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Life is good for only two things, discovering
mathematics and teaching mathematics.

Siméon Poisson
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Preface

A problem book at the college level. A study guide for the Putnam competition. A bridge
between high school problem solving and mathematical research. A friendly introduction
to fundamental concepts and results. All these desires gave life to the pages that follow.

The William Lowell Putnam Mathematical Competition is the most prestigious math-
ematics competition at the undergraduate level in the world. Historically, this annual
event began in 1938, following a suggestion of William Lowell Putnam, who realized
the merits of an intellectual intercollegiate competition. Nowadays, over 2500 students
from more than 300 colleges and universities in the United States and Canada take part
in it. The name Putnam has become synonymous with excellence in undergraduate
mathematics.

Using the Putnam competition as a symbol, we lay the foundations of higher math-
ematics from a unitary, problem-based perspective. As such, Putnam and Beyond is a
journey through the world of college mathematics, providing a link between the stim-
ulating problems of the high school years and the demanding problems of scientific
investigation. It gives motivated students a chance to learn concepts and acquire strate-
gies, hone their skills and test their knowledge, seek connections, and discover real world
applications. Its ultimate goal is to build the appropriate background for graduate studies,
whether in mathematics or applied sciences.

Our point of view is that in mathematics it is more important to understand why than
to know how. Because of this we insist on proofs and reasoning. After all, mathematics
means, as the Romanian mathematician Grigore Moisil once said, “correct reasoning.’’
The ways of mathematical thinking are universal in today’s science.

Putnam and Beyond targets primarily Putnam training sessions, problem-solving
seminars, and math clubs at the college level, filling a gap in the undergraduate curriculum.
But it does more than that. Written in the structured manner of a textbook, but with
strong emphasis on problems and individual work, it covers what we think are the most
important topics and techniques in undergraduate mathematics, brought together within
the confines of a single book in order to strengthen one’s belief in the unitary nature of
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mathematics. It is assumed that the reader possesses a moderate background, familiarity
with the subject, and a certain level of sophistication, for what we cover reaches beyond
the usual textbook, both in difficulty and in depth. When organizing the material, we were
inspired by Georgia O’Keeffe’s words: “Details are confusing. It is only by selection,
by elimination, by emphasis that we get at the real meaning of things.’’

The book can be used to enhance the teaching of any undergraduate mathematics
course, since it broadens the database of problems for courses in real analysis, linear
algebra, trigonometry, analytical geometry, differential equations, number theory, com-
binatorics, and probability. Moreover, it can be used by graduate students and educators
alike to expand their mathematical horizons, for many concepts of more advanced math-
ematics can be found here disguised in elementary language, such as the Gauss–Bonnet
theorem, the linear propagation of errors in quantum mechanics, knot invariants, or the
Heisenberg group. The way of thinking nurtured in this book opens the door for true
scientific investigation.

As for the problems, they are in the spirit of mathematics competitions. Recall that
the Putnam competition has two parts, each consisting of six problems, numbered A1
through A6, and B1 through B6. It is customary to list the problems in increasing order
of difficulty, with A1 and B1 the easiest, and A6 and B6 the hardest. We keep the same
ascending pattern but span a range from A0 to B7. This means that we start with some
inviting problems below the difficulty of the test, then move forward into the depths of
mathematics.

As sources of problems and ideas we used the Putnam exam itself, the Interna-
tional Competition in Mathematics for University Students, the International Mathemat-
ical Olympiad, national contests from the United States of America, Romania, Rus-
sia, China, India, Bulgaria, mathematics journals such as the American Mathemati-
cal Monthly, Mathematics Magazine, Revista Matematică din Timişoara (Timişoara
Mathematics Gazette), Gazeta Matematică (Mathematics Gazette, Bucharest), Kvant
(Quantum), Kőzépiskolai Matematikai Lapok (Mathematical Magazine for High Schools
(Budapest)), and a very rich collection of Romanian publications. Many problems are
original contributions of the authors. Whenever possible, we give the historical back-
ground and indicate the source and author of the problem. Some of our sources are hard
to find; this is why we offer you their most beautiful problems. Other sources are widely
circulated, and by selecting some of their most representative problems we bring them
to your attention.

Here is a brief description of the contents of the book. The first chapter is introductory,
giving an overview of methods widely used in proofs. The other five chapters reflect
areas of mathematics: algebra, real analysis, geometry and trigonometry, number theory,
combinatorics and probability. The emphasis is placed on the first two of these chapters,
since they occupy the largest part of the undergraduate curriculum.

Within each chapter, problems are clustered by topic. We always offer a brief theoret-
ical background illustrated by one or more detailed examples. Several problems are left
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for the reader to solve. And since our problems are true brainteasers, complete solutions
are given in the second part of the book. Considerable care has been taken in selecting the
most elegant solutions and writing them so as to stir imagination and stimulate research.
We always “judged mathematical proofs,’’ as Andrew Wiles once said, “by their beauty.’’

Putnam and Beyond is the fruit of work of the first author as coach of the University
of Michigan and Texas Tech University Putnam teams and of the International Mathe-
matical Olympiad teams of the United States and India, as well as the product of the vast
experience of the second author as head coach of the United States International Math-
ematical Olympiad team, coach of the Romanian International Mathematical Olympiad
team, director of the American Mathematics Competitions, and member of the Question
Writing Committee of the William Lowell Putnam Mathematical Competition.

In conclusion, we would like to thank Elgin Johnston, Dorin Andrica, Chris Jeuell,
Ioan Cucurezeanu, Marian Deaconescu, Gabriel Dospinescu, Ravi Vakil, Vinod Grover,
V.V. Acharya, B.J. Venkatachala, C.R. Pranesachar, Bryant Heath, and the students of
the International Mathematical Olympiad training programs of the United States and
India for their suggestions and contributions. Most of all, we are deeply grateful to
Richard Stong, David Kramer, and Paul Stanford for carefully reading the manuscript and
considerably improving its quality. We would be delighted to receive further suggestions
and corrections; these can be sent to rgelca@gmail.com.

May 2007 Răzvan Gelca
Texas Tech University

Titu Andreescu
University of Texas at Dallas



A Study Guide

The book has six chapters: Methods of Proof, Algebra, Real Analysis, Geometry and
Trigonometry, Number Theory, Combinatorics and Probability, divided into subchapters
such as LinearAlgebra, Sequences and Series, Geometry, andArithmetic. All subchapters
are self-contained and independent of each other and can be studied in any order. In most
cases they reflect standard undergraduate courses or fields of mathematics. The sections
within each subchapter are best followed in the prescribed order.

If you are an undergraduate student trying to acquire skills or test your knowledge
in a certain field, study first a regular textbook and make sure that you understand it very
well. Then choose the appropriate chapter or subchapter of this book and proceed section
by section. Read first the theoretical background and the examples from the introductory
part; then do the problems. These are listed in increasing order of difficulty, but even
the very first can be tricky. Don’t get discouraged; put effort and imagination into each
problem; and only if all else fails, look at the solution from the back of the book. But
even if you are successful, read the solution, since many times it gives a new insight and,
more important, opens the door toward more advanced mathematics.

Beware! The last few problems of each section can be very hard. It might be a
good idea to skip them at the first encounter and return to them as you become more
experienced.

If you are a Putnam competitor, then as you go on with the study of the book try
your hand at the true Putnam problems (which have been published in three excellent
volumes). Identify your weaknesses and insist on those chapters of Putnam and Beyond.
Every once in a while, for a problem that you solved, write down the solution in detail,
then compare it to the one given at the end of the book. It is very important that your
solutions be correct, structured, convincing, and easy to follow.

An instructor can add some of the problems from the book to a regular course in
order to stimulate and challenge the better students. Some of the theoretical subjects can
also be incorporated in the course to give better insight and a new perspective. Putnam



xvi A Study Guide

and Beyond can be used as a textbook for problem-solving courses, in which case we
recommend beginning with the first chapter. Students should be encouraged to come up
with their own original solutions.

If you are a graduate student in mathematics, it is important that you know and
understand the contents of this book. First, mastering problems and learning how to write
down arguments are essential matters for good performance in doctoral examinations.
Second, most of the presented facts are building blocks of graduate courses; knowing
them will make these courses natural and easy.

“Don’t bother to just be better than your contemporaries or predecessors. Try to be
better than yourself’’ (W. Faulkner).



1

Methods of Proof

In this introductory chapter we explain some methods of mathematical proof. They
are argument by contradiction, the principle of mathematical induction, the pigeonhole
principle, the use of an ordering on a set, and the principle of invariance.

The basic nature of these methods and their universal use throughout mathematics
makes this separate treatment necessary. In each case we have selected what we think
are the most appropriate examples, solving some of them in detail and asking you to train
your skills on the others. And since these are fundamental methods in mathematics, you
should try to understand them in depth, for “it is better to understand many things than
to know many things’’ (Gustave Le Bon).

1.1 Argument by Contradiction

The method of argument by contradiction proves a statement in the following way:

First, the statement is assumed to be false. Then, a sequence of logical deductions yields
a conclusion that contradicts either the hypothesis (indirect method), or a fact known to
be true (reductio ad absurdum). This contradiction implies that the original statement
must be true.

This is a method that Euclid loved, and you can find it applied in some of the most
beautiful proofs from his Elements. Euclid’s most famous proof is that of the infinitude
of prime numbers.

Euclid’s theorem. There are infinitely many prime numbers.

Proof. Assume, to the contrary, that only finitely many prime numbers exist. List them
as p1 = 2, p2 = 3, p3 = 5, . . . , pn. The number N = p1p2 · · ·pn + 1 is divisible by
a prime p, yet is coprime to p1, p2, . . . , pn. Therefore, p does not belong to our list of
all prime numbers, a contradiction. Hence the initial assumption was false, proving that
there are infinitely many primes. ��
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We continue our illustration of the method of argument by contradiction with an
example of Euler.

Example. Prove that there is no polynomial

P(x) = anx
n + an−1x

n−1 + · · · + a0

with integer coefficients and of degree at least 1 with the property that P(0), P (1), P (2),
. . . are all prime numbers.

Solution. Assume the contrary and let P(0) = p, p prime. Then a0 = p and P(kp) is
divisible by p for all k ≥ 1. Because we assumed that all these numbers are prime, it
follows that P(kp) = p for k ≥ 1. Therefore, P(x) takes the same value infinitely many
times, a contradiction. Hence the conclusion. ��

The last example comes from I. Tomescu’s book Problems in Combinatorics (Wiley,
1985).

Example. Let F = {E1, E2, . . . , Es} be a family of subsets with r elements of some
set X. Show that if the intersection of any r + 1 (not necessarily distinct) sets in F is
nonempty, then the intersection of all sets in F in nonempty.

Solution. Again we assume the contrary, namely that the intersection of all sets in F is
empty. Consider the set E1 = {x1, x2, . . . , xr}. Because none of the xi , i = 1, 2, . . . , r ,
lies in the intersection of all the Ej ’s (this intersection being empty), it follows that for
each i we can find some Eji such that xi /∈ Eji . Then

E1 ∩ Ei1 ∩ Ei2 ∩ · · · ∩ Eir = ∅,
since, at the same time, this intersection is included in E1 and does not contain any
element of E1. But this contradicts the hypothesis. It follows that our initial assumption
was false, and hence the sets from the family F have a nonempty intersection. ��

The following problems help you practice this method, which will be used often in
the book.

1. Prove that
√

2 + √
3 + √

5 is an irrational number.

2. Show that no set of nine consecutive integers can be partitioned into two sets with
the product of the elements of the first set equal to the product of the elements of
the second set.

3. Find the least positive integer n such that any set of n pairwise relatively prime
integers greater than 1 and less than 2005 contains at least one prime number.
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4. Every point of three-dimensional space is colored red, green, or blue. Prove that one
of the colors attains all distances, meaning that any positive real number represents
the distance between two points of this color.

5. The union of nine planar surfaces, each of area equal to 1, has a total area equal to
5. Prove that the overlap of some two of these surfaces has an area greater than or
equal to 1

9 .

6. Show that there does not exist a function f : Z → {1, 2, 3} satisfying f (x) 	= f (y)

for all x, y ∈ Z such that |x − y| ∈ {2, 3, 5}.
7. Show that there does not exist a strictly increasing function f : N → N satisfying
f (2) = 3 and f (mn) = f (m)f (n) for all m, n ∈ N.

8. Determine all functions f : N → N satisfying

xf (y)+ yf (x) = (x + y)f (x2 + y2)

for all positive integers x and y.

9. Show that the interval [0, 1] cannot be partitioned into two disjoint sets A and B
such that B = A+ a for some real number a.

10. Let n > 1 be an arbitrary real number and let k be the number of positive prime
numbers less than or equal to n. Select k + 1 positive integers such that none of
them divides the product of all the others. Prove that there exists a number among
the chosen k + 1 that is bigger than n.

1.2 Mathematical Induction

The principle of mathematical induction, which lies at the very heart of Peano’s axiomatic
construction of the set of positive integers, is stated as follows.

Induction principle. Given P(n), a property depending on a positive integer n,

(i) if P(n0) is true for some positive integer n0, and
(ii) if for every k ≥ n0, P(k) true implies P(k + 1) true,

then P(n) is true for all n ≥ n0.

This means that when proving a statement by mathematical induction you should (i)
check the base case and (ii) verify the inductive step by showing how to pass from an
arbitrary integer to the next. Here is a simple example from combinatorial geometry.

Example. Finitely many lines divide the plane into regions. Show that these regions can
be colored by two colors in such a way that neighboring regions have different colors.
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Solution. We prove this by induction on the number n of lines. The base case n = 1 is
straightforward, color one half-plane black, the other white.

For the inductive step, assume that we know how to color any map defined by k lines.
Add the (k+ 1)st line to the picture; then keep the color of the regions on one side of this
line the same while changing the color of the regions on the other side. The inductive
step is illustrated in Figure 1.

Figure 1

Regions that were adjacent previously still have different colors. Regions that share
a segment of the (k + 1)st line, which were part of the same region previously, now lie
on opposite sides of the line. So they have different colors, too. This shows that the new
map satisfies the required property and the induction is complete. ��

A classical proof by induction is that of Fermat’s so-called little theorem.

Fermat’s little theorem. Let p be a prime number, and n a positive integer. Then np−n
is divisible by p.

Proof. We prove the theorem by induction on n. The base case n = 1 is obvious. Let us
assume that the property is true for n = k and prove it for n = k+1. Using the induction
hypothesis, we obtain

(k + 1)p − (k + 1) ≡ kp +
p−1∑
j=1

(
p

j

)
kj + 1 − k − 1 ≡

p−1∑
j=1

(
p

j

)
kj (mod p).

The key observation is that for 1 ≤ j ≤ p − 1,
(
p

j

)
is divisible by p. Indeed, examining(

p

j

)
= p(p − 1) · · · (p − j + 1)

1 · 2 · · · j ,

it is easy to see that when 1 ≤ j ≤ p − 1, the numerator is divisible by p while the
denominator is not. Therefore, (k + 1)p − (k + 1) ≡ 0 (mod p), which completes the
induction. ��
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The third example is a problem from the 5th W.L. Putnam Mathematical Competition,
and it was selected because its solution combines several proofs by induction. If you find
it too demanding, think of Vincent van Gogh’s words: “The way to succeed is to keep
your courage and patience, and to work energetically.’’

Example. For m a positive integer and n an integer greater than 2, define f1(n) = n,
f2(n) = nf1(n), . . . , fi+1(n) = nfi(n), . . . . Prove that

fm(n) < n!! · · ·! < fm+1(n),

where the term in the middle has m factorials.

Solution. For convenience, let us introduce g0(n) = n, and recursively gi+1(n) =
(gi(n))!. The double inequality now reads

fm(n) < gm(n) < fm+1(n).

Form = 1 this is obviously true, and it is only natural to think of this as the base case. We
start by proving the inequality on the left by induction on m. First, note that if t > 2n2

is a positive integer, then

t ! > (n2)t−n
2 = ntnt−2n2

> nt .

Now, it is not hard to check that gm(n) > 2n2 for m ≥ 2 and n ≥ 3. With this in mind,
let us assume the inequality to be true for m = k. Then

gk+1(n) = (gk(n))! > ngk(n) > nfk(n) = fk+1(n),

which proves the inequality for m = k + 1. This verifies the inductive step and solves
half of the problem.

Here we pause for a short observation. Sometimes the proof of a mathematical
statement becomes simpler if the statement is strengthened. This is the case with the
second inequality, which we replace by the much stronger

g0(n)g1(n) · · · gm(n) < fm+1(n),

holding true for m and n as above.
As an intermediate step, we establish, by induction on m, that

g0(n)g1(n) · · · gm(n) < ng0(n)g1(n)···gm−1(n),

for all m and all n ≥ 3. The base case m = 1 is the obvious n · n! < nn. Now assume
that the inequality is true for m = k, and prove it for m = k + 1. We have
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g0(n)g1(n) · · · gk+1(n) = g0(n)g0(n!) · · · gk(n!) < g0(n)(n!)g0(n!)g1(n!)···gk−1(n!)

< n(n!)g1(n)···gk(n) < (n · n!)g1(n)···gk(n)

< (nn)g1(n)···gk(n) = ng0(n)g1(n)···gk(n),

completing this induction, and proving the claim.
Next, we show, also by induction on m, that g0(n)g1(n) · · · gm(n) < fm+1(n) for

all n. The base case m = 1 is n · n! < nn; it follows by multiplying 1 · 2 < n and
3 · 4 · · · n < nn−2. Let’s see the inductive step. Using the inequality for the gm’s proved
above and the assumption that the inequality holds for m = k, we obtain

g0(n) · · · gm(n)gm+1(n) < ng0(n)···gm(n) < nfm+1(n) = fm+2(n),

which is the inequality for m = k + 1. This completes the last induction, and with it
the solution to the problem. No fewer than three inductions were combined to solve the
problem! ��

Listen and you will forget, learn and you will remember, do it yourself and you will
understand. Practice induction with the following examples.

11. Prove for all positive integers n the identity

1

n+ 1
+ 1

n+ 2
+ · · · + 1

2n
= 1 − 1

2
+ 1

3
− · · · + 1

2n− 1
− 1

2n
.

12. Prove that | sin nx| ≤ n| sin x| for any real number x and positive integer n.

13. Prove that for any real numbers x1, x2, . . . , xn, n ≥ 1,

| sin x1| + | sin x2| + · · · + | sin xn| + | cos(x1 + x2 + · · · + xn)| ≥ 1.

14. Prove that 3n ≥ n3 for all positive integers n.

15. Let n ≥ 6 be an integer. Show that(n
3

)n
< n! <

(n
2

)n
.

16. Let n be a positive integer. Prove that

1 + 1

23
+ 1

33
+ · · · + 1

n3
<

3

2
.

17. Prove that for any positive integer n there exists an n-digit number
(a) divisible by 2n and containing only the digits 2 and 3;
(b) divisible by 5n and containing only the digits 5, 6, 7, 8, 9.
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18. Prove that for any n ≥ 1, a 2n×2n checkerboard with 1×1 corner square removed
can be tiled by pieces of the form described in Figure 2.

19. Given a sequence of integers x1, x2, . . . , xn whose sum is 1, prove that exactly one
of the cyclic shifts

x1, x2, . . . , xn; x2, . . . , xn, x1; . . . ; xn, x1, . . . , xn−1

has all of its partial sums positive. (By a partial sum we mean the sum of the first
k terms, k ≤ n.)

20. Let x1, x2, . . . , xn, y1, y2, . . . , ym be positive integers, n,m > 1. Assume that
x1 + x2 + · · · + xn = y1 + y2 + · · · + ym < mn. Prove that in the equality

x1 + x2 + · · · + xn = y1 + y2 + · · · + ym

one can suppress some (but not all) terms in such a way that the equality is still
satisfied.

21. Prove that any function defined on the entire real axis can be written as the sum of
two functions whose graphs admit centers of symmetry.

22. Prove that for any positive integer n ≥ 2 there is a positive integer m that can be
written simultaneously as a sum of 2, 3, . . . , n squares of nonzero integers.

1

1
Figure 2

Even more powerful is strong induction.

Induction principle (strong form). GivenP(n)a property that depends on an integern,

(i) if P(n0), P (n0 + 1), . . . , P (n0 +m) are true for some positive integer n0 and non-
negative integer m, and

(ii) if for every k > n0 +m, P(j) true for all n0 ≤ j < k implies P(k) true,

then P(n) is true for all n ≥ n0.

We use strong induction to solve a problem from the 24th W.L. Putnam Mathematical
Competition.
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Example. Let f : N → N be a strictly increasing function such that f (2) = 2 and
f (mn) = f (m)f (n) for every relatively prime pair of positive integers m and n. Prove
that f (n) = n for every positive integer n.

Solution. The proof is of course by induction on n. Monotonicity implies right away
that f (1) = 1. However, the base case is not the given f (2) = 2, but f (2) = 2 and
f (3) = 3.

So let us find f (3). Because f is strictly increasing, f (3)f (5) = f (15) < f (18) =
f (2)f (9). Hence f (3)f (5) < 2f (9) and f (9) < f (10) = f (2)f (5) = 2f (5).
Combining these inequalities, we obtain f (3)f (5) < 4f (5), so f (3) < 4. But we know
that f (3) > f (2) = 2, which means that f (3) can only be equal to 3.

The base case was the difficult part of the problem; the induction step is rather
straightforward. Let k > 3 and assume that f (j) = j for j < k. Consider 2r (2m + 1)
to be the smallest even integer greater than or equal to k that is not a power of 2. This
number is equal to either k, k + 1, k + 2, or k + 3, and since k > 3, both 2r and 2m+ 1
are strictly less than k. From the induction hypothesis, we obtain f (2r (2m + 1)) =
f (2r )f (2m+ 1) = 2r (2m+ 1). Monotonicity, combined with the fact that there are at
most 2r (2m+ 1) values that the function can take in the interval [1, 2r (2m+ 1)], implies
that f (l) = l for l ≤ 2r (2m + 1). In particular, f (k) = k. We conclude that f (n) = n

for all positive integers n. ��
A function f : N → C with the property that f (1) = 1 and f (mn) = f (m)f (n)

whenever m and n are coprime is called a multiplicative function. Examples include
the Euler totient function and the Möbius function. In the case of our problem, the
multiplicative function is also strictly increasing. A more general result of P. Erdős shows
that any increasing multiplicative function that is not constant is of the form f (n) = nα

for some α > 0.

23. Show that every positive integer can be written as a sum of distinct terms of the
Fibonacci sequence. (The Fibonacci sequence (Fn)n is defined by F0 = 0, F1 = 1,
and Fn+1 = Fn + Fn−1, n ≥ 1.)

24. Prove that the Fibonacci sequence satisfies the identity

F2n+1 = F 2
n+1 + F 2

n , for n ≥ 0.

25. Prove that the Fibonacci sequence satisfies the identity

F3n = F 3
n+1 + F 3

n − F 3
n−1, for n ≥ 0.

26. Show that an isosceles triangle with one angle of 120◦ can be dissected into n ≥ 4
triangles similar to it.
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27. Show that for all n > 3 there exists an n-gon whose sides are not all equal and such
that the sum of the distances from any interior point to each of the sides is constant.
(An n-gon is a polygon with n sides.)

28. The vertices of a convex polygon are colored by at least three colors such that no two
consecutive vertices have the same color. Prove that one can dissect the polygon
into triangles by diagonals that do not cross and whose endpoints have different
colors.

29. Prove that any polygon (convex or not) can be dissected into triangles by interior
diagonals.

30. Prove that any positive integer can be represented as ±12 ± 22 ± · · · ± n2 for some
positive integer n and some choice of the signs.

Now we demonstrate a less frequently encountered form of induction that can be
traced back to Cauchy’s work, where it was used to prove the arithmetic mean–geometric
mean inequality. We apply this method to solve a problem from D. Buşneag, I. Maftei,
Themes for Mathematics Circles and Contests (Scrisul Românesc, Craiova, 1983).

Example. Let a1, a2, . . . , an be real numbers greater than 1. Prove the inequality

n∑
i=1

1

1 + ai
≥ n

1 + n
√
a1a2 · · · an .

Solution. As always, we start with the base case:

1

1 + a1
+ 1

1 + a2
≥ 2

1 + √
a1a2

.

Multiplying out the denominators yields the equivalent inequality

(2 + a1 + a2)(1 + √
a1a2) ≥ 2(1 + a1 + a2 + a1a2).

After multiplications and cancellations, we obtain

2
√
a1a2 + (a1 + a2)

√
a1a2 ≥ a1 + a2 + 2a1a2.

This can be rewritten as

2
√
a1a2(1 − √

a1a2)+ (a1 + a2)(
√
a1a2 − 1) ≥ 0,

or

(
√
a1a2 − 1)(a1 + a2 − 2

√
a1a2) ≥ 0.
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The inequality is now obvious since a1a2 ≥ 1 and a1 + a2 ≥ 2
√
a1a2.

Now instead of exhausting all positive integers n, we downgrade our goal and check
just the powers of 2. So we prove that the inequality holds for n = 2k by induction on k.
Assuming it true for k, we can write

2k+1∑
i=1

1

1 + ai
=

2k∑
i=1

1

1 + ai
+

2k+1∑
i=2k+1

1

1 + ai

≥ 2k
(

1

1 + 2k
√
a1a2 · · · a2k

+ 1

1 + 2k
√
a2k+1a2k+2 · · · a2k+1

)
≥ 2k

2

1 + 2k+1√a1a2 · · · a2k+1
,

where the first inequality follows from the induction hypothesis, and the second is just
the base case. This completes the induction.

Now we have to cover the cases in which n is not a power of 2. We do the induction
backward, namely, we assume that the inequality holds for n + 1 numbers and prove it
for n. Let a1, a2, . . . , an be some real numbers greater than 1. Attach to them the number
n
√
a1a2 · · · an. When writing the inequality for these n+ 1 numbers, we obtain

1

1 + a1
+ · · · + 1

1 + n
√
a1a2 · · · an ≥ n+ 1

1 + n+1
√
a1 · · · an n

√
a1a2 · · · an

.

Recognize the complicated radical on the right to be n
√
a1a2 · · · an. After cancelling the

last term on the left, we obtain

1

1 + a1
+ 1

1 + a2
+ · · · + 1

1 + an
≥ n

1 + n
√
a1a2 · · · an ,

as desired. The inequality is now proved, since we can reach any positive integer n by
starting with a sufficiently large power of 2 and working backward. ��

Try to apply the same technique to the following problems.

31. Let f : R → R be a function satisfying f (x1+x2
2 ) = f (x1)+f (x2)

2 for any x1, x2.
Prove that

f

(
x1 + x2 + · · · + xn

n

)
= f (x1)+ f (x2)+ · · · + f (xn)

n

for any x1, x2, . . . , xn.

32. Show that if a1, a2, . . . , an are nonnegative numbers, then

(1 + a1)(1 + a2) · · · (1 + an) ≥ (1 + n
√
a1a2 · · · an)n.
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1.3 The Pigeonhole Principle

The pigeonhole principle (or Dirichlet’s box principle) is usually applied to problems
in combinatorial set theory, combinatorial geometry, and number theory. In its intuitive
form, it can be stated as follows.

Pigeonhole principle. If kn + 1 objects (k ≥ 1 not necessarily finite) are distributed
among n boxes, one of the boxes will contain at least k + 1 objects.

This is merely an observation, and it was Dirichlet who first used it to prove non-
trivial mathematical results. We begin with an easy problem, which was given at the
International Mathematical Olympiad in 1972, proposed by Russia.

Example. Prove that every set of 10 two-digit integer numbers has two disjoint subsets
with the same sum of elements.

Solution. Let S be the set of 10 numbers. It has 210 − 2 = 1022 subsets that differ from
both S and the empty set. They are the “pigeons.’’ If A ⊂ S, the sum of elements of A
cannot exceed 91 + 92 +· · ·+ 99 = 855. The numbers between 1 and 855, which are all
possible sums, are the “holes.’’ Because the number of “pigeons’’ exceeds the number of
“holes,’’ there will be two “pigeons’’ in the same “hole.’’ Specifically, there will be two
subsets with the same sum of elements. Deleting the common elements, we obtain two
disjoint sets with the same sum of elements. ��

Here is a more difficult problem from the 26th International Mathematical Olympiad,
proposed by Mongolia.

Example. Given a set M of 1985 distinct positive integers, none of which has a prime
divisor greater than 26, prove thatM contains at least one subset of four distinct elements
whose product is the fourth power of an integer.

Solution. We show more generally that if the prime divisors of elements inM are among
the prime numbers p1, p2, . . . , pn andM has at least 3 · 2n+ 1 elements, then it contains
a subset of four distinct elements whose product is a fourth power.

To each elementm inM we associate an n-tuple (x1, x2, . . . , xn), where xi is 0 if the
exponent of pi in the prime factorization of m is even, and 1 otherwise. These n-tuples
are the “objects.’’ The “boxes’’ are the 2n possible choices of 0’s and 1’s. Hence, by the
pigeonhole principle, every subset of 2n+1 elements ofM contains two distinct elements
with the same associated n-tuple, and the product of these two elements is then a square.

We can repeatedly take aside such pairs and replace them with two of the remaining
numbers. From the set M , which has at least 3 · 2n + 1 elements, we can select 2n + 1
such pairs or more. Consider the 2n + 1 numbers that are products of the two elements
of each pair. The argument can be repeated for their square roots, giving four elements
a, b, c, d in M such that

√
ab

√
cd is a perfect square. Then abcd is a fourth power and

we are done. For our problem n = 9, while 1985 > 3 · 29 + 1 = 1537. ��
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The third example comes from the 67th W.L. Putnam Mathematical Competition,
2006.

Example. Prove that for every set X = {x1, x2, . . . , xn} of n real numbers, there exists a
nonempty subset S of X and an integer m such that∣∣∣∣∣m+

∑
s∈S

s

∣∣∣∣∣ ≤ 1

n+ 1
.

Solution. Recall that the fractional part of a real number x is x − �x�. Let us look at the
fractional parts of the numbers x1, x1 + x2, . . . , x1 + x2 + · · · + xn. If any of them is
either in the interval [0, 1

n+1 ] or [ n
n+1 , 1], then we are done. If not, we consider these n

numbers as the “pigeons’’ and the n− 1 intervals [ 1
n+1 ,

2
n+1 ], [ 2

n+1 ,
3
n+1 ], . . . , [n−1

n+1 ,
n
n+1 ]

as the “holes.’’ By the pigeonhole principle, two of these sums, say x1 +x2 +· · ·+xk and
x1+x2+· · ·+xk+m, belong to the same interval. But then their difference xk+1+· · ·+xk+m
lies within a distance of 1

n+1 of an integer, and we are done. ��
More problems are listed below.

33. Given 50 distinct positive integers strictly less than 100, prove that some two of
them sum to 99.

34. A sequence of m positive integers contains exactly n distinct terms. Prove that if
2n ≤ m then there exists a block of consecutive terms whose product is a perfect
square.

35. Let x1, x2, x3, . . . be a sequence of integers such that

1 = x1 < x2 < x3 < · · · and xn+1 ≤ 2n for n = 1, 2, 3, . . . .

Show that every positive integer k is equal to xi − xj for some i and j .

36. Let p be a prime number and a, b, c integers such that a and b are not divisible by
p. Prove that the equation ax2 + by2 ≡ c (mod p) has integer solutions.

37. In each of the unit squares of a 10×10 checkerboard, a positive integer not exceeding
10 is written. Any two numbers that appear in adjacent or diagonally adjacent
squares of the board are relatively prime. Prove that some number appears at least
17 times.

38. Show that there is a positive term of the Fibonacci sequence that is divisible by 1000.

39. Let x1 = x2 = x3 = 1 and xn+3 = xn + xn+1xn+2 for all positive integers n. Prove
that for any positive integer m there is an index k such that m divides xk.
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40. A chess player trains by playing at least one game per day, but, to avoid exhaustion,
no more than 12 games a week. Prove that there is a group of consecutive days in
which he plays exactly 20 games.

41. Let m be a positive integer. Prove that among any 2m + 1 distinct integers of
absolute value less than or equal to 2m − 1 there exist three whose sum is equal
to zero.

42. There are n people at a party. Prove that there are two of them such that of the
remaining n − 2 people, there are at least �n2� − 1 of them each of whom knows
both or else knows neither of the two.

43. Let x1, x2, . . . , xk be real numbers such that the setA = {cos(nπx1)+cos(nπx2)+
· · · + cos(nπxk) | n ≥ 1} is finite. Prove that all the xi are rational numbers.

Particularly attractive are the problems in which the pigeons and holes are geometric
objects. Here is a problem from a Chinese mathematical competition.

Example. Given nine points inside the unit square, prove that some three of them form
a triangle whose area does not exceed 1

8 .

Solution. Divide the square into four equal squares, which are the “boxes.’’ From the
9 = 2 × 4 + 1 points, at least 3 = 2 + 1 will lie in the same box. We are left to show that
the area of a triangle placed inside a square does not exceed half the area of the square.

Cut the square by the line passing through a vertex of the triangle, as in Figure 3.
Since the area of a triangle is base×height

2 and the area of a rectangle is base × height, the
inequality holds for the two smaller triangles and their corresponding rectangles. Adding
up the two inequalities, we obtain the inequality for the square. This completes the
solution. ��

Figure 3

44. Inside a circle of radius 4 are chosen 61 points. Show that among them there are
two at distance at most

√
2 from each other.
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45. Each of nine straight lines divides a square into two quadrilaterals with the ratio of
their areas equal to r > 0. Prove that at least three of these lines are concurrent.

46. Show that any convex polyhedron has two faces with the same number of edges.

47. Draw the diagonals of a 21-gon. Prove that at least one angle of less than 1◦ is
formed.

48. Let P1, P2, . . . , P2n be a permutation of the vertices of a regular polygon. Prove
that the closed polygonal line P1P2 . . . P2n contains a pair of parallel segments.

49. Let S be a convex set in the plane that contains three noncollinear points. Each
point of S is colored by one of p colors, p > 1. Prove that for any n ≥ 3 there
exist infinitely many congruent n-gons whose vertices are all of the same color.

50. The points of the plane are colored by finitely many colors. Prove that one can find
a rectangle with vertices of the same color.

51. Inside the unit square lie several circles the sum of whose circumferences is equal
to 10. Prove that there exist infinitely many lines each of which intersects at least
four of the circles.

1.4 Ordered Sets and Extremal Elements

An order on a set is a relation ≤ with three properties: (i) a ≤ a; (ii) if a ≤ b and b ≤ a,
then a = b; (iii) a ≤ b and b ≤ c implies a ≤ c. The order is called total if any two
elements are comparable, that is, if for every a and b, either a ≤ b or b ≤ a. The simplest
example of a total order is ≤ on the set of real numbers. The existing order on a set can
be found useful when one is trying to solve a problem. This is the case with the following
two examples, the second of which is a problem of G. Galperin published in the Russian
journal Quantum.

Example. Prove that among any 50 distinct positive integers strictly less than 100 there
are two that are coprime.

Solution. Order the numbers: x1 < x2 < · · · < x50. If in this sequence there are two
consecutive integers, they are coprime and we are done. Otherwise, x50 ≥ x1+2·49 = 99.
Equality must hold, since x50 < 100, and in this case the numbers are precisely the 50
odd integers less than 100. Among them 3 is coprime to 7. The problem is solved. ��

Example. Given finitely many squares whose areas add up to 1, show that they can be
arranged without overlaps inside a square of area 2.
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Solution. The guess is that a tight way of arranging the small squares inside the big square
is by placing the squares in order of decreasing side length.

To prove that this works, denote by x the side length of the first (that is, the largest)
square. Arrange the squares inside a square of side

√
2 in the following way. Place the

first in the lower-left corner, the next to its right, and so on, until obstructed by the right
side of the big square. Then jump to height x, and start building the second horizontal
layer of squares by the same rule. Keep going until the squares have been exhausted (see
Figure 4).

Let h be the total height of the layers. We are to show that h ≤ √
2, which in turn

will imply that all the squares lie inside the square of side
√

2. To this end, we will find a
lower bound for the total area of the squares in terms of x and h. Let us mentally transfer
the first square of each layer to the right side of the previous layer. Now each layer exits
the square, as shown in Figure 4.

2−x

h−x

Figure 4

It follows that the sum of the areas of all squares but the first is greater than or equal
to (

√
2 − x)(h − x). This is because each newly obtained layer includes rectangles of

base
√

2 − x and with the sum of heights equal to h− x. From the fact that the total area
of the squares is 1, it follows that

x2 + (
√

2 − x)(h− x) ≤ 1.

This implies that

h ≤ 2x2 − √
2x − 1

x − √
2

.

That h ≤ √
2 will follow from

2x2 − √
2x − 1

x − √
2

≤ √
2.
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This is equivalent to

2x2 − 2
√

2x + 1 ≥ 0,

or (x
√

2 − 1)2 ≥ 0, which is obvious and we are done. ��

What we particularly like about the shaded square from Figure 4 is that it plays the
role of the “largest square’’ when placed on the left, and of the “smallest square’’ when
placed on the right. Here are more problems.

52. Given n ≥ 3 points in the plane, prove that some three of them form an angle less
than or equal to π

n
.

53. Consider a planar region of area 1, obtained as the union of finitely many disks.
Prove that from these disks we can select some that are mutually disjoint and have
total area at least 1

9 .

54. Suppose that n(r) denotes the number of points with integer coordinates on a circle
of radius r > 1. Prove that

n(r) < 2π
3
√
r2.

55. Prove that among any eight positive integers less than 2004 there are four, say
a, b, c, and d, such that

4 + d ≤ a + b + c ≤ 4d.

56. Let a1, a2, . . . , an, . . . be a sequence of distinct positive integers. Prove that for
any positive integer n,

a2
1 + a2

2 + · · · + a2
n ≥ 2n+ 1

3
(a1 + a2 + · · · + an).

57. Let X be a subset of the positive integers with the property that the sum of any two
not necessarily distinct elements in X is again in X. Suppose that {a1, a2, . . . , an}
is the set of all positive integers not in X. Prove that a1 + a2 + · · · + an ≤ n2.

An order on a finite set has maximal and minimal elements. If the order is total, the
maximal (respectively, minimal) element is unique. Quite often it is useful to look at
such extremal elements, as is the case with the following problem.

Example. Prove that it is impossible to dissect a cube into finitely many cubes, no two
of which are the same size.
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Solution. For the solution, assume that such a dissection exists, and look at the bottom
face. It is cut into squares. Take the smallest of these squares. It is not hard to see that
this square lies in the interior of the face, meaning that it does not touch any side of the
bottom face. Look at the cube that lies right above this square! This cube is surrounded
by bigger cubes, so its upper face must again be dissected into squares by the cubes that
lie on top of it. Take the smallest of the cubes and repeat the argument. This process
never stops, since the cubes that lie on top of one of these little cubes cannot end up
all touching the upper face of the original cube. This contradicts the finiteness of the
decomposition. Hence the conclusion. ��

By contrast, a square can be dissected into finitely many squares of distinct size. Why
does the above argument not apply in this case?

And now an example of a more exotic kind.

Example. Given is a finite set of spherical planets, all of the same radius and no two
intersecting. On the surface of each planet consider the set of points not visible from
any other planet. Prove that the total area of these sets is equal to the surface area of one
planet.

Solution. The problem was on the short list of the 22nd International Mathematical
Olympiad, proposed by the Soviet Union. The solution below we found in I. Cuculescu’s
book on the International Mathematical Olympiads (Editura Tehnică, Bucharest, 1984).

Choose a preferential direction in space, which defines the north pole of each planet.
Next, define an order on the set of planets by saying that planet A is greater than planet
B if on removing all other planets from space, the north pole of B is visible from A.
Figure 5 shows that for two planets A and B, either A < B or B < A, and also that
for three planets A,B,C, if A < B and B < C then A < C. The only case in which
something can go wrong is that in which the preferential direction is perpendicular to the
segment joining the centers of two planets. If this is not the case, then < defines a total
order on the planets. This order has a unique maximal element M . The north pole of M
is the only north pole not visible from another planet.

C

N

B

A

A

B

Figure 5
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Now consider a sphere of the same radius as the planets. Remove from it all north
poles defined by directions that are perpendicular to the axes of two of the planets. This
is a set of area zero. For every other point on this sphere, there exists a direction in space
that makes it the north pole, and for that direction, there exists a unique north pole on
one of the planets that is not visible from the others. As such, the surface of the newly
introduced sphere is covered by patches translated from the other planets. Hence the total
area of invisible points is equal to the area of this sphere, which in turn is the area of one
of the planets. ��
58. Complete the square in Figure 6 with integers between 1 and 9 such that the sum

of the numbers in each row, column, and diagonal is as indicated.

2

5

8
3

1321 25 27 2016

30

26

16

14

Figure 6

59. Given n points in the plane, no three of which are collinear, show that there exists
a closed polygonal line with no self-intersections having these points as vertices.

60. Show that any polygon in the plane has a vertex, and a side not containing that
vertex, such that the projection of the vertex onto the side lies in the interior of the
side or at one of its endpoints.

61. In some country all roads between cities are one-way and such that once you leave
a city you cannot return to it again. Prove that there exists a city into which all
roads enter and a city from which all roads exit.

62. At a party assume that no boy dances with all the girls, but each girl dances with
at least one boy. Prove that there are two girl–boy couples gb and g′b′ who dance,
whereas b does not dance with g′, and g does not dance with b′.

63. The entries of a matrix are real numbers of absolute value less than or equal to 1,
and the sum of the elements in each column is 0. Prove that we can permute the
elements of each column in such a way that the sum of the elements in each row
will have absolute value less than or equal to 2.

64. Find all odd positive integers n greater than 1 such that for any coprime divisors a
and b of n, the number a + b − 1 is also a divisor of n.
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65. The positive integers are colored by two colors. Prove that there exists an infinite
sequence of positive integers k1 < k2 < · · · < kn < · · · with the property that the
terms of the sequence 2k1 < k1 + k2 < 2k2 < k2 + k3 < 2k3 < · · · are all of the
same color.

66. Let P1P2 . . . Pn be a convex polygon in the plane. Assume that for any pair of
verticesPi andPj , there exists a vertexPk of the polygon such that ∠PiPkPj = π/3.
Show that n = 3.

1.5 Invariants and Semi-Invariants

In general, a mathematical object can be studied from many points of view, and it is always
desirable to decide whether various constructions produce the same object. One usually
distinguishes mathematical objects by some of their properties. An elegant method is to
associate to a family of mathematical objects an invariant, which can be a number, an
algebraic structure, or some property, and then distinguish objects by the different values
of the invariant.

The general framework is that of a set of objects or configurations acted on by trans-
formations that identify them (usually called isomorphisms). Invariants then give ob-
structions to transforming one object into another. Sometimes, although not very often,
an invariant is able to tell precisely which objects can be transformed into one another,
in which case the invariant is called complete.

An example of an invariant (which arises from more advanced mathematics yet is
easy to explain) is the property of a knot to be 3-colorable. Formally, a knot is a simple
closed curve in R3. Intuitively it is a knot on a rope with connected endpoints, such as
the right-handed trefoil knot from Figure 7.

Figure 7

How can one prove mathematically that this knot is indeed “knotted’’? The answer is,
using an invariant. To define this invariant, we need the notion of a knot diagram. Such a
diagram is the image of a regular projection (all self-intersections are nontangential and
are double points) of the knot onto a plane with crossing information recorded at each
double point, just like the one in Figure 7. But a knot can have many diagrams (pull the
strands around, letting them pass over each other).
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A deep theorem of Reidemeister states that two diagrams represent the same knot
if they can be transformed into one another by the three types of moves described in
Figure 8.

(I) (II)

(III)

Figure 8

The simplest knot invariant was introduced by the same Reidemeister, and is the
property of a knot diagram to be 3-colorable. This means that you can color each strand
in the knot diagram by a residue class modulo 3 such that

(i) at least two distinct residue classes modulo 3 are used, and
(ii) at each crossing, a + c ≡ 2b (mod 3), where b is the color of the arc that crosses

over, and a and c are the colors of the other two arcs (corresponding to the strand
that crosses under).

It is rather easy to prove, by examining the local picture, that this property is invariant
under Reidemeister moves. Hence this is an invariant of knots, not just of knot diagrams.

The trefoil knot is 3-colorable, as demonstrated in Figure 9. On the other hand,
the unknotted circle is not 3-colorable, because its simplest diagram, the one with no
crossings, cannot be 3-colored. Hence the trefoil knot is knotted.

0

2

1

Figure 9

This 3-colorability is, however, not a complete invariant. We now give an example
of a complete invariant from geometry. In the early nineteenth century, F. Bolyai and a
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less well-known mathematician Gerwin proved that given two polygons of equal area,
the first can be dissected by finitely many straight cuts and then assembled to produce
the second polygon. In his list of 23 problems presented to the International Congress
of Mathematicians, D. Hilbert listed as number 7 the question whether the same prop-
erty remains true for solid polyhedra of the same volume, and if not, what would the
obstruction be.

The problem was solved by M. Dehn, a student of Hilbert. Dehn defined an invariant
that associates to a finite disjoint union of polyhedra P the sum I (P ) of all their dihedral
angles reduced modulo rational multiples of π (viewed as an element in R/πQ). He
showed that two polyhedra P1 and P2 having the same volume can be transformed into
one another if and only if I (P1) = I (P2), i.e., if and only if the sums of their dihedral
angles differ by a rational multiple of π .

It is good to know that the quest for invariants dominated twentieth-century geometry.
That being said, let us return to the realm of elementary mathematics with a short list
problem from the 46th International Mathematical Olympiad.

Example. There are nmarkers, each with one side white and the other side black, aligned
in a row with their white sides up. At each step, if possible, we choose a marker with
the white side up (but not one of the outermost markers), remove it, and reverse the two
neighboring markers. Prove that one can reach a configuration with only two markers
left if and only if n− 1 is not divisible by 3.

Solution. We refer to a marker by the color of its visible face. Note that the parity of
the number of black markers remains unchanged during the game. Hence if only two
markers are left, they must have the same color.

We define an invariant as follows. To a white marker with t black markers to its left
we assign the number (−1)t . Only white markers have numbers assigned to them. The
invariant S is the residue class modulo 3 of the sum of all numbers assigned to the white
markers.

It is easy to check that S is invariant under the operation defined in the statement.
For instance, if a white marker with t black markers on the left and whose neighbors are
both black is removed, then S increases by −(−1)t + (−1)t−1 + (−1)t−1 = 3(−1)t−1,
which is zero modulo 3. The other three cases are analogous.

If the game ends with two black markers then S is zero; if it ends with two white
markers, then S is 2. This proves that n− 1 is not divisible by 3.

Conversely, if we start with n ≥ 5 white markers, n ≡ 0 or 2 modulo 3, then by
removing in three consecutive moves the leftmost allowed white markers, we obtain a
row of n − 3 white markers. Working backward, we can reach either 2 white markers
or 3 white markers. In the latter case, with one more move we reach 2 black markers as
desired. ��

Now try to find the invariants that lead to the solutions of the following problems.
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67. An ordered triple of numbers is given. It is permitted to perform the following
operation on the triple: to change two of them, say a and b, to (a + b)/

√
2 and

(a − b)/
√

2. Is it possible to obtain the triple (1,
√

2, 1 + √
2) from the triple

(2,
√

2, 1/
√

2) using this operation?

68. There are 2000 white balls in a box. There are also unlimited supplies of white,
green, and red balls, initially outside the box. During each turn, we can replace two
balls in the box with one or two balls as follows: two whites with a green, two reds
with a green, two greens with a white and red, a white and a green with a red, or a
green and red with a white.
(a) After finitely many of the above operations there are three balls left in the box.

Prove that at least one of them is green.
(b) Is it possible that after finitely many operations only one ball is left in the box?

69. There is a heap of 1001 stones on a table. You are allowed to perform the following
operation: you choose one of the heaps containing more than one stone, throw away
a stone from the heap, then divide it into two smaller (not necessarily equal) heaps.
Is it possible to reach a situation in which all the heaps on the table contain exactly
3 stones by performing the operation finitely many times?

70. Starting with an ordered quadruple of positive integers, a generalized Euclidean
algorithm is applied successively as follows: if the numbers are x, y, u, v and
x > y, then the quadruple is replaced by x − y, y, u + v, v. Otherwise, it is
replaced by x, y − x, u, v + u. The algorithm stops when the numbers in the first
pair become equal (in which case they are equal to the greatest common divisor of x
and y). Assume that we start with m, n,m, n. Prove that when the algorithm ends,
the arithmetic mean of the numbers in the second pair equals the least common
multiple of m and n.

71. On an arbitrarily large chessboard consider a generalized knight that can jump p
squares in one direction and q in the other, p, q > 0. Show that such a knight can
return to its initial position only after an even number of jumps.

72. Prove that the figure eight knot described in Figure 10 is knotted.

Figure 10
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73. In the squares of a 3 × 3 chessboard are written the signs + and − as described in
Figure 11(a). Consider the operations in which one is allowed to simultaneously
change all signs in some row or column. Can one change the given configuration
to the one in Figure 11(b) by applying such operations finitely many times?

(a) (b)

Figure 11

74. The number 99 . . . 99 (having 1997 nines) is written on a blackboard. Each minute,
one number written on the blackboard is factored into two factors and erased, each
factor is (independently) increased or decreased by 2, and the resulting two numbers
are written. Is it possible that at some point all of the numbers on the blackboard
are equal to 9?

75. Four congruent right triangles are given. One can cut one of them along the altitude
and repeat the operation several times with the newly obtained triangles. Prove that
no matter how we perform the cuts, we can always find among the triangles two
that are congruent.

76. For an integer n ≥ 4, consider an n-gon inscribed in a circle. Dissect the n-gon
into n− 2 triangles by nonintersecting diagonals. Prove that the sum of the radii of
the incircles of these n− 2 triangles does not depend on the dissection.

In some cases a semi-invariant will do. A semi-invariant is a quantity that, although
not constant under a specific transformation, keeps increasing (or decreasing). As such
it provides a unidirectional obstruction.

For his solution to the following problem from the 27th International Mathematical
Olympiad, J. Keane, then a member of the US team, was awarded a special prize.

Example. To each vertex of a regular pentagon an integer is assigned in such a way that
the sum of all of the five numbers is positive. If three consecutive vertices are assigned
the numbers x, y, z, respectively, and y < 0, then the following operation is allowed:
the numbers x, y, z are replaced by x + y,−y, z+ y, respectively. Such an operation is
performed repeatedly as long as at least one of the five numbers is negative. Determine
whether this procedure necessarily comes to an end after a finite number of steps.

Solution. The answer is yes. The key idea of the proof is to construct an integer-valued
semi-invariant whose value decreases when the operation is performed. The existence
of such a semi-invariant will guarantee that the operation can be performed only finitely
many times.
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Notice that the sum of the five numbers on the pentagon is preserved by the operation,
so it is natural to look at the sum of the absolute values of the five numbers. When the
operation is performed this quantity decreases by |x|+|z|−|x+y|−|y+z|. Although this
expression is not always positive, it suggests a new choice. The desired semi-invariant
should include the absolute values of pairwise sums as well. Upon testing the new
expression and continuing this idea, we discover in turn that the desired semi-invariant
should also include absolute values of sums of triples and foursomes. At last, with a
pentagon numbered v,w, x, y, z and the semi-invariant defined by

S(v,w, x, y, z) = |v| + |w| + |x| + |y| + |z| + |v + w| + |w + x| + |x + y|
+ |y + z| + |z+ v| + |v + w + x| + |w + x + y| + |x + y + z|
+ |y + z+ v| + |z+ v + w| + |v + w + x + y| + |w + x + y + z|
+ |x + y + z+ v| + |y + z+ v + w| + |z+ v + w + x|,

we find that the operation reduces the value of S by the simple expression |z+ v +w +
x| − |z + v + w + x + 2y| = |s − y| − |s + y|, where s = v + w + x + y + z. Since
s > 0 and y < 0, we see that |s − y| − |s + y| > 0, so S has the required property. It
follows that the operation can be performed only finitely many times. ��

Using the semi-invariant we produced a proof based on Fermat’s infinite descent
method. This method will be explained in the Number Theory chapter of this book. Here
the emphasis was on the guess of the semi-invariant. And now some problems.

77. A real number is written in each square of an n × n chessboard. We can perform
the operation of changing all signs of the numbers in a row or a column. Prove that
by performing this operation a finite number of times we can produce a new table
for which the sum of each row or column is positive.

78. Starting with an ordered quadruple of integers, perform repeatedly the operation

(a, b, c, d)
T−→ (|a − b|, |b − c|, |c − d|, |d − a|).

Prove that after finitely many steps, the quadruple becomes (0, 0, 0, 0).

79. Several positive integers are written on a blackboard. One can erase any two distinct
integers and write their greatest common divisor and least common multiple instead.
Prove that eventually the numbers will stop changing.

80. Consider the integer lattice in the plane, with one pebble placed at the origin. We
play a game in which at each step one pebble is removed from a node of the lattice
and two new pebbles are placed at two neighboring nodes, provided that those nodes
are unoccupied. Prove that at any time there will be a pebble at distance at most 5
from the origin.
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Algebra

It is now time to split mathematics into branches. First, algebra. A section on algebraic
identities hones computational skills. It is followed naturally by inequalities. In general,
any inequality can be reduced to the problem of finding the minimum of a function.
But this is a highly nontrivial matter, and that is what makes the subject exciting. We
discuss the fact that squares are nonnegative, the Cauchy–Schwarz inequality, the triangle
inequality, the arithmetic mean–geometric mean inequality, and also Sturm’s method for
proving inequalities.

Our treatment of algebra continues with polynomials. We focus on the relations
between zeros and coefficients, the properties of the derivative of a polynomial, problems
about the location of the zeros in the complex plane or on the real axis, and methods for
proving irreducibility of polynomials (such as the Eisenstein criterion). From all special
polynomials we present the most important, the Chebyshev polynomials.

Linear algebra comes next. The first three sections, about operations with matrices,
determinants, and the inverse of a matrix, insist on both the array structure of a matrix
and the ring structure of the set of matrices. They are more elementary, as is the section on
linear systems. The last three sections, about vector spaces and linear transformations,
are more advanced, covering among other things the Cayley–Hamilton Theorem and the
Perron–Frobenius Theorem.

The chapter concludes with a brief incursion into abstract algebra: binary opera-
tions, groups, and rings, really no further than the definition of a group or a ring.

2.1 Identities and Inequalities

2.1.1 Algebraic Identities

The scope of this section is to train algebraic skills. Our idea is to hide behind each
problem an important algebraic identity. We commence with three examples, the first
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and the last written by the second author of the book, and the second given at a Soviet
Union college entrance exam and suggested to us by A. Soifer.

Example. Solve in real numbers the system of equations

(3x + y)(x + 3y)
√
xy = 14,

(x + y)(x2 + 14xy + y2) = 36.

Solution. By substituting
√
x = u,

√
y = v, we obtain the equivalent form

uv(3u4 + 10u2v2 + 3v4) = 14,

u6 + 15u4v2 + 15u2v4 + v6 = 36.

Here we should recognize elements of the binomial expansion with exponent equal to 6.
Based on this observation we find that

36 + 2 · 14 = u6 + 6u5v + 15u4v2 + 20u3v3 + 15u2v4 + 6uv5 + v6

and

36 − 2 · 14 = u6 − 6u5v + 15u4v2 − 20u3v3 + 15u2v4 − 6uv5 + v6.

Therefore, (u+ v)6 = 64 and (u− v)6 = 8, which implies u+ v = 2 and u− v = ±√
2

(recall that u and v have to be positive). So u = 1 +
√

2
2 and v = 1 −

√
2

2 or u = 1 −
√

2
2

and v = 1 +
√

2
2 . The solutions to the system are

(x, y) =
(

3

2
+ √

2,
3

2
− √

2

)
and (x, y) =

(
3

2
− √

2,
3

2
+ √

2

)
. ��

Example. Given two segments of lengths a and b, construct with a straightedge and a
compass a segment of length 4

√
a4 + b4.

Solution. The solution is based on the following version of the Sophie Germain identity:

a4 + b4 = (a2 + √
2ab + b2)(a2 − √

2ab + b2).

Write

4
√
a4 + b4 =

√√
a2 + √

2ab + b2 ·
√
a2 − √

2ab + b2.

Applying the law of cosines, we can construct segments of lengths
√
a2 ± √

2ab + b2

using triangles of sides a and b with the angle between them 135◦, respectively, 45◦.
On the other hand, given two segments of lengths x, respectively, y, we can construct

a segment of length
√
xy (their geometric mean) as the altitude AD in a right triangle

ABC (∠A = 90◦) with BD = x and CD = y. These two steps combined give the
method for constructing 4

√
a4 + b4. ��
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Example. Let x, y, z be distinct real numbers. Prove that

3
√
x − y + 3

√
y − z+ 3

√
z− x 	= 0.

Solution. The solution is based on the identity

a3 + b3 + c3 − 3abc = (a + b + c)(a2 + b2 + c2 − ab − bc − ca).

This identity comes from computing the determinant

D =
∣∣∣∣∣∣
a b c

c a b

b c a

∣∣∣∣∣∣
in two ways: first by expanding with Sarrus’ rule, and second by adding up all columns
to the first, factoring (a + b + c), and then expanding the remaining determinant. Note
that this identity can also be written as

a3 + b3 + c3 − 3abc = 1

2
(a + b + c)

[
(a − b)2 + (b − c)2 + (c − a)2

]
.

Returning to the problem, let us assume the contrary, and set 3
√
x − y = a, 3

√
y − z =

b, 3
√
z− x = c. By assumption, a + b + c = 0, and so a3 + b3 + c3 = 3abc. But this

implies

0 = (x − y)+ (y − z)+ (z− x) = 3 3
√
x − y 3

√
y − z

3
√
z− x 	= 0,

since the numbers are distinct. The contradiction we have reached proves that our as-
sumption is false, and so the sum is nonzero. ��

And now the problems.

81. Show that for no positive integer n can both n+3 and n2 +3n+3 be perfect cubes.

82. Let A and B be two n× n matrices that commute and such that for some positive
integers p and q, Ap = In and Bq = On. Prove that A+ B is invertible, and find
its inverse.

83. Prove that any polynomial with real coefficients that takes only nonnegative values
can be written as the sum of the squares of two polynomials.

84. Prove that for any nonnegative integer n, the number

55n+1 + 55n + 1

is not prime.
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85. Show that for an odd integer n ≥ 5,(
n

0

)
5n−1 −

(
n

1

)
5n−2 +

(
n

2

)
5n−3 − · · · +

(
n

n− 1

)
is not a prime number.

86. Factor 51985 − 1 into a product of three integers, each of which is greater than 5100.

87. Prove that the number

5125 − 1

525 − 1

is not prime.

88. Let a and b be coprime integers greater than 1. Prove that for no n ≥ 0 is a2n + b2n

divisible by a + b.

89. Prove that any integer can be written as the sum of five perfect cubes.

90. Solve in real numbers the equation

3
√
x − 1 + 3

√
x + 3

√
x + 1 = 0.

91. Find all triples (x, y, z) of positive integers such that

x3 + y3 + z3 − 3xyz = p,

where p is a prime number greater than 3.

92. Let a, b, c be distinct positive integers such that ab+ bc+ ca ≥ 3k2 − 1, where k
is a positive integer. Prove that

a3 + b3 + c3 ≥ 3(abc + 3k).

93. Find all triples (m, n, p) of positive integers such that m+ n+ p = 2002 and the
system of equations x

y
+ y

x
= m, y

z
+ z

y
= n, z

x
+ x

z
= p has at least one solution

in nonzero real numbers.

2.1.2 x2 ≥ 0

We now turn to inequalities. The simplest inequality in algebra says that the square of
any real number is nonnegative, and it is equal to zero if and only if the number is zero.
We illustrate how this inequality can be used with an example by the second author of
the book.
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Example. Find the minimum of the function f : (0,∞)3 → R,

f (x, y, z) = xz + yz − (xy)z/4.

Solution. Rewrite the function as

f (x, y, z) = (xz/2 − yz/2)2 + 2

[
(xy)z/4 − 1

4

]2

− 1

8
.

We now see that the minimum is − 1
8 , achieved if and only if (x, y, z) = (a, a, loga

1
16),

where a ∈ (0, 1) ∪ (1,∞). ��
We continue with a problem from the 2001 USA team selection test proposed also by

the second author of the book.

Example. Let (an)n≥0 be a sequence of real numbers such that

an+1 ≥ a2
n + 1

5
, for all n ≥ 0.

Prove that
√
an+5 ≥ a2

n−5, for all n ≥ 5.

Solution. It suffices to prove that an+5 ≥ a2
n, for all n ≥ 0. Let us write the inequality

for a number of consecutive indices:

an+1 ≥ a2
n + 1

5
,

an+2 ≥ a2
n+1 + 1

5
,

an+3 ≥ a2
n+2 + 1

5
,

an+4 ≥ a2
n+3 + 1

5
,

an+5 ≥ a2
n+4 + 1

5
.

If we add these up, we obtain

an+5 − a2
n ≥ (a2

n+1 + a2
n+2 + a2

n+3 + a2
n+4)− (an+1 + an+2 + an+3 + an+4)+ 5 · 1

5

=
(
an+1 − 1

2

)2

+
(
an+2 − 1

2

)2

+
(
an+3 − 1

2

)2

+
(
an+4 − 1

2

)2

≥ 0.

The conclusion follows. ��
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And finally a more challenging problem from the 64th W.L. Putnam Mathematics
Competition.

Example. Let f be a continuous function on the unit square. Prove that∫ 1

0

(∫ 1

0
f (x, y)dx

)2

dy +
∫ 1

0

(∫ 1

0
f (x, y)dy

)2

dx

≤
(∫ 1

0

∫ 1

0
f (x, y)dxdy

)2

+
∫ 1

0

∫ 1

0
f (x, y)2dxdy.

Solution. To make this problem as simple as possible, we prove the inequality for a
Riemann sum, and then pass to the limit. Divide the unit square into n2 equal squares, then
pick a point (xi, yj ) in each such square and define aij = f (xi, yj ), i, j = 1, 2, . . . , n.
Written for the Riemann sum, the inequality becomes

1

n3

∑
i

⎛⎜⎝
⎛⎝∑

j

aij

⎞⎠2

+
⎛⎝∑

j

aji

⎞⎠2
⎞⎟⎠ ≤ 1

n4

⎛⎝∑
ij

aij

⎞⎠2

+ 1

n2

⎛⎝∑
ij

a2
ij

⎞⎠ .
Multiply this by n4, then move everything to one side. After cancellations, the inequality
becomes

(n2 − 1)2
∑
ij

a2
ij +

∑
i 	=k,j 	=l

aij akl − (n− 1)
∑

ijk,j 	=k
(aij aik + ajiaki) ≥ 0.

Here we have a quadratic function in the aij ’s that should always be nonnegative. In
general, such a quadratic function can be expressed as an algebraic sum of squares, and
it is nonnegative precisely when all squares appear with a positive sign. We are left with
the problem of representing our expression as a sum of squares. To boost your intuition,
look at the following tableau:

a11 · · · · · · · · · · · · · · · a1n
...
. . .

...
. . .

...
. . .

...

· · · · · · aij · · · ail · · · · · ·
...
. . .

...
. . .

...
. . .

...

· · · · · · akj · · · akl · · · · · ·
...
. . .

...
. . .

...
. . .

...

an1 · · · · · · · · · · · · · · · ann
The expression

(aij + akl − ail − akj )
2



2.1 Identities and Inequalities 31

when expanded gives rise to the following terms:

a2
ij + a2

kl + a2
il + a2

kj + 2aijakl + 2ailakj − 2ailaij − 2aijakj − 2aklail − 2aklakj .

For a fixed pair (i, j), the term aij appears in (n − 1)2 such expressions. The products
2aijakl and 2ailakj appear just once, while the products 2ailaij , 2aijakj , 2aklail , 2aklakj
appear (n − 1) times (once for each square of the form (i, j), (i, l), (k, j), (k, l)). It
follows that the expression that we are trying to prove is nonnegative is nothing but∑

ijkl

(aij + akl − ail − akj )
2,

which is of course nonnegative. This proves the inequality for all Riemann sums of the
function f , and hence for f itself. ��

94. Find

min
a,b∈R

max(a2 + b, b2 + a).

95. Prove that for all real numbers x,

2x + 3x − 4x + 6x − 9x ≤ 1.

96. Find all positive integers n for which the equation

nx4 + 4x + 3 = 0

has a real root.

97. Find all triples (x, y, z) of real numbers that are solutions to the system of equations

4x2

4x2 + 1
= y,

4y2

4y2 + 1
= z,

4z2

4z2 + 1
= x.

98. Find the minimum of

logx1

(
x2 − 1

4

)
+ logx2

(
x3 − 1

4

)
+ · · · + logxn

(
x1 − 1

4

)
,

over all x1, x2, . . . , xn ∈ ( 1
4 , 1).
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99. Let a and b be real numbers such that

9a2 + 8ab + 7b2 ≤ 6.

Prove that 7a + 5b + 12ab ≤ 9.

100. Let a1, a2, . . . , an be real numbers such that a1 + a2 + · · ·+ an ≥ n2 and a2
1 + a2

2 +
· · · + a2

n ≤ n3 + 1. Prove that n− 1 ≤ ak ≤ n+ 1 for all k.

101. Find all pairs (x, y) of real numbers that are solutions to the system

x4 + 2x3 − y = −1

4
+ √

3,

y4 + 2y3 − x = −1

4
− √

3.

102. Let n be an even positive integer. Prove that for any real number x there are at least
2n/2 choices of the signs + and − such that

±xn ± xn−1 ± · · · ± x <
1

2
.

2.1.3 The Cauchy–Schwarz Inequality

A direct application of the discussion in the previous section is the proof of the Cauchy–
Schwarz (or Cauchy–Bunyakovski–Schwarz) inequality

n∑
k=1

a2
k

n∑
k=1

b2
k ≥

(
n∑
k=1

akbk

)2

,

where the equality holds if and only if theai’s and thebi’s are proportional. The expression

n∑
k=1

a2
k

n∑
k=1

b2
k −

(
n∑
k=1

akbk

)2

is a quadratic function in the ai’s and bi’s. For it to have only nonnegative values, it
should be a sum of squares. And this is true by the Lagrange identity

n∑
k=1

a2
k

n∑
k=1

b2
k −

(
n∑
k=1

akbk

)2

=
∑
i<k

(aibk − akbi)
2 .

Sadly, this proof works only in the finite-dimensional case, while the Cauchy–
Schwarz inequality is true in far more generality, such as for square integrable functions.
Its correct framework is that of a real or complex vector space, which could be finite or
infinite dimensional, endowed with an inner product 〈·, ·〉.

By definition, an inner product is subject to the following conditions:
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(i) 〈x, x〉 ≥ 0, with equality if and only if x = 0,
(ii) 〈x, y〉 = 〈y, x〉, for any vectors x, y (here the bar stands for complex conjugation if

the vector space is complex),
(iii) 〈λ1x1 + λ2x2, y〉 = λ1〈x1, y〉 + λ2〈x2, y〉, for any vectors x1, x2, y and scalars λ1

and λ2.

The quantity ‖x‖ = √〈x, x〉 is called the norm of x. Examples of inner product
spaces are Rn with the usual dot product, Cn with the inner product

〈(z1, z2, . . . , zn), (w1, w2, . . . , wn)〉 = z1w1 + z2w2 + · · · + znwn,

but also the space of square integrable functions on an interval [a, b] with the inner
product

〈f, g〉 =
∫ b

a

f (t)g(t)dt.

The Cauchy–Schwarz inequality. Let x, y be two vectors. Then

‖x‖ · ‖y‖ ≥ |〈x, y〉|,
with equality if and only if the vectors x and y are parallel and point in the same direction.

Proof. We have

0 ≤ 〈‖y‖x − ‖x‖y, ‖y‖x − ‖x‖y〉 = 2‖x‖2‖y‖2 − ‖x‖‖y‖(〈x, y〉 + 〈y, x〉),
hence 2‖x‖ · ‖y‖ ≥ (〈x, y〉 + 〈y, x〉). Yet another trick: rotate y by 〈x, y〉/|〈x, y〉|. The
left-hand side does not change, but because of property (ii) the right-hand side becomes

1
|〈x,y〉|(〈x, y〉〈x, y〉 + 〈x, y〉〈x, y〉), which is the same as 2|〈x, y〉|. It follows that

‖x‖ · ‖y‖ ≥ |〈x, y〉|,
which is the Cauchy–Schwarz inequality in its full generality. In our sequence of deduc-
tions, the only inequality that showed up holds with equality precisely when the vectors
are parallel and point in the same direction. ��

As an example, if f and g are two complex-valued continuous functions on the
interval [a, b], or more generally two square integrable functions, then∫ b

a

|f (t)|2dt
∫ b

a

|g(t)|2dt ≥
∣∣∣∣∫ b

a

f (t)g(t)dt

∣∣∣∣2 .
Let us turn to more elementary problems.
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Example. Find the maximum of the function f (x, y, z) = 5x− 6y+ 7z on the ellipsoid
2x2 + 3y2 + 4z2 = 1.

Solution. For a point (x, y, z) on the ellipsoid,

(f (x, y, z))2 = (5x − 6y + 7z)2 =
(

5√
2

· √
2x − 6√

3
· √

3y + 7

2
· 2z

)2

≤
((

5√
2

)2

+
(

− 6√
3

)2

+
(

7

2

)2
)(
(
√

2x)2 + (
√

3y)2 + (2z)2
)

= 147

4
(2x2 + 3y2 + 4z2) = 147

4
.

Hence the maximum of f is
√

147/2, reached at the point (x, y, z) on the ellipsoid for
which x, z > 0, y < 0, and x : y : z = 5√

2
: − 6√

3
: 7

2 . ��
The next problem was on the short list of the 1993 International Mathematical

Olympiad, being proposed by the second author of the book.

Example. Prove that

a

b + 2c + 3d
+ b

c + 2d + 3a
+ c

b + 2a + 3b
+ d

a + 2b + 3c
≥ 2

3
,

for all a, b, c, d > 0.

Solution. Denote by E the expression on the left. Then

4(ab + ac + ad + bc + bd + cd)E

= (a(b + 2c + 3d)+ b(c + 2d + 3a)+ c(d + 2a + 3b)+ d(a + 2b + 3c))

×
(

a

b + 2c + 3d
+ b

c + 2d + 3a
+ c

b + 2a + 3b
+ d

a + 2b + 3c

)
≥ (a + b + c + d)2,

where the last inequality is a well-disguised Cauchy–Schwarz. Finally,

3(a + b + c + d)2 ≥ 8(ab + ac + ad + bc + bd + cd),

because it reduces to

(a − b)2 + (a − c)2 + (a − d)2 + (b − c)2 + (b − d)2 + (c − d)2 ≥ 0.

Combining these two and cancelling the factor ab+ ac+ ad + bc+ bd + cd, we obtain
the inequality from the statement. ��
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And now a list of problems, all of which are to be solved using the Cauchy–Schwarz
inequality.

103. If a, b, c are positive numbers, prove that

9a2b2c2 ≤ (a2b + b2c + c2a)(ab2 + bc2 + ca2).

104. If a1 + a2 + · · · + an = n prove that a4
1 + a4

2 + · · · + a4
n ≥ n.

105. Let a1, a2, . . . , an be distinct real numbers. Find the maximum of

a1aσ(a) + a2aσ(2) + · · · + anaσ(n)

over all permutations of the set {1, 2, . . . , n}.
106. Let f1, f2, . . . , fn be positive real numbers. Prove that for any real numbers

x1, x2, . . . , xn, the quantity

f1x
2
1 + f2x

2
2 + · · · + fnx

2
n − (f1x1 + f2x2 + · · · + fnxn)

2

f1 + f2 + · · · + fn

is nonnegative.

107. Find all positive integers n, k1, . . . , kn such that k1 + · · · + kn = 5n− 4 and

1

k1
+ · · · + 1

kn
= 1.

108. Prove that the finite sequence a0, a1, . . . , an of positive real numbers is a geometric
progression if and only if

(a0a1 + a1a2 + · · · + an−1an)
2 = (a2

0 + a2
1 + · · · + a2

n−1)(a
2
1 + a2

2 + · · · + a2
n).

109. Let P(x) be a polynomial with positive real coefficients. Prove that√
P(a)P (b) ≥ P(

√
ab),

for all positive real numbers a and b.

110. Consider the real numbers x0 > x1 > x2 > · · · > xn. Prove that

x0 + 1

x0 − x1
+ 1

x1 − x2
+ · · · + 1

xn−1 − xn
≥ xn + 2n.

When does equality hold?



36 2 Algebra

111. Prove that

sin3 a

sin b
+ cos3 a

cos b
≥ sec(a − b),

for all a, b ∈ (0, π2 ).
112. Prove that

1

a + b
+ 1

b + c
+ 1

c + a
+ 1

2 3
√
abc

≥ (a + b + c + 3
√
abc)2

(a + b)(b + c)(c + a)
,

for all a, b, c > 0.

2.1.4 The Triangle Inequality

In its most general form, the triangle inequality states that in a metric spaceX the distance
function δ satisfies

δ(x, y) ≤ δ(x, z)+ δ(z, y), for any x, y, z ∈ X.
An equivalent form is

|δ(x, y)− δ(y, z)| ≤ δ(x, z).

Here are some familiar examples of distance functions: the distance between two real
or complex numbers as the absolute value of their difference, the distance between two
vectors in n-dimensional Euclidean space as the length of their difference ‖v − w‖, the
distance between two matrices as the norm of their difference, the distance between two
continuous functions on the same interval as the supremum of the absolute value of their
difference. In all these cases the triangle inequality holds.

Let us see how the triangle inequality can be used to solve a problem from
T.B. Soulami’s book Les olympiades de mathématiques: Réflexes et stratégies (Ellipses,
1999).

Example. For positive numbers a, b, c prove the inequality√
a2 − ab + b2 +

√
b2 − bc + c2 ≥

√
a2 + ac + c2.

Solution. The inequality suggests the following geometric construction. With the same
origin O, draw segments OA, OB, and OC of lengths a, b, respectively, c, such that
OB makes 60◦ angles with OA and OC (see Figure 12).

The law of cosines in the trianglesOAB,OBC, andOAC givesAB2 = a2−ab+b2,
BC2 = b2 −bc+ c2, andAC2 = a2 +ac+ c2. Plugging these formulas into the triangle
inequality AB + BC ≥ AC produces the inequality from the statement. ��
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C

A

B

o
o

O
a

b
c

60
60

Figure 12

Example. Let P(x) be a polynomial whose coefficients lie in the interval [1, 2], and let
Q(x) andR(x) be two nonconstant polynomials such thatP(x) = Q(x)R(x), withQ(x)
having the dominant coefficient equal to 1. Prove that |Q(3)| > 1.

Solution. Let P(x) = anx
n + an−1x

n−1 + · · · + a0. We claim that the zeros of P(x) lie
in the union of the half-plane Re z ≤ 0 and the disk |z| < 2.

Indeed, suppose that P(x) has a zero z such that Re z > 0 and |z| ≥ 2. From
P(z) = 0, we deduce that anzn+an−1z

n−1 = −an−2z
n−2 −an−3z

n−3 −· · ·−a0. Dividing
through by zn, which is not equal to 0, we obtain

an + an−1

z
= −an−2

z2
− an−3

z3
− · · · − a0

zn
.

Note that Re z > 0 implies that Re 1
z
> 0. Hence

1 ≤ an ≤ Re

(
an + an−1

z

)
= Re

(
−an−2

z2
− an−3

z3
− · · · − a0

zn

)
≤
∣∣∣∣−an−2

z2
− an−3

z3
− · · · − a0

zn

∣∣∣∣ ≤ an−2

|z|2 + an−3

|z|3 + · · · + a0

|z|n ,

where for the last inequality we used the triangle inequality. Because the ai’s are in the
interval [1, 2], this is strictly less than

2|z|−2(1 + |z|−1 + |z|−2 + · · · ) = 2|z|−2

1 − |z|−1
.

The last quantity must therefore be greater than 1. But this cannot happen if |z| ≥ 2,
because the inequality reduces to ( 2

|z| − 1)( 1
|z| + 1) > 0, impossible. This proves the

claim.
Returning to the problem,Q(x) = (x− z1)(x− z2) · · · (x− zk), where z1, z2, . . . , zk

are some of the zeros of P(x). Then

|Q(3)| = |3 − z1| · |3 − z2| · · · |3 − zk|.
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If Re zi ≤ 0, then |3 − zi | ≥ 3. On the other hand, if |zi | < 2, then by the triangle
inequality |3 − zi | ≥ 3 − |zi | > 1. Hence |Q(3)| is a product of terms greater than 1,
and the conclusion follows. ��

More applications follow.

113. Let a, b, c be the side lengths of a triangle with the property that for any positive
integer n, the numbers an, bn, cn can also be the side lengths of a triangle. Prove
that the triangle is necessarily isosceles.

114. Given the vectors �a, �b, �c in the plane, show that

‖�a‖ + ‖�b‖ + ‖�c‖ + ‖�a + �b + �c‖ ≥ ‖�a + �b‖ + ‖�a + �c‖ + ‖�b + �c‖.
115. Let P(z) be a polynomial with real coefficients whose roots can be covered by a

disk of radius R. Prove that for any real number k, the roots of the polynomial
nP (z)− kP ′(z) can be covered by a disk of radius R + |k|, where n is the degree
of P(z), and P ′(z) is the derivative.

116. Prove that the positive real numbers a, b, c are the side lengths of a triangle if and
only if

a2 + b2 + c2 < 2
√
a2b2 + b2c2 + c2a2.

117. Let ABCD be a convex cyclic quadrilateral. Prove that

|AB − CD| + |AD − BC| ≥ 2|AC − BD|.
118. Let V1, V2, . . . , Vm and W1,W2, . . . ,Wm be isometries of Rn (m, n positive inte-

gers). Assume that for all x with ‖x‖ ≤ 1, ‖Vix − Wix‖ ≤ 1, i = 1, 2, . . . , m.
Prove that ∥∥∥∥∥

(
m∏
i=1

Vi

)
x −

(
m∏
i=1

Wi

)
x

∥∥∥∥∥ ≤ m,

for all x with ‖x‖ ≤ 1.

119. Given an equilateral triangleABC and a pointP that does not lie on the circumcircle
of ABC, show that one can construct a triangle with sides the segments PA, PB,
and PC. If P lies on the circumcircle, show that one of these segments is equal to
the sum of the other two.

120. Let M be a point in the plane of the triangle ABC whose centroid is G. Prove that

MA3 · BC +MB3 · AC +MC3 · AB ≥ 3MG · AB · BC · CA.
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2.1.5 The Arithmetic Mean–Geometric Mean Inequality

Jensen’s inequality, which will be discussed in the section about convex functions, states
that if f is a real-valued concave function, then

f (λ1x1 + λ2x2 + · · · + λnxn) ≥ λ1f (x1)+ λ2f (x2)+ · · · + λnf (xn),

for any x1, x2, . . . , xn in the domain of f and for any positive weights λ1, λ2, . . . , λn
with λ1 + λ2 + · · · + λn = 1. Moreover, if the function is nowhere linear (that is, if it is
strictly concave) and the numbers λ1, λ2, . . . , λn are nonzero, then equality holds if and
only if x1 = x2 = · · · = xn.

Applying this to the concave function f (x) = ln x, the positive numbers x1, x2, . . . ,

xn, and the weights λ1 = λ2 = · · · = λn = 1
n
, we obtain

ln
x1 + x2 + · · · + xn

n
≥ ln x1 + ln x2 + · · · + ln xn

n
.

Exponentiation yields the following inequality.

The arithmetic mean–geometric mean inequality. Let x1, x2, . . . , xn be nonnegative
real numbers. Then

x1 + x2 + · · · + xn

n
≥ n

√
x1x2 · · · xn,

with equality if and only if all numbers are equal.

We will call this inequality AM–GM for short. We give it an alternative proof using
derivatives, a proof by induction on n. For n = 2 the inequality is equivalent to the
obvious (

√
a1 −√

a2)
2 ≥ 0. Next, assume that the inequality holds for any n−1 positive

numbers, meaning that

x1 + x2 + · · · + xn−1

n− 1
≥ n−1

√
x1x2 · · · xn−1,

with equality only when x1 = x2 = · · · = xn−1. To show that the same is true for n
numbers, consider the function f : (0,∞) → R,

f (x) = x1 + x2 + · · · + xn−1 + x

n
− n

√
x1x2 · · · xn−1x.

To find the minimum of this function we need the critical points. The derivative of f is

f ′(x) = 1

n
−

n
√
x1x2 · · · xn−1

n
x

1
n
−1 = x

1
n
−1

n

(
x1− 1

n − n
√
x1x2 · · · xn−1

)
.
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Setting this equal to zero, we find the unique critical point x = n−1
√
x1x2 · · · xn, since in

this case x1− 1
n = n

√
x1x2 · · · xn−1. Moreover, the function x1− 1

n is increasing on (0,∞);
hence f ′(x) < 0 for x < n−1

√
x1x2 · · · xn−1, and f ′(x) > 0 for x > n−1

√
x1x2 · · · xn−1. We

find that f has a global minimum at x = n−1
√
x1x2 · · · xn−1, where it takes the value

f ( n−1
√
x1x2 · · · xn−1) = x1 + x2 + · · · + xn−1 + n−1

√
x1x2 · · · xn−1

n

− n
√
x1x2 · · · xn−1 · n(n−1)

√
x1x2 · · · xn−1

= x1 + x2 + · · · + xn−1 + n−1
√
x1x2 · · · xn−1

n
− n−1

√
x1x2 · · · xn−1

= x1 + x2 + · · · + xn−1 − (n− 1) n−1
√
x1x2 · · · xn−1

n
.

By the induction hypothesis, this minimum is nonnegative, and is equal to 0 if and only
if x1 = x2 = · · · = xn−1. We conclude that f (xn) ≥ 0 with equality if and only if
x1 = x2 = · · · = xn−1 and xn = n−1

√
x1x2 · · · xn−1 = x1. This completes the induction.

We apply the AM–GM inequality to solve two problems composed by the second
author of the book.

Example. Find the global minimum of the function f : R2 → R,

f (x, y) = 3x+y(3x−1 + 3y−1 − 1).

Solution. The expression

3f (x, y)+ 1 = 32x+y + 3x+2y + 1 − 3 · 3x+y

is of the form a3 + b3 + c3 − 3abc, where a = 3
√

32x+y , b = 3
√

3x+2y , and c = 1, all
of which are positive. By the AM–GM inequality, this expression is nonnegative. It is
equal to zero only when a = b = c, that is, when 2x + y = x + 2y = 0. We conclude
that the minimum of f is f (0, 0) = − 1

3 . ��
Example. Let a, b, c, d be positive real numbers with abcd = 1. Prove that

a

b + c + d + 1
+ b

c + d + a + 1
+ c

d + a + b + 1
+ d

a + b + c + 1
≥ 1.

Solution. A first idea is to homogenize this inequality, and for that we replace the 1 in
each denominator by 4

√
abcd , transforming the inequality into

a

b + c + d + 4
√
abcd

+ b

c + d + a + 4
√
abcd

+ c

d + a + b + 4
√
abcd

+ d

a + b + c + 4
√
abcd

≥ 1.
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Then we apply the AM–GM inequality to the last term in each denominator to obtain the
stronger inequality

4a

a + 5(b + c + d)
+ 4b

b + 5(c + d + a)
+ 4c

c + 5(d + a + b)
+ 4d

d + 5(a + b + c)
≥ 1,

which we proceed to prove.
In order to simplify computations, it is better to denote the four denominators by

16x, 16y, 16z, 16w, respectively. Then a + b + c + d = x + y + z + w, and so
4a + 16x = 4b + 16y = 4c + 16z = 4d + 16w = 5(x + y + z + 2). The inequality
becomes

−11x + 5(y + z+ w)

16x
+ −11y + 5(z+ w + x)

16y
+ −11z+ 5(w + x + y)

16z

+ −11w + 5(x + y + z)

16w
≥ 1,

or

−4 · 11 + 5

(
y

x
+ z

x
+ w

x
+ z

y
+ w

y
+ x

y
+ w

z
+ x

z
+ y

z
+ x

w
+ y

w
+ z

w

)
≥ 16.

And this follows by applying the AM–GM inequality to the twelve summands in the
parentheses. ��

Try your hand at the following problems.

121. Show that all real roots of the polynomial P(x) = x5 − 10x + 35 are negative.

122. Prove that for any positive integer n,

nn − 1 ≥ n
n+1

2 (n− 1).

123. Let a1, a2, . . . , an and b1, b2, . . . , bn be nonnegative numbers. Show that

(a1a2 · · · an)1/n + (b1b2 · · · bn)1/n ≤ ((a1 + b1)(a2 + b2) · · · (an + bn))
1/n.

124. Let a, b, c be the side lengths of a triangle with semiperimeter 1. Prove that

1 < ab + bc + ca − abc ≤ 28

27
.

125. Which number is larger,

25∏
n=1

(
1 − n

365

)
or

1

2
?
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126. On a sphere of radius 1 are given four points A,B,C,D such that

AB · AC · AD · BC · BD · CD = 29

33
.

Prove that the tetrahedron ABCD is regular.

127. Prove that

y2 − x2

2x2 + 1
+ z2 − y2

2y2 + 1
+ x2 − z2

2z2 + 1
≥ 0,

for all real numbers x, y, z.

128. Let a1, a2, . . . , an be positive real numbers such that a1 + a2 +· · ·+ an < 1. Prove
that

a1a2 · · · an(1 − (a1 + a2 + · · · + an))

(a1 + a2 + · · · + an)(1 − a1)(1 − a2) · · · (1 − an)
≤ 1

nn+1
.

129. Consider the positive real numbers x1, x2, . . . , xn with x1x2 · · · xn = 1. Prove that

1

n− 1 + x1
+ 1

n− 1 + x2
+ · · · + 1

n− 1 + xn
≤ 1.

2.1.6 Sturm’s Principle

In this section we present a method for proving inequalities that has the flavor of real
analysis. It is based on a principle attributed to R. Sturm, phrased as follows.

Sturm’s principle. Given a function f defined on a set M and a point x0 ∈ M , if

(i) f has a maximum (minimum) on M , and
(ii) if no other point x in M is a maximum (minimum) of f ,

then x0 is the maximum (minimum) of f .

But how to decide whether the function f has a maximum or a minimum? Two
results from real analysis come in handy.

Theorem. A continuous function on a compact set always attains its extrema.

Theorem. A closed and bounded subset of Rn is compact.

Let us see how Sturm’s principle can be applied to a problem from the first Balkan
Mathematical Olympiad in 1984.



2.1 Identities and Inequalities 43

Example. Let α1, α2, . . . , αn be positive real numbers, n ≥ 2, such that α1 + α2 + · · · +
αn = 1. Prove that

α1

1 + α2 + · · · + αn
+ α2

1 + α1 + · · · + αn
+ · · · + αn

1 + α1 + · · · + αn−1
≥ n

2n− 1
.

Solution. Rewrite the inequality as

α1

2 − α1
+ α2

2 − α2
+ · · · + αn

2 − αn
≥ n

2n− 1
,

and then define the function

f (α1, α2, . . . , αn) = α1

2 − α1
+ α2

2 − α2
+ · · · + αn

2 − αn
.

As said in the statement, this function is defined on the subset of Rn consisting of points
whose coordinates are positive and add up to 1. We would like to show that on this set
f is greater than or equal to n

2n−1 .
Does f have a minimum? The domain of f is bounded but is not closed, being the

interior of a tetrahedron. We can enlarge it, though, by adding the boundary, to the set

M = {(α1, α2, . . . , αn) | α1 + α2 + · · · + αn = 1, αi ≥ 0, i = 1, 2, . . . , n}.
We now know that f has a minimum on M .

A look at the original inequality suggests that the minimum is attained when all the
αi’s are equal. So let us choose a point (α1, α2, . . . , αn) for which αi 	= αj for some
indices i, j . Assume that αi < αj and let us see what happens if we substitute αi + x for
αi and αj − x for αj , with 0 < x < αj − αi . In the defining expression of f , only the
ith and j th terms change. Moreover,

αi

2 − αi
+ αj

2 − αj
− αi + x

2 − αi − x
− αj − x

2 − αj + x

= 2x(αj − αi − x)(4 − αi − αj )

(2 − αi)(2 − αj )(2 − αi − x)(2 − αj − x)
> 0,

so on moving the numbers closer, the value of f decreases. It follows that the point that
we picked was not a minimum. Hence the only possible minimum is ( 1

n
, 1
n
, . . . , 1

n
), in

which case the value of f is n
2n−1 . This proves the inequality. ��

However, in most situations, as is the case with this problem, we can bypass the use
of real analysis and argue as follows. If the ai’s were not all equal, then one of them must
be less than 1

n
and one of them must be greater. Take these two numbers and move them

closer until one of them reaches 1
n
. Then stop and choose another pair. Continue the

algorithm until all numbers become 1
n
. At this very moment, the value of the expression
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is 1
n
(2 − 1

n
)−1 · n = n

2n−1 . Since during the process the value of the expression kept
decreasing, initially it must have been greater than or equal to n

2n−1 . This proves the
inequality.

Let us summarize the last idea. We want to maximize (or minimize) an n-variable
function, and we have a candidate for the extremum. If we can move the variables one
by one toward the maximum without decreasing (respectively, increasing) the value of
the function, than the candidate is indeed the desired extremum. You can find more
applications of Sturm’s principle below.

130. Let a, b, c be nonnegative real numbers such that a + b + c = 1. Prove that

4(ab + bc + ac)− 9abc ≤ 1.

131. Let x1, x2, . . . , xn, n ≥ 2, be positive numbers such that x1 + x2 + · · · + xn = 1.
Prove that (

1 + 1

x1

)(
1 + 1

x2

)
· · ·

(
1 + 1

xn

)
≥ (n+ 1)n.

132. Prove that a necessary and sufficient condition that a triangle inscribed in an ellipse
have maximum area is that its centroid coincide with the center of the ellipse.

133. Let a, b, c > 0, a + b + c = 1. Prove that

0 ≤ ab + bc + ac − 2abc ≤ 7

27
.

134. Let x1, x2, . . . , xn be n real numbers such that 0 < xj ≤ 1
2 , for 1 ≤ j ≤ n. Prove

the inequality ∏n
j=1 xj(∑n
j=1 xj

)n ≤
∏n
j=1(1 − xj )(∑n
j=1(1 − xj )

)n .
135. Let a, b, c, and d be nonnegative numbers such that a ≤ 1, a+b ≤ 5, a+b+c ≤ 14,

a + b + c + d ≤ 30. Prove that
√
a + √

b + √
c + √

d ≤ 10.

136. What is the maximal value of the expression
∑

i<j xixj if x1, x2, . . . , xn are non-
negative integers whose sum is equal to m?

137. Given the n× n array (aij )ij with aij = i + j − 1, what is the smallest product of
n elements of the array provided that no two lie on the same row or column?

138. Given a positive integer n, find the minimum value of

x3
1 + x3

2 + · · · + x3
n

x1 + x2 + · · · + xn

subject to the condition that x1, x2, . . . , xn be distinct positive integers.
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2.1.7 Other Inequalities

We conclude with a section for the inequalities aficionado. Behind each problem hides a
famous inequality.

139. If x and y are positive real numbers, show that xy + yx > 1.

140. Prove that for all a, b, c ≥ 0,

(a5 − a2 + 3)(b5 − b2 + 3)(c5 − c2 + 3) ≥ (a + b + c)3.

141. Assume that all the zeros of the polynomial P(x) = xn+a1x
n−1 +· · ·+an are real

and positive. Show that if there exist 1 ≤ m < p ≤ n such that am = (−1)m
(
n

m

)
and ap = (−1)p

(
n

p

)
, then P(x) = (x − 1)n.

142. Let n > 2 be an integer, and let x1, x2, . . . , xn be positive numbers with the sum
equal to 1. Prove that

n∏
i=1

(
1 + 1

xi

)
≥

n∏
i=1

(
n− xi

1 − xi

)
.

143. Let a1, a2, . . . , an, b1, b2, . . . , bn be real numbers such that

(a2
1 + a2

2 + · · · + a2
n − 1)(b2

1 + b2
2 + · · · + b2

n − 1)

> (a1b1 + a2b2 + · · · + anbn − 1)2.

Prove that a2
1 + a2

2 + · · · + a2
n > 1 and b2

1 + b2
2 + · · · + b2

n > 1.

144. Let a, b, c, d be positive numbers such that abc = 1. Prove that

1

a3(b + c)
+ 1

b3(c + a)
+ 1

c3(a + b)
≥ 3

2
.

2.2 Polynomials

2.2.1 A Warmup

A polynomial is a sum of the form

P(x) = anx
n + an−1x

n−1 + · · · + a0,

where x is the variable, and an, an−1, . . . , a0 are constant coefficients. If an 	= 0, the
number n is called the degree, denoted by deg(P (x)). If an = 1, the polynomial is
called monic. The sets, which, in fact, are rings, of polynomials with integer, rational,
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real, or complex coefficients are denoted, respectively, by Z[x], Q[x], R[x], and C[x].
A number r such that P(r) = 0 is called a zero of P(x), or a root of the equation
P(x) = 0. By the Gauss–d’Alembert theorem, also called the fundamental theorem
of algebra, every nonconstant polynomial with complex coefficients has at least one
complex zero. Consequently, the number of zeros of a polynomial equals the degree,
multiplicities counted. For a number α, P(α) = anα

n + an−1α
n−1 + · · · + a0 is called

the value of the polynomial at α.
We begin the section on polynomials with an old problem from the 1943 competition

of the Mathematics Gazette, Bucharest, proposed by Gh. Buicliu.

Example. Verify the equality

3
√

20 + 14
√

2 + 3
√

20 − 14
√

2 = 4.

Solution. Apparently, this problem has nothing to do with polynomials. But let us denote
the complicated irrational expression by x and analyze its properties. Because of the cube
roots, it becomes natural to raise x to the third power:

x3 = 20 + 14
√

2 + 20 − 14
√

2

+ 3
3
√
(20 + 14

√
2)(20 − 14

√
2)

(
3
√

20 + 14
√

2 + 3
√

20 − 14
√

2

)
= 40 + 3x 3

√
400 − 392 = 40 + 6x.

And now we see that x satisfies the polynomial equation

x3 − 6x − 40 = 0.

We have already been told that 4 is a root of this equation. The other two roots are
complex, and hence x can only equal 4, the desired answer. ��

Of course, one can also recognize the quantities under the cube roots to be the cubes
of 2 + √

2 and 2 − √
2, but that is just a lucky strike.

145. Given the polynomial P(x, y, z) prove that the polynomial

Q(x, y, z) = P(x, y, z)+ P(y, z, x)+ P(z, x, y)

− P(x, z, y)− P(y, x, z)− P(z, y, x)

is divisible by (x − y)(y − z)(z− x).

146. Find all polynomials satisfying the functional equation

(x + 1)P (x) = (x − 10)P (x + 1).
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147. Let P(x) be a polynomial of odd degree with real coefficients. Show that the
equation P(P (x)) = 0 has at least as many real roots as the equation P(x) = 0,
counted without multiplicities.

148. Determine all polynomials P(x) with real coefficients for which there exists a
positive integer n such that for all x,

P

(
x + 1

n

)
+ P

(
x − 1

n

)
= 2P(x).

149. Find a polynomial with integer coefficients that has the zero
√

2 + 3
√

3.

150. Let P(x) = x4 +ax3 +bx2 + cx+d andQ(x) = x2 +px+q be two polynomials
with real coefficients. Suppose that there exists an interval (r, s) of length greater
than 2 such that bothP(x) andQ(x) are negative for x ∈ (r, s) and both are positive
for x < r or x > s. Show that there is a real number x0 such that P(x0) < Q(x0).

151. Let P(x) be a polynomial of degree n. Knowing that

P(k) = k

k + 1
, k = 0, 1, . . . , n,

find P(m) for m > n.

152. Consider the polynomials with complex coefficients

P(x) = xn + a1x
n−1 + · · · + an

with zeros x1, x2, . . . , xn and

Q(x) = xn + b1x
n−1 + · · · + bn

with zeros x2
1 , x

2
2 , . . . , x

2
n. Prove that if a1 + a3 + a5 + · · · and a2 + a4 + a6 + · · ·

are both real numbers, then so is b1 + b2 + · · · + bn.

153. Let P(x) be a polynomial with complex coefficients. Prove that P(x) is an even
function if and only if there exists a polynomial Q(x) with complex coefficients
satisfying

P(x) = Q(x)Q(−x).

2.2.2 Viète’s Relations

From the Gauss–d’Alembert fundamental theorem of algebra it follows that a polynomial

P(x) = anx
n + an−1x

n−1 + · · · + a0
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can be factored over the complex numbers as

P(x) = an(x − x1)(x − x2) · · · (x − xn).

Equating the coefficients of x in the two expressions, we obtain

x1 + x2 + · · · + xn = −an−1

an
,

x1x2 + x1x3 + · · · + xn−1xn = an−2

an
,

· · ·
x1x2 · · · xn = (−1)n

a0

an
.

These relations carry the name of the French mathematician F. Viète. They combine
two ways of looking at a polynomial: as a sum of monomials and as a product of linear
factors. As a first application of these relations, we have selected a problem from a 1957
Chinese mathematical competition.

Example. If x + y + z = 0, prove that

x2 + y2 + z2

2
· x

5 + y5 + z5

5
= x7 + y7 + z7

7
.

Solution. Consider the polynomial P(X) = X3 +pX+q, whose zeros are x, y, z. Then

x2 + y2 + z2 = (x + y + z)2 − 2(xy + xz+ yz) = −2p.

Adding the relations x3 = −px − q, y3 = −py − q, and z3 = −pz − q, which hold
because x, y, z are zeros of P(X), we obtain

x3 + y3 + z3 = −3q.

Similarly,

x4 + y4 + z4 = −p(x2 + y2 + z2)− q(x + y + z) = 2p2,

and therefore

x5 + y5 + z5 = −p(x3 + y3 + z3)− q(x2 + y2 + z2) = 5pq,

x7 + y7 + z7 = −p(x5 + y5 + z5)− q(x4 + y4 + z4) = −5p2q − 2p2q = −7p2q.

The relation from the statement reduces to the obvious

−2p

2
· 5pq

5
= −7p2q

7
. ��
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Next, a problem from the short list of the 2005 Ibero-American Mathematical
Olympiad.

Example. Find the largest real number k with the property that for all fourth-degree
polynomials P(x) = x4 + ax3 + bx2 + cx + d whose zeros are all real and positive,
one has

(b − a − c)2 ≥ kd,

and determine when equality holds.

Solution. Let r1, r2, r3, r4 be the zeros of P(x). Viète’s relations read

a = −(r1 + r2 + r3 + r4),

b = r1r2 + r1r3 + r1r4 + r2r3 + r2r4 + r3r4,

c = −(r1r2r3 + r1r2r4 + r1r3r4 + r2r3r4),

d = r1r2r3r4.

From here we obtain

b − a − c = (r1r2 + r1r3 + r1r4 + r2r3 + r2r4 + r3r4)+ (r1 + r2 + r3 + r4)

+ (r1r2r3 + r1r2r4 + r1r3r4 + r2r3r4).

By the AM–GM inequality this is greater than or equal to

14 14
√
(r1r2r3r4)7 = 14

√
d.

Since equality can hold in the AM–GM inequality, we conclude that k = 196 is the
answer to the problem. Moreover, equality holds exactly when r1 = r2 = r3 = r4 = 1,
that is, when P(x) = x4 − 4x3 + 6x2 − 4x + 1. ��

And now a challenging problem from A. Krechmar’s Problem Book in Algebra (Mir
Publishers, 1974).

Example. Prove that

3

√
cos

2π

7
+ 3

√
cos

4π

7
+ 3

√
cos

8π

7
= 3

√
1

2
(5 − 3 3

√
7).

Solution. We would like to find a polynomials whose zeros are the three terms on the left.
Let us simplify the problem and forget the cube roots for a moment. In this case we have
to find a polynomial whose zeros are cos 2π

7 , cos 4π
7 , cos 8π

7 . The seventh roots of unity
come in handy. Except for x = 1, which we ignore, these are also roots of the equation
x6 + x5 + x4 + x3 + x2 + x + 1 = 0, and are cos 2kπ

7 + i sin 2kπ
7 , k = 1, 2, . . . , 6. We
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see that the numbers 2 cos 2π
7 , 2 cos 4π

7 , and 2 cos 8π
7 are of the form x + 1

x
, with x one of

these roots.
If we define y = x + 1

x
, then x2 + 1

x2 = y2 − 2 and x3 + 1
x3 = y3 − 3y. Dividing the

equation x6 + x5 + x4 + x3 + x2 + x + 1 = 0 through by x3 and substituting y in it, we
obtain the cubic equation

y3 + y2 − 2y − 1 = 0.

The numbers 2 cos 2π
7 , 2 cos 4π

7 , and 2 cos 8π
7 are the three roots of this equation. The

simpler task is fulfilled.
But the problem asks us to find the sum of the cube roots of these numbers. Looking

at symmetric polynomials, we have

X3 + Y 3 + Z3 − 3XYZ = (X + Y + Z)3 − 3(X + Y + Z)(XY + YZ + ZX)

and

X3Y 3 + Y 3Z3 + Z3X3 − 3(XYZ)2 = (XY + YZ +XZ)3

− 3XYZ(X + Y + Z)(XY + YZ + ZX).

Because X3, Y 3, Z3 are the roots of the equation y3 + y2 − 2y − 1 = 0, by Viète’s
relations, X3Y 3Z3 = 1, so XYZ = 3

√
1 = 1, and also X3 + Y 3 + Z3 = −1 and

X3Y 3 + X3Z3 + Y 3Z3 = −2. In the above two equalities we now know the left-hand
sides. The equalities become a system of two equations in the unknowns u = X+Y +Z
and v = XY + YZ + ZX, namely

u3 − 3uv = −4,

v3 − 3uv = −5.

Writing the two equations as u3 = 3uv − 4 and v3 = 3uv − 5 and multiplying them,
we obtain (uv)3 = 9(uv)2 − 27uv + 20. With the substitution m = uv this becomes
m3 − 3m3 + 27m− 20 = 0, or (m− 3)3 + 7 = 0. This equation has the unique solution

m = 3 − 3
√

7. Hence u = 3
√

3m− 4 = 3
√

5 − 3 3
√

7. We conclude that

3

√
cos

2π

7
+ 3

√
cos

4π

7
+ 3

√
cos

8π

7
= X + Y + Z = 1

3
√

2
u = 3

√
1

2
(5 − 3 3

√
7),

as desired. ��
All problems below can be solved using Viète’s relations.

154. Find the zeros of the polynomial

P(x) = x4 − 6x3 + 18x2 − 30x + 25

knowing that the sum of two of them is 4.
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155. Let a, b, c be real numbers. Show that a ≥ 0, b ≥ 0, and c ≥ 0 if and only if
a + b + c ≥ 0, ab + bc + ca ≥ 0, and abc ≥ 0.

156. Solve the system

x + y + z = 1,

xyz = 1,

knowing that x, y, z are complex numbers of absolute value equal to 1.

157. Find all real numbers r for which there is at least one triple (x, y, z) of nonzero real
numbers such that

x2y + y2z+ z2x = xy2 + yz2 + zx2 = rxyz.

158. For five integers a, b, c, d, e we know that the sums a + b + c + d + e and a2 +
b2 + c2 + d2 + e2 are divisible by an odd number n. Prove that the expression
a5 + b5 + c5 + d5 + e5 − 5abcde is also divisible by n.

159. Find all polynomials whose coefficients are equal either to 1 or −1 and whose zeros
are all real.

160. Let P(z) = az4 + bz3 + cz2 + dz+ e = a(z− r1)(z− r2)(z− r3)(z− r4), where
a, b, c, d, e are integers, a 	= 0. Show that if r1 + r2 is a rational number, and if
r1 + r2 	= r3 + r4, then r1r2 is a rational number.

161. The zeros of the polynomial P(x) = x3 − 10x+ 11 are u, v, andw. Determine the
value of arctan u+ arctan v + arctanw.

162. Prove that for every positive integer n,

tan
π

2n+ 1
tan

2π

2n+ 1
· · · tan

nπ

2n+ 1
= √

2n+ 1.

163. LetP(x) = xn+an−1x
n−1+· · ·+a0 be a polynomial of degreen ≥ 3. Knowing that

an−1 = −(n1), an−2 = (
n

2

)
, and that all roots are real, find the remaining coefficients.

164. Determine the maximum value of λ such that whenever P(x) = x3 + ax2 + bx+ c
is a cubic polynomial with all zeros real and nonnegative, then

P(x) ≥ λ(x − a)3

for all x ≥ 0. Find the equality condition.

165. Prove that there are unique positive integers a, n such that

an+1 − (a + 1)n = 2001.
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2.2.3 The Derivative of a Polynomial

This section adds some elements of real analysis. We remind the reader that the derivative
of a polynomial

P(x) = anx
n + an−1x

n−1 + · · · + a1x + a0

is the polynomial

P ′(x) = nanx
n−1 + (n− 1)an−1x

n−2 + · · · + a1.

If x1, x2, . . . , xn are the zeros of P(x), then by the product rule,

P ′(x)
P (x)

= 1

x − x1
+ 1

x − x2
+ · · · + 1

x − xn
.

If a zero of P(x) has multiplicity greater than 1, then it is also a zero of P ′(x), and the
converse is also true. By Rolle’s theorem, if all zeros of P(x) are real, then so are those
of P ′(x). Let us discuss in detail two problems, the second of which is authored by
R. Gologan.

Example. Find all polynomials P(x) with the property that P(x) is a multiple of P ′′(x).

Solution. Let P(x) = Q(x)P ′′(x), withQ(x) a polynomial that is necessarily quadratic.
Since the multiplicity of a zero of P(x) is strictly greater than the multiplicity of the same
zero in P ′′(x), it follows that P(x) has at most two distinct zeros, and these must be zeros
of Q(x). So let P(x) = α(x − a)k(x − b)n−k.

If a 	= b, then a and b are both zeros ofQ(x), so P ′′(x) = n(n− 1)α(x− a)k−1(x−
b)n−k−1 and Q(x) = 1

n(n−1) (x − a)(x − b). But this cannot happen unless k − 1 =
n − k − 1 = 0, for if a number is a zero of both P(x) and P ′′(x), then the difference
between the multiplicities of this zero in the two polynomials is 2.

If a = b, then P(x) = α(x − a)n, n ≥ 2, is a multiple of P ′′(x). The answer
to the problem consists of all quadratic polynomials and all polynomials of the form
P(x) = α(x − a)n, n ≥ 2. ��
Example. Let P(x) ∈ Z[x] be a polynomial with n distinct integer zeros. Prove that the
polynomial (P (x))2+1 has a factor of degree at least 2�n+1

2 � that is irreducible over Z[x].
Solution. The statement apparently offers no clue about derivatives. The standard ap-
proach is to assume that

(P (x))2 + 1 = P1(x)P2(x) · · ·Pk(x)
is a decomposition into factors that are irreducible over Z[x]. Letting x1, x2, . . . , xn be
the integer zeros of P(x), we find that
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P1(xj )P2(xj ) · · ·Pk(xj ) = 1, for j = 1, 2, . . . , n.

Hence Pi(xj ) = ±1, which then implies 1
Pi(xj )

= Pi(xj ), i = 1, 2, . . . , k, j =
1, 2, . . . , n.

Now let us see how derivatives come into play. The key observation is that the
zeros xj of (P (x))2 appear with multiplicity greater than 1, and so they are zeros of the
derivative. Differentiating with the product rule, we obtain

k∑
i=1

P1(xj ) · · ·P ′
i (xj ) · · ·Pk(xj ) = 0, for j = 1, 2, . . . , n.

This sum can be simplified by taking into account that P1(xj )P2(xj ) · · ·Pk(xj ) = 1 and
1

Pi(xj )
= Pi(xj ) as

k∑
i=1

P ′
i (xj )Pi(xj ) = 0, for j = 1, 2, . . . , n.

It follows that xj is a zero of the polynomial

k∑
i=1

2P ′
i (x)Pi(x) =

(
k∑
i=1

P 2
i (x)

)′
.

Let us remember that Pi(xj ) = ±1, which then implies
∑k

i=1 P
2
i (xj ) − n = 0 for

j = 1, 2, . . . , n. The numbers xj , j = 1, 2, . . . , n, are zeros of both
∑k

i=1 P
2
i (x) − n

and its derivative, so they are zeros of order at least 2 of this polynomial. Therefore,

k∑
i=1

P 2
i (x) = (x − x1)

2(x − x2)
2 · · · (x − xn)

2Q(x)+ n,

for some polynomialQ(x)with integer coefficients. We deduce that there exists an index
i0 such that the degree ofPi0(x) is greater than or equal to n. For n even, n = 2�n+1

2 �, and
we are done. For n odd, since (P (x))2 + 1 does not have real zeros, neither does Pi0(x),
so this polynomial has even degree. Thus the degree of Pi0(x) is at least n+1 = 2�n+1

2 �.
This completes the solution. ��
166. Find all polynomials P(x) with integer coefficients satisfying P(P ′(x)) =

P ′(P (x)) for all x ∈ R.

167. Determine all polynomials P(x) with real coefficients satisfying (P (x))n = P(xn)

for all x ∈ R, where n > 1 is a fixed integer.
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168. Let P(z) andQ(z) be polynomials with complex coefficients of degree greater than
or equal to 1 with the property that P(z) = 0 if and only ifQ(z) = 0 and P(z) = 1
if and only if Q(z) = 1. Prove that the polynomials are equal.

169. Let P(x) be a polynomial with all roots real and distinct and such that none of its
zeros is equal to 0. Prove that the polynomial x2P ′′(x)+ 3xP ′(x)+P(x) also has
all roots real and distinct.

170. Let Pn(x) = (xn − 1)(xn−1 − 1) · · · (x − 1), n ≥ 1. Prove that for n ≥ 2, P ′
n(x) is

divisible by P�n/2�(x) in the ring of polynomials with integer coefficients.

171. The zeros of the nth-degree polynomialP(x) are all real and distinct. Prove that the
zeros of the polynomial G(x) = nP (x)P ′′(x)− (n− 1)(P ′(x))2 are all complex.

172. Let P(x) be a polynomial of degree n > 3 whose zeros x1 < x2 < x3 < · · · <
xn−1 < xn are real. Prove that

P ′
(
x1 + x2

2

)
· P ′

(
xn−1 + xn

2

)
	= 0.

2.2.4 The Location of the Zeros of a Polynomial

Since not all polynomial equations can be solved by radicals, methods of approximation
are necessary. Results that allow you to localize the roots in certain regions of the real
axis or complex plane are therefore useful.

The qualitative study of the position of the zeros of a polynomial has far-reaching
applications. For example, the solutions of a homogeneous ordinary linear differential
equation with constant coefficients are stable (under errors of measuring the coefficients)
if and only if the roots of the characteristic equation lie in the open left half-plane (i.e.,
have negative real part). Stability is, in fact, an essential question in control theory, where
one is usually interested in whether the zeros of a particular polynomial lie in the open
left half-plane (Hurwitz stability) or in the open unit disk (Schur stability). Here is a
famous result.

Lucas’ theorem. The zeros of the derivativeP ′(z) of a polynomialP(z) lie in the convex
hull of the zeros of P(z).

Proof. Because any convex domain can be obtained as the intersection of half-planes,
it suffices to show that if the zeros of P(z) lie in an open half-plane, then the zeros of
P ′(z) lie in that half-plane as well. Moreover, by rotating and translating the variable z
we can further reduce the problem to the case in which the zeros of P(z) lie in the upper
half-plane Im z > 0. Here Im z denotes the imaginary part.

So let z1, z2, . . . , zn be the (not necessarily distinct) zeros of P(z), which by hypoth-
esis have positive imaginary part. If Imw ≤ 0, then Im 1

w−zk > 0, for k = 1, . . . , n, and
therefore



2.2 Polynomials 55

Im
P ′(w)
P (w)

=
n∑
k=1

Im
1

w − zk
> 0.

This shows thatw is not a zero ofP ′(z) and so all zeros ofP ′(z) lie in the upper half-plane.
The theorem is proved. ��
173. Let a1, a2, . . . , an be positive real numbers. Prove that the polynomial P(x) =

xn − a1x
n−1 − a2x

n−2 − · · · − an has a unique positive zero.

174. Prove that the zeros of the polynomial

P(z) = z7 + 7z4 + 4z+ 1

lie inside the disk of radius 2 centered at the origin.

175. For a 	= 0 a real number and n > 2 an integer, prove that every nonreal root z of

the polynomial equation xn + ax + 1 = 0 satisfies the inequality |z| ≥ n

√
1
n−1 .

176. Let a ∈ C and n ≥ 2. Prove that the polynomial equation axn + x + 1 = 0 has a
root of absolute value less than or equal to 2.

177. Let P(z) be a polynomial of degree n, all of whose zeros have absolute value 1 in
the complex plane. Set g(z) = P(z)

zn/2
. Show that all roots of the equation g′(z) = 0

have absolute value 1.

178. The polynomial x4 − 2x2 + ax + b has four distinct real zeros. Show that the
absolute value of each zero is smaller than

√
3.

179. LetPn(z), n ≥ 1, be a sequence of monic kth-degree polynomials whose coefficients
converge to the coefficients of a monic kth-degree polynomial P(z). Prove that for
any ε > 0 there isn0 such that ifn ≥ n0 then |zi(n)−zi | < ε, i = 1, 2, . . . , k, where
zi(n) are the zeros of Pn(z) and zi are the zeros of P(z), taken in the appropriate
order.

180. Let P(x) = anx
n+an−1x

n−1 +· · ·+a0 be a polynomial with complex coefficients,
with a0 	= 0, and with the property that there exists an m such that∣∣∣∣ama0

∣∣∣∣ ≥
(
n

m

)
.

Prove that P(x) has a zero of absolute value less than 1.

181. For a polynomial P(x) = (x − x1)(x − x2) · · · (x − xn), with distinct real zeros
x1 < x2 < · · · < xn, we set δ(P (x)) = mini(xi+1 − xi). Prove that for any real
number k,

δ(P ′(x)− kP (x)) > δ(P (x)),

where P ′(x) is the derivative of P(x). In particular, δ(P ′(x)) > δ(P (x)).
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2.2.5 Irreducible Polynomials

A polynomial is irreducible if it cannot be written as a product of two polynomials in
a nontrivial manner. The question of irreducibility depends on the ring of coefficients.
When the coefficients are complex numbers, only linear polynomials are irreducible. For
real numbers some quadratic polynomials are irreducible as well. Both these cases are
rather dull. The interesting situations occur when the coefficients are rational or integer,
in which case there is an interplay between polynomials and arithmetic. The cases of
rational and integer coefficients are more or less equivalent, with minor differences such
as the fact that 2x + 2 is irreducible over Q[x] but reducible over Z[x]. For matters of
elegance we focus on polynomials with integer coefficients. We will assume implicitly
from now on that for any polynomial with integer coefficients, the greatest common
divisor of its coefficients is 1.

Definition. A polynomial P(x) ∈ Z[x] is called irreducible over Z[x] if there do not
exist polynomials Q(x), R(x) ∈ Z[x] different from ±1 such that P(x) = Q(x)R(x).
Otherwise, P(x) is called reducible.

We commence with an easy problem.

Example. Let P(x) be an nth-degree polynomial with integer coefficients with the prop-
erty that |P(x)| is a prime number for 2n + 1 distinct integer values of the variable x.
Prove that P(x) is irreducible over Z[x].

Solution. Assume the contrary and let P(x) = Q(x)R(x) with Q(x), R(x) ∈ Z[x],
Q(x), R(x) 	= ±1. Let k = deg(Q(x)). Then Q(x) = 1 at most k times and Q(x) =
−1 at most n − k times. Also, R(x) = 1 at most n − k times and R(x) = −1 at
most k times. Consequently, the product |Q(x)R(x)| is composite except for at most
k + (n − k) + (n − k) + k = 2n values of x. This contradicts the hypothesis. Hence
P(x) is irreducible. ��

The bound is sharp. For example, P(x) = (x+1)(x+5) has |P(−2)| = |P(−4)| =
3, P(0) = 5, and |P(−6)| = 7.

Probably the most beautiful criterion of irreducibility of polynomials is that discov-
ered independently by F.G.M. Eisenstein in 1850 and T. Schönemann in 1846. We present
it below.

Theorem. Given a polynomial P(x) = anx
n + an−1x

n−1 + · · · + a0 with integer coef-
ficients, suppose that there exists a prime number p such that an is not divisible by p,
ak is divisible by p for k = 0, 1, . . . , n− 1, and a0 is not divisible by p2. Then P(x) is
irreducible over Z[x].
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Proof. We argue by contradiction. Suppose that P(x) = Q(x)R(x), with Q(x) and
R(x) not identically equal to ±1. Let

Q(x) = bkx
k + bk−1xk−1 + · · · + b0,

R(x) = cn−kxn−k + cn−k−1x
n−k−1 + · · · + c0.

Let us look closely at the equalities

i∑
j=0

bjci−j = ai, i = 0, 1, . . . , n,

obtained by identifying the coefficients. From the first of them, b0c0 = a0, and because
a0 is divisible by p but not by p2 it follows that exactly one of b0 and c0 is divisible by
p. Assume that b0 is divisible by p and take the next equality b0c1 + b1c0 = a1. The
right-hand side is divisible by p, and the first term on the left is also divisible by p. Hence
b1c0 is divisible by p, and since c0 is not, b1 must be divisible by p.

This reasoning can be repeated to prove that all the bi’s are divisible by p. It is
important that both Q(x) and R(x) have degrees greater than or equal to 1, for the fact
that bk is divisible by p follows from

bkc0 + bk−1c1 + · · · = ak,

where ak is divisible byp for k < n. The contradiction arises in the equality an = bkcn−k,
since the right-hand side is divisible by p, while the left-hand side is not. This proves
the theorem. ��

The first three problems listed below use this result, while the others apply simi-
lar ideas.

182. Prove that the polynomial

P(x) = x101 + 101x100 + 102

is irreducible over Z[x].
183. Prove that for every prime number p, the polynomial

P(x) = xp−1 + xp−2 + · · · + x + 1

is irreducible over Z[x].
184. Prove that for every positive integer n, the polynomialP(x) = x2n+1 is irreducible

over Z[x].
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185. Prove that for any distinct integers a1, a2, . . . , an the polynomial

P(x) = (x − a1)(x − a2) · · · (x − an)− 1

cannot be written as a product of two nonconstant polynomials with integer coeffi-
cients.

186. Prove that for any distinct integers a1, a2, . . . , an the polynomial

P(x) = (x − a1)
2(x − a2)

2 · · · (x − an)
2 + 1

cannot be written as a product of two nonconstant polynomials with integer coeffi-
cients.

187. Associate to a prime the polynomial whose coefficients are the decimal digits of the
prime (for example, for the prime 7043 the polynomial is P(z) = 7x3 + 4x + 3).
Prove that this polynomial is always irreducible over Z[x].

188. Let p be a prime number of the form 4k+3, k an integer. Prove that for any positive
integer n, the polynomial (x2 + 1)n + p is irreducible in the ring Z[x].

189. Let p be a prime number. Prove that the polynomial

P(x) = xp−1 + 2xp−2 + 3xp−3 + · · · + (p − 1)x + p

is irreducible in Z[x].
190. Let P(x) be a monic polynomial in Z[x], irreducible over this ring, and such that

|P(0)| is not the square of an integer. Prove that the polynomial Q(x) defined by
Q(x) = P(x2) is also irreducible over Z[x].

2.2.6 Chebyshev Polynomials

The nth Chebyshev polynomial Tn(x) expresses cos nθ as a polynomial in cos θ . This
means that Tn(x) = cos(n arccos x), for n ≥ 0. These polynomials satisfy the recurrence

T0(x) = 1, T1(x) = x, Tn+1(x) = 2xTn(x)− Tn−1(x), for n ≥ 1.

For example, T2(x) = 2x2 − 1, T3(x) = 4x3 − 3x, T4(x) = 8x4 − 8x2 + 1.
One usually calls these the Chebyshev polynomials of the first kind, to distinguish

them from the Chebyshev polynomials of the second kind Un(x) defined by U0(x) = 1,
U1(x) = 2x, Un+1(x) = 2xUn(x) − Un−1(x), for n ≥ 1 (same recurrence relation
but different initial condition). Alternatively, Un(x) can be defined by the equality
Un(cos θ) = sin(n+1)θ

sin θ .
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Chebyshev’s theorem. For fixed n ≥ 1, the polynomial 2−n+1Tn(x) is the unique monic
nth-degree polynomial satisfying

max
−1≤x≤1

|2−n+1T (x)| ≤ max
−1≤x≤1

|P(x)|,

for any other monic nth-degree polynomial P(x).

One says that among all monic nth-degree polynomials, 2−n+1Tn(x) has the smallest
variation away from zero on [−1, 1]. This variation is 1

2n−1 . Let us see how Chebyshev’s
theorem applies to a problem from Challenging Mathematical Problems with Elementary
Solutions by A.M. Yaglom and I.M. Yaglom.

Example. LetA1, A2, . . . , An be points in the plane. Prove that on any segment of length
l there is a point M such that

MA1 ·MA2 · · ·MAn ≥ 2

(
l

4

)n
.

Solution. Rescaling, we can assume that l = 2. Associate complex coordinates to points
in such a way that the segment coincides with the interval [−1, 1]. Then

MA1 ·MA2 · · ·MAn = |z− z1| · |z− z2| · · · |z− zn| = |P(z)|,
where P(z) is a monic polynomial with complex coefficients, and z ∈ [−1, 1]. Write
P(z) = R(z)+ iQ(z), where R(z) is the real part and Q(z) is the imaginary part of the
polynomial. Since z is real, we have |P(z)| ≥ |R(z)|. The polynomial R(z) is monic,
so on the interval [−1, 1] it varies away from zero at least as much as the Chebyshev
polynomial. Thus we can find z in this interval such that |R(z)| ≥ 1

2n−1 . This implies
|P(z)| ≥ 2 · 1

2n , and rescaling back we deduce the existence in the general case of a point
M satisfying the inequality from the statement. ��

Stepping aside from the classical picture, let us also consider the families of polyno-
mials Tn(x) and Un(x) defined by T0(x) = 2, T1(x) = x, Tn+1(x) = xTn(x)− Tn−1(x),
and U0(x) = 1, U1(x) = x, Un+1(x) = xUn(x) − Un−1(x). These polynomials are
determined by the equalities

Tn
(
z+ 1

z

)
= zn + 1

zn
and Un

(
z+ 1

z

)
=
(
zn+1 − 1

zn+1

)/(
z− 1

z

)
.

Also, Tn(x) = 1
2Tn(2x) and Un(x) = Un(2x). Here is a quickie that uses Tn(x).

Example. Let a be a real number such that a + a−1 is an integer. Prove that for any
n ≥ 1, the number an + a−n is an integer.
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Solution. An inductive argument based on the recurrence relation shows that Tn(x) is a
polynomial with integer coefficients. And since an + a−n = Tn(a+ a−1), it follows that
this number is an integer. ��
191. Prove that for n ≥ 1,

Tn+1(x) = xTn(x)− (1 − x2)Un−1(x),

Un(x) = xUn−1(x)+ Tn(x),

192. Compute the n× n determinants∣∣∣∣∣∣∣∣∣∣∣∣∣

x 1 0 0 · · · 0
1 2x 1 0 · · · 0
0 1 2x 1 · · · 0
...
...
...
...
. . .

...

0 0 0 0 · · · 1
0 0 0 0 · · · 2x

∣∣∣∣∣∣∣∣∣∣∣∣∣
and

∣∣∣∣∣∣∣∣∣∣∣∣∣

2x 1 0 0 · · · 0
1 2x 1 0 · · · 0
0 1 2x 1 · · · 0
...
...
...
...
. . .

...

0 0 0 0 · · · 1
0 0 0 0 · · · 2x

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

193. Prove Chebyshev’s theorem for n = 4: namely, show that for any monic fourth-
degree polynomial P(x),

max
−1≤x≤1

|P(x)| ≥ max
−1≤x≤1

∣∣2−3T4(x)
∣∣ ,

with equality if and only if P(x) = 2−3T4(x).

194. Let r be a positive real number such that 6
√
r + 1

6√r = 6. Find the maximum value

of 4
√
r − 1

4√r .

195. Let α = 2π
n

. Prove that the matrix⎛⎜⎜⎜⎜⎜⎝
1 1 · · · 1

cosα cos 2α · · · cos nα
cos 2α cos 4α · · · cos 2nα
...

...
. . .

...

cos(n− 1)α cos 2(n− 1)α · · · cos(n− 1)nα

⎞⎟⎟⎟⎟⎟⎠
is invertible.

196. Find all quintuples (x, y, z, v,w)with x, y, z, v,w ∈ [−2, 2] satisfying the system
of equations

x + y + z+ v + w = 0,

x3 + y3 + z3 + v3 + w3 = 0,

x5 + y5 + z5 + v5 + w5 = −10.
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197. Let x1, x2, . . . , xn, n ≥ 2, be distinct real numbers in the interval [−1, 1]. Prove that

1

t1
+ 1

t2
+ · · · + 1

tn
≥ 2n−2,

where tk = ∏
j 	=k |xj − xk|, k = 1, 2, . . . , n.

198. For n ≥ 1, prove the following identities:

Tn(x)√
1 − x2

= (−1)n

1 · 3 · 5 · · · (2n− 1)

dn

dxn
(1 − x2)n−

1
2 ,

Un(x)
√

1 − x2 = (−1)n(n+ 1)

1 · 3 · 5 · · · (2n+ 1)

dn

dxn
(1 − x2)n+

1
2 .

2.3 Linear Algebra

2.3.1 Operations with Matrices

An m × n matrix is an array with m rows and n columns. The standard notation is
A = (aij )i,j , where aij is the entry (element) in the ith row and j th column. We denote
by In the n× n identity matrix (for which aij = 1 if i = j , and 0 otherwise) and by On

the n× n zero matrix (for which aij = 0 for all i, j ).
Given the matrix A = (aij )i,j , At denotes the transpose of A, in which the i, j entry

is aji , and A denotes the complex conjugate, whose entries are the complex conjugates
of the entries of A. Also, trA is the trace of A, namely the sum of the elements on the
main diagonal: a11 + a22 + · · · + ann.

We illustrate how matrix multiplication can be used to prove an identity satisfied by
the Fibonacci sequence (F0 = 0, F1 = 1, Fn+1 = Fn + Fn−1, n ≥ 1). The identity we
have in mind has already been discussed in the introductory chapter in the solution to
problem 24; we put it here in a new perspective.

Example. Prove that

Fm+n+1 = Fm+1Fn+1 + FmFn, for m, n ≥ 0.

Solution. Consider the matrix

M =
(

1 1
1 0

)
.

An easy induction shows that for n ≥ 1,

Mn =
(
Fn+1 Fn
Fn Fn−1

)
.
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The equality Mm+n = MmMn written in explicit form is(
Fm+n+1 Fm+n
Fm+n Fm+n−1

)
=
(
Fm+1 Fm
Fm Fm−1

)(
Fn+1 Fn
Fn Fn−1

)
.

We obtain the identity by setting the upper left corners of both sides equal. ��

Here are some problems for the reader.

199. Let M be an n × n complex matrix. Prove that there exist Hermitian matrices A
and B such that M = A+ iB. (A matrix X is called Hermitian if Xt = X).

200. Do there exist n× n matrices A and B such that AB − BA = In?

201. Let A and B be 2 × 2 matrices with real entries satisfying (AB − BA)n = I2 for
some positive integer n. Prove that n is even and (AB − BA)4 = I2.

202. Let A and B be two n× n matrices that do not commute and for which there exist
nonzero real numbers p, q, r such that pAB + qBA = In and A2 = rB2. Prove
that p = q.

203. Let a, b, c, d be real numbers such that c 	= 0 and ad − bc = 1. Prove that there
exist u and v such that(

a b

c d

)
=
(

1 −u
0 1

)(
1 0
c 1

)(
1 −v
0 1

)
.

204. Compute the nth power of the m×m matrix

Jm(λ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

λ 1 0 · · · 0
0 λ 1 · · · 0
0 0 λ · · · 0
...
...
...
. . .

...

0 0 0 · · · 1
0 0 0 · · · λ

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, λ ∈ C.

205. Let A and B be n× n matrices with real entries satisfying

tr(AAt + BBt) = tr(AB + AtBt).

Prove that A = Bt .
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2.3.2 Determinants

The determinant of an n × n matrix A = (aij )i,j , denoted by detA or |aij |, is the
volume taken with sign of the n-dimensional parallelepiped determined by the row (or
column) vectors of A. Formally, the determinant can be introduced as follows. Let
e1 = (1, 0, . . . , 0), e2 = (0, 1, . . . , 0), . . . , en = (0, 0, . . . , 1) be the canonical basis
of Rn. The exterior algebra of Rn is the vector space spanned by products of the form
ei1 ∧ ei2 ∧ · · · ∧ eik , where the multiplication ∧ is distributive with respect to sums and is
subject to the noncommutativity rule ei ∧ ej = −ej ∧ ei for all i, j (which then implies
ei ∧ ei = 0, for all i). If the row vectors of the matrix A are r1, r2, . . . , rn, then the
determinant is defined by the equality

r1 ∧ r2 ∧ · · · ∧ rn = (detA)e1 ∧ e2 ∧ · · · ∧ en.
The explicit formula is

detA =
∑
σ

sign(σ )a1σ(1)a2σ(2) · · · anσ(n),

with the sum taken over all permutations σ of {1, 2, . . . , n}.
To compute the determinant of a matrix, one applies repeatedly the row operation

that adds to one row a multiple of another until the matrix either becomes diagonal or
has a row of zeros. In the first case this transforms the parallelepiped determined by the
row vectors into a right parallelepiped in standard position without changing its volume,
as suggested in Figure 13.

Figure 13

But it is not our purpose to teach the basics. We insist only on nonstandard tricks and
methods. A famous example is the computation of the Vandermonde determinant.

Example. Let x1, x2, . . . , xn be arbitrary numbers (n ≥ 1). Compute the determinant∣∣∣∣∣∣∣∣∣
1 1 · · · 1
x1 x2 · · · xn
...

...
. . .

...

xn−1
1 xn−1

2 · · · xn−1
n

∣∣∣∣∣∣∣∣∣ .
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Solution. The key idea is to view xn as a variable and think of the determinant as an
(n − 1)st-degree polynomial in xn. The leading coefficient is itself a Vandermonde
determinant of order n − 1, while the n − 1 roots are obviously x2, x3, . . . , xn−1. The
determinant is therefore equal to∣∣∣∣∣∣∣∣∣

1 1 · · · 1
x1 x2 · · · xn−1
...

...
. . .

...

xn−2
1 xn−2

2 · · · xn−2
n−1

∣∣∣∣∣∣∣∣∣ (xn − x1)(xn − x2) · · · (xn − xn−1).

Now we can induct on n to prove that the Vandermonde determinant is equal to∏
i>j (xi − xj ). This determinant is equal to zero if and only if two of the xi’s are

equal. ��
We continue with a problem of D. Andrica.

Example. (a) Consider the real numbers aij , i = 1, 2, . . . , n−2, j = 1, 2, . . . , n, n ≥ 3,
and the determinants

Ak =

∣∣∣∣∣∣∣∣∣
1 · · · 1 1 · · · 1
a11 · · · a1,k−1 a1,k+1 · · · a1n
...

. . .
...

...
. . .

...

an−2,1 · · · an−2,k−1 an−2,k+1 · · · an−2,n

∣∣∣∣∣∣∣∣∣ .
Prove that

A1 + A3 + A5 + · · · = A2 + A4 + A6 + · · · .
(b) Define

pk =
n−(k+1)∏
i=0

(xn−i − xk), qk =
k−1∏
i=1

(xk − xi),

where xi , i = 1, 2, . . . , n, are some distinct real numbers. Prove that

n∑
k=1

(−1)k

pkqk
= 0.

(c) Prove that for any positive integer n ≥ 3 the following identity holds:

n∑
k=1

(−1)kk2

(n− k)!(n+ k)! = 0.
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Solution. We have ∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1 1
1 1 · · · 1 1
a11 a12 · · · a1,n−1 a1n

a21 a22 · · · a2,n−1 a2n
...

...
. . .

...
...

an−2,1 an−2,2 · · · an−2,n−1 an−2,n

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0.

Expanding by the first row, we obtain

A1 − A2 + A3 − A4 + · · · = 0.

This implies

A1 + A3 + A5 + · · · = A2 + A4 + A6 + · · · ,

and (a) is proved.
For (b), we substitute aij = x

j

i , i = 1, 2, . . . , n− 2, j = 1, 2, . . . , n. Then

Ak =

∣∣∣∣∣∣∣∣∣
1 · · · 1 1 . . . 1
x1 · · · xk−1 xk+1 · · · xn
...

. . .
...

...
. . .

...

xn−2
1 · · · xn−2

k−1 x
n−2
k+1 · · · xn−2

n

∣∣∣∣∣∣∣∣∣ ,
which is a Vandermonde determinant. Its value is equal to∏

i>j

i,j 	=k

(xi − xj ) = 1

pkqk
.

The equality proved in (a) becomes, in this particular case,

n∑
k=1

(−1)k

pkqk
= 0,

as desired.
Finally, if in this we let xk = k2, then we obtain the identity from part (c), and the

problem is solved. ��
And here comes a set of problems for the reader.
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206. Prove that∣∣∣∣∣∣
(x2 + 1)2 (xy + 1)2 (xz+ 1)2

(xy + 1)2 (y2 + 1)2 (yz+ 1)2

(xz+ 1)2 (yz+ 1)2 (z2 + 1)2

∣∣∣∣∣∣ = 2(y − z)2(z− x)2(x − y)2.

207. Let (Fn)n be the Fibonacci sequence. Using determinants, prove the identity

Fn+1Fn−1 − F 2
n = (−1)n, for all n ≥ 1.

208. Let p < m be two positive integers. Prove that∣∣∣∣∣∣∣∣∣∣

(
m

0

) (
m

1

) · · · (
m

p

)(
m+1

0

) (
m+1

1

) · · · (m+1
p

)
...

...
. . .

...(
m+p

0

) (
m+p

1

) · · · (m+p
p

)

∣∣∣∣∣∣∣∣∣∣
= 1.

209. Given distinct integers x1, x2, . . . , xn, prove that
∏
i>j (xi − xj ) is divisible by

1!2! · · · (n− 1)!.
210. Prove the formula for the determinant of a circulant matrix∣∣∣∣∣∣∣∣∣∣∣

x1 x2 x3 · · · xn
xn x1 x2 · · · xn−1
...
...
...
. . .

...

x3 x4 x5 · · · x2

x2 x3 x4 · · · x1

∣∣∣∣∣∣∣∣∣∣∣
= (−1)n−1

n−1∏
j=0

(
n∑
k=1

ζ jkxk

)
,

where ζ = e2πi/n.

211. Compute the determinant of the n× n matrix A = (aij )ij , where

aij =
{
(−1)|i−j | if i 	= j,

2 if i = j .

212. Prove that for any integers x1, x2, . . . , xn and positive integers k1, k2, . . . , kn, the
determinant ∣∣∣∣∣∣∣∣∣

x
k1
1 x

k1
2 · · · xk1

n

x
k2
1 x

k2
2 · · · xk2

n
...

...
. . .

...

x
kn
1 x

kn
2 · · · xknn

∣∣∣∣∣∣∣∣∣
is divisible by n!.
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213. Let A and B be 3 × 3 matrices with real elements such that detA = detB =
det(A+B) = det(A−B) = 0. Prove that det(xA+yB) = 0 for any real numbers
x and y.

Sometimes it is more convenient to work with blocks instead of entries. For that
we recall the rule of Laplace, which is the direct generalization of the row or column
expansion. The determinant is computed by expanding over all k × k minors of some
k rows or columns. Explicitly, given A = (aij )

n
i,j=1, when expanding by the rows

i1, i2, . . . , ik, the determinant is given by

detA =
∑

j1<j2<···<jk
(−1)i1+···+ik+j1+···+jkMkNk,

where Mk is the determinant of the k × k matrix whose entries are aij , with i ∈
{i1, i2, . . . , ik} and j ∈ {j1, j2, . . . , jk}, whileNk is the determinant of the (n−k)×(n−k)
matrix whose entries are aij with i /∈ {i1, i2, . . . , ik} and j /∈ {j1, j2, . . . , jk}. We exem-
plify this rule with a problem from the 4th International Competition in Mathematics for
University Students (1997).

Example. Let M be an invertible 2n× 2n matrix, represented in block form as

M =
(
A B

C D

)
and M−1 =

(
E F

G H

)
.

Show that detM · detH = detA.

Solution. The idea of the solution is that the relation between determinants should come
from a relation between matrices. To this end, we would like to find three matrices
X, Y,Z such that XY = Z, while detX = detM , det Y = detH , and detZ = detA.
Since among M , H , and A, the matrix M has the largest dimension, we might try to set
X = M and find 2n × 2n matrices Y and Z. The equality M ·M−1 = I2n yields two
relations involving H , namely AF + BH = 0 and CF +DH = In. This suggests that
we should use both F and H in the definition of Y . So we need an equality of the form(

A B

C D

)(∗ F
∗ H

)
=
(∗ 0

∗ In

)
.

We can try

Y =
(

In F
0 H

)
.

The latter has determinant equal to detH , as desired. Also,
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Z =
(
A 0
C In

)
.

According to the rule of Laplace, the determinant of Z can be computed by expanding
along the n × n minors from the top n rows, and all of them are zero except for the
first. Hence detZ = detA · det In = detA, and so the matrices X, Y,Z solve the
problem. ��
214. Show that if

x =
∣∣∣∣a bc d

∣∣∣∣ and x ′ =
∣∣∣∣a′ b′
c′ d ′

∣∣∣∣ ,
then

(xx ′)2 =

∣∣∣∣∣∣∣∣
ab′ cb′ ba′ da′
ad ′ cd ′ bc′ dc′
bb′ db′ aa′ ca′
bd ′ dd ′ ac′ cc′

∣∣∣∣∣∣∣∣ .
215. Let A,B,C,D be n× n matrices such that AC = CA. Prove that

det

(
A B

C D

)
= det(AD − CB).

216. Let X and Y be n× n matrices. Prove that

det(In −XY) = det(In − YX).

A property exploited often in Romanian mathematics competitions states that for any
n× n matrix A with real entries,

det(In + A2) ≥ 0.

The proof is straightforward:

det(In + A2) = det((In + iA)(In − iA)) = det(In + iA) det(In − iA)

= det(In + iA) det(In + iA) = det(In + iA)det(In + iA).

In this computation the bar denotes the complex conjugate, and the last equality follows
from the fact that the determinant is a polynomial in the entries. The final expression is
positive, being equal to | det(In + iA)|2.

Use this property to solve the following problems, while assuming that all matrices
have real entries.

217. Let A and B be n× n matrices that commute. Prove that if det(A+ B) ≥ 0, then
det(Ak + Bk) ≥ 0 for all k ≥ 1.
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218. Let A be an n× n matrix such that A+ At = On. Prove that

det(In + λA2) ≥ 0,

for all λ ∈ R.

219. Let P(t) be a polynomial of even degree with real coefficients. Prove that the
function f (X) = P(X) defined on the set of n× n matrices is not onto.

220. Let n be an odd positive integer and A an n × n matrix with the property that
A2 = On or A2 = In. Prove that det(A+ In) ≥ det(A− In).

2.3.3 The Inverse of a Matrix

An n × n matrix A is called invertible if there exists an n × n matrix A−1 such that
AA−1 = A−1A = In. The inverse of a matrix can be found either by using the adjoint
matrix, which amounts to computing several determinants, or by performing row and
column operations. We illustrate how the latter method can be applied to a problem from
the first International Competition in Mathematics for University Students (1994).

Example.

(a) Let A be an n × n symmetric invertible matrix with positive real entries, n ≥ 2.
Show that A−1 has at most n2 − 2n entries equal to zero.

(b) How many entries are equal to zero in the inverse of the n× n matrix

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 · · · 1
1 2 2 2 · · · 2
1 2 1 1 · · · 1
1 2 1 2 · · · 2
...
...
...
...
. . .

...

1 2 1 2 · · · · · ·

⎞⎟⎟⎟⎟⎟⎟⎟⎠
?

Solution. Denote by aij and bij the entries of A, respectively, A−1. Then we have∑n
i=0 amibim = 1, so for fixed m not all the bim’s are equal to zero. For k 	= m we have∑n
i=0 akibim = 0, and from the positivity of the aki’s we conclude that at least one bim is

negative, and at least one is positive. Hence every column of A−1 contains at least two
nonzero elements. This proves part (a).

To compute the inverse of the matrix in part (b), we consider the extended matrix
(AIn), and using row operations we transform it into the matrix (InA−1). We start with
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⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 · · · 1 1 0 0 0 · · · 0
1 2 2 2 · · · 2 0 1 0 0 · · · 0
1 2 1 1 · · · 1 0 0 1 0 · · · 0
1 2 1 2 . . . 2 0 0 0 1 . . . 0
...
...
...
...
. . .

...
...
...
...
...
. . .

...

1 2 1 2 · · · · · · 0 0 0 0 · · · 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

Subtracting the first row from each of the others, then the second row from the first, we
obtain ⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 · · · 0 2 −1 0 0 · · · 0
0 1 1 1 · · · 1 −1 1 0 0 · · · 0
0 1 0 0 · · · 0 −1 0 1 0 · · · 0
0 1 0 1 · · · 1 −1 0 0 1 · · · 0
...
...
...
...
. . .

...
...

...
...
...
. . .

...

0 1 0 1 · · · · · · −1 0 0 0 · · · 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

We continue as follows. First, we subtract the second row from the third, fourth, and so
on. Then we add the third row to the second. Finally, we multiply all rows, beginning
with the third, by −1. This way we obtain⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 · · · 0 2 −1 0 0 · · · 0
0 1 0 0 · · · 0 −1 0 1 0 · · · 0
0 0 1 1 · · · 1 0 1 −1 0 · · · 0
0 0 1 0 · · · 0 0 1 0 −1 · · · 0
...
...
...
...
. . .

...
...

...
...

...
. . .

...

0 0 1 0 · · · · · · 1 0 0 0 · · · −1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

Now the inductive pattern is clear. At each step we subtract the kth row from the rows
below, then subtract the (k+ 1)st from the kth, and finally multiply all rows starting with
the (k+1)st by −1. In the end we find that the entries ofA−1 are b1,1 = 2, bn,n = (−1)n,
bi,i+1 = bi+1,i = (−1)i , and bij = 0, for |i − j | ≥ 2. This example shows that equality
can hold in part (a). ��
221. For distinct numbers x1, x2, . . . , xn, consider the matrix

A =

⎛⎜⎜⎜⎝
1 1 · · · 1
x1 x2 · · · xn
...

...
. . .

...

xn−1
1 xn−1

2 · · · xn−1
n

⎞⎟⎟⎟⎠ .
It is known that detA is the Vandermonde determinant 	(x1, x2, . . . , xn) =∏
i>j (xi − xj ). Prove that the inverse of A is B = (bkm)1≤k,m≤n, where
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bkm = (−1)k+m	(x1, x2, . . . , xn)
−1	(x1, . . . , xk−1, xk+1, . . . , xn)

× Sn−1(x1, . . . , xk−1, xk+1, . . . , xn).

Here Sn−1 denotes the (n− 1)st symmetric polynomial in n− 1 variables.

222. Let A and B be 2 × 2 matrices with integer entries such that A, A + B, A + 2B,
A+3B, andA+4B are all invertible matrices whose inverses have integer entries.
Prove that A+ 5B is invertible and that its inverse has integer entries.

223. Determine the matrix A knowing that its adjoint matrix (the one used in the com-
putation of the inverse) is

A∗ =
⎛⎝m2 − 1 1 −m 1 −m

1 −m m2 − 1 1 −m

1 −m 1 −m m2 − 1

⎞⎠ , m 	= 1,−2.

224. Let A = (aij )ij be an n× n matrix such that
∑n

j=1 |aij | < 1 for each i. Prove that
In − A is invertible.

225. Let α = π
n+1 , n > 2. Prove that the n× n matrix⎛⎜⎜⎜⎝

sin α sin 2α · · · sin nα
sin 2α sin 4α · · · sin 2nα
...

...
. . .

...

sin nα sin 2nα · · · sin n2α

⎞⎟⎟⎟⎠
is invertible.

226. Assume thatA andB are invertible complex n×nmatrices such that i(A†B−B†A)

is positive semidefinite, where X† = X
t
, the transpose conjugate of X. Prove that

A + iB is invertible. (A matrix T is positive semidefinite if 〈T v, v〉 ≥ 0 for all
vectors v, where 〈v,w〉 = vt w̄ is the complex inner product.)

We continue with problems that exploit the ring structure of the set of n×nmatrices.
There are some special properties that matrices satisfy that do not hold in arbitrary rings.
For example, an n× n matrix A is either a zero divisor (there exist nonzero matrices B
and C such thatAB = CA = On), or it is invertible. Also, if a matrix has a left (or right)
inverse, then the matrix is invertible, which means that if AB = In then also BA = In.

A good example is a problem of I.V. Maftei that appeared in the 1982 Romanian
Mathematical Olympiad.

Example. Let A,B,C be n× n matrices, n ≥ 1, satisfying

ABC + AB + BC + AC + A+ B + C = On.

Prove that A and B + C commute if and only if A and BC commute.
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Solution. If we addIn to the left-hand side of the identity from the statement, we recognize
this expression to be the polynomial P(X) = (X+A)(X+B)(X+C) evaluated at the
identity matrix. This means that

(In + A)(In + B)(In + C) = In.

This shows that In +A is invertible, and its inverse is (In +B)(In +C). It follows that

(In + B)(In + C)(In + A) = In,

or

BCA+ BC + BA+ CA+ A+ B + C = On.

Subtracting this relation from the one in the statement and grouping the terms appropri-
ately, we obtain

ABC − BCA = (B + C)A− A(B + C).

The conclusion follows. ��

Here are other examples.

227. Let A be an n× n matrix such that there exists a positive integer k for which

kAk+1 = (k + 1)Ak.

Prove that the matrix A− In is invertible and find its inverse.

228. Let A be an invertible n × n matrix, and let B = XY , where X and Y are 1 × n,
respectively, n× 1 matrices. Prove that the matrix A+ B is invertible if and only
if α = YA−1X 	= −1, and in this case its inverse is given by

(A+ B)−1 = A−1 − 1

α + 1
A−1BA−1.

229. Given two n × n matrices A and B for which there exist nonzero real numbers a
and b such that AB = aA+ bB, prove that A and B commute.

230. LetA and B be n×nmatrices, n ≥ 1, satisfyingAB−B2A2 = In andA3 +B3 =
On. Prove that BA− A2B2 = In.
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2.3.4 Systems of Linear Equations

A system of m linear equations with n unknowns can be written as

Ax = b,

where A is an m × n matrix called the coefficient matrix, and b is an m-dimensional
vector. Ifm = n, the system has a unique solution if and only if the coefficient matrix A
is invertible. If A is not invertible, the system can have either infinitely many solutions
or none at all. If additionally b = 0, then the system does have infinitely many solutions
and the codimension of the space of solutions is equal to the rank of A.

We illustrate this section with two problems that apparently have nothing to do with
the topic. The first was published in Mathematics Gazette, Bucharest, by L. Pîrşan.

Example. Consider the matrices

A =
(
a b

c d

)
, B =

(
α β

γ δ

)
, C =

⎛⎜⎜⎝
aα bβ aγ bγ

aβ bβ aδ bδ

cα dα cγ dγ

cβ dβ cδ dδ

⎞⎟⎟⎠ ,
where a, b, c, d, α, β, γ, δ are real numbers. Prove that if A and B are invertible, then C
is invertible as well.

Solution. Let us consider the matrix equation AXB = D, where

X =
(
x z

y t

)
and D =

(
m n

p q

)
.

Solving it for X gives X = A−1DB−1, and so X is uniquely determined by A, B, and
D. Multiplying out the matrices in this equation,(

a b

c d

)(
x z

y t

)(
α β

γ δ

)
=
(
m n

p q

)
,

we obtain(
aαx + bαy + aγ z+ bγ t aβx + bβy + aδz+ bδt

cαx + dαy + cγ z+ dγ t cβx + dβy + cδz+ dδt

)
=
(
m n

p q

)
.

This is a system in the unknowns x, y, z, t :

aαx + bαy + aγ z+ bγ t = m,

aβx + bβy + aδz+ bδt = n,
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cαx + dαy + cγ z+ dγ t = p,

cβx + dβy + cδz+ dδt = q.

We saw above that this system has a unique solution, which implies that its coefficient
matrix is invertible. This coefficient matrix is C. ��

The second problem we found in an old textbook on differential and integral calculus.

Example. Given the distinct real numbers a1, a2, a3, let x1, x2, x3 be the three roots of
the equation

u1

a1 + t
+ u2

a2 + t
+ u3

a3 + t
= 1,

where u1, u2, u3 are real parameters. Prove that u1, u2, u3 are smooth functions of
x1, x2, x3 and that

det

(
∂ui

∂xj

)
= −(x1 − x2)(x2 − x3)(x3 − x1)

(a1 − a2)(a2 − a3)(a3 − a1)
.

Solution. After eliminating the denominators, the equation from the statement becomes
a cubic equation in t , so x1, x2, x3 are well defined. The parameters u1, u2, u3 satisfy the
system of equations

1

a1 + x1
u1 + 1

a2 + x1
u2 + 1

a3 + x1
u3 = 1,

1

a1 + x2
u1 + 1

a2 + x2
u2 + 1

a3 + x2
u3 = 1,

1

a1 + x3
u1 + 1

a2 + x3
u2 + 1

a3 + x3
u3 = 1.

When solving this system, we might end up entangled in algebraic computations. Thus
it is better instead to take a look at the two-variable situation. Solving the system

1

a1 + x1
u1 + 1

a2 + x1
u2 = 1,

1

a1 + x2
u1 + 1

a2 + x2
u2 = 1,

with Cramer’s rule we obtain

u1 = (a1 + x1)(a1 + x2)

(a1 − a2)
and u2 = (a2 + x1)(a2 + x2)

(a2 − a1)
.

Now we can extrapolate to the three-dimensional situation and guess that
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ui =
∏3
k=1(ai + xk)∏
k 	=i(ai − ak)

, i = 1, 2, 3.

It is not hard to check that these satisfy the system of equations. Observe that

∂ui

∂xj
=
∏
k 	=j (ai + xk)∏
j 	=i(ai − aj )

, and so
∂ui

∂xj
= 1

ai + xj
ui, i, j = 1, 2, 3.

The determinant in question looks again difficult to compute. Some tricks simplify the
task. An observation is that the sum of the columns is 1. Indeed, these sums are

∂u1

∂xi
+ ∂u2

∂xi
+ ∂u3

∂xi
, i = 1, 2, 3,

which we should recognize as the left-hand sides of the linear system. So the determinant
becomes much simpler if we add the first and second rows to the last. Another observation
is that the determinant is a 3-variable polynomial in x1, x2, x3. Its total degree is 3, and it
becomes zero if xi = xj for some i 	= j . Consequently, the determinant is a number not
depending on x1, x2, x3 times (x1−x2)(x2−x3)(x3−x1). This number can be determined
by looking just at the coefficient of x2

2x3. And an easy computation shows that this is
equal to 1

(a1−a2)(a2−a3)(a3−a1)
. ��

From the very many practical applications of the theory of systems of linear equations,
let us mention the Global Positioning System (GPS). The principle behind the GPS is
the measurement of the distances between the receiver and 24 satellites (in practice some
of these satellites might have to be ignored in order to avoid errors due to atmospheric
phenomena). This yields 24 quadratic equations d(P, Si)2 = r2

i , i = 1, 2, . . . , 24, in
the three spatial coordinates of the receiver. Subtracting the first of the equations from
the others cancels the quadratic terms and gives rise to an overdetermined system of 23
linear equations in three unknowns. Determining the location of the receiver is therefore
a linear algebra problem.

231. Solve the system of linear equations

x1 + x2 + x3 = 0,

x2 + x3 + x4 = 0,

· · ·
x99 + x100 + x1 = 0,

x100 + x1 + x2 = 0.

232. Find the solutions x1, x2, x3, x4, x5 to the system of equations

x5 + x2 = yx1, x1 + x3 = yx2, x2 + x4 = yx3,
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x3 + x5 = yx1, x4 + x1 = yx5,

where y is a parameter.

233. Let a, b, c, d be positive numbers different from 1, and x, y, z, t real numbers
satisfying ax = bcd, by = cda, cz = dab, dt = abc. Prove that∣∣∣∣∣∣∣∣

−x 1 1 1
1 −y 1 1
1 1 −z 1
1 1 1 −t

∣∣∣∣∣∣∣∣ = 0.

234. Given the system of linear equations

a11x1 + a12x2 + a13x3 = 0,

a21x1 + a22x2 + a23x3 = 0,

a31x1 + a32x2 + a33x3 = 0,

whose coefficients satisfy the conditions
(a) a11, a22, a33 are positive,
(b) all other coefficients are negative,
(c) in each equation, the sum of the coefficients is positive,
prove that the system has the unique solution x1 = x2 = x3 = 0.

235. Let P(x) = xn + xn−1 + · · · + x + 1. Find the remainder obtained when P(xn+1)

is divided by P(x).

236. Find all functions f : R\{−1, 1} → R satisfying

f

(
x − 3

x + 1

)
+ f

(
3 + x

1 − x

)
= x

for all x 	= ±1.

237. Find all positive integer solutions (x, y, z, t) to the Diophantine equation

(x + y)(y + z)(z+ x) = txyz

such that gcd(x, y) = gcd(y, z) = gcd(z, x) = 1.

238. We have n coins of unknown masses and a balance. We are allowed to place some
of the coins on one side of the balance and an equal number of coins on the other
side. After thus distributing the coins, the balance gives a comparison of the total
mass of each side, either by indicating that the two masses are equal or by indicating
that a particular side is the more massive of the two. Show that at least n− 1 such
comparisons are required to determine whether all of the coins are of equal mass.
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239. Let a0 = 0, a1, . . . , an, an+1 = 0 be a sequence of real numbers that satisfy |ak−1 −
2ak + ak+1| ≤ 1 for k = 1, 2, . . . , n − 1. Prove that |ak| ≤ k(n−k+1)

2 for k =
1, 2, . . . , n− 1.

240. Prove that the Hilbert matrix⎛⎜⎜⎜⎝
1 1

2
1
3 · · · 1

n
1
2

1
3

1
4 · · · 1

n+1
...
...

...
. . .

...
1
n

1
n+1

1
n+2 · · · 1

2n−1

⎞⎟⎟⎟⎠
is invertible. Prove also that the sum of the entries of the inverse matrix is n2.

2.3.5 Vector Spaces, Linear Combinations of Vectors, Bases

In general, a vector space V over a field of scalars (which in our book will be only C, R,
or Q) is a set endowed with a commutative addition and a scalar multiplication that have
the same properties as those for vectors in Euclidean space.

A linear combination of the vectors v1, v2, . . . , vm is a sum c1v1 + c2v2 + · · ·+ cmvm
with scalar coefficients. The vectors are called linearly independent if a combination of
these vectors is equal to zero only when all coefficients are zero. Otherwise, the vectors
are called linearly dependent. If v1, v2, . . . , vn are linearly independent and if every
vector in V is a linear combination of these vectors, then v1, v2, . . . , vn is called a basis
of V . The number of elements of a basis of a vector space depends only on the vector
space, and is called the dimension of the vector space. We will be concerned only with
finite-dimensional vector spaces. We also point out that if in a vector space there are
given more vectors than the dimension, then these vectors must be linearly dependent.

The rank of a matrix is the dimension of its row vectors, which is the same as the
dimension of the column vectors. A square matrix is invertible if and only if its rank
equals its size.

Let us see some examples. The first appeared in the Soviet University Student Math-
ematical Competition in 1977.

Example. Let X and B0 be n × n matrices, n ≥ 1. Define Bi = Bi−1X − XBi−1, for
i ≥ 1. Prove that if X = Bn2 , then X = On.

Solution. Because the space of n× n matrices is n2-dimensional, B0, B1, . . . , Bn2 must
be linearly dependent, so there exist scalars c0, c1, . . . , cn2 such that

c0B0 + c1B1 + · · · + cn2Bn2 = On.

Let k be the smallest index for which ck 	= 0. Then
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Bk = a1Bk+1 + a2Bk+2 + · · · + an2−kBn2,

where aj = − ck+j
ck

. Computing Bk+1 = BkX −XBk, we obtain

Bk+1 = a1Bk+2 + a2Bk+3 + · · · + an2−kBn2+1,

and inductively

Bk+j = a1Bk+j+1 + a2Bk+j+2 + · · · + an2−kBn2+j , for j ≥ 1.

In particular,

Bn2 = a1Bn2+1 + a2Bn2+2 + · · · + an2−kBn2+k.

But Bn2+1 = Bn2X − XBn2 = X2 − X2 = On, and hence Bn2+j = On, for j ≥ 1.
It follows that X, which is a linear combination of Bn2+1, Bn2+2, . . . , Bn2+k, is the zero
matrix. And we are done. ��

The second example was given at the 67th W.L. Putnam Mathematical Competition
in 2006, and the solution that we present was posted by C. Zara on the Internet.

Example. Let Z denote the set of points in Rn whose coordinates are 0 or 1. (Thus Z has
2n elements, which are the vertices of a unit hypercube in Rn.) Let k be given, 0 ≤ k ≤ n.
Find the maximum, over all vector subspaces V ⊆ Rn of dimension k, of the number of
points in Z ∩ V .

Solution. Let us consider the matrix whose rows are the elements of V ∩Z. By construc-
tion it has row rank at most k. It thus also has column rank at most k; in particular, there
are k columns such that any other column is a linear combination of these k. It means
that the coordinates of each point of V ∩ Z are determined by the k coordinates that lie
in these k columns. Since each such coordinate can have only two values, V ∩ Z can
have at most 2k elements.

This upper bound is reached for the vectors that have all possible choices of 0 and 1
for the first k entries, and 0 for the remaining entries. ��
241. Prove that every odd polynomial function of degree equal to 2m−1 can be written as

P(x) = c1

(
x

1

)
+ c2

(
x + 1

3

)
+ c3

(
x + 2

5

)
+ · · · + cm

(
x +m− 1

2m− 1

)
,

where
(
x

m

) = x(x − 1) · · · x−m+1
n! .

242. Let n be a positive integer and P(x) an nth-degree polynomial with complex coef-
ficients such that P(0), P (1), . . . , P (n) are all integers. Prove that the polynomial
n!P(x) has integer coefficients.
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243. Let A be the n× n matrix whose i, j entry is i + j for all i, j = 1, 2, . . . , n. What
is the rank of A?

244. For integers n ≥ 2 and 0 ≤ k ≤ n− 2, compute the determinant∣∣∣∣∣∣∣∣∣∣∣

1k 2k 3k · · · nk

2k 3k 4k · · · (n+ 1)k

3k 4k 5k · · · (n+ 2)k
...

...
...

. . .
...

nk (n+ 1)k (n+ 2)k · · · (2n− 1)k

∣∣∣∣∣∣∣∣∣∣∣
.

245. Let V be a vector space and let f, f1, f2, . . . , fn be linear maps from V to R.
Suppose that f (x) = 0 whenever f1(x) = f2(x) = · · · = fn(x) = 0. Prove that f
is a linear combination of f1, f2, . . . , fn.

246. Given a set S of 2n− 1 different irrational numbers, n ≥ 1, prove that there exist n
distinct elements x1, x2, . . . , xn ∈ S such that for all nonnegative rational numbers
a1, a2, . . . , an with a1 + a2 + · · · + an > 0, the number a1x1 + a2x2 + · · · + anxn
is irrational.

247. There are given 2n + 1 real numbers, n ≥ 1, with the property that whenever one
of them is removed, the remaining 2n can be split into two sets of n elements that
have the same sum of elements. Prove that all the numbers are equal.

2.3.6 Linear Transformations, Eigenvalues, Eigenvectors

A linear transformation between vector spaces is a map T : V → W that satisfies
T (α1v1 +α2v2) = α1T (v1)+α2T (v2) for any scalars α1, α2 and vectors v1, v2. A matrix
A defines a linear transformation by v → Av, and any linear transformation between
finite-dimensional vector spaces with specified bases is of this form. An eigenvalue of a
matrixA is a zero of the characteristic polynomial PA(λ) = det(λIn−A). Alternatively,
it is a scalar λ for which the equation Av = λv has a nontrivial solution v. In this case
v is called an eigenvector of the eigenvalue λ. If λ1, λ2, . . . , λm are distinct eigenvalues
and v1, v2, . . . , vm are corresponding eigenvectors, then v1, v2, . . . , vm are linearly inde-
pendent. Moreover, if the matrixA is Hermitian, meaning thatA is equal to its transpose
conjugate, then v1, v2, . . . , vm may be chosen to be pairwise orthogonal.

The set of eigenvalues of a matrix is called its spectrum. The reason for this name
is that in quantum mechanics, observable quantities are modelled by matrices. Physical
spectra, such as the emission spectrum of the hydrogen atom, become spectra of matrices.
Among all results in spectral theory we stopped at the spectral mapping theorem, mainly
because we want to bring to your attention the method used in the proof.
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The spectral mapping theorem. Let A be an n× n matrix with not necessarily distinct
eigenvalues λ1, λ2, . . . , λn, and let P(x) be a polynomial. Then the eigenvalues of the
matrix P(A) are P(λ1), P (λ2), . . . , P (λn).

Proof. To prove this result we will apply a widely used idea (see for example the splitting
principle in algebraic topology). We will first assume that the eigenvalues of A are all
distinct. Then A can be diagonalized by eigenvectors as⎛⎜⎜⎜⎝

λ1 0 · · · 0
0 λ2 · · · 0
...
...
. . .

...

0 0 · · · λn

⎞⎟⎟⎟⎠ ,
and in the basis formed by the eigenvectors of A, the matrix P(A) assumes the form⎛⎜⎜⎜⎝

P(λ1) 0 · · · 0
0 P(λ2) · · · 0
...

...
. . .

...

0 0 · · · P(λn)

⎞⎟⎟⎟⎠ .
The conclusion is now straightforward. In general, the characteristic polynomial of a
matrix depends continuously on the entries. Problem 172 in Section 2.2.4 proved that the
roots of a polynomial depend continuously on the coefficients. Hence the eigenvalues of
a matrix depend continuously on the entries.

The set of matrices with distinct eigenvalues is dense in the set of all matrices. To
prove this claim we need the notion of the discriminant of a polynomial. By definition, if
the zeros of a polynomial are x1, x2, . . . , xn, the discriminant is

∏
i<j (xi−xj )2. It is equal

to zero if and only if the polynomial has multiple zeros. Being a symmetric polynomial in
the xi’s, the discriminant is a polynomial in the coefficients. Therefore, the condition that
the eigenvalues of a matrix be not all distinct can be expressed as a polynomial equation
in the entries. By slightly varying the entries, we can violate this condition. Therefore,
arbitrarily close to any matrix there are matrices with distinct eigenvalues.

The conclusion of the spectral mapping theorem for an arbitrary matrix now follows
by a limiting argument. ��

We continue with two more elementary problems.

Example. Let A : V → W and B : W → V be linear maps between finite-dimensional
vector spaces. Prove that the linear maps AB and BA have the same set of nonzero
eigenvalues, counted with multiplicities.
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Solution. Choose a basis that identifies V with Rm and W with Rn. Associate to A and
B their matrices, denoted by the same letters. The problem is solved if we prove the
equality

det(λIn − AB) = λk det(λIm − BA),

where k is of course n−m. The relation being symmetric, we may assume that n ≥ m.
In this case, complete the two matrices with zeros to obtain two n×nmatricesA′ andB ′.
Because det(λIn−A′B ′) = det(λI −AB) and det(λIn−B ′A′) = λn−m det(λIn−BA),
the problem reduces to proving that det(λIn − A′B ′) = det(λIn − B ′A′). And this is
true for arbitrary n× nmatrices A′ and B ′. For a proof of this fact we refer the reader to
problem 209 in Section 2.3.2. ��

If B = A†, the transpose conjugate ofA, then this example shows thatAA† andA†A

have the same nonzero eigenvalues. The square roots of these eigenvalues are called the
singular values ofA. The second example comes from the first International Mathematics
Competition, 1994.

Example. Let α be a nonzero real number and n a positive integer. Suppose that F and
G are linear maps from Rn into Rn satisfying F ◦G−G ◦ F = αF .

(a) Show that for all k ≥ 1 one has Fk ◦G−G ◦ Fk = αkF k.
(b) Show that there exists k ≥ 1 such that Fk = On.

Here F ◦G denotes F composed with G.

Solution. Expand Fk ◦G−G ◦ Fk using a telescopic sum as follows:

Fk ◦G−G ◦ Fk =
k∑
i=1

(F k−i+1 ◦G ◦ F i−1 − Fk−i ◦G ◦ F i)

=
k∑
i=1

Fk−i ◦ (F ◦G−G ◦ F) ◦ F i−1

=
k∑
i=1

Fk−i ◦ αF ◦ F i−1 = αkF k.

This proves (a). For (b), consider the linear mapL(F) = F ◦G−G◦F acting on all n×n
matrices F . Assuming Fk 	= On for all k, we deduce from (a) that αk is an eigenvalue
of L for all k. This is impossible since the linear map L acts on an n2-dimensional space,
so it can have at most n2 eigenvalues. This contradiction proves (b). ��
248. Let A be a 2 × 2 matrix with complex entries and let C(A) denote the set of 2 × 2

matrices that commute withA. Prove that | det(A+B)| ≥ | detB| for allB ∈ C(A)
if and only if A2 = O2.
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249. LetA,B be 2×2 matrices with integer entries, such thatAB = BA and detB = 1.
Prove that if det(A3 + B3) = 1, then A2 = O2.

250. Consider the n×nmatrixA = (aij )with aij = 1 if j − i ≡ 1 (mod n) and aij = 0
otherwise. For real numbers a and b find the eigenvalues of aA+ bAt .

251. Let A be an n × n matrix. Prove that there exists an n × n matrix B such that
ABA = A.

252. Consider the angle formed by two half-lines in three-dimensional space. Prove that
the average of the measure of the projection of the angle onto all possible planes in
the space is equal to the angle.

253. A linear map A on the n-dimensional vector space V is called an involution if
A2 = I.
(a) Prove that for every involution A on V there exists a basis of V consisting of

eigenvectors of A.
(b) Find the maximal number of distinct pairwise commuting involutions.

254. Let A be a 3 × 3 real matrix such that the vectors Au and u are orthogonal for each
column vector u ∈ R3. Prove that
(a) At = −A, where At denotes the transpose of the matrix A;
(b) there exists a vector v ∈ R3 such that Au = v × u for every u ∈ R3.

255. Denote byMn(R) the set of n×nmatrices with real entries and let f : Mn(R) → R

be a linear function. Prove that there exists a unique matrix C ∈ Mn(R) such that
f (A) = tr(AC) for all A ∈ Mn(R). In addition, if f (AB) = f (BA) for all
matrices A and B, prove that there exists λ ∈ R such that f (A) = λ trA for any
matrix A.

256. Let U and V be isometric linear transformations of Rn, n ≥ 1, with the property
that ‖Ux − x‖ ≤ 1

2 and ‖V x − x‖ ≤ 1
2 for all x ∈ Rn with ‖x‖ = 1. Prove that

‖UVU−1V −1x − x‖ ≤ 1

2
,

for all x ∈ Rn with ‖x‖ = 1.

257. For an n×nmatrixA denote by φk(A) the symmetric polynomial in the eigenvalues
λ1, λ2, . . . , λn of A,

φk(A) =
∑
i1i2···ik

λi1λi2 · · · λik , k = 1, 2, . . . , n.

For example, φ1(A) is the trace and φn(A) is the determinant. Prove that for two
n× n matrices A and B, φk(AB) = φk(BA) for all k = 1, 2, . . . , n.
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2.3.7 The Cayley–Hamilton and Perron–Frobenius Theorems

We devote this section to two more advanced results, which seem to be relevant to
mathematics competitions. All matrices below are assumed to have complex entries.

The Cayley–Hamilton Theorem. Any n× n matrix A satisfies its characteristic equa-
tion, which means that if PA(λ) = det(λIn − A), then PA(A) = On.

Proof. Let PA(λ) = λn + an−1λ
n−1 + · · · + a0. Denote by (λIn − A) the adjoint of

(λIn − A) (the one used in the computation of the inverse). Then

(λIn − A)(λIn − A)∗ = det(λIn − A)In.

The entries of the adjoint matrix (λIn−A)∗ are polynomials in λ of degree at most n−1.
Splitting the matrix by the powers of λ, we can write

(λIn − A)∗ = Bn−1λ
n−1 + Bn−2λ

n−2 + · · · + B0.

Equating the coefficients of λ on both sides of

(λIn − A)(Bn−1λ
n−1 + Bn−2λ

n−2 + · · · + B0) = det(λIn − A)In,

we obtain the equations

Bn−1 = In,
−ABn−1 + Bn−2 = an−1In,
−ABn−2 + Bn−3 = an−2In,

· · ·
−AB0 = a0In.

Multiply the first equation by An, the second by An−1, the third by An−2, and so on, then
add the n+ 1 equations to obtain

On = An + an−1A
n−1 + an−2A

n−2 + · · · + a0In.

This equality is just the desired PA(A) = On. ��
As a corollary we prove the trace identity for SL(2,C) matrices. This identity is

important in the study of characters of group representations.

Example. Let A and B be 2 × 2 matrices with determinant equal to 1. Prove that

tr(AB)− (trA)(trB)+ tr(AB−1) = 0.
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Solution. By the Cayley–Hamilton Theorem,

B2 − (trB)B + I2 = O2.

Multiply on the left by AB−1 to obtain

AB − (trB)A+ AB−1 = O2,

and then take the trace to obtain the identity from the statement. ��
Five more examples are left to the reader.

258. LetA be a 2×2 matrix. Show that if for some complex numbers u and v the matrix
uI2 + vA is invertible, then its inverse is of the form u′I2 + v′A for some complex
numbers u′ and v′.

259. Find the 2 × 2 matrices with real entries that satisfy the equation

X3 − 3X2 =
(−2 −2

−2 −2

)
.

260. Let A,B,C,D be 2 × 2 matrices. Prove that the matrix [A,B] · [C,D] + [C,D] ·
[A,B] is a multiple of the identity matrix (here [A,B] = AB−BA, the commutator
of A and B).

261. Let A and B be 3 × 3 matrices. Prove that

det(AB − BA) = tr((AB − BA)3)

3
.

262. Show that there do not exist real 2×2 matricesA andB such that their commutator
is nonzero and commutes with both A and B.

Here is the simplest version of the other result that we had in mind.

The Perron–Frobenius Theorem. Any square matrix with positive entries has a unique
eigenvector with positive entries (up to a multiplication by a positive scalar), and the
corresponding eigenvalue has multiplicity one and is strictly greater than the absolute
value of any other eigenvalue.

Proof. The proof uses real analysis. Let A = (aij )
n
i,j=1, n ≥ 1. We want to show that

there is a unique v ∈ [0,∞)n, v 	= 0, such that Av = λv for some λ. Of course, since A
has positive entries and v has positive coordinates, λ has to be a positive number. Denote
by K the intersection of [0,∞)n with the n-dimensional unit sphere. Reformulating the
problem, we want to show that the function f : K → K , f (v) = Av

‖Av‖ has a fixed point.
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Now, there is a rather general result that states that a contractive function on a complete
metric space has a unique fixed point, which we will prove in Section 3.1.3. Recall that
a metric space is a set X endowed with a function δ : X × X → [0,∞) satisfying
(i) δ(x, y) = 0 if and only if x = y, (ii) δ(x, y) = δ(y, x) for all x, y ∈ X, (iii) δ(x, y)+
δ(y, z) ≥ δ(x, z) for all x, y, z ∈ X. Ametric space is complete if every Cauchy sequence
converges to a limit in X. A function f : X → X is contractive if for any x 	= y,

δ(f (x), f (y)) ≤ cδ(x, y)

for some fixed constant c, 0 < c < 1.
With this in mind, we want to find a distance on the set K that makes the function f

defined above contractive. This is the Hilbert metric defined by the formula

δ(v,w) = ln

(
max
i

{
vi

wi

}/
min
i

{
vi

wi

})
,

for v = (v1, v2, . . . , vn) and w = (w1, w2, . . . , wn) ∈ K . That this satisfies the triangle
inequality δ(v,w)+ δ(w, u) ≥ δ(v,w) is a consequence of the inequalities

max
i

{
vi

wi

}
· max

i

{
wi

ui

}
≥ max

i

{
vi

wi

}
,

min
i

{
vi

wi

}
· min

i

{
wi

ui

}
≤ min

i

{
vi

wi

}
.

Let us show that f is contractive. If v = (v1, v2, . . . , vn) andw = (w1, w2, . . . , wn)

are in K , v 	= w, and if αi > 0, i = 1, 2, . . . , n, then

min
i

{
vi

wi

}
<

α1v1 + α2v2 + · · · + αnvn

α1w1 + α2w2 + · · · + αnwn
< max

i

{
vi

wi

}
.

Indeed, to prove the first inequality, add the obvious inequalities wj mini { viwi } ≤ vj , j =
1, 2, . . . , n. Because v 	= w and both vectors are on the unit sphere, at least one inequality
is strict. The second inequality follows from wj maxi { viwi } ≥ vj , j = 1, 2, . . . , n, where
again at least one inequality is strict.

Using this fact, we obtain for all j , 1 ≤ j ≤ n,

aj1v1+···+ajnvn
aj1w1+···+ajnwn

maxi
{
vi
wi

} < 1 <

aj1v1+···+ajnvn
aj1w1+···+ajnwn

mini
{
vi
wi

} .

Therefore,

maxj
{
aj1v1+···+ajnvn
aj1w1+···+ajnwn

}
maxi

{
vi
wi

} <
mini

{
aj1v1+···+ajnvn
aj1w1+···+ajnwn

}
mini

{
vi
wi

} .
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It follows that for v,w ∈ K , v 	= w, δ(f (v), f (w)) < δ(v,w).
Now,K is closed and but is not bounded in the Hilbert norm; some points are infinitely

far apart. But even if K is not bounded in the Hilbert metric, f (K) is (prove it!). If
we denote by K0 the closure of f (K) in the Hilbert norm, then this space is closed and
bounded.

The function φ : K0 ×K0 → [0,∞), φ(v,w) = δ(f (v),f (w))

δ(v,w)
attains its maximum c.

Since φ is strictly less than 1, c < 1. This proves that f is contractive on K0; its fixed
point is the unique eigenvector of A with positive coordinates.

We are done with the first half of the proof. Now let us show that the eigenvalue of
this positive vector is larger than the absolute value of any other eigenvalue. Let r(A) be
the largest of the absolute values of the eigenvalues of A and let λ be an eigenvalue with
|λ| = r(A). In general, for a vector v we denote by |v| the vector whose coordinates are
the absolute values of the coordinates of v. Also, for two vectors v,w we write v ≥ w

if each coordinate of v is greater than the corresponding coordinate of w. If v is an
eigenvector of A corresponding to the eigenvalue λ, then |Av| = |λ| · |v|. The triangle
inequality implies A|v| ≥ |Av| = r(A)|v|. It follows that the set

K1 = {v | ‖v‖ = 1, v ≥ 0, Av ≥ r(A)v},
is nonempty. Because A has positive entries, A(Av − r(A)v) ≥ 0 for v ∈ K0. So
A(Av) ≥ r(A)(Av), for v ∈ K1, proving that f (K1) ∈ K . Again K1 is closed and
f (K1) is bounded, so we can reason as above to prove that f restricted toK1 has a fixed
point, and because K1 ⊂ K , this is the fixed point that we detected before. Thus r(A) is
the unique positive eigenvalue.

There cannot exist another eigenvalue λ with |λ| = r(A), for otherwise, for a small
ε > 0 the matrix A − εIn would still have positive entries, but its positive eigenvalue
r(A)− ε would be smaller than the absolute value of the eigenvalue λ− ε, contradicting
what we just proved. This concludes the proof of the theorem. ��

Nowhere in the book are more appropriate the words of Sir Arthur Eddington: “Proof
is an idol before which the mathematician tortures himself.’’

The conclusion of the theorem still holds in the more general setting of irreducible
matrices with nonnegative entries (irreducible means that there is no reordering of the
rows and columns that makes it block upper triangular). This more general form of the
Perron–Frobenius Theorem is currently used by the Internet browser Google to sort the
entries of a search. The idea is the following: Write the adjacency matrix of the Internet
with a link highlighted if it is related to the subject. Then multiply each nonzero entry
by a larger or smaller number that takes into account how important the subject is in that
page. The Perron–Frobenius vector of this new matrix assigns a positive weight to each
site on the Internet. The Internet browser then lists the sites in decreasing order of their
weights.

We now challenge you with some problems.
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263. Let A be a square matrix whose off-diagonal entries are positive. Prove that the
rightmost eigenvalue ofA in the complex plane is real and all other eigenvalues are
strictly to its left in the complex plane.

264. Let aij , i, j = 1, 2, 3, be real numbers such that aij is positive for i = j and
negative for i 	= j . Prove that there exist positive real numbers c1, c2, c3 such that
the numbers

a11c1 + a12c2 + a13c3, a21c1 + a22c2 + a23c3, a31c1 + a32c2 + a33c3

are all negative, all positive, or all zero.

265. Let x1, x2, . . . , xn be differentiable (real-valued) functions of a single variable t that
satisfy

dx1

dt
= a11x1 + a12x2 + · · · + a1nxn,

dx2

dt
= a21x1 + a22x2 + · · · + a2nxn,

· · ·
dxn

dt
= an1x1 + an2x2 + · · · + annxn,

for some constants aij > 0. Suppose that for all i, xi(t) → 0 as t → ∞. Are the
functions x1, x2, . . . , xn necessarily linearly independent?

266. For a positive integer n and any real number c, define (xk)k≥0 recursively by x0 = 0,
x1 = 1, and for k ≥ 0,

xk+2 = cxk+1 − (n− k)xk

k + 1
.

Fix n and then take c to be the largest value for which xn+1 = 0. Find xk in terms
of n and k, 1 ≤ k ≤ n.

2.4 Abstract Algebra

2.4.1 Binary Operations

A binary operation ∗ on a set S associates to each pair (a, b) ∈ S×S an element a∗b ∈ S.
The operation is called associative if a ∗ (b ∗ c) = (a ∗ b) ∗ c for all a, b, c ∈ S, and
commutative if a ∗ b = b ∗ a for all a, b ∈ S. If there exists an element e such that
a ∗ e = e ∗ a = a for all a ∈ S, then e is called an identity element. If an identity
exists, it is unique. In this case, if for an element a ∈ S there exists b ∈ S such that



88 2 Algebra

a ∗ b = b ∗ a = e, then b is called the inverse of a and is denoted by a−1. If an element
has an inverse, the inverse is unique.

Just as a warmup, we present a problem from the 62nd W.L. Putnam Competition,
2001.

Example. Consider a set S and a binary operation ∗ on S. Assume that (a ∗ b) ∗ a = b

for all a, b ∈ S. Prove that a ∗ (b ∗ a) = b for all a, b ∈ S.

Solution. Substituting b ∗ a for a, we obtain

((b ∗ a) ∗ b) ∗ (b ∗ a) = b.

The expression in the first set of parentheses is a. Therefore,

a ∗ (b ∗ a) = b,

as desired. ��
Often, problems about binary operations look like innocent puzzles, yet they can have

profound implications. This is the case with the following example.

Example. For three-dimensional vectors X = (p, q, t) and Y = (p′, q ′, t ′) define the
operations (p, q, t) ∗ (p′, q ′, t ′) = (0, 0, pq ′ − qp′), and X ◦ Y = X + Y + 1

2X ∗ Y,
where + denotes the addition in R3.

(a) Prove that (R3, ◦) is a group.
(b) Let α : (R3, ◦) → (R3, ◦) be a continuous map satisfying α(X ◦ Y ) = α(X) ◦ α(Y )

for all X, Y (which means that α is a homomorphism). Prove that

α(X + Y ) = α(X)+ α(Y ) and α(X ∗ Y ) = α(X) ∗ α(Y ).
Solution. (a) Associativity can be verified easily, the identity element is (0, 0, 0), and the
inverse of (p, q, t) is (−p,−q,−t).

