76, contains the first account of their work in
book form.

The most important contribution of Abel (1827) was not the replacement of ellip-
tic integrals by elliptic functions, but the study of the latter in the complex domain.
In this way he established their double periodicity, determined their zeros and poles
and (besides much else) showed that they could be represented as quotients of infinite
products.

The triple product formula of Jacobi (1829) identified these infinite products with
infinite series, whose rapid convergence made them well suited for numerical compu-
tation. Infinite series of this type had in fact already appeared in the Théorie analy-
tique de la Chaleur of Fourier (1822), and Proposition 3 had essentially been proved
by Poisson (1827). Remarkable generalizations of the Jacobi triple product formula
to affine Lie algebras have recently been obtained by Macdonald [23] and Kac and
Peterson [17]. For an introductory account, see Neher [24].

It is difficult to understand the glee with which some authors attribute to Gauss
results on elliptic functions, since the world owes its knowledge of these results not to
him, but to others. Gauss’s work was undoubtedly independent and in most cases ear-
lier, although not in the case of the arithmetic-geometric mean. The remark, in §335 of
his Disquisitiones Arithmeticae (1801), that his results on the division of the circle into
n equal parts applied also to the lemniscate, was one of the motivations for Abel, who
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carried out this extension. (For a modern account, see Rosen [25].) However, Gauss’s
claim in a letter to Schumacher of 30 May 1828, quoted in Krazer [20], that Abel had
anticipated about a third of his own research is quite unjustified, and not only because
of his inability to bring his work to a form in which it could be presented to the world.

It was proved by Liouville (1834) that elliptic integrals of the first and second
kinds are always ‘nonelementary’. For an introductory account of Liouville’s theory,
see Kasper [18]. (But elliptic integrals of the third kind may be ‘elementary’; see
Chapter IV, §7.)

The three kinds of elliptic integral may also be characterized function-theoretically.
On the Riemann surface of the algebraic function w2 = g(z), where g is a cubic
without repeated roots, the differential dz/w is everywhere holomorphic, the differen-
tial zdz/w is holomorphic except for a double pole at ∞ with zero residue, and the
differential [w(z)+w(a)]dz/2(z−a)w(z) is holomorphic except for two simple poles
at a and∞ with residues 1 and −1 respectively.

Many integrals which are not visibly elliptic may be reduced to elliptic integrals by
a change of variables. A compilation is given by Byrd and Friedman [8], pp. 254–271.

The arithmetic-geometric mean may also be defined for pairs of complex numbers;
a thorough discussion is given by Cox [9]. For the application of the AGM algorithm
to integrals which are not strictly elliptic, see Bartky [4].

The differential equation (6) is a special case of the hypergeometric differential
equation. In fact, if |λ| < 1, then by expanding (1− λx)−1/2, resp. (1− λx)1/2, by the
binomial theorem and integrating term by term, the complete elliptic integrals

K (λ) =
∫ 1

0
[4x(1− x)(1− λx)]−1/2dx, E(λ) =

∫ 1

0
[(1− λx)/4x(1− x)]1/2dx,

may be identified with the hypergeometric functions

(π/2)F(1/2, 1/2; 1; λ), (π/2)F(−1/2, 1/2; 1; λ),
where

F(α, β; γ ; z) = 1+ αβz/1 · γ + α(α + 1)β(β + 1)z2/1 · 2 · γ (γ + 1)+ · · · .
Many transformation formulas for the complete elliptic integrals may be regarded as
special cases of more general transformation formulas for the hypergeometric function.

The proof in §3 that K (1− λ)/K (λ) has positive real part is due to Falk [11].
It follows from (12)–(13) by induction that S(nu) and S′(nu)/S′(u) are rational

functions of S(u) for every integer n. The elliptic function S(u) is said to admit com-
plex multiplication if S(µu) is a rational function of S(u) for some complex number
µ which is not an integer. It may be shown that S(u) admits complex multiplication if
and only if λ �= 0, 1 and the period ratio i K (1 − λ)/K (λ) is a quadratic irrational, in
the sense of Chapter IV. This condition is obviously satisfied if λ = 1/2, the case of
the lemniscate.

A function f (u) is said to possess an algebraic addition theorem if there is a poly-
nomial p(x, y, z), not identically zero and with coefficients independent of u, v, such
that

p( f (u + v), f (u), f (v)) = 0 for all u, v.
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It may be shown that a function f , which is meromorphic in the whole complex plane,
has an algebraic addition theorem if and only if it is either a rational function or,
when the independent variable is scaled by a constant factor, a rational function of
S(u, λ) and its derivative S′(u, λ) for some λ ∈ C. This result (in different notation)
is due to Weierstrass and is proved in Akhiezer [3], for example. A generalization of
Weierstrass’ theorem, due to Myrberg, is proved in Belavin and Drinfeld [6].

The term ‘elliptic function’ is often used to denote any function which is meromor-
phic in the whole complex plane and has two periods whose ratio is not real. It may
be shown that, if the independent variable is scaled by a constant factor, an elliptic
function in this general sense is a rational function of S(u, λ) and S′(u, λ) for some
λ �= 0, 1.

The functions f (v) which are holomorphic in the whole complex plane C and
satisfy the functional equations

f (v + 1) = f (v), f (v + τ ) = e−nπ i(2v+τ ) f (v),

where n ∈ N and τ ∈ H , form an n-dimensional complex vector space. It was shown
by Hermite (1862) that this may be used to derive many relations between theta func-
tions, such as Proposition 6.

Proposition 11 can be extended to give transformation formulas for the Jacobian
functions when the parameter τ is multiplied by any positive integer n. See, for exam-
ple, Tannery and Molk [27], vol. II.

The modular function was used by Picard (1879) to prove that a function f (z),
which is holomorphic for all z ∈ C and not a constant, assumes every complex value
except perhaps one. The exponential function exp z, which does not assume the value
0, illustrates that an exceptional value may exist. A careful proof of Picard’s theorem
is given in Ahlfors [2]. (There are also proofs which do not use the modular function.)

It was already observed by Lagrange (1813) that there is a correspondence between
addition formulas for elliptic functions and the formulas of spherical trigonometry.
This correspondence has been most intensively investigated by Study [26].

There is an n-dimensional generalization of theta functions, which has a useful ap-
plication to the lattices studied in Chapter VIII. The theta function of an integral lattice
Λ in Rn is defined by

θΛ(τ) =
∑
u∈Λ

q(u,u) = 1+
∑
m≥1

Nmqm,

where q = eπ iτ and Nm is the number of vectors in Λ with square-norm m. If n = 1
andΛ = Z, then

θZ(τ ) = 1+ 2q + 2q4 + 2q9 + · · · = θ(0; τ ).
It is easily seen that θΛ(τ) is a holomorphic function of τ in the half-plane I τ > 0.
It follows from Poisson’s summation formula that the theta function of the dual lattice
Λ∗ is given by

θΛ∗(τ ) = d(Λ)(i/τ)n/2θΛ(−1/τ) for I τ > 0.
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Many geometrical properties of a lattice are reflected in its theta function. However, a
lattice is not uniquely determined by its theta function, since there are lattices in R4

(and in higher dimensions) which are not isometric but have the same theta function.
For applications of elliptic functions and theta functions to classical mechanics,

conformal mapping, geometry, theoretical chemistry, statistical mechanics and approxi-
mation theory, see Halphen [15] (vol. 2), Kober [19], Bos et al. [7], Glasser and
Zucker [14], Baxter [5] and Todd [28]. Applications to number theory will be
considered in the next chapter.
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[15] G.H. Halphen, Traité des fonctions elliptiques et de leurs applications, 3 vols.,

Gauthier-Villars, Paris, 1886–1891.
[16] C.G.J. Jacobi, Gesammelte Werke, Band I (ed. C.W. Borchardt), Berlin, 1881. [Reprinted

Chelsea, New York, 1969]
[17] V.G. Kac and D.H. Peterson, Infinite-dimensional Lie algebras, theta functions and

modular forms, Adv. in Math. 53 (1984), 125–264.
[18] T. Kasper, Integration in finite terms: the Liouville theory, Math. Mag. 53 (1980), 195–201.
[19] H. Kober, Dictionary of conformal representations, Dover, New York, 1952.
[20] A. Krazer, Zur Geschichte des Umkehrproblems der Integral, Jahresber. Deutsch.

Math.-Verein. 18 (1909), 44–75.
[21] J.L. Lagrange, Oeuvres, t. 2 (ed. J.-A. Serret), Gauthier-Villars, Paris, 1868. [Reprinted

G. Olms, Hildesheim, 1973]
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XIII

Connections with Number Theory

1 Sums of Squares

In Proposition II.40 we proved Lagrange’s theorem that every positive integer can
be represented as a sum of 4 squares. Jacobi (1829), at the end of his Fundamenta
Nova, gave a completely different proof of this theorem with the aid of theta functions.
Moreover, his proof provided a formula for the number of different representations.
Hurwitz (1896), by developing further the arithmetic of quaternions which was used
in Chapter II, also derived this formula. Here we give Jacobi’s argument preference
since, although it is less elementary, it is more powerful.

Proposition 1 The number of representations of a positive integer m as a sum of
4 squares of integers is equal to 8 times the sum of those positive divisors of m which
are not divisible by 4.

Proof From the series expansion

θ00(0) =
∑
n∈Z

qn2

we obtain

θ4
00(0) =

∑
n1,...,n4∈Z

qn2
1+···+n2

4 = 1+
∑
m≥1

r4(m)q
m,

where r4(m) is the number of solutions in integers n1, . . . , n4 of the equation

n2
1 + · · · + n2

4 = m.

We will prove the result by comparing this with another expression for θ4
00(0).

We can write equation (43) of Chapter XII in the form

θ ′10(v)/θ10(v)− θ ′01(v)/θ01(v) = π iθ2
00(0)θ00(v)θ11(v)/θ01(v)θ10(v).

Differentiating with respect to v and then putting v = 0, we obtain

θ ′′10(0)/θ10(0)− θ ′′01(0)/θ01(0) = π iθ3
00(0)θ

′
11(0)/θ01(0)θ10(0) = −π2θ4

00(0),

W.A. Coppel, Number Theory: An Introduction to Mathematics, Universitext, 
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by (36) of Chapter XII. Since the theta functions are all solutions of the partial differ-
ential equation

∂2 y/∂v2 = −4π2q∂y/∂q,

the last relation can be written in the form

4q∂/∂q log{θ10(0)/θ01(0)} = θ4
00(0).

On the other hand, the product expansions of the theta functions show that

θ10(0)/θ01(0) = 2q1/4
∏
n≥1

(1+ q2n)2
/∏

n≥1

(1− q2n−1)2

= 2q1/4
∏
n≥1

(1− q4n)2
/∏

n≥1

(1− q2n)2(1− q2n−1)2

= 2q1/4
∏
n≥1

(1− q4n)2(1− qn)−2.

Differentiating logarithmically, we obtain

θ4
00(0) = 4q∂/∂q log{θ10(0)/θ01(0)}

= 1+ 8
∑
n≥1

nqn/(1− qn)− 8
∑
n≥1

4nq4n/(1− q4n)

= 1+ 8
∑
n≥1

∑
k≥1

(nqkn − 4nq4kn)

= 1+ 8
∑
m≥1

{σ(m)− σ ′(m)}qm,

where σ(m) is the sum of all positive divisors of m and σ ′(m) is the sum of all pos-
itive divisors of m which are divisible by 4. Since the coefficients in a power series
expansion are uniquely determined, it follows that

r4(m) = 8{σ(m)− σ ′(m)}. �

Proposition 1 may also be restated in the form: the number of representations of m
as a sum of 4 squares is equal to 8 times the sum of the odd positive divisors of m if m
is odd, and 24 times this sum if m is even. For example,

r4(10) = 24(1+ 5) = 144.

Since any positive integer has the odd positive divisor 1, Proposition 1 provides a new
proof of Proposition II.40.

The number of representations of a positive integer as a sum of 2 squares may be
treated in the same way, as Jacobi also showed (or, alternatively, by developing further
the arithmetic of Gaussian integers):



1 Sums of Squares 543

Proposition 2 The number of representations of a positive integer m as a sum of
2 squares of integers is equal to 4 times the excess of the number of positive divisors
of m of the form 4h + 1 over the number of positive divisors of the form 4h + 3.

Proof We have

θ2
00(0) =

∑
n1,n2∈Z

qn2
1+n2

2 = 1+
∑
m≥1

r2(m)q
m,

where r2(m) is the number of solutions in integers n1, n2 of the equation

n2
1 + n2

2 = m.

To obtain another expression for θ2
00(0) we use again the relation

θ ′10(v)/θ10(v)− θ ′01(v)/θ01(v) = π iθ2
00(0)θ00(v)θ11(v)/θ01(v)θ10(v),

but this time we simply take v = 1/4. Since

θ01(1/4) =
∑
n∈Z

(−i)nqn2 =
∑
n∈Z

i−nqn2 = θ00(1/4),

and similarly θ11(1/4) = i θ10(1/4), we obtain

πθ2
00(0) = θ ′01(1/4)/θ01(1/4)− θ ′10(1/4)/θ10(1/4).

By differentiating logarithmically the product expansion for θ10(v) and then putting
v = 1/4, we get

θ ′10(1/4)/θ10(1/4) = −π − 4π
∑
n≥1

q2n/(1+ q4n).

Similarly, by differentiating logarithmically the product expansion for θ01(v) and then
putting v = 1/4, we get

θ ′01(1/4)/θ01(1/4) = 4π
∑
n≥1

q2n−1/(1+ q4n−2).

Thus

θ ′01(1/4)/θ01(1/4)− θ ′10(1/4)/θ10(1/4) = π + 4π
∑
n≥1

qn/(1+ q2n)

and hence

θ2
00(0) = 1+ 4

∑
n≥1

qn/(1+ q2n).

Since

qn/(1+ q2n) = qn(1− q2n)/(1− q4n) = (qn − q3n)
∑
k≥0

q4kn,
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it follows that

θ2
00(0) = 1+ 4

∑
n≥1

∑
k≥0

{q(4k+1)n − q(4k+3)n}

= 1+ 4
∑
m≥1

{d1(m)− d3(m)}qm,

where d1(m) and d3(m) are respectively the number of positive divisors of m
congruent to 1 and 3 mod 4. Hence

r2(m) = 4{d1(m)− d3(m)}. �

From Proposition 2 we immediately obtain again that any prime p ≡ 1 mod 4 may
be represented as a sum of 2 squares and that the representation is essentially unique.
Proposition II.39 may also be rederived.

The number rs(m) of representations of a positive integer m as a sum of s squares
has been expressed by explicit formulas for many other values of s besides 2 and 4.
Systematic ways of attacking the problem are provided by the theory of modular forms
and the circle method of Hardy, Ramanujan and Littlewood.

2 Partitions

A partition of a positive integer n is a set of positive integers with sum n. For example,
{2, 1, 1} is a partition of 4. We denote the number of distinct partitions of n by p(n).
For example, p(4) = 5, since all partitions of 4 are given by

{4}, {3, 1}, {2, 2}, {2, 1, 1}, {1, 1, 1, 1}.
It was shown by Euler (1748) that the sequence p(n) has a simple generating

function:

Proposition 3 If |x | < 1, then

1/(1− x)(1− x2)(1− x3) · · · = 1+
∑
n≥1

p(n)xn.

Proof If |x | < 1, then the infinite product
∏

m≥1(1 − xm) converges and its recip-
rocal has a convergent power series expansion. To determine the coefficients of this
expansion note that, since

(1− xm)−1 =
∑
k≥0

xkm ,

the coefficient of xn(n ≥ 1) in the product
∏

m≥1(1 − xm)−1 is the number of repre-
sentations of n in the form

n = 1k1 + 2k2 + · · · ,
where the k j are non-negative integers. But this number is precisely p(n), since any
partition is determined by the number of 1’s, 2’s, . . . that it contains. �
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For many purposes the discussion of convergence is superfluous and Proposition 3
may be regarded simply as a relation between formal products and formal power series.

Euler also obtained an interesting counterpart to Proposition 3, which we will
derive from Jacobi’s triple product formula.

Proposition 4 If |x | < 1, then

(1− x)(1− x2)(1− x3) · · · =
∑
m∈Z

(−1)m xm(3m+1)/2.

Proof If we take q = x3/2 and z = −x1/2 in Proposition XII.2, we obtain at once the
result, since ∏

n≥1

(1− x3n)(1− x3n−1)(1− x3n−2) =
∏
k≥1

(1− xk). �

Proposition 4 also has a combinatorial interpretation. The coefficient of xn(n ≥ 1)
in the power series expansion of

∏
k≥1(1− xk) is

sn =
∑
(−1)v,

where the sum is over all partitions of n into unequal parts and v is the number of parts
in the partition. In other words,

sn = p∗e (n)− p∗o(n),

where p∗e (n), resp. p∗o(n), is the number of partitions of the positive integer n into an
even, resp. odd, number of unequal parts. On the other hand,∑

m∈Z

(−1)m xm(3m+1)/2 = 1+
∑
m≥1

(−1)m{xm(3m+1)/2 + xm(3m−1)/2}.

Thus Proposition 4 says that p∗e (n) = p∗o(n) unless n = m(3m±1)/2 for some m ∈ N,
in which case p∗e (n)− p∗o(n) = (−1)m .

From Propositions 3 and 4 we obtain[
1+

∑
m≥1

(−1)m{xm(3m+1)/2 + xm(3m−1)/2}
][

1+
∑
k≥1

p(k)xk
]
= 1.

Multiplying out on the left side and equating to zero the coefficient of xn(n ≥ 1), we
obtain the recurrence relation:

p(n) = p(n − 1)+ p(n − 2)− p(n − 5)− p(n − 7)

+ · · · + (−1)m−1 p(n − m(3m − 1)/2)

+ (−1)m−1 p(n − m(3m + 1)/2)+ · · · ,
where p(0) = 1 and p(k) = 0 for k < 0. This recurrence relation is quite an effi-
cient way of calculating p(n). It was used by MacMahon (1918) to calculate p(n) for
n ≤ 200.
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In the same way that we proved Proposition 3 we may show that, if |x | < 1, then

1/(1− x)(1− x2) · · · (1− xm) = 1+
∑
n≥1

pm(n)x
n,

where pm(n) is the number of partitions of n into parts not exceeding m.

From the vast number of formulas involving partitions and their generating func-
tions we select only one more pair, the celebrated Rogers–Ramanujan identities. The
proof of these identities will be based on the following preliminary result:

Proposition 5 If |q| < 1 and |x | < |q|−1, then

1+
∑
n≥1

xnqn2
/(q)n =

∑
n≥0

(−1)nx2nq5n(n+1)/2−2n{1− x2q2(2n+1)}/(q)n(xqn+1)∞,

where (a)0 = 1,

(a)n = (1− a)(1− aq) · · · (1− aqn−1) if n ≥ 1, and

(a)∞ = (1− a)(1− aq)(1− aq2) · · · .

Proof Consider the q-difference equation

f (x) = f (xq)+ xq f (xq2).

A formal power series
∑

n≥0 anxn satisfies this equation if and only if

an(1− qn) = an−1q2n−1 (n ≥ 1).