(b) First, note that X ∗ Y = −Y ∗ X. Therefore, if X is a scalar multiple of Y , then
X ∗ Y = Y ∗X = 0. In general, if X ∗ Y = 0, then X ◦ Y = X + Y = Y ◦X. Hence in
this case,

α(X + Y ) = α(X ◦ Y ) = α(X) ◦ α(Y ) = α(X)+ α(Y )+ 1

2
α(X) ∗ α(Y )

on the one hand, and

α(X + Y ) = α(Y ◦X) = α(Y ) ◦ α(X) = α(Y )+ α(X)+ 1

2
α(Y ) ∗ α(X).
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Because α(X) ∗ α(Y ) = −α(Y ) ∗ α(X), this implies that α(X) ∗ α(Y ) = 0, and conse-
quently α(X+Y ) = α(X)+α(Y ). In particular, α is additive on every one-dimensional
space, whence α(rX) = rα(X), for every rational number r . But α is continuous, so
α(sX) = sα(X) for every real number s. Applying this property we find that for any
X, Y ∈ R3 and s ∈ R,

sα

(
X + Y + 1

2
sX ∗ Y

)
= α

(
sX + sY + 1

2
s2X ∗ Y

)
= α(sX) ◦ (sY ))

= α(sX) ◦ α(sY ) = (sα(X)) ◦ (sα(Y ))
= sα(X)+ sα(Y )+ 1

2
s2α(X) ∗ α(Y ).

Dividing both sides by s, we obtain

α

(
X + Y + 1

2
sX ∗ Y

)
= α(X)+ α(Y )+ 1

2
sX ∗ Y.

In this equality if we let s → 0, we obtain α(X + Y ) = α(X) + α(Y ). Also, if we let
s = 1 and use the additivity we just proved, we obtain α(X ∗ Y ) = α(X) ∗ α(Y ). The
problem is solved. ��

Traditionally, X ∗ Y is denoted by [X, Y ] and R3 endowed with this operation is
called the Heisenberg Lie algebra. Also, R3 endowed with ◦ is called the Heisenberg
group. And we just proved a famous theorem showing that a continuous automorphism
of the Heisenberg group is also an automorphism of the Heisenberg Lie algebra. The
Heisenberg group and algebra are fundamental concepts of quantum mechanics.

267. With the aid of a calculator that can add, subtract, and determine the inverse of
a nonzero number, find the product of two nonzero numbers using at most 20
operations.

268. Invent a binary operation from which +, −, ×, and / can be derived.

269. A finite set S is endowed with an associative binary operation ∗ that satisfies (a ∗
a) ∗ b = b ∗ (a ∗ a) = b for all a, b ∈ S. Prove that the set of all elements of the
form a ∗ (b ∗ c) with a, b, c distinct elements of S coincides with S.

270. Let S be the smallest set of rational functions containing f (x, y) = x and g(x, y) =
y and closed under subtraction and taking reciprocals. Show that S does not contain
the nonzero constant functions.

271. Let ∗ and ◦ be two binary operations on the setM , with identity elements e, respec-
tively, e′, and with the property that for every x, y, u, v ∈ M ,

(x ∗ y) ◦ (u ∗ v) = (x ◦ u) ∗ (y ◦ v).
Prove that
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(a) e = e′;
(b) x ∗ y = x ◦ y, for every x, y ∈ M;
(c) x ∗ y = y ∗ x, for every x, y ∈ M .

272. Consider a set S and a binary operation ∗ on S such that x ∗ (y ∗ x) = y for all
x, y in S. Prove that each of the equations a ∗ x = b and x ∗ a = b has a unique
solution in S.

273. On a set M an operation ∗ is given satisfying the properties
(i) there exists an element e ∈ M such that x ∗ e = x for all x ∈ M;

(ii) (x ∗ y) ∗ z = (z ∗ x) ∗ y for all x, y, z ∈ M .
Prove that the operation ∗ is both associative and commutative.

274. Prove or disprove the following statement: If F is a finite set with two or more
elements, then there exists a binary operation ∗ on F such that for all x, y, z in F ,
(i) x ∗ z = y ∗ z implies x = y (right cancellation holds), and

(ii) x ∗ (y ∗ z) 	= (x ∗ y) ∗ z (no case of associativity holds).

275. Let ∗ be an associative binary operation on a set S satisfying a ∗ b = b ∗ a only if
a = b. Prove that a ∗ (b ∗ c) = a ∗ c for all a, b, c ∈ S. Give an example of such
an operation.

276. Let S be a set and ∗ a binary operation on S satisfying the laws
(i) x ∗ (x ∗ y) = y for all x, y ∈ S,

(ii) (y ∗ x) ∗ x = y for all x, y in S.
Show that ∗ is commutative but not necessarily associative.

277. Let ∗ be a binary operation on the set Q of rational numbers that is associative and
commutative and satisfies 0∗0 = 0 and (a+c)∗(b+c) = a∗b+c for all a, b, c ∈ Q.
Prove that either a ∗ b = max(a, b) for all a, b ∈ Q, or a ∗ b = min(a, b) for all
a, b ∈ Q.

2.4.2 Groups

Definition. A group is a set of transformations (of some space) that contains the identity
transformation and is closed under composition and under the operation of taking the
inverse.

The isometries of the plane, the permutations of a set, the continuous bijections on a
closed bounded interval all form groups.

There is a more abstract, and apparently more general definition, which calls a group
a set G endowed with a binary operation · that satisfies

(i) (associativity) x(yz) = (xy)z for all x, y, z ∈ S;
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(ii) (identity element) there is e ∈ G such that for any x ∈ G, ex = xe = x;
(iii) (existence of the inverse) for every x ∈ G there is x−1 ∈ G such that xx−1 =

x−1x = e.

But Cayley observed the following fact.

Theorem. Any group is a group of transformations.

Proof. Indeed, any group G acts on itself on the left. Specifically, x ∈ G acts as a
transformation of G by y → xy, y ∈ G. ��

A group G is called Abelian (after N. Abel) if the operation is commutative, that is,
if xy = yx for all x, y ∈ G. An example of an Abelian group is the Klein four-group,
introduced abstractly as K = {a, b, c, e | a2 = b2 = c2 = e, ab = c, ac = b, bc = a},
or concretely as the group of the symmetries of a rectangle (depicted in Figure 14).

b

a

c

Figure 14

A group is called cyclic if it is generated by a single element, that is, if it consists of
the identity element and the powers of some element.

Let us turn to problems and start with one published by L. Daia in the Mathematics
Gazette, Bucharest.

Example. A certain multiplicative operation on a nonempty set G is associative and
allows cancellations on the left, and there exists a ∈ G such that x3 = axa for all x ∈ G.
Prove that G endowed with this operation is an Abelian group.

Solution. Replacing x by ax in the given relation, we obtain axaxax = a2xa. Cancelling
a on the left, we obtain x(axa)x = axa. Because axa = x3, it follows that x5 = x3,
and cancelling an x2, we obtain

x3 = x for all x ∈ G.
In particular, a3 = a, and hence a3x = ax for all x ∈ G. Cancel a on the left to find that

a2x = x for all x ∈ G.
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Substituting x by xa, we obtain a2xa = xa, or ax3 = xa, and since x3 = x, it follows
that a commutes with all elements in G. We can therefore write

a2x = a(ax) = a(xa) = (xa)a = xa2,

whence xa2 = a2x = x. This shows that a2 is the identity element of the multiplicative
operation; we denote it by e. The relation from the statement implies x3 = axa = xa2 =
xe; cancelling x, we obtain x2 = e; hence for all x ∈ G, x−1 = x. It follows that G is a
group. It is Abelian by the well-known computation

xy = (xy)−1 = y−1x−1 = yx. ��
Here are more examples of the kind.

278. Prove that in order for a setG endowed with an associative operation to be a group,
it suffices for it to have a left identity, and for each element to have a left inverse.
This means that there should exist e ∈ G such that ex = x for all x ∈ G, and for
each x ∈ G, there should exist x ′ ∈ G such that x ′x = e. The same conclusion
holds if “left’’ is replaced by “right.’’

279. Let (G,⊥) and (G, ∗) be two group structures defined on the same set G. Assume
that the two groups have the same identity element and that their binary operations
satisfy

a ∗ b = (a⊥a)⊥(a⊥b),
for all a, b ∈ G. Prove that the binary operations coincide and the group they define
is Abelian.

280. Let r , s, t be positive integers that are pairwise relatively prime. If the elements a
and b of an Abelian group with identity element e satisfy ar = bs = (ab)t = e,
prove that a = b = e. Does the same conclusion hold if a and b are elements of an
arbitrary nonAbelian group?

281. Assume that a and b are elements of a group with identity element e satisfying
(aba−1)n = e for some positive integer n. Prove that bn = e.

282. Let G be a group with the following properties:
(i) G has no element of order 2,

(ii) (xy)2 = (yx)2, for all x, y ∈ G.
Prove that G is Abelian.

283. A multiplicative operation on a set M satisfies (i) a2 = b2, (ii) ab2 = a,
(iii) a2(bc) = cb, (iv) (ac)(bc) = ab, for all a, b, c ∈ M . Define on M the
operation
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a ∗ b = a(b2b).

Prove that (M, ∗) is a group.

284. Given � a finite multiplicative group of matrices with complex entries, denote by
M the sum of the matrices in �. Prove that detM is an integer.

We would like to point out the following property of the set of real numbers.

Theorem. A nontrivial subgroup of the additive group of real numbers is either cyclic
or it is dense in the set of real numbers.

Proof. Denote the group byG. It is either discrete, or it has an accumulation point on the
real axis. If it is discrete, let a be its smallest positive element. Then any other element
is of the form b = ka + α with 0 ≤ α < a. But b and ka are both in G; hence α is in G
as well. By the minimality of a, α can only be equal to 0, and hence the group is cyclic.

If there is a sequence (xn)n in G converging to some real number, then ±(xn − xm)

approaches zero as n,m → ∞. Choosing the indicesm and n appropriately, we can find
a sequence of positive elements in G that converges to 0. Thus for any ε > 0 there is an
element c ∈ Gwith 0 < c < ε. For some integer k, the distance between kc and (k+1)c
is less than ε; hence any interval of length ε contains some multiple of c. Varying ε, we
conclude that G is dense in the real axis. ��

Try to use this result to solve the following problems.

285. Let f : R → R be a continuous function satisfying f (x) = f (x + √
2) =

f (x + √
3) for all x. Prove that f is constant.

286. Prove that the sequence (sin n)n is dense in the interval [−1, 1].
287. Show that infinitely many powers of 2 start with the digit 7.

288. Given a rectangle, we are allowed to fold it in two or in three, parallel to one side
or the other, in order to form a smaller rectangle. Prove that for any ε > 0 there are
finitely many such operations that produce a rectangle with the ratio of the sides
lying in the interval (1 − ε, 1 + ε) (which means that we can get arbitrarily close
to a square).

289. A set of points in the plane is invariant under the reflections across the sides of some
given regular pentagon. Prove that the set is dense in the plane.

“There is no certainty in sciences where one of the mathematical sciences cannot be
applied, or which are not in relation with this mathematics.’’ This thought of Leonardo
da Vinci motivated us to include an example of how groups show up in natural sciences.

The groups of symmetries of three-dimensional space play an important role in chem-
istry and crystallography. In chemistry, the symmetries of molecules give rise to physical
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properties such as optical activity. The point groups of symmetries of molecules were
classified by A. Schönflies as follows:

• Cs : a reflection with respect to a plane, isomorphic to Z2,

• Ci : a reflection with respect to a point, isomorphic to Z2,

• Cn : the rotations by multiples of 2π
n

about an axis, isomorphic to Zn,

• Cnv : generated by a Cn and a Cs with the reflection plane containing the axis of
rotation; in mathematics this is called the dihedral group,

• Cnh : generated by a Cn and a Cs with the reflection plane perpendicular to the axis
of rotation, isomorphic to Cn × C2,

• Dn : generated by a Cn and a C2, with the rotation axes perpendicular to each other,
isomorphic to the dihedral group,

• Dnd : generated by aCn and aC2, together with a reflection across a plane that divides
the angle between the two rotation axes,

• Dnh : generated by a Cn and a C2 with perpendicular rotation axes, together with a
reflection with respect to a plane perpendicular to the first rotation axis,

• Sn : improper rotations by multiples of 2π
n

, i.e., the group generated by the element
that is the composition of the rotation by 2π

n
and the reflection with respect to a plane

perpendicular to the rotation axis,

• Special point groups: C∞v’s and D∞h’s (same as Cnv and Dnh but with all rotations
about the axis allowed), together with the symmetry groups of the five Platonic solids.

When drawing a molecule, we use the convention that all segments represent bonds
in the plane of the paper, all bold arrows represent bonds with the tip of the arrow below
the tail of the arrow. The molecules from Figure 15 have respective symmetry point
groups the octahedral group and C3h.
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Figure 15

290. Find the symmetry groups of the molecules depicted in Figure 16.
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2.4.3 Rings

Rings mimic in the abstract setting the properties of the sets of integers, polynomials, or
matrices.

Definition. A ring is a setR endowed with two operations + and · (addition and multipli-
cation) such that (R,+) is anAbelian group with identity element 0 and the multiplication
satisfies

(i) (associativity) x(yz) = (xy)z for all x, y, z ∈ R, and
(ii) (distributivity) x(y + z) = xy + xz and (x + y)z = xz+ yz for all x, y, z ∈ R.

A ring is called commutative if the multiplication is commutative. It is said to have
identity if there exists 1 ∈ R such that 1 · x = x · 1 = x for all x ∈ R. An element x ∈ R
is called invertible if there exists x−1 ∈ R such that xx−1 = x−1x = 1.

We consider two examples, the second of which appeared many years ago in the
Balkan Mathematics Competition for university students.

Example. Let x and y be elements in a ring with identity. Prove that if 1−xy is invertible,
then so is 1 − yx.

Solution. Let v be the inverse of 1 − xy. Then v(1 − xy) = (1 − xy)v = 1; hence
vxy = xyv = v − 1. We compute

(1 + yvx)(1 − yx) = 1 − yx + yvx − yvxyx = 1 − yx + yvx − y(v − 1)x = 1.

A similar verification shows that (1 − yx)(1 + yvx) = 1. It follows that 1 − yx is
invertible and its inverse is 1 + yvx. ��
Example. Prove that if in a ring R (not necessarily with identity element) x3 = x for all
x ∈ R, then the ring is commutative.

Solution. For x, y ∈ R, we have

xy2 − y2xy2 = (xy2 − y2xy2)3 = xy2xy2xy2 − xy2xy2y2xy2 − xy2y2xy2xy2

− y2xy2xy2xy2 + y2xy2xy2y2xy2 + y2xy2y2xy2xy2

− y2xy2y2xy2y2xy2 + xy2y2xy2y2xy2.
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Using the fact that y4 = y2, we see that this is equal to zero, and hence xy2 −y2xy2 = 0,
that is, xy2 = y2xy2. A similar argument shows that y2x = y2xy2, and so xy2 = y2x

for all x, y ∈ R.
Using this we obtain

xy = xyxyxy = xy(xy)2 = x(xy)2y = x2yxy2 = y3x3 = yx.

This proves that the ring is commutative, as desired. ��
We remark that both this and the second problem below are particular cases of a

general theorem of Jacobson, which states that if a ring (with or without identity) has the
property that for every element x there exists an integer n(x) > 1 such that xn(x) = x,
then the ring is commutative.

291. Let R be a nontrivial ring with identity, and M = {x ∈ R | x = x2} the set of its
idempotents. Prove that if M is finite, then it has an even number of elements.

292. Let R be a ring with identity such that x6 = x for all x ∈ R. Prove that x2 = x for
all x ∈ R. Prove that any such ring is commutative.

293. Let R be a ring with identity with the property that (xy)2 = x2y2 for all x, y ∈ R.
Show that R is commutative.

294. Let x and y be elements in a ring with identity and n a positive integer. Prove that
if 1 − (xy)n is invertible, then so is 1 − (yx)n.

295. Let R be a ring with the property that if x ∈ R and x2 = 0, then x = 0.
(a) Prove that if x, z ∈ R and z2 = z, then zxz− xz = 0.
(b) Prove that any idempotent of R belongs to the center of R (the center of a ring

consists of those elements that commute with all elements of the ring).

296. Show that if a ring R with identity has three elements a, b, c such that
(i) ab = ba, bc = cb;

(ii) for any x, y ∈ R, bx = by implies x = y;
(iii) ca = b but ac 	= b,
then the ring cannot be finite.
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Real Analysis

The chapter on real analysis groups material covering differential and integral calculus,
ordinary differential equations, and also a rigorous introduction to real analysis with ε-δ
proofs.

We found it natural, and also friendly, to begin with sequences. As you will discover,
the theory of linear recurrences parallels that of linear ordinary differential equations.
The theory of limits is well expanded, covering for example Cauchy’s criterion for con-
vergence, the convergence of bounded monotone sequences, the Cesàro–Stolz theorem,
and Cantor’s nested intervals theorem. It is followed by some problems about series, with
particular attention given to the telescopic method for computing sums and products.

A long discussion is devoted to one-variable functions. You might find the first three
sections (on limits, continuity, and the intermediate value property) rather theoretical.
Next, you will be required to apply derivatives and their properties to a wide range of
examples. Then come integrals, with emphasis placed on computations and inequalities.
One-variable real analysis ends with Taylor and Fourier series.

From multivariable differential and integral calculus we cover partial derivatives
and their applications, computations of integrals, focusing on change of variables and
on Fubini’s theorem, all followed by a section of geometric flavor devoted to Green’s
theorem, Stokes’ theorem, and the Gauss–Ostrogradski (divergence) theorem.

The chapter concludes with functional equations, among which will be found Cauchy’s
equation, and with ordinary differential and integral equations.

This is a long chapter, with many challenging problems. Now, as you start it, think of
Edison’s words: “Opportunity is missed by many people because it is dressed in overalls
and looks like work.’’
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3.1 Sequences and Series

3.1.1 Search for a Pattern

In this section we train guessing. In each problem you should try particular cases until
you guess either the general term of a sequence, a relation that the terms satisfy, or an
appropriate construction. The idea to write such a section came to us when we saw the
following Putnam problem.

Example. Consider the sequence (un)n defined by u0 = u1 = u2 = 1, and

det

(
un+3 un+2

un+1 un

)
= n!, n ≥ 0.

Prove that un is an integer for all n.

Solution. The recurrence relation of the sequence is

un+3 = un+2un+1

un
+ n!
un
.

Examining some terms:

u3 = 1 · 1

1
+ 1

1
= 2,

u4 = 2 · 1

1
+ 1

1
= 3,

u5 = 3 · 2

1
+ 2

1
= 4 · 2,

u6 = 4 · 2 · 3

2
+ 3 · 2

2
= 4 · 3 + 1 · 3 = 5 · 3,

u7 = 5 · 3 · 4 · 2

3
+ 4 · 3 · 2

3
= 5 · 4 · 2 + 4 · 2 = 6 · 4 · 2,

u8 = 6 · 4 · 2 · 5 · 3

4 · 2
+ 5 · 4 · 3 · 2

4 · 2
= 6 · 5 · 3 + 5 · 3 = 7 · 5 · 3.

we conjecture that

un = (n− 1)(n− 3)(n− 5) · · · .
This formula can be proved by induction. Assuming the formula true for un, un+1, and
un+2, we obtain

un+3 = un+2un+1 + n!
un

= (n+ 1)(n− 1)(n− 3) · · · n(n− 2)(n− 4) · · · + n!
(n− 1)(n− 3)(n− 5) · · ·
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= (n+ 1) · n! + n!
(n− 1)(n− 3)(n− 5) · · · = (n+ 2)n!

(n− 1)(n− 3)(n− 5) · · ·
= (n+ 2)n(n− 2)(n− 4) · · · .

This completes the induction, and the problem is solved. ��
297. Find a formula for the general term of the sequence

1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, . . . .

298. Find a formula in compact form for the general term of the sequence defined re-
cursively by x1 = 1, xn = xn−1 + n if n is odd, and xn = xn−1 + n − 1 if n is
even.

299. Define the sequence (an)n≥0 by a0 = 0, a1 = 1, a2 = 2, a3 = 6, and

an+4 = 2an+3 + an+2 − 2an+1 − an, for n ≥ 0.

Prove that n divides an for all n ≥ 1.

300. The sequence a0, a1, a2, . . . satisfies

am+n + am−n = 1

2
(a2m + a2n),

for all nonnegative integers m and n with m ≥ n. If a1 = 1, determine an.

301. Consider the sequences (an)n, (bn)n, defined by

a0 = 0, a1 = 2, an+1 = 4an + an−1, n ≥ 0,

b0 = 0, b1 = 1, bn+1 = an − bn + bn−1, n ≥ 0.

Prove that (an)3 = b3n for all n.

302. A sequence un is defined by

u0 = 2, u1 = 5

2
, un+1 = un(u

2
n−1 − 2)− u1, for n ≥ 1.

Prove that for all positive integers n,

�un� = 2(2
n−(−1)n)/3,

where �·� denotes the greatest integer function.

303. Consider the sequences (an)n and (bn)n defined by a1 = 3, b1 = 100, an+1 = 3an ,
bn+1 = 100bn . Find the smallest number m for which bm > a100.
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3.1.2 Linear Recursive Sequences

In this section we give an overview of the theory of linear recurrences with constant
coefficients. You should notice the analogy with the theory of ordinary differential
equations. This is not an accident, since linear recurrences are discrete approximations
of differential equations.

A kth-order linear recurrence with constant coefficients is a relation of the form

xn = a1xn−1 + a2xn−2 + · · · + akxn−k, n ≥ k,

satisfied by a sequence (xn)n≥0.
The sequence (xn)n is completely determined by x0, x1, . . . , xk−1 (the initial condi-

tion). To find the formula for the general term, we introduce the vector-valued first-order
linear recursive sequence vn = (v1

n, v
2
n, . . . , v

k
n) defined by v1

n = xn+k−1, v2
n = xn+k−2,

. . . , vkn = xn. This new sequence satisfies the recurrence relation vn+1 = Avn, n ≥ 0,
where

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

a1 a2 a3 · · · ak−1 ak
1 0 0 · · · 0 0
0 1 0 · · · 0 0
0 0 1 · · · 0 0
...
...
...
. . .

...
...

0 0 0 · · · 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

It follows that vn = Anv0, and the problem reduces to the computation of the nth power
of A. A standard method employs the Jordan canonical form.

First, we determine the eigenvalues of A. The characteristic polynomial is

PA(λ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

λ− a1 −a2 −a3 · · · ak−1 −ak
−1 λ 0 · · · 0 0
0 −1 λ · · · 0 0
0 0 −1 · · · 0 0
...

...
...
. . .

...
...

0 0 0 · · · −1 λ

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

When expanding by the first row it is easy to remark that all minors are triangular, so the
determinant is equal to λk − a1λ

k−1 − a2λ
k−2 − · · · − ak. The equation

PA(λ) = λk − a1λ
k−1 − a2λ

k−2 − · · · − ak = 0

is called the characteristic equation of the recursive sequence.
Let λ1, λ2, . . . , λk be the roots of the characteristic equation, which are, in fact, the

eigenvalues ofA. If these roots are all distinct, the situation encountered most often, then
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A is diagonalizable. There exists an invertible matrix S such that A = SDS−1, whereD
is diagonal with diagonal entries equal to the eigenvalues of A. From the equality

vn = SDnS−1v0,

we conclude that the entries of vn are linear combinations of λn1, λ
n
2, . . . , λ

n
k . In particular,

for xn, which is the first coordinate of vn, there exist constants α1, α2, . . . , αk such that

xn = α1λ
n
1 + α2λ

n
2 + · · · + αkλ

n
k, for n ≥ 0.

The numbers α1, α2, . . . , αk are found from the initial condition, by solving the linear
system

α1 + α2 + · · ·αk = x0,

λ1α1 + λ2α2 + · · · λkαk = x1,

λ2
1α1 + λ2

2α2 + · · · λ2
kαk = x2,

· · ·
λk−1

1 α1 + λk−1
2 α2 + · · · λk−1

k αk = xk−1.

Note that the determinant of the coefficient matrix is Vandermonde, so the system has a
unique solution!

If the roots of the characteristic equation have multiplicities greater than 1, it might
happen that A is not diagonalizable. The Jordan canonical form of A has blocks of
the form

Jm(λi) =

⎛⎜⎜⎜⎜⎜⎝
λi 1 0 · · · 0
0 λi 1 · · · 0
0 0 λi · · · 0
...
...
...
. . .

...

0 0 0 · · · λi

⎞⎟⎟⎟⎟⎟⎠ .

An exercise in Section 2.3.1 shows that for j ≥ i, the ij entry of Jm(λi)n is
(
n

j−i
)
λ
n+i−j
i .

We conclude that if the roots of the characteristic equations are λ1, λ2, . . . , λt and
m1,m2, . . . , mt their respective multiplicities, then there exist constants αij , i =
1, 2, . . . , t , j = 0, 1, . . . , mi − 1, such that

xn =
t∑
i=1

mi−1∑
j=0

αij

(
n

j

)
λ
n−j
i , for n ≥ 0.

It might be more useful to write this as
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xn =
t∑
i=1

mi∑
j=0

βijn
jλ
n−j
i , for n ≥ 0.

As is the case with differential equations, to find the general term of an inhomogeneous
linear recurrence

xn = a1xn−1 + a2xn−2 + · · · + akxn−k + f (n), n ≥ 1,

one has to find a particular solution to the recurrence, then add to it the general term of
the associated homogeneous recurrence relation.

Putting these ideas together, let us compute the general-term formula of the Fibonacci
sequence. The recurrence relation Fn+1 = Fn + Fn−1 has characteristic equation λ2 −
λ− 1 = 0, with roots λ1,2 = 1±√

5
2 . Writing Fn = α1λ

n
1 + α2λ

n
2 and solving the system

α1 + α2 = F0 = 0,

α1λ1 + α2λ2 = F1 = 1,

we obtain α1 = −α2 = − 1√
5
. We rediscover the well-known Binet formula

Fn = 1√
5

((
1 + √

5

2

)n
−
(

1 − √
5

2

)n)
.

In the same vein, let us solve a problem published in the American Mathematical
Monthly by I. Tomescu.

Example. In how many ways can one tile a 2n× 3 rectangle with 2 × 1 tiles?

Solution. Denote by un the number of such tilings. Start tiling the rectangle from the
short side of length 3, as shown in Figure 17.

Figure 17

In the last two cases from the figure, an uncovered 1 × 1 square can be covered in a
single way: by the shaded rectangle. We thus obtain

un+1 = 3un + 2vn,

where vn is the number of tilings of a (2n− 1)× 3 rectangle with a 1 × 1 square missing
in one corner, like the one in Figure 18. That figure shows how to continue tiling this
kind of rectangle, giving rise to the recurrence
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vn+1 = un + vn.

Combining the two, we obtain the (vector-valued) recurrence relation(
un+1

vn+1

)
=
(

3 2
1 1

)(
un
vn

)
.

The characteristic equation, of the coefficient matrix but also of the sequences un and
vn, is ∣∣∣∣λ− 3 −2

−1 λ− 1

∣∣∣∣ = λ2 − 4λ+ 1 = 0.

Its roots areλ1,2 = 2±√
3. We compute easilyu1 = 3 andv1 = 1, sou2 = 3·3+2·1 = 11.

The desired general-term formula is then

un = 1

2
√

3

((√
3 + 1

) (
2 + √

3
)m +

(√
3 − 1

) (
2 − √

3
)m)

. ��

Figure 18

Below are listed more problems of this kind.

304. Let p(x) = x2 − 3x + 2. Show that for any positive integer n there exist unique
numbers an and bn such that the polynomial qn(x) = xn − anx − bn is divisible
by p(x).

305. Find the general term of the sequence given by x0 = 3, x1 = 4, and

(n+ 1)(n+ 2)xn = 4(n+ 1)(n+ 3)xn−1 − 4(n+ 2)(n+ 3)xn−2, n ≥ 2.

306. Let (xn)n≥0 be defined by the recurrence relation xn+1 = axn+ bxn−1, with x0 = 0.
Show that the expression x2

n − xn−1xn+1 depends only on b and x1, but not on a.

307. Define the sequence (an)n recursively by a1 = 1 and

an+1 = 1 + 4an + √
1 + 24an

16
, for n ≥ 1.

Find an explicit formula for an in terms of n.
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308. Let a = 4k − 1, where k is an integer. Prove that for any positive integer n the
number

1 −
(
n

2

)
a +

(
n

4

)
a2 −

(
n

6

)
a3 + · · ·

is divisible by 2n−1.

309. Let A and E be opposite vertices of a regular octagon. A frog starts jumping at
vertex A. From any vertex of the octagon except E, it may jump to either of the
two adjacent vertices. When it reaches vertex E, the frog stops and stays there.
Let an be the number of distinct paths of exactly n jumps ending at E. Prove that
a2n−1 = 0 and

a2n = 1√
2
(xn−1 − yn−1), n = 1, 2, 3, . . . ,

where x = 2 + √
2 and y = 2 − √

2.

310. Find all functions f : N → N satisfying

f (f (f (n)))+ 6f (n) = 3f (f (n))+ 4n+ 2001, for all n ∈ N.

311. The sequence (xn)n is defined by x1 = 4, x2 = 19, and for n ≥ 2, xn+1 = � x2
n

xn−1
�,

the smallest integer greater than or equal to x2
n

xn−1
. Prove that xn − 1 is always a

multiple of 3.

312. Consider the sequences given by

a0 = 1, an+1 = 3an +√
5a2

n − 4

2
, n ≥ 1,

b0 = 0, bn+1 = an − bn, n ≥ 1.

Prove that (an)2 = b2n+1 for all n.

3.1.3 Limits of Sequences

There are three methods for determining the limit of a sequence. The first of them is
based on the following definition.

Cauchy’s definition.

(a) A sequence (xn)n converges to a finite limit L if and only if for every ε > 0 there
exists n(ε) such that for every n > n(ε), |xn − L| < ε.
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(b) A sequence (xn)n tends to infinity if for every ε > 0 there exists n(ε) such that for
n > n(ε), xn > ε.

The definition of convergence is extended to Rn, and in general to any metric space,
by replacing the absolute value with the distance. The second method for finding the
limit is called the squeezing principle.

The squeezing principle.

(a) If an ≤ bn ≤ cn for all n, and if (an)n and (cn)n converge to the finite limit L, then
(bn)n also converges to L.

(b) If an ≤ bn for all n and if (an)n tends to infinity, then (bn)n also tends to infinity.

Finally, the third method reduces the problem via algebraic operations to sequences
whose limits are known. We illustrate each method with an example. The first is from
P.N. de Souza, J.N. Silva, Berkeley Problems in Mathematics (Springer, 2004).

Example. Let (xn)n be a sequence of real numbers such that

lim
n→∞(2xn+1 − xn) = L.

Prove that the sequence (xn)n converges and its limit is L.

Solution. By hypothesis, for every ε there is n(ε) such that if n ≥ n(ε), then

L− ε < 2xn+1 − xn < L+ ε.

For such n and some k > 0 let us add the inequalities

L− ε < 2xn+1 − xn < L+ ε,

2(L− ε) < 4xn+2 − 2xn+1 < 2(L+ ε),

· · ·
2k−1(L− ε) < 2kxn+k − 2k−1xn+k−1 < 2k−1(L+ ε).

We obtain

(1 + 2 + · · · + 2k−1)(L− ε) < 2kxn+k − xn < (1 + 2 + · · · + 2k−1)(L+ ε),

which after division by 2k becomes(
1 − 1

2k

)
(L− ε) < xn+k − 1

2k
xn <

(
1 − 1

2k

)
(L+ ε).

Now choose k such that | 1
2k xn| < ε and | 1

2k (L± ε)| < ε. Then for m ≥ n+ k,

L− 3ε < xm < L+ 3ε,

and since ε was arbitrary, this implies that (xn)n converges to L. ��
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Example. Prove that limn→∞ n
√
n = 1.

Solution. The sequence xn = n
√
n − 1 is clearly positive, so we only need to bound it

from above by a sequence converging to 0. For that we employ the binomial expansion

n = (1 + xn)
n = 1 +

(
n

1

)
xn +

(
n

2

)
x2
n + · · · +

(
n

n− 1

)
xn−1
n + xnn .

Forgetting all terms but one, we can write

n >

(
n

2

)
x2
n,

which translates to xn <
√

2
n−1 , for n ≥ 2. The sequence

√
2
n−1 , n ≥ 2, converges to 0,

and hence by the squeezing principle, (xn)n itself converges to 0, as desired. ��
The third example was published by the Romanian mathematician T. Lalescu in 1901

in the Mathematics Gazette, Bucharest.

Example. Prove that the sequence an = n+1
√
(n+ 1)! − n

√
n!, n ≥ 1, is convergent and

find its limit.

Solution. The solution we present belongs to M. Ţena. It uses Stirling’s formula

n! = √
2πn

(n
e

)n · e θn
12n , with 0 < θn < 1,

which will be proved in Section 3.2.11. Taking the nth root and passing to the limit, we
obtain

lim
n→∞

n
n
√
n! = e.

We also deduce that

lim
n→∞

n+ 1
n
√
n! = lim

n→∞
n+ 1

n
· n

n
√
n! = e.

Therefore,

lim
n→∞

(
n+1
√
(n+ 1)!
n
√
n!

)n
= lim

n→∞

(
n(n+1)

√
((n+ 1)!)n
(n!)n+1

)n
= lim

n→∞

(
n(n+1)

√
(n+ 1)n

n!

)n

= lim
n→∞

(
n+1

√
n+ 1
n
√
n!

)n
= lim

n→∞

(
n+ 1
n
√
n!
) n

n+1
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=
(

lim
n→∞

n+ 1
n
√
n!
)limn→∞ n

n+1

= e.

Taking the nth root and passing to the limit, we obtain

lim
n→∞

n+1
√
(n+ 1)!
n
√
n! = 1,

and hence

lim
n→∞

an
n
√
n! = lim

n→∞

n+1
√
(n+ 1)!
n
√
n! − 1 = 0.

Thus, if we set

bn =
(

1 + an
n
√
n!
) n√

n!
an

,

then limn→∞ bn = e. From the equality(
n+1
√
(n+ 1)!
n
√
n!

)n
= b

an
n
n√
n!

n ,

we obtain

an = ln

(
n+1
√
(n+ 1)!
n
√
n!

)n
(ln bn)

−1

(
n
n
√
n!
)−1

.

The right-hand side is a product of three sequences that converge, respectively, to 1 = ln e,
1 = ln e, and 1

e
. Therefore, the sequence (an)n converges to the limit 1

e
. ��

Apply these methods to the problems below.

313. Compute

lim
n→∞

∣∣∣sin
(
π
√
n2 + n+ 1

)∣∣∣ .
314. Let k be a positive integer and µ a positive real number. Prove that

lim
n→∞

(
n

k

)(µ
n

)k (
1 − µ

n

)n−k = µk

eµ · k! .

315. Let (xn)n be a sequence of positive integers such that xxn = n4 for all n ≥ 1. Is it
true that limn→∞ xn = ∞?
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316. Let (an)n be a sequence of real numbers with the property that for any n ≥ 2 there
exists an integer k, n2 ≤ k < n, such that an = ak

2 . Prove that limn→∞ an = 0.

317. Given two natural numbers k and m let a1, a2, . . . , ak, b1, b2, . . . , bm be positive
numbers such that

n
√
a1 + n

√
a2 + · · · + n

√
ak = n

√
b1 + n

√
b2 + · · · + n

√
bm,

for all positive integers n. Prove that k = m and a1a2 · · · ak = b1b2 · · · bm.

318. Prove that

lim
n→∞ n

2
∫ 1

n

0
xx+1dx = 1

2
.

319. Let a be a positive real number and (xn)n≥1 a sequence of real numbers such that
x1 = a and

xn+1 ≥ (n+ 2)xn −
n−1∑
k=1

kxk, for all n ≥ 1.

Find the limit of the sequence.

320. Let (xn)n≥1 be a sequence of real numbers satisfying

xn+m ≤ xn + xm, n,m ≥ 1.

Show that limn→∞ xn
n

exists and is equal to inf n≥1
xn
n

.

321. Compute

lim
n→∞

n∑
k=1

(
k

n2

) k

n2 +1

.

322. Let b be an integer greater than 5. For each positive integer n, consider the number

xn = 11 . . . 1︸ ︷︷ ︸
n−1

22 . . . 2︸ ︷︷ ︸
n

5,

written in base b. Prove that the following condition holds if and only if b = 10:

There exists a positive integer M such that for any integer n greater than
M , the number xn is a perfect square.

We exhibit two criteria for proving that a sequence is convergent without actually
computing the limit. The first is due to Karl Weierstrass.
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Weierstrass’ theorem. A monotonic bounded sequence of real numbers is convergent.

Below are some instances in which this theorem is used.

323. Prove that the sequence (an)n≥1 defined by

an = 1 + 1

2
+ 1

3
+ · · · + 1

n
− ln(n+ 1), n ≥ 1,

is convergent.

324. Prove that the sequence

an =
√

1 +
√

2 +
√

3 + · · · + √
n, n ≥ 1,

is convergent.

325. Let (an)n be a sequence of real numbers that satisfies the recurrence relation an+1 =√
a2
n + an − 1, for n ≥ 1. Prove that a1 /∈ (−2, 1).

326. Using the Weierstrass theorem, prove that any bounded sequence of real numbers
has a convergent subsequence.

Widely used in higher mathematics is the following convergence test.

Cauchy’s criterion for convergence. A sequence (xn)n of points in Rn (or, in general,
in a complete metric space) is convergent if and only if for any ε > 0 there is a positive
integer nε such that whenever n,m ≥ nε , ‖xn − xm‖ < ε.

A sequence satisfying this property is called Cauchy, and it is the completeness of
the space (the fact that it has no gaps) that forces a Cauchy sequence to be convergent.
This property is what essentially distinguishes the set of real numbers from the rationals.
In fact, the set of real numbers can be defined as the set of Cauchy sequences of rational
numbers, with two such sequences identified if the sequence formed from alternating
numbers of the two sequences is also Cauchy.

327. Let (an)n≥1 be a decreasing sequence of positive numbers converging to 0. Prove
that the series S = a1 − a2 + a3 − a4 + · · · is convergent.

328. Let a0, b0, c0 be real numbers. Define the sequences (an)n, (bn)n, (cn)n recur-
sively by

an+1 = an + bn

2
, bn+1 = bn + cn

2
, cn+1 = cn + an

2
, n ≥ 0.

Prove that the sequences are convergent and find their limits.
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329. Show that if the series
∑
an converges, where (an)n is a decreasing sequence, then

limn→∞ nan = 0.

The following fixed point theorem is a direct application of Cauchy’s criterion for
convergence.

Theorem. Let X be a closed subset of Rn (or in general of a complete metric space)
and f : X → X a function with the property that ‖f (x) − f (y)‖ ≤ c‖x − y‖ for any
x, y ∈ X, where 0 < c < 1 is a constant. Then f has a unique fixed point in X.

Such a function is called contractive. Recall that a set is closed if it contains all its
limit points.

Proof. Let x0 ∈ X. Recursively define the sequence xn = f (xn−1), n ≥ 1. Then

‖xn+1 − xn‖ ≤ c‖xn − xn−1‖ ≤ · · · ≤ cn‖x1 − x0‖.
Applying the triangle inequality, we obtain

‖xn+p − xn‖ ≤ ‖xn+p − xn+p−1‖ + ‖xn+p−1 − xn+p−2‖ + · · · + ‖xn+1 − xn‖
≤ (cn+p−1 + cn+p−2 + · · · + cn)‖x1 − x0‖
= cn(1 + c + · · · + cp−1)‖x1 − x0‖ ≤ cn

1 − c
‖x1 − x0‖.

This shows that the sequence (xn)n is Cauchy. Its limitx∗ satisfiesf (x∗) = limn→∞ f (xn)
= limn→∞ xn = x∗; it is a fixed point of f . A second fixed point y∗ would give rise to
the contradiction ‖x∗ − y∗‖ = ‖f (x∗) − f (y∗)‖ ≤ c‖x∗ − y∗‖. Therefore, the fixed
point is unique. ��

Use this theorem to solve the next three problems.

330. Two maps of the same region drawn to different scales are superimposed so that the
smaller map lies entirely inside the larger. Prove that there is precisely one point
on the small map that lies directly over a point on the large map that represents the
same place of the region.

331. Let t and ε be real numbers with |ε| < 1. Prove that the equation x − ε sin x = t

has a unique real solution.

332. Let c and x0 be fixed positive numbers. Define the sequence

xn = 1

2

(
xn−1 + c

xn−1

)
, for n ≥ 1.

Prove that the sequence converges and that its limit is
√
c.
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3.1.4 More About Limits of Sequences

We continue our discussion about limits of sequences with three more topics: the method
of passing to the limit in a recurrence relation, the Cesàro–Stolz theorem, and Cantor’s
nested intervals theorem. We illustrate the first with the continued fraction expansion of
the golden ratio.

Example. Prove that

1 + √
5

2
= 1 + 1

1 + 1

1 + 1

1 + 1

1 + · · ·.

Solution. A close look at the right-hand side shows that it is the limit of a sequence (xn)n
subject to the recurrence relation x1 = 1, xn+1 = 1+ 1

xn
. If this sequence has a finite limit

L, then passing to the limit on both sides of the recurrence relation yields L = 1 + 1
L

.
Because L can only be positive, it must be equal to the golden ratio.

But does the limit exist? Investigating the first terms of the sequence we see that

x1 < x3 <
1 + √

5

2
< x4 < x2,

and we expect the general situation to be

x1 < x3 < · · · < x2n+1 < · · · < 1 + √
5

2
< · · · < x2n < x2n−2 < · · · < x2.

This can be proved by induction. Firstly, if x2n+1 <
1+√

5
2 , then

x2n+2 = 1 + 1

x2n+1
> 1 + 2

1 + √
5

= 1 +
√

5 − 1

2
= 1 + √

5

2
,

and by a similar computation, if x2n+2 >
1+√

5
2 , then x2n+3 <

1+√
5

2 . Secondly,

xn+2 = 2 − 1

xn + 1
,

and the inequality xn+2 > xn is equivalent to x2
n − xn − 1 < 0, which holds if and

only if xn < 1+√
5

2 . Now an inductive argument shows that (x2n+1)n is increasing and
(x2n+2)n is decreasing. Being bounded, both sequences are convergent. Their limits are
positive, and both should satisfy the equationL = 2− 1

L+1 . The unique positive solution
to this equation is the golden ratio, which is therefore the limit of both sequences, and
consequently the limit of the sequence (xn)n. ��
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Next, we present a famous identity of S.A. Ramanujan.

Example. Prove that √
1 + 2

√
1 + 3

√
1 + 4

√
1 + · · · = 3.

Solution. We approach the problem in more generality by introducing the function f :
[1,∞) → R,

f (x) =
√

1 + x

√
1 + (x + 1)

√
1 + (x + 2)

√
1 + · · ·.

Is this function well defined? Truncating to n square roots, we obtain an increasing
sequence. All we need to show is that this sequence is bounded from above. And it is,
because

f (x) ≤
√
(x + 1)

√
(x + 2)

√
(x + 3) · · ·

≤
√

2x

√
3x

√
4x · · · ≤

√
2x

√
4x

√
8x · · ·

= 2
∑ k

2k x
∑ 1

2k ≤ 2
1
2 + 1

2 + 1
4 + 1

4 + 1
8 + 1

8 +···x = 2x.

This shows, moreover, that f (x) ≤ 2x, for x ≥ 1. Note also that

f (x) ≥
√
x

√
x
√
x · · · = x.

For reasons that will become apparent, we weaken this inequality to f (x) ≥ 1
2(x + 1).

We then square the defining relation and obtain the functional equation

(f (x))2 = xf (x + 1)+ 1.

Combining this with

1

2
(x + 1) ≤ f (x + 1) ≤ 2(x + 1),

we obtain

x · x + 1

2
+ 1 ≤ (f (x))2 ≤ 2x(x + 1)+ 1,

which yields the sharper double inequality
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1√
2
(x + 1) ≤ f (x) ≤ √

2(x + 1).

Repeating successively the argument, we find that

2− 1
2n (x + 1) ≤ f (x) ≤ 2

1
2n (x + 1), for n ≥ 1.

If in this double inequality we let n → ∞, we obtain x + 1 ≤ f (x) ≤ x + 1, and hence
f (x) = x + 1. The particular case x = 2 yields Ramanujan’s formula√

1 + 2

√
1 + 3

√
1 + 4

√
1 + · · · = 3. ��

Here are some problems of this kind.

333. Compute √
1 +

√
1 +

√
1 + √

1 + · · ·.
334. Let a and b be real numbers. Prove that the recurrence sequence (xn)n defined by

x1 > 0 and xn+1 = √
a + bxn, n ≥ 1, is convergent, and find its limit.

335. Let 0 < a < b be two real numbers. Define the sequences (an)n and (bn)n by
a0 = a, b0 = b, and

an+1 = √
anbn, bn+1 = an + bn

2
, n ≥ 0.

Prove that the two sequences are convergent and have the same limit.

336. Prove that for n ≥ 2, the equation xn + x − 1 = 0 has a unique root in the interval
[0, 1]. If xn denotes this root, prove that the sequence (xn)n is convergent and find
its limit.

337. Compute up to two decimal places the number√√√√
1 + 2

√
1 + 2

√
1 + · · · + 2

√
1 + 2

√
1969,

where the expression contains 1969 square roots.

338. Find the positive real solutions to the equation√
x + 2

√
x + · · · + 2

√
x + 2

√
3x = x.
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339. Show that the sequence

√
7,

√
7 − √

7,

√
7 −

√
7 + √

7,

√
7 −

√
7 +

√
7 − √

7, . . .

converges, and evaluate its limit.

There is a vocabulary for translating the language of derivatives to the discrete frame-
work of sequences. The first derivative of a sequence (xn)n, usually called the first dif-
ference, is the sequence (	xn)n defined by 	xn = xn+1 − xn. The second derivative, or
second difference, is 	2xn = 	(	xn) = xn+2 − 2xn+1 + xn. A sequence is increasing
if the first derivative is positive; it is convex if the second derivative is positive. The
Cesàro–Stolz theorem, which we discuss below, is the discrete version of L’Hôpital’s
theorem.

The Cesàro–Stolz Theorem. Let (xn)n and (yn)n be two sequences of real numbers with
(yn)n strictly positive, increasing, and unbounded. If

lim
n→∞

xn+1 − xn

yn+1 − yn
= L,

then the limit

lim
n→∞

xn

yn

exists and is equal to L.

Proof. We apply the same ε-δ argument as for L’Hôpital’s theorem. We do the proof
only for L finite, the cases L = ±∞ being left to the reader.

Fix ε > 0. There exists n0 such that for n ≥ n0,

L− ε

2
<
xn+1 − xn

yn+1 − yn
< L+ ε

2
.

Because yn+1 − yn ≥ 0, this is equivalent to(
L− ε

2

)
(yn+1 − yn) < xn+1 − xn <

(
L+ ε

2

)
(yn+1 − yn).

We sum all these inequalities for n ranging between n0 and m − 1, for some m. After
cancelling terms in the telescopic sums that arise, we obtain(

L− ε

2

)
(ym − yn0) < xm − xn0 <

(
L+ ε

2

)
(ym − yn0).

We divide by ym and write the answer as
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L− ε

2
+
(

−Lyn0

ym
+ ε

2
· yn0

ym
+ xn0

ym

)
<
xm

ym
< L+ ε

2
+
(

−Lyn0

ym
− ε

2
· yn0

ym
+ xn0

ym

)
.

Because yn → ∞, there exists n1 > n0 such that for m ≥ n1, the absolute values of the
terms in the parentheses are less than ε

2 . Hence for m ≥ n1,

L− ε <
xm

ym
< L+ ε.

Since ε was arbitrary, this proves that the sequence ( xn
yn
)n converges to L. ��

We continue this discussion with an application to Cesàro means. By definition, the
Cesàro means of a sequence (an)n≥1 are

sn = a1 + a2 + · · · + an

n
, n ≥ 1.

Theorem. If (an)n≥1 converges to L, then (sn)n≥1 also converges to L.

Proof. Apply the Cesàro–Stolz theorem to the sequences xn = a1 + a2 + · · · + an and
yn = n, n ≥ 1. ��

The Cesàro–Stolz theorem can be used to solve the following problems.

340. If (un)n is a sequence of positive real numbers and if limn→∞ un+1
un

= u > 0, then
limn→∞ n

√
un = u.

341. Let p be a real number, p 	= 1. Compute

lim
n→∞

1p + 2p + · · · + np

np+1
.

342. Let 0 < x0 < 1 and xn+1 = xn − x2
n for n ≥ 0. Compute limn→∞ nxn.

343. Let x0 ∈ [−1, 1] and xn+1 = xn − arcsin(sin2 xn) for n ≥ 0. Compute
limn→∞

√
nxn.

344. For an arbitrary number x0 ∈ (0, π) define recursively the sequence (xn)n by
xn+1 = sin xn, n ≥ 0. Compute limn→∞

√
nxn.

345. Let f : R → R be a continuous function such that the sequence (an)n≥0 defined
by an = ∫ 1

0 f (n + x)dx is convergent. Prove that the sequence (bn)n≥0, with

bn = ∫ 1
0 f (nx)dx is also convergent.

346. Consider the polynomial P(x) = amx
m + am−1x

m−1 + · · · + a0, ai > 0, i =
0, 1, . . . , m. Denote by An and Gn the arithmetic and, respectively, geometric
means of the numbers P(1), P (2), . . . , P (n). Prove that

lim
n→∞

An

Gn

= em

m+ 1
.



116 3 Real Analysis

347. Let k be an integer greater than 1. Suppose a0 > 0, and define

an+1 = an + 1
k
√
an

for n > 0. Evaluate

lim
n→∞

ak+1
n

nk
.

We conclude the discussion about limits of sequences with the theorem of Georg
Cantor.

Cantor’s nested intervals theorem. Given a decreasing sequence of closed intervals
I1 ⊃ I2 ⊃ · · · ⊃ In ⊃ · · · with lengths converging to zero, the intersection ∩∞

n=1In
consists of exactly one point.

This theorem is true in general if the intervals are replaced by closed and bounded
subsets of Rn with diameters converging to zero. As an application of this theorem we
prove the compactness of a closed bounded interval. A set of real numbers is called
compact if from every family of open intervals that cover the set one can choose finitely
many that still cover it.

The Heine–Borel Theorem. A closed and bounded interval of real numbers is compact.

Proof. Let the interval be [a, b] and assume that for some family of open intervals (Iα)α
that covers [a, b] one cannot choose finitely many that still cover it. We apply the
dichotomic (division into two parts) method. Cut the interval [a, b] in half. One of the
two intervals thus obtained cannot be covered by finitely many Iα’s. Call this interval J1.
Cut J1 in half. One of the newly obtained intervals will again not be covered by finitely
many Iα’s. Call it J2. Repeat the construction to obtain a decreasing sequence of intervals
J1 ⊃ J2 ⊃ J3 ⊃ · · · , with the length of Jk equal to b−a

2k and such that none of these
intervals can be covered by finitely many Iα’s. By Cantor’s nested intervals theorem, the
intersection of the intervals Jk, k ≥ 1, is some point x. This point belongs to an open
interval Iα0 , and so an entire ε-neighborhood of x is in Iα0 . But then Jk ⊂ Iα0 for k large
enough, a contradiction. Hence our assumption was false, and a finite subcover always
exists. ��

Recall that the same dichotomic method can be applied to show that any sequence
in a closed and bounded interval (and more generally in a compact metric space) has a
converent subsequence. And if you find the following problems demanding, remember
Charlie Chaplin’s words: “Failure is unimportant. It takes courage to make a fool of
yourself.’’
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348. Let f : [a, b] → [a, b] be an increasing function. Show that there exists ξ ∈ [a, b]
such that f (ξ) = ξ .

349. For every real number x1 construct the sequence x1, x2, x3, . . . by setting xn+1 =
xn(xn+ 1

n
) for each n ≥ 1. Prove that there exists exactly one value of x1 for which

0 < xn < xn+1 < 1 for every n.

350. Given a sequence (an)n such that for any γ > 1 the subsequence a�γ n� converges
to zero, does it follow that the sequence (an)n itself converges to zero?

351. Let f : (0,∞) → R be a continuous function with the property that for any x > 0,
limn→∞ f (nx) = 0. Prove that limx→∞ f (x) = 0.

3.1.5 Series

A series is a sum

∞∑
n=1

an = a1 + a2 + · · · + an + · · · .

The first question asked about a series is whether it converges. Convergence can be
decided using Cauchy’s ε-δ criterion, or by comparing it with another series. For com-
parison, two families of series are most useful:

(i) geometric series

1 + x + x2 + · · · + xn + · · · ,
which converge if |x| < 1 and diverge otherwise, and

(ii) p-series

1 + 1

2p
+ 1

3p
+ · · · + 1

np
+ · · · ,

which converge if p > 1 and diverge otherwise.

The p-series corresponding to p = 1 is the harmonic series. Its truncation to the nth
term approximates ln n. Let us use the harmonic series to answer the following question.

Example. Does the series
∑∞

n=1
| sin n|
n

converge?

Solution. The inequality | sin x| >
√

2−√
2

2 holds if and only if 1
8 < { x

π
} < 7

8 , where {x}
denotes the fractional part of x (x−�x�). Because 1

4 <
1
π

, it follows that for any n, either

| sin n| or | sin(n+ 1)| is greater than
√

2−√
2

2 . Therefore,
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| sin n|
n

+ | sin(n+ 1)|
n+ 1

≥
√

2 − √
2

2
· 1

n+ 1
.

Adding up these inequalities for all odd numbers n, we obtain

∞∑
n=1

| sin n|
n

≥
√

2 − √
2

2

∞∑
n=1

1

2n
=
√

2 − √
2

4

∞∑
n=1

1

n
= ∞.

Hence the series diverges. ��
In fact, the so-called equidistribution criterion implies that if f : R → R is a

continuous periodic function with irrational period and if
∑

n
|f (n)|
n

< ∞, then f is
identically zero.

The comparison with a geometric series gives rise to d’Alembert’s ratio test:
∑∞

n=0 an
converges if lim supn | an+1

an
| < 1 and diverges if lim inf n | an+1

an
| > 1. Here is a problem

of P. Erdős from the American Mathematical Monthly that applies this test among other
things.

Example. Let (nk)k≥1 be a strictly increasing sequence of positive integers with the
property that

lim
k→∞

nk

n1n2 · · · nk−1
= ∞.

Prove that the series
∑

k≥1
1
nk

is convergent and that its sum is an irrational number.

Solution. The relation from the statement implies in particular that nk+1 ≥ 3nk for k ≥ 3.
By the ratio test the series

∑
k

1
nk

is convergent, since the ratio of two consecutive terms

is less than or equal to 1
3 .

By way of contradiction, suppose that the sum of the series is a rational number p

q
.

Using the hypothesis we can find k ≥ 3 such that

nj+1

n1n2 · · · nj ≥ 3q, if j ≥ k.

Let us start with the obvious equality

p(n1n2 · · · nk) = q(n1n2 · · · nk)
∞∑
j=1

1

nj
.

From it we derive

p(n1n2 · · · nk)−
k∑
j=1

qn1n2 · · · nk
nj

=
∑
j>k

qn1n2 · · · nk
nj

.
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Clearly, the left-hand side of this equality is an integer. For the right-hand side, we have

0 <
∑
j>k

qn1n2 · · · nk
nj

≤ qn1n2 · · · nk
nk+1

+ qn1n2 · · · nk
3nk+1

+ · · · ≤ 1

3
+ 1

9
+ 1

27
+ · · · = 1

2
.

Here we used the fact that n1n2 · · · nk
nk+1

≤ 1
3q and that nj+1 ≥ 3nj , for j ≥ k and k

sufficiently large. This shows that the right-hand side cannot be an integer, a contradiction.
It follows that the sum of the series is irrational. ��
352. Show that the series

1

1 + x
+ 2

1 + x2
+ 4

1 + x4
+ · · · + 2n

1 + x2n
+ · · ·

converges when |x| > 1, and in this case find its sum.

353. For what positive x does the series

(x − 1)+ (
√
x − 1)+ ( 3

√
x − 1)+ · · · + ( n

√
x − 1)+ · · ·

converge?

354. Let a1, a2, . . . , an, . . . be nonnegative numbers. Prove that
∑∞

n=1 an < ∞ implies∑∞
n=1

√
an+1an < ∞.

355. Let S = {x1, x2, . . . , xn, . . . } be the set of all positive integers that do not contain
the digit 9 in their decimal representation. Prove that

∞∑
n=1

1

xn
< 80.

356. Suppose that (xn)n is a sequence of real numbers satisfying

xn+1 ≤ xn + 1

n2
, for all n ≥ 1.

Prove that limn→∞ xn exists.

357. Does the series
∑∞

n=1 sin π
√
n2 + 1 converge?

358. (a) Does there exist a pair of divergent series
∑∞

n=1 an,
∑∞

n=1 bn, with a1 ≥ a2 ≥
a3 ≥ · · · ≥ 0 and b1 ≥ b2 ≥ b3 ≥ · · · ≥ 0, such that the series

∑
n min(an, bn) is

convergent?

(b) Does the answer to this question change if we assume additionally that bn = 1
n
,

n = 1, 2, . . . ?
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359. Given a sequence (xn)n with x1 ∈ (0, 1) and xn+1 = xn − nx2
n for n ≥ 1, prove that

the series
∑∞

n=1 xn is convergent.

360. Is the number

∞∑
n=1

1

2n2

rational?

361. Let (an)n≥0 be a strictly decreasing sequence of positive numbers, and let z be a
complex number of absolute value less than 1. Prove that the sum

a0 + a1z+ a2z
2 + · · · + anz

n + · · ·
is not equal to zero.

362. Let w be an irrational number with 0 < w < 1. Prove that w has a unique
convergent expansion of the form

w = 1

p0
− 1

p0p1
+ 1

p0p1p2
− 1

p0p1p2p3
+ · · · ,

where p0, p1, p2, . . . are integers 1 ≤ p0 < p1 < p2 < · · · .
363. The number q ranges over all possible powers with both the base and the exponent

positive integers greater than 1, assuming each such value only once. Prove that∑
q

1

q − 1
= 1.

364. Prove that for any n ≥ 2, ∑
p≤n,p prime

1

p
> ln ln n− 1.

Conclude that the sum of the reciprocals of all prime numbers is infinite.

3.1.6 Telescopic Series and Products

We mentioned earlier the idea of translating notions from differential and integral calculus
to sequences. For example, the derivative of (xn)n is the sequence whose terms are
xn+1 − xn, n ≥ 1, while the definite integral is the sum x1 + x2 + x3 + · · · . The
Leibniz–Newton theorem
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∫ b

a

f (t)dt = F(b)− F(a), where F ′(t) = f (t),

becomes the telescopic method for summing a series

n∑
1

ak = bn+1 − b1, where ak = bk+1 − bk, k ≥ 1.

As in the case of integrals, when applying the telescopic method to a series, the struggle is
to find the “antiderivative’’of the general term. But compared to the case of integrals, here
we lack an algorithmic way. This is what makes such problems attractive for mathematics
competitions. A simple example that comes to mind is the following.

Example. Find the sum

1√
1 + √

2
+ 1√

2 + √
3

+ · · · + 1√
n+ √

n+ 1
.

Solution. The “antiderivative’’ of the general term of the sum is found by rationalizing
the denominator:

1√
k + √

k + 1
=

√
k + 1 − √

k

k + 1 − k
= √

k + 1 − √
k.

The sum is therefore equal to

(
√

2 − √
1)+ (

√
3 − √

2)+ · · · + (
√
n+ 1 − √

n) = √
n+ 1 − 1. ��

Not all problems are so simple, as the next two examples show.

Example. Let a0 = 1, a1 = 3, an+1 = a2
n+1
2 , n ≥ 1. Prove that

1

a0 + 1
+ 1

a1 + 1
+ · · · + 1

an + 1
+ 1

an+1 − 1
= 1, for all n ≥ 1.

Solution. We have

ak+1 − 1 = a2
k − 1

2
,

so

1

ak+1 − 1
= 1

ak − 1
− 1

ak + 1
, for k ≥ 1.

This allows us to express the terms of the sum from the statement as “derivatives’’:
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1

ak + 1
= 1

ak − 1
− 1

ak+1 − 1
, for k ≥ 1.

Summing up these equalities for k = 1, 2, . . . , n yields

1

a1 + 1
+ · · · + 1

an + 1
= 1

a1 − 1
− 1

a2 − 1
+ 1

a2 − 1
− 1

a3 − 1
+ · · ·

+ 1

an − 1
− 1

an+1 − 1
= 1

2
− 1

an+1 − 1
.

Finally, add 1
a0+1 + 1

an+1−1 to both sides to obtain the identity from the statement. ��
Example. Express

49∑
n=1

1√
n+ √

n2 − 1

as a + b
√

2 for some integers a and b.

Solution. We have

1√
n+ √

n2 − 1
= 1√(√

n+1
2 +

√
n−1

2

)2
= 1√

n+1
2 +

√
n−1

2

=
√
n+1

2 −
√
n−1

2

n+1
2 − n−1

2

=
√
n+ 1

2
−
√
n− 1

2
.

Hence the sum from the statement telescopes to√
49 + 1

2
+
√

48 + 1

2
−
√

1

2
− 0 = 5 + 7√

2
− 1√

2
= 5 + 3

√
2. ��

Apply the telescopic method to the following problems.

365. Prove the identity

n∑
k=1

(k2 + 1)k! = n(n+ 1)!.

366. Let ζ be a root of unity. Prove that

ζ−1 =
∞∑
n=0

ζ n(1 − ζ )(1 − ζ 2) · · · (1 − ζ n),

with the convention that the 0th term of the series is 1.
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367. For a nonnegative integer k, define Sk(n) = 1k + 2k + · · · + nk. Prove that

1 +
r−1∑
k=0

(
r

k

)
Sk(n) = (n+ 1)r .

368. Let

an = 4n+ √
4n2 − 1√

2n+ 1 + √
2n− 1

, for n ≥ 1.

Prove that a1 + a2 + · · · + a40 is a positive integer.

369. Prove that

n∑
k=1

(−1)k+1

12 − 22 + 32 − · · · + (−1)k+1k2
= 2n

n+ 1
.

370. Prove that

9999∑
n=1

1

(
√
n+ √

n+ 1)( 4
√
n+ 4

√
n+ 1)

= 9.

371. Let an =
√

1 + (1 + 1
n
)2 +

√
1 + (1 − 1

n
)2, n ≥ 1. Prove that

1

a1
+ 1

a2
+ · · · + 1

a20

is a positive integer.

372. Evaluate in closed form

∞∑
m=0

∞∑
n=0

m!n!
(m+ n+ 2)! .

373. Let an = 3n+ √
n2 − 1 and bn = 2(

√
n2 − n+ √

n2 + n), n ≥ 1. Show that√
a1 − b1 +√

a2 − b2 + · · · +√
a49 − b49 = A+ B

√
2,

for some integers A and B.

374. Evaluate in closed form

n∑
k=0

(−1)k(n− k)!(n+ k)!.
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375. Let a0 = 1994 and an+1 = a2
n

an+1 for each nonnegative integer n. Prove that for
0 ≤ n ≤ 998, the number 1994 − n is the greatest integer less than or equal to an.

376. Fix k a positive integer and define the sequence

an =
⌊
(k +

√
k2 + 1)n +

(
1

2

)n⌋
, n ≥ 0.

Prove that
∞∑
n=1

1

an−1an+1
= 1

8k2
.

The telescopic method can be applied to products as well. Within the first, relatively
easy, problem, the reader will recognize in disguise the Fermat numbers 22n + 1, n ≥ 1.

Example. Define the sequence (an)n by a0 = 3, and an+1 = a0a1 · · · an + 2, n ≥ 0.
Prove that

an+1 = 2(a0 − 1)(a1 − 1) · · · (an − 1)+ 1, for all n ≥ 0.

Solution. The recurrence relation gives a0a1 · · · ak−1 = ak − 2, k ≥ 1. Substitute this
in the formula for ak+1 to obtain ak+1 = (ak − 2)ak + 2, which can be written as
ak+1 − 1 = (ak − 1)2. And so

ak+1 − 1

ak − 1
= ak − 1.

Multiplying these relations for k = 0, 1, . . . , n, we obtain

an+1 − 1

an − 1
· an − 1

an−1 − 1
· · · a1 − 1

a0 − 1
= (an − 1)(an−1 − 1) · · · (a0 − 1).

Since the left-hand side telescopes, we obtain

an+1 − 1

a0 − 1
= (a0 − 1)(a1 − 1) · · · (an − 1),

and the identity follows. ��
A more difficult problem is the following.

Example. Compute the product

∞∏
n=1

(
1 + (−1)n

F 2
n

)
,

where Fn is the nth Fibonacci number.
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Solution. Recall that the Fibonacci numbers satisfy the Cassini identity

Fn+1Fn−1 − F 2
n = (−1)n.

Hence

∞∏
n=1

(
1 + (−1)n

F 2
n

)
= lim

N→∞

N∏
n=1

F 2
n + (−1)n

F 2
n

= lim
N→∞

N∏
n=1

Fn−1

Fn
· Fn+1

Fn

= lim
N→∞

F0FN+1

F1FN
= lim

N→∞
FN+1

FN
.

Because of the Binet formula

Fn = 1√
5

⎡⎣(1 + √
5

2

)n+1

−
(

1 − √
5

2

)n+1
⎤⎦ , for n ≥ 0,

the above limit is equal to 1+√
5

2 . ��
377. Compute the product (

1 − 4

1

)(
1 − 4

9

)(
1 − 4

25

)
· · · .

378. Let x be a positive number less than 1. Compute the product

∞∏
n=0

(
1 + x2n

)
.

379. Let x be a real number. Define the sequence (xn)n≥1 recursively by x1 = 1 and
xn+1 = xn + nxn for n ≥ 1. Prove that

∞∏
n=1

(
1 − xn

xn+1

)
= e−x.

3.2 Continuity, Derivatives, and Integrals

3.2.1 Limits of Functions

Among the various ways to find the limit of a function, the most basic is the definition
itself.
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Definition. For x0 an accumulation point of the domain of a function f , we say that
limx→x0 f (x) = L if for every neighborhood V of L, there is a neighborhood U of x0

such that f (U) ⊂ V .

This definition is, however, seldom used in applications. Instead, it is more customary
to use operations with limits, the squeezing principle (if f (x) ≤ g(x) ≤ h(x) for all x and
limx→x0 f (x) = limx→x0 h(x) = L, then limx→x0 g(x) = L), continuity, or L’Hôpital’s
theorem, to be discussed later.

Example. Compute

lim
x→∞

(√
x +

√
x + √

x − √
x

)
.

Solution. The usual algorithm is to multiply and divide by the conjugate to obtain

lim
x→∞

(√
x +

√
x + √

x − √
x

)
= lim

x→∞
x +√

x + √
x − x√

x +√
x + √

x + √
x

= lim
x→∞

√
x + √

x√
x +√

x + √
x + √

x

= lim
x→∞

√
1 +

√
1
x√

1 +
√

1
x

+
√

1
x3 + 1

= 1

2
. ��

And now an example of type 1∞.

Example. Let a1, a2, . . . , an be positive real numbers. Prove that

lim
x→0

(
ax1 + ax2 + · · · + axn

n

) 1
x

= n
√
a1a2 · · · an.

Solution. First, note that

lim
x→0

ax − 1

x
= ln a.

Indeed, the left-hand side can be recognized as the derivative of the exponential at 0. Or
to avoid a logical vicious circle, we can argue as follows: let ax = 1 + t , with t → 0.
Then x = ln(1+t)

ln a , and the limit becomes

lim
t→0

t ln a

ln(1 + t)
= lim

t→0

ln a

ln(1 + t)t
= ln a

ln e
= ln a.
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Let us return to the problem. Because the limit is of the form 1∞, it is standard to
write it as

lim
x→0

(
1 + ax1 + ax2 + · · · + axn − n

n

) n

ax1 +ax2 +···+axn−n · a
x
1 +ax2 +···+xxn−n

nx

.

Using the fact that limt→0(1 + t)1/t = e, we find this to be equal to

exp

[
lim
x→0

(
ax1 + ax2 + · · · + axn − n

nx

)]
= exp

[
1

n
lim
x→0

(
ax1 − 1

x
+ ax2 − 1

x
+ · · · + axn − 1

x

)]
= exp

[
1

n
(ln a1 + ln a2 + · · · + ln an)

]
= n

√
a1a2 · · · an,

the desired answer. ��
We continue with a problem of theoretical flavor that requires an ε-δ argument.

Written by M. Becheanu it was given at a Romanian competition in 2004.

Example. Let a ∈ (0, 1) be a real number and f : R → R a function that satisfies the
following conditions:

(i) limx→∞ f (x) = 0;
(ii) limx→∞ f (x)−f (ax)

x
= 0.

Show that limx→∞ f (x)

x
= 0.

Solution. The second condition reads, for any ε > 0, there exists δ > 0 such that if
x ∈ (−δ, δ) then |f (x)− f (ax)| < ε|x|. Applying the triangle inequality, we find that
for all positive integers n and all x ∈ (−δ, δ),
|f (x)−f (anx)| ≤ |f (x)−f (ax)| + |f (ax)−f (a2x)| + · · · + |f (an−1x)−f (anx)|

< ε|x|(1 + a + a2 + · · · + an−1) = ε
1 − an

1 − a
|x| ≤ ε

1 − a
|x|.

Taking the limit as n → ∞, we obtain

|f (x)| ≤ ε

1 − a
|x|.

Since ε > 0 was arbitrary, this proves that limx→∞ f (x)

x
= 0. ��

380. Find the real parameters m and n such that the graph of the function f (x) =
3
√

8x3 +mx2 − nx has the horizontal asymptote y = 1.
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381. Does

lim
x→π/2

(sin x)
1

cos x

exist?

382. For two positive integers m and n, compute

lim
x→0

m
√

cos x − n
√

cos x

x2
.

383. Does there exist a nonconstant function f : (1,∞) → R satisfying the relation
f (x) = f (x

2+1
2 ) for all x > 1 and such that limx→∞ f (x) exists?

384. Let f : (0,∞) → (0,∞) be an increasing function with limt→∞ f (2t)
f (t)

= 1. Prove

that limt→∞ f (mt)

f (t)
= 1 for any m > 0.

385. Let f (x) = ∑n
k=1 ak sin kx, with a1, a2, . . . , an ∈ R, n ≥ 1. Prove that if f (x) ≤

| sin x| for all x ∈ R, then ∣∣∣∣∣
n∑
k=1

kak

∣∣∣∣∣ ≤ 1.

3.2.2 Continuous Functions

A function f is continuous at x0 if it has limit at x0 and this limit is equal to f (x0). A
function that is continuous at every point of its domain is simply called continuous.

Example. Find all continuous functions f : R → R satisfying f (0) = 1 and

f (2x)− f (x) = x, for all x ∈ R.

Solution. Write the functional equation as

f (x)− f
(x

2

)
= x

2
;

then iterate

f
(x

2

)
− f

(x
4

)
= x

4
,

f
(x

4

)
− f

(x
8

)
= x

8
,

· · ·
f
( x

2n−1

)
− f

( x
2n

)
= x

2n
.
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Summing up, we obtain

f (x)− f
( x

2n

)
= x

(
1

2
+ 1

4
+ · · · + 1

2n

)
,

which, when n tends to infinity, becomes f (x) − 1 = x. Hence f (x) = x + 1 is the
(unique) solution. ��

We will now present the spectacular example of a continuous curve that covers a
square completely. A planar curve φ(t) = (x(t), y(t)) is called continuous if both
coordinate functions x(t) and y(t) depend continuously on the parameter t .

Peano’s theorem. There exists a continuous surjection φ : [0, 1] → [0, 1] × [0, 1].

Proof. G. Peano found an example of such a function in the early twentieth century. The
curve presented below was constructed later by H. Lebesgue.

The construction of this “Peano curve’’ uses the Cantor set. This is the set C of all
numbers in the interval [0, 1] that can be written in base 3 with only the digits 0 and
2. For example, 0.1 is in C because it can also be written as 0.0222 . . . , but 0.101 is
not. The Cantor set is obtained by removing from [0, 1] the interval ( 1

3 ,
2
3), then ( 1

9 ,
2
9)

and ( 7
9 ,

8
9), then successively from each newly formed closed interval an open interval

centered at its midpoint and 1
3 of its size (Figure 19). The Cantor set is a fractal: each

time we cut a piece of it and magnify it, the piece resembles the original set.

Figure 19

Next, we define a function φ : C → [0, 1] × [0, 1] in the following manner. For a
number written in base 3 as 0.a1a2 . . . an . . . with only the digits 0 and 2 (hence in the Can-
tor set), divide the digits by 2, then separate the ones in even positions from those in odd
positions. Explicitly, if bn = an

2 , n ≥ 1, construct the pair (0.b1b3b5 . . . , 0.b2b4b6 . . . ).
This should be interpreted as a point in [0, 1] × [0, 1] with coordinates written in base
2. Then φ(0.a1a2a3a4 . . . ) = (0.b1b3 . . . , 0.b2b4 . . . ). The function is clearly onto. Is it
continuous?

First, what does continuity mean in this case? It means that whenever a sequence
(xn)n in C converges to a point x ∈ C, the sequence (φ(xn))n should converge to φ(x).
Note that since the complement of C is a union of open intervals, C contains all its limit
points. Moreover, the Cantor set has the very important property that a sequence (xn)n
of points in it converges to x ∈ C if and only if the base-3 digits of xn successively
become equal to the digits of x. It is essential that the base-3 digits of a number in C
can equal only 0 or 2, so that the ambiguity of the ternary expansion is eliminated. This
fundamental property of the Cantor set guarantees the continuity of φ.
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The function φ is extended linearly over each open interval that was removed in the
process of constructing C, to obtain a continuous surjection φ : [0, 1] → [0, 1] × [0, 1].
This concludes the proof of the theorem. ��

To visualize this Peano curve, consider the “truncations’’ of the Cantor set

C1 =
{

0,
1

3
,

2

3
, 1

}
, C2 =

{
0,

1

9
,

2

9
,

1

3
,

2

3
,

7

9
,

8

9
, 1

}
,

C3 =
{

0,
1

27
,

2

27
,

1

9
,

2

9
,

7

27
,

8

27
,

1

3
,

2

3
,

19

27
,

20

27
,

7

9
,

8

9
,

25

27
,

26

27
, 1

}
,

C4 =
{

0,
1

81
,

2

81
,

1

27
,

2

27
,

7

81
,

8

81
,

1

9
,

2

9
,

19

81
,

20

81
,

7

27
,

8

27
,

25

81
,

26

81
,

1

3
,

2

3
,

55

81
,

56

81
,

19

27
,

20

27
,

61

81
,

62

81
,

7

9
,

8

9
,

73

81
,

74

81
,

25

27
,

26

27
,

79

81
,

80

81
, 1

}
, . . . ,

and define φn : Cn → [0, 1] × [0, 1], n ≥ 1, as above, and then extend linearly. This
gives rise to the curves from Figure 20. The curve φ is their limit. It is a fractal: if we
cut the unit square into four equal squares, the curve restricted to each of these squares
resembles the original curve.

1 2n = n = n = n= 43

Figure 20

386. Let f : R → R be a continuous function satisfying f (x) = f (x2) for all x ∈ R.
Prove that f is constant.

387. Does there exist a continuous function f : [0, 1] → R that assumes every element
of its range an even (finite) number of times?

388. Let f (x) be a continuous function defined on [0, 1] such that
(i) f (0) = f (1) = 0;

(ii) 2f (x)+ f (y) = 3f ( 2x+y
3 ) for all x, y ∈ [0, 1].

Prove that f (x) = 0 for all x ∈ [0, 1].
389. Let f : R → R be a continuous function with the property that

lim
h→0+

f (x + 2h)− f (x + h)

h
= 0, for all x ∈ R.

Prove that f is constant.
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390. Let a and b be real numbers in the interval (0, 1
2) and let f be a continuous real-

valued function such that

f (f (x)) = af (x)+ bx, for all x ∈ R.

Prove that f (0) = 0.

391. Let f : [0, 1] → R be a continuous function. Prove that the series
∑∞

n=1
f (xn)

2n is
convergent for every x ∈ [0, 1]. Find a function f satisfying

f (x) =
∞∑
n=1

f (xn)

2n
, for all x ∈ [0, 1].

392. Prove that there exists a continuous surjective function ψ : [0, 1] → [0, 1] × [0, 1]
that takes each value infinitely many times.

393. Give an example of a continuous function on an interval that is nowhere differen-
tiable.

3.2.3 The Intermediate Value Property

A real-valued function f defined on an interval is said to have the intermediate value
property (or the Darboux property) if for every a < b in the interval and for every λ
between f (a) and f (b), there exists c between a and b such that f (c) = λ. Equivalently,
a real-valued function has the intermediate property if it maps intervals to intervals. The
higher-dimensional analogue requires the function to map connected sets to connected
sets. Continuous functions and derivatives of functions are known to have this property,
although the class of functions with the intermediate value property is considerably larger.

Here is a problem from the 1982 Romanian Mathematical Olympiad, proposed by
M. Chiriţă.

Example. Let f : [0, 1] → R be a continuous function with the property that∫ 1
0 f (x)dx = π

4 . Prove that there exists x0 ∈ (0, 1) such that

1

1 + x0
< f (x0) <

1

2x0
.

Solution. Note that ∫ 1

0

1

1 + x2
dx = π

4
.

Consequently, the integral of the function g(x) = f (x) − 1
1+x2 on the interval [0, 1] is

equal to 0. Ifg(x) is identically 0, choosex0 to be any number between 0 and 1. Otherwise,
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g(x) assumes both positive and negative values on this interval. Being continuous, g
has the intermediate value property, so there is some x0 ∈ (0, 1) for which g(x0) = 0.
We have thus found x0 ∈ (0, 1) such that f (x0) = 1

1+x2
0
. The double inequality from the

statement follows from 2x0 < 1 + x2
0 < 1 + x0, which clearly holds since on the one

hand, x2
0 − 2x0 + 1 = (x0 − 1)2 > 0, and on the other, x2

0 < x0. ��
Example. Prove that every continuous mapping of a circle into a line carries some pair
of diametrically opposite points to the same point.

Solution. Yes, this problem uses the intermediate value property, or rather the more
general property that the image through a continuous map of a connected set is connected.
The circle is connected, so its image must be an interval. This follows from a more
elementary argument, if we think of the circle as the gluing of two intervals along their
endpoints. The image of each interval is another interval, and the two images overlap,
determining an interval.

Identify the circle with the set S1 = {z ∈ C | |z| = 1}. If f : S1 → R is the
continuous mapping from the statement, thenψ : S1 → R,ψ(z) = f (z)−f (−z̄) is also
continuous (here the bar denotes the complex conjugate, and as such, −z̄ is diametrically
opposite to z).

Pick z0 ∈ S1. If ψ(z0) = 0, then z0 and −z0 map to the same point on the line.
Otherwise,

ψ(−z0) = f (−z0)− f (z) = −ψ(z0).

Hence ψ takes a positive and a negative value, and by the intermediate value property it
must have a zero. The property is proved. ��

A more difficult theorem of Borsuk and Ulam states that any continuous map of the
sphere into the plane sends two antipodal points on the sphere to the same point in the
plane. A nice interpretation of this fact is that at any time there are two antipodal points
on earth with the same temperature and barometric pressure.

We conclude our list of examples with a surprising fact discovered by Lebesgue.

Theorem. There exists a function f : [0, 1] → [0, 1] that has the intermediate value
property and is discontinuous at every point.

Proof. Lebesgue’s function acts like an automaton. The value at a certain point is pro-
duced from information read from the digital expansion of the variable.

The automaton starts acting once it detects that all even-order digits have be-
come 0. More precisely, if x = 0.a0a1a2 . . . , the automaton starts acting once
a2k = 0 for all k ≥ n. It then reads the odd-order digits and produces the value
f (x) = 0.a2n+1a2n+3a2n+5 . . . . If the even-order digits do not eventually become zero,
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the automaton remains inactive, producing the value 0. Because only the rightmost dig-
its of the numbers count, for any value of y and any interval I ⊂ [0, 1], one can find a
number x ∈ I such that f (x) = y. Hence the function f maps any subinterval of [0, 1]
onto [0, 1]. It satisfies the intermediate value property trivially. And because any neigh-
borhood of a point is mapped to the entire interval [0, 1], the function is discontinuous
everywhere. ��

As the poet Paul Valéry said: “a dangerous state is to think that you understand.’’ To
make sure that you do understand the intermediate value property, solve the following
problems.

394. Let f : [a, b] → [a, b] be a continuous function. Prove that f has a fixed point.

395. One day, a Buddhist monk climbed from the valley to the temple up on the mountain.
The next day, the monk came down, on the same trail and during the same time
interval. Prove that there is a point on the trail that the monk reached at precisely
the same moment of time on the two days.

396. Let f : R → R be a continuous decreasing function. Prove that the system

x = f (y),

y = f (z),

z = f (x)

has a unique solution.

397. Let f : R → R be a continuous function such that |f (x)− f (y)| ≥ |x − y| for all
x, y ∈ R. Prove that the range of f is all of R.

398. A cross-country runner runs a six-mile course in 30 minutes. Prove that somewhere
along the course the runner ran a mile in exactly 5 minutes.

399. Let A and B be two cities connected by two different roads. Suppose that two cars
can travel from A to B on different roads keeping a distance that does not exceed
one mile between them. Is it possible for the cars to travel the first one from A to
B and the second one from B to A in such a way that the distance between them is
always greater than one mile?

400. Let

P(x) =
n∑
k=1

akx
k and Q(x) =

n∑
k=1

ak

2k − 1
xk,

where a1, a2, . . . , an are real numbers, n ≥ 1. Show that if 1 and 2n+1 are zeros of
the polynomial Q(x), then P(x) has a positive zero less than 2n.
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401. Prove that any convex polygonal surface can be divided by two perpendicular lines
into four regions of equal area.

402. Let f : I → R be a function defined on an interval. Show that if f has the
intermediate value property and for any y ∈ R the set f −1(y) is closed, then f is
continuous.

403. Show that the function

fa(x) =
{

cos 1
x

for x 	= 0,

a for x = 0,

has the intermediate value property if a ∈ [−1, 1] but is the derivative of a function
only if a = 0.

3.2.4 Derivatives and Their Applications

A function f defined in an open interval containing the point x0 is called differentiable
at x0 if

lim
h→0

f (x0 + h)− f (x0)

h

exists. In this case, the limit is called the derivative of f at x0 and is denoted by f ′(x0)

or df
dx
(x0). If the derivative is defined at every point of the domain of f , then f is simply

called differentiable.
The derivative is the instantaneous rate of change. Geometrically, it is the slope of

the tangent to the graph of the function. Because of this, where the derivative is positive
the function is increasing, where the derivative is negative the function is decreasing, and
on intervals where the derivative is zero the function is constant. Moreover, the maxima
and minima of a differentiable function show up at points where the derivative is zero,
the so-called critical points.

Let us present some applications of derivatives. We begin with an observation made
by F. Pop during the grading of USA Mathematical Olympiad 1997 about a student’s
solution. The student reduced one of the problems to a certain inequality, and the question
was whether this inequality is easy or difficult to prove. Here is the inequality and Pop’s
argument.

Example. Let a, b, c be positive real numbers such that abc = 1. Prove that

a2 + b2 + c2 ≤ a3 + b3 + c3.
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Solution. We prove that the function

f (t) = at + bt + ct

is increasing for t ≥ 0. Its first derivative is

f ′(t) = at ln a + bt ln b + ct ln c,

for which we can tell only that f ′(0) = ln abc = ln 1 = 0. However, the second
derivative is f ′′(t) = at ln2 a + bt ln2 b + ct ln2 c, which is clearly positive. We thus
deduce that f ′ is increasing, and so f ′(t) ≥ f ′(0) = 0 for t ≥ 0. Therefore, f itself is
increasing for t ≥ 0, and the conclusion follows. ��

And now an exciting example found in D. Buşneag, I. Maftei, Themes for Mathematics
Circles and Contests (Scrisul Românesc, Craiova).

Example. Prove that∣∣∣∣∣∣∣∣∣
1 + a1 1 · · · 1

1 1 + a2 · · · 1
...

...
. . .

...

1 1 · · · 1 + an

∣∣∣∣∣∣∣∣∣ = a1a2 · · · an
(

1 + 1

a1
+ 1

a2
+ · · · + 1

an

)
.

Solution. In general, if the entries of a matrix depend in a differentiable manner on a
parameter x, ⎛⎜⎜⎜⎝

a11(x) a12(x) · · · a1n(x)

a21(x) a22(x) · · · a2n(x)
...

...
. . .

...

an1(x) an2(x) · · · ann(x)

⎞⎟⎟⎟⎠ ,
then the determinant is a differentiable function of x, and its derivative is equal to∣∣∣∣∣∣∣∣∣

a′
11(x) a

′
12(x) · · · a′

1n(x)

a21(x) a22(x) · · · a2n(x)
...

...
. . .

...

an1(x) an2(x) · · · ann(x)

∣∣∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣∣∣
a11(x) a12(x) · · · a1n(x)

a′
21(x) a

′
22(x) · · · a′

2n(x)
...

...
. . .

...

an1(x) an2(x) · · · ann(x)

∣∣∣∣∣∣∣∣∣+ · · ·

+

∣∣∣∣∣∣∣∣∣∣
a11(x) a12(x) · · · a1n(x)

a21(x) a22(x) · · · a2n(x)
...

...
. . .

...

a′
n1(x) a

′
n2(x)

... a′
nn(x)

∣∣∣∣∣∣∣∣∣∣
.



136 3 Real Analysis

This follows by applying the product rule to the formula of the determinant. For our
problem, consider the function

f (x) =

∣∣∣∣∣∣∣∣∣
x + a1 x · · · x

x x + a2 · · · x
...

...
. . .

...

x x · · · x + an

∣∣∣∣∣∣∣∣∣ .
Its first derivative is

f ′(x) =

∣∣∣∣∣∣∣∣∣
1 1 · · · 1
x x + a2 · · · x
...

...
. . .

...

x x · · · x + an

∣∣∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣∣∣
x + a1 x · · · x

1 1 · · · 1
...

...
. . .

...

x x · · · x + an

∣∣∣∣∣∣∣∣∣+ · · ·

+

∣∣∣∣∣∣∣∣∣
x + a1 x · · · x
x x + a2 · · · x
...

...
. . .

...

1 1 · · · 1

∣∣∣∣∣∣∣∣∣ .
Proceeding one step further, we see that the second derivative of f consists of two types
of determinants: some that have a row of 0’s, and others that have two rows of 1’s. In
both cases the determinants are equal to zero, showing that f ′′(x) = 0. It follows that f
itself must be a linear function,

f (x) = f (0)+ f ′(0)x.

One finds immediately that f (0) = a1a2 · · · an. To compute

f ′(0) =

∣∣∣∣∣∣∣∣∣
1 1 · · · 1
0 a2 · · · 0
...
...
. . .

...

0 0 · · · an

∣∣∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣∣∣
a1 0 · · · 0
1 1 · · · 1
...
...
. . .

...

0 0 · · · an

∣∣∣∣∣∣∣∣∣+ · · · +

∣∣∣∣∣∣∣∣∣
a1 0 · · · 0
0 a2 · · · 0
...
...
. . .

...

1 1 · · · 1

∣∣∣∣∣∣∣∣∣
expand each determinant along the row of 1’s. The answer is

f ′(0) = a2a3 · · · an + a1a3 · · · an + · · · + a1a2 · · · an−1,

whence

f (x) = a1a2 · · · an
[

1 +
(

1

a1
+ 1

a2
+ · · · + 1

an

)
x

]
.

Substituting x = 1, we obtain the formula from the statement. ��
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404. For a nonzero real number x prove that ex > x + 1.

405. Find all positive real solutions to the equation 2x = x2.

406. Let f : R → R be given by f (x) = (x − a1)(x − a2)+ (x − a2)(x − a3)+ (x −
a3)(x − a1) with a1, a2, a3 real numbers. Prove that f (x) ≥ 0 for all real numbers
x if and only if a1 = a2 = a3.

407. Determine

max
z∈C,|z|=1

|z3 − z+ 2|.

408. Find the minimum of the function f : R → R,

f (x) = (x2 − x + 1)3

x6 − x3 + 1
.

409. How many real solutions does the equation

sin(sin(sin(sin(sin x)))) = x

3

have?

410. Let f : R → R be a continuous function. For x ∈ R we define

g(x) = f (x)

∫ x

0
f (t)dt.

Show that if g is a nonincreasing function, then f is identically equal to zero.

411. Let f be a function having a continuous derivative on [0, 1] and with the property
that 0 < f ′(x) ≤ 1. Also, suppose that f (0) = 0. Prove that[∫ 1

0
f (x)dx

]2

≥
∫ 1

0
[f (x)]3dx.

Give an example in which equality occurs.

412. Let x, y, z be nonnegative real numbers. Prove that
(a) (x + y + z)x+y+zxxyyzz ≤ (x + y)x+y(y + z)y+z(z+ x)z+x .
(b) (x + y + z)(x+y+z)2xx2

yy
2
zz

2 ≥ (x + y)(x+y)2(y + z)(y+z)2(z+ x)(z+x)2 .

Derivatives have an important application to the computation of limits.

L’Hôpital’s rule. For an open interval I , if the functions f and g are differentiable on
I\{x0}, g′(x) 	= 0 for x ∈ I , x 	= x0, and either limx→x0 f (x) = limx→x0 g(x) = 0
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or limx→x0 |f (x)| = limx→x0 |g(x)| = ∞, and if additionally limx→x0
f ′(x)
g′(x) exists, then

limx→x0
f (x)

g(x)
exists and

lim
x→x0

f (x)

g(x)
= lim

x→x0

f ′(x)
g′(x)

.

Let us see how L’Hôpital’s rule is applied.

Example. Prove that if f : R → R is a differentiable function with the property that
limx→∞ f (x) exists and is finite, and if limx→∞ xf ′(x) exists, then this limit is equal
to zero.

Solution. If the limit limx→∞ xf ′(x) exists, then so does limx→∞(xf (x))′, and the latter
is equal to limx→∞ f (x)+ limx→∞ xf ′(x). Applying L’Hôpital’s rule yields

lim
x→∞(xf (x))

′ = lim
x→∞

(xf (x))′

x ′ = lim
x→∞

xf (x)

x
= lim

x→∞ f (x).

Therefore,

lim
x→∞ f (x) = lim

x→∞ f (x)+ lim
x→∞ xf

′(x),

and it follows that limx→∞ xf ′(x) = 0, as desired. ��
More problems follow.

413. Let f and g be n-times continuously differentiable functions in a neighborhood of
a point a, such that f (a) = g(a) = α, f ′(a) = g′(a), . . . , f (n−1)(a) = g(n−1)(a),
and f (n)(a) 	= g(n)(a). Find, in terms of α,

lim
x→a

ef (x) − eg(x)

f (x)− g(x)
.

414. For any real number λ ≥ 1, denote by f (λ) the real solution to the equation
x(1 + ln x) = λ. Prove that

lim
λ→∞

f (λ)
λ

ln λ

= 1.

3.2.5 The Mean Value Theorem

In the old days, when mathematicians were searching for methods to solve polynomial
equations, an essential tool was Rolle’s theorem.
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Rolle’s theorem. If f : [a, b] → R is continuous on [a, b], differentiable on (a, b), and
satisfies f (a) = f (b), then there exists c ∈ (a, b) such that f ′(c) = 0.

Its standard use was on problems like the following.

Example. Prove that the Legendre polynomial

Pn(x) = dn

dxn
(x2 − 1)n

has n distinct zeros in the interval (−1, 1).

Solution. Consider the polynomial function Qn(x) = (x2 − 1)n. Its zeros x = 1 and
x = −1 have multiplicity n. Therefore, for every k < n, the kth derivative Q(k)

n (x) has
1 and −1 as zeros. We prove by induction on k that for 1 < k ≤ n,Q(k)

n (x) has k distinct
zeros in (−1, 1).

By Rolle’s theorem this is true for k = 1. Assume that the property is true for k < n,
and let us prove it for k + 1. The polynomial Q(k)

n (x) has k + 2 zeros x0 = −1 <

x1 < · · · xk < xk+1 = 1. By Rolle’s theorem, between any two consecutive zeros of the
function there is a zero of the derivative Q(k+1)

n (x). Hence Q(k+1)
n (x) has k + 1 distinct

zeros between −1 and 1. This completes the induction.
In particular, Q(n)

n (x) = Pn(x) has n distinct zeros between −1 and 1, as desired. ��
Rolle’s theorem applied to the function φ : [a, b] → R,

φ(x) =
∣∣∣∣∣∣
f (x) g(x) 1
f (a) g(a) 1
f (b) g(b) 1

∣∣∣∣∣∣ ,
yields the following theorem.

Cauchy’s theorem. If f, g : [a, b] → R are two functions, continuous on [a, b] and
differentiable on (a, b), then there exists a point c ∈ (a, b) such that

(f (b)− f (a))g′(c) = (g(b)− g(a))f ′(c).

In the particular case g(x) = x, we have the following.

The mean value theorem (Lagrange). If f : [a, b] → R is a function that is continu-
ous on [a, b] and differentiable on (a, b), then there exists c ∈ (a, b) such that

f ′(c) = f (b)− f (a)

b − a
.

We use the mean value theorem to solve a problem of D. Andrica.
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Example. Let f : R → R be a twice-differentiable function, with positive second
derivative. Prove that

f (x + f ′(x)) ≥ f (x),

for any real number x.

Solution. If x is such that f ′(x) = 0, then the relation holds with equality. If for a certain
x, f ′(x) < 0, then the mean value theorem applied on the interval [x + f ′(x), x] yields

f (x)− f (x + f ′(x)) = f ′(c)(−f ′(x)),

for some c with x + f ′(x) < c < x. Because the second derivative is positive, f ′ is
increasing; hence f ′(c) < f ′(x) < 0. Therefore, f (x) − f (x + f ′(x)) < 0, which
yields the required inequality.

In the case f ′(x) > 0, by the same argument f (x+f ′(x))−f (x) = f ′(x)f ′(c) for c
between x and x+f ′(x), andf ′(c) > f ′(x) > 0. We obtain againf (x)−f (x+f ′(x)) <
0, as desired. ��
Example. Find all real solutions to the equation

4x + 6x
2 = 5x + 5x

2
.

Solution. This problem was given at the 1984 Romanian Mathematical Olympiad, being
proposed by M. Chiriţă. The solution runs as follows.

Note that x = 0 and x = 1 satisfy the equation from the statement. Are there other
solutions? The answer is no, but to prove it we use the amazing idea of treating the
numbers 4, 5, 6 as variables and the presumably new solution x as a constant.

Thus let us consider the function f (t) = tx
2 + (10 − t)x . The fact that x satisfies the

equation from the statement translates to f (5) = f (6). By Rolle’s theorem there exists
c ∈ (5, 6), such that f ′(c) = 0. This means that x2cx

2−1 − x(10 − c)x−1 = 0, or

xcx
2−1 = (10 − c)x−1.

Because exponentials are positive, this implies that x is positive.
If x > 1, then xcx

2−1 > cx
2−1 > cx−1 > (10 − c)x−1, which is impossible since the

first and the last terms in this chain of inequalities are equal. Here we used the fact that
c > 5.

If 0 < x < 1, then xcx
2−1 < xcx−1. Let us prove that xcx−1 < (10− c)x−1. With the

substitution y = x − 1, y ∈ (−1, 0), the inequality can be rewritten as y + 1 < ( 10−c
c
)y .

The exponential has base less than 1, so it is decreasing, while the linear function on the
left is increasing. The two meet at y = 0. The inequality follows. Using it we conclude
again that xcx

2−1 cannot be equal to (10 − c)x−1. This shows that a third solution to the
equation from the statement does not exist. So the only solutions to the given equation
are x = 0 and x = 1. ��
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Below you will find a variety of problems based on the above-mentioned theorems
(Rolle, Lagrange, Cauchy). Try to solve them, remembering that “good judgment comes
from experience, and experience comes from bad judgment’’ (Barry LePatner).

415. Prove that not all zeros of the polynomial P(x) = x4 − √
7x3 + 4x2 − √

22x + 15
are real.

416. Let f : [a, b] → R be a function, continuous on [a, b] and differentiable on (a, b).
Prove that if there exists c ∈ (a, b) such that

f (b)− f (c)

f (c)− f (a)
< 0,

then there exists ξ ∈ (a, b) such that f ′(ξ) = 0.

417. For x ≥ 2 prove the inequality

(x + 1) cos
π

x + 1
− x cos

π

x
> 1.

418. Let n > 1 be an integer, and let f : [a, b] → R be a continuous function, n-times
differentiable on (a, b), with the property that the graph of f has n + 1 collinear
points. Prove that there exists a point c ∈ (a, b) with the property that f (n)(c) = 0.

419. Let f : [a, b] → R be a function, continuous on [a, b] and differentiable on (a, b).
LetM(α, β) be a point on the line passing through the points (a, f (a)) and (b, f (b))
with α /∈ [a, b]. Prove that there exists a line passing through M that is tangent to
the graph of f .

420. Let f : [a, b] → R be a function, continuous on [a, b] and twice differentiable on
(a, b). If f (a) = f (b) and f ′(a) = f ′(b), prove that for every real number λ the
equation

f ′′(x)− λ(f ′(x))2 = 0

has at least one solution in the interval (a, b).

421. Prove that there are no positive numbers x and y such that

x2y + y2−x = x + y.

422. Let α be a real number such that nα is an integer for every positive integer n. Prove
that α is a nonnegative integer.

423. Find all real solutions to the equation

6x + 1 = 8x − 27x−1.

424. Let P(x) be a polynomial with real coefficients such that for every positive integer
n, the equation P(x) = n has at least one rational root. Prove that P(x) = ax + b

with a and b rational numbers.
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3.2.6 Convex Functions

A function is called convex if any segment with endpoints on its graph lies above the
graph itself. The picture you should have in mind is Figure 21. Formally, if D is an
interval of the real axis, or more generally a convex subset of a vector space, then a
function f : D → R is called convex if

f (λx + (1 − λ)y) ≤ λf (x)+ (1 − λ)f (y), for all x, y ∈ D, λ ∈ (0, 1).

Here we should remember that a setD is called convex if for any x, y ∈ D and λ ∈ (0, 1)
the point λx+ (1−λ)y is also inD, which geometrically means thatD is an intersection
of half-spaces.

x yλ

λ 1−λf(x)+(      )f(y)

1−  λλf(  x+(      )y)

1−     λx+(      )y

Figure 21

A function f is called concave if −f is convex. If f is both convex and concave,
then f is linear, i.e., f (x) = ax + b for some constants a and b.

Proposition. A twice-differentiable function on an interval is convex if and only if its
second derivative is nonnegative.

In general, a twice-differentiable function defined on a convex domain in Rn is convex
if at any point its Hessian matrix is semipositive definite. This is a way of saying that
modulo a local change of coordinates, around each point the function f is of the form

f (x1, x2, . . . , xn) = φ(x1, x2, . . . , xn)+ x2
1 + x2

2 + · · · + x2
k ,

where k ≤ n and φ(x1, x2, . . . , xn) is linear.
As an application, we use convexity to prove Hölder’s inequality.

Hölder’s inequality. Ifx1, x2, . . . , xn, y1, y2, . . . , yn,p, andq are positive numbers with
1
p

+ 1
q

= 1, then
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n∑
i=1

xiyi ≤
(

n∑
i=1

x
p

i

)1/p ( n∑
i=1

y
q

i

)1/q

,

with equality if and only if the two vectors (x1, x2, . . . , xn) and (y1, y2, . . . , yn) are
parallel.

Proof. The second derivative of f : (0,∞) → R, f (x) = ln x, is f ′′(x) = − 1
x2 , which

is negative. So this function is concave. Setting λ = 1
p

, we obtain

lnX1/pY 1/q = 1

p
lnX + 1

q
ln Y ≤ ln

(
1

p
X + 1

q
Y

)
, for all X, Y > 0;

hence

X1/pY 1/q ≤ 1

p
X + 1

q
Y.

Using this fact, if we let X = ∑
i x

p

i and Y = ∑
i y

q

i , then

1

X1/pY 1/q

n∑
i=1

xiyi =
n∑
i=1

(
x
p

i

X

)1/p (
y
q

i

Y

)1/q

≤
n∑
i=1

(
1

p
· x

p

i

X
+ 1

q
· y

q

i

Y

)
=
(

1

p
+ 1

q

)
= 1.

Hence

n∑
i=1

xiyi ≤ X1/pY 1/q =
(

n∑
i=1

x
p

i

)1/p ( n∑
i=1

y
q

i

)1/q

,

and the inequality is proved. ��
By analogy, a sequence (an)n≥0 is called convex if

an ≤ an+1 + an−1

2
, for all n ≥ 1,

and concave if (−an)n is convex. Equivalently, a sequence is convex if its second
difference (derivative) is nonnegative, and concave if its second difference is nonpositive.
The following example motivates why convex sequences and functions should be studied
together.

Example. Let (an)n be a bounded convex sequence. Prove that

lim
n→∞(an+1 − an) = 0.
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Solution. Abounded convex function on (0,∞) has a horizontal asymptote, so its deriva-
tive tends to zero at infinity. Our problem is the discrete version of this result. The first
derivative of the sequence is bn = an+1 − an, n ≥ 1. The convexity condition can be
written as an+1 − an ≥ an − an−1, which shows that (bn)n is increasing. Since (an)n is
bounded, (bn)n is bounded too, and being monotonic, by the Weierstrass theorem it con-
verges at a finite limit L. If L > 0, then bn eventually becomes positive, so an becomes
increasing because it has a positive derivative. Again by the Weierstrass theorem, an
converges to some limit l, and then L = l − l = 0, a contradiction. A similar argument
rules out the case L < 0. We are left with the only possibility L = 0. ��

And now some problems.

425. Let x1, x2, . . . , xn be real numbers. Find the real numbers a that minimize the
expression

|a − x1| + |a − x2| + · · · + |a − xn|.
426. Let a, b > 0 and x, c > 1. Prove that

xa
c + xb

c ≥ 2x(ab)
c/2
.

427. A triangle has side lengths a ≥ b ≥ c and vertices of measures A,B, and C,
respectively. Prove that

Ab + Bc + Ca ≥ Ac + Ba + Cb.

428. Show that if a function f : [a, b] → R is convex, then it is continuous on (a, b).

429. Prove that a continuous function defined on a convex domain (for example, on an
interval of the real axis) is convex if and only if

f

(
x + y

2

)
≤ f (x)+ f (y)

2
, for all x, y ∈ D.

430. Call a real-valued function very convex if

f (x)+ f (y)

2
≥ f

(
x + y

2

)
+ |x − y|

holds for all real numbers x and y. Prove that no very convex function exists.

431. Let f : [a, b] → R be a convex function. Prove that

f (x)+ f (y)+ f (z)+ 3f

(
x + y + z

3

)
≥ 2

[
f

(
x + y

2

)
+ f

(
y + z

2

)
+ f

(
z+ x

2

)]
,

for all x, y, z ∈ [a, b].
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432. Prove that if a sequence of positive real numbers (bn)n has the property that (anbn)n
is a convex sequence for all real numbers a, then the sequence (ln bn)n is also
convex.

433. Find the largest constant C such that for every n ≥ 3 and every positive concave
sequence (ak)nk=1, (

n∑
k=1

ak

)2

≥ C(n− 1)
n∑
k=1

a2
k .

Aconvex function on a closed interval attains its maximum at an endpoint of the inter-
val. We illustrate how this fact can be useful with a problem from Timişoara Mathematics
Gazette, proposed by V. Cârtoaje and M. Lascu.

Example. Let a, b, c, d ∈ [1, 3]. Prove that

(a + b + c + d)2 ≥ 3(a2 + b2 + c2 + d2).

Solution. Divide by 2 and move everything to one side to obtain the equivalent inequality

a2 + b2 + c2 + d2 − 2ab − 2ac − 2ad − 2bc − 2bd − 2cd ≤ 0.

Now we recognize the expression on the left to be a convex function in each variable.
So the maximum is attained for some choice of a, b, c, d = 1 or 3. If k of these numbers
are equal to 3, and 4 − k are equal to 1, where k could be 1, 2, 3, or 4, then the original
inequality becomes

(3k + 4 − k)2 = 3(9k + 4 − k).

Dividing by 3, we obtain k2 + 4k + 4 ≥ 6k + 3, or (k − 1)2 ≥ 0, which is clearly true.
The inequality is proved. Equality occurs when one of the numbers a, b, c, d is equal to
3 and the other three are equal to 1. ��

Here are additional problems of this kind.

434. Let α, β, and γ be three fixed positive numbers and [a, b] a given interval. Find
x, y, z in [a, b] for which the expression

E(x, y, z) = α(x − y)2 + β(y − z)2 + γ (z− x)2

has maximal value.

435. Let 0 < a < b and ti ≥ 0, i = 1, 2, . . . , n. Prove that for any x1, x2, . . . , xn ∈
[a, b], (

n∑
i=1

tixi

)(
n∑
i=1

ti

xi

)
≤ (a + b)2

4ab

(
n∑
i=1

ti

)2

.
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436. Prove that for any natural number n ≥ 2 and any |x| ≤ 1,

(1 + x)n + (1 − x)n ≤ 2n.

437. Prove that for any positive real numbers a, b, c the following inequality holds

a + b + c

3
− 3

√
abc ≤ max{(√a − √

b)2, (
√
b − √

c)2, (
√
c − √

a)2}.

438. Let f be a real-valued continuous function on R satisfying

f (x) ≤ 1

2h

∫ x+h

x−h
f (y)dy, for all x ∈ R and h > 0.

Prove that (a) the maximum of f on any closed interval is assumed at one of the
endpoints, and (b) the function f is convex.

An important property of convex (respectively, concave) functions is known as Jen-
sen’s inequality.

Jensen’s inequality. For a convex function f let x1, x2, . . . , xn be points in its domain
and let λ1, λ2, . . . , λn be positive numbers with λ1 + λ2 + · · · + λn = 1. Then

f (λ1x1 + λ2x2 + · · · + λnxn) ≤ λ1f (x1)+ λ2f (x2)+ · · · + λnf (xn).

If f is nowhere linear and the xi’s are not all equal, then the inequality is strict. The
inequality is reversed for a concave function.

Proof. The proof is by induction on n. The base case is the definition of convexity. Let
us assume that the inequality is true for any n − 1 points xi and any n − 1 weights λi .
Consider n points and weights, and let λ = λ1 + · · · + λn−1. Note that λ+ λn = 1 and
λ1
λ

+ λ2
λ

+ · · · + λn−1
λ

= 1. Using the base case and the inductive hypothesis we can write

f (λ1x1 + · · · + λn−1xn−1 + λnxn) = f

(
λ

(
λ1

λ
x1 + · · · + λn−1

λ
xn−1

)
+ λnxn

)
≤ λf

(
λ1

λ
x1 + · · · + λn−1

λ
xn−1

)
+ λnf (xn)

≤ λ

(
λ1

λ
f (x1)+ · · · + λn−1

λ
f (xn−1)

)
+ λnf (xn)

= λ1f (x1)+ · · · + λn−1f (xn−1)+ λnf (xn),

as desired. For the case of concave functions, reverse the inequalities. ��
As an application, we prove the following.
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The generalized mean inequality. Given the positive numbers x1, x2, . . . , xn and the
positive weights λ1, λ2, . . . , λn with λ1 + λ2 + · · · + λn = 1, the following inequal-
ity holds:

λ1x1 + λ2x2 + · · · + λnxn ≥ x
λ1
1 x

λ2
2 · · · xλnn .

Solution. Simply write Jensen’s inequality for the concave function f (x) = ln x, then
exponentiate. ��

For λ1 = λ2 = · · · = λn = 1
n

one obtains the AM–GM inequality.

439. Show that if A,B,C are the angles of a triangle, then

sinA+ sinB + sinC ≥ 3
√

3

2
.

440. Let ai , i = 1, 2, . . . , n, be nonnegative numbers with
∑n

i=1 ai = 1, and let
0 < xi ≤ 1, i = 1, 2, . . . , n. Prove that

n∑
i=1

ai

1 + xi
≤ 1

1 + x
a1
1 x

a2
2 · · · xann .

441. Prove that for any three positive real numbers a1, a2, a3,

a2
1 + a2

2 + a2
3

a3
1 + a3

2 + a3
3

≥ a3
1 + a3

2 + a3
3

a4
1 + a4

2 + a4
3

.

442. Let 0 < xi < π , i = 1, 2, . . . , n, and set x = x1+x2+···+xn
n

. Prove that

n∏
i=1

(
sin xi
xi

)
≤
(

sin x

x

)n
.

443. Let n > 1 and x1, x2, . . . , xn > 0 be such that x1 + x2 + · · · + xn = 1. Prove that

x1√
1 − x1

+ x2√
1 − x2

+ · · · + xn√
1 − xn

≥
√
x1 + √

x2 + · · · + √
xn√

n− 1
.

3.2.7 Indefinite Integrals

“Anyone who stops learning is old, whether at twenty or eighty. Anyone who keeps
learning stays young. The greatest thing in life is to keep your mind young.’’ Following
this advice of Henry Ford, let us teach you some clever tricks for computing indefinite
integrals.
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We begin by recalling the basic facts about indefinite integrals. Integration is the
inverse operation to differentiation. The fundamental methods for computing integrals
are the backward application of the chain rule, which takes the form∫

f (u(x))u′(x)dx =
∫
f (u)du

and shows up in the guise of the first and second substitutions, and integration by parts∫
udv = uv −

∫
vdu,

which comes from the product rule for derivatives. Otherwise, there is Jacobi’s partial
fraction decomposition method for computing integrals of rational functions, as well as
standard substitutions such as the trigonometric and Euler’s substitutions.

Now let us turn to our nonstandard examples.

Example. Compute

I1 =
∫

sin x

sin x + cos x
dx and I2 =

∫
cos x

sin x + cos x
dx.

Solution. The well-known approach is to use the substitution tan x
2 = t . But it is much

simpler to write the system

I1 + I2 =
∫

sin x + cos x

sin x + cos x
dx =

∫
1dx = x + C1,

−I1 + I2 =
∫

cos x − sin x

sin x + cos x
dx = ln(sin x + cos x)+ C2,

and then solve to obtain

I1 = 1

2
x − 1

2
ln(sin x + cos x)+ C ′

1 and I2 = 1

2
x + 1

2
ln(sin x + cos x)+ C ′

2. ��

We continue with a more difficult computation based on a substitution.

Example. For a > 0 compute the integral∫
1

x
√
x2a + xa + 1

dx, x > 0.

Solution. Factor an x2a under the square root to transform the integral into∫
1

xa+1
√

1 + 1
xa

+ 1
x2a

dx =
∫

1√(
1
xa

+ 1
2

)2 + 3
4

· 1

xa+1
dx.
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With the substitution u = 1
xa

+ 1
2 the integral becomes

−1

a

∫
1√
u2 + 3

4

du = −1

a
ln

(
u+

√
u2 + 3

4

)
+ C

= −1

a
ln

(
1

xa
+ 1

2
+
√

1

x2a
+ 1

xa
+ 1

)
+ C. ��

444. Compute the integral ∫
(1 + 2x2)ex

2
dx.

445. Compute ∫
x + sin x − cos x − 1

x + ex + sin x
dx.

446. Find ∫
(x6 + x3)

3
√
x3 + 2dx

447. Compute the integral ∫
x2 + 1

x4 − x2 + 1
dx

448. Compute ∫ √
ex − 1

ex + 1
dx, x > 0.

449. Find the antiderivatives of the function f : [0, 2] → R,

f (x) =
√
x3 + 2 − 2

√
x3 + 1 +

√
x3 + 10 − 6

√
x3 + 1.

450. For a positive integer n, compute the integral∫
xn

1 + x + x2

2! + · · · + xn

n!
dx.

451. Compute the integral ∫
dx

(1 − x2)
4
√

2x2 − 1
.

452. Compute ∫
x4 + 1

x6 + 1
dx.

Give the answer in the form α arctan P(x)

Q(x)
+ C, α ∈ Q, and P(x),Q(x) ∈ Z[x].
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3.2.8 Definite Integrals

Next, definite integrals. Here the limits of integration also play a role.

Example. Let f : [0, 1] → R be a continuous function. Prove that∫ π

0
xf (sin x)dx = π

∫ π
2

0
f (sin x)dx.

Solution. We have∫ π

0
xf (sin x)dx =

∫ π
2

0
xf (sin x)dx +

∫ π

π
2

xf (sin x)dx.

We would like to transform both integrals on the right into the same integral, and for that
we need a substitution in the second integral that changes the limits of integration. This
substitution should leave f (sin x) invariant, so it is natural to try t = π−x. The integral
becomes ∫ π

2

0
(π − t)f (sin t)dt.

Adding the two, we obtain π
∫ π

2
0 f (sin x)dx, as desired. ��

453. Compute the integral ∫ 1

−1

3
√
x

3
√

1 − x + 3
√

1 + x
dx.

454. Compute ∫ π

0

x sin x

1 + sin2 x
dx.

455. Let a and b be positive real numbers. Compute∫ b

a

e
x
a − e

b
x

x
dx.

456. Compute the integral

I =
∫ 1

0

3
√

2x3 − 3x2 − x + 1dx.
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457. Compute the integral ∫ a

0

dx

x + √
a2 − x2

(a > 0).

458. Compute the integral ∫ π
4

0
ln(1 + tan x)dx.

459. Find ∫ 1

0

ln(1 + x)

1 + x2
dx.

460. Compute ∫ ∞

0

ln x

x2 + a2
dx,

where a is a positive constant.

461. Compute the integral ∫ π
2

0

x cos x − sin x

x2 + sin2 x
dx.

462. Let α be a real number. Compute the integral

I (α) =
∫ 1

−1

sin αdx

1 − 2x cosα + x2
.

463. Give an example of a function f : (2,∞) → (0,∞) with the property that∫ ∞

2
f p(x)dx

is finite if and only if p ∈ [2,∞).

There are special types of integrals that are computed recursively. We illustrate this
with a proof of the Leibniz formula.

The Leibniz formula.

π

4
= 1 − 1

3
+ 1

5
− 1

7
+ · · · .
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Proof. To prove the formula we start by computing recursively the integral

In =
∫ π

4

0
tan2n xdx, n ≥ 1.

We have

In =
∫ π

4

0
tan2n xdx =

∫ π
4

0
tan2n−2 x tan2 xdx

=
∫ π

4

0
tan2n−2 x(1 + tan2 x)dx −

∫ π
4

0
tan2n−2 xdx

=
∫ π

4

0
tan2n−2 x sec2 xdx + In−1.

The remaining integral can be computed using the substitution tan x = t . In the end, we
obtain the recurrence

In = 1

2n− 1
− In−1, n ≥ 1.

So for n ≥ 1,

In = 1

2n− 1
− 1

2n− 3
+ · · · + (−1)n−2

3
+ (−1)n−1I1,

with

I1 =
∫ π

4

0
tan2 xdx =

∫ π
4

0
sec2 xdx −

∫ π
4

0
1dx = tan x

∣∣∣ π40 − π

4
= 1 − π

4
.

We find that

In = 1

2n− 1
− 1

2n− 3
+ · · · + (−1)n−2

3
+ (−1)n−1 + (−1)n

π

4
.

Because tan2n x → 0 as n → ∞ uniformly on any interval of the form [0, a), a < π
4 , it

follows that limn→∞ In = 0. The Leibniz formula follows. ��
Below are more examples of this kind.

464. Let P(x) be a polynomial with real coefficients. Prove that∫ ∞

0
e−xP (x)dx = P(0)+ P ′(0)+ P ′′(0)+ · · · .
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465. Let n ≥ 0 be an integer. Compute the integral∫ π

0

1 − cos nx

1 − cos x
dx.

466. Compute the integral

In =
∫ π

2

0
sinn xdx.

Use the answer to prove the Wallis formula

lim
n→∞

[
2 · 4 · 6 · · · 2n

1 · 3 · 5 · · · (2n− 1)

]2

· 1

n
= π.

467. Compute ∫ π

−π
sin nx

(1 + 2x) sin x
dx, n ≥ 0.

3.2.9 Riemann Sums

The definite integral of a function is the area under the graph of the function. In ap-
proximating the area under the graph by a family of rectangles, the sum of the areas of
the rectangles, called a Riemann sum, approximates the integral. When these rectangles
have equal width, the approximation of the integral by Riemann sums reads

lim
n→∞

1

n

n∑
i=1

f (ξi) =
∫ b

a

f (x)dx,

where each ξi is a number in the interval [a + i−1
n
(b − a), a + i

n
(b − a)].

Since the Riemann sum depends on the positive integer n, it can be thought of as the
term of a sequence. Sometimes the terms of a sequence can be recognized as the Riemann
sums of a function, and this can prove helpful for finding the limit of the sequence. Let us
show how this works, following Hilbert’s advice: “always start with an easy example.’’

Example. Compute the limit

lim
n→∞

(
1

n+ 1
+ 1

n+ 2
+ · · · + 1

2n

)
.

Solution. If we rewrite

1

n+ 1
+ 1

n+ 2
+ · · · + 1

2n
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as

1

n

[
1

1 + 1
n

+ 1

1 + 2
n

+ · · · + 1

1 + n
n

]
,

we recognize the Riemann sum of the function f : [0, 1] → R, f (x) = 1
1+x associated to

the subdivision x0 = 0 < x1 = 1
n
< x2 = 2

n
< · · · < xn = n

n
= 1, with the intermediate

points ξi = i
n

∈ [xi, xi+1]. It follows that

lim
n→∞

(
1

n+ 1
+ 1

n+ 2
+ · · · + 1

2n

)
=
∫ 1

0

1

1 + x
= ln(1 + x)

∣∣1
0 = ln 2,

and the problem is solved. ��
We continue with a beautiful example from the book of G. Pólya, G. Szegő, Aufgaben

und Lehrsätze aus der Analysis (Springer-Verlag, 1964).

Example. Denote by Gn the geometric mean of the binomial coefficients(
n

0

)
,

(
n

1

)
, . . . ,

(
n

n

)
.

Prove that

lim
n→∞

n
√
Gn = √

e.

Solution. We have(
n

0

)(
n

1

)
· · ·

(
n

n

)
=

n∏
k=0

n!
k!(n− k)! = (n!)n+1

(1!2! · · · n!)2

=
n∏
k=1

(n+ 1 − k)n+1−2k =
n∏
k=1

(
n+ 1 − k

n+ 1

)n+1−2k

.

The last equality is explained by
∑n

k=1(n+1−2k) = 0, which shows that the denominator
is just (n+ 1)0 = 1. Therefore,

Gn = n+1

√(
n

0

)(
n

1

)
· · ·

(
n

n

)
=

n∏
k=1

(
1 − k

n+ 1

)1− 2k
n+1

.

Taking the natural logarithm, we obtain

1

n
lnGn = 1

n

n∑
k=1

(
1 − 2k

n+ 1

)
ln

(
1 − k

n+ 1

)
.
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This is just a Riemann sum of the function (1 − 2x) ln(1 − x) over the interval [0, 1].
Passing to the limit, we obtain

lim
n→∞

1

n
lnGn =

∫ 1

0
(1 − 2x) ln(1 − x)dx.

The integral is computed by parts as follows:∫ 1

0
(1 − 2x) ln(1 − x)dx

= 2
∫ 1

0
(1 − x) ln(1 − x)dx −

∫ 1

0
ln(1 − x)dx

= −(1 − x)2 ln(1 − x)
∣∣1
0 − 2

∫ 1

0

(1 − x)2

2
· 1

1 − x
dx + (1 − x) ln(1 − x)

∣∣∣∣1
0

+ x

∣∣∣∣∣
1

0

= −
∫ 1

0
(1 − x)dx + 1 = 1

2
.

Exponentiating back, we obtain limn→∞ n
√
Gn = √

e. ��
468. Compute

lim
n→∞

[
1√

4n2 − 12
+ 1√

4n2 − 22
+ · · · + 1√

4n2 − n2

]
.

469. Prove that for n ≥ 1,

1√
2 + 5n

+ 1√
4 + 5n

+ 1√
6 + 5n

+ · · · + 1√
2n+ 5n

<
√

7n− √
5n.

470. Compute

lim
n→∞

(
21/n

n+ 1
+ 22/n

n+ 1
2

+ · · · + 2n/n

n+ 1
n

)
.

471. Compute the integral ∫ π

0
ln(1 − 2a cos x + a2)dx.

472. Find all continuous functions f : R → [1,∞) for which there exist a ∈ R and k a
positive integer such that

f (x)f (2x) · · · f (nx) ≤ ank,

for every real number x and positive integer n.
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3.2.10 Inequalities for Integrals

A very simple inequality states that if f : [a, b] → R is a nonnegative continuous
function, then ∫ b

a

f (x)dx ≥ 0,

with equality if and only if f is identically equal to zero. Easy as this inequality looks,
its applications are often tricky. This is the case with a problem from the 1982 Romanian
Mathematical Olympiad, proposed by the second author of the book.

Example. Find all continuous functions f : [0, 1] → R satisfying∫ 1

0
f (x)dx = 1

3
+
∫ 1

0
f 2(x2)dx.

Solution. First, we would like the functions in both integrals to have the same variable.
A substitution in the first integral changes it to

∫ 1
0 f (x

2)2xdx. Next, we would like to

express the number 1
3 as an integral, and it is natural to choose

∫ 1
0 x

2dx. The condition
from the statement becomes∫ 1

0
2xf (x2)dx =

∫ 1

0
x2 +

∫ 1

0
f 2(x2)dx.

This is the same as ∫ 1

0
[f 2(x2)− 2xf (x2)+ x2]dx = 0.

Note that the function under the integral, f 2(x2) − 2xf (x2) + x2 = (f (x2) − x)2, is a
perfect square, so it is nonnegative. Therefore, its integral on [0, 1] is nonnegative, and
it can equal zero only if the function itself is identically zero. We find that f (x2) = x.
So f (x) = √

x is the unique function satisfying the condition from the statement. ��
473. Determine the continuous functions f : [0, 1] → R that satisfy∫ 1

0
f (x)(x − f (x))dx = 1

12
.

474. Let n be an odd integer greater than 1. Determine all continuous functions f :
[0, 1] → R such that∫ 1

0

(
f
(
x

1
k

))n−k
dx = k

n
, k = 1, 2, . . . , n− 1.
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475. Let f : [0, 1] → R be a continuous function such that∫ 1

0
f (x)dx =

∫ 1

0
xf (x)dx = 1.

Prove that ∫ 1

0
f 2(x)dx ≥ 4.

476. For each continuous function f : [0, 1] → R, we define I (f ) = ∫ 1
0 x

2f (x)dx and

J (f ) = ∫ 1
0 x(f (x))

2dx. Find the maximum value of I (f ) − J (f ) over all such
functions f .

477. Let a1, a2, . . . , an be positive real numbers and let x1, x2, . . . , xn be real numbers
such that a1x1 + a2x2 + · · · + anxn = 0. Prove that∑

i,j

xixj |ai − aj | ≤ 0.

Moreover, prove that equality holds if and only if there exists a partition of the set
{1, 2, . . . , n} into the disjoint sets A1, A2, . . . , Ak such that if i and j are in the
same set, then ai = aj and also

∑
j∈Ai xj = 0 for i = 1, 2, . . . , k.

We now list some fundamental inequalities. We will be imprecise as to the classes
of functions to which they apply, because we want to avoid the subtleties of Lebesgue’s
theory of integration. The novice mathematician should think of piecewise continuous,
real-valued functions on some domainD that is an interval of the real axis or some region
in Rn.

The Cauchy–Schwarz inequality. Let f and g be square integrable functions. Then(∫
D

f (x)g(x)dx

)2

≤
(∫

D

f 2(x)dx

)(∫
D

g2(x)dx

)
.

Minkowski’s inequality. If p > 1, then(∫
D

|f (x)+ g(x)|pdx
) 1

p

≤
(∫

D

|f (x)|pdx
) 1

p

+
(∫

D

|g(x)|pdx
) 1

p

.

Hölder’s inequality. If p, q > 1 such that 1
p

+ 1
q

= 1, then

∫
D

|f (x)g(x)|dx ≤
(∫

D

|f (x)|pdx
) 1

p
(∫

D

|g(x)|qdx
) 1

q

.
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As an instructive example we present in detail the proof of another famous inequality.

Chebyshev’s inequality. Let f and g be two increasing functions on R. Then for any
real numbers a < b,

(b − a)

∫ b

a

f (x)g(x)dx ≥
(∫ b

a

f (x)dx

)(∫ b

a

g(x)dx

)
.

Proof. Because f and g are both increasing,

(f (x)− f (y))(g(x)− g(y)) ≥ 0.

Integrating this inequality over [a, b] × [a, b], we obtain∫ b

a

∫ b

a

(f (x)− f (y))(g(x)− g(y))dxdy ≥ 0.

Expanding, we obtain∫ b

a

∫ b

a

f (x)g(x)dxdy +
∫ b

a

∫ b

a

f (y)g(y)dxdy −
∫ b

a

∫ b

a

f (x)g(y)dxdy

−
∫ b

a

∫ b

a

f (y)g(x)dxdy ≥ 0.

By eventually renaming the integration variables, we see that this is equivalent to

(b − a)

∫ b

a

f (x)g(x)dx −
(∫ b

a

f (x)dx

)
·
(∫ b

a

g(x)dx

)
≥ 0,

and the inequality is proved. ��

478. Let f : [0, 1] → R be a continuous function. Prove that(∫ 1

0
f (t)dt

)2

≤
∫ 1

0
f 2(t)dt.

479. Find the maximal value of the ratio(∫ 3

0
f (x)dx

)3 /∫ 3

0
f 3(x)dx,

as f ranges over all positive continuous functions on [0, 1].
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480. Let f : [0,∞) → [0,∞) be a continuous, strictly increasing function with f (0) =
0. Prove that ∫ a

0
f (x)dx +

∫ b

0
f −1(x)dx ≥ ab

for all positive numbers a and b, with equality if and only if b = f (a). Here f −1

denotes the inverse of the function f .

481. Prove that for any positive real numbers x, y and any positive integers m, n,

(n− 1)(m− 1)(xm+n + ym+n)+ (m+ n− 1)(xmyn + xnym)

≥ mn(xm+n−1y + ym+n−1x).

482. Let f be a nonincreasing function on the interval [0, 1]. Prove that for any α ∈
(0, 1),

α

∫ 1

0
f (x)dx ≤

∫ α

0
f (x)dx.

483. Let f : [0, 1] → [0,∞) be a differentiable function with decreasing first derivative,
and such that f (0) = 0 and f ′(0) > 0. Prove that∫ 1

0

dx

f 2(x)+ 1
≤ f (1)

f ′(1)
.

Can equality hold?

484. Prove that any continuously differentiable function f : [a, b] → R for which
f (a) = 0 satisfies the inequality∫ b

a

f (x)2dx ≤ (b − a)2
∫ b

a

f ′(x)2dx.

485. Let f (x) be a continuous real-valued function defined on the interval [0, 1].
Show that ∫ 1

0

∫ 1

0
|f (x)+ f (y)|dxdy ≥

∫ 1

0
|f (x)|dx.

3.2.11 Taylor and Fourier Series

Some functions, called analytic, can be expanded around each point of their domain in a
Taylor series
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f (x) = f (a)+ f ′(a)
1! (x − a)+ f ′′(a)

2! (x − a)2 + · · · + f (n)(a)

n! (x − a)n + · · · .

If a = 0, the expansion is also known as the Maclaurin series. Rational functions,
trigonometric functions, the exponential and the natural logarithm are examples of ana-
lytic functions. A particular example of a Taylor series expansion is Newton’s binomial
formula

(x + 1)a =
∞∑
n=0

(
a

n

)
xn =

∞∑
n=0

a(a − 1) · · · (a − n+ 1)

n! xn,

which holds true for all real numbers a and for |x| < 1. Here we make the usual
convention that

(
a

0

) = 1.
We begin our series of examples with a widely circulated problem.

Example. Compute the integral ∫ 1

0
ln x ln(1 − x)dx.

Solution. Because

lim
x→0

ln x ln(1 − x) = lim
x→1

ln x ln(1 − x) = 0,

this is, in fact, a definite integral.
We will expand one of the logarithms in Taylor series. Recall the Taylor series

expansion

ln(1 − x) = −
∞∑
n=1

xn

n
, for x ∈ (−1, 1).

It follows that on the interval (0, 1), the antiderivative of the function f (x) = ln x ln(1−
x) is ∫

ln(1 − x) ln xdx = −
∫ ∞∑

n=1

xn

n
ln xdx = −

∞∑
n=1

1

n

∫
xn ln xdx.

Integrating by parts, we find this is to be equal to

−
∞∑
n=1

1

n

(
xn+1

n+ 1
ln x − xn+1

(n+ 1)2

)
+ C.

Taking the definite integral over an interval [ε, 1 − ε], then letting ε → 0, we obtain
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∫ 1

0
ln x ln(1 − x)dx =

∞∑
n=1

1

n(n+ 1)2
.

Using a telescopic sum and the well-known formula for the sum of the inverses of squares
of positive integers, we compute this as follows:

∞∑
n=1

1

n(n+ 1)2
=

∞∑
n=1

(
1

n(n+ 1)
− 1

(n+ 1)2

)
=

∞∑
n=1

(
1

n
− 1

n+ 1

)
−

∞∑
n=2

1

n2

= 1 −
(
π2

6
− 1

)
= 2 − π2

6
,

which is the answer to the problem. ��
Next, a problem that we found in S. Rădulescu, M. Rădulescu, Theorems and Prob-

lems in Mathematical Analysis (Editura Didactică şi Pedagogică, Bucharest, 1982).

Example. Prove that for |x| < 1,

(arcsin x)2 =
∞∑
k=1

1

k2
(2k
k

)22k−1x2k.

Solution. The function g : (−1, 1) → R, g(x) = (arcsin x)2 satisfies the initial value
problem

(1 − x2)y ′′ − xy ′ − 2 = 0, y(0) = y ′(0) = 0.

Looking for a solution of the form y(x) = ∑∞
k=0 akx

k, we obtain the recurrence relation

(k + 1)(k + 2)ak+2 − k2ak = 0, k ≥ 1.

It is not hard to see that a1 = 0; hence a2k+1 = 0 for all k. Also, a0 = 0, a2 = 1, and
inductively we obtain

a2k = 1

k2
(2k
k

)22k−1, k ≥ 1.

The series
∞∑
k=1

1

k2
(2k
k

)22k−1x2k

is dominated by the geometric series
∑∞

k=1 x
2k, so it converges for |x| < 1. It therefore

defines a solution to the differential equation. The uniqueness of the solution for the
initial value problem implies that this function must equal g. ��
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We conclude the list of examples with the proof of Stirling’s formula.

Stirling’s formula.

n! = √
2πn

(n
e

)n · e θn
12n , for some 0 < θn < 1.

Proof. We begin with the Taylor series expansions

ln(1 ± x) = ±x − x2

2
± x3

3
− x4

4
± x5

5
+ · · · , for x ∈ (−1, 1).

Combining these two, we obtain the Taylor series expansion

ln
1 + x

1 − x
= 2x + 2

3
x3 + 2

5
x5 + · · · + 2

2m+ 1
x2m+1 + · · · ,

again for x ∈ (−1, 1). In particular, for x = 1
2n+1 , where n is a positive integer, we have

ln
n+ 1

n
= 2

2n+ 1
+ 2

3(2n+ 1)3
+ 2

5(2n+ 1)5
+ · · · ,

which can be written as(
n+ 1

2

)
ln
n+ 1

n
= 1 + 1

3(2n+ 1)2
+ 1

5(2n+ 1)4
+ · · · .

The right-hand side is greater than 1. It can be bounded from above as follows:

1 + 1

3(2n+ 1)2
+ 1

5(2n+ 1)4
+ · · · < 1 + 1

3

∞∑
k=1

1

(2n+ 1)2k

= 1 + 1

3(2n+ 1)2
· 1

1 − 1
(2n+1)2

= 1 + 1

12n(n+ 1)
.

So using Taylor series we have obtained the double inequality

1 ≤
(
n+ 1

2

)
ln
n+ 1

n
< 1 + 1

12n(n+ 1)
.

This transforms by exponentiating and dividing through by e into

1 <
1

e

(
n+ 1

n

)n+ 1
2

< e
1

12n(n+1) .
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To bring this closer to Stirling’s formula, note that the term in the middle is equal to

e−n−1(n+ 1)n+1((n+ 1)!)−1
√
n+ 1

e−nnn(n!)−1
√
n

= xn+1

xn
,

where xn = e−nnnn!√n, a number that we want to prove is equal to
√

2πe−
θn
12n with

0 < θn < 1. In order to prove this, we write the above double inequality as

1 ≤ xn

xn+1
≤ e

1
12n

e
1

12(n+1)

.

We deduce that the sequence xn is positive and decreasing, while the sequence e−
1

12n xn is
increasing. Because e−

1
12n converges to 1, and because (xn)n converges by the Weierstrass

criterion, bothxn and e−
1

12n xn must converge to the same limitL. We claim thatL = √
2π .

Before proving this, note that

e−
1

12n xn < L < xn,

so by the intermediate value property there exists θn ∈ (0, 1) such that L = e−
θn
12n xn, i.e.,

xn = e
θn
12n L.

The only thing left is the computation of the limit L. For this we employ the Wallis
formula

lim
n→∞

[
2 · 4 · 6 · · · 2n

1 · 3 · 5 · · · (2n− 1)

]2 1

n
= π,

proved in problem 466 from Section 3.2.8 (the one on definite integrals). We rewrite this
limit as

lim
n→∞

22n(n!)2
(2n)! · 1√

n
= √

π.

Substituting n! and (2n)! by the formula found above gives

lim
n→∞

nL2
(
n
e

)2n
e

2θn
12n 22n

√
2nL

(
2n
e

)2n
e
θ2n
24n

· 1√
n

= lim
n→∞

1√
2
Le

4θn−θ2n
24n = √

π.

Hence L = √
2π , and Stirling’s formula is proved. ��

Try your hand at the following problems.

486. Prove that for any real number x, the series

1 + x4

4! + x8

8! + x12

12! + · · ·
is convergent and find its limit.
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487. Compute the ratio

1 + π4

5! + π8

9! + π12

13! + · · ·
1
3! + π4

7! + π8

11! + π12

15! + · · · .

488. For a > 0, prove that ∫ ∞

−∞
e−x

2
cos axdx = √

πe−a
2/4.

489. Find a quadratic polynomial P(x) with real coefficients such that∣∣∣∣P(x)+ 1

x − 4

∣∣∣∣ ≤ 0.01, for all x ∈ [−1, 1].

490. Compute to three decimal places ∫ 1

0
cos

√
xdx.

491. Prove that for |x| < 1,

arcsin x =
∞∑
k=0

1

22k(2k + 1)

(
2k

k

)
x2k+1.

492. (a) Prove that for |x| < 2,

∞∑
k=1

1(2k
k

)x2k =
x
(

4 arcsin
(
x
2

)+ x
√

4 − x2
)

(4 − x2)
√

4 − x2
.

(b) Prove the identity

∞∑
k=1

1(2k
k

) = 2π
√

3 + 36

27
.

In a different perspective, we have the Fourier series expansions. The Fourier series
allows us to write an arbitrary oscillation as a superposition of sinusoidal oscillations.
Mathematically, a function f : R → R that is continuous and periodic of period T admits
a Fourier series expansion

f (x) = a0 +
∞∑
n=1

an cos
2nπ

T
x +

∞∑
n=1

bn sin
2nπ

T
x.
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This expansion is unique, and

a0 = 1

2π

∫ T

0
f (x)dx,

an = 1

π

∫ T

0
f (x) cos

2nπ

T
xdx,

bn = 1

π

∫ T

0
f (x) sin

2nπ

T
xdx.

Of course, we can require f to be defined only on an interval of length T , and then
extend it periodically, but if the values of f at the endpoints of the interval differ, then
the convergence of the series is guaranteed only in the interior of the interval.

Let us discuss a problem from the Soviet Union University Student Contest.

Example. Compute the sum

∞∑
n=1

cos n

1 + n2
.

Solution. The sum looks like a Fourier series evaluated at 1. For this reason we concen-
trate on the general series

∞∑
n=0

1

n2 + 1
cos nx.

The coefficients 1
n2+1

should remind us of the integration formulas∫
ex cos nxdx = 1

n2 + 1
ex(cos nx + n sin nx),∫

ex sin nxdx = n

n2 + 1
ex(sin nx + n cos nx).

These give rise to the Fourier series expansion

ex = 1

2π
(e2π − 1)+ 1

π
(e2π − 1)

∞∑
n=1

1

n2 + 1
cos nx + 1

π
(e2π − 1)

∞∑
n=1

n

n2 + 1
sin nx,

which holds true for x ∈ (0, 2π). Similarly, for e−x and x ∈ (0, 2π), we have

e−x = 1

2π
(1 − e−2π)+ 1

π
(1 − e−2π)

∞∑
n=1

1

n2 + 1
cos nx

− 1

π
(1 − e2π)

∞∑
n=1

n

n2 + 1
sin nx.
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Let Cn(x) = ∑∞
n=1

1
n2+1

cos nx and Sn(x) = ∑∞
n=1

n

n2+1
sin nx. They satisfy

1

2
+ Cn(x)+ Sn(x) = πex

e2π − 1
,

1

2
+ Cn(x)− Sn(x) = πe−x

1 − e−2π
.

Solving this linear system, we obtain

Cn(x) = 1

2

[
πex

e2π − 1
+ πe−x

1 − e−2π
− 1

]
.

The sum from the statement is C(1). The answer to the problem is therefore

C(1) = 1

2

[
πe

e2π − 1
+ πe−1

1 − e−2π
− 1

]
. ��

We find even more exciting a fundamental result of ergodic theory that proves that
for an irrational number α, the fractional parts of nα, n ≥ 1, are uniformly distributed
in [0, 1]. For example, when α = log10 2, we obtain as a corollary that on average, the
first digit of a power of 2 happens to be 7 as often as it happens to be 1. Do you know a
power of 2 whose first digit is 7?

Theorem. Let f : R → R be a continuous function of period 1 and let α be an irrational
number. Then

lim
n→∞

1

n
(f (α)+ f (2α)+ · · · + f (nα)) =

∫ 1

0
f (x)dx.

Proof. If we approximate f by a trigonometric polynomial with error less than ε, then
both 1

n
(f (α)+ f (2α)+ · · · + f (nα)) and

∫ 1
0 f (x)dx are evaluated with error less than

ε. Hence it suffices to check the equality term by term for the Fourier series of f . For
the constant term the equality is obvious. To check that it holds for f (x) = cos 2πmx
or f (x) = sin 2πmx, with m ≥ 1, combine these two using Euler’s formula into

e2πimx = cos 2πmx + i sin 2πmx.

We then have

1

n

(
e2πimα + e2πi2mα + · · · + e2πinmα

)
= e2πi(n+1)mα − 1

n(e2πimα − e2πimα)
= cos 2π(n+ 1)mα + i sin 2π(n+ 1)mα − 1

n(cos 2πmα + i sin 2πmα − cos 2πmα + i sin 2πmα)
,

which converges to 0 as n → ∞. And for the right-hand side,
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∫ 1

0
e2πimxdx = 1

2πim
e2πimx

∣∣∣∣1
0

= 0.

Therefore, equality holds term by term for the Fourier series. The theorem is proved. ��
If after this example you don’t love Fourier series, you never will. Below are listed

more applications of the Fourier series expansion.

493. Prove that for every 0 < x < 2π the following formula is valid:

π − x

2
= sin x

1
+ sin 2x

2
+ sin 3x

3
+ · · · .

Derive the formula

π

4
=

∞∑
k=1

sin(2k − 1)x

2k − 1
, x ∈ (0, π).

494. Use the Fourier series of the function of period 1 defined by f (x) = 1
2 − x for

0 ≤ x < 1 to prove Euler’s formula

π2

6
= 1 + 1

22
+ 1

32
+ 1

42
+ · · · .

495. Prove that

π2

8
= 1 + 1

32
+ 1

52
+ 1

72
+ · · · .

496. For a positive integer n find the Fourier series of the function

f (x) = sin2 nx

sin2 x
.

497. Let f : [0, π ] → R be a C∞ function such that (−1)nf (2n)(x) ≥ 0 for any
x ∈ [0, π ] and f (2n)(0) = f (2n)(π) = 0 for any n ≥ 0. Show that f (x) = a sin x
for some a > 0.

3.3 Multivariable Differential and Integral Calculus

3.3.1 Partial Derivatives and Their Applications

This section and the two that follow cover differential and integral calculus in two and
three dimensions. Most of the ideas generalize easily to the n-dimensional situation.
All functions below are assumed to be differentiable. For a two-variable function this
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means that its graph (which is a surface in R3) admits a tangent plane at each point. For a
three-variable function, the graph is a three-dimensional manifold in a four-dimensional
space, and differentiability means that at each point the graph admits a three-dimensional
tangent hyperplane.

The tilting of the tangent (hyper)plane is determined by the slopes in the directions
of the coordinate axes, and these slopes are the partial derivatives of the function. We
denote the partial derivatives of f by ∂f

∂x
, ∂f
∂y

, ∂f
∂z

. They are computed by differentiating
with respect to the one variable while keeping the others fixed. This being said, let us
start with the examples.

Euler’s theorem. A function z(x, y) is called n-homogeneous if z(tx, ty) = tnz(x, y)

for all x, y ∈ R and t > 0. Assume that z(x, y) is n-homogeneous with n an integer.
Then for all k ≤ n+ 1,

k∑
j=1

(
k

j

)
xjyk−j

∂kz

∂xj∂yk−j
= n(n− 1) · · · (n− k + 1)z.

Proof. We first prove the case k = 1. Differentiating the relation z(tx, ty) = tnz(x, y)

with respect to y, we obtain

t
∂z

∂y
(tx, ty) = tn

∂z

∂y
(x, y),

which shows that ∂z
∂y

is (n− 1)-homogeneous.
Replace x by 1, y by y

x
, and t by x in the homogeneity condition, to obtain z(x, y) =

xnz(1, y
x
). Differentiating this with respect to x yields

∂z

∂x
(x, y) = nxn−1z

(
1,
y

x

)
+ xn

∂z

∂y

(
1,
y

x

)
·
(
− y

x2

)
.

Because ∂z
∂y

is (n − 1)-homogeneous, the last term is just − y

x
∂z
∂y
(x, y). Moving it to the

right and multiplying through by x gives the desired

x
∂z

∂x
+ y

∂z

∂y
= nz.

Now we prove the general case by induction on k, with k = 1 the base case. To simplify
the notation, set

(
k

j

) = 0 if j < 0 or j > k. The induction hypothesis is

∑
j

(
k

j

)
xjyk−j

∂kz

∂xj∂yk−j
= n(n− 1) · · · (n− k + 1)z,
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for some k ≤ n. Multiply this equality by n, then apply the operator x ∂
∂x

+ y ∂
∂y

to both
sides. The left-hand side becomes∑

j

(
k

j

)(
x
∂

∂x
+ y

∂

∂y

)
xjyk−j

∂kz

∂xj∂yk−j

=
∑
j

j

(
k

j

)
xjyk−j

∂kz

∂xj∂yk−j
+
∑
j

(
k

j

)
xj+1yk−j

∂k+1z

∂xj+1∂yk−j

+
∑
j

(k − j)

(
k

j

)
xjyk−j

∂kz

∂xj∂yk−j
+
∑
j

(
k

j

)
xjyk−j+1 ∂k+1z

∂xj∂yk−j+1

= k
∑
j

(
k

j

)
xjyk−j

∂kz

∂xj∂yk−j
+
∑
j

((
k

j − 1

)
+
(
k

j

))
xjyk+1−j ∂k+1z

∂xjyk+1−j

= k · n(n− 1) · · · (n− k + 1)z+
∑
j

(
k + 1

j

)
xjyk+1−j ∂k+1z

∂xjyk+1−j .

The base case k = 1 implies that the right side equals n · n(n − 1) · · · (n − k + 1)z.
Equating the two, we obtain∑

j

(
k + 1

j

)
xjyk+1−j ∂k+1z

∂xjyk+1−j = n(n− 1) · · · (n− k + 1)(n− k)z,

completing the induction. This proves the formula. ��
498. Prove that if the function u(x, t) satisfies the equation

∂u

∂t
= ∂2u

∂x2
, (x, t) ∈ R2,

then so does the function

v(x, t) = 1√
t
e−

x2
4t u(xt−1,−t−1), x ∈ R, t > 0.

499. Assume that a nonidentically zero harmonic function u(x, y) is n-homogeneous for
some real number n. Prove that n is necessarily an integer. (The function u is called
harmonic if ∂2u

∂x2 + ∂2u

∂y2 = 0.)

500. Let P(x, y) be a harmonic polynomial divisible by x2 + y2. Prove that P(x, y) is
identically equal to zero.

501. Let f : R2 → R be a differentiable function with continuous partial derivatives
and with f (0, 0) = 0. Prove that there exist continuous functions g1, g2 : R2 → R

such that

f (x, y) = xg1(x, y)+ yg2(x, y).
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If a differentiable multivariable function has a global extremum, then this extremum
is found either among the critical points or on the boundary of the domain. We recall that
a point is critical if the (hyper)plane tangent to the graph is horizontal, which is equivalent
to the fact that all partial derivatives are equal to zero. Because any continuous function on
a compact domain attains its extrema, the global maximum and minimum exist whenever
the domain is closed and bounded. Let us apply these considerations to the following
problems.

Example. Find the triangles inscribed in the unit circle that have maximal perimeter.

Solution. Without loss of generality, we may assume that the vertices of the triangle have
the coordinates (1, 0), (cos s, sin s), (cos t, sin t), 0 ≤ s ≤ t ≤ 2π . We are supposed to
maximize the function

f (s, t) =
√
(cos s − 1)2 + (sin s)2 +

√
(1 − cos t)2 + (sin t)2

+
√
(cos t − cos s)2 + (sin t − sin s)2

= √
2
(√

1 − cos s + √
1 − cos t +√

1 − cos(t − s)
)

= 2

(
sin

s

2
+ sin

t

2
+ sin

t − s

2

)
,

over the domain 0 ≤ s ≤ t ≤ 2π . To this end, we first find the critical points of f in the
interior of the domain. The equation

∂f

∂s
(s, t) = cos

s

2
− cos

t − s

2
= 0

gives cos s
2 = cos t−s2 , and since both s

2 and t−s
2 are between 0 and π , it follows that

s
2 = t−s

2 . The equation

∂f

∂t
(s, t) = cos

t

2
+ cos

t − s

2
= 0

implies additionally that cos s = − cos s
2 , and hence s = 2π

3 . Consequently, t = 4π
3 ,

showing that the unique critical point is the equilateral triangle, with the corresponding
value of the perimeter 3

√
3.

On the boundary of the domain of f two of the three points coincide, and in that case
the maximum is achieved when two sides of the triangle become diameters. The value
of this maximum is 4, which is smaller than 3

√
3. We conclude that equilateral triangles

maximize the perimeter. ��
502. Find the global minimum of the function f : R2 → R,
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f (x, y) = x4 + 6x2y2 + y4 − 9

4
x − 7

4
y.

503. Find the equation of the smallest sphere that is tangent to both of the lines (i) x =
t + 1, y = 2t + 4, z = −3t + 5, and (ii) x = 4t − 12, y = −t + 8, z = t + 17.

504. Determine the maximum and the minimum of cosA+ cosB + cosC when A,B,
and C are the angles of a triangle.

505. Prove that for α, β, γ ∈ [0, π2 ),

tan α + tan β + tan γ ≤ 2√
3

secα secβ sec γ.

506. Prove that any real numbers a, b, c, d satisfy the inequality

3(a2 − ab + b2)(c2 − cd + d2) ≥ 2(a2c2 − abcd + b2d2).

When does equality hold?

507. Given n points in the plane, suppose there is a unique line that minimizes the sum
of the distances from the points to the line. Prove that the line passes through two
of the points.

To find the maximum of a function subject to a constraint we employ the following
theorem.

The Lagrange multipliers theorem. If a function f (x, y, z) subject to the constraint
g(x, y, z) = C has a maximum or a minimum, then this maximum or minimum occurs at
a point (x, y, z) of the set g(x, y, z) = C for which the gradients of f and g are parallel.

So in order to find the maximum of f we have to solve the system of equations
∇f = λ∇g and g(x, y, z) = C. The number λ is called the Lagrange multiplier; to
understand its significance, imagine thatf is the profit and g is the constraint on resources.
Then λ is the rate of change of the profit as the constraint is relaxed (economists call this
the shadow price).

As an application of the method of Lagrange multipliers, we will prove the law of
reflection.

Example. For a light ray reflected off a mirror, the angle of incidence equals the angle of
reflection.

Solution. Our argument relies on the fundamental principle of optics, which states that
light travels always on the fastest path. This is known in physics as Fermat’s principle
of least time. We consider a light ray that travels from point A to point B reflecting
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off a horizontal mirror represented schematically in Figure 22. Denote by C and D
the projections of A and B onto the mirror, and by P the point where the ray hits the
mirror. The angles of incidence and reflection are, respectively, the angles formed by
AP and BP with the normal to the mirror. To prove that they are equal it suffices
to show that ∠APC = ∠BPD. Let x = CP and y = DP . We have to minimize
f (x, y) = AP + BP with the constraint g(x, y) = x + y = CD.

P

A

C x y D

B

Figure 22

Using the Pythagorean theorem we find that

f (x, y) =
√
x2 + AC2 +

√
y2 + BD2.

The method of Lagrange multipliers yields the system of equations

x√
x2 + CP 2

= λ,

y√
y2 +DP 2

= λ,

x + y = CD.

From the first two equations, we obtain

x√
x2 + CP 2

= y√
y2 +DP 2

,

i.e., CP
AP

= DP
BP

. This shows that the right triangles CAP and DBP are similar, so
∠APC = ∠BPD as desired. ��

The following example was proposed by C. Niculescu for Mathematics Magazine.

Example. Find the smallest constant k > 0 such that

ab

a + b + 2c
+ bc

b + c + 2a
+ ca

c + a + 2b
≤ k(a + b + c)

for every a, b, c > 0.
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Solution. We will show that the best choice for k is 1
4 . To prove this fact, note that the

inequality remains unchanged on replacing a, b, c by ta, tb, tcwith t > 0.Consequently,
the smallest value of k is the supremum of

f (a, b, c) = ab

a + b + 2c
+ bc

b + c + 2a
+ ca

c + a + 2b

over the domain 	 = {(a, b, c) | a, b, c > 0, a + b + c = 1}. Note that on 	,

f (a, b, c) = ab

1 + c
+ bc

1 + a
+ ca

1 + b
.

To find the maximum of this function on 	, we will apply the method of Lagrange
multipliers with the constraint g(a, b, c) = a + b + c = 1. This yields the system of
equations

b

1 + c
+ c

1 + b
− bc

(1 + a)2
= λ,

c

1 + a
+ a

1 + c
− ca

(1 + b)2
= λ,

a

1 + b
+ b

1 + a
− ab

(1 + c)2
= λ,

a + b + c = 1.

Subtracting the first two equations, we obtain

b − a

1 + c
+ c

1 + b

[
1 + a

1 + b

]
− c

1 + a

[
1 + b

1 + a

]
= 0,

which after some algebraic manipulations transforms into

(b − a)

[
1

1 + c
+ c(a + b + 1)(a + b + 2)

(1 + a)2(1 + b)2

]
= 0.

The second factor is positive, so this equality can hold only if a = b. Similarly, we prove
that b = c. So the only extremum of f when restricted to the plane a + b + c = 1 is

f

(
1

3
,

1

3
,

1

3

)
= 1

4
.

But is this a maximum? Let us examine the behavior of f on the boundary of	 (to which
it can be extended). If say c = 0, then f (a, b, 0) = ab. When a + b = 1, the maximum
of this expression is again 1

4 . We conclude that the maximum on	 is indeed 1
4 , which is

the desired constant. ��
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508. Using the method of Lagrange multipliers prove Snell’s law of optics: If a light ray
passes between two media separated by a planar surface, then

sin θ1

sin θ2
= v1

v2
,

where θ1 and θ2 are, respectively, the angle of incidence and the angle of refraction,
and v1 and v2 are the speeds of light in the first and second media, respectively.

509. Let ABC be a triangle such that(
cot

A

2

)2

+
(

2 cot
B

2

)2

+
(

3 cot
C

2

)2

=
(

6s

7r

)2

,

where s and r denote its semiperimeter and its inradius, respectively. Prove that
triangle ABC is similar to a triangle T whose side lengths are all positive integers
with no common divisors and determine these integers.

510. Prove that of all quadrilaterals that can be formed from four given sides, the one
that is cyclic has the greatest area.

511. Of all triangles circumscribed about a given circle, find the one with the small-
est area.

512. Let a, b, c, d be four nonnegative numbers satisfying a + b + c + d = 1. Prove
the inequality

abc + bcd + cda + dab ≤ 1

27
+ 176

27
abcd.

513. Given two triangles with angles α, β, γ , respectively, α1, β1, γ1, prove that

cosα1

sin α
+ cosβ1

sin β
+ cos γ1

sin γ
≤ cot α + cot β + cot γ,

with equality if and only if α = α1, β = β1, γ = γ1.

3.3.2 Multivariable Integrals

For multivariable integrals, the true story starts with a change of coordinates.

Theorem. Let f : D ⊂ Rn → R be an integrable function. Let also x(u) =
(xi(uj ))

n
i,j=1 be a change of coordinates, viewed as a map from some domain D∗ to

D, with Jacobian ∂x
∂u

= det ( ∂xi
∂uj
). Then∫

D

f (x)dx =
∫
D∗
f (x(u))

∣∣∣∣∂x∂u
∣∣∣∣ du.
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There are three special situations worth mentioning:

• The change in two dimensions from Cartesian to polar coordinates x = r cos θ ,
y = r sin θ , with the Jacobian ∂(x,y)

∂(r,θ)
= r .

• The change in three dimensions from Cartesian to cylindrical coordinates x = r cos θ ,
y = r sin θ , z = z, with the Jacobian ∂(x,y,z)

∂(r,θ,z)
= r .

• The change in three dimensions from Cartesian to spherical coordinates x =
ρ sin φ cos θ , y = ρ sin φ sin θ , z = ρ cosφ, with the Jacobian ∂(x,y,z)

∂(ρ,θ,φ)
= ρ2 sin φ.

As an illustration, we show how multivariable integrals can be used for calculating
the Fresnel integrals. These integrals arise in the theory of diffraction of light.

Example. Compute the Fresnel integrals

I =
∫ ∞

0
cos x2dx and J =

∫ ∞

0
sin x2dx.

Solution. For the computation of the first integral, we consider the surface z = e−y2
cos x2

and determine the volume of the solid that lies below this surface in the octant x, y, z ≥ 0.
This will be done in both Cartesian and polar coordinates. We will also make use of the
Gaussian integral ∫ ∞

0
e−t

2
dt =

√
π

2
,

which is the subject of one of the exercises that follow.
In Cartesian coordinates,

V =
∫ ∞

0

∫ ∞

0
e−y

2
cos x2dydx =

∫ ∞

0

(∫ ∞

0
e−y

2
dy

)
cos x2dx

=
∫ ∞

0

√
π

2
cos x2dx =

√
π

2
I.

In polar coordinates,

V =
∫ π

2

0

∫ ∞

0
e−ρ

2 sin2 θ cos(ρ2 cos2 θ)ρdρdθ

=
∫ π

2

0

1

cos2 θ

∫ ∞

0
e−u tan2 θ cos ududθ =

∫ π
2

0

1

cos2 θ
· tan2 θ

1 + tan4 θ
dθ,

where we made the substitutionu = u(ρ) = ρ2 cos2 θ . If in this last integral we substitute
tan θ = t , we obtain
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V = 1

2

∫ ∞

0

t2

t4 + 1
dt.

Aroutine but lengthy computation using Jacobi’s method of partial fraction decomposition
shows that the antiderivative of t2

t4+1
is

1

2
√

2
arctan

x2 − 1

x
√

2
+ 1

4
√

2
ln
x2 − x

√
2 + 1

x2 + x
√

2 + 1
+ C,

whence V = π
√

2
8 . Equating the two values for V , we obtain I =

√
2π
4 . A similar

argument yields J =
√

2π
4 . ��

The solutions to all but last problems below are based on appropriate changes of
coordinates.

514. Compute the integral
∫∫
D
xdxdy, where

D =
{
(x, y) ∈ R2 | x ≥ 0, 1 ≤ xy ≤ 2, 1 ≤ y

x
≤ 2

}
.

515. Find the integral of the function

f (x, y, z) = x4 + 2y4

x4 + 4y4 + z4

over the unit ball B = {(x, y, z) | x2 + y2 + z2 ≤ 1}.
516. Compute the integral ∫∫

D

dxdy

(x2 + y2)2
,

where D is the domain bounded by the circles

x2 + y2 − 2x = 0, x2 + y2 − 4x = 0,

x2 + y2 − 2y = 0, x2 + y2 − 6y = 0.

517. Compute the integral

I =
∫∫

D

|xy|dxdy,

where

D =
{
(x, y) ∈ R2 | x ≥ 0,

(
x2

a2
+ y2

b2

)2

≤ x2

a2
− y2

b2

}
, a, b > 0.
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518. Prove the Gaussian integral formula∫ ∞

−∞
e−x

2
dx = √

π.

519. Evaluate ∫ 1

0

∫ 1

0

∫ 1

0
(1 + u2 + v2 + w2)−2dudvdw.

520. Let D = {(x, y) ∈ R2 | 0 ≤ x ≤ y ≤ π}. Prove that∫∫
D

ln | sin(x − y)|dxdy = −π
2

2
ln 2.

Our next topic is the continuous analogue of the change of the order of summation
in a double sum.

Fubini’s theorem. Let f : R2 → R be a piecewise continuous function such that∫ d

c

∫ b

a

|f (x, y)|dxdy < ∞.

Then ∫ d

c

∫ b

a

f (x, y)dxdy =
∫ b

a

∫ d

c

f (x, y)dydx.

The matter of convergence can be bypassed for positive functions, in which case we
have the following result.

Tonelli’s theorem. Let f : R2 → R be a positive piecewise continuous function. Then∫ b

a

∫ d

c

f (x, y)dxdy =
∫ d

c

∫ b

a

f (x, y)dydx.

The limits of integration can be finite or infinite. In the particular case that f (x, y) is
constant on the squares of an integer lattice, we recover the discrete version of Fubini’s
theorem, the change of order of summation in a double sum

∞∑
m=0

∞∑
n=0

f (m, n) =
∞∑
n=0

∞∑
m=0

f (m, n).

A slightly more general situation occurs when f is a step function in one of the variables.
In this case we recover the formula for commuting the sum with the integral:
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∫ b

a

∞∑
n=0

f (n, x) =
∞∑
n=0

∫ b

a

f (n, x).

Here we are allowed to commute the sum and the integral if either f is a positive function,
or if

∫ b
a

∑∞
n=0 |f (n, x)| (or equivalently

∑∞
n=0

∫ b
a

|f (n, x)|) is finite. It is now time for
an application.

Example. Compute the integral

I =
∫ ∞

0

1√
x
e−xdx.

Solution. We will replace 1√
x

by a Gaussian integral. Note that for x > 0,

∫ ∞

−∞
e−xt

2
dt =

∫ ∞

−∞
e−(

√
xt)2dt = 1√

x

∫ ∞

−∞
e−u

2
du =

√
π

x
.

Returning to the problem, we are integrating the positive function 1√
x
e−x , which is inte-

grable over the positive semiaxis because in a neighborhood of zero it is bounded from
above by 1√

x
and in a neighborhood of infinity it is bounded from above by e−x/2.

Let us consider the two-variable function f (x, y) = e−xt2e−x , which is positive and
integrable over R × (0,∞). Using the above considerations and Tonelli’s theorem, we
can write

I =
∫ ∞

0

1√
x
e−xdx = 1√

π

∫ ∞

0

∫ ∞

−∞
e−xt

2
e−xdtdx = 1√

π

∫ ∞

−∞

∫ ∞

0
e−(t

2+1)xdxdt

= 1√
π

∫ ∞

−∞
1

t2 + 1
dt = π√

π
= √

π.

Hence the value of the integral in question is I = √
π . ��

More applications are given below.

521. Let a1 ≤ a2 ≤ · · · ≤ an = m be positive integers. Denote by bk the number of
those ai for which ai ≥ k. Prove that

a1 + a2 + · · · + an = b1 + b2 + · · · + bm.

522. Show that for s > 0, ∫ ∞

0
e−sxx−1 sin xdx = arctan(s−1).
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523. Show that for a, b > 0, ∫ ∞

0

e−ax − e−bx

x
dx = ln

b

a
.

524. Let |x| < 1. Prove that

∞∑
n=1

xn

n2
= −

∫ x

0

1

t
ln(1 − t)dt.

525. Let F(x) = ∑∞
n=1

1
x2+n4 , x ∈ R. Compute

∫∞
0 F(t)dt .

3.3.3 The Many Versions of Stokes’ Theorem

We advise you that this is probably the most difficult section of the book. Yet Stokes’
theorem plays such an important role in mathematics that it deserves an extensive treat-
ment. As an encouragement, we offer you a quote by Marie Curie: “Nothing in life is to
be feared. It is only to be understood.’’

In its general form, Stokes’ theorem is known as∫
M

dω =
∫
∂M

ω,

where ω is a “form,’’ dω its differential, and M a domain with boundary ∂M . The
one-dimensional case is the most familiar; it is the Leibniz–Newton formula∫ b

a

f ′(t)dt = f (b)− f (a).

Three versions of this result are of interest to us.

Green’s theorem. Let D be a domain in the plane with boundary C oriented such that

D is to the left. If the vector field
−→
F (x, y) = P(x, y)

−→
i +Q(x, y)

−→
j is continuously

differentiable on D, then∮
C

Pdx +Qdy =
∫∫

D

(
∂Q

∂x
− ∂P

∂y

)
dxdy.

Stokes’ Theorem. Let S be an oriented surface with normal vector −→
n , bounded by a

closed, piecewise smooth curve C that is oriented such that if one travels on C with the

upward direction −→
n , the surface is on the left. If

−→
F is a vector field that is continuously

differentiable on S, then ∮
C

−→
F · d−→R =

∫∫
S

(curl
−→
F · −→

n )dS,

where dS is the area element on the surface.
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The Gauss–Ostrogradsky (Divergence) Theorem. Let S be a smooth, orientable sur-

face that encloses a solid region V in space. If
−→
F is a continuously differentiable vector

field on V , then ∫∫
S

−→
F · −→

n dS =
∫∫∫

V

div
−→
F dV,

where −→
n is the outward unit normal vector to the surface S, dS is the area element on

the surface, and dV is the volume element inside of V .

We recall that for a vector field
−→
F = (F1, F2, F3), the divergence is

div
−→
F = ∇ · −→

F = ∂F1

∂x
+ ∂F2

∂y
+ ∂F3

∂z
,

while the curl is

curl
−→
F = ∇ × −→

F =

∣∣∣∣∣∣∣
−→
i

−→
j

−→
k

∂
∂x

∂
∂y

∂
∂z

F1 F2 F3

∣∣∣∣∣∣∣
=
(
∂F3

∂y
− ∂F2

∂z

)−→
i +

(
∂F1

∂z
− ∂F3

∂x

)−→
j +

(
∂F2

∂x
− ∂F1

∂y

)−→
k .

The quantity
∫∫
S

−→
F · −→

n dS is called the flux of
−→
F across the surface S.

Let us illustrate the use of these theorems with some examples. We start with an
encouraging problem whose solution is based on Stokes’ theorem.

Example. Compute ∮
C

ydx + zdy + xdz,

where C is the circle x2 + y2 + z2 = 1, x + y + z = 1, oriented counterclockwise when
seen from the positive side of the x-axis.

Solution. By Stokes’ theorem,∮
C

ydx + zdy + xdz =
∫∫

S

curl
−→
F · −→

n dS,

where S is the disk that the circle bounds. It is straightforward that curl
−→
F =

(−1,−1,−1), while −→
n , the normal vector to the plane x + y + z = 1, is equal to

( 1√
3
, 1√

3
, 1√

3
). Therefore,
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C

ydx + zdy + xdz = −A√
3,

where A is the area of the disk bounded by C. Observe that C is the circumcircle of the
triangle with vertices (1, 0, 0), (0, 1, 0), and (0, 0, 1). The circumradius of this triangle
is

√
6

3 , so A = 2
3π . The answer to the problem is therefore − 2π

√
3

3 . ��

Example. Orthogonal to each face of a polyhedron construct an outward vector with
length numerically equal to the area of the face. Prove that the sum of all these vectors
is equal to zero.

Solution. We exhibit first an elementary solution based on vector operations. Consider
the particular case of a tetrahedronABCD. The four vectors are 1

2

−→
BC×−→

BA, 1
2

−→
BA×−→

BD,
1
2

−→
BD×−→

BC, and 1
2

−→
DA×−→

DC. Indeed, the lengths of these vectors are numerically equal to
the areas of the corresponding faces, and the cross-product of two vectors is perpendicular
to the plane determined by the vectors, and it points outward because of the right-hand
rule. We have

−→
BC × −→

BA+ −→
BA× −→

BD + −→
BD × −→

BC + −→
DA× −→

DC

= −→
BC × −→

BA+ −→
BA× −→

BD + −→
BD × −→

BC + (
−→
BA− −→

BD)× (
−→
BC − −→

BD)

= −→
BC × −→

BA+ −→
BA× −→

BD + −→
BD × −→

BC + −→
BA× −→

BC − −→
BA× −→

BD

− −→
BD × −→

BC + −→
0 = −→

0 .

This proves that the four vectors add up to zero.
In the general case, dissect the polyhedron into tetrahedra cutting the faces into

triangles by diagonals and then joining the centroid of the polyhedron with the vertices.
Sum up all vectors perpendicular to the faces of these tetrahedra, and note that the vectors
corresponding to internal walls cancel out.

The elegant solution uses integrals. Let S be the polyhedron and assume that its
interior V is filled with gas at a (not necessarily constant) pressure p. The force that the
gas exerts on S is

∫∫
S
p
−→
n dA, where −→

n is the outward normal vector to the surface of
the polyhedron and dA is the area element. The divergence theorem implies that∫∫

S

p
−→
n dA =

∫∫∫
V

∇pdV.

Here ∇p denotes the gradient of p. If the pressure p is constant, then the right-hand side
is equal to zero. This is the case with our polyhedron, where p = 1. The double integral
is exactly the sum of the vectors under discussion, these vectors being the forces exerted
by pressure on the faces. ��
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As a corollary, we obtain the well-known fact that a container filled with gas under
pressure is at equilibrium; a balloon will never move as a result of internal pressure.

We conclude our series of examples with an application of Green’s theorem, the
proof given by D. Pompeiu to Cauchy’s formula for holomorphic functions. First, let
us introduce some notation for functions of a complex variable f (z) = f (x + iy) =
u(x, y)+ iv(x, y). If u and v are continuously differentiable, define

∂f

∂z
= 1

2

[
∂f

∂x
+ i

∂f

∂y

]
= 1

2

[(
∂u

∂x
− ∂v

∂y

)
+ i

(
∂u

∂y
+ ∂v

∂x

)]
.

The function f is called holomorphic if ∂f

∂z
= 0. Examples are polynomials in z and any

absolutely convergent power series in z. Also, let dz = dx + idy.

Cauchy’s theorem. Let � be an oriented curve that bounds a region 	 on its left, and
let a ∈ 	. If f (z) = f (x + iy) = u(x, y) + iv(x, y) is a holomorphic function on 	
such that u and v are continuous on 	 ∪ � and continuously differentiable on 	, then

f (a) = 1

2πi

∮
�

f (z)

z− a
dz.

Proof. The proof is based on Green’s formula, applied on the domain 	ε obtained from
	 by removing a disk of radius ε around a as described in Figure 23 to P = F and
Q = iF , where F is a holomorphic function to be specified later. Note that the boundary
of the domain consists of two curves, � and �ε .

ε Γ∆

a
Γε

Figure 23

Green’s formula reads∮
�

Fdz−
∮
�ε

Fdz =
∮
�

Fdx + iFdy −
∮
�ε

Fdx + iFdy

=
∫∫

	ε

i

(
∂F

∂x
+ i

∂F

∂y

)
dxdy = 2i

∫∫
	ε

∂F

∂z
dxdy = 0.

Therefore, ∮
�

F (z)dz =
∮
�ε

F (z)dz.
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We apply this to

F(z) = f (z)

z− a
= (u(x, y)+ iv(x, y))(x − iy + α − iβ)

(x + α)2 + (y + β)2
,

where a = α + iβ. It is routine to check that F is holomorphic. We thus have∮
�

f (z)

z− a
dz =

∮
�ε

f (z)

z− a
dz.

The change of variable z = a + εeit on the right-hand side yields∮
�ε

f (z)

z− a
dz =

∫ π

−π
f (a + εeit )

εeit
iεeitdt = i

∫ π

−π
f (a + εeit )dt.

When ε → 0 this tends to 2πif (a), and we obtain∮
�ε

f (z)

z− a
dz = 2πif (a).

Hence the desired formula. ��
526. Assume that a curve (x(t), y(t)) runs counterclockwise around a region D. Prove

that the area of D is given by the formula

A = 1

2

∮
∂D

(xy ′ − yx ′)dt.

527. Compute the flux of the vector field

−→
F (x, y, z) = x(exy − ezx)

−→
i + y(eyz − exy)

−→
j + z(ezx − eyz)

−→
k

across the upper hemisphere of the unit sphere.

528. Compute ∮
C

y2dx + z2dy + x2dz,

whereC is the Viviani curve, defined as the intersection of the sphere x2 +y2 +z2 =
a2 with the cylinder x2 + y2 = ax.

529. Let φ(x, y, z) and ψ(x, y, z) be twice continuously differentiable functions in the
region {(x, y, z) | 1

2 <
√
x2 + y2 + z2 < 2}. Prove that∫∫

S

(∇φ × ∇ψ) · −→
n dS = 0,

where S is the unit sphere centered at the origin, −→n is the normal unit vector to this
sphere, and ∇φ denotes the gradient ∂φ

∂x
i + ∂φ

∂y
j + ∂φ

∂z
k.
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530. Let f, g : R3 → R be twice continuously differentiable functions that are constant
along the lines that pass through the origin. Prove that on the unit ball B =
{(x, y, z) | x2 + y2 + z2 ≤ 1},∫∫∫

B

f∇2gdV =
∫∫∫

B

g∇2f dV.

Here ∇2 = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 is the Laplacian.

531. Prove Gauss’ law, which states that the total flux of the gravitational field through
a closed surface equals −4πG times the mass enclosed by the surface, where G is
the constant of gravitation. The mathematical formulation of the law is∫∫

S

−→
F · −→

n dS = −4πMG.

532. Let

−→
G(x, y) =

( −y
x2 + 4y2

,
x

x2 + 4y2
, 0

)
.

Prove or disprove that there is a vector field
−→
F : R3 → R3,

−→
F (x, y, z) = (M(x, y, z),N(x, y, z), P (x, y, z)),

with the following properties:
(i) M,N,P have continuous partial derivatives for all (x, y, z) 	= (0, 0, 0);

(ii) curl
−→
F = −→

0 , for all (x, y, z) 	= (0, 0, 0);

(iii)
−→
F (x, y, 0) = −→

G(x, y).

533. Let
−→
F : R2 → R2,

−→
F (x, y) = (F1(x, y), F2(x, y)) be a vector field, and let

G : R3 → R be a smooth function whose first two variables are x and y, and the
third is t , the time. Assume that for any rectangular surface D bounded by the
curve C,

d

dt

∫∫
D

G(x, y, t)dxdy = −
∮
C

−→
F · d−→R .

Prove that

∂G

∂t
+ ∂F2

∂x
+ ∂F1

∂y
= 0.
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534. For two disjoint oriented curvesC1 andC2 in three-dimensional space, parametrized
by −→v 1(s) and −→v 2(t), define the linking number

lk(C1, C2) = 1

4π

∮
C1

∮
C2

−→v 1 − −→v 2

‖−→v 1 − −→v 2‖3
·
(
d−→v 1

ds
× d−→v 2

dt

)
dtds.

Prove that if the oriented curves C1 and −C ′
1 bound an oriented surface S such

that S is to the left of each curve, and if the curve C2 is disjoint from S, then
lk(C1, C2) = lk(C ′

1, C2).

3.4 Equations with Functions as Unknowns

3.4.1 Functional Equations

We will now look at equations whose unknowns are functions. Here is a standard example
that we found in B.J. Venkatachala, Functional Equations: A Problem Solving Approach
(Prism Books PVT Ltd., 2002).

Example. Find all functions f : R → R satisfying the functional equation

f ((x − y)2) = f (x)2 − 2xf (y)+ y2.

Solution. For y = 0, we obtain

f (x2) = f (x)2 − 2xf (0),

and for x = 0, we obtain

f (y2) = f (0)2 + y2.

Setting y = 0 in the second equation, we find that f (0) = 0 or f (0) = 1. On the other
hand, combining the two equalities, we obtain

f (x)2 − 2xf (0) = f (0)2 + x2,

that is,

f (x)2 = (x + f (0))2.

Substituting this in the original equation yields

f (y) = f (x)2 − f ((x − y)2)+ y2

2x
= (x + f (0))2 − (x − y + f (0))2 + y2

2x
= y + f (0).

We conclude that the functional equation has the two solutions f (x) = x and f (x) =
x + 1. ��
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But we like more the nonstandard functional equations. Here is one, which is a
simplified version of a short-listed problem from the 42nd International Mathematical
Olympiad. We liked about it the fact that the auxiliary function h from the solution
mimics, in a discrete situation, harmonicity—a fundamental concept in mathematics.
The solution applies the maximum modulus principle, which states that if h is a harmonic
function then the maximum of |h| is attained on the boundary of the domain of definition.
Harmonic functions, characterized by the fact that the value at one point is the average
of the values in a neighborhood of the point, play a fundamental role in geometry. For
example, they encode geometric properties of their domain, a fact made explicit in Hodge
theory.

Example. Find all functions f : {0, 1, 2, . . . } × {0, 1, 2, . . . } → R satisfying

f (p, q) =
{

1
2(f (p + 1, q − 1)+ f (p − 1, q + 1))+ 1 if pq 	= 0,

0 if pq = 0.

Solution. We see that f (1, 1) = 1. The defining relation gives f (1, 2) = 1 + f (2, 1)/2
and f (2, 1) = 1 + f (1, 2)/2, and hence f (2, 1) = f (1, 2) = 2. Then f (3, 1) =
1 + f (2, 2)/2, f (2, 2) = 1 + f (3, 1)/2 + f (1, 3)/2, f (1, 3) = 1 + f (2, 2)/2. So
f (2, 2) = 4, f (3, 1) = 3, f (1, 3) = 3. Repeating such computations, we eventually
guess the explicit formula f (p, q) = pq, p, q ≥ 0. And indeed, this function satisfies
the condition from the statement. Are there other solutions to the problem? The answer
is no, but we need to prove it.

Assume that f1 and f2 are both solutions to the functional equation. Let h = f1 −f2.
Then h satisfies

h(p, q) =
{

1
2(h(p + 1, q − 1)+ h(p − 1, q + 1)) if pq 	= 0,

0 if pq = 0.

Fix a line p+ q = n, and on this line pick (p0, q0) the point that maximizes the value of
h. Because

h(p0, q0) = 1

2
(h(p0 + 1, q0 − 1)+ h(p0 − 1, q0 + 1)),

it follows that h(p0 + 1, q0 − 1) = h(p0 − 1, q0 + 1) = h(p0, q0). Shifting the point,
we eventually conclude that h is constant on the line p+ q = n, and its value is equal to
h(n, 0) = 0. Since nwas arbitrary, we see that h is identically equal to 0. Therefore, f1 =
f2, the problem has a unique solution, and this solution is f (p, q) = pq, p, q ≥ 0. ��

And now an example of a problem about a multivariable function, from the same
short list, submitted by B. Enescu (Romania).
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Example. Let x1, x2, . . . , xn be arbitrary real numbers. Prove the inequality

x1

1 + x2
1

+ x2

1 + x2
1 + x2

2

+ · · · + xn

1 + x2
1 + · · · + x2

n

<
√
n.

Solution. We introduce the function

fn(x1, x2, . . . , xn) = x1

1 + x2
1

+ x2

1 + x2
1 + x2

2

+ · · · + xn

1 + x2
1 + · · · + x2

n

.

If we set r =
√

1 + x2
1 , then

fn(x1, x2, . . . , xn) = x1

r2
+ x2

r2 + x2
2

+ · · · + xn

r2 + x2
2 + · · · + x2

n

= x1

r2
+ 1

r

(
x2
r

1 + ( x2
r
)2

+ · · · +
xn
r

1 + ( x2
r
)2 + · · · + (

xn
r

)2

)
.

We obtain the functional equation

fn(x1, x2, . . . , xn) = x1

1 + x2
1

+ 1√
1 + x2

1

fn−1

(x2

r
,
x3

r
, . . . ,

xn

r

)
.

Writing Mn = sup fn(x1, x2, . . . , xn), we observe that the functional equation gives rise
to the recurrence relation

Mn = sup
x1

⎛⎝ x1

1 + x2
1

+ Mn−1√
1 + x2

1

⎞⎠ .
We will now prove by induction that Mn <

√
n. For n = 1, this follows from x1

1+x2
1

≤
1
2 < 1. Assume that the property is true for k and let us prove it for k + 1. From the
induction hypothesis, we obtain

Mk < sup
x1

⎛⎝ x1

1 + x2
1

+
√
k√

1 + x2
1

⎞⎠ .
We need to show that the right-hand side of the inequality is less than or equal to

√
k + 1.

Rewrite the desired inequality as

x√
1 + x2

+ √
k ≤

√
k + kx2 + 1 + x2.
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Increase the left-hand side to x + √
k; then square both sides. We obtain

x2 + k + 2x
√
k ≤ k + kx2 + 1 + x2,

which reduces to 0 ≤ (x
√
k − 1)2, and this is obvious. The induction is now com-

plete. ��
535. Find all functions f : R → R satisfying

f (x2 − y2) = (x − y)(f (x)+ f (y)).

536. Find all complex-valued functions of a complex variable satisfying

f (z)+ zf (1 − z) = 1 + z, for all z.

537. Find all functions f : R\{1} → R, continuous at 0, that satisfy

f (x) = f

(
x

1 − x

)
, for x ∈ R\{1}.

538. Find all functions f : R → R that satisfy the inequality

f (x + y)+ f (y + z)+ f (z+ x) ≥ 3f (x + 2y + 3z)

for all x, y, z ∈ R.

539. Does there exist a function f : R → R such that f (f (x)) = x2 − 2 for all real
numbers x?

540. Find all functions f : R → R satisfying

f (x + y) = f (x)f (y)− c sin x sin y,

for all real numbers x and y, where c is a constant greater than 1.

541. Let f and g be real-valued functions defined for all real numbers and satisfying the
functional equation

f (x + y)+ f (x − y) = 2f (x)g(y)

for all x and y. Prove that if f (x) is not identically zero, and if |f (x)| ≤ 1 for all
x, then |g(y)| ≤ 1 for all y.

542. Find all continuous functions f : R → R that satisfy the relation

3f (2x + 1) = f (x)+ 5x, for all x.
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543. Find all functions f : (0,∞) → (0,∞) subject to the conditions
(i) f (f (f (x)))+ 2x = f (3x), for all x > 0;

(ii) limx→∞(f (x)− x) = 0.

544. Suppose that f, g : R → R satisfy the functional equation

g(x − y) = g(x)g(y)+ f (x)f (y)

for x and y in R, and that f (t) = 1 and g(t) = 0 for some t 	= 0. Prove that f and
g satisfy

g(x + y) = g(x)g(y)− f (x)f (y)

and

f (x ± y) = f (x)g(y)± g(x)f (y)

for all real x and y.

A famous functional equation, which carries the name of Cauchy, is

f (x + y) = f (x)+ f (y).

We are looking for solutions f : R → R.
It is straightforward that f (2x) = 2f (x), and inductively f (nx) = nf (x). Setting

y = nx, we obtain f ( 1
n
y) = 1

n
f (y). In general, if m, n are positive integers, then

f (m
n
) = mf ( 1

n
) = m

n
f (1).

On the other hand, f (0) = f (0) + f (0) implies f (0) = 0, and 0 = f (0) =
f (x) + f (−x) implies f (−x) = −f (x). We conclude that for any rational number x,
f (x) = f (1)x.

If f is continuous, then the linear functions of the form

f (x) = cx,

where c ∈ R, are the only solutions. That is because a solution is linear when restricted
to rational numbers and therefore must be linear on the whole real axis. Even if we
assume the solution f to be continuous at just one point, it still is linear. Indeed, because
f (x + y) is the translate of f (x) by f (y), f must be continuous everywhere.

But if we do not assume continuity, the situation is more complicated. In set theory
there is an independent statement called the axiom of choice, which postulates that given
a family of nonempty sets (Ai)i∈I , there is a function f : I → ∪iAi with f (i) ∈ Ai . In
other words, it is possible to select one element from each set.