Thus the only formal power series solution with a0 = 1 is

f (x) = 1+ xq/(1− q)+ x2q4/(1− q)(1− q2)

+ x3q9/(1− q)(1− q2)(1− q3)+ · · · .

Moreover, if |q| < 1, this power series converges for all x ∈ C.

If |q| < 1, the functions

F(x) =
∑
n≥0

(−1)nx2nq5n(n+1)/2−2n{1− x2q2(2n+1)}/(q)n(xqn+1)∞,

G(x) =
∑
n≥0

(−1)nx2nq5n(n+1)/2−n{1− xq2n+1}/(q)n(xqn+1)∞

are holomorphic for |x | < |q|−1.
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We have

F(x)− G(x)

=
∑
n≥0

(−1)nx2nq5n(n+1)/2{q−2n − x2q2(n+1) − q−n + xqn+1}/(q)n(xqn+1)∞

=
∑
n≥0

(−1)nx2nq5n(n+1)/2{q−2n(1− qn)+ xqn+1(1− xqn+1)}/(q)n(xqn+1)∞

=
∑
n≥1

(−1)nx2nq5n(n+1)/2−2n/(q)n−1(xqn+1)∞

+ xq
∑
n≥0

(−1)nx2nq5n(n+1)/2+n/(q)n(xqn+2)∞

= −x2q3
∑
n≥0

(−1)nx2nq5n(n+1)/2+3n/(q)n(xqn+2)∞

+ xq
∑
n≥0

(−1)nx2nq5n(n+1)/2+n/(q)n(xqn+2)∞

= xq
∑
n≥0

(−1)n(xq)2nq5n(n+1)/2−n{1− (xq)q2n+1}/(q)n(xqn+2)∞

= xqG(xq).

Similarly,

G(x) =
∑
n≥0

(−1)nx2nq5n(n+1)/2{q−n − xqn+1}/(q)n(xqn+1)∞

=
∑
n≥0

(−1)nx2nq5n(n+1)/2{q−n(1− qn)+ 1− xqn+1}/(q)n(xqn+1)∞

=
∑
n≥1

(−1)nx2nq5n(n+1)/2−n/(q)n−1(xqn+1)∞

+
∑
n≥0

(−1)nx2nq5n(n+1)/2/(q)n(xqn+2)∞

=
∑
n≥0

(−1)n(xq)2nq5n(n+1)/2−2n{1− (xq)2q2(2n+1)}/(q)n(xqn+2)∞

= F(xq).

Combining this with the previous relation, we obtain

F(x) = F(xq)+ xq F(xq2).

But we have seen that this q-difference equation has a unique holomorphic solution
f (x) such that f (0) = 1. Hence F(x) = f (x). �
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The Rogers–Ramanujan identities may now be easily derived:

Proposition 6 If |q| < 1, then∑
n≥0

qn2
/(1− q)(1− q2) · · · (1− qn) =

∏
m≥0

(1− q5m+1)−1(1− q5m+4)−1,

∑
n≥0

qn(n+1)/(1− q)(1− q2) · · · (1− qn) =
∏
m≥0

(1− q5m+2)−1(1− q5m+3)−1.

Proof Put P =∏
k≥1(1− qk). By Proposition 5 and its proof we have∑

n≥0

qn2
/(1− q)(1− q2) · · · (1− qn) = F(1)

=
[

1+
∑
n≥1

(−1)n{qn(5n+1)/2 + qn(5n−1)/2}
]/

P

and, since F(q) = G(1),∑
n≥0

qn(n+1)/(1− q)(1− q2) · · · (1− qn) = F(q)

=
[

1+
∑
n≥1

(−1)n{qn(5n+3)/2 + qn(5n−3)/2}
]/

P.

On the other hand, by replacing q by q5/2 and z by−q1/2, resp.−q3/2, in Jacobi’s
triple product formula (Proposition XII.2), we obtain∑

n∈Z

(−1)nqn(5n+1)/2 =
∏
m≥1

(1− q5m)(1− q5m−2)(1− q5m−3)

= P

/ ∏
m≥0

(1− q5m+1)(1− q5m+4)

and ∑
n∈Z

(−1)nqn(5n+3)/2 =
∏
m≥1

(1− q5m)(1− q5m−1)(1− q5m−4)

= P

/ ∏
m≥0

(1− q5m+2)(1− q5m+3).

Combining these relations with the previous ones, we obtain the result. �

The combinatorial interpretation of the Rogers–Ramanujan identities was pointed
out by MacMahon (1916). The first identity says that the number of partitions of a
positive integer n into parts congruent to ±1 mod 5 is equal to the number of partitions
of n into parts that differ by at least 2. The second identity says that the number of par-
titions of a positive integer n into parts congruent to ±2 mod 5 is equal to the number
of partitions of n into parts greater than 1 that differ by at least 2.
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A remarkable application of the Rogers–Ramanujan identities to the hard hexagon
model of statistical mechanics was found by Baxter (1981). Many other models in sta-
tistical mechanics have been exactly solved with the aid of theta functions. A unifying
principle is provided by the vast theory of infinite-dimensional Lie algebras which has
been developed over the past 25 years.

The number p(n) of partitions of n increases rapidly with n. It was first shown by
Hardy and Ramanujan (1918) that

p(n) ∼ eπ
√

2n/3/4n
√

3 as n →∞.
They further obtained an asymptotic series for p(n), which was modified by
Rademacher (1937) into a convergent series, from which it is even possible to cal-
culate p(n) exactly. A key role in the difficult proof is played by the behaviour under
transformations of the modular group of Dedekind’s eta function

η(τ) = q1/12
∏
k≥1

(1− q2k),

where q = eπ iτ and τ ∈H (the upper half-plane).
The paper of Hardy and Ramanujan contained the first use of the ‘circle method’,

which was subsequently applied by Hardy and Littlewood to a variety of problems in
analytic number theory.

3 Cubic Curves

We define an affine plane curve over a field K to be a polynomial f (X,Y ) in two
indeterminates with coefficients from K , but we regard two polynomials f (X,Y ) and
f ∗(X,Y ) as defining the same affine curve if f ∗ = λ f for some nonzero λ ∈ K . The
degree of the curve is defined without ambiguity to be the degree of the polynomial f .

If

f (X,Y ) = a X + bY + c

is a polynomial of degree 1, the curve is said to be an affine line. If

f (X,Y ) = a X2 + bXY + cY 2 + l X + mY + n

is a polynomial of degree 2, the curve is said to be an affine conic. If f (X,Y ) is a
polynomial of degree 3, the curve is said to be an affine cubic. It is the cubic case in
which we will be most interested.

Let C be an affine plane curve over the field K , defined by the polynomial f (X,Y ).
We say that (x, y) ∈ K 2 is a point or, more precisely, a K -point of the affine curve C
if f (x, y) = 0. The K -point (x, y) is said to be non-singular if there exist a, b ∈ K ,
not both zero, such that

f (x + X, y + Y ) = a X + bY + · · · ,
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where all unwritten terms have degree > 1. Since a, b are uniquely determined by f ,
we can define the tangent to the affine curve C at the non-singular point (x, y) to be
the affine line

�(X,Y ) = a X + bY − (ax + by).

It is easily seen that these definitions do not depend on the choice of polynomial within
an equivalence class {λ f : 0 �= λ ∈ K }.

The study of the asymptotes of an affine plane curve leads one to consider also
its ‘points at infinity’, the asymptotes being the tangents at these points. We will now
make this precise.

If the polynomial f (X,Y ) has degree d , then

F(X,Y, Z) = Zd f (X/Z ,Y/Z)

is a homogeneous polynomial of degree d such that

f (X,Y ) = F(X,Y, 1).

Furthermore, if F (X,Y, Z) is any homogeneous polynomial such that f (X,Y ) =
F (X,Y, 1), then F (X,Y, Z) = Zm F(X,Y, Z) for some non-negative integer m.

We define a projective plane curve over a field K to be a homogeneous polyno-
mial F(X,Y, Z) of degree d > 0 in three indeterminates with coefficients from K , but
we regard two homogeneous polynomials F(X,Y, Z) and F∗(X,Y, Z) as defining the
same projective curve if F∗ = λF for some nonzero λ ∈ K . The projective curve is
said to be a projective line, conic or cubic if F has degree 1,2 or 3 respectively.

If C is an affine plane curve, defined by a polynomial f (X,Y ) of degree d > 0, the
projective plane curve C̄ , defined by the homogeneous polynomial Zd f (X/Z ,Y/Z)
of the same degree, is called the projective completion of C . Thus the projective
completion of an affine line, conic or cubic is respectively a projective line, conic
or cubic.

Let C̄ be a projective plane curve over the field K , defined by the homogeneous
polynomial F(X,Y, Z). We say that (x, y, z) ∈ K 3 is a point, or K -point, of C̄
if (x, y, z) �= (0, 0, 0) and F(x, y, z) = 0, but we regard two triples (x, y, z) and
(x∗, y∗, z∗) as defining the same K -point if

x∗ = λx, y∗ = λy, z∗ = λz for some nonzero λ ∈ K .

If C̄ is the projective completion of the affine plane curve C , then a point (x, y, z)
of C̄ with z �= 0 corresponds to a point (x/z, y/z) of C , and a point (x, y, 0) of C̄
corresponds to a point at infinity of C .

The K -point (x, y, z) of the projective plane curve defined by the homogeneous
polynomial F(X,Y, Z) is said to be non-singular if there exist a, b, c ∈ K , not all
zero, such that

F(x + X, y + Y, z + Z) = a X + bY + cZ + · · · ,
where all unwritten terms have degree > 1. Since a, b, c are uniquely determined by
F , we can define the tangent to the projective curve at the non-singular point (x, y, z)



3 Cubic Curves 551

to be the projective line defined by a X + bY + cZ . It follows from Euler’s theorem on
homogeneous functions that (x, y, z) is itself a point of the tangent.

It is easily seen that if C̄ is the projective completion of an affine plane curve
C , and if z �= 0, then (x, y, z) is a non-singular point of C̄ if and only if (x/z, y/z)
is a non-singular point of C . Moreover, if the tangent to C̄ at (x, y, z) is the
projective line

�̄(X,Y, Z) = a X + bY + cZ ,

then the tangent to C at (x/z, y/z) is the affine line defined by

�(X,Y ) = a X + bY + c.

Let C be an affine plane curve over the field K , defined by the polynomial f (X,Y ),
and let (x, y) be a non-singular K -point of C . Then we can write

f (x + X, y + Y ) = a X + bY + f2(X,Y )+ · · · ,
where a, b are not both zero, f2(X,Y ) is a homogeneous polynomial of degree 2, and
all unwritten terms have degree > 2. The non-singular point (x, y) is said to be an
inflection point or, more simply, a flex of C if f2(X,Y ) is divisible by a X + bY .

Similarly we can define a flex for a projective plane curve. Let (x, y, z) be a non-
singular point of the projective plane curve over the field K , defined by the homoge-
neous polynomial F(X,Y, Z). Then we can write

F(x + X, y + Y, z + Z) = a X + bY + cZ + F2(X,Y, Z) + · · · ,
where a, b, c are not all zero, F2(X,Y, Z) is a homogeneous polynomial of degree 2,
and all unwritten terms have degree> 2. The non-singular point (x, y, z) is said to be
a flex if F2(X,Y, Z) is divisible by a X + bY + cZ .

Two more definitions are required before we embark on our study of cubic
curves. A projective curve over the field K , defined by the homogeneous polynomial
F(X,Y, Z) of degree d > 0, is said to be reducible over K if

F(X,Y, Z) = F1(X,Y, Z)F2(X,Y, Z),

where F1 and F2 are homogeneous polynomials of degree less than d with coefficients
from K . The K -points of the curve defined by F are then just the K -points of the curve
defined by F1, together with the K -points of the curve defined by F2. A curve is said
to be irreducible over K if it is not reducible over K .

Two projective curves over the field K , defined by the homogeneous polynomials
F(X,Y, Z) and G(X ′,Y ′, Z ′), are said to be projectively equivalent if there exists an
invertible linear transformation

X = a11 X ′ + a12Y ′ + a13 Z ′

Y = a21 X ′ + a22Y ′ + a23 Z ′

Z = a31 X ′ + a32Y ′ + a33 Z ′
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with coefficients ai j ∈ K such that

F(a11 X ′ + · · · , a21 X ′ + · · · , a31 X ′ + · · · ) = G(X ′,Y ′, Z ′).

It is clear that F and G necessarily have the same degree, and that projective equiva-
lence is in fact an equivalence relation.

Consider now the affine cubic curve C defined by the polynomial

f (X,Y ) = a30 X3 + a21 X2Y + a12 XY 2 + a03Y 3 + a20 X2 + a11XY

+ a02Y 2 + a10 X + a01Y + a00.

We assume that C has a non-singular K-point which is a flex. Without loss of general-
ity, suppose that this is the origin. Then a00 = 0, a10 and a01 are not both zero, and

a20 X2 + a11XY + a02Y 2 = (a10X + a01Y )(a′10 X + a′01Y )

for some a′10, a′01 ∈ K . By an invertible linear change of variables we may suppose
that a10 = 0, a01 = 1. Then f has the form

f (X,Y ) = Y + a1 XY + a3Y 2 − a0 X3 − a2 X2Y − a4 XY 2 − a6Y 3.

If a0 = 0, then f is divisible by Y and the corresponding projective curve is reducible.
Thus we now assume a0 �= 0. In fact we may assume a0 = 1, by replacing f by a con-
stant multiple and then scaling Y . The projective completion C̄ of C is now defined
by the homogeneous polynomial

Y Z2 + a1 XY Z + a3Y 2 Z − X3 − a2 X2Y − a4 XY 2 − a6Y 3.

If we interchange Y and Z , the flex becomes the unique point at infinity of the affine
cubic curve defined by the polynomial

Y 2 + a1 XY + a3Y − (X3 + a2 X2 + a4 X + a6).

This can be further simplified by making mild restrictions on the field K . If K has
characteristic �= 2, i.e. if 1 + 1 �= 0, then by replacing Y by (Y − a1 X − a3)/2 we
obtain the cubic curve defined by the polynomial

Y 2 − (4X3 + b2 X2 + 2b4X + b6).

If K also has characteristic �= 3, i.e. if 1 + 1 + 1 �= 0, then by replacing X by
(X − 3b2)/62 and Y by 2Y/63, we obtain the cubic curve defined by the polynomial
Y 2 − (X3 + a X + b). Thus we have proved:

Proposition 7 If a projective cubic curve over the field K is irreducible and has a
non-singular K -point which is a flex, then it is projectively equivalent to the projective
completion W = W (a1, . . . , a6) of an affine curve of the form

Y 2 + a1 XY + a3Y − (X3 + a2 X2 + a4 X + a6).
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If K has characteristic �= 2, 3, then it is projectively equivalent to the projective
completion C = Ca,b of an affine curve of the form

Y 2 − (X3 + a X + b).

It is easily seen that, conversely, for any choice of a1, . . . , a6 ∈ K the curve W , and
in particular Ca,b, is irreducible over K and that 0, the unique point at infinity, is a flex.

For any u, r, s, t ∈ K with u �= 0, the invertible linear change of variables

X = u2 X ′ + r,

Y = u3Y ′ + su2 X ′ + t

replaces the curve W = W (a1, . . . , a6) by a curve W ′ = W ′(a′1, . . . , a′6) of the same
form. The numbering of the coefficients reflects the fact that if r = s = t = 0, then

a1 = ua′1, a2 = u2a′2, a3 = u3a′3,
a4 = u4a′4, a6 = u6a′6.

In particular, for any nonzero u ∈ K , the invertible linear change of variables

X = u2 X ′,
Y = u3Y ′

replaces Ca,b by Ca′,b′ , where

a = u4a′,
b = u6b′.

By replacing X by x + X and Y by y + Y , we see that if a K -point (x, y) of Ca,b

is singular, then

3x2 + a = y = 0,

which implies 4a3 + 27b2 = 0. Thus the curve Ca,b has no singular points if
4a3 + 27b2 �= 0.

We will call

d := 4a3 + 27b2

the discriminant of the curve Ca,b. It is not difficult to verify that if the cubic polyno-
mial X3 + a X + b has roots e1, e2, e3, then

d = −[(e1 − e2)(e1 − e3)(e2 − e3)]2.

If d = 0, a �= 0, then the polynomial X3 + a X + b has the repeated root
x0 = −3b/2a and P = (x0, 0) is the unique singular point. If d = a = 0, then
b = 0 and P = (0, 0) is the unique singular point.
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Singular cases
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Fig. 1. Cubic curves over R.

The different types of curve which arise when K = R is the field of real numbers
are illustrated in Figure 1. The unique point at infinity 0 may be thought of as being
at both ends of the y-axis. (In the case of a node, Figure 1 illustrates the situation for
x0 > 0. For x0 < 0 the singular point is an isolated point of the curve.)

Suppose now that K is any field of characteristic �= 2, 3 and that the curve Ca,b has
zero discriminant. Because of the geometrical interpretation when K = R, the unique
singular point of the curve Ca,b is said to be a node if a �= 0 and a cusp if a = 0.
In the cusp case, if we put T = Y/X , then the cubic curve has the parametrization
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X = T 2, Y = T 3. In the node case, if we put T = Y/(X + 3b/2a), then it has the
parametrization

X = T 2 + 3b/a,Y = T 3 + 9bT/2a.

Thus in both cases the cubic curve is in fact elementary.
We now restrict attention to non-singular cubic curves, i.e. curves which do not

have a singular point.
Two K -points of a projective cubic curve determine a projective line, which inter-

sects the curve in a third K -point. This procedure for generating additional K -points
was used implicitly by Diophantus and explicitly by Newton. There is also another
procedure, which may be regarded as a limiting case: the tangent to a projective cubic
curve at a K -point intersects the curve in another K -point. The combination of the
two procedures is known as the ‘chord and tangent’ process. It will now be described
analytically for the cubic curve Ca,b.

If O is the unique point at infinity of the cubic curve Ca,b and if P = (x, y) is any
finite K -point, then the affine line determined by O and P is X − x and its other point
of intersection with Ca,b is P∗ = (x,−y).

Now let P1 = (x1, y1) and P2 = (x2, y2) be any two finite K -points. If x1 �= x2,
then the affine line determined by P1 and P2 is

Y − m X − c,

where
m = (y2 − y1)/(x2 − x1), c = (y1x2 − y2x1)/(x2 − x1),

and its third point of intersection with Ca,b is P3 = (x3, y3), where

x3 = m2 − x1 − x2, y3 = mx3 + c.

If x1 = x2, but y1 �= y2, then the affine line determined by P1 and P2 is X − x1 and its
other point of intersection with Ca,b is O. Finally, if P1 = P2, it may be verified that
the tangent to Ca,b at P1 is the affine line

Y − m X − c,

where
m = (3x2

1 + a)/2y1, c = (−x3
1 + ax1 + 2b)/2y1,

and its other point of intersection with Ca,b is the point P3 = (x3, y3), where x3 and
y3 are given by the same formulas as before, but with the new values of m and c (and
with x2 = x1).

It is rather remarkable that the K -points of a non-singular projective cubic curve
can be given the structure of an abelian group. That this is possible is suggested by the
addition theorem for elliptic functions.

Suppose that K = C is the field of complex numbers and that the cubic curve is
the projective completion Cλ of the affine curve

Y 2 − gλ(X),
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where

gλ(X) = 4λX3 − 4(1+ λ)X2 + 4X

is Riemann’s normal form and λ �= 0, 1. If S(u) is the elliptic function defined in
§3 of Chapter XII, then P(u) = (S(u), S′(u)) is a point of Cλ for any u ∈ C. If we
define the sum of P(u) and P(v) to be the point P(u + v), then the set of all C-points
of Cλ becomes an abelian group, with P(0) = (0, 0) as identity element and with
P(−u) = (S(u),−S′(u)) as the inverse of P(u). In order to carry this construction
over to the cubic curve Ca,b and to other fields than C, we interpret it geometrically.

It was shown in (10) of Chapter XII that

S(u + v) = 4S(u)S(v)[S(v) − S(u)]2/[S′(u)S(v)− S′(v)S(u)]2.

The points (x1, y1) = (S(u), S′(u)) and (x2, y2) = (S(v), S′(v)) determine the affine
line

Y − m X − c,
where

m = [S′(v)− S′(u)]/[S(v)− S(u)],

c = [S′(u)S(v) − S′(v)S(u)]/[S(v) − S(u)].

The third point of intersection of this line with the cubic Cλ is the point (x3, y3), where

x3 = c2/4λx1x2

= [S′(u)S(v) − S′(v)S(u)]2/4λS(u)S(v)[S(v) − S(u)]2

= 1/λS(u + v).
On the other hand, the points (0, 0) = (S(0), S′(0)) and (x∗3 , y∗3 ) = (S(u + v),
S′(u + v)) determine the affine line Y − (y∗3/x∗3 )X and its third point of intersec-
tion with Cλ is the point (x4, y4), where x4 = 1/λx∗3 = x3. Evidently y2

4 = y2
3 , and it

may be verified that actually y4 = y3. Thus (x∗3 , y∗3 ) is the third point of intersection
with Cλ of the line determined by the points (0, 0) and (x3, y3).

The origin (0, 0) may not be a point of the cubic curve Ca,b but O, the point at
infinity, certainly is. Consequently, as illustrated in Figure 2, we now define the sum
P1 + P2 of two K -points P1, P2 of Ca,b to be the K -point P∗3 , where P3 is the third
point of Ca,b on the line determined by P1, P2 and P∗3 is the third point of Ca,b on the
line determined by O, P3. If P1 = P2, the line determined by P1, P2 is understood to
mean the tangent to Ca,b at P1.

It is simply a matter of elementary algebra to deduce from the formulas previously
given that, if addition is defined in this way, the set of all K -points of Ca,b becomes
an abelian group, with O as identity element and with−P = (x,−y) as the inverse of
P = (x, y). Since −P = P if and only if y = 0, the elements of order 2 in this group
are the points (x0, 0), where x0 is a root of the polynomial X3 + a X + b (if it has any
roots in K ).

Throughout the preceding discussion of cubic curves we restricted attention to
those with a flex. It will now be shown that in a sense this is no restriction.
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Fig. 2. Addition on Ca,b.

Let C be a projective cubic curve over the field K , defined by the homogeneous
polynomial F1(X,Y, Z), and suppose that C has a non-singular K -point P . Without
loss of generality we assume that P = (1, 0, 0) and that the tangent at P is the projec-
tive line Z . Then F1 has no term in X3 or in X2Y :

F1(X,Y, Z) = aY 3 + bY 2 Z + cY Z2 + d Z3 + eX 2 Z + gXY 2 + h X Z 2.

Here e �= 0, since P is non-singular, and we may suppose g �= 0, since otherwise P is
a flex. If we replace gX + aY by X , this assumes the form

F2(X,Y, Z) = XY 2 + bY 2 Z + cY Z2 + d Z3 + eX2 Z + gXY Z + h X Z2,

with new values for the coefficients. If we now replace X + bZ by X , this assumes the
form

F3(X,Y, Z) = XY 2 + cY Z2 + d Z3 + eX2 Z + gXY Z + h X Z 2,

again with new values for the coefficients. The projective cubic curve D over the field
K , defined by the homogeneous polynomial

F4(U, V ,W ) = V W 2 + cV 2W + dU V 2 + eU3 + gU V W + hU2V ,

has a flex at the point (0, 0, 1). Moreover,

F3(U
2, V W ,U V ) = U2V F4(U, V ,W ),

F4(X Z , Z2, XY ) = X Z2 F3(X,Y, Z).

This shows that any projective cubic curve over the field K with a non-singular K-point
is birationally equivalent to one with a flex.
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Birational equivalence may be defined in the following way. A rational transfor-
mation of the projective plane with points X = (X1, X2, X3) is a map X → Y = ϕϕϕ(X),
where

ϕϕϕ(X) = (ϕ1(X), ϕ2(X), ϕ3(X))

and ϕ1, ϕ2, ϕ3 are homogeneous polynomials without common factor of the same
degree m, say. (In the corresponding affine plane the coordinates are transformed by
rational functions.) The transformation is birational if there exists an inverse map
Y → X = ψψψ(Y), where

ψψψ(Y) = (ψ1(Y), ψ2(Y), ψ3(Y))

and ψ1, ψ2, ψ3 are homogeneous polynomials without common factor of the same
degree n, say, such that

ψψψ[ϕϕϕ(X)] = ω(X)X, ϕϕϕ[ψψψ(Y)] = θ(Y)Y
for some scalar polynomials ω(X), θ(Y). Two irreducible projective plane curves C
and D over the field K , defined respectively by the homogeneous polynomials F(X)
and G(Y) (not necessarily of the same degree), are birationally equivalent if there
exists a birational transformation Y = ϕ(X) with inverse X = ψ(Y) such that G[ϕ(X)]
is divisible by F(X) and F[ψ(Y)] is divisible by G[(Y)].

It is clear that birational equivalence is indeed an equivalence relation, and that
irreducible projective curves which are projectively equivalent are also birationally
equivalent. Birational transformations are often used to simplify the singular points
of a curve. Indeed the theorem on resolution of singularities says that any irreducible
curve is birationally equivalent to a non-singular curve, although it may be a curve in
a higher-dimensional space rather than in the plane. The algebraic geometry of curves
may be regarded as the study of those properties which are invariant under birational
equivalence.

It was shown by Poincaré (1901) that any non-singular curve of genus 1 defined
over the field Q of rational numbers and with at least one rational point is birationally
equivalent over Q to a cubic curve. Such a curve is now said to be an elliptic curve
(for the somewhat inadequate reason that it may be parametrized by elliptic functions
over the field of complex numbers.) However, for our purposes it is sufficient to define
an elliptic curve to be a non-singular cubic curve of the form W , over a field K of
arbitrary characteristic, or of the form Ca,b, over a field K of characteristic �= 2, 3.

4 Mordell’s Theorem

We showed in the previous section that, for any field K of characteristic �= 2, 3, the
K -points of the elliptic curve Ca,b defined by the polynomial

Y 2 − X3 − a X − b,

where a, b ∈ K and d := 4a3 + 27b2 �= 0, form an abelian group, E(K ) say. We
now restrict our attention to the case when K = Q is the field of rational numbers, and
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we write simply E := E(Q). This section is devoted to the basic theorem of Mordell
(1922), which says that the abelian group E is finitely generated.

By replacing X by X/c2 and Y by Y/c3 for some nonzero c ∈ Q, we may (and
will) assume that a and b are both integers. Let P = (x, y) be any finite rational point
of Ca,b and write x = p/q , where p and q are coprime integers. The height h(P) of
P is uniquely defined by

h(P) = log max(|p|, |q|).
We also set h(O) = 0, where O is the unique point at infinity of Ca,b.

Evidently h(P) ≥ 0. Furthermore, h(−P) = h(P), since P = (x, y) implies
−P = (x,−y). Also, for any r > 0, there exist only finitely many elements
P = (x, y) of E with h(P) ≤ r , since x determines y up to sign.

Proposition 8 There exists a constant C = C(a, b) > 0 such that

|h(2P)− 4h(P)| ≤ C for all P ∈ E .

Proof By the formulas given in §3, if P = (x, y), then 2P = (x ′, y ′), where

x ′ = m2 − 2x, m = (3x2 + a)/2y.

Since y2 = x3 + ax + b, it follows that

x ′ = (x4 − 2ax2 − 8bx + a2)/4(x3 + ax + b).

If x = p/q , where p and q are coprime integers, then x ′ = p′/q ′, where

p′ = p4 − 2ap2q2 − 8bpq3 + a2q4,

q ′ = 4q(p3 + apq2 + bq3).

Evidently p′ and q ′ are also integers, but they need not be coprime. However, since

p′ = ep′′, q ′ = eq ′′,

where e, p′′, q ′′ are integers and p′′, q ′′ are coprime, we have

h(2P) = log max(|p′′|, |q ′′|) ≤ log max(|p′|, |q ′|).
Since

max(|p′|, |q ′|) ≤ max(|p|, |q|)4 max{1+ 2|a| + 8|b| + a2, 4(1+ |a| + |b|)},
it follows that

h(2P) ≤ 4h(P)+ C ′

for some constant C ′ = C ′(a, b) > 0.
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The Euclidean algorithm may be used to derive the polynomial identity

(3X2 + 4a)(X4 − 2a X2 − 8bX + a2)− (3X3 − 5a X − 27b)(X3 + a X + b) = d,

where once again d = 4a3 + 27b2. Substituting p/q for X , we obtain

4dq7 = 4(3 p2q + 4aq3)p′ − (3 p3 − 5apq2 − 27bq3)q ′.

Similarly, the Euclidean algorithm may be used to derive the polynomial identity

f (X)(1 − 2a X2 − 8bX3 + a2 X4)+ g(X)X (1+ a X2 + bX3) = d,

where

f (X) = 4a3 + 27b2 − a2bX + a(3a3 + 22b2)X2 + 3b(a3 + 8b2)X3,

g(X) = a2b + a(5a3 + 32b2)X + 2b(13a3 + 96b2)X2 − 3a2(a3 + 8b2)X3.

Substituting q/p for X , we obtain

4dp7 = 4{(4a3 + 27b2)p3 − a2bp2q + (3a4 + 22ab2)pq2 + 3(a3b + 8b3)q3}p′
+{a2bp3+ (5a4+ 32ab2)p2q+ (26a3b + 192b3)pq2− 3(a5+ 8a2b2)q3}q ′.

Since d �= 0, it follows from these two relations that

max(|p|, |q|)7 ≤ C1 max(|p|, |q|)3 max(|p′|, |q ′|)
and hence

max(|p|, |q|)4 ≤ C1 max(|p′|, |q ′|).
But the two relations also show that the greatest common divisor e of p′ and q ′ divides
both 4dq7 and 4dp7, and hence also 4d , since p and q are coprime. Consequently

max(|p′|, |q ′|) ≤ 4|d|max(|p′′|, |q ′′|).
Combining this with the previous inequality, we obtain

4h(P) ≤ h(2P)+ C ′′

for some constant C ′′ = C ′′(a, b) > 0.
This proves the result, with C = max(C ′,C ′′). �

Proposition 9 There exists a unique function ĥ : E → R such that

(i) ĥ − h is bounded,
(ii) ĥ(2P) = 4ĥ(P) for every P ∈ E.

Furthermore, it is given by the formula ĥ(P) = limn→∞ h(2n P)/4n.
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Proof Suppose ĥ has the properties (i),(ii). Then, by (ii), 4nĥ(P) = ĥ(2n P) and
hence, by (i), 4nĥ(P)−h(2n P) is bounded. Dividing by 4n , we see that h(2n P)/4n →
ĥ(P) as n →∞. This proves uniqueness.

To prove existence, choose C as in the statement of Proposition 8. Then, for any
integers m, n with n > m > 0,

|4−nh(2n P)− 4−mh(2m P)| =
∣∣∣∣n−1∑

j=m

{4− j−1h(2 j+1 P) − 4− j h(2 j P)}
∣∣∣∣

≤
n−1∑
j=m

4− j−1|h(2 j+1 P)− 4h(2 j P)|

≤
n−1∑
j=m

4− j−1C < 4−mC/3.

Thus the sequence {4−nh(2n P)} is a fundamental sequence and consequently conver-
gent. If we denote its limit by ĥ(P), then clearly ĥ(2P) = 4ĥ(P). On the other hand,
by taking m = 0 and letting n →∞ in the preceding inequality we obtain

|ĥ(P)− h(P)| ≤ C/3.

Thus ĥ has both the required properties. �

The value ĥ(P) is called the canonical height of the rational point P . The formula
for ĥ(P) shows that, for all P ∈ E ,

ĥ(−P) = ĥ(P) ≥ 0.

Moreover, by Proposition 9(i), for any r > 0 there exist only finitely many elements
P of E with ĥ(P) ≤ r .

It will now be shown that the canonical height satisfies the parallelogram law:

Proposition 10 For all P1, P2 ∈ E,

ĥ(P1 + P2)+ ĥ(P1 − P2) = 2ĥ(P1)+ 2ĥ(P2).

Proof It is sufficient to show that there exists a constant C ′ > 0 such that, for all
P1, P2 ∈ E ,

h(P1 + P2)+ h(P1 − P2) ≤ 2h(P1)+ 2h(P2)+ C ′. (∗)

For it then follows from the formula in Proposition 9 that, for all P1, P2 ∈ E ,

ĥ(P1 + P2)+ ĥ(P1 − P2) ≤ 2ĥ(P1)+ 2ĥ(P2).

But, replacing P1 by P1 + P2 and P2 by P1 − P2, we also have

ĥ(2P1)+ ĥ(2P2) ≤ 2ĥ(P1 + P2)+ 2ĥ(P1 − P2)

and hence, by Proposition 9(ii),

2ĥ(P1)+ 2ĥ(P2) ≤ ĥ(P1 + P2)+ ĥ(P1 − P2).



562 XIII Connections with Number Theory

To prove (∗) we may evidently assume that P1 = (x1, y1) and P2 = (x2, y2) are
both finite. Moreover, by Proposition 8, we may assume that P1 �= P2. Then, by the
formulas of §3,

P1 + P2 = (x3, y3), P1 − P2 = (x4, y4),

where

x3 = (y2 − y1)
2/(x2 − x1)

2 − (x1 + x2),

x4 = (y2 + y1)
2/(x2 − x1)

2 − (x1 + x2).

Hence

x3 + x4 = 2[y2
2 + y2

1 − (x2 − x1)(x
2
2 − x2

1)]/(x2 − x1)
2

and

x3x4 = (y2
2 − y2

1)
2/(x2 − x1)

4 − 2(x1 + x2)(y
2
1 + y2

2)/(x2 − x1)
2 + (x1 + x2)

2.

Since y2
j = x3

j + ax j + b ( j = 1, 2), these relations simplify to

x3 + x4 = 2[x1x2(x1 + x2)+ a(x1 + x2)+ 2b]/(x2 − x1)
2

and

x3x4 = N/(x2 − x1)
2,

where

N = (x2
2 + x1x2 + x2

1 + a)2 − 2(x1 + x2)
2(x2

2 − x1x2 + x2
1 + a)

− 4b(x1 + x2)+ (x2
2 − x2

1)
2

= (x1x2 − a)2 − 4b(x1 + x2).

Put x j = p j/q j , where (p j , q j ) = 1 (1 ≤ j ≤ 4). Then x3, x4 are the roots of the
quadratic polynomial

AX2 + B X + C

with integer coefficients

A = (p2q1 − p1q2)
2,

B = (p1 p2 + aq1q2)(p1q2 + p2q1)+ 2bq2
1q2

2 ,

C = (p1 p2 − aq1q2)
2 − 4bq1q2(p1q2 + p2q1).

Consequently

Ap3 p4 = Cq3q4,

A(p3q4 + p4q3) = Bq3q4.
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By Proposition II.16, q3 and q4 each divide A, and so their product divides A2.
Hence, for some integer D �= 0,

A2 = Dq3q4, AC = Dp3 p4, AB = D(p3q4 + p4q3).

But it is easily seen that q3q4, p3 p4 and p3q4 + p4q3 have no common prime divisor.
It follows that A divides D.

Hence, if we put

ρ j = max(|p j |, |q j |) (1 ≤ j ≤ 4),

then

|q3q4| ≤ |A| ≤ 4ρ2
1ρ

2
2 ,

|p3 p4| ≤ |C| ≤ [(1+ |a|)2 + 8|b|]ρ2
1ρ

2
2 ,

|p3q4 + p4q3| ≤ |B| ≤ 2(1+ |a| + |b|)ρ2
1ρ

2
2 .

But

max(|p3|, |q3|)max(|p4|, |q4|) ≤ max(|p3 p4|, |q3q4| + |p3q4 + p4q3|),
since if |q3| ≤ |p3| and |p4| ≤ |q4|, for example, then

|p3q4| ≤ |p4q3| + |p3q4 + p4q3| ≤ |q3q4| + |p3q4 + p4q3|.
It follows that there exists a constant C ′′ > 0 such that

ρ3ρ4 ≤ C ′′ρ2
1ρ

2
2 ,

which is equivalent to (∗) with C ′ = log C ′′. �

Corollary 11 For any P ∈ E and any integer n,

ĥ(n P) = n2ĥ(P).

Proof Since ĥ(−P) = ĥ(P), we may assume n > 0. We may actually assume n > 2,
since the result is trivial for n = 1 and it holds for n = 2 by Proposition 9. By Propo-
sition 10 we have

ĥ(n P)+ ĥ((n − 2)P) = 2ĥ((n − 1)P)+ 2ĥ(P),

from which the general case follows by induction. �

It follows from Corollary 11 that if an element P of the group E has finite order,
then ĥ(P) = 0. The converse is also true. In fact, by Proposition 10, the set of all
P ∈ E such that ĥ(P) = 0 is a subgroup of E , and this subgroup is finite since there
are only finitely many points P such that ĥ(P) < 1.

We now deduce from Proposition 10 that a non-negative quadratic form can be
constructed from the canonical height. If we put

(P, Q) = ĥ(P + Q)− ĥ(P)− ĥ(Q),
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then evidently

(P, Q) = (Q, P), (P, P) = 2ĥ(P) ≥ 0.

It remains to show that

(P, Q + R) = (P, Q)+ (P, R),

and we do this by proving that

ĥ(P + Q + R) = ĥ(P + Q)+ ĥ(P + R)+ ĥ(Q + R)− ĥ(P)− ĥ(Q)− ĥ(R).

But, by the parallelogram law,

ĥ(P + Q + R + P)+ ĥ(Q + R) = ĥ(P + Q + R + P)+ ĥ(P + Q + R − P)

= 2ĥ(P + Q + R)+ 2ĥ(P)

and

ĥ(P + Q + R + P)+ ĥ(Q − R) = ĥ(P + Q + R + P)+ ĥ(P + Q − P − R)

= 2ĥ(P + Q)+ 2ĥ(P + R).