Real numbers form an infinite-dimensional vector space over the rational numbers
(vectors are real numbers, scalars are rational numbers). A corollary of the axiom of
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choice (Zorn’s lemma) implies the existence of a basis for this vector space. If (ei)i∈I is
this basis, then any real number x can be expressed uniquely as

x = r1ei1 + r2ei2 + · · · + rnein,

where r1, r2, . . . , rn are nonzero rational numbers. To obtain a solution to Cauchy’s
equation, make any choice for f (ei), i ∈ I , and then extend f to all reals in such a
way that it is linear over the rationals. Most of these functions are discontinuous. As an
example, for a basis that contains the real number 1, set f (1) = 1 and f (ei) = 0 for all
other basis elements. Then this function is not continuous.

The problems below are all about Cauchy’s equation for continuous functions.

545. Let f : R → R be a continuous nonzero function, satisfying the equation

f (x + y) = f (x)f (y), for all x, y ∈ R.

Prove that there exists c > 0 such that f (x) = cx for all x ∈ R.

546. Find all continuous functions f : R → R satisfying

f (x + y) = f (x)+ f (y)+ f (x)f (y), for all x, y ∈ R.

547. Determine all continuous functions f : R → R satisfying

f (x + y) = f (x)+ f (y)

1 + f (x)f (y)
, for all x, y ∈ R.

548. Find all continuous functions f : R → R satisfying the condition

f (xy) = xf (y)+ yf (x), for all x, y ∈ R.

549. Find the continuous functions φ, f, g, h : R → R satisfying

φ(x + y + z) = f (x)+ g(y)+ h(z),

for all real numbers x, y, z.

550. Given a positive integer n ≥ 2, find the continuous functions f : R → R, with the
property that for any real numbers x1, x2, . . . , xn,∑

i

f (xi)−
∑
i<j

f (xi + xj )+
∑
i<j<k

f (xi + xj + xk)+ · · ·

+ (−1)n−1f (x1 + x2 + · · · + xn) = 0.
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We conclude our discussion about functional equations with another instance in which
continuity is important. The intermediate value property implies that a one-to-one contin-
uous function is automatically monotonic. So if we can read from a functional equation
that a function, which is assumed to be continuous, is also one-to-one, then we know that
the function is monotonic, a much more powerful property to be used in the solution.

Example. Find all continuous functions f : R → R satisfying (f ◦ f ◦ f )(x) = x for
all x ∈ R.

Solution. For any x ∈ R, the image of f (f (x)) through f is x. This shows that f is
onto. Also, if f (x1) = f (x2) then x1 = f (f (f (x1))) = f (f (f (x2))) = x2, which
shows that f is one-to-one. Therefore, f is a continuous bijection, so it must be strictly
monotonic. If f is decreasing, then f ◦ f is increasing and f ◦ f ◦ f is decreasing,
contradicting the hypothesis. Therefore, f is strictly increasing.

Fixx and let us comparef (x) andx. There are three possibilities. First, we could have
f (x) > x. Monotonicity implies f (f (x)) > f (x) > x, and applying f again, we have
x = f (f (f (x))) > f (f (x)) > f (x) > x, impossible. Or we could have f (x) < x,
which then implies f (f (x)) < f (x) < x, and x = f (f (f (x))) < f (f (x)) < f (x) <

x, which again is impossible. Therefore, f (x) = x. Since x was arbitrary, this shows
that the unique solution to the functional equation is the identity function f (x) = x. ��
551. Do there exist continuous functions f, g : R → R such that f (g(x)) = x2 and

g(f (x)) = x3 for all x ∈ R?

552. Find all continuous functions f : R → R with the property that

f (f (x))− 2f (x)+ x = 0, for all x ∈ R.

3.4.2 Ordinary Differential Equations of the First Order

Of far greater importance than functional equations are the differential equations, be-
cause practically every evolutionary phenomenon of the real world can be modeled by
a differential equation. This section is about first-order ordinary differential equations,
namely equations expressed in terms of an unknown one-variable function, its derivative,
and the variable. In their most general form, they are written as F(x, y, y ′) = 0, but we
will be concerned with only two classes of such equations: separable and exact.

An equation is called separable if it is of the form dy

dx
= f (x)g(y). In this case we

formally separate the variables and write∫
dy

g(y)
=
∫
f (x)dx.

After integration, we obtain the solution in implicit form, as an algebraic relation between
x and y. Here is a problem of I.V. Maftei from the 1971 Romanian Mathematical
Olympiad that applies this method.
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Example. Find all continuous functions f : R → R satisfying the equation

f (x) = λ(1 + x2)

[
1 +

∫ x

0

f (t)

1 + t2
dt

]
,

for all x ∈ R. Here λ is a fixed real number.

Solution. Because f is continuous, the right-hand side of the functional equation is a
differentiable function; hence f itself is differentiable. Rewrite the equation as

f (x)

1 + x2
= λ

[
1 +

∫ x

0

f (t)

1 + t2
dt

]
,

and then differentiate with respect to x to obtain

f ′(x)(1 + x2)− f (x)2x

(1 + x2)2
= λ

f (x)

1 + x2
.

We can separate the variables to obtain

f ′(x)
f (x)

= λ+ 2x

1 + x2
,

which, by integration, yields

ln f (x) = λx + ln(1 + x2)+ c.

Hence f (x) = a(1 + x2)eλx for some constant a. Substituting in the original relation,
we obtain a = λ. Therefore, the equation from the statement has the unique solution

f (x) = λ(1 + x2)eλx. ��
A first-order differential equation can be written formally as

p(x, y)dx + q(x, y)dy = 0.

Physicists think of the expression on the left as the potential of a two-dimensional force
field, with p and q the x and y components of the potential. Mathematicians call this
expression a 1-form. The force field is called conservative if no energy is wasted in
moving an object along any closed path. In this case the differential equation is called
exact. As a consequence of Green’s theorem, the field is conservative precisely when the
exterior derivative (

∂q

∂x
− ∂p

∂y

)
dxdy
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is equal to zero. For functions defined on the entire two-dimensional plane, the field is
conservative if and only if it has a scalar potential. This means that there exists a scalar
function u(x, y) whose differential is the field, i.e.,

∂u

∂x
= p(x, y) and

∂u

∂y
= q(x, y).

For a conservative field, the scalar potential solves the differential equation, giving the
solution in implicit form as u(x, y) = C, with C a constant. Let us apply this method to
a problem by the first author of the book.

Example. Does there exist a differentiable function y defined on the entire real axis that
satisfies the differential equation

(2x + y − e−x
2
)dx + (x + 2y − e−y2

)dy = 0?

Solution. Let us assume that such a y does exist. Because

∂

∂x

(
x + 2y − e−y2

)
= ∂

∂y

(
2x + y − e−x2

)
,

the equation can be integrated. The potential function is

u(x, y) = x2 + xy + y2 −
∫ x

0
e−s

2
ds −

∫ y

0
e−t

2
dt.

The differential equation translates into the algebraic equation(
x + 1

2
y

)2

+ 3

4
y2 =

∫ x

0
e−s

2
ds +

∫ y

0
e−t

2
dt + C

for some real constant C. The right-hand side is bounded from above by
√

8π +C (note
the Gaussian integrals). This means that both squares on the left must be bounded. In
particular, y is bounded, but then x+ 1

2y is unbounded, a contradiction. Hence the answer
to the question is no; a solution can exist only on a bounded interval. ��

Sometimes the field is not conservative but becomes conservative after the differential
equation is multiplied by a function. This function is called an integrating factor. There
is a standard method for finding integrating factors, which can be found in any textbook.
In particular, any first-order linear equation

y ′ + p(x)y = q(x)

can be integrated after it is multiplied by the integrating factor exp(
∫
p(x)dx).

It is now time for problems.
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553. A not uncommon mistake is to believe that the product rule for derivatives says that
(fg)′ = f ′g′. If f (x) = ex

2
, determine whether there exists an open interval (a, b)

and a nonzero function g defined on (a, b) such that this wrong product rule is true
for f and g on (a, b).

554. Find the functions f, g : R → R with continuous derivatives satisfying

f 2 + g2 = f ′2 + g′2, f + g = g′ − f ′,

and such that the equation f = g has two real solutions, the smaller of them
being zero.

555. Let f and g be differentiable functions on the real line satisfying the equation

(f 2 + g2)f ′ + (fg)g′ = 0.

Prove that f is bounded.

556. Let A,B,C,D,m, n be real numbers with AD − BC 	= 0. Solve the differential
equation

y(B + Cxmyn)dx + x(A+Dxmyn)dy = 0.

557. Find all continuously differentiable functions y : (0,∞) → (0,∞) that are solu-
tions to the initial value problem

yy
′ = x, y(1) = 1.

558. Find all differentiable functions f : (0,∞) → (0,∞) for which there is a positive
real number a such that

f ′
(a
x

)
= x

f (x)
,

for all x > 0.

559. Prove that if the function f (x, y) is continuously differentiable on the whole xy-
plane and satisfies the equation

∂f

∂x
+ f

∂f

∂y
= 0,

then f (x, y) is constant.
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3.4.3 Ordinary Differential Equations of Higher Order

The field of higher-order ordinary differential equations is vast, and we assume that you
are familiar at least with some of its techniques. In particular, we assume you are familiar
with the theory of linear equations with fixed coefficients, from which we recall some
basic facts. A linear equation with fixed coefficients has the general form

an
dny

dxn
+ · · · + a2

d2y

dx2
+ a1

dy

dx
+ a0 = f (x).

If f is zero, the equation is called homogeneous. Otherwise, the equation is called
inhomogeneous. In this case the general solution is found using the characteristic equation

anλ
n + an−1λ

n−1 + · · · + a0 = 0.

If λ1, λ2, . . . , λr are the distinct roots, real or complex, of this equation, then the general
solution to the homogeneous differential equation is of the form

y(x) = P1(x)e
λ1x + P2(x)e

λ2x + · · · + Pr(x)e
λrx,

wherePi(x) is a polynomial of degree one less than the multiplicity of λi , i = 1, 2, . . . , r .
If the exponents are complex, the exponentials are changed into (damped) oscillations
using Euler’s formula.

The general solution depends on n parameters (the coefficients of the polynomials),
so the space of solutions is an n-dimensional vector space V . For an inhomogeneous
equation, the space of solutions is the affine space y0 +V obtained by adding a particular
solution. This particular solution is found usually by the method of the variation of the
coefficients.

We start with an example that exploits an idea that appeared once on a Putnam exam.

Example. Solve the system of differential equations

x ′′ − y ′ + x = 0,

y ′′ + x ′ + y = 0

in real-valued functions x(t) and y(t).

Solution. Multiply the second equation by i then add it to the first to obtain

(x + iy)′′ + i(x + iy)′ + (x + iy) = 0.

With the substitution z = x + iy this becomes the second-order homogeneous linear
differential equation z′′ + iz′ + z = 0. The characteristic equation is λ2 + iλ + 1 = 0,
with solutions λ1,2 = −1±√

5
2 i. We find the general solution to the equation
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z(t) = (a + ib) exp

(
−1 + √

5

2
it

)
+ (c + id) exp

(
−1 − √

5

2
it

)
,

for arbitrary real numbers a, b, c, d. Since x and y are, respectively, the real and complex
parts of the solution, they have the general form

x(t) = a cos
−1 + √

5

2
t − b sin

−1 + √
5

2
t + c cos

−1 − √
5

2
t − d sin

−1 − √
5

2
t,

y(t) = a sin
−1 + √

5

2
t + b cos

−1 + √
5

2
t + c sin

−1 − √
5

2
t + d cos

−1 − √
5

2
t.

The problem is solved. ��
Our second example is an equation published by M. Ghermănescu in the Mathematics

Gazette, Bucharest. Its solution combines several useful techniques.

Example. Solve the differential equation

2(y ′)3 − yy ′y ′′ − y2y ′′′ = 0.

Solution. In a situation like this, where the variable x does not appear explicitly, one can
reduce the order of the equation by taking y as the variable and p = y ′ as the function.
The higher-order derivatives of y ′′ are

y ′′ = d

dx
y ′ = d

dy
p
dy

dx
= p′p,

y ′′′ = d

dx
y ′′ =

(
d

dy
pp′

)
dy

dx
= (

(p′)2 + pp′′)p.
We end up with a second-order differential equation

2p3 − yp2p′ − y2pp′′ − y2p(p′)2 = 0.

A family of solutions is p = 0, that is, y ′ = 0. This family consists of the constant
functions y = C. Dividing the equation by −p, we obtain

y2p′′ + y2(p′)2 + ypp′ − 2p2 = 0.

The distribution of the powers of y reminds us of the Euler–Cauchy equation, while the
last terms suggests the substitution u = p2. And indeed, we obtain the Euler–Cauchy
equation

y2u′′ + yu′ − 4u = 0,
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with general solution u = C1y
2 + C2y

−2. Remember that u = p2 = (y ′)2, from which
we obtain the first-order differential equation

y ′ = ±
√
C1y2 + C2y−2 =

√
C1y4 + C2

y
.

This we solve by separation of variables

dx = ± ydy√
C1y4 + C2

,

which after integration gives

x = ±
∫

ydy√
C1y4 + C2

= ±1

2

∫
dz√

C1z2 + C2

.

This last integral is standard; it is equal to 1
2
√
C1

ln |y + √
y2 + C2/C1| if C1 > 0 and

to 1
2
√|C1| arcsin( |C1|y

C2
) if C1 < 0 and C2 > 0. We obtain two other families of solutions

given in implicit form by

x = ± 1

2
√
C1

ln

∣∣∣∣∣y +
√
y2 + C2

C1

∣∣∣∣∣+ C3 and x = ± 1

2
√−C1

arcsin
|C1|y
C2

+ C3,

that is,

x = A ln |y +
√
y2 + B| + C and x = E arcsin Fy +G. ��

Here are more problems.

560. Solve the differential equation

xy ′′ + 2y ′ + xy = 0.

561. Find all twice-differentiable functions defined on the entire real axis that satisfy
f ′(x)f ′′(x) = 0 for all x.

562. Find all continuous functions f : R → R that satisfy

f (x)+
∫ x

0
(x − t)f (t)dt = 1, for all x ∈ R.

563. Solve the differential equation

(x − 1)y ′′ + (4x − 5)y ′ + (4x − 6)y = xe−2x.
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564. Let n be a positive integer. Show that the equation

(1 − x2)y ′′ − xy ′ + n2y = 0

admits as a particular solution an nth-degree polynomial.

565. Find the one-to-one, twice-differentiable solutions y to the equation

d2y

dx2
+ d2x

dy2
= 0.

566. Show that all solutions to the differential equation y ′′ + exy = 0 remain bounded
as x → ∞.

3.4.4 Problems Solved with Techniques of Differential Equations

In this section we illustrate how tricks of differential equations can offer inspiration when
one is tackling problems from outside this field.

Example. Let f : [0,∞) → R be a twice-differentiable function satisfying f (0) ≥ 0
and f ′(x) > f (x) for all x > 0. Prove that f (x) > 0 for all x > 0.

Solution. To solve this problem we use an integrating factor. The inequality

f ′(x)− f (x) > 0

can be “integrated’’ after being multiplied by e−x . It simply says that the derivative of
the function e−xf (x) is strictly positive on (0,∞). This function is therefore strictly
increasing on [0,∞). So for x > 0 we have e−xf (x) > e−0f (0) = f (0) ≥ 0, which
then implies f (x) > 0, as desired. ��
Example. Compute the integral

y(x) =
∫ ∞

0
e−t

2/2 cos
x2

2t2
dt.

Solution. We will show that the function y(x) satisfies the ordinary differential equation
yiv + y = 0. To this end, we compute

y ′(x) =
∫ ∞

0
e−t

2/2 sin
x2

2t2
· −x
t2
dt = −

∫ ∞

0
e−x

2/2u2
sin

u2

2
du

and

y ′′(x) = −
∫ ∞

0
e−x

2/2u2
sin

u2

2
· −x
u2
du =

∫ ∞

0
e−t

2/2 sin
x2

2t2
dt.
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Iterating, we eventually obtain

yiv(x) = −
∫ ∞

0
e−t

2/2 cos
x2

2t2
dt = −y(x),

which proves that indeed y satisfies the differential equation yiv + y = 0. The general
solution to this differential equation is

y(x) = e
x√
2

(
C1 cos

x√
2

+ C2 sin
x√
2

)
+ e

− x√
2

(
C3 cos

x√
2

+ C4 sin
x√
2

)
.

To find which particular solution is the integral in question, we look at boundary values.
To compute these boundary values we refer to Section 3.3.2, the one on multivariable
integral calculus. We recognize that y(0) = ∫∞

0 e−t2/2dt is a Gaussian integral equal

to
√
π
2 , y ′(0) = − ∫∞

0 sin u2

2 du is a Fresnel integral equal to −
√
π

2 , y ′′(0) = 0, while

y ′′′(0) = ∫∞
0 cos u

2

2 du is yet another Fresnel integral equal to
√
π

2 . We find that C1 =
C2 = C4 = 0 and C3 = √

π
2 . The value of the integral from the statement is therefore

y(x) =
√
π

2
e

− x√
2 cos

x√
2
. ��

An alternative approach is to view the integral as the real part of a (complex) Gaussian
integral.

We leave the following examples to the reader.

567. Show that both functions

y1(x) =
∫ ∞

0

e−tx

1 + t2
dt and y2(x) =

∫ ∞

0

sin t

t + x
dt

satisfy the differential equation y ′′ + y = 1
x
. Prove that these two functions are

equal.

568. Let f be a real-valued continuous nonnegative function on [0, 1] such that

f (t)2 ≤ 1 + 2
∫ t

0
f (s)ds, for all t ∈ [0, 1].

Show that f (t) ≤ 1 + t for every t ∈ [0, 1].
569. Let f : [0, 1] → R be a continuous function with f (0) = f (1) = 0. Assume that

f ′′ exists on (0, 1) and f ′′(x) + 2f ′(x) + f (x) ≥ 0 for all x ∈ (0, 1). Prove that
f (x) ≤ 0 for all x ∈ [0, 1].

570. Does there exist a continuously differentiable function f : R → R satisfying
f (x) > 0 and f ′(x) = f (f (x)) for every x ∈ R?
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571. Determine all nth-degree polynomials P(x), with real zeros, for which the equality

n∑
i=1

1

P(x)− xi
= n2

xP ′(x)

holds for all nonzero real numbers x for whichP ′(x) 	= 0, where xi, i = 1, 2, . . . , n,
are the zeros of P(x).

572. Let C be the class of all real-valued continuously differentiable functions f on the
interval [0, 1] with f (0) = 0 and f (1) = 1. Determine

u = inf
f∈C

∫ 1

0
|f ′(x)− f (x)|dx.



4

Geometry and Trigonometry

Geometry is the oldest of the mathematical sciences. Its age-old theorems and the sharp
logic of its proofs make you think of the words of Andrew Wiles, “Mathematics seems to
have a permanence that nothing else has.’’

This chapter is bound to take you away from the geometry of the ancients, with
figures and pictorial intuition, and bring you to the science of numbers and equations
that geometry has become today. In a dense exposition we have packed vectors and their
applications, analytical geometry in the plane and in space, some applications of integral
calculus to geometry, followed by a list of problems with Euclidean flavor but based on
algebraic and combinatorial ideas. Special attention is given to conics and quadrics, for
their study already contains the germs of differential and algebraic geometry.

Four subsections are devoted to geometry’s little sister, trigonometry. We insist on
trigonometric identities, repeated in subsequent sections from different perspectives: Eu-
ler’s formula, trigonometric substitutions, and telescopic summation and multiplication.

Since geometry lies at the foundation of mathematics, its presence could already be
felt in the sections on linear algebra and multivariable calculus. It will resurface again
in the chapter on combinatorics.

4.1 Geometry

4.1.1 Vectors

This section is about vectors in two and three dimensions. Vectors are oriented segments
identified under translation.

There are four operations defined for vectors: scalar multiplication α−→v , addition−→v + −→w , dot product −→v · −→w , and cross-product −→v × −→w , the last being defined only in
three dimensions. Scalar multiplication dilates or contracts a vector by a scalar. The sum
of two vectors is computed with the parallelogram rule; it is the resultant of the vectors
acting as forces on an object. The dot product of two vectors is a number equal to the
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product of the magnitudes of the vectors and the cosine of the angle between them. A
dot product equal to zero tells us that the vectors are orthogonal. The cross-product of
two vectors is a vector orthogonal to the two vectors and of magnitude equal to the area
of the parallelogram they generate. The orientation of the cross-product is determined
by the right-hand rule: place your hand so that you can bend your palm from the first
vector to the second, and your thumb will point in the direction of the cross-product. A
cross-product equal to zero tells us that the vectors are parallel (although they might point
in opposite directions).

The dot and cross-products are distributive with respect to sum; the dot product is com-
mutative, while the cross-product is not. For the three-dimensional vectors −→

u ,−→v ,−→w ,
the number −→

u · (−→v ×−→w ) is the volume taken with sign of the parallelepiped constructed
with the vectors as edges. The sign is positive if the three vectors determine a frame
that is oriented the same way as the orthogonal frame of the three coordinate axes, and
negative otherwise. Equivalently, −→

u · (−→v × −→w ) is the determinant with the coordinates
of the three vectors as rows.

A useful computational tool is the cab-bac identity:

−→
a × (

−→
b × −→

c ) = (
−→
c · −→

a )
−→
b − (

−→
b · −→

a )
−→
c .

The quickest way to prove it is to check it for −→
a ,

−→
b ,

−→
c chosen among the three unit

vectors parallel to the coordinate axes
−→
i ,

−→
j , and

−→
k , and then use the distributivity of

the cross-product with respect to addition. Here is an easy application of this identity.

Example. Prove that for any vectors −→
a ,

−→
b ,

−→
c ,

−→
d ,

(
−→
a × −→

b )× (
−→
c × −→

d ) = (
−→
a · (−→b × −→

d ))
−→
c − (

−→
a · (−→b × −→

c ))
−→
d .

Solution. We have

(
−→
a × −→

b )× (
−→
c × −→

d ) = (
−→
d · (−→a × −→

b ))
−→
c − (

−→
c · (−→a × −→

b ))
−→
d

= (
−→
a · (−→b × −→

d ))
−→
c − (

−→
a · (−→b × −→

c ))
−→
d .

In the computation we used the equality −→
u · (−→v × −→w ) = −→w · (−→u × −→v ), which is

straightforward if we write these as determinants. ��
Let us briefly point out a fundamental algebraic property of the cross-product. Denote

by so(3) the set of 3 × 3 matrices A satisfying A+At = O3 endowed with the operation
[A,B] = AB − BA.

Theorem. The map

(a1, a2, a3) →
⎛⎝ 0 −a1 −a2

a1 0 −a3

a2 a3 0

⎞⎠
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establishes an isomorphism between (R3,×) and (so(3), [·, ·]).
Proof. The proof is straightforward if we write the cross-product in coordinates. The
result shows that the cross-product defines a Lie algebra structure on the set of three-
dimensional vectors. Note that the isomorphism maps the sum of vectors to the sum of
matrices, and the dot product of two vectors to the negative of half the trace of the product
of the corresponding matrices. ��

And now the problems.

573. For any three-dimensional vectors −→
u , −→v , −→w , prove the identity

−→
u × (−→v × −→w )+ −→v × (−→w × −→

u )+ −→w × (
−→
u × −→v ) = −→

0 .

574. Given three vectors −→
a ,

−→
b ,

−→
c , define

−→
u = (

−→
b · −→

c )
−→
a − (

−→
c · −→

a )
−→
b ,

−→v = (
−→
a · −→

c )
−→
b − (

−→
a · −→

b )
−→
c ,

−→w = (
−→
b · −→

a )
−→
c − (

−→
b · −→

c )
−→
a .

Prove that if −→
a ,

−→
b ,

−→
c form a triangle, then −→

u ,−→v ,−→w also form a triangle, and
this triangle is similar to the first.

575. Let −→
a ,

−→
b , −→

c be vectors such that
−→
b and −→

c are perpendicular, but −→
a and

−→
b are

not. Let m be a real number. Solve the system

−→
x · −→

a = m,

−→
x × −→

b = −→
c .

576. Consider three linearly independent vectors −→
a ,

−→
b , −→

c in space, having the same
origin. Prove that the plane determined by the endpoints of the vectors is perpen-
dicular to the vector −→

a × −→
b + −→

b × −→
c + −→

c × −→
a .

577. The vectors −→
a ,

−→
b , and −→

c satisfy

−→
a × −→

b = −→
b × −→

c = −→
c × −→

a 	= −→
0 .

Prove that −→
a + −→

b + −→
c = −→

0 .

578. Find the vector-valued functions −→
u (t) satisfying the differential equation

−→
u × −→

u ′ = −→v ,
where −→v = −→v (t) is a twice-differentiable vector-valued function such that both−→v and −→v ′ are never zero or parallel.
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579. Does there exist a bijection f of (a) a plane with itself or (b) three-dimensional
space with itself such that for any distinct points A, B the lines AB and f (A)f (B)
are perpendicular?

580. On so(3)we define the operation ∗ such that ifA and B are matrices corresponding
to the vectors −→

a = (a1, a2, a3) and
−→
b = (b1, b2, b3), then the ij entry of A ∗B is

equal to (−1)i+j a4−j b4−i . Prove the identity

CBA− BCA = (A ∗ C)B − (A ∗ B)C.
581. Prove that there is a bijection f from R3 to the set su(2) of 2 × 2 matrices with

complex entries that are skew symmetric and have trace equal to zero such that

f (−→v × −→w ) = [f (−→v ), f (−→w )].
We present two applications of vector calculus to geometry, one with the dot product,

one with the cross-product.

Example. Given two triangles ABC and A′B ′C ′ such that the perpendiculars from
A,B,C onto B ′C ′, C ′A′, A′B ′ intersect, show that the perpendiculars from A′, B ′, C ′
onto BC, CA, AB also intersect.

Solution. This is the property of orthological triangles. Denote byO the intersection of
the first set of three perpendiculars, and byO ′ the intersection of perpendiculars from A′

and B ′. Note that if the vector
−→
XY is orthogonal to a vector

−−→
ZW , then for any point P in

the plane,

(
−→
PX − −→

PY) · −−→
ZW = −→

XY · −−→
ZW = 0;

hence
−→
PX · −−→

ZW = −→
PY · −−→

ZW . Using this fact we can write

−−→
O ′C ′ · −→

OB = −−→
O ′A′ · −→

OB = −−→
O ′A′ · −→

OC = −−→
O ′B ′ · −→

OC = −−→
O ′B ′ · −→

OA = −−→
O ′C ′ · −→

OA.

Therefore,
−−→
O ′C ′ ·(−→

OB−−→
OA) = −−→

O ′C ′ ·−→AB = 0, which shows thatO ′C ′ is perpendicular
to AB. This proves that the second family of perpendiculars are concurrent. ��
Example. Let ABCD be a convex quadrilateral, M,N on side AB and P,Q on side
CD. Show that if AM = NB and CP = QD, and if the quadrilaterals AMQD and
BNPC have the same area, then AB is parallel to CD.

Solution. Throughout the solution we refer to Figure 24. We decompose the quadrilaterals
into triangles, and then use the formula for the area in terms of the cross-product.

In general, the triangle determined by −→v 1 and −→v2 has area equal to half the magnitude
of −→v 1 × −→v2 . Note also that −→v 1 × −→v2 is perpendicular to the plane of the triangle, so for
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A M N B

CP
Q

D

Figure 24

a problem in plane geometry there is no danger in identifying the areas with the cross-
products, provided that we keep track of the orientation. The hypothesis of the problem
implies that

1

2
(
−→
DA× −−→

DQ+ −−→
AM × −→

AQ) = 1

2
(
−→
CP × −→

CB + −→
BP × −→

BN).

Hence

−→
DA× −−→

DQ+ −−→
AM × (

−→
AD + −−→

DQ) = −→
CP × −→

CB + (
−→
BC + −→

CP)× −→
BN.

Because
−→
BN = −−−→

AM and
−→
CP = −−−→

DQ, this equality can be rewritten as

(
−−→
AM + −−→

DQ)× (
−→
AD + −→

CB) = 2
−−→
DQ× −−→

AM.

Using the fact that
−→
AD+−→

CB = −→
AB+−→

CD (which follows from
−→
AB+−→

BC+−→
CD+−→

DA =−→
0 ), we obtain

−−→
AM × −→

CD + −−→
DQ× −→

AB = 2
−−→
DQ× −−→

AM.

From here we deduce that
−−→
AM × −→

QC = −−→
DQ × −−→

MB. These two cross-products point
in opposite directions, so equality can hold only if both are equal to zero, i.e., if AB is
parallel to CD. ��

More applications of the dot and cross-products to geometry can be found below.

582. Given two triangles ABC and A′B ′C ′ with the same centroid, prove that one can
construct a triangle with sides equal to the segments AA′, BB ′, and CC ′.

583. Given a quadrilateral ABCD, consider the points A′, B ′, C ′,D′ on the half-lines
(i.e., rays) |AB, |BC, |CD, and |DA, respectively, such that AB = BA′, BC =
CB ′, CD = DC ′, DA = AD′. Suppose now that we start with the quadrilateral
A′B ′C ′D′. Using a straightedge and a compass only, reconstruct the quadrilateral
ABCD.
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584. On the sides of the triangle ABC construct in the exterior the rectangles ABB1A2,
BCC1B2, CAA1C2. Prove that the perpendicular bisectors of A1A2, B1B2, and
C1C2 intersect at one point.

585. Let ABCD be a convex quadrilateral. The lines parallel to AD and CD through
the orthocenter H of triangle ABC intersect AB and BC, respectively, at P and
Q. Prove that the perpendicular through H to the line PQ passes through the
orthocenter of triangle ACD.

586. Prove that if the four lines through the centroids of the four faces of a tetrahedron
perpendicular to those faces are concurrent, then the four altitudes of the tetrahedron
are also concurrent. Prove that the converse is also true.

587. Let ABC be a convex quadrilateral, M,N ∈ AB such that AM = MN = NB,
and P,Q ∈ CD such that CP = PQ = QD. Let O be the intersection of AC
and BD. Prove that the triangles MOP and NOQ have the same area.

588. Let ABC be a triangle, with D and E on the respective sides AC and AB. If M
and N are the midpoints of BD and CE, prove that the area of the quadrilateral
BCDE is four times the area of the triangle AMN .

4.1.2 The Coordinate Geometry of Lines and Circles

Coordinate geometry was constructed by Descartes to translate Euclid’s geometry into the
language of algebra. In two dimensions one starts by fixing two intersecting coordinate
axes and a unit on each of them. If the axes are perpendicular and the units are equal, the
coordinates are called Cartesian (in the honor of Descartes); otherwise, they are called
affine. A general affine change of coordinates has the form(

x ′
y ′

)
=
(
a b

c d

)(
x

y

)
+
(
e

f

)
, with

(
a b

c d

)
invertible.

If the change is between Cartesian systems of coordinates, a so-called Euclidean change
of coordinates, it is required additionally that the matrix(

a b

c d

)
be orthogonal, meaning that its inverse is equal to the transpose.

Properties that can be formulated in the language of lines and ratios are invariant
under affine changes of coordinates. Such are the properties of two lines being parallel
or of a point to divide a segment in half. All geometric properties are invariant under
Euclidean changes of coordinates. Therefore, problems about distances, circles, and
angles should be modeled with Cartesian coordinates.
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In this section we grouped problems that require only the knowledge of the theory
of lines and circles. Recall that the general equation of a line (whether in a Cartesian or
affine coordinate system) is ax + by + c = 0. That of a circle (in a Cartesian coordinate
system) is (x−h)2 + (y− k)2 = r2, where (h, k) is the center and r is the radius. Let us
see two examples, one in affine and one in Cartesian coordinates. But before we do that
let us recall that a complete quadrilateral is a quadrilateral in which the pairs of opposite
sides have been extended until they meet. For that reason, a complete quadrilateral has
six vertices and three diagonals.

Example. Prove that the midpoints of the three diagonals of a complete quadrilateral are
collinear.

Solution. As said, we will work in affine coordinates. Choose the coordinate axes to be
sides of the quadrilateral, as shown in Figure 25.

O

(0,  )

(0,  )

(  ,0) (  ,0)a b

c

d

Figure 25

Five of the vertices have coordinates (0, 0), (a, 0), (b, 0), (0, c), and (0, d), while the
sixth is found as the intersection of the lines through (a, 0) and (0, d), respectively, (0, c)
and (b, 0). For these two lines we know the x- and y-intercepts, so their equations are

1

a
x + 1

d
y = 1 and

1

b
x + 1

c
y = 1.

The sixth vertex of the complete quadrilateral has therefore the coordinates(
ab(c − d)

ac − bd
,
cd(a − b)

ac − bd

)
.

We find that the midpoints of the diagonals are(a
2
,
c

2

)
,

(
b

2
,
d

2

)
,

(
ab(c − d)

2(ac − bd)
,
cd(a − b)

2(ac − bd)

)
.
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The condition that these three points be collinear translates to

1

2(ac − bd)

∣∣∣∣∣∣
a c 1
b d 1

ab(c − d) cd(a − b) ac − bd

∣∣∣∣∣∣ = 0.

This is verified by direct computation. ��
Example. In a circle are inscribed a trapezoid with one side as diameter and a triangle
with sides parallel to the sides of the trapezoid. Prove that the two have the same area.

Solution. We refer everything to Figure 26. Assume that the circle has radius 1, and the
trapezoid has vertices (1, 0), (a, b), (−a, b) and (−1, 0).

 b,−a

 a,b

(0,1)

(1,0)

(

( )

)

Figure 26

The triangle is isosceles and has one vertex at (0, 1). We need to determine the
coordinates of the other two vertices. One of them lies where the parallel through (0, 1)
to the line determined by (1, 0) and (a, b) intersects the circle. The equation of the line is

y = b

a − 1
x + 1.

The relation a2 + b2 = 1 yields b2 = (1 − a)(1 + a), or b
1−a = 1+a

b
. So the equation of

the line can be rewritten as

y = −1 + a

b
x + 1.

Now it is easy to guess that the intersection of this line with the circle is (b,−a) (note that
this point satisfies the equation of the circle). The other vertex of the triangle is (−b,−a),
so the area is 1

2(2b)(1+a) = b+ab. And the area of the trapezoid is 1
2(2a+2)b = b+ab,

the same number. ��
589. Prove that the midpoints of the sides of a quadrilateral form a parallelogram.
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590. Let M be a point in the plane of triangle ABC. Prove that the centroids of the
triangles MAB, MAC, and MCB form a triangle similar to triangle ABC.

591. Find the locus of points P in the interior of a triangle ABC such that the distances
from P to the lines AB, BC, and CA are the side lengths of some triangle.

592. Let A1, A2, . . . , An be distinct points in the plane, and let m be the number of
midpoints of all the segments they determine. What is the smallest value that m
can have?

593. Given an acute-angled triangle ABC with altitude AD, choose any point M on
AD, and then draw BM and extend until it intersects AC in E, and draw CM and
extend until it intersects AB in F . Prove that ∠ADE = ∠ADF .

594. In a planar Cartesian system of coordinates consider a fixed point P(a, b) and a
variable line through P . Let A be the intersection of the line with the x-axis.
Connect A with the midpoint B of the segment OP (O being the origin), and
through C, which is the point of intersection of this line with the y-axis, take the
parallel to OP . This parallel intersects PA at M . Find the locus of M as the line
varies.

595. Let ABCD be a parallelogram with unequal sides. Let E be the foot of the per-
pendicular from B to AC. The perpendicular through E to BD intersects BC in F
and AB in G. Show that EF = EG if and only if ABCD is a rectangle.

596. Find all pairs of real numbers (p, q) such that the inequality

∣∣∣√1 − x2 − px − q

∣∣∣ ≤
√

2 − 1

2

holds for every x ∈ [0, 1].
597. On the hyperbola xy = 1 consider four points whose x-coordinates are x1, x2, x3,

and x4. Show that if these points lie on a circle, then x1x2x3x4 = 1.

The points of the plane can be represented as complex numbers. There are two
instances in which complex coordinates come in handy: in problems involving “nice’’
angles (such as π

4 , π3 , π2 ), and in problems about regular polygons.
In complex coordinates the line passing through the points z1 and z2 has the parametric

equation z = tz1 + (1 − t)z2, t ∈ R. Also, the angle between the line passing through
z1 and z2 and the line passing through z3 and z4 is the argument of the complex number
z1−z2
z3−z4

. The length of the segment determined by the points z1 and z2 is |z1 − z2|. The

vertices of a regular n-gon can be chosen, up to a scaling factor, as 1, ε, ε2, . . . , εn−1,
where ε = e2πi/n = cos 2π

n
+ i sin 2π

n
.
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Example. Let ABC and BCD be two equilateral triangles sharing one side. A line
passing through D intersects AC at M and AB at N . Prove that the angle between the
lines BM and CN is π

3 .

Solution. In the complex plane, letB have the coordinate 0, andC the coordinate 1. Then
A and D have the coordinates eiπ/3 and e−iπ/3, respectively, and N has the coordinate
teiπ/3 for some real number t .

The parametric equations of ND and AC are, respectively,

z = αteiπ/3 + (1 − α)e−iπ/3 and z = βeiπ/3 + (1 − β), α, β ∈ R.

To find their intersection we need to determine the real numbers α and β such that

αteiπ/3 + (1 − α)e−iπ/3 = βeiπ/3 + (1 − β).

Explicitly, this equation is

αt
1 + i

√
3

2
+ (1 − α)

1 − i
√

3

2
= β

1 + i
√

3

2
+ (1 − β).

Setting the real and imaginary parts equal, we obtain the system

αt + (1 − α) = β + 2(1 − β),

αt − (1 − α) = β.

By adding the two equations, we obtain α = 1
t
. So the complex coordinate of M is

eiπ/3 + (1 − 1
t
)e−iπ/3.

The angle between the lines BM and CN is the argument of the complex number

eiπ/3 + (
1 − 1

t

)
e−iπ/3

teiπ/3 − 1
=
(
eiπ/3 + e−iπ/3

)− 1
t
e−iπ/3

teiπ/3 − 1
= 1 − 1

t
e−iπ/3

teiπ/3 − 1
= 1

t
e−iπ/3.

The angle is therefore π
3 , as claimed.

During the Mathematical Olympiad Summer Program of 2006, J. Bland discovered
the following simpler solution:

Place the figure in the complex plane so that the coordinates of A,B,C,D are,
respectively, i

√
3, −1, 1, and −i√3. LetMC have length 2t , where t is a real parameter

(positive if C is between A and M and negative otherwise). The triangles MCD and
NBD have parallel sides, so they are similar. It follows that BN = 2

t
(positive if B is

between A and N and negative otherwise). The coordinates of M and N are

m = −
(

1 + 1

t

)
− 1

t
i
√

3 and n = (t + 1)− t i
√

3.
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We compute

c − n

b −m
= t

2t + 1 + i
√

3

−t − 2 + t i
√

3
= −tei π3 .

It follows that the two lines form an angle of π
3 , as desired. ��

The second example comes from the 15th W.L. Putnam Mathematical Competition,
1955.

Example. LetA1A2A3 . . . An be a regular polygon inscribed in the circle of centerO and
radius r . On the half-line |OA1 choose the point P such that A1 is between O and P .
Prove that

n∏
i=1

PAi = POn − rn.

Solution. Place the vertices in the complex plane such that Ai = rεi , 1 ≤ i ≤ n, where
ε is an nth root of unity. The coordinate of P is a real number rx, with x > 1. We have

n∏
i=1

PAi =
n∏
i=1

|rx − rεi | = rn
n∏
i=1

|x − εi | = rn

∣∣∣∣∣
n∏
i=1

(x − εi)

∣∣∣∣∣
= rn(xn − 1) = (rx)n − rn = POn − rn.

The identity is proved. ��
598. Let ABCDEF be a hexagon inscribed in a circle of radius r . Show that if AB =

CD = EF = r , then the midpoints of BC, DE, and FA are the vertices of an
equilateral triangle.

599. Prove that in a triangle the orthocenter H , centroid G, and circumcenter O are
collinear. Moreover, G lies between H and O, and OG

GH
= 1

2 .

600. On the sides of a convex quadrilateral ABCD one draws outside the equilateral
triangles ABM and CDP and inside the equilateral triangles BCN and ADQ.
Describe the shape of the quadrilateral MNPQ.

601. Let ABC be a triangle. The triangles PAB and QAC are constructed outside of
the triangle ABC such that AP = AB, AQ = AC, and ∠BAP = ∠CAQ = α.
The segments BQ and CP meet at R. Let O be the circumcenter of the triangle
BCR. Prove that AO and PQ are orthogonal.

602. Let A1A2 . . . An be a regular polygon with circumradius equal to 1. Find the max-
imum value of

∏n
k=1 PAk as P ranges over the circumcircle.
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603. Let A0, A1, . . . , An be the vertices of a regular n-gon inscribed in the unit circle.
Prove that

A0A1 · A0A2 · · ·A0An−1 = n.

4.1.3 Conics and Other Curves in the Plane

The general equation of a quadratic curve is

ax2 + by2 + cxy + dx + ey + f = 0.

Such a curve is called a conic because (except for the degenerate case of two parallel
lines) it can be obtained by sectioning a circular cone by a plane.

The degenerate conics are pairs of (not necessarily distinct) lines, single points, the
entire plane, and the empty set. We ignore them. There are three types of nondegenerate
conics, which up to a change of Cartesian coordinates are described in Figure 27.
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Figure 27

The parabola is the locus of the points at equal distance from the point (p, 0) (focus)
and the line x = −p (directrix). The ellipse is the locus of the points with the sum of
distances to the foci (c, 0) and (−c, 0) constant, where c = √|a2 − b2|. The hyperbola
is the locus of the points with the difference of the distances to the foci (c, 0) and (−c, 0)
constant, where c = √

a2 + b2.
Up to an affine change of coordinates, the equations of the parabola, ellipse, and

hyperbola are, respectively, y2 = x, x2 +y2 = 1, and x2 −y2 = 1. Sometimes it is more
convenient to bring the hyperbola into the form xy = 1 by choosing its asymptotes as
the coordinate axes.

As conic sections, these curves are obtained by sectioning the circular cone z2 =
x2 + y2 by the planes z − x = 1 (parabola), z = 1 (ellipse), and y = 1 (hyperbola).
The vertex of the cone can be thought of as the viewpoint of a person. The projections
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through this viewpoint of one plane to another are called projective transformations. Up
to a projective transformation there is only one nondegenerate conic—the circle. Any
projectively invariant property that can be proved for the circle is true for any conic
(and by passing to the limit, even for degenerate conics). Such is the case with Pascal’s
theorem: The opposite sides of a hexagon inscribed in a conic meet at three collinear
points. Note that when the conic degenerates into two parallel lines, this becomes Pappus’
theorem.

To conclude our discussion, let us recall that the equation of the tangent line to a
conic at a point (x0, y0) is obtained by replacing in the general equation of the conic x2

and y2 by xx0, respectively, yy0, xy by xy0+yx0
2 , and x and y in the linear terms by x+x0

2 ,
respectively, y+y0

2 .
We now proceed with an example from A. Myller’s Analytical Geometry (3rd ed.,

Editura Didactică şi Pedagogică, Bucharest, 1972).

Example. Find the locus of the centers of the equilateral triangles inscribed in the parabola
y2 = 4px.

Solution. Let us determine first some algebraic conditions that the coordinates (xi, yi),
i = 1, 2, 3, of the vertices of a triangle should satisfy in order for the triangle to be
equilateral. The equation of the median from (x3, y3) is

y − y3

x − x3
= y1 + y2 − 2y3

x1 + x2 − 2x3
.

Requiring the median to be orthogonal to the side yields

y1 + y2 − 2y3

x1 + x2 − 2x3
· y2 − y1

x2 − x1
= −1,

or

(x1 − x2)(x1 + x2 − 2x3)+ (y1 − y2)(y1 + y2 − 2y3) = 0.

So this relation along with the two obtained by circular permutations of the indices are
necessary and sufficient conditions for the triangle to be equilateral. Of course, the third

condition is redundant. In the case of three points on the parabola, namely (
y2
i

4p , yi),
i = 1, 2, 3, after dividing by y1 − y2, respectively, by y2 − y3 (which are both nonzero),
we obtain

(y1 + y2)(y
2
1 + y2

2 − 2y2
3)+ 16p2(y1 + y2 − 2y3) = 0,

(y2 + y3)(y
2
2 + y2

3 − 2y2
1)+ 16p2(y2 + y3 − 2y1) = 0.

Subtracting the two gives
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y3
1 − y3

3 + (y1 − y3)(y
2
2 − 2y1y3)+ 48p2(y1 − y3) = 0.

Divide this by y1 − y3 	= 0 to transform it into

y2
1 + y2

2 + y2
3 + 3(y1y2 + y2y3 + y3y1)+ 48p2 = 0.

This is the condition satisfied by the y-coordinates of the vertices of the triangle. Keeping
in mind that the coordinates of the center of the triangle are

x = y2
1 + y2

2 + y2
3

12p
, y = y1 + y2 + y2

3
,

we rewrite the relation as

−1

2
(y2

1 + y2
2 + y2

3)+ 3

2
(y1 + y2 + y3)

2 + 48p2 = 0,

then substitute 12px = y2
1 + y2

2 + y2
3 and 3y = y1 + y2 + y3 to obtain the equation of

the locus

−6px + 27

2
y2 + 48p2 = 0,

or

y2 = 4p

9
(x − 8p).

This is a parabola with vertex at (8p, 0) and focus at (( 1
9 + 8)p, 0). ��

The second problem was given at the 1977 Soviet Union University Student Mathe-
matical Olympiad.

Example. Let P be a point on the hyperbola xy = 4, and Q a point on the ellipse
x2 + 4y2 = 4. Prove that the distance from P to Q is greater than 1.

Solution. We will separate the conics by two parallel lines at a distance greater than 1.
For symmetry reasons, it is natural to try the tangent to the hyperbola at the point (2, 2).
This line has the equation y = 4 − x.

Let us determine the point in the first quadrant where the tangent to the ellipse has
slope −1. If (x0, y0) is a point on the ellipse, then the equation of the tangent at x is
xx0 + 4yy0 = 4. Its slope is −x0/4y0. Setting −x0/4y0 = −1 and x2

0 + 4y2
0 = 4,

we obtain x0 = 4/
√

5 and y0 = 1/
√

5. Consequently, the tangent to the ellipse is
y = √

5 − x.
The distance between the lines y = 4 − x and y = √

5 − x is equal to (4 − √
5)/

√
2,

which is greater than 1. Hence the distance between the arbitrary points P andQ is also
greater than 1, and we are done. ��
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604. Consider a circle of diameter AB and center O, and the tangent t at B. A variable
tangent to the circle with contact point M intersects t at P . Find the locus of the
point Q where the line OM intersects the parallel through P to the line AB.

605. On the axis of a parabola consider two fixed points at equal distance from the focus.
Prove that the difference of the squares of the distances from these points to an
arbitrary tangent to the parabola is constant.

606. With the chord PQ of a hyperbola as diagonal, construct a parallelogram whose
sides are parallel to the asymptotes. Prove that the other diagonal of the parallelo-
gram passes through the center of the hyperbola.

607. Astraight line cuts the asymptotes of a hyperbola in pointsA andB and the hyperbola
itself in P and Q. Prove that AP = BQ.

608. Consider the parabola y2 = 4px. Find the locus of the points such that the tangents
to the parabola from those points make a constant angle φ.

609. Let T1, T2, T3 be points on a parabola, and t1, t2, t3 the tangents to the parabola at
these points. Compute the ratio of the area of triangle T1T2T3 to the area of the
triangle determined by the tangents.

610. Three points A,B,C are considered on a parabola. The tangents to the parabola
at these points form a triangle MNP (NP being tangent at A, PM at B, and MN
at C). The parallel through B to the symmetry axis of the parabola intersects AC
at L.
(a) Show that LMNP is a parallelogram.
(b) Show that the circumcircle of triangleMNP passes through the focus F of the

parabola.
(c) Assuming that L is also on this circle, prove that N is on the directrix of the

parabola.
(d) Find the locus of the points L if AC varies in such a way that it passes through

F and is perpendicular to BF .

611. Find all regular polygons that can be inscribed in an ellipse with unequal semiaxes.

612. We are given the parabola y2 = 2px with focus F . For an integer n ≥ 3 consider
a regular polygon A1A2 . . . An whose center is F and such that none of its vertices
is on the x-axis. The half-lines |FA1, |FA2, . . . , |FAn intersect the parabola at B1,
B2, . . . , Bn. Prove that

FB1 + FB2 + · · · + FBn ≥ np.

613. A cevian of a triangle is a line segment that joins a vertex to the line containing the
opposite side. An equicevian point of a triangle ABC is a point P (not necessarily
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inside the triangle) such that the cevians on the lines AP , BP , and CP have equal
lengths. Let SBC be an equilateral triangle, and let A be chosen in the interior of
SBC, on the altitude dropped from S.
(a) Show that ABC has two equicevian points.
(b) Show that the common length of the cevians through either of the equicevian

points is constant, independent of the choice of A.
(c) Show that the equicevian points divide the cevian throughA in a constant ratio,

which is independent of the choice of A.
(d) Find the locus of the equicevian points as A varies.
(e) Let S ′ be the reflection of S in the line BC. Show that (a), (b), and (c) hold ifA

varies on any ellipse with S and S ′ as its foci. Find the locus of the equicevian
points as A varies on the ellipse.

A planar curve is called rational if it can be parametrized as (x(t), y(t)) with x(t)
and y(t) rational functions of the real variable t . Here we have to pass to the closed real
line, so t is allowed to be infinite, while the plane is understood as the projective plane,
zero denominators giving rise to points on the line at infinity.

Theorem. All conics are rational curves.

Proof. The case of degenerate conics (i.e., pairs of lines) is trivial. The parabolay2 = 4px
is parametrized by ( t

2

4p , t), the ellipse x2

a2 + y2

b2 = 1 by (a 1−t2
1+t2 , b

2t
1+t2 ), and the hyperbola

x2

a2 − y2

b2 = 1 by (a t+t
−1

2 , b t−t
−1

2 ). The general case follows from the fact that coordinate
changes are rational (in fact, linear) transformations. ��

Compare the standard parametrization of the circle (cos x, sin x) to the rational
parametrization ( 1−t2

1+t2 ,
2t

1+t2 ). This gives rise to the trigonometric substitution tan x
2 = t

and explains why integrals of the form∫
R(cos x, sin x)dx,

with R a two-variable rational function, can be reduced to integrals of rational functions.
Let us change slightly our point of view and take a look at the conic

y2 = ax2 + bx + c.

If we fix a point (x0, y0) on this conic, the line y − y0 = t (x − x0) intersects the conic in
exactly one more point (x, y). Writing the conditions that this point is both on the line
and on the conic and eliminating y, we obtain the equation

[y0 + t (x − x0)]2 = ax2 + bx + c.
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A few algebraic computations yield

2y0t + t2(x − x0) = a(x + x0)+ b.

This shows that x is a rational function of the slope t . The same is true for y. As t varies,
(x, y) describes the whole conic. This is a rational parametrization of the conic, giving
rise to Euler’s substitutions. In their most general form, Euler’s substitutions are√

ax2 + bx + c − y0 = t (x − x0).

They are used for rationalizing integrals of the form∫
R(x,

√
ax2 + bx + c)dx,

where R is a two-variable rational function.

614. Compute the integral ∫
dx

a + b cos x + c sin x
,

where a, b, c are real numbers, not all equal to zero.

615. Consider the system

x + y = z+ u,

2xy = zu.

Find the greatest value of the real constant m such that m ≤ x
y

for any positive
integer solution (x, y, z, u) of the system, with x ≥ y.

We conclude our incursion into two-dimensional geometry with an overview of var-
ious famous planar curves. The first answers a question of G.W. Leibniz.

Example. What is the path of an object dragged by a string of constant length when the
end of the string not joined to the object moves along a straight line?

Solution. Assume that the object is dragged by a string of length 1, that its initial co-
ordinates are (0, 1), and that it is dragged by a vehicle moving along the x-axis in the
positive direction. Observe that the slope of the tangent to the curve at a point (x, y)
points toward the vehicle, while the distance to the vehicle is always equal to 1. These
two facts can be combined in the differential equation

dy

dx
= − y√

1 − y2
.
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Separate the variables

dx = −
√

1 − y2

y
dy,

and then integrate to obtain

x = −
√

1 − y2 − ln y − ln(1 +
√

1 − y2)+ C.

The initial condition gives C = 0. The answer to the problem is therefore the curve

x = −
√

1 − y2 − ln y − ln(1 +
√

1 − y2),

depicted in Figure 28. ��
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This curve is called a tractrix, a name given by Ch. Huygens. Clearly, it has the x-
axis as an asymptote. E. Beltrami has shown that the surface of revolution of the tractrix
around its asymptote provides a partial model for hyperbolic geometry. This surface has
been used in recent years for the shape of loudspeakers.

A variety of other curves show up in the problems below. In some of the solutions,
polar coordinates might be useful. Recall the formulas for changing between Cartesian
and polar coordinates: x = r cos θ , y = r sin θ .

616. Find the points where the tangent to the cardioid r = 1 + cos θ is vertical.

617. Given a circle of diameter AB, a variable secant through A intersects the circle at
C and the tangent through B at D. On the half-line AC a point M is chosen such
that AM = CD. Find the locus of M .
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618. Find the locus of the projection of a fixed point on a circle onto the tangents to the
circle.

619. On a circle of centerO consider a fixed point A and a variable pointM . The circle
of center A and radius AM intersects the line OM at L. Find the locus of L as M
varies on the circle.

620. The endpoints of a variable segmentAB lie on two perpendicular lines that intersect
atO. Find the locus of the projection ofO ontoAB, provided that the segmentAB
maintains a constant length.

621. From the center of a rectangular hyperbola a perpendicular is dropped to a variable
tangent. Find the locus in polar coordinates of the foot of the perpendicular. (A
hyperbola is called rectangular if its asymptotes are perpendicular.)

622. Find a transformation of the plane that maps the unit circle x2 + y2 = 1 into a
cardioid. (Recall that the general equation of a cardioid is r = 2a(1 + cos θ).)

623. Prove that the locus described by the equation x3 +3xy+y3 = 1 contains precisely
three noncollinear points A,B,C, equidistant to one another, and find the area of
triangle ABC.

624. For n and p two positive integers consider the curve described by the parametric
equations

x = a1t
n + b1t

p + c1,

y = a2t
n + b2t

p + c2,

z = a3t
n + b3t

p + c3,

where t is a parameter. Prove that the curve is planar.

625. What is the equation that describes the shape of a hanging flexible chain with ends
supported at the same height and acted on by its own weight?

4.1.4 Coordinate Geometry in Three and More Dimensions

In this section we emphasize quadrics. A quadric is a surface in space determined by a
quadratic equation. The degenerate quadrics—linear varieties, cones, or cylinders over
conics—add little to the picture from their two-dimensional counterparts, so we skip them.
The nondegenerate quadrics are classified, up to an affine change of coordinates, as

• x2 + y2 + z2 = 1, ellipsoid;

• x2 + y2 − z2 = 1, hyperboloid of one sheet;
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• x2 − y2 − z2 = 1, hyperboloid of two sheets;

• x2 + y2 = z, elliptic paraboloid;

• x2 − y2 = z, hyperbolic paraboloid.

In Cartesian coordinates, in these formulas there is a scaling factor in front of each
term. For example, the standard form of an ellipsoid in Cartesian coordinates is

x2

a2
+ y2

b2
+ z2

c2
= 1.

As in the case of conics, the equation of the tangent plane to a quadric at a point
(x0, y0, z0) is obtained by replacing in the equation of the quadric x2, y2, and z2, respec-
tively, by xx0, yy0, and zz0; xy, xz, and yz, respectively, by xy0+yx0

2 , xz0+zx0
2 , and yz0+zy0

2 ;
and x, y, and z in the linear terms, respectively, by x+x0

2 , y+y0
2 , and z+z0

2 .
Our first example comes from the 6th W.L. Putnam Mathematical Competition.

Example. Find the smallest volume bounded by the coordinate planes and by a tangent
plane to the ellipsoid

x2

a2
+ y2

b2
+ z2

c2
= 1.

Solution. The tangent plane to the ellipsoid at (x0, y0, z0) has the equation

xx0

a2
+ yy0

b2
+ zz0

c2
= 1.

Its x, y, and z intercepts are, respectively, a
2

x0
, b

2

y0
, and c2

z0
. The volume of the solid cut off

by the tangent plane and the coordinate planes is therefore

V = 1

6

∣∣∣∣a2b2c2

x0y0z0

∣∣∣∣ .
We want to minimize this with the constraint that (x0, y0, z0) lie on the ellipsoid. This
amounts to maximizing the function f (x, y, z) = xyz with the constraint

g(x, y, z) = x2

a2
+ y2

b2
+ z2

c2
= 1.

Because the ellipsoid is a closed bounded set, f has a maximum and a minimum on
it. The maximum is positive, and the minimum is negative. The method of Lagrange
multipliers yields the following system of equations in the unknowns x, y, z, and λ:
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yz = 2λ
x

a2
,

xz = 2λ
y

b2
,

yz = 2λ
z

c2
,

x2

a2
+ y2

b2
+ z2

c2
= 1.

Multiplying the first equation by x, the second by y, and the third by z, then summing up
the three equations gives

3xyz = 2λ

(
x2

a2
+ y2

b2
+ z2

c2

)
= 2λ.

Hence λ = 3
2xyz. Then multiplying the first three equations of the system together, we

obtain

(xyz)2 = 8λ3 xyz

a2b2c2
= 27(xyz)4

a2b2c2
.

The solution xyz = 0 we exclude, since it does not yield a maximum or a minimum.
Otherwise, xyz = ± abc√

27
. The equality with the plus sign is the maximum of f ; the other

is the minimum. Substituting in the formula for the volume, we find that the smallest
volume is

√
3

2 abc. ��
Example. Find the nature of the surface defined as the locus of the lines parallel to a given
plane and intersecting two given skew lines, neither of which is parallel to the plane.

Solution. We will work in affine coordinates. Call the plane π and the two skew lines l1
and l2. The x- and y-axes lie in π and the z-axis is l1. The x-axis passes through l2 ∩ π .
The y-axis is chosen to make l2 parallel to the yz-plane. Finally, the orientation and the
units are such that l2 is given by x = 1, y = z (see Figure 29).

A line parallel to π and intersecting l1 and l2 passes through (1, s, s) and (0, 0, s),
where s is some real parameter playing the role of the “height.’’ Thus the locus consists
of all points of the form t (1, s, s) + (1 − t)(0, 0, s), where s and t are real parameters.
The coordinates (X, Y, Z) of such a point satisfy X = t , Y = ts, Z = s. By elimination
we obtain the equation XZ = Y , which is a hyperbolic paraboloid like the one from
Figure 30. We stress once more that the type of a quadric is invariant under affine
transformations. ��

A surface generated by a moving line is called a ruled surface. Ruled surfaces are
easy to build in real life. This together with its structural resistance makes the hyperbolic
paraboloid popular as a roof in modern architecture (see for example Felix Candela’s roof
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O
y

x

z

Figure 29

Figure 30

of the 1968 Olympic stadium in Mexico City). There is one more nondegenerate ruled
quadric, which makes the object of the first problem in our list. And if you find some
of the problems below too difficult, remember Winston Churchill’s words: “Success
consists of going from failure to failure without loss of enthusiasm.’’

626. A cube is rotated about the main diagonal. What kind of surfaces do the edges
describe?

627. Prove that the plane

x

a
+ y

b
− z

c
= 1

is tangent to the hyperboloid of one sheet

x2

a2
+ y2

b2
− z2

c2
= 1.
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628. Through a point M on the ellipsoid

x2

a2
+ y2

b2
+ z2

c2
= 1

take planes perpendicular to the axes Ox,Oy,Oz. Let the areas of the planar
sections thus obtained be Sx, Sy , respectively, Sz. Prove that the sum

aSx + bSy + cSz

is independent of M .

629. Determine the radius of the largest circle that can lie on the ellipsoid

x2

a2
+ y2

b2
+ z2

c2
= 1 (a > b > c).

630. Let a, b, c be distinct positive numbers. Prove that through each point of the three-
dimensional space pass three surfaces described by equations of the form

x2

a2 − λ
+ y2

b2 − λ
+ z2

c2 − λ
= 1.

Determine the nature of these surfaces and prove that they are pairwise orthogonal
along their curves of intersection.

631. Show that the equations

x = u+ v + w,

y = u2 + v2 + w2,

z = u3 + v3 + w3,

where the parameters u, v,w are subject to the constraint uvw = 1, define a cubic
surface.

We conclude our discussion of coordinate geometry with some problems in n dimen-
sions.

Example. Through a fixed point inside an n-dimensional sphere, nmutually perpendicu-
lar chords are drawn. Prove that the sum of the squares of the lengths of the chords does
not depend on their directions.

Solution. We want to prove that the sum in question depends only on the radius of
the sphere and the distance from the fixed point to the center of the sphere. Choose a
coordinate system in which the chords are the n orthogonal axes and the radius of the
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sphere is R > 0. The fixed point, which we call P , becomes the origin. The endpoints
of each chord have only one nonzero coordinate, and in the appropriate ordering, the kth
coordinates of the endpoints Xk and Yk of the kth chord are the nonzero numbers xk and
yk, k = 1, 2, . . . , n. The center of the sphere is then

O =
(
x1 + y1

2
,
x2 + y2

2
, . . . ,

xn + yn

2

)
.

The conditions that the points Xk and Yk lie on the sphere can be written as(
xk − xk + yk

2

)2

+
∑
j 	=k

(
xj + yj

2

)2

= R2,

(
yk − xk + yk

2

)2

+
∑
j 	=k

(
xj + yj

2

)2

= R2,

with k = 1, 2, . . . , n. This implies(
xk − yk

2

)2

= R2 −
∑
j 	=k

(
xj + yj

2

)2

, k = 1, 2, . . . , n.

The term on the left is one-fourth of the square of the length of XkYk. Multiplying by 4
and summing up all these relations, we obtain

n∑
k=1

‖XkYk‖2 = 4nR2 − 4
n∑
k=1

∑
j 	=k

(
xj + yj

2

)2

= 4nR2 − 4(n− 1)
n∑
k=1

(
xk + yk

2

)2

= 4nR2 − 4(n− 1)‖PO‖2.

Hence the conclusion. ��

632. Let n be a positive integer. Prove that if the vertices of a (2n+1)-dimensional cube
have integer coordinates, then the length of the edge of the cube is an integer.

633. For a positive integer n denote by τ the permutation cycle (n, . . . , 2, 1). Consider
the locus of points in Rn defined by the equation∑

σ

sign(σ )xσ(1)xτ(σ (2)) · · · xτn−1(σ (n)) = 0,

where the sum is over all possible permutations of {1, 2, . . . , n}. Prove that this
locus contains a plane.
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634. Prove that the intersection of an n-dimensional cube centered at the origin and with
edges parallel to the coordinate axes with the plane determined by the vectors

−→
a =

(
cos

2π

n
, cos

4π

n
, . . . , cos

2nπ

n

)
and

−→
b =

(
sin

2π

n
, sin

4π

n
, . . . , sin

2nπ

n

)
is a regular 2n-gon.

635. Find the maximum number of points on a sphere of radius 1 in Rn such that the
distance between any two points is strictly greater than

√
2.

4.1.5 Integrals in Geometry

We now present various applications of integral calculus to geometry problems. Here is
a classic.

Example. A disk of radius R is covered by m rectangular strips of width 2. Prove that
m ≥ R.

Solution. Since the strips have different areas, depending on the distance to the center of
the disk, a proof using areas will not work. However, if we move to three dimensions the
problem becomes easy. The argument is based on the following property of the sphere.

Lemma. The area of the surface cut from a sphere of radius R by two parallel planes at
distance d from each other is equal to 2πRd.

To prove this result, let us assume that the sphere is centered at the origin and the
planes are perpendicular to the x-axis. The surface is obtained by rotating the graph of
the function f : [a, b] → R, f (x) = √

R2 − x2 about the x-axis, where [a, b] is an
interval of length d. The area of the surface is given by

2π
∫ b

a

f (x)
√
(f ′(x))2 + 1dx = 2π

∫ b

a

√
R2 − x2

R√
R2 − x2

dx

= 2π
∫ b

a

Rdx = 2πRd.

Returning to the problem, the sphere has area 4πR2 and is covered by m surfaces, each
having area 4πR. The inequality 4πmR ≥ 4πR2 implies that m ≥ R, as desired. ��

The second example, suggested to us by Zh. Wang, is even more famous. We present
the proof from H. Solomon, Geometric Probability (SIAM 1978).
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Crofton’s theorem. Let D be a bounded convex domain in the plane. Through each
point P(x, y) outside D there pass two tangents to D. Let t1 and t2 be the lengths of the
segments determined by P and the tangency points, and let α be the angle between the
tangents, all viewed as functions of (x, y).1 Then∫∫

P /∈D
sin α

t1t2
dxdy = 2π2.

Proof. The proof becomes transparent once we examine the particular case in whichD is
the unit disk x2 +y2 < 1. Each point outside the unit disk can be parametrized by the pair
of angles (φ1, φ2) where the tangents meet the unit circle S1. Since there is an ambiguity
in which tangent is considered first, the outside of the disk is in 1-to-2 correspondence
with the set S1 × S1. It so happens, and we will prove it in general, that on changing
coordinates from (x, y) to (φ1, φ2), the integral from the statement becomes

∫∫
dφ1dφ2

(divided by 2 to take the ambiguity into account). The result follows.
In the general case we mimic the same argument, boosting your intuition with Fig-

ure 31. Fix a Cartesian coordinate system with the origin O insideD. For a point (x, y)
denote by (φ1, φ2) the angles formed by the perpendiculars from O onto the tangents
with the positive semiaxis. This is another parametrization of the exterior of D, again
with the ambiguity of which tangent is considered first. Let Ai(εi, ηi), i = 1, 2, be the
tangency points.

O

A

P

O
A

θ
θ

1
1

1 1θ +π/2

2

2

Figure 31

The main goal is to understand the change of coordinates (x, y) → (φ1, φ2) and in
particular to write the Jacobian of this transformation. Writing the condition that the
slope of the line A1P is tan(φ1 + π

2 ), we obtain

(x − ε1) cosφ1 + (y − η1) sin φ1 = 0.

Taking the differential yields
1 If the boundary of D has some edges, then there are points P for which t1 and t2 are not well defined,

but the area of the set of these points is zero, so they can be neglected in the integral below.
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cosφ1dx − cosφ1dε1 − (x − ε1) sin φ1dφ1 + sin φ1dy − sin φ1dη1

+ (y − η1) cosφ1dφ1 = 0.

This expression can be simplified if we note that dη1
dε1

is the slope of the tangent, namely
tan(φ1 + π

2 ). Then cosφ1dε1 + sin φ1dη1 = 0, so

cosφ1dx + sin φ1dy = [(x − ε1) sin φ1 − (y − η1) cosφ1]dφ1.

And now a little Euclidean geometry. Consider the right triangle O1A1P with legs
parallel to the axes. The altitude from O1 determines on A1P two segments of lengths
(x− ε1) sin φ1 and −(y− η1) cosφ1 (you can see by examining the picture that the signs
are right). This allows us to further transform the identity obtained above into

cosφ1dx + sin φ1dy = t1dφ1.

The same argument shows that

cosφ2dx + sin φ2dy = t2dφ2.

The Jacobian of the transformation is therefore the absolute value of

1

t1t2
(cosφ1 sin φ2 − sin φ1 cosφ2) = 1

t1t2
sin(φ1 − φ2).

And φ1 − φ2 is, up to a sign, the supplement of α. We obtain

2π2 = 1

2

∫ 2π

0

∫ 2π

0
dφ1dφ2 =

∫∫
P /∈D

sin α

t1t2
dxdy.

The theorem is proved. ��
636. A ring of height h is obtained by digging a cylindrical hole through the center of a

sphere. Prove that the volume of the ring depends only on h and not on the radius
of the sphere.

637. A polyhedron is circumscribed about a sphere. We call a face big if the projection
of the sphere onto the plane of the face lies entirely within the face. Show that there
are at most six big faces.

638. LetA and B be two finite sets of segments in three-dimensional space such that the
sum of the lengths of the segments in A is larger than the sum of the lengths of the
segments in B. Prove that there is a line in space with the property that the sum of
the lengths of the projections of the segments in A onto that line is greater than the
sum of the lengths of the projections of the segments in B.
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639. Two convex polygons are placed one inside the other. Prove that the perimeter of
the polygon that lies inside is smaller.

640. There are n line segments in the plane with the sum of the lengths equal to 1. Prove
that there exists a straight line such that the sum of the lengths of the projections of
the segments onto the line is equal to 2

π
.

641. In a triangle ABC for a variable point P on BC with PB = x let t (x) be the
measure of ∠PAB. Compute ∫ a

0
cos t (x)dx

in terms of the sides and angles of triangle ABC.

642. Let f : [0, a] → R be a continuous and increasing function such that f (0) = 0.
Define by R the region bounded by f (x) and the lines x = a and y = 0. Now
consider the solid of revolution obtained when R is rotated around the y-axis as a
sort of dish. Determine f such that the volume of water the dish can hold is equal
to the volume of the dish itself, this happening for all a.

643. Consider a unit vector starting at the origin and pointing in the direction of the
tangent vector to a continuously differentiable curve in three-dimensional space.
The endpoint of the vector describes the spherical image of the curve (on the unit
sphere). Show that if the curve is closed, then its spherical image intersects every
great circle of the unit sphere.

644. With the hypothesis of the previous problem, if the curve is twice differentiable,
then the length of the spherical image of the curve is called the total curvature.
Prove that the total curvature of a closed curve is at least 2π .

645. A rectangleR is tiled by finitely many rectangles each of which has at least one side
of integral length. Prove that R has at least one side of integral length.

4.1.6 Other Geometry Problems

We conclude with problems from elementary geometry. They are less in the spirit of
Euclid, being based on algebraic or combinatorial considerations. Here “imagination is
more important than knowledge’’ (A. Einstein).

Example. Find the maximal number of triangles of area 1 with disjoint interiors that can
be included in a disk of radius 1. Describe all such configurations.

Solution. Let us first solve the following easier problem:

Find all triangles of area 1 that can be placed inside a half-disk of radius 1.
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We will show that the only possible configuration is that in Figure 32. Consider a
triangle that maximizes the area (such a triangle exists since the vertices vary on compact
sets and the area depends continuously on the vertices). The vertices of this triangle must
lie on the half-circle. If B lies between A and C, then A and C must be the endpoints
of the diameter. Indeed, if say C is not an endpoint, then by moving it toward the closer
endpoint of the diameter we increase both AC and the angle ∠BAC; hence we increase

the area. Finally, among all triangles inscribed in a semicircle
�

AC, the isosceles right
triangle has maximal altitude, hence also maximal area. This triangle has area 1, and the
claim is proved.

A

B

C

Figure 32

Returning to the problem, let us note that since the two triangles in question are
convex sets, they can be separated by a line. That line cuts the disk into two regions, and
one of them, containing one of the triangles, is included in a half-disk. By what we just
proved, this region must itself be a half-disk. The only possible configuration consists of
two isosceles triangles sharing the hypotenuse. ��

The next problem was published by the first author in the Mathematics Magazine.

Example. Let ABC be a right triangle (∠A = 90◦). On the hypotenuse BC construct
in the exterior the equilateral triangle BCD. Prove that the lengths of the segments AB,
AC, and AD cannot all be rational.

Solution. We will find a relation betweenAB,AC, andAD by placing them in a triangle
and using the law of cosines. For this, construct the equilateral triangle ACE in the
exterior ofABC (Figure 33). We claim thatBE = AD. This is a corollary of Napoleon’s
problem, and can be proved in the following way. Let M be the intersection of the
circumcircles of BCD and ACE. Then ∠AMC = 120◦ and ∠DMC = 60◦; hence
M ∈ AD. Similarly, M ∈ BE. Ptolemy’s theorem applied to quadrilaterals AMCE
and BMCD shows that ME = AM + CM and MD = BM + CM; hence AD =
AM + BM + CM = BE.

Applying the law of cosines in triangle ABE, we obtain BE2 = AB2 +AE2 +AB ·
AE

√
3, and since BE = AD and AE = AC, it follows that

AD2 = AB2 + AC2 + AB · AC√
3.
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A

E

CB

D
Figure 33

If all three segments AB, AC, and AD had rational lengths, this relation would imply
that

√
3 is rational, which is not true. Hence at least one of these lengths is irrational. ��

646. Three lines passing through an interior point of a triangle and parallel to its sides
determine three parallelograms and three triangles. If S is the area of the initial
triangle and S1, S2, and S3 are the areas of the newly formed triangles, prove that
S1 + S2 + S3 ≥ 1

3S.

647. Someone has drawn two squares of side 0.9 inside a disk of radius 1. Prove that
the squares overlap.

648. A surface is generated by a segment whose midpoint rotates along the unit circle in
thexy-plane such that for each 0 ≤ α < 2π , at the point of coordinates (cosα, sin α)
on the circle the segment is in the same plane with the z-axis and makes with it an
angle of α

2 . This surface, called a Möbius band, is depicted in Figure 34. What is
the maximal length the segment can have so that the surface does not cross itself?

Figure 34

649. Let ABCD be a convex quadrilateral and letO be the intersection of its diagonals.
Given that the triangles OAB, OBC, OCD, and ODA have the same perimeter,
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prove that the quadrilateral is a rhombus. Does the property hold ifO is some other
point in the interior of the quadrilateral?

650. Prove that the plane cannot be covered by the interiors of finitely many parabolas.

651. Let ABC be a triangle with the largest angle at A. On line AB consider the
point D such that A lies between B and D, and AD = AB3/AC2. Prove that
CD ≤ √

3BC3/AC2.

652. Show that if all angles of an octagon are equal and all its sides have rational length,
then the octagon has a center of symmetry.

653. Show that if each of the three main diagonals of a hexagon divides the hexagon into
two parts with equal areas, then the three diagonals are concurrent.

654. Centered at every point with integer coordinates in the plane there is a disk with
radius 1

1000 .
(a) Prove that there exists an equilateral triangle whose vertices lie in different disks.
(b) Prove that every equilateral triangle with vertices in different disks has side

length greater than 96.

655. On a cylindrical surface of radius r , unbounded in both directions, consider n points
and a surface S of area strictly less than 1. Prove that by rotating around the axis
of the cylinder and then translating in the direction of the axis by at most n

4πr units
one can transform S into a surface that does not contain any of the n points.

4.2 Trigonometry

4.2.1 Trigonometric Identities

The beauty of trigonometry lies in its identities. There are two fundamental identities,

sin2 x + cos2 x = 1 and cos(x − y) = cos x cos y − sin x sin y,

both with geometric origins, from which all the others can be derived. Our problems will
make use of addition and subtraction formulas for two, three, even four angles, double-
and triple-angle formulas, and product-to-sum formulas.

Example. Find all acute angles x satisfying the equation

2 sin x cos 40◦ = sin(x + 20◦).

Solution. Trying particular values we see that x = 30◦ is a solution. Are there other
solutions? Use the addition formula for sine to rewrite the equation as
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tan x = sin 20◦

2 cos 40◦ − cos 20◦ .

The tangent function is one-to-one on the interval (0, 90◦), which implies that the solution
to the original equation is unique. ��
Example.

(a) Prove that if cosπa = 1
3 then a is an irrational number.

(b) Prove that a regular tetrahedron cannot be dissected into finitely many regular tetra-
hedra.

Solution. (a) Assume that a is rational, a = m
n

. Then cos naπ = ±1. We will prove by
induction that for all k > 0, cos kaπ = mk

3k , with mk an integer that is not divisible by 3.
This will then contradict the initial assumption.

The property is true for k = 0 and 1. The product-to-sum formula for cosines gives
rise to the recurrence

cos(k + 1)aπ = 2 cos aπ cos kaπ − cos(k − 1)aπ, k ≥ 1.

Using the induction hypothesis, we obtain cos(k + 1)aπ = mk+1
3k+1 , with mk+1 = 2mk −

3mk−1. Since mk is not divisible by 3, neither is mk+1, and the claim is proved.
Part (b) is just a consequence of (a). To see this, let us compute the cosine of the

dihedral angle of two faces of a regular tetrahedron ABCD. If AH is an altitude of the
tetrahedron andAE is an altitude of the faceABC, then ∠AEH is the dihedral angle of the
faces ABC and BCD (see Figure 35). In the right triangleHAE, cosAEH = EH

AD
= 1

3 .

E

C

B

H
D

A

Figure 35

Now assume that there exists a dissection of a regular tetrahedron into regular tetra-
hedra. Several of these tetrahedra meet along a segment included in one of the faces
of the initial tetrahedron. Their dihedral angles must add up to π , which implies that
the dihedral angle of a regular tetrahedron is of the form π

n
, for some integer n. This

was shown above to be false. Hence no dissection of a regular tetrahedron into regular
tetrahedra exists. ��
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Remark. It is interesting to know that Leonardo da Vinci’s manuscripts contain drawings
of such decompositions. Later, however, Leonardo himself realized that the decompo-
sitions were impossible, and the drawings were mere optical illusions. Note also that
Dehn’s invariant mentioned in the first chapter provides an obstruction to the decompo-
sition.

We conclude the introduction with a problem by the second author of the book.

Example. Let a0 = √
2 + √

3 + √
6 and let an+1 = a2

n−5
2(an+2) for n ≥ 0. Prove that

an = cot

(
2n−3π

3

)
− 2 for all n.

Solution. We have

cot
π

24
=

cos
π

24

sin
π

24

=
2 cos2 π

24

2 sin
π

24
cos

π

24

=
1 + cos

π

12

sin
π

12

=
1 + cos

(π
3

− π

4

)
sin

(π
3

− π

4

) .

Using the subtraction formulas for sine and cosine we find that this is equal to

1 +
√

2
4 +

√
6

4√
6

4 −
√

2
4

= 4 + √
6 + √

2√
6 − √

2
= 4(

√
6 + √

2)+ (
√

6 + √
2)2

6 − 2

= 4(
√

6 + √
2)+ 8 + 4

√
3

4
= 2 + √

2 + √
3 + √

6 = a0 + 2.

Hence the equality an = cot ( 2n−3π
3 )− 2 is true at least for n = 0.

To verify it in general, it suffices to prove that bn = cot ( 2n−3π
3 ), where bn = an + 2,

n ≥ 1. The recurrence relation becomes

bn+1 − 2 = (bn − 2)2 − 5

2bn
,

or bn+1 = b2
n−1
2bn

. Assuming inductively that bk = cot ck, where ck = 2k−3π
3 , and using the

double-angle formula, we obtain

bk+1 = cot2 ck − 1

2 cot ck
= cot(2ck) = cot ck+1.

This completes the proof. ��
656. Prove that

sin 70◦ cos 50◦ + sin 260◦ cos 280◦ =
√

3

4
.
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657. Show that the trigonometric equation

sin(cos x) = cos(sin x)

has no solutions.

658. Show that if the angles a and b satisfy

tan2 a tan2 b = 1 + tan2 a + tan2 b,

then

sin a sin b = ± sin 45◦.

659. Find the range of the function f : R → R, f (x) = (sin x + 1)(cos x + 1).

660. Prove that
sec2n x + csc2n x ≥ 2n+1,

for all integers n ≥ 0, and for all x ∈ (0, π2 ).
661. Compute the integral ∫ √

1 − x

1 + x
dx, x ∈ (−1, 1).

662. Find all integers k for which the two-variable function f (x, y) = cos(19x + 99y)
can be written as a polynomial in cos x, cos y, cos(x + ky).

663. Let a, b, c, d ∈ [0, π ] be such that

2 cos a + 6 cos b + 7 cos c + 9 cos d = 0

and

2 sin a − 6 sin b + 7 sin c − 9 sin d = 0.

Prove that 3 cos(a + d) = 7 cos(b + c).

664. Let a be a real number. Prove that

5(sin3 a + cos3 a)+ 3 sin a cos a = 0.04

if and only if

5(sin a + cos a)+ 2 sin a cos a = 0.04.

665. Let a0, a1, . . . , an be numbers from the interval (0, π2 ) such that

tan
(
a0 − π

4

)
+ tan

(
a1 − π

4

)
+ · · · + tan

(
an − π

4

)
≥ n− 1.

Prove that

tan a0 tan a1 · · · tan an ≥ nn+1.
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4.2.2 Euler’s Formula

For a complex number z,

ez = 1 + z

1! + z2

2! + · · · + zn

n! + · · · .

In particular, for an angle x,

eix = 1 + i
x

1! − x2

2! − i
x3

3! + x4

4! + i
x5

5! − x6

6! − i
x7

7! + · · · .

The real part of eix is

1 − x2

2! + x4

4! − x6

6! + · · · ,

while the imaginary part is

x

1! − x3

3! + x5

5! − x7

7! + · · · .

These are the Taylor series of cos x and sin x. We obtain Euler’s formula

eix = cos x + i sin x.

Euler’s formula gives rise to one of the most beautiful identities in mathematics: eiπ =
−1, which relates the number e from real analysis, the imaginary unit i from algebra,
and π from geometry.

The equality enz = (ez)n holds at least for z a real number. Two power series are
equal for all real numbers if and only if they are equal coefficient by coefficient (since
coefficients are computed using the derivatives at 0). So equality for real numbers means
equality for complex numbers. In particular, einx = (eix)n, from which we deduce the
de Moivre formula

cos nx + i sin nx = (cos x + i sin x)n.

We present an application of the de Moivre formula that we found in Exercises and
Problems in Algebra by C. Năstăsescu, C. Niţă, M. Brandiburu, and D. Joiţa (Editura
Didactică şi Pedagogică, Bucharest, 1983).

Example. Prove the identity(
n

0

)
+
(
n

k

)
+
(
n

2k

)
+ · · · = 2n

k

k∑
j=1

cosn
jπ

k
cos

njπ

k
.
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Solution. Let ε1, ε2, . . . , εk be the kth roots of unity, that is, εj = cos 2jπ
k

+ i sin 2jπ
k

,
j = 1, 2, . . . , k. The sum

εs1 + εs2 + · · · + εsk

is equal to k if k divides s, and to 0 if k does not divide s. We have

k∑
j=1

(1 + εj )
n =

n∑
s=0

(
n

s

)⎛⎝ k∑
j=1

εsj

⎞⎠ = k

� n
k
�∑

j=0

(
n

jk

)
.

Since

1 + εj = 2 cos
jπ

k

(
cos

jπ

k
+ i sin

jπ

k

)
,

it follows from the de Moivre formula that

k∑
j=1

(1 + εj )
n =

k∑
j=1

2n cosn
jπ

k

(
cos

njπ

k
+ i sin

njπ

k

)
.

Therefore,(
n

0

)
+
(
n

k

)
+
(
n

2k

)
+ · · · = 2n

k

k∑
j=1

cosn
jπ

k

(
cos

njπ

k
+ i sin

njπ

k

)
.

The left-hand side is real, so we can ignore the imaginary part and obtain the identity
from the statement. ��

And now a problem given at an Indian Team Selection Test for the International
Mathematical Olympiad in 2005, proposed by the first author of the book.

Example. For real numbers a, b, c, d not all equal to zero, let f : R → R,

f (x) = a + b cos 2x + c sin 5x + d cos 8x.

Suppose that f (t) = 4a for some real number t . Prove that there exists a real number s
such that f (s) < 0.

Solution. Let g(x) = be2ix − ice5ix + de8ix . Then f (x) = a + Re g(x). Note that

g(x)+ g

(
x + 2π

3

)
+ g

(
x + 4π

3

)
= g(x)

(
1 + e2πi/3 + e4πi/3

) = 0.

Therefore,
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f (x)+ f

(
x + 2π

3

)
+ f

(
x + 4π

3

)
= 3a.

If a < 0, then s = t would work. If a = 0, then for some x one of the terms of the above
sum is negative. This is because f (x) is not identically zero, since its Fourier series is
not trivial. If a > 0, substituting x = t in the identity deduced above and using the fact
that f (t) = 4a, we obtain

f

(
t + 2π

3

)
+ f

(
t + 4π

3

)
= −a < 0.

Hence either f (t + 2π
3 ) or f (t + 4π

3 ) is negative. The problem is solved. ��
666. Prove the identity (

1 + i tan t

1 − i tan t

)n
= 1 + i tan nt

1 − i tan nt
, n ≥ 1.

667. Prove the identity

1 −
(
n

2

)
+
(
n

4

)
−
(
n

6

)
+ · · · = 2n/2 cos

nπ

4
, n ≥ 1.

668. Compute the sum(
n

1

)
cos x +

(
n

2

)
cos 2x + · · · +

(
n

n

)
cos nx.

669. Find the Taylor series expansion at 0 of the function

f (x) = ex cos θ cos(x sin θ),

where θ is a parameter.

670. Let z1, z2, z3 be complex numbers of the same absolute value, none of which is real
and all distinct. Prove that if z1 + z2z3, z2 + z3z1 and z3 + z1z2 are all real, then
z1z2z3 = 1.

671. Let n be an odd positive integer and let θ be a real number such that θ
π

is irrational.
Set ak = tan(θ + kπ

n
), k = 1, 2, . . . , n. Prove that

a1 + a2 + · · · + an

a1a2 · · · an
is an integer and determine its value.

672. Find (cosα)(cos 2α)(cos 3α) · · · (cos 999α) with α = 2π
1999 .
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673. For positive integers n defineF(n) = xn sin(nA)+yn sin(nB)+zn sin(nC), where
x, y, z, A,B,C are real numbers and A+ B + C = kπ for some integer k. Prove
that if F(1) = F(2) = 0, then F(n) = 0 for all positive integers n.

674. The continuous real-valued function φ(t) is defined for t ≥ 0 and is absolutely
integrable on every bounded interval. Define

P =
∫ ∞

0
e−(t+iφ(t))dt and Q =

∫ ∞

0
e−2(t+iφ(t))dt.

Prove that

|4P 2 − 2Q| ≤ 3,

with equality if and only if φ(t) is constant.

4.2.3 Trigonometric Substitutions

The fact that the circle x2 + y2 = 1 can be parametrized by trigonometric functions
as x = cos t and y = sin t gives rise to the standard substitution x = a cos t (or x =
a sin t) in expressions of the form

√
a2 − x2. Our purpose is to emphasize less standard

substitutions, usually suggested by the similarity between an algebraic expression and
a trigonometric formula. Such is the case with the following problem from the 61st
W.L. Putnam Mathematical Competition, 2000.

Example. Let f : [−1, 1] → R be a continuous function such that f (2x2 −1) = 2xf (x)
for all x ∈ [−1, 1]. Show that f is identically equal to zero.

Solution. Here the expression 2x2 − 1 should remind us of the trigonometric formula
2 cos2 t − 1 = cos 2t , suggesting the substitution x = cos t , t ∈ [0, π ]. The functional
equation from the statement becomes f (cos 2t) = 2 cos tf (cos t).

First, note that setting x = 0 and x = 1, we obtain f (1) = f (−1) = 0. Now let us
define g : R → R, g(t) = f (cos t)

sin t . Then for any t not a multiple of π ,

g(2t) = f (2 cos2 t − 1)

sin(2t)
= 2 cos tf (cos t)

2 sin t cos t
= f (cos t)

sin t
= g(t).

Also, g(t + 2π) = g(t). In particular, for any integers n and k,

g
(

1 + nπ

2k

)
= g(2k+1 + 2nπ) = g(2k+1) = g(1).

Because f is continuous, g is continuous everywhere except at multiples of π . The set
{1 + nπ

2k | n, k ∈ Z} is dense on the real axis, and so g must be constant on its domain.
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Then f (cos t) = c sin t for some constant c and t in (0, π), i.e., f (x) = c
√

1 − x2 for
all x ∈ (−1, 1). It follows that f is an even function. But then in the equation from the
statement f (2x2 − 1) = 2xf (x) the left-hand side is an even function while the right-
hand side is an odd function. This can happen only if both sides are identically zero.
Therefore, f (x) = 0 for x ∈ [−1, 1] is the only solution to the functional equation. ��

We continue with a problem that was proposed by Belgium for the 26th International
Mathematical Olympiad in 1985.

Example. Let x, y, z be real numbers such that x + y + z = xyz. Prove that

x(1 − y2)(1 − z2)+ y(1 − z2)(1 − x2)+ z(1 − x2)(1 − y2) = 4xyz.

Solution. The conclusion is immediate if xyz = 0, so we may assume that x, y, z 	= 0.
Dividing through by 4xyz we transform the desired equality into

1 − y2

2y
· 1 − z2

2z
+ 1 − z2

2x
· 1 − x2

2x
+ 1 − x2

2x
· 1 − y2

2y
= 1.

This, along with the condition from the statement, makes us think about the substitutions
x = tanA, y = tanB, z = tanC, where A,B,C are the angles of a triangle. Using the
double-angle formula

1 − tan2 u

2 tan u
= 1

tan 2u
= cot 2u

we further transform the equality into

cot 2B cot 2C + cot 2C cot 2A+ cot 2A cot 2B = 1.

But this is equivalent to

tan 2A+ tan 2B + tan 2C = tan 2A tan 2B tan 2C,

which follows from tan(2A+ 2B + 2C) = tan 2π = 0. ��
And now the problems.

675. Let a, b, c ∈ [0, 1]. Prove that

√
abc +√

(1 − a)(1 − b)(1 − c) ≤ 1.

676. Solve the equation x3 − 3x = √
x + 2 in real numbers.
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677. Find the maximum value of

S = (1 − x1)(1 − y1)+ (1 − x2)(1 − y2)

if x2
1 + x2

2 = y2
1 + y2

2 = c2, where c is some positive number.

678. Prove for all real numbers a, b, c the inequality

|a − b|√
1 + a2

√
1 + b2

≤ |a − c|√
1 + a2

√
1 + c2

+ |b − c|√
1 + b2

√
1 + c2

.

679. Let a, b, c be real numbers. Prove that

(ab + bc + ca − 1)2 ≤ (a2 + 1)(b2 + 1)(c2 + 1).

680. Prove that

x√
1 + x2

+ y√
1 + y2

+ z√
1 + z2

≤ 3
√

3

2

if the positive real numbers x, y, z satisfy x + y + z = xyz.

681. Prove that

x

1 − x2
+ y

1 − y2
+ z

1 − z2
≥ 3

√
3

2

if 0 < x, y, z < 1 and xy + yz+ xz = 1.

682. Solve the following system of equations in real numbers:

3x − y

x − 3y
= x2,

3y − z

y − 3z
= y2,

3z− x

z− 3x
= z2.

683. Let a0 = √
2, b0 = 2, and

an+1 =
√

2 −
√

4 − a2
n, bn+1 = 2bn

2 +√
4 + b2

n

, n ≥ 0.

(a) Prove that the sequences (an)n and (bn)n are decreasing and converge to zero.
(b) Prove that the sequence (2nan)n is increasing, the sequence (2nbn)n is decreas-

ing, and these two sequences converge to the same limit.
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(c) Prove there is a positive constant C such that one has 0 < bn − an <
C
8n for

all n.

684. Two real sequences x1, x2, . . . , and y1, y2, . . . are defined in the following way:

x1 = y1 = √
3, xn+1 = xn +

√
1 + x2

n, yn+1 = yn

1 +√
1 + y2

n

, for n ≥ 1.

Prove that 2 < xnyn < 3 for all n > 1.

685. Let a, b, c be real numbers different from ± 1√
3
. Prove that the equality abc =

a + b + c holds only if

3a − a3

3a2 − 1
· 3b − b3

3b2 − 1
· 3c − c3

3c2 − 1
= 3a − a3

3a2 − 1
+ 3b − b3

3b2 − 1
+ 3c − c3

3c2 − 1
.

The parametrization of the hyperbola x2 − y2 = 1 by x = cosh t , y = sinh t gives
rise to the hyperbolic substitution x = a cosh t in expressions containing

√
a2 − 1. We

illustrate this with an example by the second author.

Example. Let a1 = a2 = 97 and

an+1 = anan−1 +
√
(a2
n − 1)(a2

n−1 − 1), for n > 1.

Prove that

(a) 2 + 2an is a perfect square;
(b) 2 + √

2 + 2an is a perfect square.

Solution. We are led to the substitution an = cosh tn for some number tn (which for the
moment might be complex). The recurrence relation becomes

cosh tn+1 = an+1 = cosh tn cosh tn−1 + sinh tn sinh tn−1 = cosh(tn + tn−1).

We deduce that the numbers tn satisfy t0 = t1, and tn+1 = tn + tn−1 (in particular they
are all real). And so tn = Fnt0, where (Fn)n is the Fibonacci sequence. Consequently,
an = cosh(Fnt0), n ≥ 1.

Using the identity 2(cosh t)2 − 1 = cosh 2t , we obtain

2 + 2an =
(

2 cosh Fn
t0

2

)2

.

The recurrence relation

2 cosh(k + 1)t = (2 cosh t)(2 cosh kt)− 2 cosh(k − 1)t
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allows us to prove inductively that 2 cosh k t02 is an integer once we show that 2 cosh t0
2

is an integer. It would then follow that 2 cosh Fn
t0
2 is an integer as well. And indeed

2 cosh t0
2 = √

2 + 2a1 = 14. This completes the proof of part (a).
To prove (b), we obtain in the same manner

2 +√
2 + 2an =

(
2 cosh Fn

t0

4

)2

,

and again we have to prove that 2 cosh t0
4 is an integer. We compute 2 cosh t0

4 =√
2 + √

2 + 2an = √
2 + 14 = 4. The conclusion follows. ��

686. Compute the integral ∫
dx

x + √
x2 − 1

.

687. Let n > 1 be an integer. Prove that there is no irrational number a such that the
number

n

√
a +

√
a2 − 1 + n

√
a −

√
a2 − 1

is rational.

4.2.4 Telescopic Sums and Products in Trigonometry

The philosophy of telescopic sums and products in trigonometry is the same as in the
general case, just that here we have more identities at hand. Let us take a look at a slightly
modified version of an identity of C.A. Laisant.

Example. Prove that

n∑
k=0

(
−1

3

)k
cos3

(
3k−nπ

) = 3

4

[(
−1

3

)n+1

+ cos
π

3n

]
.

Solution. From the identity cos 3x = 4 cos3 x − 3 cos x, we obtain

cos3 x = 1

4
(cos 3x + 3 cos x) .

Then

n∑
k=0

(
−1

3

)k
cos3

(
3ka

) = 1

4

n∑
k=0

[(
−1

3

)k
cos

(
3k+1a

)−
(

−1

3

)k−1

cos
(
3ka

)]
.
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This telescopes to

1

4

[(
−1

3

)n
cos

(
3n+1a

)−
(

−1

3

)−1

cos a

]
.

For a = 3−nπ , we obtain the identity from the statement. ��
Test your skills against the following problems.

688. Prove that

27 sin3 9◦ + 9 sin3 27◦ + 3 sin3 81◦ + sin3 243◦ = 20 sin 9◦.

689. Prove that

1

cot 9◦ − 3 tan 9◦ + 3

cot 27◦ − 3 tan 27◦ + 9

cot 81◦ − 3 tan 81◦

+ 27

cot 243◦ − 3 tan 243◦ = 10 tan 9◦.

690. Prove that

1

sin 45◦ sin 46◦ + 1

sin 47◦ sin 48◦ + · · · + 1

sin 133◦ sin 134◦ = 1

sin 1◦ .

691. Obtain explicit values for the following series:

(a)
∞∑
n=1

arctan
2

n2
,

(b)
∞∑
n=1

arctan
8n

n4 − 2n2 + 5
.

692. For n ≥ 0 let

un = arcsin

√
n+ 1 − √

n√
n+ 2

√
n+ 1

.

Prove that the series

S = u0 + u1 + u2 + · · · + un + · · ·

is convergent and find its limit.

Now we turn to telescopic products.
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Example. Prove that
∞∏
n=1

1

1 − tan2 2−n = tan 1.

Solution. The solution is based on the identity

tan 2x = 2 tan x

1 − tan2 x
.

Using it we can write

N∏
n=1

1

1 − tan2 2−n =
N∏
n=1

tan 2−n+1

2 tan 2−n = 2−N

tan 2−N tan 1.

Since limx→0
tan x
x

= 1, when letting N → ∞ this becomes tan 1, as desired. ��
693. In a circle of radius 1 a square is inscribed. A circle is inscribed in the square and

then a regular octagon in the circle. The procedure continues, doubling each time
the number of sides of the polygon. Find the limit of the lengths of the radii of the
circles.

694. Prove that (
1 − cos 61◦

cos 1◦

)(
1 − cos 62◦

cos 2◦

)
· · ·

(
1 − cos 119◦

cos 59◦

)
= 1.

695. Evaluate the product

(1 − cot 1◦)(1 − cot 2◦) · · · (1 − cot 44◦).

696. Compute the product

(
√

3 + tan 1◦)(
√

3 + tan 2◦) · · · (√3 + tan 29◦).

697. Prove the identities

(a)

(
1

2
− cos

π

7

) (
1

2
− cos

3π

7

)(
1

2
− cos

9π

7

)
= −1

8
,

(b)

(
1

2
+ cos

π

20

) (
1

2
+ cos

3π

20

)(
1

2
+ cos

9π

20

)(
1

2
+ cos

27π

20

)
= 1

16
.

698. Prove the identities

(a)
24∏
n=1

sec(2n)◦ = −224 tan 2◦,

(b)
25∏
n=2

(2 cos(2n)◦ − sec(2n)◦) = −1.
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Number Theory

This chapter on number theory is truly elementary, although its problems are far from
easy. (In fact, here, as elsewhere in the book, we tried to follow Felix Klein’s advice:
“Don’t ever be absolutely boring.’’)1 We avoided the intricacies of algebraic number
theory, and restricted ourselves to some basic facts about residue classes and divisibility:
Fermat’s little theorem and its generalization due to Euler, Wilson’s theorem, the Chinese
Remainder Theorem, and Polignac’s formula. From all Diophantine equations we discuss
linear equations in two variables and two types of quadratic equations: the Pythagorean
equation and Pell’s equation.

But first, three sections for which not much background is necessary.

5.1 Integer-Valued Sequences and Functions

5.1.1 Some General Problems

Here are some problems, not necessarily straightforward, that use only the basic properties
of integers.

Example. Find all functions f : {0, 1, 2, . . . } → {0, 1, 2, . . . } with the property that for
every m, n ≥ 0,

2f (m2 + n2) = (f (m))2 + (f (n))2.

Solution. The substitution m = n = 0 yields

2f (02 + 02) = (f (0))2 + (f (0))2,

and this gives f (0)2 = f (0), hence f (0) = 0 or f (0) = 1.

1 Seien Sie niemals absolut langweilig.
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We pursue the track of f (0) = 0 first. We have

2f (12 + 02) = (f (1))2 + (f (0))2,

so 2f (1) = f (1)2, and hence f (1) = 0 or f (1) = 2. Let us see what happens if
f (1) = 2, since this is the most interesting situation. We find immediately

2f (2) = 2f (12 + 12) = (f (1))2 + (f (1))2 = 8,

so f (2) = 4, and then

2f (4) = 2f (22 + 02) = (f (2))2 + (f (0))2 = 16,

2f (5) = 2f (22 + 12) = (f (2))2 + (f (1))2 = 20,

2f (8) = 2f (22 + 22) = (f (2))2 + (f (2))2 = 32.

So f (4) = 8, f (5) = 10, f (8) = 16. In fact, f (n) = 2n for n ≤ 10, but as we will see
below, the proof is more involved. Indeed,

100 = (f (5))2 + (f (0))2 = 2f (52) = 2f (32 + 42) = (f (3))2 + (f (4))2

= (f (3))2 + 64,

hence f (3) = 6. Then immediately

2f (9) = 2f (32 + 02) = (f (3))2 + (f (0))2 = 36,

2f (10) = 2f (32 + 12) = (f (3))2 + (f (1))2 = 40,

so f (9) = 18, f (10) = 20.
Applying an idea used before, we have

400 = (f (10))2 + (f (0))2 = 2f (102) = 2f (62 + 82) = (f (6))2 + (f (8))2

= (f (6))2 + 256,

from which we obtain f (6) = 12. For f (7) we use the fact that 72 + 12 = 52 + 52 and
the equality

(f (7))2 + (f (1))2 = (f (5))2 + (f (5))2

to obtain f (7) = 14.
We want to prove that f (n) = 2n for n > 10 using strong induction. The argument

is based on the identities

(5k + 1)2 + 22 = (4k + 2)2 + (3k − 1)2,
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(5k + 2)2 + 12 = (4k + 1)2 + (3k + 2)2,

(5k + 3)2 + 12 = (4k + 3)2 + (3k + 1)2,

(5k + 4)2 + 22 = (4k + 2)2 + (3k + 4)2,

(5k + 5)2 + 02 = (4k + 4)2 + (3k + 3)2.

Note that if k ≥ 2, then the first term on the left is strictly greater then any of the two terms
on the right, and this makes the induction possible. Assume that f (m) = 2m for m < n

and let us prove f (n) = 2n. Let n = 5k + j , 1 ≤ j ≤ 5, and use the corresponding
identity to write n2 + m2

1 = m2
2 + m2

3, where m1,m2,m3 are positive integers less than
n. We then have

(f (n))2 + (f (m1))
2 = 2f (n2 +m2

1) = 2f (m2
2 +m2

3) = (f (m2))
2 + (f (m3))

2.

This then gives

(f (n))2 = (2m2)
2 + (2m3)

2 − (2m1)
2 = 4(m2

2 +m2
3 −m2

1) = 4n2.

Hence f (n) = 2n, completing the inductive argument. And indeed, this function satisfies
the equation from the statement.

If we start with the assumption f (1) = 0, the exact same reasoning applied mutatis
mutandis shows that f (n) = 0, n ≥ 0. And the story repeats if f (0) = 1, giving
f (n) = 1, n ≥ 0. Thus the functional equation has three solutions: f (n) = 2n, n ≥ 0,
and the constant solutions f (n) = 0, n ≥ 0, and f (n) = 1, n ≥ 0. ��

With the additional hypothesis f (m2) ≥ f (n2) ifm ≥ n, this problem appeared at the
1998 Korean Mathematical Olympiad. The solution presented above was communicated
to us by B.J. Venkatachala.

699. Let k be a positive integer. The sequence (an)n is defined by a1 = 1, and for n ≥ 2,
an is the nth positive integer greater than an−1 that is congruent to nmodulo k. Find
an in closed form.

700. Three infinite arithmetic progressions are given, whose terms are positive integers.
Assuming that each of the numbers 1, 2, 3, 4, 5, 6, 7, 8 occurs in at least one of these
progressions, show that 1980 necessarily occurs in one of them.

701. Find all functions f : N → N satisfying

f (n)+ 2f (f (n)) = 3n+ 5, for all n ∈ N.

702. Find all functions f : Z → Z with the property that

2f (f (x))− 3f (x)+ x = 0, for all x ∈ Z.
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703. Prove that there exists no bijection f : N → N such that

f (mn) = f (m)+ f (n)+ 3f (m)f (n),

for all m, n ≥ 1.

704. Show that there does not exist a sequence (an)n≥1 of positive integers such that

an−1 ≤ (an+1 − an)
2 ≤ an, for all n ≥ 2.

705. Determine all functions f : Z → Z satisfying

f (x3 + y3 + z3) = (f (x))3 + (f (y))3 + (f (z))3, for all x, y, z ∈ Z.

5.1.2 Fermat’s Infinite Descent Principle

Fermat’s infinite descent principle states that there are no strictly decreasing infinite
sequences of positive integers. Alternatively, any decreasing sequence of positive integers
becomes stationary. This is a corollary of the fundamental property of the set of positive
integers that every subset has a smallest element. To better understand this principle, let
us apply it to an easy example.

Example. At each point of integer coordinates in the plane is written a positive integer
number such that each of these numbers is the arithmetic mean of its four neighbors.
Prove that all the numbers are equal.

Solution. The solution is an application of the maximum modulus principle. For n ≥ 1,
consider the square of side 2n centered at the origin. Among the numbers covered by it,
the smallest must lie on its perimeter. Let this minimum be m(n). If it is also attained
in the interior of the square, then the four neighbors of that interior point must be equal,
and step by step we show that all numbers inside that square are equal. Hence there are
two possibilities. Either m(1) > m(2) > m(3) > · · · or m(n) = m(n+ 1) for infinitely
many n. The former case is impossible, since the m(n)’s are positive integers; the latter
case implies that all the numbers are equal. ��

We find even more spectacular this problem from the 2004 USA Mathematical
Olympiad.

Example. Suppose that a1, . . . , an are integers whose greatest common divisor is 1. Let
S be a set of integers with the following properties:

(i) For i = 1, . . . , n, ai ∈ S.
(ii) For i, j = 1, . . . , n (not necessarily distinct), ai − aj ∈ S.

(iii) For any integers x, y ∈ S, if x + y ∈ S, then x − y ∈ S.
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Prove that S must equal the set of all integers.

Solution. This problem was submitted by K. Kedlaya and L. Ng. The solution below
was discovered by M. Ince and earned him the Clay prize.

First thing, note that if b1, b2, . . . , bm are some integers that generate S and satisfy
the three conditions from the statement, then bi − 2bj and 2bi − bj are also in S for
any indices i and j . Indeed, since bi , bj , and bi − bj are in S, by (iii) we have that
bi − 2bj ∈ S. Moreover, for i = j in (ii) we find that 0 = bi − bi ∈ S. Hence applying
(iii) to x ∈ S and 0 we have that −x ∈ S as well, and in particular 2bi − bj ∈ S.

An n-tuple (b1, b2, . . . , bn) as above can be substituted by (b1, b2 −b1, . . . , bn−b1),
which again generates S and, by what we just proved, satisfies (i), (ii), and (iii). Applying
this step to (|a1|, |a2|, . . . , |an|) and assuming that |a1| is the smallest of these numbers,
we obtain another n-tuple the sum of whose entries is smaller. Because we cannot have
an infinite descent, we eventually reach an n-tuple with the first entry equal to 0. In the
process we did not change the greatest common divisor of the entries. Ignoring the zero
entries, we can repeat the procedure until there is only one nonzero number left. This
number must be 1.

From the fact that 0, 1 ∈ S and then also −1 ∈ S, by applying (iii) to x = 1, y = −1
we find that 2 ∈ S, and inductively we find that all positive, and also all negative, integers
are in S. We conclude that S = Z. As I. Kaplansky said, “An elegant proof hits you
between your eyes with joy.’’ ��
706. Show that no positive integers x, y, z can satisfy the equation

x2 + 10y2 = 3z2.

707. Prove that the system of equations

x2 + 5y2 = z2,

5x2 + y2 = t2

does not admit nontrivial integer solutions.

708. Show that the equation

x2 − y2 = 2xyz

has no solutions in the set of positive integers.

709. Prove that there is no infinite arithmetic progression whose terms are all perfect
squares.

710. Let f be a bijection of the set of positive integers. Prove that there exist positive
integers a < a + d < a + 2d such that f (a) < f (a + d) < f (a + 2d).
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711. Prove that for no integer n > 1 does n divide 2n − 1.

712. Find all pairs of positive integers (a, b) with the property that ab + a + b divides
a2 + b2 + 1.

713. Let x, y, z be positive integers such that xy − z2 = 1. Prove that there exist
nonnegative integers a, b, c, d such that

x = a2 + b2, y = c2 + d2, z = ac + bd.

5.1.3 The Greatest Integer Function

The greatest integer function associates to a number x the greatest integer less than or
equal tox. The standard notation is �x�. For example, �2� = 2, �3.2� = 3, �−2.1� = −3.
This being said, let us start with the problems.

Beatty’s theorem. Let α and β be two positive irrational numbers satisfying 1
α
+ 1

β
= 1.

Then the sequences �αn� and �βn�, n ≥ 1, are strictly increasing and determine a
partition of the set of positive integers into two disjoint sets.

Proof. In other words, each positive integer shows up in exactly one of the two sequences.
Let us first prove the following result.

Lemma. If xn, n ≥ 1, is an increasing sequence of positive integers with the property
that for every n, the number of indicesm such that xm < n is equal to n− 1, then xn = n

for all n.

Proof. We do the proof by induction. The base case is obvious: because the sequence is
increasing, the only n for which xn < 2 is n = 1. Now let us assume that x1 = 1, x2 =
2, . . . , xn−1 = n− 1. From the hypothesis it also follows that there are no other indices
m for which xm < n. And because there is exactly one more term of the sequence that is
less than n+ 1, this term must be xn and it is equal to n. ��

Returning to the problem, let us write all numbers of the form �αn� and �βn� in an
increasing sequence yn. For every n there are exactly � n

α
� numbers of the form �kα�,

and � n
β
� numbers of the form �kβ� that are strictly less than n (here we used the fact that

α and β are irrational). We have

n− 1 =
⌊
n

α
+ n

β

⌋
− 1 ≤

⌊
n

α

⌋
+
⌊
n

β

⌋
<
n

α
+ n

β
= n.

Hence � n
α
� + � n

β
� = n − 1, which shows that the sequence yn satisfies the condition of

the lemma. It follows that this sequence consists of all positive integers written in strictly
increasing order. Hence the conclusion. ��
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Our second example is a general identity discovered by the second author and D. An-
drica. Note the similarity with Young’s inequality for integrals (problem 480).

Theorem. Let a < b and c < d be positive real numbers and let f : [a, b] → [c, d] be
a continuous, bijective, and increasing function. Then∑

a≤k≤b
�f (k)� +

∑
c≤k≤d

�f −1(k)� − n(Gf ) = �b��d� − α(a)α(c),

where k is an integer, n(Gf ) is the number of points with nonnegative integer coordinates
on the graph of f , and α : R → Z is defined by

α(x) =

⎧⎪⎨⎪⎩
�x� if x ∈ R\Z,

0 if x = 0,

x − 1 if x ∈ Z\{0}.
Proof. The proof is by counting. For a region M of the plane, we denote by n(M) the
number of points with nonnegative integer coordinates in M . For our theorem, consider
the sets

M1 = {(x, y) ∈ R2 | a ≤ x ≤ b, 0 ≤ y ≤ f (x)},
M2 = {(x, y) ∈ R2 | c ≤ y ≤ d, 0 ≤ x ≤ f −1(y)},
M3 = {(x, y) ∈ R2 | 0 < x ≤ b, 0 < y ≤ d},
M4 = {(x, y) ∈ R2 | 0 < x < a, 0 < y < c}.

Then

n(M1) =
∑
a≤k≤b

�f (k)�, n(M2) =
∑
c≤k≤d

�f −1(k)�,

n(M3) = �b��d�, n(M4) = α(a)α(c).

By the inclusion–exclusion principle,

n(M1 ∪M2) = n(M1)+ n(M2)− n(M1 ∩M2).

Note that n(M1 ∩ M2) = n(Gf ) and N(M1 ∪ M2) = n(M3) − n(M4). The identity
follows. ��
714. For a positive integer n and a real number x, prove the identity

�x� +
⌊
x + 1

n

⌋
+ · · · +

⌊
x + n− 1

n

⌋
= �nx�.
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715. For a positive integer n and a real number x, compute the sum

∑
0≤i<j≤n

⌊
x + i

j

⌋
.

716. Prove that for any positive integer n,

�√n� =
⌊√

n+ 1√
n+ √

n+ 2

⌋
.

717. Express
∑n

k=1�
√
k� in terms of n and a = �√n�.

718. Prove the identity

n(n+1)
2∑
k=1

⌊
−1 + √

1 + 8k

2

⌋
= n(n2 + 2)

3
, n ≥ 1.

719. Find all pairs of real numbers (a, b) such that a�bn� = b�an� for all positive
integers n.

720. For p and q coprime positive integers prove the reciprocity law⌊
p

q

⌋
+
⌊

2p

q

⌋
+ · · · +

⌊
(q − 1)p

q

⌋
=
⌊
q

p

⌋
+
⌊

2q

p

⌋
+ · · · +

⌊
(p − 1)q

p

⌋
.

721. Prove that for any real number x and for any positive integer n,

�nx� ≥ �x�
1

+ �2x�
2

+ �3x�
3

+ · · · + �nx�
n
.

722. Does there exist a strictly increasing function f : N → N such that f (1) = 2 and
f (f (n)) = f (n)+ n for all n?

723. Suppose that the strictly increasing functions f, g : N → N partition N into two
disjoint sets and satisfy

g(n) = f (f (kn))+ 1, for all n ≥ 1,

for some fixed positive integer k. Prove that f and g are unique with this property
and find explicit formulas for them.
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5.2 Arithmetic

5.2.1 Factorization and Divisibility

There isn’t much to say here. An integer d divides another integer n if there is an integer
d ′ such that n = dd ′. In this case d is called a divisor of n. We denote by gcd(a, b)
the greatest common divisor of a and b. For any positive integers a and b, Euclid’s
algorithm yields integers x and y such that ax − by = gcd(a, b). Two numbers are
called coprime, or relatively prime, if their greatest common divisor is 1. The fact that
for coprime numbers a and b there exist integers x and y such that ax− by = 1 is called
the fundamental theorem of arithmetic.

We begin with a problem from the Soviet Union Mathematical Olympiad for Uni-
versity Students in 1976.

Example. Prove that there is no polynomial with integer coefficients P(x)with the prop-
erty that P(7) = 5 and P(15) = 9.

Solution. Assume that such a polynomial P(x) = anx
n+an−1x

n−1 +· · ·+a0 does exist.
Then P(7) = an7n + an−17n−1 + · · · + a0 and P(15) = an15n + an−115n−1 + · · · + a0.
Subtracting, we obtain

4 = P(15)− P(7) = an(15n − 7n)+ an−1(15n−1 − 7n−1)+ · · · + a1(15 − 7).

Since for any k, 15k − 7k is divisible by 15 − 7 = 8, it follows that P(15)− P(7) = 4
itself is divisible by 8, a contradiction. Hence such a polynomial does not exist. ��

The second problem was given at the Asia-Pacific Mathematical Olympiad in 1998.

Example. Show that for any positive integers a and b, the product (36a + b)(a + 36b)
cannot be a power of 2.

Solution. Assume that (36a + b)(a + 36b) is a power of 2 for some integers a and b.
Without loss of generality, we may assume that a and b are coprime and a < b. Let
36a + b = 2m and a + 36b = 2n. Adding and subtracting, we obtain 37(a + b) =
2m(2n−m + 1), respectively, 35(a − b) = 2m(2n−m − 1). It follows that both a + b and
a − b are divisible by 2m. This can happen only if both a and b are divisible by 2m−1.
Our assumption that a and b are coprime implies that m = 1. But then 36a + b = 2,
which is impossible. Hence the conclusion. ��
724. Find the integers n for which (n3 − 3n2 + 4)/(2n− 1) is an integer.

725. Prove that in the product P = 1! · 2! · 3! · · · 100! one of the factors can be erased so
that the remaining product is a perfect square.
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726. The sequence a1, a2, a3, . . . of positive integers satisfies gcd(ai, aj ) = gcd(i, j)
for i 	= j . Prove that ai = i for all i.

727. Let n, a, b be positive integers. Prove that

gcd(na − 1, nb − 1) = ngcd(a,b) − 1.

728. Let a and b be positive integers. Prove that the greatest common divisor of 2a + 1
and 2b + 1 divides 2gcd(a,b) + 1.

729. Fix a positive integer k and define the sequence (an)n by a1 = k + 1 and an+1 =
a2
n − kan + k for n ≥ 1. Prove that for any distinct positive integers m and n the

numbers am and an are coprime.

730. Let a, b, c, d, e, and f be positive integers. Suppose that S = a+b+c+d+e+f
divides both abc+def and ab+bc+ca−de−ef −f d . Prove that S is composite.

731. Let n be an integer greater than 2. Prove that n(n − 1)4 + 1 is the product of two
integers greater than 1.

732. Determine the functions f : {0, 1, 2 . . . } → {0, 1, 2, . . . } satisfying
(i) f (2n+ 1)2 − f (2n)2 = 6f (n)+ 1 and

(ii) f (2n) ≥ f (n) for all n ≥ 0.

5.2.2 Prime Numbers

A positive integer is called prime if it has no other divisors than 1 and the number itself.
Equivalently, a number is prime if whenever it divides a product it divides one of the
factors. Any positive integer can be written as a product of primes in a unique way up to
a permutation of the factors.

Euclid’s theorem. There are infinitely many prime numbers.

Proof. From the more than one hundred proofs of this theorem we selected the fascinating
topological proof given in 1955 by H. Furstenberg. By definition, a topology on a set X
is a collection T of sets satisfying

(i) ∅, X ∈ T ;
(ii) for any family (Ui)i∈I of sets from T , the union ∪i∈IUi is also in T ;

(iii) for any U1, U2, . . . , Un in T , the intersection U1 ∩ U2 ∩ · · · ∩ Un is in T .

The elements of T are called open sets; their complements are called closed sets.
This definition is the abstraction, in the spirit of Bourbaki, of the properties of open sets
on the real axis.

Furstenberg’s idea was to introduce a topology on Z, namely the smallest topology in
which any set consisting of all terms of a nonconstant arithmetic progression is open. As
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an example, in this topology both the set of odd integers and the set of even integers are
open. Because the intersection of two arithmetic progressions is an arithmetic progres-
sion, the open sets of T are precisely the unions of arithmetic progressions. In particular,
any open set is either infinite or void.

If we define

Aa,d = {. . . , a − 2d, a − d, a, a + d, a + 2d, . . . }, a ∈ Z, d > 0,

then Aa,d is open by hypothesis, but it is also closed because it is the complement of the
open set Aa+1,d ∪ Aa+2,d ∪ · · · ∪ Aa+d−1,d . Hence Z\Aa,d is open.

Now let us assume that only finitely many primes exist, say p1, p2, . . . , pn. Then

A0,p1 ∪ A0,p2 ∪ · · · ∪ A0,pn = Z\{−1, 1}.
This union of open sets is the complement of the open set

(Z\A0,p1) ∪ (Z\A0,p2) ∪ · · · ∪ (Z\A0,pn);
hence it is closed. The complement of this closed set, namely {−1, 1}, must therefore
be open. We have reached a contradiction because this set is neither empty nor infinite.
Hence our assumption was false, and so there are infinitely many primes. ��

Let us begin with the examples.

Example. Prove that for all positive integers n, the number

33n + 1

is the product of at least 2n+ 1 not necessarily distinct primes.

Solution. We induct on n. The statement is clearly true if n = 1. Because

33n+1 + 1 = (
33n + 1

) (
32·3n − 33n + 1

)
,

it suffices to prove that 32·3n − 33n + 1 is composite for all n ≥ 1. But this follows from
the fact that

32·3n − 33n + 1 = (
33n + 1

)2 − 3 · 33n = (
33n + 1

)2 −
(

3
3n+1

2

)2

is the product of two integers greater than 1, namely,

33n + 1 − 3
3n+1

2 and 33n + 1 − 3
3n+1

2 .

This completes the induction. ��
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We proceed with a problem from the 35th International Mathematical Olympiad,
1994, followed by several others that are left to the reader.

Example. Prove that there exists a set A of positive integers with the property that for
any infinite set S of primes, there exist two positive integers m ∈ A and n /∈ A each of
which is a product of k distinct elements of S for some k ≥ 2.

Solution. The proof is constructive. Let p1 < p2 < · · · < pn < · · · be the increasing
sequence of all prime numbers. DefineA to be the set of numbers of the formpi1pi2 · · ·pik ,
where i1 < i2 < · · · < ik and k = pi1 . For example, 3 ·5 ·7 ∈ A and 5 ·7 ·11 ·13 ·17 ∈ A,
but 5 · 7 /∈ A.

Let us show that A satisfies the desired condition. Consider an infinite set of prime
numbers, say q1 < q2 < · · · < qn < · · · . Takem = q2q3 · · · qq2 and n = q3q4 · · · qq2+1.
Then m ∈ A, while n /∈ A because q2 ≥ 3 and so q2 + 1 	= q3. ��

733. Prove that there are infinitely many prime numbers of the form 4m + 3, where
m ≥ 0 is an integer.

734. Let k be a positive integer such that the number p = 3k + 1 is prime and let

1

1 · 2
+ 1

3 · 4
+ · · · + 1

(2k − 1)2k
= m

n

for some coprime positive integers m and n. Prove that p divides m.

735. Solve in positive integers the equation

xx+y = yy−x.

736. Show that each positive integer can be written as the difference of two positive
integers having the same number of prime factors.

737. Find all composite positive integers n for which it is possible to arrange all divisors
of n that are greater than 1 in a circle such that no two adjacent divisors are relatively
prime.

738. Is it possible to place 1995 different positive integers around a circle so that for any
two adjacent numbers, the ratio of the greater to the smaller is a prime?

739. Let p be a prime number. Prove that there are infinitely many multiples of p whose
last ten digits are all distinct.

740. Let A be the set of positive integers representable in the form a2 + 2b2 for integers
a, b with b 	= 0. Show that if p2 ∈ A for a prime p, then p ∈ A.
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741. The positive divisors of an integer n > 1 are 1 = d1 < d2 < · · · < dk = n. Let
s = d1d2 + d2d3 + · · · + dk−1dk. Prove that s < n2 and find all n for which s
divides n2.

742. Prove that there exist functions f, g : {0, 1, 2, . . . }× {0, 1, 2, . . . } → {0, 1, 2, . . . }
with the property that an odd number n > 1 is prime if and only if there do not exist
nonnegative integers a and b such that n = f (a, b)− g(a, b).

743. Let n ≥ 2 be an integer. Prove that if k2 + k + n is a prime number for all
0 ≤ k ≤ √

n
3 , then k2 + k + n is a prime number for all 0 ≤ k ≤ n− 2.

The following formula is sometimes attributed to Legendre.

Polignac’s formula. If p is a prime number and n a positive integer, then the exponent
of p in n! is given by ⌊

n

p

⌋
+
⌊
n

p2

⌋
+
⌊
n

p3

⌋
+ · · · .

Proof. Each multiple of p between 1 and n contributes a factor of p to n!. There are
�n/p� such factors. But the multiples of p2 contribute yet another factor of p, so one
should add �n/p2�. And then come the multiples of p3 and so on. ��
Example. Let m be an integer greater than 1. Prove that the product of m consecutive
terms in an arithmetic progression is divisible by m! if the ratio of the progression is
coprime to m.

Solution. Let p be a prime that divides n!. The exponent of p in n! is given by Polignac’s
formula. On the other hand, in the product a(a + r)(a + 2r) · · · (a + (m − 1)r) of m
consecutive terms in a progression of ratio r , with gdc(r,m) = 1, at least �m/pi� terms
are divisible by pi . It follows that the power of p in this product is greater than or equal
to the power of p inm!. Because this holds true for any prime factor inm!, the conclusion
follows. ��

All problems below are based on Polignac’s formula.

744. Find all positive integers n such that n! ends in exactly 1000 zeros.

745. Prove that n! is not divisible by 2n for any positive integer n.

746. Show that for each positive integer n,

n! =
n∏
i=1

lcm(1, 2, . . . , �n/i�),

where lcm denotes the least common multiple.
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747. Prove that the expression

gcd(m, n)

n

(
n

m

)
is an integer for all pairs of integers n ≥ m ≥ 1.

748. Let k and n be integers with 0 ≤ k ≤ n2/4. Assume that k has no prime divisor
greater than n. Prove that n! is divisible by k.

5.2.3 Modular Arithmetic

A positive integer n partitions the set of integers Z into n equivalence classes by the
remainders obtained on dividing by n. The remainders are called residues modulo n.
We denote by Zn = {0, 1, . . . , n − 1} the set of equivalence classes, indexed by their
residues. Two numbers a and b are said to be congruent modulo n, which is written
a ≡ b (mod n), if they give the same remainder when divided by n, that is, if a − b is
divisible by n.

The ring structure of Z induces a ring structure on Zn. The latter ring is more
interesting, since it has zero divisors whenever n is composite, and it has other invertible
elements besides ±1. To make this precise, for any divisor d of n the product of d and
n/d is zero. On the other hand, the fundamental theorem of arithmetic, which states
that whenever m and n are coprime there exist integers a and b such that am− bn = 1,
implies that any number coprime to n has a multiplicative inverse modulo n. For a prime
p, every nonzero element in Zp has an inverse modulo p. This means that Zp is a field.
We also point out that the set of invertible elements in Zn is closed under multiplication;
it is an Abelian group.

Awell-known property that will be used in some of the problems below is that modulo
9, a number is congruent to the sum of its digits. This is because the difference of the
number and the sum of its digits is equal to 9 times the tens digit plus 99 times the
hundreds digit plus 999 times the thousands digit, and so on. Here is an elementary
application of this fact.

Example. The number 229 has 9 distinct digits. Without using a calculator, tell which
digit is missing.

Solution. As we have just observed, a number is congruent to the sum of its digits modulo
9. Note that 0 + 1 + 2 + · · · + 9 = 45, which is divisible by 9. On the other hand,

229 ≡ 22(−1)9 ≡ −4 (mod 9).

So 229 is off by 4 from a multiple of 9. The missing digit is 4. ��
We continue with a property of the harmonic series discovered by C. Pinzka.
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Example. Let p > 3 be a prime number, and let

r

ps
= 1 + 1

2
+ 1

3
+ · · · + 1

p
,

the sum of the first p terms of the harmonic series. Prove that p3 divides r − s.

Solution. The sum of the first p terms of the harmonic series can be written as

p!
1

+ p!
2

+ · · · + p!
p

p! .

Because the denominator is p! and the numerator is not divisible by p, any common
prime divisor of the numerator and the denominator is less than p. Thus it suffices to
prove the property for r = p!

1 + p!
2 + · · · + p!

p
and s = (p − 1)!. Note that

r − s = p

(
(p − 1)!

1
+ (p − 1)!

2
+ · · · + (p − 1)!

p − 1

)
.

We are left with showing that

(p − 1)!
1

+ (p − 1)!
2

+ · · · + (p − 1)!
p − 1

is divisible by p2. This sum is equal to
p−1

2∑
k=1

(k + p − k)
(p − 1)!
k(p − k)

= p

p−1
2∑
k=1

(p − 1)!
k(p − k)

.

So let us show that
p−1

2∑
k=1

(p − 1)!
k(p − k)

is an integer divisible by p. Note that if k−1 denotes the inverse of k modulo p, then
p − k−1 is the inverse of p − k modulo p. Hence the residue classes of [k(p − k)]−1

represent just a permutation of the residue classes of k(p− k), k = 1, 2, . . . , p−1
2 . Using

this fact, we have
p−1

2∑
k=1

(p − 1)!
k(p − k)

≡ (p − 1)!
p−1

2∑
k=1

[k(p − k)]−1 ≡ (p − 1)!
p−1

2∑
k=1

k(p − k)

≡ −(p − 1)!
p−1

2∑
k=1

k2 = −(p − 1)!
p−1

2 · p+1
2 · p

6
≡ 0 (mod p).

This completes the proof. ��
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We left the better problems as exercises.

749. Prove that among any three distinct integers we can find two, say a and b, such that
the number a3b − ab3 is a multiple of 10.

750. Show that the number 20022002 can be written as the sum of four perfect cubes, but
not as the sum of three perfect cubes.

751. The last four digits of a perfect square are equal. Prove that they are all equal to
zero.

752. Solve in positive integers the equation

2x · 3y = 1 + 5z.

753. Define the sequence (an)n recursively by a1 = 2, a2 = 5, and

an+1 = (2 − n2)an + (2 + n2)an−1 for n ≥ 2.

Do there exist indices p, q, r such that ap · aq = ar?

754. For some integer k > 0, assume that an arithmetic progression an+ b, n ≥ 1, with
a and b positive integers, contains the kth power of an integer. Prove that for any
integer m > 0 there exist an infinite number of values of n for which an+ b is the
sum of m kth powers of nonzero integers.

755. Given a positive integer n > 1000, add the residues of 2n modulo each of the
numbers 1, 2, 3, . . . , n. Prove that this sum is greater than 2n.

756. Prove that ifn ≥ 3 prime numbers form an arithmetic progression, then the common
difference of the progression is divisible by any prime number p < n.

757. LetP(x) = amx
m+am−1x

m−1+· · ·+a0 andQ(x) = bnx
n+bn−1x

n−1+· · ·+b0 be
two polynomials with each coefficient ai and bi equal to either 1 or 2002. Assuming
that P(x) divides Q(x), show that m+ 1 is a divisor of n+ 1.

758. Prove that if n is a positive integer that is divisible by at least two primes, then there
exists an n-gon with all angles equal and with side lengths the numbers 1, 2, . . . , n
in some order.

759. Find all prime numbers p having the property that when divided by every prime
number q < p yield a remainder that is a square-free integer.

5.2.4 Fermat’s Little Theorem

A useful tool for solving problems about prime numbers is a theorem due to P. Fermat.
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Fermat’s little theorem. Let p be a prime number, and n a positive integer. Then

np − n ≡ 0 (mod p).

Proof. We give a geometric proof. Consider the set M of all possible colorings of the
vertices of a regular p-gon by n colors (see Figure 36). This set has np elements. The
group Zp acts on this set by rotations of angles 2kπ

p
, k = 0, 1, . . . , p − 1.

Figure 36

Consider the quotient spaceM/Zp obtained by identifying colorings that become the
same through a rotation. We want to count the number of elements of M/Zp. For that
we need to understand the orbits of the action of the group, i.e., the equivalence classes
of rotations under this identification.

The orbit of a monochromatic coloring has just one element: the coloring itself.
There are n such orbits.

What if the coloring is not monochromatic? We claim that in this case its orbit has
exactly p elements. Here is the place where the fact that p is prime comes into play.
The additive group Zp of residues modulo p is generated by any of its nonzero elements.
Hence if the coloring coincided with itself under a rotation of angle 2kπ/p for some
0 < k < p, then it would coincide with itself under multiples of this rotation, hence
under all rotations in Zp. But this is not possible, unless the coloring is monochromatic.
This proves that rotations produce distinct colorings, so the orbit has p elements. We
deduce that the remaining np − n elements of M are grouped in (disjoint) equivalence
classes each containing p elements. The counting of orbits gives

|M/Zp| = n+ np − n

p
,

which shows that (np − n)/p must be an integer. The theorem is proved. ��
In particular, if n and p are coprime, then np−1 − 1 is divisible by p. However, this

result alone cannot be used as a primality test for p. For example, L. Euler found that 341
divides 2340 − 1, while 341 = 31 × 11. So the converse of Fermat’s little theorem fails.

We illustrate the use of Fermat’s little theorem with a short-listed problem from the
46th International Mathematical Olympiad, 2005.
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Example. Show that for every prime p there is an integer n such that 2n + 3n + 6n − 1
is divisible by p.

Solution. The property is true for p = 2 and p = 3, since 22 + 32 + 62 − 1 = 48. Let
p be a prime greater than 3. By Fermat’s little theorem, 2p−1, 3p−1, and 6p−1 are all
congruent to 1 modulo p. Hence

3 · 2p−1 + 2 · 3p−1 + 6p−1 ≡ 3 + 2 + 1 = 6 (mod p).

It follows that

6 · 2p−2 + 6 · 3p−2 + 6 · 6p−2 ≡ 6 (mod p).

Dividing by 6, we find that 2p−2 + 3p−2 + 6p−2 − 1 is divisible by p, and we are
done. ��

And here is a problem from the 2005 USA Mathematical Olympiad, proposed by the
first author of the book.2

Example. Prove that the system

x6 + x3 + x3y + y = 147157,

x3 + x3y + y2 + y + z9 = 157147

has no solutions in integers x, y, and z.

Solution. Add the two equations, then add 1 to each side to obtain the Diophantine
equation

(x3 + y + 1)2 + z9 = 147157 + 157147 + 1.

The right-hand side is rather large, and it is natural to reduce modulo some number. And
since the left-hand side is a sum of a square and a ninth power, it is natural to reduce
modulo 19 because 2 × 9 + 1 = 19. By Fermat’s little theorem, a18 ≡ 1 (mod 19)
whenever a is not a multiple of 19, and so the order of a square is either 1, 3, or 9, while
the order of a ninth-power is either 1 or 2.

Computed by hand, the quadratic residues mod 19 are −8,−3,−2, 0, 1, 4, 5, 6, 7, 9,
while the residues of ninth powers are −1, 0, 1. Also, applying Fermat’s little theorem
we see that

147157 + 157147 + 1 ≡ 1413 + 53 + 1 ≡ 14 (mod 19).

An easy verification shows that 14 cannot be obtained as a sum of a quadratic residue and
a ninth-power residue. Thus the original system has no solution in integers x, y, and z.

2 The statement was improved by R. Stong and E. Johnston to prevent a simpler solution.
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A different solution is possible using reduction modulo 13. Fermat’s little theorem
implies a12 ≡ 1 (mod 13) when a is not a multiple of 13.

We start by producing the same Diophantine equation. Applying Fermat’s little
theorem, we can reduce the right-hand side modulo 13. We find that

147157 + 157147 + 1 ≡ 41 + 12 ≡ 6 (mod 13).

The cubes modulo 13 are 0,±1, and ±5. Writing the first equation of the original sys-
tem as

(x3 + 1)(x3 + y) ≡ 4 (mod 13),

it follows that x3 + y must be congruent to 4, 2, 5, or −1. Hence

(x3 + y + 1)2 ≡ 12, 9, 10 or 0 (mod 13).

Note also that z9 is a cube; hence z9 must be 0, 1, 5, 8, or 12 modulo 13. It is easy to check
that 6 (mod 13) cannot be obtained by adding one of 0, 9, 10, 12 to one of 0, 1, 5, 8, 12.
As a remark, the second solution also works if z9 is replaced by z3. ��

When solving the following problems, think that “work done with passion brings
results’’ (Virgil).

760. Show that if n has p − 1 digits all equal to 1, where p is a prime not equal to 2, 3,
or 5, then n is divisible by p.

761. Prove that for any prime p > 17, the number

p32 − 1

is divisible by 16320.

762. Let p be an odd prime number. Show that if the equation x2 ≡ a (mod p) has a
solution, then a

p−1
2 ≡ 1 (mod p). Conclude that there are infinitely many primes

of the form 4m+ 1.

763. Prove that the equation x2 = y3 + 7 has no integer solutions.

764. Let n > 1 be a positive integer. Prove that the equation (x + 1)n − xn = ny has no
positive integer solutions.

765. Prove that the sequence 2n − 3, n ≥ 1, contains an infinite subsequence whose
terms are pairwise relatively prime.

766. Let (xn)n be a sequence of positive integers satisfying the recurrence relation xn+1 =
5xn − 6xn−1. Prove that infinitely many terms of the sequence are composite.
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767. Let f (x1, x2, . . . , xn) be a polynomial with integer coefficients of total degree less
than n. Show that the number of ordered n-tuples (x1, x2, . . . , xn)with 0 ≤ xi ≤ 12
such that f (x1, x2, . . . , xn) ≡ 0 (mod 13) is divisible by 13.

768. Determine all integers a such that ak+1 is divisible by 12321 for some appropriately
chosen positive integer k > 1.

5.2.5 Wilson’s Theorem

Another result about prime numbers is known as Wilson’s theorem.

Wilson’s theorem. For every prime p, the number (p − 1)! + 1 is divisible by p.

Proof. We group the residue classes 1, 2, . . . , p − 1 in pairs (a, b) such that ab ≡
1 (mod p). Let us see when a = b in such a pair. The congruence a2 ≡ 1 (mod p)
is equivalent to the fact that a2 − 1 = (a − 1)(a + 1) is divisible by p. This happens
only when a = 1 or a = p − 1. For all other residue classes the pairs contain distinct
elements. So in the product 2 ·3 · · · (p−2) the factors can be paired such that the product
of the numbers in each pair is congruent to 1. Therefore,

1 · 2 · · · (p − 2) · (p − 1) ≡ 1 · (p − 1) ≡ −1 (mod p).

The theorem is proved. ��
The converse is also true, since n must divide (n− 1)! for composite n. And now an

application.

Example. Let p be an odd prime. Prove that

12 · 32 · · · (p − 2)2 ≡ (−1)
p+1

2 (mod p)

and

22 · 42 · · · (p − 1)2 ≡ (−1)
p+1

2 (mod p).

Solution. By Wilson’s theorem,

(1 · 3 · · · (p − 2))(2 · 4 · · · (p − 1)) ≡ −1 (mod p).

On the other hand,

1 ≡ −(p − 1)(mod p), 3 ≡ −(p − 3)(mod p), . . . , p − 2 ≡ −(p − (p − 2))(mod p).

Therefore,

1 · 3 · · · (p − 2) ≡ (−1)
p−1

2 (2 · 4 · · · (p − 1)) (mod p).

Multiplying the two congruences and canceling out the product 2 · 4 · · · (p − 1), we ob-
tain the first congruence from the statement. Switching the sides in the second and multi-
plying the congruences again, we obtain the second congruence from the statement. ��
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Here are more examples.

769. For each positive integer n, find the greatest common divisor of n!+1 and (n+1)!.
770. Prove that there are no positive integers n such that the set {n, n + 1, n + 2, n +

3, n+ 4, n+ 5} can be partitioned into two sets with the product of the elements of
one set equal to the product of the elements of the other set.

771. Let p be an odd prime. Show that if the equation x2 ≡ a (mod p) has no solution
then a

p−1
2 ≡ −1 (mod p).

772. Let p be an odd prime number. Show that the equation x2 ≡ −1 (mod p) has a
solution if and only if p ≡ 1 (mod 4).

773. Let p be a prime number and n an integer with 1 ≤ n ≤ p. Prove that

(p − n)!(n− 1)! ≡ (−1)n (mod p).

774. Let p be an odd prime and a1, a2, . . . , ap an arithmetic progression whose common
difference is not divisible by p. Prove that there exists an index i such that the
number a1a2 · · · ap + ai is divisible by p2.

5.2.6 Euler’s Totient Function

Euler’s totient function associates to a positive integer n the number φ(n) of positive
integers less than or equal to n that are coprime to n. It has a simple formula in terms of
the prime factorization of n.

Proposition. If the distinct prime factors of n are p1, p2, . . . , pk, then

φ(n) = n

(
1 − 1

p1

)(
1 − 1

p2

)
· · ·

(
1 − 1

pk

)
.

Proof. This is just an easy application of the inclusion–exclusion principle. From the n
numbers between 1 and n, we eliminate the n/pi numbers that are divisible by pi , for
each 1 ≤ i ≤ n. We are left with

n− n

(
1

p1
+ 1

p2
+ · · · + 1

pk

)
numbers. But those divisible by both pi and pj have been subtracted twice, so we have
to add them back, obtaining

n− n

(
1

p1
+ 1

p2
+ · · · + 1

pk

)
+ n

(
1

p1p2
+ 1

p3
+ · · · + 1

pk−1pk

)
.
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Again, we see that the numbers divisible by pi , pj , and pl have been subtracted and then
added back, so we need to subtract these once more. Repeating the argument, we obtain
in the end

n− n

(
1

p1
+ 1

p2
+ · · · + 1

pk

)
+ n

(
1

p1p2
+ 1

p3
+ · · · + 1

pk−1pk

)
− · · · ± n

p1p2 · · ·pk .

Factoring this, we obtain the formula from the statement. ��
In particular, n is prime if and only if φ(n) = n − 1, and if n = p1p2 · · ·pk, where

pi are distinct primes, 1 ≤ i ≤ k, then φ(n) = (p1 − 1)(p2 − 1) · · · (pn − 1). Also, if m
and n are coprime, then φ(mn) = φ(m)φ(n).

Fermat’s little theorem admits the following generalization.

Euler’s theorem. Let n > 1 be an integer and a an integer coprime to n. Then

aφ(n) ≡ 1 (mod n).

Proof. The group of units Z∗
n in the ring Zn consists of the residue classes coprime to n.

Its order is φ(n). By the Lagrange theorem, the order of an element divides the order of
the group. Hence the conclusion.

Here is a more elementary argument. Consider the set S = {a1, a2, . . . , aφ(n)} of all
residue classes modulo n that are coprime to n. Because gcd(a, n) = 1, it follows that,
modulo n, aa1, aa2, . . . , aaφ(n) is a permutation of a1, a2, . . . , aφ(n). Then

(aa1)(aa2) · · · (aaφ(n)) ≡ a1a2 · · · aφ(n) (mod n).

Since gcd(ak, n) = 1, for k = 1, 2, . . . , φ(n), we can divide both sides by a1a2 · · · aφ(n)
to obtain aφ(n) ≡ 1 (mod n), as desired. ��

We apply Euler’s theorem to a problem by I. Cucurezeanu.

Example. Let n be an even positive integer. Prove that n2 − 1 divides 2n! − 1.

Solution. Let n = m − 1, so that m is odd. We must show that m(m − 2) divides
2(m−1)! −1. Because φ(m) < m, φ(m) divides (m−1)!, so 2φ(m)−1 divides 2(m−1)! −1.
Euler’s theorem implies that m divides 2φ(m) − 1. Therefore, m divides 2(m−1)! − 1.
Arguing similarly form− 2, we see thatm− 2 divides 2(m−1)! − 1 as well. The numbers
m and m− 2 are relatively prime, so m(m− 2) divides 2(m−1)! − 1, as desired. ��

A second example comes from the 1997 Romanian Mathematical Olympiad.

Example. Let a > 1 be an integer. Show that the set

S = {a2 + a − 1, a3 + a2 − 1, a4 + a3 − 1, . . . }
contains an infinite subset whose elements are pairwise coprime.
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Solution. We show that any subset of S having n elements that are pairwise coprime can
be extended to a set with n + 1 elements. Indeed, if N is the product of the elements
of the subset, then since the elements of S are coprime to a, so must be N . By Euler’s
theorem,

aφ(N)+1 + aφ(N) − 1 ≡ a + 1 − 1 ≡ a (mod N).

It follows that aφ(N)+1 + aφ(N) − 1 is coprime to N and can be added to S. We are
done. ��

We now challenge you with the following problems.

775. Prove that for any positive integer n,∑
k|n
φ(k) = n.

Here k|n means k divides n.

776. Prove that for any positive integer n other than 2 or 6,

φ(n) ≥ √
n.

777. Prove that there are infinitely many positive integers n such that (φ(n))2 + n2 is a
perfect square.

778. Prove that there are infinitely many even positive integersm for which the equation
φ(n) = m has no solutions.

779. Prove that for every positive integer s there exists a positive integer n divisible by
s and with the sum of the digits equal to s.

780. Prove that the equation

2x + 3 = z3

does not admit positive integer solutions.

781. Prove for every positive integer n the identity

φ(1)
⌊n

1

⌋
+ φ(2)

⌊n
2

⌋
+ φ(3)

⌊n
3

⌋
+ · · · + φ(n)

⌊n
n

⌋
= n(n+ 1)

2
.

782. Given the nonzero integers a and d, show that the sequence

a, a + d, a + 2d, . . . , a + nd, . . .

contains infinitely many terms that have the same prime factors.
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Euler’s theorem is widely used in cryptography. The encryption scheme used nowa-
days, called the RSA algorithm, works as follows:

A merchant wants to obtain the credit card number of a customer over the Internet.
The information traveling between the two can be viewed by anyone. The merchant is in
possession of two large prime numbers p and q. It transmits to the customer the product
n = pq and a positive integer k coprime to φ(n) = (p − 1)(q − 1). The customer
raises the credit card number α to the kth power, then reduces it modulo n and transmits
the answer β to the merchant. Using the Euclidean algorithm for the greatest common
divisor, the merchant determines positive integers m and a satisfying

mk − a(p − 1)(q − 1) = 1.

Then he computes the residue of βm modulo n. By Euler’s theorem,

βm ≡ αmk = αa(p−1)(q−1)+1 = (
α(p−1)(q−1)

)a · α = (
αφ(n)

)a · α ≡ α (mod n).

For n sufficiently large, the residue class of α modulo n is α itself. The merchant was
able to retrieve the credit card number.

As of this date there is no known algorithm for factoring numbers in polynomial time,
while large primes can be found relatively quickly, and for this reason an eavesdropper
cannot determine p and q from n in a reasonable amount of time, and hence cannot break
the encryption.

783. Devise a scheme by which a bank can transmit to its customers secure information
over the Internet. Only the bank (and not the customers) is in the possession of the
secret prime numbers p and q.

784. A group of United Nations experts is investigating the nuclear program of a country.
While they operate in that country, their findings should be handed over to the
Ministry of Internal Affairs of the country, which verifies the document for leaks of
classified information, then submits it to the United Nations. Devise a scheme by
which the country can read the document but cannot modify its contents without
destroying the information.

5.2.7 The Chinese Remainder Theorem

Mentioned for the first time in a fourth-century book of Sun Tsu Suan-Ching, this result
can be stated as follows.

The Chinese Remainder Theorem. Let m1,m2, . . . , mk be pairwise coprime positive
integers greater than 1. Then for any integers a1, a2, . . . , ak, the system of congruences

x ≡ a1 (mod m1), x ≡ a2 (mod m2), . . . , x ≡ an (mod mk)

has solutions, and any two such solutions are congruent modulo m = m1m2 . . . mk.
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Proof. For any j , 1 ≤ j ≤ k, the number m/mj is coprime to mj and hence invertible
with respect to mj . Let bj be the inverse. Then

x0 = m

m1
b1a1 + m

m2
b2a2 + · · · + m

mk
bkak

is a solution to the system. For any other solution x, the difference x − x0 is divisible by
m. It follows that the general solution is of the form x0 +mt , with t an integer. ��

We illustrate the use of the Chinese Remainder Theorem with an example from the
classic book of W. Sierpiński, 250 Problems in Elementary Number Theory (Państwowe
Wydawnictwo Naukowe, Warsawa, 1970).

Example. Prove that the system of Diophantine equations

x2
1 + x2

2 + x2
3 + x2

4 = y5,

x3
1 + x3

2 + x3
3 + x3

4 = z2,

x5
1 + x5

2 + x5
3 + x5

4 = t3

has infinitely many solutions.

Solution. Let a = 12 +22 +32 +42, b = 13 +23 +33 +43, c = 15 +25 +35 +45. We look
for solutions of the form x1 = ambncp, x2 = 2ambncp, x3 = 3ambncp, x4 = 4ambncp.
These satisfy

x2
1 + x2

2 + x2
3 + x2

4 = a2m+1b2nc2p,

x3
1 + x3

2 + x3
3 + x3

4 = a3mb3n+1c3p,

x5
1 + x5

2 + x5
3 + x5

4 = a5mb5nc5p+1.

We would like the right-hand sides to be a fifth, second, and third power, respectively.
Reformulating, we want to show that there exist infinitely many m, n, p such that

2m+ 1 ≡ 2n ≡ 2p ≡ 0 (mod 5),

3m ≡ 3n+ 1 ≡ 3p ≡ 0 (mod 2),

5m ≡ 5n ≡ 5p + 1 ≡ 0 (mod 3).

But this follows from the Chinese Remainder Theorem, and we are done. ��
785. An old woman went to the market and a horse stepped on her basket and smashed

her eggs. The rider offered to pay for the eggs and asked her how many there were.
She did not remember the exact number, but when she had taken them two at a time
there was one egg left, and the same happened when she took three, four, five, and
six at a time. But when she took them seven at a time, they came out even. What
is the smallest number of eggs she could have had?
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786. Prove that for every n, there exist n consecutive integers each of which is divisible
by two different primes.

787. Let P(x) be a polynomial with integer coefficients. For any positive integer m, let
N(m) denote the number of solutions to the equation P(x) ≡ 0 (mod m). Show
that if m1 and m2 are coprime integers, then N(m1m2) = N(m1)N(m2).

788. Alice and Bob play a game in which they take turns removing stones from a heap
that initially has n stones. The number of stones removed at each turn must be
one less than a prime number. The winner is the player who takes the last stone.
Alice plays first. Prove that there are infinitely many n such that Bob has a winning
strategy. (For example, if n = 17, then Alice might take 6 leaving 11; then Bob
might take 1 leaving 10; then Alice can take the remaining stones to win.)

789. Show that there exists an increasing sequence (an)n≥1 of positive integers such that
for any k ≥ 0, the sequence k + an, n ≥ 1, contains only finitely many primes.

790. Is there a sequence of positive integers in which every positive integer occurs exactly
once and for every k = 1, 2, 3, . . . the sum of the first k terms is divisible by k?

791. Prove that there exists a positive integer k such that k ·2n+1 is composite for every
positive integer n.

792. Let a and b be two positive integers such that for any positive integer n, an + n

divides bn + n. Prove that a = b.

793. A lattice point (x, y) ∈ Z2 is visible from the origin if x and y are coprime. Prove
that for any positive integer n there exists a lattice point (a, b)whose distance from
every visible point is greater than n.

5.3 Diophantine Equations

5.3.1 Linear Diophantine Equations

A linear Diophantine equation (named in the honor of Diophantus, who studied equations
over the integers) is an equation of the form

a1x1 + · · · + anxn = b,

where a1, . . . , an, and b are integers. We will discuss only the Diophantine equation

ax − by = c.

Theorem. The equation ax − by = c has solutions if and only if gcd(a, b) divides
c. If (x0, y0) is a solution, then all other solutions are of the form x = x0 + b

gcd(a,b) t ,
y = y0 + a

gcd(a,b) t , t ∈ Z.
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Proof. For the equation to have solutions it is clearly necessary that c be divisible by
gcd(a, b). Dividing through by gcd(a, b) we can assume that a and b are coprime.

To show that the equation has solutions, we first examine the case c = 1. The method
of solving this equation is a consequence of Euclid’s algorithm for finding the greatest
common divisor. This algorithm consists of a successive series of divisions

a = q1b + r1,

b = q2r1 + r2,

r1 = q3r2 + r3,

· · ·
rn−2 = qnrn−1 + rn,

where rn is the greatest common divisor of a and b, which in our case is 1. If we work
backward, we obtain

1 = rn−1(−qn)− (−rn−2) = rn−2(1 − qn−1)− rn−3qn = · · · = ax0 − by0

for whatever numbers x0 and y0 arise at the last stage. This yields a particular solution
(x0, y0).

For a general c, just multiply this solution by c. If (x1, y1) is another solution, then
by subtracting ax0 −by0 = c from ax1 −by1 = c, we obtain a(x1 −x0)−b(y1 −y0) = 0,
hence x1 − x0 = b

gcd(a,b) t , and y1 − y0 = a
gcd(a,b) t for some integer number t . This shows

that the general solution is of the form (x0 + b
gcd(a,b) t, y0 + a

gcd(a,b) t), t an integer. The
theorem is proved. ��

The algorithm for finding a particular solution can be better visualized if we use the
continued fraction expansion

a

b
= −a1 + 1

−a2 + 1

−a3 + · · · + 1

−an−1 + 1

−an
.

In this, if we delete 1
−an , we obtain a simpler fraction, and this fraction is nothing

but y0
x0

.
The equality ax − by = 1 shows that the matrix with integer entries(

a y

b x

)
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has determinant 1. The matrices with this property form the special linear group SL(2,Z).
This group is generated by the matrices

S =
(

0 −1
1 0

)
and T =

(
1 1
0 1

)
.

Explicitly, (
a y

b x

)
= ST a1ST a2S · · · ST anS,

since matrix multiplication mimics the (backward) calculation of the continued fraction.
We thus have a method of expressing the elements of SL(2,Z) in terms of generators.

The special linear group SL(2,Z) arises in non-Euclidean geometry. It acts on the
upper half-plane, on which Poincaré modeled the “plane’’ of Lobachevskian geometry.
The “lines’’ of this “plane’’ are the semicircles and half-lines orthogonal to the real axis.
A matrix

A

(
a b

c d

)
acts on the Lobachevski plane by

z → az+ b

cz+ d
, ad − bc = 1.

All these transformations form a group of isometries of the Lobachevski plane. Note
that A and −A induce the same transformations; thus this group of isometries of
the Lobachevski plane, also called the modular group, is isomorphic to PSL(2,Z) =
SL(2,Z)/{−I2, I2}. The matrices S and T become the inversion with respect to the unit
circle z → − 1

z
and the translation z → z+ 1.

We stop here with the discussion and list some problems.

794. Write the matrix (
12 5
7 3

)
as the product of several copies of the matrices(

0 1
1 0

)
and

(
1 1
0 1

)
.

(No, there is no typo in the matrix on the left.)
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795. Let a, b, c, d be integers with the property that for any two integers m and n there
exist integers x and y satisfying the system

ax + by = m,

cx + dy = n.

Prove that ad − bc = ±1.

796. Let a, b, c, d be positive integers with gcd(a, b) = 1. Prove that the system of
equations {

ax − yz− c = 0,

bx − yt + d = 0

has infinitely many solutions in positive integers (x, y, z, t).

We now ask for the nonnegative solutions to the equation ax+ by = c, where a, b, c
are positive numbers. This is a particular case, solved by Sylvester, of the Frobenius
coin problem: what is the largest amount of money that cannot be paid using coins worth
a1, a2, . . . , an cents? Here is the answer.

Sylvester’s theorem. Let a and b be coprime positive integers. Then ab − a − b is the
largest positive integer c for which the equation

ax + by = c

is not solvable in nonnegative integers.

Proof. LetN > ab−a−b. The integer solutions to the equation ax+by = N are of the
form (x, y) = (x0+bt, y0−at), with t an integer. Choose t such that 0 ≤ y0−at ≤ a−1.
Then

(x0 + bt)a = N − (y0 − at)b > ab − a − b − (a − 1)b = −a,
which implies that x0 + bt > −1, and so x0 + bt ≥ 0. Hence in this case the equation
ax + by = N admits nonnegative integer solutions.

On the other hand, if there existed x, y ≥ 0 such that

ax + by = ab − a − b,

then we would have ab = a(x + 1)+ b(y + 1). Since a and b are coprime, this would
imply that a divides y+ 1 and b divides x+ 1. But then y+ 1 ≥ a and x+ 1 ≥ b, which
would then lead to the contradiction

ab = a(x + 1)+ b(y + 1) ≥ 2ab.

This proves the theorem. ��
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And now the problems.

797. Given a piece of paper, we can cut it into 8 or 12 pieces. Any of these pieces can be
cut into 8 or 12, and so on. Show that we can obtain any number of pieces greater
than 60. Can we obtain exactly 60 pieces?

798. Let a and b be positive integers. For a nonnegative integer n let s(n) be the number
of nonnegative integer solutions to the equation ax + by = n. Prove that the
generating function of the sequence (s(n))n is

f (x) = 1

(1 − xa)(1 − xb)
.

799. Let n > 6 be a positive integer. Prove that the equation

x + y = n

admits a solution with x and y coprime positive integers both greater than 1.

800. Prove that the d-dimensional cube can be dissected into n d-dimensional cubes for
all sufficiently large values of n.

5.3.2 The Equation of Pythagoras

The Diophantine equation

x2 + y2 = z2,

has as solutions triples of positive integers that are the side lengths of a right triangle,
whence the name. Let us solve it.

If x and z have a common factor, this factor divides y as well. Let us assume first
that x and z are coprime. We can also assume that x and z have the same parity (both are
odd); otherwise, exchange x and y.

In this situation, write the equation as

y2 = (z+ x)(z− x).

The factors z+x and z−x are both divisible by 2. Moreover, 2 is their greatest common
divisor, since it is the greatest common divisor of their sum 2z and their difference 2x.
We deduce that y is even, and there exist coprime integers u and v such that y = 2uv,
z+x = 2u2 and z−x = 2v2. We obtain x = u2 −v2 and z = u2 +v2. Incorporating the
common factor of x, y, and z, we find that the solutions to the equation are parametrized
by triples of integers (u, v, k) as x = k(u2 − v2), y = 2kuv, and z = k(u2 + v2) or
x = 2kuv, y = k(u2 − v2), and z = k(u2 + v2). The positive solutions are called
Pythagorean triples.
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There is a more profound way to look at this equation. Dividing through by z2, we
obtain the equivalent form (

x

z

)2

+
(
y

z

)2

= 1.

This means that we are supposed to find the points of rational coordinates on the unit circle.
Like any conic, the circle can be parametrized by rational functions. A parametrization
is ( 1−t2

1+t2 ,
2t

1+t2 ), t ∈ R ∪ {∞}. The fractions 1−t2
1+t2 and 2t

1+t2 are simultaneously rational if
and only if t itself is rational. In that case t = u

v
for some coprime integers u and v. Thus

we should have

x

z
=

1 −
(u
v

)2

1 +
(u
v

)2 and
y

z
=

2
u

v

1 +
(u
v

)2 ,

where again we look at the case in which x, y, and z have no common factor, and x and
z are both odd. Then y is necessarily even and

y

z
= 2uv

u2 + v2
.

Because u and v are coprime, and because y is even, the fraction on the right-hand side
is irreducible. Hence y = 2uv, z = u2 +v2, and consequently x = u2 −v2. Exchanging
x and y, we obtain the other parametrization. In conclusion, we have the following
theorem.

Theorem. Any solution x, y, z to the equation x2 + y2 = z2 in positive integers is of
the form x = k(u2 − v2), y = 2kuv, z = k(u2 + v2), or x = 2kuv, y = k(u2 − v2),
z = k(u2 + v2), where k is an integer and u, v are coprime integers with u > v not
both odd.

We now describe an occurrence of Pythagorean triples within the Fibonacci sequence

1, 1, 2, 3, 5︸︷︷︸, 8︸ ︷︷ ︸, 13, 21, 34, 55, 89, 144, 233, . . . .

Take the terms F4 = 3 and F5 = 5, multiply them, and double the product. Then take the
product ofF3 = 2 andF6 = 8. You obtain the numbers 30 and 16, and 302 +162 = 1156,
which is the square of F9 = 34.

Similarly, the double product of F5 = 5 and F6 = 8 is 80, and the product of F4 = 3
and F7 = 13 is 39. And 802 + 392 = 7921 = F 2

11. One more check: the double
product of F6 = 8 and F7 = 13 is 208, the product of F5 = 5 and F8 = 21 is 105, and
1052 + 2082 = 54289 = F 2

13. In general, we may state the following.
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Example. The numbers 2FnFn+1, Fn−1Fn+2 and F2n+1 form a Pythagorean triple.

Solution. In our parametrization, it is natural to try u = Fn+1 and v = Fn. And indeed,

u2 − v2 = (u− v)(u+ v) = (Fn+1 − Fn)(Fn+1 + Fn) = Fn−1Fn+2,

while the identity

F2n+1 = u2 + v2 = F 2
n+1 + F 2

n

was established in Section 2.3.1. This proves our claim. ��
801. Given that the sides of a right triangle are coprime integers and the sum of the legs

is a perfect square, show that the sum of the cubes of the legs can be written as the
sum of two perfect squares.

802. Find all positive integers x, y, z satisfying the equation 3x + y2 = 5z.

803. Show that for no positive integers x and y can 2x + 25y be a perfect square.

804. Solve the following equation in positive integers:

x2 + y2 = 1997(x − y).

5.3.3 Pell’s Equation

Euler, after reading Wallis’ Opera Mathematica, mistakenly attributed the first serious
study of nontrivial solutions to the equation

x2 −Dy2 = 1

to John Pell. However, there is no evidence that Pell, who taught at the University of
Amsterdam, had ever considered solving such an equation. It should more aptly be called
Fermat’s equation, since it was Fermat who first investigated it. Nevertheless, equations
of Pell type can be traced back to the Greeks. Theon of Smyrna used the ratio x

y
to

approximate
√

2, where x and y are solutions to x2 − 2y2 = 1. A more famous equation
is Archimedes’ problema bovinum (cattle problem) posed as a challenge to Apollonius,
which received a complete solution only in the twentieth century.

Indian mathematicians of the sixth century devised a method for finding solutions to
Pell’s equation. But the general solution was first explained by Lagrange in a series of
papers presented to the Berlin Academy between 1768 and 1770.

Lagrange’s theorem. If D is a positive integer that is not a perfect square, then the
equation
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x2 −Dy2 = 1

has infinitely many solutions in positive integers and the general solution (xn, yn)n≥1 is
computed from the relation

(xn, yn) = (x1 + y1

√
D)n,

where (x1, y1) is the fundamental solution (the minimal solution different from the trivial
solution (1, 0)).

The fundamental solution can be obtained by trial and error. But there is an algorithm
to find it. The continued fraction expansion or

√
D is periodic:

√
D = a0 + 1

a1 + 1

a2 + · · · + 1

an + 1

a1 + 1

a2 + · · ·.

When n is even, the fundamental solution is given by the numerator and the denominator
of the fraction

a0 + 1

a1 + 1

a2 + · · · + 1

an−1

,

while when n is odd, the fundamental solution is given by the numerator and the denom-
inator of the fraction

a0 + 1

a1 + 1

a2 + · · · + 1

an + 1

a1 + 1

a2 + · · · + 1

an−1

.

This algorithm is not as simple as it seems. The smallest solution (x1, y1) can depend
exponentially onD. From the computational point of view, the challenge is to determine
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the numberR = ln(x1 +y1

√
D), called the regulator, with a certain accuracy. At the time

of the writing this book no algorithm has been found to solve the problem in polynomial
time on a classical computer. If a computer governed by the laws of quantum physics
could be built, then such an algorithm exists and was discovered by S. Hallgren.

We found the following application of Pell’s equation published by M.N. Deshpande
in the American Mathematical Monthly.

Example. Find infinitely many triples (a, b, c) of positive integers such that a, b, c are
in arithmetic progression and such that ab + 1, bc + 1, and ca + 1 are perfect squares.

Solution. A slick solution is based on Pell’s equation

x2 − 3y2 = 1.

Pell’s equation, of course, has infinitely many solutions. If (r, s) is a solution, then the
triple (a, b, c) = (2s − r, 2s, 2s + r) is in arithmetic progression and satisfies (2s −
r)2s + 1 = (r − s)2, (2s − r)(2s + r)+ 1 = s2, and 2s(2s + r)+ 1 = (r + s)2. ��

More examples follow.

805. Find a solution to the Diophantine equation

x2 − (m2 + 1)y2 = 1,

where m is a positive integer.

806. Prove that there exist infinitely many squares of the form

1 + 2x
2 + 2y

2
,

where x and y are positive integers.

807. Prove that there exist infinitely many integers n such that n, n+ 1, n+ 2 are each
the sum of two perfect squares. (Example: 0 = 02 + 02, 1 = 02 + 12, 2 = 12 + 12.)

808. Prove that for no integer n can n2 − 2 be a power of 7 with exponent greater than 1.

809. Find the positive solutions to the Diophantine equation

(x + 1)3 − x3 = y2.

810. Find the positive integer solutions to the equation

(x − y)5 = x3 − y3.
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811. Prove that the equation

x3 + y3 + z3 + t3 = 1999

has infinitely many integer solutions.

812. Prove that for every pair of positive integersm and n, there exists a positive integer
p satisfying

(
√
m+ √

m− 1)n = √
p +√

p − 1.

5.3.4 Other Diophantine Equations

In conclusion, try your hand at the following Diophantine equations. Any method is
allowed!

813. Find all integer solutions (x, y) to the equation

x2 + 3xy + 4006(x + y)+ 20032 = 0.

814. Prove that there do not exist positive integers x and y such that x2+xy+y2 = x2y2.

815. Prove that there are infinitely many quadruples x, y, z, w of positive integers
such that

x4 + y4 + z4 = 2002w.

816. Find all nonnegative integers x, y, z, w satisfying

4x + 4y + 4z = w2.

817. Prove that the equation

x2 + y2 + z2 + 3(x + y + z)+ 5 = 0

has no solutions in rational numbers.

818. Find all positive integers x, y such that 7x − 3y = 4.

819. Find all positive integers x satisfying

32x! = 23x! + 1.

820. Find all quadruples (u, v, x, y) of positive integers, where u and v are consecutive
in some order, satisfying

ux − vy = 1.
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Combinatorics and Probability

We conclude the book with combinatorics. First, we train combinatorial skills in set
theory and geometry, with a glimpse at permutations. Then we turn to some specific
techniques: generating functions, counting arguments, the inclusion–exclusion principle.
A strong accent is placed on binomial coefficients.

This is followed by probability, which, in fact, should be treated separately. But the
level of this book restricts us to problems that use counting, classical schemes such as the
Bernoulli and Poisson schemes and Bayes’ theorem, recurrences, and some minor geo-
metric considerations. It is only later in the development of mathematics that probability
loses its combinatorial flavor and borrows the analytical tools of Lebesgue integration.

6.1 Combinatorial Arguments in Set Theory and Geometry

6.1.1 Set Theory and Combinatorics of Sets

A first example comes from the 1971 German Mathematical Olympiad.

Example. Given 2n−1 subsets of a set with n elements with the property that any three
have nonempty intersection, prove that the intersection of all the sets is nonempty.

Solution. Let S = {A1, A2, . . . , A2n−1} be the family of subsets of the set A with n
elements. Because S has 2n−1 elements, for any subsetB ofA, eitherB or its complement
Bc is in S. (They cannot both be in S by the other hypothesis.)

So if Ai and Aj are in S, then either Ai ∩Aj is in S, or its complement is in S. If the
complement is in S then Ai ∩ Aj ∩ (Ai ∩ Aj)c is empty, contradicting the fact that the
intersection of any three elements of S is nonempty. Hence Ai ∩ Aj ∈ S.

We will now show by induction on k that the intersection of any k sets in S is
nontrivial. We just proved the base case k = 2. Assume that the property is true for
any k − 1 elements of S, and let us prove it for Ai1, Ai2, . . . , Aik ∈ S. By the induction
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hypothesis, Ai1 ∩ · · · ∩ Aik−1 ∈ S, and also Aik ∈ S, so (Ai1 ∩ · · · ∩ Aik−1) ∩ Aik is in S.
This completes the induction. For k = 2n−1, we obtain that the intersection of all sets in
S is nontrivial. ��

We found the following problem in the Mathematics Magazine for High Schools
(Budapest).

Example. Let A be a nonempty set and let f : P(A) → P(A) be an increasing function
on the set of subsets of A, meaning that

f (X) ⊂ f (Y ) if X ⊂ Y .

Prove that there exists T , a subset of A, such that f (T ) = T .

Solution. Consider the family of sets

F = {K ∈ P(A) | f (K) ⊂ K}.
Because A ∈ F , the family F is not empty. Let T be the intersection of all sets in F .
We will show that f (T ) = T .

If K ∈ F , then f (T ) ⊂ f (K) ⊂ K , and by taking the intersection over all K ∈ F ,
we obtain that f (T ) ⊂ T . Hence T ∈ F .

Because f is increasing it follows that f (f (T )) ⊂ f (T ), and hence f (T ) ∈ F .
Since T is included in every element of F , we have T ⊂ f (T ). The double inclusion
proves that f (T ) = T , as desired. ��

Since it will be needed below, let us recall that a graph consists of a set of vertices
connected by edges. Unless otherwise specified, our graphs have finitely many edges,
there is at most one edge connecting two vertices, and the endpoints of each edge are
distinct.

821. Let A and B be two sets. Find all sets X with the property that

A ∩X = B ∩X = A ∩ B,
A ∪ B ∪X = A ∪ B.

822. Prove that every graph has two vertices that are endpoints of the same number
of edges.

823. Prove that a list can be made of all the subsets of a finite set such that
(i) the empty set is the first set;

(ii) each subset occurs once;
(iii) each subset is obtained from the preceding by adding or deleting an element.
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824. Let M be a subset of {1, 2, 3, . . . , 15} such that the product of any three distinct
elements ofM is not a square. Determine the maximum number of elements inM .

825. Let S be a nonempty set and F a family of m ≥ 2 subsets of S. Show that among
the sets of the formA	B withA,B ∈ F there are at leastm that are distinct. (Here
A	B = (A\B) ∪ (B\A).)

826. Consider the sequence of functions and sets

· · · → An
fn−1→ An−1

fn−2→ An−2
fn−3→ · · · f3→ A3

f2→ A2
f1→ A1.

Prove that if the setsAn are nonempty and finite for alln, then there exists a sequence
of elements xn ∈ An, n = 1, 2, 3, . . . , with the property that fn(xn+1) = xn for all
n ≥ 1.

827. In a society of n people, any two persons who do not know each other have exactly
two common acquaintances, and any two persons who know each other don’t have
other common acquaintances. Prove that in this society every person has the same
number of acquaintances.

828. Let A be a finite set and let f : A → A be a function. Prove that there exist the
pairwise disjoint sets A0, A1, A2, A3 such that A = A0 ∪A1 ∪A2 ∪A3, f (x) = x

for any x ∈ A0 and f (Ai) ∩ Ai = ∅, i = 1, 2, 3. What if the set A is infinite?

6.1.2 Permutations

A permutation of a set S is a bijection σ : S → S. Composition induces a group
structure on the set of all permutations. We are concerned only with the finite case
S = {1, 2, . . . , n}. The standard notation for a permutation is

σ =
(

1 2 3 · · · n
a1 a2 a3 · · · an

)
,

with ai = σ(i), i = 1, 2, . . . , n.
A permutation is a cycle (i1i2 . . . in) if σ(i1) = i2, σ(i2) = i3, . . . , σ (in) = i1,

and σ(j) = j for j 	= i1, i2, . . . , in. Any permutation is a product of disjoint cycles.
A cycle of length two (i1i2) is called a transposition. Any permutation is a product of
transpositions. For a given permutation σ , the parity of the number of transpositions
in this product is always the same; the signature of σ , denoted by sign(σ ), is 1 if this
number is even and −1 if this number is odd. An inversion is a pair (i, j) with i < j and
σ(i) > σ(j).

Let us look at a problem from the 1979 Romanian Mathematical Olympiad, proposed
by I. Raşa.
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Example. Consider the permutations

σ1 =
(

1 2 3 4 · · · 19 20
a1 a2 a3 a4 · · · a19 a20

)
,

σ2 =
(

1 2 3 4 · · · 19 20
a19 a20 a17 a18 · · · a1 a2

)
.

Prove that if σ1 has 100 inversions, then σ2 has at most 100 inversions.

Solution. Let us see what an inversion (ai, aj ) of σ1 becomes in σ2. If i and j have the
same parity, then ai and aj are switched in σ2, and so (aj , ai) is no longer an inversion.
If i is even and j is odd, then ai and aj are also switched in σ2, so the inversion again
disappears.

We investigate the case i odd and j even more closely. If j > i+1, then in σ2 the two
elements appear in the order (aj , ai), which is again not an inversion. However, if i and
j are consecutive, then the pair is not permuted in σ2; the inversion is preserved. There
are at most 10 such pairs, because i can take only the values 1, 3, . . . , 19. So at most 10
inversions are “transmitted’’ from σ1 to σ2. From the 100 inversions of σ1, at most 10
become inversions of σ2, while 90 are “lost’’: they are no longer inversions in σ2.

It follows that from the
(20

2

) = 190 pairs (ai, aj ) in σ2 with i < j , at least 90 are not
inversions, which means that at most 190 − 90 = 100 are inversions. This completes the
proof.

Here is a different way of saying this. Define

σ3 =
(

1 2 3 4 · · · 19 20
a20 a19 a18 a17 · · · a2 a1

)
.

Then between them σ1 and σ3 have exactly
(20

2

)
inversions, since each pair is an inversion

in exactly one. Hence σ3 has at most 90 inversions. Because σ2 differs from σ3 by
swapping 10 pairs of adjacent outputs, these are the only pairs in which it can differ from
σ3 in whether it has has an inversion. Hence σ2 has at most 100 inversions. ��

And now an example with a geometric flavor.

Example. Let σ be a permutation of the set {1, 2, . . . , n}. Prove that there exist permu-
tations σ1 and σ2 of the same set such that σ = σ1σ2 and σ 2

1 and σ 2
2 are both equal to the

identity permutation.

Solution. Decompose the permutation σ into a product of disjoint cycles. It suffices to
prove the property for each of these cycles; therefore, we can assume from the beginning
that σ itself is a cycle of length n. If n = 1 or 2, then we choose σ1 = σ and σ2 the identity
permutation. Otherwise, we think of σ as the rotation of a regular n-gon A1A2 . . . An by
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an angle of 2π
n

around its center. Such a rotation can be written as the composition of
two reflections that map the n-gon to itself, namely the reflection with respect to the per-
pendicular bisector of A1A3 and the reflection with respect to the perpendicular bisector
of A2A3 (see Figure 37). These reflections define the permutations σ1 and σ2. ��

Figure 37

The following problems are left to the reader.

829. For each permutation a1, a2, . . . , a10 of the integers 1, 2, 3, . . . , 10, form the sum

|a1 − a2| + |a3 − a4| + |a5 − a6| + |a7 − a8| + |a9 − a10|.
Find the average value of all such sums.

830. Find the number of permutations a1, a2, a3, a4, a5, a6 of the numbers 1, 2, 3, 4, 5, 6
that can be transformed into 1, 2, 3, 4, 5, 6 through exactly four transpositions (and
not fewer).

831. Let f (n) be the number of permutations a1, a2, . . . , an of the integers 1, 2, . . . , n
such that (i) a1 = 1 and (ii) |ai−ai+1| ≤ 2, i = 1, 2, . . . , n−1. Determine whether
f (1996) is divisible by 3.

832. Consider the sequences of real numbers x1 > x2 > · · · > xn and y1 > y2 > · · · >
yn, and let σ be a nontrivial permutation of the set {1, 2, . . . , n}. Prove that

n∑
i=1

(xi − yi)
2 <

n∑
i=1

(xi − yσ(i))
2.

833. Let a1, a2, . . . , an be a permutation of the numbers 1, 2, . . . , n. We call ai a large
integer if ai > aj for all i < j < n. Find the average number of large integers over
all permutations of the first n positive integers.

834. Given some positive real numbers a1 < a2 < · · · < an find all permutations σ with
the property that

a1aσ(1) < a2aσ(2) < · · · < anaσ(n).
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835. Determine the number of permutations a1, a2, . . . , a2004 of the numbers 1, 2, . . . ,
2004 for which

|a1 − 1| = |a2 − 2| = · · · = |a2004 − 2004| > 0.

836. Let n be an odd integer greater than 1. Find the number of permutations σ of the
set {1, 2, . . . , n} for which

|σ(1)− 1| + |σ(2)− 2| + · · · + |σ(n)− n| = n2 − 1

2
.

6.1.3 Combinatorial Geometry

We grouped under this title problems that are solved by analyzing configurations of
geometric objects. We start with an easy problem that was proposed in 1999 for the
Junior Balkan Mathematical Olympiad.

Example. In a regular 2n-gon, n diagonals intersect at a point S, which is not a vertex.
Prove that S is the center of the 2n-gon.

Solution. Fix one of the n diagonals. The other n− 1 diagonals intersect it, so there are
n − 1 vertices on one side and n − 1 vertices on the other side of this diagonal. Hence
this was a main diagonal. Repeating the argument we conclude that all n diagonals are
main diagonals, so they meet at the center. ��

We continue with an example suggested to us by G. Galperin.

Example. Show that from any finitely many (closed) hemispheres that cover a sphere
one can choose four that cover the sphere.

Solution. In what follows, by a half-line, half-plane, and half-space we will understand
a closed half-line, half-plane, respectively, half-space. The hemispheres are obtained
by intersecting the sphere with half-spaces passing through the origin. This observation
allows us to modify the statement so as to make an inductive argument on the dimension
possible.

Alternative problem. Show that from any finitely many half-spaces that cover the three-
dimensional space one can choose four that cover the space.

Let us analyze first the one- and two-dimensional cases. Among any finite set of
half-lines covering a certain line one can choose two that cover it. Indeed, identifying
the line with the real axis, the first of them can be chosen to be of the form [a,∞), with
a smallest among the half-lines of this type in our set, and the other to be of the form
(−∞, b], with b largest among the half-lines of this type in our set.
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The two-dimensional analogue of this property states that from finitely many half-
planes covering the two-dimensional plane one can choose three that cover the plane.
We prove this by induction on the number n of half-planes. For n = 3 there is nothing
to prove. Assume that the property is true for n half-planes and let us prove it for n+ 1.
Choose h1 to be one of these half-planes.

If the boundary ∂h1 of h1 is contained in some other half-plane h2, then either h1

and h2 cover the plane, or h2 contains h1. In the latter case we dispose of h1 and use the
induction hypothesis.

If the boundary ∂h1 is not contained in any half-plane, then any other half-plane
intersects it along a half-line. From the one-dimensional situation we know that two of
these half-lines cover it completely. Let h2 and h3 be the half-planes corresponding to
these two half-lines. There are two possibilities, described in Figure 38. In the first case
h1 is contained in the union of h2 and h3, so it can be removed, and then we can use the
induction hypothesis. In the second case, h1, h2, and h3 cover the plane. This completes
the two-dimensional case.

h
h

h

h
h

h3 2
1 3

2

1

Figure 38

The proof can be extended to three dimensions. As before, we use induction on the
number n ≥ 4 of half-spaces. For the base case n = 4 there is nothing to prove. Now let
us assume that the property is true for n half-spaces, and let us prove it for n+ 1. LetH1

be one of the half-spaces. If the boundary of H1, ∂H1, is included in another half-space
H2, then either H1 and H2 cover three-dimensional space, or H1 is included in H2 and
then we can use the induction hypothesis.

In the other case we use the two-dimensional version of the result to find three half-
spaces H2, H3, and H4 that determine half-planes on ∂H1 that cover ∂H1. To simplify
the discussion let us assume that the four boundary planes ∂Hi , i = 1, 2, 3, 4, are in
general position. Then they determine a tetrahedron. IfH1 contains this tetrahedron, then
H1, H2, H3, H4 cover three-dimensional space. If H1 does not contain this tetrahedron,
then it is contained in the union of H2, H3, and H4, so it can be removed and we can
apply the induction hypothesis to complete the argument. ��

Our third example was published by V.I. Arnol’d in the Russian journal Quantum.
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Example. Prove that any n points in the plane can be covered by finitely many disks
with the sum of the diameters less than n and the distance between any two disks greater
than 1.

Solution. First, note that if two disks of diameters d1 and d2 intersect, then they can be
included in a disk of diameter d1 + d2.

Let us place n disks centered at our points, of some radius a > 1 the size of which
will be specified later. Whenever two disks intersect, we replace them with a disk that
covers them, of diameter equal to the sum of their diameters. We continue this procedure
until we have only disjoint disks.

We thus obtained a family of k ≤ n disks with the sum of diameters equal to na and
such that they cover the disks of diameter a centered at the points. Now let us shrink the
diameters of the disks by b, with 1 < b < a. Then the new disks cover our points, the
sum of their diameters is na − kb ≤ na − b, and the distances between disks are at least
b. Choosing a and b such that 1 < b < a and na − b ≤ n would then lead to a family
of circles with the sum of diameters less than n and at distance greater than 1 from each
other. For example, we can let a = 1 + 1

n
and b = 1 + 1

2n . ��
837. In how many regions do n great circles, any three nonintersecting, divide the surface

of a sphere?

838. In how many regions do n spheres divide the three-dimensional space if any two
intersect along a circle, no three intersect along a circle, and no four intersect at one
point?

839. Given n > 4 points in the plane such that no three are collinear, prove that there
are at least

(
n−3

2

)
convex quadrilaterals whose vertices are four of the given points.

840. An equilateral triangle of side length n is drawn with sides along a triangular grid
of side length 1. What is the maximum number of grid segments on or inside the
triangle that can be marked so that no three marked segments form a triangle?

841. 1981 points lie inside a cube of side length 9. Prove that there are two points within
a distance less than 1.

842. What is the largest number of internal right angles that an n-gon (convex or not,
with non-self-intersecting boundary) can have?

843. A circle of radius 1 rolls without slipping on the outside of a circle of radius
√

2.
The contact point of the circles in the initial position is colored. Any time a point
of one circle touches a colored point of the other, it becomes itself colored. How
many colored points will the moving circle have after 100 revolutions?

844. Several chords are constructed in a circle of radius 1. Prove that if every diameter
intersects at most k chords, then the sum of the lengths of the chords is less than kπ .
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845. Inside a square of side 38 lie 100 convex polygons, each with an area at most π
and the perimeter at most 2π . Prove that there exists a circle of radius 1 inside the
square that does not intersect any of the polygons.

846. Given a set M of n ≥ 3 points in the plane such that any three points in M can be
covered by a disk of radius 1, prove that the entire set M can be covered by a disk
of radius 1.

847. Prove that if a convex polyhedron has the property that every vertex belongs to an
even number of edges, then any section determined by a plane that does not pass
through a vertex is a polygon with an even number of sides.

6.1.4 Euler’s Formula for Planar Graphs

This section is about a graph-theoretical result with geometric flavor, the famous Euler’s
formula. Recall that a graph is a collection of points, called vertices, some of which are
joined by arcs, called edges. A planar graph is a graph embedded in the plane in such a
way that edges do not cross. The connected components of the complement of a planar
graph are called faces. For example, the graph in Figure 39 has four faces (this includes
the infinite face). Unless otherwise specified, all our graphs are assumed to be connected.

Figure 39

Euler’s theorem. Given a connected planar graph, denote by V the number of vertices,
by E the number of edges, and by F the number of faces (including the infinite face).
Then

V − E + F = 2.

Proof. The proof is an easy induction on F . If F = 1 the graph is a tree, and the number
of vertices exceeds that of edges by 1. The formula is thus verified in this case.

Let us now consider some F > 1 and assume that the formula holds for all graphs
with at most F − 1 faces. Since there are at least two faces, the graph is not a tree.
Therefore, it must contain cycles. Remove one edge from a cycle. The new graph is still
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connected. The number of edges has decreased by 1; that of faces has also decreased by
1. By the induction hypothesis,

V − (E − 1)+ (F − 1) = 2;
hence Euler’s formula holds for the original graph, too. This completes the proof. ��

This method of proof is called reduction of complexity, and is widely applied in a
combinatorial branch of geometry called low-dimensional topology.

As a corollary, if V , E, and F are the numbers of vertices, edges, and faces of a
convex polyhedron, then V − E + F = 2. As you can see, it was much easier to prove
this formula for general planar graphs. The number 2 in Euler’s formula is called the
Euler (or Euler–Poincaré) characteristic of the sphere, since any convex polyhedron has
the shape of a sphere. If a polyhedron has the shape of a sphere with g handles (a so-called
surface of genus g), this number should be replaced by 2−2g. The faces of such a graph
should be planar polygons (no holes or handles). The Euler characteristic is an example
of a “topological invariant’’; it detects the number of handles of a polyhedral surface.

As an application of Euler’s formula, let us determine the Platonic solids. Recall that
a Platonic solid (i.e., a regular polyhedron) is a polyhedron whose faces are congruent
regular polygons and such that each vertex belongs to the same number of edges.

Example. Find all Platonic solids.

Solution. Let m be the number of edges that meet at a vertex and let n be the number
of edges of a face. With the usual notation, when counting vertices by edges, we obtain
2E = mV . When counting faces by edges, we obtain 2E = nF . Euler’s formula
becomes

2

m
E − E + 2

n
E = 2,

or

E =
(

1

m
+ 1

n
− 1

2

)−1

.

The right-hand side must be a positive integer. In particular, 1
m

+ 1
n
> 1

2 . The only
possibilities are the following:

1. m = 3, n = 3, in which case E = 6, V = 4, F = 4; this is the regular tetrahedron.

2. m = 3, n = 4, in which case E = 12, V = 8, F = 6; this is the cube.

3. m = 3, n = 5, in which case E = 30, V = 20, F = 12; this is the regular
dodecahedron.
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4. m = 4, n = 3, in which case E = 12, V = 6, F = 8; this is the regular octahedron.

5. m = 5, n = 3, in which case E = 30, V = 12, F = 20; this is the regular
icosahedron.

We have proved the well-known fact that there are five Platonic solids. ��
848. In the plane are given n > 2 points joined by segments, such that the interiors of any

two segments are disjoint. Find the maximum possible number of such segments
as a function of n.

849. Three conflicting neighbors have three common wells. Can one draw nine paths
connecting each of the neighbors to each of the wells such that no two paths inter-
sect?

850. Consider a polyhedron with at least five faces such that exactly three edges emerge
from each vertex. Two players play the following game: the players sign their
names alternately on precisely one face that has not been previously signed. The
winner is the player who succeeds in signing the name on three faces that share a
common vertex. Assuming optimal play, prove that the player who starts the game
always wins.

851. Denote by V the number of vertices of a convex polyhedron, and by � the sum of
the (planar) angles of its faces. Prove that 2πV −� = 4π .

852. (a) Given a connected planar graph whose faces are polygons with at least three sides
(no loops or bigons), prove that there is a vertex that belongs to at most five edges.

(b) Prove that any map in the plane can be colored by five colors such that adjacent
regions have different colors (the regions are assumed to be polygons, two regions
are adjacent if they share at least one side).

853. Consider a convex polyhedron whose faces are triangles and whose edges are ori-
ented. A singularity is a face whose edges form a cycle, a vertex that belongs only
to incoming edges, or a vertex that belongs only to outgoing edges. Show that the
polyhedron has at least two singularities.

6.1.5 Ramsey Theory

Ramsey theory is a difficult branch of combinatorics, which gathers results that show
that when a sufficiently large set is partitioned into a fixed number of subsets, one of the
subsets has a certain property. Finding sharp bounds on how large the set should be is a
truly challenging question, unanswered in most cases.

The origins of this field lie in Ramsey’s theorem, which states that for every pair of
positive integers (p, q) there is a smallest integer R(p, q), nowadays called the Ramsey
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number, such that whenever the edges of a complete graph are colored red and blue,
there is either a complete subgraph with p vertices whose edges are all red, or a complete
subgraph with q vertices whose edges are all blue. (Recall that a complete graph is an
unoriented graph in which any two vertices are connected by an edge.)

Here is a simple problem in Ramsey theory.

Example. Show that if the points of the plane are colored black or white, then there exists
an equilateral triangle whose vertices are colored by the same color.

Solution. Suppose that there exists a configuration in which no monochromatic equilat-
eral triangle is formed.

Figure 40

Start with two points of the same color, say black. Without loss of generality, we may
assume that they are (1, 0) and (−1, 0). Then (0,

√
3) and (0,−√

3)must both be white.
Consequently, (2, 0) is black, and so (1,

√
3) is white. Then on the one hand, (1, 2

√
3)

cannot be black, and on the other hand it cannot be white, a contradiction. Hence the
conclusion. This argument can be followed easily on Figure 40. ��

We now present a problem from the 2000 Belarus Mathematical Olympiad, which we
particularly liked because the solution contains a nice interplay between combinatorics
and number theory.

Example. Let M = {1, 2, . . . , 40}. Find the smallest positive integer n for which it
is possible to partition M into n disjoint subsets such that whenever a, b, and c (not
necessarily distinct) are in the same subset, a 	= b + c.

Solution. We will show that n = 4. Assume first that it is possible to partition M into
three such sets X, Y , and Z. First trick: order the sets in decreasing order of their
cardinalities as |X| ≥ |Y | ≥ |Z|. Let x1, x2, . . . , x|X| be the elements of X in increasing
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order. These numbers, together with the differences xi − x1, i = 2, 3, . . . , |X|, must all
be distinct elements of M . Altogether, there are 2|X| − 1 such numbers, implying that
2|X| − 1 ≤ 40, or |X| ≤ 20. Also, 3|X| ≥ |X| + |Y | + |Z| = 40, so |X| ≥ 14.

There are |X| · |Y | ≥ |X| × 1
2(40 − |X|) pairs in X × Y . The sum of the numbers in

each pair is at least 2 and at most 80, a total of 79 possible values. Because 14 ≤ |X| ≤ 20
and the function f (t) = 1

2 t (40 − t) is concave on the interval [14, 20], we have that

|X|(40 − |X|)
2

≥ min

{
14 · 26

2
,

20 · 20

2

}
= 182 > 2 · 79.

We can use the pigeonhole principle to find three distinct pairs (x1, y1), (x2, y2), (x3, y3) ∈
X × Y with x1 + y1 = x2 + y2 = x3 + y3.

If any of the xi’s were equal, then the corresponding yi’s would be equal, which is
impossible because the pairs (xi, yi) are distinct. We may thus assume, without loss of
generality, that x1 < x2 < x3. For 1 ≤ j < k ≤ 3, the value xk−xj is inM but cannot be
in X because otherwise xj + (xk − xj ) = xk. Similarly, yj − yk /∈ Y for 1 ≤ j < k ≤ 3.
Therefore, the three common differences x2 − x1 = y1 − y2, x3 − x2 = y2 − y3, and
x3 − x1 = y1 − y3 are in M\(X ∪ Y ) = Z. However, setting a = x2 − x1, b = x3 − x2,
and c = x3 − x1, we have a + b = c with a, b, c ∈ Z, a contradiction.

Therefore, it is impossible to partition M into three sets with the desired property.
Let us show that this can be done with four sets. The question is how to organize the 40
numbers.

We write the numbers in base 3 as . . . at . . . a3a2a1 with only finitely many digits not
equal to 0. The setsA1,A2,A3, . . . are constructed inductively as follows. A1 consists of
all numbers for which a1 = 1. For k > 1 the set Ak consists of all numbers with ak = 0
that were not already placed in other sets, together with the numbers that have ak = 1
and ai = 0 for i < k. An alternative description is that Ak consists of those numbers that
are congruent to some integer in the interval ( 1

2 3k−1, 3k−1] modulo 3k. For our problem,

A1 = {1, 11, 21, 101, 111, 121, 201, 211, 221, 1001, 1011, 1021, 1101, 1111},
A2 = {2, 10, 102, 110, 202, 210, 1002, 1010, 1102, 1110},
A3 = {12, 20, 22, 100, 1012, 1020, 1022, 1100},
A4 = {112, 120, 122, 200, 212, 220, 222, 1000}.

Using the first description of these sets, we see that they exhaust all positive integers.
Using the second description we see that (Ak +Ak)∩Ak = ∅, k ≥ 1. HenceA1,A2,A3,
A4 provide the desired example, showing that the answer to the problem is n = 4. ��
Remark. In general, for positive integers n and k and a partition of {1, 2, . . . , k} into n
sets, a triple (a, b, c) such that a, b, and c are in the same set and a + b = c is called a
Schur triple. Schur’s theorem proves that for each n there exists a minimal number S(n)
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such that for any partition of {1, 2, . . . , S(n)} into n sets one of the sets will contain a
Schur triple. No general formula for S(n) exists although upper and lower bounds have
been found. Our problem proves that S(4) > 40. In fact, S(4) = 45.

854. What is the largest number of vertices that a complete graph can have so that its
edges can be colored by two colors in such a way that no monochromatic triangle
is formed?

855. For the Ramsey numbers defined above, prove that R(p, q) ≤ R(p − 1, q) +
R(p, q − 1). Conclude that for p, q ≥ 2,

R(p, q) ≤
(
p + q − 2

p − 1

)
.

856. The edges of a complete graph with �k!e� + 1 edges are colored by k colors. Prove
that there is a triangle whose edges are colored by the same color.

857. An international society has members from six different countries. The list of
members contains 1978 names, numbered 1, 2, . . . , 1978. Prove that there exists at
least one member whose number is the sum of the numbers of two members from
his/her own country, or twice as large as the number of one member from his/her
country.

858. Let n be a positive integer satisfying the following property: If n dominoes are
placed on a 6 × 6 chessboard with each domino covering exactly two unit squares,
then one can always place one more domino on the board without moving any other
dominoes. Determine the maximum value of n.

6.2 Binomial Coefficients and Counting Methods

6.2.1 Combinatorial Identities

The binomial coefficient
(
n

k

)
counts the number of ways one can choose k objects from

given n. Binomial coefficients show up in Newton’s binomial expansion

(x + 1)n =
(
n

0

)
xn +

(
n

1

)
xn−1 + · · · +

(
n

n− 1

)
x +

(
n

n

)
.

Explicitly, (
n

k

)
= n!
k!(n− k)! = n(n− 1) · · · (n− k + 1)

k! if 0 ≤ k ≤ n.

The recurrence relation
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(
n

k

)
=
(
n− 1

k

)
+
(
n− 1

k − 1

)
allows the binomial coefficients to be arranged in Pascal’s triangle:

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Here every entry is obtained by summing the two entries just above it.
This section presents applications of the basic properties of binomial coefficients.

Here is a problem from the 2001 Hungarian Mathematical Olympiad.

Example. Letm and n be integers such that 1 ≤ m ≤ n. Prove thatm divides the number

n

m−1∑
k=0

(−1)k
(
n

k

)
.

Solution. We would like to express the sum in closed form. To this end, we apply the
recurrence formula for binomial coefficients and obtain

n

m−1∑
k=0

(−1)k
(
n

k

)
= n

m−1∑
k=0

(−1)k
((
n− 1

k

)
+
(
n− 1

k − 1

))

= n

m−1∑
k=0

(−1)k
(
n− 1

k

)
− n

m−2∑
k=0

(−1)k
(
n− 1

k

)
= n(−1)m−1

(
n− 1

m− 1

)
= m(−1)m−1

(
n

m

)
.

The answer is clearly divisible by m. ��
The methods used in proving combinatorial identities can be applied to problems

outside the field of combinatorics. As an example, let us take a fresh look at a property
that we encountered elsewhere in the solution to a problem about polynomials.

Example. If k and m are positive integers, prove that the polynomial

(xk+m − 1)(xk+m−1 − 1) · · · (xk+1 − 1)

is divisible by

(xm − 1)(xm−1 − 1) · · · (x − 1)

in the ring of polynomials with integer coefficients.
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Solution. Let us analyze the quotient

pk,m(x) = (xk+m − 1)(xk+m−1 − 1) · · · (xk+1 − 1)

(xm − 1)(xm−1 − 1) · · · (x − 1)
,

which conjecturally is a polynomial with integer coefficients. The main observation
is that

lim
x→1

pk,m(x) = lim
x→1

(xk+m − 1)(xk+m−1 − 1) · · · (xk+1 − 1)

(xm − 1)(xm−1 − 1) · · · (x − 1)

= lim
x→1

xk+m − 1

x − 1
· · · x

k+1 − 1

x − 1
· x − 1

xm − 1
· · · x − 1

x − 1

= (k +m)(k +m− 1) · · · (k + 1)

m · (m− 1) · · · 1
=
(
k +m

m

)
.

With this in mind, we treat pk,m(x) as some kind of binomial coefficient. Recall that one
way of showing that

(
n

m

) = n!
m!(n−m)! is an integer number is by means of Pascal’s triangle.

We will construct a Pascal’s triangle for the polynomialspk,m(x). The recurrence relation(
k +m+ 1

m

)
=
(
k +m

m

)
+
(
k +m

m− 1

)
has the polynomial analogue

(xk+m+1 − 1) · · · (xk+2 − 1)

(xm − 1) · · · (x − 1)
= (xk+m − 1) · · · (xk+1 − 1)

(xm − 1) · · · (x − 1)

+ xk+1 (x
k+m − 1) · · · (xk+2 − 1)

(xm−1 − 1) · · · (x − 1)
.

Now the conclusion follows by induction on m + k, with the base case the obvious
xk+1−1
x−1 = xk + xk−1 + · · · + 1. ��

In quantum physics the variable x is replaced by q = ei�, where � is Planck’s con-
stant, and the polynomials pn−m,m(q) are denoted by

(
n

m

)
q

and called quantum binomial
coefficients (or Gauss polynomials). They arise in the context of the Heisenberg uncer-
tainty principle. Specifically, if P and Q are the linear transformations that describe,
respectively, the time evolution of the momentum and the position of a particle, then
PQ = qQP . The binomial formula for them reads

(Q+ P)n =
n∑
k=0

(
n

k

)
q

QkP n−k.

The recurrence relation we obtained a moment ago,
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(
n

m

)
q

=
(
n− 1

m

)
q

+ qn−m
(
n− 1

m− 1

)
q

,

gives rise to what is called the q-Pascal triangle.

859. Prove that (
2k

k

)
= 2

π

∫ π
2

0
(2 sin θ)2kdθ.

860. Consider the triangular n× n matrix

A =

⎛⎜⎜⎜⎜⎜⎝
1 1 1 · · · 1
0 1 1 · · · 1
0 0 1 · · · 1
...
...
...
. . .

...

0 0 0 · · · 1

⎞⎟⎟⎟⎟⎟⎠ .

Compute the matrix Ak, k ≥ 1.

861. Let (Fn)n be the Fibonacci sequence, F1 = F2 = 1, Fn+1 = Fn + Fn−1. Prove that
for any positive integer n,

F1

(
n

1

)
+ F2

(
n

2

)
+ · · · + Fn

(
n

n

)
= F2n.

862. For an arithmetic sequence a1, a2, . . . , an, . . . , let Sn = a1 + a2 + · · · + an, n ≥ 1.
Prove that

n∑
k=0

(
n

k

)
ak+1 = 2n

n+ 1
Sn+1.

863. Show that for any positive integer n, the number

Sn =
(

2n+ 1

0

)
· 22n +

(
2n+ 1

2

)
· 22n−2 · 3 + · · · +

(
2n+ 1

2n

)
· 3n

is the sum of two consecutive perfect squares.

864. For a positive integer n define the integers an, bn, and cn by

an + bn
3
√

2 + cn
3
√

4 = (1 + 3
√

2 + 3
√

4)n.

Prove that

2− n
3

n∑
k=0

(
n

k

)
ak =

⎧⎪⎨⎪⎩
an if n ≡ 0 (mod 3),

bn
3
√

2 if n ≡ 2 (mod 3),

cn
3
√

4 if n ≡ 1 (mod 3).
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865. Prove the analogue of Newton’s binomial formula

[x + y]n =
n∑
k=0

(
n

k

)
[x]k[y]n−k,

where [x]n = x(x − 1) · · · (x − n+ 1).

866. Prove that the quantum binomial coefficients
(
n

k

)
q

previously defined satisfy

n∑
k=0

(−1)kq
k(k−1)

2

(
n

k

)
q

= 0.

6.2.2 Generating Functions

The terms of a sequence (an)n≥0 can be combined into a function

G(x) = a0 + a1x + a2x
2 + · · · + anx

n + · · · ,
called the generating function of the sequence. Sometimes this function can be written
in closed form and carries useful information about the sequence. For example, if the
sequence satisfies a second-order linear recurrence, say an+1 + uan + van−1 = 0, then
the generating function satisfies the functional equation

G(x)− a0 − a1x + ux(G(x)− a0)+ vx2G(x) = 0.

This equation can be solved easily, giving

G(x) = a0 + (ua0 + a1)x

1 + ux + vx2
.

If r1 and r2 are the roots of the characteristic equation λ2 + uλ + v = 0, then by using
the partial fraction decomposition, we obtain

G(x) = a0 + (ua0 + a1)x

(1 − r1x)(1 − r2x)
= α

1 − r1x
+ β

1 − r2x
=

∞∑
n=0

(αrn1 + βrn2 )x
n.

And we recover the general-term formula an = αrn1 +βrn2 , n ≥ 0, where α and β depend
on the initial condition.

It is useful to notice the analogy with the method of the Laplace transform used for
solving linear ordinary differential equations. Recall that the Laplace transform of a
function y(t) is defined as

Ly(s) =
∫ ∞

0
y(t)etsdt.
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The Laplace transform applied to the differential equation

y ′′ + uy ′ + vy = 0

produces the algebraic equation

s2L(y)− y ′(0)− sy(0)+ u(sL(y)− y(0))− vL(y) = 0,

with the solution

L(y) = sy(0)+ uy(0)+ y ′(0)
s2 + us + v

.

Again the partial fraction decomposition comes in handy, since we know that the inverse
Laplace transforms of 1

s−r1 and 1
s−r2 are er1x and er2x . The similarity of these two methods

is not accidental, for recursive sequences are discrete approximations of differential
equations.

Let us return to problems and look at the classical example of the Catalan numbers.

Example. Prove that the number of ways one can insert parentheses into a product of
n+ 1 factors is the Catalan number Cn = 1

n+1

(2n
n

)
.

Solution. Alternatively, the Catalan number Cn is the number of ways the terms of the
product can be grouped for performing the multiplication. This is a better point of view,
because the location of the final multiplication splits the product in two, giving rise to
the recurrence relation

Cn = C0Cn−1 + C1Cn−2 + · · · + Cn−1C0, n ≥ 1.

Indeed, for every k = 0, 1, . . . , n− 1, the first k + 1 terms can be grouped in Ck ways,
while the last n − k terms can be grouped in Cn−k−1 ways. You can recognize that the
expression on the right shows up when the generating function is squared. We deduce
that the generating function satisfies the equation

G(x) = xG(x)2 + 1.

This is a quadratic equation, with two solutions. And because limx→0G(x) = a0, we
know precisely which solution to choose, namely

G(x) = 1 − √
1 − 4x

2x
.

Expanding the square root with Newton’s binomial formula, we have

√
1 − 4x = (1 − 4x)1/2 =

∞∑
n=0

(
1/2

n

)
(−4x)n =

∞∑
n=0

( 1
2)(

1
2 − 1) · · · ( 1

2 − n+ 1)

n! (−4x)n
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= 1 −
∞∑
n=1

(2n− 3)(2n− 5) · · · 1

n! (2x)n = 1 − 2
∞∑
n=1

(2n− 2)!
(n− 1)!(n− 1)!

xn

n

= 1 − 2
∞∑
n=1

(
2n− 2

n− 1

)
xn

n
.

Substituting in the expression for the generating function and shifting the index, we obtain

G(x) =
∞∑
n=0

1

n+ 1

(
2n

n

)
xn,

which gives the formula for the Catalan number Cn = 1
n+1

(2n
n

)
. ��

The binomial coefficients
(
n

k

)
are generated by a very simple function, G(x) =

(x + 1)n, and variations of this fact can be exploited to obtain combinatorial identi-
ties. This is the case with a problem published in the American Mathematical Monthly
by N. Gonciulea.

Example. Prove that

n∑
j=0

(
n

j

)
2n−j

(
j

�j/2�
)

=
(

2n+ 1

n

)
.

Solution. Observe that
(

j

�j/2�
)

is the constant term in (1 + x)(x−1 + x)j . It follows that
the sum is equal to the constant term in

n∑
j=0

(
n

j

)
2n−j (1 + x)(x−1 + x)j

= (1 + x)

n∑
j=0

(
n

j

)
(x−1 + x)j2n−j = (1 + x)(2 + x−1 + x)n

= 1

xn
(1 + x)(2x + 1 + x2)n = 1

xn
(1 + x)2n+1.

And the constant term in this last expression is
(2n+1

n

)
. ��

867. Find the general-term formula for the sequence (yn)n≥0 with y0 = 1 and yn =
ayn−1 + bn for n ≥ 1, where a and b are two fixed distinct real numbers.

868. Compute the sums

n∑
k=1

k

(
n

k

)
and

n∑
k=1

1

k + 1

(
n

k

)
.
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869. (a) Prove the identity (
m+ n

k

)
=

k∑
j=0

(
m

j

)(
n

k − j

)
.

(b) Prove that the quantum binomial coefficients defined in the previous section
satisfy the identity(

m+ n

k

)
q

=
k∑
j=0

q(m−j)(k−j)
(
m

j

)
q

(
n

k − j

)
q

.

870. Compute the sum (
n

0

)
−
(
n

1

)
+
(
n

2

)
− · · · + (−1)m

(
n

m

)
.

871. Write in short form the sum(
n

k

)
+
(
n+ 1

k

)
+
(
n+ 2

k

)
+ · · · +

(
n+m

k

)
.

872. Prove that the Fibonacci numbers satisfy

Fn =
(
n

0

)
+
(
n− 1

1

)
+
(
n− 2

2

)
+ · · · .

873. Denote byP(n) the number of partitions of the positive integer n, i.e., the number of
ways of writing n as a sum of positive integers. Prove that the generating function
of P(n), n ≥ 1, is given by

∞∑
n=0

P(n)xn = 1

(1 − x)(1 − x2)(1 − x3) · · ·
with the convention P(0) = 1.

874. Prove that the number of ways of writing n as a sum of distinct positive integers is
equal to the number of ways of writing n as a sum of odd positive integers.

875. Let p be an odd prime number. Find the number of subsets of {1, 2, . . . , p} with
the sum of elements divisible by p.

876. For a positive integer n, denote by S(n) the number of choices of the signs “+’’ or
“−’’ such that ±1 ± 2 ± · · · ± n = 0. Prove that

S(n) = 2n−1

π

∫ 2π

0
cos t cos 2t · · · cos ntdt.
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877. The distinct positive integers a1, a2, . . . , an, b1, b2, . . . , bn, with n ≥ 2, have the
property that the

(
n

2

)
sums ai + aj are the same as the

(
n

2

)
sums bi + bj (in some

order). Prove that n is a power of 2.

878. Let A1, A2, . . . , An, . . . and B1, B2, . . . , Bn, . . . be sequences of sets defined by
A1 = ∅, B1 = {0}, An+1 = {x + 1 | x ∈ Bn}, Bn+1 = (An ∪ Bn)\(An ∩ Bn).
Determine all positive integers n for which Bn = {0}.

6.2.3 Counting Strategies

We illustrate how some identities can be proved by counting the number of elements of a
set in two different ways. For example, we give a counting argument to the well-known
reciprocity law, which we have already encountered in Section 5.1.3, of the greatest
integer function.

Example. Given p and q coprime positive integers, prove that⌊
p

q

⌋
+
⌊

2p

q

⌋
+ · · · +

⌊
(q − 1)p

q

⌋
=
⌊
q

p

⌋
+
⌊

2q

p

⌋
+ · · · +

⌊
(p − 1)q

p

⌋
.

Solution. Let us look at the points of integer coordinates that lie inside the rectangle with
vertices O(0, 0), A(q, 0), B(q, p), C(0, p) (see Figure 41). There are (p − 1)(q − 1)
such points. None of them lies on the diagonal OB because p and q are coprime. Half
of them lie above the diagonal and half below.

O

(0,  ) (  ,  )

(  ,0)q

pqpC

A

B

Figure 41

Now let us count by a different method the points underneath the line OB. The
equation of this line is y = p

q
x. For each 0 < k < q on the vertical segment x = k there

are �kp/q� points below OB. Summing up, we obtain⌊
p

q

⌋
+
⌊

2p

q

⌋
+ · · · +

⌊
(q − 1)p

q

⌋
= (p − 1)(q − 1)

2
.

The expression on the right remains unchanged if we switch p and q, which proves the
identity. ��
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Next, a combinatorial identity.

Example. Let m and n be two integers, m ≤ n−1
2 . Prove the identity

n−1
2∑

k=m

(
n

2k + 1

)(
k

m

)
= 2n−2m−1

(
n−m− 1

m

)
.

Solution. The solution is a Fubini-type argument. Consider the set P of pairs (A,B),
where A is a subset of {1, 2, . . . , n} with an odd number of elements a1 < a2 < · · · <
a2k+1 and B is a subset of {a2, a4, . . . , a2k−2, a2k} with m elements b1 < b2 < · · · < bm.

For a given k there are
(

n

2k+1

)
such subsets A, and for each A there are

(
k

m

)
subsets B,

so the left-hand side of the identity is the number of elements of P counted by choosing
A first.

Let us count the same number choosing B first. Note that if (A,B) ∈ P , then B
contains no pairs of consecutive numbers. More precisely, B = {b1, b2, . . . , bm} ⊂
{2, 3, . . . , n− 1} with bi+1 − bi ≥ 2.

Fix B0, a set with this property. We want to count the number of pairs (A,B0) in X.
Choose c0, c1, . . . , cm such that

1 ≤ c0 < b1, b1 < c1 < b2, . . . , bi < ci < bi+1, . . . , bm < cm ≤ n.

Then for any subset E of {1, 2, . . . , n}\{c0, b1, c1, b2, . . . , bm, cm} there is a unique A
such that (A,B0) ∈ P and E ⊂ A.

Indeed, if (A,B0) ∈ P and E ⊂ A we have to decide which ci’s are in A. Since
the set Di = {x ∈ A | bi < x < bi+1} must contain an odd number of elements
for each 0 ≤ i ≤ m + 1 (with b0 = 0, bm+1 = n + 1), and the set Di is either
{x ∈ E | bi < x < bi+1} or {x ∈ E | bi < x < bi+1} ∪ {ci}, the parity condition on the
cardinality ofDi decides whether ci belongs toA. It is now clear that the number of pairs
(A,B0) in P is the same as the number of subsets of {1, 2, . . . , n}\{c0, b1, . . . , bm, cm},
and the latter is 2n−2m−1.

How many subsets B with m elements of {2, 3, . . . , n − 1} do not contain consec-
utive numbers? If B = {b1 < b2 < · · · < bm} is such a set, let B ′ = {b1 − 1, b2 −
2, . . . , bm −m}. It is easy to see that B ′ is an (arbitrary) subset of {1, 2, . . . , n−m− 1}
with m elements, and for each such subset B ′ = {b′

1 < b′
2 < · · · < b′

m}, by letting
bi = b′

i + i, we obtain a setB as above. Hence the number of suchB’s is
(
n−m−1
m

)
, and by

choosing B first we count the number of elements in P as 2n−2m−1
(
n−m−1
m

)
. The identity

is proved. ��
Using similar ideas solve the following problems.

879. Find in closed form

1 · 2

(
n

2

)
+ 2 · 3

(
n

3

)
+ · · · + (n− 1) · n

(
n

n

)
.
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880. Prove the combinatorial identity

n∑
k=1

k

(
n

k

)2

= n

(
2n− 1

n− 1

)
.

881. Prove the identity

m∑
k=0

(
m

k

)(
n+ k

m

)
=

m∑
k=0

(
m

k

)(
n

k

)
2k.

882. For integers 0 ≤ k ≤ n, 1 ≤ m ≤ n, prove the identity

m∑
j=0

(
m

i

)(
n− i

k

)
=

m∑
i=0

(
m

i

)(
n−m

k − i

)
2m−i .

883. Show that for any positive integers p and q,

q∑
k=0

1

2p+k

(
p + k

k

)
+

p∑
k=0

1

2q+k

(
q + k

k

)
= 2.

884. Let cn = (
n

�n/2�
)
. Prove that

n∑
k=0

(
n

k

)
ckcn−k = cncn+1.

885. Let p and q be odd, coprime positive integers. Set p′ = p−1
2 and q ′ = q−1

2 . Prove
the identity(⌊

q

p

⌋
+
⌊

2q

p

⌋
+ · · · +

⌊
p′q
p

⌋)
+
(⌊
p

q

⌋
+
⌊

2p

q

⌋
+ · · · +

⌊
q ′p
p

⌋)
= p′q ′.

Now we turn to more diverse counting arguments.

Example. What is the number of ways of writing the positive integer n as an ordered sum
of m positive integers?

Solution. This is a way of saying that we have to count the number of m-tuples of
positive integers (x1, x2, . . . , xm) satisfying the equation x1 + x2 + · · · + xm = n. These
m-tuples are in one-to-one correspondence with the strictly increasing sequences 0 <
y1 < y2 < · · · < ym = n of positive integers, with the correspondence given by y1 = x1,
y2 = x1 +x2, . . . , ym = x1 +x2 +· · ·+xm. The numbers y1, y2, . . . , ym−1 can be chosen
in
(
n−1
m−1

)
ways from 1, 2, . . . , n− 1. Hence the answer to the question is

(
n−1
m−1

)
.
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This formula can also be proved using induction onm for arbitrary n. The casem = 1
is obvious. Assume that the formula is valid for partitions of any positive integer into
k ≤ m positive integers, and let us prove it for partitions into m + 1 positive integers.
The equation x1 + x2 + · · · + xm + xm+1 = n can be written as

x1 + x2 + · · · + xm = n− xm+1.

As xm+1 ranges among 1, 2, . . . , n − m, we are supposed to count the total number of
solutions of the equations x1 + x2 + · · · + xm = r , with r = m,m + 1, . . . , n − 1. By
the induction hypothesis, this number is

n−1∑
r=m

(
r − 1

m− 1

)
.

We have seen in Section 6.2.2 that this number is equal to
(
n−1
m−1

)
. This equality can also

be proved using Pascal’s triangle as follows:(
m− 1

m− 1

)
+
(

m

m− 1

)
+ · · · +

(
n− 2

m− 1

)
=
(
m

m

)
+
(

m

m− 1

)
+ · · · +

(
n− 2

m− 1

)
=
(
m+ 1

m

)
+
(
m+ 1

m− 1

)
+ · · · +

(
n− 2

m− 1

)
=
(
m+ 2

m

)
+ · · · +

(
n− 2

m− 1

)
= · · · =

(
n− 2

m

)
+
(
n− 2

m− 1

)
=
(
n− 1

m

)
.

This proves that the formula is true for m+ 1, and the induction is complete. ��
Example. There are n students at a university, n an odd number. Some students join
together to form several clubs (a student may belong to different clubs). Some clubs join
together to form several societies (a club may belong to different societies). There are k
societies. Suppose that the following hold:

(i) each pair of students is in exactly one club,
(ii) for each student and each society, the student is in exactly one club of the society,

(iii) each club has an odd number of students; in addition, a club with 2m+ 1 students
(m > 0) is in exactly m societies.

Find all possible values of k.

Solution. This is a short-listed problem from the 45th International Mathematical Olym-
piad, 2004, proposed by Puerto Rico, which was given a year later at an Indian team
selection test. Here is an ingenious approach found by one of the Indian students, R. Shah.

Fix a student x and list the clubs to which the student belongs: C1, C2, . . . , Cr . If
Ci has 2mi + 1 students, then it belongs to mi societies. Condition (ii) implies that for
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i 	= j the societies to which Ci belongs are all different from the societies to which Cj
belongs. Moreover, condition (ii) guarantees that any society will contain one of the
clubs Ci . Therefore, m1 +m2 + · · · +mr = k.

From condition (i) we see that any two clubs Ci and Cj have in common exactly the
student x. Therefore, in C1, C2, . . . , Cr there are altogether 2(m1 +m2 + · · · +mr)+ 1
students. But these are all the students, because by condition (i) any other student is in
some club with x. We obtain

2(m1 +m2 + · · · +mr)+ 1 = 2k + 1 = n.

Hence k = n−1
2 is the only possibility. And this situation can be achieved when all

students belong to one club, which then belongs to n−1
2 societies. ��

Here is a third example.

Example. On an 8 × 8 chessboard whose squares are colored black and white in an
arbitrary way we are allowed to simultaneously switch the colors of all squares in any
3 × 3 and 4 × 4 region. Can we transform any coloring of the board into one where all
the squares are black?

Solution. We claim that the answer is no. It is a matter of counting into how many regions
can an all-black board be transformed by applying the two moves several times. The total
number of 3 × 3 regions is (8 − 2)× (8 − 2) = 36, which is the same as the number of
moves in which the colors in a 3 × 3 region are switched. As for the 4 × 4 regions, there
are (8 − 3) × (8 − 3) = 25 of them. Hence the total number of colorings that can be
obtained from an all-black coloring by applying the specified operations does not exceed

236 × 225 = 261.

This number is less than the total number of colorings, which is 264. Hence there are
colorings that cannot be achieved. Since the operations are reversible, this actually proves
our claim. ��

And now the problems.

886. Two hundred students took part in a mathematics contest. They had 6 problems to
solve. It is known that each problem was correctly solved by at least 120 participants.
Prove that there exist two participants such that every problem was solved by at
least one of them.

887. Prove that the number of nonnegative integer solutions to the equation

x1 + x2 + · · · + xm = n

is equal to
(
m+n−1
m−1

)
.
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888. A number n of tennis players take part in a tournament in which each of them plays
exactly one game with each of the others. If xi and yi denote the number of victories,
respectively, losses, of the ith player, i = 1, 2, . . . , n, show that

x2
1 + x2

2 + · · · + x2
n = y2

1 + y2
2 + · · · + y2

n.

889. Let A be a finite set and f and g two functions on A. Let m be the number of
pairs (x, y) ∈ A × A for which f (x) = g(y), n the number of pairs for which
f (x) = f (y), and k the number of pairs for which g(x) = g(y). Prove that

2m ≤ n+ k.

890. A set S containing four positive integers is called connected if for every x ∈ S at
least one of the numbers x − 1 and x + 1 belongs to S. Let Cn be the number of
connected subsets of the set {1, 2, . . . , n}.
(a) Evaluate C7.
(b) Find a general formula for Cn.

891. Prove that the set of numbers {1, 2, . . . , 2005} can be colored with two colors such
that any of its 18-term arithmetic sequences contains both colors.

892. For A = {1, 2, . . . , 100} let A1, A2, . . . , Am be subsets of A with four elements
with the property that any two have at most two elements in common. Prove that if
m ≥ 40425 then among these subsets there exist 49 whose union is equal to A but
with the union of any 48 of them not equal to A.

893. Let S be a finite set of points in the plane. A linear partition of S is an unordered
pair {A,B} of subsets of S such that A ∪ B = S, A ∩ B = ∅, and A and B lie on
opposite sides of some straight line disjoint from S (A or B may be empty). Let
LS be the number of linear partitions of S. For each positive integer n, find the
maximum of LS over all sets S of n points.

894. LetA be a 101-element subset of the set S = {1, 2, . . . , 1000000}. Prove that there
exist numbers t1, t2, . . . , t100 in S such that the sets

Aj = {x + tj | x ∈ A}, j = 1, 2, . . . , 100,

are pairwise disjoint.

895. Given a set A with n2 elements, n ≥ 2, and F a family of subsets of A each of
which has n elements, suppose that any two sets of F have at most one element in
common.
(a) Prove that there are at most n2 + n sets in F .
(b) In the case n = 3, show with an example that this bound can be reached.
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896. A sheet of paper in the shape of a square is cut by a line into two pieces. One of
the pieces is cut again by a line, and so on. What is the minimum number of cuts
one should perform such that among the pieces one can find one hundred polygons
with twenty sides.

897. Twenty-one girls and twenty-one boys took part in a mathematics competition. It
turned out that
(i) each contestant solved at most six problems, and

(ii) for each pair of a girl and a boy, there was at least one problem that was solved
by both the girl and the boy.

Show that there is a problem that was solved by at least three girls and at least
three boys.

6.2.4 The Inclusion–Exclusion Principle

A particular counting method that we emphasize is the inclusion–exclusion principle,
also known as the Boole–Sylvester formula. It concerns the counting of the elements in
a union of sets A1 ∪ A2 ∪ · · · ∪ An, and works as follows. If we simply wrote

|A1 ∪ A2 ∪ · · · ∪ An| = |A1| + |A2| + · · · + |An|,
we would overcount the elements in the intersections Ai ∩Aj . Thus we have to subtract
|A1 ∩A2|+|A1 ∩A3|+· · ·+|An−1 ∩An|. But then the elements in the triple intersections
Ai ∩Aj ∩Ak were both added and subtracted. We have to put them back. Therefore, we
must add |A1 ∩ A2 ∩ A3| + · · · + |An−2 ∩ An−1 ∩ An|. And so on. The final formula is

|A1 ∪ A2 ∪ · · · ∪ An| =
∑
i

|Ai | −
∑
i,j

|Ai ∩ Aj | + · · · + (−1)n−1|A1 ∩ A2 ∩ · · · ∩ An|.

Example. How many integers less than 1000 are not divisible by 2, 3, or 5?

Solution. To answer the question, we will count instead how many integers between 1
and 1000 are divisible by 2, 3, or 5. Denote by A2, A3, and A5 be the sets of integers
divisible by 2, 3, respectively, 5. The Boole–Sylvester formula counts |A2 ∪A3 ∪A5| as

|A2| + |A3| + |A5| − |A2 ∩ A3| − |A2 ∩ A5| − |A3 ∩ A5| + |A2 ∩ A3 ∩ A5|
=
⌊

1000

2

⌋
+
⌊

1000

3

⌋
+
⌊

1000

5

⌋
−
⌊

1000

6

⌋
−
⌊

1000

10

⌋
−
⌊

1000

15

⌋
+
⌊

1000

30

⌋
= 500 + 333 + 200 − 166 − 100 − 66 + 33 = 734.

It follows that there are 1000 − 734 = 266 integers less than 1000 that are not divisible
by 2, 3, or 5. ��
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The second example comes from I. Tomescu’s book Problems in Combinatorics
(Wiley, 1985).

Example. An alphabet consists of the letters a1, a2, . . . , an. Prove that the number of all
words that contain each of these letters twice, but with no consecutive identical letters,
is equal to

1

2n

[
(2n)! −

(
n

1

)
2(2n− 1)! +

(
n

2

)
22(2n− 2)! − · · · + (−1)n2nn!

]
.

Solution. The number of such words without imposing the restriction about consecutive
letters is

(2n)!
(2!)n = (2n)!

2n
.

This is so because the identical letters can be permuted.
Denote by Ai the number of words formed with the n letters, each occurring twice,

for which the two letters ai appear next to each other. The answer to the problem is then

(2n)!
2n

− |A1 ∪ A2 ∪ · · · ∪ An|.
We evaluate |A1 ∪A2 ∪· · ·∪An| using the inclusion–exclusion principle. To this end,

let us compute |Ai1 ∩Ai2 ∩ · · · ∩Aik | for some indices i1, i2, . . . , ik, k ≤ n. Collapse the
consecutive letters aij , j = 1, 2, . . . , k. As such, we are, in fact, computing the number
of words made of the letters a1, a2, . . . , an in which ai1, ai2, . . . , aik appear once and all
other letters appear twice. This number is clearly equal to

(2n− k)!
2n−k

,

since such a word has 2n− k letters, and identical letters can be permuted. There are
(
n

k

)
k-tuples (i1, i2, . . . , ik). We thus have

|A1 ∪ A2 ∪ · · · ∪ An| =
∑
k

∑
i1,...,ik

(−1)k−1|Ai1 ∩ Ai2 ∩ · · · ∩ Aik |

=
∑
k

(−1)k−1

(
n

k

)
(2n− k)!

2n−k
,

and the formula is proved. ��
898. Let m, n, p, q, r, s be positive integers such that p < r < m and q < s < n. In

how many ways can one travel on a rectangular grid from (0, 0) to (m, n) such
that at each step one of the coordinates increases by one unit and such that the path
avoids the points (p, q) and (r, s)?
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899. Let E be a set with n elements and F a set with p elements, p ≤ n. How many
surjective (i.e., onto) functions f : E → F are there?

900. A permutation σ of a set S is called a derangement if it does not have fixed points,
i.e., if σ(x) 	= x for all x ∈ S. Find the number of derangements of the set
{1, 2, . . . , n}.

901. Given a graph with n vertices, prove that either it contains a triangle, or there exists
a vertex that is the endpoint of at most �n2� edges.

902. Letm ≥ 5 and n be given positive integers, and suppose that P is a regular (2n+1)-
gon. Find the number of convexm-gons having at least one acute angle and having
vertices exclusive among the vertices of P .

903. Let S1 = {z ∈ C | |z| = 1}. For all functions f : S1 → S1 set f 1 = f and
f n+1 = f ◦f n, n ≥ 1. Callw ∈ S1 a periodic point of f of period n if f i(w) 	= w

for i = 1, . . . , n− 1 and f n(w) = w. If f (z) = zm, m a positive integer, find the
number of periodic points of f of period 1989.

904. For positive integers x1, x2, . . . , xn denote by [x1, x2, . . . , xn] their least common
multiple and by (x1, x2, . . . , xn) their greatest common divisor. Prove that for
positive integers a, b, c,

[a, b, c]2

[a, b][b, c][c, a] = (a, b, c)2

(a, b)(b, c)(c, a)
.

905. A 150 × 324 × 375 rectangular solid is made by gluing together 1 × 1 × 1 cubes.
An internal diagonal of this solid passes through the interiors of how many of the
1 × 1 × 1 cubes?

6.3 Probability

6.3.1 Equally Likely Cases

In this section we consider experiments with finitely many outcomes each of which can
occur with equal probability. In this case the probability of an event A is given by

P(A) = number of favorable outcomes

total number of possible outcomes
.

The computation of the probability is purely combinatorial; it reduces to a counting
problem.

We start with the example that gave birth to probability theory.
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Example. Show that the probability of getting a six when a die is rolled four times is
greater than the probability of getting a double six when two dice are rolled 24 times.

Here is a brief history of the problem. Chevalier de Méré, a gambler of the seventeenth
century, observed while gambling that the odds of getting a six when rolling a die four
times seem to be greater than 1

2 , while the odds of getting a double six when rolling two
dice 24 times seem to be less than 1

2 . De Méré thought that this contradicted mathematics
because 4

6 = 24
36 . He posed this question to B. Pascal and P. Fermat. They answered the

question…and probability theory was born. Let us see the solution.

Solution. The probability that a six does not occur when rolling a die four times is ( 5
6)

4,
and so the probability that a six occurs is 1−( 5

6)
4 ≈ 0.5177. The probability that a double

six does not occur when rolling two dice 24 times is ( 35
36)

24, whence the probability that
a double six occurs is 1 − ( 35

36)
24 ≈ 0.4914. The second number is smaller. ��

Example. Consider n indistinguishable balls randomly distributed in m boxes. What is
the probability that exactly k boxes remain empty?

Solution. Number the boxes 1, 2, . . . , m and let xi be the number of balls in the ith box.
The number of ways one can distribute n balls in m boxes is equal to the number of
nonnegative integer solutions to the equation

x1 + x2 + · · · + xm = n.

These solutions were counted in problem 887 from Section 6.2.3 and were found to be(
m+n−1
m−1

)
. This is the total number of cases.

If we fix k boxes and distribute the balls in the remaining n− k boxes such that each
box receives at least one ball, then the number of ways to do this is equal to the number
of positive integer solutions to the equation

x1 + x2 + · · · + xm−k = n.

This was also computed in one of the examples from Section 6.2.3 and was shown to be(
n−1

m−k−1

)
. The k boxes can be chosen in

(
m

k

)
ways. We find the number of favorable cases

to be
(
m

k

)(
n−1

m−k−1

)
. The required probability is therefore(

m

k

)(
n−1

m−k−1

)(
m+n−1
m−1

) . ��

If you grab n balls and place them one at a time randomly in boxes, you will find that
they do not seem to fit the probabilities just calculated. This is because they are not really
indistinguishable balls: the order of placement and the fact that they are macroscopic
balls makes them distinguishable. However, the example above does correspond to a real
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world situation, namely that about particles and states. The above considerations apply
to bosons, particles that obey the Bose–Einstein statistics, which allows several particles
to occupy the same state. Examples of bosons are photons, gluons, and the helium-4
atom. Electrons and protons, on the other hand, are fermions. They are subject to the
Pauli exclusion principle: at most one can occupy a certain state. As such, fermions obey
what is called the Fermi–Dirac statistics.

A third problem comes from C. Reischer, A. Sâmboan, Collection of Problems
in Probability Theory and Mathematical Statistics (Editura Didactică şi Pedagogică,
Bucharest, 1972). It shows how probabilities can be used to prove combinatorial identi-
ties.

Example. Prove the identity

1 + n

m+ n− 1
+ · · · + n(n− 1) · · · 1

(m+ n− 1)(m+ n− 2) · · ·m = m+ n

m
.

Solution. Consider a box containing nwhite balls andm black balls. LetAi be the event
of extracting the first white ball at the ith extraction. We compute

P(A1) = m

m+ n
,

P (A2) = n

m+ n
· m

m+ n− 1
,

P (A3) = n

m+ n
· n− 1

m+ n− 1
· m

m+ n− 2
,

· · ·
P(Am) = n

m+ n
· n− 1

m+ n− 1
· · · 1

m
.

The events A1, A2, A3, . . . are disjoint, and therefore

1 = P(A1)+ P(A2)+ · · · + P(Am)

= m

m+ n

[
1 + n

m+ n− 1
+ · · · + n(n− 1) · · · 1

(m+ n− 1)(m+ n− 2) · · · 1

]
.

The identity follows. ��
Because it will be needed below, let us recall that the expected value of an experiment

with possible outcomes a1, a2, . . . , an is the weighted mean

a1P(X = a1)+ a2P(X = a2)+ · · · + anP (X = an).

So let us see the problems.
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906. Let v and w be distinct, randomly chosen roots of the equation z1997 − 1 = 0. Find

the probability that
√

2 + √
3 ≤ |v + w|.

907. Find the probability that in a group of n people there are two with the same birthday.
Ignore leap years.

908. A solitaire game is played as follows. Six distinct pairs of matched tiles are placed
in a bag. The player randomly draws tiles one at a time from the bag and retains
them, except that matching tiles are put aside as soon as they appear in the player’s
hand. The game ends if the player ever holds three tiles, no two of which match;
otherwise, the drawing continues until the bag is empty. Find the probability that
the bag will be emptied.

909. An urn contains n balls numbered 1, 2, . . . , n. A person is told to choose a ball
and then extract m balls among which is the chosen one. Suppose he makes two
independent extractions, where in each case he chooses the remaining m− 1 balls
at random. What is the probability that the chosen ball can be determined?

910. A bag contains 1993 red balls and 1993 black balls. We remove two balls at a time
repeatedly and
(i) discard them if they are of the same color,

(ii) discard the black ball and return to the bag the red ball if they are of different
colors.

What is the probability that this process will terminate with one red ball in the bag?

911. The numbers 1, 2, 3, 4, 5, 6, 7, and 8 are written on the faces of a regular octahedron
so that each face contains a different number. Find the probability that no two
consecutive numbers are written on faces that share an edge, where 8 and 1 are
considered consecutive.

912. What is the probability that a permutation of the first n positive integers has the
numbers 1 and 2 within the same cycle.

913. An unbiased coin is tossed n times. Find a formula, in closed form, for the expected
value of |H − T |, where H is the number of heads, and T is the number of tails.

914. Prove the identities

n∑
k=1

1

(k − 1)!
n−k∑
i=0

(−1)i

i! = 1,

n∑
k=1

k

(k − 1)!
n−k∑
i=0

(−1)i

i! = 2.
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6.3.2 Establishing Relations Among Probabilities

We adopt the usual notation: P(A) is the probability of the event A, P(A ∩ B) is the
probability that A and B occur simultaneously, P(A ∪ B) is the probability that either
A or B occurs, P(A− B) is the probability that A occurs but not B, and P(A/B) is the
probability that A occurs given that B also occurs.

Recall the classical formulas:

• addition formula:

P(A ∪ B) = P(A)+ P(B)− P(A ∩ B);

• multiplication formula:

P(A ∩ B) = P(A)P (B/A);

• total probability formula: if Bi ∩ Bj = ∅, i, j = 1, 2, . . . , n (meaning that they are
independent), and A ⊂ B1 ∪ B2 ∪ · · · ∪ Bn, then

P(A) = P(A/B1)P (B1)+ P(A/B2)P (B2)+ · · · + P(A/Bn)P (Bn);

• Bayes’ formula: with the same hypothesis,

P(Bi/A) = P(A/Bi)P (Bi)

P (A/B1)P (B1)+ P(A/B2)P (B2)+ · · · + P(A/Bn)P (Bn)
.

In particular, if B1, B2, . . . , Bn cover the entire probability field, then

P(Bi/A) = P(Bi)

P (A)
P (A/Bi).

The Bernoulli scheme. As a result of an experiment either the event A occurs with
probability p or the contrary event Ā occurs with probability q = 1 − p. We repeat the
experiment n times. The probability that A occurs exactly m times is

(
n

m

)
pmqn−m. This

is also called the binomial scheme because the generating function of these probabilities
is (q + px)n.

The Poisson scheme. We perform n independent experiments. For each k, 1 ≤ k ≤ n,
in the kth experiment the event A can occur with probability pk, or Ā can occur with
probability qk = 1 − pk. The probability that A occurs exactly m times while the n
experiments are performed is the coefficient of xm in the expansion of

(p1x + q1)(p2x + q2) · · · (pnx + qn).

Here is a problem from the 1970 Romanian Mathematical Olympiad that applies the
Poisson scheme.
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Example. In a selection test, each of three candidates receives a problem sheet with n
problems from algebra and geometry. The three problem sheets contain, respectively,
one, two, and three algebra problems. The candidates choose randomly a problem from
the sheet and answer it at the blackboard. What is the probability that

(a) all candidates answer geometry problems;
(b) all candidates answer algebra problems;
(c) at least one candidate answers an algebra problem?

Solution. We apply the Poisson scheme. Define the polynomial

P(x) =
(

1

n
x + n− 1

n

)(
2

n
x + n− 2

n

)(
3

n
x + n− 3

n

)
= 1

n3
[6x3 + (11n− 18)x2 + (6n2 − 22n+ 18)x + (n− 1)(n− 2)(n− 3)]

= P3x
3 + P2x

2 + P1x + P0.

The answer to question (a) is the free term P0 = (n−1)(n−2)(n−3)
n3 . The answer to (b) is the

coefficient of x3, namely, P3 = 6
n3 . The answer to (c) is P = 1 − P0 = 6n2−11n+6

n3 . ��
And now another problem posed to Pascal and Fermat by the Chevalier de Méré.

Example. Two players repeatedly play a game in which the first wins with probability
p and the second wins with probability q = 1 − p. They agree to stop when one of
them wins a certain number of games. They are forced to interrupt their game when the
first player has a more games to win and the second player has b more games to win.
How should they divide the stakes correctly? Use the answer to prove the combinatorial
identities

pa
b−1∑
k=0

(
a − 1 + k

a − 1

)
qk + qb

a−1∑
k=0

(
b − 1 + k

b − 1

)
pk = 1,

pa
b−1∑
k=0

(
a − 1 + k

a − 1

)
qk = (a + b − 1)!

a!(b − 1)! p
aqb−1

[
1 +

b−1∑
k=1

(b − 1) · · · (b − k)

(a + 1) · · · (a + k)

(
p

q

)k]
.

Solution. Call P the probability that the first player wins the a remaining games before
the second player wins the b games he needs, and Q = 1 − P , the probability that the
second player wins b games before the first wins a. The players should divide the stakes
in the ratio P

Q
.

We proceed with the computation of P . The first player could have won the a games
in several mutually exclusive ways: in exactly a games, in exactly a + 1 games, . . . , in
exactly a + b − 1 games. In all cases the last game should be won by the first player.



316 6 Combinatorics and Probability

Let us find the probability that the first player wins in exactly a + k games, k =
0, 1, . . . , b− 1. The probability that the first player wins a− 1 games out of a+ k− 1 is
computed using the Bernoulli scheme and is equal to

(
a+k−1
a−1

)
pa−1qk, and the probability

of winning the (a + k)th is p. The probability of winning in exactly a + k games is the
product of the two, namely

(
a+k−1
a−1

)
paqk.

We deduce that the probability of the first player winning the stakes is

P =
b−1∑
k=0

(
a + k − 1

a − 1

)
paqk,

while for the second player this is

Q = qb
a−1∑
k=0

(
b − 1 + k

b − 1

)
pk.

The stakes should be divided in the ratio

P

Q
=
pa

b−1∑
k=0

(
a − 1 + k

a − 1

)
qk

qb
a−1∑
k=0

(
b − 1 + k

b − 1

)
pk

.

The first combinatorial identity is equivalent to P +Q = 1. For the second combi-
natorial identity, we look for a different way to compute P . Observe that after at most
a+b−1 games have been played, the winner is known. Let us assume that regardless of
the results, the players kept playing all the a+b− 1 games. If the first player had won at
least a of these games, he would have won the stakes as well. Hence P is the probability
that the first player won a, a + 1, . . . , a + b − 1 of the final a + b − 1 games. Each of
these is computed using the Bernoulli scheme, and P is their sum, since the events are
incompatible. We obtain

P =
b−1∑
k=0

(
a + b − 1

a + k

)
pa+kqb−1−k

= (a + b − 1)!
a!(b − 1)! p

aqb−1

[
1 +

b−1∑
k=1

(b − 1) · · · (b − k)

(a + 1) · · · (a + k)

(
p

q

)k]
.

The second identity follows by equating the two formulas that we obtained for P . ��
This is yet another example of how probability theory can be used to prove identities.

Since “wisdom is the daughter of experience’’ (Leonardo da Vinci), we let you train your
probabilistic skills with the following problems.
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915. An exam consists of 3 problems selected randomly from a list of 2n problems, where
n is an integer greater than 1. For a student to pass, he needs to solve correctly
at least two of the three problems. Knowing that a certain student knows how to
solve exactly half of the 2n problems, find the probability that the student will pass
the exam.

916. The probability that a woman has breast cancer is 1%. If a woman has breast
cancer, the probability is 60% that she will have a positive mammogram. However,
if a woman does not have breast cancer, the mammogram might still come out
positive, with a probability of 7%. What is the probability for a woman with
positive mammogram to actually have cancer?

917. Find the probability that in the process of repeatedly flipping a coin, one will en-
counter a run of 5 heads before one encounters a run of 2 tails.

918. The temperatures in Chicago and Detroit are x◦ and y◦, respectively. These tem-
peratures are not assumed to be independent; namely, we are given the following:

(i) P(x◦ = 70◦) = a, the probability that the temperature in Chicago is 70◦,
(ii) P(y◦ = 70◦) = b, and

(iii) P(max(x◦, y◦) = 70◦) = c.
Determine P(min(x◦, y◦) = 70◦) in terms of a, b, and c.

919. An urn contains both black and white marbles. Each time you pick a marble you
return it to the urn. Letp be the probability of drawing a white marble and q = 1−p
the probability of drawing a black marble. Marbles are drawn until n black marbles
have been drawn. If n + x is the total number of draws, find the probability that
x = m.

920. Three independent students took an exam. The random variable X, representing
the students who passed, has the distribution(

0 1 2 3
2
5

13
30

3
20

1
60

)
.

Find each student’s probability of passing the exam.

921. Given the independent events A1, A2, . . . , An with probabilities p1, p2, . . . , pn,
find the probability that an odd number of these events occurs.

922. Out of every batch of 100 products of a factory, 5 are quality checked. If one
sample does not pass the quality check, then the whole batch of one hundred will
be rejected. What is the probability that a batch is rejected if it contains 5% faulty
products.

923. There are two jet planes and a propeller plane at the small regional airport of Gauss
City. A plane departs from Gauss City and arrives in Eulerville, where there were
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already five propeller planes and one jet plane. Later, a farmer sees a jet plane flying
out of Eulerville. What is the probability that the plane that arrived from Gauss
City was a propeller plane, provided that all events are equiprobable?

924. A coin is tossed n times. What is the probability that two heads will turn up in
succession somewhere in the sequence?

925. Two people, A and B, play a game in which the probability that A wins is p, the
probability that B wins is q, and the probability of a draw is r . At the beginning,
A has m dollars and B has n dollars. At the end of each game, the winner takes a
dollar from the loser. If A and B agree to play until one of them loses all his/her
money, what is the probability of A winning all the money?

926. We play the coin tossing game in which if tosses match, I get both coins; if they
differ, you get both. You have m coins, I have n. What is the expected length of
the game (i.e., the number of tosses until one of us is wiped out)?

6.3.3 Geometric Probabilities

In this section we look at experiments whose possible outcomes are parametrized by the
points of a geometric region. Here we interpret “at random’’ to mean that the probability
that a point lies in a certain region is proportional to the area or volume of the region. The
probability of a certain event is then computed by taking the ratio of the area (volume)
of the favorable region to the area (volume) of the total region. We start with the game
of franc-carreau investigated by George-Louis Leclerc, Comte de Buffon, in his famous
Essai d’arithmétique morale.

Example. A coin of diameter d is thrown randomly on a floor tiled with squares of side
l. Two players bet that the coin will land on exactly one, respectively, more than one,
square. What relation should l and d satisfy for the game to be fair?

Figure 42
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Solution. The center of the coin falls on some tile. For the coin to lie entirely on that
tile, its center must fall inside the dotted square of side length l − 2 · d2 = l − d shown
in Figure 42. This happens with probability

P = (l − d)2

l2
.

For the game to be fair, P must be equal to 1
2 , whence the relation that d and l should

satisfy is

d = 1

2
(2 − √

2)l. ��
Example. What is the probability that three randomly chosen points on a circle form an
acute triangle?

Solution. The fact that the triangle is acute is equivalent to the fact that each of the arcs
determined by the vertices is less than a semicircle.

Because of the rotational symmetry of the figure, we can assume that one of the
points is fixed. Cut the circle at that point to create a segment. In this new framework,
the problem asks us to find the probability that two randomly chosen points on a segment
cut it in three parts, none of which is larger than half of the original segment.

Identify the segment with the interval [0, 1], and let the coordinates of the two points
be x and y. Then the possible choices can be identified with points (x, y) randomly
distributed in the interior of the square [0, 1] × [0, 1]. The area of the total region is
therefore 1. The favorable region, namely, the set of points inside the square that yield
an acute triangle, is{
(x, y)

∣∣∣∣ 0 < x <
1

2
,

1

2
< y <

1

2
+ x

}
∪
{
(x, y)

∣∣∣∣ 1

2
< x < 1, x − 1

2
< y <

1

2

}
.

The area of this region is 1
4 . Hence the probability in question is 1

4 . ��
As an outcome of the solution we find that when cutting a segment into three random

parts, the probability that the three segments can be the sides of an acute triangle is 1
4 .

927. What is the probability that the sum of two randomly chosen numbers in the interval
[0, 1] does not exceed 1 and their product does not exceed 2

9 ?

928. Let α and β be given positive real numbers, with α < β. If two points are selected
at random from a straight line segment of length β, what is the probability that the
distance between them is at least α?

929. A husband and wife agree to meet at a street corner between 4 and 5 o’clock to go
shopping together. The one who arrives first will await the other for 15 minutes,
and then leave. What is the probability that the two meet within the given time
interval, assuming that they can arrive at any time with the same probability?
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930. Two airplanes are supposed to park at the same gate of a concourse. The arrival
times of the airplanes are independent and randomly distributed throughout the 24
hours of the day. What is the probability that both can park at the gate, provided
that the first to arrive will stay for a period of two hours, while the second can wait
behind it for a period of one hour?

931. What is the probability that three points selected at random on a circle lie on a
semicircle?

932. Let n ≥ 4 be given, and suppose that the pointsP1, P2, . . . , Pn are randomly chosen
on a circle. Consider the convex n-gon whose vertices are these points. What is
the probability that at least one of the vertex angles of this polygon is acute?

933. Let C be the unit circle x2 + y2 = 1. A point p is chosen randomly on the
circumference of C and another point q is chosen randomly from the interior of C
(these points are chosen independently and uniformly over their domains). Let R
be the rectangle with sides parallel to the x- and y-axes with diagonal pq. What is
the probability that no point of R lies outside of C?

934. If a needle of length 1 is dropped at random on a surface ruled with parallel lines at
distance 2 apart, what is the probability that the needle will cross one of the lines?

935. Four points are chosen uniformly and independently at random in the interior of a
given circle. Find the probability that they are the vertices of a convex quadrilateral.
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Methods of Proof

1. Assume the contrary, namely that
√

2 + √
3 + √

5 = r , where r is a rational number.
Square the equality

√
2 + √

3 = r − √
5 to obtain 5 + 2

√
6 = r2 + 5 − 2r

√
5. It follows

that 2
√

6 + 2r
√

5 is itself rational. Squaring again, we find that 24 + 20r2 + 8r
√

30
is rational, and hence

√
30 is rational, too. Pythagoras’ method for proving that

√
2 is

irrational can now be applied to show that this is not true. Write
√

30 = m
n

in lowest
terms; then transform this intom2 = 30n2. It follows thatm is divisible by 2 and because
2(m2 )

2 = 15n2 it follows that n is divisible by 2 as well. So the fraction was not in lowest
terms, a contradiction. We conclude that the initial assumption was false, and therefore√

2 + √
3 + √

5 is irrational.

2. Assume that such numbers do exist, and let us look at their prime factorizations. For
primesp greater than 7, at most one of the numbers can be divisible byp, and the partition
cannot exist. Thus the prime factors of the given numbers can be only 2, 3, 5, and 7.

We now look at repeated prime factors. Because the difference between two numbers
divisible by 4 is at least 4, at most three of the nine numbers are divisible by 4. Also, at
most one is divisible by 9, at most one by 25, and at most one by 49. Eliminating these at
most 3 + 1 + 1 + 1 = 6 numbers, we are left with at least three numbers among the nine
that do not contain repeated prime factors. They are among the divisors of 2 · 3 · 5 · 7,
and so among the numbers

2, 3, 5, 6, 7, 10, 14, 15, 21, 30, 35, 42, 70, 105, 210.

Because the difference between the largest and the smallest of these three numbers
is at most 9, none of them can be greater than 21. We have to look at the sequence
1, 2, 3, . . . , 29. Any subsequence of consecutive integers of length 9 that has a term
greater than 10 contains a prime number greater than or equal to 11, which is impossible.
And from 1, 2, . . . , 10 we cannot select nine consecutive numbers with the required
property. This contradicts our assumption, and the problem is solved.
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3. The example 22, 32, 52, . . . , 432, where we considered the squares of the first 14 prime
numbers, shows that n ≥ 15.

Assume that there exist a1, a2, . . . , a16, pairwise relatively prime integers greater than
1 and less than 2005, none of which is a prime. Let qk be the least prime number in the
factorization of ak, k = 1, 2, . . . , 16. Let qi be the maximum of q1, q2, . . . , q15. Then
qi ≥ p16 = 47. Because ai is not a prime, ai

qi
is divisible by a prime number greater than

or equal to qi . Hence ai ≥ q2
i = 472 > 2005, a contradiction. We conclude that n = 15.

4. Arguing by contradiction, we assume that none of the colors has the desired property.
Then there exist distances r ≥ g ≥ b such that r is not attained by red points, g by green
points, and b by blue points (for these inequalities to hold we might have to permute the
colors).

Consider a sphere of radius r centered at a red point. Its surface has green and blue
points only. Since g, b ≤ r , the surface of the sphere must contain both green and blue
points. Choose M a green point on the sphere. There exist two points P and Q on the
sphere such that MP = MQ = g and PQ = b. So on the one hand, either P or Q is
green, or else P andQ are both blue. Then either there exist two green points at distance
g, namely M and P , or Q, or there exist two blue points at distance b. This contradicts
the initial assumption. The conclusion follows.

(German Mathematical Olympiad, 1985)

5. Arguing by contradiction, let us assume that the area of the overlap of any two sur-
faces is less than 1

9 . In this case, if S1, S2, . . . , Sn denote the nine surfaces, then the area
of S1 ∪ S2 is greater than 1 + 8

9 , the area of S1 ∪ S2 ∪ S3 is greater than 1 + 8
9 + 7

9 , . . . ,

and the area of S1 ∪ S2 ∪ · · · ∪ S9 is greater than

1 + 8

9
+ 7

9
+ · · · + 1

9
= 45

9
= 5,

a contradiction. Hence the conclusion.
(L. Panaitopol, D. Şerbănescu, Probleme de Teoria Numerelor şi Combinatorica

pentru Juniori (Problems in Number Theory and Combinatorics for Juniors), GIL, 2003)

6. Assume that such an f exists. We focus on some particular values of the variable. Let
f (0) = a and f (5) = b, a, b ∈ {1, 2, 3}, a 	= b. Because |5 − 2| = 3, |2 − 0| = 2, we
have f (2) 	= a, b, so f (2) is the remaining number, say c. Finally, because |3 − 0| = 3,
|3−5| = 2, we must have f (3) = c. Therefore, f (2) = f (3). Translating the argument
to an arbitrary number x instead of 0, we obtain f (x+2) = f (x+3), and so f is constant.
But this violates the condition from the definition. It follows that such a function does
not exist.

7. Arguing by contradiction, let us assume that such a function exists. Set f (3) = k.
Using the inequality 23 < 32, we obtain
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33 = f (2)3 = f (23) < f (32) = f (3)2 = k2,

hence k > 5. Similarly, using 33 < 25, we obtain

k3 = f (3)3 = f (33) < f (25) = f (2)5 = 35 = 243 < 343 = 73.

This implies that k < 7, and consequently k can be equal only to 6. Thus we should
have f (2) = 3 and f (3) = 6. The monotonicity of f implies that 2u < 3v if and only
if 3u < 6v, u, v being positive integers. Taking logarithms this means that v

u
> log2 3 if

and only if v
u
> log3 6. Since rationals are dense, it follows that log2 3 = log3 6. This

can be written as log2 3 = 1
log2 3 +1, and so log2 3 is the positive solution of the quadratic

equation x2 − x − 1 = 0, which is the golden ratio 1+√
5

2 . The equality

2
1+√

5
2 = 3

translates to 21+√
5 = 9. But this would imply

65536 = 25×3.2 < 25(1+√
5) = 95 = 59049.

We have reached a contradiction, which proves that the function f cannot exist.
(B.J. Venkatachala, Functional Equations: A Problem Solving Approach, Prism

Books PVT Ltd., Bangalore, 2002)

8. The constant function f (x) = k, where k is a positive integer, is the only possible
solution. That any such function satisfies the given condition is easy to check.

Now suppose there exists a nonconstant solution f . There must exist two positive
integersa andb such thatf (a) < f (b). This implies that (a+b)f (a) < af (b)+bf (a) <
(a+b)f (b), which by the given condition is equivalent to (a+b)f (a) < (a+b)f (a2 +
b2) < (a+ b)f (b). We can divide by a+ b > 0 to find that f (a) < f (a2 + b2) < f (b).
Thus between any two different values of f we can insert another. But this cannot go on
forever, since f takes only integer values. The contradiction shows that such a function
cannot exist. Thus constant functions are the only solutions.

(Canadian Mathematical Olympiad, 2002)

9.Assume thatA,B, and a satisfyA∪B = [0, 1],A∩B = ∅,B = A+a. We can assume
that a is positive; otherwise, we can exchange A and B. Then (1 − a, 1] ⊂ B; hence
(1 − 2a, 1 − a] ⊂ A. An inductive argument shows that for any positive integer n, the
interval (1−(2n+1)a, 1−2na] is inB, while the interval (1−(2n+2)a, 1−(2n+1)a]
is in A. However, at some point this sequence of intervals leaves [0, 1]. The interval of
the form (1 − na, 1 − (n− 1)a] that contains 0 must be contained entirely in either A or
B, which is impossible since this inteval exits [0, 1]. The contradiction shows that the
assumption is wrong, and hence the partition does not exist.

(Austrian–Polish Mathematics Competition, 1982)
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10. Assume the contrary. Our chosen numbers a1, a2, . . . , ak+1 must have a total of at
most k distinct prime factors (the primes less than or equal to n). Let op(q) denote the
highest value of d such that pd |q. Also, let a = a1a2 · · · ak+1 be the product of the
numbers. Then for each prime p, op(a) = ∑k+1

i=1 op(ai), and it follows that there can

be at most one hostile value of i for which op(ai) >
op(a)

2 . Because there are at most
k primes that divide a, there is some i that is not hostile for any such prime. Then
2op(ai) ≤ op(a), so op(ai) ≤ op(

a
ai
) for each prime p dividing a. This implies that ai

divides a
ai

, which contradicts the fact that the ai does not divide the product of the other
aj ’s. Hence our assumption was false, and the conclusion follows.

(Hungarian Mathematical Olympiad, 1999)

11. The base case n = 1 is 1
2 = 1 − 1

2 , true. Now the inductive step. The hypothesis
is that

1

k + 1
+ 1

k + 2
+ · · · + 1

2k
= 1 − 1

2
+ · · · + 1

2k − 1
− 1

2k
.

We are to prove that

1

k + 2
+ · · · + 1

2k
+ 1

2k + 1
+ 1

2k + 2
= 1 − 1

2
+ · · · − 1

2k
+ 1

2k + 1
− 1

2k + 2
.

Using the induction hypothesis, we can rewrite this as

1

k + 2
+ · · · + 1

2k
+ 1

2k + 1
+ 1

2k + 2

= 1

k + 1
+ 1

k + 2
+ · · · + 1

2k
+ 1

2k + 1
− 1

2k + 2
,

which reduces to

1

2k + 2
= 1

k + 1
− 1

2k + 2
,

obvious. This completes the induction.

12. The base case is trivial. However, as I.M. Vinogradov once said, “it is the first
nontrivial example that matters.’’ And this is n = 2, in which case we have

| sin 2x| = 2| sin x|| cos x| ≤ 2| sin x|.
This suggests to us to introduce cosines as factors in the proof of the inductive step.
Assuming the inequality for n = k, we can write

| sin(k + 1)x| = | sin kx cos x + sin x cos kx| ≤ | sin kx|| cos x| + | sin x|| cos kx|
≤ | sin kx| + | sin x| ≤ k| sin x| + | sin x| = (k + 1)| sin x|.
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The induction is complete.

13. As in the solution to the previous problem we argue by induction on n using trigono-
metric identities. The base case holds because

| sin x1| + | cos x1| ≥ sin2 x1 + cos2 x1 = 1.

Next, assume that the inequality holds for n = k and let us prove it for n = k+ 1. Using
the inductive hypothesis, it suffices to show that

| sin xn+1| + | cos(x1 + x2 + · · · + xn+1)| ≥ | cos(x1 + x2 + · · · + xn)|.
To simplify notation let xn+1 = x and x1 +x2 +· · ·+xn+xn+1 = y, so that the inequality
to be proved is | sin x| + | cos y| ≥ | cos(y − x)|. The subtraction formula gives

| cos(y − x)| = | cos y cos x + sin y sin x| ≤ | cos y|| cos x| + | sin y|| sin x|
≤ | cos y| + | sin x|.

This completes the inductive step, and concludes the solution.
(Revista Mathematica din Timişoara (Timişoara Mathematics Gazette), proposed by

T. Andreescu)

14. We expect an inductive argument, with a possible inductive step given by

3n+1 = 3 · 3n ≥ 3n3 ≥ (n+ 1)3.

In order for this to work, the inequality 3n3 ≥ (n+ 1)3 needs to be true. This inequality
is equivalent to 2n3 ≥ 3n2 +3n+1, which would, for example, follow from the separate
inequalities n3 ≥ 3n2 and n3 ≥ 3n + 1. These are both true for n ≥ 3. Thus we can
argue by induction starting with the base case n = 3, where equality holds. The cases
n = 0, n = 1, and n = 2 can be checked by hand.

15. The base case 26 < 6! < 36 reduces to 64 < 720 < 729, which is true. Assuming
the double inequality true for n we are to show that(

n+ 1

3

)n+1

< (n+ 1)! <
(
n+ 1

2

)n+1

.

Using the inductive hypothesis we can reduce the inequality on the left to(
n+ 1

3

)n+1

< (n+ 1)
(n

3

)n
,

or
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(
1 + 1

n

)n
< 3,

while the inequality on the right can be reduced to(
1 + 1

n

)n
> 2.

These are both true for alln ≥ 1 because the sequence (1+ 1
n
)n is increasing and converges

to e, which is less than 3. Hence the conclusion.

16. The left-hand side grows withn, while the right-hand side stays constant, so apparently
a proof by induction would fail. It works, however, if we sharpen the inequality to

1 + 1

23
+ 1

33
+ · · · + 1

n3
<

3

2
− 1

n
, n ≥ 2.

As such, the cases n = 1 and n = 2 need to be treated separately, and they are easy to
check.

The base case is for n = 3: 1 + 1
23 + 1

33 < 1 + 1
8 + 1

27 <
3
2 − 1

3 . For the inductive
step, note that from

1 + 1

23
+ 1

33
+ · · · + 1

n3
<

3

2
− 1

n
, for some n ≥ 3,

we obtain

1 + 1

23
+ 1

33
+ · · · + 1

n3
+ 1

(n+ 1)3
<

3

2
− 1

n
+ 1

(n+ 1)3
.

All we need to check is

3

2
− 1

n
+ 1

(n+ 1)3
<

3

2
− 1

(n+ 1)
,

which is equivalent to

1

(n+ 1)3
<

1

n
− 1

(n+ 1)
,

or

1

(n+ 1)3
<

1

n(n+ 1)
.

This is true, completing the inductive step. This proves the inequality.
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17. We prove both parts by induction on n. For (a), the case n = 1 is straightforward.
Assume now that we have found an n-digit number m divisible by 2n made out of the
digits 2 and 3 only. Let m = 2nk for some integer k. If n is even, then

2 × 10n +m = 2n(2 · 5n + k)

is an (n + 1)-digit number written only with 2’s and 3’s, and divisible by 2n+1. If k is
odd, then

3 × 10n +m = 2n(3 · 5n + k)

has this property.
The idea of part (b) is the same. The base case is trivial, m = 5. Now if we have

found an n-digit number m = 5nk with this property, then looking modulo 5, one of the
(n+ 1)-digit numbers

5 × 10n +m = 5n(5 · 2n + k),

6 × 10n +m = 5n(6 · 2n + k),

7 × 10n +m = 5n(7 · 2n + k),

8 × 10n +m = 5n(8 · 2n + k),

9 × 10n +m = 5n(9 · 2n + k)

has the required property, and the problem is solved.
(USA Mathematical Olympiad, 2003, proposed by T. Andreescu)

18. We proceed by induction on n. The base case is obvious; the decomposition consists
of just one piece. For the induction step, let us assume that the tiling is possible for
such a 2n × 2n board and consider a 2n+1 × 2n+1 board. Start by placing a piece in the
middle of the board as shown in Figure 43. The remaining surface decomposes into four
2n × 2n boards with corner squares removed, each of which can be tiled by the induction
hypothesis. Hence we are done.

Figure 43

19. The property is clearly true for a single number. Now assume that it is true whenever
we have such a sequence of length k and let us prove it for a sequence of length k + 1:
x1, x2, . . . , xk+1. Call a cyclic shift with all partial sums positive “good.’’
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With indices taken modulo k+ 1, there exist two terms xj and xj+1 such that xj > 0,
xj+1 < 0, and xj +xj+1 > 0. Without loss of generality, we may assume that these terms
are xk and xk+1. Define a new sequence by yj = xj , j ≤ k − 1, yk = xk + xk+1. By
the inductive hypothesis, y1, y2, . . . , yk has a unique good cyclic shift. Expand yk into
xk, xk+1 to obtain a good cyclic shift of x1, x2, . . . , xk+1. This proves the existence. To
prove uniqueness, note that a good cyclic shift of x1, x2, . . . , xk+1 can start only with one
of x1, x2, . . . , xk (since xk+1 < 0). It induces a good cyclic shift of y1, y2, . . . , yk that
starts at the same term; hence two good cyclic shifts of the longer sequence would produce
two good cyclic shifts of the shorter. This is ruled out by the induction hypothesis, and
the uniqueness is proved.

(G. Raney)

20. We induct on m + n. The base case m + n = 4 can be verified by examining the
equalities

1 + 1 = 1 + 1 and 1 + 2 = 1 + 2.

Now let us assume that the property is true form+n = k and prove it form+n = k+1.
Without loss of generality, we may assume that x1 = maxi xi and y1 = maxi yi , x1 ≥ y1.
If m = 2, then

y1 + y2 = x1 + x2 + · · · + xn ≥ x1 + n− 1 ≥ y1 + n− 1.

It follows that y1 = x1 = n or n−1, y2 = n−1, x2 = x3 = · · · = xn = 1. Consequently,
y2 = x2 + x3 + · · · + xn, and we are done. If m > 2, rewrite the original equality as

(x1 − y1)+ x2 + · · · + xn = y2 + · · · + ym.

This is an equality of the same type, with the observation that x1 − y1 could be zero, in
which case x1 and y1 are the numbers to be suppressed.

We could apply the inductive hypothesis if y1 ≥ n, in which case y2 + · · · + ym were
less than mn− y1 < (m− 1)n. In this situation just suppress the terms provided by the
inductive hypothesis; then move y1 back to the right-hand side.

Let us analyze the case in which this argument does not work, namely when y1 < n.
Then y2 + y3 + · · · + ym ≤ (m− 1)y1 < (m− 1)n, and again the inductive hypothesis
can be applied. This completes the solution.

21. Let f be the function. We will construct g and h such that f = g+ h, with g an odd
function and h a function whose graph is symmetric with respect to the point (1, 0).

Let g be any odd function on the interval [−1, 1] for which g(1) = f (1). Define
h(x) = f (x)−g(x), x ∈ [−1, 1]. Now we proceed inductively as follows. For n ≥ 1, let
h(x) = −h(2−x) and g(x) = f (x)−h(x) for x ∈ (2n−1, 2n+1], and then extend these
functions such that g(x) = −g(−x) and h(x) = f (x)−g(x) for x ∈ [−2n−1,−2n+1).
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It is straightforward to check that the g and h constructed this way satisfy the required
condition.

(Kvant (Quantum))

22. We prove the property by induction on n. For n = 2, any number of the form n = 2t2,
t an integer, would work.

Let us assume that for n = k there is a numbermwith the property from the statement,
and let us find a number m′ that fulfills the requirement for n = k + 1. We assume in
addition that m ≥ 7; thus we strengthen somewhat the conclusion of the problem.

We need the fact that every integer p ≥ 2 can be represented as a2 + b2 − c2, where
a, b, c are positive integers. Indeed, if p is even, say p = 2q, then

p = 2q = (3q)2 + (4q − 1)2 − (5q − 1)2,

while if p is odd, p = 2q + 1, then

p = 2q + 1 = (3q − 1)2 + (4q − 4)2 − (5q − 4)2,

if q > 1, while if q = 1, then p = 3 = 42 + 52 − 62.
Returning to the inductive argument, let

m = a2
1 + a2

2 = b2
1 + b2

2 + b2
3 = · · · = l21 + l22 + · · · + l2k ,

and also m = a2 + b2 − c2. Taking m′ = m+ c2 we have

m′ = a2 + b2 = a2
1 + a2

2 + c2 = b2
1 + b2 + c2 = · · · = l21 + l22 + · · · + l2k + c2.

This completes the induction.
(Gazeta Matematică (Mathematics Gazette, Bucharest), 1980, proposed by M. Cava-

chi)

23. The property can be checked easily for small integers, which will constitute the base
case. Assuming the property true for all integers less than n, let Fk be the largest term
of the Fibonacci sequence that does not exceed n. The number n − Fk is strictly less
than n, so by the induction hypothesis it can be written as a sum of distinct terms of the
Fibonacci sequence, say n − Fk = ∑

j Fij . The assumption on the maximality of Fk
implies that n− Fk < Fk (this because Fk+1 = Fk + Fk−1 < 2Fk for k ≥ 2). It follows
that Fk 	= Fij , for all j . We obtain n = ∑

j Fij + Fk, which gives a way of writing n as
a sum of distinct terms of the Fibonacci sequence.

24. We will prove a more general identity, namely,

Fm+n+1 = Fm+1Fn+1 + FmFn, for m, n ≥ 0.
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We do so by induction on n. The inductive argument will assume the property to be true
for n = k − 1 and n = k, and prove it for n = k + 1. Thus the base case consists of
n = 0, Fm+1 = Fm+1; and n = 1, Fm+2 = Fm+1 + Fm—both of which are true.

Assuming that Fm+k = Fm+1Fk + FmFk−1 and Fm+k+1 = Fm+1Fk+1 + FmFk, we
obtain by addition,

Fm+k + Fm+k+1 = Fm+1(Fk + Fk+1)+ Fm(Fk−1 + Fk),

which is, in fact, the same as Fm+k+2 = Fm+1Fk+2 + FmFk+1. This completes the
induction. For m = n, we obtain the identity in the statement.

25. Inspired by the previous problem, we generalize the identity to

Fm+n+p = Fm+1Fn+1Fp+1 + FmFnFp − Fm−1Fn−1Fp−1,

which should hold for m, n, p ≥ 1. In fact, we can augment the Fibonacci sequence by
F−1 = 1 (so that the recurrence relation still holds), and then the above formula makes
sense for m, n, p ≥ 0. We prove it by induction on p. Again for the base case we
consider p = 0, with the corresponding identity

Fm+n = Fm+1Fn+1 − Fm−1Fn−1,

and p = 1, with the corresponding identity

Fm+n+1 = Fm+1Fn+1 + FmFn.

Of the two, the second was proved in the solution to the previous problem. And the
first identity is just a consequence of the second, obtained by subtracting Fm+n−1 =
FmFn+Fm−1Fn−1 from Fm+n+1 = Fm+1Fn+1 +FmFn. So the base case is verified. Now
we assume that the identity holds for p = k − 1 and p = k, and prove it for p = k + 1.
Indeed, adding

Fm+n+k−1 = Fm+1Fn+1Fk + FmFnFk−1 − Fm−1Fn−1Fk−2

and

Fm+n+k = Fm+1Fn+1Fk+1 + FmFnFk − Fm−1Fn−1Fk−1,

we obtain

Fm+n+k+1 = Fm+n+k−1 + Fm+n+k
= Fm+1Fn+1(Fk + Fk+1)+ FmFn(Fk−1 + Fk)− Fm−1Fn−1(Fk−2 + Fk−1)

= Fm+1Fn+1Fk+2 + FmFnFk+1 − Fm−1Fn−1Fk.
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Figure 44

This proves the identity. Setting m = n = p, we obtain the identity in the statement.

26. The base case consists of the dissections for n = 4, 5, and 6 shown in Figure 44. The
induction step jumps from P(k) to P(k + 3) by dissecting one of the triangles into four
triangles similar to it.

(R. Gelca)

27. First, we explain the inductive step, which is represented schematically in Figure 45.
If we assume that such a k-gon exists for all k < n, then the n-gon can be obtained by
cutting off two vertices of the (n−2)-gon by two parallel lines. The sum of the distances
from an interior point to the two parallel sides does not change while the point varies,
and of course the sum of distances to the remaining sides is constant by the induction
hypothesis. Choosing the parallel sides unequal, we can guarantee that the resulting
polygon is not regular.

Figure 45

The base case consists of a rectangle (n = 4) and an equilateral triangle with two
vertices cut off by parallel lines (n = 5). Note that to obtain the base case we had to
apply the idea behind the inductive step.

28. The property is obviously true for the triangle since there is nothing to dissect. This
will be our base case. Let us assume that the property is true for any coloring of a k-gon,
for all k < n, and let us prove that it is true for an arbitrary coloring of an n-gon. Because
at least three colors were used, there is a diagonal whose endpoints have different colors,
say red (r) and blue (b). If on both sides of the diagonal a third color appears, then we
can apply the induction hypothesis to two polygons and solve the problem.

If this is not the case, then on one side there will be a polygon with an even number
of sides and with vertices colored in cyclic order rbrb . . . rb. Pick a blue point among
them that is not an endpoint of the initially chosen diagonal and connect it to a vertex
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colored by a third color (Figure 46). The new diagonal dissects the polygon into two poly-
gons satisfying the property from the statement, and having fewer sides. The induction
hypothesis can be applied again, solving the problem.

r

r

b r

b

b

Figure 46

29. We prove the property by induction on the number of vertices. The base case is the
triangle, where there is nothing to prove.

Let us assume now that the property holds for polygons with fewer than n vertices
and prove it for a polygon with n vertices. The inductive step consists in finding one
interior diagonal.

We commence with an interior angle less than π (which does exist because the sum
of all n angles is (n− 2)π ). Let the polygon be A1A2 . . . An, with ∠AnA1A2 the chosen
interior angle. Rotate the ray |A1An toward |A1A2 continuously inside the angle as shown
in Figure 47. For each position of the ray, strictly between A1An and A1A2, consider the
point on the polygon that is the closest to A1. If for some position of the ray this point
is a vertex, then we have obtained a diagonal that divides the polygon into two polygons
with fewer sides. Otherwise, A2An is the diagonal.

A

A

A

n

1

2

Figure 47

Dividing by the interior diagonal, we obtain two polygons with fewer vertices, which
by hypothesis can be divided into triangles. This completes the induction.

30. We induct on the number to be represented. For the base case, we have
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1 = 12,

2 = −12 − 22 − 32 + 42,

3 = −12 + 22,

4 = −12 − 22 + 32.

The inductive step is “P(n) implies P(n+ 4)’’; it is based on the identity

m2 − (m+ 1)2 − (m+ 2)2 + (m+ 3)2 = 4.

Remark. This result has been generalized by J. Mitek, who proved that every integer k
can be represented in the form k = ±1s ± 2s ± · · · ± ms for a suitable choice of signs,
where s is a given integer ≥ 2. The number of such representations is infinite.

(P. Erdős, J. Surányi)

31. First, we show by induction on k that the identity holds for n = 2k. The base case is
contained in the statement of the problem. Assume that the property is true for n = 2k

and let us prove it for n = 2k+1. We have

f

(
x1 + · · · + x2k + x2k+1 + · · · + x2k+1

2k+1

)
=
f
(
x1+···+x2k

2k

)
+ f

(
x2k+1+···+x2k+1

2k

)
2

=
f (x1)+···+f (x2k )

2k + f (x2k+1)+···+f (x2k+1 )

2k

2

= f (x1)+ · · · + f (x2k )+ f (x2k+1)+ · · · + f (x2k+1)

2k+1
,

which completes the induction. Now we work backward, showing that if the identity
holds for some n, then it holds for n− 1 as well. Consider the numbers x1, x2, . . . , xn−1

and xn = x1+x2+···+xn−1
n−1 . Using the hypothesis, we have

f

(
x1 + · · · + xn−1 + x1+···+xn−1

n−1

n

)
= f (x1)+ · · · + f (xn−1)+ f

(
x1+···+xn−1

n−1

)
n

,

which is the same as

f

(
x1 + · · · + xn−1

n− 1

)
= f (x1)+ · · · + f (xn−1)

n
+ 1

n
f

(
x1 + · · · + xn−1

n− 1

)
.

Moving the last term on the right to the other side gives

n− 1

n
f

(
x1 + x2 + · · · + xn−1

n− 1

)
= f (x1)+ f (x2)+ · · · + f (xn−1)

n
.
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This is clearly the same as

f

(
x1 + x2 + · · · + xn−1

n− 1

)
= f (x1)+ x2 + · · · + f (xn−1)

n− 1
,

and the argument is complete.

32. This is a stronger form of the inequality discussed in the beginning, which can be
obtained from it by applying the AM–GM inequality.

We first prove that the property holds for n a power of 2. The base case

(1 + a1)(1 + a2) ≥ (1 + √
a1a2)

2

reduces to the obvious a1 + a2 ≥ 2
√
a1a2.

If

(1 + a1)(1 + a2) · · · (1 + a2k ) ≥ (
1 + 2k

√
a1a2 · · · a2k

)2k

for every choice of nonnegative numbers, then

(1 + a1) · · · (1 + a2k+1) = (1 + a1) · · · (1 + a2k )(1 + a2k+1) · · · (1 + a2k+1)

≥ (
1 + 2k

√
a1 · · · a2k

)2k (
1 + 2k

√
a2k+1 · · · a2k+1

)2k

≥
[(

1 +
√

2k
√
a1 · · · a2k

2k
√
a2k+1 · · · a2k+1

)2
]2k

= (
1 + 2k+1√

a1 · · · a2k+1

)2k+1

.

This completes the induction.
Now we work backward. If the inequality holds for n + 1 numbers, then choosing

an+1 = n
√
a1a2 · · · an, we can write

(1 + a1) · · · (1 + an)(1 + n
√
a1 · · · an) ≥

(
1 + n+1

√
a1 · · · an n

√
a1 · · · an

)n+1

,

which is the same as

(1 + a1) · · · (1 + an)(1 + n
√
a1 · · · an) ≥ (1 + n

√
a1 · · · an)n+1.

Canceling the common factor, we obtain the inequality for n numbers. The inequality is
proved.

33. The “pigeons’’ are the numbers. The “holes’’ are the 49 sets

{1, 98}, {2, 97}, . . . , {49, 50}.
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Two of the numbers fall in the same set; their sum is equal to 99. We are done.

34. As G. Pólya said, “a trick applied twice becomes a technique.’’ Here we repeat the
idea of the Mongolian problem from the 26th International Mathematical Olympiad.

Let b1, b2, . . . , bm be the sequence, where bi ∈ {a1, a2, . . . , an}, 1 ≤ i ≤ m. For
each j ≤ m define the n-tupleKj = (k1, k2, . . . , kn), where ki = 0 if ai appears an even
number of times in b1, b2, . . . , bj and ki = 1 otherwise.

If there exists j ≤ m such thatKj = (0, 0, . . . , 0) then b1b2 · · · bj is a perfect square
and we are done. Otherwise, there exist j < l such that Kj = Kl . Then in the sequence
bj+1, bj+2, . . . , bl each ai appears an even number of times. The product bj+1bj+2 · · · bl
is a perfect square.

35. The sequence has the property that for any n the first n + 1 terms are less than or
equal to 2n. The problem would be solved if we showed that given a positive integer n,
from any n + 1 distinct integer numbers between 1 and 2n we can choose two whose
difference is n. This is true, indeed, since the pigeonhole principle implies that one of
the n pairs (1, n+ 1), (2, n+ 2), . . . , (n, 2n) contains two terms of the sequence.

(Austrian–Polish Mathematics Competition, 1980)

36. The “holes’’ will be the residue classes, and the pigeons, the numbers ax2, c − by2,
x, y = 0, 1, . . . , p− 1. There are 2p such numbers. Any residue class, except for 0, can
have at most two elements of the form ax2 and at most two elements of the form c− by2

from the ones listed above. Indeed, ax2
1 ≡ ax2

2 implies x2
1 ≡ x2

2 , so (x1−x2)(x1+x2) ≡ 0.
This can happen only if x1 = ±x2. Also, ax2 ≡ 0 only when x = 0.

We distinguish two cases. If c − by2
0 ≡ 0 for some y0, then (0, y0) is a solution.

Otherwise, the 2p−1 numbers ax2, c−by2, x = 1, 2, . . . , p−1, y = 0, 1, . . . , p−1 are
distributed into p−1 “holes,’’ namely the residue classes 1, 2, . . . , p−1. Three of them
must lie in the same residue class, so there exist x0 and y0 with ax2

0 ≡ c− by2
0 (mod p).

The pair (x0, y0) is a solution to the equation from the statement.

Remark. A more advanced solution can be produced based on the theory of quadratic
residues.

37. In any 2 × 2 square, only one of the four numbers can be divisible by 2, and only
one can be divisible by 3. Tiling the board by 2 × 2 squares, we deduce that at most 25
numbers are divisible by 2 and at most 25 numbers are divisible by 3. There are at least
50 remaining numbers that are not divisible by 2 or 3, and thus must equal one of the
numbers 1, 5, or 7. By the pigeonhole principle, one of these numbers appears at least
17 times.

(St. Petersburg City Mathematical Olympiad, 2001)

38. A more general property is true, namely that for any positive integer n there exist
infinitely many terms of the Fibonacci sequence divisible by n.
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We apply now the pigeonhole principle, letting the “objects’’ be all pairs of consec-
utive Fibonacci numbers (Fn, Fn+1), n ≥ 1, and the “boxes’’ the pairs of residue classes
modulo n. There are infinitely many objects, and only n2 boxes, and so there exist indices
i > j > 1 such that Fi ≡ Fj (mod n) and Fi+i ≡ Fj+1 (mod n).

In this case

Fi−1 = Fi+1 − Fi ≡ Fj+1 − Fj = Fj−1 (mod n),

and hence Fi−1 ≡ Fj−1 (mod n) as well. An inductive argument proves that Fi−k ≡
Fj−k (mod n), k = 1, 2, . . . , j . In particular, Fi−j ≡ F0 = 0 (mod n). This means
that Fi−j is divisible by n. Moreover, the indices i and j range in an infinite family, so
the difference i − j can assume infinitely many values. This proves our claim, and as a
particular case, we obtain the conclusion of the problem.

(Irish Mathematical Olympiad, 1999)

39. We are allowed by the recurrence relation to set x0 = 0. We will prove that there is
an index k ≤ m3 such that xk divides m. Let rt be the remainder obtained by dividing
xt by m for t = 0, 1, . . . , m3 + 2. Consider the triples (r0, r1, r2), (r1, r2, r3), . . . ,
(rm3, rm3+1, rm3+2). Since rt can take m values, the pigeonhole principle implies that at
least two triples are equal. Letp be the smallest number such that the triple (rp, rp+1, rp+2)

is equal to another triple (rq, rq+1, rq+2), p < q ≤ m3. We claim that p = 0.
Assume by way of contradiction that p ≥ 1. Using the hypothesis, we have

rp+2 ≡ rp−1 + rprp+1 (mod m) and rq+2 ≡ rq−1 + rqrq+1 (mod m).

Because rp = rq , rp+1 = rq+1, and rp+2 = rq+2, it follows that rp−1 = rq−1, so
(rp−1, rp, rp+1) = (rq−1, rq, rq+1), contradicting the minimality of p. Hence p = 0, so
rq = r0 = 0, and therefore xq is divisible by m.

(T. Andreescu, D. Miheţ)

40. We focus on 77 consecutive days, starting on a Monday. Denote by an the number
of games played during the first n days, n ≥ 1. We consider the sequence of positive
integers

a1, a2, . . . , a77, a1 + 20, a2 + 20, . . . , a77 + 20.

Altogether there are 2×77 = 154 terms not exceeding 11×12+20 = 152 (here we took
into account the fact that during each of the 11 weeks there were at most 12 games). The
pigeonhole principle implies right away that two of the above numbers are equal. They
cannot both be among the first 77, because by hypothesis, the number of games increases
by at least 1 each day. For the same reason the numbers cannot both be among the last
77. Hence there are two indices k and m such that am = ak + 20. This implies that in
the time interval starting with the (k + 1)st day and ending with the nth day, exactly 20
games were played, proving the conclusion.
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Remark. In general, if a chess player decides to play d consecutive days, playing at
least one game a day and a total of no more than m with d < m < 2d , then for each
i ≤ 2d − n− 1 there is a succession of days on which, in total, the chess player played
exactly i games.

(D.O. Shklyarskyi, N.N. Chentsov, I.M. Yaglom, Izbrannye Zadachi i Theoremy El-
ementarnoy Matematiki (Selected Problems and Theorems in Elementary Mathematics),
Nauka, Moscow, 1976)

41. The solution combines the induction and pigeonhole principles. We commence with
induction. The base case m = 1 is an easy check, the numbers can be only −1, 0, 1.

Assume now that the property is true for any 2m − 1 numbers of absolute value
not exceeding 2m − 3. Let A be a set of 2m + 1 numbers of absolute value at most
2m − 1. If A contains 2m − 1 numbers of absolute value at most 2m − 3, then we
are done by the induction hypothesis. Otherwise, A must contain three of the numbers
±(2m− 1),±(2m− 2). By eventually changing signs we distinguish two cases.

Case I. 2m− 1,−2m+ 1 ∈ A. Pair the numbers from 1 through 2m− 2 as (1, 2m−
2), (2, 2m− 3), . . . , (m− 1,m), so that the sum of each pair is equal to 2m−
1, and the numbers from 0 through −2m + 1 as (0,−2m + 1), (−1,−2m +
2), . . . , (−m + 1,−m), so that the sum of each pair is −2m + 1. There are
2m− 1 pairs, and 2m elements of A lie in them, so by the pigeonhole principle
there exists a pair with both elements in A. Those elements combined with
either 2m− 1 or −2m+ 1 give a triple whose sum is equal to zero.

Case II. 2m − 1, 2m − 2,−2m + 2 ∈ A and −2m + 1 /∈ A. If 0 ∈ A, then 0 − 2m +
2 + 2m − 2 = 0 and we are done. Otherwise, consider the pairs (1, 2m −
3), (2, 2m − 4), . . . , (m − 2,m), each summing up to 2m − 2, and the pairs
(1,−2m), . . . , (−m+ 1,−m), each summing up to −2m+ 1. Altogether there
are 2m− 2 pairs containing 2m− 1 elements from A, so both elements of some
pair must be inA. Those two elements combined with either −2m+2 or 2m−1
give a triple with the sum equal to zero. This concludes the solution.

(Kvant (Quantum))

42. Denote by 	 the set of ordered triples of people (a, b, c) such that c is either a
common acquaintance of both a and b or unknown to both a and b. If c knows exactly
k participants, then there exist exactly 2k(n − 1 − k) ordered pairs in which c knows
exactly one of a and b (the factor 2 shows up because we work with ordered pairs). There
will be

(n− 1)(n− 2)− 2k(n− 1 − k) ≥ (n− 1)(n− 2)− 2

(
n− 1

2

)2

= (n− 1)(n− 3)

2

ordered pairs (a, b) such that c knows either both or neither of a and b. Counting by the
c’s, we find that the number of elements of 	 satisfies
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|	| ≥ n(n− 1)(n− 3)

2
.

To apply the pigeonhole principle, we let the “holes’’ be the ordered pairs of people
(a, b), and the “pigeons’’ be the triples (a, b, c) ∈ 	. Put the pigeon (a, b, c) in the
hole (a, b) if c knows either both or neither of a and b. There are n(n−1)(n−3)

2 pigeons
distributed in n(n− 1) holes. So there will be at least⌈

n(n− 1)(n− 3)

2

/
n(n− 1)

⌉
=
⌊n

2

⌋
− 1

pigeons in one hole, where �x� denotes the least integer greater than or equal to x. To
the “hole’’ corresponds a pair of people satisfying the required condition.

(USA Mathematical Olympiad, 1985)

43. The beautiful observation is that if the sequence an = cos(nπx1)+cos(nπx2)+· · ·+
cos(nπxk), n ≥ 1, assumes finitely many distinct values, then so does the sequence of
k-tuples un = (an, a2n, . . . , akn), n ≥ 1. By the pigeonhole principle there exist m < n

such that an = am, a2n = a2m, . . . , akn = akm. Let us take a closer look at these relations.
We know that cos(nx) is a polynomial of degree n with integer coefficients in cos(x),
namely the Chebyshev polynomial. If Ai = cos(nπxi) and Bi = cos(mπxi), then the
previous relations combined with this observation show that Aj1 + A

j

2 + · · · + A
j

k =
B
j

1 + B
j

2 + · · · + B
j

k for all j = 1, 2, . . . , k. Using Newton’s formulas, we deduce
that the polynomials having the zeros A1, A2, . . . , Ak, respectively, B1, B2, . . . , Bk are
equal (they have equal coefficients). Hence there is a permutation σ of 1, 2, . . . , n such
that Ai = Bσ(i). Thus cos(nπxi) = cos(mπxσ(i)), which means that nxi − mxσ(i) is a
rational number ri for 1 ≤ i ≤ k. We want to show that the xi’s are themselves rational.
If σ(i) = i, this is obvious. On the other hand, if we consider a cycle of σ , (i1i2i3 . . . is),
we obtain the linear system

mxi1 − nxi2 = ri1,

mxi2 − nxi3 = ri2,

· · ·
mxis − nxi1 = ris .

It is not hard to compute the determinant of the coefficient matrix, which is ns −ms (for
example, by expanding by the first row, then by the first column, and then noting that
the new determinants are triangular). The determinant is nonzero; hence the system has
a unique solution. By applying Cramer’s rule we determine that this solution consists of
rational numbers. We conclude that the xi’s are all rational, and the problem is solved.

(V. Pop)

44. Place the circle at the origin of the coordinate plane and consider the rectangular
grid determined by points of integer coordinates, as shown in Figure 48. The circle is
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inscribed in an 8 × 8 square decomposed into 64 unit squares. Because 32 + 32 > 42, the
four unit squares at the corners lie ouside the circle. The interior of the circle is therefore
covered by 60 squares, which are our “holes.’’ The 61 points are the “pigeons,’’ and by
the pigeonhole principle two lie inside the same square. The distance between them does
not exceed the length of the diagonal, which is

√
2. The problem is solved.

Figure 48

45. If r = 1, all lines pass through the center of the square. If r 	= 1, a line that divides
the square into two quadrilaterals with the ratio of their areas equal to r has to pass
through the midpoint of one of the four segments described in Figure 49 (in that figure
the endpoints of the segments divide the sides of the square in the ratio r). Since there
are four midpoints and nine lines, by the pigeonhole principle three of them have to pass
through the same point.

Figure 49

46. Choose a face with maximal number of edges, and let n be this number. The number
of edges of each of the n adjacent faces ranges between 3 and n, so by the pigeonhole
principle, two of these faces have the same number of edges.

(Moscow Mathematical Olympiad)
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47. An n-gon has
(
n

2

) − n = 1
2n(n − 3) diagonals. For n = 21 this number is equal to

189. If through a point in the plane we draw parallels to these diagonals, 2 × 189 = 378
adjacent angles are formed. The angles sum up to 360◦, and thus one of them must be
less than 1◦.

48. The geometric aspect of the problem is only apparent. If we number the vertices of the
polygon counterclockwise 1, 2, . . . , 2n, thenP1,P2, . . . , P2n is just a permutation of these
numbers. We regard indices modulo 2n. Then PiPi+1 is parallel to PjPj+1 if and only if
Pi−Pj ≡ Pj+1 −Pi+1 (mod 2n), that is, if and only if Pi+Pi+1 ≡ Pj +Pj+1 (mod 2n).
Because

2n∑
i=1

(Pi + Pi+1) ≡ 2
2n∑
i=1

Pi ≡ 2n(2n− 1) ≡ 0 (mod 2n)

and

2n∑
i=1

i = n(2n− 1) ≡ n (mod 2n),

it follows that Pi + Pi+1, i = 1, 2, . . . , 2n, do not exhaust all residues modulo 2n. By
the pigeonhole principle there exist i 	= j such that Pi + Pi+1 ≡ Pj + Pj+1 (mod 2n).
Consequently, the sides PiPi+1 and PjPj+1 are parallel, and the problem is solved.

(German Mathematical Olympiad, 1976)

49. Let C be a circle inside the triangle formed by three noncollinear points in S. Then C
is contained entirely in S. Set m = np + 1 and consider a regular polygon A1A2 . . . Am
inscribed in C. By the pigeonhole principle, some n of its vertices are colored by the
same color. We have thus found a monochromatic n-gon. Now choose α an irrational
multiple of π . The rotations of A1A2 · · ·Am by kα, k = 0, 1, 2, . . . , are all disjoint.
Each of them contains an n-gon with vertices colored by n colors. Only finitely many
incongruent n-gons can be formed with the vertices of A1A2 · · ·Am. So again by the
pigeonhole principle, infinitely many of the monochromatic n-gons are congruent. Of
course, they might have different colors. But the pigeonhole principle implies that one
color occurs infinitely many times. Hence the conclusion.

(Romanian Mathematical Olympiad, 1995)

50. This is an example in Ramsey theory (see Section 6.1.5) that applies the pigeonhole
principle. Pick two infinite families of lines, {Ai, i ≥ 1}, and {Bj, j ≥ 1}, such that
for any i and j , Ai and Bj are orthogonal. Denote by Mij the point of intersection of Ai
and Bj . By the pigeonhole principle, infinitely many of theM1j ’s, j ≥ 1, have the same
color. Keep only the lines Bj corresponding to these points, and delete all the others. So
again we have two families of lines, but such thatM1j are all of the same color; call this
color c1.
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Next, look at the line A2. Either there is a rectangle of color c1, or at most one point
M2j is colored by c1. Again by the pigeonhole principle, there is a color c2 that occurs
infinitely many times among theM2j ’s. We repeat the reasoning. Either at some step we
encounter a rectangle, or after finitely many steps we exhaust the colors, with infinitely
many linesAi still left to be colored. The impossibility to continue rules out this situation,
proving the existence of a rectangle with vertices of the same color.

Here is another solution. Consider a (p+ 1)× (n(p+1
2

)+ 1) rectangular grid. By the
pigeonhole principle, each of then

(
p+1

2

)+1 horizontal segments contains two points of the
same color. Since there are at mostn

(
p+1

2

)
possible configurations of such monochromatic

pairs, two must repeat. The two pairs are the vertices of a monochromatic rectangle.

51. We place the unit square in standard position. The “boxes’’ are the vertical lines
crossing the square, while the “objects’’ are the horizontal diameters of the circles (Fig-
ure 50). Both the boxes and the objects come in an infinite number, but what we use for
counting is length on the horizontal. The sum of the diameters is

10

π
= 3 × 1 + ε, ε > 0.

Consequently, there is a segment on the lower side of the square covered by at least four
diameters. Any vertical line passing through this segment intersects the four correspond-
ing circles.

Figure 50

52. If three points are collinear then we are done. Thus we can assume that no three points
are collinear. The convex hull of all points is a polygon with at most n sides, which has
therefore an angle not exceeding (n−2)π

n
. All other points lie inside this angle. Ordered

counterclockwise around the vertex of the angle they determine n− 2 angles that sum up
to at most (n−2)π

n
. It follows that one of these angles is less than or equal to (n−2)π

n(n−2) = π
n

.
The three points that form this angle have the required property.

53. Denote by D(O, r) the disk of center O and radius r . Order the disks
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D(O1, r1),D(O2, r2), . . . , D(On, rn),

in decreasing order of their radii.
Choose the disk D(O1, r1), and then delete all disks that lie entirely inside the disk

of center O1 and radius 3r1. The remaining disks are disjoint from D(O1, r1). Among
them choose the first in line (i.e., the one with maximal radius), and continue the process
with the remaining circles.

The process ends after finitely many steps. At each step we deleted less than eight
times the area of the chosen circle, so in the end we are left with at least 1

9 of the initial
area. The chosen circles satisfy the desired conditions.

(M. Pimsner, S. Popa, Probleme de geometrie elementară (Problems in elementary
geometry), Editura Didactică şi Pedagogică, Bucharest, 1979)

54. Given a circle of radius r containing n points of integer coordinates, we must prove
that n < 2π 3

√
r2. Because r > 1 and 2π > 6 we may assume n ≥ 7.

Label the n lattice points counterclockwise P1, P2, . . . , Pn. The (counterclockwise)

arcs
�

P1P3,
�

P2P4, . . . ,
�

PnP2 cover the circle twice, so they sum up to 4π . Therefore, one

of them, say
�

P1P3, measures at most 4π
n

.
Consider the triangle P1P2P3, which is inscribed in an arc of measure 4π

n
. Because

n ≥ 7, the arc is less than a quarter of the circle. The area of P1P2P3 will be maximized
if P1 and P3 are the endpoints and P2 is the midpoint of the arc. In that case,

Area(P1P2P3) = abc

4r
= 2r sin π

n
· 2r sin π

n
· 2r sin 2π

n

4r
≤ 2r π

n
· 2r π

n
· 2r 2π

n

4r
= 4r2π3

n3
.

And in general, the area of P1P2P3 cannot exceed 4r2π3

n3 . On the other hand, if the
coordinates of the points P1, P2, P3 are, respectively, (x1, y1), (x2, y2), and (x3, y3), then

Area(P1P2P3) = ±1

2

∣∣∣∣∣∣
1 1 1
x1 x2 x3

y1 y2 y3

∣∣∣∣∣∣
= 1

2
|x1y2 − x2y1 + x2y3 − x3y2 + x3y1 − x1y3|.

Because the coordinates are integers, the area cannot be less than 1
2 . We obtain the

inequality 1
2 ≤ 4r2π3

n3 , which proves that 2π 3
√
r2 ≥ n, as desired.

Remark. The weaker inequality n(r) < 6 3
√
πr2 was given in 1999 at the Iranian Mathe-

matical Olympiad.

55. Order the eight integers a1 < a2 < · · · < a8 ≤ 2004. We argue by contradiction.
Assume that for any choice of the integers a, b, c, d, either a + b + c < d + 4 or
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a + b + c > 4d. Let us look at the situation in which d is a3 and a, b, and c are a1, a2,
and a4. The inequality a1 + a2 + a4 < 4 + a3 is impossible because a4 ≥ a3 + 1 and
a1 + a2 ≥ 3. Thus with our assumption, a1 + a2 + a4 > 4a3, or

a4 > 4a3 − a2 − a1.

By similar logic,

a5 > 4a4 − a2 − a1 > 16a3 − 5a2 − 5a1,

a6 > 4a5 − a2 − a1 > 64a3 − 21a2 − 21a1,

a7 > 4a6 − a2 − a1 > 256a3 − 85a2 − 85a1,

a8 > 4a7 − a2 − a1 > 1024a3 − 341a2 − 341a1.

We want to show that if this is the case, then a8 should exceed 2004. The expression
1024a3 − 341a2 − 341a1 can be written as 683a3 + 341(a3 − a2) + 341(a3 − a1), so
to minimize it we have to choose a1 = 1, a2 = 2, a3 = 3. But then the value of the
expression would be 2049, which, as predicted, exceeds 2004. This contradiction shows
that our assumption was false, proving the existence of the desired four numbers.

(Mathematical Olympiad Summer Program, 2004, proposed by T. Andreescu)

56. There is no loss of generality in supposing that a1 < a2 < · · · < an < · · · . Now
proceed by induction on n. For n = 1, a2

1 ≥ 2×1+1
3 a1 follows from a1 ≥ 1. The inductive

step reduces to

a2
n+1 ≥ 2

3
(a1 + a2 + · · · + an)+ 2n+ 3

3
an+1.

An equivalent form of this is

3a2
n+1 − (2n+ 3)an+1 ≥ 2(a1 + a2 + · · · + an).

At this point there is an interplay between the indices and the terms of the sequence,
namely the observation that a1 + a2 + · · · + an does not exceed the sum of integers from
1 to an. Therefore,

2(a1 + a2 + · · · + an) ≤ 2(1 + 2 + · · · + an) = an(an + 1) ≤ (an+1 − 1)an+1.

We are left to prove the sharper, yet easier, inequality

3a2
n+1 − (2n+ 3)an+1 ≥ (an+1 − 1)an+1.

This is equivalent to an+1 ≥ n+ 1, which follows from the fact that an+1 is the largest of
the numbers.

(Romanian Team Selection Test for the International Mathematical Olympiad, pro-
posed by L. Panaitopol)
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57. Again, there will be an interplay between the indices and the values of the terms.
We start by ordering the ai’s increasingly a1 < a2 < · · · < an. Because the sum of

two elements ofX is inX, given ai in the complement ofX, for each 1 ≤ m ≤ ai
2 , either

m or ai −m is not inX. There are � ai2 � such pairs and only i− 1 integers less than ai and
not in X; hence ai ≤ 2i − 1. Summing over i gives a1 + a2 + · · · + an ≤ n2 as desired.
(In the solution we denoted by �x� the least integer greater than or equal to x.)

(proposed by R. Stong for the USAMO, 2000)

58. Call the elements of the 4×4 tableau aij , i, j = 1, 2, 3, 4, according to their location.
As such, a13 = 2, a22 = 5, a34 = 8 and a41 = 3. Look first at the row with the largest
sum, namely, the fourth. The unknown entries sum up to 27; hence all three of them,
a42, a43, and a44, must equal 9. Now we consider the column with smallest sum. It is the
third, with

a13 + a23 + a33 + a43 = 2 + a23 + a33 + 9 = 13.

We see that a23 + a33 = 2; therefore, a23 = a33 = 1. We than have

a31 + a32 + a33 + a34 = a31 + a32 + 1 + 8 = 26.

Therefore, a31 + a32 = 17, which can happen only if one of them is 8 and the other is 9.
Checking the two cases separately, we see that only a31 = 8, a32 = 9 yields a solution,
which is described in Figure 51.

Figure 51

(such puzzles appear in the Sunday edition of the San Francisco Chronicle)

59. There are only finitely many polygonal lines with these points as vertices. Choose
the one of minimal length P1P2 . . . Pn. If two sides, say PiPi+1 and PjPj+1, intersect
at some point M , replace them by PiPj and Pi+1Pj+1 to obtain the closed polygonal
line P1 . . . PiPjPj−1 . . . Pi+1Pj+1 . . . Pn (Figure 52). The triangle inequality in triangles
MPiPj andMPi+1Pj+1 shows that this polygonal line has shorter length, a contradiction.
It follows that P1P2 . . . Pn has no self-intersections, as desired.
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Figure 52

60. Let AiAi+1 be the longest side of the polygon (or one of them if more such sides
exist). Perpendicular to it and at the endpoints Ai and Ai+1 take the lines L and L′,
respectively. We argue on the configuration from Figure 53.

If all other vertices of the polygon lie to the right of L′, then Ai−1Ai > AiAi+1,
because the distance from Ai to a point in the half-plane determined by L′ and opposite
to Ai is greater than the distance from Ai to L′. This contradicts the maximality, so it
cannot happen. The same argument shows than no vertex lies to the left of L. So there
exists a vertex that either lies on one ofL andL′, or is between them. That vertex projects
onto the (closed) side AiAi+1, and the problem is solved.

. . . . . .

L L

A A
i i+ 1

Figure 53

Remark. It is possible that no vertex projects in the interior of a side, as is the case with
rectangles or with the regular hexagon.

(M. Pimsner, S. Popa, Probleme de geometrie elementară (Problems in elementary
geometry), Editura Didactică şi Pedagogică, Bucharest, 1979)

61. First solution: Consider the oriented graph of roads and cities. By hypothesis, the
graph has no cycles. Define a partial order of the cities, saying that A < B if one can
travel from A to B. A partial order on a finite set has maximal and minimal elements. In
a maximal city all roads enter, and from a minimal city all roads exit.

Second solution: Pick an itinerary that travels through a maximal number of cities (more
than one such itinerary may exist). No roads enter the starting point of the itinerary, while
no roads exit the endpoint.

(Kvant (Quantum))
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62. Let b be a boy dancing with the maximal number of girls. There is a girl g′ he does
not dance with. Choose as b′ a boy who dances with g′. Let g be a girl who dances
with b but not with b′. Such a girl exists because of the maximality of b, since b′ already
dances with a girl who does not dance with b. Then the pairs (b, g), (b′, g′) satisfy the
requirement.

(26th W.L. Putnam Mathematical Competition, 1965)

63. Let (aij )ij , 1 ≤ i ≤ m, 1 ≤ j ≤ n, be the matrix. Denote the sum of the elements
in the ith row by si , i = 1, 2, . . . , m. We will show that among all matrices obtained by
permuting the elements of each column, the one for which the sum |s1|+ |s2|+ · · ·+ |sm|
is minimal has the desired property.

If this is not the case, then |sk| ≥ 2 for some k. Without loss of generality, we can
assume that sk ≥ 2. Since s1 + s2 + · · · + sm = 0, there exists j such that sj < 0. Also,
there exists an i such that aik > aij , for otherwise sj would be larger than sk. When
exchanging aik and aij the sum |s1| + |s2| + · · · + |sm| decreases. Indeed,

|sk − aik + aij | + |sj + aik − aij | = sk − aik + aij + |sj + aik − aij |
< sk − aik + aij + |sj | + aik − aij ,

where the equality follows from the fact that sk ≥ 2 ≥ aik − aij , while the strict
inequality follows from the triangle inequality and the fact that sj and aik − aij have
opposite signs. This shows that any minimal configuration must satisfy the condition
from the statement. Note that a minimal configuration always exists, since the number
of possible permutations is finite.

(Austrian–Polish Mathematics Competition, 1984)

64. We call a number good if it satisfies the given condition. It is not difficult to see
that all powers of primes are good. Suppose n is a good number that has at least two
distinct prime factors. Let n = prs, where p is the smallest prime dividing n and s is not
divisible by p. Because n is good, p + s − 1 must divide n. For any prime q dividing
s, s < p + s − 1 < s + q, so q does not divide p + s − 1. Therefore, the only prime
factor of p+ s − 1 is p. Then s = pc − p+ 1 for some integer c > 1. Because pc must
also divide n, pc + s − 1 = 2pc − p divides n. Because 2pc−1 − 1 has no factors of p,
it must divide s. But

p − 1

2
(2pc−1 − 1) = pc − pc−1 − p − 1

2
< pc − p + 1 <

p + 1

2
(2pc−1 − 1)

= pc + pc−1 − p + 1

2
,

a contradiction. It follows that the only good integers are the powers of primes.
(Russian Mathematical Olympiad, 2001)

65. Let us assume that no infinite monochromatic sequence exists with the desired prop-
erty, and consider a maximal white sequence 2k1 < k1 + k2 < · · · < 2kn and a maximal
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black sequence 2l1 < l1 + l2 < · · · < 2lm. By maximal we mean that these sequences
cannot be extended any further. Without loss of generality, we may assume that kn < lm.

We look at all white even numbers between 2kn + 1 and some arbitrary 2x; letW be
their number. If for one of these white even numbers 2k the number k+ kn were white as
well, then the sequence of whites could be extended, contradicting maximality. Hence
k + kn must be black. Therefore, the number b of blacks between 2kn + 1 and x + kn is
at least W .

Similarly, if B is the number of black evens between 2lm + 1 and 2x, the number w
of whites between 2lm + 1 and x + lm is at least B. We have B +W ≥ x − lm, the latter
being the number of even integers between 2lm + 1 and 2x, while b+w ≤ x − kn, since
x − kn is the number of integers between 2kn + 1 and x + kn. Subtracting, we obtain

0 ≤ (b −W)+ (w − B) ≤ lm − kn,

and this inequality holds for all x. This means that as x varies there is an upper bound
for b − W and w − B. Hence there can be only a finite number of black squares that
cannot be written as kn + k for some white 2k and there can only be a finite number of
white squares which cannot be written as lm + l for some black 2l. Consequently, from a
point onward all white squares are of the form lm + l for some black 2l and from a point
onward all black squares are of the form kn + k for some white 2k.

We see that for k sufficiently large, k is black if and only if 2k − 2kn is white, while
k is white if and only if 2k − 2lm is black. In particular, for each such k, 2k − 2kn and
2k − 2lm have the same color, opposite to the color of k. So if we let lm − kn = a > 0,
then from some point onward 2x and 2x + 2a are of the same color. The arithmetic
sequence 2x + 2na, n ≥ 0, is thus monochromatic. It is not hard to see that it also
satisfies the condition from the statement, a contradiction. Hence our assumption was
false, and sequences with the desired property do exist.

(communicated by A. Neguţ)

66. We begin with an observation that will play an essential role in the solution.
Given a triangle XYZ, if ∠XYZ ≤ π

3 , then either the triangle is equilateral or else
max{YX, YZ} > XZ, and if ∠XYZ ≥ π

3 , then either the triangle is equilateral or else
min{YX, YZ} < XZ.

Choose verticesA andB that minimize the distance between vertices. IfC is a vertex
such that ∠ACB = π

3 , then max{CA,CB} ≤ AB, so by our observation the triangle
ABC is equilateral. So there exists an equilateral triangle ABC formed by vertices of
the polygon and whose side length is the minimal distance between two vertices of the
polygon. By a similar argument there exists a triangleA1B1C1 formed by vertices whose
side length is the maximal distance between two vertices of the polygon. We will prove
that the two triangles are congruent.

The lines AB,BC,CA divide the plane into seven open regions. Denote by RA the
region distinct from the interior of ABC and bounded by side BC, plus the boundaries
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of this region except for the vertices B and C. Define RB and RC analogously. These
regions are illustrated in Figure 54. Because the given polygon is convex, each of A1,
B1, and C1 lies in one of these regions or coincides with one of A, B, and C.

R

C

A

B

R

R

A

B
C

Figure 54

If two of A1, B1, C1, say A1 and B1, are in the same region RX, then ∠A1XB1 <
π
3 . Hence max{XA1, XB1} > A1B1, contradicting the maximality of the length A1B1.
Therefore, no two of A1, B1, C1 are in the same region.

Suppose now that one of A1, B1, C1 (say A1) lies in one of the regions (say RA).
Because min{A1B,A1C} ≥ BC, we have that ∠BA1C ≤ π

3 . We know that B1 does
not lie in RA. Also, because the polygon is convex, B does not lie in the interior of the
triangle AA1B1, and C does not lie in the interior of triangle AA1B1. It follows that B1

lies in the closed region bounded by the rays |A1B and |A1C. So does C1. Therefore,
π
3 = ∠B1A1C1 ≤ ∠BA1C ≤ π

3 , with equalities if B1 and C1 lie on rays |A1B and |A1C.
Because the given polygon is convex, this is possible only if B1 and C1 equal B and C
in some order, in which case BC = B1C1. This would imply that triangles ABC and
A1B1C1 are congruent.

The remaining situation occurs when none of A1, B1, C1 are in RA ∪ RB ∪ RC , in
which case they coincide with A,B,C in some order. Again we conclude that the two
triangles are congruent.

We have proved that the distance between any two vertices of the given polygon is
the same. Therefore, given a vertex, all other vertices are on a circle centered at that
vertex. Two such circles have at most two points in common, showing that the polygon
has at most four vertices. If it had four vertices, it would be a rhombus, whose longer
diagonal would be longer than the side, a contradiction. Hence the polygon can only be
the equilateral triangle, the desired conclusion.

(Romanian Mathematical Olympiad, 2000)

67. Because

a2 + b2 =
(
a + b√

2

)2

+
(
a − b√

2

)2

,
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the sum of the squares of the numbers in a triple is invariant under the operation. The
sum of squares of the first triple is 9

2 and that of the second is 6 + 2
√

2, so the first triple
cannot be transformed into the second.

(D. Fomin, S. Genkin, I. Itenberg, Mathematical Circles, AMS, 1996)

68. Assign the value i to each white ball, −i to each red ball, and −1 to each green ball.
A quick check shows that the given operations preserve the product of the values of the
balls in the box. This product is initially i2000 = 1. If three balls were left in the box,
none of them green, then the product of their values would be ±i, a contradiction. Hence,
if three balls remain, at least one is green, proving the claim in part (a). Furthermore,
because no ball has value 1, the box must contain at least two balls at any time. This
shows that the answer to the question in part (b) is no.

(Bulgarian Mathematical Olympiad, 2000)

69. Let I be the sum of the number of stones and heaps. An easy check shows that the
operation leaves I invariant. The initial value is 1002. But a configuration with k heaps,
each containing 3 stones, has I = k + 3k = 4k. This number cannot equal 1002, since
1002 is not divisible by 4.

(D. Fomin, S. Genkin, I. Itenberg, Mathematical Circles, AMS, 1996)

70. The quantity I = xv+yu does not change under the operation, so it remains equal to
2mn throughout the algorithm. When the first two numbers are both equal to gcd(m, n),
the sum of the latter two is 2mn

gcd(m,n) = 2 lcm(m, n).
(St. Petersburg City Mathematical Olympiad, 1996)

71. We can assume that p and q are coprime; otherwise, shrink the size of the chessboard
by their greatest common divisor. Place the chessboard on the two-dimensional integer
lattice such that the initial square is centered at the origin, and the other squares, assumed
to have side length 1, are centered at lattice points. We color the chessboard by the Klein
four group K = {a, b, c, e | a2 = b2 = c2 = e, ab = c, ac = b, bc = a} as follows: if
(x, y) are the coordinates of the center of a square, then the square is colored by e if both
x and y are even, by c if both are odd, by a if x is even and y is odd, and by b if x is odd
and y is even (see Figure 55). If p and q are both odd, then at each jump the color of
the location of the knight is multiplied by c. Thus after n jumps the knight is on a square
colored by cn. The initial square was colored by e, and the equality cn = e is possible
only if n is even.

If one of p and q is even and the other is odd, then at each jump the color of the square
is multiplied by a or b. After n jumps the color will be akbn−k. The equality akbn−k = e

implies ak = bn−k, so both k and n − k have to be even. Therefore, n itself has to be
even. This completes the solution.

(German Mathematical Olympiad)

72. The invariant is the 5-colorability of the knot, i.e., the property of a knot to admit a
coloring by the residue classes modulo 5 such that
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Figure 55

(i) at least two residue classes are used;
(ii) at each crossing, a + c ≡ 2b (mod 5), where b is the residue class assigned to the

overcrossing, and a and c are the residue classes assigned to the other two arcs.

A coloring of the figure eight knot is given in Figure 56, while the trivial knot does
not admit 5-colorings since its simplest diagram does not. This proves that the figure
eight knot is knotted.

4

3 1 0

Figure 56

73. The answer is no. The idea of the proof is to associate to the configuration (a) an
encoding defined by a pair of vectors (v,w) ∈ Z2

2 such that the (i, j) square contains a
+ if the ith coordinate of v is equal to the j th coordinate of w, and a − otherwise. A
possible encoding for our configuration is v = w = (1, 1, 0). Any other configuration
that can be obtained from it admits such an encoding. Thus we choose as the invariant
the possibility of encoding a configuration in such a manner.

It is not hard to see that the configuration in (b) cannot be encoded this way. A slick
proof of this fact is that the configuration in which all signs are negative except for the
one in the center can be obtained from this by the specified move, and this latter one
cannot be encoded. Hence it is impossible to transform the first configuration into the
second.

(Russian Mathematical Olympiad 1983–1984, solution by A. Badev)

74. The answer is no. The essential observation is that

99 . . . 99 ≡ 99 ≡ 3 (mod 4).
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When we write this number as a product of two factors, one of the factors is congruent to
1 and the other is congruent to 3 modulo 4. Adding or subtracting a 2 from each factor
produces numbers congruent to 3, respectively, 1 modulo 4. We deduce that what stays
invariant in this process is the parity of the number of numbers on the blackboard that
are congruent to 3 modulo 4. Since initially this number is equal to 1, there will always
be at least one number that is congruent to 3 modulo 4 written on the blackboard. And
this is not the case with the sequence of nines. This proves our claim.

(St. Petersburg City Mathematical Olympiad, 1997)

75. Without loss of generality, we may assume that the length of the hypotenuse is 1 and
those of the legs are p and q. In the process, we obtain homothetic triangles that are in
the ratio pmqn to the original ones, for some nonnegative integersm and n. Let us focus
on the pairs (m, n).

Each time we cut a triangle, we replace the pair (m, n) with the pairs (m + 1, n)
and (m, n + 1). This shows that if to the triangle corresponding to the pair (m, n) we
associate the weight 1

2m+n , then the sum I of all the weights is invariant under cuts. The
initial value of I is 4. If at some stage the triangles were pairwise incongruent, then the
value of I would be strictly less than

∞∑
m,n=0

1

2m+n =
∞∑
m=0

1

2m

∞∑
n=0

1

2n
= 4,

a contradiction. Hence a configuration with all triangles of distinct sizes cannot be
achieved.

(Russian Mathematical Olympiad, 1995)

76. First solution: Here the invariant is given; we just have to prove its invariance. We
first examine the simpler case of a cyclic quadrilateral ABCD inscribed in a circle of
radius R. Recall that for a triangleXYZ the radii of the incircle and the circumcircle are
related by

r = 4R sin
X

2
sin

Y

2
sin

Z

2
.

Let ∠CAD = α1, ∠BAC = α2, ∠ABD = β. Then ∠DBC = α1, and ∠ACD = β,
∠BDC = α2, and ∠ACB = ∠ADB = 180◦ − α1 − α2 − β. The independence of the
sum of the inradii in the two possible dissections translates, after dividing by 4R, into
the identity

sin
α1 + α2

2
sin

β

2
sin

(
90◦ − α1 + α2 + β

2

)
+ sin

(
90◦ − α1 + α2

2

)
sin

α1

2
sin

α2

2

= sin
α1 + β1

2
sin

α2

2
sin

(
90◦ − α1 + α2 + β

2

)
+ sin

(
90◦ − α1 + β1

2

)
sin

α1

2
sin

β

2
.
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This is equivalent to

cos
α1 + β1 + α2

2

(
sin

α1 + α2

2
sin

β

2
− sin

α1 + β

2
sin

α2

2

)
= sin

α1

2

(
sin

β

2
cos

α1 + β1

2
− sin

α2

2
cos

α1 + α2

2

)
,

or

cos
α1 + α2 + β

2

(
cos

α1 + α2 − β

2
− cos

α1 − α2 + β

2

)
= sin

α1

2

(
sin

(
β1 + α1

2

)
− sin

(
α2 + α1

2

))
.

Using product-to-sum formulas, both sides can be transformed into cos(α1 + α2)

+ cosβ1 − cos(α1 + β1)− cosα2.

Figure 57

The case of a general polygon follows from the particular case of the quadrilateral.
This is a consequence of the fact that any two dissections can be transformed into one
another by a sequence of quadrilateral moves (Figure 57). Indeed, any dissection can be
transformed into a dissection in which all diagonals start at a given vertex, by moving
the endpoints of diagonals one by one to that vertex. So one can go from any dissection
to any other dissection using this particular type as an intermediate step. Since the sum
of the inradii is invariant under quadrilateral moves, it is independent of the dissection.

Second solution: This time we use the trigonometric identity

1 + r

R
= cosX + cosY + cosZ.

We will check therefore that the sum of 1 + ri
R

is invariant, where ri are the inradii of the
triangles of the decomposition. Again we prove the property for a cyclic quadrilateral
and then obtain the general case using the quadrilateral move. Using the fact that the sum
of cosines of supplementary angles is zero and chasing angles in the cyclic quadrilateral
ABCD, we obtain

cos ∠DBA+ cos ∠BDA+ cos ∠DAB + cos ∠BCD + cos ∠CBD + cos ∠CDB
= cos ∠DBA+ cos ∠BDA+ cos ∠CBD + cos ∠CDB
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= cos ∠DCA+ cos ∠BCA+ cos ∠CAD + cos ∠CAB
= cos ∠DCA+ cos ∠CAD + cos ∠ADC + cos ∠BCA+ cos ∠CAB + cos ∠ABC,

and we are done.

Remark. A more general theorem states that two triangulations of a polygonal surface
(not necessarily by diagonals) are related by the move from Figure 57 and the move from
Figure 58 or its inverse. These are usually called Pachner moves.

Figure 58

(Indian Team Selection Test for the International Mathematical Olympiad, 2005,
second solution by A. Tripathy)

77. Let S be the sum of the elements of the table. By performing moves on the rows or
columns with negative sum, we obtain a strictly increasing sequence S1 < S2 < · · · .
BecauseS can take at most 2n

2
values (all possible sign choices for the entries of the table),

the sequence becomes stationary. At that time no row or column will have negative sum.

78. Skipping the first step, we may assume that the integers are nonnegative. The semi-
invariant is S(a, b, c, d) = max(a, b, c, d). Because for nonnegative numbers x, y, we
have |x − y| ≤ max(x, y), S does not increase under T . If S decreases at every step,
then it eventually becomes 0, in which case the quadruple is (0, 0, 0, 0). Let us see in
what situation S is preserved by T . If

S(a, b, c, d) = S(T (a, b, c, d)) = S(|a − b|, |b − c|, |c − d|, |d − a|),
then next to some maximal entry there must be a zero. Without loss of generality, we
may assume a = S(a, b, c, d) and b = 0. Then

(a, 0, c, d)
T−→ (a, c, |c − d|, |d − a|)
T−→ (|a − c|, |c − |c − d|, ||c − d| − |d − a||, |a − |d − a||).

Can S stay invariant in both these steps? If |a− c| = a, then c = 0. If |c− |c− d|| = a,
then since a is the largest of the four numbers, either c = d = a or else c = 0, d = a.
The equality ||c − d| − |d − a|| = a can hold only if c = 0, d = a, or d = 0, c = a.
Finally, |a−|d− a|| = a if d = a. So S remains invariant in two consecutive steps only
for quadruples of the form
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(a, 0, 0, d), (a, 0, 0, a), (a, 0, a, 0), (a, 0, c, a),

and their cyclic permutations.
At the third step these quadruples become

(a, 0, d, |d − a|), (a, 0, a, 0), (a, a, a, a), (a, c, |c − a|, 0).

The second and the third quadruples become (0, 0, 0, 0) in one and two steps, respectively.
Now let us look at the first and the last. By our discussion, unless they are of the form
(a, 0, a, 0) or (a, a, 0, 0), respectively, the semi-invariant will decrease at the next step.
So unless it is equal to zero, S can stay unchanged for at most five consecutive steps. If
initially S = m, after 5m steps it will be equal to zero and the quadruple will then be
(0, 0, 0, 0).

79. If a, b are erased and c < d are written instead, we have c ≤ min(a, b) and d ≥
max(a, b). Moreover, ab = cd. Using derivatives we can show that the function
f (c) = c+ ab

c
is strictly decreasing on (0, a+b2 ), which implies a+ b ≤ c+ d. Thus the

sum of the numbers is nondecreasing. It is obviously bounded, for example by n times
the product of the numbers, where n is the number of numbers on the board. Hence the
sum of the numbers eventually stops changing. At that moment the newly introduced c
and d should satisfy c+ d = a + b and cd = ab, which means that they should equal a
and b. Hence the numbers themselves stop changing.

(St. Petersburg City Mathematical Olympiad, 1996)

80. To a configuration of pebbles we associate the number

S =
∑ 1

2|i|+|j | ,

where the sum is taken over the coordinates of all nodes that contain pebbles. At one
move of the game, a node (i, j) loses its pebble, while two nodes (i1, j1) and (i2, j2) gain
pebbles. Since either the first coordinate or the second changes by one unit, |ik| + |jk| ≤
|i| + |j | + 1, k = 1, 2. Hence

1

2|i|+|j | = 1

2|i|+|j |+1
+ 1

2|i|+|j |+1
≤ 1

2|i1|+|j1| + 1

2|i2|+|j2| ,

which shows that S is a nondecreasing semi-invariant. We will now show that at least one
pebble is inside or on the boundary of the square R determined by the lines x± y = ±5.
Otherwise, the total value of S would be less than∑

|i|+|j |>5

1

2|i|+|j |

= 1 + 4
∞∑
i=1

∞∑
j=0

1

2i+j
−

∑
|i|+|j |≤5

1

2|i|+|j |
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= 1 + 4
∞∑
i=1

1

2i

∞∑
j=0

1

2j
− 1 − 4

(
1 · 1

2
+ 2 · 1

4
+ 3 · 1

8
+ 4 · 1

16
+ 5 · 1

32

)
= 9 − 65

8
= 7

8
< 1.

This is impossible, since the original value of S was 1. Consequently, there will always
be a pebble inside R, and this pebble will be at distance at most 5 from the origin.
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81. Assume that both numbers are perfect cubes. Then so is their product

(n+ 3)(n2 + 3n+ 3) = n3 + 6n2 + 12n+ 9.

However, this number differs from the perfect cube (n+ 2)3 = n3 + 6n2 + 12n+ 8 by
one unit. And this is impossible because no perfect cubes can be consecutive integers
(unless one of them is zero). This proves the claim.

82. Let m = pq. We use the identity

xm − ym = (x − y)(xm−1 + xm−2y + · · · + ym−1),

which can be applied to the matrices A and −B since they commute. We have

(A− (−B))(Am−1 + Am−2(−B)+ · · · + (−B)m−1)

= Am − (−B)m = (Ap)q − (−1)pq(Bq)p = In.

Hence the inverse of A+ B = A− (−B) is Am−1 + Am−2(−B)+ · · · + (−B)m−1.

83. First solution: Let F(x) be the polynomial in question. If F(x) is the square of a
polynomial, then write F(x) = G(x)2 + 02. In general, F(x) is nonnegative for all real
numbers x if and only if it has even degree and is of the form

F(x) = R(x)2(x2 + a1x + b1)(x
2 + a2x + b2) · · · (x2 + anx + bn),

where the discriminant of each quadratic factor is negative. Completing the square

x2 + akx + bk =
(
x + ak

2

)2 +	2, with 	 =
√
bk − a2

k

4
,

we can write
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F(x) = (P1(x)
2 +Q1(x)

2)(P2(x)
2 +Q2(x)

2) · · · (Pn(x)2 +Qn(x)
2),

where the factorR(x)2 is incorporated inP1(x)
2 andQ1(x)

2. Using the Lagrange identity

(a2 + b2)(c2 + d2) = (ac + bd)2 + (ad − bc)2,

we can transform this product in several steps into P(x)2 +Q(x)2, where P(x) andQ(x)
are polynomials.

Second solution: Likewise, with the first solution write the polynomial as

F(x) = R(x)2(x2 + a1x + b1)(x
2 + a2x + b2) · · · (x2 + anx + bn).

Factor the quadratics as (x+αk + iβk)(x+αk − iβk). Group the factors with +iβk into a
polynomial P(x)+ iQ(x) and the factors with −iβk into the polynomial P(x)− iQ(x).
Then

F(x) = (R(x)P (x))2 + (R(x)Q(x))2,

which proves the conclusion.

Remark. D. Hilbert discovered that not every positive two-variable polynomial can be
written as a sum of squares of polynomials. The appropriate generalization to the case
of rational functions makes the object of his 16th problem. While Hilbert’s proof is
nonconstructive, the first examples of such polynomials were discovered surprisingly late,
and were quite complicated. Here is a simple example found by T. Motzkin: f (x, y) =
1 + x2y2(x2 + y2 − 3).

84. Simply substitute x = 55n in the factorization

x5 + x + 1 = (x2 + x + 1)(x3 − x2 + 1)

to obtain a factorization of the number from the statement. It is not hard to prove that
both factors are greater than 1.

(T.Andreescu, published inT.Andreescu, D.Andrica, 360 Problems for Mathematical
Contests, GIL, 2003)

85. Let

N = 5n−1 −
(
n

1

)
5n−2 +

(
n

2

)
5n−3 − · · · +

(
n

n− 1

)
.

Then 5N − 1 = (5 − 1)n. Hence

N = 4n + 1

5
= 4(2k)4 + 1

5
= (22k+1 + 2k+1 + 1)(22k+1 − 2k+1 + 1)

5
,
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where k = n−1
2 . Since n ≥ 5, both factors at the numerator are greater than 5, which

shows that after canceling the denominator, the expression on the right can still be written
as a product of two numbers. This proves that N is not prime.

(T.Andreescu, published inT.Andreescu, D.Andrica, 360 Problems for Mathematical
Contests, GIL, 2003)

86. We use the identity

a5 − 1 = (a − 1)(a4 + a3 + a2 + a + 1)

applied for a = 5397. The difficult part is to factor a4 + a3 + a2 + a + 1. Note that

a4 + a3 + a2 + a + 1 = (a2 + 3a + 1)2 − 5a(a + 1)2.

Hence

a4 + a3 + a2 + a + 1 = (a2 + 3a + 1)2 − 5398(a + 1)2

= (a2 + 3a + 1)2 − (5199(a + 1))2

= (a2 + 3a + 1 + 5199(a + 1))(a2 + 3a + 1 − 5199(a + 1)).

It is obvious that a − 1 and a2 + 3a + 1 + 5199(a + 1) are both greater than 5100. As for
the third factor, we have

a2 + 3a + 1 − 5199(a + 1) = a(a − 5199)+ 3a − 5199 + 1 ≥ a + 0 + 1 ≥ 5100.

Hence the conclusion.
(proposed by Russia for the 26th International Mathematical Olympiad, 1985)

87. The number from the statement is equal to a4 + a3 + a2 + a + 1, where a = 525. As
in the case of the previous problem, we rely on the identity

a4 + a3 + a2 + a + 1 = (a2 + 3a + 1)2 − 5a(a + 1)2,

and factor our number as follows:

a4 + a3 + a2 + a + 1 = (a2 + 3a + 1)2 − (513(a + 1))2

= (a2 + 3a + 1 + 513(a + 1))(a2 + a + 1 − 513(a + 1)).

The first factor is obviously greater than 1. The second factor is also greater than 1, since

a2 + a + 1 − 513a − 513 = a(a − 513)+ (a − 513)+ 1,

and a > 513. This proves that the number from the statement of the problem is not prime.
(proposed by Korea for the 33rd International Mathematical Olympiad, 1992)
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88. The solution is based on the identity

ak + bk = (a + b)(ak−1 + bk−1)− ab(ak−2 + bk−2).

This identity arises naturally from the fact that both a and b are solutions to the equation
x2 − (a + b)x + ab = 0, hence also to xk − (a + b)xk−1 + abxk−2 = 0.

Assume that the conclusion is false. Then for some n, a2n+ b2n is divisible by a+ b.
For k = 2n, we obtain that the right-hand side of the identity is divisible by a + b,
hence so is ab(a2n−2 + b2n−2). Moreover, a and b are coprime to a + b, and therefore
a2n−2 + b2n−2 must be divisible by a+ b. Through a backward induction, we obtain that
a0 + b0 = 2 is divisible by a+ b, which is impossible since a, b > 1. This contradiction
proves the claim.

(R. Gelca)

89. Letn be an integer and let n
3−n
6 = k. Becausen3−n is the product of three consecutive

integers, n− 1, n, n+ 1, it is divisible by 6; hence k is an integer. Then

n3 − n = 6k = (k − 1)3 + (k + 1)3 − k3 − k3.

It follows that

n = n3 − (k − 1)3 − (k + 1)3 + k3 + k3,

and thus

n = n3 +
(

1 − n3 − n

6

)3

+
(

−1 − n3 + n

6

)3

+
(
n3 − n

6

)3

+
(
n3 − n

6

)3

.

Remark. Lagrange showed that every positive integer is a sum of at most four perfect
squares. Wieferich showed that every positive integer is a sum of at most nine perfect
cubes of positive integers. Waring conjectured that in general, for every n there is a
number w(n) such that every positive integer is the sum of at most w(n) nth powers of
positive integers. This conjecture was proved by Hilbert.

90. First solution: Using the indentity

a3 + b3 + c3 − 3abc = 1

2
(a + b + c)((a − b)2 + (b − c)2 + (c − a)2)

applied to the (distinct) numbers a = 3
√
x − 1, b = 3

√
x, and c = 3

√
x + 1, we transform

the equation into the equivalent

(x − 1)+ x + (x + 1)− 3 3
√
(x − 1)x(x + 1) = 0.
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We further change this into x = 3
√
x3 − x. Raising both sides to the third power, we

obtain x3 = x3 − x. We conclude that the equation has the unique solution x = 0.

Second solution: The function f : R → R, f (x) = 3
√
x − 1 + 3

√
x + 3

√
x + 1 is strictly

increasing, so the equation f (x) = 0 has at most one solution. Since x = 0 satisfies this
equation, it is the unique solution.

91. The key observation is that the left-hand side of the equation can be factored as

(x + y + z)(x2 + y2 + z2 − xy − yz− zx) = p.

Since x+y+z > 1 and p is prime, we must have x+y+z = p and x2 +y2 +z2 −xy−
yz− zx = 1. The second equality can be written as (x − y)2 + (y − z)2 + (z− x)2 = 2.
Without loss of generality, we may assume that x ≥ y ≥ z. If x > y > z, then x−y ≥ 1,
y−z ≥ 1, and x−z ≥ 2, which would imply that (x−y)2 +(y−z)2 +(z−x)2 ≥ 6 > 2.

Therefore, either x = y = z+ 1 or x − 1 = y = z. According to whether the prime
p is of the form 3k+1 or 3k+2, the solutions are (p−1

3 ,
p−1

3 ,
p+2

3 ) and the corresponding
permutations, or (p−2

3 ,
p+1

3 ,
p+1

3 ) and the corresponding permutations.
(T. Andreescu, D. Andrica, An Introduction to Diophantine Equations, GIL 2002)

92. The inequality to be proved is equivalent to

a3 + b3 + c3 − 3abc ≥ 9k.

The left-hand side can be factored, and the inequality becomes

(a + b + c)(a2 + b2 + c2 − ab − bc − ca) ≥ 9k.

Without loss of generality, we may assume that a ≥ b ≥ c. It follows that a − b ≥ 1,
b− c ≥ 1, a − c ≥ 2; hence (a − b)2 + (b− c)2 + (c− a)2 ≥ 1 + 1 + 4 = 6. Dividing
by 2, we obtain

a2 + b2 + c2 − ab − bc − ca ≥ 3.

The solution will be complete if we show that a + b + c ≥ 3k. The computation

(a + b + c)2 = a2 + b2 + c2 − ab − bc − ca + 3(ab + bc + ca)

≥ 3 + 3(3k2 − 1) = 9k2

completes the proof.
(T. Andreescu)

93. This is a difficult exercise in completing squares. We have

mnp = 1 + x2

z2
+ z2

y2
+ x2

y2
+ y2

x2
+ y2

z2
+ z2

x2
+ 1
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=
(
x

y
+ y

x

)2

+
(
y

z
+ z

y

)2

+
(
z

x
+ x

z

)2

− 4.

Hence

m2 + n2 + p2 = mnp + 4.

Adding 2(mn+ np + pm) to both sides yields

(m+ n+ p)2 = mnp + 2(mn+ np + pm)+ 4.

Adding now 4(m+ n+ p)+ 4 to both sides gives

(m+ n+ p + 2)2 = (m+ 2)(n+ 2)(p + 2).

It follows that

(m+ 2)(n+ 2)(p + 2) = 20042.

But 2004 = 22 ×3×167, and a simple case analysis shows that the only possibilities are
(m+ 2, n+ 2, p+ 2) = (4, 1002, 1002), (1002, 4, 1002), (1002, 1002, 4). The desired
triples are (2, 1000, 1000), (1000, 2, 1000), (1000, 1000, 2).

(proposed by T. Andreescu for the 43rd International Mathematical Olympiad, 2002)

94. LetM(a, b) = max(a2 + b, b2 + a). ThenM(a, b) ≥ a2 + b andM(a, b) ≥ b2 + a,
so 2M(a, b) ≥ a2 + b + b2 + a. It follows that

2M(a, b)+ 1

2
≥
(
a + 1

2

)2

+
(
b + 1

2

)2

≥ 0,

hence M(a, b) ≥ − 1
4 . We deduce that

min
a,b∈R

M(a, b) = −1

4
,

which, in fact, is attained when a = b = − 1
2 .

(T. Andreescu)

95. Let a = 2x and b = 3x . We need to show that

a + b − a2 + ab − b2 ≤ 1.

But this is equivalent to

0 ≤ 1

2

[
(a − b)2 + (a − 1)2 + (b − 1)2

]
.
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The equality holds if and only if a = b = 1, i.e., x = 0.
(T. Andreescu, Z. Feng, 101 Problems in Algebra, Birkhäuser, 2001)

96. Clearly, 0 is not a solution. Solving for n yields −4x−3
x4 ≥ 1, which reduces to

x4 + 4x + 3 ≤ 0. The last inequality can be written in its equivalent form,

(x2 − 1)2 + 2(x + 1)2 ≤ 0,

whose only real solution is x = −1.
Hence n = 1 is the unique solution, corresponding to x = −1.
(T. Andreescu)

97. If x = 0, then y = 0 and z = 0, yielding the triple (x, y, z) = (0, 0, 0). If x 	= 0,
then y 	= 0 and z 	= 0, so we can rewrite the equations of the system in the form

1 + 1

4x2
= 1

y
,

1 + 1

4y2
= 1

z
,

1 + 1

4z2
= 1

x
.

Summing up the three equations leads to(
1 − 1

x
+ 1

4x2

)
+
(

1 − 1

y
+ 1

4y2

)
+
(

1 − 1

z
+ 1

4z2

)
= 0.

This is equivalent to(
1 − 1

2x

)2

+
(

1 − 1

2y

)2

+
(

1 − 1

2z

)2

= 0.

It follows that 1
2x = 1

2y = 1
2z = 1, yielding the triple (x, y, z) = ( 1

2 ,
1
2 ,

1
2). Both triples

satisfy the equations of the system.
(Canadian Mathematical Olympiad, 1996)

98. First, note that (x − 1
2)

2 ≥ 0 implies x − 1
4 ≤ x2, for all real numbers x. Applying

this and using the fact that the xi’s are less than 1, we find that

logxk

(
xk+1 − 1

4

)
≥ logxk (x

2
k+1) = 2 logxk xk+1.

Therefore,

n∑
k=1

logxk

(
xk+1 − 1

4

)
≥ 2

n∑
k=1

logxk xk+1 ≥ 2n n

√
ln x2

ln x1
· ln x3

ln x2
· · · ln xn

ln x1
= 2n.
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So a good candidate for the minimum is 2n, which is actually attained for x1 = x2 =
· · · = xn = 1

2 .
(Romanian Mathematical Olympiad, 1984, proposed by T. Andreescu)

99. Assume the contrary, namely that 7a + 5b + 12ab > 9. Then

9a2 + 8ab + 7b2 − (7a + 5b + 12ab) < 6 − 9.

Hence

2a2 − 4ab + 2b2 + 7

(
a2 − a + 1

4

)
+ 5

(
b2 − b + 1

4

)
< 0,

or

2(a − b)2 + 7

(
a − 1

2

)2

+ 5

(
b − 1

2

)2

< 0,

a contradiction. The conclusion follows.
(T. Andreescu)

100. We rewrite the inequalities to be proved as −1 ≤ ak − n ≤ 1. In this respect,
we have

n∑
k=1

(ak − n)2 =
n∑
k=1

a2
k − 2n

n∑
k=1

ak + n · n2 ≤ n3 + 1 − 2n · n2 + n3 = 1,

and the conclusion follows.
(Math Horizons, proposed by T. Andreescu)

101. Adding up the two equations yields(
x4 + 2x3 − x + 1

4

)
+
(
y4 + 2y3 − y + 1

4

)
= 0.

Here we recognize two perfect squares, and write this as(
x2 + x − 1

2

)2

+
(
y2 + y − 1

2

)2

= 0.

Equality can hold only if x2 + x − 1
2 = y2 + y − 1

2 = 0, which then gives {x, y} ⊂
{− 1

2 −
√

3
2 ,− 1

2 +
√

3
2 }. Moreover, since x 	= y, {x, y} = {− 1

2 −
√

3
2 ,− 1

2 +
√

3
2 }. A simple

verification leads to (x, y) = (− 1
2 +

√
3

2 ,− 1
2 −

√
3

2 ).
(Mathematical Reflections, proposed by T. Andreescu)

102. Let n = 2k. It suffices to prove that
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1

2
± x + x2 ± x3 + x4 ± · · · ± x2k−1 + x2k > 0,

for all 2k choices of the signs + and −. This reduces to(
1

2
± x + 1

2
x2

)
+
(

1

2
x2 ± x3 + 1

2
x4

)
+ · · · +

(
1

2
x2k−2 ± x2k−1 + 1

2
x2k

)
+ 1

2
x2k > 0,

which is true because 1
2x

2k−2 ± x2k−1 + 1
2x

2k = 1
2(x

k−1 ± xk)2 ≥ 0 and 1
2x

2k ≥ 0, and
the equality cases cannot hold simultaneously.

103. This is the Cauchy–Schwarz inequality applied to the numbers a1 = a
√
b, a2 =

b
√
c, a3 = c

√
a and b1 = c

√
b, b2 = a

√
c, b3 = b

√
a. Indeed,

9a2b2c2 = (abc + abc + abc)2 = (a1b1 + a2b2 + a3b3)
2

≤ (a2
1 + a2

2 + a2
3)(b

2
1 + b2

2 + b2
3) = (a2b + b2c + c2a)(c2b + a2c + b2a).

104. By the Cauchy–Schwarz inequality,

(a1 + a2 + · · · + an)
2 ≤ (1 + 1 + · · · + 1)(a2

1 + a2
2 + · · · + a2

n).

Hence a2
1 + a2

2 + · · · + a2
n ≥ n. Repeating, we obtain

(a2
1 + a2

2 + · · · + a2
n)

2 ≤ (1 + 1 + · · · + 1)(a4
1 + a4

2 + · · · + a4
n),

which shows that a4
1 + a4

2 + · · · + a4
n ≥ n, as desired.

105. Apply Cauchy–Schwarz:

(a1aσ(a) + a2aσ(2) + · · · + anaσ(n))
2 ≤ (a2

1 + a2
2 + · · · + a2

n)(aσ(1) + aσ(2) + · · · + a2
σ(n))

= (a2
1 + a2

2 + · · · + a2
n)

2.

The maximum is a2
1 + a2

2 + · · · + a2
n. The only permutation realizing it is the identity

permutation.

106. Applying the Cauchy–Schwarz inequality to the numbers
√
f1x1,

√
f2x2, . . . ,√

fnxn and
√
f1,

√
f2, . . . ,

√
fn, we obtain

(f1x
2
1 + f2x

2
2 + · · · + fnx

2
n)(f1 + f2 + · · · + fn) ≥ (f1x1 + f2x2 + · · · + fnxn)

2,

hence the inequality from the statement.
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Remark. In statistics the numbers fi are integers that record the frequency of occurrence
of the sampled random variable xi , i = 1, 2, . . . , n. If f1 + f2 + · · · + fn = N , then

s2 = f1x
2
1 + f2x

2
2 + · · · + fnx

2
n − (f1x1+f2x2+···+fnxn)2

N

N − 1

is called the sample variance. We have just proved that the sample variance is nonnegative.

107. By the Cauchy–Schwarz inequality,

(k1 + · · · + kn)

(
1

k1
+ · · · + 1

kn

)
≥ n2.

We must thus have 5n− 4 ≥ n2, so n ≤ 4. Without loss of generality, we may suppose
that k1 ≤ · · · ≤ kn.

If n = 1, we must have k1 = 1, which is a solution. Note that hereinafter we cannot
have k1 = 1.

If n = 2, we have (k1, k2) ∈ {(2, 4), (3, 3)}, neither of which satisfies the relation
from the statement.

If n = 3, we have k1 + k2 + k3 = 11, so 2 ≤ k1 ≤ 3. Hence (k1, k2, k3) ∈
{(2, 2, 7), (2, 3, 6), (2, 4, 5), (3, 3, 5), (3, 4, 4)}, and only (2, 3, 6) works.

If n = 4, we must have equality in the Cauchy–Schwarz inequality, and this can
happen only if k1 = k2 = k3 = k4 = 4.

Hence the solutions are n = 1 and k1 = 1, n = 3, and (k1, k2, k3) is a permutation of
(2, 3, 6), and n = 4 and (k1, k2, k3, k4) = (4, 4, 4, 4).

(66th W.L. Putnam Mathematical Competition, 2005, proposed by T. Andreescu)

108. One can check that geometric progressions satisfy the identity. A slick proof of
the converse is to recognize that we have the equality case in the Cauchy–Schwarz
inequality. It holds only if a0

a1
= a1

a2
= · · · = an−1/an, i.e., only if a0, a1, . . . , an is a

geometric progression.

109. Let P(x) = c0x
n + c1x

n−1 + · · · + cn. Then

P(a)P (b) = (c0a
n + c1a

n−1 + · · · + cn)(c0b
n + c1b

n−1 + · · · + cn)

≥ (c0(
√
ab)n + c1(

√
ab)n−1 + · · · + cn)

2 = (P (
√
ab))2,

by the Cauchy–Schwarz inequality, and the conclusion follows.

110. First solution: If a1, a2, . . . , an are positive integers, the Cauchy–Schwarz inequality
implies

(a1 + a2 + · · · + an)

(
1

a1
+ 1

a2
+ · · · + 1

an

)
≥ n2.
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For a1 = x0 − x1, a2 = x1 − x2, . . . , an = xn−1 − xn this gives

1

x0 − x1
+ 1

x1 − x2
+ · · · + 1

xn−1 − xn
≥ n2

x0 − x1 + x1 − x2 + · · · + xn−1 − xn

= n2

x0 − xn
.

The inequality from the statement now follows from

x0 + xn + n2

x0 − xn
≥ 2n,

which is rather easy, because it is equivalent to(√
x0 − xn − n√

x0 − xn

)2

≥ 0.

Equality in Cauchy–Schwarz holds if and only if x0 − x1, x1 − x2, . . . , xn−1 − xn are
proportional to 1

x0−x1
, 1
x1−x2

, . . . , 1
xn−1−xn . This happens when x0 −x1 = x1 −x2 = · · · =

xn−1 − xn. Also,
√
x0 − xn − n/

√
x0 − xn = 0 only if x0 − xn = n. This means that

the inequality from the statement becomes an equality if and only if x0, x1, . . . , xn is an
arithmetic sequence with common difference 1.

Second solution: As before, let ai = xi − xi+1. The inequality can be written as

n−1∑
i=1

(
ai + 1

ai

)
≥ 2n.

This follows immediately from x + x−1 ≥ 2.
(St. Petersburg City Mathematical Olympiad, 1999, second solution by R. Stong)

111. Because

1

sec(a − b)
= cos(a − b) = sin a sin b + cos a cos b,

it suffices to show that(
sin3 a

sin b
+ cos3 a

cos b

)
(sin a sin b + cos a cos b) ≥ 1.

This is true because by the Cauchy–Schwarz inequality,(
sin3 a

sin b
+ cos3 a

cos b

)
(sin a sin b + cos a cos b) ≥ (sin2 a + cos2 a)2 = 1.
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112. Bring the denominator to the left:

(a + b)(b + c)(c + a)

(
1

a + b
+ 1

b + c
+ 1

c + a
+ 1

2 3
√
abc

)
≥ (a + b + c + 3

√
abc)2.

The identity

(a + b)(b + c)(c + a) = c2(a + b)+ b2(c + a)+ a2(b + c)+ 2abc

enables us to transform this into

(c2(a + b)+ b2(c + a)+ a2(b + c)+ 2abc)

(
1

a + b
+ 1

b + c
+ 1

c + a
+ 1

2 3
√
abc

)
≥ (c + b + a + 3

√
abc)2.

And now we recognize the Cauchy–Schwarz inequality. Equality holds only ifa = b = c.
(Mathematical Olympiad Summer Program, T. Andreescu)

113. Let c be the largest side. By the triangle inequality, cn < an+ bn for all n ≥ 1. This
is equivalent to

1 <
(a
c

)n +
(
b

c

)n
, n ≥ 1.

If a < c and b < c, then by letting n → ∞, we obtain 1 < 0, impossible. Hence one of
the other two sides equals c, and the triangle is isosceles.

114. Define �d = −�a − �b − �c. The inequality becomes

‖�a‖ + ‖�b‖ + ‖�c‖ + ‖�d‖ ≥ ‖�a + �d‖ + ‖�b + �d‖ + ‖�c + �d‖.
If the angles formed by �a with �b, �c, and �d come in increasing order, then the closed
polygonal line �a, �b, �c, �d is a convex quadrilateral. Figure 59 shows how this quadrilateral
can be transformed into one that is skew by choosing one angle such that one of the pairs
of adjacent angles containing it totals at most 180◦ and the other at least 180◦ and then
folding that angle in.

The triangle inequality implies ‖�b‖+‖�c‖ ≥ ‖�b+ �d‖+‖�c+ �d‖. To be more convincing,
let us explain that the left-hand side is the sum of the lengths of the dotted segments,
while the right-hand side can be decomposed into the lengths of some four segments,
which together with the dotted segments form two triangles. The triangle inequality also
gives ‖�a‖ + ‖�d‖ ≥ ‖�a + �d‖. Adding the two yields the inequality from the statement.

(Kvant (Quantum))

115. Let λ1, λ2, . . . , λn be the roots of the polynomial, D1 = {z, |z − c| ≤ R} the
disk covering them, and D2 = {z, |z − c| ≤ R + |k|}. We will show that the roots of
nP (z)− kP ′(z) lie inside D2.
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a

d
b

c

a

c

b

d
a

b c
d

Figure 59

For u /∈ D2, the triangle inequality gives

|u− λi | ≥ |u− c| − |c − λi | > R + |k| − R = |k|.

Hence |k|
|u−λi | < 1, for i = 1, 2, . . . , n. For such a u we then have

|nP (u)− kP ′(u)| =
∣∣∣∣∣nP (u)− kP (u)

n∑
i=1

1

u− λi

∣∣∣∣∣ = |P(u)|
∣∣∣∣∣n− k

n∑
i=1

1

u− λi

∣∣∣∣∣
≥ |P(u)|

∣∣∣∣∣n−
n∑
i=1

|k|
|u− λi |

∣∣∣∣∣ ,
where the last inequality follows from the triangle inequality.

But we have seen that

n−
n∑
i=1

|k|
|u− λi | =

n∑
i=1

(
1 − |k|

|u− λi |
)
> 0,

and since P(u) 	= 0, it follows that u cannot be a root of nP (u)− kP ′(u). Thus all roots
of this polynomial lie in D2.

(17th W.L. Putnam Mathematical Competition, 1956)

116. The inequality in the statement is equivalent to

(a2 + b2 + c2)2 < 4(a2b2 + b2c2 + c2a2).

The latter can be written as

0 < (2bc)2 − (a2 − b2 − c2)2,

or

(2bc + b2 + c2 − a2)(2bc − b2 − c2 + a2).
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This is equivalent to

0 < (a + b + c)(−a + b + c)(a − b + c)(a − b − c).

It follows that −a + b+ c, a − b+ c, a − b− c are all positive, because a + b+ c > 0,
and no two of the factors could be negative, for in that case the sum of the three numbers
would also be negative. Done.

117. The first idea is to simplify the problem and prove separately the inequalities |AB−
CD| ≥ |AC −BD| and |AD−BC| ≥ |AC −BD|. Because of symmetry it suffices to
prove the first.

LetM be the intersection of the diagonals AC and BD. For simplicity, let AM = x,
BM = y,AB = z. By the similarity of trianglesMAB andMDC there exists a positive
number k such that DM = kx, CM = ky, and CD = kz (Figure 60). Then

|AB − CD| = |k − 1|z

and

|AC − BD| = |(kx + y)− (ky + x)| = |k − 1| · |x − y|.

By the triangle inequality, |x − y| ≤ z, which implies |AB − CD| ≥ |AC − BD|,
completing the proof.

A

B C

D

z

x

y
M

kx

ky
kz

Figure 60

(USA Mathematical Olympiad, 1999, proposed by T. Andreescu, solution by
P.R. Loh)

118. We induct on m. When m = 1 there is nothing to prove. Now assume that the
inequality holds for m − 1 isometries and let us prove that it holds for m isometries.
Define V = ∏m−1

i=1 Vi and W = ∏m−1
i=1 Wi . Both V and W are isometries. For a vector x

with ‖x‖ ≤ 1,
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(

m∏
i=1

Vi

)
x −

(
m∏
i=1

Wi

)
x

∥∥∥∥∥ = ‖VVmx −WWmx‖

= ‖V (Vm −Wm)x + (V −W)Wmx‖.
Now we use the triangle inequality to increase the value of this expression to

‖V (Vm −Wm)x‖ + ‖(V −W)Wmx‖.
From the fact that V is an isometry it follows that

‖V (Vm −Wm)x‖ = ‖(Vm −Wm)x‖ ≤ 1.

From the fact thatWm is an isometry, it follows that ‖Wmx‖ ≤ 1, and so ‖(V−W)Wmx‖ ≤
m − 1 by the induction hypothesis. Putting together the two inequalities completes the
induction, and the inequality is proved.

Remark. In quantum mechanics the vector spaces are complex (not real) and the word
isometry is replaced by unitary. Unitary linear transformations model evolution, and the
above property shows that (measurement) errors accumulate linearly.

119. Place triangleABC in the complex plane such that the coordinates of the verticesA,
B, and C are, respectively, the third roots of unity 1, ε, ε2. Call z the complex coordinate
of P . Start with the obvious identity

(z− 1)+ ε(z− ε)+ ε2(z− ε2) = 0.

Move one term to the other side:

−ε2(z− ε2) = (z− 1)+ ε(z− ε).

Now take the absolute value and use the triangle inequality:

|z− ε2| = |(z− 1)+ ε(z− ε)| ≤ |z− 1| + |(ε(z− ε)| = |z− 1| + |z− ε2|.
Geometrically, this is PC ≤ PA+ PB.

Equality corresponds to the equality case in the triangle inequality for complex num-
bers, which holds if the complex numbers have positive ratio. Specifically, (z − 1) =
aε(z− ε) for some positive real number a, which is equivalent to

z− 1

z− ε
= aε.

In geometric terms this means that PA and PB form an angle of 120◦, so that P is on

the arc
�

AB. The other two inequalities are obtained by permuting the letters.
(D. Pompeiu)
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120. We start with the algebraic identity

x3(y − z)+ y3(z− x)+ z3(x − y) = (x + y + z)(x − y)(y − z)(z− x),

where x, y, z are complex numbers. Applying to it the triangle inequality, we obtain

|x|3|y − z| + |y|3|z− x| + |z|3|x − y| ≥ |x + y + z||x − y||x − z||y − z|.
So let us see how this can be applied to our problem. Place the triangle in the complex
plane so thatM is the origin, and let a, b, and c, respectively, be the complex coordinates
of A, B, C. The coordinate of G is (a+b+c)

3 , and if we set x = a, y = b, and z = c in the
inequality we just derived, we obtain the geometric inequality from the statement.

(M. Dincă, M. Chiriţă, Numere Complexe în Matematica de Liceu (Complex Numbers
in High School Mathematics), ALL Educational, Bucharest, 1996)

121. Because P(x) has odd degree, it has a real zero r . If r > 0, then by the AM–GM
inequality

P(r) = r5 + 1 + 1 + 1 + 25 − 5 · 2 · r ≥ 0.

And the inequality is strict since 1 	= 2. Hence r < 0, as desired.

122. We can rewrite the inequality as

nn − 1

n− 1
≥ n

n+1
2 ,

or

nn−1 + nn−2 + · · · + 1 ≥ n
n+1

2 .

This form suggests the use of the AM–GM inequality, and indeed, we have

1 + n+ n2 + · · · + nn−1 ≥ n
n
√

1 · n · n2 · · · nn−1 = n
n

√
n
n(n−1)

2 = n
n+1

2 ,

which proves the inequality.
(Gh. Călugăriţa, V. Mangu, Probleme de Matematică pentru Treapta I şi a II-a de

Liceu (Mathematics Problems for High School), Editura Albatros, Bucharest, 1977)

123. The inequality is homogeneous in the sense that if we multiply some ak and bk
simultaneously by a positive number, the inequality does not change. Hence we can
assume that ak + bk = 1, k = 1, 2, . . . , n. In this case, applying the AM–GM inequality,
we obtain

(a1a2 · · · an)1/n + (b1b2 · · · bn)1/n ≤ a1 + a2 + · · · + an

n
+ b1 + b2 + · · · + bn

n

= a1 + b1 + a2 + b2 + · · · + an + bn

n
= n

n
= 1,
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and the inequality is proved.
(64th W.L. Putnam Mathematical Competition, 2003)

124. The inequality from the statement is equivalent to

0 < 1 − (a + b + c)+ ab + bc + ca − abc <
1

27
,

that is,

0 < (1 − a)(1 − b)(1 − c) ≤ 1

27
.

From the triangle inequalities a + b > c, b + c > a, a + c > b and the condition
a + b + c = 2 it follows that 0 < a, b, c < 1. The inequality on the left is now evident,
and the one on the right follows from the AM–GM inequality

3
√
xyz ≤ x + y + z

3

applied to x = 1 − a, y = 1 − b, z = 1 − c.

125. It is natural to try to simplify the product, and for this we make use of the AM–GM
inequality:

25∏
n=1

(
1 − n

365

)
≤
[

1

25

25∑
n=1

(
1 − n

365

)]25

=
(

352

365

)25

=
(

1 − 13

365

)25

.

We now use Newton’s binomial formula to estimate this power. First, note that(
25

k

)(
13

365

)k
≥
(

25

k + 1

)(
13

365

)k+1

,

since this reduces to

13

365
≤ k + 1

25 − k
,

and the latter is always true for 1 ≤ k ≤ 24. For this reason if we ignore the part
of the binomial expansion beginning with the fourth term, we increase the value of the
expression. In other words,(

1 − 13

365

)25

≤ 1 −
(

25

1

)
13

365
+
(

25

2

)
132

3652
= 1 − 65

73
+ 169 · 12

632
<

1

2
.

We conclude that the second number is larger.
(Soviet Union University Student Mathematical Olympiad, 1975)
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126. The solution is based on the Lagrange identity, which in our case states that if M is
a point in space and G is the centroid of the tetrahedron ABCD, then

AB2 + AC2 + CD2 + AD2 + BC2 + BD2

= 4(MA2 +MB2 +MC2 +MD2)− 16MG2.

For M = O the center of the circumscribed sphere, this reads

AB2 + AC2 + CD2 + AD2 + BC2 + BD2 = 16 − 16OG2.

Applying the AM–GM inequality, we obtain

6 3
√
AB · AC · CD · AD · BC · BD ≤ 16 − 16OG2.

This combined with the hypothesis yields 16 ≤ 16 − OG2. So on the one hand we
have equality in the AM–GM inequality, and on the other hand O = G. Therefore,
AB = AC = AD = BC = BD = CD, so the tetrahedron is regular.

127. Adding 1 to all fractions transforms the inequality into

x2 + y2 + 1

2x2 + 1
+ y2 + z2 + 1

2y2 + 1
+ z2 + x2 + 1

2z2 + 1
≥ 3.

Applying the AM–GM inequality to the left-hand side gives

x2 + y2 + 1

2x2 + 1
+ y2 + z2 + 1

2y2 + 1
+ z2 + x2 + 1

2z2 + 1

≥ 3 3

√
x2 + y2 + 1

2x2 + 1
· y

2 + z2 + 1

2y2 + 1
· z

2 + x2 + 1

2z2 + 1
.

We are left with the simpler but sharper inequality

x2 + y2 + 1

2x2 + 1
· y

2 + z2 + 1

2y2 + 1
· z

2 + x2 + 1

2z2 + 1
≥ 1.

This can be proved by multiplying together

x2 + y2 + 1 = x2 + 1

2
+ y2 + 1

2
≥ 2

√(
x2 + 1

2

)(
y2 + 1

2

)
,

y2 + z2 + 1 = y2 + 1

2
+ z2 + 1

2
≥ 2

√(
y2 + 1

2

)(
z2 + 1

2

)
,

z2 + x2 + 1 = z2 + 1

2
+ x2 + 1

2
≥ 2

√(
z2 + 1

2

)(
y2 + 1

2

)
,
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and each of these is just the AM–GM inequality.
(Greek Team Selection Test for the Junior Balkan Mathematical Olympiad, 2005)

128. Denote the positive number 1 − (a1 + a2 + · · · + an) by an+1. The inequality from
the statement becomes the more symmetric

a1a2 · · · anan+1

(1 − a1)(1 − a2) · · · (1 − an)(1 − an+1)
≤ 1

nn+1
.

But from the AM–GM inequality,

1 − a1 = a2 + a3 + · · · + an+1 ≥ n n
√
a2a3 · · · an+1,

1 − a2 = a1 + a3 + · · · + an+1 ≥ n n
√
a1a3 · · · an+1,

· · ·
1 − an+1 = a1 + a2 + · · · + an ≥ n n

√
a1a2 · · · an.

Multiplying these n+ 1 inequalities yields

(1 − a1)(1 − a2) · · · (1 − an+1) ≥ nn+1a1a2 · · · an,

and the conclusion follows.
(short list of the 43rd International Mathematical Olympiad, 2002)

129. Trick number 1: Use the fact that

1 = n− 1 + xj

n− 1 + xj
= (n− 1)

1

n− 1 + xj
+ xj

n− 1 + xj
, j = 1, 2, . . . , n,

to transform the inequality into

x1

n− 1 + x1
+ x2

n− 1 + x2
+ · · · + xn

n− 1 + xn
≥ 1.

Trick number 2: Break this into the n inequalities

xj

n− 1 + xj
≥ x

1− 1
n

j

x
1− 1

n

1 + x
1− 1

n

2 + · · · + x
1− 1

n
n

, j = 1, 2, . . . , n.

We are left with n somewhat simpler inequalities, which can be rewritten as

x
1− 1

n

1 + x
1− 1

n

2 + x
1− 1

n

j−1 + x
1− 1

n

j+1 + · · · + x
1− 1

n
n ≥ (n− 1)x

− 1
n

j .

Trick number 3: Use the AM–GM inequality
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x
1− 1

n

1 + x
1− 1

n

2 + x
1− 1

n

j−1 + x
1− 1

n

j+1 + · · · + x
1− 1

n
n

n− 1
≥
(
(x1x2 · · · xj−1xj+1 · · · xn) n−1

n

) 1
n−1

= (x1x2 · · · xj−1xj+1 · · · xn) 1
n = x

− 1
n

j .

This completes the proof.
(Romanian Team Selection Test for the International Mathematical Olympiad, 1999,

proposed by V. Cârtoaje and Gh. Eckstein)

130. First solution: Note that the triple (a, b, c) ranges in the closed and bounded set
D = {(x, y, z) ∈ R3|0 ≤ x, y, z ≤ 1, x + y + z = 1}. The function f (x, y, z) =
4(xy + yz+ xz)− 9xyz− 1 is continuous; hence it has a maximum on D. Let (a, b, c)
be a point in D at which f attains this maximum. By symmetry we may assume that
a ≥ b ≥ c. This immediately implies c ≤ 1

3 .
Let us apply Sturm’s method. Suppose that b < a, and let 0 < x < a − b. We show

that f (a − x, b + x, c) > f (a, b, c). The inequality is equivalent to

4(a − x)(b + x)− 9(a − x)(b + x)c > 4ab − 9abc,

or

(4 − 9c)((a − b)x − x2) > 0,

and this is obviously true. But this contradicts the fact that (a, b, c) was a maximum.
Hence a = b. Then c = 1 − 2a, and it suffices to show that f (a, a, 1 − 2a) ≤ 0.
Specifically, this means

4a2 − 8a(1 − 2a)− 9a2(1 − 2a)− 1 ≤ 0.

The left-hand side factors as −(1 − 2a)(3a − 1)2 = −c(3a − 1)2, which is negative or
zero. The inequality is now proved. Moreover, we have showed that the only situations
in which equality is attained occur when two of the numbers are equal to 1

2 and the third
is 0, or when all three numbers are equal to 1

3 .

Second solution: A solution is possible using the Viète relations. Here it is. Consider the
polynomial

P(x) = (x − a)(x − b)(x − c) = x3 − x2 + (ab + bc + ca)x − abc,

the monic polynomial of degree 3 whose roots are a, b, c. Because a + b + c = 1, at
most one of the numbers a, b, c can be equal to or exceed 1

2 . If any of these numbers is
greater than 1

2 , then

P

(
1

2

)
=
(

1

2
− a

)(
1

2
− b

)(
1

2
− c

)
< 0.
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This implies
1

8
− 1

4
+ 1

2
(ab + bc + ca)− abc < 0,

and so 4(ab + bc + ca)− 8abc ≤ 1, and the desired inequality holds.
If 1

2 − a ≥ 0, 1
2 − b ≥ 0, 1

2 − c ≥ 0, then

2

√(
1

2
− a

)(
1

2
− b

)
≤
(

1

2
− a

)
+
(

1

2
− b

)
= 1 − a − b = c.

Similarly,

2

√(
1

2
− b

)(
1

2
− c

)
≤ a and 2

√(
1

2
− c

)(
1

2
− a

)
≤ b.

It follows that

8

(
1

2
− a

)(
1

2
− b

)(
1

2
− c

)
≤ abc,

and the desired inequality follows.
(Mathematical Reflections, proposed by T. Andreescu)

131. If xi < xj for some i and j , increase xi and decrease xj by some number a,
0 < a ≤ xj − xi . We need to show that(

1 + 1

xi + a

)(
1 + 1

xj − a

)
<

(
1 + 1

xi

)(
1 + 1

xj

)
,

or

(xi + a + 1)(xj − a + 1)

(xi + a)(xj − a)
<
(xi + 1)(xj + 1)

xixj
.

All denominators are positive, so after multiplying out and canceling terms, we obtain
the equivalent inequality

−ax2
i + ax2

j − a2xi − a2xj − axi + axj − a2 > 0.

This can be rewritten as

a(xj − xi)(xj + xi + 1) > a2(xj + xi + 1),

which is true, since a < xj −xi . Starting with the smallest and the largest of the numbers,
we apply the trick and make one of the numbers equal to 1

n
by decreasing the value of
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the expression. Repeating, we can decrease the expression to one in which all numbers
are equal to 1

n
. The value of the latter expression is (n+ 1)n. This concludes the proof.

132. Project orthogonally the ellipse onto a plane to make it a circle. Because all areas
are multiplied by the same constant, namely the cosine of the angle made by the plane
of the ellipse and that of the projection, the problem translates to finding the largest area
triangles inscribed in a given circle. We apply Sturm’s principle, after we guess that all
these triangles have to be equilateral.

Starting with a triangle that is not equilateral, two cases can be distinguished. Either
the triangle is obtuse, in which case it lies inside a semidisk. Then its area is less than half
the area of the disk, and consequently smaller than the area of the inscribed equilateral
triangle. Or otherwise the triangle is acute. This is the case to which we apply the
principle.

Figure 61

One of the sides of the triangle is larger than the side of the equilateral triangle and
one is smaller (since some side must subtend an arc greater than 2π

3 and another an arc
smaller than 2π

3 ). Moving the vertex on the circle in the direction of the longer side
increases the area, as seen in Figure 61. We stop when one of the two sides becomes
equal to the side of the equilateral triangle. Repeating the procedure for the other two
sides, we eventually reach an equilateral triangle. In the process we kept increasing
the area. Therefore, the inscribed triangles that maximize the area are the equilateral
triangles (this method also proves that the maximum exists). These triangles are exactly
those whose centroid coincides with the center of the circle. Returning to the ellipse,
since the orthogonal projection preserves centroids, we conclude that the maximal-area
triangles inscribed an ellipse are those with the centroid at the center of the ellipse.

Remark. This last argument can be applied mutatis mutandis to show that of all n-gons
inscribed in a certain circle, the regular one has the largest area.

(12th W.L. Putnam Mathematical Competition, 1952)

133. The first inequality follows easily from ab ≥ abc and bc ≥ abc. For the second,
define E(a, b, c) = ab + bc + ac − 2abc. Assume that a ≤ b ≤ c, a < c, and let
α = min ( 1

3 − a, c − 1
3), which is a positive number. We compute



Algebra 381

E(a + α, b, c − α) = E(a, b, c)+ α(1 − 2b)[(c − a)− α].
Since b ≤ c and a + b + c = 1, we have b ≤ 1

2 . This means that E(a + α, b, c − α) ≥
E(a, b, c). So we were able to make one of a and c equal to 1

3 by increasing the value
of the expression. Repeating the argument for the remaining two numbers, we are able
to increase E(a, b, c) to E( 1

3 ,
1
3 ,

1
3) = 7

27 . This proves the inequality.
(communicated by V. Grover)

134. The inequality from the statement can be rewritten as∏n
j=1 xj∏n

j=1(1 − xj )
≤

(∑n
j=1 xj

)n
(∑n

j=1(1 − xj )
)n .

If we fix the sum S = x1 +x2 +· · ·+xn, then the right-hand side is constant, being equal
to ( S

n−S )
n. We apply Sturm’s principle to the left-hand side. If the xj ’s are not all equal,

then there exist two of them, xk and xl , with xk < S
n
< xl . We would like to show that

by adding a small positive number α to xk and subtracting the same number from xl the
expression grows. This reduces to

(xk + α)(xl − α)

(1 − xk − α)(1 − xl + α)
<

xkxl

(1 − xk)(1 − xl)
.

Some computations transform this into

α(1 − xk − xl)(xl − xk − α) > 0,

which is true if α < xl − xk. Choosing α = xl − S
n

allows us to transform xl into S
n

by
this procedure. One by one we make the numbers equal to S

n
, increasing the value of the

expression on the left each time. The fact that in this case we achieve equality proves the
inequality in the general case.