Subtracting the second relation from the first, we obtain

ĥ(Q + R)− ĥ(Q − R) = 2ĥ(P + Q + R)+ 2ĥ(P)− 2ĥ(P + Q)− 2ĥ(P + R).

Since, by the parallelogram law again,

ĥ(Q + R)+ ĥ(Q − R) = 2ĥ(Q)+ 2ĥ(R),

this is equivalent to what we wished to prove.

Proposition 12 The abelian group E is finitely generated if, for some integer m > 1,
the factor group E/m E is finite.

Proof Let S be a set of representatives of the cosets of the subgroup m E . Since S is
finite, by hypothesis, we can choose C > 0 so that ĥ(Q) ≤ C for all Q ∈ S. The set

S ′ = {Q′ ∈ E : ĥ(Q′) ≤ C}
contains S and is also finite. We will show that it generates E .

Let E ′ be the subgroup of E generated by the elements of S′. If E ′ �= E ,
choose P ∈ E\E ′ so that ĥ(P) is minimal. Then

P = m P1 + Q1 for some P1 ∈ E and Q1 ∈ S.

Since

ĥ(P + Q1)+ ĥ(P − Q1) = 2ĥ(P)+ 2ĥ(Q1),

it follows that

ĥ(m P1) = ĥ(P − Q1) ≤ 2ĥ(P) + 2C
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and hence

ĥ(P1) ≤ 2[ĥ(P)+ C]/m2 ≤ [ĥ(P)+ C]/2.

But P1 /∈ E ′, since P /∈ E ′, and hence ĥ(P1) ≥ ĥ(P). It follows that ĥ(P) ≤ C , which
is a contradiction. Hence E ′ = E . �

Proposition 12 shows that to complete the proof of Mordell’s theorem it is enough
to show that the factor group E/2E is finite. We will prove this only for the case when
E contains an element of order 2. A similar proof may be given for the general case,
but it requires some knowledge of algebraic number theory.

The assumption that E contains an element of order 2 means that there is a rational
point (x0, 0), where x0 is a root of the polynomial X3+a X+b. Since a and b are taken
to be integers, and the polynomial has highest coefficient 1, x0 must also be an integer.
By changing variable from X to x0 + X , we replace the cubic Ca,b by a cubic CA,B

defined by a polynomial

Y 2 − (X3 + AX 2 + B X),

where A, B ∈ Z. The non-singularity condition d := 4a3 + 27b2 �= 0 becomes

D := B2(4B − A2) �= 0,

but this is the only restriction on A, B . The chord joining two rational points of CA,B

is given by the same formulas as for Ca,b in §3, but the tangent to CA,B at the finite
point P1 = (x1, y1) is now the affine line

Y − m X − c,

where

m = (3x2
1 + 2Ax1 + B)/2y1, c = −x1(x

2
1 − B)/2y1.

The geometrical interpretation of the group law remains the same as before. We will
now denote by E the group of all rational points of CA,B . Our change of variable has
made the point N = (0, 0) an element of E of order 2.

Let P = (x, y) be a rational point of CA,B with x �= 0. We are going to show that,
in a sense which will become clear, there are only finitely many rational square classes
to which x can belong.

Write x = m/n, y = p/q , where m, n, p, q are integers with n, q > 0 and
(m, n) = (p, q) = 1. Then

p2n3 = (m3 + Am2n + Bmn2)q2,

which implies both q2|n3 and n3|q2. Thus n3 = q2. From n2|q2 we obtain n|q . Hence
q = en for some integer e, and it follows that n = e2, q = e3. Thus

x = m/e2, y = p/e3, where e > 0 and (m, e) = (p, e) = 1.

Moreover,

p2 = m(m2 + Ame2 + Be4).
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This shows that each prime which divides m, but not m2 + Ame2 + Be4, must occur
to an even power in m. On the other hand, each prime which divides both m and
m2 + Ame2 + Be4 must also divide B , since (m, e) = 1. Consequently we can write

x = ±pε1
1 · · · pεk

k (u/e)
2,

where u ∈ N, p1, . . . , pk are the distinct primes dividing B and ε j ∈ {0, 1}
(1 ≤ j ≤ k). Hence there are at most 2k+1 rational square classes to which x can
belong.

Suppose now that P1 = (x1, y1) and P2 = (x2, y2) are distinct rational points of
CA,B for which x1x2 is a nonzero rational square, and let P3 = (x3, y3) be the third
point of intersection with CA,B of the line through P1 and P2. Then x1, x2, x3 are the
three roots of a cubic equation

(m X + c)2 = X3 + AX2 + B X .

From the constant term we see that x1x2x3 = c2. It follows that x3 is a nonzero
rational square if c �= 0. If c = 0, then P3 = N and x1x2 = B .

Suppose next that P = (x, y) is any rational point of CA,B with x �= 0, and let
2P = (x̄,−ȳ). Then P̄ = (x̄, ȳ) is the other point of intersection with CA,B of the
tangent to CA,B at P . By the same argument as before, x2x̄ = c2. Hence x̄ is a nonzero
rational square if c �= 0. If c = 0, then 2P = N and x2 = B .

To deduce that E/2E is finite from these observations we will use an arithmetic
analogue of Landen’s transformation. We saw in Chapter XII that, over the field C of
complex numbers, the cubic curve Cλ defined by the polynomial Y 2 − gλ(X), where
gλ(X) = 4X (1− X) (1− λX), admits the parametrization

X = S(u, λ), Y = S′(u, λ).

It follows from Proposition XII.11 that the cubic curve Cλ′ , where λ′ is given by
λ′ = λ2/[1+ (1− λ)1/2]4, admits the parametrization

X ′ = [1+ (1− λ)1/2]X (1− X)/(1 − λX),

Y ′ = [1+ (1− λ)1/2]Y (1− 2X + λX2)/(1− λX)2,

where again X = S(u, λ), Y = S′(u, λ) and where (1 − 2X + λX2)/(1 − λX)2 is
the derivative with respect to X of X (1 − X)/(1 − λX). Since also X ′ = S(u′, λ′),
where u′ = [1 + (1 − λ)1/2]u, the map (X,Y )→ (X ′,Y ′) defines a homomorphism
of the group of complex points of Cλ into the group of complex points of Cλ′ .

We will simply state analogous results for the cubic curve CA,B over the field Q of
rational numbers, since their verification is elementary. If (x, y) is a rational point of
CA,B with x �= 0 and if

x ′ = (x2 + Ax + B)/x, y ′ = y(x2 − B)/x2,

then (x ′, y ′) is a rational point of CA′,B ′ , where

A′ = −2A, B ′ = A2 − 4B.
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Moreover, if we define a map ϕ of the group E of all rational points of CA,B into the
group E ′ of all rational points of CA′,B ′ by putting

ϕ(x, y) = (x ′, y ′) if x �= 0, ϕ(N) = ϕ(O) = O,

then ϕ is a homomorphism, i.e.

ϕ(P + Q) = ϕ(P)+ ϕ(Q), ϕ(−P) = −ϕ(P).
The range ϕ(E) may not be the whole of E ′. In fact, since

x ′ = (x3 + Ax2 + Bx)/x2 = (y/x)2,
the first coordinate of any finite point of ϕ(E) must be a rational square. Furthermore,
if N = (0, 0) is a point of ϕ(E), the integer B ′ = A2 − 4B must be a square. We will
show that these conditions completely characterize ϕ(E).

Evidently if A2− 4B is a square, then the quadratic polynomial X2+ AX + B has
a rational root x0 �= 0 and ϕ(x0, 0) = N. Suppose now that (x ′, y ′) is a rational point
of CA′,B ′ and that x ′ = t2 is a nonzero rational square. We will show that if

x1 = (t2 − A + y ′/t)/2, y1 = tx1,

x2 = (t2 − A − y ′/t)/2, y2 = −tx2,

then (x j , y j ) ∈ E and ϕ(x j , y j ) = (x ′, y ′) ( j = 1, 2). It is easily seen that
(x j , y j ) ∈ E if and only if

t2 = x j + A + B/x j .

But

x1x2 = [(t2 − A)2 − y ′2/t2]/4

= [(x ′ − A)2 − y ′2/x ′]/4

= (x ′3 − 2Ax ′2 + A2x ′ − y ′2)/4x ′.

Since

y ′2 = x ′3 − 2Ax ′2 + (A2 − 4B)x ′,

it follows that x1x2 = B . Hence (x1, y1) and (x2, y2) are both in E if t2 = x1+ A+x2,
and this condition is certainly satisfied by the definitions of x1 and x2.

In addition to

x j + A + B/x j = t2 = x ′ ( j = 1, 2),

we have

y1(x
2
1 − B)/x2

1 = t (x2
1 − x1x2)/x1 = t (x1 − x2) = y ′,
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and similarly y2(x2
2 − B)/x2

2 = y ′. It follows that

ϕ(x1, y1) = ϕ(x2, y2) = (x ′, y ′).

Since ϕ is a homomorphism, the range ϕ(E) is a subgroup of E ′. We are going to
show that this subgroup is of finite index in E ′. By what we have already proved for
E , there exists a finite (or empty) set P ′1 = (x ′1, y ′1), . . . , P ′s = (x ′s, y ′s) of points of E ′
such that x ′i is not a rational square (1 ≤ i ≤ s) and such that, if P ′ = (x ′, y ′) is any
other point of E ′ for which x ′ is not a rational square, then x ′x ′j is a nonzero rational
square for a unique j ∈ {1, . . . , s}. Let P ′′ = (x ′′, y ′′) be the third point of intersection
with CA′,B ′ of the line through P ′ and P ′j , so that

P ′ + P ′j + P ′′ = O.

By what we have already proved, either x ′′ is a nonzero rational square or P ′′ = N and
x ′x ′j = B ′ is a square. In either case, P ′′ ∈ ϕ(E). Furthermore, if 2P ′j = (x̄,−ȳ), then

either x̄ is a nonzero rational square or 2P ′j = N and x ′2j = B ′. In either case again,
2P ′j ∈ ϕ(E). Since

P ′ = P ′j − (2P ′j + P ′′),

it follows that P ′ and P ′j are in the same coset of ϕ(E). Consequently P ′1, . . . , P ′s ,
together with O, and also N if B ′ is not a square, form a complete set of representa-
tives of the cosets of ϕ(E) in E ′.

The preceding discussion can be repeated with CA′,B ′ in the place of CA,B . It yields
a homomorphism ϕ ′ of the group E ′ of all rational points of CA′,B ′ into the group E ′′
of all rational points of CA′′ ,B ′′ , where

A′′ = −2A′ = 4A, B ′′ = A′2 − 4B ′ = 16B.

But the simple transformation (X,Y ) → (X/4,Y/8) replaces CA′′ ,B ′′ by CA,B and
defines an isomorphism χ of E ′′ with E . Hence the composite map ψ = χ ◦ ϕ′ is a
homomorphism of E ′ into E , and ψ ◦ ϕ is a homomorphism of E into itself.

We now show that the homomorphism P → ψ ◦ ϕ(P) is just the doubling map
P → 2P . Since this is obvious if P = O or N, we need only verify it for P = (x, y)
with x �= 0.

For P ′′ = ϕ′ ◦ ϕ(P) we have

x ′′ = (y′/x ′)2 = [y(1− B/x2) · x2/y2]2 = (x2 − B)2/y2

and

y ′′ = y ′(1− B ′/x ′2) = y(1− B/x2)[1− (A2 − 4B)x4/y4]

= (x2 − B)[y4 − (A2 − 4B)x4]/x2y3

= (x2 − B)[(x2 + Ax + B)2 − (A2 − 4B)x2]/y3.
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Hence for ψ ◦ ϕ(P) = P∗ = (x∗, y∗) we have

x∗ = (x2 − B)2/4y2,

y∗ = (x2 − B)[(x2 + Ax + B)2 − (A2 − 4B)x2]/8y3.

On the other hand, if the tangent to CA,B at P intersects CA,B again at (x̄, ȳ), then
2P = (x̄,−ȳ). The cubic equation

(mx + c)2 = X3 + AX2 + B X

has x as a double root and x̄ as its third root. Hence x̄ = (c/x)2. Using the formula for
c given previously, we obtain

x̄ = (x2 − B)2/4y2 = x∗.

Furthermore, using the formula for m given previously,

ȳ = mx̄ + c = [(3x2 + 2Ax + B)x̄ − x(x2 − B)]/2y

= (x2 − B)[(3x2 + 2Ax + B)(x2 − B)− 4xy2)]/8y3.

Substituting x3 + Ax2 + Bx for y2, we obtain ȳ = −y∗. Thus ψ ◦ ϕ(P) = 2P , as
claimed.

Since ϕ(E) has finite index in E ′, and likewise ψ(E ′) has finite index in E , it fol-
lows that 2E = ψ ◦ ϕ(E) has finite index in E . (The proof shows that the index is
at most 2α+β+2, where α is the number of distinct prime divisors of B and β is the
number of distinct prime divisors of A2 − 4B .)

By the remarks after the proof of Proposition 12, Mordell’s theorem has now been
completely proved in the case where E contains an element of order 2.

5 Further Results and Conjectures

Let Ca,b be the elliptic curve defined by the polynomial

Y 2 − (X3 + a X + b),

where a, b ∈ Z and d := 4a3 + 27b2 �= 0. By Mordell’s theorem, the abelian group
E = Ea,b(Q) of all rational points of Ca,b is finitely generated. It follows from the
structure theorem for finitely generated abelian groups (Chapter III, §4) that E is
the direct sum of a finite abelian group Et and a ‘free’ abelian group E f , which is the
direct sum of r ≥ 0 infinite cyclic subgroups. The non-negative integer r is called
the rank of the elliptic curve and Et its torsion group.

The torsion group can, in principle, be determined by a finite amount of computa-
tion. A theorem of Nagell (1935) and Lutz (1937) says that if P = (x, y) is a point of
E of finite order, then x and y are integers and either y = 0 or y2 divides d . Thus there
are only finitely many possibilities to check.
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A deep theorem of Mazur (1977) says that the torsion group must be one of the
following:

(i) a cyclic group of order n (1 ≤ n ≤ 10 or n = 12),
(ii) the direct sum of a cyclic group of order 2 and a cyclic group of order

2n (1 ≤ n ≤ 4).

It was already known that each of these possibilities occurs. It is easy to check if the
torsion group is of type (i) or type (ii), since in the latter case there are three elements
of order 2, whereas in the former case there is at most one. Mazur’s result shows that
an element has infinite order, if it does not have order ≤ 12.

It is conjectured that there exist elliptic curves over Q with arbitrarily large rank.
(Examples are known of elliptic curves with rank ≥ 22.) At present no infallible algo-
rithm is known for determining the rank of an elliptic curve, let alone a basis for the
torsion-free group E f . However, Manin (1971) devised a conditional algorithm, based
on the strong conjecture of Birch and Swinnerton-Dyer which will be mentioned later.
This conjecture is still unproved, but is supported by much numerical evidence.

An important way of obtaining arithmetic information about an elliptic curve is by
reduction modulo a prime p. We regard the coefficients not as integers, but as integers
mod p, and we look not for Q-points, but for Fp-points. Since the normal form Ca,b

was obtained by assuming that the field had characteristic �= 2, 3, we now adopt a more
general normal form.

Let W = W (a1, . . . , a6) be the projective completion of the affine cubic curve
defined by the polynomial

Y 2 + a1 XY + a3Y − (X3 + a2 X2 + a4 X + a6),

where a j ∈ Q ( j = 1, 2, 3, 4, 6). It may be shown that W is non-singular if and only
if the discriminant ∆ �= 0, where

∆=− b2
2b8 − 8b3

4 − 27b2
6 + 9b2b4b6

and

b2 = a2
1 + 4a2,

b4 = a1a3 + 2a4,

b6 = a2
3 + 4a6,

b8 = a2
1a6 − a1a3a4 + 4a2a6 + a2a2

3 − a2
4 .

(We retain the name ‘discriminant’, although ∆ = −16d for W = Ca,b.) The defini-
tion of addition on W has the same geometrical interpretation as on Ca,b, although the
corresponding algebraic formulas are different. They are written out in §7.

For any u, r, s, t ∈ Q with u �= 0, the invertible linear change of variables

X = u2 X ′ + r, Y = u3Y ′ + su2 X ′ + t

replaces W by a curve W ′ of the same form with discriminant∆′ = u−12∆. By means
of such a transformation we may assume that the coefficients a j are integers and that∆,
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which is now an integer, has minimal absolute value. (It has been proved by Tate that
we then have |∆| > 1.) The discussion which follows presupposes that W is chosen in
this way so that, in particular, discriminant means ‘minimal discriminant’. We say that
such a W is a minimal model for the elliptic curve.

For any prime p, let Wp be the cubic curve defined over the finite field Fp by the
polynomial

Y 2 + ã1 XY + ã3Y − (X3 + ã2 X2 + ã4 X + ã6),

where ã j ∈ a j + pZ. If p�∆ the cubic curve Wp is non-singular, but if p|∆ then Wp

has a unique singular point. The singular point (x0, y0) of Wp is a cusp if, on replacing
X and Y by x0 + X and y0 + Y , we obtain a polynomial of the form

c(a X + bY )2 + · · · ,

where a, b, c ∈ Fp and the unwritten terms are of degree > 2. Otherwise, the singular
point is a node.

For any prime p, let Np denote the number of Fp-points of Wp , including the point
at infinity O, and put

cp = p + 1− Np .

It was conjectured by Artin (1924), and proved by Hasse (1934), that

|cp| ≤ 2 p1/2 if p�∆.

Since 2 p1/2 is not an integer, this inequality says that the quadratic polynomial

1− cpT + pT 2

has conjugate complex roots γp, γ̄p of absolute value p−1/2 or, if we put T = p−s ,
that the zeros of

1− cp p−s + p1−2s

lie on the line Rs = 1/2. Thus it is an analogue of the Riemann hypothesis on the zeros
of ζ(s), but differs from it by having been proved. (As mentioned in §5 of Chapter IX,
Hasse’s result was considerably generalized by Weil (1948) and Deligne (1974).)

The L-function of the original elliptic curve W is defined by

L(s) = L(s,W ) :=
∏
p|∆
(1− cp p−s)−1

∏
p�∆

(1− cp p−s + p1−2s)−1.

The first product on the right side has only finitely many factors. The infinite second
product is convergent for Rs > 3/2, since

1− cp p−s + p1−2s = (p1/2−s − p1/2γp)(p
1/2−s − p1/2γ̄p)
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and |γp| = |γ̄p| = p−1/2. Multiplying out the products, we obtain for Rs > 3/2
an absolutely convergent Dirichlet series

L(s) =
∑
n≥1

cnn−s

with integer coefficients cn . (If n = p is prime, then cn is the previously defined cp.)
The conductor N = N(W ) of the elliptic curve W is defined by the singular

reductions Wp of W :

N =
∏
p|∆

p f p ,

where f p = 1 if Wp has a node, whereas f p = 2 if p > 3 and Wp has a cusp. We
will not define f p if p ∈ {2, 3} and Wp has a cusp, but we mention that f p is then an
integer ≥ 2 which can be calculated by an algorithm due to Tate (1975). (It may be
shown that f2 ≤ 8 and f3 ≤ 5.)