(Indian Team Selection Test for the International Mathematical Olympiad, 2004)

135. We apply the same kind of reasoning, varying the parameters until we reach the
maximum. To find the maximum of

√
a+√

b+√
c+√

d, we increase the sum a+b+c+d
until it reaches the upper limit 30. Because a + b+ c ≤ 14 it follows that d ≥ 16. Now
we fix a, b and vary c, d to maximize

√
c + √

d. This latter expression is maximal if
c and d are closest to c+d

2 . But since c + d ≤ 30, c+d2 ≤ 15. So in order to maximize√
c + √

d , we must choose d = 16.
Now we have a + b + c = 14, a + b ≤ 5, and a ≤ 1. The same argument carries

over to show that in order to maximize
√
a + √

b + √
c we have to choose c = 9. And

the reasoning continues to show that a has to be chosen 1 and b has to be 4.
We conclude that under the constraints a ≤ 1, a + b ≤ 5, a + b + c ≤ 14, and

a + b + c + d ≤ 30, the sum
√
a + √

b + √
c + √

d is maximal when a = 1, b = 4,
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c = 9, d = 16, in which case the sum of the square roots is equal to 10. The inequality
is proved.

(V. Cârtoaje)

136. There exist finitely many n-tuples of positive integers with the sum equal to m, so
the expression from the statement has indeed a maximal value.

We show that the maximum is not attained if two of the xi’s differ by 2 or more.
Without loss of generality, we may assume that x1 ≤ x2 − 2. Increasing x1 by 1 and
decreasing x2 by 1 yields∑

2<i<j

xixj + (x1 + 1)
∑
2<i

xi + (x2 − 1)
∑
2<i

xi + (x1 + 1)(x2 − 1)

=
∑

2<i<j

xixj + x1

∑
2<i

xi + x2

∑
2<i

xi + x1x2 − x1 + x2 + 1.

The sum increased by x2 − x1 − 1 ≥ 1, and hence the original sum was not maximal.
This shows that the expression attains its maximum for a configuration in which the

xi’s differ from each other by at most 1. If m
n

= rn + s, with 0 ≤ s < n, then for this
to happen n− s of the xi’s must be equal to r + 1 and the remaining must be equal to r .
This gives that the maximal value of the expression must be equal to

1

2
(n− s)(n− s − 1)r2 + s(n− s)r(r + 1)+ 1

2
s(s − 1)(r + 1)2.

(Mathematical Olympiad Summer Program 2002, communicated by Z. Sunik)

137. There are finitely many such products, so a smallest product does exist. Examining
the 2×2, 3×3, and 4×4 arrays, we conjecture that the smallest product is attained on the
main diagonal and is 1 ·3 · · · 5 · · · (2n−1). To prove this, we show that if the permutation
σ of {1, 2, . . . , n} has an inversion, then a1σ(1)a2σ(2) · · · anσ(n) is not minimal.

i+j−

i+m+j− i+m+j+k−

i+j+k−

1

1 1

1

Figure 62

So assume that the inversion gives rise to the factors i+(j+k)−1 and (i+m)+j−1
in the product. Let us replace them with i + j − 1 and (i +m)+ (j + k)− 1, as shown
in Figure 62. The product of the first pair is

i2 + ik + i(j − 1)+mi +mk +m(j − 1)+ (j − 1)i + (j − 1)k + (j − 1)2,
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while the product of the second pair is

i2 + im+ ik + i(j − 1)+ (j − 1)m+ (j − 1)k + (j − 1)2.

We can see that the first of these expressions exceeds the second bymk. This proves that if
the permutation has an inversion, then the product is not minimal. The only permutation
without inversions is the identity permutation. By Sturm’s principle, it is the permutation
for which the minimum is attained. This minimum is 1 · 3 · · · 5 · · · (2n− 1), as claimed.

138. Order the numbers x1 < x2 < · · · < xn and call the expression from the statement

E(x1, x2, . . . , xn). Note that E(x1, x2, . . . , xn) >
x2
n

n
, which shows that as the variables

tend to infinity, so does the expression. This means that the minimum exists. Assume
that the minimum is attained at the point (y1, y2, . . . , yn). If yn − y1 > n then there
exist indices i and j , i < j , such that y1, . . . , yi + 1, . . . , yj − 1, . . . , yn are still distinct
integers. When substituting these numbers into E the denominator stays constant while
the numerator changes by 3(yj+yi)(yj−yi−1), a negative number, decreasing the value
of the expression. This contradicts the minimality. We now look at the case with no gaps:
yn − y1 = n− 1. Then there exists a such that y1 = a+ 1, y2 = a+ 2, . . . , yn = a+ n.
We have

E(y1, . . . , yn) = na3 + 3n(n+1)
2 a2 + n(n+1)(2n+1)

2 a + n2(n+1)2

4

na + n(n+1)
2

= a3 + 3(n+1)
2 a2 + (n+1)(2n+1)

2 a + n(n+1)2

4

a + n+1
2

.

When a = 0 this is just n(n+1)
2 . Subtracting this value from the above, we obtain

a3 + 3(n+1)
2 a2 +

[
(n+1)(2n+1)

2 − n(n+1)
2

]
a

a + n+1
2

> 0.

We deduce that n(n+1)
2 is a good candidate for the minimum.

If yn−y1 = n, then there exist a and k such that y1 = a, . . . , yk = a+k−1, yk+1 =
a + k + 1, . . . , yn = a + n. Then

E(y1, . . . , yn) = a3 + · · · + (a + k − 1)3 + (a + k + 1)3 + · · · + (a + n)3

a + · · · + (a + k − 1)+ (a + k + 1)+ · · · + (a + n)

=
∑n

j=0(a + j)3 − (a + k)3∑n
j=0(a + j)− (a + k)

=
na3 + 3

[
n(n+1)

2 − k
]
a2 + 3

[
n(n+1)(2n+1)

6 − k2
]
a +

[
n2(n+1)2

4 − k3
]

na + n(n+1)
2 − k

.
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Subtracting n(n+1)
2 from this expression, we obtain

na3 + 3
[
n(n+1)

2 − k
]
a2 +

[
n(n+1)(2n+1)

2 − 3k2 − n2(n+1)
2

]
a − k3 + n(n+1)

2 k

na + n(n+1)
2 − k

.

The numerator is the smallest when k = n and a = 1, in which case it is equal to 0.
Otherwise, it is strictly positive, proving that the minimum is not attained in that case.
Therefore, the desired minimum is n(n+1)

2 , attained only if xk = k, k = 1, 2, . . . , n.
(American Mathematical Monthly, proposed by C. Popescu)

139. First, note that the inequality is obvious if either x or y is at least 1. For the case
x, y ∈ (0, 1), we rely on the inequality

ab ≥ a

a + b − ab
,

which holds for a, b ∈ (0, 1). To prove this new inequality, write it as

a1−b ≤ a + b − ab,

and then use the Bernoulli inequality to write

a1−b = (1 + a − 1)1−b ≤ 1 + (a − 1)(1 − b) = a + b − ab.

Using this, we have

xy + yx ≥ x

x + y − xy
+ y

x + y − xy
>

x

x + y
+ y

x + y
= 1,

completing the solution to the problem,
(French Mathematical Olympiad, 1996)

140. We have

x5 − x2 + 3 ≥ x3 + 2,

for all x ≥ 0, because this is equivalent to (x3 − 1)(x2 − 1) ≥ 0. Thus

(a5 − a2 + 3)(b5 − b2 + 3)(c5 − c2 + 3) ≥ (a3 + 1 + 1)(1 + b3 + 1)(1 + 1 + c3).

Let us recall Hölder’s inequality, which in its most general form states that for r1, r2, . . . ,
rk > 0, with 1

r1
+ 1

r2
+ · · · + 1

rk
= 1 and for positive real numbers aij , i = 1, 2, . . . , k,

j = 1, 2, . . . , n,

n∑
i=1

a1ia2i · · · aki ≤
(

n∑
i=1

a
r1
1i

) 1
r1
(

n∑
i=1

a
r2
2i

) 1
r2

· · ·
(

n∑
i=1

a
rk
ki

) 1
rk

.
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Applying it for k = n = 3, r1 = r2 = r3 = 3, and the numbers a11 = a, a12 = 1, a13 = 1,
a21 = 1, a22 = b, a23 = 1, a31 = 1, a32 = 1, a33 = c, we obtain

(a + b + c) ≤ (a3 + 1 + 1)
1
3 (1 + b3 + 1)

1
3 (1 + 1 + c)

1
3 .

We thus have

(a3 + 1 + 1)(1 + b3 + 1)(1 + 1 + c3) ≥ (a + b + c)3,

and the inequality is proved.
(USA Mathematical Olympiad, 2004, proposed by T. Andreescu)

141. Let xi , i = 1, 2, . . . , n, xi > 0, be the roots of the polynomial. Using the relations
between the roots and the coefficients, we obtain∑

x1x2 · · · xm =
(
n

m

)
and

∑
x1x2 · · · xp =

(
n

p

)
.

The generalized Maclaurin inequality

m

√∑
x1x2 · · · xm(

n

m

) ≥ p

√∑
x1x2 · · · xp(

n

p

)
thus becomes equality. This is possible only if x1 = x2 = · · · = xn. Since∑
x1x2 · · · xm = (

n

m

)
, it follows that xi = 1, i = 1, 2, . . . , n, and hence P(x) = (x−1)n.

(Revista Matematică din Timişoara (Timişoara Mathematics Gazette), proposed by
T. Andreescu)

142. The idea of the solution is to reduce the inequality to a particular case of the Huygens
inequality,

n∏
i=1

(ai + bi)
pi ≥

n∏
i=1

a
pi
i +

n∏
i=1

b
pi
i ,

which holds for positive real numbers p1, p2, . . . , pn, a1, a2, . . . , an, b1, b2, . . . , bn with
p1 + p2 + · · · + pn = 1.

To this end, start with

n− xi

1 − xi
= 1 + n− 1

x1 + · · · + xi−1 + xi+1 + · · · + xn

and apply the AM–GM inequality to get

n− xi

1 − xi
≤ 1 + 1

n−1
√
x1 · · · xi−1xi+1 · · · xn .
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Multiplying all n inequalities gives

n∏
i=1

(
n− xi

1 − xi

)
≤

n∏
i=1

(
1 + 1

n−1
√
x1 · · · xi−1xi+1 · · · xn

)
.

Thus we are left to prove

n∏
i=1

(
1 + 1

xi

)
≥

n∏
i=1

(
1 + 1

n−1
√
x1 · · · xi−1xi+1 · · · xn

)
.

This inequality is a product of the individual inequalities

∏
j 	=i

(
1 + 1

xj

)
≥
⎛⎝1 + n−1

√√√√∏
j 	=i

1

xi

⎞⎠n−1

, j = 1, 2, . . . , n.

Each of these is Huygens’ inequality applied to the numbers 1, 1, . . . , 1 and 1
x1

, . . . , 1
xi−1

,
1
xi+1

, . . . , xn, with p1 = p2 = · · · = pn = 1
n−1 .

(Crux Mathematicorum, proposed by W. Janous)

143. We will use the following inequality of Aczèl: If x1, x2, . . . , xm, y1, y2, . . . , ym are
real numbers such that x2

1 > x2
2 + · · · + x2

m, then

(x1y1 − x2y2 − · · · − xmym)
2 ≥ (x2

1 − x2
2 − · · · − x2

m)(y
2
1 − y2

2 − · · · − y2
m).

This is proved in the following way. Consider

f (t) = (x1t + y1)
2 −

m∑
i=2

(xit + yi)
2

and note that f (− y1
x1
) ≤ 0. It follows that the discriminant of the quadratic function f (t)

is nonnegative. This condition that the discriminant is nonnegative is basically Aczèl’s
inequality.

Let us return to the problem. It is clear thata2
1+a2+· · ·+a2

n−1 andb2
1+b2

2+· · ·+b2
n−1

have the same sign. If

1 > a2
1 + a2

2 + · · · + a2
n or 1 > b2

1 + b2
2 + · · · + b2

n,

then by Aczèl’s inequality,

(1 − a1b1 − · · · − anbn)
2 ≥ (1 − a2

1 − a2
2 − · · · − a2

n)(1 − b2
1 − b2

2 − · · · − b2
n),

which contradicts the hypothesis. The conclusion now follows.
(USA Team Selection Test for the International Mathematical Olympiad, proposed

by T. Andreescu and D. Andrica)

144. The solution is based on the Muirhead inequality.
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Theorem. If a1, a2, a3, b1, b2, b3 are real numbers such that

a1 ≥ a2 ≥ a3 ≥ 0, b1 ≥ b2 ≥ b3 ≥ 0, a1 ≥ b1, a1 + a2 ≥ b1 + b2,

a1 + a2 + a3 = b1 + b2 + b3,

then for any positive real numbers x, y, z, one has∑
sym

xa1ya2za3 ≥
∑
sym

xb1yb2zb3,

where the index sym signifies that the summation is over all permutations of x, y, z.

Using the fact that abc = 1, we rewrite the inequality as

1

a3(b + c)
+ 1

b3(c + a)
+ 1

c3(a + b)
≥ 3

2(abc)4/3
.

Set a = x3, b = y3, c = z3, with x, y, z > 0. The inequality becomes∑
cyclic

1

x9(y3 + z3)
≥ 3

2x4y4z4
.

Clearing denominators, this becomes∑
sym

x12y12 + 2
∑
sym

x12y9z3 +
∑
sym

x9y9z6 ≥ 3
∑
sym

x11y8z5 + 6x8y8z8,

or (∑
sym

x12y12 −
∑
sym

x11y8z5

)
+ 2

(∑
sym

x12y9z3 −
∑
sym

x11y8z5

)

+
(∑

sym

x9y9z6 −
∑
sym

x8y8z8

)
≥ 0.

And every term on the left-hand side is nonnegative by the Muirhead inequality.
(36th International Mathematical Olympiad, 1995)

145. View Q as a polynomial in x. It is easy to see that y is a zero of this polynomial;
hence Q is divisible by x − y. By symmetry, it is also divisible by y − z and z− x.

146. The relation (x+1)P (x) = (x−10)P (x+1) shows thatP(x) is divisible by (x−10).
Shifting the variable, we obtain the equivalent relation xP (x − 1) = (x − 11)P (x),
which shows that P(x) is also divisible by x. Hence P(x) = x(x − 10)P1(x) for some
polynomial P1(x). Substituting in the original equation and canceling common factors,
we find that P1(x) satisfies
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xP1(x) = (x − 9)P1(x + 1).

Arguing as before, we find that P1(x) = (x − 1)(x − 9)P2(x). Repeating the argument,
we eventually find that P(x) = x(x − 1)(x − 2) · · · (x − 10)Q(x), whereQ(x) satisfies
Q(x) = Q(x + 1). It follows that Q(x) is constant, and the solution to the problem is

P(x) = ax(x − 1)(x − 2) · · · (x − 10),

where a is an arbitrary constant.

147. Having odd degree, P(x) is surjective. Hence for every root ri of P(x) = 0 there
exists a solution ai to the equation P(ai) = ri , and trivially ai 	= aj if ri 	= rj . Then
P(P (ai)) = 0, and the conclusion follows.

(Russian Mathematical Olympiad, 2002)

148. First solution: Let m be the degree of P(x), and write

P(x) = amx
m + am−1x

m−1 + · · · + a0.

Using the binomial formula for (x ± 1
n
)m and (x ± 1

n
)m−1 we transform the identity from

the statement into

2amx
m + 2am−1x

m−1 + 2am−2x
m−2 + am

m(m− 1)

n2
xm−2 +Q(x)

= 2amx
m + 2am−1x

m−1 + 2am−2x
m−2 + R(x),

where Q and R are polynomials of degree at most m− 3. If we identify the coefficients
of the corresponding powers of x, we find that am

m(m−1)
n2 = 0. But am 	= 0, being the

leading coefficient of the polynomial; hence m(m− 1) = 0. So either m = 0 or m = 1.
One can check in an instant that all polynomials of degree 0 or 1 satisfy the required
condition.

Second solution: Fix a point x0. The graph ofP(x) has infinitely many points in common
with the line that has slope

m = n

(
P

(
x0 + 1

n

)
− P(x0)

)
and passes through the point (x0, P (x0)). Therefore, the graph of P(x) is a line, so the
polynomial has degree 0 or 1.

Third solution: If there is such a polynomial of degree m ≥ 2, differentiating the given
relation m− 2 times we find that there is a quadratic polynomial that satisfies the given
relation. But then any point on its graph would be the vertex of the parabola, which
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of course is impossible. Hence only linear and constant polynomials satisfy the given
relation.

(Romanian Team Selection Test for the International Mathematical Olympiad, 1979,
proposed by D. Buşneag)

149. Let x = √
2 + 3

√
3. Then 3

√
3 = x − √

2, which raised to the third power yields
3 = x3 − 3

√
2x2 + 6x − 2

√
2, or

x3 + 6x − 3 = (3x2 + 2)
√

2.

By squaring this equality we deduce that x satisfies the polynomial equation

x6 − 6x4 − 6x3 + 12x2 − 36x + 1 = 0.

(Belgian Mathematical Olympiad, 1978, from a note by P. Radovici-Mărculescu)

150. Note that r and s are zeros of both P(x) and Q(x). So on the one hand, Q(x) =
(x − r)(x − s), and on the other, r and s are roots of P(x)−Q(x). The assumption that
this polynomial is nonnegative implies that the two roots are double; hence

P(x)−Q(x) = (x − r)2(x − s)2 = Q(x)2.

We find that P(x) = Q(x)(Q(x) + 1). Because the signs of P(x) and Q(x) agree,
the quadratic polynomial Q(x) + 1 is nonnegative. This cannot happen because its
discriminant is (r− s)2 −4 > 0. The contradiction proves that our assumption was false;
hence for some x0, P(x0) < Q(x0).

(Russian Mathematical Olympiad, 2001)

151. Because P(0) = 0, there exists a polynomialQ(x) such that P(x) = xQ(x). Then

Q(k) = 1

k + 1
, k = 1, 2, . . . , n.

LetH(x) = (x+1)Q(x)−1. The degree ofH(x) is n andH(k) = 0 for k = 1, 2, . . . , n.
Hence

H(x) = (x + 1)Q(x)− 1 = a0(x − 1)(x − 2) · · · (x − n).

In this equality H(−1) = −1 yields a0 = (−1)n+1

(n+1)! . For x = m, m > n, which gives

Q(m) = (−1)n+1(m− 1)(m− 2) · · · (m− n)+ 1

(n+ 1)!(m+ 1)
+ 1

m+ 1
,

and so
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P(m) = (−1)m+1m(m− 1) · · · (m− n)

(n+ 1)!(m+ 1)
+ m

m+ 1
.

(D. Andrica, published in T. Andreescu, D. Andrica, 360 Problems for Mathematical
Contests, GIL, 2003)

152. Adding and subtracting the conditions from the statement, we find that a1 + a2 +
· · · + an and a1 − a2 + · · · + (−1)nan are both real numbers, meaning that P(1) and
P(−1) are real numbers. It follows that P(1) = P(1) and P(−1) = P(−1). Writing
P(x) = (x − x1)(x − x2) · · · (x − xn), we deduce

(1 − x1)(1 − x2) · · · (1 − xn) = (1 − x1)(1 − x2) · · · (1 − xn),

(1 + x1)(1 + x2) · · · (1 + xn) = (1 + x1)(1 + x2) · · · (1 + xn).

Multiplying, we obtain

(1 − x2
1)(1 − x2

2) · · · (1 − x2
n) = (1 − x2

1)(1 − x2
2) · · · (1 − x2

n).

This means thatQ(1) = Q(1), and hence b1 + b2 + · · ·+ bn is a real number, as desired.
(Revista Matematică din Timişoara (Timişoara Mathematics Gazette), proposed by

T. Andreescu)

153. If such a Q(x) exists, it is clear that P(x) is even. Conversely, assume that P(x) is
an even function. Writing P(x) = P(−x) and identifying coefficients, we conclude that
no odd powers appear in P(x). Hence

P(x) = a2nx
2n + a2n−2x

2n−2 + · · · + a2x
2 + a0 = P1(x

2).

Factoring

P1(y) = a(y − y1)(y − y2) · · · (y − yn),

we have

P(x) = a(x2 − y1)(x
2 − y2) · · · (x2 − yn).

Now choose complex numbers b, x1, x2, . . . , xn such that b2 = (−1)na and x2
j = yj ,

j = 1, 2, . . . , n. We have the factorization

P(x) = b2(x2
1 − x2)(x2

2 − x2) · · · (x2
n − x2)

= b2(x1 − x)(x1 + x)(x2 − x)(x2 + x) · · · (xn − x)(xn + x)

= [b(x1 − x)(x2 − x) · · · (xn − x)][b(x1 + x)(x2 + x) · · · (xn + x)]
= Q(x)Q(−x),
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where Q(x) = b(x1 − x)(x2 − x) · · · (xn − x). This completes the proof.
(Romanian Mathematical Olympiad, 1979, proposed by M. Ţena)

154. Denote the zeros of P(x) by x1, x2, x3, x4, such that x1 + x2 = 4. The first Viète
relation gives x1 + x2 + x3 + x4 = 6; hence x3 + x4 = 2. The second Viète relation can
be written as

x1x2 + x3x4 + (x1 + x2)(x3 + x4) = 18,

from which we deduce that x1x2 + x3x4 = 18 − 2 · 4 = 10. This, combined with the
fourth Viète relation x1x2x3x4 = 25, shows that the products x1x2 and x3x4 are roots of
the quadratic equation u2 −10u+25 = 0. Hence x1x2 = x3x4 = 5, and therefore x1 and
x2 satisfy the quadratic equation x2 − 4x + 5 = 0, while x3 and x4 satisfy the quadratic
equation x2−2x+5 = 0. We conclude that the zeros ofP(x) are 2+i, 2−i, 1+2i, 1−2i.

155. If a ≥ 0, b ≥ 0, c ≥ 0, then obviously a + b + c > 0, ab + bc + ca ≥ 0, and
abc ≥ 0. For the converse, let u = a + b + c, v = ab + bc + ca, and w = abc, which
are assumed to be positive. Then a, b, c are the three zeros of the polynomial

P(x) = x3 − ux2 + vx − w.

Note that if t < 0, that is, if t = −s with s > 0, then P(t) = s3 + us2 + vs + w > 0;
hence t is not a zero of P(x). It follows that the three zeros of P(x) are nonnegative,
and we are done.

156. Taking the conjugate of the first equation, we obtain

x + y + z = 1,

and hence

1

x
+ 1

y
+ 1

z
= 1.

Combining this with xyz = 1, we obtain

xy + yz+ xz = 1.

Therefore, x, y, z are the roots of the polynomial equation

t3 − t2 + t − 1 = 0,

which are 1, i,−i. Any permutation of these three complex numbers is a solution to the
original system of equations.

157. Dividing by the nonzero xyz yields x
z
+ y

x
+ z

y
= y

z
+ z

x
+ x

y
= r . Let a = x

y
, b = y

z
,

c = z
x
. Then abc = 1, 1

a
+ 1

b
+ 1

c
= r , a + b + c = r . Hence
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a + b + c = r,

ab + bc + ca = r,

abc = 1.

We deduce that a, b, c are the solutions of the polynomial equation t3 − rt2 + rt−1 = 0.
This equation can be written as

(t − 1)[t2 − (r − 1)t + 1] = 0.

Since it has three real solutions, the discriminant of the quadratic must be positive. This
means that (r − 1)2 − 4 ≥ 0, leading to r ∈ (−∞,−1] ∪ [3,∞). Conversely, all such
r work.

158. Consider the polynomialP(t) = t5 +qt4 +rt3 +st2 +ut+v with roots a, b, c, d, e.
The condition from the statement implies that q is divisible by n. Moreover, since∑

ab = 1

2

(∑
a
)2 − 1

2

(∑
a2
)
,

it follows that r is also divisible by n. Adding the equalities P(a) = 0, P(b) = 0,
P(c) = 0, P(d) = 0, P(e) = 0, we deduce that

a5 + b5 + c5 + d5 + e5 + s(a2 + b2 + c2 + d2 + e2)+ u(a + b + c + d + e)+ 5v

is divisible by n. But since v = −abcde, it follows that

a5 + b5 + c5 + d5 + e5 − 5abcde

is divisible by n, and we are done.
(Kvant (Quantum))

159. Let P(x) = anx
n + an−1x

n−1 + · · · + a0. Denote its zeros by x1, x2, . . . , xn. The
first two of Viète’s relations give

x1 + x2 + · · · + xn = −an−1

an
,

x1x2 + x1x3 + · · · + xn−1xn = an−2

an
.

Combining them, we obtain

x2
1 + x2

2 + · · · + x2
n =

(
an−1

an

)2

− 2

(
an−2

an

)
.

The only possibility is x2
1 + x2

2 + · · · + x2
n = 3. Given that x2

1x
2
2 · · · x2

n = 1, the AM–GM
inequality yields
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3 = x2
1 + x2

2 + · · · + x2
n ≥ n

n

√
x2

1x
2
2 · · · x2

n = n.

Therefore, n ≤ 3. Eliminating case by case, we find among linear polynomials x+1 and
x − 1, and among quadratic polynomials x2 + x − 1 and x2 − x − 1. As for the cubic
polynomials, we should have equality in the AM–GM inequality. So all zeros should
have the same absolute values. The polynomial should share a zero with its derivative.
This is the case only for x3 + x2 − x − 1 and x3 − x2 − x + 1, which both satisfy the
required property. Together with their negatives, these are all desired polynomials.

(Indian Olympiad Training Program, 2005)

160. The first Viète relation gives

r1 + r2 + r3 + r4 = −b
a
,

so r3 + r4 is rational. Also,

r1r2 + r1r3 + r1r4 + r2r3 + r2r4 + r3r4 = c

a
.

Therefore,

r1r2 + r3r4 = c

a
− (r1 + r2)(r3 + r4).

Finally,

r1r2r3 + r1r2r4 + r1r3r4 + r2r3r4 = −d
a
,

which is equivalent to

(r1 + r2)r3r4 + (r3 + r4)r1r2 = −d
a
.

We observe that the products r1r2 and r3r4 satisfy the linear system of equations

αx + βy = u,

γ x + δy = v,

where α = 1, β = 1, γ = r3 + r4, δ = r1 + r2, u = c
a

− (r1 + r2)(r3 + r4), v = − d
a
.

Because r1 + r2 	= r3 + r4, this system has a unique solution; this solution is rational.
Hence both r1r2 and r3r4 are rational, and the problem is solved.

(64th W.L. Putnam Mathematical Competition, 2003)

161. First solution: Let α = arctan u, β = arctan v, and arctanw. We are required to
determine the sum α + β + γ . The addition formula for the tangent of three angles,
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tan(α + β + γ ) = tan α + tan β + tan γ − tan α tan β tan γ

1 − (tan α tan β + tan β tan γ + tan α tan γ )
,

implies

tan(α + β + γ ) = u+ v + w − uvw

1 − (uv + vw + uv)
.

Using Viète’s relations,

u+ v + w = 0, uv + vw + uw = −10, uvw = −11,

we further transform this into tan(α+β+γ ) = 11
1+10 = 1. Therefore, α+β+γ = π

4 +kπ ,
where k is an integer that remains to be determined.

From Viète’s relations we can see the product of the zeros of the polynomial is
negative, so the number of negative zeros is odd. And since the sum of the zeros is 0,
two of them are positive and one is negative. Therefore, one of α, β, γ lies in the interval
(−π

2 , 0) and two of them lie in (0, π2 ). Hence k must be equal to 0, and arctan u +
arctan v + arctanw = π

4 .

Second solution: Because

Im ln(1 + ix) = arctan x,

we see that

arctan u+ arctan v + arctanw = Im ln(iP (i)) = Im ln(11 + 11i)

= arctan 1 = π

4
.

(Kőzépiskolai Matematikai Lapok (Mathematics Magazine for High Schools, Bu-
dapest), proposed by K. Bérczi).

162. Expanding the binomial (cosα + i sin α)m, and using the de Moivre formula,

(cosα + i sin α)m = cosmα + i sinmα,

we obtain

sinmα =
(
m

1

)
cosm−1 α sin α −

(
m

3

)
cosm−3 α sin3 α +

(
m

5

)
cosm−5 α sin5 α + · · · .

Form = 2n+1, if α = π
2n+1 ,

2π
2n+1 , . . . ,

nπ
2n+1 then sin(2n+1)α = 0, and sin α and cosα

are both different from zero. Dividing the above relation by sin2n α, we find that(
2n+ 1

1

)
cot2n α −

(
2n+ 1

3

)
cot2n−2 α + · · · + (−1)n

(
2n+ 1

2n+ 1

)
= 0
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holds true for α = π
2n+1 ,

2π
2n+1 , . . . ,

nπ
2n+1 . Hence the equation(

2n+ 1

1

)
xn −

(
2n+ 1

3

)
xn−1 + · · · + (−1)n

(
2n+ 1

2n+ 1

)
= 0

has the roots

xk = cot2 kπ

2n+ 1
, k = 1, 2, . . . , n.

The product of the roots is

x1x2 · · · xn =
(2n+1

2n+1

)(2n+1
1

) = 1

2n+ 1
.

So

cot2 π

2n+ 1
cot2 2π

2n+ 1
· · · cot2 nπ

2n+ 1
= 1

2n+ 1
.

Because 0 < kπ
2n+1 <

π
2 , k = 1, 2, . . . , n, it follows that all these cotangents are posi-

tive. Taking the square root and inverting the fractions, we obtain the identity from the
statement.

(Romanian Team Selection Test for the International Mathematical Olympiad, 1970)

163. A good guess is that P(x) = (x − 1)n, and we want to show that this is the case. To
this end, let x1, x2, . . . , xn be the zeros of P(x). Using Viète’s relations, we can write

∑
i

(xi − 1)2 =
(∑

i

xi

)2

− 2
∑
i<j

xixj − 2
∑
i

xi + n

= n2 − 2
n(n− 1)

2
− 2n+ n = 0.

This implies that all squares on the left are zero. So x1 = x2 = · · · = xn = 1, and
P(x) = (x − 1)n, as expected.

(Gazeta Matematică (Mathematics Gazette, Bucharest))

164. Let α, β, γ be the zeros of P(x). Without loss of generality, we may assume that
0 ≤ α ≤ β ≤ γ . Then

x − a = x + α + β + γ ≥ 0 and P(x) = (x − α)(x − β)(x − γ ).

If 0 ≤ x ≤ α, using the AM–GM inequality, we obtain

−P(x) = (α − x)(β − x)(γ − x) ≤ 1

27
(α + β + γ − 3x)3
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≤ 1

27
(x + α + β + γ )3 = 1

27
(x − a)3,

so that P(x) ≥ − 1
27(x − a)3. Equality holds exactly when α − x = β − x = γ − x in

the first inequality and α + β + γ − 3x = x + α + β + γ in the second, that is, when
x = 0 and α = β = γ .

If β ≤ x ≤ γ , then using again the AM–GM inequality, we obtain

−P(x) = (x − α)(x − β)(γ − x) ≤ 1

27
(x + γ − α − β)3

≤ 1

27
(x + α + β + γ )3 = 1

27
(x − a)3,

so that again P(x) ≥ − 1
27(x− a)3. Equality holds exactly when there is equality in both

inequalities, that is, when α = β = 0 and γ = 2x.
Finally, when α < x < β or x > γ , then

P(x) > 0 ≥ − 1

27
(x − a)3.

Thus the desired constant is λ = − 1
27 , and the equality occurs when α = β = γ and

x = 0, or when α = β = 0, γ is any nonnegative real, and x = γ

2 .
(Chinese Mathematical Olympiad, 1999)

165. The key idea is to view an+1 − (a + 1)n − 2001 as a polynomial in a. Its free term
is 2002, so any integer zero divides this number.

From here the argument shifts to number theory and becomes standard. First, note
that 2002 = 2×7×11×13. Since 2001 is divisible by 3, we must have a ≡ 1 (mod 3);
otherwise, one of an+1 and (a+ 1)n would be a multiple of 3 and the other not, and their
difference would not be divisible by 3. We deduce that a ≥ 7. Moreover, an+1 ≡ 1
(mod 3), so we must have (a + 1)n ≡ 1 (mod 3), which forces n to be even, and in
particular at least 2.

If a is even, then an+1 − (a + 1)n ≡ −(a + 1)n (mod 4). Because n is even,
−(a + 1)n ≡ −1 (mod 4). But on the right-hand side, 2001 ≡ 1 (mod 4), and the
equality is impossible. Therefore, a must odd, so it divides 1001 = 7 × 11 × 13.
Moreover, an+1 − (a + 1)n ≡ a (mod 4), so a ≡ 1 (mod 4).

Of the divisors of 7 × 11 × 13, those congruent to 1 modulo 3 are precisely those not
divisible by 11 (since 7 and 13 are both congruent to 1 modulo 3). Thus a divides 7×13.
Now a ≡ 1 (mod 4) is possible only if a divides 13.

We cannot have a = 1, since 1 − 2n 	= 2001 for any n. Hence the only possibility
is a = 13. One easily checks that a = 13, n = 2 is a solution; all that remains to check
is that no other n works. In fact, if n > 2, then 13n+1 ≡ 2001 ≡ 1 (mod 8). But
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13n+1 ≡ 13 (mod 8) since n is even, a contradiction. We conclude that a = 13, n = 2
is the unique solution.

(62nd W.L. Putnam Mathematical Competition, 2001)

166. Let us first consider the case n ≥ 2. Let P(x) = anx
n + an−1x

n−1 + · · · + a0,
an 	= 0. Then

P ′(x) = nanx
n−1 + (n− 1)an−1x

n−2 + · · · + a1.

Identifying the coefficients of xn(n−1) in the equality P(P ′(x)) = P ′(P (x)), we obtain

an+1
n · nn = ann · n.

This implies annn−1 = 1, and so

an = 1

nn−1
.

Since an is an integer, nmust be equal to 1, a contradiction. If n = 1, say P(x) = ax+b,
then we should have a2 + b = a, hence b = a − a2. Thus the answer to the problem is
the polynomials of the form P(x) = ax2 + a − a2.

(Revista Matematică din Timişoara (Timişoara Mathematics Gazette), proposed by
T. Andreescu)

167. Let m be the degree of P(x), so P(x) = amx
m + am−1x

m−1 + · · · + a0. If P(x) =
xkQ(x), then

xknQn(x) = xknQ(xn),

so

Qn(x) = Q(xn),

which means that Q(x) satisfies the same relation.
Thus we can assume that P(0) 	= 0. Substituting x = 0, we obtain an0 = a0, and

since a0 is a nonzero real number, it must be equal to 1 if n is even, and to ±1 if n is odd.
Differentiating the relation from the statement, we obtain

nP n−1(x)P ′(x) = nP ′(xn)xn−1.

For x = 0 we have P ′(0) = 0; hence a1 = 0. Differentiating the relation again and
reasoning similarly, we obtain a2 = 0, and then successively a3 = a4 = · · · = am = 0.
It follows that P(x) = 1 if n is even and P(x) = ±1 if n is odd.

In general, the only solutions are P(x) = xm if n is even, and P(x) = ±xm if n is
odd, m being some nonnegative integer.

(T. Andreescu)
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168. Assume without loss of generality that deg(P (z)) = n ≥ deg(Q(z)). Consider the
polynomial R(z) = (P (z)−Q(z))P ′(z). Clearly, deg(R(z)) ≤ 2n− 1. If ω is a zero of
P(z) of multiplicity k, then ω is a zero of P ′(z) of multiplicity k − 1. Hence ω is also a
zero of R(z), and its multiplicity is at least k. So the n zeros of P(z) produce at least n
zeros of R(z), when multiplicities are counted.

Analogously, letω be a zero ofP(z)−1 of multiplicity k. Thenω is a zero ofQ(z)−1,
and hence of P(z)−Q(z). It is also a zero of (P (z)− 1)′ = P ′(z) of multiplicity k− 1.
It follows that ω is a zero of R(z) of multiplicity at least k. This gives rise to at least n
more zeros for R(z).

It follows that R(z), which is a polynomial of degree less than or equal to 2n−1, has
at least 2n zeros. This can happen only if R(z) is identically zero, hence if P(z) ≡ Q(z).

(Soviet Union University Student Mathematical Olympiad, 1976)

169. LetQ(x) = xP (x). The conditions from the statement imply that the zeros ofQ(x)
are all real and distinct. From Rolle’s theorem, it follows that the zeros ofQ′(x) are real
and distinct.

Let H(x) = xQ′(x). Reasoning similarly we deduce that the polynomial H ′(x) has
all zeros real and distinct. Note that the equationH ′(x) = 0 is equivalent to the equation

x2P ′′(x)+ 3xP ′(x)+ P(x) = 0;
the problem is solved.

(D. Andrica, published in T. Andreescu, D. Andrica, 360 Problems for Mathematical
Contests, GIL, 2003)

170. Differentiating the product, we obtain

P ′(x) =
n∑
k=1

kxk−1(xn − 1) · · · (xk+1 − 1)(xk−1 − 1) · · · (x − 1).

We will prove that each of the terms is divisible by P�n/2�(x). This is clearly true if
k > �n2�.

If k ≤ �n2�, the corresponding term contains the factor

(xn − 1) · · · (x�n/2�+2 − 1)(x�n/2�+1 − 1).

That this is divisible by P�n/2�(x) follows from a more general fact, namely that for any
positive integers k and m, the polynomial

(xk+m − 1)(xk+m−1 − 1) · · · (xk+1 − 1)

is divisible by

(xm − 1)(xm−1 − 1) · · · (x − 1)
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in the ring of polynomials with integer coefficients. Since the two polynomials are monic
and have integer coefficients, it suffices to prove that the zeros of the second are also
zeros of the first, with at least the same multiplicity.

Note that if ζ is a primitive rth root of unity, then ζ is a zero of xj −1 precisely when
j is divisible by r . So the multiplicity of ζ as a zero of the polynomial (xm − 1)(xm−1 −
1) · · · (x−1) is �m

r
�, while its multiplicity as a zero of (xk+m−1)(xk+m−1−1) · · · (xk+1−1)

is �m+k
r

� − � k
r
�. The claim now follows from the inequality⌊

m+ k

r

⌋
−
⌊
k

r

⌋
≥
⌊m
r

⌋
.

This completes the solution.
(communicated by T.T. Le)

171. The equation Q(x) = 0 is equivalent to

n
P (x)P ′′(x)− (P ′(x))2

P(x)2
+
[
P ′(x)
P (x)

]2

= 0.

We recognize the first term on the left to be the derivative of P
′(x)
P (x)

. Denoting the roots of
P(x) by x1, x2, . . . , xn, the equation can be rewritten as

−n
n∑
k=1

1

(x − xk)2
+
(

n∑
k=1

1

x − xk

)2

= 0,

or

n

n∑
k=1

1

(x − xk)2
=
(

n∑
k=1

1

x − xk

)2

.

If this were true for some real number x, then we would have the equality case in the
Cauchy–Schwarz inequality applied to the numbers ak = 1, bk = 1

x−xk , k = 1, 2, . . . , n.
This would then further imply that all the xi’s are equal, which contradicts the hypothesis
that the zeros ofP(x) are distinct. So the equality cannot hold for a real number, meaning
that none of the zeros of Q(x) is real.

(D.M. Bătineţu, I.V. Maftei, I.M. Stancu-Minasian, Exerciţii şi Probleme de Analiză
Matematică (Exercises and Problems in Mathematical Analysis), Editura Didactică şi
Pedagogică, Bucharest, 1981)

172. We start with the identity

P ′(x)
P (x)

= 1

x − x1
+ 1

x − x2
+ · · · + 1

x − xn
, for x 	= xj , j = 1, 2, . . . , n.
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If P ′( x1+x2
2 ) = 0, then this identity gives

0 = 1
x1+x2

2 − x3
+ 1

x1+x2
2 − x4

+ · · · + 1
x1+x2

2 − xn
< 0 + 0 + · · · + 0 = 0,

a contradiction. Similarly, if P ′( xn−1+xn
2 ) = 0, then

0 = 1
xn−1+xn

2 − x1
+ 1

xn−1+xn
2 − x2

+ · · · + 1
xn−1+xn

2 − xn−2
> 0 + 0 + · · · + 0 = 0,

another contradiction. The conclusion follows.
(T. Andreescu)

173. The equation P(x) = 0 is equivalent to the equation f (x) = 1, where f (x) =
a1
x

+ a2
x2 + · · · + an

xn
. Since f is strictly decreasing on (0,∞), limx→0+ f (x) = ∞ and

limx→∞ f (x) = 0, the equation has a unique solution.

Remark. A more general principle is true, namely that if the terms of the polynomial
are written in decreasing order of their powers, then the number of sign changes of the
coefficients is the maximum possible number of positive zeros; the actual number of
positive zeros may differ from this by an even number.

174. Assume to the contrary that there is z with |z| ≥ 2 such that P(z) = 0. Then by the
triangle inequality,

0 =
∣∣∣∣P(z)z7

∣∣∣∣ =
∣∣∣∣1 + 7

z3
+ 4

z6
+ 1

z7

∣∣∣∣ ≥ 1 − 7

|z|3 − 4

|z|6 − 1

|z|7
≥ 1 − 7

8
− 4

64
− 1

128
= 7

128
> 0,

a contradiction. Hence our initial assumption was false, and therefore all the zeros of
P(z) lie inside the disk of radius 2 centered at the origin.

175. Let z = r(cos t + i sin t), sin t 	= 0. Using the de Moivre formula, the equality
zn + az+ 1 = 0 translates to

rn cos nt + ar cos t + 1 = 0,

rn sin nt + ar sin t = 0.

View this as a system in the unknowns rn and ar . Solving the system gives

rn =

∣∣∣∣−1 cos t
0 sin t

∣∣∣∣∣∣∣∣ cos nt cos t
sin nt sin t

∣∣∣∣ = sin t

sin(n− 1)t
.
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An exercise in the section on induction shows that for any positive integer k, | sin kt | ≤
k| sin t |. Then

rn = sin t

sin(n− 1)t
≥ 1

n− 1
.

This implies the desired inequality |z| = r ≥ n

√
1
n−1 .

(Romanian Mathematical Olympiad, proposed by I. Chiţescu)

176. By the theorem of Lucas, if the zeros of a polynomial lie in a closed convex domain,
then the zeros of the derivative lie in the same domain. In our problem, change the
variable to z = 1

x
to obtain the polynomial Q(z) = zn + zn−1 + a. If all the zeros of

axn + x + 1 were outside of the circle of radius 2 centered at the origin, then the zeros
ofQ(z) would lie in the interior of the circle of radius 1

2 . Applying the theorem of Lucas
to the convex hull of these zeros, we deduce that the same would be true for the zeros of
the derivative. But Q′(z) = nzn−1 + (n − 1)zn−2 has z = n−1

n
≥ 1

2 as one of its zeros,
which is a contradiction. This implies that the initial polynomial has a root of absolute
value less than or equal to 2.

177. The problem amounts to showing that the zeros of Q(z) = zP ′(z) − n
2P(z) lie on

the unit circle. Let the zeros of P(z) be z1, z2, . . . , zn, and let z be a zero of Q(z). The
relation Q(z) = 0 translates into

z

z− z1
+ z

z− z2
+ · · · + z

z− zn
= n

2
,

or (
2z

z− z1
− 1

)
+
(

2z

z− z2
− 1

)
+ · · · +

(
2z

z− zn
− 1

)
= 0,

and finally

z+ z1

z− z1
+ z+ z2

z− z2
+ · · · + z+ zn

z− zn
= 0.

The terms of this sum should remind us of a fundamental transformation of the complex
plane. This transformation is defined as follows: for a a complex number of absolute
value 1, we let φa(z) = (z + a)/(z − a). The map φa has the important property that it
maps the unit circle to the imaginary axis, the interior of the unit disk to the half-plane
Re z < 0, and the exterior of the unit disk to the half-plane Re z > 0. Indeed, since
the unit disk is invariant under rotation by the argument of a, it suffices to check this
for a = 1. Then φ(eiθ ) = −i cot θ2 , which proves that the unit circle maps to the entire
imaginary axis. The map is one-to-one, so the interior of the unit disk is mapped to that
half-plane where the origin goes, namely to Re z < 0, and the exterior is mapped to the
other half-plane. If z has absolute value less than one, then all terms of the sum
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z+ z1

z− z1
+ z+ z2

z− z2
+ · · · + z+ zn

z− zn

have negative real part, while if z has absolute value greater than 1, all terms in this sum
have positive real part. In order for this sum to be equal to zero, z must have absolute
value 1. This completes the proof.

An alternative approach to this last step was suggested by R. Stong. Taking the real
part of

z+ z1

z− z1
+ z+ z2

z− z2
+ · · · + z+ zn

z− zn
= 0,

we obtain

n∑
j=1

Re

(
z+ zj

z− zj

)
=

n∑
j=1

1

|z− zj |2 Re((z+ zj )(z̄− z̄j )) = |z|2 − |zj |2
|z− zj |2 .

Since |zj | = 1 for all j , we conclude that |z| = 1.

Remark. When a = −i, φa is called the Cayley transform.

178. Let the zeros of the polynomial be p, q, r, s. We have p+q+ r+ s = 0, pq+pr+
rs+qr+qs+rs = −2, and hence p2 +q2 +r2 +s2 = 02 −2(−2) = 4. By the Cauchy–
Schwarz inequality, (1+1+1)(q2 +r2 +s2) ≥ (q+r+s)2. Furthermore, because q, r, s
must be distinct, the inequality is strict. Thus 4 = p2 +q2 + r2 + s2 > p2 + (−p)2

3 = 4p2

3 ,
or |p| < √

3. The same argument holds for the other zeros.
(Hungarian Mathematical Olympiad, 1999)

179. We argue by induction on k. For k = 1 the property is obviously true.
Assume that the property is true for polynomials of degree k − 1 and let us prove it

for the polynomials Pn(z), n ≥ 1, and P(z) of degree k. Subtracting a constant from
all polynomials, we may assume that P(0) = 0. Order the zeros of Pn(z) such that
|z1(n)| ≤ |z2(n)| ≤ · · · ≤ |zk(n)|. The product z1(n)z2(n) · · · zk(n), being the free term
of Pn(z), converges to 0. This can happen only if z1(n) → 0. So we have proved the
property for one of the zeros.

In general, the polynomial obtained by dividing a monic polynomial Q(z) by z −
a depends continuously on a and on the coefficients of Q(z). This means that the
coefficients of Pn(z)/(z− z1(n)) converge to the coefficients of P(z)/z, so we can apply
the induction hypothesis to these polynomials. The conclusion follows.

Remark. A stronger result is true, namely that if the coefficients of a monic polynomial
are continuous functions of a parameter t , then the zeros are also continuous functions
of t .
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180. The hypothesis of the problem concerns the coefficientsam anda0, and the conclusion
is about a zero of the polynomial. It is natural to write the Viète relations for the two
coefficients,

am

an
= (−1)m

∑
x1x2 · · · xm,

a0

an
= (−1)nx1x2 · · · xn.

Dividing, we obtain ∣∣∣∣∑ 1

x1x2 · · · xm
∣∣∣∣ =

∣∣∣∣ama0

∣∣∣∣ > (
n

m

)
.

An application of the triangle inequality yields∑ 1

|x1||x2| · · · |xm| >
(
n

m

)
.

Of the absolute values of the zeros, let α be the smallest. If we substitute all absolute
values in the above inequality by α, we obtain an even bigger left-hand side. Therefore,(

n

m

)
1

αn−m
>

(
n

m

)
.

It follows that α < 1, and hence the corresponding zero has absolute value less than 1,
as desired.

(Revista Matematică din Timişoara (Timişoara Mathematics Gazette), proposed by
T. Andreescu)

181. Let

f (x) = P ′(x)
P (x)

= 1

x − x1
+ 1

x − x2
+ · · · + 1

x − xn
.

First, note that from Rolle’s theorem applied to P(x) = e−kxf (x) it follows that all roots
of the polynomial P ′(x)− kP (x) are real. We need the following lemma.

Lemma. If for some j , y0 and y1 satisfy y0 < xj < y1 ≤ y0 + δ(P ), then y0 and y1 are
not zeros of f and f (y0) < f (y1).

Proof. Let d = δ(P ). The hypothesis implies that for all i, y1 − y0 ≤ d ≤ xi+1 − xi .
Hence for 1 ≤ i ≤ j − 1 we have y0 − xi ≥ y1 − xi+1 > 0, and so 1/(y0 − xi) ≤
1/(y1 − xi+1); similarly, for j ≤ i ≤ n− 1 we have y1 − xi+1 ≤ y0 − xi < 0 and again
1/(y0 − xi) ≤ 1/(y1 − xi+1).

Finally, y0 − xn < 0 < y1 − x1, so 1/(y0 − xn) < 0 < 1/(y1 − x1), and the result
follows by addition of these inequalities.
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Returning to the problem, we see that if y0 and y1 are zeros of P ′(x) − kP (x) with
y0 < y1, then they are separated by a zero of P and satisfy f (y0) = f (y1) = k. From
the lemma it follows that we cannot have y1 ≤ y0 + δ(P (x)), so y1 − y0 > d , and we
are done.

(American Mathematical Monthly, published in a note by P. Walker, solution by
R. Gelca)

182. The number 101 is prime, yet we cannot apply Eisenstein’s criterion because of the
102. The trick is to observe that the irreducibility ofP(x) is equivalent to the irreducibility
of P(x − 1). Because the binomial coefficients

(101
k

)
, 1 ≤ k ≤ 100, are all divisible by

101, the polynomial P(x − 1) has all coefficients but the first divisible by 101, while
the last coefficient is (−1)101 + 101(−1)101 + 102 = 202, which is divisible by 101 but
not by 1012. Eisenstein’s criterion proves that P(x − 1) is irreducible; hence P(x) is
irreducible as well.

183. Note that P(x) = (xp − 1)/(x − 1). If P(x) were reducible, then so would be
P(x + 1). But

P(x + 1) = (x + 1)p − 1

x
= xp−1 +

(
p

1

)
xp−1 + · · · +

(
p

p − 1

)
.

The coefficient
(
p

k

)
is divisible by p for all 1 ≤ k ≤ p− 1, and

(
p

p−1

) = p is not divisible

by p2; thus Eisenstein’s criterion applies to show that P(x + 1) is irreducible. It follows
that P(x) itself is irreducible, and the problem is solved.

184. Same idea as in the previous problem. We look at the polynomial

P(x + 1) = (x + 1)2
n + 1

= x2n +
(

2n

1

)
x2n−1 +

(
2n

2

)
x2n−1−2 + · · · +

(
2n

2n − 1

)
x + 2.

For 1 ≤ k ≤ 2n, the binomial coefficient
(2n

k

)
is divisible by 2. This follows from the

equality (
2n

k

)
= 2n

k

(
2n − 1

k − 1

)
,

since the binomial coefficient on the right is an integer, and 2 appears to a larger power
in the numerator than in the denominator. The application of Eisenstein’s irreducibility
criterion is now straightforward.

185. Arguing by contradiction, assume that P(x) can be factored, and let P(x) =
Q(x)R(x). Because P(ai) = −1, i = 1, 2, . . . , n, and Q(ai) and R(ai) are integers,
either Q(ai) = 1 and R(ai) = −1, or Q(ai) = −1 and R(ai) = 1. In both situations
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(Q + R)(ai) = 0, i = 1, 2, . . . , n. Since the ai’s are all distinct and the degree of
Q(x)+R(x) is at most n− 1, it follows thatQ(x)+R(x) ≡ 0. Hence R(x) = −Q(x),
and P(x) = −Q2(x). But this contradicts the fact that the coefficient of the term of
maximal degree in P(x) is 1. The contradiction proves that P(x) is irreducible.

(I. Schur)

186. Assume that the polynomialP(x) is reducible, and write it as a productQ(x)R(x) of
monic polynomials with integer coefficients of degree i, respectively, 2n− i. BothQ(x)
andR(x) are positive for any real number x (being monic and with no real zeros), and from
Q(ak)R(ak) = 1, k = 1, 2, . . . , n, we find that Q(ak) = R(ak) = 1, k = 1, 2, . . . , n.
If, say, i < n, then the equation Q(x) = 1 has n solutions, which, taking into account
the fact thatQ(x) has degree less than n, means thatQ(x) is identically equal to 1. This
contradicts our original assumption. Also, if i = n, the polynomial Q(x)− R(x) has n
zeros, and has degree less than n, so it is identically equal to 0. Therefore,Q(x) = R(x),
which means that

(x − a1)
2(x − a2)

2 · · · (x − an)
2 + 1 = Q(x)2.

Substituting integer numbers for x, we obtain infinitely many equalities of the form
p2 + 1 = q2, with p and q integers. But this equality can hold only if p = 0 and q = 1,
and we reach another contradiction. Therefore, the polynomial is irreducible.

(I. Schur)

187. Let P(x) = anx
n + an−1x

n−1 + · · · + a0, and assume to the contrary that P(x) =
Q(x)R(x), where Q(x) and R(x) are polynomials with integer coefficients of degree
at least 1 (the degree zero is ruled out because any factor that divides all coefficients of
P(x) divides the original prime).

Because the coefficients of P(x) are nonnegative integers between 0 and 9, and the
leading coefficient is positive, it follows that the zeros of P(x) are in the union of the left
half-plane Im z ≤ 0 and the disk |z| < 4. Otherwise, if Im z > 0 and |z| ≥ 4, then

1 ≤ an ≤ Re(an + an−1z
−1) = Re(−a2z

−2 − · · · − anz
−n)

<
9|z|−2

1 − |z|−1
≤ 3

4
,

a contradiction.
On the other hand, by hypothesis P(10) is prime; hence either Q(10) or R(10) is

1 (or −1 but then just multiply both polynomials by −1). Assume Q(10) = 1, and let
Q(x) = c(x− x1)(x− x2) · · · (x− xk). Then xi , i = 1, 2, . . . , k, are also zeros of P(x),
and we have seen that these lie either in the left half-plane or in the disk of radius 4
centered at the origin. It follows that

1 = Q(10) = |Q(10)| = |c| · |10 − x1| · |10 − x2| · · · |10 − xk| ≥ |c| · 6k,
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a contradiction. We conclude that P(x) is irreducible.

188. Assume the contrary, and let

(x2 + 1)n + p = Q(x)R(x),

with Q(x) and R(x) of degree at least 1. Denote by Q̂(x), R̂(x) the reduction of these
polynomials modulo p, viewed as polynomials in Zp[x]. Then Q̂(x)R̂(x) = (x2 + 1)n.
The polynomial x2 + 1 is irreducible in Zp[x], since −1 is not a quadratic residue in
Zp. This implies Q̂(x) = (x2 + 1)k and R̂(x) = (x2 + 1)n−k, with 1 ≤ k ≤ n − 1
(the polynomials are monic and their degree is at least 1). It follows that there exist
polynomials Q1(x) and R1(x) with integer coefficients such that

Q(x) = (x2 + 1)k + pQ1(x) and R(x) = (x2 + 1)n−k + pR1(x).

Multiplying the two, we obtain

(x2 + 1)n+p = (x2 + 1)n+p((x2 + 1)n−kQ1(x)+ (x2 + 1)kR1(x))+p2Q1(x)R1(x).

Therefore,

(x2 + 1)n−kQ1(x)+ (x2 + 1)kR1(x)+ pQ1(x)R1(x) = 1.

Reducing modulo p we see that x2 + 1 divides 1 in Zp[x], which is absurd. The contra-
diction proves that the polynomial from the statement is irreducible.

189. We will show that all the zeros of P(x) have absolute value greater than 1. Let y be
a complex zero of P(x). Then

0 = (y − 1)P (y) = yp + yp−1 + yp−2 + · · · + y − p.

Assuming |y| ≤ 1, we obtain

p = |yp + yp−1 + yp−2 + · · · + y| ≤
p∑
i=1

|y|i ≤
p∑
i=1

1 = p.

This can happen only if the two inequalities are, in fact, equalities, in which case y = 1.
But P(1) > 0, a contradiction that proves our claim.

Next, let us assume that P(x) = Q(x)R(x) with Q(x) and R(x) polynomials with
integer coefficients of degree at least 1. Then p = P(0) = Q(0)R(0). Since both Q(0)
and R(0) are integers, either Q(0) = ±1 or R(0) = ±1. Without loss of generality, we
may assume Q(0) = ±1. This, however, is impossible, since all zeros of Q(x), which
are also zeros of P(x), have absolute value greater than 1. We conclude that P(x) is
irreducible.

(proposed by M. Manea for Mathematics Magazine)
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190. Let n be the degree of P(x). Suppose that we can find polynomials with integer
coefficients R1(x) and R2(x) of degree at most 2n − 1 such that Q(x) = P(x2) =
R1(x)R2(x). Then we also have Q(x) = Q(−x) = R1(−x)R2(−x). Let F(x) be
the greatest common divisor of R1(x) and R1(−x). Since F(x) = F(−x), we can write
F(x) = G(x2)with the degree ofG(x) at mostn−1. SinceG(x2)dividesQ(x) = P(x2),
we see that G(x) divides P(x) and has lower degree; hence by the irreducibility of
P(x), G(x) is constant. Similarly, the greatest common divisor of R2(x) and R2(−x) is
constant. Hence R1(−x) divides R2(x), while R2(x) divides R1(−x). Hence R1(x) and
R2(x) both have degree n, R2(x) = cR1(−x), and Q(x) = cR1(x)R1(−x). Because
P(x) is monic, we compute c = (−1)n and P(0) = (−1)nR1(0)2. Hence |P(0)| is a
square, contradicting the hypothesis.

(Romanian Team Selection Test for the International Mathematical Olympiad, 2003,
proposed by M. Piticari)

191. These are just direct consequences of the trigonometric identities

cos(n+ 1)θ = cos θ cos nθ − sin θ sin nθ

and

sin(n+ 1)θ

sin θ
= cos θ

sin nθ

sin θ
+ cos nθ.

192. Denote the second determinant by Dn. Expanding by the first row, we obtain

Dn = 2xDn−1 −

∣∣∣∣∣∣∣∣∣∣∣

1 1 0 · · · 0
0 2x 1 · · · 0
0 1 2x · · · 0
...
...
...
. . .

...

0 0 0 · · · 2x

∣∣∣∣∣∣∣∣∣∣∣
= 2xDn−1 −Dn−2.

SinceD1 = 2x andD2 = 4x2 − 1, we obtain inductivelyDn = Un(x), n ≥ 1. The same
idea works for the first determinant, except that we expand it by the last row. With the
same recurrence relation and with the values x for n = 1 and 2x2 − 1 for n = 2, the
determinant is equal to Tn(x) for all n.

193. Let P(x) = x4 + ax3 + bx2 + cx + d and denote byM the maximum of |P(x)| on
[−1, 1]. From −M ≤ P(x) ≤ M , we obtain the necessary condition −M ≤ 1

2(P (x)+
P(−x)) ≤ M for x ∈ [−1, 1]. With the substitution y = x2, this translates into

−M ≤ y2 + by + d ≤ M, for y ∈ [0, 1].
For a monic quadratic function to have the smallest variation away from 0 on [0, 1], it
needs to have the vertex (minimum) at 1

2 . The variation is minimized by (y − 1
2)

2 − 1
8 ,

and so we obtain M ≥ 1
8 . Equality is attained for 1

8T4(x).
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Now let us assume that P(x) is a polynomial for which M = 1
8 . Then b = −1,

d = 1
8 . Writing the double inequality − 1

8 ≤ P(x) ≤ 1
8 for x = 1 and −1, we obtain

− 1
8 ≤ 1

8 + a + c ≤ 1
8 and − 1

8 ≤ 1
8 − a − c ≤ 1

8 . So on the one hand, a + c ≥ 0,
and on the other hand, a + c ≤ 0. It follows that a = −c. But then for x = 1√

2
,

0 ≤ a( 1
2
√

2
− 1√

2
) ≤ 1

4 , and for x = − 1√
2
, 0 ≤ −a( 1

2
√

2
− 1√

2
) ≤ 1

4 . This can happen only

if a = 0. Therefore, P(x) = x4 − x2 + 1
8 = 1

8T4(x).

194. From the identity

x3 + 1

x3
=
(
x + 1

x

)3

− 3

(
x + 1

x

)
,

it follows that

√
r + 1√

r
= 63 − 3 × 6 = 198.

Hence (
4
√
r − 1

4
√
r

)2

= 198 − 2,

and the maximum value of 4
√
r − 1

4√r is 14.

(University of Wisconsin at Whitewater Math Meet, 2003, proposed by T.Andreescu)

195. Let x1 = 2 cosα, x2 = 2 cos 2α, . . . , xn = 2 cos nα. We are to show that the
determinant ∣∣∣∣∣∣∣∣∣

T0(x1) T0(x2) · · · T0(xn)

T1(x1) T1(x2) · · · T1(xn)
...

...
. . .

...

Tn−1(x1) Tn−1(x2) · · · Tn−1(xn)

∣∣∣∣∣∣∣∣∣
is nonzero. Substituting T0(xi) = 1, T1(xi) = x, i = 1, 2, . . . , n, and performing row
operations to eliminate powers of xi , we can transform the determinant into

2 · 4 · · · 2n−1

∣∣∣∣∣∣∣∣∣
1 1 · · · 1
x1 x2 · · · xn
...

...
. . .

...

xn−1
1 xn−1

2 · · · xn−1
n

∣∣∣∣∣∣∣∣∣ .
This is a Vandermonde determinant, and the latter is not zero since xi 	= xj , for 1 ≤ i <

j ≤ n, whence the original matrix is invertible. Its determinant is equal to
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2(n−1)(n−2)/2
∏

1≤i<j≤n
(cos jα − cos iα) 	= 0.

196. Because the five numbers lie in the interval [−2, 2], we can find corresponding
angles t1, t2, t3, t4, t5 ∈ [0, π ] such that x = 2 cos t1, y = 2 cos t2, z = 2 cos t3, v =
2 cos t4, and w = 2 cos t5. We would like to translate the third and fifth powers into
trigonometric functions of multiples of the angles. For that we use the polynomials
Tn(a). For example, T5(a) = a5 − 5a3 + 5a. This translates into the trigonometric
identity 2 cos 5θ = (2 cos θ)5 − 5(2 cos θ)3 + 5(2 cos θ).

Add to the third equation of the system the first multiplied by 5 and the second
multiplied by −5, then use the above-mentioned trigonometric identity to obtain

2 cos 5t1 + 2 cos 5t2 + 2 cos 5t3 + 2 cos 5t4 + 2 cos 5t5 = −10.

This can happen only if cos 5t1 = cos 5t2 = cos 5t3 = cos 5t5 = cos 5t5 = −1. Hence

t1, t2, t3, t4, t5 ∈
{
π

5
,

3π

5
,

5π

5

}
.

Using the fact that the roots of x5 = 1, respectively, x10 = 1, add up to zero, we
deduce that

4∑
k=0

cos
2kπ

5
= 0 and

9∑
k=0

cos
kπ

5
= 0.

It follows that

cos
π

5
+ cos

3π

5
+ cos

5π

5
+ cos

7π

5
+ cos

9π

5
= 0.

Since cos π5 = cos 9π
5 and cos 3π

5 = cos 7π
5 , we find that cos π5 + cos 3π

5 = 1
2 . Also, it

is not hard to see that the equation T5(a) = −2 has no rational solutions, which implies
that cos π5 is irrational.

The first equation of the system yields
∑5

i=1 ti = 0, and the above considerations
show that this can happen only when two of the ti are equal to π

5 , two are equal to 3π
5 , and

one is equal to π . Let us show that in this situation the second equation is also satisfied.
Using T3(a) = a3 − 3a, we see that the first two equations are jointly equivalent to∑5

k=1 cos ti = 0 and
∑5

k=1 cos 3ti = 0. Thus we are left to check that this last equality
is satisfied. We have

2 cos
3π

5
+ 2 cos

9π

5
+ cos 3π = 2 cos

3π

5
+ 2 cos

π

5
+ cosπ = 0,

as desired. We conclude that up to permutations, the solution to the system is
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(
2 cos

π

5
, 2 cos

π

5
, 2 cos

3π

5
, 2 cos

3π

5
, 2 cosπ

)
.

(Romanian Mathematical Olympiad, 2002, proposed by T. Andreescu)

197. The Lagrange interpolation formula applied to the Chebyshev polynomial Tn−1(x)

and to the points x1, x2, . . . , xn gives

Tn−1(x) =
n∑
k=1

Tn−1(xk)
(x − x1) · · · (x − xk−1)(x − xk+1) · · · (x − xn)

(xk − x1) · · · (xk − xk−1)(xk − xk+1) · · · (xk − xn)
.

Equating the leading coefficients on both sides, we obtain

2n−2 =
n∑
k=1

Tn−1(xk)

(xk − x1) · · · (xk − xk−1)(xk − xk+1) · · · (xk − xn)
.

We know that the maximal variation away from 0 of Tn−1(x) is 1; in particular,
|Tn−1(xk)| ≤ 1, k = 1, 2, . . . , n. Applying the triangle inequality, we obtain

2n−2 ≤
n∑
k=1

|Tn−1(xk)|
|xk − x1| · · · |xk − xk−1||xk − xk+1| · · · |xk − xn| ≤

n∑
k=1

1

tk
.

The inequality is proved.
(T. Andreescu, Z. Feng, 103 Trigonometry Problems, Birkhäuser, 2004)

198. Let us try to prove the first identity. Viewing both sides of the identity as sequences
in n, we will show that they satisfy the same recurrence relation and the same initial
condition. For the left-hand side the recurrence relation is, of course,

Tn+1(x)√
1 − x2

= 2x
Tn(x)√
1 − x2

− Tn+1(x)√
1 − x2

,

and the initial condition is T1(x)/
√

1 − x2 = x/
√

1 − x2. It is an exercise to check that
the right-hand side satisfies the same initial condition. As for the recurrence relation, we
compute

dn+1

dxn+1
(1 − x2)n+1− 1

2 = dn

dxn

d

dx
(1 − x2)n+1− 1

2

= dn

dxn

(
n+ 1 − 1

2

)
(1 − x2)n−

1
2 (−2x)

= −(2n+ 1)x
dn

dxn
(1 − x2)n−

1
2 − n(2n+ 1)

dn−1

dxn−1
(1 − x2)n−

1
2 .

Here we apply the Leibniz rule for the differentiation of a product to obtain
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− (2n+ 1)x
dn

dxn
(1 − x2)n−

1
2 − (2n+ 1)

(
n

1

)
d

dx
x
dn−1

dxn−1
(1 − x2)n−

1
2

= −(2n+ 1)x
dn

dxn
(1 − x2)n−

1
2 − n(2n+ 1)

dn−1

dxn−1
(1 − x2)n−

1
2 .

So if tn(x) denotes the right-hand side, then

tn+1(x) = xtn(x)− (−1)n−1n

1 · 3 · · · (2n− 1)

dn−1

dxn−1
(1 − x2)n−1+ 1

2 .

Look at the second identity from the statement! If it were true, then the last term would
be equal to

√
1 − x2Un−1(x). This suggests a simultaneous proof by induction. Call the

right-hand side of the second identity un(x).
We will prove by induction on n that tn(x) = Tn(x)/

√
1 − x2 and un−1(x) =√

1 − x2Un−1(2x). Let us assume that this holds true for all k < n. Using the induction
hypothesis, we have

tn(x) = x
Tn−1(x)√

1 − x2
−
√

1 − x2Un−2(x).

Using the first of the two identities proved in the first problem of this section, we obtain
tn(x) = Tn(x)/

√
1 − x2.

For the second half of the problem we show that
√

1 − x2Un−1(x) and un−1(x) are
equal by verifying that their derivatives are equal, and that they are equal at x = 1. The
latter is easy to check: when x = 1 both are equal to 0. The derivative of the first is

−x√
1 − x2

Un−1(x)+ 2
√

1 − x2U ′
n−1(x).

Using the inductive hypothesis, we obtain u′
n−1(x) = −nTn(x)/

√
1 − x2. Thus we are

left to prove that

−xUn−1(x)+ 2(1 − x2)U ′
n−1(x) = −nTn(x),

which translates to

− cos x
sin nx

sin x
+ 2 sin2 x

n cos nx sin x − cos x sin nx

sin2 x
· 1

sin x
= n cos nx.

This is straightforward, and the induction is complete.

Remark. These are called the formulas of Rodrigues.

199. If M = A+ iB, then Mt = At − iBt = A− iB. So we should take

A = 1

2

(
M +Mt

)
and B = 1

2i

(
M −Mt

)
,

which are of course both Hermitian.
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Remark. This decomposition plays a special role, especially for linear operators on
infinite-dimensional spaces. If A and B commute, then M is called normal.

200. The answer is negative. The trace of AB − BA is zero, while the trace of In is n;
the matrices cannot be equal.

Remark. The equality cannot hold even for continuous linear transformations on an
infinite-dimensional vector space. If P and Q are the linear maps that describe the
momentum and the position in Heisenberg’s matrix model of quantum mechanics, and if
� is Planck’s constant, then the equality PQ−QP = �I is the mathematical expression
of Heisenberg’s uncertainty principle. We now see that the position and the momentum
cannot be modeled using finite-dimensional matrices (not even infinite-dimensional con-
tinuous linear transformations). Note on the other hand that the matrices whose entries
are residue classes in Z4,

A =

⎛⎜⎜⎝
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

⎞⎟⎟⎠ and B =

⎛⎜⎜⎝
0 0 0 0
1 0 0 0
0 2 0 0
0 0 3 0

⎞⎟⎟⎠ ,
satisfy AB − BA = I4.

201. To simplify our work, we note that in general, for any two square matrices A and B
of arbitrary dimension, the trace of AB − BA is zero. We can therefore write

AB − BA =
(
a b

c −a
)
.

But then (AB − BA)2 = kI2, where k = a2 + bc. This immediately shows that an odd
power of AB −BA is equal to a multiple of this matrix. The odd power cannot equal I2

since it has trace zero. Therefore, n is even.
The condition from the statement implies that k is a root of unity. But there are only

two real roots of unity and these are 1 and −1. The squares of both are equal to 1. It
follows that (AB − BA)4 = k2I2 = I2, and the problem is solved.

(Revista Matematică din Timişoara (Timişoara Mathematics Gazette), proposed by
T. Andreescu)

202. Assume that p 	= q. The second relation yields A2B2 = B2A2 = rA4 and rB2A =
rAB2 = A3. Multiplying the relation pAB + qBA = In on the right and then on the
left by B, we obtain

pBAB − qB2A = B and pAB2 + qBAB = B.

From these two identities and the fact that B2A = AB2 and p 	= q we deduce BAB =
AB2 = B2A. Therefore, (p+ q)AB2 = (p+ q)B2A = B. This implies right away that
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(p+q)A2B2 = AB and (p+q)B2A2 = BA. We have seen thatA2 andB2 commute, and
so we find that A and B commute as well, which contradicts the hypothesis. Therefore,
p = q.

(V. Vornicu)

203. For any number t ,(
1 t
0 1

)(
1 −t
0 1

)
=
(

1 −t
0 1

)(
1 t
0 1

)
=
(

1 0
0 1

)
.

The equality from the statement can be rewritten(
1 u
0 1

)(
a b

c d

)(
1 v
0 1

)
=
(

1 0
c 1

)
.

This translates to (
a + uc v(a + uc)+ b + ud

c cv + d

)
=
(

1 0
c 1

)
.

Because c 	= 0 we can choose u such that a + uc = 1. Then choose v = −(b + ud).
The resulting matrix has 1 in the upper left corner and 0 in the upper right corner. In the
lower right corner it has

cv + d = −c(b + ud)+ d = −bc − cud + d = 1 − ad − ucd + d

= 1 − (a + uc)d + d = 1.

This also follows from the fact that the determinant of the matrix is 1. The numbers u
and v that we have constructed satisfy the required identity.

Remark. This factorization appears in Gaussian optics. The matrices(
1 ±u
0 1

)
and

(
1 ±v
0 1

)
model a ray of light that travels on a straight line through a homogeneous medium, while
the matrix (

1 0
c 1

)
models refraction between two regions of different refracting indices. The result we have
just proved shows that any SL(2,R) matrix with nonzero lower left corner is an optical
matrix.
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204. First solution: Computed by hand, the second, third, and fourth powers of J4(λ) are⎛⎜⎜⎝
λ2 2λ 1 0
0 λ2 2λ 1
0 0 λ2 2λ
0 0 0 λ2

⎞⎟⎟⎠ ,
⎛⎜⎜⎝
λ3 3λ2 3λ 1
0 λ3 3λ2 3λ
0 0 λ3 3λ2

0 0 0 λ3

⎞⎟⎟⎠ ,
⎛⎜⎜⎝
λ4 4λ3 6λ2 4λ
0 λ4 4λ3 6λ2

0 0 λ4 4λ3

0 0 0 λ4

⎞⎟⎟⎠ .
This suggest that in general, the ij th entry of Jm(λ)n is (Jm(λ)n)ij = (

i

j−i
)
λn+i−j , with

the convention
(
k

l

) = 0 if l < 0. The proof by induction is based on the recursive formula
for binomial coefficients. Indeed, from Jm(λ)

n+1 = Jm(λ)
nJm(λ), we obtain

(Jm(λ)
n+1)ij = λ(Jm(λ)

n)ij + (Jm(λ)
n)i,j−1

= λ

(
n

j − i

)
λn+i−j +

(
n

j − 1 − i

)
λn+i−j+1 =

(
n+ 1

j − i

)
λn+1+i−j ,

which proves the claim.

Second solution: Define S to be the n × n matrix with ones just above the diagonal
and zeros elsewhere (usually called a shift matrix), and note that Sk has ones above the
diagonal at distance k from it, and in particular Sn = On. Hence

Jm(λ)
n = (λIn + S)n =

n−1∑
k=0

(
n

k

)
λn−kSk.

The conclusion follows.

Remark. The matrix Jm(λ) is called a Jordan block. It is part of the Jordan canonical
form of a matrix. Specifically, given a square matrix A there exists an invertible matrix
S such that S−1AS is a block diagonal matrix whose blocks are matrices of the form
Jmi (λi). The numbers λi are the eigenvalues of A. As a consequence of this problem,
we obtain a standard method for raising a matrix to the nth power. The idea is to write
the matrix in the Jordan canonical form and then raise the blocks to the power.

205. There is one property of the trace that we need. For an n × n matrix X with real
entries, tr(XXt) is the sum of the squares of the entries ofX. This number is nonnegative
and is equal to 0 if and only if X is the zero matrix. It is noteworthy to mention that
‖X‖ = √

tr(CCt) is a norm known as the Hilbert–Schmidt norm.
We would like to apply the above-mentioned property to the matrix A− Bt in order

to show that this matrix is zero. Writing

tr[(A− Bt)(A− Bt)t ] = tr[(A− Bt)(At − B)] = tr(AAt + BtB − AB − BtAt)

= tr(AAt + BtB)− tr(AB + BtAt),
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we see that we could almost use the equality from the statement, but the factors in two
terms come in the wrong order. Another property of the trace comes to the rescue, namely,
tr(XY) = tr(YX). We thus have

tr(AAt + BtB)− tr(AB + BtAt) = tr(AAt)+ tr(BtB)− tr(AB)− tr(BtAt)

= tr(AAt)+ tr(BBt)− tr(AB)− tr(AtBt) = 0.

It follows that tr[(A− Bt)(A− Bt)t ] = 0, which implies A− Bt = On, as desired.

Remark. The Hilbert–Schmidt norm plays an important role in the study of linear trans-
formations of infinite-dimensional spaces. It was first considered by E. Schmidt in his
study of integral equations of the form

f (x)−
∫ b

a

K(x, y)f (y)dy = g(x).

Here the linear transformation (which is a kind of infinite-dimensional matrix) is

f (x) →
∫ b

a

K(x, y)f (y)dy,

and its Hilbert–Schmidt norm is(∫ b

a

∫ b

a

|K(x, y)|2dxdy
)1/2

.

For a (finite- or infinite-dimensional) diagonal matrix D, whose diagonal elements are
d1, d2, · · · ∈ C, the Hilbert–Schmidt norm is√

trDDt = (|d1|2 + |d2|2 + · · · )1/2.
206. The elegant solution is based on the equality of matrices⎛⎝ (x2 + 1)2 (xy + 1)2 (xz+ 1)2

(xy + 1)2 (y2 + 1)2 (yz+ 1)2

(xz+ 1)2 (yz+ 1)2 (z2 + 1)2

⎞⎠ =
⎛⎝1 x x2

1 y y2

1 z z2

⎞⎠⎛⎝ 1 1 1
2x 2y 2z
x2 y2 z2

⎞⎠ .
Passing to determinants and factoring a 2, we obtain a product of two Vandermonde
determinants, hence the formula from the statement.

(C. Coşniţă, F. Turtoiu, Probleme de Algebră (Problems in Algebra), Editura Tehnică,
Bucharest, 1972)

207. Consider the matrix

M =
(

1 1
1 0

)
,
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which has the property that

Mn =
(
Fn+1 Fn
Fn Fn−1

)
, for n ≥ 1.

Taking determinants, we have

Fn+1Fn−1 − F 2
n = detMn = (detM)n = (−1)n,

as desired.
(J.D. Cassini)

208. Subtract the pth row from the (p+ 1)st, then the (p− 1)st from the pth, and so on.
Using the identity

(
n

k

)− (
n−1
k

) = (
n−1
k−1

)
, the determinant becomes∣∣∣∣∣∣∣∣∣∣

1
(
m

1

) · · · (
m

p

)
0

(
m

0

) · · · (
m

p−1

)
...

...
. . .

...

0
(
m−1+p

0

) · · · (m−1+p
p−1

)

∣∣∣∣∣∣∣∣∣∣
.

Expanding by the first row, we obtain a determinant of the same form but withm replaced
by m − 1 and p replaced by p − 1. For p = 0 the determinant is obviously equal to 1,
and an induction on p proves that this is also true in the general case.

(C. Năstăsescu, C. Niţă, M. Brandiburu, D. Joiţa, Exerciţii şi Probleme de Algebră
(Exercises and Problems in Algebra), Editura Didactică şi Pedagogică, Bucharest, 1983)

209. The determinant ∣∣∣∣∣∣∣∣∣

(
x1
0

) (
x2
0

) · · · (
xn
0

)(
x1
1

) (
x2
1

) · · · (
xn
1

)
...

...
. . .

...(
x1
n−1

) (
x2
n−1

) · · · ( xn
n−1

)
∣∣∣∣∣∣∣∣∣

is an integer. On the other hand, for some positive integerm and k, the binomial coefficient(
m

k

)
is a linear combination of mk,

(
m

k−1

)
, . . . ,

(
m

0

)
whose coefficients do not depend on

m. In this linear combination the coefficient of mk is 1/k!. Hence by performing row
operations in the above determinant we can transform it into∣∣∣∣∣∣∣∣∣

1 1 · · · 1
x1 x2 · · · xn
...

...
. . .

...

xn−1
1 xn−1

2 · · · xn−1
n

∣∣∣∣∣∣∣∣∣ .
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The Vandermonde determinant has the value
∏
i>j (xi − xj ).

It follows that our determinant is equal to
∏
i>j (xi − xj )/(1!2! · · · (n − 1)!), which

therefore must be an integer. Hence the conclusion.
(Mathematical Mayhem, 1995)

210. The determinant is an nth-degree polynomial in each of the xi’s. (If you have a
problem working with multinomials, think of x1 as the variable and of the others as
parameters!) Adding all other columns to the first, we obtain that the determinant is
equal to zero when x1 + x2 + · · · + xn = 0, so x1 + x2 + · · · + xn is a factor of the
polynomial. This factor corresponds to j = 0 on the right-hand side of the identity from
the statement. For some other j , multiply the first column by ζ j , the second by ζ 2j , and
so forth; then add all columns to the first. As before, we see that the determinant is zero
when

∑n
k=1 ζ

jkxk = 0, so
∑n

k=1 ζ
jkxk is a factor of the determinant. No two of these

polynomials are a constant multiple of the other, so the determinant is a multiple of

n−1∏
j=1

(
n∑
k=1

ζ jkxk

)
.

The quotient of the two is a scalar C, independent of x1, x2, . . . , xn. For x1 = 1, x2 =
x3 = · · · = xn = 0, we obtain

xn1 = C

n−1∏
j=1

(ζ jx1) = Cζ 1+2+···+(n−1)x1 = Cζn(n−1)/2xn1

= Ce(n−1)πixn1 = C(−1)n−1x1.

Hence C = (−1)n−1, which gives rise to the formula from the statement.

211. By adding the second row to the first, the third row to the second, . . . , the nth row
to the (n− 1)st, the determinant does not change. Hence

det(A) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

2 −1 +1 · · · ±1 ∓1
−1 2 −1 · · · ∓1 ±1
+1 −1 2 · · · ±1 ∓1
...

...
...
. . .

...
...

∓1 ±1 ∓1 · · · 2 −1
±1 ∓1 ±1 · · · −1 2

∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 0 0 · · · 0 0
0 1 1 0 · · · 0 0
0 0 1 1 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . 1 1
±1 ∓1 ±1 ∓1 . . . −1 2

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Now subtract the first column from the second, then subtract the resulting column from
the third, and so on. This way we obtain
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det(A) =

∣∣∣∣∣∣∣∣∣∣∣

1 0 0 · · · 0 0
0 1 0 · · · 0 0
...

...
...
. . .

...
...

0 0 0 · · · 1 0
±1 ∓2 ±3 · · · −n+ 1 n+ 1

∣∣∣∣∣∣∣∣∣∣∣
= n+ 1.

(9th International Mathematics Competition for University Students, 2002)

212. View the determinant as a polynomial in the independent variables x1, x2, . . . , xn.
Because whenever xi = xj the determinant vanishes, it follows that the determinant is
divisible by xi−xj , and therefore by the product

∏
1≤i<j≤n(xj −xi). Because the ki’s are

positive, the determinant is also divisible by x1x2 · · · xn. To solve the problem, it suffices
to show that for any positive integers x1, x2, . . . , xn, the product

x1x2 · · · xn
∏

1≤i<j≤n
(xj − xi)

is divisible by n!. This can be proved by induction on n. A parity check proves the case
n = 2. Assume that the property is true for any n− 1 integers and let us prove it for n.
Either one of the numbers x1, x2, . . . , xn is divisible by n, or, by the pigeonhole principle,
the difference of two of them is divisible by n. In the first case we may assume that xn
is divisible by n, in the latter that xn − x1 is divisible by n. In either case,

x1x2 · · · xn−1

∏
1≤i<j≤n−1

(xj − xi)

is divisible by (n− 1)!, by the induction hypothesis. It follows that the whole product is
divisible by n× (n− 1)! = n! as desired. We are done.

(proposed for the Romanian Mathematical Olympiad by N. Chichirim)

213. Expand the determinant as

det(xA+ yB) = a0(x)y
3 + a1(x)y

2 + a2(x)y + a3(x),

where ai(x) are polynomials of degree at most i, i = 0, 1, 2, 3. For y = 0 this gives
det(xA) = x3 detA = 0, and hence a3(x) = 0 for all x. Similarly, setting y = x we
obtain det(xA+ xB) = x3 det(A+B) = 0, and thus a0(x)x

3 + a1(x)x
2 + a2(x)x = 0.

Also, for y = −x we obtain det(xA − xB) = x3 det(A − B) = 0; thus −a0(x)x
3 +

a1(x)x
2 − ax(x)x = 0. Adding these two relations gives a1(x) = 0 for all x. For

x = 0 we find that det(yB) = y3 detB = 0, and hence a0(0)y3 + ax(0)y = 0 for
all y. Therefore, a0(0) = 0. But a0(x) is a constant, so a0(x) = 0. This implies that
a2(x)x = 0 for all x, and so a2(x) = 0 for all x. We conclude that det(xA + yB) is
identically equal to zero, and the problem is solved.

(Romanian mathematics competition, 1979, M. Martin)
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214. We reduce the problem to a computation with 4 × 4 determinants. Expanding
according to the rule of Laplace, we see that

x2 =

∣∣∣∣∣∣∣∣
a 0 b 0
c 0 d 0
0 b 0 a
0 d 0 c

∣∣∣∣∣∣∣∣ and x ′2 =

∣∣∣∣∣∣∣∣
b′ a′ 0 0
d ′ c′ 0 0
0 0 b′ a′
0 0 d ′ c′

∣∣∣∣∣∣∣∣ .
Multiplying these determinants, we obtain (xx ′)2.

(C. Coşniţă, F. Turtoiu, Probleme de Algebră (Problems in Algebra), Editura Tehnică,
Bucharest, 1972)

215. First, suppose that A is invertible. Then we can write(
A B

C D

)
=
(
A 0
C In

)(
In A−1B

0 D − CA−1B

)
.

The matrices on the right-hand side are of block-triangular type, so their determinants
are the products of the determinants of the blocks on the diagonal (as can be seen on
expanding the determinants using the rule of Laplace). Therefore,

det

(
A B

C D

)
= (detA)(det(D − CA−1B)) = det(AD − ACA−1B).

The equality from the statement now follows form that fact that A and C commute.
IfA is not invertible, then since the polynomial det(A+εIn) has finitely many zeros,

A + εIn is invertible for any sufficiently small ε > 0. This matrix still commutes with
C, so we can apply the above argument to A replaced by A+ εIn. The identity from the
statement follows by letting ε → 0.

216. Applying the previous problem, we can write

det(In −XY) = det

(
In X
Y In

)
= (−1)n det

(
Y In
In X

)
= (−1)2n det

(
In Y
X In

)
= det(In − YX).

Note that we performed some row and column permutations in the process, while keeping
track of the sign of the determinant.

217. For k even, that is, k = 2m, the inequality holds even without the assumption from
the statement. Indeed, there exists ε arbitrarily small such that the matrix B0 = B + εIn
is invertible. Then

det(A2m + B2m
0 ) = detB2m

0 det
(
(AmB−m

0 )2 + In
)
,
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and the latter is nonnegative, as seen in the introduction. Taking the limit with ε ap-
proaching zero, we obtain det(A2m + B2m) ≥ 0.

For k odd, k = 2m+ 1, let x0 = −1, x1, x2, . . . , x2m be the zeros of the polynomial
x2m+1 + 1, with xj+m = xj , j = 1, 2, . . . , m. Because A and B commute, we have

A2m+1 + B2m+1 = (A+ B)

m∏
j=1

(A− xjB)(A− xjB).

Since A and B have real entries, by taking determinants we obtain

det(A− xjB)(A− xjB) = det(A− xjB) det(A− xjB)

= det(A− xjB) det (A− xjB)

= det(A− xjB)det(A− xjB) ≥ 0,

for j = 1, 2, . . . , m. This shows that the sign of det(A2m+1 + B2m+1) is the same as the
sign of det(A+ B) and we are done.

(Romanian Mathematical Olympiad, 1986)

218. The case λ ≥ 0 was discussed before. If λ < 0, let ω = √−λ. We have

det(In + λA2) = det(In − ω2A2) = det(In − ωA)(In + ωA)

= det(In − ωA) det(In + ωA).

Because −A = At , it follows that

In − ωA = In + ωAt = t (In + ωA).

Therefore,

det(In + λA2) = det(In + ωA) det t (In + ωA) = (det(In + ωA))2 ≥ 0,

and the inequality is proved.
(Romanian mathematics competition, proposed by S. Rădulescu)

219. First solution: We can assume that the leading coefficient of P(t) is 1. Let α
be a real number such that P(t) + α is strictly positive and let Y be a matrix with
negative determinant. Assume that f is onto. Then there exists a matrix X such that
P(X) = Y − αIn.

Because the polynomial Q(t) = P(t)+ α has no real zeros, it factors as

Q(t) =
m∏
k=1

[
(t + ak)

2 + b2
k

]



Algebra 421

with ak, bk ∈ R. It follows that

detQ(X) =
m∏
k=1

det
[
(X + ak)

2 + b2
kIn

] ≥ 0,

and the latter is positive, since for all k,

det
[
(X + ak)

2 + b2
kIn

] = b2n
k det

[(
1

bk
X + ak

bk

)2

+ In

]
≥ 0.

In particular, Q(X) 	= Y and thus the function f is not onto.

Second solution: Because the polynomial P(t) is of even degree, the function it defines
on R is not onto. Let µ be a number that is not of the form P(t), t ∈ R. Then the matrix
µIn is not in the image of f . Indeed, ifX is an n×nmatrix, then by the spectral mapping
theorem the eigenvalues of P(X) are of the form p(λ), where λ is an eigenvalue of X.
Since µ is not of this form, it cannot be an eigenvalue of a matrix in the image of f . But
µ is the eigenvalue of µIn, which shows that the latter is not in the image of f , and the
claim is proved.

(Gazeta Matematică (Mathematics Gazette, Bucharest), proposed by D. Andrica)

220. If A2 = On, then

det(A+ In) = det

(
1

4
A2 + A+ In

)
= det

(
1

2
A+ In

)2

=
(

det

(
1

2
A+ In

))2

≥ 0.

Similarly,

det(A− In) = det(−(In − A)) = (−1)n det(In − A) = (−1)n det

(
In − A+ 1

4
A2

)
= (−1)n det

(
In − 1

2
A

)2

= (−1)n
(

det

(
In − 1

2
A

))2

≤ 0,

since n is odd. Hence det(A+ In) ≥ 0 ≥ det(A− In).
If A2 = In, then

0 ≤ (det(A+ In)2) = det(A+ In)2 = det(A2 + 2A+ In)
= det(2A+ 2In) = 2n det(A+ In).

Also,

det(A− In) = (−1)n det(In − A) = (−1)n det

(
1

2
(2In − 2A)

)
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=
(

−1

2

)n
det(In − 2A+ In) =

(
−1

2

)n
det(A2 − 2A+ In)

=
(

−1

2

)n
det(A− In)2 ≤ 0,

and the inequality is proved in this case, too.
(Romanian mathematics competition, 1987)

221. All the information about the inverse of A is contained in its determinant. If we
compute the determinant ofA by expanding along the kth column, we obtain a polynomial
in xk, and the coefficient of xm−1

k is exactly the minor used for computing the entry bkm
of the adjoint matrix multiplied by (−1)k+m. Viewing the product

∏
i>j (xi − xj ) as a

polynomial in xk, we have∏
i>j

(xi − xj ) = 	(x1, . . . , xk−1, xk+1, . . . , xn)× (xk − x1) · · · (xk − xk−1)

× (xk+1 − xk) . . . (xn − xk)

= (−1)n−k	(x1, . . . , xk−1, xk+1, . . . , xn)×
∏
j 	=k
(xk − xj ).

In the product
∏
j 	=k(xk − xj ) the coefficient of xm−1

k is

(−1)n−mSn−m(x1, . . . , xk−1, xk+1, . . . , xn).

Combining all these facts, we obtain

bkm = (−1)k+m	(x1, x2, . . . , xn)
−1(−1)k+m(−1)n−k(−1)n−m

×	(x1, . . . , xk−1, xk+1, . . . , xn)Sm(x1, . . . , xk−1, xk+1, . . . , xn)

= (−1)k+m	(x1, x2, . . . , xn)
−1	(x1, . . . , xk−1, xk+1, . . . , xn)

× Sm(x1, . . . , xk−1, xk+1, . . . , xn),

as desired.

222. The inverse of a 2×2 matrixC = (cij )i,j with integer entries is a matrix with integer
entries if and only if detC = ±1 (one direction of this double implication follows from
the formula for the inverse, and the other from detC−1 = 1/ detC).

With this in mind, let us consider the polynomialP(x) ∈ Z[x], P(x) = det(A+xB).
The hypothesis of the problem implies thatP(0), P (1), P (2), P (3), P (4) ∈ {−1, 1}. By
the pigeonhole principle, three of these numbers are equal, and because P(x) has degree
at most 2, it must be constant. Therefore, det(A+ xB) = ±1 for all x, and in particular
for x = 5 the matrixA+5B is invertible and has determinant equal to ±1. Consequently,
the inverse of this matrix has integer entries.

(55th W.L. Putnam Mathematical Competition, 1994)
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223. We know that AA∗ = A∗A = (detA)I3, so if A is invertible then so is A∗, and
A = detA(A∗)−1. Also, detA detA∗ = (detA)3; hence detA∗ = (detA)2. Therefore,
A = ±√

detA∗(A∗)−1.
Because

A∗ = (1 −m)

⎛⎝−m− 1 1 1
1 −m− 1 1
1 1 −m− 1

⎞⎠ ,
we have

detA∗ = (1 −m)3[−(m+ 1)3 + 2 + 3(m+ 1)] = (1 −m)4(m+ 2)2.

Using the formula with minors, we compute the inverse of the matrix⎛⎝−m− 1 1 1
1 −m− 1 1
1 1 −m− 1

⎞⎠
to be

1

(1 −m)(m+ 2)2

⎛⎝−m2 −m− 2 m+ 2 m+ 2
m+ 2 −m2 −m− 2 m+ 2
m+ 2 m+ 2 −m2 −m− 2

⎞⎠ .
Then (A∗)−1 is equal to this matrix divided by (1 − m)3. Consequently, the matrix we
are looking for is

A = ±√
detA∗(A∗)−1

= ± 1

(1 −m)2(m+ 2)

⎛⎝−m2 −m− 2 m+ 2 m+ 2
m+ 2 −m2 −m− 2 m+ 2
m+ 2 m+ 2 −m2 −m− 2

⎞⎠ .
(Romanian mathematics competition)

224. The series expansion

1

1 − x
= 1 + x + x2 + x3 + · · ·

suggests that

(In − A)−1 = In + A+ A2 + A3 + · · · .
But does the series on the right converge?
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Let

α = max
i

⎛⎝ n∑
j=1

|aij |
⎞⎠ < 1.

Then

∑
k

∣∣∣∣∣∣
∑
j

aij ajk

∣∣∣∣∣∣ ≤
∑
j,k

|aijajk| =
∑
j

(
|aij |

∑
k

|ajk|
)

≤ α
∑
j

|aij | ≤ α2.

Inductively we obtain that the entries aij (n) of An satisfy
∑

j |aij (n)| < αn for all i.
Because the geometric series 1 + α + α2 + α3 + · · · converges, so does In +A+A2 +
A3 + · · · . And the sum of this series is the inverse of In − A.

(P.N. de Souza, J.N. Silva, Berkeley Problems in Mathematics, Springer, 2004)

225. The trick is to compute A2. The elements on the diagonal are

n∑
k=1

sin2 kmα, m = 1, 2, . . . , n,

which are all nonzero. Off the diagonal, the (m, j)th entry is equal to

n∑
k=1

sin kmα sin kjα = 1

2

[
n∑
k=1

cos k(m− j)α −
n∑
k=1

k(m+ j)α

]
.

We are led to the computation of two sums of the form
∑n

k=1 cos kx. This is done as
follows:

n∑
k=1

cos kx = 1

2 sin x
2

n∑
k=1

sin
x

2
cos kx = 1

2 sin x
2

n∑
k=1

[
sin

(
k + 1

2

)
x − sin

(
k − 1

2
x

)]
.

The sum telescopes, and we obtain

n∑
k=1

cos kx = sin
(
n+ 1

2

)
x

2 sin x
2

− 1

2
.

Note that for x = (m± j)α = (m±j)π
n+1 ,

sin

(
n+ 1

2

)
x = sin

(
(m± j)π − x

2

)
= (−1)m+j+1 sin

x

2
.

Hence
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n∑
k=1

cos(m± j)kα = (−1)m+j+1

2
− 1

2
.

It follows that form 	= j , the (m, j) entry of the matrixA2 is zero. HenceA2 is a diagonal
matrix with nonzero diagonal entries. This shows that A2 is invertible, and so is A.

Remark. This matrix appears in topological quantum field theory. A matrix of this type is
used in the discrete Fourier transform, which has found applications to the JPEG encoding
of digital photography.

226. If A+ iB is invertible, then so is A† − iB†. Let us multiply these two matrices:

(A† − iB†)(A+ iB) = A†A+ B†B + i(A†B − B†A).

We have

〈(A†A+ B†B + i(A†B − B†A))v, v〉
= 〈A†Av, v〉 + 〈B†Bv, v〉 + 〈i(A†B − B†A)v, v〉
= ||Av||2 + ||Bv||2 + 〈i(A†B − B†A)v, v〉,

which is strictly greater than zero for any vector v 	= 0. This shows that the product
(A† − iB†)(A + iB) is a positive definite matrix (i.e., 〈(A† − iB†)(A + iB)v, v〉 > 0
for all v 	= 0). The linear transformation that it defines is therefore injective, hence an
isomorphism. This implies that (A† − iB†)(A+ iB) is invertible, and so (A+ iB) itself
is invertible.

227. First solution: The fact that A− In is invertible follows from the spectral mapping
theorem. To find its inverse, we recall the identity

1 + x + x2 + · · · + xk = xk+1 − 1

x − 1
,

which by differentiation gives

1 + 2x + · · · + kxk−1 = kxk+1 − (k + 1)xk + 1

(x − 1)2
.

Substituting A for x, we obtain

(A− In)2(In + 2A+ · · · + kAk−1) = kAk+1 − (k + 1)Ak + In = In.

Hence

(A− In)−1 = (A− In)(In + 2A+ · · · + kAk−1).
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Second solution: Simply write

In = kAk+1 − (k + 1)Ak + In = (A− In)(kAk − Ak−1 − · · · − A− In),

which gives the inverse written in a different form.
(Mathematical Reflections, proposed by T. Andreescu)

228. If α 	= −1 then(
A−1 − 1

α + 1
A−1BA−1

)
(A+ B) = In + A−1B − 1

α + 1
A−1BA−1B

− 1

α + 1
A−1B.

But (A−1B)2 = A−1X(YA−1X)Y = αA−1XY = αA−1B. Hence in the above equality,
the right-hand side is equal to the identity matrix. This proves the claim.

If α = −1, then (A−1B)2 +A−1B = 0, that is, (In+A−1B)A−1B = 0. This implies
that In + A−1B is a zero divisor. Multiplying by A on the right we find that A+ B is a
zero divisor itself. Hence in this case A+ B is not invertible.

(C. Năstăsescu, C. Niţă, M. Brandiburu, D. Joiţa, Exerciţii şi Probleme de Algebră
(Exercises and Problems in Algebra), Editura Didactică şi Pedagogică, Bucharest, 1983)

229. The computation

(A− bIn)(B − aIn) = abIn

shows that A− bIn is invertible, and its inverse is 1
ab
(B − aIn). Then

(B − aIn)(A− bIn) = abIn,

which translates into BA − aA − bB = On. Consequently, BA = aA + bB = AB,
proving that the matrices commute.

230. We have

(A+ iB2)(B + iA2) = AB − B2A2 + i(A3 + B3) = In.

This implies that A+ iB2 is invertible, and its inverse is B + iA2. Then

In = (B + iA2)(A+ iB2) = BA− A2B2 + i(A3 + B3) = BA− A2B2,

as desired.
(Romanian Mathematical Olympiad, 1982, proposed by I.V. Maftei)

231. Of course, one can prove that the coefficient matrix is nonsingular. But there is a
slick solution. Add the equations and group the terms as
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3(x1 + x2 + x3)+ 3(x4 + x5 + x6)+ · · · + 3(x97 + x98 + x99)+ 3x100 = 0.

The terms in the parentheses are all zero; hence x100 = 0. Taking cyclic permutations
yields x1 = x2 = · · · = x100 = 0.

232. If y is not an eigenvalue of the matrix⎛⎜⎜⎜⎜⎝
0 1 0 0 1
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
1 0 0 1 0

⎞⎟⎟⎟⎟⎠ ,

then the system has the unique solution x1 = x2 = x3 = x4 = x5 = 0. Otherwise, the
eigenvectors give rise to nontrivial solutions. Thus, we have to compute the determinant∣∣∣∣∣∣∣∣∣∣

−y 1 0 0 1
1 −y 1 0 0
0 1 −y 1 0
0 0 1 −y 1
1 0 0 1 −y

∣∣∣∣∣∣∣∣∣∣
.

Adding all rows to the first and factoring 2 − y, we obtain

(2 − y)

∣∣∣∣∣∣∣∣∣∣
1 1 1 1 1
1 −y 1 0 0
0 1 −y 1 0
0 0 1 −y 1
1 0 0 1 −y

∣∣∣∣∣∣∣∣∣∣
.

The determinant from this expression is computed using row–column operations as fol-
lows: ∣∣∣∣∣∣∣∣∣∣

1 1 1 1 1
1 −y 1 0 0
0 1 −y 1 0
0 0 1 −y 1
1 0 0 1 −y

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣
1 0 0 0 0
1 −y − 1 0 −1 −1
0 1 −y 1 0
0 0 1 −y 1
1 −1 −1 0 −y − 1

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
−y − 1 0 −1 −1

1 −y 1 0
0 1 −y 1

−1 −1 0 −y − 1

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
−y − 1 0 −1 −1

−y −y 0 −1
0 1 −y −1

−1 0 −y −y

∣∣∣∣∣∣∣∣
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=

∣∣∣∣∣∣∣∣
−y − 1 0 0 −1

0 −y 1 −1
−1 1 −y − 1 −1
−1 0 0 −y

∣∣∣∣∣∣∣∣ ,
which, after expanding with the rule of Laplace, becomes

−
∣∣∣∣−y −1

1 −y − 1

∣∣∣∣ · ∣∣∣∣−y − 1 −1
−1 −y

∣∣∣∣ = −(y2 + y − 1)2.

Hence the original determinant is equal to (y − 2)(y2 + y − 1)2. If y = 2, the space
of solutions is therefore one-dimensional, and it is easy to guess the solution x1 = x2 =
x3 = x4 = x5 = λ, λ ∈ R.

If y = −1+√
5

2 or if y = −1−√
5

2 , the space of solutions is two-dimensional. In both
cases, the minor ∣∣∣∣∣∣

−y 1 0
1 −y 1
0 1 −y

∣∣∣∣∣∣
is nonzero, hence x3, x4, and x5 can be computed in terms of x1 and x2. In this case the
general solution is

(λ, µ,−λ+ yµ,−y(λ+ µ), yλ− µ), λ, µ ∈ R.

Remark. The determinant of the system can also be computed using the formula for the
determinant of a circulant matrix.

(5th International Mathematical Olympiad, 1963, proposed by the Soviet Union)

233. Taking the logarithms of the four relations from the statement, we obtain the fol-
lowing linear system of equations in the unknowns ln a, ln b, ln c, ln d:

−x ln a + ln b + ln c + ln d = 0,

ln a − y ln b + ln c + ln d = 0,

ln a + ln b − z ln c + ln d = 0,

ln a + ln b + ln c − t ln d = 0.

We are given that this system has a nontrivial solution. Hence the determinant of the
coefficient matrix is zero, which is what had to be proved.

(Romanian mathematics competition, 2004)

234. First solution: Suppose there is a nontrivial solution (x1, x2, x3). Without loss of
generality, we may assume x1 ≤ x2 ≤ x3. Let x2 = x1 +m, x3 = x1 +m+ n, m, n ≥ 0.
The first and the last equations of the system become
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(a11 + a12 + a13)x1 + (a12 + a13)m+ a13n = 0,

(a31 + a32 + a33)x1 + (a32 + a33)m+ a33n = 0.

The hypotheses a31 + a32 + a33 > 0 and a31 < 0 imply a32 + a33 ≥ 0, and therefore
(a32 + a33)m ≥ 0 and a33n ≥ 0. We deduce that x1 ≤ 0, which combined with a12 < 0,
a13 < 0, a11 + a12 + a13 > 0 gives

(a11 + a12 + a13)x1 ≤ 0, (a12 + a13)m ≤ 0, a13n ≤ 0.

The sum of these three nonpositive terms can be zero only when they are all zero. Hence
x1 = 0, m = 0, n = 0, which contradicts our assumption. We conclude that the system
has the unique solution x1 = x2 = x3 = 0.

Second solution: Suppose there is a nontrival solution (x1, x2, x3). Without loss of
generality, we may assume that |x3| ≥ |x2| ≥ |x1|. We have a31, a32 < 0 and 0 <

−a31 − a32 < a33, so

|a33x3| = | − a31x1 − a32x2| ≤ (−a31 − a32)|x2| ≤ (−a31 − a32)|x3| < a33|x3|.
This is a contradiction, which proves that the system has no nontrivial solution.

(7th International Mathematical Olympiad, 1965, proposed by Poland)

235. First solution: The zeros of P(x) are ε, ε2, . . . , εn, where ε is a primitive (n+ 1)st
root of unity. As such, the zeros of P(x) are distinct. Let

P(xn+1) = Q(x) · P(x)+ R(x),

where R(x) = an−1x
n−1 + · · · + a1x+ a0 is the remainder. Replacing x successively by

ε, ε2, . . . , εn, we obtain

anε
n−1 + · · · + a1ε + a0 = n+ 1,

an(ε
2)n−1 + · · · + a1ε

2 + a0 = n+ 1,

. . .

an(ε
n)n−1 + · · · + a1ε

n + a0 = n+ 1,

or

[a0 − (n+ 1)] + a1ε + · · · + an−1ε
n−1 = 0,

[a0 − (n+ 1)] + a1(ε
2)+ · · · + an−1(ε

2)n−1 = 0,

· · ·
[a0 − (n+ 1)] + a1(ε

n)+ · · · + an−1(ε
n)n−1 = 0.

This can be interpreted as a homogeneous system in the unknowns a0 − (n + 1),
a1, a2, . . . , an−1. The determinant of the coefficient matrix isVandermonde, thus nonzero,
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and so the system has the unique solution a0 − (n + 1) = a1 = · · · = an−1 = 0. We
obtain R(x) = n+ 1.

Second solution: Note that

xn+1 = (x − 1)P (x)+ 1;
hence

xk(n+1) = (x − 1)(x(k−1)(n+1) + x(k−2)(n+1) + · · · + 1)P (x)+ 1.

Thus the remainder of any polynomial F(xn+1) modulo P(x) is F(1). In our situation
this is n+ 1, as seen above.

(Gazeta Matematică (Mathematics Gazette, Bucharest), proposed by M. Diaconescu)

236. The function φ(t) = t−3
t+1 has the property that φ ◦φ ◦φ equals the identity function.

And φ(φ(t)) = 3+t
1−t . Replace x in the original equation by φ(x) and φ(φ(x)) to obtain

two more equations. The three equations form a linear system

f

(
x − 3

x + 1

)
+ f

(
3 + x

1 − x

)
= x,

f

(
3 + x

1 − x

)
+ f (x) = x − 3

x + 1
,

f (x)+ f

(
x − 3

x + 1

)
= 3 + x

1 − x
,

in the unknowns

f (x), f

(
x − 3

x + 1

)
, f

(
3 + x

1 − x

)
.

Solving, we find that

f (t) = 4t

1 − t2
− t

2
,

which is the unique solution to the functional equation.
(Kvant (Quantum), also appeared at the Korean Mathematical Olympiad, 1999)

237. It is obvious that gcd(x, x + y) = gcd(x, x + z) = 1. So in the equality from the
statement, x divides y+ z. Similarly, y divides z+ x and z divides x+ y. It follows that
there exist integers a, b, c with abc = t and

x + y = cz,

y + z = ax,
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z+ x = by.

View this as a homogeneous system in the variables x, y, z. Because we assume that
the system admits nonzero solutions, the determinant of the coefficient matrix is zero.
Writing down this fact, we obtain a new Diophantine equation in the unknowns a, b, c:

abc − a − b − c − 2 = 0.

This can be solved by examining the following cases:

1. a = b = c. Then a = 2 and it follows that x = y = z, because these numbers are
pairwise coprime. This means that x = y = z = 1 and t = 8. We have obtained the
solution (1, 1, 1, 8).

2. a = b, a 	= c. The equation becomes a2c − 2 = 2a + c, which is equivalent to
c(a2 − 1) = 2(a + 1), that is, c(a − 1) = 2. We either recover case 1, or find the
new solution c = 1, a = b = 3. This yields the solution to the original equation
(1, 1, 2, 9).

3. a > b > c. In this case abc − 2 = a + b + c < 3a. Therefore, a(bc − 3) < 2. It
follows that bc − 3 < 2, that is, bc < 5. We have the following situations:

(i) b = 2, c = 1, so a = 5 and we obtain the solution (1, 2, 3, 10).

(ii) b = 3, c = 1, so a = 3 and we return to case 2.

(iii) b = 4, c = 1, so 3a = 7, which is impossible.

In conclusion, we have obtained the solutions (1, 1, 1, 8), (1, 1, 2, 9), (1, 2, 3, 10),
and those obtained by permutations of x, y, z.

(Romanian Mathematical Olympiad, 1995)

238. Note that m comparisons give rise to a homogeneous linear system of m equations
with n unknowns, namely the masses, whose coefficients are −1, 0, and 1. Determining
whether all coins have equal mass is the same as being able to decide whether the solution
belongs to the one-dimensional subspace of Rn spanned by the vector (1, 1, . . . , 1). Since
the space of solutions has dimension at least n − m, in order to force the solution to lie
in a one-dimensional space one needs at least n− 1 equations. This means that we need
to perform at least n− 1 comparisions.

(Mathematical Olympiad Summer Program, 2006)

239. We are given that a0 = an+1 = 0 and ak−1 − 2ak + ak+1 = bk, with bk ∈ [−1, 1],
k = 1, 2, . . . , n. Consider the linear system of equations

a0 − 2a1 + a2 = b1,

a1 − 2a2 + a3 = b2,
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· · ·
an−1 − 2an + an+1 = bn

in the unknowns a1, a2, . . . , an. To determine ak for some k, we multiply the first equation
by 1, the second by 2, the third by 3, and so on up to the (k− 1)st, which we multiply by
k − 1, then add them up to obtain

−kak−1 + (k − 1)ak =
∑
j<k

jbj .

Working backward, we multiply the last equation by by 1, the next-to-last by 2, and so
on up to the (k + 1)st, which we multiply by n− k, then add these equations to obtain

−(n− k + 1)ak+1 + (n− k)ak =
∑
j>k

(n− j + 1)bj .

We now have a system of three equations,

−kak−1 + (k − 1)ak =
∑
j<k

jbj ,

ak−1 − 2ak + ak+1 = bk,

−(n− k + 1)ak+1 + (n− k)ak =
∑
j>k

(n− j + 1)bj

in the unknowns ak−1, ak, ak+1. Eliminating ak−1 and ak+1, we obtain(
k − 1

k
− 2 + n− k

n− k + 1

)
ak = bk + 1

k

∑
j<k

jbj + 1

n− k + 1

∑
j>k

(n− j + 1)bj .

Taking absolute values and using the triangle inequality and the fact that |bj | ≤ 1, for all
j , we obtain∣∣∣∣ −n− 1

k(n− k + 1)

∣∣∣∣ |ak| ≤ 1 + 1

k

∑
j<k

j + 1

n− k + 1

∑
j>k

(n− j + 1)

= 1 + k − 1

2
+ n− k

2
= n+ 1

2
.

Therefore, |ak| ≤ k(n− k + 1)/2, and the problem is solved.

240. The fact that the matrix is invertible is equivalent to the fact that the system of linear
equations

x1

1
+ x2

2
+ · · · + xn

n
= 0,
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x1

2
+ x2

3
+ · · · + xn

n+ 1
= 0,

· · ·
x1

n
+ x2

n+ 1
+ · · · + xn

2n− 1
= 0

has only the trivial solution. For a solution (x1, x2, . . . , xn) consider the polynomial

P(x) = x1(x + 1)(x + 2) · · · (x + n− 1)+ x2x(x + 2) · · · (x + n− 1)+ · · ·
+ xnx(x + 1) · · · (x + n− 2).

Bringing to the common denominator each equation, we can rewrite the system in short
form as P(1) = P(2) = · · · = P(n) = 0. The polynomial P(x) has degree n − 1;
the only way it can have n zeros is if it is identically zero. Taking successively x =
0,−1,−2, . . . ,−n, we deduce that xi = 0 for all i. Hence the system has only the trivial
solution, and the matrix is invertible.

For the second part, note that the sum of the entries of a matrix A is equal to the sum
of the coordinates of the vector A1, where 1 is the vector (1, 1, . . . , 1). Hence the sum
of the entries of the inverse matrix is equal to x1 + x2 + · · · + xn, where (x1, x2, . . . , xn)

is the unique solution to the system of linear equations

x1

1
+ x2

2
+ · · · + xn

n
= 1,

x1

2
+ x2

3
+ · · · + xn

n+ 1
= 1,

· · ·
x1

n
+ x2

n+ 1
+ · · · + xn

2n− 1
= 1.

This time, for a solution to this system, we consider the polynomial

Q(x) = x1(x + 1)(x + 2) · · · (x + n− 1)+ · · · + xnx(x + 1) · · · (x + n− 2)

− x(x + 1) · · · (x + n− 1).

Again we observe that Q(1) = Q(2) = · · · = Q(n) = 0. Because Q(x) has degree n
and dominating coefficient −1, it follows that Q(x) = −(x − 1)(x − 2) · · · (x − n). So

x1
(x + 1)(x + 2) · · · (x + n− 1)

xn−1
+ · · · + xn

x(x + 1) · · · (x + n− 2)

xn−1

= x(x + 1) · · · (x + n− 1)− (x − 1)(x − 2) · · · (x − n)

xn−1
.

The reason for writing this complicated relation is that as x → ∞, the left-hand side
becomes x1 + x2 + · · · + xn, while the right-hand side becomes the coefficient of xn−1 in
the numerator. And this coefficient is
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1 + 2 + · · · + (n− 1)+ 1 + 2 + · · · + n = n(n− 1)

2
+ n(n+ 1)

2
= n2.

The problem is solved.

Remark. It is interesting to note that the same method allows the computation of the
inverse as (bk,m)km, giving

bk,m = (−1)k+m(n+ k − 1)!(n+m− 1)!
(k +m− 1)[(k − 1)!(m− 1)!]2(n−m)!(n− k)! .

241. First, note that the polynomials
(
x

1

)
,
(
x+1

3

)
,
(
x+2

5

)
, . . . are odd and have degrees

1, 3, 5, . . . , and so they form a basis of the vector space of the odd polynomial func-
tions with real coefficients.

The scalars c1, c2, . . . , cm are computed successively from

P(1) = c1,

P (2) = c1

(
2

1

)
+ c2,

P (3) = c1

(
3

1

)
+ c2

(
4

3

)
+ c3.

The conclusion follows.
(G. Pólya, G. Szegő, Aufgaben und Lehrsätze aus der Analysis, Springer-Verlag, 1964)

242. Inspired by the previous problem we consider the integer-valued polynomials
(
x

m

) =
x(x − 1) · · · (x −m+ 1)/m!, m = 0, 1, 2, . . . . They form a basis of the vector space of
polynomials with real coefficients. The system of equations

P(k) = b0

(
x

n

)
+ b1

(
x

n− 1

)
+ · · · + bn−1

(
x

1

)
+ bn, k = 0, 1, . . . , n,

can be solved by Gaussian elimination, producing an integer solution b0, b1, . . . , bn.
Yes, we do obtain an integer solution because the coefficient matrix is triangular and has
ones on the diagonal! Finally, when multiplying

(
x

m

)
, m = 0, 1, . . . , n, by n!, we obtain

polynomials with integer coefficients. We find that n!P(x) has integer coefficients, as
desired.

(G. Pólya, G. Szegő, Aufgaben und Lehrsätze aus der Analysis, Springer-Verlag, 1964)

243. For n = 1 the rank is 1. Let us consider the case n ≥ 2. Observe that the rank does
not change under row/column operations. For i = n, n− 1, . . . , 2, subtract the (i − 1)st
row from the ith. Then subtract the second row from all others. Explicitly, we obtain
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rank

⎛⎜⎜⎜⎝
2 3 · · · n+ 1
3 4 · · · n+ 2
...

...
. . .

...

n+ 1 n+ 2 · · · 2n

⎞⎟⎟⎟⎠ = rank

⎛⎜⎜⎜⎝
2 3 · · · n+ 1
1 1 · · · 1
...
...
. . .

...

1 1 · · · 1

⎞⎟⎟⎟⎠

= rank

⎛⎜⎜⎜⎜⎜⎝
1 2 · · · n
1 1 · · · 1
0 0 · · · 0
...
...
. . .

...

0 0 · · · 0

⎞⎟⎟⎟⎟⎟⎠ = 2.

(12th International Competition in Mathematics for University Students, 2005)

244. The polynomialsPj(x) = (x+j)k, j = 0, 1, . . . , n−1, lie in the (k+1)-dimensional
real vector space of polynomials of degree at most k. Because k+1 < n, they are linearly
dependent. The columns consist of the evaluations of these polynomials at 1, 2, . . . , n,
so the columns are linearly dependent. It follows that the determinant is zero.

245. We prove this property by induction on n. For n = 1, if f1 is identically equal to
zero, then so is f . Otherwise, pick a vector e /∈ f −1

1 (0). Note that any other vector
v ∈ V is of the form αe + w with α ∈ R and w ∈ f −1

1 (0). It follows that f = f (e)

f1(e)
f1,

and the base case is proved.
We now assume that the statement is true for n = k − 1 and prove it for n = k. By

passing to a subset, we may assume that f1, f2, . . . , fk are linearly independent. Because
fk is linearly independent of f1, f2, . . . , fk−1, by the induction hypothesis there exists a
vector ek such that f1(ek) = f2(ek) = · · · = fk−1(ek) = 0, and fk(ek) 	= 0. Multiplying
ek by a constant, we may assume that fk(ek) = 1. The vectors e1, e2, . . . , ek−1 are defined
similarly, so that fj (ei) = 1 if i = j and 0 otherwise.

For an arbitrary vector v ∈ V and for i = 1, 2, . . . , k, we have

fi

⎛⎝v −
k∑
j=1

fj (v)ej

⎞⎠ = fi(v)−
k∑
j=1

fj (v)fi(ej ) = fi(v)− fi(v)fi(ei) = 0.

By hypothesis f (v −∑k
j=1 fj (v)ej ) = 0. Since f is linear, this implies

f (v) = f (e1)f1(v)+ f (e2)f2(v)+ · · · + f (ek)fk(v), for all v ∈ V.
This expresses f as a linear combination of f1, f2, . . . , fk, and we are done.

(5th International Competition in Mathematics for University Students, 1998)

246. First solution: We will prove this property by induction on n. For n = 1 it is
obviously true. Assume that it is true forn−1, and let us prove it forn. Using the induction
hypothesis, we can find x1, x2, . . . , xn−1 ∈ S such that a1x1 + a2x2 + · · · + an−1xn−1
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is irrational for any nonnegative rational numbers a1, a2, . . . , an not all equal to zero.
Denote the other elements of S by xn, xn+1, . . . , x2n−1 and assume that the property does
not hold for n. Then for each k = 0, 1, . . . , n−1 we can find rational numbers rk such that(

n−1∑
i=1

bikxi

)
+ ckxn+k = rk

with bik, ck some nonnegative integers, not all equal to zero. Because linear combinations
of the xi’s, i = 1, 2, . . . , n − 1, with nonnegative coefficients are irrational, it follows
that ck cannot be equal to zero. Dividing by the appropriate numbers if necessary, we
may assume that for all k, ck = 1. We can write xn+k = rk −∑n−1

i=1 bikxi . Note that the
irrationality of xn+k implies in addition that for a fixed k, not all the bik’s are zero.

Also, for the n numbers xn, xn+1, . . . , x2n−1, we can find nonnegative rationals
d1, d2, . . . , dn, not all equal to zero, such that

n−1∑
k=0

dkxn+k = r,

for some rational number r . Replacing each xn+k by the formula found above, we obtain

n−1∑
k=0

dk

(
−

n−1∑
i=1

bikxi + rk

)
= r.

It follows that

n−1∑
i=1

(
n−1∑
k=0

dkbik

)
xi

is rational. Note that there exists a nonzero dk, and for that particular k also a nonzero
bik. We found a linear combination of x1, x2, . . . , xn−1 with coefficients that are positive,
rational, and not all equal to zero, which is a rational number. This is a contradiction.
The conclusion follows.

Second solution: Let V be the span of 1, x1, x2, . . . , x2n−1 over Q. Then V is a finite-
dimensional Q-vector space inside R. Choose a Q-linear function f : V → Q such
that f (1) = 0 and f (xi) 	= 0. Such an f exists since the space of linear functions with
f (1) = 0 has dimension dim V − 1 and the space of functions that vanish on 1 and xi
has dimension dim V − 2, and because Q is infinite, you cannot cover anm-dimensional
vector space with finitely many (m − 1)-dimensional subspaces. By the pigeonhole
principle there are n of the xi for which f (xi) has the same sign. Since f (r) = 0 for all
rational r , no linear combination of these n with positive coefficients can be rational.

(second solution by R. Stong)
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247. First solution: Assume first that all numbers are integers. Whenever we choose a
number, the sum of the remaining ones is even; hence the parity of each number is the
same as the parity of the sum of all. And so all numbers have the same parity.

By subtracting one of the numbers from all we can assume that one of them is zero.
Hence the numbers have the same parity as zero. After dividing by 2, we obtain 2n+ 1
numbers with the same property. So we can keep dividing by 2 forever, which is possible
only if all numbers are zero. It follows that initially all numbers were equal.

The case of rational numbers is resolved by multiplying by the least common multiple
of the denominators. Now let us assume that the numbers are real. The reals form an
infinite-dimensional vector space over the rationals. Using the axiom of choice we can
find a basis of this vector space (sometimes called a Hammel basis). The coordinates of
the 2n + 1 numbers are rational, and must also satisfy the property from the statement
(this follows from the fact that the elements of the basis are linearly independent over
the rationals). So for each basis element, the corresponding coordinates of the 2n + 1
numbers are the same. We conclude that the numbers are all equal, and the problem is
solved.

However, this solution works only if we assume the axiom of choice to be true. The
axiom states that given a family of sets, one can choose an element from each. Obvious
as this statement looks, it cannot be deduced from the other axioms of set theory and
has to be taken as a fundamental truth. A corollary of the axiom is Zorn’s lemma, which
is the actual result used for constructing the Hammel basis. Zorn’s lemma states that if
every totally ordered subset of a partially ordered set has an upper bound, then the set
has a maximal element. In our situation this lemma is applied to families of linearly
independent vectors with the ordering given by the inclusion to yield a basis.

Second solution: The above solution can be improved to avoid the use of the axiom of
choice. As before, we prove the result for rational numbers. Arguing by contradiction
we assume that there exist 2n + 1 real numbers, not all equal, such that whenever one
is removed the others can be separated into two sets with n elements having the sum of
their elements equal. If in each of these equalities we move all numbers to one side, we
obtain a homogeneous system of 2n+1 equations with 2n+1 unknowns. In each row of
the coefficient matrix, 1 and −1 each occur n times, and 0 appears once. The solution to
the system obviously contains the one-dimensional vector space V spanned by the vector
(1, 1, . . . , 1). By hypothesis, it contains another vector that does not lie in V . Solving
the system using Gaussian elimination, we conclude that there must also exist a vector
with rational coordinates outside of V . But we already know that this is impossible. The
contradiction proves that the numbers must be all equal.

248. Let λ1, λ2 be the eigenvalues of A. Then −λ1I2 and −λ2I2 both belong to
C(A), so

0 = | det(A− λiI2)| ≥ |λi |2, for i = 1, 2.
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It follows that λ1 = λ2 = 0. Change the basis to v,w with v an eigenvector of A (which
does exist because Av = 0 has nontrivial solutions). This transforms the matrix into one
of the form (

0 a
0 0

)
.

One easily checks that the square of this matrix is zero.
Conversely, assume thatA2 = O2. By the spectral mapping theorem both eigenvalues

of A are zero, so by appropriately choosing the basis we can make A look like(
0 a
0 0

)
.

If a = 0, we are done. If not, then

C(A) =
{(

α β

0 α

)
| α, β ∈ R

}
.

One verifies immediately that for everyB ∈ C(A), det(A+B) = detB. So the inequality
from the statement is satisfied with equality. This completes the solution.

(Romanian Mathematical Olympiad, 1999, proposed by D. Miheţ)

249. Since detB = 1, B is invertible and B−1 has integer entries. From

A3 + B3 = ((AB−1)3 + I2)B
3,

it follows that det((AB−1)3+I2) = 1. We will show that (AB−1)2 = O2. SetAB−1 = C.
We know that det(C3 + I2) = 1. We have the factorization

C3 + I2 = (C + I2)(C + εI2)(C + ε2I2),

where ε is a primitive cubic root. Taking determinants, we obtain

P(−1)P (−ε)P (−ε2) = 1,

where P is the characteristic polynomial of C.
Let P(x) = x2 − mx + n; clearly m, n are integers. Because P(−ε2) = P(−ε) =

P(ε), it follows that P(−ε)P (−ε2) is a positive integer. So P(−1) = P(−ε)P (−ε2) =
1. We obtain 1 +m+ n = 1 and (ε2 +mε + n)(ε +mε2 + 1) = 1, which, after some
algebra, give m = n = 0. So C has just the eigenvalue 0, and being a 2 × 2 matrix, its
square is zero.

Finally, from the fact that AB = BA and (AB−1)2 = O2, we obtain A2B−2 = O2,
and multiplying on the right by B2 we have A2 = O2, as desired.

(Romanian Mathematics Competition, 2004, proposed by M. Becheanu)
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250. First solution: The eigenvalues are the zeros of the polynomial det(λIn−aA−bAt).
The matrix λIn−aA−bAt is a circulant matrix, and the determinant of a circulant matrix
was the subject of problem 211 in Section 2.3.2. According to that formula,

det(λIn − aA− bAt) = (−1)n−1
n−1∏
j=0

(λζ j − aζ 2j − b),

where ζ = e2πi/n is a primitive nth root of unity. We find that the eigenvalues of aA+bAt
are aζ j + bζ−j , j = 0, 1, . . . , n− 1.

Second solution: Simply note that for ζ = e2πi/n and j = 0, 1, . . . , n − 1, (1, ζ j , ζ 2j ,

. . . , ζ (n−1)j ) is an eigenvector with eigenvalue aζ j + bζ−j .

251. Let φ be the linear transformation of the space Rn whose matrix in a certain basis
e1, e2, . . . , en isA. Consider the orthogonal decompositions of the space Rn = ker φ⊕T ,
Rn = Im φ ⊕ S. Set φ′ = φ|T . Then φ′ : T → Im φ is an isomorphism. Let γ ′ be
its inverse, which we extend to a linear transformation γ of the whole of Rn by setting
γ |S = 0. Then φγφ = φ′γ ′φ′ = φ′ on T and φγφ = 0 on T ⊥ = ker φ. Hence
φγφ = φ, and we can choose B to be the matrix of γ in the basis e1, e2, . . . , en.

(Soviet Union University Student Mathematical Olympiad, 1976)

252. The map that associates to the angle the measure of its projection onto a plane is
linear in the angle. The process of taking the average is also linear. Therefore, it suffices
to check the statement for a particular angle. We do this for the angle of measure π ,
where it trivially works.

Remark. This lemma allows another proof of Fenchel’s theorem, which is the subject of
problem 644 in Section 4.1.4. If we defined the total curvature of a polygonal line to be
the sum of the “exterior’’angles, then the projection of any closed polygonal line in three-
dimensional space onto a one-dimensional line has total curvature at least π + π = 2π
(two complete turns). Hence the total curvature of the curve itself is at least 2π .

(communicated by J. Sullivan)

253. The first involution A that comes to mind is the symmetry with respect to a hyper-
plane. For that particular involution, the operator B = 1

2(A + I) is the projection onto
the hyperplane. Let us show that in general for any involution A, the operator B defined
as such is a projection. We have

B2 = 1

4
(A+ I)2 = 1

4
(A2 + 2AI + I2) = 1

4
(I + 2A+ I) = B.

There exists a basis ofV consisting of eigenvectors ofB. Just consider the decomposition
of V into the direct sum of the image of B and the kernel of B. The eigenvectors that
form the basis are either in the image of B, in which case their eigenvalue is 1, or in
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the kernel, in which case their eigenvalue is 0. Because A = 2B − I, it has the same
eigenvectors as B, with eigenvalues ±1. This proves (a).

Part (b) is based on the fact that any family of commuting diagonalizable operators
on V can be diagonalized simultaneously. Let us prove this property by induction on the
dimension of V . If all operators are multiples of the identity, there is nothing to prove.
If one of them, say S, is not a multiple of the identity, then consider the eigenspace Vλ
of a certain eigenvalue λ. If T is another operator in the family, then since ST v =
T Sv = λT v, it follows that T v ∈ Vλ; hence Vλ is an invariant subspace for all operators
in the family. This is true for all eigenspaces of A, and so all operators in the family
are diagonal blocks on the direct decomposition of V into eigenvectors of A. By the
induction hypothesis, the family can be simultaneously diagonalized on each of these
subspaces, and so it can be diagonalized on the entire space V .

Returning to the problem, diagonalize the pairwise commuting involutions. Their
diagonal entries may equal +1 or −1 only, showing that there are at most 2n such
involutions. The number can be attained by considering all choices of sign on the diagonal.

(3rd International Competition in Mathematics for University Students, 1996)

254. From the orthogonality of Au and u, we obtain

〈Au, u〉 = 〈u,Atu〉 = 〈Atu, u〉 = 0.

Adding, we obtain that 〈(A+At)u, u〉 = 0 for every vector u. But A+At is symmetric,
hence diagonalizable. For an eigenvector v of eigenvalue λ, we have

〈(A+ At)v, v〉 = 〈λv, v〉 = λ〈v, v〉 = 0.

This shows that all eigenvalues are zero, so A+ At = 0, which proves (a).
As a corollary of this, we obtain that A is of the form

A =
⎛⎝ 0 a12 a13

−a12 0 a23

−a13 −a23 0

⎞⎠ .
So A depends on only three parameters, which shows that the matrix can be identified
with a three-dimensional vector. To choose this vector, we compute

Au =
⎛⎝ 0 a12 a13

−a12 0 a23

−a13 −a23 0

⎞⎠⎛⎝u1

u2

u3

⎞⎠ =
⎛⎝ a12u1 + a13u2

−a12u1 + a23u3

−a13u1 − a23u2

⎞⎠ .
It is easy to see now that if we set v = (−a23, a13,−a12), then Au = v × u.

Remark. The set of such matrices is the Lie algebra so(3), and the problem describes two
of its well-known properties.
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255. There is a more general property, of which the problem is a particular case.

Riesz lemma. If V is a finite-dimensional vector space with inner product 〈·, ·〉, then
any linear functional f : V → R is of the form f (x) = 〈x, z〉 for some unique z ∈ V .

This result can be generalized to any (complex) Hilbert space, and it is there where
it carries the name of F. Riesz.

We prove it as follows. If f is identically zero, then f (x) = 〈x, 0〉. Otherwise, let
W be the kernel of f , which has codimension 1 in V . There exists a nonzero vector
y orthogonal to W such that f (y) = 1. Set µ = 〈y, y〉 and define z = µ−1y. Then
〈z, z〉 = µ−1. Any vector x ∈ V is of the form x ′ + λz, with x ′ ∈ W . We compute

f (x) = f (x ′)+ λf (z) = λµ−1 = λ〈z, z〉 = 〈x ′, z〉 + λ〈z, z〉 = 〈x, z〉.
Note that z is unique, because if 〈x, z〉 = 〈x, z′〉 for all x, then z− z′ is orthogonal to all
vectors, hence is the zero vector. There exists a simpler proof, but the one we gave here
can be generalized to infinite-dimensional Hilbert spaces!

For our particular case, V = Mn(R) and the inner product is the famous Hilbert–
Schmidt inner product 〈A,B〉 = tr(ABt).

For the second part of the problem, the condition from the statement translates to
tr((AB − BA)C) = 0 for all matrices A and B. First, let us show that all off-diagonal
entries of C are zero. If cij is an entry of C with i 	= j , let A be the matrix whose entry
aik is 1 and all others are 0, and B the matrix whose entry bkj is 1 and all others are 0, for
some number k. Then tr((AB−BA)C) = cij = 0. So C is diagonal. Moreover, choose
aij = bij = 1, with i 	= j . ThenAB−BA has two nonzero entries, the (i, i) entry, which
is 1, and the (j, j) entry, which is −1. Therefore, tr((AB −BA)C) = cii − cjj = 0. We
deduce that all diagonal entries of C are equal to some number λ, and hence

f (A) = tr(AC) = tr(λA) = λ tr(A),

as desired.

Remark. The condition f (AB) = f (BA) gives

tr(AC) = f (A) = f (ABB−1) = f (B−1AB) = tr(B−1ABC) = tr(ABCB−1);
hence by uniqueness of C, we have shown that C = BCB−1 for all B, or BC = CB.
The solution of the problem is essentially a proof that if C commutes with all invertible
matrices B, then C = λIn for some scalar λ.

256. Fix x ∈ Rn with ‖x‖ = 1, and let y = U−1V −1x. Because U and V are isometric
transformations, ‖y‖ = 1. Then

‖UVU−1V −1x − x‖ = ‖UVy − VUy‖
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= ‖(U − In)(V − In)y − (V − In)(U − In)y‖
≤ ‖(U − In)(V − In)y‖ + ‖(V − In)(U − In)y‖.

The claim follows if we prove that ‖(U − In)(V − In)y‖ and ‖(V − In)(U − In)y‖ are
both less than 1

4 , and because of symmetry, it suffices to check this for just one of them.
If (V − In)y = 0, then ‖(U − In)(V − In)y‖ = 0 < 1

4 . Otherwise, using the properties
of vector length, we proceed as follows:

‖(U − In)(V − In)y‖ =
∥∥∥∥(U − In)‖(V − In)y‖ (V − In)y

‖(V − In)y‖
∥∥∥∥

= ‖(V − In)y‖ × ‖(U − In)z‖,

where z is the length one vector 1
‖(V−In)y‖(V − In)y. By the hypothesis, each factor in

the product is less than 1
2 . This proves the claim and completes the solution.

257. The equality for general k follows from the case k = n, when it is the well-known
det(AB) = det(BA). Apply this to(

In A
On In

)(
λIn − AB On

B In

)
=
(
λIn A
B In

)
=
(

In On

B In

)(
In A

On λIn − BA

)
to obtain

det(λIn − AB) = det(λIn − BA).

The coefficient of λk in the left-hand side is φk(AB), while the coefficient of λk in the
right-hand side is φk(BA), and they must be equal.

Remark. From the many applications of the functionsφk(A), we mention the construction
of Chern classes in differential geometry.

258. From

I2 = (uI2 + vA)(u′I2 + v′A) = uu′I2 + (uv′ + vu′)A+ vv′A2,

using the Cayley–Hamilton Theorem, we obtain

I2 = (uu′ − vv′ detA)I2 + (uv′ + vu′ + vv′ trA)A.

Thus u′ and v′ should satisfy the linear system

uu′ − (v detA)v′ = 1,

vu′ + (u+ v trA)v′ = 0.
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The determinant of the system isu2+uv trA+v2 detA, and an easy algebraic computation
shows that this is equal to det(uI2 + vA), which is nonzero by hypothesis. Hence the
system can be solved, and its solution determines the desired inverse.

259. Rewriting the matrix equation as

X2(X − 3I2) =
(−2 −2

−2 −2

)
and taking determinants, we obtain that either detX = 0 or det(X − 3I2) = 0. In the
first case, the Cayley–Hamilton equation implies that X2 = (trX)X, and the equation
takes the form

[(trX)2 − 3 trX]X =
(−2 −2

−2 −2

)
.

Taking the trace of both sides, we find that the trace of X satisfies the cubic equation
t3 − 3t2 + 4 = 0, with real roots t = 2 and t = −1. In the case trX = 2, the matrix
equation is

−2X =
(−2 −2

−2 −2

)
with the solution

X =
(

1 1
1 1

)
.

When trX = −1, the matrix equation is

4X =
(−2 −2

−2 −2

)
with the solution

X =
(−1

2 − 1
2− 1

2 − 1
2

)
.

Let us now study the case det(X − 3I2) = 0. One of the two eigenvalues of X is 3. To
determine the other eigenvalue, add 4I2 to the equation from the statement. We obtain

X3 − 3X2 + 4I2 = (X − 2I2)(X + I2) =
(−2 −2

−2 −2

)
.

Taking determinants we find that either det(X − 2I2) = 0 or det(X + I2) = 0. So the
second eigenvalue ofX is either 2 or −1. In the first case, the Cayley–Hamilton equation
for X is



444 Algebra

X2 − 5X + 6I2 = 0,

which can be used to transform the original equation into

4X − 12I2 =
(−2 −2

−2 −2

)
with the solution

X =
( 5

2 − 1
2− 1

2
5
2

)
.

The case in which the second eigenvalue of X is −1 is treated similarly and yields the
solution

X =
(

1 −2
−2 1

)
.

(Romanian competition, 2004, proposed by A. Buju)

260. Because the trace of [A,B] is zero, the Cayley–Hamilton Theorem for this matrix
is [A,B]2 + (det[A,B])I2 = 0, which shows that [A,B]2 is a multiple of the identity.
The same argument applied to the matrices [C,D] and [A,B] + [C,D] shows that their
squares are also multiples of the identity.

We have

[A,B] · [C,D] + [C,D] · [A,B] = ([A,B] + [C,D])2 − [A,B]2 − [C,D]2.

Hence [A,B] · [C,D]+[C,D] · [A,B] is also a multiple of the identity, and the problem
is solved.

(Romanian Mathematical Olympiad, 1981, proposed by C. Năstăsescu)

261. The Cayley–Hamilton Theorem gives

(AB − BA)3 − c1(AB − BA)2 + c2(AB − BA)− c3I3 = O3,

where c1 = tr(AB −BA) = 0, and c3 = det(AB −BA). Taking the trace and using the
fact that the trace ofAB−BA is zero, we obtain tr((AB−BA)3)−3 det(AB−BA) = 0,
and the equality is proved.

(Revista Matematică din Timişoara (Timişoara Mathematics Gazette), proposed by
T. Andreescu)

262. Let C = AB − BA. We have

AB2 + BA2 = (AB − BA)B + B(AB − BA) = CB + BC = 2BC.
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Let PB(λ) = λ2 +rλ+s be the characteristic polynomial ofB. By the Cayley–Hamilton
Theorem, PB(B) = 0. We have

O2 = APB(B)− PB(B)A = AB2 − B2A+ r(AB − BA) = 2BC + rC.

Using this and the fact that C commutes with A and B, we obtain

O2 = A(2BC + rC)− (2BC + rC)A = 2(AB − BA)C = 2C2.

Therefore, C2 = O2. In some basis

C =
(

0 α
0 0

)
.

Hence C commutes only with polynomials in C. But if A and B are polynomials in C,
thenC = O2, a contradiction. SoC must be scalar whose square is equal to zero, whence
C = O2 again. This shows that such matrices A and B do not exist.

(American Mathematical Monthly, solution by W. Gustafson)

263. Choose λ ∈ R sufficiently large such that λIn + A has positive entries. By the
Perron–Frobenius Theorem, the largest eigenvalue ρ of λIn+A is positive, and all other
eigenvalues lie inside the circle of radius ρ centered at the origin. In particular, ρ is real
and all other eigenvalues lie strictly to its left. The eigenvalues of A are the horizontal
translates by λ of the eigenvalues of λIn + A, so they enjoy the same property.

Remark. The result is true even for matrices whose off-diagonal entries are nonnegative,
the so-called Metzler matrices, where a more general form of the Perron–Frobenius
Theorem needs to be applied.

264. First solution: Define A = (aij )
3
i,j=1. Then replace A by B = αI3 − A, where

α is chosen large enough so that the entries bij of the matrix B are all positive. By
the Perron–Frobenius Theorem, there exist a positive eigenvalue λ and an eigenvector
c = (c1, c2, c3) with positive coordinates. The equality Bc = λc yields

a11c1 + a12c2 + a13c3 = (α − λ)c1,

a21c1 + a22c2 + a23c3 = (α − λ)c2,

a31c1 + a32c2 + a33c3 = (α − λ)c3.

The three expressions from the statement have the same sign as α−λ: they are either all
three positive, all three zero, or all three negative.

Second solution: The authors of this problem had a geometric argument in mind. Here
it is.
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Consider the points P(a11, a21, a31),Q(a12, a22, a32), R(a13, a23, a33) in three-di-
mensional Euclidean space. It is enough to find a point in the interior of the triangle
PQR whose coordinates are all positive, all negative, or all zero.

Let P ′,Q′, R′ be the projections of P,Q,R onto the xy-plane. The hypothesis
implies that P ′,Q′, and R′ lie in the fourth, second, and third quadrant, respectively.

Case 1. The origin O is in the exterior or on the boundary of the triangle P ′Q′R′ (Fig-
ure 63).

x

P

O

y

S

Q

R’

’

’

’

Figure 63

Denote by S ′ the intersection of the segments P ′Q′ and OR′, and let S be the point
on the segment PQ whose projection is S ′. Note that the z-coordinate of the point S is
negative, since the z-coordinates of P ′ andQ′ are negative. Thus any point in the interior
of the segment SR sufficiently close to S has all coordinates negative, and we are done.

Case 2. The origin O is in the interior of the triangle P ′Q′R′ (Figure 64).
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P
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’

Figure 64

Let T be the point inside the triangle PQR whose projection isO. If T = O, we are
done. Otherwise, if the z-coordinate of T is negative, choose a point S close to it inside
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the triangle PQR whose x- and y-coordinates are both negative, and if the z-coordinate
of T is positive, choose S to have the x- and y-coordinates positive. Then the coordinates
of S are all negative, or all positive, and again we are done.

(short list of the 44th International Mathematical Olympiad, 2003, proposed by
the USA)

265. Let λ be the positive eigenvalue and v = (v1, v2, . . . , vn) the corresponding eigen-
vector with positive entries of the transpose of the coefficient matrix. The function
y(t) = v1x1(t)+ v2x2(t)+ · · · + vnxn(t) satisfies

dy

dt
=
∑
i,j

viaij xj =
∑
j

λvjxj = λy.

Therefore, y(t) = eλty0, for some vector y0. Because

lim
t→∞ y(t) =

∑
i

vi lim
t→∞ xi(t) = 0,

and limt→∞ eλt = ∞, it follows that y0 is the zero vector. Hence

y(t) = v1x1(t)+ v2x2(t)+ · · · + vnxn(t) = 0,

which shows that the functions x1, x2, . . . , xn are necessarily linearly dependent.
(56th W.L. Putnam Mathematical Competition, 1995)

266. We try some particular cases. For n = 2, we obtain c = 1 and the sequence 1, 1, or
n = 3, c = 2 and the sequence 1, 2, 1, and for n = 4, c = 3 and the sequence 1, 3, 3, 1.
We formulate the hypothesis that c = n− 1 and xk = (

n−1
k−1

)
.

The condition xn+1 = 0 makes the recurrence relation from the statement into a linear
system in the unknowns (x1, x2, . . . , xn). More precisely, the solution is an eigenvector
of the matrix A = (aij )ij defined by

aij =

⎧⎪⎨⎪⎩
i if j = i + 1,

n− j if j = i − 1,

0 otherwise.

This matrix has nonnegative entries, so the Perron–Frobenius Theorem as stated here
does not really apply. But let us first observe that A has an eigenvector with positive
coordinates, namely xk = (

n−1
k−1

)
, k = 1, 2, . . . , n, whose eigenvalue is n−1. This follows

by rewriting the combinatorial identity(
n− 1

k

)
=
(
n− 2

k

)
+
(
n− 2

k − 1

)
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as (
n− 1

k

)
= k + 1

n− 1

(
n− 1

k + 1

)
+ n− k

n− 1

(
n− 1

k − 1

)
.

To be more explicit, this identity implies that for c = n − 1, the sequence xk = (
n−1
k−1

)
satisfies the recurrence relation from the statement, and xn+1 = 0.

Let us assume that n − 1 is not the largest value that c can take. For a larger value,
consider an eigenvector v ofA. Then (A+In)v = (c+1)v, and (A+In)nv = (c+1)nv.
The matrix (A+In)n has positive entries, and so by the Perron–Frobenius Theorem has a
unique eigenvector with positive coordinates. We already found one such vector, that for
which xk = (

n−1
k−1

)
. Its eigenvalue has the largest absolute value among all eigenvalues of

(A+ In)n, which means that nn > (c + 1)n. This implies n > c + 1, contradicting our
assumption. So n − 1 is the largest value c can take, and the sequence we found is the
answer to the problem.

(57th W.L. Putnam Mathematical Competition, 1997, solution by G. Kuperberg and
published in K. Kedlaya, B. Poonen, R. Vakil, The William Lowell Putnam Mathematical
Competition 1985–2000, MAA, 2002)

267. Let us first show that if the two numbers are equal, then the product can be found
in six steps. For x 	= −1, we compute (1) x → 1

x
, (2) x → x + 1, (3) x + 1 → 1

x+1 ,
(4) 1

x
, 1
x+1 → 1

x
− 1

x+1 = 1
x2+x , (5) 1

x2+x → x2 + x, (6) x2 + x, x → x2. If x = −1,
replace step (2) by x → x − 1 and make the subsequent modifications thereon.

If the two numbers are distinct, say x and y, perform the following sequence of
operations, where above each arrow we count the steps:

x, y
1−→ x + y

7−→ (x + y)2,

x, y
8−→ x − y

14−→ (x − y)2,

(x + y)2, (x − y)2
15−→ 4xy

16−→ 1

4xy
,

1

4xy
,

1

4xy
17−→ 1

4xy
+ 1

4xy
= 2

xy
,

2

4xy
,

2

4xy
18−→ 2

4xy
+ 2

4xy
= 4

4xy
= 1

xy

19−→ xy.

So we are able to compute the product in just 19 steps.
(Kvant (Quantum))

268. Building on the previous problem, we see that it suffices to produce an operation ◦,
from which the subtraction and reciprocal are derivable. A good choice is 1

x−y . Indeed,
1
x

= 1
x−0 , and also x − y = 1

(1/(x−y)−0) . Success!
(D.J. Newman, A Problem Seminar, Springer-Verlag)
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269. Fix a and c in S and consider the function fa,c : S\{a, c} → S,

fa,c(b) = a ∗ (b ∗ c).
Because a ∗ fa,c(b) ∗ c = (a ∗ a) ∗ b ∗ (c ∗ c) = b, the function is one-to-one. It follows
that there are exactly two elements that are not in the image of fa,c. These elements are
precisely a and c. Indeed, if a ∗ (b∗c) = a, then (a ∗a)∗ (b∗c) = a ∗a, so b∗c = a ∗a,
and then b ∗ (c ∗ c) = (a ∗ a) ∗ c, which implies b = c. This contradicts the fact that
a, b, c are distinct. A similar argument rules out the case a ∗ (b ∗ c) = c.

Now choose a′, c′ different from both a and c. The union of the ranges of fa,c and
fa′,c′ , which is contained in the set under discussion, is the entire set S. The conclusion
follows.

Remark. An example of such a set is the Klein 4-group.
(R. Gelca)

270. Consider the set

U = {h(x, y) | h(−x,−y) = −h(x, y)}.
It is straightforward to check that U is closed under subtraction and taking reciprocals.
Because f (x, y) = x and g(x, y) = y are in U , the entire set S is in U . But U does not
contain nonzero constant functions, so neither does S.

(American Mathematical Monthly, 1987, proposed by I. Gessel, solution by O.P.
Lossers)

271. All three parts of the conclusion follow from appropriate substitutions in the identity
from the statement. For example,

(e ∗ e′) ◦ (e′ ∗ e) = (e ◦ e′) ∗ (e′ ◦ e)
simplifies to e′ ◦ e′ = e ∗ e, which further yields e′ = e, proving (a). Then, from

(x ∗ e) ◦ (e ∗ y) = (x ◦ e) ∗ (e ◦ y),
we deduce x ◦ y = x ∗ y, for every x, y ∈ M , showing that the two binary operations
coincide. This further yields

(e ∗ x) ∗ (y ∗ e) = (e ∗ x) ◦ (y ∗ e) = (e ◦ y) ∗ (x ◦ e) = (e ∗ y) ∗ (x ∗ e),
and so x ∗ y = y ∗ x. Thus ∗ is commutative and (c) is proved.

(Romanian high school textbook)

272. Substituting x = u ∗ v and y = v, with u, v ∈ S, in the given condition gives
(u∗v)∗ (v ∗ (u∗v)) = v. But v ∗ (u∗v) = u, for all u, v ∈ S. So (u∗v)∗u = v, for all
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u, v ∈ S. Hence the existence and uniqueness of the solution to the equation a ∗ x = b

is equivalent to the existence and uniqueness of the solution to the equation x ∗ a = b.
The existence of the solution for the equation a ∗ x = b follows from the fact that

x = b ∗ a is a solution. To prove the uniqueness, let c ∈ S be a solution. By hypothesis
we have the equalities a ∗ (b ∗ a) = b, b ∗ (c ∗ b) = c, c ∗ (a ∗ c) = a. From a ∗ c = b

it follows that c ∗ (a ∗ c) = c ∗ b = a. So a = c ∗ b, and from a ∗ c = b it follows that
c ∗ (a ∗ c) = c ∗ b = a. Therefore, b ∗ a = b ∗ (c ∗ b) = c, which implies that b ∗ a = c.
This completes the proof.

273. Substituting y = e in the second relation, and using the first, we obtain x ∗ z =
(x∗e)∗z = (z∗e)∗x = z∗x, which proves the commutativity. Using it, the associativity
is proved as follows:

(x ∗ y) ∗ z = (z ∗ x) ∗ y = (y ∗ z) ∗ x = x ∗ (y ∗ z).
(A. Gheorghe)

274. The answer is yes. Let φ be any bijection of F with no fixed points. Define
x ∗ y = φ(x). The first property obviously holds. On the other hand, x ∗ (y ∗ z) = φ(x)

and (x ∗ y) ∗ z = φ(x ∗ y) = φ(φ(x)). Again since φ has no fixed points, these two are
never equal, so the second property also holds.

(45th W.L. Putnam Mathematical Competition, 1984)

275. From a ∗ (a ∗ a) = (a ∗ a) ∗ a we deduce that a ∗ a = a. We claim that

a ∗ (b ∗ a) = a for all a, b ∈ S.
Indeed, we have a∗(a∗(b∗a)) = (a∗a)∗(b∗a) = a∗(b∗a) and (a∗(b∗a))∗a =

(a ∗ b) ∗ (a ∗ a) = (a ∗ b) ∗ a. Using associativity, we obtain

a ∗ (a ∗ (b ∗ a)) = a ∗ (b ∗ a) = (a ∗ b) ∗ a = (a ∗ (b ∗ a)) ∗ a.
The “noncommutativity’’ condition from the statement implies a ∗ (b ∗ a) = a, proving
the claim.

We apply this property as follows:

(a ∗ (b ∗ c)) ∗ (a ∗ c) = (a ∗ b) ∗ (c ∗ (a ∗ c)) = (a ∗ b) ∗ c,
(a ∗ c) ∗ (a ∗ (b ∗ c)) = (a ∗ (c ∗ a)) ∗ (b ∗ c) = a ∗ (b ∗ c).

Since (a ∗ b) ∗ c = a ∗ (b ∗ c) (by associativity), we obtain

(a ∗ (b ∗ c)) ∗ (a ∗ c) = (a ∗ c) ∗ (a ∗ (b ∗ c)).
This means that a ∗ (b ∗ c) and a ∗ c commute, so they must be equal, as desired.
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For an example of such a binary operation consider any set S endowed with the
operation a ∗ b = a for any a, b ∈ S.

276. Using the first law we can write

y ∗ (x ∗ y) = (x ∗ (x ∗ y)) ∗ (x ∗ y).
Now using the second law, we see that this is equal to x. Hence y ∗ (x ∗ y) = x.
Composing with y on the right and using the first law, we obtain

y ∗ x = y ∗ (y ∗ (x ∗ y)) = x ∗ y.
This proves commutativity.

For the second part, the setS of all integers endowed with the operation x∗y = −x−y
provides a counterexample. Indeed,

x ∗ (x ∗ y) = −x − (x ∗ y) = −x − (−x − y) = y

and

(y ∗ x) ∗ x = −(y ∗ x)− x = −(−y − x)− x = y.

Also, (1 ∗ 2) ∗ 3 = 0 and 1 ∗ (2 ∗ 3) = 4, showing that the operation is not associative.
(33rd W.L. Putnam Mathematical Competition, 1972)

277. Define r(x) = 0 ∗ x, x ∈ Q. First, note that

x ∗ (x + y) = (0 + x) ∗ (y + x) = 0 ∗ y + x = r(y)+ x.

In particular, for y = 0 we obtain x ∗ x = r(0)+ x = 0 ∗ 0 + x = x.
We will now prove a multiplicative property of r(x), namely that r(m

n
x) = m

n
r(x)

for any positive integersm and n. To this end, let us show by induction that for all y and
all positive integers n, 0 ∗ y ∗ · · · ∗ ny = nr(y). For n = 0 we have 0 = 0 · r(y), and
for n = 1 this follows from the definition of r(y). Assume that the property is true for
k ≤ n and let us show that it is true for n+ 1. We have

0 ∗ y ∗ · · · ∗ ny ∗ (n+ 1)y = 0 ∗ y ∗ · · · ∗ (ny ∗ ny) ∗ (n+ 1)y

= (0 ∗ y ∗ · · · ∗ ny) ∗ (ny ∗ (n+ 1)y)

= (n(0 ∗ y)) ∗ ((0 + ny) ∗ (y + ny))

= (0 ∗ y + (n− 1)(0 ∗ y)) ∗ (0 ∗ y + ny)

= (n− 1)r(y) ∗ ny + 0 ∗ y.
Using the induction hypothesis, (n− 1)r(y) ∗ ny = 0 ∗ y ∗ · · · ∗ (n− 1)y ∗ ny = nr(y)

(this works even when n = 1). Hence 0∗y∗· · ·∗(n+1)y = nr(y)+r(y) = (n+1)r(y),
which proves the claim.
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Using this and the associativity and commutativity of ∗, we obtain

2nr(y) = 0 ∗ y ∗ 2y ∗ · · · ∗ 2ny

= (0 ∗ ny) ∗ (y ∗ (n+ 1)y) ∗ (2y ∗ (n+ 2)y) ∗ · · · ∗ (ny ∗ 2ny)

= r(ny) ∗ (y ∗ (y + ny)) ∗ (2y ∗ (2y + ny)) ∗ · · · ∗ (ny ∗ (ny + ny)).

The first formula we have proved implies that this is equal to

(0 + r(ny)) ∗ (y + r(ny)) ∗ · · · ∗ (ny + r(ny)).

The distributive-like property of ∗ allows us to transform this into

(0 ∗ y ∗ 2y ∗ · · · ∗ ny)+ r(ny) = nr(y)+ r(ny).

Hence 2nr(y) = nr(y) + r(ny), or r(ny) = nr(y). Replacing y by x
n
, we obtain

r( x
n
) = 1

n
r(x), and hence r(m

n
x) = m

n
r(x), as desired.

Next, note that r ◦ r = r; hence r is the identity function on its image. Also,

r(z) = 0 ∗ z = (−z+ z) ∗ (0 + z) = (−z) ∗ 0 + z = r(−z)+ z,

or r(z)− r(−z) = z. Hence for z 	= 0, one of r(z) and r(−z) is nonzero. Let y be this
number. Since r(y) = y, we have y = r(y) − r(−y) = y − r(−y), so r(−y) = 0.
Also, if x = m

n
y, then r(x) = m

n
r(y) = m

n
y = x, and r(−x) = m

n
r(−y) = 0. If y > 0,

then r(y) = max(y, 0) and consequently r(x) = x = max(x, 0), for all x > 0, while
r(x) = 0 = max(x, 0) for all x < 0. Similarly, if y < 0, then r(y) = min(y, 0), and then
r(x) = min(x, 0) for all x ∈ Q. The general case follows from (a − b+ b) ∗ (0 + b) =
(a − b) ∗ 0 + b.

(American Mathematical Monthly, proposed by H. Derksen, solution by J. Dawson)

278. For x ∈ G and x′ its left inverse, let x ′′ ∈ G be the left inverse of x ′, meaning that
x ′′x ′ = e. Then

xx ′ = e(xx ′) = (x ′′x ′)(xx ′) = x ′′(x ′x)x ′ = x ′′(ex ′) = x ′′x ′ = e.

So x ′ is also a right inverse for x. Moreover,

xe = x(x ′x) = (xx ′)x = ex = x,

which proves that e is both a left and right identity. It follows that G is a group.

279. Let e ∈ G be the identity element. Set b = e in the relation from the statement.
Then

a = a ∗ e = (a⊥a)⊥(a⊥e) = (a⊥a)⊥a,
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and canceling a we obtain a⊥a = e, for all a ∈ G. Using this fact, we obtain

a ∗ b = (a⊥a)⊥(a⊥b) = e⊥(a⊥b) = a⊥b,
which shows that the composition laws coincide. Because a∗a = e, we see that a−1 = a,
so for a, b ∈ G,

ab = (ab)−1 = b−1a−1 = ba,

which proves the commutativity.
(D. Ştefănescu)

280. The fundamental theorem of arithmetic allows us to find the integers u and v such
that us + vt = 1. Since ab = ba, we have

ab = (ab)us+vt = (ab)us
(
(ab)t

)v = (ab)use = (ab)us = aus(bs)u = ause = aus.

Therefore,

br = ebr = arbr = (ab)r = ausr = (ar)us = e.

Using again the fundamental theorem of arithmetic we can find x, y such that xr+ys = 1.
Then

b = bxr+ys = (br)x(bs)y = e.

Applying the same argument, mutatis mutandis, we find that a = e, so the first part of
the problem is solved.

A counterexample for the case of a noncommutative group is provided by the cycles
of permutations a = (123) and b = (34567) in the permutation group S7 of order 7.
Then ab = (1234567) and a3 = b5 = (ab)7 = e.

(8th International Competition in Mathematics for University Students, 2001)

281. Set c = aba−1 and observe that ca = ab and that cn = e. We have

a = ea = cna = cn−1ca = cn−1ab = cn−2(ca)b = cn−2ab2,

and, inductively,

a = cn−kabk, 1 ≤ k ≤ n.

From a = abn, we obtain the desired conclusion bn = e.
(Gazeta Matematică (Mathematics Gazette, Bucharest), proposed by D. Bătineţu-

Giurgiu)

282. Applying the identity from the statement to the elements x and yx−1, we have
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xy2x−1 = x(yx−1)x(yx−1) = (yx−1)x(yx−1)x = y2.

Thus for anyx, y, we havexy2 = y2x. This means that squares commute with everything.
Using this fact, we rewrite the identity from the statement as

xyxyx−1y−1x−1y−1 = e

and proceed as follows:

e = xyxyx−1y−1x−1y−1 = xyxyx−2xy−2yx−2xy−2y

= xyxyy−2x−2xyxyy−2x−2 = (xyxyy−2x−2)2.

Because there are no elements of order 2, it follows that xyxyy−2x−2 = e and hence
xyxy = x2y2. Cancel an x and a y to obtain yx = xy. This proves that the group is
Abelian, and we are done.

(K.S. Williams, K. Hardy, The Red Book of Mathematical Problems, Dover, Mineola,
NY, 1996)

283. The first axiom shows that the squares of all elements in M are the same; denote
the common value by e. Then e2 = e, and from (ii), ae = a for all a ∈ M . Also,
a ∗ b = a(eb) for all a, b ∈ M . Let us verify the associativity of ∗. Using (iii) in its new
form e(bc) = cb, we obtain

a ∗ (b ∗ c) = a[e(b(ec))] = a[(ec)b].
Continue using (iv) as follows:

a[(ec)b] = [a(eb)][((ec)b)(eb)] = [a(eb)][(ec)e] = [a(eb)](ec) = (a ∗ b) ∗ c.
Here we used the fact that de = d, for the case d = ec. Thus associativity is proved.
The element e is a right identity by the following argument:

a ∗ e = a(e2e) = a(ee) = ae2 = ae = a.

The right inverse of a is ae, since

a ∗ (ea) = a[e(ea)] = a(ae) = a2 = e.

So there exists a right identity, and every element has a right inverse, which then implies
that (M, ∗) is a group.

(M. Becheanu, C. Vraciu, Probleme de Teoria Grupurilor (Problems in Group The-
ory), University of Bucharest, 1982)

284. How can we make the sum M interact with the multiplicative structure of �? The
idea is to squareM and use the distributivity of multiplication with respect to the sum of
matrices. If G1,G2, . . . ,Gk are the elements of �, then
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M2 = (G1 +G2 + · · · +Gk)
2 =

k∑
i=1

Gi

⎛⎝ k∑
j=1

Gj

⎞⎠ =
k∑
i=1

Gi

(∑
G∈�

G−1
i G

)

=
∑
G∈�

k∑
i=1

Gi(G
−1
i G) = k

∑
G∈�

G = kM.

Taking determinants, we find that (detM)2 = kn detM . Hence either detM = 0 or
detM is equal to the order of � raised to the nth power.

Remark. In fact, much more is true. The determinant of the sum of the elements of a
finite multiplicative group of matrices is nonzero only when the group consists of one
element, the identity, in which case it is equal to 1. This is the corollary of a basic fact in
representation theory.

A representation of a group is a homomorphism of the group into a group of matrices.
In our situation the group is already represented as a group of matrices. Arepresentation is
called irreducible if there does not exist a basis in which it can be decomposed into blocks.
Any representation of a finite group is the block sum of irreducible representations. The
simplest representation, called the trivial representation, sends all elements of the group
to the identity element. A result in representation theory states that for any nontrivial
irreducible representation of a finite group, the sum of the matrices of the representation
is zero. In an appropriately chosen basis, our group can be written as the block sum of
irreducible representations. If the group is nontrivial, then at least one representation is
nontrivial. In summing the elements of the group, the diagonal block corresponding to
this irreducible representation is the zero matrix. Taking the determinant, we obtain zero.

285. The condition from the statement implies that for all integers m and n,

f (m
√

2 + n
√

3) = f (0).

Because the ratio
√

2/
√

3 is irrational, the additive group generated by
√

2 and
√

3 is not
cyclic. It means that this group is dense in R. So f is constant on a dense subset of R.
Being continuous, it must be constant on the real axis.

286. The conclusion follows from the fact that the additive group

S = {n+ 2πm;m, n integers}
is dense in the real numbers. Indeed, by the result we just proved, we only need to check
that S is not cyclic. This is so because n and 2mπ cannot both be integer multiples of
the same number (they are incommensurable).

287. That 2k starts with a 7 is equivalent to the existence of an integerm such 2k

10m ∈ [7, 8).

Let us show that the set { 2k

10m | k,m integers} is dense in the positive real numbers.
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Canceling the powers of 2, this amounts to showing that { 2n

5m | m, n integers} is dense.
We further simplify the problem by applying the function log2 to the fraction. This
function is continuous, so it suffices to prove that {n−m log2 5 | m, n integers} is dense
on the real axis. This is an additive group, which is not cyclic since log2 5 is irrational
(and so 1 and log2 5 cannot both be integer multiples of the same number). It follows
that this group is dense in the real numbers, and the problem is solved.

(V.I.Arnol’d, Mathematical Methods of Classical Mechanics, Springer-Verlag, 1997)

288. If r is the original ratio of the sides, after a number of folds the ratio will be 2m3nr ,
where m and n are integer numbers. It suffices to show that the set {2m3nr | m, n ∈ Z}
is dense in the positive real axis. This is the same as showing that {2m3n | m, n ∈ Z} is
dense. Taking the logarithm, we reduce the problem to the fact that the additive group
{m+ n log2 3 | m, n ∈ Z} is dense in the real axis. And this is true since the group is not
cyclic.

(German Mathematical Olympiad)

289. Call the regular pentagon ABCDE and the set �. Composing a reflection across
AB with a reflection across BC, we can obtain a 108◦ rotation around B. The set �
is invariant under this rotation. There is a similar rotation around C, of the same angle
and opposite direction, which also preserves �. Their composition is a translation by
a vector that makes an angle of 36◦ with BC and has length 2 sin 54◦BC. Figure 65
helps us understand why this is so. Indeed, if P rotates to P ′ around B, and P ′ to P ′′
around C, then the triangle P ′BC transforms to the triangle P ′PP ′′ by a rotation around
P ′ of angle ∠CP ′P ′′ = 36◦ followed by a dilation of ratio P ′P ′′/P ′C = 2 sin 54◦.
Note that the translation preserves the set �. Reasoning similarly with vertices A and

B C

P

P

P"

Figure 65

D, and taking into account that AD is parallel to BC, we find a translation by a vector
of length 2 sin 54◦AD that makes an angle of 36◦ with BC and preserves �. Because
AD/BC = 2 sin 54◦ =

√
5+1
2 , the group GBC generated by the two translations is dense

in the group of all translations by vectors that make an angle of 36◦ with BC. The same
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is true if BC is replaced byAB. It follows that� is preserved both by the translations in
the groupGBC and in the analogous groupGAB . These generate a group that is dense in
the group of all translations of the plane. We conclude that � is a dense set in the plane,
as desired.

(communicated by K. Shankar)

290. The symmetry groups are, respectively, C2v, D2h, and D2d .

291. If x is an idempotent, then 1 − x is an idempotent as well. Indeed,

(1 − x)2 = 1 − 2x + x2 = 1 − 2x + x = 1 − x.

Thus there is an involution on M , x → 1 − x. This involution has no fixed points,
since x = 1 − x implies x2 = x − x2 or x = x − x = 0. But then 0 = 1 − 0 = 1,
impossible. Having no fixed points, the involution pairs the elements ofM , showing that
the cardinality of M is even.

(Gazeta Matematică (Mathematics Gazette, Bucharest), proposed by V. Zidaru)

292. We have y = y6 = (−y)6 = −y, hence 2y = 0 for any y ∈ R. Now let x be an
arbitrary element in R. Using the binomial formula, we obtain

x + 1 = (x + 1)6 = x6 + 6x5 + 15x4 + 20x3 + 15x2 + 6x + 1

= x4 + x2 + x + 1,

where we canceled the terms that had even coefficients. Hence x4 + x2 = 0, or x4 =
−x2 = x2. We then have

x = x6 = x2x4 = x2x2 = x4 = x2,

and so x2 = x, as desired. From the equality (x + y)2 = x + y we deduce xy + yx = 0,
so xy = −yx = yx for any x, y. This shows that the ring is commutative, as desired.

293. Substituting x by x + 1 in the relation from the statement, we find that

((x + 1)y)2 − (x + 1)2y2 = (xy)2 + xy2 + yxy + y2 − x2y2 − 2xy2 − y2

= yxy − xy2 = 0.

Hence xy2 = yxy for all x, y ∈ R. Substituting in this relation y by y + 1, we find that

xy2 + 2xy + x = yxy + yx + xy + x.

Using the fact that xy2 = yxy, we obtain xy = yx, as desired.

294. This problem generalizes the first example from the introduction. The idea of the
solution is similar. Now let v be the inverse of 1 − (xy)n. Then v(1 − (xy)n) =
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(1 − (xy)n)v = 1; hence v(xy)n = (xy)nv = v − 1. We claim that the inverse of
1 − (yx)n is 1 + (yx)n−1yvx. Indeed, we compute

(1 + (yx)n−1yvx)(1 − (yx)n) = 1 − (yx)n + (yx)n−1yvx − (yx)n−1yvx(yx)n

= 1 − (yx)n + (yx)n−1yvx − (yx)n−1yv(xy)nx

= 1 − (yx)n + (yx)n−1yvx − (yx)n−1y(v − 1)x = 1.

Similarly,

(1 − (yx)n)(1 + (yx)n−1yvx) = 1 − (yx)n + (yx)n−1yvx − (yx)n(yx)n−1yvx

= 1 − (yx)n + (yx)n−1yvx − (yx)n−1y(xy)nvx

= 1 − (yx)n + (yx)n−1yvx − (yx)n−1y(v − 1)x = 1.

It follows that 1 − (yx)n is invertible and its inverse is 1 + (yx)n−1yvx.

295. (a) Let x and z be as in the statement. We compute

(zxz− xz)2 = (zxz− xz)(zxz− xz)

= (zxz)(zxz)− (zxz)(xz)− (xz)(zxz)+ (xz)(xz)

= zxz2xz− zxzxz− xz2xz+ xzxz

= zxzxz− zxzxz− xzxz− xzxz = 0.

Therefore, (zxz−xz)2 = 0, and the property from the statement implies that zxz−xz = 0.
(b) We have seen in part (a) that if z is an idempotent, then xzx − xz = 0. The same

argument works, mutatis mutandis, to prove that zxz = zx. Hence xz = zxz = zx,
which shows that z is in the center of R, and we are done.

296. We will show that the elements

ac, a2c, a3c, . . . , anc, . . .

are distinct. Let us argue by contradiction assuming that there exist n > m such that
anc = amc. Multiplying by c on the left, we obtain ca(an−1c) = ca(am−1c), so by (iii),
ban−1c = bam−1c. Cancel b as allowed by hypothesis (ii) to obtain an−1c = am−1c. An
easy induction shows that akc = c, where k = n−m. Multiplying on the right by a and
using ca = b, we also obtain akb = b. The first condition shows that b commutes with
a, and so bak = b; canceling b yields ak = 1. Hence a is invertible and a−1 = ak−1.

The hypothesis ca = b implies

c = ba−1 = bak−1 = ak−1b = a−1b,

hence ac = b, contradicting (iii). The contradiction proves that the elements listed in the
beginning of the solution are all distinct, and the problem is solved.

(Gazeta Matematică (Mathematics Gazette, Bucharest), proposed by C. Guţan)
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297. Examining the sequence, we see that the mth term of the sequence is equal to n
exactly for those m that satisfy

n2 − n

2
+ 1 ≤ m ≤ n2 + n

2
.

So the sequence grows about as fast as the square root of twice the index. Let us rewrite
the inequality as

n2 − n+ 2 ≤ 2m ≤ n2 + n,

then try to solve for n. We can almost take the square root. And because m and n are
integers, the inequality is equivalent to

n2 − n+ 1

4
< 2m < n2 + n+ 1

4
.

Here it was important that n2 − n is even. And now we can take the square root. We
obtain

n− 1

2
<

√
2m < n+ 1

2
,

or

n <
√

2m+ 1

2
< n+ 1.

Now this happens if and only if n = �√2m + 1
2�, which then gives the formula for the

general term of the sequence

am =
⌊√

2m+ 1

2

⌋
, m ≥ 1.

(R. Graham, D. Knuth, O. Patashnik, Concrete Mathematics: A Foundation for
Computer Science, 2nd ed., Addison–Wesley, 1994)
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298. If we were given the recurrence relation xn = xn−1 + n, for all n, the terms of the
sequence would be the triangular numbers Tn = n(n+1)

2 . If we were given the recurrence

relation xn = xn−1 + n− 1, the terms of the sequence would be Tn−1 + 1 = n2−n+2
2 . In

our case,

n2 − n+ 2

2
≤ xn ≤ n2 + n

2
.

We expect xn = P(n)/2 for some polynomialP(n) = n2+an+b; in fact, we should have
xn = �P(n)/2� because of the jumps. From here one can easily guess that xn = �n2+1

2 �,
and indeed⌊

n2 + 1

2

⌋
=
⌊
(n− 1)2 + 1

2
+ 2(n− 1)+ 1

2

⌋
=
⌊
(n− 1)2 + 1

2
+ 1

2

⌋
+ (n− 1),

which is equal to � (n−1)2+1
2 � + (n− 1) if n is even, and to � (n−1)2+1

2 � + n if n is odd.

299. From the hypothesis it follows that a4 = 12, a5 = 25, a6 = 48. We observe that

a1

1
= a2

2
= 1,

a3

3
= 2,

a4

4
= 3,

a5

5
= 5,

a6

6
= 8

are the first terms of the Fibonacci sequence. We conjecture that an = nFn, for all n ≥ 1.
This can be proved by induction with the already checked cases as the base case.

The inductive step is

an+4 = 2(n+ 3)Fn+3 + (n+ 2)Fn+2 − 2(n+ 1)Fn+1 − nFn

= 2(n+ 3)Fn+3 + (n+ 2)Fn+2 − 2(n+ 1)Fn+1 − n(Fn+2 − Fn+1)

= 2(n+ 3)Fn+3 + 2Fn+2 − (n+ 2)(Fn+3 − Fn+2)

= (n+ 4)(Fn+3 + Fn+2) = (n+ 4)Fn+4.

This proves our claim.
(Revista Matematică din Timişoara (Timişoara Mathematics Gazette), proposed by

D. Andrica)

300. The relations

am + am = 1

2
(a2m + a0) and a2m + a0 = 1

2
(a2m + a2m)

imply a2m = 4am, as well as a0 = 0. We compute a2 = 4, a4 = 16. Also, a1 + a3 =
(a2 + a4)/2 = 10, so a3 = 9. At this point we guess that ak = k2 for all k ≥ 1.

We prove our guess by induction on k. Suppose that aj = j 2 for all j < k. The
given equation with m = k − 1 and n = 1 gives



Real Analysis 461

an = 1

2
(a2n−2 + a2)− an−2 = 2an−1 + 2a1 − an−2

= 2(n2 − 2n+ 1)+ 2 − (n2 − 4n+ 4) = n2.

This completes the proof.
(Russian Mathematical Olympiad, 1995)

301. First solution: If we compute some terms, a0 = 0, a1 = 2, a3 = 8, a4 = 34,
a5 = 144, we recognize Fibonacci numbers, namely F0, F3, F6, F9, and F12. So a good
working hypothesis is that an = F3n and also that bn = (Fn)

3, for all n ≥ 0, from which
the conclusion would then follow.

We use induction. Everything is fine for n = 0 and n = 1. Assuming ak = F3k for
all k ≤ n, we have

an+1 = 4F3n + F3n−3 = 3F3n + F3n + F3n−3

= 3F3n + F3n−1 + F3n−2 + F3n−3 = 3F3n + F3n−1 + F3n−1

= F3n + 2F3n + 2F3n−1 = F3n + 2F3n+1 = F3n + F3n+1 + F3n+1

= F3n+2 + F3n+1 = F3n+3 = F3(n+1),

which proves the first part of the claim.
For the second part we deduce from the given recurrence relations that

bn+1 = 3bn + 6bn−1 − 3bn−2 − bn−3, n ≥ 3.

We point out that this is done by substituting an = bn+1 + bn − bn−1 into the recurrence
relation for (an)n. On the one hand, bn = (Fn)

3 is true for n = 0, 1, 2, 3. The assumption
bk = (Fk)

3 for all k ≤ n yields

bn+1 = 3(Fn)
3 + 6(Fn−1)

3 − 3(Fn−2)
3 − (Fn−3)

3

= 3(Fn−1 + Fn−2)
3 + 6(Fn−1)

3 − 3(Fn−2)
3 − (Fn−1 − Fn−2)

3

= 8(Fn−1)
3 + 12(Fn−1)

2Fn−2 + 6Fn−1(Fn−2)
2 + (Fn−2)

3

= (2Fn−1 + Fn−2)
3 = (Fn+1)

3.

This completes the induction, and with it the solution to the problem.

Second solution: Another way to prove that bn = (Fn)
3 is to observe that both sequences

satisfy the same linear recurrence relation. Let

M =
(

1 1
1 0

)
.

We have seen before that

Mn =
(
Fn+1 Fn
Fn Fn−1

)
.

Now the conclusion follows from the equality M3n = (Mn)3.
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Remark. A solution based on the Binet formula is possible if we note the factorization

λ4 − 3λ3 − 6λ2 + 3λ+ 1 = (λ2 − 4λ− 1)(λ2 + λ− 1).

Setting the left-hand side equal to 0 gives the characteristic equation for the sequence
(bn)n, while setting the first factor on the right equal to 0 gives the characteristic equation
for (an)n.

(proposed by T. Andreescu for a Romanian Team Selection Test for the International
Mathematical Olympiad, 2003, remark by R. Gologan)

302. We compute u0 = 1 + 1, u1 = 2 + 1
2 , u2 = 2 + 1

2 , u3 = 8 + 1
8 . A good guess is

un = 2xn + 2−xn for some sequence of positive integers (xn)n.
The recurrence gives

2xn+1 + 2−xn+1 = 2xn+2xn−1 + 2−xn−2xn−1 + 2xn−2xn−1 + 2−xn+2xn−1 − 2x1 − 2−x1 .

In order to satisfy this we hope that xn+1 = xn+2xn−1 and that xn−2xn−1 = ±x1 = ±1.
The characteristic equation of the first recurrence is λ2 − λ− 2 = 0, with the roots 2 and
−1, and using the fact that x0 = 0 and x1 = 1 we get the general term of the sequence
xn = (2n−(−1)n)/3. Miraculously this also satisfies xn−2xn−1 = (−1)n+1 so the second
condition holds as well. We conclude that �un� = 2xn , and so �un� = 2[2n−(−1)n]/3.

(18th International Mathematical Olympiad, 1976, proposed by the UK)

303. We need to determine m such that bm > an > bm−1. It seems that the difficult part
is to prove an inequality of the form an > bm, which reduces to 3an−1 > 100bm−1 , or
an−1 > (log3 100)bm−1. Iterating, we obtain 3an−2 > (log3 100)100bm−2 , that is,

an−2 > log3(log3 100)+ ((log3 100)bm−2.

Seeing this we might suspect that an inequality of the form an > u+vbn, holding for
all n with some fixed u and v, might be useful in the solution. From such an inequality
we would derive an+1 = 3an > 3u(3v)bm . If 3v > 100, then an+1 > 3ubm+1, and if
3u > u+ v, then we would obtain an+1 > u+ vbm+1, the same inequality as the one we
started with, but with m+ 1 and n+ 1 instead of m and n.

The inequality 3v > 100 holds for v = 5, and 3u > u + 5 holds for u = 2. Thus
an > 2 + 5bm implies an+1 > 2 + 5bm+1. We have b1 = 100, a1 = 3, a2 = 27, a3 = 327,
and 2 + 5b1 = 502 < 729 = 36, so a3 > 2 + 5b1. We find that an > 2 + 5bn−2 for all
n ≥ 3. In particular, an ≥ bn−2.

On the other hand, an < bm implies an+1 = 3an < 100bm < bm+1, which combined
with a2 < b1 yields an < bn−1 for all n ≥ 2. Hence bn−2 < an < bn−1, which implies
that m = n− 1, and for n = 100, m = 99.

(short list of the 21st International Mathematical Olympiad, 1979, proposed by
Romania, solution by I. Cuculescu)
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304. Assume that we have found such numbers for every n. Then qn+1(x)−xqn(x)must
be divisible by p(x). But

qn+1(x)− xqn(x) = xn+1 − an+1x − bn+1 − xn+1 + anx
2 + bnx

= −an+1x − bn+1 + an(x
2 − 3x + 2)+ 3anx − 2an + bnx

= an(x
2 − 3x + 2)+ (3an + bn − an+1)x − (2an + bn+1),

and this is divisible by p(x) if and only if 3an + bn − an+1 and 2an + bn+1 are both
equal to zero. This means that the sequences an and bn are uniquely determined by the
recurrences a1 = 3, b1 = −2, an+1 = 3an + bn, bn+1 = −2an. The sequences exist and
are uniquely defined by the initial condition.

305. Divide through by the product (n + 1)(n + 2)(n + 3). The recurrence relation
becomes

xn

n+ 3
= 4

xn−1

n+ 2
+ 4

xn−2

n+ 1
.

The sequence yn = xn/(n+ 3) satisfies the recurrence

yn = 4yn−1 − 4yn−2.

Its characteristic equation has the double root 2. Knowing that y0 = 1 and y1 = 1, we
obtain yn = 2n − n2n−1. It follows that the answer to the problem is

xn = (n+ 3)2n − n(n+ 3)2n−1.

(D. Buşneag, I. Maftei, Teme pentru cercurile şi concursurile de matematică (Themes
for mathematics circles and contests), Scrisul Românesc, Craiova)

306. Define c = b/x1 and consider the matrix

A =
(

0 c
x1 a

)
.

It is not hard to see that

An =
(
cxn−1 cxn
xn xn+1

)
.

Using the equality detAn = (detA)n, we obtain

c(xn−1xn+1 − x2
n) = (−x1c)

n = (−b)n.
Hence x2

n − xn+1xn−1 = (−b)n−1x1, which does not depend on a.
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Remark. In the particular case a = b = 1, we obtain the well-known identity for the
Fibonacci sequence Fn+1Fn−1 − F 2

n = (−1)n+1.

307. A standard idea is to eliminate the square root. If we set bn = √
1 + 24an, then

b2
n = 1 + 24an, and so

b2
n+1 = 1 + 24an+1 = 1 + 3

2
(1 + 4an +√

1 + 24an)

= 1 + 3

2

(
1 + 1

6

(
b2
n − 1

)+ bn

)
= 1

4
(b2
n + 6bn + 9) =

(
bn + 3

2

)2

.

Hence bn+1 = 1
2bn + 3

2 . This is an inhomogeneous first-order linear recursion. We can
solve this by analogy with inhomogeneous linear first-order equations. Recall that if a, b
are constants, then the equation f ′(x) = af (x)+ b has the solution

f (x) = eax
∫
e−axbdx + ceax.

In our problem the general term should be

bn = 1

2n+1
+ 3

n∑
k=1

1

2k
, n ≥ 1.

Summing the geometric series, we obtain bn = 3+ 1
2n−2 , and the answer to our problem is

an = b2
n − 1

24
= 1

3
+ 1

2n
+ 1

3
· 1

22n−1
.