The elliptic curve W is said to be semi-stable if Wp has a node for every p|∆. Thus,
for a semi-stable elliptic curve, the conductor N is precisely the product of the distinct
primes dividing the discriminant∆. (The semi-stable case is the only one in which the
conductor is square-free.)

Three important conjectures about elliptic curves, involving their L-functions and
conductors, will now be described.

It was conjectured by Hasse (1954) that the function

ζ(s,W ) := ζ(s)ζ(s − 1)/L(s,W )

may be analytically continued to a function which is meromorphic in the whole
complex plane and that ζ(2 − s,W ) is connected with ζ(s,W ) by a functional
equation similar to that satisfied by the Riemann zeta-function ζ(s). In terms of
L-functions, Hasse’s conjecture was given the following precise form by Weil (1967):

HW-Conjecture: If the elliptic curve W has L-function L(s) and conductor N, then
L(s) may be analytically continued, so that the function

Λ(s) = (2π)−sΓ (s)L(s),

where Γ (s) denotes Euler’s gamma-function, is holomorphic throughout the whole
complex plane and satisfies the functional equation

Λ(s) = ±N1−sΛ(2− s).

(In fact it is the functional equation which determines the precise definition of the
conductor.)

The second conjecture, due to Birch and Swinnerton-Dyer (1965), connects the
L-function with the group of rational points:

BSD-Conjecture: The L-function L(s) of the elliptic curve W has a zero at s = 1 of
order exactly equal to the rank r ≥ 0 of the group E = E(W ,Q) of all rational points
of W .
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This is sometimes called the ‘weak’ conjecture of Birch and Swinnerton-Dyer,
since they also gave a ‘strong’ version, in which the nonzero constant C such that

L(s) ∼ C(s − 1)r for s → 1

is expressed by other arithmetic invariants of W . The strong conjecture may be
regarded as an analogue for elliptic curves of a known formula for the Dedekind zeta-
function of an algebraic number field. An interesting reformulation of the strong form
has been given by Bloch (1980).

The statement of the third conjecture requires some preparation. For any positive
integer N , let Γ0(N) denote the multiplicative group of all matrices

A =
(

a b
c d

)
,

where a, b, c, d are integers such that ad− bc = 1 and c ≡ 0 mod N . A function f (τ )
which is holomorphic for τ ∈ H (the upper half-plane) is said to be a modular form
of weight 2 for Γ0(N) if, for every such A,

f ((aτ + b)/(cτ + d)) = (cτ + d)2 f (τ ).

An elliptic curve W , with L-function

L(s) =
∑
n≥1

cnn−s

and conductor N , is said to be modular if the function

f (τ ) =
∑
n≥1

cne2π inτ ,

which is certainly holomorphic in H , is a modular form of weight 2 for Γ0(N). This
actually implies that f is a ‘cusp form’ and satisfies a functional equation

f (−1/Nτ ) = ∓Nτ 2 f (τ ).

It follows that the Mellin transform

Λ(s) =
∫ ∞

0
f (iy)ys−1dy

may be analytically continued for all s ∈ C and satisfies the functional equation

Λ(s) = ±N1−sΛ(2− s).

(Note the reversal of sign.) But

Λ(s) = (2π)−sΓ (s)L(s),

since, by (9) of Chapter IX,∫ ∞

0
e−2πny ys−1dy = (2πn)−sΓ (s).

Hence any modular elliptic curve satisfies the HW-conjecture.
It was shown by Weil (1967) that, conversely, an elliptic curve is modular if

not only its L-function L(s) = ∑
n≥1 cnn−s has the properties required in the
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HW-conjecture but also, for sufficiently many Dirichlet characters χ , the ‘twisted’
L-functions

L(s, χ) =
∑
n≥1

χ(n)cnn−s

have analogous properties.
The definition of modular elliptic curve can be given a more intuitive form: the

elliptic curve Ca,b is modular if there exist non-constant functions X = f (τ ),Y =
g(τ ) which are holomorphic in the upper half-plane, which are invariant under
Γ0(N), i.e.

f ((aτ + b)/(cτ + d)) = f (τ ), g((aτ + b)/(cτ + d)) = g(τ )

for every

A =
(

a b
c d

)
∈ Γ0(N),

and which parametrize Ca,b:

g2(τ ) = f 3(τ )+ a f (τ )+ b.

The significance of modular elliptic curves is that one can apply to them the
extensive analytic theory of modular forms. For example, through the work of Kolyva-
gin (1990), together with results of Gross and Zagier (1986) and others, it is known that
(as the BSD-conjecture predicts) a modular elliptic curve has rank 0 if its L-function
does not vanish at s = 1, and has rank 1 if its L-function has a simple zero at s = 1.

The third conjecture, stated rather roughly by Taniyama (1955) and more precisely
by Weil (1967), is simply this:

TW-Conjecture: Every elliptic curve over the field Q of rational numbers is modular.

The name of Shimura is often also attached to this conjecture, since he certainly
contributed to its ultimate formulation. Shimura (1971) further showed that any elliptic
curve which admits complex multiplication is modular. A big step forward was made
by Wiles (1995) who, with assistance from Taylor, showed that any semi-stable elliptic
curve is modular. A complete proof of the TW-conjecture, due to Diamond and others,
has recently been announced by Darmon (1999). Thus all the results which had previ-
ously been established for modular elliptic curves actually hold for all elliptic curves
over Q.

It should be mentioned that there is also a ‘Riemann hypothesis’ for elliptic curves
over Q, namely that all zeros of the L-function in the critical strip 1/2 < Rs < 3/2
lie on the line Rs = 1.

Mordell’s theorem was extended from elliptic curves over Q to abelian varieties
over any algebraic number field by Weil (1928). Many other results in the arithmetic
of elliptic curves have been similarly extended. The topic is too vast to be considered
here, but it should be said that our exposition for the prototype case is not always in
the most appropriate form for such generalizations.
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In the same paper in which he proved his theorem, Mordell (1922) conjectured that
if a non-singular irreducible projective curve, defined by a homogeneous polynomial
F(x, y, z) with rational coefficients, has infinitely many rational points, then it is bira-
tionally equivalent to a line, a conic or a cubic. Mordell’s conjecture was first proved by
Faltings (1983). Actually Falting’s result was not restricted to plane algebraic curves,
and on the way he proved two other important conjectures of Tate and Shafarevich.

Falting’s result implies that the Fermat equation xn + yn = zn has at most
finitely many solutions in integers if n > 3. In the next section we will see that Wiles’
result that semi-stable elliptic curves are modular implies that there are no solutions in
nonzero integers.

6 Some Applications

The arithmetic of elliptic curves has an interesting application to the ancient problem
of congruent numbers. A positive integer n is (confusingly) said to be congruent if it is
the area of a right-angled triangle whose sides all have rational length, i.e. if there exist
positive rational numbers u, v,w such that u2 + v2 = w2, uv = 2n. For example, 6 is
congruent, since it is the area of the right-angled triangle with sides of length 3, 4, 5.
Similarly, 5 is congruent, since it is the area of the right-angled triangle with sides of
length 3/2, 20/3, 41/6.

In the margin of his copy of Diophantus’ Arithmetica Fermat (c. 1640) gave a
complete proof that 1 is not congruent. The following is a paraphrase of his argument.
Assume that 1 is congruent. Then there exist positive rational numbers u, v,w such
that

u2 + v2 = w2, uv = 2.

Since an integer is a rational square only if it is an integral square, on clearing denom-
inators it follows that there exist positive integers a, b, c, d such that

a2 + b2 = c2, 2ab = d2.

Choose such a quadruple a, b, c, d for which c is minimal. Then (a, b) = 1. Since d
is even, exactly one of a, b is even and we may suppose it to be a. Then

a = 2g2, b = h2

for some positive integers g, h. Since b and c are both odd and (b, c) = 1,

(c − b, c + b) = 2.

Since

(c− b)(c+ b) = a2 = 4g4,

it follows that

c + b = 2c4
1, c − b = 2d4

1 ,
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for some relatively prime positive integers c1, d1. Then

(c2
1 − d2

1 )(c
2
1 + d2

1 ) = c4
1 − d4

1 = b = h2.

But

(c2
1 − d2

1 , c2
1 + d2

1 ) = 1,

since (c2
1, d

2
1 ) = 1 and b is odd. Hence

c2
1 − d2

1 = p2, c2
1 + d2

1 = q2,

for some odd positive integers p, q . Thus

a1 = (q + p)/2, b1 = (q − p)/2

are positive integers and

a2
1 + b2

1 = (q2 + p2)/2 = c2
1,

2a1b1 = (q2 − p2)/2 = d2
1 .

Since c1 ≤ c4
1 < c, this contradicts the minimality of c.

It follows that the Fermat equation

x4 + y4 = z4

has no solutions in nonzero integers x, y, z. For if a solution existed and if we put

u = 2|yz|/x2, v = x2/|yz|, w = (y4 + z4)/x2|yz|,

we would have u2 + v2 = w2, uv = 2.
It is easily seen that a positive integer n is congruent if and only if there exists a

rational number x such that x , x + n and x − n are all rational squares. For suppose

x = r2, x + n = s2, x − n = t2,

and put

u = s − t, v = s + t, w = 2r.

Then

uv = s2 − t2 = 2n

and

u2 + v2 = 2(s2 + t2) = 4x = w2.
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Conversely, if u, v,w are rational numbers such that uv = 2n and u2 + v2 = w2, then

(u + v)2 = w2 + 4n, (u − v)2 = w2 − 4n.

Thus, if we put x = (w/2)2, then x , x + n and x − n are all rational squares.
It may be noted that if x is a rational number such that x , x + n and x − n are all

rational squares, then x �= −n, 0, n, since n > 0 and 2 is not a rational square.
The problem of determining which positive integers are congruent was considered

by Arab mathematicians of the 10th century AD, and later by Fibonacci (1225) in his
Liber Quadratorum. The connection with elliptic curves will now be revealed:

Proposition 13 A positive integer n is congruent if and only if the cubic curve Cn

defined by the polynomial

Y 2 − (X3 − n2 X)

has a rational point P = (x, y) with y �= 0.

Proof Suppose first that n is congruent. Then there exists a rational number x such
that x , x + n and x − n are all rational squares. Hence their product

x3 − n2x = x(x − n)(x + n)

is also a rational square. Since x �= −n, 0, n, it follows that x3 − n2x = y2, where y
is a nonzero rational number.

Suppose now that P = (x, y) is any rational point of the curve Cn with y �= 0. If
we put

u = |(x2 − n2)/y|, v = |2nx/y|, w = |(x2 + n2)/y|,
then u, v,w are positive rational numbers such that

u2 + v2 = w2, uv = 2n. �

It is readily verified that λ = 1/2 in the Riemann normal form for Cn .
We now show that, for every positive integer n, the torsion group of Cn has order 4,

consisting of the identity element O, and the three elements (0, 0), (n, 0), (−n, 0) of
order 2. Assume on the contrary that for some positive integer n the curve Cn has a
rational point P = (x, y) of finite order with y �= 0 and take n to be the least positive
integer with this property. Then 2P = (x ′, y ′) is also a rational point of Cn of finite
order. The formula for the other point of intersection with Cn of the tangent to Cn at
P shows that

x ′ = [(x2 + n2)/2y]2.

It follows that

x ′ + n = [(x2 − n2 + 2nx)/2y]2,

x ′ − n = [(x2 − n2 − 2nx)/2y]2.
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Moreover x ′, x ′ + n and x ′ − n are all nonzero rational squares. Since 2P is of finite
order, the theorem of Nagell and Lutz mentioned in §5 implies that x ′ is an integer.
Consequently

x ′ = r2, x ′ + n = s2, x ′ − n = t2

for some positive integers r, s, t . Hence n is even, since

2n = s2 − t2 = (s − t)(s + t)

and if one of s − t and s + t is even, so also is the other. Since n = s2 − r2 and
any integral square is congruent to 0 or 1 mod 4, we cannot have n ≡ 2 mod 4. Hence
n ≡ 0 mod 4. But then (x ′/4, y ′/8) is a rational point of finite order of Cn/4, which
contradicts the minimality of n.

If n is congruent, then so also is m2n for any positive integer m. Thus it is enough
to determine which square-free positive integers are congruent. By what we have just
proved and Proposition 13, a square-free positive integer n is congruent if and only if
the elliptic curve Cn has positive rank. Since Cn admits complex multiplication, a re-
sult of Coates and Wiles (1977) shows that if Cn has positive rank, then its L-function
vanishes at s = 1. (According to the BSD-conjecture, Cn has positive rank if and only
if its L-function vanishes at s = 1.)

By means of the theory of modular forms, Tunnell (1983) has obtained a practical
necessary and sufficient condition for the L-function L(s,Cn) of Cn to vanish at s = 1:
if n is a square-free positive integer, then L(1,Cn) = 0 if and only if A+(n) = A−(n),
where A+(n), resp. A−(n), is the number of triples (x, y, z) ∈ Z3 with z even, resp. z
odd, such that

x2 + 2y2 + 8z2 = n if n is odd, or 2x2 + 2y2 + 16z2 = n if n is even.

It is not difficult to show that A+(n) = A−(n) when n ≡ 5, 6 or 7 mod 8, but there
seems to be no such simple criterion in other cases. With the aid of a computer it has
been verified that, for every n < 10000, n is congruent if and only if A+(n) = A−(n).

The arithmetic of elliptic curves also has a useful application to the class number
problem of Gauss. For any square-free integer d < 0, let h(d) be the class number of
the quadratic field Q(

√
d). As mentioned in §8 of Chapter IV, it was conjectured by

Gauss (1801), and proved by Heilbronn (1934), that h(d) → ∞ as d → −∞. How-
ever, the proof does not provide a method of determining an upper bound for the values
of d for which the class number h(d) has a given value. As mentioned in Chapter II,
Stark (1967) showed that there are no other negative values of d for which h(d) = 1
besides the nine values already known to Gauss. Using methods developed by Baker
(1966) for the theory of transcendental numbers, it was shown by Baker (1971) and
Stark (1971) that there are exactly 18 negative values of d for which h(d) = 2. A
simpler and more powerful method for attacking the problem was found by Goldfeld
(1976). He obtained an effective lower bound for h(d), provided that there exists a
modular elliptic curve over Q whose L-function has a triple zero at s = 1. Gross and
Zagier (1986) showed that such an elliptic curve does indeed exist. However, to show
that this elliptic curve was modular required a considerable amount of computation.
The proof of the TW-conjecture makes any computation unnecessary.
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The most celebrated application of the arithmetic of elliptic curves has been the
recent proof of Fermat’s last theorem. In his copy of the translation by Bachet of
Diophantus’ Arithmetica Fermat also wrote “It is impossible to separate a cube into
two cubes, or a fourth power into two fourth powers or, in general, any power higher
than the second into two like powers. I have discovered a truly marvellous proof of
this, which this margin is too narrow to contain.”

In other words, Fermat asserted that, if n > 2, the equation

xn + yn = zn

has no solutions in nonzero integers x, y, z. In §2 of Chapter III we pointed out that it
was sufficient to prove his assertion when n = 4 and when n = p is an odd prime, and
we gave a proof there for n = 3.

A nice application to cubic curves of the case n = 3 was made by Kronecker
(1859). If we make the change of variables

x = 2a/(3b− 1), y = (3b + 1)/(3b − 1),

with inverse

a = x/(y − 1), b = (y + 1)/3(y − 1),

then

x3 + y3 − 1 = 2(4a3 + 27b2 + 1)/(3b − 1)3.

Since the equation x3 + y3 = 1 has no solution in nonzero rational numbers, the only
solutions in rational numbers of the equation

4a3 + 27b2 = −1

are a = −1, b = ±1/3. Consequently the only cubic curves Ca,b with rational coeffi-
cients a, b and discriminant d = −1 are Y 2 − X3 + X ± 1/3.

We return now to Fermat’s assertion. In the present section we have already given
Fermat’s own proof for n = 4. Suppose now that p ≥ 5 is prime and assume, contrary
to Fermat’s assertion, that the equation

a p + b p + cp = 0

does have a solution in nonzero integers a, b, c. By removing any common factor we
may assume that (a, b) = 1, and then also (a, c) = (b, c) = 1. Since a, b, c cannot all
be odd, we may assume that b is even. Then a and c are odd, and we may assume that
a ≡ −1 mod 4.

We now consider the projective cubic curve EA,B defined by the polynomial

Y 2 − X (X − A)(X + B),

where A = a p and B = b p. By construction, (A, B) = 1 and

A ≡ −1 mod 4, B ≡ 0 mod 32.
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Moreover, if we put C = −(A+ B), then C �= 0 and (A,C) = (B,C) = 1. The linear
change of variables

X → 4X, Y → 8Y + 4X

replaces EA,B by the elliptic curve WA,B defined by

Y 2 + XY − {X3 + (B − A − 1)X2/4− AB X/16},
which has discriminant

∆ = (ABC)2/28.

Our hypotheses ensure that the coefficients of WA,B are integers and that∆ is a nonzero
integer. It may be shown that WA,B is actually a minimal model for EA,B . Moreover,
when we reduce modulo any prime � which divides ∆, the singular point which arises
is a node. Thus WA,B is semi-stable and its conductor N is the product of the distinct
primes dividing ABC .

Fermat’s last theorem will be proved, for any prime p ≥ 5, if we show that such an
elliptic curve cannot exist if A, B,C are all p-th powers. If p is large, one reason for
suspecting that such an elliptic curve cannot exist is that the discriminant is then very
large compared with the conductor. Another reason, which does not depend on the size
of p, was suggested by Frey (1986). Frey gave a heuristic argument that WA,B could
not then be modular, which would contradict the TW-conjecture.

Frey’s intuition was made more precise by Serre (1987). Let G be the group of
all automorphisms of the field of all algebraic numbers. With any modular form for
Γ0(N) one can associate a 2-dimensional representation of G over a finite field. Serre
showed that Fermat’s last theorem would follow from the TW-conjecture, together with
a conjecture about lowering the level of such ‘Galois representations’ associated with
modular forms. The latter conjecture was called Serre’s ε-conjecture, because it was a
special case of a much more general conjecture which Serre made.

Serre’s ε-conjecture was proved by Ribet (1990), although the proof might be de-
scribed as being of order ε−1. Now, for the first time, the falsity of Fermat’s last the-
orem would have a significant consequence: the falsity of the TW-conjecture. Since
WA,B is semi-stable with the normalizations made above, to prove Fermat’s last the-
orem it was actually enough to show that any semi-stable elliptic curve was modular.
As stated in §5, this was accomplished by Wiles (1995) and Taylor and Wiles (1995).
We will not attempt to describe the proof since, besides Fermat’s classic excuse, it is
beyond the scope of this work.

Fermat’s last theorem contributed greatly to the development of mathematics, but
Fermat was perhaps lucky that his assertion turned out to be correct. After proving
Fermat’s assertion for n = 3, that the cube of a positive integer could not be the sum
of two cubes of positive integers, Euler asserted that, also for any n ≥ 4, an n-th power
of a positive integer could not be expressed as a sum of n − 1 n-th powers of positive
integers. A counterexample to Euler’s conjecture was first found, for n = 5, by Lander
and Parkin (1966):

275 + 845 + 1105 + 1335 = 1445.
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Elkies (1988) used the arithmetic of elliptic curves to find infinitely many counterex-
amples for n = 4, the simplest being

958004 + 2175194 + 4145604 = 4224814.

A prize has been offered by Beal (1997) for a proof or disproof of his conjecture
that the equation

xl + ym = zn

has no solution in coprime positive integers x, y, z if l,m, n are integers > 2. (The
exponent 2 must be excluded since, for example, 25 + 72 = 34 and 27 + 173 = 712.)
Will Beal’s conjecture turn out to be like Fermat’s or like Euler’s?

7 Further Remarks

For sums of squares, see Grosswald [31], Rademacher [46], and Volume II, Chapter IX
of Dickson [23]. A recent contribution is Milne [42].

A general reference for the theory of partitions is Andrews [2]. Proposition 4 is
often referred to as Euler’s pentagonal number theorem, since m(3m − 1)/2 (m > 1)
represents the number of dots needed to construct successively larger and larger pen-
tagons. A direct proof of the combinatorial interpretation of Proposition 4 was given
by Franklin (1881). It is reproduced in Andrews [2] and in van Lint and Wilson [41].
The replacement of proofs using generating functions by purely combinatorial proofs
has become quite an industry; see, for example, Bressoud and Zeilberger [13], [14].

Besides the q-difference equations used in the proof of Proposition 5, there are also
q-integrals: ∫ a

0
f (x)dq x :=

∑
n≥0

f (aqn)(aqn − aqn+1).

The q-binomial coefficients (mentioned in §2 of Chapter II)[
n
m

]
=
[

n
m

]
q

:= (q)n/(q)m(q)n−m (0 ≤ m < n),

where (a)0 = 1 and

(a)n = (1− a)(1− aq) · · · (1− aqn−1) (n ≥ 1),

have recurrence properties similar to those of ordinary binomial coefficients:[
n
m

]
=
[

n − 1
m − 1

]
+ qm

[
n − 1

m

]
=
[

n − 1
m

]
+ qn−m

[
n − 1
m − 1

]
(0 < m < n).

The q-hypergeometric series ∑
n≥0

(a)n(b)nxn/(c)n(q)n
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was already studied by Heine (1847). There is indeed a whole world of q-analysis,
which may be regarded as having the same relation to classical analysis as quan-
tum mechanics has to classical mechanics. (The choice of the letter ‘q’ nearly a
century before the advent of quantum mechanics showed remarkable foresight.) There
are introductions to this world in Andrews et al. [4] and Vilenkin and Klimyk [58].
For Macdonald’s conjectures concerning q-analogues of orthogonal polynomials, see
Kirillov [36].

Although q-analysis always had its devotees, it remained outside the mainstream
of mathematics until recently. Now it arises naturally in the study of quantum groups,
which are not groups but q-deformations of the universal enveloping algebra of a Lie
algebra.

The Rogers–Ramanujan identities were discovered independently by Rogers
(1894), Ramanujan (1913) and Schur (1917). Their romantic history is retold in
Andrews [2], which contains also generalizations. For the applications of the iden-
tities in statistical mechanics, see Baxter’s article (pp. 69–84) in Andrews et al. [3].
(The same volume contains other interesting articles on mathematical developments
arising from Ramanujan’s work.)

The Jacobi triple product formula was derived in Chapter XII as the limit of a
formula for polynomials. Andrews [1] has given a similar derivation of the Rogers–
Ramanujan identities. This approach has found applications and generalizations in
conformal field theory, with the two sides of the polynomial identity corresponding
to fermionic and bosonic bases for Fock space; see Berkovich and McCoy [9].

These connections go much further than the Rogers–Ramanujan identities. There
is now a vast interacting area which involves, besides the theory of partitions, solv-
able models of statistical mechanics, conformal field theory, integrable systems in
classical and quantum mechanics, infinite-dimensional Lie algebras, quantum groups,
knot theory and operator algebras. For introductory accounts, see [45], [10] and
various articles in [24] and [27]. More detailed treatments of particular aspects are
given in Baxter [8], Faddeev and Takhtajan [26], Jantzen [33], Jones [34], Kac [35]
and Korepin et al. [38].

For the Hardy–Ramanujan–Rademacher expansion for p(n), see Rademacher [46]
and Andrews [2]. An interesting proof by means of probability theory for the first term
of the expansion has been given by Báez-Duarte [5].

The definition of birational equivalence in §3 is adequate for our purposes, but has
been superseded by a more general definition in the language of ‘schemes’, which is
applicable to algebraic varieties of arbitrary dimension without any given embedding
in a projective space. For the evolution of the modern concept, see C̆iz̆már [18].

The history of the discovery of the group law on a cubic curve is described by
Schappacher [48].

Several good accounts of the arithmetic of elliptic curves are now available; e.g.,
Knapp [37] and the trilogy [52], [50], [51]. Although the subject has been transformed
in the past 25 years, the survey articles by Cassels [16], Tate [55] and Gelbart [28] are
still of use. Tate gives a helpful introduction, Cassels has many references to the older
literature, and Gelbart explains the connection with the Langlands program, for which
see also Gelbart [29].
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For reference, we give here the formulas for addition on an elliptic curve in the
so-called Weierstrass’s normal form. If P1 = (x1, y1) and P2 = (x2, y2) are points of
the curve

Y 2 + a1 XY + a3Y − (X3 + a2 X2 + a4 X + a6),

then

−P1 = (x1,−y1 − a1x1 − a3), P1 + P2 = P∗3 = (x3,−y3),

where

x3 = λ(λ + a1)− a2 − x1 − x2, y3 = (λ+ a1)x3 + µ+ a3,

and

λ = (y2 − y1)/(x2 − x1), µ = (y1x2 − y2x1)/(x2 − x1) if x1 �= x2;
λ = (3x2

1 + 2a2x1 + a4 − a1 y1)/N, µ = (−x3
1 + a4x1 + 2a6 − a3y1)/N,

with N = 2y1 + a1x1 + a3 if x1 = x2, P2 �= −P1.

An algorithm for obtaining a minimal model of an elliptic curve is described in
Laska [40]. Other algorithms connected with elliptic curves are given in Cremona [21].

The original conjecture of Birch and Swinnerton-Dyer was generalized by Tate [54]
and Bloch [11]. For a first introduction to the theory of modular forms see Serre [49],
and for a second see Lang [39].

Hasse actually showed that, if E is an elliptic curve over any finite field Fq contain-
ing q elements, then the number Nq of Fq-points on E (including the point at infinity)
satisfies the inequality

|Nq − (q + 1)| ≤ 2q1/2.

For an elementary proof, see Chahal [17]. Hasse’s result is the special case, when the
genus g = 1, of the Riemann hypothesis for function fields, which was mentioned in
Chapter IX, §5.

It follows from the result of Siegel (1929), mentioned in §9 of Chapter IV, and even
from the earlier work of Thue (1909), that an elliptic curve with integral coefficients
has at most finitely many integral points. However, their method is not constructive.
Baker [6], using the results on linear forms in the logarithms of algebraic numbers
which he developed for the theory of transcendental numbers, obtained an explicit up-
per bound for the magnitude of any integral point in terms of an upper bound for the
absolute values of all coefficients. Sharper bounds have since been obtained, e.g. by
Bugeaud [15]. (For modern proofs of Baker’s theorem on the linear independence of
logarithms of algebraic numbers, see Waldschmidt [59]. The history of Baker’s method
is described in Baker [7].)

For information about the proof of Mordell’s conjecture we refer to Bloch [12],
Szpiro [53], and Cornell and Silverman [19]. The last includes an English translation
of Faltings’ original article. As mentioned in §9 of Chapter IV, Vojta (1991) has given
a proof of the Mordell conjecture which is completely different from that of Faltings.
There is an exposition of this proof, with simplifications due to Bombieri (1990), in
Hindry and Silverman [32].
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For congruent numbers, see Volume II, Chapter XVI of Dickson [23], Tunnell [57],
and Noda and Wada [43]. The survey articles of Goldfeld [30] and Oesterlé [44] deal
with Gauss’s class number problem.

References for earlier work on Fermat’s last theorem were given in Chapter III.
Ribet [47] and Cornell et al. [20] provide some preparation for the original papers of
Wiles [60] and Taylor and Wiles [56]. For the TW-conjecture, see also Darmon [22].
For Euler’s conjecture, see Elkies [25].
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∈, /∈,=, �=,∅,⊆,⊂,∪,∩, 2
B\A, Ac, 3
A × B, An, a Rb, 3
Ra, f : A → B, f (a), f (A), 4
i A, g ◦ f, 4
f −1,N, 1, S(n), 5
sm(n), 6
a + b, pm(n), a · b, 7
<,≤,>,≥, 8
In , 9
#(E), 10
∼,Z,+, 11
0,−a, b − a, ·, 1, 12
P,−P , 13
P + P, P · P, a2, a < b, 14
a/b,Z×,∼,Q, 15
+, ·, a−1, 16
P,−P , 16, 17
P, A < B , 18
A + B , 19
AB , 20
R,∼, 22√

a, a1/2, bn, n
√

a, a1/n,R, 23
limn→∞, an → l, n →∞, 24
inf, sup, limn→∞, limn→∞, 24
[a, b], 26
|a|, d(a, b), 27
βδ(x), A, int A,Rn, |a|, 28
|a|1, |a|2,Fn

2, 28
C (I ), | f |, | f |1, | f |2,C (R),F∞2 , 29
limn→∞ an = a, an → a, 30
E , 31
L(I ), L2(I ), 32

ϕ′(x0), 33
|A|, 34
Br , 35
e, 38, 187
et , 39, 45
ln x, log x , 39
C, i , 40
z̄,Rz,I z, 41
cos z, sin z, 45
π , 46, 48, 186, 217, 364, 509
H, A, n(A), t (A), 49
i, j, k, 51
V (u), 52
〈x, y〉, SU 2(C), SO3(R), S3, P3(R), 53
SO4(R),O, ε, 53
α, n(α), 54
e, a−1, 55
ab,HK, 56
Sn, sgn(α),An , 57
H a,G/H , 58
an,< a >,< S >, 59
Na ,G × G′, 60
Mn(Z),P(X), A + B, AB, 61
na, a−1, R×, 62
R/S, 63
R ⊕ R′, αv, v +w, Dn , 64
C (I ), O,C 1(I ),U1+U2,U1⊕U2, 65
< S >, 66
dim V , [E : F], e1, . . . , en, T v,TS, 67
S + T,GL(V ),Mn(F), 68
V ⊗ V ′, T ⊗ T ′, 68
Mn(D), 69
〈u, v〉, ‖v‖, 71
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B, 74
�2, L2(I ), 75
∗R, 76

b|a, b�a,×, (a, b), 83
[a, b], 84
a ∧ b, a ∨ b, 85
(a1, a2, . . . , an), [a1, a2, . . . , an], 86
K [t], 87, 96
K (t), 88, 262
mCn , 92, 111
∂( f ), | f |, R[t], R[[t]], 96
K [t, t−1], 98
c( f ), 100
R[t1, . . . , tm ], 101
Φp(x), 102
f ′, 103
δ(a), 104
Q(
√

d),Od , 105
a ≡ b mod m, �≡, 106
Z(m), 107
Z×(m), 108
Fp, ϕ(m), 109
Φn(x), 111, 112
f̄ (x), 111
F×p , 114
G , N(γ ), 119
H , γ̄ , 120
N(γ ), (α, β)r , 121
�x�, g(k),w(k), 122
G(k), 123
K [[t1, . . . , tm ]], 124
Fq , 125

(a/n), sgn(πa), 130
(a/p), 133
G(m, n), 137
Q(
√

d), α′, 140
N(α), ω,Od ,G ,E , 141
(a1, . . . , am), AB, 145
A′, 146
h(d),O(K ), 151
f ∗ g, 152
δ(n),A , | f |, 153
i(n), j (n), 154
τ (n), σ (n), 155
µ(n), f̂ (n), 156

Mp , 158
γ , 159, 380
Fn , 160
GLn(Z), 162
A ⊕ B , 163, 301
M1 ∩ M2,M1 + M2, 166
∆k , 171
|a|, 173
( f/g), 174

�ξ�, ξn, τ , 179
[a0, a1, a2, . . .], 179, 182, 212
pn, qn , 180
pn/qn , 181, 212
[a0, a1, . . . , aN ], 182
M(ξ), 190
D, 191
ζ ′, 192
[a0, . . . , am−1, am , . . . , am+h−1], 192
C , 198
H , 201
Γ, SL2(Z), T (z), S(z), 202
R(z), ∂(F), 203
F̄ , 204
τ ( f ), 206
h†(D), 206, 207
H /Γ , 209, 218
Γ (n), ξ (k), µk , 210
| f |, � f �, { f }, 211
PSL2(R), 218

det A, 224-229
Mn , diag[α11, α22, . . . , αnn], 225
SLn(F), At , 226, 229
‖v‖, 229, 234
A ⊗ B , 231
Jm , 232, 248
em , 233, 248
2-(v, k, λ), 247
t-(v, k, λ), 250
Cp,An,PSLn(q), 251
M12,M11,M24,M23,M22, 251
|x |, 254
[n, k, d],C(H ),G24, R(1,m), 255

Cζ ((z)),Cζ [[z]], |a|, 261
|a|∞, v p(a), |a|p, K (t), 262
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| f |∞, v p( f ), | f |p , 262
K ((t)), 263
F , 270, 271
Qp, ‖a‖, 271
R,M,U , 274
Zp , 275
π, k, 276
f (x), 280

F×, F×2, (u, v), 292
f ∼ g, det V ,U⊥, V1⊥V2, 293
ind V , 296
ind+V , ind−V , 297
τw, 300
A ⊕ B , 301
V ≈ V ′,W (F), (a, b)F , 303
fa,Ga,Q∞, (a, b)∞, (a, b)p, 304
fa,b,Ga,b, 307
sF ( f ), sp( f ), 310
Qv , | |v , (a, b)v , 313
(a, b/F), 324

χ(x), λ(S), 327
κn , 328, 348, 380
‖q‖, 329
< Y >, 331
d(Λ),Π , 333
int S,Λ∗, 334
Bε, 337
µi (K ,Λ),∆(K ), 339
K ∗, 340
|x |, 341
d(y, z), ‖x‖, (y, z), 342
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V (x0), βr (x0), 342
V (Λ), 344
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π(x), log x , 364
logn x, Li(x), pn, 365
θ(x), ψ(x), 367
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σ, t , 371
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ϑ(x), Γ (z), z!, 379
B(x, y), κn, γ, Z(s), 380
α∗, 382
γn, γ̃n , 384
|A|, ζK (s), 384
πK (x), Z K (s), 385
N(P), N(A), ζL (s), 386
τ (n), 388
M(x), 390
π2(x), L2(x),C2, 392

π(x ; m, a), θ(x ; m, a), 400
ψ(x ; m, a), e, χ , 400
χ1, Ĝ, g, 401
Gm , 403
L(s, χ), 404
Λ(s, χ), 409
ρ, 410, 434
ρR , 410
ρ ⊗ σ, ρU , 411
trA, 414
χ(s), 414, 434
g, δil , α

(µ)
i j , nµ, 415

χµ, χR , 416
Ck, hk , χik , 418
Ck,Ck′ , 418
σ, σ̃ , Ã(s), 419
ψ̃(s), 420
λ,ψvi , 421
Sn,An,Cn, ω, 423
Kρ , 426
C0(G),M( f ), 432
f̄ , ( f, g), µ(E), L p(G), f ∗ g, 433
H , ρ, χ(s), Ĝ , 434
f̂ , µ̂, 435
C (G), 436
SU (2), S3, 437
SO(3), 438
Tn , 439
GL(n), O(n),U(n), Sp(n), 440
[u, v], gl(n,R), gl(n,C), 440
An, Bn,Cn, Dn, L(G), 440
G̃, 441
G2, F4, E6, E7, E8, 442
SU (n), SO(n), Spin(n), 442
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�ξ�, {ξ}, I, ϕα,β(N), 448
χα,β , 449
e(t), 450
ϕa,b(N), I d , {x},m · x , 452
D∗N = D∗N (ξ1, . . . , ξN ), ϕα(N), 459
δN , 462
D∗N (x1, . . . , xN ), 464
B, A∆B, σ (A ), µ(B), 465
(X,B, µ), a.e.,

∫
X fdµ, 466

L(X,B, µ), T−1 B , 466
λ, Ta , 472
RA, 473
p1, . . . , pr , [a−m, . . . , am], 476
σ, Bp1,...,pr , 477
Ca1...ak

i1 ...ik
, 478

τ, B+p1,...,pr
, T , 479

T1M , 482
(X , d), Ā, 485

g(x), 496
I0, In, Jn(γ ), 497
gλ(x), 498, 510
U, V , 499, 531
an, bn,M(a, b), 503
K (a, b), 504, 505
E (a, b), en, 505
P(a, b, p), 505
pn, qn , 506
c,K (a, c), cn , 507
E (a, c), K (λ), E(λ), 508
fλ(x), 510
S(t) = S(t, λ), 510, 526
E(u), 516, 530
Π(u, a), 517, 530
q, z, θ(v) = θ(v; τ ), 519
θα,β(v) = θα,β(v; τ ), 520
θ00(v), θ01(v), θ10(v), θ11(v), 520

ϑ1(πv, q), ϑ2(πv, q), 521
ϑ3(πv, q), ϑ4(πv, q), Q0, 521
sn u, cn u, dn u, u = πθ2

00(0)v, 525
λ(τ), 525, 531
K(τ ),K′(τ ), 527
Θ(u),E(K), 530
H ,U, V , T, S, 531
T ,T ′, 533
D,D∗, D̄ , 534
F(α, β; γ ; z), 537
θΛ(τ), 538

r4(m), 541
σ(m), σ ′(m), 542
r2(m), 543
d1(m), d3(m), rs(m), p(n), 544
(a)0, (a)n, (a)∞, 546
η(τ), 549
C , C̄ , 550
W = W (a1, . . . , a6), 552, 558
Ca,b, 553, 558
0, d , 553
P1 + P2,−P , 556, 583
E = E(Q), h(P), 559
ĥ(P), 560, 561
(P, Q), 563
CA,B , D, E,N, 565
E, Et , E f , 569
∆, b2, b4, b6, b8, 570
Wp, Np, cp, L(s) = L(s,W ), 571
cn, N = N(W ), f p,Λ(s), 572
r, E(W ,Q), 572
Γ0(N), 573
Cn , 577
A+(n), A−(n), 578
EA,B , 579
WA,B , 580
[ n

m ]q , 581

The Landau order symbols are defined in the following way: if I = [t0,∞) is a half-
line and if f, g : I → R are real-valued functions with g(t) > 0 for all t ∈ I , we
write

f = O(g) if there exists a constant C > 0 such that | f (t)|/g(t) ≤ C for all t ∈ I ;
f = o(g) if f (t)/g(t)→ 0 as t →∞;
f ∼ g if f (t)/g(t)→ 1 as t →∞.