(proposed by Germany for the 22nd International Mathematical Olympiad, 1981)

308. Call the expression from the statement Sn. It is not hard to find a way to write it in
closed form. For example, if we let u = 1 + i

√
a, then Sn = 1

2(u
n + un).

Notice that un and un are both roots of the quadratic equation z2 − 2z + a + 1 = 0,
so they satisfy the recurrence relation xn+2 = 2xn+1 − (a + 1)xn. The same should be
true for Sn; hence

Sn+2 = 2Sn+1 − (a + 1)Sn, n ≥ 1.

One verifies that S1 = 1 and S2 = 1 − 2k are divisible by 2. Also, if Sn is divisible by
2n−1 and Sn+1 is divisible by 2n, then (a+1)Sn and 2Sn+1 are both divisible by 2n+1, and
hence so must be Sn+2. The conclusion follows by induction.

(Romanian Mathematical Olympiad, 1984, proposed by D. Miheţ)
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309. Denote the vertices of the octagon by A1 = A,A2, A3, A4, A5 = E,A6, A7, A8 in
successive order. Any time the frog jumps back and forth it makes two jumps, so to get
from A1 to any vertex with odd index, in particular to A5, it makes an even number of
jumps. This shows that a2n−1 = 0.

We compute the number of paths with 2n jumps recursively. Consider the case
n > 2. After two jumps, the frog ends at A1, A3, or A7. It can end at A1 via A2 or
A8. Also, the configurations where it ends at A3 or A7 are symmetric, so they can be
treated simultaneously. If we denote by b2n the number of ways of getting from A3 to
A5 in 2n steps, we obtain the recurrence a2n = 2a2n−2 + 2b2n−2. On the other hand, if
the frog starts at A3, then it can either return to A3 in two steps (which can happen in
two different ways), or end at A1 (here it is important that n > 2). Thus we can write
b2n = a2n−2 + 2b2n−2. In vector form the recurrence is(

a2n

b2n

)
=
(

2 2
1 2

)(
a2n−2

b2n−2

)
=
(

2 2
1 2

)n−1 (
a2

b2

)
.

To find the nth power of the matrix we diagonalize it. The characteristic equation is
λ2 − 4λ+ 2 = 0, with roots x = 2 + √

2 and y = 2 − √
2. The nth power of the matrix

will be of the form

X

(
xn 0
0 yn

)
X−1,

for some matrix X. Consequently, there exist constants α, β, determined by the initial
condition, such that a2n = αxn−1 + βyn−1. To determine α and β, note that a2 = 0,
b2 = 1, and using the recurrence relation, a4 = 2 and b4 = 3. We obtain α = 1√

2
and

β = − 1√
2
, whence

a2n = 1√
2
(xn−1 − yn−1), for n ≥ 1.

(21st International Mathematical Olympiad, 1979, proposed by Germany)

310. We first try a function of the form f (n) = n + a. The relation from the statement
yields a = 667, and hence f (n) = n + 667 is a solution. Let us show that this is the
only solution.

Fix some positive integer n and define a0 = n, and ak = f (f (· · · (f (n) · · · )),
where the composition is taken k times, k ≥ 1. The sequence (ak)k≥0 satisfies the
inhomogeneous linear recurrence relation

ak+3 − 3ak+2 + 6ak+1 − 4ak = 2001.

A particular solution is ak = 667k. The characteristic equation of the homogeneous
recurrence ak+3 − 3ak+2 + 6ak+1 − 4ak = 0 is
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λ3 − 3λ2 + 6λ− 4 = 0.

An easy check shows that λ1 = 1 is a solution to this equation. Since λ3 − 3λ2 +
6λ − 4 = (λ − 1)(λ2 − 2λ + 4), the other two solutions are λ2,3 = 1 ± i

√
3, that is,

λ2,3 = 2(cos π3 ± i sin π
3 ). It follows that the formula for the general term of a sequence

satisfying the recurrence relation is

ak = c1 + c22k cos
kπ

3
+ c32k sin

kπ

3
+ 667k, k ≥ 0,

with c1, c2, and c3 some real constants.
If c2 > 0, then a3(2m+1) will be negative for large m, and if c2 < 0, then a6m will be

negative for large m. Since f (n) can take only positive values, this implies that c2 = 0.
A similar argument shows that c3 = 0. It follows that ak = c1 + 667k. So the first term
of the sequence determines all the others. Since a0 = n, we have c1 = n, and hence
ak = n+ 667k, for all k. In particular, a1 = f (n) = n+ 667, and hence this is the only
possible solution.

(Mathematics Magazine, proposed by R. Gelca)

311. We compute x3 = 91, x4 = 436, x5 = 2089. And we already suggested by placing
the problem in this section that the solution should involve some linear recurrence. Let us
hope that the terms of the sequence satisfy a recurrence xn+1 = αxn+βxn−1. Substituting
n = 2 and n = 3 we obtain α = 5, β = −1, and then the relation is also verified for the
next term 2089 = 5 · 436 − 91. Let us prove that this recurrence holds in general.

If yn is the general term of this recurrence, then yn = arn + bsn, where

r = 5 + √
21

2
, s = 5 − √

21

2
, rs = 1, r − s = √

21;

and

a = 7 + √
21

14
, b = 7 − √

21

14
, ab = 1.

We then compute

yn+1 − y2
n

yn − 1
= yn+1yn−1 − y2

n

yn−1
= (arn+1 + bsn+1)(arn−1 + bsn−1)− (arn + bxn)2

arn−1 + bsn−1

= ab(rs)n−1(r − s)2

yn−1
= 3

yn − 1
.

Of course, 0 < 3
yn−1 < 1 for n ≥ 2. Because yn+1 is an integer, it follows that

yn+1 =
⌈
y2
n

yn−1

⌉
.
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Hence xn and yn satisfy the same recurrence. This implies that xn = yn for all n.
The conclusion now follows by induction if we rewrite the recurrence as (xn+1 − 1) =
5(xn − 1)− (xn−1 − 1)+ 3.

(proposed for the USA Mathematical Olympiad by G. Heuer)

312. From the recurrence relation for (an)n, we obtain

2an+1 − 3an =
√

5a2
n − 4,

and hence

4a2
n+1 − 12an+1an + 9a2

n = 5a2
n − 4.

After canceling similar terms and dividing by 4, we obtain

a2
n+1 − 3an+1an + a2

n = −1.

Subtracting this from the analogous relation for n− 1 instead of n yields

a2
n+1 − 3an+1an + 3anan−1 − a2

n−1 = 0.

This is the same as

(an+1 − an−1)(an+1 − 3an + an−1) = 0,

which holds for n ≥ 1. Looking at the recurrence relation we see immediately that the
sequence (an)n is strictly increasing, so in the above product the first factor is different
from 0. Hence the second factor is equal to 0, i.e.,

an+1 = 3an − an−1, n ≥ 2.

This is a linear recurrence that can, of course, be solved by the usual algorithm. But this
is a famous recurrence relation, satisfied by the Fibonacci numbers of odd index. A less
experienced reader can simply look at the first few terms, and then prove by induction
that an = F2n+1, n ≥ 1.

The sequence (bn)n also satisfies a recurrence relation that can be found by substituting
an = bn+1 − bn in the recurrence relation for (an)n. After computations, we obtain

bn+1 = 2bn + 2bn−1 − bn−2, n ≥ 3.

But now we are told that bn should be equal to (Fn)2, n ≥ 1. Here is a proof by
induction on n. It is straightforward to check the equality for n = 1, 2, 3. Assuming that
bk = (Fk)

2 for all k ≤ n, it follows that

bn+1 = 2(Fn)
2 + 2(Fn−1)

2 − (Fn−2)
2



468 Real Analysis

= (Fn + Fn−1)
2 + (Fn − Fn−1)

2 − (Fn−2)
2

= (Fn+1)
2 + (Fn−2)

2 − (Fn−2)
2 = (Fn+1)

2.

With this the problem is solved.
(Mathematical Reflections, proposed by T. Andreescu)

313. The function | sin x| is periodic with period π . Hence

lim
n→∞ | sin π

√
n2 + n+ 1| = lim

n→∞ | sin π(
√
n2 + n+ 1 − n)|.

But

lim
n→∞(

√
n2 + n+ 1 − n) = lim

n→∞
n2 + n+ 1 − n2

√
n2 + n+ 1 + n

= 1

2
.

It follows that the limit we are computing is equal to | sin π
2 |, which is 1.

314. The limit is computed as follows:

lim
n→∞

(
n

k

)(µ
n

)k (
1 − µ

n

)n−k

= lim
n→∞

n!
k!(n− k)!

⎛⎜⎝
µ

n

1 − µ

n

⎞⎟⎠
k (

1 − µ

n

)n
= 1

k! lim
n→∞

n(n− 1) · · · (n− k + 1)(
n

µ
− 1

)k · lim
n→∞

(
1 − µ

n

) n
µ

·µ

= eµ

k! lim
n→∞

nk − (1 + · · · + (k − 1))nk−1 + · · · + (−1)k−1(k − 1)!
1
µk
nk − (

k

1

)
1

µk−1n
k−1 + · · · + (−1)k

= 1

eµ · k! · 1
1
µk

= µk

eµ · k! .

Remark. This limit is applied in probability theory in the following context. Consider a
large population n in which an event occurs with very low probability p. The probability
that the event occurs exactly k times in that population is given by the binomial formula

P(k) =
(
n

k

)
pk(1 − p)n−k.

But for n large, the number (1 −p)n−k is impossible to compute. In that situation we set
µ = np (the mean occurrence in that population), and approximate the probability by
the Poisson distribution
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P(k) ≈ µk

ek · k! .

The exercise we just solved shows that this approximation is good.

315. Let us assume that the answer is negative. Then the sequence has a bounded
subsequence (xnk )k. The set {xxnk | k ∈ Z} is finite, since the indices xnk belong to a
finite set. But xxnk = n4

k, and this takes infinitely many values for k ≥ 1. We reached
a contradiction that shows that our assumption was false. So the answer to the question
is yes.

(Romanian Mathematical Olympiad, 1978, proposed by S. Rădulescu)

316. Define the sequence (bn)n by

bn = max{|ak|, 2n−1 ≤ k < 2n}.

From the hypothesis it follows that bn ≤ bn−1
2 . Hence 0 ≤ bn ≤ b1

2n−1 , which implies
that (bn)n converges to 0. We also have that |an| ≤ bn, for n ≥ 1, so by applying the
squeezing principle, we obtain that (an)n converges to zero, as desired.

(Romanian Mathematical Olympiad, 1975, proposed by R. Gologan)

317. First solution: Using the fact that limn→∞ n
√
a = 1, we pass to the limit in the

relation from the statement to obtain

1 + 1 + · · · + 1︸ ︷︷ ︸
k times

= 1 + 1 + · · · + 1︸ ︷︷ ︸
m times

.

Hence k = m. Using L’Hôpital’s theorem, one can prove that limx→0 x(a
x − 1) = ln a,

and hence limn→∞ n( n
√
a − 1) = ln a. Transform the relation from the hypothesis into

n( n
√
a1 − 1)+ · · · + n( n

√
ak − 1) = n(

n
√
b1 − 1)+ · · · + n(

n
√
bk − 1).

Passing to the limit with n → ∞, we obtain

ln a1 + ln a2 + · · · + ln ak = ln b1 + ln b2 + · · · + ln bk.

This implies that a1a2 · · · ak = b1b2 · · · bk, and we are done.

Second solution: FixN > k; then taking n = (N !)
m

for 1 ≤ m ≤ k, we see that the power-

sum symmetric polynomials in a1/N !
i agree with the power-sum symmetric polynomials

in b1/N !
i . Hence the elementary symmetric polynomials in these variables also agree and

hence there is a permutation π such that bi = aπ(i).
(Revista Matematică din Timişoara (Timişoara Mathematics Gazette), proposed by

D. Andrica, second solution by R. Stong)
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318. It is known that

lim
x→0+ x

x = 1.

Here is a short proof using L’Hôpital’s theorem:

lim
x→0+ x

x = lim
x→0+ e

x ln x = elimx→0+ x ln x = e
limx→0+ ln x

1
x = elimx→0+ (−x) = 1.

Returning to the problem, fix ε > 0, and choose δ > 0 such that for 0 < x < δ,∣∣xx − 1
∣∣ < ε.

Then for n ≥ 1
δ

we have∣∣∣∣∣n2
∫ 1

n

0
(xx+1 − x)dx

∣∣∣∣∣ ≤ n2
∫ 1

n

0
|xx+1 − x|dx,

= n2
∫ 1

n

0
x|xx − 1|dx < εn2

∫ 1
n

0
xdx = ε

2
.

It follows that

lim
n→∞

∫ 1
n

0
(xx+1 − x)dx = 0,

and so

lim
n→∞ n

2
∫ 1

n

0
xx+1dx = lim

n→∞ n
2
∫ 1

n

0
xdx = 1

2
.

(Revista Matematică din Timişoara (Timişoara Mathematics Gazette), proposed by
D. Andrica)

319. We will prove by induction on n ≥ 1 that

xn+1 >

n∑
k=1

kxk > a · n!,

from which it will follow that the limit is ∞.
For n = 1, we have x2 ≥ 3x1 > x1 = a. Now suppose that the claim holds for all

values up through n. Then

xn+2 ≥ (n+ 3)xn+1 −
n∑
k=1

kxk = (n+ 1)xn+1 + 2xn+1 −
n∑
k=1

kxk
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> (n+ 1)xn+1 + 2
n∑
k=1

kxk −
n∑
k=1

kxk =
n+1∑
k=1

kxk,

as desired. Furthermore, x1 > 0 by definition and x2, x3, . . . , xn are also positive by the
induction hypothesis. Therefore, xn+2 > (n + 1)xn+1 > (n + 1)(a · n!) = a · (n + 1)!.
This completes the induction, proving the claim.

(Romanian Team Selection Test for the International Mathematical Olympiad, 1999)

320. Denote λ = inf n≥1
xn
n

and for simplicity assume that λ > −∞. Fix ε > 0. Then
there exists n0 such that

xn0
n0

≤ λ+ ε. Let M = max1≤i≤n0 xi .
An integer m can be written as n0q + n1, with 0 ≤ n1 < q and q = � m

n0
�. From the

hypothesis it follows that xm ≤ qxn0 + xn1 ; hence

λ ≤ xm

m
≤ qxn0

m
+ xn1

m
≤ qn0

m
(λ+ ε)+ M

m
.

Therefore,

λ ≤ xm

m
≤
⌊
m
n0

⌋
m
n0

(λ+ ε)+ M

m
.

Since

lim
m→∞

� m
n0

�
m
n0

= 1 and lim
m→∞

M

m
= 0,

it follows that for large m,

λ ≤ xm

m
≤ λ+ 2ε.

Since ε was arbitrary, this implies

lim
n→∞

xn

n
= λ = inf

n≥1

xn

n
,

as desired.

321. We use the fact that

lim
x→0+ x

x = 1.

As a consequence, we have

lim
x→0+

xx+1

x
= 1.
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For our problem, let ε > 0 be a fixed small positive number. There exists n(ε) such
that for any integer n ≥ n(ε),

1 − ε <

(
k

n2

) k

n2 +1

k

n2

< 1 + ε, k = 1, 2, . . . , n.

From this, using properties of ratios, we obtain

1 − ε <

∑n
k=1

(
k

n2

) k

n2 +1∑n
k=1

k

n2

< 1 + ε, for n ≥ n(ε).

Knowing that
∑n

k=1 k = n(n+1)
2 , this implies

(1 − ε)
n+ 1

2n
<

n∑
k=1

(
k

n2

) k

n2 +1

< (1 + ε)
n+ 1

2n
, for n ≥ n(ε).

It follows that

lim
n→∞

n∑
k−1

(
k

n2

) k

n2 +1

= 1

2
.

(D. Andrica)

322. Assume that xn is a square for all n > M . Consider the integers yn = √
xn, for

n ≥ M . Because in base b,

b2n

b − 1
= 11 . . . 1︸ ︷︷ ︸

2n

.111 . . . ,

it follows that

lim
n→∞

b2n

b−1

xn
= 1.

Therefore,

lim
n→∞

bn

yn
= √

b − 1.

On the other hand,

(byn + yn+1)(byn − yn+1) = b2xn − xn+1 = bn+2 + 3b2 − 2b − 5.
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The last two relations imply

lim
n→∞(byn − yn+1) = lim

n→∞
bn+2

byn + yn+1
= b

√
b − 1

2
.

Here we used the fact that

lim
n→∞

bn+2

byn
= lim

n→∞
bn+2

yn+1
= b

√
b − 1.

Since byn−yn+1 is an integer, if it converges then it eventually becomes constant. Hence
there exists N > M such that byn − yn+1 = b

√
b−1
2 for n > N . This means that b − 1 is

a perfect square. If b is odd, then
√
b−1
2 is an integer, and so b divides b

√
b−1
2 . Since the

latter is equal to byn − yn+1 for n > N , and this divides bn+2 + 3b2 − 2b− 5, it follows
that b divides 5. This is impossible.

If b is even, then by the same argument b2 divides 5. Hence b = 10. In this case we
have indeed that xn = ( 10n+5

3 )2, and the problem is solved.
(short list of the 44th International Mathematical Olympiad, 2003)

323. Recall the double inequality(
1 + 1

n

)n
< e <

(
1 + 1

n

)n+1

, n ≥ 1.

Taking the natural logarithm, we obtain

n ln

(
1 + 1

n

)
< 1 < (n+ 1) ln

(
1 + 1

n

)
,

which yields the double inequality

1

n+ 1
< ln(n+ 1)− ln n <

1

n
.

Applying the one on the right, we find that

an − an−1 = 1

n
− ln(n+ 1)+ ln n > 0, for n ≥ 2,

so the sequence is increasing. Adding the inequalities

1 ≤ 1,

1

2
< ln 2 − ln 1,

1

3
< ln 3 − ln 2,
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· · ·
1

n
< ln n− ln(n− 1),

we obtain

1 + 1

2
+ 1

3
+ · · · + 1

n
< 1 + ln n < 1 + ln(n+ 1).

Therefore, an < 1, for all n. We found that the sequence is increasing and bounded,
hence convergent.

324. The sequence is increasing, so all we need to show is that it is bounded. The main
trick is to factor a

√
2. The general term of the sequence becomes

an = √
2

√√√√√1

2
+

√√√√2

4
+
√

3

8
+ · · · +

√
n

2n

<
√

2

√
1 +

√
1 +

√
1 + · · · + √

1.

Let bn =
√

1 +
√

1 + · · · + √
1, where there are n radicals. Then bn+1 = √

1 + bn. We
see that b1 = 1 < 2, and if bn < 2, then bn+1 <

√
1 + 2 < 2. Inductively we prove

that bn < 2 for all n. Therefore, an < 2
√

2 for all n. Being monotonic and bounded, the
sequence (an)n is convergent.

(Matematika v škole, 1971, solution from R. Honsberger, More Mathematical
Morsels, Mathematical Association of America, 1991)

325. We examine first the expression under the square root. Its zeros are −1±√
5

2 . In order

for the square root to make sense, an should be outside the interval (−1−√
5

2 , −1+√
5

2 ).

Since an ≥ 0 for n ≥ 2, being the square root of an integer, we must have an ≥ −1+√
5

2

for n ≥ 2. To simplify the notation, let r = −1+√
5

2 .
Now suppose by contradiction that a1 ∈ (−2, 1). Then

a2
2 = a2

1 + a1 − 1 =
(
a1 + 1

2

)2

− 5

4
<

(
3

2

)2

− 5

4
= 1,

so a2 ∈ [r, 1). Now if an ∈ [r, 1), then

a2
n+1 = a2

n + an − 1 < a2
n < 1.

Inductively we prove that an ∈ [r, 1) and an+1 < an. The sequence (an)n is bounded
and strictly decreasing; hence it has a limit L. This limit must lie in the interval [r, 1).
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Passing to the limit in the recurrence relation, we obtainL = √
L2 + L− 1, and therefore

L2 = L2 +L− 1. But this equation has no solution in the interval [r, 1), a contradiction.
Hence a1 cannot lie in the interval (−2, 1).

(Bulgarian Mathematical Olympiad, 2002)

326. This is the Bolzano–Weierstrass theorem. For the proof, let us call a term of the
sequence a giant if all terms following it are smaller. If the sequence has infinitely many
giants, they form a bounded decreasing subsequence, which is therefore convergent. If
the sequence has only finitely many giants, then after some rank each term is followed by
larger term. These terms give rise to a bounded increasing subsequence, which is again
convergent.

Remark. The idea can be refined to show that any sequence of mn+ 1 real numbers has
either a decreasing subsequence with m + 1 terms or an increasing subsequence with
n+ 1 terms.

327. Consider the truncations

sn = a1 − a2 + a3 − · · · ± an, n ≥ 1.

We are to show that the sequence (sn)n is convergent. For this we verify that the sequence
(sn)n is Cauchy. Because (an)n≥1 is decreasing, for all n > m,

|sn − sm| = am − am+1 + am+2 − · · · ± an

= am − (am+1 − am+2)− (am+3 − am+4)− · · · ,
where the sum ends either in an or in −(an−1 − an). All terms of this sum, except for the
first and maybe the last, are negative. Therefore, |sn− sm| ≤ am+ an, for all n > m ≥ 1.
As an → 0, this shows that the sequence (sn)n is Cauchy, and hence convergent.

(the Leibniz criterion)

328. For a triple of real numbers (x, y, z)define	(x, y, z) = max(|x−y|, |x−z|, |y−z|).
Let 	(a0, b0, c0) = δ. From the recurrence relation we find that

	(an+1, bn+1, cn+1) = 1

2
	(an, bn, cn), n ≥ 0.

By induction 	(an, bn, cn) = 1
2n δ. Also, max(|an+1 − an|, |bn+1 − bn|, |cn+1 − cn|) =

1
2	(an, bn, cn). We therefore obtain that |an+1 − an|, |bn+1 − bn|, |cn+1 − cn| are all less
than or equal to 1

2n δ. So for n > m ≥ 1, the absolute values |an − am|, |bn − bm|, and
|cn − cm| are less than (

1

2m
+ 1

2m+1
+ · · · + 1

2n

)
δ <

δ

2m
.
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This proves that the sequences are Cauchy, hence convergent. Because as n tends to
infinity 	(an, bn, cn) approaches 0, the three sequences converge to the same limit L.
Finally, because for all n, an+bn+cn = a0 +b0 +c0, we should have 3L = a0 +b0 +c0;
hence the common limit is (a0+b0+c0)

3 .

329. Because
∑
an converges, Cauchy’s criterion implies that

lim
n→∞(a�n/2�+1 + a�n/2�+2 + · · · + an) = 0.

By monotonicity

a�n/2�+1 + a�n/2�+2 + · · · + an ≥
⌈n

2

⌉
an,

so limn→∞�n2�an = 0. Consequently, limn→∞ n
2an = 0, and hence limn→∞ nan = 0, as

desired.
(Abel’s lemma)

330. Think of the larger map as a domain D in the plane. The change of scale from one
map to the other is a contraction, and since the smaller map is placed inside the larger,
the contraction maps D to D. Translating into mathematical language, a point such as
the one described in the statement is a fixed point for this contraction. And by the fixed
point theorem the point exists and is unique.

331. Define the function f (x) = ε sin x + t . Then for any real numbers x1 and x2,

|f (x1)− f (x2)| = |ε| · | sin x1 − sin x2| ≤ 2|ε| ·
∣∣∣∣sin

x1 − x2

2

∣∣∣∣ · ∣∣∣∣cos
x1 + x2

2

∣∣∣∣
≤ 2|ε| ·

∣∣∣∣sin
x1 − x2

2

∣∣∣∣ ≤ ε|x1 − x2|.

Hence f is a contraction, and there exists a unique x such that f (x) = ε sin x + t = x.
This x is the unique solution to the equation.

(J. Kepler)

332. Define f : (0,∞) → (0,∞), f (x) = 1
2(x + c

x
). Then f ′(x) = 1

2(1 − c

x2 ),
which is negative for x <

√
c and positive for x >

√
c. This shows that

√
c is a global

minimum for f and henceforth f ((0,∞)) ⊂ [√c,∞). Shifting indices, we can assume
that x0 ≥ √

c. Note that |f ′(x)| < 1
2 for x ∈ [√c,∞), so f is a contraction on this

interval. Because xn = f (f (· · · f (x0)), n ≥ 1, the sequence (xn)n converges to the
unique fixed point x∗ of f . Passing to the limit in the recurrence relation, we obtain
x∗ = 1

2(x
∗ + c

x∗ ), which is equivalent to the quadratic equation (x∗)2 − c = 0. We obtain
the desired limit of the sequence x∗ = √

c.
(Hero)
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333. Define

xn =
√

1 +
√

1 +
√

1 + · · · + √
1, n ≥ 1,

where in this expression there are n square roots. Note that xn+1 is obtained from xn by

replacing
√

1 by
√

1 + √
1 at the far end. The square root function being increasing, the

sequence (xn)n is increasing. To prove that the sequence is bounded, we use the recurrence
relation xn+1 = √

1 + xn, n ≥ 1. Then from xn < 2, we obtain that xn+1 = √
1 + xn <√

1 + 2 < 2, so inductively xn < 2 for alln. Being bounded and monotonic, the sequence
(xn)n is convergent. Let L be its limit (which must be greater than 1). Passing to the
limit in the recurrence relation, we obtain L = √

1 + L, or L2 − L − 1 = 0. The only
positive solution is the golden ratio

√
5+1
2 , which is therefore the limit of the sequence.

334. If the sequence converges to a certain limit L, then L = √
a + bL, so L is equal to

the (unique) positive root α of the equation x2 − bx − a = 0.
The convergence is proved by verifying that the sequence is monotonic and bounded.

The condition xn+1 ≥ xn translates to x2
n ≥ a + bxn, which holds if and only if xn > α.

On the other hand, if xn ≥ α, then x2
n+1 = a + bxn ≥ a + bα = α2; hence xn+1 ≥ α.

Similarly, if xn ≤ α, then xn+1 ≤ α. There are two situations. Either x1 < α, and then
by induction xn < α for all n, and hence xn+1 > xn for all n. In this case the sequence
is increasing and bounded from above by α; therefore, it is convergent, its limit being of
course α. Or x1 ≥ α, in which case the sequence is decreasing and bounded from below
by the same α, and the limit is again α.

335. By the AM–GM inequality, an < bn, n ≥ 1. Also,

an+1 − an = √
anbn − an = √

an(
√
bn − √

an) > 0;
hence the sequence (an)n is increasing. Similarly,

bn+1 − bn = an + bn

2
− bn = an − bn

2
< 0,

so the sequence bn is decreasing. Moreover,

a0 < a1 < a2 < · · · < an < bn < · · · < b1 < b0,

for all n, which shows that both sequences are bounded. By the Weierstrass theorem,
they are convergent. Let a = limn→∞ an and b = limn→∞ bn. Passing to the limit in the
first recurrence relation, we obtain a = √

ab, whence a = b. Done.

Remark. The common limit, denoted by M(a, b), is called the arithmetic–geometric
mean of the numbers a and b. It was Gauss who first discovered, as a result of laborious
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computations, that the arithmetic–geometric mean is related to elliptic integrals. The
relation that he discovered is

M(a, b) = π

4
· a + b

K
(
a−b
a+b

) ,
where

K(k) =
∫ 1

0

1√
(1 − t2)(1 − k2t2)

dt

is the elliptic integral of first kind. It is interesting to note that this elliptic integral is
used to compute the period of the spherical pendulum. More precisely, for a pendulum
described by the differential equation

d2θ

dt2
+ ω2 sin θ = 0,

with maximal angle θmax, the period is given by the formula

P = 2
√

2

ω
K

(
sin

(
1

2
θmax

))
.

336. The function fn(x) = xn+x−1 has positive derivative on [0, 1], so it is increasing
on this interval. From fn(0) · fn(1) < 0 it follows that there exists a unique xn ∈ (0, 1)
such that f (xn) = 0.

Since 0 < xn < 1, we have xn+1
n +xn−1 < xnn +xn−1 = 0. Rephrasing, this means

that fn+1(xn) < 0, and so xn+1 > xn. The sequence (xn)n is increasing and bounded,
thus it is convergent. Let L be its limit. There are two possibilities, either L = 1, or
L < 1. But L cannot be less than 1, for when passing to the limit in xnn + xn − 1 = 0,
we obtain L− 1 = 0, or L = 1, a contradiction. Thus L = 1, and we are done.

(Gazeta Matematică (Mathematics Gazette, Bucharest), proposed by A. Leonte)

337. Let

xn =

√√√√
1 + 2

√
1 + 2

√
1 + · · · + 2

√
1 + 2

√
1969

with the expression containing n square root signs. Note that

x1 − (1 + √
2) = √

1969 − (1 + √
2) < 50.

Also, since
√

1 + 2(1 + √
2) = 1 + √

2, we have
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xn+1 − (1 + √
2) = √

1 + 2xn −
√

1 + 2(1 + √
2) = 2(xn − (1 − √

2))
√

1 + 2xn +
√

1 + 2(1 + √
2)

<
xn − (1 + √

2)

1 + √
2

.

From here we deduce that

x1969 − (1 + √
2) <

50

(1 + √
2)1968

< 10−3,

and the approximation of x1969 with two decimal places coincides with that of 1 + √
2 =

2.41. This argument proves also that the limit of the sequence is 1 + √
2.

(St. Petersburg Mathematical Olympiad, 1969)

338. Write the equation as√
x + 2

√
x + · · · + 2

√
x + 2

√
x + 2x = x.

We can iterate this equality infinitely many times, always replacing the very last x by its
value given by the left-hand side. We conclude that x should satisfy√

x + 2
√
x + 2

√
x + 2 · · · = x,

provided that the expression on the left makes sense! Let us check that indeed the
recursive sequence given by x0 = x, and xn+1 = √

x + 2xn, n ≥ 0, converges for any
solution x to the original equation. Squaring the equation, we find that x < x2, hence
x > 1. But then xn+1 < xn, because it reduces to x2

n − 2xn + x > 0. This is always
true, since when viewed as a quadratic function in xn, the left-hand side has negative
discriminant. Our claim is proved, and we can now transform the equation, the one with
infinitely many square roots, into the much simpler

x = √
x + 2x.

This has the unique solution x = 3, which is also the unique solution to the equation
from the statement, and this regardless of the number of radicals.

(D.O. Shklyarski, N.N. Chentsov, I.M. Yaglom, Selected Problems and Theorems in
Elementary Mathematics, Arithmetic and Algebra, Mir, Moscow)

339. The sequence satisfies the recurrence relation

xn+2 =
√

7 −√
7 + xn, n ≥ 1,
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with x1 = √
7 and x2 =

√
7 − √

7. Let us first determine the possible values of the limit
L, assuming that it exists. Passing to the limit in the recurrence relation, we obtain

L =
√

7 − √
7 + L.

Squaring twice, we obtain the polynomial equation L4 − 14L2 −L+ 42 = 0. Two roots
are easy to find by investigating the divisors of 42, and they are L = 2 and L = −3. The
other two are L = 1

2 ±
√

29
2 . Only the positive roots qualify, and of them 1

2 +
√

29
2 is not

a root of the original equation, since

1

2
+

√
29

2
> 3 >

√
7 − √

7 + 3 >

√√√√
7 −

√
7 + 1

2
+

√
29

2
.

So the only possible value of the limit is L = 2.
Let xn = 2 + αn. Then α1, α2 ∈ (0, 1). Also,

αn+2 = 3 − √
9 + αn√

7 − √
9 + αn + 4

.

If αn ∈ (0, 1), then

0 > αn+2 >
3 − √

9 + αn

4
≥ −1

2
αn,

where the last inequality follows from 3 + 2αn ≥ √
9 + αn. Similarly, if αn ∈ (−1, 0),

then

0 < αn+2 <
3 − √

9 + αn

4
≤ 1

2
|αn|,

where the last inequality follows from 3 <
√

9 − |αn| + 2α. Inductively, we obtain
that αn ∈ (−2−�n/2�, 2−�n/2�), and hence αn → 0. Consequently, the sequence (xn)n is
convergent, and its limit is 2.

(13th W.L. Putnam Mathematics Competition, 1953)

340. The solution is a direct application of the Cesàro–Stolz theorem. Indeed, if we let
an = ln un and bn = n, then

ln
un+1

un
= ln un+1 − ln un = an+1 − an

bn+1 − bn

and

ln n
√
un = 1

n
ln un = an

bn
.
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The conclusion follows.

341. In view of the Cesàro–Stolz theorem, it suffices to prove the existence of and to
compute the limit

lim
n→∞

(n+ 1)p

(n+ 1)p+1 − np+1
.

We invert the fraction and compute instead

lim
n→∞

(n+ 1)p+1 − np+1

(n+ 1)p
.

Dividing both the numerator and denominator by (n+ 1)p+1, we obtain

lim
n→∞

1 − (
1 − 1

n+1

)p+1

1
n+1

,

which, with the notation h = 1
n+1 and f (x) = (1 − x)p+1, becomes

− lim
h→0

f (h)− f (0)

h
= −f ′(0) = p + 1.

We conclude that the required limit is 1
p+1 .

342. An inductive argument shows that 0 < xn < 1 for all n. Also, xn+1 = xn−x2
n < xn,

so (xn)n is decreasing. Being bounded and monotonic, the sequence converges; let x be
its limit. Passing to the limit in the defining relation, we find that x = x − x2, so x = 0.

We now apply the Cesàro–Stolz theorem. We have

lim
n→∞ nxn = lim

n→∞
n
1
xn

= lim
n→∞

n+ 1 − n
1

xn+1
− 1

xn

= lim
n→∞

1
1

xn−x2
n

− 1
xn

= lim
n→∞

xn − x2
n

1 − (1 − xn)
= lim

n→∞(1 − xn) = 1,

and we are done.

343. It is not difficult to see that limn→∞ xn = 0. Because of this fact,

lim
n→∞

xn

sin xn
= 1.

If we are able to find the limit of

n
1

sin2 xn

,
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then this will equal the square of the limit under discussion. We use the Cesàro–Stolz
theorem.

Suppose 0 < x0 ≤ 1 (the cases x0 < 0 and x0 = 0 being trivial; see above). If
0 < xn ≤ 1, then 0 < arcsin(sin2 xn) < arcsin(sin xn) = xn, so 0 < xn+1 < xn. It
follows by induction on n that xn ∈ (0, 1] for all n and xn decreases to 0. Rewriting the
recurrence as sin xn+1 = sin xn

√
1 − sin4 xn − sin2 xn cos xn gives

1

sin xn+1
− 1

sin xn
= sin xn − sin xn+1

sin xn sin xn+1

= sin xn − sin xn
√

1 − sin4 xn + sin2 xn cos xn

sin xn(sin xn
√

1 − sin4 xn − sin2 xn cos xn)

= 1 −
√

1 − sin4 xn + sin xn cos xn

sin xn
√

1 − sin4 xn − sin2 xn cos xn

=
sin4 xn

1+
√

1−sin4 xn

+ sin xn cos xn

sin xn
√

1 − sin4 xn − sin2 xn cos xn

=
sin3 xn

1+
√

1−sin4 xn

+ cos xn√
1 − sin4 xn − sin xn cos xn

.

Hence

lim
n→∞

(
1

sin xn+1
− 1

sin xn

)
= 1.

From the Cesàro–Stolz theorem it follows that limn→∞ 1
n sin xn

= 1, and so we have
limn→∞ nxn = 1.

(Gazeta Matematică (Mathematics Gazette, Bucharest), 2002, proposed by
T. Andreescu)

344. We compute the square of the reciprocal of the limit, namely limn→∞ 1
nx2
n
. To this

end, we apply the Cesàro–Stolz theorem to the sequences an = 1
x2
n

and bn = n. First,
note that limn→∞ xn = 0. Indeed, in view of the inequality 0 < sin x < x on (0, π), the
sequence is bounded and decreasing, and the limit L satisfies L = sinL, so L = 0. We
then have

lim
n→∞

(
1

x2
n+1

− 1

x2
n

)
= lim

n→∞

(
1

sin2 xn
− 1

x2
n

)
= lim

n→∞
x2
n − sin2 xn

x2
n sin2 xn

= lim
xn→0

x2
n − 1

2(1 − cos 2xn)
1
2x

2
n(1 − cos 2xn)

= lim
xn→0

2x2
n −

[
(2xn)2

2! − (2xn)4

4! + · · ·
]

x2
n

[
(2xn)2

2! − (2xn)4

4! + · · ·
]
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= 24/4!
22/2! = 1

3
.

We conclude that the original limit is
√

3.
(J. Dieudonné, Infinitesimal Calculus, Hermann, 1962, solution by Ch. Radoux)

345. Through a change of variable, we obtain

bn =
∫ n

0 f (t)dt

n
= xn

yn
,

where xn = ∫ n
0 f (t)dt and yn = n. We are in the hypothesis of the Cesàro–Stolz theorem,

since (yn)n is increasing and unbounded and

xn+1 − xn

yn+1 − yn
=
∫ n+1

0 f (t)dt − ∫ n
0 f (t)dt

(n+ 1)− n
=
∫ n+1

n

f (t)dt =
∫ 1

0
f (n+ x)dx = an,

which converges. It follows that the sequence (bn)n converges; moreover, its limit is the
same as that of (an)n.

(proposed by T. Andreescu for the W.L. Putnam Mathematics Competition)

346. The solution is similar to that of problem 342. Because P(x) > 0, for x =
1, 2, . . . , n, the geometric mean is well defined. We analyze the two sequences separately.
First, let

Sn,k = 1 + 2k + 3k + · · · + nk.

Because

lim
n→∞

Sn+1,k − Sn,k

(n+ 1)k+1 − nk+1
= lim

n→∞
(n+ 1)k(

k+1
1

)
nk + (

k+1
2

)
nk−1 + · · · + 1

= 1

k + 1
,

by the Cesàro–Stolz theorem we have that

lim
n→∞

Sn,k

nk+1
= 1

k + 1
.

Writing

An = P(1)+ P(2)+ · · · + P(n)

n
= am

Sn,m

n
+ am−1

Sn,m−1

n
+ · · · + am,

we obtain

lim
n→∞

An

nm
= am

m+ 1
.
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Now we turn to the geometric mean. Applying the Cesàro–Stolz theorem to the sequences

un = ln
P(1)

1m
+ ln

P(2)

2m
+ · · · + ln

P(n)

nm

and vn = n, n ≥ 1, we obtain

lim
n→∞

un

vn
= lim

n→∞ ln
Gn

(n!)m/n = lim
n→∞ ln

P(n)

nm
= ln am.

We therefore have

lim
n→∞

An

Gn

·
(

n
√
n!
n

)m
= 1

m+ 1
.

Now we can simply invoke Stirling’s formula

n! ≈ nne−n
√

2πn,

or we can argue as follows. If we let un = n!
nn

, then the Cesàro–Stolz theorem applied to
ln un and vn = n shows that if un+1

un
converges, then so does n

√
un, and to the same limit.

Because

lim
n→∞

un+1

un
= lim

n→∞

(
n

n+ 1

)n
= 1

e
,

we have

lim
n→∞

n
√
n!
n

= 1

e
.

Therefore,

lim
n→∞

An

Gn

= em

m+ 1
.

(Gazeta Matematică (Mathematics Gazette, Bucharest), 1937, proposed by T. Popo-
viciu)

347. Clearly, (an)n≥0 is an increasing sequence. Assume that an is bounded. Then it must
have a limit L. Taking the limit of both sides of the equation, we have

lim
n→∞ an+1 = lim

n→∞ an + lim
n→∞

1
k
√
an
,

or L = L + 1
k√
L

, contradiction. Thus limn→∞ an = +∞ and dividing the equation by

an, we get limn→∞ an+1
an

= 1.
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Let us write

lim
n→∞

ak+1
n

nk
=
⎛⎝ lim
n→∞

a
k+1
k

n

n

⎞⎠k

.

Using the Cesàro–Stolz theorem, we have

lim
n→∞

a
k+1
k

n

n
= lim

n→∞
a
k+1
k

n+1 − a
k+1
k

n

n+ 1 − n
= lim

n→∞
k

√
ak+1
n+1 − k

√
ak+1
n

= lim
n→∞

ak+1
n+1 − ak+1

n(
k

√
ak+1
n+1

)k−1

+
(

k

√
ak+1
n+1

)k−2
k
√
ak+1
n + · · · +

(
k
√
ak+1
n

)k−1

= lim
n→∞

(an+1 − an)(a
k
n+1 + ak−1

n+1an + · · · + akn)(
k

√
ak+1
n+1

)k−1

+
(

k

√
ak+1
n+1

)k−2
k
√
ak+1
n + · · · +

(
k
√
ak+1
n

)k−1

= lim
n→∞

akn+1 + ak−1
n+1an + · · · + akn

k
√
an

((
k

√
ak+1
n+1

)k−1

+
(

k

√
ak+1
n+1

)k−2
k
√
ak+1
n + · · · +

(
k
√
ak+1
n

)k−1
) .

Dividing both sides by akn, we obtain

lim
n→∞

a
k+1
k

n

n
= lim

n→∞

(
an+1
an

)k +
(
an+1
an

)k−1 + · · · + 1(
an+1
an

) (k+1)(k−1)
k +

(
an+1
an

) (k+1)(k−2)
k + · · · + 1

.

Since limn→∞ an+1
an

= 1, we obtain

lim
n→∞

a
k+1
k

n

n
= k + 1

k
.

Hence

lim
n→∞

ak+1
n

nk
=
(

1 + 1

k

)k
.

(67th W.L. Putnam Mathematical Competition, proposed by T.Andreescu; the special
case k = 2 was the object of the second part of a problem given at the regional round of
the Romanian Mathematical Olympiad in 2004)

348. Assume no such ξ exists. Then f (a) > a and f (b) < b. Construct recursively the
sequences (an)n≥1 and (bn)n≥1 with a1 = a, b1 = b, and
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an+1 = an and bn+1 = an + bn

2
if f

(
an + bn

2

)
<
an + bn

2
,

or

an+1 = an + bn

2
and bn+1 = bn if f

(
an + bn

2

)
>
an + bn

2
.

Because bn − an = b−a
2n → 0, the intersection of the nested sequence of intervals

[a1, b1] ⊃ [a2, b2] ⊃ [a3, b3] ⊃ · · · ⊃ [an, bn] ⊃ · · ·
consists of one point; call it ξ . Note that

ξ = lim
n→∞ an = lim

n→∞ bn.

We have constructed the two sequences such that an < f (an) < f (bn) < bn for all n,
and the squeezing principle implies that (f (an))n and (f (bn))n are convergent, and

lim
n→∞ f (an) = lim

n→∞ f (bn) = ξ.

Now the monotonicity of f comes into play. From an ≤ ξ ≤ bn, we obtain f (an) ≤
f (ξ) ≤ f (bn). Again, by the squeezing principle,

f (ξ) = lim
n→∞ f (an) = lim

n→∞ f (bn) = ξ.

This contradicts our initial assumption, proving the existence of a point ξ with the desired
property.

Remark. This result is known as Knaster’s theorem. Its most general form is the Knaster–
Tarski theorem: Let L be a complete lattice and let f : L → L be an order-preserving
function. Then the set of fixed points of f inL is also a complete lattice, and in particular
this set is nonempty.

349. Let P1(x) = x and Pn+1(x) = Pn(x)(Pn(x) + 1
n
), for n ≥ 1. Then Pn(x) is a

polynomial of degree 2n−1 with positive coefficients and xn = Pn(x1). Because the
inequality xn+1 > xn is equivalent to xn > 1 − 1

n
, it suffices to show that there exists a

unique positive real number t such that 1 − 1
n
< Pn(t) < 1 for all n. The polynomial

function Pn(x) is strictly increasing for x ≥ 0, and Pn(0) = 0, so there exist unique
numbers an and bn such that Pn(an) = 1 − 1

n
and Pn(bn) = 1, respectively. We have that

an < an+1, since Pn+1(an) = 1 − 1
n

and Pn+1(an+1) = 1 − 1
n+1 . Similarly, bn+1 < bn,

since Pn+1(bn+1) = 1 and Pn+1(bn) = 1 + 1
n
.

It follows by induction on n that the polynomial function Pn(x) is convex for x ≥ 0,
since
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P ′′
n+1(x) = P ′′

n (x)

(
2Pn(x)+ 1

n

)
+ (P ′

n(x))
2,

and Pn(x) ≥ 0, for x ≥ 0. Convexity implies

Pn(x) ≤ Pn(bn)− P(0)

bn − 0
x = x

bn
, for 0 ≤ x ≤ bn.

In particular, 1 − 1
n

= Pn(an) ≤ an
bn

. Together with the fact that bn ≤ 1, this means that

bn − an ≤ 1
n
. By Cantor’s nested intervals theorem there exists a unique number t such

that an < t < bn for every n. This is the unique number satisfying 1 − 1
n
< Pn(t) < 1

for all n. We conclude that t is the unique number for which the sequence xn = Pn(t)

satisfies 0 < xn < xn+1 < 1 for every n.
(26th International Mathematical Olympiad, 1985)

350. The answer to the question is yes. We claim that for any sequence of positive integers
nk, there exists a number γ > 1 such that (�γ k�)k and (nk)k have infinitely many terms
in common. We need the following lemma.

Lemma. For any α, β, 1 < α < β, the set ∪∞
k=1[αk, βk − 1] contains some interval of

the form (a,∞).

Proof. Observe that (β/α)k → ∞ as k → ∞. Hence for large k, αk+1 < βk − 1, and
the lemma follows.

Let us return to the problem and prove the claim. Fix the numbers α1 and β1,
1 < α1 < β1. Using the lemma we can find some k1 such that the interval [αk1

1 , β
k1
1 − 1]

contains some terms of the sequence (nk)k. Choose one of these terms and call it t1.
Define

α2 = t
1/k1
1 , β2 =

(
t1 + 1

2

)1/k1

.

Then [α2, β2] ⊂ [α1, β1], and for any x ∈ [α2, β2], �xk1� = t1. Again by the lemma,
there exists k2 such that [αk2

2 , β
k2
2 − 1] contains a term of (nk)k different from n1. Call

this term t2. Let

α3 = t
1/k2
2 , β3 =

(
t2 + 1

2

)1/k2

.

As before, [α3, β3] ⊂ [α2, β2] and �xk2� = t2 for any x ∈ [α3, β3]. Repeat the con-
struction infinitely many times. By Cantor’s nested intervals theorem, the intersection
of the decreasing sequence of intervals [αj , βj ], j = 1, 2, . . . , is nonempty. Let γ be
an element of this intersection. Then �γ kj � = tj , j = 1, 2, . . . , which shows that the
sequence (�γ j�)j contains a subset of the sequence (nk)k. This proves the claim.
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To conclude the solution to the problem, assume that the sequence (an)n does not
converge to 0. Then it has some subsequence (ank )k that approaches a nonzero (finite or
infinite) limit as n → ∞. But we saw above that this subsequence has infinitely many
terms in common with a sequence that converges to zero, namely with some (a�γ k�)k.
This is a contradiction. Hence the sequence (an)n converges to 0.

(Soviet Union University Student Mathematical Olympiad, 1975)

351. The solution follows closely that of the previous problem. Replacing f by |f | we
may assume that f ≥ 0. We argue by contradiction. Suppose that there exists a > 0
such that the set

A = f −1((a,∞)) = {x ∈ (0,∞) | f (x) > a}
is unbounded. We want to show that there exists x0 ∈ (0,∞) such that the sequence
(nx0)n≥1 has infinitely many terms in A. The idea is to construct a sequence of closed
intervals I1 ⊃ I2 ⊃ I3 ⊃ · · · with lengths converging to zero and a sequence of positive
integers n1 < n2 < n3 < · · · such that nkIk ⊂ A for all k ≥ 1.

Let I1 be any closed interval in A of length less than 1 and let n1 = 1. Exactly as
in the case of the previous problem, we can show that there exists a positive number m1

such that ∪m≥m1mI1 is a half-line. Thus there exists n2 > n1 such that n2I1 intersects
A. Let J2 be a closed interval of length less than 1 in this intersection. Let I2 = 1

n2
J2.

Clearly, I2 ⊂ I1, and the length of I2 is less than 1
n2

. Also, n2I2 ⊂ A. Inductively, let
nk > nk−1 be such that nkIk−1 intersects A, and let Jk be a closed interval of length less
than 1 in this intersection. Define Ik = 1

nk
Jk.

We found the decreasing sequence of intervals I1 ⊃ I2 ⊃ I3 ⊃ · · · and positive
integers n1 < n2 < n3 < · · · such that nkIk ⊂ A. Cantor’s nested intervals theorem im-
plies the existence of a number x0 in the intersection of these intervals. The subsequence
(nkx0)k lies in A, which means that (nx0)n has infinitely many terms in A. This implies
that the sequence f (nx0) does not converge to 0, since it has a subsequence bounded
away from zero. But this contradicts the hypothesis. Hence our assumption was false,
and therefore limx→∞ f (x) = 0.

Remark. This result is known as Croft’s lemma. It has an elegant proof using the Baire
category theorem.

352. Adding a few terms of the series, we can guess the identity

1

1 + x
+ 2

1 + x2
+ · · · + 2n

1 + x2n
= 1

x − 1
+ 2n+1

1 − x2n+1 , n ≥ 1.

And indeed, assuming that the formula holds for n, we obtain

1

1 + x
+ 2

1 + x2
+ · · · + 2n

1 + x2n
+ 2n+1

1 + x2n+1 = 1

x − 1
+ 2n+1

1 − x2n+1 + 2n+1

1 + x2n+1
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= 1

x − 1
+ 2n+2

1 − x2n+2 .

This completes the inductive proof.
Because

1

x − 1
+ lim

n→∞
2n+1

1 − x2n+1 = 1

x − 1
+ lim

m→∞
m

1 − xm
= 1

x − 1
,

our series converges to 1/(x − 1).
(C. Năstăsescu, C. Niţă, M. Brandiburu, D. Joiţa, Exerciţii şi Probleme de Algebră

(Exercises and Problems in Algebra), Editura Didactică şi Pedagogică, Bucharest, 1983)

353. The series clearly converges for x = 1. We will show that it does not converge for
x 	= 1.

The trick is to divide through by x − 1 and compare to the harmonic series. By the
mean value theorem applied to f (t) = t1/n, for each n there exists cn between x and 1
such that

n
√
x − 1

x − 1
= 1

n
c

1
n
−1.

It follows that

n
√
x − 1

x − 1
>

1

n
(max(1, x))

1
n
−1 >

1

n
(max(1, x))−1.

Summing, we obtain

∞∑
n=1

n
√
x − 1

x − 1
≥ (max(1, x))−1

∞∑
n=1

1

n
= ∞,

which proves that the series diverges.
(G.T. Gilbert, M.I. Krusemeyer, L.C. Larson, The Wohascum County Problem Book,

MAA, 1996)

354. Using the AM–GM inequality we have

∞∑
n=1

√
anan+1 ≤

∞∑
n=1

an + an+1

2
= 1

2

∞∑
n=1

an + 1

2

∞∑
n=2

an < ∞.

Therefore, the series converges.

355. There are exactly 8 · 9n−1 n-digit numbers in S (the first digit can be chosen in 8
ways, and all others in 9 ways). The least of these numbers is 10n. We can therefore
write
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∑
xj<10n

1

xj
=

n∑
i=1

∑
10i−1≤xj<10i

1

xj
<

n∑
i=1

∑
10i−1≤xj<10i

1

10i−1

=
n∑
i=1

8 · 9i−1

10i−1
= 80

(
1 −

(
9

10

)n)
.

Letting n → ∞, we obtain the desired inequality.

356. Define the sequence

yn = xn + 1 + 1

22
+ · · · + 1

(n− 1)2
, n ≥ 2.

By the hypothesis, (yn)n is a decreasing sequence; hence it has a limit. But

1 + 1

22
+ · · · + 1

(n− 1)2
+ · · ·

converges to a finite limit (which is π2

6 as shown by Euler), and therefore

xn = yn − 1 − 1

22
− · · · − 1

(n− 1)2
, n ≥ 2,

has a limit.
(P.N. de Souza, J.N. Silva, Berkeley Problems in Mathematics, Springer, 2004)

357. We have

sin π
√
n2 + 1 = (−1)n sin π(

√
n2 + 1 − n) = (−1)n sin

π√
n2 + 1 + n

.

Clearly, the sequence xn = π√
n2+1+n

lies entirely in the interval (0, π2 ), is decreasing, and

converges to zero. It follows that sin xn is positive, decreasing, and converges to zero.
By Riemann’s convergence criterion,

∑
k≥1(−1)n sin xn, which is the series in question,

is convergent.
(Gh. Sireţchi, Calcul Diferential şi Integral (Differential and Integral Calculus),

Editura Ştiinţifică şi Enciclopedică, 1985)

358. (a) We claim that the answer to the first question is yes. We construct the sequences
(an)n and (bn)n inductively, in a way inspired by the proof that the harmonic series
diverges. At step 1, let a1 = 1, b1 = 1

2 . Then at step 2, let a2 = a3 = 1
8 and b2 = b3 = 1

2 .
In general, at step k we already know a1, a2, . . . , ank and b1, b2, . . . , bnk for some integer
nk. We want to define the next terms. If k is even, and if

bnk = 1

2rk
,
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let

bnk+1 = · · · = bnk+2rk = 1

2rk

and

ank+1 = · · · = ank+2rk = 1

2k · 2rk
.

If k is odd, we do precisely the same thing, with the roles of the sequences (an)n and
(bn)n exchanged. As such we have∑

n

bn ≥
∑
k odd

2rk
1

2rk
= 1 + 1 + · · · = ∞,

∑
n

an ≥
∑
k even

2rk
1

2rk
= 1 + 1 + · · · = ∞,

which shows that both series diverge. On the other hand, if we let cn = min(an, bn), then∑
n

cn =
∑
k

2rk
1

2k2rk
=
∑
k

1

2k
,

which converges to 1. The example proves our claim.
(b) The answer to the second question is no, meaning that the situation changes if we

work with the harmonic series. Suppose there is a series
∑

n an with the given property.
If cn = 1

n
for only finitely many n’s, then for large n, an = cn, meaning that both series

diverge. Hence cn = 1
n

for infinitely many n. Let (km)m be a sequence of integers
satisfying km+1 ≥ 2km and ckm = 1

km
. Then

km+1∑
k=km+1

ck ≥ (km+1 − km)ckm+1 = (km+1 − km)
1

km+1
= 1

2
.

This shows that the series
∑

n cn diverges, a contradiction.
(short list of the 44th International Mathematical Olympiad, 2003)

359. For n ≥ 1, define the function fn : (0, 1) → R, fn(x) = x − nx2. It is easy to see
that 0 < fn(x) ≤ 1

4n , for all x ∈ (0, 1). Moreover, on (0, 1
2n ] the function is decreasing.

With this in mind, we prove by induction that

0 < xn <
2

n2
,

for n ≥ 2. We verify the first three cases:
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0 = f1(0) < x2 = f1(x1) = x1 − x2
1 ≤ 1

4
<

2

4
,

0 = f2(0) < x3 = f2(x2) = x2 − 2x2
2 ≤ 1

8
<

2

9
,

0 = f3(0) < x4 = f3(x3) = x3 − 3x2
3 ≤ 1

12
<

2

16
.

Here we used the inequality x1 −x2
1 − 1

4 = −(x1 − 1
2)

2 ≤ 0 and the like. Now assume that
the inequality is true for n ≥ 4 and prove it for n+ 1. Since n ≥, we have xn ≤ 2

n2 ≤ 1
2n .

Therefore,

0 = fn(0) < xn+1 = fn(xn) ≤ fn

(
2

n2

)
= 2

n2
− n · 4

n4
= 2n− 4

n3
.

It is an easy exercise to check that

2n− 4

n3
<

2

(n+ 1)2
,

which then completes the induction.
We conclude that the series

∑
n xn has positive terms and is bounded from above by

the convergent p-series 2
∑

n
1
n2 , so it is itself convergent.

(Gazeta Matematică (Mathematics Gazette, Bucharest), 1980, proposed by L.
Panaitopol)

360. The series is convergent because it is bounded from above by the geometric series
with ratio 1

2 . Assume that its sum is a rational number a
b
. Choose n such that b < 2n.

Then

a

b
−

n∑
k=1

1

2k2 =
∑
k≥n+1

1

2k2 .

But the sum
∑n

k=1
1

2k2 is equal to m

2n2 for some integer n. Hence

a

b
−

n∑
k=1

1

2k2 = a

b
− m

2n2 >
1

2n2
b
>

1

2n2+n >
1

2(n+1)2−1
=

∑
k≥(n+1)2

1

2k
>

∑
k≥n+1

1

2k2 ,

a contradiction. This shows that the sum of the series is an irrational number.

Remark. In fact, this number is transcendental.

361. The series is bounded from above by the geometric series |a0|(1 + |z| + |z|2 + · · · ),
so it converges absolutely. Using the discrete version of integration by parts, known as
the Abel summation formula, we can write
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a0 + a1z+ a2z
2 + · · · + anz

n + · · ·
= (a0 − a1)+ (a1 − a2)(1 + z)+ · · · + (an − an+1)(1 + z+ · · · + zn)+ · · · .

Assume that this is equal to zero. Multiplying by 1 − z, we obtain

(a0 − a1)(1 − z)+ (a1 − a2)(1 − z2)+ · · · + (an − an+1)(1 − zn+1)+ · · · = 0.

Define the sequence bn = an − an+1, n ≥ 0. It is positive and
∑

n bn = a0. Because
|z| < 1, the series

∑
n bnz

n converges absolutely. This allows us in the above inequality
to split the left-hand side into two series and move one to the right to obtain

b0 + b1 + · · · + bn + · · · = b0z+ b1z
2 + · · · + bnz

n+1 + · · · .
Applying the triangle inequality to the expression on the right gives

|b0z+ b1z
2 + · · · + bnz

n+1| ≤ b0|z| + b1|z2| + · · · + bn|zn| + · · ·
< b0 + b1 + · · · + bn + · · · ,

which implies that equality cannot hold. We conclude that the sum of the series is not
equal to zero.

362. If such a sequence exists, then the numbers

1

p0p1
− 1

p0p1p2
+ 1

p0p1p2p3
− · · · and

1

p0p1p2
− 1

p0p1p2p3
+ · · ·

should both be positive. It follows that

0 <
1

p0
− w = 1

p0p1
− 1

p0p1p2
+ 1

p0p1p2p3
− · · · < 1

p0p1
<

1

p0(p0 + 1)
.

Hence p0 has to be the unique integer with the property that

1

p0 + 1
< w <

1

p0
.

This integer satisfies the double inequality

p0 <
1

w
< p0 + 1,

which is equivalent to 0 < 1 − p0w < w.
Let w1 = 1 − p0w. Then

w = 1

p0
− w1

p0
.
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The problem now repeats for w1, which is irrational and between 0 and 1. Again p1 has
to be the unique integer with the property that

1

p1 + 1
< 1 − p0w <

1

p1
.

If we set w2 = 1 − p1w1, then

w = 1

p0
− 1

p0p1
+ w2

p0p1
.

Now the inductive pattern is clear. At each step we set wk+1 = 1 − pkwk, which is an
irrational number between 0 and 1. Then choose pk+1 such that

1

pk+1 + 1
< wk+1 <

1

pk+1
.

Note that

wk+1 = 1 − pkwk < 1 − pk
1

pk + 1
= 1

pk + 1
,

and therefore pk+1 ≥ pk + 1 > pk.
Once the numbers p0, p1, p2, . . . have been constructed, it is important to observe

that since wk ∈ (0, 1) and p0p1 · · ·pk ≥ (k + 1)!, the sequence

1

p0
− 1

p0p1
+ · · · + (−1)k+1 wk+1

p1p2 · · ·pk
converges to w. So p0, p1, . . . , pk, . . . have the required properties, and as seen above,
they are unique.

(13th W.L. Putnam Mathematical Competition, 1953)

363. First, denote by M the set of positive integers greater than 1 that are not perfect
powers (i.e., are not of the form an, where a is a positive integer and n ≥ 2). Note that
the terms of the series are positive, so we can freely permute them. The series is therefore
equal to

∑
m∈M

∞∑
k=2

1

mk − 1
.

Expanding each term as a geometric series, we transform this into
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∑
m∈M

∞∑
k=2

∞∑
j=1

1

mkj
=
∑
m∈M

∞∑
j=1

∞∑
k=2

1

mkj
.

Again, we can change the order of summation because the terms are positive. The
innermost series should be summed as a geometric series to give

∑
m∈M

∞∑
j=1

1

mj(mj − 1)
.

This is the same as

∞∑
n=2

1

n(n− 1)
=

∞∑
n=2

(
1

n− 1
− 1

n

)
= 1,

as desired.
(Ch. Goldbach, solution from G.M. Fihtenholts, Kurs Differentsial’novo i Integral’no-

vo Ischisleniya (Course in Differential and Integral Calculus), Gosudarstvennoe Izda-
tel’stvo Fiziko-Matematicheskoi Literatury, Moscow 1964)

364. Let us make the convention that the letterp always denotes a prime number. Consider
the set A(n) consisting of those positive integers that can be factored into primes that do
not exceed n. Then ∏

p≤n

(
1 + 1

p
+ 1

p2
+ · · ·

)
=

∑
m∈A(n)

1

m
.

This sum includes
∑n

m=1
1
m

, which is known to exceed ln n. Thus, after summing the
geometric series, we obtain

∏
p≤n

(
1 − 1

p

)−1

> ln n.

For the factors of the product we use the estimate

et+t
2 ≥ (1 − t)−1, for 0 ≤ t ≤ 1

2
.

To prove this estimate, rewrite it as f (t) ≥ 1, where f (t) = (1 − t)et+t2 . Because
f ′(t) = t (1 − 2t)et+t2 ≥ 0 on [0, 1

2 ], f is increasing; thus f (t) ≥ f (0) = 1.
Returning to the problem, we have

∏
p≤n

exp

(
1

p
+ 1

p2

)
≥
∏
p≤n

(
1 − 1

p

)−1

> ln n.
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Therefore, ∑
p≤n

1

p
+
∑
p≤n

1

p2
> ln ln n.

But ∑
p≤n

1

p2
<

∞∑
n=2

1

k2
= π2

6
− 1 < 1.

Hence ∑
p≤n

1

p
≥ ln ln n− 1,

as desired.
(proof from I. Niven, H.S. Zuckerman, H.L. Montgomery, An Introduction to the

Theory of Numbers, Wiley, 1991)

365. We have

(k2 + 1)k! = (k2 + k − k + 1)k! = k(k + 1)k! − (k − 1)k!
= k(k + 1)! − (k − 1)k! = ak+1 − ak,

where ak = (k − 1)k!. The sum collapses to an+1 − a1 = n(n+ 1)!.
366. If ζ is anmth root of unity, then all terms of the series starting with themth are zero.
We are left to prove that

ζ−1 =
m−1∑
n=0

ζ n(1 − ζ )(1 − ζ 2) · · · (1 − ζ n).

Multiplying both sides by ζ yields the equivalent identity

1 =
m−1∑
n=0

ζ n+1(1 − ζ )(1 − ζ 2) · · · (1 − ζ n).

The sum telescopes as follows:

m−1∑
n=0

ζ n+1(1 − ζ )(1 − ζ 2) · · · (1 − ζ n)

=
m−1∑
n=0

(1 − (1 − ζ n+1))(1 − ζ )(1 − ζ 2) · · · (1 − ζ n)
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=
m−1∑
n=0

[
(1 − ζ )(1 − ζ 2) · · · (1 − ζ n)− (1 − ζ )(1 − ζ 2) · · · (1 − ζ n+1)

]
= 1 − 0 = 1,

and the identity is proved.

367. We have

1 +
r−1∑
k=0

(
r

k

)
Sk(n) = 1 +

r−1∑
k=0

(
r

k

) n∑
p=1

pk = 1 +
n∑
p=1

r−1∑
k=0

(
r

k

)
pk

= 1 +
n∑
p=1

[(p + 1)r − pr ] = (n+ 1)r .

368. Set bn = √
2n− 1 and observe that 4n = b2

n+1 + b2
n. Then

an = b2
n+1 + b2

n + bn+1bn

bn+1 + bn
= (bn+1 − bn)(b

2
n+1 + bn+1bn + b2

n−1)

(bn+1 − bn)(bn+1 + bn)

= b3
n+1 − b3

n

b2
n+1 − b2

n

= 1

2
(b3
n+1 − b3

n).

So the sum under discussion telescopes as

a1 + a2 + · · · + a40 = 1

2
(b3

2 − b3
1)+ 1

2
(b3

3 − b3
2)+ · · · + 1

2
(b3

41 − b3
40)

= 1

2
(b3

41 − b3
1) = 1

2
(
√

813 − 1) = 364,

and we are done.
(Romanian Team Selection Test for the Junior Balkan Mathematical Olympiad, pro-

posed by T. Andreescu)

369. The important observation is that

(−1)k+1

12 − 22 + 32 − · · · + (−1)k+1k2
= 2

k(k + 1)
.

Indeed, this is true for k = 1, and inductively, assuming it to be true for k = l, we obtain

12 − 22 + 32 − · · · + (−1)l+1l2 = (−1)l+1 l(l + 1)

2
.

Then
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12 − 22 + 32 − · · · + (−1)l+2(l + 1)2 = (−1)l+1 l(l + 1)

2
+ (−1)l+2(l + 1)2

= (−1)l+2(l + 1)

(
− l

2
+ l + 1

)
,

whence

(−1)l+2

12 − 22 + 33 − · · · + (−1)l+2(l + 1)2
= 2

(l + 1)(l + 2)
,

as desired. Hence the given sum equals

n∑
k=1

2

k(k + 1)
= 2

n∑
k=1

(
1

k
− 1

k + 1

)
,

telescoping to

2

(
1 − 1

n+ 1

)
= 2n

n+ 1
.

(T. Andreescu)

370. The sum telescopes once we rewrite the general term as

1

(
√
n+ √

n+ 1)( 4
√
n+ 4

√
n+ 1)

=
4
√
n+ 1 − 4

√
n

(
√
n+ 1 + √

n)(
4
√
n+ 1 + 4

√
n)(

4
√
n+ 1 − 4

√
n)

=
4
√
n+ 1 − 4

√
n

(
√
n+ 1 + √

n)(
√
n+ 1 − √

n)

=
4
√
n+ 1 − 4

√
n

n+ 1 − n
= 4

√
n+ 1 − 4

√
n.

The sum from the statement is therefore equal to 4
√

10000 − 1 = 10 − 1 = 9.
(Mathematical Reflections, proposed by T. Andreescu)

371. As usual, the difficulty lies in finding the “antiderivative’’ of the general term.
We have

1√
1 + (1 + 1

n
)2 +

√
1 + (1 − 1

n
)2

=
√

1 + (1 + 1
n
)2 −

√
1 + (1 − 1

n
)2

1 + (1 + 1
n
)2 − 1 − (1 − 1

n
)2

=
√

1 + (1 + 1
n
)2 −

√
1 + (1 − 1

n
)2

4
n



Real Analysis 499

= 1

4

(√
n2 + (n+ 1)2 −

√
n2 + (n− 1)2

)
= 1

4
(bn+1 − bn),

where bn = √
n2 + (n− 1)2. Hence the given sum collapses to 1

4(29 − 1) = 7.
(Mathematical Reflections, proposed by T. Andreescu)

372. Let us look at the summation over n first. Multiplying each term by (m+ n+ 2)−
(n+ 1) and dividing by m+ 1, we obtain

m!
m+ 1

∞∑
n=0

(
n!

(m+ n+ 1)! − (n+ 1)!
(m+ n+ 2)!

)
.

This is a telescopic sum that adds up to

m!
m+ 1

· 0!
(m+ 1)! .

Consequently, the expression we are computing is equal to

∞∑
m=0

1

(m+ 1)2
= π2

6
.

(Mathematical Mayhem, 1995)

373. This problem is similar to the last example from the introduction. We start with

ak − bk = 1

2

[
4k + (k + 1)+ (k − 1)− 4

√
k2 + k + 4

√
k2 − k + 2

√
k2 − 1

]
= 1

2

(
2
√
k − √

k + 1 − √
k − 1

)2
.

From here we obtain√
ak − bk = 1√

2

(
2
√
k − √

k + 1 − √
k − 1

)
= − 1√

2

(√
k + 1 − √

k
)

+ 1√
2

(√
k − √

k + 1
)
.

The sum from the statement telescopes to

− 1√
2

(√
50 − √

1
)

+ 1√
2

(√
49 − √

0
)

= −5 + 4
√

2.

(Romanian Mathematical Olympiad, 2004, proposed by T. Andreescu)
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374. First solution: Let Sn = ∑n
k=0(−1)k(n− k)!(n+ k)!. Reordering the terms of the

sum, we have

Sn = (−1)n
n∑
k=0

(−1)kk!(2n− k)!

= (−1)n
1

2

(
(−1)nn!n! +

2n∑
k=0

(−1)kk!(2n− k)!
)

= (n!)2
2

+ (−1)n
Tn

2
,

where Tn = ∑2n
k=0(−1)kk!(2n− k)!. We now focus on the sum Tn. Observe that

Tn

(2n)! =
2n∑
k=0

(−1)k(2n
k

)
and

1(2n
k

) = 2n+ 1

2(n+ 1)

[
1(2n+1
k

) + 1(2n+1
k+1

)] .
Hence

Tn

(2n)! = 2n+ 1

2(n+ 1)

[
1(2n+1
0

) + 1(2n+1
1

) − 1(2n+1
1

) − 1(2n+1
2

) + · · · + 1(2n+1
2n

) + 1(2n+1
2n+1

)] .
This sum telescopes to

2n+ 1

2(n+ 1)

[
1(2n+1
0

) + 1(2n+1
2n+1

)] = 2n+ 1

n+ 1
.

Thus Tn = (2n+1)!
n+1 , and therefore

Sn = (n!)2
2

+ (−1)n
(2n+ 1)!
2(n+ 1)

.

Second solution: Multiply the kth term in Sn by (n− k+ 1)+ (n+ k+ 1) and divide by
2(n+ 1) to obtain

Sn = 1

2(n+ 1)

n∑
k=0

[
(−1)k(n− k + 1)!(n+ k)! + (−1)k(n− k)!(n+ k + 1)!] .
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This telescopes to

1

2(n+ 1)
[n!(n+ 1)! + (−1)n(2n+ 1)!] .

(T. Andreescu, second solution by R. Stong)

375. The sequence is obviously strictly decreasing. Because ak − ak+1 = 1 − 1
ak+1 ,

we have

an = a0 + (a1 − a0)+ · · · + (an − an−1) = 1994 − n+ 1

a0 + 1
+ · · · + 1

an−1 + 1

> 1994 − n.

Also, because the sequence is strictly decreasing, for 1 ≤ n ≤ 998,

1

a0 + 1
+ · · · + 1

an−1 + 1
<

n

an−1 + 1
<

998

a997 + 1
< 1,

since we have seen above that a997 > 1994 − 997 = 997. Hence �an� = 1994 − n, as
desired.

(short list of the 35th International Mathematical Olympiad, 1994, proposed by
T. Andreescu)

376. Let x1 = k + √
k2 + 1 and x2 = k − √

k2 + 1. We have |x2| = 1
x1
< 1

2k ≤ 1
2 , so

−( 1
2)

2 ≤ xn2 ≤ ( 1
2)
n. Hence

xn1 + xn2 − 1 < xn1 +
(

1

2

)n
− 1 < an ≤ xn1 −

(
1

2

)n
+ 1 < xn1 + xn2 + 1,

for all n ≥ 1. From

xn+1
1 + xn+1

2 = (x1 + x2)(x
n
1 + xn2 )− x1x2(x

n−1
1 + xn−1

2 )

= 2k(xn1 + xn2 )+ (xn−1
1 + xn−1

2 )

for n ≥ 1, we deduce that xn1 + xn2 is an integer for all n. We obtain the more explicit
formula an = xn1 + xn2 for n ≥ 0, and consequently the recurrence relation an+1 =
2kan + an−1, for all n ≥ 1. Then

1

an−1an+1
= 1

2kan
· 2kan
an−1an+1

= 1

2k
· an+1 − an−1

an−1anan+1
= 1

2k

(
1

an−1an
− 1

anan+1

)
.

It follows that

∞∑
n=1

1

an−1an+1
= 1

2k

(
1

a0a1
− lim

N→∞
1

aNaN+1

)
= 1

2ka0a1
= 1

8k2
.
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377. For N ≥ 2, define

aN =
(

1 − 4

1

)(
1 − 4

9

)(
1 − 4

25

)
· · ·

(
1 − 4

(2N − 1)2

)
.

The problem asks us to find limN→∞ aN . The defining product for aN telescopes as
follows:

aN =
[(

1 − 2

1

)(
1 + 2

1

)][(
1 − 2

3

)(
1 + 2

3

)]
· · ·

[(
1 − 2

2N − 1

)(
1 + 2

2N − 1

)]
= (−1 · 3)

(
1

3
· 5

3

)(
3

5
· 7

5

)
· · ·

(
2N − 3

2N − 1
· 2N + 1

2N − 1

)
= −2N + 1

2N − 1
.

Hence the infinite product is equal to

lim
N→∞ aN = − lim

N→∞
2N + 1

2N − 1
= −1.

378. Define the sequence (aN)N by

aN =
N∏
n=1

(
1 + x2n

)
.

Note that (1 − x)aN telescopes as

(1 − x)(1 + x)(1 + x2)(1 + x4) · · · (1 + x2N )

= (1 − x2)(1 + x2)(1 + x4) · · · (1 + x2N )

= (1 − x4)(1 + x4) · · · (1 + x2N )

= · · · = (1 − x2N+1
).

Hence (1 − x)aN → 1 as N → ∞, and therefore∏
n≥0

(
1 + x2n

) = 1

1 − x
.

379. Let PN = ∏N
n=1 (1 − xn

xn+1
), N ≥ 1. We want to examine the behavior of PN as

N → ∞. Using the recurrence relation we find that this product telescopes as

PN =
N∏
n=1

(
xn+1 − xn

xn+1

)
=

N∏
n=1

nxn

xn+1
= N !
xN+1

.
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Hence

1

Pn+1
− 1

Pn
= xn+2

(n+ 1)! − xn+1

n! = xn+2 − (n+ 1)xn+1

(n+ 1)! = xn+1

(n+ 1)! , for n ≥ 1.

Adding up these relations for 1 ≤ n ≤ N + 1, and using the fact that the sum on the left
telescopes, we obtain

1

PN+1
= 1

P1
+ x2

2! + x3

3! + · · · + xN+1

(N + 1)!
= 1 + x

1! + x2

2! + · · · + xN+1

(N + 1)! .

Because this last expression converges to ex , we obtain that limN→∞ PN = e−x , as
desired.

(Revista Matematică din Timişoara (Timişoara Mathematics Gazette), proposed by
T. Andreescu and D. Andrica)

380. We are supposed to find m and n such that

lim
x→∞

3
√

8x3 +mx2 − nx = 1 or lim
x→−∞

3
√

8x3 +mx − nx = 1.

We compute

3
√

8x3 +mx2 − nx = (8 − n3)x3 +mx2

3
√
(8x3 +mx2)2 + nx

3
√

8x3 +mx2 + n2x2
.

For this to have a finite limit at either +∞ or −∞, 8 − n3 must be equal to 0 (otherwise
the highest degree of x in the numerator would be greater than the highest degree of x in
the denominator). We have thus found that n = 2.

Next, factor out and cancel an x2 to obtain

f (x) = m

3
√(

8 + m
x

)2 + 2 3
√

8 + m
x

+ 4
.

We see that limx→∞ f (x) = m
12 . For this to be equal to 1, m must be equal to 12. Hence

the answer to the problem is (m, n) = (12, 2).

381. This is a limit of the form 1∞. It can be computed as follows:

lim
x→π/2

(sin x)
1

cos x = lim
x→π/2

(1 + sin x − 1)
1

sin x−1 · sin x−1
cos x

=
(

lim
t→0
(1 + t)1/t

)limx→π/2
sin x−1

cos x

= exp

(
lim
u→0

cos u− 1

sin u

)
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= exp

(
cos u− 1

u
· u

sin u

)
= e0·1 = e0 = 1.

The limit therefore exists.

382. Without loss of generality, we may assume that m > n. Write the limit as

lim
x→0

mn
√

cosn x − mn
√

cosm x

x2
.

Now we can multiply by the conjugate and obtain

lim
x→0

cosn x − cosm x

x2( mn
√
(cosn x)mn−1 + · · · + mn

√
(cosm x)mn−1)

= lim
x→0

cosn x(1 − cosm−n x)
mnx2

= lim
x→0

1 − cosm−n x
mnx2

= lim
x→0

(1 − cos x)(1 + cos x + · · · + cosm−n−1 x)

mnx2

= m− n

mn
lim
x→0

1 − cos x

x2
= m− n

2mn
.

We are done.

383. For x > 1 define the sequence (xn)n≥0 by x0 = x and xn+1 = x2
n+1
2 , n ≥ 0. The

sequence is increasing because of the AM–GM inequality. Hence it has a limit L, finite
or infinite. Passing to the limit in the recurrence relation, we obtain L = L2+1

2 ; hence
either L = 1 or L = ∞. Since the sequence is increasing, L ≥ x0 > 1, so L = ∞. We
therefore have

f (x) = f (x0) = f (x1) = f (x2) = · · · = lim
n→∞ f (xn) = lim

x→∞ f (x).

This implies that f is constant, which is ruled out by the hypothesis. So the answer to
the question is negative.

384. We can assume that m > 1; otherwise, we can flip the fraction and change t to 1
m
t .

There is an integern such thatm < 2n. Becausef is increasing, f (t) < f (mt) < f (2nt).
We obtain

1 <
f (mt)

f (t)
<
f (2nt)

f (t)
.

The right-hand side is equal to the telescopic product

f (2nt)

f (2n−1t)
· f (2

n−1t)

f (2n−2t)
· · · f (2t)

f (t)
,
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whose limit as t goes to infinity is 1. The squeezing principle implies that

lim
t→∞

f (mt)

f (t)
= 1,

as desired.
(V. Radu)

385. The sum under discussion is the derivative of f at 0. We have∣∣∣∣∣
n∑
k=1

kak

∣∣∣∣∣ = |f ′(0)| = lim
x→0

∣∣∣∣f (x)− f (0)

x − 0

∣∣∣∣
= lim

x→0

∣∣∣∣f (x)x
∣∣∣∣ = lim

x→0

∣∣∣∣f (x)sin x

∣∣∣∣ · ∣∣∣∣sin x

x

∣∣∣∣ ≤ 1.

The inequality is proved.
(28th W.L. Putnam Mathematics Competition, 1967)

386. The condition from the statement implies that f (x) = f (−x), so it suffices to check
that f is constant on [0,∞). For x ≥ 0, define the recursive sequence (xn)≥0, by x0 = x,
and xn+1 = √

xn, for n ≥ 0. Then

f (x0) = f (x1) = f (x2) = · · · = f ( lim
n→∞ xn).

And limn→∞ xn = 1 if x > 0. It follows that f is constant and the problem is solved.

387. The answer is yes, there is a tooth function with this property. We construct f to
have local maxima at 1

22n+1 and local minima at 0 and 1
22n , n ≥ 0. The values of the

function at the extrema are chosen to be f (0) = f (1) = 0, f ( 1
2) = 1

2 , and f ( 1
22n+1 ) = 1

2n

and f ( 1
22n ) = 1

2n+1 for n ≥ 1. These are connected through segments. The graph from
Figure 66 convinces the reader that f has the desired properties.

(Kőzépiskolai Matematikai Lapok (Mathematics Gazette for High Schools, Bu-
dapest))

388. We prove by induction on n that f ( m3n ) = 0 for all integers n ≥ 0 and all integers
0 ≤ m ≤ 3n. The given conditions show that this is true for n = 0. Assuming that it is
true for n− 1 ≥ 0, we prove it for n.

If m ≡ 0 (mod 3), then

f
(m

3n

)
= f

( m
3

3n−1

)
= 0

by the induction hypothesis.
If m ≡ 1 (mod 3), then 1 ≤ m ≤ 3n − 2 and
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. .
 .

Figure 66

3f
(m

3n

)
= 2f

(
m−1

3

3n−1

)
+ f

(
m+2

3

3n−1

)
= 0 + 0 = 0.

Thus f ( m3n ) = 0.
Finally, if m ≡ 2 (mod 3), then 2 ≤ m ≤ 3n − 1 and

3f
(m

3n

)
= 2f

(
m+1

3

3n−1

)
+ f

(
m−2

3

3n−1

)
= 0 + 0 = 0.

Hence f ( m3n ) = 0 in this case, too, finishing our induction.
Because the set { m3n ; m, n ∈ N} is dense in [0, 1] and f is equal to zero on this set,

f is identically equal to zero.
(Vietnamese Mathematical Olympiad, 1999)

389. We argue by contradiction. Assume that there exist a < b such that f (a) 	= f (b),
say, f (a) > f (b).

Let g : R → R, g(x) = f (x) + λx, where λ > 0 is chosen very small such that
g(a) > g(b). We note that

lim
h→0+

g(x + 2h)− g(x + h)

h
= λ > 0, for all x ∈ R.

Since g is a continuous function on a closed and bounded interval, g has a maximum.
Let c ∈ [a, b] be the point where g attains its maximum. It is important that this point is
not b, since g(a) > g(b). Fix 0 < ε < λ. Then there exists δ = δ(ε) > 0 such that

0 < λ− ε <
g(c + 2h)− g(c + h)

h
< λ+ ε, for all 0 < h < δ.

Fix 0 < h0 < min{δ, b−c2 }. The above inequality written for h = h0,
h0
2 ,

h0
4 , etc., yields
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g(c + 2h0) > g(c + h0) > g

(
c + h0

2

)
> · · · > g

(
c + h0

2n

)
> · · · .

Passing to the limit, we obtain that g(c + 2h) > g(c), contradicting the maximality of
c. The contradiction proves that our initial assumption was false, and the conclusion
follows.

390. From the given condition, it follows that f is one-to-one. Indeed, if f (x) = f (y),
then f (f (x)) = f (f (y)), so bx = by, which implies x = y. Because f is continuous
and one-to-one, it is strictly monotonic.

We will show that f has a fixed point. Assume by way of contradiction that this is
not the case. So either f (x) > x for all x, or f (x) < x for all x. In the first case f must
be strictly increasing, and then we have the chain of implications

f (x) > x ⇒ f (f (x)) > f (x) ⇒ af (x)+ bx > f (x) ⇒ f (x) <
bx

1 − a
,

for all x ∈ R. In particular, f (1) < b
1−a < 1, contradicting our assumption.

In the second case the simultaneous inequalities f (x) < x and f (f (x)) < f (x)

show that f must be strictly increasing again. Again we have a chain of implications

f (x) < x ⇒ f (f (x)) < f (x) ⇒ f (x) > af (x)+ bx ⇒ f (x) >
bx

1 − a
,

for all x ∈ R. In particular, f (−1) > − b
1−a > −1, again a contradiction.

In conclusion, there exists a real number c such that f (c) = c. The condition
f (f (c)) = af (c) + bc implies c = ac + bc; thus c(a + b − 1) = 0. It follows that
c = 0, and we obtain f (0) = 0.

Remark. This argument can be simplified if we use the fact that a decreasing monotonic
function on R always has a unique fixed point. (Prove it!)

(45th W.L. Putnam Mathematical Competition, 2002, proposed by T. Andreescu)

391. Being continuous on the closed interval [0, 1], the function f is bounded and has
a maximum and a minimum. Let M be the maximum and m the minimum. Then
m
2n ≤ f (xn)

2n ≤ M
2n , which implies that the series is absolutely convergent and its limit is a

number in the interval [m,M].
Let a ∈ (0, 1) and ma and Ma be the minimum and the maximum of f on [0, a]. If

α ∈ [0, a] is such that f (α) = Ma , then

Ma = f (α) =
∞∑
n=1

f (αn)

2n
≤ Ma

∞∑
n=1

1

2n
= Ma,

whence we must have equality in the above inequality, so f (αn) = Ma . Since
limn→∞ αn = 0, it follows that Ma must equal limx→0 f (x) = f (0). Similarly,
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ma = f (0), and hence f is constant on [0, a]. Passing to the limit with a → 1, we
conclude that f is constant on the interval [0, 1]. Clearly, constant functions satisfy the
property, providing all solutions to the problem.

(Gazeta Matematică (Mathematics Gazette, Bucharest), proposed by M. Bălună)

392. Let φ : [0, 1] × [0, 1] be a continuous surjection. Define ψ to be the composition

[0, 1] φ−→ [0, 1] × [0, 1] φ×id−→ [0, 1] × [0, 1] × [0, 1] pr12−→ [0, 1] × [0, 1],
where pr12 : [0, 1] × [0, 1] × [0, 1] → [0, 1] × [0, 1] is the projection of the cube onto
the bottom face. Each function in the above chain is continuous and surjective, so the
composition is continuous and surjective. Moreover, because the projection takes each
value infinitely many times, so does ψ . Therefore, ψ provides the desired example.

393. The first example of such a function was given by Weierstrass. The example we
present here, of a function f : [0, 1] → [0, 1], was published by S. Marcus in the
Mathematics Gazette, Bucharest.

If 0 ≤ x ≤ 1 and x = 0.a1a2a3 . . . is the ternary expansion of x, we let the binary
representation off (x) be 0.b1b2b3 . . . ,where the binary digits b1, b2, b3, . . . are uniquely
determined by the conditions

(i) b1 = 1 if and only if a1 = 1,
(ii) bn+1 = bn if and only if an+1 = an, n ≥ 1.

It is not hard to see that f (x) does not depend on which ternary representation you
choose for x. For example,

f (0.0222 . . . ) = 0.0111 · · · = 0.1000 · · · = f (0.1000 . . . ).

Let us prove first that the function is continuous. If x is a number that has a unique
ternary expansion and (xn)n is a sequence converging to x, then the first m digits of
xn become equal to the first m digits of x for n sufficiently large. It follows from the
definition of f that the first m binary digits of f (xn) become equal to the first m binary
digits of f (x) for n sufficiently large. Hence f (xn) converges to f (x), so f is continuous
at x.

If x is a number that has two possible ternary expansions, then in one expansion
x has only finitely many nonzero digits x = 0.a1a2 . . . ak00 . . . , with ak 	= 0. The
other expansion is 0.a1a2 . . . a

′
k222 . . . , with a′

k = ak − 1 (= 0 or 1). Given a sequence
(xn)n that converges to x, for sufficiently large n the first k − 1 digits of xn are equal to
a1, a2, . . . , ak−1, while the next m − k + 1 are either ak, 0, 0, . . . , 0, or a′

k, 2, 2, . . . , 2.
If f (x) = f (0.a1a2 . . . ak00 . . . ) = 0.b1b2b3 . . . , then for n sufficiently large, the first
k− 1 digits of f (xn) are b1, b2, . . . , bk−1, while the nextm− k+ 1 are either bk, bk+1 =
bk+2 = · · · = bm (the digits of f (x)) or 1 − bk, 1 − bk+1 = · · · = 1 − bm. The two
possible binary numbers are 0.b1b2 . . . bk−10111 . . . and 0.b1b2 . . . bk−11000 . . . ; they
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differ from f (x) by at most 1
2m+1 . We conclude again that as n → ∞, f (xn) → f (x).

This proves the continuity of f .
Let us show next that f does not have a finite derivative from the left at any point

x ∈ (0, 1]. For such x consider the ternary expansion x = 0.a1a2a3 . . . that has infinitely
many nozero digits, and, applying the definition of f for this expansion, let f (x) =
0.b1b2b3 . . . . Now consider an arbitrary positive number n, and let kn ≥ n be such that
akn 	= 0. Construct a number x ′ ∈ (0, 1) whose first kn − 1 digits are the same as those
of x, whose knth digit is zero, and all of whose other digits are equal to 0 if bkn+1 = 1
and to 1 if bkn+1 = 0. Then

0 < x − x ′ < 2 · 3−kn + 0. 00 . . . 0︸ ︷︷ ︸
kn

22 . . . , 0 = 3−kn+1,

while in the first case,

|f (x)− f (x ′)| ≥ 0. 00 . . . 0︸ ︷︷ ︸
kn

bkn+1 = 0. 00 . . . 0︸ ︷︷ ︸
kn

1,

and in the second case,

|f (x)− f (x ′)| ≥ 0. 00 . . . 0︸ ︷︷ ︸
kn

11 . . . 1 − 0. 00 . . . 0︸ ︷︷ ︸
kn

0bkn+2 . . . ,

and these are both greater than or equal to 2−kn−1. Since kn ≥ n, we have 0 < x − x ′ <
3−n+1 and ∣∣∣∣f (x)− f (x ′)

x − x ′

∣∣∣∣ > 2−kn−1

3−kn+1
= 1

6

(
3

2

)kn
≥ 1

6

(
3

2

)n
.

Letting n → ∞, we obtain

x ′ → x, while

∣∣∣∣f (x)− f (x ′)
x − x ′

∣∣∣∣ → ∞.

This proves that f does not have a derivative on the left at x. The argument that f does
not have a derivative on the right at x is similar and is left to the reader.

Remark. S. Banach has shown that in some sense, there are far more continuous functions
that are not differentiable at any point than continuous functions that are differentiable at
least at some point.

394. We apply the intermediate value property to the function g : [a, b] → [a, b],
g(x) = f (x) − x. Because f (a) ≥ a and f (b) ≤ b, it follows that g(a) ≤ 0 and
g(b) ≥ 0. Hence there is c ∈ [a, b] such that g(c) = 0. This c is a fixed point of f .
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395. Let L be the length of the trail and T the total duration of the climb, which is the
same as the total duration of the descent. Counting the time from the beginning of the
voyage, denote by f (t) and g(t) the distances from the monk to the temple at time t on
the first and second day, respectively. The functions f and g are continuous; hence so is
φ : [0, T ] → R, φ(t) = f (t)−g(t). It follows thatφ has the intermediate value property.
Because φ(0) = f (0)−g(0) = L−0 = L > 0 and φ(T ) = f (T )−g(T ) = 0−L < 0,
there is a time t0 with φ(t0) = 0. At t = t0 the monk reached the same spot on both days.

396. The fact that f is decreasing implies immediately that

lim
x→−∞(f (x)− x) = ∞ and lim

x→∞(f (x)− x) = −∞.

By the intermediate value property, there is x0 such that f (x0)− x0 = 0, that is, f (x0) =
x0. The function cannot have another fixed point because if x and y are fixed points, with
x < y, then x = f (x) ≥ f (y) = y, impossible.

The triple (x0, x0, x0) is a solution to the system. And if (x, y, z) is a solution then
f (f (f (x))) = x. The function f ◦ f ◦ f is also continuous and decreasing, so it has
a unique fixed point. And this fixed point can only be x0. Therefore, x = y = z = x0,
proving that the solution is unique.

397. The inequality from the statement implies right away that f is injective, and also
that f transforms unbounded intervals into unbounded intervals. The sets f ((−∞, 0])
and f ([0,∞)) are unbounded intervals that intersect at one point. They must be two
intervals that cover the entire real axis.

(P.N. de Souza, J.N. Silva, Berkeley Problems in Mathematics, Springer, 2004)

398. Let x denote the distance along the course, measured in miles from the starting line.
For each x ∈ [0, 5], let f (x) denote the time that elapses for the mile from the point x to
the point x + 1. Note that f depends continuously on x. We are given that

f (0)+ f (1)+ f (2)+ f (3)+ f (4)+ f (5) = 30.

It follows that not all of f (0), f (1), . . . , f (5) are smaller than 5, and not all of them
are larger than 5. Choose a, b ∈ {0, 1, . . . , 5} such that f (a) ≤ 5 ≤ f (b). By the
intermediate value property, there exists c between a and b such that f (c) = 5. The mile
between c and c + 1 was run in exactly 5 minutes.

(L.C. Larson, Problem-Solving Through Problems, Springer-Verlag, 1990)

399. Without loss of generality, we may assume that the cars traveled on one day from
A to B keeping a distance of at most one mile between them, and on the next day they
traveled in opposite directions in the same time interval, which we assume to be of length
one unit of time.

Since the first car travels in both days on the same road and in the same direction, it
defines two parametrizations of that road. Composing the motions of both cars during the
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second day of travel with a homeomorphism (continuous bijection) of the time interval
[0, 1], we can ensure that the motion of the first car yields the same parametrization of
the road on both days. Let f (t) be the distance from the second car to A when the first
is at t on the first day, and g(t) the distance from the second car to A when the first is
at t on the second day. These two functions are continuous, so their difference is also
continuous. But f (0) − g(0) = − dist(A,B), and f (1) − g(1) = dist(A,B), where
dist(A,B) is the distance between the cities.

The intermediate value property implies that there is a moment t for which f (t) −
g(t) = 0. At that moment the two cars are in the same position as they were the day
before, so they are at distance at most one mile. Hence the answer to the problem is no.

400. We compute

n∑
j=0

P(2j ) =
n∑
j=0

n∑
k=0

ak2
kj =

n∑
k=0

⎛⎝ n∑
j=0

2kj

⎞⎠ ak
=

n∑
k=0

2k(n+1) − 1

2k − 1
= Q(2n+1)−Q(1) = 0.

It follows that P(1) + P(2) + · · · + P(2n) = 0. If P(2k) = 0 for some k < n, we
are done. Otherwise, there exist 1 ≤ i, j ≤ n such that P(2i)P (2j ) < 0, and by the
intermediate value property, P(x) must have a zero between 2i and 2j .

(proposed for the USA Mathematical Olympiad by R. Gelca)

401. Consider the lines fixed, namely the x- and the y-axes, and vary the position of the
surface in the plane. Rotate the surface by an angle φ, then translate it in such a way
that the x-axis divides it into two regions of equal area. The coordinate axes divide it
now into four regions of areas A,B,C,D, counted counterclockwise starting with the
first quadrant. Further translate it such that A = B. The configuration is now uniquely
determined by the angle φ. It is not hard to see that A = A(φ), B = B(φ), C = C(φ),
and D = D(φ) are continuous functions of φ.

If C(0◦) = D(0◦), then the equality of the areas of the regions above and below the
x-axis implies A(0◦) = B(0◦) = C(0◦) = D(0◦), and we are done.

If C(0◦) > D(0◦), then the line that divides the region below the x-axis into two
polygons of equal area lies to the left of the y-axis (see Figure 67). This means that after
a 180◦-rotation the line that determines the regions A(180◦) and B(180◦) will divide
the other region into C(180◦) and D(180◦) in such a way that C(180◦) < D(180◦).
Similarly, if C(0◦) < D(0◦), then C(180◦) > D(180◦).

It follows that the continuous function C(φ) − D(φ) assumes both positive and
negative values on the interval [0◦, 180◦], so by the intermediate value property there is an
angle φ0 for which C(φ0) = D(φ0). Consequently, A(φ0) = B(φ0) = C(φ0) = D(φ0),
and the problem is solved.
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AB

C D x

y

Figure 67

Remark. This result is known as the “pancake theorem.’’

402. Assume that f is not continuous at some point a. Then there exists ε > 0 and a
sequence xn → a such that |f (xn)−f (a)| > ε for all n ≥ 1. Without loss of generality,
we may assume that there is a subsequence (xnk )k such that f (xnk ) < f (a), for all k,
in which case f (xnk ) ≤ f (a)− ε. Choose γ in the interval (f (a)− ε, f (a)). Since f
has the intermediate value property, and f (xnk ) < γ < f (a), for each k there exists yk
between xnk and a such that f (yk) = γ . The set f −1(γ ) contains the sequence (yk)k,
but does not contain its limit a, which contradicts the fact that the set is closed. This
contradiction proves that the initial assumption was false; hence f is continuous on the
interval I .

(A.M. Gleason)

403. The function is continuous off 0, so it maps any interval that does not contain 0 onto
an interval. Any interval containing 0 is mapped onto [−1, 1], which proves that f has
the intermediate value property for any a ∈ [−1, 1].

For the second part of the problem, we introduce the function

F(x) =
{
x2 sin 1

x
for x 	= 0,

0 for x = 0.

One can verify easily that

F ′(x) =
{

2x sin 1
x

for x 	= 0,

0 for x = 0,
+
{

cos 1
x

for x 	= 0,

0 for x = 0.

The only place where this computation might pose some difficulty is x = 0, which
can be done using L’Hôpital’s theorem. The first function is continuous; hence it is the
derivative of a function. Because the differentiation operator is linear we find that the
second function, which is f0(x), is a derivative. And because when a 	= 0,
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fa(x)− f0(x) =
{

0 for x 	= 0,

a for x = 0,

does not have the intermediate value property, so it is not the derivative of a function,
fa(x) itself cannot be the derivative of a function. This completes the solution.

(Romanian high school textbook)

404. Define the functionf : R → R, f (x) = ex−x−1. Its first derivativef ′(x) = ex−1
has the unique zero x = 0, and the second derivative f ′′(x) = ex is strictly positive.
It follows that x = 0 is a global minimum of f , and because f (0) = 0, f (x) > 0 for
x 	= 0. Hence the inequality.

405. Taking the logarithm, transform the equation into the equivalent x ln 2 = 2 ln x.
Define the function f : R → R, f (x) = x ln 2 − 2 ln x. We are to find the zeros of f .
Differentiating, we obtain

f ′(x) = ln 2 − 2

x
,

which is strictly increasing. The unique zero of the derivative is 2
ln 2 , and so f ′ is negative

for x < 2/ ln 2 and positive for x > 2
ln 2 . Note also that limx→0 f (x) = limx→∞ f (x) =

∞. There are two possibilities: either f ( 2
ln 2) > 0, in which case the equation f (x) = 0

has no solutions, or f ( 2
ln 2) < 0, in which case the equation f (x) = 0 has exactly two

solutions. The latter must be true, since f (2) = f (4) = 0. Therefore, x = 2 and x = 4
are the only solutions to f (x) = 0, and hence also to the original equation.

406. If f (x) ≥ 0 for all x, then the function g(x) = (x − a1)(x − a2)(x − a3) is
increasing, since its derivative is f . It follows that g has only one zero, and we conclude
that a1 = a2 = a3.

(V. Boskoff)

407. Let f : C → C, f (z) = z3 − z + 2. We have to determine max|z|=1 |f (z)|2. For
this, we switch to real coordinates. If |z| = 1, then z = x + iy with y2 = 1 − x2,
−1 ≤ x ≤ 1. View the restriction of |f (z)|2 to the unit circle as a function depending on
the real variable x:

|f (z)|2 = |(x + iy)3 − (x + iy)+ 2|2
= |(x3 − 3xy2 − x + 2)+ iy(3x2 − y2 − 1)|2
= |(x3 − 3x(1 − x2)− x + 2)+ iy(3x2 − (1 − x2)− 1)|2
= (4x3 − 4x + 2)2 + (1 − x2)(4x2 − 2)2

= 16x3 − 4x2 − 16x + 8.

Call this last expression g(x). Its maximum on [−1, 1] is either at a critical point or at an
endpoint of the interval. The critical points are the roots of g′(x) = 48x2 − 8x− 16 = 0,
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namely, x = 2
3 and x = − 1

2 . We compute g(−1) = 4, g(− 1
2) = 13, g( 2

3) = 8
27 ,

g(1) = 4. The largest of them is 13, which is therefore the answer to the problem. It is
attained when z = − 1

2 ±
√

3
2 i.

(8th W.L. Putnam Mathematical Competition, 1947)

408. After we bring the function into the form

f (x) =
(
x − 1 + 1

x

)3

x3 − 1 + 1
x3

,

the substitution x + 1
x

= s becomes natural. We are to find the minimum of the function

h(s) = (s − 1)3

s3 − 3s − 1
= 1 + −3s2 + 6s

s3 − 3s − 1

over the domain (−∞,−2] ∪ [2,∞). Setting the first derivative equal to zero yields the
equation

3(s − 1)(s3 − 3s2 + 2) = 0.

The roots are s = 1 (double root) and s = 1 ± √
3. Of these, only s = 1 + √

3 lies in the
domain of the function.

We compute

lim
x→±∞h(s) = 1, h(2) = 1, h(−2) = 9, h(1 + √

3) =
√

3

2 + √
3
.

Of these the last is the least. Hence the minimum of f is
√

3/(2+√
3), which is attained

when x + 1
x

= 1 + √
3, that is, when x = (1 + √

3 ± 4
√

12)/2.
(Mathematical Reflections, proposed by T. Andreescu)

409. Let f (x) = sin(sin(sin(sin(sin(x))))). The first solution is x = 0. We have

f ′(0) = cos 0 cos(sin 0) cos(sin(sin 0)) cos(sin(sin(sin 0))) cos(sin(sin(sin(sin 0))))

= 1 >
1

3
.

Therefore, f (x) > x
3 in some neighborhood of 0. On the other hand, f (x) < 1, whereas

x
3 is not bounded as x → ∞. Therefore, f (x0) = x0

3 for some x0 > 0. Because f is odd,
−x0 is also a solution. The second derivative of f is

− cos(sin x) cos(sin(sin x)) cos(sin(sin(sin x))) cos(sin(sin(sin(sin x)))) sin x

− cos2 x cos(sin(sin x)) cos(sin(sin(sin x))) cos(sin(sin(sin(sin x)))) sin(sin x)
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− cos2 x cos2(sin x) cos(sin(sin(sin x))) cos(sin(sin(sin(sin x)))) sin(sin(sin x))

− cos2 x cos2(sin x) cos2(sin(sin x)) cos(sin(sin(sin(sin x)))) sin(sin(sin(sin x)))

− cos2 x cos2(sin x)) cos2(sin(sin x)) cos2(sin(sin(sin x))) sin(sin(sin(sin(sin x)))),

which is clearly nonpositive for 0 ≤ x ≤ 1. This means that f ′(x) is monotonic.
Therefore, f ′(x) has at most one root x ′ in [0,+∞). Then f (x) is monotonic at [0, x ′]
and [x ′,+∞) and has at most two nonnegative roots. Because f (x) is an odd function,
it also has at most two nonpositive roots. Therefore, −x0, 0, x0 are the only solutions.

410. Define the function G : R → R, G(x) = (
∫ x

0 f (t)dt)
2. It satisfies

G′(x) = 2f (x)
∫ x

0
f (t)dt.

BecauseG′(0) = 0 andG′(x) = g(x) is nonincreasing it follows thatG′ is nonnegative on
(−∞, 0) and nonpositive on (0,∞). This implies that G is nondecreasing on (−∞, 0)
and nonincreasing on (0,∞). And this, combined with the fact that G(0) = 0 and
G(x) ≥ 0 for all x, implies G(x) = 0 for all x. Hence

∫ x
0 f (t)dt = 0. Differentiating

with respect to x, we conclude that f (x) = 0 for all x, and we are done.
(Romanian Olympiad, 1978, proposed by S. Rădulescu)

411. Consider the function

F(t) =
[∫ t

0
f (x)dx

]2

−
∫ t

0
[f (x)]3dx for t ∈ [0, 1].

We want to show that F(t) ≥ 0, from which the conclusion would then follow. Because
F(0) = 0, it suffices to show that F is increasing. To prove this fact we differentiate and
obtain

F ′(t) = f (t)

[
2
∫ t

0
f (x)dx − f 2(t)

]
.

It remains to check that G(t) = 2
∫ t

0 f (x)dx − f 2(t) is positive on [0, 1]. Because
G(0) = 0, it suffices to prove that G itself is increasing on [0, 1]. We have

G′(t) = 2f (t)− 2f (t)f ′(t).

This function is positive, since on the one hand f ′(0) ≤ 1, and on the other hand f
is increasing, having a positive derivative, and so f (t) ≥ f (0) = 0. This proves the
inequality. An example in which equality holds is the function f : [0, 1] → R, f (x) = x.

(34th W.L. Putnam Mathematical Competition, 1973)

412. (a) To avoid the complicated exponents, divide the inequality by the right-hand side;
then take the natural logarithm. Next, fix positive numbers y and z, and then introduce
the function f : (0,∞) → R,
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f (x) = (x + y + z) ln(x + y + z)+ x ln x + y ln y + z ln z

− (x + y) ln(x + y)− (y + z) ln(y + z)− (z+ x) ln(z+ x).

Differentiating f (x) with respect to x, we obtain

f ′(x) = ln
(x + y + z)x

(x + y)(z+ x)
= ln

x2 + yx + zx

x2 + yx + zx + yz
< ln 1 = 0,

for all positive numbers x. It follows that f (x) is strictly decreasing, so f (x) <
limt→0 f (t) = 0, for all x > 0. Hence ef (x) < 1 for all x > 0, which is equivalent to the
first inequality from the statement.

(b) We apply the same idea, fixing y, z > 0 and considering the function g : (0,∞)

→ R,

g(x) = (x + y + z)2 ln(x + y + z)+ x2 ln x + y2 ln y + z2 ln z

− (x + y)2 ln(x + y)− (y + z)2 ln(y + z)− (z+ x)2 ln(z+ x).

Differentiating with respect to x, we obtain

g′(x) = 2 ln
(x + y + z)x+y+zxx

(x + y)x+y(z+ x)z+x
.

We would like to show this time that g is increasing, for then g(x) > limt→0 g(t) = 0,
from which the desired inequality is obtained by exponentiation. We are left to prove
that g′(x) > 0, which is equivalent to

(x + y + z)x+y+zxx > (x + y)x+y(z+ x)z+x, for x, y, z > 0.

And we take the same path as in (a). Because we want to make the derivative as simple
as possible, we fix x, y > 0 and define h : (0,∞) → R,

h(z) = (x + y + z) ln(x + y + z)+ x ln x − (x + y) ln(x + y)− (z+ x) ln(z+ x).

Then

h′(z) = ln
x + y + z

z+ x
> ln 1 = 0,

for z > 0. Hence h(z) > limt→0 h(t) = 0, z > 0. This implies the desired inequality
and completes the solution.

(American Mathematical Monthly, proposed by Sz.András, solution by H.-J. Seiffert)

413. Let us examine the function F(x) = f (x)− g(x). Because F (n)(a) 	= 0, we have
F (n)(x) 	= 0 for x in a neighborhood of a. Hence F (n−1)(x) 	= 0 for x 	= a and x in a
neighborhood of a (otherwise, this would contradict Rolle’s theorem). Then F (n−2)(x)
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is monotonic to the left, and to the right of a, and because F (n−2)(a) = 0, F (n−2)(x) 	= 0
for x 	= a and x in a neighborhood of a. Inductively, we obtain F ′(x) 	= 0 and f (x) 	= 0
in some neighborhood of a.

The limit from the statement can be written as

lim
x→a

eg(x)
ef (x)−g(x) − 1

f (x)− g(x)
.

We only have to compute the limit of the fraction, since g(x) is a continuous function.
We are in a 0

0 situation, and can apply L’Hôpital’s theorem:

lim
x→a

ef (x)−g(x) − 1

f (x)− g(x)
= lim

x→a

(f ′(x)− g′(x))ef (x)−g(x)

f ′(x)− g′(x)
= e0 = 1.

Hence the limit from the statement is equal to eg(a) = eα.
(N. Georgescu-Roegen)

414. The function h : [1,∞) → [1,∞) given by h(t) = t (1+ ln t) is strictly increasing,
and h(1) = 1, limt→∞ h(t) = ∞. Hence h is bijective, and its inverse is clearly the
function f : [1,∞) → [1,∞), λ → f (λ). Since h is differentiable, so is f , and

f ′(λ) = 1

h′(x(λ))
= 1

2 + ln f (λ)
.

Also, since h is strictly increasing and limt→∞ h(t) = ∞, f (λ) is strictly increasing, and
its limit at infinity is also infinity. Using the defining relation for f (λ), we see that

f (λ)
λ

ln λ

= ln λ · f (λ)
λ

= ln λ

1 + ln f (λ)
.

Now we apply L’Hôpital’s theorem and obtain

lim
λ→∞

f (λ)
λ

ln λ

= lim
λ→∞

1
f (λ)

1
λ

· 1
2+ln f (λ)

= lim
λ→∞

f (λ)

λ
(2 + ln f (λ)) = lim

λ→∞
2 + ln f (λ)

1 + ln f (λ)
= 1,

where the next-to-last equality follows again from f (λ)(1 + ln f (λ)) = λ. Therefore,
the required limit is equal to 1.

(Gazeta Matematică (Mathematics Gazette, Bucharest), proposed by I. Tomescu)

415. If all four zeros of the polynomial P(x) are real, then by Rolle’s theorem all three
zeros of P ′(x) are real, and consequently both zeros of P ′′(x) = 12x2 − 6

√
7x + 8 are

real. But this quadratic polynomial has the discriminant equal to −132, which is negative,
and so it has complex zeros. The contradiction implies that not all zeros of P(x) are real.
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416. Replacing f by −f if necessary, we may assume f (b) > f (c), hence f (a) > f (c)

as well. Let ξ be an absolute minimum of f on [a, b], which exists because the function
is continuous. Then ξ ∈ (a, b) and therefore f ′(ξ) = 0.

417. Consider the functionf : [2,∞) → R, f (x) = x cos π
x

. By the mean value theorem
there exists u ∈ [x, x + 1] such that f ′(u) = f (x + 1)− f (x). The inequality from the
statement will follow from the fact that f ′(u) > 1. Since f ′(u) = cos π

u
+ π

u
sin π

u
, we

have to prove that

cos
π

u
+ π

u
sin

π

u
> 1,

for all u ∈ [2,∞). Note that f ′′(u) = −π2

u3 cos π
u
< 0, for u ∈ [2,∞), so f ′ is strictly

decreasing. This implies that f ′(u) > limv→∞ f ′(v) = 1 for all u, as desired. The
conclusion follows.

(Romanian college admission exam, 1987)

418. Letα be the slope of the line through the collinear points (ai, f (ai)), i = 0, 1, . . . , n,
on the graph of f . Then

f (ai)− f (ai−1)

ai − ai−1
= α, i = 1, 2, . . . , n.

From the mean value theorem it follows that there exist points ci ∈ (ai−1, ai) such that
f ′(ci) = α, i = 1, 2, . . . , n. Consider the functionF : [a0, an] → R, F(x) = f ′(x)−α.
It is continuous, (n − 1)-times differentiable, and has n zeros in [a0, an]. Applying
successively Rolle’s theorem, we conclude that F (n−1) = f (n) has a zero in [a, b], and
the problem is solved.

(Gazeta Matematică (Mathematics Gazette, Bucharest), proposed by G. Sireţchi)

419. The functions φ,ψ : [a, b] → R, φ(x) = f (x)

x−α and ψ(x) = 1
x−α satisfy the

conditions of Cauchy’s theorem. Hence there exists c ∈ (a, b) such that

φ(b)− φ(a)

ψ(b)− ψ(a)
= φ′(c)
ψ ′(c)

.

Replacing φ and ψ with their formulas gives

(a − α)f (b)− (b − α)f (a)

a − b
= f (c)− (c − α)f ′(c).

On the other hand, since M lies on the line determined by (a, f (a)), (b, f (b)), the
coordinates of M are related by

β = (a − α)f (b)− (b − α)f (a)

a − b
.
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This implies that β = f ′(c)(c−α)+f (c), which shows thatM(α, β) lies on the tangent
to the graph of f at (c, f (c)), and we are done.

420. Consider the function F : [a, b] → R,

F(x) = f ′(x)e−λf (x), λ ∈ R.

Because f is twice differentiable, F is differentiable. We have F(a) = F(b), which by
Rolle’s theorem implies that there exists c ∈ (a, b) with F ′(c) = 0. But

F ′(x) = e−λf (x)(f ′′(x)− λ(f ′(x))2),

so f ′′(c)− λ(f ′(c))2 = 0. We are done.
(D. Andrica)

421. First solution: Let us assume that such numbers do exist. If x = y it follows that
x(2x + 2−x) = 2x, which implies x = y = 0. This is impossible because x and y are
assumed to be positive.

Hence x should be different from y. Let x1 > x2 > x3 > 0 be such that y = x1 − x2

and x = x2 − x3. The relation from the statement can be written as

2x1−x2 − 1

1 − 2x3−x2
= x1 − x2

x2 − x3
,

or

2x1 − 2x2

x1 − x2
= 2x2 − 2x3

x2 − x3
.

Applying the mean value theorem to the exponential, we deduce the existence of the
numbers θ1 ∈ (x2, x1) and θ2 ∈ (x3, x2) such that

2x1 − 2x2

x1 − x2
= 2θ1 ln 2,

2x2 − 2x3

x2 − x3
= 2θ2 ln 2.

But this implies 2θ1 ln 2 = 2θ2 ln 2, or θ1 = θ2, which is impossible since the two numbers
lie in disjoint intervals. This contradiction proves the claim.

Second solution: Define F(z) = (2z − 1)/z. Note that by L’Hôpital’s rule, defining
F(0) = log 2 extends F continuously to z = 0. Rearrange the equality to give

F(−x) = 2−x − 1

−x = 2y − 1

y
= F(y).
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Thus the lack of solutions will follow if we show that F is strictly increasing. Recall that
e−t > 1 − t for t 	= 0, hence 2−z > 1 − z log 2 for z 	= 0. Hence

F ′(z) = 2z(z log 2 − 1 + 2−z)
z2

> 0

for z 	= 0 and hence F is strictly increasing.
(T. Andreescu, second solution by R. Stong)

422. Clearly, α is nonnegative. Define 	f (x) = f (x + 1) − f (x), and 	(k)f (x) =
	(	(k−1)f (x)), k ≥ 2. By the mean value theorem, there exists θ1 ∈ (0, 1) such
f (x+ 1)− f (x) = f ′(x+ θ1), and inductively for every k, there exists θk ∈ (0, k) such
that 	(k)f (x) = f (k)(x). Applying this to f (x) = xα and x = n, we conclude that for
every k there exists θk ∈ (0, k) such that f (k)(n+ θk) is an integer. Choose k = �α� + 1.
Then

	(k)f (n+ θ) = α(α − 1) · · · (α + 1 − k)

(n+ θk)k−α
.

This number is an integer by hypothesis. It is not hard to see that it is also positive and
less than 1. The only possibility is that it is equal to 0, which means that α = k − 1, and
the conclusion follows.

(W.L. Putnam Mathematical Competition)

423. The equation is a3 + b3 + c3 = 3abc, with a = 2x , b = −3x−1, and c = −1. Using
the factorization

a3 + b3 + c3 − 3abc = 1

2
(a + b + c)

[
(a − b)2 + (b − c)2 + (c − a)2

]
we find that a+ b+ c = 0 (the other factor cannot be zero since, for example, 2x cannot
equal −1). This yields the simpler equation

2x = 3x−1 + 1.

Rewrite this as

3x−1 − 2x−1 = 2x−1 − 1.

We immediately notice the solutions x = 1 and x = 2. Assume that another solution
exists, and consider the function f (t) = tx−1. Because f (3)− f (2) = f (2)− f (1), by
the mean value theorem there exist t1 ∈ (2, 3) and t2 ∈ (1, 2) such that f ′(t1) = f ′(t2).
This gives rise to the impossible equality (x − 1)tx−2

1 = (x − 1)tx−2
2 . We conclude that

there are only two solutions: x = 1 and x = 2.
(Mathematical Reflections, proposed by T. Andreescu)
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424. We first show that P(x) has rational coefficients. Let k be the degree of P(x),
and for each n, let xn be the rational root of P(x) = n. The system of equations in the
coefficients

P(xn) = n, n = 0, 1, 2, . . . , k,

has a unique solution since its determinant is Vandermonde. Cramer’s rule yields rational
solutions for this system, hence rational coefficients forP(x). Multiplying by the product
of the denominators, we may thus assume that P(x) has integer coefficients, say P(x) =
akx

k + · · · + a1x + a0, that ak > 0, and that P(x) = Nn has a rational solution xn for
all n ≥ 1, where N is some positive integer (the least common multiple of the previous
coefficients).

Because xn is a rational number, its representation as a fraction in reduced form has
the numerator a divisor of a0 − n and the denominator a divisor of ak. If m 	= n, then
xm 	= xn, so

|xm − xn| ≥ 1

ak
.

Let us now show that under this hypothesis the derivative of the polynomial is con-
stant. Assume the contrary. Then lim|x|→∞ |P ′(x)| = ∞. Also, limn→∞ P(xn) =
limn→∞ n = ∞. Hence |xn| → ∞, and so |P ′(xn)| → ∞, for n → ∞.

For some n, among the numbers xn, xn+1, xn+2 two have the same sign, call them x

and y. Then, by the mean value theorem, there exists a cn between x and y such that

P ′(cn) = P(y)− P(x)

y − x
.

Taking the absolute value, we obtain

|P ′(cn)| ≤ (n+ 2)− n

|y − x| ≤ 2ak,

where we use the fact that x and y are at least 1/ak apart. But cn tends to infinity, and so
|P ′(cn)| must also tend to infinity, a contradiction. This shows that our assumption was
false, so P ′(x) is constant. We conclude that P(x) is linear.

(Gazeta Matematică (Mathematics Gazette, Bucharest), proposed by M. Dădărlat)

425. Arrange the xi’s in increasing order x1 ≤ x2 ≤ · · · ≤ xn. The function

f (a) = |a − x1| + |a − x2| + · · · + |a − xn|
is convex, being the sum of convex functions. It is piecewise linear. The derivative at
a point a, in a neighborhood of which f is linear, is equal to the difference between the
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number of xi’s that are less than a and the number of xi’s that are greater than a. The
global minimum is attained where the derivative changes sign. For n odd, this happens
precisely at x�n/2�+1. If n is even, the minimum is achieved at any point of the interval
[x�n/2�, x�n/2�+1] at which the first derivative is zero and the function is constant.

So the answer to the problem is a = x�n/2�+1 if n is odd, and a is any number in the
interval [x�n/2�, x�n/2�+1] if n is even.

Remark. The required number x is called the median of x1, x2, . . . , xn. In general, if the
numbers x ∈ R occur with probability distribution dµ(x) then their median a minimizes

E(|x − a|) =
∫ ∞

−∞
|x − a|dµ(x).

The median is any number such that∫ a

−∞
dµ(x) = P(x ≤ a) ≥ 1

2

and ∫ ∞

a

dµ(x) = P(x ≥ a) ≥ 1

2
.

In the particular case of our problem, the numbers x1, x2, . . . , xn occur with equal prob-
ability, so the median lies in the middle.

426. The function f (t) = t c is convex, while g(t) = xt is convex and increasing.
Therefore, h(t) = g(f (t)) = xt

c

is convex. We thus have

xa
c + xb

c = h(a)+ h(b) ≥ 2h

(
a + b

2

)
= 2x(

a+b
2 )

2c ≥ 2x(ab)
c/2
.

This completes the solution.
(P. Alexandrescu)

427.We can assume that the triangle is inscribed in a circle of diameter 1, so thata = sinA,
b = sinB, c = sinC, A ≥ B ≥ C. The sine function is concave on the interval [0, π ],
and since B is between A and C, and all three angles lie in this interval, we have

sinB − sinC

B − C
≥ sinA− sinC

A− C
.

Multiplying out, we obtain

(A− C)(sinB − sinC) ≥ (B − C)(sinA− sinC),
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or

A sinB − A sinC − C sinB ≥ B sinA− C sinA− B sinC.

Moving the negative terms to the other side and substituting the sides of the triangle for
the sines, we obtain the inequality from the statement.

428. Fix x0 ∈ (a, b) and let α and β be two limit points of f : α from the left and β from
the right. We want to prove that they are equal. If not, without loss of generality we can
assume α < β. We argue from Figure 68. Choose x < x0 and y > x0 very close to x0

such that |f (x)− α| and |f (y)− β| are both very small. Because β is a limit point of f
at x0, there will exist points on the graph of f close to (x0, β), hence above the segment
joining (x, f (x)) and (y, f (y)). But this contradicts the convexity of f . Hence α = β.

Because all limit points from the left are equal to all limit points from the right, f
has a limit at x0. Now redo the above argument for x = x0 to conclude that the limit is
equal to the value of the function at x0. Hence f is continuous at x0.

Figure 68

429. The key point of the solution is Cauchy’s method of backward induction discussed
in the first chapter of the book. We first prove that for any positive integer k and points
x1, x2, . . . , x2k , we have

f

(
x1 + x2 + · · · + x2k

2k

)
≤ f (x1)+ f (x2)+ · · · + f (x2k )

2k
.

The base case is contained in the statement of the problem, while the inductive step is

f

(
x1 + · · · + x2k + x2k+1 + · · · + x2k+1

2k+1

)
≤
f
(
x1+···+x2k

2k

)
+ f

(
x2k+1+···+x2k+1

2k

)
2

≤
f (x1)+···+f (x2k )

2k + f (x2k+1)+···+f (x2k+1 )

2k

2
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= f (x1)+ · · · + f (x2k )+ f (x2k + 1)+ · · · + f (x2k+1)

2k+1
.

Next, we show that

f

(
x1 + x2 + · · · + xn

n

)
≤ f (x1)+ f (x2)+ · · · + f (xn)

n
, for all x1, x2 . . . , xn.

Assuming that the inequality holds for any n points, we prove that it holds for any n− 1
points as well. Consider the points x1, x2, . . . , xn−1 and define xn = x1+x2+···+xn−1

n−1 . Using
the induction hypothesis, we can write

f

(
x1 + · · · + xn−1 + x1+···+xn−1

n−1

n

)
≤ f (x1)+ · · · + f (xn−1)+ f

(
x1+···+xn−1

n−1

)
n

.

This is the same as

f

(
x1 + · · · + xn−1

n− 1

)
≤ f (x1)+ · · · + f (xn−1)

n
+ 1

n
f

(
x1 + · · · + xn−1

n− 1

)
.

Moving the last term on the right to the other side gives the desired inequality. Starting
with a sufficiently large power of 2 we can cover the case of any positive integer n.

In the inequality

f

(
x1 + x2 + · · · + xn

n

)
≤ f (x1)+ f (x2)+ · · · + f (xn)

n

that we just proved, for some m < n set x1 = x2 = · · · = xm = x and xm+1 = xm+2 =
· · · = xn = y. Then

f
(m
n
x +

(
1 − m

n

)
y
)

≤ m

n
f (x)+

(
1 − m

n

)
f (y).

Because f is continuous we can pass to the limit with m
n

→ λ to obtain the desired

f (λx + (1 − λ)y) ≤ λf (x)+ (1 − λ)f (y),

which characterizes convex functions.

430. First solution: Fix n ≥ 1. For each integer i, define

	i = f

(
i + 1

n

)
− f

(
i

n

)
.

If in the inequality from the statement we substitute x = i+2
n

and y = i
n
, we obtain
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f
(
i+2
n

)+ f
(
i
n

)
2

≥ f

(
i + 1

n

)
+ 2

n
, i = 1, 2, . . . , n,

or

f

(
i + 2

n

)
− f

(
i + 1

n

)
≥ f

(
i + 1

n

)
− f

(
i

n

)
+ 4

n
, i = 1, 2, . . . , n.

In other words, 	i+1 ≥ 	i + 4
n
. Combining this for n consecutive values of i gives

	i+n ≥ 	i + 4.

Summing this inequality for i = 0 to n− 1 and canceling terms yields

f (2)− f (1) ≥ f (1)− f (0)+ 4n.

This cannot hold for all n ≥ 1. Hence, there are no very convex functions.

Second solution: We show by induction on n that the given inequality implies

f (x)+ f (y)

2
− f

(
x + y

2

)
≥ 2n|x − y|, for n ≥ 0.

This will yield a contradiction, because for fixed x andy the right-hand side gets arbitrarily
large, while the left-hand side remains fixed.

The statement of the problem gives us the base case n = 0. Now, if the inequality
holds for a given n, then for two real numbers a and b,

f (a)+ f (a + 2b)

2
≥ f (a + b)+ 2n+1|b|,

f (a + b)+ f (a + 3b) ≥ 2(f (a + 2b)+ 2n+1|b|),

and

f (a + 2b)+ f (a + 4b)

2
≥ f (a + 3b)+ 2n+1|b|.

Adding these three inequalities and canceling terms yields

f (a)+ f (a + 4b)

2
≥ f (a + 2b)+ 2n+3|b|.

Setting x = a, y = a + 4b, we obtain

f (x)+ f (y)

2
≥ f

(
x + y

2

)
+ 2n+1|x − y|,



526 Real Analysis

completing the induction. Hence the conclusion.
(USA Mathematical Olympiad, 2000, proposed by B. Poonen)

431. The case x = y = z is straightforward, so let us assume that not all three numbers
are equal. Without loss of generality, we may assume that x ≤ y ≤ z. Let us first discuss
the case y ≤ x+y+z

3 . Then y ≤ x+z
2 , and so

x + y + z

3
≤ x + z

2
≤ z.

Obviously x ≤ (x + y + z)/3, and consequently

x + y + z

3
≤ y + z

2
≤ z.

It follows that there exist s, t ∈ [0, 1] such that

x + z

2
= s

x + y + z

3
+ (1 − s)z,

y + z

2
= t

x + y + z

3
+ (1 − t)z.

Adding up these inequalities and rearranging yields

x + y − 2z

2
= (s + t)

x + y − 2z

3
.

Since x + y < 2z, this equality can hold only if s + t = 3
2 . Writing the fact that f is a

convex function, we obtain

f

(
x + z

2

)
= f

(
s
x + y + z

3
+ (1 − s)z

)
≤ sf

(
x + y + z

3

)
+ (1 − s)f (z),

f

(
y + z

2

)
= f

(
t
x + y + z

3
+ (1 − t)z

)
≤ tf

(
x + y + z

3

)
+ (1 − t)f (z),

f

(
x + y

2

)
≤ 1

2
f (x)+ 1

2
f (y).

Adding the three, we obtain

f

(
x + y

2

)
+ f

(
y + z

2

)
+ f

(
z+ x

2

)
≤ (s + t)f

(
x + y + z

3

)
+ 1

2
f (x)+ 1

2
f (y)+ (2 − s − t)f (z)

= 2

3
f

(
x + y + z

3

)
+ 1

2
f (x)+ 1

2
f (y)+ 1

2
f (z),
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and the inequality is proved.
(T. Popoviciu, solution published by Gh. Eckstein in Timişoara Mathematics Gazette)

432. The fact that all sequences (anbn)n are convex implies that for any real number a,
an+1bn+1 − 2anbn + an−1bn−1 ≥ 0. Hence bn+1a

2 − 2bna+ bn−1 ≥ 0 for all a. Viewing
the left-hand side as a quadratic function in a, its discriminant must be less than or equal
to zero. This is equivalent to b2

n ≤ bn+1bn−1 for all n. Taking the logarithm, we obtain
that 2 ln bn ≤ ln bn+1 + ln bn−1, proving that the sequence (ln bn)n is convex.

433. We will show that the largest such constant is C = 1
2 . For example, if we consider

the sequence a1 = ε, a2 = 1, a3 = ε, with ε a small positive number, then the condition
from the statement implies

C ≤ 1

2
· (1 + 2ε)2

1 + 2ε2
.

Here if we let ε → 0, we obtain C ≤ 1
2 .

Let us now show that C = 1
2 satisfies the inequality for all concave sequences. For

every i, concavity forces the elements a1, a2, . . . , ai to be greater than or equal to the
corresponding terms in the arithmetic progression whose first term is a1 and whose ith
term is ai . Consequently,

a1 + a2 + · · · + ai ≥ i

(
a1 + ai

2

)
.

The same argument repeated for ai, ai+1, . . . , an shows that

ai + ai+1 + · · · + an ≥ (n− i + 1)

(
ai + an

2

)
.

Adding the two inequalities, we obtain

a1 + a2 + · · · + an ≥ i

(
a1 + ai

2

)
+ (n− i + 1)

(
ai + an

2

)
− ai

= i
a1

2
+ (n− i + 1)

an

2
+ (n− 1)ai

2

≥
(
n− 1

2

)
ai.

Multiplying by ai and summing the corresponding inequalities for all i gives

(a1 + a2 + · · · + an)
2 ≥ n− 1

2
(a2

1 + a2
2 + · · · + a2

n).

This shows that indeed C = 1
2 is the answer to our problem.

(Mathematical Olympiad Summer Program, 1994)
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434. We assume that α ≤ β ≤ γ , the other cases being similar. The expression is a
convex function in each of the variables, so it attains its maximum for some x, y, z = a

or b.
Now let us fix three numbers x, y, z ∈ [a, b], with x ≤ y ≤ z. We have

E(x, y, z)− E(x, z, y) = (γ − α)((z− x)2 − (y − z)2) ≥ 0,

and hence E(x, y, z) ≥ E(x, z, y). Similarly, E(x, y, z) ≥ E(y, x, z) and E(z, y, x) ≥
E(y, z, x). So it suffices to consider the cases x = a, z = b or x = b and z = a. For
these cases we have

E(a, a, b) = E(b, b, a) = (β + γ )(b − a)2

and

E(a, b, b) = E(b, a, a) = (α + γ )(b − a)2.

We deduce that the maximum of the expression under discussion is (β + γ )(b − a)2,
which is attained for x = y = a, z = b and for x = y = b, z = a.

(Revista Matematică din Timişoara (Timişoara Mathematics Gazette), proposed by
D. Andrica and I. Raşa)

435. The left-hand side of the inequality under discussion is a convex function in each
xi . Hence in order to maximize this expression we must choose some of the xi’s equal to
a and the others equal to b. For such a choice, denote by u the sum of the ti’s for which
xi = a and by v the sum of the ti’s for which xi = b. It remains to prove the simpler
inequality

(ua + bv)
(u
a

+ v

b

)
≤ (a + b)2

4ab
(u+ b)2.

This is equivalent to

4(ua + vb)(ub + va) ≤ (ua + vb + ub + va)2,

which is the AM–GM inequality applied to ua + vb and ub + va.
(L.V. Kantorovich)

436. Expanding with Newton’s binomial formula, we obtain

(1 + x)n + (1 − x)n =
� n2 �∑
k=0

(
n

2k

)
x2k.
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The coefficients in the expansion are positive, so the expression is a convex function in x
(being a sum of power functions that are convex). Its maximum is attained when |x| = 1,
in which case the value of the expression is 2n. This proves the inequality.

(C. Năstăsescu, C. Niţă, M. Brandiburu, D. Joiţa, Exerciţii şi Probleme de Algebră
(Exercises and Problems in Algebra), Editura Didactică şi Pedagogică, Bucharest, 1983)

437. Without loss of generality, we may assume that b is the number in the middle. The
inequality takes the form

a + b + c − 3 3
√
abc ≤ 3(a + c − 2

√
ac).

For fixed a and c, define f : [a, c] → R, f (b) = 3(a+c−2
√
ac)−a−b−c+3

√
abc.

This function is concave because f ′′(b) = − 2
3(ac)

1/3b−5/3 < 0, so it attains its minimum
at one of the endpoints of the interval [a, c]. Thus the minimum is attained for b = a or
b = c. Let us try the case b = a. We may rescale the variables so that a = b = 1. The
inequality becomes

2c + 3c1/3 + 1

6
≥ c1/2,

and this is just an instance of the generalized AM–GM inequality. The case a = c is
similar.

(USA Team Selection Test for the International Mathematical Olympiad, 2002, pro-
posed by T. Andreescu)

438. For (a) we apply Sturm’s principle. Given x ∈ (a, b) choose h > 0 such that a <
x − h < x + h < b. The mean value theorem implies that f (x) ≤ maxx−h≤y≤x+y f (y),
with equality only when f is constant on [x−h, x+h]. Hence f (x) is less than or equal
to the maximum of f on [a, b], with equality if and only if f is constant on [a, b]. We
know that the maximum of f is attained on [a, b]. It can be attained at x only if f is
constant on [a, b]. This proves that the maximum is attained at one of the endpoints of
the interval.

To prove (b) we define the linear function

L(x) = (x − a)f (b)+ (b − x)f (a)

b − a
.

It is straightforward to verify that L itself satisfies the mean value inequality from the
statement with equality, and so does −L. Therefore, the function G(x) = f (x)− L(x)

satisfies the mean value inequality, too. It follows that G takes its maximum value at a
or at b. A calculation shows thatG(a) = G(b) = 0. Therefore,G(x) ≤ 0 for x ∈ [a, b].
This is equivalent to

f (x) ≤ (x − a)f (b)+ (b − x)f (a)

b − a
,
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which is, in fact, the condition for f to be convex.
(P.N. de Souza, J.N. Silva, Berkeley Problems in Mathematics, Springer, 2004)

439. The function f (t) = sin t is concave on the interval [0, π ]. Jensen’s inequality
yields

sinA+ sinB + sinC ≥ 3 sin
A+ B + C

3
= 3 sin

π

3
= 3

√
3

2
.

440. If we set yi = ln xi , then xi ∈ (0, 1] implies yi ≤ 0, i = 1, 2, . . . , n. Consider the
function f : (−∞, 0] → R, f (y) = (1+ey)−1. This function is twice differentiable and

f ′′(y) = ey(ey − 1)(1 + ey)−3 ≤ 0, for y ≤ 0.

It follows that this function is concave, and we can apply Jensen’s inequality to the points
y1, y2, . . . , yn and the weights a1, a2, . . . , an. We have

n∑
i=1

ai

1 + xi
=

n∑
i=1

ai

1 + e
y

i

≤ 1

1 + e
∑n
i=1 aiyi

= 1

1 +∏n
i=1 e

aiyi
= 1

1 +∏n
i=1 x

ai
i

,

which is the desired inequality.
(D. Buşneag, I. Maftei, Teme pentru cercurile şi concursurile de matematică (Themes

for mathematics circles and contests), Scrisul Românesc, Craiova)

441. First solution: Apply Jensen’s inequality to the convex function f (x) = x2 and to

x1 = a2
1 + a2

2 + a2
3

2a2a3
, x2 = a2

1 + a2
2 + a2

3

2a3a1
, x3 = a2

1 + a2
2 + a2

3

2a1a2
,

λ1 = a2
1

a2
1 + a2

2 + a2
3

, λ2 = a2
2

a2
1 + a2

2 + a2
3

, λ3 = a2
3

a2
1 + a2

2 + a2
3

.

The inequality

f (λ1x2 + λ2x2 + λ3x3) ≤ λ1f (x1)+ λ2f (x2)+ λ3f (x3)

translates to

(a3
1 + a3

2 + a3
3)

2

4a2
1a

2
2a

2
3

≤ (a4
1 + a4

2 + a4
3)(a

2
1 + a2

2 + a2
3)

4a2
1a

2
2a

2
3

,

and the conclusion follows.

Second solution: The inequality from the statement is equivalent to
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(a2
1 + a2

2 + a2
3)(a

4
1 + a4

2 + a4
3) ≥ (a3

1 + a3
2 + a3

3)
2.

This is just the Cauchy–Schwarz inequality applied to a1, a2, a3, and a2
1, a

2
2, a

2
3 .

(Gazeta Matematică (Mathematics Gazette), Bucharest)

442. Take the natural logarithm of both sides, which are positive because xi ∈ (0, π),
i = 1, 2, . . . , n, to obtain the equivalent inequality

n∑
i=1

ln
sin xi
xi

≤ n ln
sin x

x
.

All we are left to check is that the function f (t) = ln sin t
t

is concave on (0, π).
Because f (t) = ln sin t − ln t , its second derivative is

f ′′(t) = − 1

sin2 t
+ 1

t2
.

The fact that this is negative follows from sin t < t for t > 0, and the inequality is proved.
(39th W.L. Putnam Mathematical Competition, 1978)

443. The function f : (0, 1) → R, f (x) = x√
1−x is convex. By Jensen’s inequality,

1

n

n∑
i=1

xi√
1 − xi

≥

1

n

n∑
i=1

xi√√√√1 − 1

n

n∑
i=1

xi

= 1√
n(n− 1)

.

We have thus found that

x1√
1 − x1

+ x2√
1 − x2

+ · · · + xn√
1 − xn

≥
√

n

n− 1
.

On the other hand, by the Cauchy–Schwarz inequality

n = n

n∑
i=1

xi ≥
(

n∑
i=1

√
xi

)2

,

whence
∑n

i=1
√
xi ≤ √

n. It follows that

√
x1 + √

x2 + · · · + √
xn√

n− 1
≤
√

n

n− 1
.

Combining the two inequalities, we obtain the one from the statement.
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444. Split the integral as ∫
ex

2
dx +

∫
2x2ex

2
dx.

Denote the first integral by I1. Then use integration by parts to transform the second
integral as ∫

2x2ex
2
dx = xex

2 −
∫
ex

2
dx = xex

2 − I1.

The integral from the statement is therefore equal to

I1 + xex
2 − I1 = xex

2 + C.

445. Adding and subtracting ex in the numerator, we obtain∫
x + sin x − cos x − 1

x + ex + sin x
dx =

∫
x + ex + sin x − 1 − ex − cos x

x + ex + sin x
dx

=
∫
x + ex + sin x

x + ex + sin x
dx −

∫
1 + ex + cos x

x + ex + sin x
dx

= x + ln(x + ex + sin x)+ C.

(Romanian college entrance exam)

446. The trick is to bring a factor of x inside the cube root:∫
(x6 + x3)

3
√
x3 + 2dx =

∫
(x5 + x2)

3
√
x6 + 2x3dx.

The substitution u = x6 + 2x3 now yields the answer

1

6
(x6 + 2x3)4/3 + C.

(G.T. Gilbert, M.I. Krusemeyer, L.C. Larson, The Wohascum County Problem Book,
MAA, 1993)

447. We want to avoid the lengthy method of partial fraction decomposition. To this end,
we rewrite the integral as

∫ x2

(
1 + 1

x2

)
x2

(
x2 − 1 + 1

x2

)dx =
∫ 1 + 1

x2

x2 − 1 + 1

x2

dx.
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With the substitution x− 1
x

= t we have (1+ 1
x2 )dx = dt , and the integral takes the form∫

1

t2 + 1
dt = arctan t + C.

We deduce that the integral from the statement is equal to

arctan

(
x − 1

x

)
+ C.

448. Substitute u =
√
ex−1
ex+1 , 0 < u < 1. Then x = ln(1 + u2) − ln(1 − u2), and

dx = ( 2u
1+u2 + 2u

1−u2 )du. The integral becomes∫
u

(
2u

u2 + 1
+ 2u

u2 − 1

)
du =

∫ (
4 − 2

u2 + 1
+ 2

u2 − 1

)
du

= 4u− 2 arctan u+
∫ (

1

u+ 1
+ 1

1 − u

)
du

= 4u− 2 arctan u+ ln(u+ 1)− ln(u− 1)+ C.

In terms of x, this is equal to

4

√
ex − 1

ex + 1
− 2 arctan

√
ex − 1

ex + 1
+ ln

(√
ex − 1

ex + 1
+ 1

)
− ln

(√
ex − 1

ex + 1
− 1

)
+ C.

449. If we naively try the substitution t = x3 + 1, we obtain

f (t) =
√
t + 1 − 2

√
t +

√
t + 9 − 6

√
t .

Now we recognize the perfect squares, and we realize that

f (x) =
√
(
√
x3 + 1 − 1)2 +

√
(
√
x3 + 1 − 3)2 = |

√
x3 + 1 − 1| + |

√
x3 + 1 − 3|.

When x ∈ [0, 2], 1 ≤ √
x3 + 1 ≤ 3. Therefore,

f (x) =
√
x3 + 1 − 1 + 3 −

√
x3 + 1 = 2.

The antiderivatives of f are therefore the linear functions f (x) = 2x +C, where C is a
constant.

(communicated by E. Craina)

450. Let fn = 1 + x + x2

2! + · · · + xn

n! . Then f ′(x) = 1 + x + · · · + xn−1

(n−1)! . The integral
in the statement becomes
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In =
∫
n!(fn(x)− f ′

n(x))

fn(x)
dx = n!

∫ (
1 − f ′

n(x)

fn(x)

)
dx = n!x − n! ln fn(x)+ C

= n!x − n! ln

(
1 + x + x2

2! + · · · + xn

n!
)

+ C.

(C. Mortici, Probleme Pregătitoare pentru Concursurile de Matematică (Training
Problems for Mathematics Contests), GIL, 1999)

451. The substitution is

u = x
4
√

2x2 − 1
,

for which

du = x2 − 1

(2x2 − 1) 4
√

2x2 − 1
dx.

We can transform the integral as follows:∫
2x2 − 1

−(x2 − 1)2
· x2 − 1

(2x2 − 1) 4
√

2x2 − 1
dx =

∫
1

−x4+2x2−1
2x2−1

· x2 − 1

(2x2 − 1) 4
√

2x2 − 1
dx

=
∫

1

1 − x4

2x2−1

· x2 − 1

(2x2 − 1) 4
√

2x2 − 1
dx

=
∫

1

1 − u4
du.

This is computed using Jacobi’s method for rational functions, giving the final answer to
the problem

1

4
ln

4
√

2x2 − 1 + x
4
√

2x2 − 1 − x
− 1

2
arctan

4
√

2x2 − 1

x
+ C.

452. Of course, Jacobi’s partial fraction decomposition method can be applied, but it is
more laborious. However, in the process of applying it we factor the denominator as
x6 + 1 = (x2 + 1)(x4 − x2 + 1), and this expression can be related somehow to the
numerator. Indeed, if we add and subtract an x2 in the numerator, we obtain

x4 + 1

x6 + 1
= x4 − x2 + 1

x6 + 1
+ x2

x6 + 1
.

Now integrate as follows:∫
x4 + 1

x6 + 1
dx =

∫
x4 − x2 + 1

x6 + 1
dx +

∫
x2

x6 + 1
dx =

∫
1

x2 + 1
dx +

∫
1

3

(x3)′

(x3)2 + 1
dx
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= arctan x + 1

3
arctan x3.

To write the answer in the required form we should have

3 arctan x + arctan x3 = arctan
P(x)

Q(x)
.

Applying the tangent function to both sides, we deduce

3x−x3

1−3x2 + x3

1 − 3x−x3

1−3x2 · x3
= tan

(
arctan

P(x)

Q(x)

)
.

From here

arctan
P(x)

Q(x)
= arctan

3x − 3x5

1 − 3x2 − 3x4 + x6
,

and hence P(x) = 3x − 3x5, Q(x) = 1 − 3x2 − 3x4 + x6. The final answer is

1

3
arctan

3x − 3x5

1 − 3x2 − 3x4 + x6
+ C.

453. The function f : [−1, 1] → R,

f (x) =
3
√
x

3
√

1 − x + 3
√

1 + x
,

is odd; therefore, the integral is zero.

454. We use the example from the introduction for the particular function f (x) = x

1+x2

to transform the integral into

π

∫ π
2

0

sin x

1 + sin2 x
dx.

This is the same as

π

∫ π
2

0
− d(cos x)

2 − cos2 x
,

which with the substitution t = cos x becomes

π

∫ 1

0

1

2 − t2
dt = π

2
√

2
ln

√
2 + t√
2 − t

∣∣∣∣∣
1

0

= π

2
√

2
ln

√
2 + 1√
2 − 1

.
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455. Denote the value of the integral by I . With the substitution t = ab
x

we have

I =
∫ b

a

e
b
t − e

t
a

ab
t

· −ab
t2

dt = −
∫ b

a

e
t
a − e

b
t

t
dt = −I.

Hence I = 0.

456. The substitution t = 1 − x yields

I =
∫ 1

0

3
√

2(1 − t)3 − 3(1 − t)2 − (1 − t)+ 1dt = −
∫ 1

0

3
√

2t3 − 3t2 − t + 1dt = −I.

Hence I = 0.
(Mathematical Reflections, proposed by T. Andreescu)

457. Using the substitutions x = a sin t , respectively, x = a cos t , we find the integral to
be equal to both the integral

L1 =
∫ π/2

0

sin t

sin t + cos t
dt

and the integral

L2 =
∫ π/2

0

cos t

sin t + cos t
dt.

Hence the desired integral is equal to

1

2
(L1 + L2) = 1

2

∫ π
2

0
1dt = π

4
.

458. Denote the integral by I . With the substitution t = π
4 − x the integral becomes

I =
∫ 0

π
4

ln
(

1 + tan
(π

4
− t

))
(−1)dt =

∫ π
4

0
ln

(
1 + 1 − tan t

1 + tan t

)
dt

=
∫ π

4

0
ln

2

1 + tan t
dt = π

4
ln 2 − I.

Solving for I , we obtain I = π
8 ln 2.

459. With the substitution arctan x = t the integral takes the form

I =
∫ π

4

0
ln(1 + tan t)dt.
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This we already computed in the previous problem. (“Happiness is longing for repeti-
tion,’’ says M. Kundera.) So the answer to the problem is π

8 ln 2.
(66th W.L. Putnam Mathematical Competition, 2005, proposed by T. Andreescu)

460. The function ln x is integrable near zero, and the function under the integral sign is
dominated by x−3/2 near infinity; hence the improper integral converges. We first treat
the case a = 1. The substitution x = 1/t yields∫ ∞

0

ln x

x2 + 1
dx =

∫ 0

∞

ln 1
t

1
t2

+ 1

(
− 1

t2

)
dt = −

∫ ∞

0

ln t

t2 + 1
dt,

which is the same integral but with opposite sign. This shows that for a = 1 the integral
is equal to 0. For general a we compute the integral using the substitution x = a/t as
follows ∫ ∞

0

ln x

x2 + a2
dx =

∫ 0

∞
ln a − ln t(
a
t

)2 + a2
·
(
− a

t2

)
dt = 1

a

∫ ∞

0

ln a − ln t

1 + t2
dt

= ln a

a

∫ ∞

0

dt

t2 + 1
− 1

a

∫ ∞

0

ln t

t2 + 1
dt = π ln a

2a
.

(P.N. de Souza, J.N. Silva, Berkeley Problems in Mathematics, Springer, 2004)

461. The statement is misleading. There is nothing special about the limits of integration!
The indefinite integral can be computed as follows:∫

x cos x − sin x

x2 + sin2 x
dx =

∫ cos x
x

− sin x
x2

1 + (
sin x
x

)2 dx =
∫

1

1 + (
sin x
x

)2

(
sin x

x

)′
dx

= arctan

(
sin x

x

)
+ C.

Therefore, ∫ π
2

0

x cos x − sin x

x2 + sin2 x
dx = arctan

2

π
− π

4
.

(Z. Ahmed)

462. If α is a multiple of π , then I (α) = 0. Otherwise, use the substitution x =
cosα + t sin α. The indefinite integral becomes∫

sin αdx

1 − 2x cosα + x2
=
∫

dt

1 + t2
= arctan t + C.

It follows that the definite integral I (α) has the value
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arctan

(
1 − cosα

sin α

)
− arctan

(−1 − cosα

sin α

)
,

where the angles are to be taken between −π
2 and π

2 . But

1 − cosα

sin α
× −1 − cosα

sin α
= −1.

Hence the difference between these angles is ±π
2 . Notice that the sign of the integral

is the same as the sign of α. Hence I (α) = π
2 if α ∈ (2kπ, (2k + 1)π) and −π

2 if
α ∈ ((2k + 1)π, (2k + 2)π) for some integer k.

Remark. This is an example of an integral with parameter that does not depend continu-
ously on the parameter.

(E. Goursat, A Course in Mathematical Analysis, Dover, NY, 1904)

463. First, note that 1/
√
x has this property for p > 2. We will alter slightly this function

to make the integral finite for p = 2. Since we know that logarithms grow much slower
than power functions, a possible choice might be

f (x) = 1√
x ln x

.

Then ∫ ∞

2
f 2(x)dx =

∫ ∞

2

1

x ln2 x
= − 1

ln x

∣∣∣∣∞
2

= 1

ln 2
< ∞.

Consequently, the integral of f p is finite for all real numbers p ≥ 2.
Let us see what happens for p < 2. An easy application of L’Hôpital’s theorem gives

lim
x→∞

f (x)p

x−1
= lim

x→∞
x− p

2 ln−p x
x−1

= lim
x→∞

x1− p
2

lnp x
= ∞,

and hence the comparison test implies that for p < 2 the integral is infinite. Therefore,
f (x) = 1√

x ln x
satisfies the required condition.

Remark. Examples like the above are used in measure theory to prove that inclusions
between Lp spaces are strict.

464. Let n be the degree of P(x). Integrating successively by parts, we obtain∫ t

0
e−xP (x)dt = −e−xP (x)|t0 +

∫ t

0
e−xP ′(x)dx

= −e−xP (x)|t0 − e−xP ′(x)|t0 +
∫ t

0
e−xP ′(x)dx = · · ·
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= −e−xP (x)|t0 − e−xP ′(x)|t0 − · · · − e−xP (n)(x)|t0.
Because limt→∞ e−tP (k)(t) = 0, k = 0, 1, . . . , n, when passing to the limit we obtain

lim
t→∞

∫ t

0
e−xP (x)dx = P(0)+ P ′(0)+ P ′′(0)+ · · · ,

hence the conclusion.

465. First, note that by L’Hôpital’s theorem,

lim
x→0

1 − cos nx

1 − cos x
= n2,

which shows that the absolute value of the integrand is bounded as x approaches 0, and
hence the integral converges.

Denote the integral by In. Then

In+1 + In−1

2
=
∫ π

0

2 − cos(n+ 1)x − cos(n− 1)x

2(1 − cos x)
dx =

∫ π

0

1 − cos nx cos x

1 − cos x
dx

=
∫ π

0

(1 − cos nx)+ cos nx(1 − cos x)

1 − cos x
dx = In +

∫ π

0
cos nxdx = In.

Therefore,

In = 1

2
(In+1 + In−1), n ≥ 1.

This shows that I0, I1, I2, . . . is an arithmetic sequence. From I0 = 0 and I1 = π it
follows that In = nπ , n ≥ 1.

466. Integration by parts gives

In =
∫ π/2

0
sinn xdx =

∫ π/2

0
sinn−1 x sin xdx

= − sinn−1 x cos2 x

∣∣∣π/20 + (n− 1)
∫ π/2

0
sinn−2 x cos2 xdx

= (n− 1)
∫ π/2

0
sinn−2 x(1 − sin2 x)dx = (n− 1)In−2 − (n− 1)In.

We obtain the recursive formula

In = n− 1

n
In−2, n ≥ 2.

This combined with I0 = π
2 and I1 = 1 yields
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In =

⎧⎪⎪⎨⎪⎪⎩
1 · 3 · 5 · · · (2k − 1)

2 · 4 · 6 · · · (2k) · π
2
, if n = 2k,

2 · 4 · 6 · · · (2k)
1 · 3 · 5 · · · (2k + 1)

, if n = 2k + 1.

To prove the Wallis formula, we use the obvious inequality sin2n+1 x < sin2n x <

sin2n−1 x, x ∈ (0, π2 ) to deduce that I2n+1 < I2n < I2n−1, n ≥ 1. This translates into

2 · 4 · 6 · · · (2n)
1 · 3 · 5 · · · (2n+ 1)

<
1 · 3 · 5 · · · (2n− 1)

2 · 4 · 6 · · · (2n) · π
2
<

2 · 4 · 6 · · · (2n− 2)

1 · 3 · 5 · · · (2n− 1)
,

which is equivalent to[
2 · 4 · 6 · · · (2n)

1 · 3 · 5 · · · (2n− 1)

]2

· 2

2n+ 1
< π <

[
2 · 4 · 6 · · · (2n)

1 · 3 · 5 · · · (2n− 1)

]2

· 2

2n
.

We obtain the double inequality

π <

[
2 · 4 · 6 · · · (2n)

1 · 3 · 5 · · · (2n− 1)

]2

· 1

n
< π · 2n+ 1

2n
.

Passing to the limit and using the squeezing principle, we obtain the Wallis formula.

467. Denote the integral from the statement by In, n ≥ 0. We have

In =
∫ 0

−π
sin nx

(1 + 2x) sin x
dx +

∫ π

0

sin nx

(1 + 2x) sin x
dx.

In the first integral change x to −x to further obtain

In =
∫ π

0

sin nx

(1 + 2−x) sin x
dx +

∫ π

0

sin nx

(1 + 2x) sin x
dx

=
∫ π

0

2x sin nx

(1 + 2x) sin x
dx +

∫ π

0

sin nx

(1 + 2x) sin x
dx

=
∫ π

0

(1 + 2x) sin nx

(1 + 2x) sin x
dx =

∫ π

0

sin nx

sin x
dx.

And these integrals can be computed recursively. Indeed, for n ≥ 0 we have

In+2 − In =
∫ π

0

sin(n+ 2)x − sin nx

sin x
dx = 2

∫ π

0
cos(n− 1)xdx = 0,

a very simple recurrence. Hence for n even, In = I0 = 0, and for n odd, In = I1 = π .
(3rd International Mathematics Competition for University Students, 1996)
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468. We have

sn = 1√
4n2 − 12

+ 1√
4n2 − 22

+ · · · + 1√
4n2 − n2

= 1

n

⎡⎣ 1√
4 − (

1
n

)2
+ 1√

4 − (
2
n

)2
+ · · · + 1√

4 − (
n
n

)2

⎤⎦ .
Hence sn is the Riemann sum of the function f : [0, 1] → R, f (x) = 1√

4−x2
associated

to the subdivision x0 = 0 < x1 = 1
n
< x2 = 2

n
< · · · < xn = n

n
= 1, with the

intermediate points ξi = i
n

∈ [xi, xi+1]. The answer to the problem is therefore

lim
n→∞ sn =

∫ 1

0

1√
4 − x2

dx = arcsin
x

2

∣∣∣1
0

= π

6
.

469. Write the inequality as

1

n

n∑
i=1

1√
2 i
n

+ 5
<

√
7 − √

5.

The left-hand side is the Riemann sum of the strictly decreasing function f (x) = 1√
2x+5

.
This Riemann sum is computed at the right ends of the intervals of the subdivision of
[0, 1] by the points i

n
, i = 1, 2, . . . , n− 1. It follows that

1

n

n∑
i=1

1√
2 i
n

+ 5
<

∫ 1

0

1√
2x + 5

dx = √
2x + 5

∣∣∣∣1
0

= √
7 − √

5,

the desired inequality.
(communicated by E. Craina)

470. We would like to recognize the general term of the sequence as being a Riemann
sum. This, however, does not seem to happen, since we can only write

n∑
i=1

2i/n

n+ 1
i

= 1

n

n∑
i=1

2i/n

1 + 1
ni

.

But for i ≥ 2,

2i/n >
2i/n

1 + 1
ni

,
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and, using the inequality ex > 1 + x,

2i/n

1 + 1
ni

= 2(i−1)/n 21/n

1 + 1
ni

= 2(i−1)/n e
ln 2/n

1 + 1
ni

> 2(i−1)/n 1 + ln 2
n

1 + 1
ni

> 2(i−1)/n,

for i ≥ 2. By the intermediate value property, for each i ≥ 2 there exists ξi ∈ [ i−1
n
, i
n
]

such that

2i/n

1 + 1
ni

= 2ξi .

Of course, the term corresponding to i = 1 can be neglected when n is large. Now we see
that our limit is indeed the Riemann sum of the function 2x integrated over the interval
[0, 1]. We obtain

lim
n→∞

(
21/n

n+ 1
+ 22/n

n+ 1
2

+ · · · + 2n/n

n+ 1
n

)
=
∫ 1

0
2xdx = 1

ln 2
.

(Soviet Union University Student Mathematical Olympiad, 1976)

471. This is an example of an integral that is determined using Riemann sums. Divide
the interval [0, π ] into n equal parts and consider the Riemann sum

π

n

[
ln
(
a2 − 2a cos

π

n
+ 1

)
+ ln

(
a2 − 2a cos

2π

n
+ 1

)
+ · · ·

+ ln

(
a2 − 2a cos

(n− 1)π

n
+ 1

)]
.

This expression can be written as

π

n
ln
(
a2 − 2a cos

π

n
+ 1

)(
a2 − 2a cos

2π

n
+ 1

)
· · ·

(
a2 − 2a cos

(n− 1)π

n
+ 1

)
.

The product inside the natural logarithm factors as

n−1∏
k=1

[
a −

(
cos

kπ

n
+ i sin

kπ

n

)][
a −

(
cos

kπ

n
− i sin

kπ

n

)]
.

These are exactly the factors in a2n − 1, except for a − 1 and a + 1. The Riemann sum
is therefore equal to

π

n
ln
a2n − 1

a2 − 1
.
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We are left to compute the limit of this expression as n goes to infinity. If a ≤ 1, this
limit is equal to 0. If a > 1, the limit is

lim
n→∞π ln n

√
a2n − 1

a2 − 1
= 2π ln a.

(S.D. Poisson)

472. The condition f (x)f (2x) · · · f (nx) ≤ ank can be written equivalently as

n∑
j=1

ln f (jx) ≤ ln a + k ln n, for all x ∈ R, n ≥ 1.

Taking α > 0 and x = α
n

, we obtain

n∑
j=1

ln f

(
jα

n

)
≤ ln a + k ln n,

or

n∑
j=1

α

n
ln f

(
jα

n

)
≤ α ln a + kα ln n

n
.

The left-hand side is a Riemann sum for the function ln f on the interval [0, α]. Because
f is continuous, so is ln f , and thus ln f is integrable. Letting n tend to infinity, we
obtain ∫ 1

0
ln f (x)dx ≤ lim

n→∞
α ln a + kα ln n

n
= 0.

The fact that f (x) ≥ 1 implies that ln f (x) ≥ 0 for all x. Hence ln f (x) = 0 for all
x ∈ [0, α]. Since α is an arbitrary positive number, f (x) = 1 for all x ≥ 0. A similar
argument yields f (x) = 1 for x < 0. So there is only one such function, the constant
function equal to 1.

(Romanian Mathematical Olympiad, 1999, proposed by R. Gologan)

473. The relation from the statement can be rewritten as∫ 1

0
(xf (x)− f 2(x))dx =

∫ 1

0

x2

4
dx.

Moving everything to one side, we obtain∫ 1

0

(
f 2(x)− xf (x)+ x2

4

)
dx = 0.



544 Real Analysis

We now recognize a perfect square and write this as∫ 1

0

(
f (x)− x

2

)2
dx = 0.

The integral of the nonnegative continuous function (f (x)− x
2 )

2 is strictly positive, unless
the function is identically equal to zero. It follows that the only function satisfying the
condition from the statement is f (x) = x

2 , x ∈ [0, 1].
(Revista de Matematică din Timişoara (Timişoara Mathematics Gazette), proposed

by T. Andreescu)

474. Performing the substitution x
1
k = t , the given conditions become∫ 1

0
(f (t))n−ktk−1dt = 1

n
, k = 1, 2, . . . , n− 1.

Observe that this equality also holds for k = n. With this in mind we write∫ 1

0
(f (t)− t)n−1 dt =

∫ 1

0

n−1∑
k=0

(
n− 1

k

)
(−1)k(f (t))n−1−ktkdt

=
∫ 1

0

n∑
k=1

(
n− 1

k − 1

)
(−1)k−1(f (t))n−ktk−1dt

=
n∑
k=1

(−1)k−1

(
n− 1

k − 1

)∫ 1

0
(f (t))n−ktk−1dt

=
n∑
k=1

(−1)k−1

(
n− 1

k − 1

)
1

n
= 1

n
(1 − 1)n−1 = 0.

Because n−1 is even, (f (t)− t)n−1 ≥ 0. The integral of this function can be zero only if
f (t)− t = 0 for all t ∈ [0, 1]. Hence the only solution to the problem is f : [0, 1] → R,
f (x) = x.

(Romanian Mathematical Olympiad, 2002, proposed by T. Andreescu)

475. Note that the linear function g(x) = 6x − 2 satisfies the same conditions as f .
Therefore, ∫ 1

0
(f (x)− g(x))dx =

∫ 1

0
x(f (x)− g(x))dx = 0.

Considering the appropriate linear combination of the two integrals, we obtain∫ 1

0
p(x)(f (x)− g(x))dx = 0.
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We have

0 ≤
∫ 1

0
(f (x)− g(x))2dx =

∫ 1

0
f (x)(f (x)− g(x))dx −

∫ 1

0
g(x)(f (x)− g(x))dx

=
∫ 1

0
f 2(x)− f (x)g(x)dx =

∫ 1

0
f 2(x)dx − 6

∫ 1

0
xf (x)dx + 2

∫ 1

0
f (x)dx

=
∫ 1

0
f 2(x)dx − 4.

The inequality is proved.
(Romanian Mathematical Olympiad, 2004, proposed by I. Raşa)

476. We change this into a minimum problem, and then relate the latter to an inequality
of the form x ≥ 0. Completing the square, we see that

x(f (x))2 − x2f (x) = √
xf (x))2 − 2

√
xf (x)

x
3
2

2
=
(√

xf (x)− x
3
2

2

)2

− x3

4
.

Hence, indeed,

J (f )− I (f ) =
∫ 1

0

(
√
xf (x)− x

3
2

2

)2

dx −
∫ 1

0

x3

4
dx ≥ − 1

16
.

It follows that I (f ) − J (f ) ≤ 1
16 for all f . The equality holds, for example, for

f : [0, 1] → R, f (x) = x
2 . We conclude that

max
f∈C0([0,1])

(I (f )− J (f )) = 1

16
.

(49th W.L. Putnam Mathematical Competition, 2006, proposed by T. Andreescu)

477. We can write the inequality as∑
i,j

xixj (ai + aj − 2 min(ai, aj )) ≤ 0.

Note that ∑
i,j

xixjai = xj

n∑
i=1

aixi = 0,

and the same stays true if we exchange i with j . So it remains to prove that∑
i,j

xixj min(ai, aj ) ≥ 0.
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If χ[0,ai ] is the characteristic function of the interval [0, ai] (equal to 1 on the interval and
to 0 outside), then our inequality is, in fact,∫ ∞

0

(
n∑
i=1

xiχ[0,ai ](t)

)2

dt ≥ 0,

which is obvious. Equality holds if and only if
∑n

i=1 xiχ[0,ai ] = 0 everywhere except at
finitely many points. It is not hard to see that this is equivalent to the condition from the
statement.

(G. Dospinescu)

478. This is just the Cauchy–Schwarz inequality applied to the functionsf andg, g(t) = 1
for t ∈ [0, 1].
479. By Hölder’s inequality,∫ 3

0
f (x) · 1dx ≤

(∫ 3

0
|f (x)|3dx

) 1
3
(∫ 3

0
1

3
2 dx

) 2
3

= 3
2
3

(∫ 3

0
|f (x)|3dx

) 1
3

.

Raising everything to the third power, we obtain(∫ 3

0
f (x)dx

)3 /∫ 3

0
f 3(x)dx ≤ 9.

To see that the maximum 9 can be achieved, choose f to be constant.

480. The argument relies on Figure 69. The left-hand side is the area of the shaded region
(composed of the subgraph of f and the subgraph of f −1). The product ab is the area of
the rectangle [0, a] × [0, b], which is contained inside the shaded region. Equality holds
if and only if the two regions coincide, which is the case exactly when b = f (a).

(Young’s inequality)

y = f(x)

a

b

Figure 69
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481. Suppose that x > y. Transform the inequality successively into

mn(x − y)(xm+n−1 − ym+n−1) ≥ (m+ n− 1)(xm − ym)(xn − yn),

and then

xm+n−1 − ym+n−1

(m+ n− 1)(x − y)
≥ xm − ym

m(x − y)
· x

n − yn

n(x − y)
.

The last one can be written as

(x − y)

∫ x

y

tm+n−2dt ≥
∫ x

y

tm−1dt ·
∫ x

y

tn−1dt.

Here we recognize Chebyshev’s inequality applied to the integrals of the functions f, g :
[y, x] → R, f (t) = tm−1 and g(t) = tn−1.

(Austrian–Polish Competition, 1995)

482. Observe that f being monotonic, it is automatically Riemann integrable. Taking
the mean of f on the intervals [0, α] and [1 − α, 1] and using the monotonicity of the
function, we obtain

1

1 − α

∫ 1

α

f (x)dx ≤ 1

α

∫ α

0
f (x)dx,

whence

α

∫ 1

α

f (x)dx ≤ (1 − α)

∫ α

0
f (x)dx.

Adding
∫ α

0 f (x)dx to both sides gives

α

∫ 1

0
f (x)dx ≤

∫ α

0
f (x)dx,

as desired.
(Soviet Union University Student Mathematical Olympiad, 1976)

483. For x ∈ [0, 1], we have f ′(x) ≤ f ′(1), and so

f ′(1)
f 2(x)+ 1

≤ f ′(x)
f 2(x)+ 1

.

Integrating, we obtain

f ′(1)
∫ 1

0

dx

f 2(x)+ 1
≤
∫ 1

0

f ′(x)
f 2(x)+ 1

= arctan f (1)− arctan f (0) = arctan f (1).
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Because f ′(1) > 0 and arctan y ≤ y for y ≥ 0, we further obtain∫ 1

0

dx

f 2(x)+ 1
≤ arctan f (1)

f ′(1)
≤ f (1)

f ′(1)
,

proving the inequality. In order for equality to hold we must have arctan f (1) = f (1),
which happens only when f (1) = 0. Then

∫ 1
0

dx

f 2(x)+1
= 0. But this cannot be true since

the function that is integrated is strictly positive. It follows that the inequality is strict.
This completes the solution.

(Romanian Mathematical Olympiad, 1978, proposed by R. Gologan)

484. The Leibniz–Newton fundamental theorem of calculus gives

f (x) =
∫ x

a

f ′(t)dt.

Squaring both sides and applying the Cauchy–Schwarz inequality, we obtain

f (x)2 =
(∫ b

a

f ′(t)dt
)2

≤ (b − a)

∫ b

a

f ′(t)2dt.

The right-hand side is a constant, while the left-hand side depends on x. Integrating the
inequality with respect to x yields∫ b

a

f (x)2dx ≤ (b − a)2
∫ b

a

f ′(t)2dt.

Substitute t by x to obtain the inequality as written in the statement of the problem.

485. This is an example of a problem in which it is important to know how to organize
the data. We start by letting A be the subset of [0, 1] on which f is nonnegative, and B
its complement. Let m(A), respectively, m(B) be the lengths (measures) of these sets,
and IA and IB the integrals of |f | on A, respectively, B. Without loss of generality, we
can assume m(A) ≥ 1

2 ; otherwise, change f to −f .
We have∫ 1

0

∫ 1

0
|f (x)+ f (y)|dxdy

=
∫
A

∫
A

(f (x)+ f (y))dxdy +
∫
B

∫
B

(|f (x)| + |f (y)|)dxdy

+ 2
∫
A

∫
B

|f (x)+ f (y)|dxdy.

Let us first try a raw estimate by neglecting the last term. In this case we would have to
prove
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2m(A)IA + 2m(B)IB ≥ IA + IB.

Since m(A)+m(B) = 1, this inequality translates into(
m(A)− 1

2

)
(IA − IB) ≥ 0,

which would be true if IA ≥ IB . However, if this last assumption does not hold, we can
return to the term that we neglected, and use the triangle inequality to obtain∫

A

∫
B

|f (x)+ f (y)|dxdy ≥
∫
A

∫
B

|f (x)| − |f (y)|dxdy = m(A)IB −m(B)IA.

The inequality from the statement would then follow from

2m(A)IA + 2m(B)IB + 2m(A)IB − 2m(B)IA ≥ IA + IB,

which is equivalent to(
m(A)− 1

2

)
(IA + IB)+m(B)(IB − IA) ≥ 0.

This is true since both terms are positive.
(64th W.L. Putnam Mathematical Competition, 2003)

486. Combining the Taylor series expansions

cos x = 1 − x2

2! + x4

4! − x6

6! + x8

8! + · · · ,

cosh x = 1 + x2

2! + x4

4! + x6

6! + x8

8! + · · · ,

we see that the given series is the Taylor series of 1
2(cos x + cosh x).

(The Mathematics Gazette Competition, Bucharest, 1935)

487. Denote by p the numerator and by q the denominator of this fraction. Recall the
Taylor series expansion of the sine function,

sin x = x

1! − x3

3! + x5

5! − x7

7! + x9

9! + · · · .

We recognize the denominators of these fractions inside the expression that we are com-
puting, and now it is not hard to see that pπ − qπ3 = sin π = 0. Hence pπ = qπ3, and
the value of the expression from the statement is π2.

(Soviet Union University Student Mathematical Olympiad, 1975)
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488. Expand the cosine in a Taylor series,

cos ax = 1 − (ax)2

2! + (ax)4

4! − (ax)6

6! + · · · .

Let us forget for a moment the coefficient (−1)na2n

(2n)! and understand how to compute∫ ∞

−∞
e−x

2
x2ndx.

If we denote this integral by In, then integration by parts yields the recursive formula
In = 2n−1

2 In−1. Starting with

I0 =
∫ ∞

−∞
e−x

2
dx = √

π,

we obtain

In = (2n)!√π
4nn! .

It follows that the integral in question is equal to

∞∑
n=0

(−1)n
a2n

(2n)! · (2n)!
√
π

4nn! = √
π

∞∑
n=0

(− a2

4

)n
n! ,

and this is clearly equal to
√
πe−a2/4.

One thing remains to be explained: why are we allowed to perform the expansion
and then the summation of the integrals? This is because the series that consists of the
integrals of the absolute values of the terms converges itself. Indeed,

∞∑
n=1

a2n

(2n)!
∫ ∞

−∞
e−x

2
x2n = √

π

∞∑
1

(
a2

4

)n
n! = √

πea
2/4 < ∞.

With this the problem is solved.
(G.B. Folland, Real Analysis, Modern Techniques and Their Applications, Wiley,

1999)

489. Consider the Taylor series expansion around 0,

1

x − 4
= −1

4
− 1

16
x − 1

64
x2 − 1

256
x3 − · · · .

A good guess is to truncate this at the third term and let
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P(x) = 1

4
+ 1

16
x + 1

64
x2.

By the residue formula for Taylor series we have∣∣∣∣P(x)+ 1

x − 4

∣∣∣∣ = x3

256
+ 1

(ξ − 4)4
x5,

for some ξ ∈ (0, x). Since |x| ≤ 1 and also |ξ | ≤ 1, we have x3

256 ≤ 1
256 and x4/(ξ−4)5 ≤

1
243 . An easy numerical computation shows that 1

256 + 1
243 <

1
100 , and we are done.

(Romanian Team Selection Test for the International Mathematical Olympiad, 1979,
proposed by O. Stănăşilă)

490. The Taylor series expansion of cos
√
x around 0 is

cos
√
x = 1 − x

2! + x2

4! − x3

6! + x4

8! − · · · .

Integrating term by term, we obtain

∫ 1

0
cos

√
xdx =

∞∑
n=1

(−1)n−1xn

(n+ 1)(2n)!

∣∣∣∣∣
1

0

=
∞∑
n=0

(−1)n−1

(n+ 1)(2n)! .

Grouping consecutive terms we see that(
1

5 · 8! − 1

6 · 10!
)

+
(

1

7 · 12! − 1

8 · 14!
)

+ · · · < 1

2 · 104
+ 1

2 · 105
+ 1

2 · 106
+ · · ·

<
1

104
.

Also, truncating to the fourth decimal place yields

0.7638 < 1 − 1

4
+ 1

72
− 1

2880
< 0.7639.

We conclude that ∫ 1

0
cos

√
xdx ≈ 0.763.

491. Consider the Newton binomial expansion

(x + 1)−
1
2 =

∞∑
k=0

(− 1
2

k

)
xk =

∞∑
k=0

(− 1
2

) (− 1
2 − 1

) (− 1
2 − 2

) · · · (− 1
2 − k + 1

)
k! xk
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=
∞∑
k=0

(−1)k
1 · 3 · · · (2k − 1)

2k · k! xk =
∞∑
k=0

(−1)k
(2k)!

22k · k! · k!x
k

=
∞∑
k=0

(−1)k
1

22k

(
2k

k

)
xk.

Replacing x by −x2 then taking antiderivatives, we obtain

arcsin x =
∫ x

0
(1 − t2)−

1
2 dt =

∞∑
k=0

1

22k

(
2k

k

)∫ x

0
t2kdt

=
∞∑
k=0

1

22k(2k + 1)

(
2k

k

)
x2k+1,

as desired.

492. (a) Differentiating the identity from the second example from the introduction, we
obtain

2 arcsin x√
1 − x2

=
∑
k≥1

1

k
(2k
k

)22kx2k−1,

whence

x arcsin x√
1 − x2

=
∑
k≥1

1

k
(2k
k

)22k−1x2k.

Differentiating both sides and multiplying by x, we obtain

x
arcsin x + x

√
1 − x2

(1 − x2)3/2
=
∑
k≥0

1(2k
k

)22kx2k.

Substituting x
2 for x, we obtain the desired identity.

Part (b) follows from (a) if we let x = 1.
(S. Rădulescu, M. Rădulescu, Teoreme şi Probleme de Analiză Matematică (Theorems

and Problems in Mathematical Analysis), Editura Didactică şi Pedagogică, Bucharest,
1982).

493. Consider the function f of period 2π defined by f (x) = x if 0 ≤ x < 2π . This
function is continuous on (0, 2π), so its Fourier series converges (pointwise) on this
interval. We compute

a0 = 1

2π

∫ 2π

0
xdx = π, am = 0, for m ≥ 1,
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bm = 1

π

∫ 2π

0
x sinmxdx = − x cosmx

mπ

∣∣∣2π
0

+ 1

mπ

∫ 2π

0
cosmxdx = − 2

m
, for m ≥ 1.

Therefore,

x = π − 2

1
sin x − 2

2
sin 2x − 2

3
sin 3x − · · · .

Divide this by 2 to obtain the identity from the statement. Substituting x = π
2 , we obtain

the Leibniz series

π

4
= 1 − 1

3
+ 1

5
− 1

7
+ · · · .

In the series

π − x

2
=

∞∑
n=1

sin nx

n
,

replace x by 2x, and then divide by 2 to obtain

π

4
− x

2
=

∞∑
k=1

sin 2kx

2k
, x ∈ (0, π).

Subtracting this from the original formula, we obtain

π

4
=

∞∑
k=1

sin(2k − 1)x

2k − 1
, x ∈ (0, π).

494. One computes ∫ 1

0
f (x)dx = 0,∫ 1

0
f (x) cos 2πnxdx = 0, for all n ≥ 1,∫ 1

0
f (x) sin 2πnxdx = 1

2πk
, for all n ≥ 1.

Recall that for a general Fourier expansion

f (x) = a0 +
∞∑
n=1

(
an cos

2π

T
nx + bn sin

2π

T
nx

)
,

one has Parseval’s identity
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1

T

∫ T

0
|f (x)|2dx = a2

0 + 2
∞∑
n=1

(a2
n + b2

n).

Our particular function has the Fourier series expansion

f (x) = 1

2π

∞∑
n=−∞

1

n
cos 2πnx,

and in this case Parseval’s identity reads∫ 1

0
|f (x)|2dx = 1

2π2

∞∑
n=1

1

n2
.

The left-hand side is
∫ 1

0 |f (x)|2dx = 1
12 , and the formula follows.

495. This problem uses the Fourier series expansion of f (x) = |x|, x ∈ [−π, π ]. A
routine computation yields

|x| = π

2
− 4

π

∞∑
k=0

cos(2k + 1)x

(2k + 1)2
, for x ∈ [−π, π ].

Setting x = 0, we obtain the identity from the statement.

496. We will use only trigonometric considerations, and compute no integrals. A first
remark is that the function is even, so only terms involving cosines will appear. Using
Euler’s formula

eiα = cosα + i sin α

we can transform the identity

n∑
k=1

e2ikx = e2i(n+1)x − 1

e2ix − 1

into the corresponding identities for the real and imaginary parts:

cos 2x + cos 4x + · · · + cos 2nx = sin nx cos(n+ 1)x

sin x
,

sin 2x + sin 4x + · · · + sin 2nx = sin nx sin(n+ 1)x

sin x
.

These two relate to our function as

sin2 nx

sin2 x
=
(

sin nx cos(n+ 1)x

sin x

)2

+
(

sin nx sin(n+ 1)x

sin x

)2

,
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which allows us to write the function as an expression with no fractions:

f (x) = (cos 2x + cos 4x + · · · + cos 2nx)2 + (sin 2x + sin 4x + · · · + sin 2nx)2.

Expanding the squares, we obtain

f (x) = n+
∑

1≤l<k≤n
(2 sin 2lx sin 2kx + 2 cos 2lx cos 2kx)

= n+ 2
∑

1≤l<k≤n
cos 2(k − l)x = n+

n−1∑
m=1

2(n−m) cos 2mx.

In conclusion, the nonzero Fourier coefficients of f are a0 = n and a2m = 2(n − m),
m = 1, 2, . . . , n− 1.

(D. Andrica)

497. Expand the function f as a Fourier series

f (x) =
∞∑
n=1

an sin nx,

where

an = 2

π

∫ π

0
f (t) sin ntdt.

This is possible, for example, since f can be extended to an odd function on [−π, π ].
Fix n ≥ 2, and consider the function g : [0, π ] → R, g(x) = n sin x − sin nx. The

function g is nonnegative because of the inequality n| sin x| ≥ | sin nx|, x ∈ R, which
was proved in the section on induction.

Integrating repeatedly by parts and using the hypothesis, we obtain

(−1)m
∫ π

0
f (2m)(t) sin ntdt = n2man

π

2
, for m ≥ 0.

It follows that

(−1)m
∫ π

0
f (2m)(x)(n sin x − sin nx)dx = (na1 − n2man)

π

2
≥ 0.

Indeed, the first term is the integral of a product of two nonnegative functions. This must
hold for any integer m; hence an ≤ 0 for any n ≥ 2.

On the other hand, f (x) ≥ 0, and f ′′(x) ≤ 0 for x ∈ [0, π ]; hence f (x)−f ′′(x) ≥ 0
on [0, π ]. Integrating twice by parts, we obtain
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0
f ′′(x)(n sin x − sin nx)dx = π

2
(na1 − n2an).

Therefore,

0 ≤
∫ π

0
(f (x)− f ′′(x))(n sin x − sin nx)dx = π

2
(na1 − an − na1 + n2an)

= π

2
(n2 − 1)an.

This implies that an ≥ 0, for n ≥ 2. We deduce that an = 0 for n ≥ 2, and so
f (x) = a1 sin x, for any x ∈ [0, π ].

(S. Rădulescu, M. Rădulescu, Teoreme şi Probleme de Analiză Matematică (Theorems
and Problems in Mathematical Analysis), Editura Didactică şi Pedagogică, Bucharest,
1982).

498. This is an exercise in the product and chain rules. We compute

∂v

∂t
(x, t) = ∂

∂t

(
t−

1
2 e−

x2
4t u(xt−1,−t−1)

)
= −1

2
t−

3
2 e−

x2
4t v(x, t)+ x2t−

5
2

4
e−

x2
4t v(x, t)− xt−

5
2 e−

x2
4t
∂u

∂x
(xt−1,−t−1)

+ t−
5
2 e−

x2
4t
∂u

∂t
(xt−1,−t−1),

then

∂v

∂x
(x, t) = t−

1
2 e−

x2
4t (−1

2
t−1x)u(xt−1,−t−1)+ t−

3
2 e−

x2
4t
∂u

∂x
(xt−1,−t−1)

and

∂2v

∂x2
(x, t) = 1

4
x2t−

5
2 e−

x2
4t v(x, t)− 1

2
t−

3
2 e−

x2
4t v(x, t)− 1

2
xt−

5
2 e−

x2
4t
∂u

∂x
(xt−1,−t−1)

− 1

2
xt−

5
2 e−

x2
4t
∂u

∂x
(xt−1,−t−1)+ t−

5
2 e−

x2
4t
∂2u

∂x2
(xt−1,−t−1).

Comparing the two formulas and using the fact that ∂u
∂t

= ∂2u

∂t2
, we obtain the desired

equality.

Remark. The equation

∂u

∂t
= ∂2u

∂x2

is called the heat equation. It describes how heat spreads through a long, thin metal bar.
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499. We switch to polar coordinates, where the homogeneity condition becomes the
simpler

u(r, θ) = rng(θ),

where g is a one-variable function of period 2π . Writing the Laplacian 	 = ∂2

∂x2 + ∂2

∂y2

in polar coordinates, we obtain

	 = ∂2

∂r2
+ 1

r

∂

∂r
+ 1

r2

∂2

∂θ2
.

For our harmonic function,

0 = 	u = 	(rng(θ)) = n(n− 1)rn−2g(θ)+ nrn−2g(θ)+ rn−2g′′(θ)

= rn−2(n2g(θ)+ g′′(θ)).

Therefore, g must satisfy the differential equation g′′ + n2g = 0. This equation has the
general solution g(θ) = A cos nθ + B sin nθ . In order for such a solution to be periodic
of period 2π , n must be an integer.

(P.N. de Souza, J.N. Silva, Berkeley Problems in Mathematics, Springer, 2004)

500. Assume the contrary and write P(x, y) = (x2 + y2)mR(x, y), where R(x, y) is not
divisible by x2 + y2. The harmonicity condition can be written explicitly as

4m2(x2 + y2)m−1R + 2m(x2 + y2)m−1

(
x
∂R

∂x
+ y

∂R

∂y

)
+ (x2 + y2)m

(
∂2R

∂x2
+ ∂2R

∂y2

)
= 0.

If R(x, y) were n-homogeneous for some n, then Euler’s formula would allow us to
simplify this to

(4m2 + 2mn)(x2 + y2)m−1R + (x2 + y2)m
(
∂2R

∂x2
+ ∂2R

∂y2

)
= 0.

If this were true, it would imply that R(x, y) is divisible by x2 + y2, a contradiction.
But the polynomial x2 + y2 is 2-homogeneous and R(x, y) can be written as a sum
of n-homogeneous polynomials, n = 0, 1, 2, . . . . Since the Laplacian ∂

∂x2 + ∂

∂y2 maps
an n-homogeneous polynomial to an (n − 2)-homogeneous polynomial, the nonzero
homogeneous parts of R(x, y) can be treated separately to reach the above-mentioned
contradiction. Hence P(x, y) is identically equal to zero.

Remark. The solution generalizes in a straightforward manner to the case of n variables,
which was the subject of a Putnam problem in 2005. But as I.M. Vinogradov said, “it is
the first nontrivial example that counts.’’
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501. Using the Leibniz–Newton fundamental theorem of calculus, we can write

f (x, y)− f (0, 0) =
∫ x

0

∂f

∂x
(s, 0)ds +

∫ y

0

∂f

∂y
(x, t)dt.

Using the changes of variables s = xσ and t = yτ , and the fact that f (0, 0) = 0, we
obtain

f (x, y) = x

∫ 1

0

∂f

∂x
(xσ, 0)dσ + y

∫ 1

0

∂f

∂y
(x, yτ)dτ.

Hence if we set g1(x, y) = ∫ 1
0
∂f

∂x
(xσ, 0)dσ and g2(x, y) = ∫ 1

0
∂f

∂y
(x, yτ)dτ , then

f (x, y) = xg1(x, y)+ yg2(x, y). Are g1 and g2 continuous? The answer is yes, and we
prove it only for g1, since for the other function the proof is identical. Our argument is
based on the following lemma.

Lemma. If φ : [a, b] → R is continuous, then for every ε > 0 there is δ > 0 such that
whenever |x − y| < δ, we have |f (x)− f (y)| < ε.

Proof. The property is called uniform continuity; the word “uniform’’ signifies the fact
that the “δ’’ from the definition of continuity is the same for all points in [a, b].

We argue by contradiction. Assume that the property is not true. Then there exist
two sequences (xn)n≥1 and (yn)n≥1 such that xn − yn → 0, but |f (xn)− f (yn)| ≥ ε for
some ε > 0. Because any sequence in [a, b] has a convergent subsequence, passing to
subsequences we may assume that (xn)n and (yn)n converge to some c in [a, b]. Then by
the triangle inequality,

ε ≤ |f (xn)− f (yn)| ≤ |f (xn)− f (c)| + |f (c)− f (yn)|,
which is absurd because the right-hand side can be made arbitrarily close to 0 by taking
n sufficiently large. This proves the lemma.

Returning to the problem, note that as x ′ ranges over a small neighborhood of x and
σ ranges between 0 and 1, the numbers xσ and x ′σ lie inside a small interval of the real
axis. Note also that |xσ − x ′σ | ≤ |x − x ′| when 0 ≤ σ ≤ 1. Combining these two facts
with the lemma, we see that for every ε > 0, there exists δ > 0 such that for |x− x ′| < δ

we have ∣∣∣∣∂f∂x (xσ, 0)− ∂f

∂x
(x ′σ, 0)

∣∣∣∣ < ε.

In this case, ∫ 1

0

∣∣∣∣∂f∂x (xσ, 0)− ∂f

∂x
(x ′σ, 0)

∣∣∣∣ dσ < ε,
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showing that g1 is continuous. This concludes the solution.

502. First, observe that if |x| + |y| → ∞ then f (x, y) → ∞, hence the function indeed
has a global minimum. The critical points of f are solutions to the system of equations

∂f

∂x
(x, y) = 4x3 + 12xy2 − 9

4
= 0,

∂f

∂y
(x, y) = 12x2y + 4y3 − 7

4
= 0.

If we divide the two equations by 4 and then add, respectively, subtract them, we obtain
x3 +3x2y+3xy2 +y3 −1 = 0 and x3 −3x2y+3xy3 −y3 = 1

8 . Recognizing the perfect
cubes, we write these as (x+y)3 = 1 and (x−y)3 = 1

8 , from which we obtain x+y = 1
and x − y = 1

2 . We find a unique critical point x = 3
4 , y = 1

4 . The minimum of f is
attained at this point, and it is equal to f ( 3

4 ,
1
4) = − 51

32 .
(R. Gelca)

503. The diameter of the sphere is the segment that realizes the minimal distance between
the lines. So if P(t + 1, 2t + 4,−3t + 5) and Q(4s − 12,−t + 8, t + 17), we have to
minimize the function

|PQ|2 = (s − 4t + 13)2 + (2s + t − 4)2 + (−3s − t − 12)2

= 14s2 + 2st + 18t2 + 82s − 88t + 329.

To minimize this function we set its partial derivatives equal to zero:

28s + 2t + 82 = 0,

2s + 36t − 88 = 0.

This system has the solution t = −782/251, s = 657/251. Substituting into the equation
of the line, we deduce that the two endpoints of the diameter are P(− 531

251 ,− 560
251 ,

3601
251 ) and

Q(− 384
251 ,

1351
251 ,

4924
251 ). The center of the sphere is 1

502(−915, 791, 8252), and the radius
147√
1004

. The equation of the sphere is

(502x + 915)2 + (502y − 791)2 + (502z− 8525)2 = 251(147)2.

(20th W.L. Putnam Competition, 1959)

504. WritingC = π−A−B, the expression can be viewed as a function in the independent
variables A and B, namely,

f (A,B) = cosA+ cosB − cos(A+ B).

And becauseA andB are angles of a triangle, they are constrained to the domainA,B > 0,
A+B < π . We extend the function to the boundary of the domain, then study its extrema.
The critical points satisfy the system of equations



560 Real Analysis

∂f

∂A
(A,B) = − sinA+ sin(A+ B) = 0,

∂f

∂B
(A,B) = − sinB + sin(A+ B) = 0.

From here we obtain sinA = sinB = sin(A+B), which can happen only ifA = B = π
3 .

This is the unique critical point, for which f (π3 ,
π
3 ) = 3

2 . On the boundary, if A = 0 or
B = 0, then f (A,B) = 1. Same if A + B = π . We conclude that the maximum of
cosA+ cosB + cosC is 3

2 , attained for the equilateral triangle, while the minimum is 1,
which is attained only for a degenerate triangle in which two vertices coincide.

505. We rewrite the inequality as

sin α cosβ cos γ + cosα sin β cos γ + cosα cosβ sin γ ≤ 2√
3
,

and prove it for α, β, γ ∈ [0, π2 ]. To this end, we denote the left-hand side by f (α, β, γ )
and find its maximum in the specified region. The critical points in the interior of the
domain are solutions to the system of equations

cosα cosβ cos γ − sin α sin β cos γ − sin α cosβ sin γ = 0,

− sin α sin β cos γ + cosα cosβ cos γ − cosα sin β sin γ = 0,

− sin α cosβ sin γ − cosα sin β sin γ + cosα cosβ cos γ = 0.

Bring this system into the form

cosα cosβ cos γ = sin α sin(β + γ ),

cosα cosβ cos γ = sin β sin(γ + α),

cosα cosβ cos γ = sin γ sin(α + β).

From the first two equations, we obtain

sin α

sin(α + γ )
= sin β

sin(β + γ )
.

The function g : (0, π2 ), g(t) = sin t
sin(t+γ ) is strictly increasing, since

g′(t) = cos t sin(t + γ )− sin t cos(t + γ )

(sin(t + γ ))2
= sin γ

(sin(t + γ ))2
> 0.

Hence g(α) = g(β) implies α = β. Similarly, β = γ . The condition that (α, α, α) is
a critical point is the trigonometric equation cos3 α = sin α sin 2α, which translates into

cos3 α = 2(1 − cos2 α) cosα. We obtain cosα =
√

2
3 , and f (α, α, α) = 2√

3
. This will
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be the maximum once we check that no value on the boundary of the domain exceeds
this number.

But when one of the three numbers, say α, is zero, then f (0, β, γ ) = sin(β+γ ) ≤ 1.
Also, if α = π

2 , then f (π2 , β, γ ) = cosβ cos γ ≤ 1. Hence the maximum of f is 2√
3

and
the inequality is proved.

506. If abcd = 0 the inequality is easy to prove. Indeed, if say d = 0, the inequality
becomes 3(a2 − ab + b2)c2 ≥ 2a2c2, which is equivalent to the obvious

c2

((
a − 3

2
b

)2

+ 3

4
b2

)
≥ 0.

If abcd 	= 0, divide through by b2d2 and set x = a
b
, y = c

d
. The inequality becomes

3(x2 − x + 1)(y2 − y + 1) ≥ 2((xy)2 − xy + 1),

or

3(x2 − x + 1)(y2 − y + 1)− 2((xy)2 − xy + 1) ≥ 0.

The expression on the left is a two-variable function f (x, y) defined on the whole plane.
To find its minimum we need to determine the critical points. These are solutions to the
system of equations

∂f

∂x
(x, y) = 2(y2 − 3y + 3)x − (3y2 − 5y + 3) = 0,

∂f

∂y
(x, y) = 2(x2 − 3x + 3)y − (3x2 − 5x + 3) = 0.

The system can be rewritten as

2x = 3y2 − 5y + 3

y2 − 3y + 3
,

2y = 3x2 − 5x + 3

x2 − 3x + 3
,

or

2x = 3 + 4y − 6

y2 − 3y + 3
,

2y = 3 + 4x − 6

x2 − 3x + 3
.

A substitution becomes natural: u = 2x − 3, v = 2y − 3. The system now reads
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u = 8v

v2 + 3
,

v = 8u

u2 + 3
.

This we transform into

uv2 + 3u = 8v,

u2v + 3v = 8u,

then subtract the second equation from the first, to obtain uv(v−u) = 11(v−u). Either
u = v or uv = 11. The first possibility implies u = v = 0 or u = v = ±√

5. The
second implies uv2 + 3u = 11v + 3u = 8v so u = −v, which gives rise to the equality
u = − 8u

u2+3
. This can hold only when u = 0. The critical points of f (x, y) are therefore

(
3

2
,

3

2

)
,

(
3 + √

5

2
,

3 + √
5

2

)
,

(
3 − √

5

2
,

3 − √
5

2

)
.

We compute f ( 3
2 ,

3
2) = 5

16 and f ( 3±√
5

2 , 3±√
5

2 ) = 0.
What about the behavior of f when |x| + |y| → ∞? We compute that

f (x, y) = x2y2 − 3xy2 − 3x2y + 5xy + 3x2 + 3y2 − 3x − 3y + 1.

Note that when |x| + |y| → ∞,

1

2
x2 + 1

2
y2 − 3x − 3y + 1 → ∞,

5

2
x2 + 5

2
y2 + 5xy = 5

2
(x + y)2 ≥ 0,

x2y2 − 3xy2 − 3x2y = x2

(
y − 3

2

)2

+ y2

(
x − 3

2

)2

− 9

2
≥ −9

2
.

By adding these we deduce that when |x| + |y| → ∞, f (x, y) → ∞.
We conclude that 0 is the absolute minimum for f . This proves the inequality. And

as we just saw, equality is achieved when

a

b
= c

d
= 3 + √

5

2
or

a

b
= c

d
= 3 − √

5

2
.

(Mathematical Reflections, proposed by T. Andreescu)

507. Consider a coordinate system in the plane and let the n points be P1(x1, y1),

P2(x2, y2), . . . , Pn(xn, yn). For an oriented line l, we will denote by l⊥ the oriented
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line passing through the origin that is the clockwise rotation of l by 90◦. The origin of
the coordinate system of the plane will also be the origin of the coordinate system on l⊥.

An oriented line l is determined by two parameters: θ , the angle it makes with the
positive side of the x-axis, which should be thought of as a point on the unit circle or an
element of R

2πZ
; and x, the distance from l to the origin, taken with sign on l⊥. Define

f : ( R

2πZ
)× R → R,

f (θ, x) =
n∑
i=1

dist(Pi, l),

where l is the line determined by the pair (θ, x). The function f is continuous and
limx→±∞ f (θ, x) = ∞ for all θ ; hence f has an absolute minimum f (θmin, xmin).

For fixed θ , f (θ, x) is of the form
∑n

i=1 |x − ai |, which is a piecewise linear convex
function. Here a1 ≤ a2 ≤ · · · ≤ an are a permutation of the coordinates of the projections
of P1, P2, . . . , Pn onto l⊥. It follows from problem 426 that at the absolute minimum of
f , xmin = a�n/2�+1 if n is odd and a�n/2� ≤ xmin ≤ a�n/2�+1 if n is even (i.e., xmin is the
median of the ai , i = 1, 2, . . . , n).

If two of the points project at a�n/2�+1, we are done. If this is not the case, let
us examine the behavior of f in the direction of θ . By applying a translation and a
rotation of the original coordinate system, we may assume that ai = xi , i = 1, 2, . . . , n,
xmin = x�n/2�+1 = 0, y�n/2�+1 = 0, and θmin = 0. Then f (0, 0) = ∑

i |xi |. If we rotate
the line by an angle θ keeping it through the origin, then for small θ ,

f (θ, 0) =
∑

i<�n/2�+1

(−xi cos θ − yi sin θ)+
∑

i>�n/2�+1

(xi cos θ + yi sin θ)

=
n∑
i=1

|xi | cos θ +
∑

i<�n/2�+1

(−yi) sin θ +
∑

i>�n/2�+1

yi sin θ.

Of course, the absolute minimum of f must also be an absolute minimum in the first
coordinate, so

∂f

∂θ
(0, 0) =

∑
i<�n/2�+1

(−yi)+
∑

i>�n/2�+1

yi = 0.

The second partial derivative of f with respect to θ at (0, 0) should be positive. But this
derivative is

∂2f

∂θ2
(0, 0) = −

n∑
i=1

|xi | < 0.

Hence the second derivative test fails, a contradiction. We conclude that the line for
which the minimum is achieved passes through two of the points. It is important to note
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that the second derivative is strictly negative; the case in which it is zero makes the points
collinear, in which case we are done.

Remark. This is the two-dimensional least absolute deviations problem. This method
for finding the line that best fits a set of data was used well before Gauss’ least squares
method, for example by Laplace; its downside is that it can have multiple solutions (for
example, if four points form a rectangle, both diagonals give a best approximation).
The property proved above also holds in n dimensions, in which case a hyperplane that
minimizes the sum of distances from the points passes through n of the given points.

508. We assume that the light ray travels fromA toB crossing between media at point P .
LetC andD be the projections ofA andB onto the separating surface. The configuration
is represented schematically in Figure 70.

A

B

D
yC x

P

Figure 70

Let AP = x, BP = y, variables subject to the constraint g(x, y) = x + y = CD.
The principle that light travels on the fastest path translates to the fact that x and y
minimize the function

f (x, y) =
√
x2 + AC2

v1
+
√
y2 + BD2

v2
.

The method of Lagrange multipliers gives rise to the system

x

v1

√
x2 + AC2

= λ,

y

v2

√
y2 + BD2

= λ,

x + y = CD.

From the first two equations, we obtain

x

v1

√
x2 + AC2

= y

v2

√
y2 + BD2

,
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which is equivalent to cosAPC
cosBPD = v1

v2
. Snell’s law follows once we note that the angles of

incidence and refraction are, respectively, the complements of ∠APC and ∠BPD.

509. Let D,E,F be the projections of the incenter onto the sides BC, AC, and AB,
respectively. If we set x = AF , y = BD, and z = CE, then

cot
A

2
= x

r
, cot

B

2
= y

r
, cot

C

2
= z

r
.

The lengths x, y, z satisfy

x + y + z = s,

x2 + 4y2 + 9z2 =
(

6s

7

)2

.

We first determine the triangle similar to the one in question that has semiperimeter equal
to 1. The problem asks us to show that the triangle is unique, but this happens only
if the plane x + y + z = 1 and the ellipsoid x2 + 4y2 + 9z2 = 36

49 are tangent. The
tangency point must be at an extremum of f (x, y, z) = x + y + z with the constraint
g(x, y, z) = x2 + 4y2 + 9z2 = 36

49 .
We determine the extrema of f with the given constraint using Lagrange multipliers.

The equation ∇f = λ∇g becomes

1 = 2λx,

1 = 8λy,

1 = 18λz.

We deduce that x = 1
2λ , y = 1

8λ , and z = 1
18λ , which combined with the constraint

g(x, y, z) = 36
49 yields λ = 49

72 . Hence x = 36
49 , y = 9

49 , and z = 4
49 , and so f (x, y, z) = 1.

This proves that, indeed, the plane and the ellipsoid are tangent. It follows that the
triangle with semiperimeter 1 satisfying the condition from the statement has sides equal
to x + y = 43

49 , x + z = 45
49 , and y + z = 13

49 .
Consequently, the unique triangle whose sides are integers with common divisor

equal to 1 and that satisfies the condition from the statement is 45, 43, 13.
(USA Mathematical Olympiad, 2002, proposed by T. Andreescu)

510. Let a, b, c, d be the sides of the quadrilateral in this order, and let x and y be the
cosines of the angles formed by the sides a and b, respectively, c and d. The condition
that the triangle formed by a and b shares a side with the triangle formed by c and d
translates, via the law of cosines, into the relation

a2 + b2 − 2abx = c2 + d2 − 2cdy.
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We want to maximize the expression ab
√

1 − x2 + cd
√

1 − y2, which is twice the area
of the rectangle. Let

f (x, y) = ab
√

1 − x2 + cd
√

1 − y2,

g(x, y) = a2 + b2 − 2abx − c2 − d2 + 2cdy.

We are supposed to maximize f (x, y) over the square [−1, 1] × [−1, 1], with the con-
straint g(x, y) = 0. Using Lagrange multipliers we see that any candidate for the
maximum that lies in the interior of the domain satisfies the system of equations

−ab 2x√
1 − x2

= −λ2ab,

−cd 2y√
1 − y2

= λ2cd,

for someλ. It follows that
√

1 − x2/x = −√1 − y2/y, and so the tangents of the opposite
angles are each the negative of the other. It follows that the angles are supplementary.
In this case x = −y. The constraint becomes a linear equation in x. Solving it and
substituting in the formula of the area yields the Brahmagupta formula

A = √
(s − a)(s − b)(s − c)(s − d), where s = a + b + c + d

2
.

Is this the maximum? Let us analyze the behavior of f on the boundary. When x = 1
or y = 1, the quadrilateral degenerates to a segment; the area is therefore 0. Let us see
what happens when y = −1. Then the quadrilateral degenerates to a triangle, and the
area can be computed using Hero’s formula

A = √
s(s − a)(s − b)(s − (c + d)).

Since s(s−(c+d)) < (s−c)(s−d), we conclude that the cyclic quadrilateral maximizes
the area.

(E. Goursat, A Course in Mathematical Analysis, Dover, New York, 1904)

511. Without loss of generality, we may assume that the circle has radius 1. If a, b, c
are the sides, and S(a, b, c) the area, then (because of the formula S = pr , where p
is the semiperimeter) the constraint reads S = a+b+c

2 . We will maximize the function
f (a, b, c) = S(a, b, c)2 with the constraint g(a, b, c) = S(a, b, c)2 − ( a+b+c2 )2 = 0.
Using Hero’s formula, we can write

f (a, b, c) = a + b + c

2
· −a + b + c

2
· a − b + c

2
· a + b − c

2

= −a4 − b4 − c4 + 2(a2b2 + b2c2 + a2c2)

16
.
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The method of Lagrange multipliers gives rise to the system of equations

(λ− 1)
−a3 + a(b2 + c2)

4
= a + b + c

2
,

(λ− 1)
−b3 + b(a2 + c2)

4
= a + b + c

2
,

(λ− 1)
−c3 + c(a2 + b2)

4
= a + b + c

2
,

g(a, b, c) = 0.

Because a + b + c 	= 0, λ cannot be 1, so this further gives

−a3 + a(b2 + c2) = −b3 + b(a2 + c2) = −c3 + c(a2 + b2).

The first equality can be written as (b − a)(a2 + b2 − c2) = 0. This can happen only if
either a = b or a2 + b2 = c2, so either the triangle is isosceles, or it is right. Repeating
this for all three pairs of sides we find that either b = c or b2 + c2 = a2, and also that
either a = c or a2 + c2 = b2. Since at most one equality of the form a2 + b2 = c2 can
hold, we see that, in fact, all three sides must be equal. So the critical point given by the
method of Lagrange multipliers is the equilateral triangle.

Is this the global minimum? We just need to observe that as the triangle degenerates,
the area becomes infinite. So the answer is yes, the equilateral triangle minimizes the area.

512. Consider the function f : {(a, b, c, d) | a, b, c, d ≥ 1, a + b + c + d = 1} → R,

f (a, b, c, d) = 1

27
+ 176

27
abcd − abc − bcd − cda − dab.

Being a continuous function on a closed and bounded set in R4, f has a minimum. We
claim that the minimum of f is nonnegative. The inequality f (a, b, c, d) ≥ 0 is easy
on the boundary, for if one of the four numbers is zero, say d = 0, then f (a, b, c, 0) =
1

27 − abc, and this is nonnegative by the AM–GM inequality.
Any minimum in the interior of the domain should arise by applying the method of

Lagrange multipliers. This method gives rise to the system

∂f

∂a
= 176

27
bcd − bc − cd − db = λ,

∂f

∂b
= 176

27
acd − ac − cd − ad = λ,

∂f

∂c
= 176

27
abd − ab − ad − bd = λ,

∂f

∂d
= 176

27
abc − ab − bc − ac = λ,

a + b + c + d = 1.
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One possible solution to this system is a = b = c = d = 1
4 , in which casef ( 1

4 ,
1
4 ,

1
4 ,

1
4) =

0. Otherwise, let us assume that the numbers are not all equal. If three of them are distinct,
say a, b, and c, then by subtracting the second equation from the first, we obtain(

176

27
cd − c − d

)
(b − a) = 0,

and by subtracting the third from the first, we obtain(
176

27
bd − b − d

)
(c − a) = 0.

Dividing by the nonzero factors b − a, respectively, c − a, we obtain

176

27
cd − c − d = 0,

176

27
bd − b − d = 0;

hence b = c, a contradiction. It follows that the numbers a, b, c, d for which a minimum
is achieved have at most two distinct values. Modulo permutations, either a = b = c or
a = b and c = d. In the first case, by subtracting the fourth equation from the third and
using the fact that a = b = c, we obtain(

176

27
a2 − 2a

)
(d − a) = 0.

Since a 	= d , it follows that a = b = c = 27
88 and d = 1 − 3a = 7

88 . One can verify that

f

(
27

88
,

27

88
,

27

88
,

7

88

)
= 1

27
+ 6

88
· 27

88
· 27

88
> 0.

The case a = b and c = d yields

176

27
cd − c − d = 0,

176

27
ab − a − b = 0,

which gives a = b = c = d = 27
88 , impossible. We conclude that f is nonnegative, and

the inequality is proved.
(short list of the 34th International Mathematical Olympiad, 1993, proposed by Viet-

nam)
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513. Fix α, β, γ and consider the function

f (x, y, z) = cos x

sin α
+ cos y

sin β
+ cos z

sin γ

with the constraints x + y + z = π , x, y, z ≥ 0. We want to determine the maximum of
f (x, y, z). In the interior of the triangle described by the constraints a maximum satisfies

sin x

sin α
= −λ,

sin y

sin β
= −λ,

sin z

sin β
= −λ,

x + y + z = π.

By the law of sines, the triangle with angles x, y, z is similar to that with angles α, β, γ ,
hence x = α, y = β, and z = γ .

Let us now examine the boundary. If x = 0, then cos z = − cos y. We prove that

1

sin α
+ cos y

(
1

sin β
− 1

sin γ

)
< cot α + cot β + cot γ.

This is a linear function in cos y, so the inequality will follow from the corresponding
inequalities at the two endpoints of the interval, namely from

1

sin α
+ 1

sin β
− 1

sin γ
< cot α + cot β + cot γ

and

1

sin α
+ 1

sin β
− 1

sin γ
< cot α + cot β + cot γ.

By symmetry, it suffices to prove just one of these two, the first for example. Eliminating
the denominators, we obtain

sin β sin γ + sin α sin γ − sin α sin β < sin β sin γ cosα + sin α sin γ cosβ

+ sin α sin β cos γ.

The laws of sine and cosine allow us to transform this into the equivalent

bc + ac − ab <
b2 + c2 − a2

2
+ a2 + c2 − b2

2
+ a2 + b2 − c2

2
,
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and this is equivalent to (a + b − c)2 > 0. Hence the conclusion.
(Kvant (Quantum), proposed by R.P. Ushakov)

514. The domain is bounded by the hyperbolas xy = 1, xy = 2 and the lines y = x and
y = 2x. This domain can mapped into a rectangle by the transformation

T : u = xy, v = y

x
.

Thus it is natural to consider the change of coordinates

T −1 : x =
√
u

v
, y = √

uv.

The domain becomes the rectangle D∗ = {(u, v) ∈ R2 | 1 ≤ u ≤ 2, 1 ≤ v ≤ 2}. The
Jacobian of T −1 is 1

2v 	= 0. The integral becomes∫ 2

1

∫ 2

1

√
u

v

1

2v
dudv = 1

2

∫ 2

1
u1/2du

∫ 2

1
v−3/2dv = 1

3
(5

√
2 − 6).

(Gh. Bucur, E. Câmpu, S. Găină, Culegere de Probleme de Calcul Diferenţial şi
Integral (Collection of Problems in Differential and Integral Calculus), Editura Tehnică,
Bucharest, 1967)

515. Denote the integral by I . The change of variable (x, y, z) → (z, y, x) transforms
the integral into ∫∫∫

B

z4 + 2y4

x4 + 4y4 + z4
dxdydz.

Hence

2I =
∫∫∫

B

x4 + 2y4

x4 + 4y4 + z4
dxdydz+

∫∫∫
B

2y4 + z4

x4 + 4y4 + z4
dxdydz

=
∫∫∫

B

x4 + 4y4 + z4

x4 + 4y4 + z4
dxdydz = 4π

3
.

It follows that I = 2π
3 .

516. The domain D is depicted in Figure 71. We transform it into the rectangle D1 =
[ 1

4 ,
1
2 ] × [ 1

6 ,
1
2 ] by the change of coordinates

x = u

u2 + v2
, y = v

u2 + v2
.

The Jacobian is
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D

Figure 71

J = − 1

(u2 + v2)2
.

Therefore, ∫∫
D

dxdy

(x2 + y2)2
=
∫∫

D1

dudv = 1

12
.

(D. Flondor, N. Donciu, Algebră şi Analiză Matematică (Algebra and Mathematical
Analysis), Editura Didactică şi Pedagogică, Bucharest, 1965)

517. In the equation of the curve that bounds the domain(
x2

a2
+ y2

b2

)2

= x2

a2
− y2

b2
,

the expression on the left suggests the use of generalized polar coordinates, which are
suited for elliptical domains. And indeed, if we set x = ar cos θ and y = br sin θ , the
equation of the curve becomes r4 = r2 cos 2θ , or r = √

cos 2θ . The condition x ≥ 0
becomes −π

2 ≤ θ ≤ π
2 , and because cos 2θ should be positive we should further have

−π
4 ≤ θ ≤ π

4 . Hence the domain of integration is{
(r, θ); 0 ≤ r ≤ √

cos 2θ, − π

4
≤ θ ≤ π

4

}
.

The Jacobian of the transformation is J = abr . Applying the formula for the change of
variables, the integral becomes∫ π

4

− π
4

∫ √
cos 2θ

0
a2b2r3 cos θ | sin θ |drdθ = a2b2

4

∫ π
4

0
cos2 2θ sin 2θdθ = a2b2

24
.
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(Gh. Bucur, E. Câmpu, S. Găină, Culegere de Probleme de Calcul Diferenţial şi
Integral (Collection of Problems in Differential and Integral Calculus), Editura Tehnică,
Bucharest, 1967)

518. The method is similar to that for computing the Fresnel integrals, only simpler. If
we denote the integral by I , then

I 2 =
∫ ∞

−∞
e−x

2
dx

∫ ∞

−∞
e−y

2
dy =

∫ ∞

−∞

∫ ∞

−∞
e−(x

2+y2)dxdy.

Switching to polar coordinates, we obtain

I 2 =
∫ 2π

0

∫ ∞

0
e−r

2
rdrdθ =

∫ 2π

0

(
−1

2

)
e−r

2

∣∣∣∣∞
0

dθ =
∫ 2π

0

1

2
dθ = π.

Hence the desired formula I = √
π .

519. Call the integral I . By symmetry, we may compute it over the domain {(u, v,w) ∈
R3 | 0 ≤ v ≤ u ≤ 1}, then double the result. We substitute u = r cos θ, v = r sin θ,w =
tan φ, taking into account that the limits of integration become 0 ≤ θ, φ ≤ π

4 , and
0 ≤ r ≤ sec θ . We have

I = 2
∫ π

4

0

∫ π
4

0

∫ sec θ

0

r sec2 φ

(1 + r2 cos2 θ + r2 sin2 θ + tan2 φ)2
drdθdφ

= 2
∫ π

4

0

∫ π
4

0

∫ sec θ

0

r sec2 φ

(r2 + sec2 φ)2
drdθdφ

= 2
∫ π

4

0

∫ π
4

0
sec2 φ

−1

2(r2 + sec2 φ)

∣∣∣∣r=sec θ

r=0

dθdφ

= −
∫ π

4

0

∫ π
4

0

sec2 φ

sec2 θ + sec2 φ
dθdφ +

(π
4

)2
.

But notice that this is the same as∫ π
4

0

∫ π
4

0

(
1 − sec2 φ

sec2 θ + sec2 φ

)
dθdφ =

∫ π
4

0

∫ π
4

0

sec2 θ

sec2 θ + sec2 φ
dθdφ.

If we exchange the roles of θ and φ in this last integral we see that

−
∫ π

4

0

∫ π
4

0

sec2 φ

sec2 θ + sec2 φ
dθdφ +

(π
4

)2 =
∫ π

4

0

∫ π
4

0

sec2 φ

sec2 θ + sec2 φ
dθdφ.

Hence ∫ π
4

0

∫ π
4

0

sec2 φ

sec2 θ + sec2 φ
dθdφ = π2

32
.
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Consequently, the integral we are computing is equal to π2

32 .
(American Mathematical Monthly, proposed by M. Hajja and P. Walker)

520. We have

I =
∫∫

D

ln | sin(x − y)|dxdy =
∫ π

0

(∫ y

0
ln | sin(y − x)|dx

)
dy

=
∫ π

0

(∫ y

0
ln sin tdt

)
dy = y

∫ y

0
ln sin tdt

∣∣∣∣y=π
y=0

−
∫ π

0
y ln sin ydy

= πA− B,

where A = ∫ π
0 ln sin tdt , B = ∫ π

0 t ln sin tdt . Note that here we used integration by
parts! We compute further

A =
∫ π

2

0
ln sin tdt +

∫ π

π
2

ln sin tdt =
∫ π

2

0
ln sin tdt +

∫ π
2

0
ln cos tdt

=
∫ π

2

0
(ln sin 2t − ln 2)dt = −π

2
ln 2 + 1

2
A.

Hence A = −π ln 2. For B we use the substitution t = π − x to obtain

B =
∫ π

0
(π − x) ln sin xdx = πA− B.

Hence B = π
2A. Therefore, I = πA− B = −π2

2 ln 2, and we are done.

Remark. The identity ∫ π
2

0
ln sin tdt = −π

2
ln 2

belongs to Euler.
(S. Rădulescu, M. Rădulescu, Teoreme şi Probleme de Analiză Matematică (Theorems

and Problems in Mathematical Analysis), Editura Didactică şi Pedagogică, Bucharest,
1982).

521. This problem applies the discrete version of Fubini’s theorem. Define

f (i, j) =
{

1 for j ≤ ai,

0 for j > ai.

The left-hand side is equal to
∑n

i=1

∑m
j=1 f (i, j), while the right-hand side is equal to∑m

j=1

∑n
i=1 f (i, j). The equality follows.
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522. First, note that for x > 0,

e−sxx−1| sin x| < e−sx,

so the integral that we are computing is finite.
Now consider the two-variable function

f (x, y) = e−sxy sin x.

We have∫ ∞

0

∫ ∞

1
|f (x, y)|dydx =

∫ ∞

0

∫ ∞

1
e−sxy | sin x|dydx = 1

s

∫ ∞

0
e−sxx−1| sin x|dx,

and we just saw that this is finite. Hence we can apply Fubini’s theorem, to conclude that
on the one hand, ∫ ∞

0

∫ ∞

1
f (x, y)dydx = 1

s

∫ ∞

0
e−sxx−1 sin xdx,

and on the other hand,∫ ∞

0

∫ ∞

1
f (x, y)dydx =

∫ ∞

1

1

s2y2 + 1
dy.

Here of course we used the fact that∫ ∞

0
e−ax sin xdx = 1

a2 + 1
, a > 0,

a formula that can be proved by integrating by parts. Equating the two expressions that
we obtained for the double integral, we obtain∫ ∞

0
e−sxx−1 sin xdx = π

2
− arctan s = arctan(s−1),

as desired.
(G.B. Folland, Real Analysis, Modern Techniques and Their Applications, Wiley,

1999)

523. Applying Tonelli’s theorem to the function f (x, y) = e−xy , we can write∫ ∞

0

e−ax − e−bx

x
dx =

∫ ∞

0

∫ b

a

e−xydydx =
∫ b

a

∫ ∞

0
e−xydxdy

=
∫ b

a

1

y
dy = ln

b

a
.
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Remark. This is a particular case of integrals of the form
∫∞

0
f (ax)−f (bx)

x
dx, known as

Froullani integrals. In general, if f is continuous and has finite limit at infinity, the value
of the integral is (f (0)− limx→∞ f (x)) ln b

a
.

524. We do the proof in the case 0 < x < 1, since for −1 < x < 0 the proof is completely
analogous, while for x = 0 the property is obvious. The function f : N × [0, x] → R,
f (n, t) = tn−1 satisfies the hypothesis of Fubini’s theorem. So integration commutes
with summation:

∞∑
n=0

∫ x

0
tn−1dt =

∫ x

0

dt

1 − t
.

This implies

∞∑
n=1

xn

n
= − ln(1 − x).

Dividing by x, we obtain

∞∑
n=1

xn−1

n
= −1

x
ln(1 − x).

The right-hand side extends continuously at 0, since limx→0
1
t

ln(1 − t) = −1. Again we

can apply Fubini’s theorem to f (n, t) = tn−1

n
on N × [0, x] to obtain

∞∑
n=1

xn

n2
=

∞∑
n=1

∫ x

0

tn−1

n
dt =

∫ x

0

∞∑
n=1

tn−1

n
dt = −

∫ x

0

1

t
ln(1 − t)dt,

as desired.

525. We can apply Tonelli’s theorem to the function f (x, n) = 1
x2+n4 . Integrating term

by term, we obtain∫ x

0
F(t)dt =

∫ x

0

∞∑
n=1

f (t, n)dt =
∞∑
n=1

∫ x

0

dt

t2 + n4
=

∞∑
n=1

1

n2
arctan

x

n2
.

This series is bounded from above by
∑∞

n=1
1
n2 = π2

6 . Hence the summation commutes
with the limit as x tends to infinity. We have∫ ∞

0
F(t)dt = lim

x→∞

∫ x

0
F(t)dt = lim

x→∞

∞∑
n=1

1

n2
arctan

x

n2
=

∞∑
n=1

1

n2
· π

2
.
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Using the identity
∑

n≥1
1
n2 = π2

6 , we obtain∫ ∞

0
F(t)dt = π3

12
.

(Gh. Sireţchi, Calcul Diferenţial şi Integral (Differential and Integral Calculus),
Editura Ştiinţifică şi Enciclopedică, Bucharest, 1985)

526. The integral from the statement can be written as∮
∂D

xdy − ydx.

Applying Green’s theorem for P(x, y) = −y and Q(x, y) = x, we obtain∮
∂D

xdy − ydx =
∫∫

D

(1 + 1)dxdy,

which is twice the area of D. The conclusion follows.

527. It can be checked that div
−→
F = 0 (in fact,

−→
F is the curl of the vector field eyz

−→
i +

ezx
−→
j + exy

−→
k ). If S be the union of the upper hemisphere and the unit disk in the

xy-plane, then by the divergence theorem
∫∫
S

−→
F · −→

n dS = 0. And on the unit disk−→
F · −→

n = 0, which means that the flux across the unit disk is zero. It follows that the
flux across the upper hemisphere is zero as well.

528. We simplify the computation using Stokes’ theorem:∮
C

y2dx + z2dy + x2dz = −2
∫∫

S

ydxdy + zdydz+ xdzdx,

where S is the portion of the sphere bounded by the Viviani curve. We have

−2
∫∫

S

ydxdy + zdydz+ xdzdx = −2
∫∫

S

(z, x, y) · −→
n dσ,

where (z, x, y) denotes the three-dimensional vector with coordinates z, x, and y, while−→
n denotes the unit vector normal to the sphere at the point of coordinates (x, y, z). We

parametrize the portion of the sphere in question by the coordinates (x, y), which range
inside the circle x2 + y2 − ax = 0. This circle is the projection of the Viviani curve onto
the xy-plane.

The unit vector normal to the sphere is

−→
n =

(x
a
,
y

a
,
z

a

)
=
(
x

a
,
y

a
,

√
a2 − x2 − y2

a

)
,
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while the area element is

dσ = 1

cosα
dxdy,

α being the angle formed by the normal to the sphere with the xy-plane. It is easy to see

that cosα = z
a

=
√
a2−x2−y2

a
. Hence the integral is equal to

−2
∫∫

D

(
z
x

a
+ x

y

a
+ y

z

a

) a
z
dxdy = −2

∫∫
D

(
x + y + xy√

a2 − x2 − y2

)
dxdy,

the domain of integration D being the disk x2 + y2 − ax ≤ 0. Split the integral as

−2
∫∫

D

(x + y)dxdy − 2
∫∫

D

xy√
a2 − x2 − y2

dxdy.

Because the domain of integration is symmetric with respect to the y-axis, the second
double integral is zero. The first double integral can be computed using polar coordinates:
x = a

2 + r cos θ , y = r sin θ , 0 ≤ r ≤ a
2 , 0 ≤ θ ≤ 2π . Its value is −πa3

4 , which is the
answer to the problem.

(D. Flondor, N. Donciu, Algebră şi Analiză Matematică (Algebra and Mathematical
Analysis), Editura Didactică şi Pedagogică, Bucharest, 1965)

529. We will apply Stokes’ theorem. We begin with

∂φ

∂y

∂ψ

∂z
− ∂φ

∂z

∂ψ

∂y
= ∂φ

∂y

∂ψ

∂z
+ φ

∂2ψ

∂y∂z
− ∂φ

∂z

∂ψ

∂y
− φ

∂2ψ

∂z∂y

= ∂

∂y

(
φ
∂ψ

∂z

)
− ∂

∂z

(
φ
∂ψ

∂y

)
,

which combined with the two other analogous computations gives

∇φ × ∇ψ = curl(φ∇ψ).
By Stokes’ theorem, the integral of the curl of a vector field on a surface without boundary
is zero.

(Soviet University Student Mathematical Competition, 1976)

530. For the solution, recall the following identity.

Green’s first identity. If f and g are twice-differentiable functions on the solid region
R bounded by the closed surface S, then∫∫∫

R

(f∇2g + ∇f · ∇g)dV =
∫∫

S

f
∂g

∂n
dS,

where ∂g

∂n
is the derivative of g in the direction of the normal to the surface.
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Proof. For the sake of completeness we will prove Green’s identity. Consider the vector
field

−→
F = f∇g. Then

div
−→
F = ∂

∂x

(
f
∂g

∂x

)
+ ∂

∂y

(
f
∂g

∂y

)
+ ∂

∂z

(
f
∂g

∂z

)
= f

(
∂2g

∂x2
+ ∂2g

∂y2
+ ∂2g

∂z2

)
+
(
∂f

∂x

∂g

∂x
+ ∂f

∂y

∂g

∂y
+ ∂f

∂z

∂g

∂z

)
.

So the left-hand side is
∫∫∫

R
div

−→
F dV . By the Gauss–Ostrogradski divergence theorem

this is equal to ∫∫
S

(f∇g) · −→
n dS =

∫∫
S

f (∇g · −→
n )dS =

∫∫
S

f
∂g

∂n
dS.

Writing Green’s first identity for the vector field g∇f and then subtracting it from
that of the vector field f∇g, we obtain Green’s second identity∫∫∫

R

(f∇2g − g∇2f )dV =
∫∫

S

(
f
∂g

∂n
− g

∂f

∂n

)
dS.

The fact that f and g are constant along the lines passing through the origin means that
on the unit sphere, ∂f

∂n
= ∂g

∂n
= 0. Hence the conclusion.

531. Because
−→
F is obtained as an integral of the point-mass contributions of the masses

distributed in space, it suffices to prove this equality for a mass M concentrated at one
point, say the origin.

Newton’s law says that the gravitational force between two masses m1 and m2 at
distance r is equal to m1m2G

r2 . By Newton’s law, a massM located at the origin generates
the gravitational field

−→
F (x, y, z) = MG

1

x2 + y2 + z2
· x

−→
i + y

−→
j + z

−→
k√

x2 + y2 + z2
= −MGx

−→
i + y

−→
j + z

−→
k

(x2 + y2 + z2)3/2
.

One can easily check that the divergence of this field is zero. Consider a small sphere S0

of radius r centered at the origin, and let V be the solid lying between S0 and S. By the
Gauss–Ostrogradski divergence theorem,∫∫

S

−→
F · −→

n dS −
∫∫

S0

−→
F · −→

n dS =
∫∫∫

V

div
−→
F dV = 0.

Hence it suffices to prove the Gauss law for the sphere S0. On this sphere the flow
−→
F ·−→n is

constantly equal to −GM

r2 . Integrating it over the sphere gives −4πMG, proving the law.
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532. The condition curl
−→
F = 0 suggests the use of Stokes’ theorem:∫∫

S

curl
−→
F · −→

n dS =
∮
∂C

−→
F · d−→R .

We expect the answer to the question to be no. All we need is to find a surface S whose
boundary lies in the xy-plane and such that the integral of

−→
G(x, y) on ∂S is nonzero.

A simple example that comes to mind is the interior S of the ellipse x2 + 4y2 = 4.
Parametrize the ellipse as x = 2 cos θ , y = sin θ , θ ∈ [0, 2π). Then∮

∂S

−→
G · d−→R =

∫ 2π

0

(− sin θ

4
,

2 cos θ

4
, 0

)
· (−2 sin θ, cos θ, 0)dθ =

∫ 2π

0

1

2
dθ = π.

By Stokes’ theorem this should be equal to the integral of the curl of
−→
F over the interior

of the ellipse. The curl of
−→
F is zero except at the origin, but we can fix that by adding

a smooth tiny upward bump at the origin, which does not alter too much the above
computation. The integral should on the one hand be close to 0, and on the other hand
close to π , which is impossible. This proves that such a vector field

−→
F cannot exist.

(48th W.L. Putnam Mathematical Competition, 1987, solution from K. Kedlaya,
B. Poonen, R. Vakil, The William Lowell Putnam Mathematical Competition 1985–2000,
MAA, 2002)

533. Let D = [a1, b1] × [a2, b2] be a rectangle in the plane, and a, b ∈ R, a < b. We
consider the three-dimensional parallelepipedV = D×[a, b]. Denote by −→

n the outward
normal vector field on the boundary ∂V of V (which is defined everywhere except on the
edges). By the Leibniz–Newton fundamental theorem of calculus,∫ b

a

d

dt

∫∫
D

G(x, y, t)dxdydt =
∫ b

a

∫∫
D

∂

∂t
G(x, y, t)dxdydt

=
∫∫

D

∫ b

a

∂

∂t
G(x, y, t)dtdxdy

=
∫∫

D

G(x, y, b)dxdy −
∫∫

D

G(x, y, a)dxdy

=
∫
D×{b}

G(x, y, t)
−→
k · d−→n +

∫
D×{a}

G(x, y, t)
−→
k · d−→n ,

where
−→
k denotes the unit vector that points in the z-direction. With this in mind, we

compute

0 =
∫ b

a

(
d

dt

∫∫
D

G(x, y, t)dxdy +
∮
C

−→
F · d−→R

)
dt
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=
∫
D×{b}

G(x, y, t)
−→
k · d−→n +

∫
D×{a}

G(x, y, t)
−→
k · d−→n

+
∫ b

a

∫ b1

a1

F1(x, a2)dx −
∫ b

a

∫ a1

b1

F1(x, b2)dx

+
∫ b

a

∫ b2

a2

F2(b1, y)dy −
∫ b

a

∫ a2

b2

F2(a1, y)dy.

If we introduce the vector field
−→
H = F2

−→
i + F1

−→
j +G

−→
k , this equation can be written

simply as ∫∫
∂V

−→
H · −→

n dS = 0.

By the divergence theorem,∫∫∫
V

div
−→
H dV =

∫∫
∂V

−→
H · −→

n dS = 0.

Since this happens in every parallelepiped, div
−→
H must be identically equal to 0. There-

fore,

div
−→
H = ∂F2

∂x
+ ∂F1

∂y
+ ∂G

∂t
= 0,

and the relation is proved.

Remark. The interesting case occurs when
−→
F andG depend on spatial variables (spatial

dimensions). Then G becomes a vector field B, or better a 2-form, called the magnetic
flux, while F becomes the electric field strength E. The relation

d

dt

∫
S

B = −
∫
∂S

E

is Faraday’s law of induction. Introducing a fourth dimension (the time), and redo-
ing mutatis mutandis the above computation gives rise to the first group of Maxwell’s
equations

divB = 0,
∂B

∂t
= curlE.

534. In the solution we ignore the factor 1
4π , which is there only to make the linking

number an integer. We will use the more general form of Green’s theorem applied to the
curve C = C1 ∪ C ′

1 and surface S,
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C

Pdx +Qdy + Rdz =
∫∫

S

(
∂Q

∂x
− ∂P

∂y

)
dxdy +

(
∂R

∂y
− ∂Q

∂z

)
dydz

+
(
∂P

∂z
− ∂R

∂x

)
dzdx.

Writing the parametrization with coordinate functions −→v 1(s) = (x(s), y(s), z(s)),−→v 2(t) = (x ′(t), y ′(t), z′(t)), the linking number ofC1 andC2 (with the factor 1
4π ignored)

becomes∮
C1

∮
C2

(x ′ − x)(dz′dy − dy ′dz)+ (y ′ − y)(dx ′dz− dz′dx)+ (z′ − z)(dy ′dx − dx ′dy)
((x ′ − x)2 + (y ′ − y)2 + (z′ − z)2)3/2

The 1-form Pdx +Qdy + Rdz, which we integrate on C = C1 ∪ C ′
1, is∮

C2

(x ′ − x)(dz′dy − dy ′dz)+ (y ′ − y)(dx ′dz− dz′dx)+ (z′ − z)(dy ′dx − dx ′dy)
((x ′ − x)2 + (y ′ − y)2 + (z′ − z)2)3/2

.

Note that here we integrate against the variables x ′, y ′, z′, so this expression depends
only on x, y, and z. Explicitly,

P(x, y, z) =
∮
C2

−(y ′ − y)dz′ + (z′ − z)dy ′

((x ′ − x)2 + (y ′ − y)2 + (z′ − z)2)3/2
,

Q(x, y, z) =
∮
C2

(x ′ − x)dz′ − (z′ − z)dx ′

((x ′ − x)2 + (y ′ − y)2 + (z′ − z)2)3/2
,

R(x, y, z) =
∮
C2

−(x ′ − x)dy ′ + (y ′ − y)dx ′

((x ′ − x)2 + (y ′ − y)2 + (z′ − z)2)3/2
.

By the general form of Green’s theorem, lk(C1, C2) = lk(C ′
1, C2) if

∂Q

∂x
− ∂P

∂y
= ∂R

∂y
− ∂Q

∂z
= ∂P

∂z
− ∂R

∂x
= 0.

We will verify only ∂Q

∂x
− ∂P

∂y
= 0, the other equalities having similar proofs. The part of

it that contains dz′ is equal to∮
C2

−2((x ′ − x)2 + (y ′ − y)2 + (z′ − z)2)−3/2

+ 3(x ′ − x)2((x ′ − x)2 + (y ′ − y)2 + (z′ − z)2)−5/2

+ 3(y ′ − y)2((x ′ − x)2 + (y ′ − y)2 + (z′ − z)2)−5/2dz′

=
∮
C2

((x ′ − x)2 + (y ′ − y)2 + (z′ − z)2)−3/2

+ 3(z′ − z)2((x ′ − x)2 + (y ′ − y)2 + (z′ − z)2)−5/2dz′
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=
∮
C2

∂

∂z′
((x ′ − x)2 + (y ′ − y)2 + (z′ − z)2)−3/2dz′ = 0,

where the last equality is a consequence of the fundamental theorem of calculus. Of the
two, only ∂Q

∂x
has a dx ′ in it, and that part is

3
∮
C2

((x − x ′)2 + (y − y ′)2 + (z− z′)2)−5/2(x − x ′)(z− z′)dx ′

=
∮
C2

∂

∂x ′
z− z′

((x − x ′)2 + (y − y ′)2 + (z− z′)2)3/2
dx ′ = 0.

The term involving dy ′ is treated similarly. The conclusion follows.

Remark. The linking number is, in fact, an integer, which measures the number of times
the curves wind around each other. It was defined by C.F. Gauss, who used it to decide,
based on astronomical observations, whether the orbits of certain asteroids were winding
around the orbit of the earth.

535. Plugging in x = y, we find that f (0) = 0, and plugging in x = −1, y = 0, we find
that f (1) = −f (−1). Also, plugging in x = a, y = 1, and then x = a, y = −1, we
obtain

f (a2 − 1) = (a − 1)(f (a)+ f (1)),

f (a2 − 1) = (a + 1)(f (a)− f (1)).

Equating the right-hand sides and solving for f (a) gives f (a) = f (1)a for all a.
So any such function is linear. Conversely, a function of the form f (x) = kx clearly

satisfies the equation.
(Korean Mathematical Olympiad, 2000)

536. Replace z by 1 − z to obtain

f (1 − z)+ (1 − z)f (z) = 2 − z.

Combine this with f (z)+ zf (1 − z) = 1 + z, and eliminate f (1 − z) to obtain

(1 − z+ z2)f (z) = 1 − z+ z2.

Hence f (z) = 1 for all z except maybe for z = e±πi/3, when 1 − z + z2 = 0. For
α = eiπ/3, ᾱ = α2 = 1 − α; hence f (α)+ αf (ᾱ) = 1 + α. We therefore have only one
constraint, namely f (ᾱ) = [1 + α − f (α)]/α = ᾱ + 1 − ᾱf (α). Hence the solution to
the functional equation is of the form

f (z) = 1 for z 	= e±iπ/3,
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f (eiπ/3) = β,

f (e−iπ/3) = ᾱ + 1 − ᾱβ,

where β is an arbitrary complex parameter.
(20th W.L. Putnam Competition, 1959)

537. Successively, we obtain

f (−1) = f

(
−1

2

)
= f

(
−1

3

)
= · · · = lim

n→∞ f
(

−1

n

)
= f (0).

Hence f (x) = f (0) for x ∈ {0,−1,− 1
2 , . . . ,− 1

n
, . . . }.

If x 	= 0,−1, . . . ,− 1
n
, . . . , replacing x by x

1+x in the functional equation, we obtain

f

(
x

1 + x

)
= f

(
x

1+x
1 − x

1+x

)
= f (x).

And this can be iterated to yield

f

(
x

1 + nx

)
= f (x), n = 1, 2, 3 . . . .

Because f is continuous at 0 it follows that

f (x) = lim
n→∞ f

(
x

1 + nx

)
= f (0).

This shows that only constant functions satisfy the functional equation.

538. Plugging in x = t, y = 0, z = 0 gives

f (t)+ f (0)+ f (t) ≥ 3f (t),

or f (0) ≥ f (t) for all real numbers t . Plugging in x = t
2 , y = t

2 , z = − t
2 gives

f (t)+ f (0)+ f (0) ≥ 3f (0),

or f (t) ≥ f (0) for all real numbers t . Hence f (t) = f (0) for all t , so f must be
constant. Conversely, any constant function f clearly satisfies the given condition.

(Russian Mathematical Olympiad, 2000)

539. No! In fact, we will prove a more general result.

Proposition. Let S be a set and g : S → S a function that has exactly two fixed points
{a, b} and such that g ◦ g has exactly four fixed points {a, b, c, d}. Then there is no
function f : S → S such that g = f ◦ f .



584 Real Analysis

Proof. Let g(c) = y. Then c = g(g(c)) = g(y); hence y = g(c) = g(g(y)). Thus y is
a fixed point of g ◦ g. If y = a, then a = g(a) = g(y) = c, leading to a contradiction.
Similarly, y = b forces c = b. If y = c, then c = g(y) = g(c), so c is a fixed point of
g, again a contradiction. It follows that y = d, i.e., g(c) = d, and similarly g(d) = c.

Suppose there is f : S → S such that f ◦ f = g. Then f ◦ g = f ◦ f ◦ f = g ◦ f .
Then f (a) = f (g(a)) = g(f (a)), so f (a) is a fixed point of g. Examining case by
case, we conclude that f ({a, b}) ⊂ {a, b} and f ({a, b, c, d}) ⊂ {a, b, c, d}. Because
f ◦ f = g, the inclusions are, in fact, equalities.

Consider f (c). If f (c) = a, then f (a) = f (f (c)) = g(c) = d, a contradiction
since f (a) is in {a, b}. Similarly, we rule out f (c) = b. Of course, c is not a fixed point
of f , since it is not a fixed point of g. We are left with the only possibility f (c) = d.
But then f (d) = f (f (c)) = g(c) = d, and this again cannot happen because d is not a
fixed point of g. We conclude that such a function f cannot exist.

In the particular case of our problem, g(x) = x2 − 2 has the fixed points −1 and
2, and g(g(x)) = (x2 − 2)2 − 2 has the fixed points −1, 2, −1+√

5
2 , and −1−√

5
2 . This

completes the solution.
(B.J. Venkatachala, Functional Equations: A Problem Solving Approach, Prism

Books PVT Ltd., 2002)

540. The standard approach is to substitute particular values for x and y. The solution
found by the student S.P. Tungare does quite the opposite. It introduces an additional
variable z. The solution proceeds as follows:

f (x + y + z)

= f (x)f (y + z)− c sin x sin(y + z)

= f (x)[f (y)f (z)− c sin y sin z] − c sin x sin y cos z− c sin x cos y sin z

= f (x)f (y)f (z)− cf (x) sin y sin z− c sin x sin y cos z− c sin x cos y sin z.

Because obviously f (x + y + z) = f (y + x + z), it follows that we must have

sin z[f (x) sin y − f (y) sin x] = sin z[cos x sin y − cos y sin x].
Substitute z = π

2 to obtain

f (x) sin y − f (y) sin x = cos x sin y − cos y sin x.

For x = π and y not an integer multiple of π , we obtain sin y[f (π)+ 1] = 0, and hence
f (π) = −1.

Then, substituting in the original equation x = y = π
2 yields

f (π) =
[
f
(π

2

)]
− c,
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whence f (π2 ) = ±√
c − 1. Substituting in the original equation y = π we also obtain

f (x + π) = −f (x). We then have

−f (x) = f (x + π) = f
(
x + π

2

)
f
(π

2

)
− c cos x

= f
(π

2

) (
f (x)f

(π
2

)
− c sin x

)
− c cos x,

whence

f (x)

[(
f
(π

2

))2 − 1

]
= cf

(π
2

)
sin x − c cos x.

It follows that f (x) = f (π2 ) sin x + cos x. We find that the functional equation has two
solutions, namely,

f (x) = √
c − 1 sin x + cos x and f (x) = −√

c − 1 sin x + cos x.

(Indian Team Selection Test for the International Mathematical Olympiad, 2004)

541. Because |f | is bounded and is identically equal to zero, its supremum is a positive
numberM . Using the equation from the statement and the triangle inequality, we obtain
that for any x and y,

2|f (x)||g(y)| = |f (x + y)+ f (x − y)|
≤ |f (x + y)| + |f (x − y)| ≤ 2M.

Hence

|g(y)| ≤ M

|f (x)| .

If in the fraction on the right we take the supremum of the denominator, we obtain
|g(y)| ≤ M

M
= 1 for all y, as desired.

Remark. The functions f (x) = sin x and g(x) = cos x are an example.
(14th International Mathematical Olympiad, 1972)

542. Substituting for f a linear function ax + b and using the method of undetermined
coefficients, we obtain a = 1, b = − 3

2 , so f (x) = x − 3
2 is a solution.

Are there other solutions? Setting g(x) = f (x) − (x − 3
2), we obtain the simpler

functional equation

3g(2x + 1) = g(x), for all x ∈ R.

This can be rewritten as



586 Real Analysis

g(x) = 1

3
g

(
x − 1

2

)
, for all x ∈ R.

For x = −1 we have g(−1) = 1
3g(−1); hence g(−1) = 0. In general, for an arbitrary

x, define the recursive sequence x0 = x, xn+1 = xn−1
2 for n ≥ 0. It is not hard to

see that this sequence is Cauchy, for example, because |xm+n − xm| ≤ 1
2m−2 max(1, |x|).

This sequence is therefore convergent, and its limit L satisfies the equation L = L−1
2 . It

follows that L = −1. Using the functional equation, we obtain

g(x) = 1

3
g(x1) = 1

9
g(x2) = · · · = 1

3n
g(xn).

Passing to the limit, we obtain g(x) = 0. This shows that f (x) = x − 3
2 is the unique

solution to the functional equation.
(B.J. Venkatachala, Functional Equations: A Problem Solving Approach, Prism

Books PVT Ltd., 2002)

543. We will first show that f (x) ≥ x for all x. From (i) we deduce that f (3x) ≥ 2x,
so f (x) ≥ 2x

3 . Also, note that if there exists k such that f (x) ≥ kx for all x, then

f (x) ≥ k3+2
3 x for all x as well. We can iterate and obtain f (x) ≥ knx, where kn are the

terms of the recursive sequence defined by k1 = 2
3 , and kn+1 = k3

n+2
3 for k ≥ 1. Let us

examine this sequence.
By the AM–GM inequality,

kn+1 = k3
n + 13 + 13

3
≥ kn,

so the sequence is increasing. Inductively we prove that kn < 1. Weierstrass’ criterion
implies that (kn)n is convergent. Its limit L should satisfy the equation

L = L3 + 2

3
,

which shows that L is a root of the polynomial equation L3 − 3L+ 2 = 0. This equation
has only one root in [0, 1], namely L = 1. Hence limn→∞ kn = 1, and so f (x) ≥ x for
all x.

It follows immediately that f (3x) ≥ 2x + f (x) for all x. Iterating, we obtain that
for all n ≥ 1,

f (3nx)− f (x) ≥ (3n − 1)x.

Therefore, f (x) − x ≤ f (3nx) − 3nx. If we let n → ∞ and use (ii), we obtain
f (x) − x ≤ 0, that is, f (x) ≤ x. We conclude that f (x) = x for all x > 0. Thus the
identity function is the unique solution to the functional equation.

(G. Dospinescu)
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544. We should keep in mind that f (x) = sin x and g(x) = cos x satisfy the condition.
As we proceed with the solution to the problem, we try to recover some properties of sin x
and cos x. First, note that the condition f (t) = 1 and g(t) = 0 for some t 	= 0 implies
g(0) = 1; hence g is nonconstant. Also, 0 = g(t) = g(0)g(t) + f (0)f (t) = f (0);
hence f is nonconstant. Substituting x = 0 in the relation yields g(−y) = g(y), so g
is even.

Substituting y = t , we obtain g(x − t) = f (x), with its shifted version f (x + t) =
g(x). Since g is even, it follows that f (−x) = g(x+ t). Now let us combine these facts
to obtain

f (x − y) = g(x − y − t) = g(x)g(y + t)+ f (x)f (y + t)

= g(x)f (−y)+ f (x)g(y).

Change y to −y to obtain f (x + y) = f (x)g(y) + g(x)f (y) (the addition formula
for sine).

The remaining two identities are consequences of this and the fact that f is odd. Let
us prove this fact. From g(x − (−y)) = g(x + y) = g(−x − y), we obtain

f (x)f (−y) = f (y)f (−x)
for all x and y in R. Setting y = t and x = −t yields f (−t)2 = 1, so f (−t) = ±1. The
choice f (−t) = 1 gives f (x) = f (x)f (−t) = f (−x)f (t) = f (−x); hence f is even.
But then

f (x − y) = f (x)g(−y)+ g(x)f (−y) = f (x)g(y)+ g(x)f (y) = f (x + y),

for all x and y. For x = z+w
2 , y = z−w

2 , we have f (z) = f (w), and so f is constant, a
contradiction. For f (−t) = −1, we obtain f (−x) = −f (−x)f (−t) = −f (x)f (t) =
−f (x); hence f is odd. It is now straightforward that

f (x − y) = f (x)g(y)+ g(x)f (−y) = f (x)g(y)− g(x)f (y)

and

g(x + y) = g(x − (−y)) = g(x)g(−y)+ f (x)f (−y) = g(x)g(y)− f (x)f (y),

where in the last equality we also used the fact, proved above, that g is even.
(American Mathematical Monthly, proposed by V.L. Klee, solution by P.L. Kannap-

pan)

545. Because f (x) = f 2(x/2) > 0, the function g(x) = ln f (x) is well defined. It
satisfies Cauchy’s equation and is continuous; therefore, g(x) = αx for some constant
α. We obtain f (x) = cx , with c = eα.
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546. Adding 1 to both sides of the functional equation and factoring, we obtain

f (x + y)+ 1 = (f (x)+ 1)(f (y)+ 1).

The continuous function g(x) = f (x) + 1 satisfies the functional equation g(x + y) =
g(x)g(y), and we have seen in the previous problem that g(x) = cx for some nonnegative
constant c. We conclude that f (x) = cx − 1 for all x.

547. If there exists x0 such that f (x0) = 1, then

f (x) = f (x0 + (x − x0)) = 1 + f (x − x0)

1 + f (x − x0)
= 1.

In this case, f is identically equal to 1. In a similar manner, we obtain the constant
solution f (x) ≡ −1.

Let us now assume thatf is never equal to 1 or −1. Defineg : R → R, g(x) = 1+f (x)
1−f (x) .

To show that g is continuous, note that for all x,

f (x) = 2f
(
x
2

)
1 + f

(
x
2

) < 1.

Now the continuity of g follows from that of f and of the function h(t) = 1+t
1−t on

(−∞, 1). Also,

g(x + y) = 1 + f (x + y)

1 − f (x + y)
= f (x)f (y)+ 1 + f (x)+ f (y)

f (x)f (y)+ 1 − f (x)− f (y)

= 1 + f (x)

1 − f (x)
· 1 + f (y)

1 − f (y)
= g(x)g(y).

Hence g satisfies the functional equation g(x+ y) = g(x)g(y). As seen in problem 545,
g(x) = cx for some c > 0. We obtain f (x) = cx−1

cx+1 . The solutions to the equation are
therefore

f (x) = cx − 1

cx + 1
, f (x) = 1, f (x) = −1.

Remark. You might have recognized the formula for the hyperbolic tangent of the sum.
This explains the choice of g, by expressing the exponential in terms of the hyperbolic
tangent.

548. Rewrite the functional equation as

f (xy)

xy
= f (x)

x
+ f (y)

y
.
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It now becomes natural to let g(x) = f (x)

x
, which satisfies the equation

g(xy) = g(x)+ g(y).

The particular case x = y yields g(x) = 1
2g(x

2), and hence g(−x) = 1
2g((−x)2) =

1
2g(x

2) = g(x). Thus we only need to consider the case x > 0.
Note that g is continuous on (0,∞). If we compose g with the continuous function

h : R → (0,∞), h(x) = ex , we obtain a continuous function on R that satisfies Cauchy’s
equation. Hence g ◦h is linear, which then implies g(x) = loga x for some positive base
a. It follows that f (x) = x loga x for x > 0 and f (x) = x loga |x| if x < 0.

All that is missing is the value of f at 0. This can be computed directly setting
x = y = 0, and it is seen to be 0. We conclude that f (x) = x loga |x| if x 	= 0, and
f (0) = 0, where a is some positive number. The fact that any such function is continuous
at zero follows from

lim
x→0+

x loga x = 0,

which can be proved by applying the L’Hôpital’s theorem to the functions loga x and 1
x
.

This concludes the solution.

549. Setting y = z = 0 yields φ(x) = f (x) + g(0) + h(0), and similarly φ(y) =
g(y)+f (0)+h(0). Substituting these three relations in the original equation and letting
z = 0 gives rise to a functional equation for φ, namely

φ(x + y) = φ(x)+ φ(y)− (f (0)+ g(0)+ h(0)).

This should remind us of the Cauchy equation, which it becomes after changing the
functionφ toψ(x) = φ(x)−(f (0)+g(0)+h(0)). The relationψ(x+y) = ψ(x)+ψ(y)
together with the continuity of ψ shows that ψ(x) = cx for some constant c. We obtain
the solution to the original equation

φ(x) = cx + α + β + γ, f (x) = cx + α, g(x) = cx + β, h(x) = cx + γ,

where α, β, γ are arbitrary real numbers.
(Gazeta Matematică (Mathematics Gazette, Bucharest), proposed by M. Vlada)

550. This is a generalization of Cauchy’s equation. Trying small values of n, one can
guess that the answer consists of all polynomial functions of degree at most n − 1 with
no constant term (i.e., with f (0) = 0). We prove by induction on n that this is the case.

The case n = 2 is Cauchy’s equation. Assume that the claim is true for n − 1
and let us prove it for n. Fix xn and consider the function gxn : R → R, gxn(x) =
f (x+ xn)− f (x)− f (xn). It is continuous. More importantly, it satisfies the functional
equation for n − 1. Hence gxn(x) is a polynomial of degree n − 2. And this is true for
all xn.
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It follows that f (x + xn) − f (x) is a polynomial of degree n − 2 for all xn. In
particular, there exist polynomials P1(x) and P2(x) such that f (x + 1)− f (x) = P1(x),
and f (x + √

2) − f (x) = P2(x). Note that for any a, the linear map from the vector
space of polynomials of degree at most n − 1 to the vector space of polynomials of
degree at most n− 2, P(x) → P(x + a)− P(x), has kernel the one-dimensional space
of constant polynomials (the only periodic polynomials). Because the first vector space
has dimension n and the second has dimension n− 1, the map is onto. Hence there exist
polynomials Q1(x) and Q2(x) of degree at most n− 1 such that

Q1(x + 1)−Q1(x) = P1(x) = f (x + 1)− f (x),

Q2(x + √
2)−Q2(x) = P2(x) = f (x + √

2)− f (x).

We deduce that the functionsf (x)−Q1(x) andf (x)−Q2(x) are continuous and periodic,
hence bounded. Their differenceQ1(x)−Q2(x) is a bounded polynomial, hence constant.
Consequently, the function f (x) −Q1(x) is continuous and has the periods 1 and

√
2.

Since the additive group generated by 1 and
√

2 is dense in R, f (x)−Q1(x) is constant.
This completes the induction.

That any polynomial of degree at most n − 1 with no constant term satisfies the
functional equation also follows by induction on n. Indeed, the fact that f satisfies the
equation is equivalent to the fact that gxn satisfies the equation. And gxn is a polynomial
of degree n− 2.

(G. Dospinescu)

551. First solution: Assume that such functions do exist. Because g ◦ f is a bijection, f
is one-to-one and g is onto. Since f is a one-to-one continuous function, it is monotonic,
and because g is onto but f ◦ g is not, it follows that f maps R onto an interval I strictly
included in R. One of the endpoints of this interval is finite, call this endpoint a. Without
loss of generality, we may assume that I = (a,∞). Then as g ◦ f is onto, g(I) = R.
This can happen only if lim supx→∞ g(x) = ∞ and lim inf x→∞ g(x) = −∞, which
means that g oscillates in a neighborhood of infinity. But this is impossible because
f (g(x)) = x2 implies that g assumes each value at most twice. Hence the question has
a negative answer; such functions do not exist.

Second solution: Since g ◦ f is a bijection, f is one-to-one and g is onto. Note that
f (g(0)) = 0. Since g is onto, we can choose a and b with g(a) = g(0)− 1 and g(b) =
g(0) + 1. Then f (g(a)) = a2 > 0 and f (g(b)) = b2 > 0. Let c = min(a2, b2)/2 >
0. The intermediate value property guarantees that there is an x0 ∈ (g(a), g(0)) with
f (x0) = c and an x1 ∈ (g(0), g(b)) with f (x1) = c. This contradicts the fact that f is
one-to-one. Hence no such functions can exist.

(R. Gelca, second solution by R. Stong)

552. The relation from the statement implies that f is injective, so it must be monotonic.
Let us show that f is increasing. Assuming the existence of a decreasing solution f to
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the functional equation, we can find x0 such that f (x0) 	= x0. Rewrite the functional
equation as f (f (x))− f (x) = f (x)− x. If f (x0) < x0, then f (f (x0)) < f (x0), and if
f (x0) > x0, then f (f (x0)) > f (x0), which both contradict the fact that f is decreasing.
Thus any function f that satisfies the given condition is increasing.

Pick some a > b, and set 	f (a) = f (a)− a and 	f (b) = f (b)− b. By adding a
constant to f (which yields again a solution to the functional equation), we may assume
that	f (a) and	f (b) are positive. Composingf with itselfn times, we obtainf (n)(a) =
a + n	f (a) and f (n)(b) = b + n	f (b). Recall that f is an increasing function, so
f (n) is increasing, and hence f (n)(a) > f (n)(b), for all n. This can happen only if
	f (a) ≥ 	f (b).

On the other hand, there exists m such that b + m	f (b) = f (m)(b) > a, and the
same argument shows that 	f (f (m−1)(b)) > 	f (a). But 	f (f (m−1)(b)) = 	f (b), so
	f (b) ≥ 	f (a). We conclude that 	f (a) = 	f (b), and hence 	f (a) = f (a) − a is
independent of a. Therefore, f (x) = x + c, with c ∈ R, and clearly any function of this
type satisfies the equation from the statement.

553. The answer is yes! We have to prove that for f (x) = ex
2
, the equation f ′g+fg′ =

f ′g′ has nontrivial solutions on some interval (a, b). Explicitly, this is the first-order
linear equation in g,

(1 − 2x)ex
2
g′ + 2xex

2
g = 0.

Separating the variables, we obtain

g′

g
= 2x

2x − 1
= 1 + 1

2x − 1
,

which yields by integration ln g(x) = x+ 1
2 ln |2x−1|+C. We obtain the one-parameter

family of solutions

g(x) = aex
√|2x − 1|, a ∈ R,

on any interval that does not contain 1
2 .

(49th W.L. Putnam Mathematical Competition, 1988)

554. Rewrite the equation f 2 + g2 = f ′2 + g′2 as

(f + g)2 + (f − g)2 = (f ′ + g′)2 + (g′ − f ′)2.

This, combined with f + g = g′ − f ′, implies that (f − g)2 = (f ′ + g′)2.
Let x0 be the second root of the equation f (x) = g(x). On the intervals I1 =

(−∞, 0), I2 = (0, x0), and I3 = (x0,∞) the function f − g is nonzero; hence so
is f ′ + g′. These two functions maintain constant sign on the three intervals; hence
f − g = εj (f

′ + g′) on Ij , for some εj ∈ {−1, 1}, j = 1, 2, 3.
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If on any of these intervals f − g = f ′ + g′, then since f + g = g′ − f ′ it follows
that f = g′ on that interval, and so g′ + g = g′ − g′′. This implies that g satisfies
the equation g′′ + g = 0, or that g(x) = A sin x + B cos x on that interval. Also,
f (x) = g′(x) = A cos x − B sin x.

If f − g = −f ′ − g′ on some interval, then using again f + g = g′ − f ′, we find
that g = g′ on that interval. Hence g(x) = C1e

x . From the fact that f = −f ′, we obtain
f (x) = C2e

−x .
Assuming that f and g are exponentials on the interval (0, x0), we deduce that

C1 = g(0) = f (0) = C2 and that C1e
x0 = g(x0) = f (x0) = C2e

−x . These two
inequalities cannot hold simultaneously, unless f and g are identically zero, ruled out
by the hypothesis of the problem. Therefore, f (x) = A cos x − B sin x and g(x) =
A sin x + B cos x on (0, x0), and consequently x0 = π .

On the intervals (−∞, 0] and [x0,∞) the functions f and g cannot be periodic, since
then the equation f = g would have infinitely many solutions. So on these intervals
the functions are exponentials. Imposing differentiability at 0 and π , we obtain B = A,
C1 = A on I1 and C1 = −Ae−π on I3 and similarly C2 = A on I1 and C2 = −Aeπ on
I3. Hence the answer to the problem is

f (x) =

⎧⎪⎨⎪⎩
Ae−x for x ∈ (−∞, 0],
A(sin x + cos x) for x ∈ (0, π ],
−Ae−x+π for x ∈ (π,∞),

g(x) =

⎧⎪⎨⎪⎩
Aex for x ∈ (−∞, 0],
A(sin x − cos x) for x ∈ (0, π ],
−Aex−π for x ∈ (π,∞),

where A is some nonzero constant.
(Romanian Mathematical Olympiad, 1976, proposed by V. Matrosenco)

555. The idea is to integrate the equation using an integrating factor. If instead we had
the first-order differential equation (x2 + y2)dx + xydy = 0, then the standard method
finds x as an integrating factor. So if we multiply our equation by f to transform it into

(f 3 + fg2)f ′ + f 2gg′ = 0,

then the new equation is equivalent to(
1

4
f 4 + 1

2
f 2g2

)′
= 0.

Therefore, f and g satisfy

f 4 + 2f 2g2 = C,
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for some real constant C. In particular, f is bounded.
(R. Gelca)

556. The idea is to write the equation as

Bydx + Axdy + xmyn(Dydx + Cxdy) = 0,

then find an integrating factor that integrates simultaneously Bydx + Axdy and
xmyn(Dydx + Cxdy). An integrating factor of Bydx + Axdy will be of the form
x−1y−1φ1(x

ByA), while an integrating factor of xmyn(Dydx+Cxdy) = Dxmyn+1dx+
Cxm+1yndy will be of the form x−m−1y−n−1φ2(x

DyC), where φ1 and φ2 are one-variable
functions. To have the same integrating factor for both expressions, we should have

xmynφ1(x
ByA) = φ2(x

DyC).

It is natural to try power functions, say φ1(t) = tp and φ2(t) = tq . The equality condition
gives rise to the system

Ap − Cq = −n,
Bp −Dq = −m,

which according to the hypothesis can be solved for p and q. We find that

p = Bn− Am

AD − BC
, q = Dn− Cm

AD − BC
.

Multiplying the equation by x−1y−1(xByA)p = x−1−my−1−n(xDyC)q and integrating,
we obtain

1

p + 1
(xByA)p+1 + 1

q + 1
(xDyC)q+1 = constant,

which gives the solution in implicit form.
(M. Ghermănescu, Ecuaţii Diferenţiale (Differential Equations), Editura Didactică

şi Pedagogică, Bucharest, 1963)

557. The differential equation can be rewritten as

ey
′ ln y = eln x.

Because the exponential function is injective, this is equivalent to y ′ ln y = ln x. Inte-
grating, we obtain the algebraic equation y ln y− y = x ln x− x+C, for some constant
C. The initial condition yieldsC = 0. We are left with finding all differentiable functions
y such that

y ln y − y = x ln x − x.
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Let us focus on the function f (t) = t ln t − t . Its derivative is f ′(t) = ln t , which is
negative if t < 1 and positive if t > 1. The minimum of f is at t = 1, and is equal to
−1. An easy application of L’Hôpital’s rule shows that limt→0 f (t) = 0. It follows that
the equation f (t) = c fails to have a unique solution precisely when c ∈ (0, 1) ∪ (1, e),
in which case it has exactly two solutions.

If we solve algebraically the equation y ln y−y = x ln x−x on (1, e), we obtain two
possible continuous solutions, one that is greater than 1 and one that is less than 1. The
continuity of y at e rules out the second, so on the interval [1,∞), y(x) = x. On (0, 1)
again we could have two solutions, y1(x) = x, and some other function y2 that is greater
than 1 on this interval. Let us show that y2 cannot be extended to a solution having
continuous derivative at x = 1. On (1,∞), y2(x) = x, hence limx→1+ y ′

2(x) = 1.
On (0, 1), as seen above, y ′

2 ln y2 = ln x, so y ′
2 = ln x/ ln y2 < 0, since x < 1, and

y2(x) > 1. Hence limx→1− y ′
2(x) ≤ 0, contradicting the continuity of y ′

2 at x = 1.
Hence the only solution to the problem is y(x) = x for all x ∈ (0,∞).

(R. Gelca)

558. Define

g(x) = f (x)f ′
(a
x

)
, x ∈ (0,∞).

We want to show that g is a constant function.
Substituting x → a

x
in the given condition yields

f
(a
x

)
f ′(x) = a

x
,

for all x > 0. We have

g′(x) = f ′(x)f
(a
x

)
+ f (x)f ′

(a
x

) (
− a

x2

)
= f ′(x)f

(a
x

)
− a

x2
f
(a
x

)
f (x)

= a

x
− a

x
= 0,

so g is identically equal to some positive constant b. Using the original equation we can
write

b = g(x) = f (x)f
(a
x

)
= f (x) · a

x
· 1

f ′(x)
,

which gives

f ′(x)
f (x)

= a

bx
.

Integrating both sides, we obtain ln f (x) = a
b

ln x + ln c, where c > 0. It follows that
f (x) = cx

a
b , for all x > 0. Substituting back into the original equation yields
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c · a
b

· a
a
b
−1

x
a
b
−1

= x

cx
a
b

,

which is equivalent to

c2a
a
b = b.

By eliminating c, we obtain the family of solutions

fb(x) = √
b

(
x√
a

) a
b

, b > 0.

All such functions satisfy the given condition.
(66th W.L. Putnam Mathematical Competition, 2005, proposed by T. Andreescu)

559. Let us look at the solution to the differential equation

∂y

∂x
= f (x, y),

passing through some point (x0, y0). The condition from the statement implies that along
this solution, df (x,y)

dx
= 0, and so along the solution the function f is constant. This

means that the solution to the differential equation with the given initial condition is a
line (y − y0) = f (x0, y0)(x − x0). If for some (x1, y1), f (x1, y1) 	= f (x0, y0), then the
lines (y−y0) = f (x0, y0)(x−x0) and (y−y1) = f (x1, y1)(x−x1) intersect somewhere,
providing two solutions passing through the same point, which is impossible. This shows
that f is constant, as desired.

(Soviet Union University Student Mathematical Olympiad, 1976)

560. The equation can be rewritten as

(xy)′′ + (xy) = 0.

Solving, we find xy = C1 sin x + C2 cos x, and hence

y = C1
sin x

x
+ C2

cos x

x
,

on intervals that do not contain 0.

561. The function f ′(x)f ′′(x) is the derivative of 1
2(f

′(x))2. The equation is therefore
equivalent to

(f ′(x))2 = constant.

And because f ′(x) is continuous, f ′(x) itself must be constant, which means that f (x)
is linear. Clearly, all linear functions are solutions.
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562. The relation from the statement implies right away that f is differentiable. Differ-
entiating

f (x)+ x

∫ x

0
f (t)dt −

∫ x

0
tf (t)dt = 1,

we obtain

f ′(x)+
∫ x

0
f (t)dt + xf (x)− xf (x) = 0,

that is, f ′(x)+ ∫ x
0 f (t)dt = 0. Again we conclude that f is twice differentiable, and so

we can transform this equality into the differential equation f ′′ + f = 0. The general
solution is f (x) = A cos x+B sin x. Substituting in the relation from the statement, we
obtain A = 1, B = 0, that is, f (x) = cos x.

(E. Popa, Analiza Matematică, Culegere de Probleme (Mathematical Analysis, Col-
lection of Problems), Editura GIL, 2005)

563. The equation is of Laplace type, but we can bypass the standard method once we
make the following observation. The associated homogeneous equation can be written as

x(y′′ + 4y ′ + 4y)− (y ′′ + 5y ′ + 6y) = 0,

and the equations y ′′ + 4y ′ + 4y = 0 and y ′′ + 5y ′ + 6y = 0 have the common solution
y(x) = e−2x . This will therefore be a solution to the homogeneous equation, as well.
To find a solution to the inhomogeneous equation, we use the method of variation of the
constant. Set y(x) = C(x)e−2x . The equation becomes

(x − 1)C ′′ − C ′ = x,

with the solution

C ′(x) = λ(x − 1)+ (x − 1) ln |x − 1| − 1.

Integrating, we obtain

C(x) = 1

2
(x − 1)2 ln |x − 1| +

(
λ

2
− 1

4

)
(x − 1)2 − x + C1.

If we set c2 = λ
2 − 1

4 , then the general solution to the equation is

y(x) = e−2x

[
C1 + C2(x − 1)2 + 1

2
(x − 1)2 ln |x − 1| − x

]
.

(D. Flondor, N. Donciu, Algebră şi Analiză Matematică (Algebra and Mathematical
Analysis), Editura Didactică şi Pedagogică, Bucharest, 1965)
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564. Consider the change of variable x = cos t . Then, by the chain rule,

dy

dx
=
dy

dt
dx

dt

= −
dy

dt

sin t

and

d2y

dx2
=
d2y

dt2
− dy

dx

d2x

dt2(
dx

dt

)2 =
d2y

dt2

sin2 t
−

cos t
dy

dt

sin3 t
.

Substituting in the original equation, we obtain the much simpler

d2y

dt2
+ n2y = 0.

This has the function y(t) = cos nt as a solution. Hence the original equation admits the
solution y(x) = cos(n arccos x), which is the nth Chebyshev polynomial.

565. We interpret the differential equation as being posed for a function y of x. In this
perspective, we need to write d2x

dy2 in terms of the derivatives of y with respect to x.
We have

dx

dy
= 1
dy

dx

,

and using this fact and the chain rule yields

d2x

dy2
= d

dy

⎛⎜⎝ 1
dy

dx

⎞⎟⎠ = d

dx

⎛⎜⎝ 1
dy

dx

⎞⎟⎠ · dx
dy

= − 1(
dy

dx

)2 · d
2y

dx2
· dx
dy

= − 1(
dy

dx

)3 · d
2y

dx2
.

The equation from the statement takes the form

d2y

dx2

⎛⎜⎜⎜⎝1 − 1(
dy

dx

)3

⎞⎟⎟⎟⎠ = 0.
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This splits into

d2y

dx2
= 0 and

(
dy

dx

)3

= 1.

The first of these has the solutions y = ax + b, with a 	= 0, because y has to be one-to-
one, while the second reduces to y ′ = 1, whose family of solutions y = x+ c is included
in the first. Hence the answer to the problem consists of the nonconstant linear functions.

(M. Ghermănescu, Ecuaţii Diferenţiale (Differential Equations), Editura Didactică
şi Pedagogică, Bucharest, 1963)

566. First solution: Multiplying the equation by e−xy ′ and integrating from 0 to x, we
obtain

y2(x)− y2(0)+ 2
∫ x

0
e−t y ′y ′′dt = 0.

The integral in this expression is positive. To prove this we need the following lemma.

Lemma. Let f : [0, a] → R be a continuous function and φ : [0, a] → R a positive,
continuously differentiable, decreasing function with φ(0) = 1. Then there exists c ∈
[0, a] such that ∫ a

0
φ(t)f (t)dt =

∫ c

0
f (t)dt.

Proof. Let F(x) = ∫ x
0 f (t)dt , x ∈ [0, a], and let α be the negative of the derivative of

φ, which is a positive function. Integrating by parts, we obtain∫ a

0
φ(t)f (t)dt = φ(a)F (a)+

∫ a

0
α(t)F (t)dt = F(a)−

∫ a

0
(F (a)− F(t))α(t)dt.

We are to show that there exists a point c such that

F(a)− F(c) =
∫ a

0
(F (a)− F(t))α(t)dt.

If
∫ a

0 α(t)dt were equal to 1, this would be true by the mean value theorem applied to the
function F(a) − F(t) and the probability measure α(t)dt . But in general, this integral
is equal to some subunitary number θ , so we can find c′ such that the integral is equal
to θ(F (a)− F(c′)). But this number is between F(a)− F(a) and F(a)− F(c′), so by
the intermediate value property, there is a c such that θ(F (a)− F(c′)) = F(a)− F(c).
This proves the lemma.
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Returning to the problem, we see that there exists c ∈ [0, x] such that∫ x

0
e−t y ′y ′′dt =

∫ c

0
y ′y ′′dt = 1

2

[
((y ′(c))2 − (y ′(0))2

]
.

In conclusion,

(y(x))2 + (y ′(c))2 = (y(0))2 + (y ′(0))2, for x > 0,

showing that y is bounded as x → ∞.

Second solution: Use an integrating factor as in the previous solution to obtain

y2(x)− y2(0)+ 2
∫ x

0
e−t y ′y ′′dt = 0.

Then integrate by parts to obtain

y2(x)+ e−x(y ′(x))2 +
∫ x

0
e−t (y ′(t))2dt = y2(0)+ (y ′(0))2.

Because every term on the left is nonnegative, it follows immediately that

|y(x)| ≤ (
y2(0)+ (y ′(0))2

)1/2

is bounded, and we are done.
(27th W.L. Putnam Mathematical Competition, 1966)

567. We have

y ′′
1 (t)+ y1(t) =

∫ ∞

0

t2e−tx

1 + t2
dt +

∫ ∞

0

e−tx

1 + t2
dt =

∫ ∞

0
e−txdt = 1

x
.

Also, integrating by parts, we obtain

y2(x) = − cos t

t + x

∣∣∣∣∞
0

−
∫ ∞

0

cos t

(t + x)2
dt = 1

x
− sin t

(t + x)2

∣∣∣∣∞
0

−
∫ ∞

0

2 sin t

(t + x)3
dt

= 1

x
− y ′′

2 (x).

Since the functions y1 and y2 satisfy the same inhomogeneous equation, their difference
y1 − y2 satisfies the homogeneous equation y ′′ + y = 0, and hence is of the form
A cos x + B sin x. On the other hand,

lim
x→∞(y1(x)− y2(x)) = lim

x→∞ y1(x)− lim
x→∞ y2(x) = 0,
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which implies that A = B = 0, and therefore y1 = y2, as desired.
(M. Ghermănescu, Ecuaţii Diferenţiale (Differential Equations), Editura Didactică

şi Pedagogică, Bucharest, 1963)

568. LetF(t) = ∫ t
0 f (s)ds be the antiderivative of f that is 0 at the origin. The inequality

from the problem can be written as

F ′(t)√
1 + 2F(t)

≤ 1,

which now reminds us of the method of separation of variables. The left-hand side is
the derivative of

√
1 + 2F(t), a function whose value at the origin is 1. Its derivative is

dominated by the derivative of g(t) = t + 1, another function whose value at the origin
is also 1. Integrating, we obtain √

1 + 2F(t) ≤ t + 1.

Look at the relation from the statement. It says that f (t) ≤ √
1 + 2F(t). Hence the

conclusion.
(P.N. de Souza, J.N. Silva, Berkeley Problems in Mathematics, Springer, 2004)

569. We will use the “integrating factor’’ ex . The inequality f ′′(x)ex + 2f ′(x)ex +
f (x)ex ≥ 0 is equivalent to (f (x)ex)′′ ≥ 0. So the function f (x)ex is convex, which
means that it attains its maximum at one of the endpoints of the interval of definition.
We therefore have f (x)ex ≤ max(f (0), f (1)e) = 0, and so f (x) ≤ 0 for all x ∈ [0, 1].

(P.N. de Souza, J.N. Silva, Berkeley Problems in Mathematics, Springer, 2004)

570. Assume that such a function exists. Because f ′(x) = f (f (x)) > 0, the function is
strictly increasing.

The monotonicity and the positivity of f imply that f (f (x)) > f (0) for all x. Thus
f (0) is a lower bound for f ′(x). Integrating the inequality f (0) < f ′(x) for x < 0, we
obtain

f (x) < f (0)+ f (0)x = (x + 1)f (0).

But then for x ≤ −1, we would have f (x) ≤ 0, contradicting the hypothesis that
f (x) > 0 for all x. We conclude that such a function does not exist.

(9th International Mathematics Competition for University Students, 2002)

571. We use the separation of variables, writing the relation from the statement as

n∑
i=1

P ′(x)
P (x)− xi

= n2

x
.

Integrating, we obtain
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n∑
i=1

ln |P(x)− xi | = n2 lnC|x|,

where C is some positive constant. After adding the logarithms on the left we have

ln
n∏
i=1

|P(x)− xi | = lnCn
2 |x|n2

,

and so ∣∣∣∣∣
n∏
i=1

(P (x)− xi)

∣∣∣∣∣ = k|x|n2
,

with k = Cn
2
. Eliminating the absolute values, we obtain

P(P (x)) = λxn
2
, λ ∈ R.

We end up with an algebraic equation. An easy induction can prove that the coefficient
of the term of kth degree is 0 for k < n. Hence P(x) = axn, with a some constant, are
the only polynomials that satisfy the relation from the statement.

(Revista Matematică din Timişoara (Timişoara Mathematics Gazette), proposed by
T. Andreescu)

572. The idea is to use an “integrating factor’’ that transforms the quantity under the inte-
gral into the derivative of a function. We already encountered this situation in a previous
problem, and should recognize that the integrating factor is e−x . We can therefore write∫ 1

0
|f ′(x)− f (x)|dx =

∫ 1

0
|f ′(x)e−x − f (x)e−x |exdx =

∫ 1

0
|(f (x)e−x)′|exdx

≥
∫ 1

0
(f (x)e−x)′|dx = f (1)e−1 − f (0)e−0 = 1

e
.

We have found a lower bound. We will prove that it is the greatest lower bound. Define
fa : [0, 1] → R,

fa(x) =
{
ea−1

a
x for x ∈ [0, a],

ex−1 for x ∈ [a, 1].
The functions fa are continuous but not differentiable at a, but we can smooth this
“corner’’ without altering too much the function or its derivative. Ignoring this problem,
we can write∫ 1

0
|f ′
a(x)− fa(x)|dx =

∫ a

0

∣∣∣∣ea−1

a
− ea−1

a
x

∣∣∣∣ dx = ea−1

a

(
a − a2

2

)
= ea−1

(
1 − a

2

)
.

As a → 0, this expression approaches 1
e
. This proves that 1

e
is the desired greatest lower

bound.
(41st W.L. Putnam Mathematical Competition, 1980)
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573. This is the famous Jacobi identity. Identifying vectors with so(3) matrices, we
compute

−→
u × (−→v × −→w )+ −→v × (−→w × −→

u )+ −→w × (
−→
u × −→v )

= U(VW −WV )− (VW −WV )U + V (WU − UW)− (WU − UW)V

+W(UV − VU)− (UV − VU)W

= UVW − UWV − VWU +WVU + VWU − VUW −WUV + UWV

+WUV −WVU − UVW + VUW.

All terms of the latter sum cancel, giving the answer zero.

574. One checks easily that −→
u + −→v + −→w = 0; hence −→

u , −→v , −→w form a triangle. We
compute

−→
u · −→

c = (
−→
b · −→

c )(
−→
a · −→

c )− (
−→
c · −→

a )(
−→
b · −→

c ) = 0.

It follows that −→
u and −→

c = 0 are orthogonal. Similarly, we prove that −→v is orthogonal
to −→
a , and −→w is orthogonal to

−→
b . Hence the sides of the triangle formed with −→

u ,−→v ,−→w
are perpendicular to the sides of the triangle formed with −→

a ,
−→
b ,

−→
c . This shows that

the two triangles have equal angles hence are similar, and we are done.
(Romanian Mathematical Olympiad, 1976, proposed by M. Chiriţă)

575. Multiply the second equation on the left by −→
a to obtain

−→
a × (

−→
x × −→

b ) = −→
a × −→

c .

Using the formula for the double cross-product, also known as the cab-bac formula, we
transform this into

(
−→
a · −→

b )
−→
x − (

−→
a · −→

x )
−→
b = −→

a × −→
c .
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Hence the solution to the equation is

−→
x = m

−→
a · −→

b

−→
b + 1

−→
a · −→

b

−→
a × −→

c .

(C. Coşniţă, I. Sager, I. Matei, I. Dragotă, Culegere de probleme de Geometrie
Analitică (Collection of Problems in Analytical Geometry), Editura Didactică şi Ped-
agogică, Bucharest, 1963)

576. The vectors
−→
b −−→

a and −→
c −−→

a belong to the plane under discussion, so the vector
(
−→
b − −→

a )× (
−→
c − −→

a ) is perpendicular to this plane. Multiplying out, we obtain

(
−→
b − −→

a )× (
−→
c − −→

a ) = −→
b × −→

c − −→
a × −→

c − −→
b × −→

a

= −→
b × −→

c + −→
c × −→

a + −→
a × −→

b .

Hence the conclusion.

577. The hypothesis implies that

(
−→
a × −→

b )− (
−→
b × −→

c ) = −→
0 .

It follows that
−→
b × (

−→
a + −→

c ) = −→
0 , hence

−→
b = λ(

−→
a + −→

c ), where λ is a scalar.
Analogously, we deduce −→

c × (
−→
a + −→

b ) = −→
0 , and substituting the formula we found

for
−→
b , we obtain

−→
c × (

−→
a + λ

−→
a + λ

−→
c ) = −→

0 .

Hence (1+λ)−→c ×−→
a = −→

0 . It follows that λ = −1 and so
−→
b = −−→

a −−→
c . Therefore,−→

a + −→
b + −→

c = −→
0 .

(C. Coşniţă, I. Sager, I. Matei, I. Dragotă, Culegere de probleme de Geometrie
Analitică (Collection of Problems in Analytical Geometry), Editura Didactică şi Ped-
agogică, Bucharest, 1963)

578. Differentiating the equation from the statement, we obtain

−→
u ′ × −→

u ′ + −→
u × −→

u ′′ = −→
u × −→

u ′′ = −→v ′.

It follows that the vectors −→
u and −→v ′ are perpendicular. But the original equation shows

that −→
u and −→v are also perpendicular, which means that −→

u stays parallel to −→v × −→
v′ .

Then we can write −→
u = f−→v × −→v ′ for some scalar function f = f (t). The left-hand

side of the original equation is therefore equal to

f (−→v × −→v ′)× [f ′−→v × −→
v′ + f−→v ′ × −→v ′ + f−→v × −→v ′′]
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= f 2(−→v × −→v ′)× (−→v × −→v ′′).

By the cab-bac formula this is further equal to

f 2(−→v ′′ · (−→v × −→v ′)−→v − −→v · (−→v × −→v ′)−→v ) = f 2((−→v × −→v ′) · −→v ′′)−→v .
The equation reduces therefore to

f 2((−→v × −→v ′) · −→v ′′)−→v = −→v .

By hypothesis −→v is never equal to
−→
0 , so the above equality implies

f = 1√
(−→v × −→v ′) · −→v ′′

.

So the equation can be solved only if the frame (−→v ,−→v ′,−→v ′′) consists of linearly inde-
pendent vectors and is positively oriented and in that case the solution is

−→
u = 1√

Vol(−→v ,−→v ′,−→v ′′)
−→v × −→v ′,

where Vol(−→v ,−→v ′,−→v ′′) denotes the volume of the parallelepiped determined by the three
vectors.

(Revista Matematică din Timişoara (Timişoara Mathematics Gazette), proposed by
M. Ghermănescu)

579. (a)Yes: simply rotate the plane 90◦ about some axis perpendicular to it. For example,
in the xy-plane we could map each point (x, y) to the point (y,−x).

(b) Suppose such a bijection existed. In vector notation, the given condition states that

(
−→
a − −→

b ) · (f (−→a )− f (
−→
b )) = 0

for any three-dimensional vectors −→
a and

−→
b .

Assume without loss of generality that f maps the origin to itself; otherwise, g(−→p ) =
f (

−→
p ) − f (

−→
0 ) is still a bijection and still satisfies the above equation. Plugging

−→
b =

(0, 0, 0) into the above equation, we obtain that −→
a · f (−→a ) = 0 for all −→

a . The equation
reduces to

−→
a · f (−→b )− −→

b · f (−→a ) = 0.

Given any vectors −→
a ,

−→
b , −→

c and any real numbers m, n, we then have

m(
−→
a · f (−→b )+ −→

b · f (−→a )) = 0,
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n(
−→
a · f (−→c )+ −→

c · f (−→a )) = 0,

a · f (m−→
b + n

−→
c )+ (m

−→
b + n

−→
c ) · f (−→a ) = 0.

Adding the first two equations and subtracting the third gives

−→
a · (mf (−→b )+ nf (

−→
c )− f (m

−→
b + n

−→
c )) = 0.

Because this is true for any vector −→
a , we must have

f (m
−→
b + n

−→
c ) = mf (

−→
b )+ nf (

−→
c ).

Therefore, f is linear, and it is determined by the images of the unit vectors
−→
i = (1, 0, 0),−→

j = (0, 1, 0), and
−→
k = (0, 0, 1). If

f (
−→
i ) = (a1, a2, a3), f (

−→
j ) = (b1, b2, b3), and f (

−→
k ) = (c1, c2, c3),

then for a vector −→
x we have

f (
−→
x ) =

⎡⎣a1 b1 c1

a2 b2 c2

a3 b3 c3

⎤⎦−→
x .

Substituting in f (−→a ) ·−→a = 0 successively −→
a = −→

i ,
−→
j ,

−→
k , we obtain a1 = b2 = c3 =

0. Then substituting in −→
a ·f (−→b )+−→

b ·f (−→a ), (−→a ,−→b ) = (
−→
i ,

−→
j ), (

−→
j ,

−→
k ), (

−→
k ,

−→
i ),

we obtain b1 = −a2, c2 = −b3, c1 = −a3.
Setting k1 = c2, k2 = −c1, and k3 = b1 yields

f (k1
−→
i + k2

−→
j + k3

−→
k ) = k1f (

−→
i )+ k2f (

−→
j )+ k3f (

−→
k ) = −→

0 .

Because f is injective and f (
−→
0 ) = −→

0 , this implies that k1 = k2 = k3 = 0. Then
f (

−→
x ) = 0 for all −→

x , contradicting the assumption that f was a surjection. Therefore,
our original assumption was false, and no such bijection exists.

(Team Selection Test for the International Mathematical Olympiad, Belarus, 1999)

580. The important observation is that

A ∗ B = AB − 1

2
tr(AB),

which can be checked by hand. The identity is therefore equivalent to

CBA− BCA+ ABC − ACB = −1

2
tr(AC)B + 1

2
tr(AB)C.
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And this is the cab-bac identity once we notice that −→
a · −→

b = − 1
2 tr(AB).

581. An easy computation shows that the map f : R3 → su(2),

f (x, y, z) =
( −iz y − ix

y + ix iz

)
,

has the desired property.

582. Denoting by
−→
A ,

−→
B ,

−→
C ,

−→
A′ ,

−→
B ′ ,

−→
C ′ the position vectors of the vertices of the two

triangles, the condition that the triangles have the same centroid reads

−→
A + −→

B + −→
C = −→

A′ + −→
B ′ + −→

C ′ .

Subtracting the left-hand side, we obtain

−−→
AA′ + −−→

BB ′ + −−→
CC ′ = −→

0 .

This shows that
−−→
AA′,

−−→
BB ′,

−−→
CC ′ form a triangle, as desired.

583. Set −→v1 = −→
AB, −→v2 = −→

BC, −→v3 = −→
CD, −→v4 = −→

DA, −→
u1 = −−→

A′B ′, −→
u2 = −−→

B ′C ′,
−→
u3 = −−→

C ′D′, −→
u4 = −−→

D′A′. By examining Figure 72 we can write the system of equations

2−→v2 − −→v1 = −→
u1 ,

2−→v3 − −→v2 = −→
u2 ,

2−→v4 − −→v3 = −→
u3 ,

2−→v1 − −→v4 = −→
u4 ,

in which the right-hand side is known. Solving, we obtain

−→v1 = 1

15
−→
u1 + 2

15
−→
u2 + 4

15
−→
u3 + 8

15
−→
u4 ,

Figure 72
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and the analogous formulas for −→v2 , −→v3 , and −→v4 . Since the rational multiple of a vector and
the sum of two vectors can be constructed with straightedge and compass, we can construct

the vectors −→vi , i = 1, 2, 3, 4. Then we take the vectors
−−→
A′B = −−→v1 ,

−−→
B ′C = −−→v2 ,−−→

C ′D = −−→v3 , and
−−→
D′A = −−→v4 from the points A′, B ′, C ′, and D′ to recover the vertices

B, C, D, and A.

Remark. Maybe we should elaborate more on how one effectively does these construc-
tions. The sum of two vectors is obtained by constructing the parallelogram they form.
Parallelograms can also be used to translate vectors. An integer multiple of a vector can
be constructed by drawing its line of support and then measuring several lengths of the
vector with the compass. This construction enables us to obtain segments divided into
an arbitrary number of equal parts. In order to divide a given segment into equal parts,
form a triangle with it and an already divided segment, then draw lines parallel to the
third side and use Thales’ theorem.

584. Let O be the intersection of the perpendicular bisectors of A1A2 and B1B2. We
want to show that O is on the perpendicular bisector of C1C2. This happens if and only
if (

−−→
OC1 + −−→

OC2) · −−→
C1C2 = 0.

Set
−→
OA = −→

l ,
−→
OB = −→

m ,
−→
OC = −→

n ,
−−→
AA2 = −→

a ,
−−→
BB2 = −→

b ,
−−→
CC2 = −→

c . That the
perpendicular bisectors ofA1A2 andB1B2 pass throughO can be written algebraically as

(2
−→
l + −→

a + −→
c ) · (−→c − −→

a ) = 0 and (2−→
m + −→

a + −→
b ) · (−→a − −→

b ) = 0.

The orthogonality of the sides of the rectangles translates into formulas as

(
−→
m − −→

l ) · −→
a = 0, (

−→
m − −→

n ) · −→
b = 0, (

−→
n − −→

l ) · −→
c = 0.

We are required to prove that (2−→
n + −→

b + −→
c ) · (−→b − −→

c ) = 0. And indeed,

(2−→
n + −→

b + −→
c ) · (−→c − −→

b ) = 2−→
n · −→

c − 2−→
n · −→

b + −→
c 2 − −→

b 2

= 2(−→m − −→
l ) · −→

a + 2
−→
l · −→

c − 2−→
m · −→

b + −→
c 2 − −→

b 2

= 2−→
m · −→

a − 2−→
m · −→

b + −→
a 2 − −→

b 2 + 2
−→
l · −→

c − 2
−→
l · −→

a − −→
a 2 + −→

c 2 = 0.

Hence the conclusion.

585. LetH ′ be the orthocenter of triangleACD. The quadrilateralsHPBQ andHCH ′A
satisfy HC⊥BP , H ′C⊥HP , H ′A⊥HQ, AH⊥BQ, AC⊥HB (see Figure 73). The
conclusion follows from a more general result.

Lemma. Let MNPQ and M ′N ′P ′Q′ be two quadrilaterals such that MN⊥N ′P ′,
NP⊥M ′N ′, PQ⊥Q′M ′, QM⊥P ′Q′, and MP⊥N ′Q′. Then NQ⊥M ′P ′.
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A

B

C

D

H

P
Q

H

Figure 73

Proof. Let
−−→
MN = −→v 1,

−→
NP = −→v 2,

−→
PQ = −→v 3,

−−→
QM = −→v 4, and

−−−→
M ′N ′ = −→w 1,−−→

N ′P ′ = −→w 2,
−−→
P ′Q′ = −→w 3,

−−−→
Q′M ′ = −→w 4. The conditions from the statement can be

written in vector form as
−→v 1 · −→w 2 = −→v 2 · −→w 1 = −→v 3 · −→w 4 = −→v 4 · −→w 3 = 0,

−→v 1 + −→v 2 + −→v3 + −→v 4 = −→w 1 + −→w 2 + −→w 3 + −→w 4 = −→
0 ,

(−→v 1 + −→v 2) · (−→w 2 + −→w 3) = 0.

We are to show that

(−→v2 + −→v 3) · (−→w 1 + −→w 2) = 0.

First, note that

0 = (−→v 1 + −→v2 ) · (−→w 2 + −→w 3) = −→v 1 · −→w 2 + −→v 1 · −→w 3 + −→v 2 · −→w 2 + −→v 2 · −→w 3

= −→v 1 · −→w 3 + −→v 2 · −→w 2 + −→v 2 · −→w 3.

Also, the dot product that we are supposed to show is zero is equal to

(−→v 2 + −→v3 ) · (−→w 1 + −→w 2) = −→v 2 · −→w 1 + −→v 2 · −→w 2 + −→v 3 · −→w 1 + −→v 3 · −→w 2

= −→v 2 · −→w 2 + −→v 3 · −→w 1 + −→v 3 · −→w 2.

This would indeed equal zero if we showed that −→v 1·−→w 3+−→v 2·−→w 3 = −→v 3·−→w 1+−→v 3·−→w 2.
And indeed,
−→v 1 · −→w 3 + −→v 2 · −→w 3 = (−→v 1 + −→v 2) · −→w 3

= −(−→v 3 + −→v 4) · −→w 3 = −−→v 3 · −→w 3 − −→v 4 · −→w 3 = −−→v 3 · −→w 3

= −−→v 3 · −→w 3 − −→v 3 · −→w 4 = −−→v 3 · (−→w 3 + −→w 4)

= −→v 3 · (−→w 1 + −→w 2) = −→v 3 · −→w 1 + −→v 3 · −→w 2.
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The lemma is proved.

Remark. A. Dang gave an alternative solution by observing that triangles AHC and
QHP are orthological, and then using the property of orthological triangles proved by
us in the introduction.

(Indian Team Selection Test for the International Mathematical Olympiad, 2005,
proposed by R. Gelca)

586. Let −→
a ,

−→
b ,

−→
c ,

−→
d , and −→

p denote vectors from a common origin to the vertices
A,B,C,D of the tetrahedron, and to the point P of concurrency of the four lines. Then
the vector equation for the altitude from A is given by

−→
r a = −→

a + λ[(−→b + −→
c + −→

d )/3 − −→
p ].

The position vector of the point corresponding to λ = 3 is −→
a + −→

b + −→
c + −→

d − 3−→
p ,

which is the same for all four vertices of the tetrahedron. This shows that the altitudes
are concurrent.

For the converse, if the four altitudes are concurrent at a pointH with position vector−→
h , then the line through the centroid of the face BCD and perpendicular to that face is

described by

−→
r ′
a = [(−→b + −→

c + −→
d )/3] + λ′(−→a − −→

h ).

This time the common point of the four lines will correspond, of course, to λ′ = 1
3 , and

the problem is solved.
(proposed by M. Klamkin for Mathematics Magazine)

587. The double of the area of triangle ONQ is equal to

‖−−→ON × −−→
OQ‖ =

∥∥∥∥(1

3
−→
OA+ 2

3
−→
OB

)
×
(

2

3
−−→
OD + 1

3
−→
OC

)∥∥∥∥ .
Since

−→
OA is parallel to

−→
OC and

−→
OB is parallel to

−−→
OD, this is further equal to∥∥∥∥2

9
(
−→
OA× −−→

OD + −→
OB × −→

OC)

∥∥∥∥ .
A similar computation shows that this is equal to |−−→OM × −→

OP |, which is twice the area
of triangle OMP . Hence the conclusion.

588. The area of triangle AMN is equal to

1

2
‖−−→AM × −→

AN‖ = 1

8
‖(−→AB + −→

AD)× (
−→
AE × −→

AC)‖ = 1

8
‖(−→AB × −→

AC − −→
AE × −→

AD)‖.
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Since
−→
AB×−→

AC and
−→
AE×−→

AD are perpendicular to the plane of the triangle and oriented
the same way, this is equal to one-fourth of the area of the quadrilateral BCDE. Done.

589. We work in affine coordinates with the diagonals of the quadrilateral as axes. The
vertices are A(a, 0), B(0, b), C(c, 0), D(0, d). The midpoints of the sides are M(a2 ,

b
2 ),

N(c2
b
2 ), P(

c
2 ,

d
2 ), and Q(a2 ,

d
2 ). The segments MP and NQ have the same midpoint,

namely, the centroid ( a+c4 ,
b+d

4 ) of the quadrilateral. Hence MNPQ is a parallelogram.

590. Choose a coordinate system that places M at the origin and let the coordinates
of A,B,C, respectively, be (xA, yA), (xB, yB), (xC, yC). Then the coordinates of the
centroids of MAB, MAC, and MBC are, respectively,

GA =
(
xA + xB

3
,
yB + yB

3

)
,

GB =
(
xA + xC

3
,
yA + yC

3

)
,

GC =
(
xB + xC

3
,
yB + yC

3

)
.

The coordinates of GA,GB,GC are obtained by subtracting the coordinates of A,B,
and C from (xA + xB + xC, yA + yB + yC), then dividing by 3. Hence the triangle
GAGBGC is obtained by taking the reflection of triangle ABC with respect to the point
(xA + xB + xC, yA + yB + yC), then contracting with ratio 1

3 with respect to the origin
M . Consequently, the two triangles are similar.

591. Denote by δ(P,MN) the distance from P to the line MN . The problem asks for
the locus of points P for which the inequalities

δ(P,AB) < δ(P,BC)+ δ(P,CA),

δ(P, BC) < δ(P,CA)+ δ(P,AB),

δ(P,CA) < δ(P,AB)+ δ(P, BC)

are simultaneously satisfied.
Let us analyze the first inequality, written as f (P ) = δ(P, BC) + δ(P,CA) −

δ(P,AB) > 0. As a function of the coordinates (x, y) of P , the distance from P to a line
is of the formmx+ny+p. Combining three such functions, we see that f (P ) = f (x, y)

is of the same form, f (x, y) = αx + βy + γ . To solve the inequality f (x, y) > 0 it
suffices to find the line f (x, y) = 0 and determine on which side of the line the function
is positive. The line intersects the side BC where δ(P,CA) = δ(P,AB), hence at the
point E where the angle bisector from A intersects this side. It intersects side CA at the
point F where the bisector from B intersects the side. Also, f (x, y) > 0 on side AB,
hence on the same side of the line EF as the segment AB.
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Arguing similarly for the other two inequalities, we deduce that the locus is the interior
of the triangle formed by the points where the angle bisectors meet the opposite sides.

592. Consider an affine system of coordinates such that none of the segments determined
by the n points is parallel to the x-axis. If the coordinates of the midpoints are (xi, yi),
i = 1, 2, . . . , m, then xi 	= xj for i 	= j . Thus we have reduced the problem to the one-
dimensional situation. So let A1, A2, . . . , An lie on a line in this order. The midpoints of
A1A2, A1A3, . . . , A1An are all distinct and different from the (also distinct) midpoints
of A2An, A3An, . . . , An−1An. Hence there are at least (n − 1) + (n − 2) = 2n − 3
midpoints. This bound can be achieved for A1, A2, . . . , An the points 1, 2, . . . , n on the
real axis.

(Kőzépiskolai Matematikai Lapok (Mathematics Magazine for High Schools, Bu-
dapest), proposed by M. Salát)

593. We consider a Cartesian system of coordinates with BC and AD as the x- and y-
axes, respectively (the origin is at D). Let A(0, a), B(b, 0), C(c, 0), M(0,m). Because
the triangle is acute, a, c > 0 and b < 0. Also, m > 0. The equation of BM is
mx + by = bm, and the equation of AC is ax + cy = ac. Their intersection is

E

(
bc(a −m)

ab − cm
,
am(b − c)

ab − cm

)
.

Note that the denominator is strictly negative, hence nonzero. The point E therefore
exists.

The slope of the line DE is the ratio of the coordinates of E, namely,

am(b − c)

bc(a −m)
.

Interchanging b and c, we find that the slope of DF is

am(c − b)

bc(a −m)
,

which is the negative of the slope of DE. It follows that the lines DE and DF are
symmetric with respect to the y-axis, i.e., the angles ∠ADE and ∠ADF are equal.

(18th W.L. Putnam Mathematical Competition, 1958)

594. We refer everything to Figure 74. LetA(c, 0), c being the parameter that determines
the variable line. Because B has the coordinates ( a2 ,

b
2 ), the line AB is given by the

equation

y = b

a − 2c
x + bc

2c − a
.
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A

M

B

O

C
x

y P

Figure 74

Hence C has coordinates (0, bc
2c−a ).

The slope of the line CM is b
a
, so the equation of this line is

y = b

a
x + bc

2c − a
.

Intersecting it with AP , whose equation is

y = b

a − c
x + bc

c − a
,

we obtainM of coordinates ( ac
2c−a ,

2bc
2c−a ). This point lies on the line y = 2b

a
x, so this line

might be the locus.
One should note, however, that A = O yields an ambiguous construction, so the

origin should be removed from the locus. On the other hand, any (x, y) on this line
yields a point c, namely, c = ax

2x−a , except for x = a
2 . Hence the locus consists of the

line of slope 2b
a

through the origin with two points removed.
(A. Myller, Geometrie Analitică (Analytical Geometry), 3rd ed., Editura Didactică şi

Pedagogică, Bucharest, 1972)

595. First, assume that ABCD is a rectangle (see Figure 75). Let H be the intersection
point of FG and BD. In the right triangles ABC and FBG, the segments BE and BH
are altitudes. Then ∠ABE = ∠ACB and ∠BGF = ∠HBC. Since ∠HBC = ∠ACB,
it follows that ∠GBE = ∠BGF and BE = GE. This implies that in the right triangle
BGF , GE = EF .

For the converse, we employ coordinates. We reformulate the problem as follows:

Given a triangle ABC with AB 	= BC, let BE be the altitude from B and O the
midpoint of side AC. The perpendicular from E to BO intersects AB at G and BC at
F . Show that if the segments GE and EF are equal, then the angle ∠B is right.
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A B

CD

H

G

E

F

Figure 75

Let E be the origin of the rectangular system of coordinates, with line EB as the
y-axis. Let also A(−a, 0), B(0, b), C(c, 0), where a, b, c > 0. We have to prove that
b2 = ac.

By standard computations, we obtain the following equations and coordinates:

line GF : y = c − a

2b
x;

line BC : x

c
+ y

b
= 1;

point F : xF = 2b2c

2b2 + c2 − ac
, yF = cb(c − a)

2b2 + c2 − ac
;

line AB : −x
a

+ y

b
= 1;

point G : xG = 2ab2

−2b2 + ac − a2
, yG = ab(c − a)

−2b2 + ac − a2
.

The condition EG = EF is equivalent to xF = −xG, that is,

2b2c

2b2 + c2 − ac
= 2ab2

2b2 − ac + a2
.

This easily gives b2 = ac or a = c, and since the latter is ruled out by hypothesis, this
completes the solution.

(Romanian Mathematics Competition, 2004, proposed by M. Becheanu)

596. The inequality from the statement can be rewritten as

−
√

2 − 1

2
≤
√

1 − x2 − (px + q) ≤
√

2 − 1

2
,

or √
1 − x2 −

√
2 − 1

2
≤ px + q ≤

√
1 − x2 +

√
2 − 1

2
.
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Let us rephrase this in geometric terms. We are required to include a segment y = px+q,
0 ≤ x ≤ 1, between two circular arcs.

The arcs are parts of two circles of radius 1 and of centers O1(0,
√

2−1
2 ) and

O2(0,−
√

2−1
2 ). By examining Figure 76 we will conclude that there is just one such

segment. On the first circle, consider the points A(1,
√

2−1
2 ) and B(0,

√
2+1
2 ). The dis-

tance fromB toO2 is
√

2, which is equal to the length of the segmentAB. In the isosceles
triangle BO2A, the altitudes fromO2 and Amust be equal. The altitude from A is equal
to the distance from A to the y-axis, hence is 1. Thus the distance from O2 to AB is 1
as well. This shows that the segment AB is tangent to the circle centered at O2. This
segment lies between the two arcs, and above the entire interval [0, 1]. Being inscribed
in one arc and tangent to the other, it is the only segment with this property.

This answers the problem, by showing that the only possibility is p = −1, q =
√

2+1
2 .

M

A

B

O 2

O 1

Figure 76

(Romanian Team Selection Test for the International Mathematical Olympiad, 1983)

597. The fact that the points (xi, 1
xi
) lie on a circle means that there exist numbers A, B,

and C such that

x2
i + 1

x2
i

+ 2xiA+ 2
1

xi
B + C = 0, for i = 1, 2, 3, 4.

View this as a system in the unknowns 2A, 2B,C. The system admits a solution only if
the determinant of the extended matrix is zero. This determinant is equal to∣∣∣∣∣∣∣∣∣∣

x2
1 + 1

x2
1
x1

1
x1

1

x2
2 + 1

x2
1
x2

1
x2

1

x2
3 + 1

x2
3
x3

1
x3

1

x2
4 + 1

x2
4
x4

1
x4

1

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣
x2

1 x1
1
x1

1
x2

2 x2
1
x2

1
x2

3 x3
1
x3

1
x2

4 x4
1
x4

1

∣∣∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣∣∣∣

1
x2

1
x1

1
x1

1
1
x2

2
x2

1
x2

1
1
x2

3
x3

1
x3

1
1
x2

4
x4

1
x4

1

∣∣∣∣∣∣∣∣∣∣
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=
(

− 1

x1x2x3x4
+ 1

x2
1x

2
2x

2
3x

2
4

) ∣∣∣∣∣∣∣∣
x3

1 x
2
1 x1 1

x3
2 x

2
2 x2 1

x3
3 x

2
3 x3 1

x3
4 x

2
4 x4 1

∣∣∣∣∣∣∣∣ .
One of the factors is a determinant of Vandermonde type, hence it cannot be 0. Thus the
other factor is equal to 0. From this we infer that x1x2x3x4 = 1, which is what had to be
proved.

(A. Myller, Geometrie Analitică (Analytical Geometry), 3rd ed., Editura Didactică şi
Pedagogică, Bucharest, 1972)

598. Consider complex coordinates with the origin O at the center of the circle. The
coordinates of the vertices, which we denote correspondingly by α, β, γ, δ, η, φ, have
absolute value |r|. Moreover, because the chords AB, CD, and EF are equal to the
radius, ∠AOB = ∠COD = ∠EOF = π

3 . It follows that β = αeiπ/3, δ = γ eiπ/3, and
φ = ηeiπ/3. The midpoints P ,Q, R of BC,DE, FA, respectively, have the coordinates

p = 1

2
(αeiπ/3 + γ ), q = 1

2
(γ eiπ/3 + η), r = 1

2
(ηeiπ/3 + α).

We compute

r − q

p − q
= αeiπ/3 + γ (1 − eiπ/3)− η

α − γ eiπ/3 + η(eiπ/3 − 1)

= αeiπ/e − γ e2iπ/3 + ηe3iπ/3

α − γ eiπ/3 + e2iπ/3η
= eiπ/3.

It follows that RQ is obtained by rotating PQ around Q by 60◦. Hence the triangle
PQR is equilateral, as desired.

(28th W.L. Putnam Mathematical Competition, 1967)

599. We work in complex coordinates such that the circumcenter is at the origin. Let
the vertices be a, b, c on the unit circle. Since the complex coordinate of the centroid is
a+b+c

3 , we have to show that the complex coordinate of the orthocenter is a + b+ c. By
symmetry, it suffices to check that the line passing through a and a+b+c is perpendicular
to the line passing through b and c. This is equivalent to the fact that the argument of
b−c
b+c is ±π

2 . This is true because the vector b+ c is constructed as one of the diagonals of
the rhombus determined by the vectors (of the same length) b and c, while b − c is the
other diagonal of the rhombus. And the diagonals of a rhombus are perpendicular. This
completes the solution.

(L. Euler)

600. With the convention that the lowercase letter denotes the complex coordinate of the
point denoted by the same letter in uppercase, we translate the geometric conditions from
the statement into the algebraic equations



Geometry and Trigonometry 617

m− a

b − a
= n− c

b − c
= p − c

d − c
= q − a

d − a
= ε,

where ε = cos π3 + i sin π
3 . Therefore,

m = a + (b − a)ε, n = c + (b − c)ε,

p = c + (d − c)ε, q = a + (d − a)ε.

It is now easy to see that 1
2(m + p) = 1

2(n + q), meaning that MP and NQ have the
same midpoint. So either the four points are collinear, or they form a parallelogram.

(short list of the 23rd International Mathematical Olympiad, 1982)

601. We refer everything to Figure 77. The triangle BAQ is obtained by rotating the
triangle PAC around A by the angle α. Hence the angle between the lines PC and BQ

is equal to α. It follows that in the circumcircle of BRC, the measure of the arc
�

BRC is
equal to 2α, and this is also the measure of ∠BOC. We deduce that O is obtained from
B through the counterclockwise rotation about C by the complement of α followed by
contraction by a factor of 2 sin α.

A

P

O

B

R

C

Q

Figure 77

Now we introduce complex coordinates with the origin at A, with the coordinates
of B and C being b and c. Set ω = eiα, so that the counterclockwise rotation by α
is multiplication by ω, and hence rotation by the complement of α is multiplication by
i/ω = iω̄. Then the coordinate z of O satisfies

z− c

b − c
= 1

2 sin α
· i
ω
,

from which we compute

z = b − c

2 sin α
· i
ω

+ c = b − c

−i(ω − ω̄)
· i
ω

+ c = b − c

1 − ω2
.
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On the other hand, P is obtained by rotating B around A by −α, so its coordinate is
p = bω̄. Similarly, the coordinate of Q is q = cω. It is now straightforward to
check that

q − p

z− 0
= ω − 1

ω
,

a purely imaginary number. Hence the lines PQ and AO form a 90◦ angle, which is the
desired result.

(USA Team Selection Test for the International Mathematical Olympiad, 2006, solu-
tion by T. Leung)

602. In the language of complex numbers we are required to find the maximum of∏n
k=1 |z− εk| as z ranges over the unit disk, where ε = cos 2π

n
+ i sin 2π

n
. We have

n∏
k=1

|z− εk| =
∣∣∣∣∣
n∏
k=1

(z− εk)

∣∣∣∣∣ = |zn − 1| ≤ |zn| + 1 = 2.

The maximum is 2, attained when z is an nth root of −1.
(Romanian Mathematics Competition “Grigore Moisil,’’ 1992, proposed by D. An-

drica)

603. First solution: In a system of complex coordinates, place each vertex Ak, k =
0, 1, . . . , n− 1, at εk, where ε = e2iπ/n. Then

A0A1 · A0A2 · · ·A0An−1 = |(1 − ε)(1 − ε2) · · · (1 − εn−1)|.
Observe that, in general,

(z− ε)(z− ε2) · · · (z− εn−1) = 1

z− 1
(z− 1)(z− ε) · · · (z− εn−1)

= 1

z− 1
(zn − 1) = zn−1 + zn−2 + · · · + 1.

By continuity, this equality also holds for z = 1. Hence

A0A1 · A0A2 · · ·A0An−1 = 1n−1 + 1n−2 + · · · + 1 = n,

and the identity is proved.

Second solution: Choose a pointP on the ray |OA0, whereO is center of the circumcircle
of the polygon, such that A0 is between O and P . If OP = x, then the last problem in
the introduction showed that PA0 · PA1 · · ·PAn−1 = xn − 1. Hence

A0A1 · A0A2 · · ·A0An−1 = lim
x→1

xn − 1

x − 1
= n.
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Remark. Let us show how this geometric identity can be used to derive a trigono-
metric identity. For n = 2m + 1, m an integer, A0A1 · A0A2 · · ·A0Am = A0A2m ·
A0A2m−1 · · ·A0Am+1; henceA0A1 ·A0A2 · · ·A0Am = √

2m+ 1. On the other hand, for
i = 1, 2, . . . , m, in triangle A0OAi , AAi = 2 sin 2π

2m+1 . We conclude that

sin
2π

2m+ 1
sin

4π

2m+ 1
· · · sin

2mπ

2m+ 1
= 1

2m
√

2m+ 1.

(J. Dürschák, Matemaikai Versenytételek, Harmadik kiadás Tankönyviadó, Budapest,
1965)

604. First solution: We assume that the radius of the circle is equal to 1. Set the origin
at B with BA the positive x-semiaxis and t the y-axis (see Figure 78). If ∠BOM = θ ,
then BP = PM = tan θ

2 . In triangle PQM , PQ = tan θ
2/ sin θ . So the coordinates of

Q are ⎛⎜⎝ tan
θ

2
sin θ

, tan
θ

2

⎞⎟⎠ =
(

1

1 + cos θ
,

sin θ

1 + cos θ

)
.

The x and y coordinates are related as follows:(
sin θ

1 + cos θ

)2

= 1 − cos2 θ

(1 + cos θ)2
= 1 − cos θ

1 + cos θ
= 2

1

1 + cos θ
− 1.

Hence the locus of Q is the parabola y2 = 2x − 1.

O

M

P

BA

Q

Figure 78

Second solution: With ∠BOM = θ we have ∠POM = ∠POB = θ
2 . Since PQ is

parallel to OB, it follows that ∠OPQ = θ
2 . So the triangle OPQ is isosceles, and
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therefore QP = OQ. We conclude that Q lies on the parabola of focus O and directrix
t . A continuity argument shows that the locus is the entire parabola.

(A. Myller, Geometrie Analitică (Analytical Geometry), 3rd ed., Editura Didactică
şi Pedagogică, Bucharest, 1972, solutions found by the students from the Mathematical
Olympiad Summer Program, 2004)

605. We will use the equation of the tangent with prescribed slope. Write the parabola in
standard form

y2 = 4px.

The tangent of slope m to this parabola is given by

y = mx + p

m
.

If A(p + a, 0) and B(p − a, 0) are the two fixed points, (p, 0) being the focus, then the
distances to the tangent are ∣∣∣∣m(p ± a)+ p

m√
1 +m2

∣∣∣∣ .
The difference of their squares is(

m2(p + a)2 + 2p(p + a)+ p2

m2

)
−
(
m2(p − a)2 + 2p(p − a)+ p2

m2

)
1 +m2

.

An easy computation shows that this is equal to 4pa, which does not depend on m,
meaning that it does not depend on the tangent.

(A. Myller, Geometrie Analitică (Analytical Geometry), 3rd ed., Editura Didactică şi
Pedagogică, Bucharest, 1972)

606. The statement of the problem is invariant under affine transformations, so we can
assume the hyperbola to have the equation xy = 1, such that the asymptotes are the
coordinate axes. If P(x1, y1) and Q(x2, y2) are two of the vertices, then the other two
vertices of the parallelogram are (x1, y2) and (x2, y1). The line they determine has the
equation

y − y1 = y2 − y1

x1 − x2
(x − x2).

Substituting the coordinates of the origin in this equation yields −y1 = y2−y1
x1−x2

(−x2), or
x1y1 − x2y1 = x2y2 − x2y1. This clearly holds, since x1y1 = x2y2 = 1, and the property
is proved.

(A. Myller, Geometrie Analitică (Analytical Geometry), 3rd ed., Editura Didactică şi
Pedagogică, Bucharest, 1972)
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607. Since the property we are trying to prove is invariant under affine changes of coor-
dinates, we can assume that the equation of the hyperbola is

xy = 1.

The asymptotes are the coordinate axes. In the two-intercept form, the equation of the
line is

x

a
+ y

b
= 1.

Then the coordinates of A and B are, respectively, (a, 0) and (0, b). To find the coor-
dinates of P and Q, substitute y = 1

x
in the equation of the line. This gives rise to the

quadratic equation

x2 − ax + a

b
= 0.

The roots x1 and x2 of this equation satisfy x1 + x2 = a. Similarly, substituting x = 1
y

in
the same equation yields

y2 − by + b

a
= 0,

and the two roots y1 and y2 satisfy y1 + y2 = b. The coordinates of P and Q are,
respectively, (x1, y1) and (x2, y2). We have

AP 2 = (x1 − a)2 + y2
1 = (a − x2 − a)2 + (b − y2)

2 = x2
2 + (b − y2)

2 = BQ2.

The property is proved.
(L.C. Larson, Problem Solving through Problems, Springer-Verlag, 1983)

608. The condition that a line through (x0, y0) be tangent to the parabola is that the system

y2 = 4px,

y − y0 = m(x − x0)

have a unique solution. This means that the discriminant of the quadratic equation in x
obtained by eliminating y, (mx−mx0 +y0)

2 −4px = 0, is equal to zero. This translates
into the condition

m2x0 −my0 + p = 0.

The slopes m of the two tangents are therefore the solutions to this quadratic equation.
They satisfy
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m1 +m2 = y0

x0
,

m1m2 = p

x0
.

We also know that the angle between the tangents is φ. We distinguish two situations.
First, if φ = 90◦, then m1m2 = −1. This implies p

x0
= −1, so the locus is the line

x = −p, which is the directrix of the parabola.
If φ 	= 90◦, then

tan φ = m1 −m2

1 +m1m2
= m1 −m2

1 + p

x0

.

We thus have

m1 +m2 = y0

x0
,

m1 −m2 = tan φ + p

x0
tan φ.

We can compute m1m2 by squaring the equations and then subtracting them, and we
obtain

m1m2 = y2
0

4x2
0

−
(

1 + p

x0

)2

tan2 φ.

This must equal p

x0
. We obtain the equation of the locus to be

−y2 + (x + p)2 tan2 φ + 4px = 0,

which is a hyperbola. One branch of the hyperbola contains the points from which the
parabola is seen under the angle φ, and one branch contains the points from which the
parabola is seen under an angle equal to the suplement of φ.

(A. Myller, Geometrie Analitică (Analytical Geometry), 3rd ed., Editura Didactică şi
Pedagogică, Bucharest, 1972)

609. Choose a Cartesian system of coordinates such that the equation of the parabola is
y2 = 4px. The coordinates of the three points are Ti(4pα2

i , 4pαi), for appropriately
chosen αi , i = 1, 2, 3. Recall that the equation of the tangent to the parabola at a point
(x0, y0) is yy0 = 2p(x + x0). In our situation the three tangents are given by

2αiy = x + 4pα2
i , i = 1, 2, 3.

If Pij is the intersection of ti and tj , then its coordinates are (4pαiαj , 2p(αi + αj )). The
area of triangle T1T2T3 is given by a Vandermonde determinant:
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±1

2

∣∣∣∣∣∣
4pα2

1 4pα1 1
4pα2

2 4pα2 1
4pα2

3 4pα3 1

∣∣∣∣∣∣ = ±8p2

∣∣∣∣∣∣
α2

1 α1 1
α2

2 α2 1
α2

3 α3 1

∣∣∣∣∣∣ = 8p2|(α1 − α2)(α1 − α3)(α2 − α3)|.

The area of the triangle P12P23P31 is given by

± 1

2

∣∣∣∣∣∣
4pα1α2 2p(α1 + α2) 1
4pα2α3 2p(α2 + α3) 1
4pα3α1 2p(α3 + α1) 1

∣∣∣∣∣∣
= ±4p2

∣∣∣∣∣∣
α1α2 (α1 + α2) 1
α2α3 (α2 + α3) 1
α3α1 (α3 + α1) 1

∣∣∣∣∣∣ = ±4p2

∣∣∣∣∣∣
(α1 − α3)α2 (α1 − α3) 0
(α2 − α1)α3 (α2 − α1) 0

α3α1 (α3 + α1) 1

∣∣∣∣∣∣
= 4p2|(α1 − α3)(α1 − α2)(α2 − α3)|.

We conclude that the ratio of the two areas is 2, regardless of the location of the three
points or the shape of the parabola.

(Gh. Călugăriţa, V. Mangu, Probleme de Matematică pentru Treapta I şi a II-a de
Liceu (Mathematics Problems for High School), Editura Albatros, Bucharest, 1977)

610. Choose a Cartesian system of coordinates such that the focus is F(p, 0) and the
directrix is x = −p, in which case the equation of the parabola is y2 = 4px. Let the
three points be A( a

2

4p , a), B(
b2

4p , b), C(
c2

4p , c).
(a) The tangents NP , PM , and MN to the parabola are given, respectively, by

ay = 2px + a2

2
, by = 2px + b2

2
, cy = 2px + c2

2
,

from which we deduce the coordinates of the vertices

M

(
bc

4p
,
b + c

2

)
, N

(
ca

4p
,
c + a

2

)
, P

(
ab

4p
,
a + b

2

)
.

The intersection of the line AC of equation 4px − (c + a)y + ca = 0 with the parallel
to the symmetry axis through B, which has equation y = b, is L(ab+bc−ca4p , b). It is
straightforward to verify that the segments MP and LN have the same midpoint, the
point with coordinates ( b(c+a)8p , a+2b+c

4 ). Consequently, LMNP is a parallelogram.

(b) Writing that the equation of the circle x2 +y2 +2αx+2βy+γ = 0 is satisfied by
the points M,N,P helps us determine the parameters α, β, γ . We obtain the equation
of the circumcircle of MNP ,

x2 + y2 − ab + bc + ca + 4p2

4p
x + abc − 4p2(a + b + c)

8p2
y + ab + bc + ca

4
= 0.

This equation is satisfied by (p, 0), showing that the focus F is on the circle.
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(c) Substituting the coordinates of L in the equation of the circle yields

(ac + 4p2)(a − b)(c − b) = 0.

Since a 	= b 	= c, we must have ac = −4p2. Thus the x-coordinate ofN is −p, showing
that this point is on the directrix.

(d) The condition for F to be on AC is 4p2 + ac = 0, in which case N is on the
directrix. The slope of BF is m = 4pb

b2−4p2 . The orthogonality condition is

4pb

b2 − 4p2
· 4p

c + a
= −1,

which is equivalent to

(b2 − 4p2)(c + a)+ 16p2b = 0.

The locus is obtained by eliminating a, b, c from the equations

4px − (c + a)y + ca = 0,

y = b,

4p2 + ac = 0,

(b2 − 4p2)(c + a)+ 16p2b = 0.

The answer is the cubic curve

(y2 − 4p2)x + 3py2 + 4p3 = 0.

(The Mathematics Gazette Competition, Bucharest, 1938)

611. An equilateral triangle can be inscribed in any closed, non-self-intersecting curve,
therefore also in an ellipse. The argument runs as follows. Choose a point A on the
ellipse. Rotate the ellipse aroundA by 60◦. The image of the ellipse through the rotation
intersects the original ellipse once in A, so it should intersect it at least one more time.
Let B an be intersection point different from A. Note that B is on both ellipses, and its
preimage C through rotation is on the original ellipse. The triangle ABC is equilateral.

A square can also be inscribed in the ellipse. It suffices to vary an inscribed rectangle
with sides parallel to the axes of the ellipse and use the intermediate value property.

Let us show that these are the only possibilities. Up to a translation, a rotation, and
a dilation, the equation of the ellipse has the form

x2 + ay2 = b, with a, b > 0, a 	= 1.

Assume that a regular n-gon, n ≥ 5, can be inscribed in the ellipse. Its vertices (xi, yi)
satisfy the equation of the circumcircle:
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x2 + y2 + cx + dy + e = 0, i = 1, 2, . . . , n.

Writing the fact that the vertices also satisfy the equation of the ellipse and subtracting,
we obtain (1 − a)y2

i + cxi + dyi + (e + b) = 0. Hence

y2
i = − c

1 − a
xi − d

1 − a
yi − e + b

1 − a
.

The number c cannot be 0, for otherwise the quadratic equation would have two solutions
yi and each of these would yield two solutions xi , so the polygon would have four or fewer
sides, a contradiction. This means that the regular polygon is inscribed in a parabola.
Change the coordinates so that the parabola has the standard equation y2 = 4px. Let
the new coordinates of the vertices be (ξi, ηi) and the new equation of the circumcircle
be x2 + y2 + c′x + d ′y + e′ = 0. That the vertices belong to both the parabola and the
circle translates to

η2
i = 4pξi and ξ 2

i + η2
i + c′ξ + d ′η + e′ = 0, for i = 1, 2, . . . , n.

So the ηi’s satisfy the fourth-degree equation

1

16p2
η4
i + η2

i + c′

4p
η2
i + d ′ηi + e′ = 0.

This equation has at most four solutions, and each solution yields a unique xi . So the
regular polygon can have at most four vertices, a contradiction. We conclude that no
regular polygon with five or more vertices can be inscribed in an ellipse that is not also
a circle.

612. Set FBk = tk, k = 1, 2, . . . , n. Also, let α be the angle made by the half-line |FB1

with the x-axis and αk = α + 2(k−1)π
n

, k = 2, . . . , n. The coordinates of the focus F are
(
p

2 , 0).
In general, the coordinates of the points on a ray that originates in F and makes an

angle β with the x axis are (p2 + t cosβ, t sin β), t > 0 (just draw a ray from the origin
of the coordinate system that makes an angle β with the x-axis; then translate it to F ). It
follows that the coordinates of Bk are (p2 + tk cosαk, tk sin αk), k = 1, 2, . . . , n.

The condition that Bk belongs to the parabola is written as t2k sin2 αk = p2 +
2ptk cosαk. The positive root of this equation is tk = p/(1 − cosαk). We are sup-
posed to prove that t1 + t2 + · · · + tk > np, which translates to

1

1 − cosα1
+ 1

1 − cosα2
+ · · · + 1

1 − cosαn
> n.

To prove this inequality, note that

(1 − cosα1)+ (1 − cosα2)+ · · · + (1 − cosαn)
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= n−
n∑
k=1

cos

(
α + 2(k − 1)π

n

)

= n− cosα
n∑
k=1

cos

(
2(k − 1)π

n

)
+ sin α

n∑
k=1

sin

(
2(k − 1)π

n

)
= n.

By the Cauchy–Schwarz inequality,(
1

1 − cosα1
+ 1

1 − cosα2
+ · · · + 1

1 − cosαn

)
≥ n2

(1 − cosα1)+ (1 − cosα2)+ · · · + (1 − cosαn)
= n2

n
= n.

The equality case would imply that all αk’s are equal, which is impossible. Hence the
inequality is strict, as desired.

(Romanian Mathematical Olympiad, 2004, proposed by C. Popescu)

613. We solve part (e). Choose a coordinate system such that B = (−1, 0), C = (1, 0),
S = (0,

√
3), S ′ = (0,−√

3). Assume that the ellipse has vertices (0,±k) with k >
√

3,
so its equation is

x2

k2 − 3
+ y2

k2
= 1.

If we set r = √
k2 − 3, then the ellipse is parametrized by A = (r cos θ, k sin θ). Parts

(a) through (d) are covered by the degenerate situation k = √
3, when the ellipse becomes

the line segment SS ′.
Let A = (r cos θ, k sin θ) with θ not a multiple of π . Consider the points D, E, F ,

respectively, on BC, AC, AB, given by

D = ((r + k) cos θ, 0),

E =
(
(2k2 + rk − 3) cos θ + k − r

r + 2k + 3 cos θ
,
k(2r + k) sin θ

r + 2k + 3 cos θ

)
,

F =
(
(2k2 + rk − 3) cos θ − k + r

r + 2k − 3 cos θ
,
k(2r + k) sin θ

r + 2k − 3 cos θ

)
.

The denominators are never zero since r ≥ 0 and k ≥ √
3. The lines AD, BE, and CF

intersect at the point

P =
(
r + 2k

3
cos θ,

2r + k

3
sin θ

)
,

as one can verify, using r2 = k2 − 3, that
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P = k + 2r

3k
A+ 2k − 2r

3k
D

= k − r − 3 cos θ

3k
B + 2k + r + 3 cos θ

3k
E

= k − r + 3 cos θ

3k
C + 2k + r − 3 cos θ

3k
F.

An algebraic computation shows that AD = BE = CF = k, so P is an equicevian
point, and AP

PD
= (2k−2r)

(k+2r) is independent of A.
To find the other equicevian point note that if we replace k by −k and θ by −θ , then

A remains the same. In this new parametrization, we have the points

D′ = ((r − k) cos θ, 0),

E′ =
(
(2k2 − rk − 3) cos θ − k − r

r − 2k + 3 cos θ
,
k(2r − k) sin θ

r − 2k + 3 cos θ

)
,

F ′ =
(
(2k2 − rk − 3) cos θ + k + r

r − 2k − 3 cos θ
,
k(2r − k) sin θ

r − 2k − 3 cos θ

)
,

P ′ =
(
r − 2k

3
cos θ,

k − 2r

3
sin θ

)
.

Of course, P ′ is again an equicevian point, and AP ′
P ′D′ = (2k+2r)

(k−2r) , which is also independent
of A. When r 	= 0, the points P and P ′ are distinct, since sin θ 	= 0. When r = 0, the
two points P and P ′ coincide when A = S, a case ruled out by the hypothesis. As θ
varies, P and P ′ trace an ellipse. Moreover, since(

r ± 2k

3

)2

−
(
k ± 2r

3

)2

= 1,

this ellipse has foci at B and C.
(American Mathematical Monthly, proposed by C.R. Pranesachar)

614. The interesting case occurs of course when b and c are not both equal to zero. Set
d = √

b2 + c2 and define the angle α by the conditions cosα = b√
b2+c2

and sin α =
c√
b2+c2

. The integral takes the form

∫
dx

a + d cos(x − α)
,

which, with the substitution u = x − α, becomes the simpler∫
du

a + d cos u
.



628 Geometry and Trigonometry

The substitution t = tan u
2 changes this into

2

a + d

∫
dt

1 + a−d
a+d t

2
.

If a = d the answer to the problem is 1
a

tan x−α
2 + C. If a−d

a+d > 0, the answer is

2√
a2 − d2

arctan

(√
a − d

a + d
tan

x − α

2
+ C

)
,

while if a−d
a+d < 0, the answer is

1√
d2 − a2

ln

∣∣∣∣∣∣
1 +

√
d−a
d+a tan x−α

2

1 −
√
d−a
d+a tan x−α

2

∣∣∣∣∣∣+ C.

615. The first equation is linear, so it is natural to just solve for one of the variables, say
u, and substitute in the second equation. We obtain

2xy = z(x + y − z),

or

z2 − xz− yz+ 2xy = 0.

This is a homogeneous equation. Instead of looking for its integer solutions, we can
divide through by one of the variables, and then search for the rational solutions of the
newly obtained equation. In fancy language, we switch from a projective curve to an
affine curve. Dividing by y2 gives(

z

y

)2

−
(
z

y

)(
x

y

)
−
(
z

y

)
+ 2

(
x

y

)
= 0.

The new equation is

Z2 − ZX − Z + 2X = 0,

which defines a hyperbola in the XZ-plane. Let us translate the original problem into
a problem about this hyperbola. The conditions x ≥ y and m ≤ x

y
become X ≥ 1 and

X ≥ m. We are asked to find the largest m such that any point (X,Z) with rational
coordinates lying on the hyperbola and in the half-plane X ≥ 1 has X ≥ m.

There is a standard way to see that the points of rational coordinates are dense in
the hyperbola, which comes from the fact that the hyperbola is rational. Substituting
Z = tX, we obtain
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X(t2X − tX − t + 2) = 0.

The root X = 0 corresponds to the origin. The other root X = t−2
t2−t gives the desired

parametrization of the hyperbola by rational functions ( t−2
t2−t ,

t2−2t
t2−t ), t real. So the problem

has little to do with number theory, and we only need to find the leftmost point on the
hyperbola that lies in the half-plane X ≥ 1. Write the equation of the hyperbola as(

Z − X

2

)2

−
(
X

2
− 2

)2

= 6.

The center is at (4, 2), and the asymptotes areZ = 2 andZ = X−2. Let us first minimize
X for the points on the hyperbola and in the half-plane X ≥ 4. We thus minimize the
function f (X,Z) = X on the curve g(X,Z) = Z2 −ZX−Z+ 2X = 0. The Lagrange
multipliers method gives

1 = λ(−Z + 2),

0 = λ(2Z −X − 1).

From the second equation we obtain Z = X+1
2 . Substitute in g(X,Z) = 0 to obtain

X = 3 ± 2
√

2. The further constraint X ≥ 1 shows that X = 3 + 2
√

2 gives the
minimum. The same argument shows that the other branch of the hyperbola lies in the
half-plane X < 1, and so the answer to the problem is m = 3 + 2

√
2.

(short list of the 42nd International Mathematical Olympiad, 2001)

616. We convert to Cartesian coordinates, obtaining the equation of the cardioid√
x2 + y2 = 1 + x√

x2 + y2
,

or

x2 + y2 =
√
x2 + y2 + x.

By implicit differentiation, we obtain

2x + 2y
dy

dx
= (x2 + y2)−1/2

(
x + y

dy

dx

)
+ 1,

which yields

dy

dx
= −2x + x(x2 + y2)−1/2 + 1

2y − y(x2 + y2)−1/2
.

The points where the tangent is vertical are among those where the denominator cancels.
Solving 2y − y(x2 + y2)−1/2 = 0, we obtain y = 0 or x2 + y2 = 1

4 . Combining this
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with the equation of the cardioid, we find the possible answers to the problem as (0, 0),
(2, 0), (− 1

4 ,
√

3
4 ), and (− 1

4 ,−
√

3
4 ). Of these the origin has to be ruled out, since there the

cardioid has a corner, while the other three are indeed points where the tangent to the
cardioid is vertical.

617. Let AB = a and consider a system of polar coordinates with pole A and axis
AB. The equation of the curve traced by M is obtained as follows. We have AM = r ,
AD = a

cos θ , and AC = a cos θ . The equality AM = AD − AC yields the equation

r = a

cos θ
− a cos θ.

The equation of the locus is therefore r = a sin2 θ
cos θ . This curve is called the cisoid of

Diocles (Figure 80).

618. Let O be the center and a the radius of the circle, and let M be the point on the
circle. Choose a system of polar coordinates with M the pole and MO the axis. For
an arbitrary tangent, let I be its intersection with MO, T the tangency point, and P the
projection of M onto the tangent. Then

OI = OT

cos θ
= a

cos θ
.

Hence

MP = r = (MO +OI) cos θ =
(
a + a

cos θ

)
cos θ.

We obtain r = a(1 + cos θ), which is the equation of a cardioid (Figure 80).

619. Working with polar coordinates we place the pole at O and axis OA. Denote
by a the radius of the circle. We want to find the relation between the polar coordinates



Geometry and Trigonometry 631

0.2

0.6

0.4

0.2

0

-0.2

1

-0.4

-0.6

0.80.60.40

Figure 80

(r, θ) of the point L. We have AM = AL = 2a sin θ
2 . In the isosceles triangle LAM ,

∠LMA = π
2 − θ

2 ; hence

LM = 2AM cos

(
π

2
− θ

2

)
= 2 · 2a sin

θ

2
· sin

θ

2
= 4a sin2 θ

2
.

Substituting this in the relation OL = OM − LM , we obtain

r = a − 4a sin2 θ

2
= a[1 − 2 · (1 − cos θ)].

The equation of the locus is therefore

r = a(2 cos θ − 1),

a curve known as Pascal’s snail, or limaçon, whose shape is described in Figure 81.
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620. As before, we work with polar coordinates, choosing O as the pole and OA as the
axis. Denote by a the length of the segment AB and by P(r, θ) the projection ofO onto
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this segment. Then OA = r
cos θ and OA = AB sin θ , which yield the equation of the

locus

r = a sin θ cos θ = a

2
sin 2θ.

This is a four-leaf rose.

621. Choosing a Cartesian system of coordinates whose axes are the asymptotes, we can
bring the equation of the hyperbola into the form xy = a2. The equation of the tangent
to the hyperbola at a point (x0, y0) is x0y + y0x − 2a2 = 0. Since a2 = x0y0, the x and
y intercepts of this line are 2x0 and 2y0, respectively.

Let (r, θ) be the polar coordinates of the foot of the perpendicular from the origin to
the tangent. In the right triangle determined by the center of the hyperbola and the two
intercepts we have 2x0 cos θ = r and 2y0 sin θ = r . Multiplying, we obtain the polar
equation of the locus

r2 = 2a2 sin 2θ.

This is the lemniscate of Bernoulli, shown in Figure 82.
(1st W.L. Putnam Mathematical Competition, 1938)
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622. The solution uses complex and polar coordinates. Our goal is to map the circle onto
a cardioid of the form

r = a(1 + cos θ), a > 0.

Because this cardioid passes through the origin, it is natural to work with a circle that
itself passes through the origin, for example |z− 1| = 1. If φ : C → C maps this circle
into the cardioid, then the equation of the cardioid will have the form

|φ−1(z)− 1| = 1.
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So we want to bring the original equation of the cardioid into this form. First, we change
it to

r = a · 2 cos2 θ

2
;

then we take the square root,

√
r = √

2a cos
θ

2
.

Multiplying by
√
r , we obtain

r = √
2a

√
r cos

θ

2
,

or

r − √
2a

√
r cos

θ

2
= 0.

This should look like the equation of a circle. We modify the expression as follows:

r − √
2a

√
r cos

θ

2
= r

(
cos2 θ

2
+ sin2 θ

2

)
− √

2a
√
r cos

θ

2
+ 1 − 1

=
(√

r cos
θ

2

)2

− √
2a

√
r cos

θ

2
+ 1 +

(√
r sin

θ

2

)2

− 1.

If we set a = 2, we have a perfect square, and the equation becomes(√
r cos

θ

2
− 1

)2

+
(√

r sin
θ

2

)2

= 1,

which in complex coordinates reads |√z − 1| = 1. Of course, there is an ambiguity in
taking the square root, but we are really interested in the transformation φ, not in φ−1.
Therefore, we can choose φ(z) = z2, which maps the circle |z− 1| = 1 into the cardioid
r = 2(1 + cos θ).

Remark. Of greater practical importance is the Zhukovski transformation z → 1
2(z+ 1

z
),

which maps the unit circle onto the profile of the airplane wing (the so-called aerofoil).
Because the Zhukovski map preserves angles, it helps reduce the study of the air flow
around an airplane wing to the much simpler study of the air flow around a circle.

623. Let x+ y = s. Then x3 + y3 + 3xys = s3, so 3xys− 3xy = s3 − 1. It follows that
the locus is described by

(s − 1)(s2 + s + 1 − 3xy) = 0.
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Recalling that s = x+y, we have two curves: x+y = 1 and (x+y)2+x+y+1−3xy = 0.
The last equality is equivalent to

1

2

[
(x − y)2 + (x + 1)2 + (y + 1)2

] = 0,

i.e., x = y = −1. Thus the curve in the problem consists of the line x + y = 1 and the
point (−1,−1), which we will call A. Points B and C are on the line x + y = 1 such
that they are symmetric to one another with respect to the point D( 1

2 ,
1
2) and such that

BC
√

3
2 = AD. It is clear that there is only one set {B,C} with this property, so we have

justified the uniqueness of the triangleABC (up to the permutation of vertices). Because

AD =
√(

1

2
+ 1

)2

+
(

1

2
+ 1

)2

= 3

2

√
2,

it follows that BC = √
6; hence Area(ABC) = 6

√
3

4 = 3
√

3
2 .

(49th W.L. Putnam Mathematical Competition, 2006, proposed by T. Andreescu)

624. View the parametric equations of the curve as a linear system in the unknowns tn

and tp:

a1t
n + b1t

p = x − c1,

a2t
n + b2t

p = y − c2,

a3t
n + b3t

p = z− c3.

This system admits solutions; hence the extended matrix is singular. We thus have∣∣∣∣∣∣
a1 b1 x − c1

a2 b2 y − c2

a3 b3 y − c3

∣∣∣∣∣∣ = 0.

This is the equation of a plane that contains the given curve.
(C. Ionescu-Bujor, O. Sacter, Exerciţii şi probleme de geometrie analitica şi difer-

enţiala (Exercises and problems in analytic and differential geometry), Editura Didactică
şi Pedagogică, Bucharest, 1963)

625. Let the equation of the curve be y(x). Let T (x) be the tension in the chain at the
point (x, y(x)). The tension acts in the direction of the derivative y ′(x). Let H(x) and
V (x) be, respectively, the horizontal and vertical components of the tension. Because the
chain is in equilibrium, the horizontal component of the tension is constant at all points
of the chain (just cut the chain mentally at two different points). Thus H(x) = H . The
vertical component of the tension is then V (x) = Hy ′(x).
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On the other hand, for two infinitesimally close points, the difference in the vertical
tension is given by dV = ρds, where ρ is the density of the chain and ds is the length of
the arc between the two poins. Since ds = √

1 + (y ′(x))2dx, it follows that y satisfies
the differential equation

Hy ′′ = ρ
√

1 + (y ′)2.

If we set z(x) = y ′(x), we obtain the separable first-order equation

Hz′ = ρ
√

1 + z2.

By integration, we obtain z = sinh ( ρ
H
x + C1). The answer to the problem is therefore

y(x) = H

ρ
cosh

( ρ
H

+ C1

)
+ C2.

Remark. Galileo claimed that the curve was a parabola, but this was later proved to be
false. The correct equation was derived by G.W. Leibniz, Ch. Huygens, and Johann
Bernoulli. The curve is called a “catenary’’ and plays an important role in the theory of
minimal surfaces.

626. An edge adjacent to the main diagonal describes a cone. For an edge not adjacent
to the main diagonal, consider an orthogonal system of coordinates such that the rotation
axis is the z-axis and, in its original position, the edge is parallel to the y-plane (Figure 83).
In the appropriate scale, the line of support of the edge is y = 1, z = √

3x.

x y

z

O

Figure 83

The locus of points on the surface of revolution is given in parametric form by

(x, y, z) = (t cos θ + sin θ, cos θ − t sin θ,
√

3t), t ∈ R, θ ∈ [0, 2π).
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A glimpse at these formulas suggests the following computation:

x2 + y2 − 1

3
z2

= t2 cos2 θ + sin2 θ + 2t sin θ cos θ + cos2 θ + t2 sin2 θ − 2t cos θ sin θ − t2

= t2(cos2 θ + sin2 θ)+ cos2 θ + sin2 θ − t2 = 1.

The locus is therefore a hyperboloid of one sheet, x2 + y2 − 1
3z

3 = 1.

Remark. The fact that the hyperboloid of one sheet is a ruled surface makes it easy to
build. It is a more resilient structure than the cylinder. This is why the cooling towers of
power plants are built as hyperboloids of one sheet.

627. The equation of the plane tangent to the hyperboloid at a point M(x0, y0, z0) is

x0x

a2
+ y0y

b2
− z0z

c2
= 1.

This plane coincides with the one from the statement if and only if

x0
a2

1
a

=
y0
b2

1
b

=
z0
c2

1
c

.

We deduce that the point of contact has coordinates (a, b, c), and therefore the given
plane is indeed tangent to the hyperboloid.

628. The area of the ellipse given by the equation

x2

A2
+ y2

B2
= R2

is πABR2. The section perpendicular to the x-axis is the ellipse

y2

b2
+ z2

c2
= 1 − x2

0

a2

in the plane x = x0. Hence Sx = πbc(1 − x2
0
a2 ). Similarly, Sy = πac(1 − y2

0
b2 ) and

Sx = πab(1 − z2
0
c2 ). We thus have

aSx + bSy + cSz = πabc

(
3 − x2

0

a2
+ y2

0

b2
+ z2

0

c2

)
= 2πabc,

which, of course, is independent of M .

629. Figure 84 describes a generic ellipsoid. Since parallel cross-sections of the ellipsoid
are always similar ellipses, any circular cross-section can be increased in size by taking a
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Figure 84

parallel cutting plane passing through the origin. Because of the condition a > b > c, a
circular cross-section cannot lie in the xy-, xz-, or yz-plane. Looking at the intersection
of the ellipsoid with the yz-plane, we see that some diameter of the circular cross-section
is a diameter (segment passing through the center) of the ellipse x = 0, y2

b2 + z2

c2 = 1.
Hence the radius of the circle is at most b. The same argument for the xy-plane shows
that the radius is at least b, whence b is a good candidate for the maximum radius.

To show that circular cross-sections of radiusb actually exist, consider the intersection
of the plane (c

√
a2 − b2)x = (a

√
b2 − c2)z with the ellipsoid. We want to compute the

distance from a point (x0, y0, z0) on this intersection to the origin. From the equation of
the plane, we obtain by squaring

x2
0 + z2

0 = b2

(
x2

0

a2
+ z2

0

c2

)
.

The equation of the ellipsoid gives

y2
0 = b2

(
1 − x2

0

a2
− z2

0

c2

)
.

Adding these two, we obtain x2
0 +y2

0 +z2
0 = 1; hence (x0, y0, z0) lies on the circle of radius

1 centered at the origin and contained in the plane (c
√
a2 − b2)x + (a

√
b2 − c2)z = 0.

This completes the proof.
(31st W.L. Putnam Mathematical Competition, 1970)

630. Without loss of generality, we may assume a < b < c. Fix a point (x0, y0, z0), and
let us examine the equation in λ,

f (λ) = x2
0

a2 − λ
+ y2

0

b2 − λ
+ z2

0

c2 − λ
− 1 = 0.

For the function f (λ) we have the following table of signs:

f (−∞) f (a2 − ε)

+ +
∣∣∣∣ f (a2 + ε) f (b2 − ε)

− +
∣∣∣∣ f (b2 + ε) f (c2 − ε)

− +
∣∣∣∣ f (c2 + ε) f (+∞)

− − ,
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where ε is a very small positive number. Therefore, the equation f (λ) = 0 has three
roots, λ1, λ2, λ3, with λ1 < a2 < λ2 < b2 < λ3 < c2. These provide the three surfaces,
which are an ellipsoid for λ = λ1 (Figure 84), a hyperboloid of one sheet for λ = λ2, and
a hyperboloid of two sheets for λ = λ3 (Figure 85).

Figure 85

To show that the surfaces are pairwise orthogonal we have to compute the angle
between the normals at an intersection point. We do this for the roots λ1 and λ2, the other
cases being similar. The normal to the ellipsoid at a point (x, y, z) is parallel to the vector

−→v1 =
(

x

a2 − λ1
,

y

b2 − λ1
,

z

c2 − λ1

)
,

while the normal to the hyperboloid of one sheet is parallel to the vector

−→v2 =
(

x

a2 − λ2
,

y

b2 − λ2
,

z

c2 − λ2

)
.

The dot product of these vectors is

−→v1 · −→v2 = x

a2 − λ1
· x

a2 − λ2
+ y

b2 − λ1
· y

b2 − λ2
+ z

c2 − λ1
· z

c2 − λ2
.

To prove that this is equal to 0, we use the fact that the point (x, y, z) belongs to both
quadrics, which translates into the relation

x2

a2 − λ1
+ y2

b2 − λ1
+ z2

c2 − λ1
= x2

a2 − λ2
+ y2

b2 − λ2
+ z2

c2 − λ2
.

If we write this as(
x2

a2 − λ1
− x2

a2 − λ2

)
+
(

y2

b2 − λ1
− y2

b2 − λ2

)
+
(

z2

c2 − λ1
− z2

c2 − λ2

)
= 0,
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we recognize immediately the left-hand side to be (λ1 −λ2)
−→v1 ·−→v2 . We obtain the desired−→v1 · −→v2 = 0, which proves the orthogonality of the two surfaces. This completes the

solution.
(C. Ionescu-Bujor, O. Sacter, Exerciţii şi probleme de geometrie analitica şi difer-

enţiala (Exercises and problems in analytic and differential geometry), Editura Didactică
şi Pedagogică, Bucharest, 1963)

631. Using the algebraic identity

(u3 + v3 + w3 − 3uvw) = 1

2
(u+ v + w)[3(u2 + v2 + w2)− (u+ v + w)2],

we obtain

z− 3 = 3

2
xy − 1

2
x3,

or

x3 − 3xy + 2z− 6 = 0.

This is the cubic surface from Figure 86.

Figure 86

(C. Coşniţă, I. Sager, I. Matei, I. Dragotă, Culegere de probleme de Geometrie
Analitică (Collection of Problems in Analytical Geometry), Editura Didactică şi Ped-
agogică, Bucharest, 1963)

632. By the (2n+ 1)-dimensional version of the Pythagorean theorem, the edge L of the
cube is the square root of an integer. The volume of the cube is computed as a determinant
in coordinates of vertices; hence it is also an integer. We conclude that L2 and L2n+1 are
both integers. It follows that L2n+1/(L2)n = L is a rational number. Because its square
is an integer, L is actually an integer, as desired.
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633. The equation of the locus can be expressed in a simple form using determinants as∣∣∣∣∣∣∣∣∣
x1 x2 · · · xn
xn x1 · · · xn−1

· · · · · · . . . · · ·
x2 x3 · · · x1

∣∣∣∣∣∣∣∣∣ = 0.

Adding all rows to the first, we see that the determinant has a factor of x1 +x2 +· · ·+xn.
Hence the plane x1 + x2 + · · · + xn = 0 belongs to the locus.

634. Without loss of generality, we may assume that the edges of the cube have length
equal to 2, in which case the cube consists of the points (x1, x2, . . . , xn)with max |xi | ≤ 1.
The intersection of the cube with the plane determined by −→

a and
−→
b is

P =
{
s
−→
a + t

−→
b

∣∣∣∣max
k

∣∣∣∣s cos
2kπ

n
+ t sin

2kπ

n

∣∣∣∣ ≤ 1

}
.

This set is a convex polygon with at most 2n sides, being the intersection of n strips
determined by parallel lines, namely the strips

Pk =
{
s
−→
a + t

−→
b

∣∣∣∣∣∣∣∣s cos
2kπ

n
+ t sin

2kπ

n

∣∣∣∣ ≤ 1

}
.

Adding 2π
n

to all arguments in the coordinates of −→
a and

−→
b permutes the Pk’s, leaving

P invariant. This corresponds to the transformation

−→
a −→ cos

2π

n

−→
a − sin

2π

n

−→
b ,

−→
b −→ sin

2π

n

−→
a + cos

2π

n

−→
b ,

which is a rotation by 2π
n

in the plane of the two vectors. Hence P is invariant under a
rotation by 2π

n
, and being a polygon with at most 2n sides, it must be a regular 2n-gon.

(V.V. Prasolov, V.M. Tikhomirov, Geometry, AMS, 2001)

635. Consider the unit sphere in Rn,

Sn−1 =
{
(x1, x2, . . . , xn) ∈ Rn |

n∑
k=1

x2
k = 1

}
.

The distance between two points X = (x1, x2, . . . , xn) and Y = (y1, y2, . . . , yn) is
given by

d(X, Y ) =
(

n∑
k=1

(xk − yk)
2

)1/2

.
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Note that d(X, Y ) >
√

2 if and only if

d2(X, Y ) =
n∑
k=1

x2
k +

n∑
k=1

y2
k − 2

n∑
k=1

xkyk > 2.

Therefore, d(X, Y ) >
√

2 implies
∑n

k=1 xkyk < 0.
Now letA1, A2, . . . , Amn be points satisfying the condition from the hypothesis, with

mn maximal. Using the symmetry of the sphere we may assume thatA1 = (−1, 0, . . . , 0).
Let Ai = (x1, x2, . . . , xn) and Aj = (y1, y2, . . . , yn), i, j ≥ 2. Because d(A1, Ai) and
d(A1, Aj ) are both greater than

√
2, the above observation shows that x1 and y1 are

positive.
The condition d(Ai, Aj ) >

√
2 implies

∑n
k=1 xkyk < 0, and since x1y1 is positive, it

follows that

n∑
k=2

xkyk < 0.

This shows that if we normalize the last n− 1 coordinates of the points Ai by

x ′
k = xk√∑n−1

k=1 x
2
k

, k = 1, 2, . . . , n− 1,

we obtain the coordinates of point Bi in Sn−2, and the points B2, B3, . . . , Bn satisfy the
condition from the statement of the problem for the unit sphere in Rn−1.

It follows that mn ≤ 1 + mn−1, and m1 = 2 implies mn ≤ n + 1. The example of
the n-dimensional regular simplex inscribed in the unit sphere shows that mn = n + 1.
To determine explicitly the coordinates of the vertices, we use the additional information
that the distance from the center of the sphere to a hyperface of the n-dimensional simplex
is 1

n
and then find inductively

A1 = (−1, 0, 0, 0, . . . , 0, 0),

A2 =
(

1

n
,−c1, 0, 0, . . . , 0, 0

)
,

A3 =
(

1

n
,

1

n− 1
· c1,−c2, 0, . . . , 0, 0

)
,

A4 =
(

1

n
,

1

n− 1
· c1,

1

n− 2
· c2, c3, . . . , 0, 0

)
,

· · ·
An−1 =

(
1

n
,

1

n− 1
· c1, . . . ,

1

3
· cn−3,−cn−2, 0

)
,
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An =
(

1

n
,

1

n− 1
· c1, . . . ,

1

3
· cn−3,

1

2
· cn−2,−cn−1

)
,

An+1 =
(

1

n
,

1

n− 1
· c1, . . . ,

1

3
· cn−3,

1

2
· cn−2, cn−1

)
,

where

ck =
√(

1 + 1

n

)(
1 − 1

n− k + 1

)
, k = 1, 2, . . . , n− 1.

One computes that the distance between any two points is

√
2

√
1 + 1

n
>

√
2,

and the problem is solved.
(8th International Mathematics Competition for University Students, 2001)

636. View the ring as the body obtained by revolving about the x-axis the surface that
lies between the graphs of f, g : [−h/2, h/2] → R, f (x) = √

R2 − x2, g(x) =√
R2 − h2/4. Here R denotes the radius of the sphere. Using the washer method we find

that the volume of the ring is

π

∫ h/2

−h/2
(
√
R2 − x2)2 − (

√
R2 − h2/4)2dx = π

∫ h/2

−h/2
(h2/4 − x2)dx = h3π

12
,

which does not depend on R.

637. Let the inscribed sphere have radius R and center O. For each big face of the
polyhedron, project the sphere onto the face to obtain a disk D. Then connect D with
O to form a cone. Because the interiors of the cones are pairwise disjoint, the cones
intersect the sphere in several nonoverlapping regions. Each circular region is a slice
of the sphere, of width R(1 − 1

2

√
2). Recall the lemma used in the solution to the first

problem from the introduction. We apply it to the particular case in which one of the
planes is tangent to the sphere to find that the area of a slice is 2πR2(1 − 1

2

√
2), and this

is greater than 1
7 of the sphere’s surface. Thus each circular region takes up more than 1

7
of the total surface area of the sphere. So there can be at most six big faces.

(Russian Mathematical Olympiad, 1999)

638. Keep the line of projection fixed, for example the x-axis, and rotate the segments in
A and B simultaneously.

Now, given a segment with one endpoint at the origin, the length of its projection
onto the z-axis is r| cosφ|, where (r, θ, φ) are the spherical coordinates of the second
endpoint, i.e., r is the length of the segment, φ is the angle it makes with the semiaxis
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Oz, and θ is the oriented angle that its projection onto the xy-plane makes with Ox. If
we average the lengths of the projections onto the x-axis of the segment over all possible
rotations, we obtain

1

4π

∫ π

0

∫ 2π

0
r| cosφ| sin φdθdφ = r

2
.

Denote by a and b the sums of the lengths of the segments in A and B, respectively.
Then the average of the sum of the lengths of the projections of segments in A is r

2a, and
the average of the same sum for B is r

2b. The second is smaller, proving that there exists
a direction such that the sum of the lengths of the projections of the segments from A

onto that direction is larger that the corresponding sum for B.

639. This is just a two-dimensional version of the previous problem. If we integrate
the length of the projection of a segment onto a line over all directions of the line, we
obtain twice the length of the segment. Doing this for the sides of a convex polygon, we
obtain the perimeter (since the projection is double covered by the polygon). Because
the projection of the inner polygon is always smaller than the projection of the outer, the
same inequality will hold after integration. Hence the conclusion.

640. For i = 1, 2, . . . , n, let ai be the lengths of the segments and let φi be the angles
they make with the positive x-axis (0 ≤ φi ≤ π ). The length of the projection of ai onto
some line that makes an angle φ with the x-axis is fi(φ) = ai | cos(φ − φi)|; denote by
f (φ) the sum of these lengths. The integral mean of f over the interval [0, π ] is

1

π

∫ π

0
f (φ)dφ = 1

π

n∑
i=1

∫ π

0
fi(φ)dφ

= 1

π

n∑
i=1

ai

∫ π

0
| cos(φ − φi)|dφ = 2

π

n∑
i=1

ai = 2

π
.

Here we used the fact that | cos x| is periodic with period π . Since the integral mean of f
is 2

π
and since f is continuous, by the intermediate value property there exists an angle

φ for which f (φ) = 2
π

. This completes the proof.

641. The law of cosines in triangle APB gives

AP 2 = x2 + c2 − 2xc cosB

and

x2 = c2 + AP 2 = x2 + c2 − 2xc cosB − 2c
√
x2 + c2 − 2xc cosB cos t,

whence
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cos t = c − x cosB√
x2 + c2 − 2xc cosB

.

The integral from the statement is∫ a

0
cos t (x)dx =

∫ a

0

c − x cosB√
x2 + c2 − 2xc cosB

dx.

Using the standard integration formulas∫
dx√

x2 + αx + β
= ln

(
2x + α + 2

√
x2 + αx + β

)
,∫

xdx√
x2 + αx + β

=
√
x2 + αx + β − α

2
ln
(

2x + α + 2
√
x2 + αx + β

)
,

we obtain∫ a

0
cos t (x)dx = c sin2 B ln

(
2x + 2c cosB + 2

√
x2 − 2cx cosB + c2

)∣∣∣a
0

− cosB
√
x2 − 2cx cosB + c2

∣∣∣a
0

= c sin2 B ln
a − c cosB + b

c(1 − cosB)
+ cosB(c − b).

642. It is equivalent to ask that the volume of the dish be half of that of the solid of
revolution obtained by rotating the rectangle 0 ≤ x ≤ a and 0 ≤ y ≤ f (a). Specifically,
this condition is ∫ a

0
2πxf (x)dx = 1

2
πa2f (a).

Because the left-hand side is differentiable with respect to a for all a > 0, the right-hand
side is differentiable, too. Differentiating, we obtain

2πaf (a) = πaf (a)+ 1

2
πa2f ′(a).

This is a differential equation in f , which can be written as f ′(a)/f (a) = 2
a
. Integrating,

we obtain ln f (a) = 2 ln a, or f (a) = ca2 for some constant c > 0. This solves the
problem.

(Math Horizons)

643. Parametrize the curve by its length as (x(s), y(s), z(s)), 0 ≤ s ≤ L. Then the
coordinates (ξ, η, ζ ) of its spherical image are given by



Geometry and Trigonometry 645

ξ = dx

ds
, η = dy

ds
, ζ = dz

ds
.

The fact that the curve is closed simply implies that∫ L

0
ξds =

∫ L

0
ηds =

∫ L

0
ζds = 0.

Pick an arbitrary great circle of the unit sphere, lying in some plane αx + βy + γ z = 0.
To show that the spherical image of the curve intersects the circle, it suffices to show that
it intersects the plane. We compute∫ L

0
(αξ + βη + γ ζ )ds = 0,

which implies that the continuous function αξ + βη+ γ ζ vanishes at least once (in fact,
at least twice since it takes the same value at the endpoints of the interval). The equality

αξ(s)+ βη(x)+ γ ζ(s) = 0

is precisely the condition that (ξ(s), η(x), ζ(s)) is in the plane. The problem is solved.

Remark. The spherical image of a curve was introduced by Gauss.
(K. Löwner)

644. We use Löwner’s theorem, which was the subject of the previous problem. The total
curvature is the length of the spherical image of the curve. In view of Löwner’s theorem,
it suffices to show that a curve γ (t) that intersects every great circle of the unit sphere
has length at least 2π .

For each t , letHt be the hemisphere centered at γ (t). The fact that the curve intersects
every great circle implies that the union of all theHt ’s is the entire sphere. We prove the
conclusion under this hypothesis. Let us analyze how the covered area adds up as we
travel along the curve. Looking at Figure 87, we see that as we add to a hemisphere Ht0
the hemisphere Ht1 , the covered surface increases by the portion of the sphere contained
within the dihedral angle formed by two planes. The area of such a “wedge’’ is directly
proportional to the length of the arc of the great circle passing through γ (t0) and γ (t1).
When the arc is the whole great circle the area is 4π , so in general, the area is numerically
equal to twice the length of the arc. This means that as we move along the curve from t to
t +	t , the covered area increases by at most 2‖γ ′(t)‖. So after we have traveled along
the entire curve, the covered area has increased by at most 2

∫
C

‖γ ′(t)‖dt (C denotes the
curve). For the whole sphere, we should have 2

∫
C

‖γ ′(t)‖dt ≥ 4π . This implies that the
length of the spherical image, which is equal to

∫
C

‖γ ′(t)‖dt , is at least 2π , as desired.
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Figure 87

Remark. More is true, namely that the total curvature is equal to 2π if and only if the
curve is planar and convex. A result of Milnor and Fáry shows that the total curvature of
a knotted curve in space exceeds 4π .

(W. Fenchel)

645. Consider a coordinate system with axes parallel to the sides of R (and hence to the
sides of all rectangles of the tiling). It is not hard to see that if D = [a, b] × [c, d] is a
rectangle whose sides are parallel to the axes, then the four integrals∫∫

D

sin 2πx sin 2πydxdy,
∫∫

D

sin 2πx cos 2πydxdy,∫∫
D

cos 2πx sin 2πydxdy,
∫∫

D

cos 2πx cos 2πydxdy

are simultaneously equal to zero if and only if either b− a or d − c is an integer. Indeed,
this is equivalent to the fact that

(cos 2πb − cos 2πa)(cos 2πd − cos 2πc) = 0,

(cos 2πb − cos 2πa)(sin 2πd − sin 2πc) = 0,

(sin 2πb − sin 2πa)(cos 2πd − cos 2πc) = 0,

(sin 2πb − sin 2πa)(sin 2πd − sin 2πc) = 0,

and a case check shows that either cos 2πb = cos 2πa and sin 2πb = sin 2πa, or
cos 2πd = cos 2πc and sin 2πd = sin 2πc, which then implies that either a and b or c
and d differ by an integer. Because the four integrals are zero on each rectangle of the
tiling, by adding they are zero on R. Hence at least one of the sides of R has integer
length.

(short list of the 30th International Mathematical Olympiad, 1989, proposed by
France)

646. We denote by A(XYZ) the area of triangle XYZ. Look first at the degenerate
situation described in Figure 88, when P is on one side of the triangle. With the notation
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A

B C
P

M

N

Figure 88

from that figure, we have

A(BMP)

A(ABC)
=
(
BP

BC

)2

and
A(CNP)

A(ABC)
=
(
PC

BC

)2

.

Adding up, we obtain

A(BMP)+ A(CNP)

A(ABC)
= BP 2 + PC2

(BP + PC)2
≥ 1

2
.

The last inequality follows from the AM–GM inequality: BP 2 + PC2 ≥ 2BP · PC.
Note that in the degenerate case the inequality is even stronger, with 1

3 replaced by 1
2 .

Let us now consider the general case, with the notation from Figure 89. By what we
just proved, we know that the following three inequalities hold:

S1 + S2 ≥ 1

2
A(A1B2C),

S1 + S3 ≥ 1

2
A(A2BC1),

S2 + S3 ≥ 1

2
A(AB1C2).

Adding them up, we obtain

A

B C

S

S

A A

B

B
C

C
P

1 2

2
3

1

S2

2

1

1

Figure 89
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2S1 + 2S2 + 2S3 ≥ 1

2
(A(ABC)+ S1 + S2 + S3).

The inequality follows.
(M. Pimsner, S. Popa, Probleme de geometrie elementară (Problems in elementary

geometry), Editura Didactică şi Pedagogică, Bucharest, 1979)

647. Assume that the two squares do not overlap. Then at most one of them contains
the center of the circle. Take the other square. The line of support of one of its sides
separates it from the center of the circle. Looking at the diameter parallel to this line, we
see that the square is entirely contained in a half-circle, in such a way that one of its sides
is parallel to the diameter. Translate the square to bring that side onto the diameter, then
translate it further so that the center of the circle is the middle of the side (see Figure 90).

/2

x

x

1

Figure 90

The square now lies inside another square with two vertices on the diameter and
two vertices on the circle. From the Pythagorean theorem compute the side of the larger

square to be
√

4
5 . This is smaller than 0.9, a contradiction. Therefore, the original squares

overlap.
(R. Gelca)

648. The Möbius band crosses itself if the generating segments at two antipodal points
of the unit circle intersect. Let us analyze when this can happen. We refer everything
to Figure 91. By construction, the generating segments at the antipodal points M and N
are perpendicular. Let P be the intersection of their lines of support. Then the triangle
MNP is right, and its acute angles are α

2 and π
2 − α

2 . The generating segments intersect if
they are longer than twice the longest leg of this triangle. The longest leg of this triangle
attains its shortest length when the triangle is isosceles, in which case its length is

√
2.

We conclude that the maximal length that the generating segment of the Möbius band
can have so that the band does not cross itself is 2

√
2.

649. Comparing the perimeters of AOB and BOC, we find that ‖AB‖ + ‖AO‖ =
‖CB‖ + ‖CO‖, and hence A and C belong to an ellipse with foci B and O. The same
argument applied to triangles AOD and COD shows that A and C belong to an ellipse
with fociD andO. The foci of the two ellipses are on the line BC; hence the ellipses are
symmetric with respect to this line. It follows that A and C are symmetric with respect
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to BC, hence AB = BC and AD = DC. Exchanging the roles of A and C with B and
D, we find that AB = AD and BC = CD. Therefore, AB = BC = CD = DE and
the quadrilateral is a rhombus.

The property is no longer true if O is not the intersection of the diagonals. A coun-
terexample consists of a quadrilateral with AB = BC = 3, BC = CD = 4, BD = 5,
and O on BD such that OB = 3 and OD = 2.

(Romanian Team Selection Test for the International Mathematical Olympiad, 1978,
proposed by L. Panaitopol)

650. Assume by way of contradiction that the interiors of finitely many parabolas cover
the plane. The intersection of a line with the interior of a parabola is a half-line if that
line is parallel to the axis of the parabola, and it is void or a segment otherwise. There is
a line that is not parallel to the axis of any parabola. The interiors of the parabolas cover
the union of finitely many segments on this line, so they do not cover the line entirely.
Hence the conclusion.

651. Without loss of generality, we may assume that AC = 1, and let as usual AB = c.
We have

BC2 = AB2 + AC2 − 2AB · AC cos ∠BAC ≥ AB2 + AC2 − AB = c2 + 1 − c,

because ∠BAC ≥ 60◦. On the other hand,

CD2 = AC2 + AD2 − 2AC · AD cos ∠CAD ≥ 1 + c6 + c3,

because ∠CAD ≤ 120◦. We are left to prove the inequality

c6 + c3 + 1 ≤ 3(c2 − c + 1)3,

which, after dividing both sides by c3 > 0, takes the form

c3 + 1 + 1

c3
≤ 3

(
c − 1 + 1

c

)3

.
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With the substitution c + 1
c

= x, the inequality becomes

x3 − 3x + 1 ≤ 3(x − 1)3, for x ≥ 2.

But this reduces to

(x − 2)2(2x − 1) ≥ 0,

which is clearly true. Equality holds if and only if ∠A = 60◦ and c = 1 (AB = AC),
i.e., when the triangle ABC is equilateral.

(proposed by T. Andreescu for the USA Mathematical Olympiad, 2006)

652. Denote by a, b, c, d, e, f, g, h the lengths of the sides of the octagon. Its angles are
all equal to 135◦ (see Figure 92). If we project the octagon onto a line perpendicular to
side d , we obtain two overlapping segments. Writing the equality of their lengths, we
obtain

a

√
2

2
+ b + c

√
2

2
= e

√
2

2
+ f + g

√
2

2
.

Because a, b, c, e, f, g are rational, equality can hold only if b = f . Repeating the
argument for all sides, we see that the opposite sides of the octagon have equal length.
The opposite sides are also parallel. This means that any two consecutive main diago-
nals intersect at their midpoints, so all main diagonals intersect at their midpoints. The
common intersection is the center of symmetry.

b

d

f
e

g

a c

h

Figure 92

653. Let us assume that the three diagonals do not intersect. Denote byM the intersection
ofAD with CF , byN the intersection of BE with CF , and by P the intersection of AD
with BE. There are two possibilities: either M is between A and P , or P is between A
and M . We discuss only the first situation, shown in Figure 93, and leave the second,
which is analogous, to the reader.

Let A(x) denote the area of the polygon x. From A(BCDE) = A(ABEF) it fol-
lows that
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A

D

B
C

E

F P

NM

Figure 93

A(EPD)+ A(NPDC)+ A(BNC) = A(ENF)+ A(AMF)+ A(MNBA).

Adding A(MNP) to both sides, we obtain

A(EPD)+ A(DMC)+ A(BNC) = A(ENF)+ A(AMF)+ A(APB).

Writing the other two similar relations and then subtracting these relations two by two,
we obtain

A(AMF) = A(DMC), A(APB) = A(EPD), A(BNC) = A(ENF).

The equality A(AMF) = A(DMC) implies thatMF ·MA · sin ∠AMF = MC ·MD ·
sin ∠CMD, hence MF · MA = MC · MD. Similarly, BN · CN = EN · FN and
AP · BP = DP · EP . If we write AM = a, AP = α, BN = b, BP = β, CN = c,
CM = γ , DP = d, DM = δ, EP = e, EN = η, FM = f , FN = φ, then

a

δ
= γ

f
,

b

η
= φ

c
,

e

β
= α

d
.