The end of a proof is denoted by �.
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Cartesian product, 3
cascade, 465
Casimir operator, 443
Catalan number, 93
Cauchy sequence, 25, 30
Cauchy’s theorem, 48, 534
Cauchy–Schwarz inequality, 28, 72
Cayley number, 53
Cayley–Hamilton theorem, 50
central limit theorem, 76, 391, 395,

489
centralizer, 60
centre, 49, 53, 68–70
chain condition, 90, 95, 96, 98, 101, 148
chain rule, 33
character of

abelian group, 400, 401, 434
representation, 414, 437

character theory, texts, 443
characteristic

function, 327
of ring, 62–63, 103, 111
polynomial, 283, 419

Chebyshev’s functions, 367–370, 372,
400

Chevalley–Warning theorem, 116, 125
Chinese remainder theorem, 119, 125,

267, 316
chord and tangent process, 555
circle method, 123, 392, 549
class

field theory, 125, 325
function, 414, 417, 437
number, 151, 207, 218, 578, 584

classical mechanics, 429, 465, 481, 490
classification of

finite simple groups, 124, 251, 258
simple Lie algebras, 442, 444

Clebsch–Gordan formula, 438
Clifford algebra, 78, 324
closed

ball, 35, 344, 348
sets, 28

closure, 28, 204, 337, 485
codes, 255, 388
codeword, 256
coding theory, texts, 258, 395
coefficients, 66, 97
combinatorial line, 488
common divisor, 83
common multiple, 84
commutative

group, 55, 59, 79, 109
law, 7, 55, 83
ring, 60–61, 75, 78

compact
abelian group, 434, 483
group, 436, 437, 442
metric space, 485
set, 28, 43, 286–287, 432

complement of set, 3, 61
complete

elliptic integral, 496, 503–509, 517,
537

metric space, 30–32, 75, 270
ordered field, 23, 26
quotient, 181–183, 212, 479

completed zeta function, 381
completion of

metric space, 31
valued field, 271

complex
analysis, 48, 77
conjugate, 41
integration, 77
multiplication, 537, 574, 578
number, 39–48, 69

composite mapping, 4
composite number, 88, 124
composition of solutions, 196, 198, 199
conductor of elliptic curve, 572
conformal equivalence, 218
congruence

of integers, 106–119
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of symmetric matrices, 293
subgroup, 210

congruent, 106
congruent numbers, 575–578, 584
conic, 549, 550
conjugacy class, 60, 125, 417
conjugate

character, 421
complex number, 41
element of quadratic field, 140
group elements, 60, 417
ideal, 146
octonion, 54
quadratic irrational, 192, 209–210
quaternion, 49
representation, 421

connected set, 28, 44
constant, 386

coefficient, 97
sequence, 24, 269

contains, 2
continued fraction

algorithm, 179, 181, 211–212, 217
expansion of Laurent series, 212,

219
expansion of real number, 179–182
map, 479

continued fractions in higher dimen-
sions, 217

continued fractions, texts, 217
continuous function (map), 26, 28, 29,

43, 65
continuously differentiable, 34, 36, 65,

67
contraction principle, 32–33, 35, 36,

76, 285
contragredient representation, 411
convergence

in measure, 29
of compact sets, 353
of lattices, 352–357

convergent of Laurent series, 212
convergent of real number, 181, 182,

185–188, 480
convergent sequence, 24–26, 30, 32,

33, 269

convex set, 327, 341
convolution product, 152, 433
Conway’s groups, 351
coordinate, 3, 41, 47
coprime, 85
coset, 58, 63–64, 107

representative, 58, 78
right, left, 58

countably infinite, 10
covering, 337, 359
critical

determinant, 339, 348, 357
lattice, 339, 357

cross-polytope, 339
cross-ratio, 500
crystal, 346, 358
crystallographic group, 346–347, 358
crystallography, 358
cube, 339
cubic

curve, 549–558
polynomial, 39, 76

cusp, 554, 571, 572
form, 573

cut, 18–21
cyclic group, 59, 62, 110, 114–116,

198, 251, 263, 423
cyclotomic

field, 151
polynomial, 102, 111, 112, 135, 426

cylinder set
general, 478
special, 476

decimal expansion, 18, 107, 476, 509
decomposable lattices, 348, 349
Dedekind

construction of reals, 18–22, 76
eta function, 549
zeta function, 384–385, 395, 409,

573
Dedekind–Peano axioms, 5, 76
deduced representation, 420
degree of

affine curve, 549
algebraic number, 214
extension field, 67
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polynomial, 96–97
representation, 410, 414

De Morgan’s laws, 3
dense, 17–18, 275, 447

sequence, 448, 452
subset of metric space, 31, 270

densest
lattice, 348, 350–351, 359, 362
packing, 359–360

density of lattice packing, 348
derivative, 33–36, 67, 103
designs, 247–251, 254–258
determinant, 53, 180, 181, 224–229,

256
of lattice, 333, 347, 356
of quadratic space, 293

diagonal matrix, 225
diagonalization of quadratic form, 237–

239, 294, 297
difference of sets, 3
differentiable map, 33–34, 43, 75
differential form, 256
dimension of vector space, 67
Diophantine

approximation, 185, 212, 217, 219,
329, 358

equation, 161, 178, 195–201, 215–
217, 219

direct product of groups, 53, 60, 117,
172, 401, 429, 443

direct sum of
rings, 64, 117
vector spaces, 65

Dirichlet
L-function, 404–409, 443
character, 403–404, 574
domain, 342
product, 152–156, 175, 389
series, 175, 389,572

Dirichlet’s
class number formula, 218
convergence criterion, 138

Dirichlet’s theorem on
Diophantine approximation, 329
primes in arithmetic progression, 218,

313, 316, 400, 443

units in number fields, 176
discrepancy, 459–464, 488
discrete

absolute value, 275, 276
group, 203, 330
set, 342
subgroup, 330, 490

discriminant of
binary quadratic form, 205–207
elliptic curve, 553, 570, 579, 580
lattice, 333
quadratic irrational, 191

disjoint sets, 2
distance, 18, 27–31
distributive

lattice, 85
law, 7, 60, 85

divisibility tests, 107
divisible, 83, 87, 146
division

algebra, 54, 78
algorithm, 14, 90, 98
ring, 62–70, 125

divisor, 83, 386
of zero, 14, 62

doubly-periodic function, 514–517,
527, 538

dual
2-design, 249
convex body, 340
group, 401, 434, 443
lattice, 334, 340, 538

duality theorem, 435
dynamical system, 30, 388, 395, 447
Dynkin diagrams, 359

e, 38, 187
echelon form, 164
eigenvalue, 239, 257, 430
eigenvector, 239
Eisenstein

integers, 141–143
irreducibility criterion, 102, 124

element, 2
elementary group, 425
ellipse, 237, 493–494
ellipsoid, surface area of, 495–496
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elliptic
curves, 555–558, 569–574, 582–583
functions, 509–516, 525–530

elliptic integral, 496–503, 536–537
of first kind, 498, 505, 514–516, 537
of second kind, 498, 505, 516–517,

530, 537
of third kind, 498, 506, 517, 530,

537
empty set, 2, 61
endomorphism of torus, 473, 483
energy surface, 465, 481
entropy, 482–483
equal, 2
equivalence class, 4
equivalence of

absolute values, 266
complex numbers, 184, 191, 201, 210
fundamental sequences, 26, 31
Hadamard matrices, 252
ideals, 151
matrices, 171
quadratic forms, 293, 297–298, 311,

317, 325
representation, 410, 416

equivalence relation, 4, 11, 26, 58, 106,
184

Erdős–Turan inequality, 462, 489
ergodic, 465

hypothesis, 464–465, 470
measure-preserving transformation,

470, 472–473, 478–479
theorems, 466, 489

ergodic theory, texts, 489
error-correcting code, 28, 256, 258
Euclidean

algorithm, 91–92, 98, 104, 109, 121,
181, 560

distance, 28, 72, 346
domain, 104–106, 119–120, 124, 142,

171
metric, 342
norm, 229, 234, 342
prime number theorem, 134, 363

Euler’s
angles, 439

conjecture, 580–581, 584
constant, 159, 380
criterion for quadratic residues, 112,

135, 136, 159
formulas for cos z and sin z, 45, 77
parametrization of rotations, 51–53
pentagonal number theorem, 545, 581
phi-function, 109–110, 114, 154–157,

389, 399, 403
prime number theorem, 363–364
product formula, 371, 381, 405
theorem on homogeneous functions,

551
even

lattice, 349, 351
permutation, 57, 130, 224, 227

eventually periodic, 18, 277
continued fraction, 192

exceptional simple Lie algebra, 442,
444

existence theorem for ordinary differ-
ential equations, 36–38, 76, 510

exponential
function, 38–39, 45–47
series, 38, 45
sums, 388, 489

extended Riemann hypothesis, 385,
395, 409

extension of absolute value, 273,
283–284, 290

extension of field, 45, 67, 283–284,
288, 386

exterior algebra, 256
extreme point, 236

face, 343
facet, 343–345

vector, 344–346
factor, 83, 146

group, 58–59
factorial domain, 90, 101, 124, 151,

153, 175
factorization, 124, 127
Faltings’ theorem, 215, 575, 583
Fano plane, 248, 250
Fermat equation, 142, 151, 575, 576,

579
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Fermat number, 160–161, 175
Fermat prime, 160–161
Fermat’s

last theorem, 151–152, 175, 579–
580, 584

little theorem, 110–112, 116
Fibonacci numbers, 95
field, 23, 40, 62–63, 109, 125

of fractions, 88, 100, 261
field theory, texts, 79
finite

dimensional, 66, 67
field, 109, 125, 232, 289, 298, 386–

387, 570–571
field extension, 45, 67, 283–284, 288,

386
group, 57
set, 10

finitely generated, 63, 66, 95, 168, 172,
176, 559

Fischer’s inequality, 239, 243
fixed point, 32, 35, 37

theorems, 32, 76
flex, 551–553, 557
flow, 465, 481, 483
formal

derivative, 103, 112, 278
Laurent series, 211, 219, 263, 271,

289, 358
power series, 96, 124, 275, 287

Fourier
integrals, 435–436, 443
inversion formula, 435–436
series, 79, 138, 378, 436, 443, 450
transform, 374, 378, 435–436

fraction, 15
fractional part, 448, 479
free

action, 218
product, 203
subgroup, 172, 569
submodule, 172

Fresnel integral, 139
Frobenius

complement, 429
conjectures, 124, 211

group, 429, 443
kernel, 429
reciprocity theorem, 420
theorem on division rings, 69

Fuchsian group, 218
function, 4; 386
function fields, 386–388, 395

and coding theory, 388, 395
functional equation of

L-functions, 409, 443, 572
zeta functions, 380–381, 385, 387,

443
fundamental

domain, 203, 333, 346, 499
sequence, 25, 26, 30–33, 269, 270,

274
solution, 197–201

fundamental theorem of
algebra, 42–45, 69, 77, 98, 413
arithmetic, 88–90, 124, 145

Furstenberg’s theorems, 484–487, 490
Furstenberg–Katznelson theorem, 485
Furstenberg–Weiss theorem, 485

Galois theory, 79, 160
gamma function, 328, 379–380, 394,

572
Gauss

class number problem, 218, 578, 584
invariant measure, 479
map, 479–480, 483, 489
sum, 135–140, 174

Gauss–Kuz’min theorem, 480, 489
Gaussian integer, 119–120, 141, 145,

542
Gaussian unitary ensemble, 384
GCD domain, 87–90, 98, 100–101
gear ratios, 187
Gelfand–Raikov theorem, 434
general linear group, 68, 251, 440
generalized

character, 428
trigonometric polynomial, 75, 458
upper half-plane, 218–219

generated by, 59, 60, 63, 66, 91, 114,
161, 331, 465

generating function, 544, 581
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generator
matrix, 255
of cyclic group, 114

genus of
algebraic curve, 216, 395, 558
field of algebraic functions, 387, 388

geodesic, 208–210, 219, 388, 395, 482
flow, 388, 395, 481, 483

geometric
representation of complex numbers,

41, 47
series, 34

geometry of numbers, texts, 357
Golay code, 255, 256
golden ratio, 179
good lattice point, 464
Good–Churchhouse conjectures,

391–392, 395
graph, 30
Grassmann algebra, 256
greatest

common divisors, 83–87, 89–92, 148
common left divisor, 167
common right divisor, 121
lower bound, 19, 22, 24

group, 55–60, 109
generated by reflections, 359, 442,

444
law on cubic curve, 555–556, 565,

582, 583
group theory, texts, 78

Haar
integral, 432–433, 443
measure, 358, 435, 474

Hadamard
design, 250–251
determinant problem, 223, 243–247,

250, 257
inequality, 223, 229–230
matrix, 223, 230–233, 250–257, 306,

321, 350
Hales–Jewett theorem, 488, 490
Hall’s theorem on solvable groups, 428,

443
Hamiltonian system, 481, 483
Hamming distance, 28, 255

Hardy–Ramanujan expansion, 549,
582

Hasse
invariant, 310, 311, 324
principle, strong and weak, 317, 325

Hasse–Minkowski theorem, 312–316,
324–325

Hasse–Weil (HW) conjecture, 572
Hausdorff

distance, 352–353
maximality theorem, 485
metric, 353, 356, 357

heat conduction equation, 519
height of a point, 559–561
Hensel’s lemma, 277–282, 290
Hermite

constant, 347–348, 351, 359
normal form, 175, 332

highest coefficient, 97
Hilbert field, 306–311, 324
Hilbert space, 75, 79, 433
Hilbert symbol, 303–307, 313, 324
Hilbert’s problems

5th, 440, 443
9th, 174
10th, 217
17th, 323–324, 325
18th, 358, 359–360

H -matrix, 230–231, 244, 245
holomorphic function, 48, 124, 372,

377, 404, 405, 512
homogeneous linear equations, 68, 166
homomorphism of

groups, 52–53, 58–59, 566
Lie algebras, 441
Lie groups, 441
rings, 63–64, 99, 111
vector spaces, 67

Horner’s rule, 99
Hurwitz integer, 120–121, 126, 541
hyperbolic

area, 209
geometry, 208–209, 219
length, 208
plane, 298, 299, 302

hypercomplex number, 77
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hypergeometric function, 537
hyperreal number, 76

ideal, 63, 90–91, 145, 148
class group, 151
in quadratic field, 146–151, 207
of Lie algebra, 441

identity
element, 12, 20, 55–56, 60, 65, 83
map, 4

Ikehara’s theorem, 367, 373, 385, 389,
390, 408

image, 4
imaginary

part, 40
quadratic field, 140

incidence matrix, 247–249
included, 2
indecomposable lattice, 348–349
indefinite quadratic form, 205
indeterminate, 96
index of

quadratic space, 296, 297
subgroup, 58, 60, 419, 423–424, 568

indicator function, 327, 358, 449,
470

individual ergodic theorem, 466
induced representation, 419–423, 425
induction, 9
infimum, 19, 22
infinite order, 59
inflection point, 551
inhomogeneous Lorentz group, 442
injection, 4
injective map, 4, 9, 68
inner product space, 71–75, 79, 433
integer, 10–15, 17

of quadratic field, 106, 141
integrable, 466

in sense of Lebesgue, 32, 75, 327,
435

in sense of Riemann, 327, 358, 449,
450

integral
divisor, 386
domain, 62, 87, 96
equations, 74, 79, 223

lattice, 349, 538
representation for Γ -function, 380,

573
interior, 28, 333, 337, 343
intersection

of modules, 166
of sets, 2–3, 61
of subspaces, 65

interval, 26, 29, 65
invariant

factor, 171
mean, 437
region, 481
subgroup, 58
subset, 485
subspace, 411

inverse, 12, 16, 55, 62, 153
class, 417
element, 55–56, 62, 556, 583
function theorem, 34–36, 76
map, 4–5

inversion
of elliptic integral, 514, 516
of order, 57, 129

invertible
element of ring, 62
matrix of integers, 162
measure-preserving transformation,

466, 479
involutory automorphism, 41, 140
irrational number, 22, 179, 448, 451
irrationality of

√
2, 18, 99

irreducible
character, 414, 416–418, 437
curve, 551, 552–553
element, 89–90, 145
ideal, 148
polynomial, 98, 102, 111–112
representation, 411–418, 434, 437

irredundant representation, 344
isometric

metric spaces, 31
quadratic spaces, 299

isometry, 31, 75, 208, 299–303, 346, 430
isomorphism, 5, 14, 17, 22, 23

of groups, 59
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of measure-preserving transformations,
482–483

of rings, 64
of vector spaces, 68

isotropic
subspace, 295
vector, 295

Jacobi symbol, 130–134, 139, 174
Jacobi’s

imaginary transformation, 377, 520
triple product formula, 518, 536, 545,

548, 582
Jacobian elliptic functions, 525–530
join, 2
Jordan–Hölder theorem, 124

Kepler conjecture, 359–360
kernel of

group homomorphism, 53, 59
linear map, 68
representation, 426
ring homomorphism, 63

Kervaire–Milnor theorem, 78
Kingman’s ergodic theorem, 489
K -point

affine, 549
projective, 550, 555

kissing number, 351, 359, 362
Kronecker

approximation theorem, 452, 488
delta, 415
field extension theorem, 45
product, 68, 231, 233, 250, 255, 411

Lagrange’s theorem
on four squares, 120–122, 218, 541
on order of subgroup, 58, 110, 114

Landau order symbols, 194, 365, 590
Landau’s theorem, 405–406
Landen’s transformation, 529, 536, 566
Langlands program, 174, 178, 582
Laplace transform, 373, 394, 405
lattice, 85, 123; 141, 332–334, 348

in locally compact group, 490
packing, 348, 359
packing of balls, 348, 350, 359

point, 328, 332
translates, 337–338

Laurent
polynomial, 98, 216
series, 48, 211, 263, 287, 289, 358,

373
law of

iterated logarithm, 391, 395, 489
Pythagoras, 17, 73–74, 108
quadratic reciprocity, 129, 133–136,

151, 174, 314
trichotomy, 8, 13, 21

least
common multiple, 84–87, 89
common right multiple, 167
element, 8
non-negative residue, 107, 115
upper bound, 19, 22, 24

least upper bound property (P4), 19,
22, 26

Lebesgue measurable, 32, 75
Lebesgue measure, 32, 327, 465, 472,

473, 480
Leech lattice, 350–351, 359, 362
Lefschetz fixed point theorem, 76
left

Bézout identity, 121
coprime matrices, 167–168
coset, 58
divisor, 167

Legendre
interchange property, 517
normal form, 498
polynomials, 74
relation, 508
symbol, 129, 133, 135, 149, 232,

305
theorem on ternary quadratic forms,

312
lemniscate, 495, 509, 536, 537
less than, 8
L-function, 404, 443, 571–574, 578
Lie

algebra, 440–442, 443–444
group, 439–442, 443–444
subalgebra, 440



602 Index

subgroup, 441
limit, 24, 30, 269
linear

code, 255, 388
combination, 65
differential system, 172–173
Diophantine equation, 91, 161,

165–166
fractional transformation, 179, 208,

500, 531, 535
map, 67
systems theory, 176
transformation, 67

linear algebra, texts, 79
linearly dependent, 66
linearly independent, 66
Linnik’s theorem, 409
Liouville’s

integration theory, 537
theorem in complex analysis, 77, 517
theorem in mechanics, 481

Lipschitz condition, 460
Littlewood’s theorem, 383, 395
LLL-algorithm, 358
L2-norm, 72
local-global principle, 317–318, 325
locally compact, 28

group, 358, 432–436, 444, 490
topological space, 432
valued field, 284–290

locally Euclidean topological space, 440
logarithm, 39, 364
lower

bound, 14, 19, 22
limit, 24
triangular matrix, 229

Lucas–Lehmer test, 158, 175

Mahler’s compactness theorem, 357,
360, 362

map, 4
mapping, 4
Markov

spectrum, 210, 219
triple, 210–211, 222

marriage theorem, 78
Maschke’s theorem, 411, 431

Mathieu groups, 251, 254, 255
‘matrix’, 162, 168
matrix theory, texts, 79, 257
maximal ideal, 64, 148, 269, 274
maximal totally isotropic subspaces, 296
Mazur’s theorem, 570
mean motion, 458, 489
measurable function, 29, 466
measure theory, texts, 489
measure zero, 29, 32, 482
measure-preserving transformation,

466–473, 477–484
meet, 2
Mellin transform, 573
Méray–Cantor construction of reals, 18,

26
Merkur’ev’s theorem, 324
meromorphic function, 48, 263, 512,

538
Mersenne prime, 158–159, 175
Mertens’ theorem, 364
method of successive approximations,

32, 36, 38
metric space, 27–32, 72, 255, 268
Meyer’s theorem, 313, 316
minimal

basis, 173
model, 571, 580, 583
polynomial, 283
vector, 345, 346

minimum of a lattice, 345–347, 356,
357

Minkowski’s theorem on
discriminant, 330, 358
lattice points, 328–330, 338–339, 358
linear forms, 328
successive minima, 339–341, 358

minor, 171
mixing transformation, 480, 483
Möbius

function, 156, 390–392, 395
inversion formula, 156–157, 175

modular
elliptic curve, 573–574, 578, 584,

586
form, 258, 544, 573–574, 578, 583
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function, 531–536, 538
group, 202–205, 531
transformation, 201

module, 161, 166–169, 171–172, 175
modulo m, 106
monic polynomial, 97, 151, 174, 262
monotonic sequence, 24–26
Monster sporadic group, 258
Montgomery’s conjecture, 383–384,

395
Mordell conjecture, 215, 216, 575, 583
Mordell’s theorem, 176, 559, 565–569
multiple, 83
multiplication, 60

by a scalar, 64
of integers, 12
of natural numbers, 7
of rational numbers, 16

multiplicative
function, 154–155, 175
group, 62, 114–115, 125, 292
inverse, 16

Nagell–Lutz theorem, 569, 578
natural

logarithm, 39, 364
number, 5–10, 14

nearest neighbour conjecture, 384
negative

definite quadratic space, 296
index, 297
integer, 13

neighbourhood, 33
Nevanlinna theory, 215, 219
Newton’s method, 277, 290
node, 554, 571, 572
non-archimedean absolute value, 261,

264, 273–276
non-associative, 53–54, 78
non-Euclidean

geometry, 208–209, 219
line, 208
triangle, 209, 533

non-negative linear functional, 432
nondecreasing sequence, 24, 25
nondegenerate lattice, 332
nonincreasing sequence, 24, 25

non-singular
cubic curve, 555
linear transformation, 68
matrix, 227
point, 549, 550
projective curve, 387
projective variety, 387
quadratic subspace, 293

norm of
n-tuple, 28
complex number, 119
continuous function, 28, 29
element of quadratic field, 106,

140–141
ideal, 384
integral divisor, 386
linear map, 34
octonion, 54
prime divisor, 386
quaternion, 50–51, 121
vector, 71, 271, 341

norm-Euclidean domain, 106
normal

form for cubic curve, 552–553,
556–558

frequencies, 430
modes of oscillation, 430
number, 474, 476, 489
subgroup, 58–59, 79, 421, 427
vector, 474–476, 489

normed vector space, 271, 287, 341
n-th root of

complex number, 44, 47, 77
positive real number, 23

n-tuple, 3, 28, 64
nullity of linear map, 68
nullspace of linear map, 68
number theory, texts, 123
numbers, 1, 74
numerical integration, 460–464, 489

octave, 53
octonion, 53–55, 77, 82, 442
odd permutation, 57, 129, 130, 224,

227
one (1), 5, 60
one-to-one, 4
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correspondence, 4
open

ball, 28, 33, 342
set, 28, 43

operations research, 78
Oppenheim’s conjecture, 324, 325
order in natural numbers, 8
order of

element, 59, 113, 114
group, 57, 109, 113, 114
Hadamard matrix, 230
pole, 48
projective plane, 248

ordered field, 23, 26, 41, 76, 79, 280,
296–297, 308

ordinary differential equation, 36–38,
76, 510

orientation, 225, 347
Ornstein’s theorem, 483
orthogonal

basis, 74, 294, 335
complement, 293
group, 440
matrix, 52, 238
set, 73
sum, 293, 349
vectors, 73, 293

orthogonality relations, 402, 415–416,
418, 437

orthonormal set, 73–75
Oseledets ergodic theorem, 489
Ostrowski’s theorems, 266, 284, 290,

313

packing, 337, 359–360
p-adic

absolute value, 262
integer, 275, 277, 287
number, 18, 271, 275, 277, 287, 288,

310, 313, 436
pair correlation conjecture, 383–384,

395
Paley’s construction, 231–233, 255, 350
parallelogram law, 73, 79, 561, 564
parallelotope, 229, 333
parametrization, 51–52, 217, 219,

554–555, 558, 574

Parseval’s equality, 74–75, 335–336
partial

fractions, 497
order, 85
quotient, 181, 190, 212, 480

partition of
positive integer, 544–549
set, 4, 58

partition theory, texts, 581
Pascal triangle, 94
path-connected, 44, 437, 441
Peano axioms, 5, 76
Pell equation, 144, 196–201, 217

for polynomials, 213, 219
pendulum, period of, 494
Pépin test, 160–161
percolation processes, 489
perfect number, 157–159, 175
period of continued fraction, 192–194,

197–199, 217
periodicity of

continued fraction, 192–194, 209, 217
elliptic functions, 513–516, 527, 538
exponential function, 46–47

permutation, 57, 129–131, 227
perpendicular, 73
Perron–Frobenius theorem, 480
Pfister’s multiplicative forms, 323
pi (π), 46, 48, 186, 217, 222, 364, 509
Picard’s theorem, 538
pigeonhole principle, 10, 57
Plancherel theorem, 435
Poincaré

model, 208, 219
recurrence theorem, 483–484

point, 247, 250, 549, 550
at infinity, 550, 552, 553

pointwise ergodic theorem, 466
Poisson summation, 138, 378, 394, 435,

538
polar

coordinates, 47, 495
lattice, 334

pole of order n, 48
poles of elliptic functions, 526–527
polynomial, 96–103
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part, 211
ring, 87, 104

polytope, 343, 358
Pontryagin–van Kampen theorem, 435
positive

index, 297
integer, 13–14
measure, 433
rational number, 16–17
real number, 18, 22
semi-definite matrix, 235, 239

positive definite
matrix, 235, 239
quadratic form, 205
quadratic space, 296
rational function, 323–324

power series, 45, 46, 48
primality testing, 124, 127
prime

divisor, 386
element, 89, 145
ideal, 148–151, 384–385
ideal theorem, 385, 393, 395
number, 88–89

prime number theorem, 365–367, 369–
377, 390, 394–395

for arithmetic progressions, 394, 400,
403–408

primitive
Dirichlet character, 409
polynomial, 100
quadratic form, 206
root, 115–116, 124–125, 385
root of unity, 111, 112, 114

principal axes transformation, 238, 257
principal character, 401
principal ideal, 91, 145

domain, 92, 95–96, 98, 104,
105–106, 168–172

principle of the argument, 533
probability

measure, 466
space, 466
theory, 29, 75, 76, 391, 395, 582

problem of moments, 220
problem, 3x + 1, 490

product
formula for theta functions, 519, 521
formula for valuations, 267
measure, 476
of ideals, 145
of integers, 12
of linear maps, 67
of natural numbers, 7
of rational numbers, 16
of representations, 411
of sets, 3

projective
completion, 550–551, 552–553
conic, 550
cubic, 550
equivalence, 551–553
line, 550
plane, 248, 250, 321, 325
plane curve, 550
space, 53

proper
divisor, 89
subset, 2

properly equivalent
complex numbers, 184, 201
quadratic forms, 205–206

properly isomorphic, 347
public-key cryptography, 124
Puiseux expansion, 44
pure

imaginary complex number, 41
quaternion, 51, 52

Pythagoras’ theorem (or law), 17,
73–74, 108

Pythagorean triple, 108, 217

q-binomial coefficient, 95, 581
q-difference equation, 546
q-hypergeometric series, 581
q-integral, 581
quadratic

field, 105–106, 124, 140–151, 174,
207, 218

form, 205–207, 291–293, 563
irrational, 191–194, 206, 209–210,

214, 537
nature, 129, 133
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non-residue, 112–113, 121, 129,
132–133, 385

polynomial, 42, 283
residue, 112–113, 121, 129,

132–133, 280
space, 292–303, 324

quadratic spaces, texts, 324
quantum group, 582
quartic polynomial, 76–77
quasicrystal, 359
quasiperiodic tiling, 359
quaternion, 48–53, 69, 77–82, 120–122,

541
quaternionic analysis, 77
Quillen–Suslin theorem, 176
quotient, 15, 48, 90

group, 58
ring, 63, 107, 384
space, 209, 210, 218

Rådström’s cancellation law, 353, 360
Ramanujan’s tau-function, 388, 395
random matrices, 384, 395, 489
range of linear map, 68
rank of

elliptic curve, 569–570, 572
linear map, 68

rational
function, 88, 212, 262, 386
number, 15–17, 181–182, 277
transformation, 558

real
analysis, 26, 76
number, 22–26
part, 40
quadratic field, 140

reciprocal lattice, 334
reciprocity for Gauss sums, 137
recurrence for number of partitions, 545
recursion theorem, 5–6
reduced

automorphism group, 252
lattice basis, 358
quadratic form, 206, 207
quadratic irrational, 192–194

reducible
curve, 551

polynomial, 282
representation, 411

Reed–Muller code, 255–256
refinement theorems, 86, 123–124
reflection, 53, 300
reflexive relation, 4
regular prime, 151
regular representation, 410, 416–417,

434, 437
relatively

dense set, 343
prime, 85, 167

relevant vector, 344
remainder, 90

theorem, 99
replacement laws, 106
representation of

compact group, 436–439
finite group, 410–413, 437, 443
group, 410, 442–444
locally compact group, 434–436

representative of
coset, 58, 78
residue field, 276

representatives, distinct, 78
represented by quadratic form, 294, 295
residue, 48, 371, 390

class, 107, 400
field, 274–276, 386

resolution of singularities, 558
restriction of map, 4
Ribet’s theorem, 580
Riemann

integrable, 327, 358, 449, 450, 452
normal form, 498–502, 510,

555–556
surface, 218
zeta function, 366, 370–373,

380–384, 390–392, 394
Riemann hypothesis, 381–383, 391–392,

395, 398
for algebraic varieties, 388, 395
for elliptic curves, 571, 574, 583
for function fields, 387–388, 395,

583
Riemann–Lebesgue lemma, 376
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Riemann–Roch theorem, 341, 358, 387
Riemannian manifold, 388, 481–482,

483
Riesz representation theorem, 433
Riesz–Fischer theorem, 75
right

coset, 58–60
multiple, 167
vector spaces, 68

ring, 60–64, 68, 96, 107
ring theory, texts, 78
Rogers–Ramanujan identities, 546–549,

582
root, 99–100, 219, 277

lattice, 348–351, 359
Roth’s theorem on algebraic numbers,

123, 214–216, 219
ruler and compass constructions, 160,

175

scalar, 64
schemes, 582
Schmidt’s

discrepancy theorem, 463–464, 489
subspace theorem, 214–215, 219

Schmidt’s orthogonalization process, 74,
230

Schreier’s refinement theorem, 123–124
Schur’s lemma, 413, 415, 417, 418
Schwarz’s inequality, 28, 72, 234, 373,

453
self-dual lattice, 334, 335, 340
semi-simple

Lie algebra, 441–442, 444
Lie group, 441–442, 444

semi-stable elliptic curve, 572, 574, 580
semidirect product, 428
semigroup, 76
Serre’s
ε-conjecture, 580
conjecture, 175–176

set, 2–4, 61
set of representatives, 276, 289
shift map, 477, 479, 487
Siegel’s

formula, 335
lemma, 340, 358

modular group, 218–219
theorem on Diophanite equations, 216,

217, 219, 583
sigma algebra, 433, 465
sign of a permutation, 57, 130–131,

227
signed permutation matrix, 242, 246,

252
simple

associative algebra, 69
basis, 349–350
group, 58, 251, 258, 427, 428
Lie algebra, 441–442, 444
Lie group, 77, 251
pole, 48
ring, 63

simply-connected, 53, 437
covering space, 53, 441–442
Lie group, 441–442

simultaneous diagonalization, 239, 429
singular matrix, 227, 228
small

divisor problems, 219–220
oscillations, 257, 429–430

Smith normal form, 169–173, 176
sojourn time, 470
solvable

by radicals, 39, 79
group, 428
Lie algebra, 443–444

spanned by, 66
special, 53

linear group, 202, 229
orthogonal group, 53, 438–439, 442
unitary group, 53, 437–438, 442

spectrometry, 236, 257
spherical trigonometry, 538
sporadic simple group, 251, 258, 351
square, 14

class, 292, 293, 565–566
design, 249, 258, 321

square 2-design, 249, 258, 321
square root of

complex number, 39, 42
positive real numbers, 22–23, 24–25

square-free
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element, 90
integer, 90, 140
polynomial, 103, 112

square-norm, 342, 345
star discrepancy, 459, 464
Steiner system, 250
step-function, 449
Stieltjes integral, 220, 368, 394
Stirling’s formula, 328, 380
Stone’s representation theorem, 62, 76
Stone–Weierstrass theorem, 488
strictly proper part, 211
strong

Hasse principle, 317–318
triangle inequality, 30, 32, 262

structure theorem
for abelian groups, 172, 569
for modules, 172

subadditive ergodic theorem, 489
subgroup, 56–57
subset, 2, 61
subspace, 65–68
successive

approximations, 32, 36, 38
minima, 339–341, 358

successor, 5
sum of

linear maps, 68
modules, 166–167
natural numbers, 6–7
points of elliptic curve, 556, 583
representations, 411, 412
subspaces, 65

sum of squares, 51, 55, 78, 126, 544,
581

four, 51, 120–122, 218, 541–542
three, 108, 120, 318–319
two, 108, 119–120, 199–201, 218,

247, 542–544
for polynomials, 322–323, 325
for rational function, 323–324, 325

supplements to law of quadratic reci-
procity, 133, 314

supremum, 19, 22
surface

area of ellipsoid, 495–496

of negative curvature, 388–389, 395,
482, 483

surjection, 4
surjective map, 4, 10, 68
Sylvester’s law of inertia, 297
symmetric

difference, 61, 465
group, 57, 227, 423–425
matrix, 232, 238–239, 292–294, 301
relation, 4
Riemannian space, 219
set, 328, 341

symmetric 2-design, 249
symmetry group, 346, 430
symmetry operation, 430
symplectic matrix, 219, 440, 442
systems of distinct representatives, 78
Szemeredi’s theorem, 484–485, 490

tangent
space, 440, 481–482
to affine curve, 550
to projective curve, 550

taxicab number, 117
Taylor series, 48, 373, 406
t-design, 250, 254–255
tensor product, 68, 303
theta functions, 379, 519–525, 530, 535,

541–544
of lattice, 538

tiling, 204, 337, 343, 344, 346, 358,
359, 499

topological
entropy, 388
field, 268
group, 432, 440, 442, 443

topology, 28, 268
torsion

group of elliptic curve, 569–570, 577
subgroup, 59, 172
submodule, 172

torsion-free, 346, 358
torus, n-dimensional, 439, 441, 472–473
total

order, 8, 18, 24
variation, 461–462, 489

totally isotropic subspace, 295–296, 299
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totient function, 110
trace of

matrix, 414
quaternion, 49–50

transcendental element, 386
transcendental number, 174, 578, 583
transformation formulas

for elliptic functions, 512, 528–529,
538

for theta functions, 377–379, 520,
522

transitive
law, 8
relation, 4

translation, 346
of torus, 472, 483

transpose of a matrix, 227, 229
triangle inequality, 27, 262
triangular matrix, 229
trichotomy law, 8
trigonometric

functions, 45–47, 77
polynomial, 450, 488

trivial
absolute value, 262, 273
character, 401
representation, 410
ring, 62

TW-conjecture, 574, 578, 580, 584, 586
twin prime, 392–393, 395
twisted L-functions, 574
2-design, 247–250, 258
type (A) Hilbert field, 308–310
type (B) Hilbert field, 308–311

ultrametric inequality, 262, 273, 277
uniform distribution, texts, 488
uniformization theorem, 218
uniformly distributed mod 1, 448–458
union of sets, 2–3, 61
unique factorization domain, 90
unit, 62, 87, 108, 144–145, 153
unit circle, 47–48
unit tangent bundle, 481–482
unitary

group, 440, 442
matrix, 53, 437

representation, 412, 434, 437
symplectic group, 440, 442

universal quadratic form, 295, 297
upper

bound, 19, 22
density, 484
half-plane, 201, 208–209, 519, 531,

534
limit, 24
triangular matrix, 229

valuation
ideal, 274–276
ring, 88, 274–276

valuation theory, texts, 290
value, 4

group, 262–263, 274, 276
valued field, 261–264
van der Corput’s

difference theorem, 454, 458
sequence, 463, 464

van der Waerden’s theorem, 485–488,
490

vector, 64
space, 64–70

vertex of polytope, 343
volume, 327
von Mangoldt function, 370, 372
Voronoi cell, 342–346, 349, 359

of lattice, 344–346, 353–357, 359
Voronoi diagram, 358

Waring’s problem, 122–123, 126
weak Hasse principle, 317
Wedderburn’s theorem on

finite division rings, 125
simple algebras, 69

Weierstrass approximation theorem, 74,
450, 488

weighing, 233–236, 257
matrix, 234–236, 257

weight of vector, 254–256
Weil conjectures, 387–388, 395
Weyl’s criterion, 451
Wiener’s Tauberian theorem, 367, 394
Wiles’ theorem, 575, 580, 584
Williamson type, 233
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Wilson’s theorem, 112, 122
Witt

cancellation theorem, 302, 303, 317
chain equivalence theorem, 310
equivalence, 303
extension theorem, 302
ring, 303, 323, 324

zero, 12, 60
zeros of elliptic functions, 526–527

zeta function, 366, 370–373, 380–384,
394, 398

generalizations, 389, 395
of function field, 386–387
of number field, 384–385, 395, 409
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