Also, any Latin letter is smaller than the corresponding Greek letter. Hence

a

δ
= γ

f
>
c

φ
= η

b
>
e

β
= α

d
>
a

δ
.

This is a contradiction. The study of the case in which P is between A and M yields a
similar contradiction, since M is now between D and P , and D can take the role of A
above, showing that the three main diagonals must intersect.

(Revista Matematică din Timişoara (Timişoara Mathematics Gazette))

654. (a) Definef : Z → [0, 1), f (x) = x
√

3−�x√3�. By the pigeonhole principle, there
exist distinct integers x1 and x2 such that |f (x1) − f (x2)| < 0.001. Set a = |x1 − x2|.
Then the distance either between (a, a

√
3) and (a, �a√3�) or between (a, a

√
3) and

(a, �a√3� + 1) is less than 0.001. Therefore, the points (0, 0), (2a, 0), (a, a
√

3) lie in
different disks and form an equilateral triangle.

(b) Suppose that P ′Q′R′ is an equilateral triangle of side l ≤ 96, whose vertices
P ′,Q′, R′ lie in disks with centers P,Q,R, respectively. Then
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l − 0.002 ≤ PQ,PR,RP ≤ l + 0.002.

On the other hand, since there is no equilateral triangle whose vertices have integer
coordinates, we may assume that PQ 	= QR. Therefore,

|PQ2 −QR2| = (PQ+QR)|PQ−QR|
≤ ((l + 0.002)+ (l + 0.002))((l + 0.002)− (l − 0.002))

≤ 2 × 96.002 × 0.004 < 1.

However, PQ2 −QR2 is an integer. This contradiction proves the claim.
(short list of the 44th International Mathematical Olympiad, 2003)

655. Imagine instead that the figure is fixed and the points move on the cylinder, all
rigidly linked to each other. Let P be one of the n points; when another point traces S,
P itself will trace a figure congruent to S. So after all the points have traced S, P alone
has traced a surface F of area strictly less than n.

On the other hand, if we rotate P around the cylinder or translate it back and forth by
n

4πr , we trace a surface of area exactly equal to n. Choose on this surface a point P ′ that
does not lie in F , and consider the transformation that maps P to P ′. The fact that P ′
is not in F means that at this moment none of the points lies in S. This transformation,
therefore, satisfies the required condition.

(M. Pimsner, S. Popa, Probleme de geometrie elementară (Problems in elementary
geometry), Editura Didactică şi Pedagogică, Bucharest, 1979)

656. The left-hand side is equal to

cos 20◦ sin 40◦ − sin 10◦ cos 10◦ = 2 sin 20◦ cos2 20◦ − sin 20◦

2

= 1

2
(3 sin 20◦ − 4 sin3 20◦) = 1

2
sin 60◦ =

√
3

4
.

(Romanian Mathematical Olympiad, 1967, proposed by C. Ionescu-Ţiu)

657. Because −π
2 < −1 ≤ sin x ≤ 1 < π

2 , cos(sin x) > 0. Hence sin(cos x) > 0, and
so cos x > 0. So the only possible solutions can lie in the interval (−π

2 ,
π
2 ). Note that

if x is a solution, then −x is also a solution; thus we can restrict our attention to the first
quadrant. Rewrite the equation as

sin(cos x) = sin
(π

2
− sin x

)
.

Then cos x = π
2 − sin x, and so sin x + cos x = π

2 . This equality cannot hold, since
the range of the function f (x) = sin x + cos x = √

2 cos (π4 − x) is [−√
2,

√
2], and

π
2 >

√
2.
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658. The relation from the statement can be transformed into

tan2 b = tan2 a + 1

tan2 a − 1
= − 1

cos 2a
.

This is further equivalent to

sin2 b

1 − sin2 b
= 1

2 sin2 a − 1
.

Eliminating the denominators, we obtain

2 sin2 a sin2 b = 1,

which gives the desired sin a sin b = ±
√

2
2 = ± sin 45◦.

(Romanian Mathematical Olympiad, 1959)

659. We have

f (x) = sin x cos x + sin x + cos x + 1 = 1

2
(sin x + cos x)2 − 1

2
+ sin x + cos x + 1

= 1

2
[(sin x + cos x)2 + 2(sin x + cos x)+ 1] = 1

2
[(sin x + cos x)+ 1]2.

This is a function of y = sin x + cos x, namely f (y) = 1
2(y + 1)2. Note that

y = cos
(π

2
− x

)
+ cos x = 2 cos

π

4
cos

(
x − π

4

)
= √

2 cos
(
x − π

4

)
.

So y ranges between −√
2 and

√
2. Hence f (y) ranges between 0 and 1

2(
√

2 + 1)2.

660. Relate the secant and the cosecant to the tangent and cotangent:

sec2 x = tan2 x + 1 ≥ 2 tan x and csc2 x = cot2 x + 1 ≥ 2 cot x,

where the inequalities come from the most particular case of AM–GM. It follows that

sec2n x + csc2n x ≥ 2n(tann x + cotn x).

Now observe that

tann x + cotn x = tann x + 1

tann x
≥ 2,

again by the AM–GM inequality. We obtain

sec2n x + csc2n x ≥ 2n+1,
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as desired.
(Gazeta Matematică (Mathematics Gazette, Bucharest), proposed by D. Andrica)

661. We would like to eliminate the square root, and for that reason we recall the trigono-
metric identity

1 − sin t

1 + sin t
= cos2 t

(1 + sin t)2
.

The proof of this identity is straightforward if we express the cosine in terms of the sine
and then factor the numerator. Thus if we substitute x = sin t , then dx = cos tdt and
the integral becomes∫

cos2 t

1 + sin t
dt =

∫
1 − sin tdt = t + cos t + C.

Since t = arcsin x, this is equal to arcsin x + √
1 − x2 + C.

(Romanian high school textbook)

662. We will prove that a function of the form f (x, y) = cos(ax+by), a, b integers, can
be written as a polynomial in cos x, cos y, and cos(x + ky) if and only if b is divisible
by k.

For example, if b = k, then from

cos(ax + ky) = 2 cos x cos((a ± 1)x + ky)− cos((a ± 2)x + ky),

we obtain by induction on the absolute value of a that cos(ax + by) is a polynomial in
cos x, cos y, cos(x + ky). In general, if b = ck, the identity

cos(ax + cky) = 2 cos y cos(ax + (c ± 1)ky)− cos(ax + (c ± 2)ky)

together with the fact that cos ax is a polynomial in cos x allows an inductive proof of
the fact that cos(ax+by) can be written as a polynomial in cos x, cos y, and cos(x+ ky)
as well.

For the converse, note that by using the product-to-sum formula we can write any
polynomial in cosines as a linear combination of cosines. We will prove a more general
statement, namely that if a linear combination of cosines is a polynomial in cos x, cos y,
and cos(x + ky), then it is of the form

∑
m

⎡⎣bm cosmx +
∑

0≤q<|p|
cm,p,q(cos(mx + (pk + q)y)+ cos(mx + (pk − q)y))

⎤⎦ .
This property is obviously true for polynomials of degree one, since any such poly-
nomial is just a linear combination of the three functions. Also, any polynomial in
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cos x, cos y, cos(x + ky) can be obtained by adding polynomials of lower degrees, and
eventually multiplying them by one of the three functions.

Hence it suffices to show that the property is invariant under multiplication by
cos x, cos y, and cos(x + ky). It can be verified that this follows from

2 cos(ax + by) cos x = cos((a + 1)x + by)+ cos((a − 1)x + by),

2 cos(ax + by) cos y = cos(ax + (b + 1)y)+ cos(ax + (b − 1)y),

2 cos(ax + by) cos(x + ky) = cos((a + 1)x + (b + k)y)+ cos(a − 1)x + (b − k)y).

So for cos(ax + by) to be a polynomial in cos x, cos y, and cos(x + ky), it must be such
a sum with a single term. This can happen only if b is divisible by k.

The answer to the problem is therefore k = ±1,±3,±9,±11,±33,±99.
(proposed by R. Gelca for the USA Mathematical Olympiad, 1999)

663. Clearly, this problem is about the addition formula for the cosine. For it to show
up we need products of sines and cosines, and to obtain them it is natural to square the
relations. Of course, we first separate a and d from b and c. We have

(2 cos a + 9 cos d)2 = (6 cos b + 7 cos c)2,

(2 sin a − 9 sin d)2 = (6 sin b − 7 sin c)2.

This further gives

4 cos2 a + 36 cos a cos d + 81 cos2 d = 36 cos2 b + 84 cos b cos c + 49 cos c2,

4 sin2 a − 36 sin a sin d + 81 sin2 d = 36 sin2 b − 84 sin b sin c + 49 sin c2.

After adding up and using sin2 x + cos2 x = 1, we obtain

85 + 36(cos a cos d − sin a sin d) = 85 + 84(cos b cos c − sin b sin c).

Hence 3 cos(a + d) = 7 cos(b + c), as desired.
(Korean Mathematics Competition, 2002, proposed by T. Andreescu)

664. The first equality can be written as

sin3 a + cos3 a +
(

−1

5

)3

− 3(sin a)(cos a)

(
−1

5

)
= 0.

We have seen before that the expression x3 + y3 + z3 − 3xyz factors as

1

2
(x + y + z)[(x − y)2 + (y − z)2 + (z− x)2].
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Here x = sin a, y = cos a, z = − 1
5 . It follows that either x+y+z = 0 or x = y = z. The

latter would imply sin a = cos a = − 1
5 , which violates the identity sin2 a + cos2 a = 1.

Hence x + y + z = 0, implying sin a + cos a = 1
5 . Then 5(sin a + cos a) = 1, and so

sin2 a + 2 sin a cos a + cos2 a = 1

25
.

It follows that 1 + 2 sin a cos a = 0.04; hence

5(sin a + cos a)+ 2 sin a cos a = 0.04,

as desired.
Conversely,

5(sin a + cos a)+ 2 sin a cos a = 0.04

implies

125(sin a + cos a) = 1 − 50 sin a cos a.

Squaring both sides and setting 2 sin a cos a = b yields

1252 + 1252b = 1 − 50b + 252b2,

which simplifies to

(25b + 24)(25b − 651) = 0.

We obtain 2 sin a cos a = − 24
25 , or 2 sin a cos a = 651

25 . The latter is impossible because
sin 2a ≤ 1. Hence 2 sin a cos a = −0.96, and we obtain sin a + cos a = 0.2. Then

5(sin3 a + cos3 a)+ 3 sin a cos a = 5(sin a + cos a)(sin2 a − sin a cos a + cos2 a)

+ 3 sin a cos a

= sin2 a − sin a cos a + cos2 a + 3 sin a cos a

= (sin a + cos a)2 = (0.2)2 = 0.04,

as desired.
(Mathematical Reflections, proposed by T. Andreescu)

665. If we set bk = tan(ak − π
4 ), k = 0, 1, . . . , n, then

tan
(
ak − π

4
+ π

4

)
= 1 + tan(ak − π

4 )

1 − tan(ak − π
4 )

= 1 + bk

1 − bk
.
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So we have to prove that

n∏
k=0

1 + bk

1 − bk
≥ nn+1.

The inequality from the statement implies

1 + bk ≥
∑
l 	=k
(1 − bl), k = 0, 1, . . . , n.

Also, the condition ak ∈ (0, π2 ) implies −1 < bk < 1, k = 0, 1, . . . , n, so the numbers
1−bk are all positive. To obtain their product, it is natural to apply theAM–GM inequality
to the right-hand side of the above inequality, and obtain

1 + bk ≥ n n

√∏
l 	=k
(1 − bl), k = 0, 1, . . . , n.

Multiplying all these inequalities yields

n∏
k=0

(1 + bk) ≥ nn+1 n

√√√√ n∏
l=0

(1 − bl)n.

Hence

n∏
k=0

1 + bk

1 − bk
≥ nn+1,

as desired.
(USA Mathematical Olympiad, 1998, proposed by T. Andreescu)

666. If we multiply the denominator and the numerator of the left-hand side by cos t , and
of the right-hand side by cos nt , we obtain the obvious equality(

eit

e−it

)n
= eint

e−int
.

667. Using the de Moivre formula, we obtain

(1 + i)n =
[√

2
(

cos
π

4
+ i sin

π

4

)]n = 2n/2
(

cos
nπ

4
+ i sin

nπ

4

)
.

Expanding (1+ i)n and equating the real parts on both sides, we deduce the identity from
the statement.



658 Geometry and Trigonometry

668. Denote the sum in question by S1 and let

S2 =
(
n

1

)
sin x +

(
n

2

)
sin 2x + · · · +

(
n

n

)
sin nx.

Using Euler’s formula, we can write

1 + S1 + iS2 =
(
n

0

)
+
(
n

1

)
eix +

(
n

2

)
e2ix + · · · +

(
n

n

)
einx.

By the multiplicative property of the exponential we see that this is equal to

n∑
k=0

(
n

k

) (
eix
)k = (

1 + eix
)n =

(
2 cos

x

2

)n (
ei

x
2

)n
.

The sum in question is the real part of this expression less 1, which is equal to

2n cosn
x

2
cos

nx

2
− 1.

669. Combine f (x) with the function g(x) = ex cos θ sin(x sin θ) and write

f (x)+ ig(x) = ex cos θ (cos(x sin θ)+ i sin(x sin θ))

= ex cos θ · eix sin θ = ex(cos θ+i sin θ).

Using the de Moivre formula we expand this in a Taylor series as

1 + x

1!(cos θ + i sin θ)+ x2

2! (cos 2θ + i sin 2θ)+ · · · + xn

n! (cos nθ + i sin nθ)+ · · · .

Consequently, the Taylor expansion of f (x) around 0 is the real part of this series, i.e.,

f (x) = 1 + cos θ

1! x + cos 2θ

2! x2 + · · · + cos nθ

n! xn + · · · .

670. Let zj = r(cos tj + i sin tj ), with r 	= 0 and tj ∈ (0, π) ∪ (π, 2π), j = 1, 2, 3. By
hypothesis,

sin t1 + r sin(t2 + t3) = 0,

sin t2 + r sin(t3 + t1) = 0,

sin t3 + r sin(t1 + t2) = 0.

Let t = t1 + t2 + t3. Then

sin tj = −r sin(t − ti) = −r sin t cos tj − r cos t sin tj , for j = 1, 2, 3,
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which means that

cot tj sin t = 1

r
− cos t, for j = 1, 2, 3.

If sin t 	= 0, then cot t1 = cot t2 = cot t3. There are only two possible values that
t1, t2, t3 can take between 0 and 2π , and so two of the tj are equal, which is ruled out
by the hypothesis. It follows that sin t = 0. Then on the one hand, r cos t − 1 = 0,
and on the other, cos t = ±1. This can happen only if cos t = 1 and r = 1. Therefore,
z1z2z3 = r3 cos t = 1, as desired.

671. Consider the complex number ω = cos θ + i sin θ . The roots of the equation(
1 + ix

1 − ix

)n
= ω2n

are precisely ak = tan(θ+ kπ
n
), k = 1, 2, . . . , n. Rewriting this as a polynomial equation

of degree n, we obtain

0 = (1 + ix)2 − ω2n(1 − ix)n

= (1 − ω2n)+ ni(1 + ω2n)x + · · · + nin−1(1 − ω2n)xn−1 + in(1 + ω2n)xn.

The sum of the zeros of the latter polynomial is

−nin−1(1 − ω2n)

in(1 + ω2n)
,

and their product

−(1 − ω2n)

in(1 + ω2n)
.

Therefore,

a1 + a2 + · · · + an

a1a2 · · · an = nin−1 = n(−1)(n−1)/2.

(67th W.L. Putnam Competition, 2006, proposed by T. Andreescu)

672. More generally, for an odd integer n, let us compute

S = (cosα)(cos 2α) · · · (cos nα)

with α = 2π
2n+1 . We can let ζ = eiα and then S = 2−n∏n

k=1(ζ
k+ζ−k). Since ζ k+ζ−k =

ζ 2n+1−k + ζ−(2n+1−k), k = 1, 2, . . . , n, we obtain
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S2 = 2−2n
2n∏
k=1

(ζ k + ζ−k) = 2−2n ×
2n∏
k=1

ζ−k ×
2n∏
k=1

(1 + ζ 2k).

The first of the two products is just ζ−(1+2+···+2n). Because 1+2+· · ·+2n = n(2n+1),
which is a multiple of 2n+ 1, this product equals 1.

As for the product
∏2n
k=1(1 + ζ 2k), note that it can be written as

∏2n
k=1(1 + ζ k), since

the numbers ζ 2k range over the (2n+ 1)st roots of unity other than 1 itself, taking each
value exactly once. We compute this using the factorization

zn+1 − 1 = (z− 1)
2n∏
k=1

(z− ζ k).

Substituting z = −1 and dividing both sides by −2 gives
∏2n
k=1(−1 − ζ k) = 1, so∏2n

k=1(1 + ζ k) = 1. Hence S2 = 2−2n, and so S = ±2−n. We need to determine the sign.
For 1 ≤ k ≤ n, cos kα < 0 when π

2 < kα < π . The values of k for which this
happens are �n+1

2 � through n. The number of such k is odd if n ≡ 1 or 2 (mod 4), and
even if n ≡ 0 or 3 (mod 4). Hence

S =
{

+2−n if n ≡ 1 or 2 (mod 4),

−2−n if n ≡ 0 or 3 (mod 4).

Taking n = 999 ≡ 3 (mod 4), we obtain the answer to the problem, −2−999.
(proposed by J. Propp for the USA Mathematical Olympiad, 1999)

673. Define the complex numbers p = xeiA, q = yeiB , and r = zeiC and consider
f (n) = pn + qn + rn. Then F(n) = Im(f (n)). We claim by induction that f (n) is real
for all n, which would imply that F(n) = 0. We are given that f (1) and f (2) are real,
and f (0) = 3 is real as well.

Now let us assume that f (k) is real for all k ≤ n for some n ≥ 3, and let us prove
that f (n + 1) is also real. Note that a = p + q + r = f (1), b = pq + qr + rp =
1
2(f (1)

2 − f (2)), and c = pqr = xyzei(A+B+C) are all real. The numbers p, q, r are
the zeros of the cubic polynomial P(t) = t3 − at2 + bt − c, which has real coefficients.
Using this fact, we obtain

f (n+ 1) = pn+1 + qn+1 + rn+1

= a(pn + qn + rn)− b(pn−1 + qn−1 + rn−1)+ c(pn−2 + qn−2 + rn−2)

= af (n)− bf (n− 1)+ cf (n− 2).

Since f (n), f (n− 1) and f (n− 2) are real by the induction hypothesis, it follows that
f (n+ 1) is real, and we are done.
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674. By eventually changing φ(t) to φ(t) + θ
2 , where θ is the argument of 4P 2 − 2Q,

we may assume that 4P 2 − 2Q is real and positive. We can then ignore the imaginary
parts and write

4P 2 − 2Q = 4

(∫ ∞

0
e−t cosφ(t)dt

)2

− 4

(∫ ∞

0
e−t sin φ(t)dt

)2

− 2
∫ ∞

0
e−2t cos 2φ(t)dt.

Ignore the second term. Increase the first term using the Cauchy–Schwarz inequality:(∫ ∞

0
e−t cosφ(t)dt

)2

=
(∫ ∞

0
e−

1
2 t e−

1
2 t cosφ(t)dt

)2

≤
(∫ ∞

0
e−t dt

)(∫ ∞

0
e−t cos2 φ(t)dt

)
=
∫ ∞

0
e−t cos2 φ(t)dt.

We then have

4P 2 − 2Q ≤ 4
∫ ∞

0
e−t cos2 φ(t)dt − 2

∫ ∞

0
e−2t cos 2φ(t)dt

= 4
∫ ∞

0
(e−t − e−2t ) cos2 φ(t)dt + 1

≤ 4
∫ ∞

0
(e−t − e−2t )dt + 1 = 3.

Equality holds only when cos2 φ(t) = 1 for all t , and in general if φ(t) is constant.
(K. Löwner, from G. Pólya, G. Szegő, Aufgaben und Lehrsätze aus der Analysis,

Springer-Verlag, 1964)

675. The given inequality follows from the easier
√
ab +√

(1 − a)(1 − b) ≤ 1.

To prove this one, let a = sin2 α and b = sin2 β, α, β ∈ [0, π2 ]. The inequality becomes
sin α sin β + cosα cosβ ≤ 1, or cos(α − β) ≤ 1, and this is clearly true.

676. First, note that if x > 2, then x3 − 3x > 4x − 3x = x >
√
x + 2, so all solutions x

should satisfy −2 ≤ x ≤ 2. Therefore, we can substitute x = 2 cos a for some a ∈ [0, π ].
Then the given equation becomes

2 cos 3a = √
2(1 + cos a) = 2 cos

a

2
,
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so

2 sin
7a

4
sin

5a

4
= 0,

meaning that a = 0, 4π
7 ,

4π
5 . It follows that the solutions to the original equation are

x = 2, 2 cos 4π
7 ,− 1

2(1 + √
5).

677. The points (x1, x2) and (y1, y2) lie on the circle of radius c centered at the ori-
gin. Parametrizing the circle, we can write (x1, x2) = (c cosφ, c sin φ) and (y1, y2) =
(c cosψ, c sinψ). Then

S = 2 − c(cosφ + sin φ + cosψ + sinψ)+ c2(cosφ cosψ + sin φ sinψ)

= 2 + c
√

2
(
− sin

(
φ + π

4

)
− sin

(
ψ + π

4

))
+ c2 cos(φ − ψ).

We can simultaneously increase each of − sin (φ + π
4 ), − sin (ψ + π

4 ), and cos(φ − ψ)

to 1 by choosing φ = ψ = 5π
4 . Hence the maximum of S is 2+2c

√
2+ c2 = (c+√

2)2.
(proposed by C. Rousseau for the USA Mathematical Olympiad, 2002)

678. Let a = tan α, b = tan β, c = tan γ , α, β, γ ∈ (−π
2 ,

π
2 ). Then a2 + 1 = sec2 α,

b2 + 1 = sec2 β, c2 + 1 = sec2 γ , and the inequality takes the simpler form

| sin(α − β)| ≤ | sin(α − γ )| + | sin(β − γ )|.
This is proved as follows:

| sin(α − β)| = | sin(α − γ + γ − β)|
= | sin(α − γ ) cos(γ − β)+ sin(γ − β) cos(α − γ )|
≤ | sin(α − γ )|| cos(γ − β)| + | sin(γ − β)|| cos(α − γ )|
≤ | sin(α − γ )| + | sin(γ − β)|.

(N.M. Sedrakyan, A.M. Avoyan, Neravenstva, Metody Dokazatel’stva (Inequalities,
Methods of Proof ), FIZMATLIT, Moscow, 2002)

679. Expressions of the form x2+1 suggest a substitution by the tangent. We let a = tan u,
b = tan v, c = tanw, u, v,w ∈ (−π

2 ,
π
2 ). The product on the right-hand side becomes

sec2 u sec2 v sec2w, and the inequality can be rewritten as

−1 ≤ (tan u tan v + tan u tanw + tan v tanw − 1) cos u cos v cosw ≤ 1.

The expression in the middle is simplified as follows:

(tan u tan v + tan u tanw + tan v tanw − 1) cos u cos v cosw

= sin u sin v cosw + sin u cos v sinw + cos u sin v sinw − cos u cos v cosw
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= sin u sin(v + w)− cos u cos(v + w) = − cos(u+ v + w).

And of course this takes values in the interval [−1, 1]. The inequality is proved.
(T. Andreescu, Z. Feng, 103 Trigonometry Problems, Birkhäuser 2004)

680. The denominators suggest the substitution based on tangents. This idea is further
enforced by the identity x + y + z = xyz, which characterizes the tangents of the angles
of a triangle. Set x = tanA, y = tanB, z = tanC, with A,B,C the angles of an acute
triangle. Note that

tanA√
1 + tan2A

= tanA

secA
= sinA,

so the inequality is equivalent to

sinA+ sinB + sinC ≤ 3
√

3

2
.

This is Jensen’s inequality applied to the function f (x) = sin x, which is concave
on (0, π2 ).

681. If we multiply the inequality through by 2, thus obtaining

2x

1 − x2
+ 2y

1 − y2
+ 2z

1 − z2
≥ 3

√
3,

the substitution by tangents becomes transparent. This is because we should recognize
the double-angle formulas on the left-hand side.

The conditions 0 < x, y, z < 1 and xy + xz + yz = 1 characterize the tangents of
the half-angles of an acute triangle. Indeed, if x = tan A

2 , y = tan B
2 , and z = tan C

2 , then
0 < x, y, z < 1 implies A,B,C ∈ (0, π2 ). Also, the equality xy + xz + yz = 1, which
is the same as

1

z
= x + y

1 − xy
,

implies

cot
C

2
= tan

A+ B

2
.

And this is equivalent to π
2 − C

2 = A+B
2 , or A+ B + C = π .

Returning to the problem, with the chosen trigonometric substitution the inequality
assumes the much simpler form

tanA+ tanB + tanC ≥ 3
√

3.
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And this is Jensen’s inequality applied to the tangent function, which is convex on (0, π2 ).

682. From the first equation, it follows that if x is 0, then so is y, making x2 indeterminate;
hence x, and similarly y and z, cannot be 0. Solving the equations, respectively, for y, z,
and x, we obtain the equivalent system

y = 3x − x3

1 − 3x2
,

z = 3y − y3

1 − 3y2
,

x = 3z− z3

1 − 3z2
,

where x, y, z are real numbers different from 0.
There exists a unique number u in the interval (−π

2 ,
π
2 ) such that x = tan u. Then

y = 3 tan u− tan3 u

1 − 3 tan2 u
= tan 3u,

z = 3 tan 3u− tan3 3u

1 − 3 tan2 3u
= tan 9u,

x = 3 tan 9u− tan3 9u

1 − 3 tan2 9u
= tan 27u.

The last equality yields tan u = tan 27u, so u and 27u differ by an integer multiple of π .
Therefore, u = kπ

26 for some k satisfying −π
2 <

kπ
26 <

π
2 . Besides, k must not be 0, since

x 	= 0. Hence the possible values of k are ±1,±2, . . . ,±12, each of them generating
the corresponding triple

x = tan
kπ

26
, y = tan

3kπ

26
, z = tan

9kπ

26
.

It is immediately checked that all of these triples are solutions of the initial system.

683. In the case of the sequence (an)n, the innermost square root suggests one of the
substitutions an = 2 sin tn or an = 2 cos tn, with tn ∈ [0, π2 ], n ≥ 0. It is the first choice
that allows a further application of a half-angle formula:

2 sin tn+1 = an+1 =
√

2 −
√

4 − 4 sin2 tn = √
2 − 2 cos tn = 2 sin

tn

2
.

It follows that tn+1 = tn
2 , which combined with t0 = π

4 gives tn = π

2n+2 for n ≥ 0.
Therefore, an = 2 sin π

2n+2 for n ≥ 0.
For (bn)n, the innermost square root suggests a trigonometric substitution as well,

namely bn = 2 tan un, n ≥ 0. An easy induction shows that the sequence (bn)n is positive,
so we can choose un ∈ [0, π2 ). Substituting in the recursive formula, we obtain
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2 tan un+1 = bn+1 = 2 tan un
2 + √

4 + 4 tan un
= 4 tan un

2 + 2
cos un

= 2 · sin un
1 + cos un

= 2 tan
un

2
.

Therefore, un+1 = un
2 , which together with u0 = π

4 implies un = π

2n+2 , n ≥ 0. Hence
bn = 2 tan π

2n+2 for n ≥ 0.
Returning to the problem, we recall that sine and tangent are decreasing on (0, π2 )

and their limit at 0 is 0. This takes care of (a).
For (b), note that the functions sin x/x and tan x/x are increasing, respectively,

decreasing, on (0, π2 ). Hence 2nan = π
2 sin π

2n+2 /
π

2n+2 is increasing, and 2nbn =
π
2 tan π

2n+2 /
π

2n+2 is decreasing. Also, since

lim
x→0

sin x

x
= lim

x→0

tan x

x
= 1,

it follows that

lim
n→∞ 2nan = π

2
lim
n→∞

sin π

2n+2

π

2n+2

= π

2
,

and similarly limn→∞ 2nbn = π
2 . This answers (b).

The first inequality in (c) follows from the fact that tan x > sin x for x ∈ (0, π2 ). For
the second inequality we use Taylor series expansions. We have

tan x − sin x = x − x3

12
+ o(x4)− x + x3

6
+ o(x4) = x3

12
+ o(x4).

Hence

bn − an = 2
(

tan
π

2n+2
− sin

π

2n+2

)
= π3

6 · 26
· 1

8n
+ o

(
1

24n

)
.

It follows that for C > π3

6·26 we can find n0 such that bn − an <
C
8n for n ≥ n0. Choose C

such that the inequality also holds for (the finitely many) n < n0. This concludes (c).
(8th International Competition in Mathematics for University Students, 2001)

684. Writing xn = tan an for 0◦ < an < 90◦, we have

xn+1 = tan an +
√

1 + tan2 an = tan an + sec an = 1 + sin an
cos an

= tan

(
90◦ + an

2

)
.

Because a1 = 60◦, we have a2 = 75◦, a3 = 82.5◦, and in general an = 90◦ − 30◦
2n−1 ,

whence
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xn = tan

(
90◦ − 30◦

2n−1

)
= cot

(
30◦

2n−1

)
= cot θn, where θn = 30◦

2n−1
.

A similar calculation shows that

yn = tan 2θn = 2 tan θn
1 − tan2 θn

,

which implies that

xnyn = 2

1 − tan2 θn
.

Because 0◦ < θn < 45◦, we have 0 < tan2 θn < 1 and xnyn > 2. For n > 1, we have
θn < 30◦, and hence tan2 θn <

1
3 . It follows that xnyn < 3, and the problem is solved.

(Team Selection Test for the International Mathematical Olympiad, Belarus, 1999)

685. Let a = tan x, b = tan y, c = tan z, where x, y, z ∈ (0, π2 ). From the identity

tan(x + y + z) = tan x + tan y + tan z− tan x tan y tan z

1 − tan x tan y − tan y tan z− tan x tan z

it follows that abc = a + b+ c only if x + y + z = kπ , for some integer k. In this case
tan(3x + 3y + 3z) = tan 3kπ = 0, and from the same identity it follows that

tan 3x tan 3y tan 3z = tan 3x + tan 3y + tan 3z.

This is the same as

3a − a3

3a2 − 1
· 3b − b3

3b2 − 1
· 3c − c3

3c2 − 1
= 3a − a3

3a2 − 1
+ 3b − b3

3b2 − 1
+ 3c − c3

3c2 − 1
,

and we are done.
(Mathematical Olympiad Summer Program, 2000, proposed by T. Andreescu)

686. With the substitution x = cosh t , the integral becomes∫
1

sinh t + cosh t
sinh tdt

=
∫
et − e−t

2et
dt = 1

2

∫
(1 − e−2t )dt = 1

2
t + e−2t

4
+ C

= 1

2
ln(x +

√
x2 − 1)+ 1

4
· 1

2x2 − 1 + 2x
√
x2 − 1

+ C.

687. Suppose by contradiction that there exists an irrational a and a positive integer n
such that the expression from the statement is rational. Substitute a = cosh t , where t is
an appropriately chosen real number. Then
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n

√
a +

√
a2 − 1 + n

√
a −

√
a2 − 1 = n

√
cosh t + sinh t + n

√
cosh t − sinh t

= n
√
et + n

√
e−t = et/n + e−t/n = 2 cosh

t

n
.

It follows that cosh t
n

is rational. From the recurrence relation

cosh(k + 1)α = 2 cosh α cosh kα − cosh(k − 1)α, k ≥ 1,

applied toα = t
n
, we can prove inductively that cosh k t

n
is rational for all positive integers

k. In particular, cosh n t
n

= cosh t = a is rational. This contradicts the hypothesis. Hence
our assumption was false and the conclusion follows.

(Romanian Team Selection Test for the International Mathematical Olympiad, 1979,
proposed by T. Andreescu)

688. We use the triple-angle formula

sin 3x = 3 sin x − 4 sin3 x,

which we rewrite as

sin3 x = 1

4
(3 sin x − sin 3x) .

The expression on the left-hand side of the identity from the statement becomes

27 · 3 sin 9◦ − sin 27◦

4
+ 9 · 3 sin 27◦ − sin 81◦

4
+ 3 · 3 sin 81◦ − sin 243◦

4

+ 3 sin 243◦ − sin 729◦

4
.

This collapses to

81 sin 9◦ − sin 729◦

4
= 81 sin 9◦ − sin 9◦

4
= 20 sin 9◦.

(T. Andreescu)

689. The triple-angle formula for the tangent gives

3 tan 3x = 3(3 tan x − tan3 x)

1 − 3 tan2 x
= 3 tan3 x − 9 tan x

3 tan2 x − 1
= tan x − 8 tan x

3 tan2 x − 1
.

Hence

1

cot x − 3 tan x
= tan x

1 − 3 tan2 x
= 1

8
(3 tan 3x − tan x) for all x 	= k

π

2
, k ∈ Z.
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It follows that the left-hand side telescopes as

1

8
(3 tan 27◦ − tan 9◦ + 9 tan 81◦ − 3 tan 27◦ + 27 tan 243◦ − 9 tan 81◦ + 81 tan 729◦

− 27 tan 243◦) = 1

8
(81 tan 9◦ − tan 9◦) = 10 tan 9◦.

(T. Andreescu)

690. Multiply the left-hand side by sin 1◦ and transform it using the identity

sin((k + 1)◦ − k◦)
sin k◦ sin(k + 1)◦

= cot k◦ − cot(k + 1)◦.

We obtain

cot 45◦ − cot 46◦ + cot 47◦ − cot 48◦ + · · · + cot 131◦ − cot 132◦ + cot 133◦ − cot 134◦.

At first glance this sum does not seem to telescope. It does, however, after changing
the order of terms. Indeed, if we rewrite the sum as

cot 45◦ − (cot 46◦ + cot 134◦)+ (cot 47◦ + cot 133◦)− (cot 48◦ + cot 132◦)
+ · · · + (cot 89◦ + cot 91◦)− cot 90◦,

then the terms in the parentheses cancel, since they come from supplementary angles.
The conclusion follows from cot 45◦ = 1 and cot 90◦ = 0.

(T. Andreescu)

691. The formula

tan(a − b) = tan a − tan b

1 + tan a tan b

translates into

arctan
x − y

1 + xy
= arctan x − arctan y.

Applied to x = n+ 1 and y = n− 1, it gives

arctan
2

n2
= arctan

(n+ 1)− (n− 1)

1 + (n+ 1)(n− 1)
= arctan(n+ 1)− arctan(n− 1).

The sum in part (a) telescopes as follows:

∞∑
n=1

arctan
2

n2
= lim

N→∞

N∑
n=1

arctan
2

n2
= lim

N→∞

N∑
n=1

(arctan(n+ 1)− arctan(n− 1))
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= lim
N→∞(arctan(N + 1)+ arctanN − arctan 1 − arctan 0)

= π

2
+ π

2
− π

4
= 3π

4
.

The sum in part (b) is only slightly more complicated. In the above-mentioned formula
for the difference of arctangents we have to substitute x = (n+1√

2
)2 and y = (n−1√

2
)2. This

is because

8n

n4 − 2n2 + 5
= 8n

4 + (n2 − 1)2
= 2[(n+ 1)2 − (n− 1)2]

4 − (n+ 1)2(n− 1)2
=

(
n+1√

2

)2 −
(
n−1√

2

)2

1 −
(
n+1√

2

)2 (
n−1√

2

)2 .

The sum telescopes as

∞∑
n=1

arctan
8n

n4 − 2n2 + 5

= lim
N→∞

N∑
n=1

arctan
8n

n4 − 2n2 + 5
= lim

N→∞

N∑
n=1

[
arctan

(
n+ 1√

2

)2

− arctan

(
n− 1√

2

)2
]

= lim
N→∞

[
arctan

(
N + 1√

2

)2

+ arctan

(
N√

2

)2

− arctan 0 − arctan
1

2

]
= π − arctan

1

2
.

(American Mathematical Monthly, proposed by J. Anglesio)

692. In order for the series to telescope, we wish to write the general term in the form
arcsin bn − arcsin bn+1. To determine bn let us apply the sine function and write

√
n+ 1 − √

n√
n+ 2

√
n+ 1

= sin un = bn

√
1 − b2

n+1 − bn+1

√
1 − b2

n.

If we choose bn = 1√
n+1

, then this equality is satisfied. Therefore,

S = lim
N→∞

N∑
n=0

(
arcsin

1√
n+ 1

− arcsin
1√
n+ 2

)
= arcsin 1 − lim

N→∞ arcsin
1√
N + 2

= π

2
.

(The Mathematics Gazette Competition, Bucharest, 1927)

693. The radii of the circles satisfy the recurrence relation R1 = 1, Rn+1 = Rn cos π

2n+1 .
Hence
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lim
n→∞Rn =

∞∏
n=1

cos
π

2n
.

The product can be made to telescope if we use the double-angle formula for sine written
as cos x = sin 2x

2 sin x . We then have

∞∏
n=2

cos
π

2n
= lim

N→∞

N∏
n=2

cos
π

2n
= lim

N→∞

N∏
n=2

1

2
·

sin
π

2n−1

sin
π

2n

= lim
N→∞

1

2N

sin
π

2

sin
π

2N

= 2

π
lim
N→∞

π

2N

sin
π

2N

= 2

π
.

Thus the answer to the problem is 2
π

.

Remark. As a corollary, we obtain the formula

2

π
=

√
2

2
·
√

2 + √
2

2
·
√

2 +
√

2 + √
2

2
· · · .

This formula is credited to F. Viète, althoughArchimedes already used this approximation
of the circle by regular polygons to compute π .

694. For k = 1, 2, . . . , 59,

1 − cos(60◦ + k◦)
cos k◦ = cos k◦ − cos(60◦ + k◦)

cos k◦ = 2 sin 30◦ sin(30◦ + k◦)
cos k◦

= cos(90◦ − 30◦ − k◦)
cos k◦ = cos(60◦ − k◦)

cos k◦ .

So

59∏
k=1

(
1 − cos(60◦ + k◦)

cos k◦

)
= cos 59◦ cos 58◦ · · · cos 1◦

cos 1◦ cos 2◦ · · · cos 59◦ = 1.

695. We have

(1 − cot 1◦)(1 − cot 2◦) · · · (1 − cot 44◦)

=
(

1 − cos 1◦

sin 1◦

)(
1 − cos 2◦

sin 2◦

)
· · ·

(
1 − cos 44◦

sin 44◦

)
= (sin 1◦ − cos 1◦)(sin 2◦ − cos 2◦) · · · (sin 44◦ − cos 44◦)

sin 1◦ sin 2◦ · · · sin 44◦ .
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Using the identity sin a − cos a = √
2 sin(a − 45◦) in the numerators, we transform this

further into
√

2 sin(1◦ − 45◦) · √
2 sin(2◦ − 45◦) · · · √2 sin(44◦ − 45◦)

sin 1◦ sin 2◦ · · · sin 44◦

= (
√

2)44(−1)44 sin 44◦ sin 43◦ · · · sin 1◦

sin 44◦ sin 43◦ · · · sin 1◦ .

After cancellations, we obtain 222.

696. We can write

√
3 + tan n◦ = tan 60◦ + tan n◦ = sin 60◦

cos 60◦ + sin n◦

cos n◦

= sin(60◦ + n◦)
cos 60◦ cos n◦ = 2 · sin(60◦ + n◦)

cos n◦ = 2 · cos(30◦ − n◦)
cos n◦ .

And the product telescopes as follows:

29∏
n=1

(
√

3 + tan n◦) = 229
29∏
n=1

cos(30◦ − n◦)
cos n◦ = 229 · cos 29◦ cos 28◦ · · · cos 1◦

cos 1◦ cos 2◦ · · · cos 29◦ = 229.

(T. Andreescu)

697. (a) Note that

1 − 2 cos 2x = 1 − 2(2 cos2 x − 1) = 3 − 4 cos2 x = −cos 3x

cos x
.

The product becomes(
−1

2

)3 cos 3π
7

cos π7
· cos 9π

7

cos 3π
7

· cos 27π
7

cos 9π
7

= −1

8
· cos 27π

7

cos π7
.

Taking into account that cos 27π
7 = cos (2π − π

7 ) = cos π7 , we obtain the desired identity.
(b) Analogously,

1 + 2 cos 2x = 1 + 2(1 − 2 sin2 x) = 3 − 4 sin2 x = sin 3x

sin x
,

and the product becomes

1

24

sin 3π
20

sin π
20

· sin 9π
20

sin 3π
30

· sin 27π
20

sin 9π
20

· sin 81π
20

sin 27π
20

= 1

16

sin 81π
20

sin π
20

.



672 Geometry and Trigonometry

Because sin 81π
20 = sin (4π + π

20) = sin π
20 , this is equal to 1

16 .
(T. Andreescu)

698. (a) We observe that

sec x = 1

cos x
= 2 sin x

2 sin x cos x
= 2

sin x

sin 2x
.

Applying this to the product in question yields

24∏
n=1

sec(2n)◦ = 224
24∏
n=1

sin(2n)◦

sin(2n+1)◦
= 224 sin 2◦

sin(225)◦
.

We want to show that sin(225)◦ = cos 2◦. To this end, we prove that 225 − 2 − 90 is
an odd multiple of 180. This comes down to proving that 223 − 23 is an odd multiple
of 45 = 5 × 9. Modulo 5, this is 2 · (22)11 − 3 = 2 · (−1)11 − 3 = 0, and modulo 9,
4 · (23)7 − 5 = 4 · (−1)7 − 5 = 0. This completes the proof of the first identity.

(b) As usual, we start with a trigonometric computation

2 cos x − sec x = 2 cos2 x − 1

cos x
= cos 2x

cos x
.

Using this, the product becomes

25∏
n=2

cos(2n+1)◦

cos(2n)◦
= cos(226)◦

cos 4◦ .

The statement of the problem suggests that cos(226)◦ = − cos 4◦, which is true only if
226 − 4 is a multiple of 180, but not of 360. And indeed, 226 − 22 = 4(224 − 1), which is
divisible on the one hand by 24 − 1 and on the other by 26 − 1. This number is therefore
an odd multiple of 4 × 5 × 9 = 180, and we are done.

(T. Andreescu)
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699. Because an−1 ≡ n − 1 (mod k), the first positive integer greater than an−1 that is
congruent to nmodulo k must be an−1 +1. The nth positive integer greater than an−1 that
is congruent to nmodulo k is simply (n− 1)k more than the first positive integer greater
than an−1 that satisfies this condition. Therefore, an = an−1 + 1 + (n− 1)k. Solving this
recurrence gives

an = n+ (n− 1)nk

2
.

(Austrian Mathematical Olympiad, 1997)

700. First, let us assume that none of the progressions contains consecutive numbers,
for otherwise the property is obvious. Distributing the eight numbers among the three
arithmetic progressions shows that either one of the progressions contains at least four of
the numbers, or two of them contain exactly three of the numbers. In the first situation, if
one progression contains 2, 4, 6, 8, then it consists of all positive even numbers, and we
are done. If it contains 1, 3, 5, 7, then the other two contain 2, 4, 6, 8 and again we have
two possibilities: either a progression contains two consecutive even numbers, whence
it contains all even numbers thereafter, or one progression contains 2, 6, the other 4, 8,
and hence the latter contains 1980.

Let us assume that two progressions each contain exactly three of the numbers
1, 2, 3, 4, 5, 6, 7, 8. The numbers 3 and 6 must belong to different progressions, for
otherwise all multiples of 3 occur in one of the progressions and we are done. If 3
belongs to one of the progressions containing exactly three of the numbers, then these
numbers must be 3, 5, 7. But then the other two progressions contain 2, 4, 6, 8, and we
saw before that 1980 occurs in one of them. If 6 belongs to one of the progressions
containing exactly three of the numbers, then these numbers must be 4, 6, 8, and 1980
will then belong to this progression. This completes the proof.

(Austrian–Polish Mathematics Competition, 1980)
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701. From f (1)+2f (f (1)) = 8 we deduce that f (1) is an even number between 1 and 6,
that is, f (1) = 2, 4, or 6. If f (1) = 2 then 2+2f (2) = 8, so f (2) = 3. Continuing with
3 + 2f (3) = 11, we obtain f (3) = 4, and formulate the conjecture that f (n) = n + 1
for all n ≥ 1. And indeed, in an inductive manner we see that f (n) = n + 1 implies
n+ 1 + 2f (n+ 1) = 3n+ 5; hence f (n+ 1) = n+ 2.

The case f (1) = 4 gives 4 + 2f (4) = 8, so f (4) = 2. But then 2 + 2f (f (4)) = 17,
which cannot hold for reasons of parity. Also, if f (1) = 6, then 6 + 2f (6) = 8, so
f (6) = 1. This cannot happen, because f (6) + 2f (f (6)) = 1 + 2 · 6, which does not
equal 3 · 6 + 5.

We conclude that f (n) = n + 1, n ≥ 1, is the unique solution to the functional
equation.

702. Let g(x) = f (x) − x. The given equation becomes g(x) = 2g(f (x)). Iterating,
we obtain that g(x) = 2nf (n)(x) for all x ∈ Z, where f (n)(x) means f composed n
times with itself. It follows that for every x ∈ Z, g(x) is divisible by all powers of 2,
so g(x) = 0. Therefore, the only function satisfying the condition from the statement is
f (x) = x for all x.

(Revista Matematică din Timişoara (Timişoara Mathematics Gazette), proposed by
L. Funar)

703. Assume such a function exists, and define g : N → 3N+1, g(x) = 3f (x)+1. Then
g is bijective and satisfies g(xy) = g(x)g(y). This implies in particular that g(1) = 1.

We will need the following fact. If x is such that g(x) = n, where n = pq, and p, q
are prime numbers congruent to 2 modulo 3, then x is prime. Indeed, if x = yz, y, z ≥ 2,
then g(x) = g(y)g(z). This implies that n can be factored as the product of two numbers
in 3N + 1, which is not true.

Now choose two distinct numbers p and q that are congruent to 2 modulo 3 (for
example, 2 and 5). Then pq, p2, and q2 are all in the image of g. Let g(a) = p2,
g(b) = q2, and g(c) = pq. We have

g(c2) = g(c)2 = p2q2 = g(a)g(b) = g(ab).

It follows that c2 = ab, with a, b, and c distinct prime numbers, and this is impossible.
Therefore, such a function f does not exist.

(Balkan Mathematical Olympiad, 1991)

704. We will prove that a sequence of positive integers satisfying the double inequality
from the statement terminates immediately. Precisely, we show that if a1, a2, . . . , aN
satisfy the relation from the statement for n = 1, 2, . . . , N , then N ≤ 5.

Arguing by contradiction, let us assume that the sequence has a sixth term a6. Set
bn = an+1 − an, n = 1, . . . , 5. The relation from the statement implies an ≥ an−1 for
n ≥ 2, and so bn is a nonnegative integer for n = 1, . . . , 5. For n = 2, 3, 4 we have
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−an ≤ −b2
n ≤ −an−1,

an ≤ b2
n+1 ≤ an+1.

Adding these two inequalities, we obtain

0 ≤ b2
n+1 − b2

n ≤ bn + bn−1,

or

0 ≤ (bn+1 − bn)(bn+1 + bn) ≤ bn + bn−1.

Therefore, bn+1 ≥ bn for n = 2, 3, 4. If for n = 3 or n = 4 this inequality were strict,
then for that specific n we would have

0 < b2
n+1 − b2

n ≤ bn + bn−1 < bn+1 + bn,

with the impossible consequence 0 < bn+1 − bn < 1. It follows that b3 = b4 = b5.
Combining this with the inequality from the statement, namely with

b2
3 ≤ a3 ≤ b2

4 ≤ a4 ≤ b2
5,

we find that a3 = a4. But then b3 = a4 − a3 = 0, which would imply a2 ≤ b2
3 = 0, a

contradiction. We conclude that the sequence can have at most five terms. This limit is
sharp, since a1 = 1, a2 = 3, a3 = 4, a4 = 6, a5 = 8 satisfies the condition from the
statement.

(Romanian Team Selection Test for the International Mathematical Olympiad, 1985,
proposed by L. Panaitopol)

705. Setting x = y = z = 0 we find that f (0) = 3(f (0))3. This cubic equation has
the unique integer solution f (0) = 0. Next, with y = −x and z = 0 we have f (0) =
(f (x))3 +(f (−x))3 +(f (0))3, which yields f (−x) = −f (x) for all integers x; hence f
is an odd function. Now setx = 1, y = z = 0 to obtainf (1) = (f (1))3+2(f (0))3; hence
f (1) = f (1)3. Therefore, f (1) ∈ {−1, 0, 1}. Continuing with x = y = 1 and z = 0 and
x = y = z = 1 we find that f (2) = 2(f (1))3 = 2f (1) and f (3) = 3(f (1))3 = 3f (1).
We conjecture that f (x) = xf (1) for all integers x. We will do this by strong induction
on the absolute value of x, and for that we need the following lemma.

Lemma. If x is an integer whose absolute value is greater than 3, then x3 can be written
as the sum of five cubes whose absolute values are less than x.

Proof. We have

43 = 33 + 33 + 23 + 13 + 13, 53 = 43 + 43 + (−1)3 + (−1)3 + (−1)3,

63 = 53 + 43 + 33 + 03 + 03, 73 = 63 + 53 + 13 + 13 + 03,
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and if x = 2k + 1 with k > 3, then

x3 = (2k + 1)3 = (2k − 1)3 + (k + 4)3 + (4 − k)3 + (−5)3 + (−1)3.

In this last case it is not hard to see that 2k − 1, k + 4, |4 − k|, 5, and 1 are all less than
2k+ 1. If x > 3 is an arbitrary integer, then we write x = my, where y is 4, 6, or an odd
number greater than 3, and m is an integer. If we express y3 = y3

1 + y3
2 + y3

3 + y3
4 + y3

5 ,
then x3 = (my1)

3 + (my2)
3 + (my3)

3 + (my4)
3 + (my5)

3, and the lemma is proved.

Returning to the problem, using the fact that f is odd and what we proved before,
we see that f (x) = xf (1) for |x| ≤ 3. For x > 4, suppose that f (y) = yf (1) for all y
with |y| < |x|. Using the lemma write x3 = x3

1 + x3
2 + x3

3 + x3
4 + x3

5 , where |xi | < |x|,
i = 1, 2, 3, 4, 5. After writing

x3 + (−x4)
3 + (−x5)

3 = x3
1 + x3

2 + x3
3 ,

we apply f to both sides and use the fact that f is odd and the condition from the statement
to obtain

(f (x))3 − (f (x4))
3 − (f (x5))

3 = f (x1)
3 + f (x2)

3 + f (x3)
3.

The inductive hypothesis yields

(f (x))3 − (x4f (1))
3 − (x5f (1))

3 = (x1f (1))
3 + (x2f (1))

3 + (x3f (1))
3;

hence

(f (x))3 = (x3
1 + x3

2 + x3
3 + x3

4 + x3
5)(f (1))

3 = x3(f (1))3.

Hence f (x) = xf (1), and the induction is complete. Therefore, the only answers to the
problem are f (x) = −x for all x, f (x) = 0 for all x, and f (x) = x for all x. That these
satisfy the given equation is a straightforward exercise.

(American Mathematical Monthly, proposed by T. Andreescu)

706. The number on the left ends in a 0, 1, 4, 5, 6, or 9, while the one on the right ends
in a 0, 2, 3, 5, 7, or 8. For equality to hold, both x and z should be multiples of 5, say
x = 5x0 and z = 5z0. But then 25x2

0 + 10y2 = 3 · 25z2. It follows that y is divisible
by 5 as well, y = 5y0. The positive integers x0, y0, z0 satisfy the same equation, and
continuing we obtain an infinite descent. Since this is not possible, the original equation
does not have positive integer solutions.

707. It suffices to show that there are no positive solutions. Adding the two equations,
we obtain

6(x2 + y2) = z2 + t2.
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So 3 divides z2 + t2. Since the residue of a square modulo 3 is either 0 or 1, this can
happen only if both z and t are divisible by 3, meaning that z = 3z1, t = 3t1. But then

6(x2 + y2) = 9(z2
1 + t21 ),

and hence x2 + y2 is divisible by 3. Again, this can happen only if x = 3x1, and
y = 3y1, with x1, y1 positive integers. So (x1, y1, z1, t1) is another solution. We construct
inductively a decreasing infinite sequence of positive solutions, which, of course, cannot
exist. Hence the system does not admit nontrivial solutions.

(W. Sierpiński, 250 Problems in Elementary Number Theory, Państwowe Wydaw-
nictwo Naukowe, Warsawa, 1970)

708. Assume that the positive integers x, y, z satisfy the given equation, and let d = xy.
If d = 1, then x = y = 1 and z = 0, which cannot happen. Hence d > 1. Let p be a
prime divisor of d. Because

(x + y)(x − y) = x2 − y2 = 2xyz ≡ 0 (mod p),

either x ≡ y (mod p) or x ≡ −y (mod p). Butp divides one of x and y, sopmust divide
the other, too. Hence x1 = x/p and y1 = y/p are positive integers, and x1, y1, z satisfy
the given equation as well. Repeating the argument, we construct an infinite sequence of
solutions (xn, yn, z), n ≥ 1, to the original equation, with x1 > x2 > x3 > · · · . This is,
of course, impossible; hence the equation has no solutions.

(T. Andreescu, D. Andrica, An Introduction to Diophantine Equations, GIL, 2002)

709. If (a2
n)n is an infinite arithmetic progression, then

a2
k+1 − a2

k = a2
k − a2

k−1, for k ≥ 2.

Such an arithmetic progression must be increasing, so ak+1 +ak > ak+ak−1. Combining
the two relations, we obtain ak+1 − ak < ak − ak−1, for all k ≥ 2. We have thus obtained
an infinite descending sequence of positive integers

a2 − a1 > a3 − a2 > a4 − a3 > · · · .

Clearly, such a sequence cannot exist. Hence there is no infinite arithmetic progression
whose terms are perfect squares.

Remark. In fact, much more is true. No four perfect squares can form an arithmetic
progression.

(T.B. Soulami, Les olympiades de mathématiques: Réflexes et stratégies, Ellipses,
1999)
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710. Assume that the property does not hold, and fix a. Only finitely many numbers of
the form f (a + k) can be less than a, so we can choose r such that f (a + nr) > f (a)

for all n. By our assumption f (a+ 2m+1r) < f (a + 2mr) for allm, for otherwise a and
d = 2mr would satisfy the desired property. We have constructed an infinite descending
sequence of positive integers, a contradiction. Hence the conclusion.

(British Mathematical Olympiad, 2003)

711. We will apply Fermat’s infinite descent method to the prime factors of n.
Letp1 be a prime divisor of n, and q the smallest positive integer for whichp1 divides

2q − 1. From Fermat’s little theorem it follows that p1 also divides 2p1−1 − 1. Hence
q ≤ p1 − 1 < p1.

Let us prove that q divides n. If not, let n = kq + r , where 0 < r < q. Then

2n − 1 = 2kq · 2r − 1 = (2q)k · 2r − 1 = (2q − 1 + 1)k · 2r − 1

=
k∑
j=1

(
k

j

)
(2q − 1)j · 2r − 1 ≡ 2r − 1 (mod p1).

It follows that p1 divides 2r − 1, contradicting the minimality of q. Hence q divides n,
and 1 < q < p1. Let p2 be a prime divisor of q. Then p2 is also a divisor of n, and
p2 < p1. Repeating the argument, we construct an infinite sequence of prime divisors
of n, p1 > p2 > · · · , which is impossible. Hence the conclusion.

(1st W.L. Putnam Mathematical Competition, 1939)

712. The divisibility condition can be written as

k(ab + a + b) = a2 + b2 + 1,

where k is a positive integer. The small values of k are easy to solve. For example, k = 1
yields ab+a+b = a2 +b2 +1, which is equivalent to (a−b)2 +(a−1)2 +(b−1)2 = 0,
whose only solution is a = b = 1. Also, for k = 2 we have 2ab+2a+2b = a2 +b2 +1.
This can be rewritten either as 4a = (b−a−1)2 or as 4b = (b−a+1)2, showing that both
a and b are perfect squares. Assuming that a ≤ b, we see that (b−a−1)−(b−a+1) = 2,
and hence a and b are consecutive squares. We obtain as an infinite family of solutions
the pairs of consecutive perfect squares.

Now let us examine the case k ≥ 3. This is where we apply Fermat’s infinite descent
method. Again we assume that a ≤ b. A standard approach is to interpret the divisibility
condition as a quadratic equation in b:

b2 − k(a + 1)b + (a2 − ka + 1) = 0.

Because one of the roots, namely b, is an integer, the other root must be an integer, too
(the sum of the roots is k(a + 1)). Thus we may substitute the pair (a, b) by the smaller
pair (r, a), provided that 0 < r < a.
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Let us verify first that 0 < r . Assume the contrary. Since br = a2 − ka + 1, we
must have a2 − ka + 1 ≤ 0. The equality case is impossible, since a(k − a) = 1
cannot hold if k ≥ 3. If a2 − ka + 1 < 0, the original divisibility condition implies
b(b − ak − k) = ak − a2 − 1 > 0, hence b − ak − k > 0. But then b(b − ak − k) >

(ak+ k) · 1 > ak− a2 − 1, a contradiction. This proves that r is positive. From the fact
that br = a2 −ka+1 < a2 and b ≥ a, it follows that r < a. Successively, we obtain the
sequence of pairs of solutions to the original problem (a1, b1) = (a, b), (a2, b2) = (r, a),
(a3, b3), . . . , with ai ≤ bi and a1 > a2 > a3 > · · · , b1 > b2 > b3 > · · · , which of
course is impossible. This shows that the ratio of a2 + b2 + 1 to ab + a + b cannot be
greater than or equal to 3, and so the answer to the problem consists of the pair (1, 1)
together with all pairs of consecutive perfect squares.

(Mathematics Magazine)

713. We argue by contradiction: assuming the existence of one triple that does not satisfy
the property from the statement, we construct an infinite decreasing sequence of such
triples. So let (x0, y0, z0) be a triple such that x0y0 − z2

0 = 1, but for which there do
not exist nonnegative integers a, b, c, d such that x0 = a2 + b2, y0 = c2 + d2, and
z0 = ac + bd . We can assume that x0 ≤ y0, and also x0 ≥ 2, for if x0 = 1, then
x0 = 12 + 02, y0 = z2

0 + 12, and z0 = z0 · 1 + 0 · 1. We now want to construct a new
triple (x1, y1, z1) satisfying x2

1y
2
1 − z2

1 = 1 such that x1 + y1 + z1 < x0 + y0 + z0. To this
end, set z0 = x0 + u. Then

1 = x0y0 − (x0 + u)2 = x0y0 − x2
0 − 2x0u+ u2

= x0(y − x0 − 2u)− u2 = x0(x0 + y0 − 2z0)− (z0 − x0)
2.

A good candidate for the new triple is (x1, y1, z1) with x1 = min(x0, x0 + y0 − 2z0),
y1 = max(x0, x0 + y0 − 2z0), z1 = z0 − x0. Note that x1 + y1 + z1 = x0 + y0 − z0 <

x0 + y0 + z0.
First, let us verify that x1, y1, z1 are positive. From

z2
0 = x0y0 − 1 < x0y0 ≤

(
x0 + y0

2

)2

we deduce that x0 + y0 > 2z0, which means that x0 + y0 − 2z0 > 0. It follows that both
x1 and y1 are positive. Also,

z2
0 = x0y0 − 1 ≥ x2

0 − 1,

which implies (z0 − x0)(z0 + x0) ≥ −1. Since z0 + x0 ≥ 3, this can happen only
if z0 ≥ x0. Equality would yield x0(y0 − x0) = 1, which cannot hold in view of the
assumption x0 ≥ 2. Hence z1 = z0 − x0 > 0. If the new triple satisfied the condition
from the statement, we would be able to find nonnegative integers m, n, p, q such that
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x0 = m2 + n2, x0 + y0 − 2z0 = p2 + q2, z0 − x0 = mp + nq.

In that case,

y0 = p2 + q2 + 2z0 − x0 = p2 + q2 + 2mp + 2nq +m2 + n2 = (m+ p)2 + (n+ q)2

and

z0 = m(m+ p)+ n(n+ q),

contradicting our assumption.
We therefore can construct inductively an infinite sequence of triples of positive

numbers (xn, yn, zn), n ≥ 0, none of which admits the representation from the statement,
and such that xn + yn + zn > xn+1 + yn+1 + zn+1 for all n. This is of course impossible,
and the claim is proved.

(short list of the 20th International Mathematical Olympiad, 1978)

714. First solution: Choose k such that

�x� + k

n
≤ x < �x� + k + 1

n
.

Then �x + j

n
� is equal to �x� for j = 0, 1, . . . , n − k − 1, and to �x� + 1 for x =

n − k, . . . , n − 1. It follows that the expression on the left is equal to n�x� + k. Also,
�nx� = n�x� + k, which shows that the two sides of the identity are indeed equal.

Second solution: Define f : R → N,

f (x) = �x� +
⌊
x + 1

n

⌋
+ · · · +

⌊
x + n− 1

n

⌋
− �nx�.

We have

f

(
x + 1

n

)
=
⌊
x + 1

n

⌋
+ · · · +

⌊
x + n− 1

n

⌋
+
⌊
x + n

n

⌋
− �nx + 1� = f (x).

Therefore, f is periodic, with period 1
n
. Also, since f (x) = 0 for x ∈ [0, 1

n
), it follows

that f is identically 0, and the identity is proved.
(Ch. Hermite)

715. Denote the sum in question by Sn. Observe that

Sn − Sn−1 =
⌊x
n

⌋
+
⌊
x + 1

n

⌋
+ · · · +

⌊
x + n− 1

n

⌋
=
⌊x
n

⌋
+
⌊
x

n
+ 1

n

⌋
+ · · · +

⌊
x

n
+ n− 1

n

⌋
,
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and, according to Hermite’s identity,

Sn − Sn−1 =
⌊
n
x

n

⌋
= �x�.

Because S1 = �x�, it follows that Sn = n�x� for all n ≥ 1.
(S. Savchev, T. Andreescu, Mathematical Miniatures, MAA, 2002)

716. Set k = �√n�. We want to prove that

k =
⌊√

n+ 1√
n+ √

n+ 2

⌋
,

which amounts to proving the double inequality

k ≤ √
n+ 1√

n+ √
n+ 2

< k + 1.

The inequality on the left is obvious. For the other, note that k ≤ √
n < k + 1, which

implies k2 ≤ n ≤ (k + 1)2 − 1. Using this we can write

√
n+ 1√

n+ √
n+ 2

= √
n+

√
n+ 2 − √

n

2
=

√
n+ 2 + √

n

2

≤
√
(k + 1)2 + 1 +√

(k + 1)2 − 1

2
< k + 1.

The last inequality in this sequence needs to be explained. Rewriting it as

1

2

√
(k + 1)2 + 1 + 1

2

√
(k + 1)2 − 1 <

√
(k + 1)2,

we recognize Jensen’s inequality for the (strictly) concave function f (x) = √
x. This

completes the solution.
(Gh. Eckstein)

717. We apply the identity proved in the introduction to the functionf : [1, n] → [1,√n],
f (x) = √

x. Because n(Gf ) = �√n�, the identity reads

n∑
k=1

�√k� +
�√n�∑
k=1

�k2� − �√n� = n�√n�.

Hence the desired formula is

n∑
k=1

�√k� = (n+ 1)a − a(a + 1)(2a + 1)

6
.
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(Korean Mathematical Olympiad, 1997)

718. The function f : [1, n(n+1)
2 ] → R,

f (x) = −1 + √
1 + 8x

2
,

is, in fact, the inverse of the increasing bijective function g : [1, n] → [1, n(n+1)
2 ],

g(x) = x(x + 1)

2
.

We apply the identity proved in the introduction to g in order to obtain

n∑
k=1

⌊
k(k + 1)

2

⌋
+

n(n+1)
2∑
k=1

⌊
−1 + √

1 + 8k

2

⌋
− n = n2(n+ 1)

2
.

Note that k(k+1)
2 is an integer for all k, and so

n∑
k=1

⌊
k(k + 1)

2

⌋
=

n∑
k=1

k(k + 1)

2
= 1

2

n∑
k=1

(k2 + k) = n(n+ 1)

4
+ n(n+ 1)(2n+ 1)

12

= n(n+ 1)(n+ 2)

6
.

The identity follows.

719. The property is clearly satisfied if a = b or if ab = 0. Let us show that if neither of
these is true, then a and b are integers.

First, note that for an integer x, �2x� = 2�x� if x−�x� ∈ [0, 1
2) and �2x� = 2�x�+1

if x−�x� ∈ [ 1
2 , 1). Let us see which of the two holds for a and b. If �2a� = 2�a�+1, then

a�2b� = b�2a� = 2�a�b + b = 2a�b� + b.

This implies �2b� = 2�b� + b
a
, and so b

a
is either 0 or 1, which contradicts our working

hypothesis. Therefore, �2a� = 2�a� and also �2b� = 2�b�. This means that the fractional
parts of both a and b are less than 1

2 . With this as the base case, we will prove by induction
that �2ma� = 2m�a� and �2mb� = 2m�b� for all m ≥ 1.

The inductive step works as follows. Assume that the property is true for m and let
us prove it for m + 1. If �2m+1a� = 2�2ma�, we are done. If �2m+1a� = 2�2ma� + 1,
then

a�2m+1b� = b�2m+1a� = 2�2ma�b + b = 2m+1�a�b + b = 2m+1a�b� + 1.
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As before, we deduce that �2m+1b� = 2m+1�b�+ b
a
. Again this is an impossibility. Hence

the only possibility is that �2m+1a� = 2m+1�a� and by a similar argument �2m+1b� =
2m+1�b�. This completes the induction.

From �2ma� = 2m�a� and �2mb� = 2m�b� we deduce that the fractional parts of a
and b are less than 1

2m . Taking m → ∞, we conclude that a and b are integers.
(short list of the 39th International Mathematical Olympiad, 1998)

720. Ignoring the “brackets’’ we have

p

q
+ 2p

q
+ · · · + (q − 1)p

q
= (q − 1)p

2
.

The difference between kp/q and �kp/q� is r/q, where r is the remainder obtained on
dividing kp by q. Since p and q are coprime, p, 2p, . . . , (q − 1)p form a complete set
of residues modulo q. So for k = 1, 2, . . . , q − 1, the numbers k/p − �kp/q� are a
permutation of 1, 2, . . . , q − 1. Therefore,

q−1∑
k=1

⌊
kp

q

⌋
=

q−1∑
k=1

kp

q
−

q−1∑
k=1

k

q
= (q − 1)p

2
− q − 1

2
= (p − 1)(q − 1)

2
,

and the reciprocity law follows.

721. The function

f (x) = �nx� − �x�
1

− �2x�
2

− �3x�
3

− · · · − �nx�
n

satisfies f (x) = f (x + 1) for all x and f (0) = 0. Moreover, the function is constant
on subintervals of [0, 1) that do not contain numbers of the form p/q, 2 ≤ q ≤ n and
1 ≤ p ≤ q − 1. Thus it suffices to verify the inequality for x = p/q, where p and q are
coprime positive integers, 2 ≤ q ≤ n, 1 ≤ p ≤ q − 1. Subtracting the inequality from

x = x

1
+ 2x

2
+ · · · + nx

n
,

we obtain the equivalent inequality for the fractional part {·} ({x} = x − �x�),

{nx} ≤ {x}
1

+ {2x}
2

+ {3x}
3

+ · · · + {nx}
n
,

which we prove for the particular values of x mentioned above. If rk is the remainder
obtained on dividing kp by q, then {kx} = rk

q
, and so the inequality can be written as

rn

q
≤ r1/q

1
+ r2/q

2
+ r3/q

3
+ · · · + rn/q

n
,
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or

rn ≤ r1

1
+ r2

2
+ r3

3
+ · · · + rn

n
.

Truncate the sum on the right to the (q − 1)st term. Since p and q are coprime, the
numbers r1, r2, . . . , rq−1 are a permutation of 1, 2, . . . , q − 1. Applying this fact and the
AM–GM inequality, we obtain

r1

1
+ r2

2
+ r3

3
+ · · · + rq−1

q − 1
≥ (q − 1)

(
r1

1
· r2

2
· r3

3
· · · rq−1

q − 1

)1/(q−1)

= (q − 1) ≥ rn.

This proves the (weaker) inequality

r1

1
+ r2

2
+ r3

3
+ · · · + rn

n
≥ rn,

and consequently the inequality from the statement of the problem.
(O.P. Lossers)

722. Let x1 be the golden ratio, i.e., the (unique) positive root of the equation x2 −x−1 =
0. We claim that the following identity holds:⌊

x1

⌊
x1n+ 1

2

⌋
+ 1

2

⌋
=
⌊
x1 + 1

2

⌋
+ n.

If this were so, then the function f (n) = �x1n+ 1
2� would satisfy the functional equation.

Also, since α = 1+√
5

2 > 1, f would be strictly increasing, and so it would provide an
example of a function that satisfies the conditions from the statement.

To prove the claim, we only need to show that⌊
(x1 − 1)

⌊
x1n+ 1

2

⌋
+ 1

2

⌋
= n.

We have ⌊
(x1 − 1)

⌊
x1n+ 1

2

⌋
+ 1

2

⌋
≤
⌊
(x1 − 1)

(
x1n+ 1

2

)
+ 1

2

⌋
=
⌊
x1n+ n− x1n+ x1

2

⌋
= n.

Also,

n =
⌊
n+ 2 − x1

2

⌋
≤
⌊
(x1 − 1)

(
x1n− 1

2

)
+ 1

2

⌋
≤
⌊
(x1 − 1)

⌊
x1n+ 1

2

⌋
+ 1

2

⌋
.
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This proves the claim and completes the solution.
(34th International Mathematical Olympiad, 1993)

723. Suppose first that the pair (f, g) is not unique and that there is a second pair of func-
tions (f ′, g′) subject to the same conditions. Write the sets {f (n), n ≥ 1}∪{g(n), n ≥ 1},
respectively, {f ′(n), n ≥ 1} ∪ {g′(n), n ≥ 1}, as increasing sequences, and let n0 be the
smallest number where a difference occurs in the values off (n) andg(n) versusf ′(n) and
g′(n). Because the pairs of functions exhaust the positive integers, either f (n1) = g′(n0)

or f ′(n0) = g(n1). The situations are symmetric, so let us assume that the first occurs.
Then

f (n1) = g′(n0) = f ′(f ′(kn0))+ 1 = f (f (kn0))+ 1 = g(n0).

We stress that the third equality occurs because f ′(kn0) occurs earlier in the sequence
(since it is smaller than f (n1)), so it is equal to f (kn0), and the same is true for
f ′(f ′(kn0)). But the equality f (n1) = g(n0) is ruled out by the hypothesis, which
shows that our assumption was false. Hence the pair (f, g) is unique.

Inspired by the previous problems we take α to be the positive root of the quadratic
equation kx2 − kx − 1 = 0, and set β = kα2. Then 1

α
+ 1

β
= 1, and because k is an

integer, both α and β are irrational. By Beatty’s theorem the sequences f (n) = �αn�
and g(n) = �βn� are strictly increasing and define a partition of the positive integers
into two disjoint sets. Let us show that f and g satisfy the functional equation from the
statement.

Because kα2 = kα + 1,

g(n) = �kα2n� = �(kα + 1)n� = �kαn� + n,

and we are left to prove that �αkn� + n = �α�αkn�� + 1, the latter being f (f (kn))+ 1.
Reduce this further to

�(α − 1)�αkn�� = n− 1.

Since (α − 1)αk = 1 and α is irrational, �(α − 1)�αkn�� < n. Also,

(α − 1)�αkn� > (α − 1)(αkn− 1) = (α2k − αk)n+ 1 − α = n+ 1 − α > n− 1,

since α < 2 (which can be checked by solving the quadratic equation that defines α).
Hence

g(n) = �αkn� + n = �α�αn�� + 1 = f (f (kn))+ 1,

and the problem is solved.
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Remark. The case k = 1 was given at the 20th International Mathematical Olympiad,
1978; the idea of the solution was taken from I.J. Schoenberg, Mathematical Time Expo-
sures (MAA, 1982).

724. If we multiplied the fraction by 8, we would still get an integer. Note that

8
n3 − 3n2 + 4

2n− 1
= 4n2 − 10n− 5 + 27

2n− 1
.

Hence 2n − 1 must divide 27. This happens only when 2n − 1 = ±1,±3,±9,±27,
that is, when n = −13,−4,−1, 1, 2, 5, 14. An easy check shows that for each of these
numbers the original fraction is an integer.

725. The factor to be erased is 50!. Indeed, using the equality (2k)! = (2k − 1)! · 2k, we
see that

P = (1!)2 · 2 · (3!)2 · 4 · (5!)2 · 6 · · · (99!)2 · 100 = (1! · 3! · 5! · · · 99!)2 · 2 · 4 · 6 · · · 100

= (1! · 3! · 5! · · · 99!)2 · 250 · 50! = (1! · 3! · 5! · · · 99! · 225)2 · 50!.
It is noteworthy that P itself is not a perfect square, since 50! is not, the latter because 47
appears to the first power in 50!.

(first stage of the Moscow Mathematical Olympiad, 1995–1996)

726. For any integerm, we have gcd(am, a2m) = gcd(2m,m) = m, and som divides am.
It follows that for any other integer n,m divides an if and only if it divides gcd(am, an) =
gcd(m, n). Hence an has exactly the same divisors as n, so it must equal n, for all n.

(Russian Mathematical Olympiad, 1995)

727. Because gcd(a, b) divides both a and b, we can factor ngcd(a,b)−1 from both na −1
and nb − 1. Therefore, ngcd(a,b) − 1 divides gcd(na − 1, nb − 1).

On the other hand, using Euclid’s algorithm we can find positive integers x and y
such that ax − by = gcd(a, b). Then na − 1 divides nax − 1 and nb − 1 divides nby − 1.
In order to combine these two, we use the equality

nby(ngcd(a,b) − 1) = (nax − 1)− (nbx − 1).

Note that gcd(na−1, nb−1) divides the right-hand side, and has no common factor with
nby . It therefore must divide ngcd(a,b) − 1. We conclude that ngcd(a,b) − 1 = gcd(na −
1, nb − 1), as desired.

728. We use the particular case n = 2 of the previous problem as a lemma. To obtain the
negative signs we incorporate 2a + 1 and 2b + 1 into 22a − 1 and 22b − 1, then apply the
lemma to these two numbers. We have

2gcd(2a,2b) − 1 = gcd(22a − 1, 22b − 1) = gcd
(
(2a − 1)(2a + 1), (2b − 1)(2b + 1)

)
.
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Because 2a − 1 and 2a + 1 are coprime, and so are 2b − 1 and 2b + 1, this is further
equal to

gcd(2a − 1, 2b − 1) · gcd(2a − 1, 2b + 1) · gcd(2a + 1, 2b − 1) · gcd(2a + 1, 2b + 1).

It follows that gcd(2a + 1, 2b + 1) divides 2gcd(2a,2b) − 1. Of course,

2gcd(2a,2b) − 1 = 22 gcd(a,b) − 1 = (2gcd(a,b) − 1)(2gcd(a,b) + 1),

so gcd(2a + 1, 2b + 1) divides the product (2gcd(a,b) − 1)(2gcd(a,b) + 1). Again because
gcd(2a + 1, 2a − 1) = gcd(2b + 1, 2b − 1) = 1, it follows that gcd(2a + 1, 2b + 1) and
2gcd(a,b) − 1 do not have common factors. We conclude that gcd(2a + 1, 2b + 1) divides
2gcd(a,b) + 1.

729. We compute a2 = (k + 1)2 − k(k + 1) + k = (k + 1) + k = a1 + k, a3 =
a2(a2 − k) + k = a2a1 + k, a4 = a3(a3 − k) + k = a3a2a1 + k, and in general if
an = an−1an−2 · · · a1 + k, then

an+1 = an(an − k)+ k = anan−1an−2 · · · a1 + k.

Therefore, an − k is divisible by am, for 1 ≤ m < n. On the other hand, inductively we
obtain that am and k are relatively prime. It follows that am and an = (an − k) + k are
also relatively prime. This completes the solution.

(Polish Mathematical Olympiad, 2002)

730. By hypothesis, all coefficients of the quadratic polynomial

P(x) = (x + a)(x + b)(x + c)− (x − d)(x − e)(x − f )

= (a + b + c + d + e + f )x2 + (ab + bc + ca − de − ef − f d)x

+ (abc + def )

are divisible by S = a + b + c + d + e + f . Evaluating P(x) at d, we see that
P(d) = (a+d)(b+d)(c+d) is a multiple of S. This readily implies that S is composite
because each of a + d, b + d, and c + d is less than S.

(short list of 46th International Mathematical Olympiad, 2005)

731. The polynomial

P(n) = n(n− 1)4 + 1 = n5 − 4n4 + 6n3 − 4n2 + n+ 1

does not have integer zeros, so we should be able to factor it as a product a quadratic and
a cubic polynomial. This means that

P(n) = (n2 + an+ 1)(n3 + bn3 + cn+ 1),
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for some integers a, b, c. Identifying coefficients, we must have

a + b = −4,

c + ab + 1 = 6,

b + ac + 1 = −4,

a + c = 1.

From the first and last equations, we obtain b − c = −5, and from the second and the
third, (b−c)(a−1) = 10. It follows that a−1 = −2; hence a = −1, b = −4+1 = −3,
c = 1 + 1 = 2. Therefore,

n(n− 1)4 + 1 = (n2 − n+ 1)(n3 − 3n2 + 2n+ 1),

a product of integers greater than 1.
(T. Andreescu)

732. Setting n = 0 in (i) gives

f (1)2 = f (0)2 + 6f (0)+ 1 = (f (0)+ 3)2 − 8.

Hence

(f (0)+ 3)2 − f (1)2 = (f (0)+ 3 + f (1))(f (0)+ 3 − f (1)) = 4 × 2.

The only possibility is f (0)+ 3 + f (1) = 4 and f (0)+ 3 − f (1) = 2. It follows that
f (0) = 0 and f (1) = 1.

In general,

(f (2n+ 1)− f (2n))(f (2n+ 1)+ f (2n)) = 6f (n)+ 1.

We claim that f (2n+1)−f (2n) = 1 and f (2n+1)+f (2n) = 6f (n)+1. To prove our
claim, let f (2n+1)−f (2n) = d. Then f (2n+1)+f (2n) = d+2f (2n). Multiplying,
we obtain

6f (n)+ 1 = d(d + 2f (2n)) ≥ d(d + 2f (n)),

where the inequality follows from condition (ii). Moving everything to one side, we
obtain the inequality

d2 + (2d − 6)f (n)− 1 ≤ 0,

which can hold only if d ≤ 3. The cases d = 2 and d = 3 cannot hold, because d divides
6f (n)+1. Hence d = 1, and the claim is proved. From it we deduce that f is computed
recursively by the rule
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f (2n+ 1) = 3f (n)+ 1,

f (2n) = 3f (n).

At this moment it is not hard to guess the explicit formula forf ; it associates to a number in
binary representation the number with the same digits but read in ternary representation.
For example, f (5) = f (1012) = 1013 = 10.

733. It is better to rephrase the problem and prove that there are infinitely many prime
numbers of the form 4m− 1. Euclid’s proof of the existence of infinitely many primes,
presented in the first section of the book, works in this situation, too. Assume that there
exist only finitely many prime numbers of the form 4m − 1, and let these numbers be
p1, p2, . . . , pn. ConsiderM = 4p1p2p3 · · ·pn − 1. This number is of the form 4m− 1,
so it has a prime divisor of the same form, for otherwiseM would be a product of numbers
of the form 4m + 1 and itself would be of the form 4m + 1. But M is not divisible by
any of the primes p1, p2, . . . , pn, so it must be divisible by some other prime of the form
4m − 1. This contradicts our assumption that p1, p2, . . . , pn are all primes of the form
4m − 1, showing that it was false. We conclude that there exist infinitely many prime
numbers of the form 4m+ 3, m an integer.

Remark. A highly nonelementary theorem of Dirichlet shows that for any two coprime
numbers a and b, the arithmetic progression an + b, n ≥ 0 contains infinitely many
prime terms.

734. We have

m

n
= 1

1
− 1

2
+ 1

3
− 1

4
+ · · · + 1

2k − 1
− 1

2k

= 1 + 1

2
+ 1

3
+ · · · + 1

2k
− 2

(
1

2
+ 1

4
+ · · · + 1

2k

)
= 1 + 1

2
+ 1

3
+ · · · + 1

2k
−
(

1 + 1

2
+ · · · + 1

k

)
= 1

k + 1
+ 1

k + 2
+ · · · + 1

2k − 1
+ 1

2k

=
(

1

k + 1
+ 1

2k

)
+
(

1

k + 2
+ 1

2k − 1

)
+ · · ·

= 3k + 1

(k + 1)2k
+ 3k + 1

(k + 2)(2k − 1
+ · · · .

It follows that m(2k)! = n(3k + 1)q for some positive integer q; hence p = 3k + 1
dividesm(2k)!. But p is a prime greater than 2k, so it is coprime to (2k)!. Thus p divides
m, and we are done.

(Mathematical Reflections, proposed by T. Andreescu)
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735. The numbers x and y have the same prime factors,

x =
k∏
i=1

p
αi
i , y =

k∏
i=1

p
βi
i .

The equality from the statement can be written as

k∏
i=1

p
αi(x+y)
i =

k∏
i=1

p
βi(y−x)
i ;

hence αi(y + x) = βi(y − x) for i = 1, 2, . . . , k. From here we deduce that αi < βi ,
i = 1, 2, . . . , k, and therefore x divides y. Writing y = zx, the equation becomes
xx(z+1) = (xz)x(z−1), which implies x2 = zz−1 and then y2 = (xz)2 = zz+1. A power
is a perfect square if either the base is itself a perfect square or if the exponent is even.
For z = t2, t ≥ 1, we have x = t t

2−1, y = t t
2+1, which is one family of solutions. For

z−1 = 2s, s ≥ 0, we obtain the second family of solutions x = (2s+1)s , y = (2s+1)s+1.
(Austrian–Polish Mathematics Competition, 1999, communicated by I. Cucurezea-

nu)

736. If n is even, then we can write it as (2n)− n. If n is odd, let p be the smallest odd
prime that does not divide n. Then write n = (pn)−((p−1)n). The numberpn contains
exactly one more prime factor than n. As for (p− 1)n, it is divisible by 2 because p− 1
is even, while its odd factors are less than p, so they all divide n. Therefore, (p − 1)n
also contains exactly one more prime factor than n, and therefore pn and (p− 1)n have
the same number of prime factors.

(Russian Mathematical Olympiad, 1999)

737. The only numbers that do not have this property are the products of two distinct
primes.

Let n be the number in question. If n = pq with p, q primes and p 	= q, then any
cycle formed by p, q, pq will have p and q next to each other. This rules out numbers
of this form.

For any other number n = p
α1
1 p

α2
2 · · ·pαkk , with k ≥ 1, αi ≥ 1 for i = 1, 2, . . . , k

and α1 + α2 ≥ 3 if k = 2, arrange the divisors of n around the circle according to the
following algorithm. First, we place p1, p2, . . . , pk arranged clockwise around the circle
in increasing order of their indices. Second, we place pipi+1 between pi and pi+1 for
i = 1, . . . , k − 1. (Note that the text has pi+i , which is a typo and lets i go up to k, which
is a problem if k = 2, since p1p2 gets placed twice.) Third, we place n between pk and
p1. Note that at this point every pair of consecutive numbers has a common factor and
each prime pi occurs as a common factor for some pair of adjacent numbers. Now for
any remaining divisor of n we choose a prime pi that divides it and place it between pi
and one of its neighbors.

(USA Mathematical Olympiad, 2005, proposed by Z. Feng)
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738. The answer is negative. To motivate our claim, assume the contrary, and let
a0, a1, . . . , a1995 = a0 be the integers. Then for i = 1, 2, . . . , 1995, the ratio ak−1/ak is
either a prime, or the reciprocal of a prime. Suppose the former happensm times and the
latter 1995 −m times. The product of all these ratios is a0/a1995 = 1, which means that
the product of some m primes equals the product of some 1995 − m primes. This can
happen only when the primes are the same (by unique factorization), and in particular
they must be in the same number on both sides. But the equality m = 1995 − m is
impossible, since 1995 is odd, a contradiction. This proves our claim.

(Russian Mathematical Olympiad, 1995)

739. First solution: The cases p = 2, 3, 5 are done as before. Let p ≥ 7. The numbers
p, 2p, . . . , 9999999999p have distinct terminating ten-digit sequences. Indeed, the dif-
ference mp − np = (m− n)p is not divisible by 1010, since p is relatively prime to 10
and m − n < 1010. There are 1010 − 1 ten-digit terminating sequences, so all possible
combinations of digits should occur. Many of these sequences consist of distinct digits,
providing solutions to the problem.

Second solution: The statement is true forp = 2 andp = 5. Suppose thatp 	= 2, 5. Then
p is relatively prime to 10. From Fermat’s little theorem, 10p−1 ≡ 1 (mod p) and hence
10k(p−1) ≡ 1 (mod p) for all positive integers k. Let a be a 10-digit number with distinct
digits, and let a ≡ n (mod p), with 0 ≤ n ≤ p − 1. Since p ≥ 3, 106(p−1) > 1010.
Therefore,

Na = 10(p−n+5)(p−1) + · · · + 106(p−1) + a ≡ 1 + · · · + 1 + n ≡ 0 (mod p).

For all positive integers k, the numbers of the form

1010kp +Na,

end in a and are divisible by p.
(proposed by T. Andreescu for the 41st International Mathematical Olympiad, 2000,

first solution by G. Galperin, second solution by Z. Feng)

740. The casep = 2 is easy, so assume thatp is an odd prime. Note that ifp2 = a2 +2b2,
then 2b2 = (p − a)(p + a). In particular, a is odd. Also, a is too small to be divisible
by p. Hence gcd(p − a, p + a) = gcd(p − a, 2p) = 2. By changing the sign of a we
may assume that p − a is not divisible by 4, and so we must have |p + a| = m2 and
|p − a| = 2n2 for some integers m and n.

Because |a| < p, both p + a and p − a are actually positive, so p + a = m2 and
p − a = 2n2. We obtain 2p = m2 + 2n2. This can happen only if m is even, in which
case p = n2 + 2(m2 )

2, as desired.
(Romanian Mathematical Olympiad, 1997)
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741. Note that if d is a divisor of n, then so is n
d

. So the sum s is given by

s =
k−1∑
i=1

didi+1 = n2
k−1∑
i=1

1

didi+1
≤ n2

k−1∑
i=1

(
1

di
− 1

di+1

)
<
n2

d1
= n2.

For the second part, note also that d2 = p, dk−1 = n
p

, where p is the least prime

divisor of n. If n = p, then k = 2, and s = p, which divides n2. If n is composite, then
k > 2, and S > dk−1dk = n2

p
. If such an s were a divisor of n2, then n2

s
would also be a

divisor of n2. But 1 < n2

s
< p, which is impossible, because p is the least prime divisor

of n2. Hence the given sum is a divisor of n2 if and only if n is a prime.
(43rd International Mathematical Olympiad, 2002, proposed by M. Manea (Roma-

nia))

742. We look instead at composite odd positive numbers. Each such number can be
written as (2a + 3)(2b + 3), for a and b nonnegative integers. In fact, n is composite if
and only if it can be written this way. We only need to write this product as a difference
of two squares. And indeed,

(2a + 3)(2b + 3) = (a + b + 3)2 − (a − b)2.

Thus we can choose f (a, b) = (a + b + 3)2 and g(a, b) = (a − b)2.
(Nea Mărin)

743. Arguing by contradiction, assume that there is some k, 0 ≤ k ≤ n − 2, such that
k2 + k + n is not prime. Choose s to be the smallest number with this property, and let
p be the smallest prime divisor of s2 + s + n. First, let us notice that p is rather small,
in the sense that p ≤ 2s. For if p ≥ 2s + 1, then

s2 + s + n ≥ p2 ≥ (2s + 1)2 = s2 + s + 3s2 + 3s + 1 ≥ s2 + s + n+ 3s + 1

> s2 + s + n,

which is because s >
√
n
3 . This is clearly impossible, which proves our claim.

It follows that either p = s − k or p = s + k + 1 for some 0 ≤ k ≤ s − 1. But then
for this k,

s2 + s + n− k2 − k − n = (s − k)(s + k + 1).

Because p divides s2 + s + n and the product (s − k)(s + k + 1), it must also divide
k2 + k+ n. Now, this number cannot be equal to p, because s− k < n− k < k2 + k+ n
and s + k + 1 < n− 1 + k + 1 < k2 + k + n. It follows that the number k2 + k + n is
composite, contradicting the minimality of s. Hence the conclusion.

Remark. Euler noticed that 41 has the property that k2 + k + 41 is a prime number for
all 0 ≤ k ≤ 39. Yet 402 + 40 + 41 = 412 is not prime!
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744. There are clearly more 2’s than 5’s in the prime factorization of n!, so it suffices to
solve the equation ⌊n

5

⌋
+
⌊ n

52

⌋
+
⌊ n

53

⌋
+ · · · = 1000.

On the one hand,⌊n
5

⌋
+
⌊ n

52

⌋
+
⌊ n

53

⌋
+ · · · < n

5
+ n

52
+ n

53
+ · · · = n

5
· 1

1 − 1
5

= n

4
,

and hence n > 4000. On the other hand, using the inequality �a� > a − 1, we have

1000 >
(n

5
− 1

)
+
( n

52
− 1

)
+
( n

53
− 1

)
+
( n

54
− 1

)
+
( n

55
− 1

)
= n

5

(
1 + 1

5
+ 1

52
+ 1

53
+ 1

54

)
− 5 = n

5
· 1 − (

1
5

)5

1 − 1
5

− 5,

so

n <
1005 · 4 · 3125

3124
< 4022.

We have narrowed down our search to {4001, 4002, . . . , 4021}. Checking each case
with Polignac’s formula, we find that the only solutions are n = 4005, 4006, 4007, 4008,
and 4009.

745. Polignac’s formula implies that the exponent of the number 2 in n! is⌊n
2

⌋
+
⌊ n

22

⌋
+
⌊ n

23

⌋
+ · · · .

Because

n

2
+ n

22
+ n

23
+ · · · = n

and not all terms in this infinite sum are integers, it follows that n is strictly greater than
the exponent of 2 in n!, and the claim is proved.

(Mathematics Competition, Soviet Union, 1971)

746. Let p be a prime number. The power of p in lcm(1, 2, . . . , �n
i
�) is equal to k if and

only if ⌊
n

pk+1

⌋
< i ≤

⌊
n

pk

⌋
.

Hence the power of p in the expression on the right-hand side is
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∑
k≥1

k

(⌊
n

pk

⌋
−
⌊

n

pk+1

⌋)
=
∑
k≥1

(k − (k − 1))

⌊
n

pk

⌋
=
∑
k≥1

⌊
n

pk

⌋
.

By Polignac’s formula this is the exponent of p in n! and we are done.
(64th W.L. Putnam Mathematical Competition, 2003)

747. First solution: We will show that for any prime number p the power to which it
appears in the numerator is greater than or equal to the power to which it appears in the
denominator, which solves the problem.

Assume that p appears to the power α in n and to the power β in m, α ≥ β ≥ 0.
Then among the inequalities⌊

n

pk

⌋
≥
⌊
m

pk

⌋
+
⌊
n−m

pk

⌋
, k = 1, 2, . . . ,

those with β < k ≤ α are strict. Using this fact when applying Polignac’s formula to n!,
m!, and (n−m)!, we deduce that the power of p in

(
n

m

)
is at least α − β. Of course, the

power of p in gcd(m, n) is β. Hence p appears to a nonnegative power in

gcd(m, n)

n

(
n

m

)
,

and we are done.

Second solution: A solution that does not involve prime numbers is also possible. Since
gcd(m, n) is an integer linear combination of m and n, it follows that

gcd(m, n)

n

(
n

m

)
is an integer linear combination of the integers

m

n

(
n

m

)
=
(
n− 1

m− 1

)
and

n

n

(
n

m

)
=
(
n

m

)
,

and hence is itself an integer.
(61st W.L. Putnam Mathematical Competition, 2000)

748. Let p be a prime divisor of k. Then p ≤ n, so p is also a divisor of n!. Denote the
powers of p in k by α and in n! by β. The problem amounts to showing that α ≤ β for
all prime divisors p of k.

By Polignac’s formula, the power of p in n! is

β =
∞∑
i=1

⌊
n

pi

⌋
.
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Of course, the sum terminates at the mth term, where m is defined by pm ≤ n < pm+1.
Write γ = �α2 �, so that α equals either 2γ or 2γ + 1. From the hypothesis,

n2 ≥ 4k ≥ 4pα,

and hence n ≥ 2pα/2 ≥ 2pγ . Since n < pm+1, this leads to pm+1−γ > 2. It means that
if p = 2, then γ < m, and if p ≥ 3, then γ ≤ m.

Ifp = 2, we will show thatβ ≥ m+γ , from which it will follow thatβ ≥ 2γ+1 ≥ α.
The coefficient of 2 in n! is ⌊n

2

⌋
+
⌊ n

22

⌋
+ · · · +

⌊ n
2m

⌋
.

All terms in this sum are greater than or equal to 1. Moreover, we have seen that n ≥ 2·2γ ,
so the first term is greater than or equal to 2γ , and so this sum is greater than or equal to
2γ +m− 1. It is immediate that this is greater than or equal to γ +m for any γ ≥ 1.

If p ≥ 3, we need to show that⌊
n

p

⌋
+
⌊
n

p2

⌋
+ · · · +

⌊
n

pm

⌋
≥ m+ γ + 1.

This time m ≥ γ , and so m + γ + 1 ≥ γ + γ + 1 ≥ α. Again, since n ≥ 2pγ , the
first term of the left-hand side is greater than or equal to 2pγ−1. So the inequality can be
reduced to 2pγ−1 +m− 1 ≥ m+ γ + 1, or 2pγ−1 ≥ γ + 2. This again holds true for
any p ≥ 3 and γ ≥ 2. For γ = 1, if α = 2, then we have 2pγ−1 +m− 1 ≥ m+ γ ≥ α.
If α = 3, then n2 ≥ 2p3 implies n ≥ 2�√p�p ≥ 3p, and hence the first term in the sum
is greater than or equal to 3, so again it is greater than or equal to α.

We have thus showed that any prime appears to a larger power in n! than in k, which
means that k divides n!.

(Austrian–Polish Mathematics Competition, 1986)

749. Define

E(a, b) = a3b − ab3 = ab(a − b)(a + b).

Since if a and b are both odd, then a + b is even, it follows that E(a, b) is always even.
Hence we only have to prove that among any three integers we can find two, a and b,
with E(a, b) divisible by 5. If one of the numbers is a multiple of 5, the property is true.
If not, consider the pairs {1, 4} and {2, 3} of residue classes modulo 5. By the pigeonhole
principle, the residues of two of the given numbers belong to the same pair. These will
be a and b. If a ≡ b (mod 5), then a− b is divisible by 5, and so is E(a, b). If not, then
by the way we defined our pairs, a+ b is divisible by 5, and so again E(a, b) is divisible
by 5. The problem is solved.

(Romanian Team Selection Test for the International Mathematical Olympiad, 1980,
proposed by I. Tomescu)
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750. Observe that 2002 = 103 + 103 + 13 + 13, so that

20022002 = 20022001 · 2002 = (
(2002)667

)3
(103 + 103 + 13 + 13)

= (10 · 2002667)3 + (10 · 2002667)3 + (2002667)3 + (2002667)3.

This proves the first claim. For the second, note that modulo 9, a perfect cube can be
only ±1 or 0. Therefore, the sum of the residues modulo 9 of three perfect cubes can be
only 0, ±1, ±2, or ±3. We verify that

20022002 ≡ 42002 ≡ (43)667 · 4 ≡ 1 · 4 ≡ 4 (mod 9).

It is easy now to see that 20022002 cannot be written as the sum of three cubes.
(communicated by V.V. Acharya)

751. Denote the perfect square by k2 and the digit that appears in the last four positions
by a. Then k2 ≡ a · 1111 (mod 10000). Perfect squares end in 0, 1, 4, 5, 6, or 9, so a
can only be one of these digits.

Now let us examine case by case. If a = 0, we are done. The cases a ∈ {1, 5, 9} can
be ruled out by working modulo 8. Indeed, the quadratic residues modulo 8 are 0, 1, and
4, while as a ranges over the given set, a · 1111 has the residues 7 or 3.

The cases a = 2 or 4 are ruled out by working modulo 16, since neither 4 · 1111 ≡
12 (mod 16) nor 6 · 1111 ≡ 10 (mod 16) is a quadratic residue modulo 16.

752. Reducing modulo 4, the right-hand side of the equation becomes equal to 2. So the
left-hand side is not divisible by 4, which means that x = 1. If y > 1, then reducing
modulo 9 we find that z has to be divisible by 6. A reduction modulo 6 makes the left-
hand side 0, while the right-hand side would be 1 + (−1)z = 2. This cannot happen.
Therefore, y = 1, and we obtain the unique solution x = y = z = 1.

(Matematika v Škole (Mathematics in Schools), 1979, proposed by I. Mihailov)

753. Note that a perfect square is congruent to 0 or to 1 modulo 3. Using this fact we can
easily prove by induction that an ≡ 2 (mod 3) for n ≥ 1. Since 2 · 2 ≡ 1 (mod 3), the
question has a negative answer.

(Indian International Mathematical Olympiad Training Camp, 2005)

754. By hypothesis, there exist integers t and N such that aN + b = tk. Choose m
arbitrary positive integers s1, s2, . . . , sm, and consider the number

s = (as1 + t)k +
m∑
j=2

(asj )
k.

Then

s ≡ tk ≡ aN + b ≡ b (mod a).
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Since s ≡ b (mod a), there exists n such that s = an + b, and so s is a term of the
arithmetic progression that can be written as a sum ofm kth powers of integers. Varying
the parameters s1, s2, . . . , sn, we obtain infinitely many terms with this property.

(proposed by E. Just for Mathematics Magazine)

755. Denote the sum from the statement by Sn. We will prove a stronger inequality,
namely,

Sn >
n

2
(log2 n− 4).

The solution is based on the following obvious fact: no odd number but 1 divides 2n

evenly. Hence the residue of 2n modulo such an odd number is nonzero. From here we
deduce that the residue of 2n modulo a number of the form 2m(2k+ 1), k > 1, is at least
2m. Indeed, if 2n−m = (2k+1)q+r , with 1 ≤ r < 2k+1, then 2n = 2m(2k+1)q+2mr ,
with 2m < 2mr < 2m(2k + 1). And so 2mr is the remainder obtained by dividing 2n by
2m(2k + 1).

Therefore, Sn ≥ 1×(the number of integers of the form 2k+ 1, k > 1, not exceeding
n)+2×(the number of integers of the form 2(2k+ 1), k > 1, not exceeding n)+22×( the
number of integers of the form 22(2k + 1), k > 1, not exceeding n)+ · · · .

Let us look at the (j + 1)st term in this estimate. This term is equal to 2j multiplied
by the number of odd numbers between 3 and n

2j , and the latter is at least 1
2(

n

2j − 3). We
deduce that

Sn ≥
∑
j

2j
n− 3 · 2j

2j+1
=
∑
j

1

2

(
n− 3 · 2j

)
,

where the sums stop when 2j · 3 > n, that is, when j = �log2
n
3�. Setting l = �log2

n
3�,

we have

Sn ≥ (l + 1)
n

2
− 3

2

l∑
j=0

2i > (l + 1)
n

2
− 3 · 2l+1

2
.

Recalling the definition of l, we conclude that

Sn >
n

2
log2

n

3
− n = n

2

(
log2

n

3
− 2

)
>
n

2
(log2 n− 4),

and the claim is proved. The inequality from the statement follows from the fact that for
n > 1000, 1

2(log2 n− 4) > 1
2(log2 1000 − 4) > 2.

(Kvant (Quantum), proposed by A. Kushnirenko, solution by D. Grigoryev)

756. First, observe that all terms of the progression must be odd. Letp1 < p2 < · · · < pk
be the prime numbers less than n. We prove the property true for pi by induction on i.
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For i = 1 the property is obviously true, since p1 = 2 and the consecutive terms of the
progression are odd numbers. Assume the property is true for p1, p2, . . . , pi−1 and let
us prove it for pi .

Let a, a + d, a + 2d, . . . , a + (n − 1)d be the arithmetic progression consisting of
prime numbers. Using the inequality d ≥ p1p2 · · ·pi−1 > pi , we see that if a term of
the progression is equal to pi , then this is exactly the first term (in the special case of
p2 = 3, for which the inequality does not hold, the claim is also true because 3 is the
first odd prime). But if a = pi , then a + pid, which is a term of the progression, is
divisible by pi , and the problem states that this number is prime. This means that a 	= pi ,
and consequently the residues of the numbers a, a + d, . . . , a + (pi − 1)d modulo pi
range over {1, 2, . . . , pi − 1}. By the pigeonhole principle, two of these residues must
be equal, i.e.,

a + sd ≡ a + td (mod pi),

for some 0 ≤ i < j ≤ pi − 1. Consequently, a + sd − a − td = (s − t)d is divisible
by pi , and since |s − t | < pi , it follows that d is divisible by pi . This completes the
induction, and with it the solution to the problem.

(G. Cantor)

757. We reduce everything modulo 3; thus we work in the ring of polynomials with Z3

coefficients. The coefficients of both P(x) and Q(x) are congruent to 1, so the reduced
polynomials are P̂ (x) = xm+1−1

x−1 and Q̂(x) = xn+1−1
x−1 . The polynomial P̂ (x) still divides

Q̂(x); therefore xm+1 − 1 divides xn+1 − 1.
Let g be the greatest common divisor of m+ 1 and n+ 1. Then there exist positive

integers a and b such that a(m+ 1)− b(n+ 1) = g. The polynomial xm+1 − 1 divides
xa(m+1) − 1, while the polynomial xn+1 − 1 divides xb(n+1) − 1 and so does xm+1 − 1. It
follows that xm+1 − 1 divides

xa(m+1) − 1 − (xb(n+1) − 1) = xb(n+1)(xa(m+1)−b(n+1) − 1) = xb(n+1)(xg − 1).

Hence xm+1 − 1 divides xg − 1. Because g divides m + 1, this can happen only if
g = m+ 1. Therefore, m+ 1 is a divisor of n+ 1, and we are done.

(Romanian Mathematical Olympiad, 2002)

758. We use complex coordinates, and for this, let

ε = cos
2π

n
+ i sin

2π

n
.

The vertices of the equiangular polygon should have coordinates

k∑
i=0

σ(i)εi, k = 1, 2, . . . , n− 1,
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where σ is a certain permutation of 1, 2, . . . , n. The sides are parallel to the rays σ(k)εk,
so the angle between two consecutive sides is indeed 2π

n
, except for maybe the first and

the last! For these two sides to form the appropriate angle, the equality

n−1∑
i=0

σ(i)εi = 0

must hold. We are supposed to find a permutation σ for which this relation is satisfied.
It is here that residues come into play.

Let n = ab with a and b coprime. Represent the nth roots of unity as

εaj+bk, j = 0, 1, . . . , b − 1, k = 0, 1, . . . , a − 1.

Note that there are ab = n such numbers altogether, and no two coincide, for if aj+bk ≡
aj ′ + bk′ (mod n), then a(j − j ′) ≡ b(k′ − k) (mod n), which means that j − j ′ is
divisible by b and k − k′ is divisible by a, and so j = j ′ and k = k′. Thus we have
indeed listed all nth roots of unity.

Order the roots of unity in the lexicographic order of the pairs (j, k). This defines
the permutation σ . We are left with proving that

b−1∑
j=0

a−1∑
k=0

(aj + k)εaj+bk = 0.

And indeed,

b−1∑
j=0

a−1∑
k=0

(aj + k)εaj+bk =
b−1∑
j=0

ajεaj
a−1∑
k=0

(
εb
)k +

a−1∑
k=0

kεbk
b−1∑
k=0

(
εa
)j = 0.

759. Let S be the set of all primes with the desired property. We claim that S =
{2, 3, 5, 7, 13}.

It is easy to verify that these primes are indeed in S. So let us consider a prime p in
S, p > 7. Then p − 4 can have no factor q larger than 4, for otherwise p − �p

q
�q = 4.

Since p− 4 is odd, p− 4 = 3a for some a ≥ 2. For a similar reason, p− 8 cannot have
prime factors larger than 8, and so p − 8 = 3a − 4 = 5b7c. Reducing the last equality
modulo 24, we find that a is even and b is odd.

If c 	= 0, then p − 9 = 5b7c − 1 = 2d . Here we used the fact that p − 9 has no
prime factor exceeding 8 and is not divisible by 3, 5, or 7. Reduction modulo 7 shows
that the last equality is impossible, for the powers of 2 are 1, 2, and 4 modulo 7. Hence
c = 0 and 3a − 4 = 5b, which, since 3a/2 − 2 and 3a/2 + 2 are relatively prime, gives
3a/2 − 2 = 1 and 3a/2 + 2 = 5b. Thus a = 2, b = 1, and p = 13. This proves the claim.

(American Mathematical Monthly, 1987, proposed by M. Cipu and M. Deaconescu,
solution by L. Jones)
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760. Note that

n = 1 + 10 + · · · + 10p−2 = 10p−1 − 1

10 − 1
.

By Fermat’s little theorem the numerator is divisible by p, while the denominator is not.
Hence the conclusion.

761. We have the factorization

16320 = 26 · 3 · 5 · 17.

First, note that pab − 1 = (pa)b − 1 is divisible by pa − 1. Hence p32 − 1 is divisible by
p2 − 1, p4 − 1, and p16 − 1. By Fermat’s little theorem, p2 − 1 = p3−1 − 1 is divisible
by 3, p4 − 1 = p5−1 − 1 is divisible by 5, and p16 − 1 = p17−1 − 1 is divisible by 17.
Here we used the fact that p, being prime and greater than 17, is coprime to 3, 5, and 17.

We are left to show thatp32−1 is divisible by 26. Of course,p is odd, sayp = 2m+1,
m an integer. Thenp32−1 = (2m+1)32−1. Expanding with Newton’s binomial formula,
we get

(2m)32 +
(

32

1

)
(2m)31 + · · · +

(
32

2

)
(2m)2 +

(
32

1

)
(2m).

In this sum all but the last five terms contain a power of two greater than or equal to 6.
On the other hand, it is easy to check that in(

32

5

)
(2m)5 +

(
132

4

)
(2m)4 +

(
32

3

)
(2m)3 +

(
32

2

)
(2m)2 +

(
32

1

)
(2m)

the first binomial coefficient is divisible by 2, the second by 22, the third by 23, the fourth
by 24, and the fifth by 25. So this sum is divisible by 26, and hence (2m+1)32−1 = p32−1
is itself divisible by 26. This completes the solution.

(Gazeta Matematică (Mathematics Gazette, Bucharest), proposed by I. Tomescu)

762. If x is a solution to the equation from the statement, then using Fermat’s little
theorem, we obtain

1 ≡ xp−1 ≡ a
p−1

2 (mod p).

If m is an integer, then every odd prime factor p of m2 + 1 must be of the form 4m+ 1,
with m an integer. Indeed, in this case because m2 ≡ −1 (mod p), and by what we just
proved,

(−1)
p−1

2 = 1,

which means that p − 1 is divisible by 4.
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Now assume that there are only finitely many primes of the form 4m + 1, m an
integer, say p1, p2, . . . , pn. The number (2p1p2 . . . pn)

2 + 1 has only odd prime factors,
and these must be of the form 4m+1,m an integer. Yet these are none of p1, p2, . . . , pn,
a contradiction. Hence the conclusion.

763. Assume a solution (x, y) exists. If y were even, then y3 + 7 would be congruent to
3 modulo 4. But a square cannot be congruent to 3 modulo 4. Hence y must be odd, say
y = 2k + 1. We have

x2 + 1 = y3 + 23 = (y + 2)
[
(y − 1)2 + 3

] = (y + 2)(4k2 + 3).

We deduce that x2 + 1 is divisible by a number of the form 4m + 3, namely, 4k2 + 3.
It must therefore be divisible by a prime number of this form. But we have seen in the
previous problem that this is impossible. Hence the equation has no solutions.

(V.A. Lebesgue)

764. Assume that the equation admits a solution (x, y). Let p be the smallest prime
number that divides n. Because (x + 1)n − xn is divisible by p, and x and x + 1 cannot
both be divisible by p, it follows that x and x + 1 are relatively prime to p. By Fermat’s
little theorem, (x + 1)p−1 ≡ 1 ≡ xp−1 (mod p). Also, (x + 1)n ≡ xn (mod p) by
hypothesis.

Additionally, because p is the smallest prime dividing n, the numbers p − 1 and n
are coprime. By the fundamental theorem of arithmetic, there exist integers a and b such
that a(p − 1)+ bn = 1. It follows that

x + 1 = (x + 1)a(p−1)+bn ≡ xa(p−1)+bn ≡ x (mod p),

which is impossible. Hence the equation has no solutions.
(I. Cucurezeanu)

765.We construct the desired subsequence (xn)n inductively. Suppose that the prime num-
bers that appear in the prime factor decompositions ofx1, x2, . . . , xk−1 arep1, p2, . . . , pm.
Because the terms of the sequence are odd, none of these primes is equal to 2. Define

xk = 2(p1−1)(p2−1)···(pm−1) − 3.

By Fermat’s little theorem, 2(p1−1)(p2−1)···(pm−1) − 1 is divisible by each of the numbers
p1, p2, . . . , pn. It follows that xk is not divisible by any of these primes. Hence xk
is relatively prime to x1, x2, . . . , xk−1, and thus it can be added to the sequence. This
completes the solution.

766. The recurrence is linear. Using the characteristic equation we find that xn = A ·
2n + B · 3n, where A = 3x0 − x1 and B = x1 − 2x0. We see that A and B are integers.

Now let us assume that all but finitely many terms of the sequence are prime. Then
A,B 	= 0, and
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lim
n→∞ xn = lim

n→∞ 3n
(
A

(
2

3

)n
+ B

)
= ∞.

Let n be sufficiently large that xn is a prime number different from 2 and 3. Then for
k ≥ 1,

xn+k(p−1) = A · 2n+k(p−1) + B · 3n+k(p−1) = A · 2n · (2p−1
)k + B · 3n · (3p−1

)k
.

By Fermat’s little theorem, this is congruent to A · 2n + B · 3n modulo p, hence to xn
which is divisible by p. So the terms of the subsequence xn+k(p−1), k ≥ 1, are divisible
by p, and increase to infinity. This can happen only if the terms become composite at
some point, which contradicts our assumption. Hence the conclusion.

767.All congruences in this problem are modulo 13. First, let us show that for 0 ≤ k < 12,

12∑
x=0

xk ≡ 0 (mod 13).

The case k = 0 is obvious, so let us assume k > 0. First, observe that 2 is a primitive
root modulo 13, meaning that 2m, m ≥ 1, exhausts all nonzero residues modulo 13. So
on the one hand, 2k 	≡ 1 for 1 ≤ k < 12, and on the other hand, the residue classes
2, 4, 6, . . . , 24 are a permutation of the residue classes 1, 2, . . . , 12. We deduce that

12∑
x=0

xk ≡
12∑
x=0

(2x)k = 2k
12∑
x=0

xk,

and because 2k 	≡ 1, we must have
∑12

x=0 x
k ≡ 0.

Now let S = {(x1, x2, . . . , xn) | 0 ≤ xi ≤ 12}. Because |S| = 13n is divisi-
ble by 13, it suffices to show that the number of n-tuples (x1, . . . , xn) ∈ S such that
f (x1, x2, . . . , xn) 	≡ 0 is divisible by 13. Consider the sum∑

(x1,x2,...,xn)∈S
(f (x1, x2, . . . , xn))

12.

This sum is congruent modulo 13 to the number of n-tuples (x1, x2, . . . , xn) ∈ S such
that f (x1, x2, . . . , xn) 	≡ 0, since by Fermat’s little theorem,

(f (x1, x2, . . . , xn))
12 ≡

{
1 if f (x1, x2, . . . , xn) 	≡ 0,

0 if f (x1, x2, . . . , xn) ≡ 0.

On the other hand, (f (x1, x2, . . . , xn))
12 can be expanded as

(f (x1, x2, . . . , xn))
12 =

m∑
j=1

cj

n∏
j=1

x
αji
i ,
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for some integers m, cj , αji . Because f is a polynomial of total degree less than n, we
have αj1 + αj2 + · · · + αjn < 12n for every j , so for each j there exists i such that
αji < 12. Using what we proved above, we obtain for 1 ≤ j ≤ m,

∑
(x1,x2,...,xn)∈S

cj

n∏
i=1

x
αji
i = cj

n∏
i=1

12∑
xi=0

x
αji
i ≡ 0,

since one of the sums in the product is congruent to 0. Therefore,

∑
(x1,x2,...,xn)∈S

(f (x1, x2, . . . , xn))
12 =

∑
(x1,x2,...,xn)∈S

m∑
j=1

cj

n∏
i=1

x
αji
i ≡ 0.

This implies that the number of n-tuples (x1, x2, . . . , xn) in S with the property that
f (x1, x2, . . . , xn) 	≡ 0 (mod 13) is divisible by 13, and we are done.

(Turkish Mathematical Olympiad, 1998)

768. We have 12321 = (111)2 = 32 × 372. It becomes natural to work modulo 3 and
modulo 37. By Fermat’s little theorem,

a2 ≡ 1 (mod 3),

and since we must have ak ≡ −1 (mod 3), it follows that k is odd. Fermat’s little theorem
also gives

a36 ≡ 1 (mod 37).

By hypothesis ak ≡ −1 (mod 37). By the fundamental theorem of arithmetic there exist
integers x and y such that kx + 36y = gcd(k, 36). Since the gcd(k, 36) is odd, x is odd.
We obtain that

agcd(k,36) ≡ akx+36y ≡ (−1) · 1 = −1 (mod 37).

Since gcd(k, 36) can be 1, 3, or 9, we see that a must satisfy a ≡ −1, a3 ≡ −1, or
a9 ≡ −1 modulo 37. Thus a is congruent to −1 modulo 3 and to 3, 4, 11, 21, 25, 27, 28,
30, or 36 modulo 37. These residue classes modulo 37 are precisely those for which a is
a perfect square but not a perfect fourth power. Note that if these conditions are satisfied,
then ak ≡ −1 (mod 3 × 37), for some odd integer k.

How do the 32 and 372 come into the picture? The algebraic identity

xn − yn = (x − y)(xn−1 + xn−2y + · · · + xyn−2 + yn−1)

shows that if x ≡ y (mod n), then xn ≡ yn (mod n2). Indeed, modulo n, the factors on
the right are 0, respectively, nxn−1, which is again 0.
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We conclude that if a is a perfect square but not a fourth power modulo 37, and is −1
modulo 3, then ak ≡ −1 (mod 3 × 37) and ak×3×37 ≡ −1 (mod 32 × 372). The answer
to the problem is the residue classes

11, 41, 62, 65, 77, 95, 101, 104, 110

modulo 111.
(Indian Team Selection Test for the International Mathematical Olympiad, 2004,

proposed by S.A. Katre)

769. If n+ 1 is composite, then each prime divisor of (n+ 1)! is less than n, which also
divides n!. Then it does not divide n! + 1. In this case the greatest common divisor is 1.

If n+1 is prime, then by the same argument the greatest common divisor can only be
a power of n+ 1. Wilson’s theorem implies that n+ 1 divides n!+ 1. However, (n+ 1)2

does not divide (n+ 1)!, and thus the greatest common divisor is (n+ 1).
(Irish Mathematical Olympiad, 1996)

770. We work modulo 7. None of the six numbers is divisible by 7, since otherwise
the product of the elements in one set would be divisible by 7, while the product of the
elements in the other set would not.

By Wilson’s theorem, the product of the six consecutive numbers is congruent to −1
modulo 7. If the partition existed, denote by x the product of the elements in one set.
Then

x2 = n(n+ 1) · · · (n+ 5) ≡ −1 (mod 7).

But this is impossible since −1 is not a quadratic residue modulo 7.
(12th International Mathematical Olympiad, 1970)

771. Consider all pairs of numbers i and j with ij ≡ a (mod p). Because the equation
x2 ≡ a (mod p) has no solutions, i is always different from j . Since every nonzero
element is invertible in Zp, the pairs exhaust all residue classes modulo p. Taking the
product of all such pairs, we obtain

a
p−1

2 ≡ (p − 1)! (mod p),

which by Wilson’s theorem is congruent to −1, as desired.

772. We claim that if p ≡ 1 (mod 4), then x = (
p−1

2 )! is a solution to the equation
x2 ≡ −1 (mod p). Indeed, by Wilson’s theorem,

−1 ≡ (p − 1)! = 1 · 2 · · ·
(
p − 1

2

)(
p + 1

2

)
· · · (p − 1)

≡ 1 · 2 · · ·
(
p − 1

2

)(
p − p − 1

2

)
· (p − 1) ≡ (−1)

p−1
2

[(
p − 1

2

)
!
]2

(mod p).
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Hence [(
p − 1

2

)
!
]2

≡ −1 (mod p),

as desired.
To show that the equation has no solution if p ≡ 3 (mod 4), assume that such a

solution exists. Call it a. Using Fermat’s little theorem, we obtain

1 ≡ ap−1 ≡ a2· p−1
2 ≡ (−1)

p−1
2 = −1 (mod p).

This is impossible. Hence the equation has no solution.

773. Multiplying the obvious congruences

1 ≡ −(p − 1) (mod p),

2 ≡ −(p − 2) (mod p),

· · ·
n− 1 ≡ −(p − n+ 1) (mod p),

we obtain

(n− 1)! ≡ (−1)n−1(p − 1)(p − 2) · · · (p − n+ 1) (mod p).

Multiplying both sides by (p − n)! further gives

(p − n)!(n− 1)! ≡ (−1)n−1(p − 1)! (mod p).

Because by Wilson’s theorem (p − 1)! ≡ −1 (mod p), this becomes

(p − n)!(n− 1)! ≡ (−1)n (mod p),

as desired.
(A. Simionov)

774. Because the common difference of the progression is not divisible byp, the numbers
a1, a2, . . . , ap represent different residue classes modulo p. One of them, say ai , is
divisible by p, and the others give the residues 1, 2, . . . , p − 1 in some order. Applying
Wilson’s theorem, we have

a1a2 · · · ap
ai

≡ (p − 1)! ≡ −1 (mod p);

hence a1a2 · · · ap
ai

+1 is divisible byp. Since ai is divisible byp, we find that a1a2 · · · ap+
ai is divisible by p2, as desired.

(I. Cucurezeanu)
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775. We use strong induction. The property is true for n = 1. Let n = pαq, where p is
a prime number and q is relatively prime to p (q is allowed to be 1). Assume that the
formula holds for q. Any number k that divides n is of the form pjm, where 0 ≤ j ≤ α,
and m divides q. Hence we can write

α∑
j=0

∑
m|q

φ(pjm) =
α∑
j=0

∑
m|q

φ(pj )φ(m) =
α∑
j=0

φ(pj )
∑
m|q

φ(m)

=
⎛⎝1 +

α∑
j=1

pj−1(p − 1)

⎞⎠ q = pαq = n.

This completes the induction.
(C.F. Gauss)

776. If n = 2m, m ≥ 2, then

φ(n) = 2m − 2m−1 = 2m−1 ≥ √
2m = √

n.

If n = pm, where m ≥ 2 and p is an odd prime, then

φ(n) = pm−1(p − 1) ≥ √
pm = √

n.

Observe, moreover, that if n = pm, m ≥ 2, where p is a prime greater than or equal to
5, then φ(n) ≥ √

2n.
Now in general, if n is either odd or a multiple of 4, then

φ(n) = φ(p
α1
1 ) · · ·φ(pαkk ) ≥

√
p
α1
1 · · ·

√
p
αk
k = √

n.

We are left with the case n = 2t , with t odd and different from 1 or 3. If any prime
factor of t is greater than or equal to 5, then φ(n) = φ(t) ≥ √

2t . It remains to settle the
case n = 2 · 3i , i ≥ 2. For i = 2, φ(18) = 6 >

√
18. For i ≥ 3, φ(n) = 2 · 3i−1, and

the inequality reduces to
√

2 · 3
i
2 −1 > 1, which is obvious.

777.An example is n = 15. In that caseφ(15) = φ(3·5) = 2·4 = 8, and 82+152 = 172.
Observe that for α, β ≥ 1,

φ(3α · 5β) = 3α−1 · 5β−1(3 − 1)(5 − 1) = 3α−1 · 5β−1 · 8

and

(3α−1 · 5β−1 · 8)2 + (3α · 5β)2 = (3α−1 · 5β−1 · 17)2,

so any number of the form n = 3α · 5β has the desired property.

778. We will prove that ifm = 2 ·7r , r ≥ 1, then the equation φ(n) = m has no solutions.
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If n = p
α1
1 · · ·pαkk , then

φ(n) = p
α1−1
1 · · ·pαk−1

k (p1 − 1) · · · (pk − 1).

If at least two of the primes p1, . . . , pk are odd, then φ(n) is divisible by 4, so is not
equal to m.

If n = 2α, or n = 2αpβ , with α > 2, then φ(n) is again divisible by 4, so again
φ(n) 	= m. The only cases left are n = 2αpβ , with α = 0, α = 1, or α = 2. In the
first case,

φ(n) = pβ−1(p − 1).

This implies p = 7, but even then equality cannot hold. For the other two cases,

φ(n) = 2α−1pβ−1(p − 1).

The equality φ(n) = m implies right away that α = 1, p = 7, but 7β−1 · 6 cannot equal
2 · 7r . Hence the conclusion.

779. Let s = 2α5βt , where t is coprime to 10. Define

n = 10α+β (10φ(t) + 102φ(t) + · · · + 10sφ(t)
)
.

The sum of the digits of n is 1+1+· · ·+1 = s. By Euler’s theorem, 10φ(t) ≡ 1 (mod t),
and so 10kφ(t) ≡ 1 (mod t), k = 1, 2, . . . , s. It follows that

n ≡ 10α+β(1 + 1 + · · · + 1) = s · 10α+β (mod t),

so n is divisible by t . This number is also divisible by 2α5β and therefore has the desired
property.

(W. Sierpiński)

780. To have few residues that are cubes, 3 should divide the Euler totient function of the
number. This is the case with 7, 9, and 13, since φ(7) = 6, φ(9) = 6, and φ(13) = 6.
The cubes modulo 7 and 9 are 0, 1, and −1; those modulo 13 are 0, 1, −1, 8, and −8.

So let us assume that the equation admits a solution x, z. Reducing modulo 7, we
find that x = 3k+ 2, with k a positive integer. The equation becomes 4 · 8k + 3 = z3. A
reduction modulo 9 implies that k is odd, k = 2n+ 1, and the equation further changes
into 32 · 64n + 3 = z3. This is impossible modulo 13. Hence, no solutions.

(I. Cucurezeanu)

781. First solution: Here is a proof by induction on n. The case n = 1 is an easy check.
Let us verify the inductive step from n to n+ 1. We transform the left-hand side as

n+1∑
k=1

φ(k)

⌊
n+ 1

k

⌋
=

n+1∑
k=1

φ(k)
⌊n
k

⌋
+

n+1∑
k=1

φ(k)

(⌊
n+ 1

k

⌋
−
⌊n
k

⌋)
.
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The last term in the first sum can be ignored since it is equal to zero. To evaluate the
second sum, we observe that⌊

n+ 1

k

⌋
−
⌊n
k

⌋
=
{

1 if k divides n,

0 otherwise.

Therefore,

n+1∑
k=1

φ(k)

⌊
n+ 1

k

⌋
=

n∑
k=1

φ(k)
⌊n
k

⌋
+
∑
k|n+1

φ(k).

Using the induction hypothesis and Gauss’ identity
∑

k|n φ(k) = n, we find that this is

equal to n(n+1)
2 + (n + 1), which is further equal to the desired answer (n+1)(n+2)

2 . This
completes the induction, and the solution to the problem.

Second solution: Using the Gauss identity for Euler’s totient function (the first problem
in this section), we can write

n(n+ 1)

2
=

n∑
m=1

m =
n∑

m=1

∑
k|m

φ(k) =
n∑
k=1

φ(k)

�n/k�∑
m=1

1.

This is clearly equal to the left-hand side of the identity from the statement, and we are
done.

(M.O. Drimbe, 200 de Identităţi şi Inegalităţi cu “Partea Întreagă (200 Identities
and Inequalities about the “Greatest Integer Function’’), GIL, 2004, second solution by
R. Stong)

782. We may assume gcd(a, d) = 1, d ≥ 1, a > d. Since aφ(d) ≡ 1 (mod d), it follows
that akφ(d) ≡ 1 (mod d) for all integers k. Hence for all k ≥ 1,

akφ(d) = 1 +mkd,

for some positive integers mk. If we let nk = amk, k ≥ 1, then

a + nkd = akφ(d)+1,

so the prime factors of a + nkd, k ≥ 1, are exactly those of a.
(G. Pólya, G. Szegő, Aufgaben und Lehrsätze aus der Analysis, Springer-Verlag, 1964)

783. The customer picks a number k and transmits it securely to the bank using the
algorithm described in the essay. Using the two large prime numbers p and q, the bank
finds m such that km ≡ 1 (mod (p − 1)(q − 1)). If α is the numerical information that
the customer wants to receive, the bank computes αm (mod n), then transmits the answer
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β to the customer. The customer computes βk (mod n). By Euler’s theorem, this is α.
Success!

784. As before, let p and q be two large prime numbers known by the United Nations
experts alone. Let also k be an arbitrary secret number picked by these experts with the
property that gcd(k, (p − 1)(q − 1)) = 1. The number n = pq and the inverse m of k
modulo φ(n) = (p− 1)(q − 1) are provided to both the country under investigation and
to the United Nations.

The numerical data α that comprises the findings of the team of experts is raised
to the power k, then reduced modulo n. The answer β is handed over to the country.
Computing βm modulo n, the country can read the data. But it cannot encrypt fake data,
since it does not know the number k.

785. We are to find the smallest positive solution to the system of congruences

x ≡ 1 (mod 60),

x ≡ 0 (mod 7).

The general solution is 7b1 + 420t , where b1 is the inverse of 7 modulo 60 and t is an
integer. Since b1 is a solution to the Diophantine equation 7b1 + 60y = 1, we find it
using Euclid’s algorithm. Here is how to do it: 60 = 8 ·7+4, 7 = 1 ·4+3, 4 = 1 ·3+1.
Then

1 = 4 − 1 · 3 = 4 − 1 · (7 − 1 · 4) = 2 · 4 − 7 = 2 · (60 − 8 · 7)− 7

= 2 · 60 − 17 · 7.

Hence b1 = −17, and the smallest positive number of the form 7b1 + 420t is −7 · 17 +
420 · 1 = 301.

(Brahmagupta)

786. Let p1, p2, . . . , p2n be different primes. By the Chinese Remainder Theorem there
exists x such that

x ≡ 0 (mod p1p2),

x ≡ −1 (mod p3p4),

· · ·
x ≡ −n+ 1 (mod p2n−1p2n).

Then the numbers x + k, 0 ≤ k ≤ n − 1, are each divisible by p2k+1p2k+2, and we
are done.

Remark. This problem shows a nontrivial way in which there exist arbitrarily long arith-
metic progressions containing no prime numbers.
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787. Let m = m1m2. If x ∈ {0, 1, . . . , m − 1} is such that P(x) ≡ 0 (mod m), then
P(x) ≡ 0 (mod m1). Let a1 be the residue of x modulom1. Then P(a1) ≡ 0 (mod m1).
Similarly, if a2 is the residue of x modulo m2, then P(a2) ≡ 0 (mod m2). Thus for each
solution x to P(x) ≡ 0 (mod m), we have constructed a pair (a1, a2) with ai a solution
to P(x) ≡ 0 (mod mi), i = 1, 2.

Conversely, given the residues ai such that P(ai) ≡ 0 (mod mi), i = 1, 2, by
the Chinese Remainder Theorem there exists a unique x ∈ {0, 1, . . . , m − 1} such that
x ≡ ai (mod mi), i = 1, 2. Then P(x) ≡ 0 (mod mi), i = 1, 2, and consequently
P(x) ≡ 0 (mod m). We have established a bijection from the set of solutions to the
equation P(x) ≡ 0 (mod m) to the Cartesian product of the sets of solutions to P(x) ≡
0 (mod mi), i = 1, 2. The conclusion follows.

(I. Niven, H.S. Zuckerman, H.L. Montgomery, An Introduction to the Theory of
Numbers, Wiley, 1991)

788. Since this is a game with finite number of possibilities, there is always a winning
strategy, either for the first player, or for the second. Arguing by contradiction, let us
assume that there are only finitely many n’s, say n1, n2, . . . , nm for which Bob has a
winning strategy. Then for every other nonnegative integer n, Alice must have some
move on a heap of n stones leading to a position in which the second player wins. This
means that any other integer n is of the form p − 1 + nk for some prime p and some
1 ≤ k ≤ m.

We will prove that this is not the case. Choose an integer N greater than all the
nk’s and let p1, p2, . . . , pN be the first N prime numbers. By the Chinese Remainder
Theorem, there exists a positive integer x such that

x ≡ −1 (mod p2
1),

x ≡ −2 (mod p2
2),

. . .

x ≡ −N (mod p2
r ).

Then the number x +N + 1 is not of the form p− 1 + nk, because each of the numbers
x + N + 1 − nk − 1 is composite, being a multiple of a square of a prime number. We
have reached a contradiction, which proves the desired conclusion.

(67th W.L. Putnam Mathematical Competition, 2006)

789. Let p1 < p2 < p3 < · · · be the sequence of all prime numbers. Set a1 = 2.
Inductively, for n ≥ 1, let an+1 be the least integer greater than an that is congruent to
−k modulo pk+1, for all k ≤ n. The existence of such an integer is guaranteed by the
Chinese Remainder Theorem. Observe that for all k ≥ 0, k + an ≡ 0 (mod pk+1) for
n ≥ k+ 1. Then at most k+ 1 values in the sequence k+ an, n ≥ 1, can be prime, since
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from the (k + 2)nd term onward, the terms of the sequence are nontrivial multiples of
pk+1, and therefore must be composite. This completes the proof.

(Czech and Slovak Mathematical Olympiad, 1997)

790. We construct such a sequence recursively. Suppose that a1, a2, . . . , am have been
chosen. Set s = a1 + a2 + · · · + am, and let n be the smallest positive integer that
is not yet a term of the sequence. By the Chinese Remainder Theorem, there exists t
such that t ≡ −s (mod (m + 1)), and t ≡ −s − n (mod (m + 2)). We can increase
t by a suitably large multiple of (m + 1)(m + 2) to ensure that it does not equal any
of a1, a2, . . . , am. Then a1, a2, . . . , am, t, n is also a sequence with the desired property.
Indeed, a1+a2+· · ·+am+t = s+t is divisible bym+1 and a1+· · ·+am+t+n = s+t+n
is divisible bym+ 2. Continue the construction inductively. Observe that the algorithm
ensures that 1, . . . , m all occur among the first 2m terms.

(Russian Mathematical Olympiad, 1995)

791. First, let us fulfill a simpler task, namely to find a k such that k · 2n + 1 is composite
for every n in an infinite arithmetic sequence. Let p be a prime, and b some positive
integer. Choose k such that k · 2b ≡ −1 (mod p) (which is possible since 2b has an
inverse modulo p), and such that k ·2b+1 > p. Also, let a be such that 2a ≡ 1 (mod p).
Then k · 2am+b + 1 is divisible by p for all m ≥ 0, hence is composite.

Now assume that we were able to find a finite set of triples (aj , bj , pj ), 1 ≤ j ≤ s,
with 2aj ≡ 1 (mod pj) and such that for any positive integer n there exist m and j with
n = ajm+bj . We would like to determine a k such that k ·2ajm+bj +1 is divisible by pj ,
1 ≤ j ≤ s,m ≥ 0. Using the Chinese Remainder Theorem we can use k as a sufficiently
large solution to the system of equations

k ≡ −2−bj (mod pj), 0 ≤ j ≤ s.

Then for every n, k · 2n + 1 is divisible by one of the pj ’s, j = 0, 1, . . . , s, hence is
composite.

An example of such a family of triples is (2, 0, 3), (3, 0, 7), (4, 1, 5), (8, 3, 17),
(12, 7, 13), (24, 23, 241).

(W. Sierpiński, 250 Problems in Elementary Number Theory, Państwowe Wydaw-
nictwo Naukowe, Warsawa, 1970)

792. Assume the contrary and consider a prime p that does not divide b − a. By the
Chinese Remainder Theorem we can find a positive integer n such that

n ≡ 1 (mod p − 1),

n ≡ −a (mod p).

Then by Fermat’s little theorem,

an + n ≡ a + n ≡ a − a ≡ 0 (mod p)
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and

bn + n ≡ b + n ≡ b − a (mod p).

It follows that p divides an+n but does not divide bn+n, a contradiction. Hence a = b,
as desired.

(short list of the 46th International Mathematical Olympiad, 2005)

793. The idea is to place (a, b) at the center of a square of size (2n+1)× (2n+1) having
the property that all lattice points in its interior and on its sides are not visible from the
origin. To this end, choose (2n + 1)2 distinct primes pij , −n ≤ i, j ≤ n. Apply the
Chinese Remainder Theorem to find an a with a + i ≡ 0 (mod pij ) for all i, j and a b
with b+ j ≡ 0 (mod pij ) for all i, j . For any i and j , a+ i and b+ j are both divisible
by pij . Hence none of the points (a + i, b+ j) are visible from the origin. We conclude
that any point visible from the origin lies outside the square of size (2n+ 1)× (2n+ 1)
centered at (a, b), hence at distance greater than n from (a, b).

(American Mathematical Monthly, 1977, proposed by A.A. Mullin)

794. This problem tests whether you really understood our discussion of the procedure
of writing the elements of SL(2,Z) in terms of the generators.

Call the first matrix from the statement S. This matrix is no longer in SL(2,Z)! Let
us see again where the linear equation is. The determinant of the matrix[

12 5
7 3

]
is equal to 12 · 3 − 7 · 5 = 1, so (3, 5) is a solution to the linear equation 12x − 7y = 1.
Note that

S

(
p

q

)
=
(
q

p

)
, T n

(
p

q

)
=
(
p + nq

q

)
.

So S flips a fraction, and T k adds k to it. This time it is the continued fraction expansion

12

7
= 1 + 1

1 + 1

2 + 1

2

(no negatives !). All we need to do is start with S and apply to it T 2, then S, then again
T 2, and so on, following the continued fraction expansion from bottom to top. We thus
obtain [

12 5
7 3

]
= T ST ST 2ST 2S,
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and the problem is solved.

795. Consider first the case a = 0. Since by = m always has solutions, it follows that
b = ±1. From this we deduce that y = ±m. The second equation becomes a linear
equation in x, cx = n∓ dm, which is supposed always to have an integer solution. This
implies c = ±1, and hence ad − bc = bc = ±1. The same argument applies if any of
b, c, or d is 0.

If none of them is zero, set	 = ab− cd. Again we distinguish two cases. If	 = 0,
then a

c
= b

d
= λ. Then m = ax + by = λ(cx + dy) = λn, which restricts the range of

m and n. Hence 	 	= 0.
Solving the system using Cramer’s rule, we obtain

x = dm− bn

	
, y = an− cm

	
.

These numbers are integers for any m and n. In particular, for (m, n) = (1, 0), x1 = d
	

,
y1 = − c

	
, and for (m, n) = (0, 1), x2 = − b

	
, y2 = a

	
. The number

x1y2 − x2y1 = ad − bc

	2
= 1

	

is therefore an integer. Since 	 is an integer, this can happen only if 	 = ±1, and the
problem is solved.

Remark. A linear map T : R2 → R2 is called orientation preserving if its determinant
is positive, and orientation reversing otherwise. As a consequence of what we just
proved, we obtain that SL(2,Z) consists of precisely those orientation-preserving linear
transformations of the plane that map Z2 onto itself.

796. Because gcd(a, b) = 1, the equation au − bv = 1 has infinitely many positive
solutions (u, v). Let (t, z) be a solution. Consider now the system in (x, y),{

ax − yz− c = 0,

bx − yt + d = 0.

The determinant of its coefficient matrix is −1, so the system admits integer solutions.
Solving, we obtain (

x

y

)
=
(
t −z
b −a

)(
c

−d
)

=
(
tc + zd

bc + ad

)
.

So each positive solution (t, z) to the equation au − bv = 1 yields a positive solution
(tc + zd, bc + ad, z, t) to the original system of equations. This solves the problem.
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797. At each cut we add 7 or 11 new pieces. Thus after cutting x times in 8 and y times
in 12 we have 7x + 11y + 1 pieces. The problem amounts to showing that the equation
7x + 11y = n has nonnegative solutions for every n ≥ 60, but no nonnegative solution
for n = 59. This is of course a corollary to Sylvester’s theorem, but let us see how the
proof works for this particular situation.

The numbers 11 · 0, 11 · 1, . . . , 11 · 6 form a complete set of residues modulo 7. This
means that forn equal to one of the numbers 60 = 11·6−6, 61 = 11·6−5, . . . , 66 = 11·6,
one can find nonnegative x and y such that 7x + 11y = n. Indeed,

60 = 7 · 7 + 11 · 1,

61 = 7 · 4 + 11 · 3,

62 = 7 · 1 + 11 · 5,

63 = 7 · 9 + 11 · 0,

64 = 7 · 6 + 11 · 2,

65 = 7 · 3 + 11 · 4,

66 = 7 · 0 + 11 · 6.

Since if we are able to cut the sheet of paper into n pieces we are also able to cut it into
n+ 7, we can prove by induction that the cut is possible for any n ≥ 61.

Let us now show that the equation 7x + 11y = 59 has no solution. Rewrite it as
7x + 11(y − 5) = 4. This implies 7x ≡ 4 (mod 11). But this means x ≡ 10 (mod 11),
hence x ≥ 10. This is impossible since 7x + 11y = 59 implies x ≤ 8. Hence we cannot
obtain 60 pieces, and the problem is solved.

(German Mathematical Olympiad, 1970/71)

798. Multiply the geometric series

1

1 − xa
= 1 + xa + x2a + · · · and

1

1 − xb
= 1 + xb + x2b + · · · .

The coefficient of xn in the product counts the number of ways exponents of the form ka

and mb add up to n. And this is s(n).

799. The number n can be represented as 4m, 4m+ 1, 4m+ 2, or 4m+ 3. The required
solution is provided by one of the following identities:

4m = (2m− 1)+ (2m+ 1),

4m+ 1 = 2m+ (2m+ 1),

4m+ 2 = (2m− 1)+ (2m+ 3),

4m+ 3 = (2m+ 1)+ (2m+ 2).

The two terms on the right are coprime because either they differ by 1, or they are odd
and differ by 2 or 4.
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800. Note that for any integer k, we can dissect the d-dimensional cube into kd pieces. If
we do this for two integers a and b, then performing the appropriate dissections we can
obtain (ad − 1)x + (bd − 1)y + 1 cubes.

By Sylvester’s theorem for coprime positive numbersα andβ, the equationαx+βy =
n has nonnegative solutions provided that n is sufficiently large.

To complete the solution, we just have to find a and b such that ad − 1 and bd − 1 are
coprime. We can choose any a and then let b = ad − 1. Indeed, (ad − 1)d − 1 differs
from a power of ad − 1 by 1, so the two numbers cannot have a common divisor.

801. There exist integers u and v such that the two sides in question are a = u2 − v2 and
b = 2uv. We are also told that a + b = k2, for some integer k. Then

a3 + b3 = (a + b)(a2 − ab + b2) = k2((u2 − v2)2 − 2uv(u2 − v2)+ 4u2v2)

= k2(u4 + v4 − 2u3v + 2uv3 + 2u2v2) = [k(u2 − uv)]2 + [k(v2 + uv)]2,

and the problem is solved.

802. We guess immediately that x = 2, y = 4, and z = 2 is a solution because of
the trigonometric triple 3, 4, 5. This gives us a hint as to how to approach the problem.
Checking parity, we see that y has to be even. A reduction modulo 4 shows that x must
be even, while a reduction modulo 3 shows that z must be even. Letting x = 2m and
z = 2n, we obtain a Pythagorean equation

(3m)2 + y2 = (5n)2.

Because y is even, in the usual parametrization of the solution we should have 3m =
u2 − v2 and 5n = u2 + v2. From (u− v)(u+ v) = 3m we find that u− v and u+ v are
powers of 3. Unless u− v is 1, u = (u− v + u+ v)/2 and v = (u+ v − u+ v)/2 are
both divisible by 3, which cannot happen because u2 + v2 is a power of 5. So u− v = 1,
u+v = 3m, and u2 +v2 = 5n. Eliminating the parameters u and v, we obtain the simpler
equation

2 · 5n = 9m + 1.

First, note that n = 1 yields the solution mentioned in the beginning. If n > 1, then
looking at the equation modulo 25, we see that m has to be an odd multiple of 5, say
m = 5(2k + 1). But then

2 · 5n = (95)2k+1 + 1 = (95 + 1)((95)2k − (95)2k−1 + · · · + 1),

which implies that 2·5n is a multiple of 95+1 = 2·52 ·1181. This is of course impossible;
hence the equation does not have other solutions.

(I. Cucurezeanu)
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803. The last digit of a perfect square cannot be 3 or 7. This implies that x must be even,
say x = 2x ′. The condition from the statement can be written as

(2x
′
)2 + (5y)2 = z2,

for integers x ′, y, and z. It follows that there exist integers u and v such that 5y = u2 −v2

and 2x
′ = 2uv (looking at parity, we rule out the case 5y = 2uv and 2x

′ = u2 − v2).
From the first equality we see that any common factor of u and v is a power of 5. From
the second we find that u and v are powers of 2. Thus u = 2x

′−1 and v = 1. It follows
that x ′ and y satisfy the simpler Diophantine equation

5y = 22x′−2 − 1.

But then 5y = (2x
′−1 − 1)(2x

′−1 + 1), and the factors on the right differ by 2, which
cannot happen since no powers of 5 differ by 2. Hence no such numbers can exist.

804. Here is how to transform the equation from the statement into a Pythagorean equa-
tion:

x2 + y2 = 1997(x − y),

2(x2 + y2) = 2 · 1997(x − y),

(x + y)2 + (x − y)2 − 2 · 1997(x − y) = 0,

(x + y)2 + (1997 − x + y)2 = 19972.

Because x and y are positive integers, 0 < x + y < 1997, and for the same reason
0 < 1997 − x + y < 1997. The problem reduces to solving the Pythagorean equation
a2 + b2 = 19972 in positive integers. Since 1997 is prime, the greatest common divisor
of a and b is 1. Hence there exist coprime positive integers u > v with the greatest
common divisor equal to 1 such that

1997 = u2 + v2, a = 2uv, b = u2 − v2.

Becauseu is the larger of the two numbers, 1997
2 < u2 < 1997; hence 33 ≤ u ≤ 44. There

are 12 cases to check. Our task is simplified if we look at the equality 1997 = u2 +v2 and
realize that neither u nor v can be divisible by 3. Moreover, looking at the same equality
modulo 5, we find that u and v can only be 1 or −1 modulo 5. We are left with the cases
m = 34, 41, or 44. The only solution is (m, n) = (34, 29). Solving x+y = 2 ·34 ·29 and
1997 − x + y = 342 − 292, we obtain x = 1827, y = 145. Solving x + y = 342 − 292,
1997 − x + y = 2 · 34 · 29, we obtain (x, y) = (170, 145). These are the two solutions
to the equation.

(Bulgarian Mathematical Olympiad, 1997)
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805. One can verify that x = 2m2 + 1 and y = 2m is a solution.
(Diophantus)

806. We will search for numbers x and y for which 2x
2 = a2 and 2y

2 = 2a, so that
1 + 2x

2 + 2y
2 = (a + 1)2. Then x = 2z for some positive integer z, and

a = 22z2 = 2y
2−1.

This leads to the Pell equation

y2 − 2z2 = 1.

This equation has infinitely many solutions, given by

yn + zn
√

2 = (3 + 2
√

2)n,

and we are done.
(Revista Matematică din Timişoara (Timişoara Mathematics Gazette), proposed by

M. Burtea)

807. The Pell equation x2 − 2y2 = 1 has infinitely many solutions. Choose n = x2 − 1.
Then n = y2 + y2, n+ 1 = x2 + 02, and n+ 2 = x2 + 12, and we are done.

(61st W.L. Putnam Mathematical Competition, 2000)

808. In other words, the problem asks us to show that the Diophantine equationx2−2 = 7y

has no positive solutions. Areduction modulo 8 makes the right-hand side equal to (−1)y ,
while the left-hand side could only be equal to −2,−1, 2. This means that y must be
odd, y = 2z+ 1, with z an integer.

Multiplying by 7y = 72z+1 and completing the square, we obtain the equivalent
equation

(72z+1 + 1)2 − 7(7zx)2 = 1.

Let us analyze the associated Pell equation

X2 − 7Y 2 = 1.

Its fundamental solution is X1 = 8, Y1 = 3, and its general solution is given by

Xk + Yk
√

7 = (8 + 3
√

7)k, k = 1, 2, . . . .

Substituting X = 72z+1 + 1 and Y = 7zx, we obtain

72z+1 + 1 = 8k +
(
k

2

)
8k−2 · 32 · 7 +

(
k

4

)
8k−4 · 34 · 72 + · · · ,
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7z =
(
k

1

)
8k−1 · 3 +

(
k

3

)
8k−3 · 33 · 7 +

(
k

5

)
8k−5 · 35 · 72 + · · · .

Let us compare the power of 7 in k = (
k

1

)
with the power of 7 in

(
k

2m+1

)
7m, m > 1. Writ-

ing
(

k

2m+1

)
7m = 7mk(k−1)···(k−2m−1)

1·2···k , we see that the power of 7 in the numerator grows
faster than it can be canceled by the denominator. Consequently, in the second equality
from above, the power of 7 in the first term is less than in the others. We thus obtain that
7z divides k. But then 8k > 87z > 72z+1, and the first inequality could not hold. This
shows that the equation has no solutions.

(I. Cucurezeanu)

809. Expanding the cube, we obtain the equivalent equation 3x2 + 3x + 1 = y2. After
multiplying by 4 and completing the square, we obtain (2y)2 − 3(2x + 1)2 = 1, a Pell
equation, namely, u2 −3v2 = 1 with u even and v odd. The solutions to this equation are
generated by un±vn

√
3 = (2±√

3)n, and the parity restriction shows that we must select
every other solution. So the original equation has infinitely many solutions generated by

2yn ± (2xn + 1)
√

3 = (2 ± √
3)(5 ± 4

√
3)n,

or, explicitly,

xn = (2 + √
3)(5 + 4

√
3)n − (2 − √

3)(5 − 4
√

3)n − 1

2
,

yn = (2 + √
3)(5 + 4

√
3)n + (2 − √

3)(5 − 4
√

3)n

2
.

810. One family of solutions is of course (n, n), n ∈ N. Let us see what other solutions
the equation might have. Denote by t the greatest common divisor of x and y, and let
u = x

t
, v = y

t
. The equation becomes t5(u− v)5 = t3(u3 − v3). Hence

t2(u− v)4 = u3 − v3

u− v
= u2 + uv + v2 = (u− v)2 + 3uv,

or (u − v)2[t2(u − v)2 − 1] = 3uv. It follows that (u − v)2 divides 3uv, and since u
and v are relatively prime and u > v, this can happen only if u− v = 1. We obtain the
equation 3v(v + 1) = t2 − 1, which is the same as

(v + 1)3 − v3 = t2.

This was solved in the previous problem. The solutions to the original equation are then
given by x = (v + 1)t , y = vt , for any solution (v, t) to this last equation.

(A. Rotkiewicz)
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811. It is easy to guess that (x, y, z, t) = (10, 10,−1, 0) is a solution. Because quadratic
Diophantine equations are usually simpler than cubic equations, we try to reduce the
given equation to a quadratic. We do this by perturbing the particular solution that we
already know.

We try to find numbers u and v such that (10 + u, 10 − u,− 1
2 + v,− 1

2 − v) is a
solution. Of course, v has to be a half-integer, so it is better to replace it by w

2 , where w
is an odd integer. The equation becomes

(2000 + u2)− 1 + 3w2

4
= 1999,

which is the same as

w2 − 80u2 = 1.

This is a Pell equation. The smallest solution is (w1, u1) = (9, 1), and the other positive
solutions are generated by

wn + un
√

80 = (w1 + u1

√
80)n.

This gives rise to the recurrence

(wn+1, un+1) = (9wn + 80un,wn + 9un), n ≥ 1.

It is now easy to prove by induction that all the wn’s are odd, and hence any solution
(wn, un) to Pell’s equation yields the solution

(xn, yn, zn, tn) =
(

10 + un, 10 − un,−1

2
+ wn

2
,−1

2
− wn

2

)
to the original equation.

(Bulgarian Mathematical Olympiad, 1999)

812. Consider first the case that n is even, n = 2k, k an integer. We have

(
√
m+ √

m− 1)2k = (2m− 1 + 2
√
m(m− 1))k.

The term on the right-hand side generates the solution to Pell’s equation

X2 −m(m− 1)Y 2 = 1.

If for a certain n, (Xn, Yn) is the corresponding solution, then choose p = X2
n. Since

p − 1 = X2
n − 1 = m(m− 1)Y 2

n , it follows that

(
√
m+ √

m− 1)2k = (2m− 1 + 2
√
m(m− 1))k = Xn + Yn

√
m(m− 1)
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= √
p +√

p − 1,

as desired.
This now suggests the path we should follow in the case that n is odd. Write

(
√
m+ √

m− 1)n = Un
√
m+ Vn

√
m− 1.

This time, (Un, Vn) is a solution to the generalized Pell equation

mU 2 − (m− 1)V 2 = 1.

In a similar manner we choose p = mU 2
n and obtain the desired identity.

(I. Tomescu, Problems in Combinatorics, Wiley, 1985)

813. First solution: This solution is based on an idea that we already encountered in the
section on factorizations and divisibility. Solving for y, we obtain

y = −x
2 + 4006x + 20032

3x + 4006
.

To make the expression on the right easier to handle we multiply both sides by 9 and
write

9y = −3x − 8012 − 20032

3x + 4006
.

If (x, y) is an integer solution to the given equation, then 3x + 4006 divides 20032.
Because 2003 is a prime number, we have 3x+4006 ∈ {±1,±2003,±20032}. Working
modulo 3 we see that of these six possibilities, only 1, −2003, and 20032 yield integer
solutions for x. We deduce that the equation from the statement has three solutions:
(−1334,−446224), (−2003, 0), and (1336001,−446224).

Second solution: Rewrite the equation as

(3x + 4006)(3x + 9y + 8012) = −20032.

This yields a linear system

3x + 4006 = d,

3x + 9y + 8012 = −20032

d
,

where d is a divisor of −20032. Since 2003 is prime, one has to check the cases d =
±1,±2003,±20032, which yield the above solutions.

(American Mathematical Monthly, proposed by Wu Wei Chao)
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814. Divide through by x2y2 to obtain the equivalent equation

1

y2
+ 1

xy
+ 1

x2
= 1.

One of the denominators must be less than or equal to 3. The situations x = 1 and y = 1
are ruled out. Thus we can have only xy = 2 or 3. But then again either x or y is 1,
which is impossible. Hence the equation has no solutions.

815. Note that 2002 = 34 + 54 + 64. It suffices to consider

xk = 3 · 2002k, yk = 5 · 2002k, zk = 6 · 2002k, wk = 4k + 1,

with k a positive integer. Indeed,

x4
k + y4

k + z4
k = (34 + 54 + 64)20024k = 20024k+1,

for all k ≥ 1.

816. If x ≤ y ≤ z, then since 4x + 4y + 4z is a perfect square, it follows that the number
1 + 4y−x + 4z−x is also a perfect square. Then there exist an odd integer t and a positive
integer m such that

1 + 4y−x + 4z−x = (1 + 2mt)2.

It follows that

4y−x(1 + 4z−x) = 2m+1t (1 + 2m−1t);
hence m = 2y − 2x − 1. From 1 + 4z−x = t + 2m−1t2, we obtain

t − 1 = 4y−x−1(4z−2y+x+1 − t2) = 4y−x−1(2z−2y+x+1 + t)(2z−2y+x+1 − t).

Since 2z−2y+x+1 + t > t , this equality can hold only if t = 1 and z = 2y − x − 1. The
solutions are of the form (x, y, 2y − x − 1) with x, y nonnegative integers.

817. With the substitution u = 2x + 3, v = 2y + 3, w = 2z+ 3, the equation reads

u2 + v2 + w2 = 7.

By eliminating the denominators, it is equivalent to show that the equation

U 2 + V 2 +W 2 = 7T 2

has no integer solution (U, V,W, T ) 	= (0, 0, 0, 0). Assuming the contrary, pick a
solution for which |U |+|V |+|W |+|T | is minimal. Reducing the equality modulo 4, we
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find that |U |, |V |, |W |, |T | is even, hence (U2 ,
V
2 ,

W
2 ,

T
2 ) is also a solution, contradicting

minimality. Hence the equation does not have solutions.
(Bulgarian Mathematical Olympiad, 1997)

818. Clearly, y = 0 does not yield a solution, while x = y = 1 is a solution. We show
that there are no solutions with y ≥ 2. Since in this case 7x must give residue 4 when
taken modulo 9, it follows that x ≡ 2 (mod 4). In particular, we can write x = 2n,
so that

3y = 72n − 4 = (7n + 2)(7n − 2).

Both factors on the right must be powers of 3, but no two powers of 3 differ by 4. Hence
there are no solutions other than x = y = 1.

(Indian Mathematical Olympiad, 1995)

819. First solution: One can see immediately that x = 1 is a solution. Assume that there
exists a solution x > 1. Then x! is even, so 3x! has residue 1 modulo 4. This implies that
the last digit of the number 23x! is 2, so the last digit of 32x! = 23x! + 1 is 3. But this is
impossible because the last digit of an even power of 3 is either 1 or 9. Hence x = 1 is
the only solution.

Second solution: We will prove by induction the inequality

32x! < 23x!,

for x ≥ 2. The base case x = 2 runs as follows: 322 = 34 = 81 < 512 = 29 = 232
.

Assume now that 32x! < 23x! and let us show that 32(x+1)!
< 23(x+1)!

.
Raising the inequality 32x! < 23x! to the power 2x!·x , we obtain(

32x!
)2x!·x

<
(

23x!
)2x!·x

<
(

23x!
)3x!·x

.

Therefore, 32(x+1)!
< 23(x+1)!

, and the inequality is proved. The inequality we just proved
shows that there are no solutions with x ≥ 2. We are done.

Remark. The proof by induction can be avoided if we perform some computations. In-
deed, the inequality can be reduced to

32x! < 23x!

and then to

x! < log log 3 − log log 2

log 3 − log 2
= 1.13588 . . . .

(Romanian Mathematical Olympiad, 1985)
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820. First solution: The solutions are

(v + 1, v, 1, 1), for all v; (2, 1, 1, y), for all y; (2, 3, 2, 1), (3, 2, 2, 3).

To show that these are the only solutions, we consider first the simpler case v =
u + 1. Then ux − (u + 1)y = 1. Considering this equation modulo u, we obtain
−1 ≡ ux − (u + 1)y = 1 (mod u). So u = 1 or 2. The case u = 1 is clearly
impossible, since then vy = 0, so we have u = 2, v = 3. We are left with the simpler
equation 2x − 3y = 1. Modulo 3 it follows that x is even, x = 2x ′. The equality
22x′ − 1 = (2x

′ − 1)(2x
′ + 1) = 3y can hold only if x ′ = 1 (the only consecutive powers

of 3 that differ by 2 are 1 and 3). So x = 2, y = 1, and we obtain the solution (2, 3, 2, 1).
Now suppose that u = v + 1. If v = 1, then u = 2, x = 1, and y is arbitrary. So we

have found the solution (2, 1, 2, y). If v = 2, the equation reduces to 3x − 2y = 1. If
y ≥ 2, then modulo 4 we obtain that x is even, x = 2x ′, and so 32x′ −1 = (3x

′ −1)(3x
′ +

1) = 2y . Two consecutive powers of 2 differ by 2 if they are 2 and 4. We find that either
x = y = 1 or x = 2, y = 3. This gives the solutions (2, 1, 1, 1) and (3, 2, 2, 3).

So let us assume v ≥ 3. The case y = 1 gives the solutions (v + 1, v, 1, 1). If
y > 1, then v2 divides vy , so 1 ≡ (v + 1)x ≡ 0 + (

x

1

)
v + 1 (mod v2), and therefore

v divides x. Considering the equation modulo v + 1, we obtain 1 ≡ (v + 1)x − vy ≡
−(−1)y (mod (v+1)). Since v+1 > 2, 1 	≡ −1 (mod (v+1)), so y must be odd. Now
if x = 1, then vy = v, so v = 1, giving again the family of solutions (v + 1, v, 1, 1). So
assume x > 1. Then (v + 1)2 divides (v + 1)x , so

1 ≡ (v + 1)x − vy ≡ −(v + 1 − 1)y

≡ 0 −
(
y

1

)
(v + 1)(−1)y−1 − (−1)y

≡ −y(v + 1)+ 1 (mod (v + 1)2).

Hence v + 1 divides y. Since y is odd, v + 1 is odd and v is even. Since v divides x,
x is also even. Because v is even and v ≥ 3, it follows that v ≥ 4. We will need the
following result.

Lemma. If a and q are odd, if 1 ≤ m < t , and if a2mq ≡ 1 (mod 2t ), then a ≡
±1 (mod 2t−m).

Proof. First, let us prove the property for q = 1. We will do it by induction on m.
For m = 1 we have a2 = (a − 1)(a + 1), so one of the factors is divisible by 2t−1.
Assume that the property is true form− 1 and let us prove it form. Factoring, we obtain
(a2m−1 + 1)(a2m−1 − 1). For m ≥ 2, the first factor is 2 modulo 4, hence a2m−1

is 1
modulo 2t−1. From the induction hypothesis it follows that a ≡ ±1 (mod 2t−m) (note
that t −m = (t − 1)− (m− 1)).
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For arbitrary q, from what we have proved so far it follows that aq ≡ ±1 (mod 2t−m).
Because φ(2t−m) = 2t−m−1, by Euler’s theorem a2t−m−1 ≡ 1 (mod 2t−m). Since q is odd,
we can find a positive integer c such that cq ≡ 1 (mod 2t−m−1). Then a ≡ acq ≡
(±1)c ≡ ±1 (mod 2t−m), and the lemma is proved.

Let us return to the problem. Let x = 2mq, where m ≥ 1 and q is odd. Because
(v+1)x −vy = 1, clearly y ≥ x. We have shown that v+1 divides y, so y ≥ v+1. Let
us prove that y ≥ 2m+ 1. Indeed, if m ≤ 2 this holds since y ≥ v + 1 ≥ 5 ≥ 2m+ 1;
otherwise, y ≥ x = 2mq ≥ 2m ≥ 2m+ 1.

Looking at the equation modulo 2y , we have (v + 1)2
mq ≡ 1 (mod 2y), because 2y

divides vy . By the lemma this implies that v + 1 ≡ ±1 (mod 2y−m). But v + 1 ≡
1 (mod 2y−m) would imply that 2m+1 divides v, which is impossible since v divides x.
Therefore, v+1 ≡ −1 (mod 2y−m) and v ≡ −2 (mod 2y−m). In particular, v ≥ 2y−m−2,
so y ≥ 2y−m − 1. But since y ≥ 2m + 1 and y ≥ 5, it follows that 2y−m − 1 > y, a
contradiction. This shows that there are no other solutions.

Second solution: Begin as before until we reduce to the case u = v+ 1 and v ≥ 3. Then
we use the following lemma.

Lemma. Suppose ps ≥ 3 is a prime power, r ≥ 1, and a ≡ 1 (mod ps), but not
mod ps+1. If ak ≡ 1 (mod pr+s), then pr divides k.

Proof. Write a = 1 + cps + dps+1, where 1 ≤ c ≤ p − 1. Then we compute ak ≡
1 + kcps (mod ps+1), and

ap = 1 + cps+1 + dps+2 +
(
p

2

)
p2s(c + dp)+

(
p

3

)
p3s(c + dp)3 + · · · .

Since either s ≥ 2 or p is odd, ps+2 divides
(
p

2

)
p2s ; hence the fourth term is zero

mod ps+2. Since s + 2 ≤ 3s, the latter terms are also zero mod ps+2; hence ap ≡
1 (mod ps+1), but not mod ps+2.

We now proceed by induction on r . Since r ≥ 1, the first equation above shows
that p divides k, which is the base case. For the inductive step, we note that the second
calculation above lets us apply the previous case to (ap)k/p.

To use this lemma, let ps ≥ 3 be the highest power of the prime p that divides v.
Then u = v + 1 ≡ 1 (mod ps), but not mod ps+1, and ux = vy + 1 ≡ 1 (mod psy).
Hence by the lemma, ps(y−1) divides x, and in particular, x ≥ ps(y−1) ≥ 3y−1. Thus
either x > y or y = 1.

Similarly, let qt ≥ 3 be the highest power of the prime q that divides u. Then
(−v) = 1 − u ≡ 1 (mod qt ), but not mod qt+1. Since (−v)y ≡ 1 (mod qt ) and
(−v)y = (−1)y − (−1)yux ≡ (−1)y (mod qt ), we see that y is even. Hence (−v)y =
1 − ux ≡ 1 (mod qtx). Thus by the lemma, qt(x−1) divides y, and in particular, y ≥
qt(x−1) ≥ 3x−1, so either y > x or x = 1.
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Combining these, we see that we must have either x = 1 or y = 1. Either of these
implies the other and gives the solution (v + 1, v, 1, 1).

Remark. Catalan conjectured in 1844 a more general fact, namely that the Diophantine
equationux−vy = 1 subject to the condition x, y ≥ 2 has the unique solution 32−23 = 1.
This would mean that 8 and 9 are the only consecutive powers. Catalan’s conjecture was
proved by P. Mihăilescu in 2002.

(Kvant (Quantum), first solution by R. Barton, second solution by R. Stong)
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821. The relation from the statement implies

(A ∩X) ∪ (B ∩X) = A ∩ B.
Applying de Morgan’s law, we obtain

(A ∪ B) ∩X = A ∩ B.
But the left-hand side is equal to (A ∪ B ∪ X) ∩ X, and this is obviously equal to X.
Hence X = A ∩ B.

(Russian Mathematics Competition, 1977)

822. This is an easy application of the pigeonhole principle. Let n be the number of
vertices. Associate to each vertex the set of vertices connected to it by edges. There are
n such sets, and each of them has at most n− 1 elements. Hence there are two sets with
the same number of elements. Their corresponding vertices are endpoints of the same
number of edges.

823. We prove the property by induction on the number of elements of the set. For a
set with one element the property clearly holds. Let us assume that we could find the
required list A1, A2, . . . , A2n of the subsets of the set with n elements, n ≥ 1. Add the
element x to obtain a set with n+ 1 elements. The list for this new set is

A1, A2, . . . , A2n, A2n ∪ {x}, . . . , A2 ∪ {x}, A1 ∪ {x},
and the induction is complete.

824. Note that the product of the three elements in each of the sets {1, 4, 9}, {2, 6, 12},
{3, 5, 15}, and {7, 8, 14} is a square. Hence none of these sets is a subset of M . Because
they are disjoint, it follows that M has at most 15 − 4 = 11 elements.

Since 10 is not an element of the aforementioned sets, if 10 /∈ M , thenM has at most
10 elements. Suppose 10 ∈ M . Then none of {2, 5}, {6, 15}, {1, 4, 9}, and {7, 8, 14}
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is a subset of M . If {3, 12} 	⊂ M , it follows again that M has at most 10 elements. If
{3, 12} ⊂ M , then none of {1}, {4}, {9}, {2, 6}, {5, 15}, and {7, 8, 14} is a subset of M ,
and then M has at most 9 elements. We conclude that M has at most 10 elements in
any case.

Finally, it is easy to verify that the subset

M = {1, 4, 5, 6, 7, 10, 11, 12, 13, 14}

has the desired property. Hence the maximum number of elements in M is 10.
(short list of the 35th International Mathematical Olympiad, 1994, proposed by Bul-

garia)

825. Fix A ∈ F and consider the function f : P(S) → P(S) on the subsets of S,
f (X) = X	A. Because

f (f (X)) = (X	A)	A = ((X	A)\A) ∪ (A\(X	A))
= (X\A) ∪ (X ∩ A) = X,

f is one-to-one. Therefore, f (F) has at least m elements. The conclusion follows.
(I. Tomescu, Problems in Combinatorics, Wiley, 1985)

826. If all functions fn, n = 1, 2, 3, . . . , are onto, then the property is obvious. We will
reduce the general situation to this particular one. For some k and n, define

Bn,k = (fn ◦ fn+1 ◦ · · · ◦ fn+k−1)(An+k).

We have the descending sequence of sets

An ⊃ Bn,1 ⊃ Bn,2 ⊃ · · · .

Because all these sets are finite, the sequence is stationary, so there exists k0 such that
Bn,k = Bn,k+1, for k ≥ k0. Let Bn = Bn,k0 . It is not hard to see that fn(Bn+1) = Bn,
and in this way we obtain a sequence of sets and surjective maps. For these the property
holds; hence it holds for the original sets as well.

(C. Năstăsescu, C. Niţă, M. Brandiburu, D. Joiţa, Exerciţii şi Probleme de Algebră
(Exercises and Problems in Algebra), Editura Didactică şi Pedagogică, Bucharest, 1983)

827. For a personX we will denote bymX the number of people he knows. Let A and B
be two people who know each other. We denote byMA andMB the set of acquaintances
of A, respectively, B. By hypothesis MA and MB are disjoint. If X ∈ MA, then X has
exactly one acquaintance in MB . Indeed, either X = A, in which case he only knows B
in MB , or X 	= A, in which case he does not know B, so he has exactly one common
acquaintance with B. This latter person is the only one he knows in MB . Similarly, any
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person inMB has exactly one acquaintance inMA. This allows us to establish a bijection
between MA and MB , and conclude that mA = mB .

Finally, if A and B do not know each other, then they have a common acquaintance
C. The above argument shows that mA = mC = mB , and we are done.

(Kvant (Quantum))

828. We set f 0 = 1A, f n+1 = f n ◦ f , n ≥ 0. Define on A the relation x ∼ y if
there exist m and n such that f n(x) = f m(y). One verifies immediately that ∼ is an
equivalence relation, and that equivalence classes are invariant under f . An equivalence
class resembles a spiral galaxy, with a cycle into which several branches enter. Such an
equivalence class is illustrated in Figure 94, where the dots are elements of E and the
arrows describe the action of f .

Figure 94

Thus f defines a directed graph whose connected components are the equivalence
classes. We color the vertices of this graph by 0, 1, 2, 3 according to the following rule.
All fixed points are colored by 0. Each cycle is colored alternately 1, 2, 1, 2, . . . with its
last vertex colored by 3. Finally, each branch is colored alternately so that no consecutive
vertices have the same color. The coloring has the property that adjacent vertices have
different colors. If we let Ai consist of those elements of A colored by i, i = 0, 1, 2, 3,
then these sets have the required property. The construction works also in the case that
the cycle has length one, that is, when it is a fixed points of f . Note that in general the
partition is not unique.

This argument can be easily adapted to the case in which A is infinite. All cycles are
finite and they are taken care of as in the case of a finite set. The coloring can be done
provided that we can choose one element from each cycle to start with, thus we have to
assume the axiom of choice. This axiom states that given a family of sets one can choose
one element from each of them. Now let us consider an equivalence class as defined
above, and look at the dynamic process of repeated applications of f . It either ends in
A0 or in a cycle, or it continues forever. In the equivalence class we pick a reference
point x0, which is either the point where the equivalence class enters A0 or a cycle, or
otherwise is an arbitrary point. Either x0 has been colored, by 0 or as part of a cycle, or if
not, we color it by the color of our choice. Say the color of x0 is i, and let j and k be two
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other colors chosen from 1, 2, and 3. If x ∼ x0 then f n(x) = f m(x0) for some integers
m and n. For that particular x, choose m and n to be minimal with this property. Color
x by j if m− n is even, and by k if m− n is odd.

Note that x and f (x) cannot have the same color, for otherwise in the equalities
f n(x) = f m(x0) and f n+1(x) = f m

′
(x0) the minimality of m and m′ implies that

m = m′, and then n−m and n+ 1 −mwould have the same parity, which is impossible.
Again, the coloring partitions A into four sets with the desired properties.

829. We solve the more general case of the permutations of the first 2n positive integers,
n ≥ 1. The average of the sum

n∑
k=1

|a2k−1 − a2k|

is just n times the average value of |a1 − a2|, because the average value of |a2i−1 − a2i |
is the same for all i = 1, 2, . . . , n. When a1 = k, the average value of |a1 − a2| is

(k − 1)+ (k − 2)+ · · · + 1 + 1 + 2 + · · · + (2n− k)

2n− 1

= 1

2n− 1

[
k(k − 1)

2
+ (2n− k)(2n− k + 1)

2

]
= k2 − (2n+ 1)k + n(2n+ 1)

2n− 1
.

It follows that the average value of the sum is

n · 1

2n

2n∑
k=1

k2 − (2n+ 1)k + n(2n+ 1)

2n− 1

= 1

4n− 2

[
2n(2n+ 1)(4n+ 1)

6
− (2n+ 1)

2n(2n+ 1)

2
+ 2n2(2n+ 1)

]
= n(2n+ 1)

3
.

For our problem n = 5 and the average of the sums is 55
3 .

(American Invitational Mathematics Examination, 1996)

830. The condition from the statement implies that any such permutation has exactly two
disjoint cycles, say (ai1, . . . , air ) and (air+1, . . . , ai6). This follows from the fact that in
order to transform a cycle of length r into the identity r − 1, transpositions are needed.
Moreover, we can only have r = 5, 4, or 3.

When r = 5, there are
(6

1

)
choices for the number that stays unpermuted. There are

(5 − 1)! possible cycles, so in this case we have 6 × 4! = 144 possibilities.
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When r = 4, there are
(6

4

)
ways to split the numbers into the two cycles (two cycles

are needed and not just one). One cycle is a transposition. There are (4 − 1)! = 6
choices for the other. Hence in this case the number is 90. Note that here exactly four
transpositions are needed.

Finally, when r = 3, then there are
(6

3

)× (3 − 1)! × (3 − 1)! = 40 cases. Therefore,
the answer to the problem is 144 + 90 + 40 = 274.

(Korean Mathematical Olympiad, 1999)

831. We would like to find a recursive scheme for f (n). Let us attempt the less ambitious
goal of finding a recurrence relation for the number g(n) of permutations of the desired
form satisfying an = n. In that situation either an−1 = n− 1 or an−1 = n− 2, and in the
latter case we necessarily have an−2 = n−1 and an−3 = n−3. We obtain the recurrence
relation

g(n) = g(n− 1)+ g(n− 3), for n ≥ 4.

In particular, the values of g(n) modulo 3 are 1, 1, 1, 2, 0, 1, 0, 0, . . . repeating with
period 8.

Now let h(n) = f (n) − g(n). We see that h(n) counts permutations of the desired
form with n occurring in the middle, sandwiched between n − 1 and n − 2. Removing
n leaves an acceptable permutation, and any acceptable permutation on n − 1 symbols
can be so produced, except those ending in n− 4, n− 2, n− 3, n− 1. So for h(n), we
have the recurrence

h(n) = h(n− 1)+ g(n− 1)− g(n− 4) = h(n− 1)+ g(n− 2), for n ≥ 5.

A routine check shows that h(n) modulo 3 repeats with period 24.
We find that f (n) repeats with period equal to the least common multiple of 8 and

24, which is 24. Because 1996 ≡ 4 (mod 24), we have f (1996) ≡ f (4) = 4 (mod 3).
So f (1996) is not divisible by 3.

(Canadian Mathematical Olympiad, 1996)

832. To solve this problem we will apply Sturm’s principle, a method discussed in Sec-
tion 2.1.6. The fact is that as σ ranges over all permutations, there are n! sums of the form

n∑
i=1

(xi − yσ(i))
2,

and one of them must be the smallest. If σ is not the identity permutation, then it must
contain an inversion, i.e., a pair (i, j) with i < j and σ(i) > σ(j). We have

(xi − yσ(i))
2 + (xj − yσ(j))

2 − (xi − yσ(j))
2 − (xj − yσ(i))

2 = (xj − xi)(yσ(i) − yσ(j)).
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This product is positive, so by exchanging yσ(i) and yσ(j) we decrease the sum. This
means that this permutation does not minimize the sum. Therefore, the sum is minimal
for the identity permutation. The inequality follows.

833. LetN(σ) be the number we are computing. Denote byNi(σ ) the average number of
large integers ai . Taking into account the fact that after choosing the first i− 1 numbers,
the ith is completely determined by the condition of being large, for any choice of the
first i−1 numbers there are (n− i+1)! choices for the last n− i+1, from which (n− i)!
contain a large integer in the ith position. We deduce that Ni(σ ) = 1

n−i+1 . The answer
to the problem is therefore

N(σ) =
n∑
i=1

Ni(σ ) = 1 + 1

2
+ · · · + 1

n
.

(19th W.L. Putnam Mathematical Competition, 1958)

834. We will show that σ is the identity permutation. Assume the contrary and let
(i1, i2, . . . , ik) be a cycle, i.e., σ(i1) = i2, σ (i2) = i3, . . . , σ (ik) = i1. We can assume
that i1 is the smallest of the ij ’s, j = 1, 2, . . . , k. From the hypothesis,

ai1ai2 = ai1aσ(i1) < aikaσ(ik) = aikai1,

so ai2 < aik and therefore i2 < ik. Similarly,

ai2ai3 = ai2aσ(i2) < aikaσ(ik) = aikai1,

and since ai2 > ai1 it follows that ai3 < aik , so i3 < ik. Inductively, we obtain that
ij < ik, j = 1, 2, . . . , k − 1. But then

aik−1aik = aik−1aσ(ik−1) < aikaσ(ik) = aikai1,

hence ik−1 < i1, a contradiction. This proves that σ is the identity permutation, and we
are done.

(C. Năstăsescu, C. Niţă, M. Brandiburu, D. Joiţa, Exerciţii şi Probleme de Algebră
(Exercises and Problems in Algebra), Editura Didactică şi Pedagogică, Bucharest, 1983)

835. Let S = {1, 2, . . . , 2004}. Write the permutation as a function f : S → S,
f (n) = an, n = 1, 2, . . . , 2004. We start by noting three properties of f :

(i) f (i) 	= i for any i,
(ii) f (i) 	= f (j) if i 	= j ,

(iii) f (i) = j implies f (j) = i.
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The first two properties are obvious, while the third requires a proof. Arguing by
contradiction, let us assume that f (i) = j but f (j) 	= i. We discuss first the case
j > i. If we let k = j − i, then f (i) = i + k. Since k = |f (i) − i| = |f (j) − j |
and f (j) 	= i, it follows that f (j) = i + 2k, i.e., f (i + k) = i + 2k. The same
reasoning yields f (i + 2k) = i + k or i + 3k. Since we already have f (i) = i + k, the
only possibility is f (i + 2k) = i + 3k. And the argument can be repeated to show that
f (i+ nk) = i+ (n+ 1)k for all n. However, this then forces f to attain ever increasing
values, which is impossible since its range is finite. A similar argument takes care of the
case j < i. This proves (iii).

The three properties show that f is an involution on S with no fixed points. Thus f
partitions S into 1002 distinct pairs (i, j) with i = f (j) and j = f (i). Moreover, the
absolute value of the difference of the elements in any pair is the same. If f (1)− 1 = k

then f (2) = k + 1, . . . , f (k) = 2k, and since f is an involution, the values of f
on k + 1, k + 2, . . . , 2k are already determined, namely f (k + 1) = 1, f (k + 2) =
2, . . . , f (2k) = k. So the first block of 2k integers is invariant under f . Using similar
reasoning, we obtain f (2k+1) = 3k+1, f (2k+2) = 3k+2, . . . , f (3k) = 4k, f (3k+
1) = 2k + 1, . . . , f (4k) = 3k. So the next block of 2k integers is invariant under f .
Continuing this process, we see that f partitions S into blocks of 2k consecutive integers
that are invariant under f . This can happen only if 2k divides 2004, hence if k divides
1002. Furthermore, for each such k we can construct f following the recipe given above.
Hence the number of such permutations equals the number of divisors of 1002, which
is 8.

(Australian Mathematical Olympiad, 2004, solution by L. Field)

836. Expanding |σ(k)− k| as ±σ(k)± k and reordering, we see that

|σ(1)− 1| + |σ(2)− 2| + · · · + |σ(n)− n| = ±1 ± 1 ± 2 ± 2 ± · · · ± n± n,

for some choices of signs. The maximum of |σ(1)− 1| + |σ(2)− 2| + · · · + |σ(n)− n|
is reached by choosing the smaller of the numbers to be negative and the larger to be
positive, and is therefore equal to

2

(
−1 − 2 − · · · − n− 1

2

)
− n+ 1

2
+ n+ 1

2
+ 2

(
n+ 3

2
+ · · · + n

)
= −

(
1 + n− 1

2

)
n− 1

2
+
(
n+ 3

2
+ n

)
n− 1

2
= n2 − 1

2
.

Therefore, in order to have |σ(1)− 1| + · · · + |σ(n)− n| = n2−1
2 , we must have{

σ(1), . . . , σ

(
n− 1

2

)}
⊂
{
n+ 1

2
,
n+ 3

2
, . . . , n

}
and
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{
σ

(
n+ 3

2

)
, σ

(
n+ 5

2

)
, . . . , σ (n)

}
⊂
{

1, 2, . . . ,
n+ 1

2

}
.

Let σ(n+1
2 ) = k. If k ≤ n+1

2 , then{
σ(1), . . . , σ

(
n− 1

2

)}
=
{
n+ 3

2
,
n+ 5

2
, . . . , n

}
and {

σ

(
n+ 3

2

)
, σ

(
n+ 5

2

)
, . . . , σ (n)

}
=
{

1, 2, . . . ,
n+ 1

2

}
− {k}.

If k ≥ n+1
2 , then{

σ(1), . . . , σ

(
n− 1

2

)}
=
{
n+ 1

2
,
n+ 3

2
, . . . , n

}
− {k}

and {
σ

(
n+ 3

2

)
, σ

(
n+ 5

2

)
, . . . , σ (n)

}
=
{

1, 2, . . . ,
n− 1

2

}
.

For any value of k, there are [(n−1
2 )!]2 choices for the remaining values of σ , so there are

n

[(
n− 1

2

)
!
]2

such permutations.
(T. Andreescu)

837. Let f (n) be the desired number. We count immediately f (1) = 2, f (2) = 4. For
the general case we argue inductively. Assume that we already have constructed n circles.
When adding the (n + 1)st, it intersects the other circles in 2n points. Each of the 2n
arcs determined by those points splits some region in two. This produces the recurrence
relation f (n+ 1) = f (n)+ 2n. Iterating, we obtain

f (n) = 2 + 2 + 4 + 6 + · · · + 2(n− 1) = n2 − n+ 2.

(25th W.L. Putnam Mathematical Competition, 1965)

838. Again we try to derive a recursive formula for the number F(n) of regions. But
this time counting the number of regions added by a new sphere is not easy at all. The
previous problem comes in handy. The first n spheres determine on the (n+ 1)st exactly
n2 − n + 2 regions. This is because the conditions from the statement give rise on the
last sphere to a configuration of circles in which any two, but no three, intersect. And
this is the only condition that we used in the solution to the previous problem. Each of
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the n2 − n+ 2 spherical regions divides some spatial region into two parts. This allows
us to write the recursive formula

F(n+ 1) = F(n)+ n2 − n+ 2, F (1) = 2.

Iterating, we obtain

F(n) = 2 + 4 + 8 + · · · + [(n− 1)2 − (n− 1)+ 2] =
n−1∑
k=1

(k2 − k + 2)

= n3 − 3n2 + 8n

3
.

839. Choose three points A,B,C of the given set that lie on the boundary of its convex
hull. There are

(
n−3

2

)
ways to select two more points from the set. The line DE cuts

two of the sides of the triangle ABC, say, AB and AC. Then B,C,D,E form a convex
quadrilateral. Making all possible choices of the pointsD andE, we obtain

(
n−3

2

)
convex

quadrilaterals.
(11th International Mathematical Olympiad, 1969)

840. The grid is made up of n(n+1)
2 small equilateral triangles of side length 1. In each of

these triangles, at most 2 segments can be marked, so we can mark at most 2
3 · 3n(n+1)

2 =
n(n + 1) segments in all. Every segment points in one of three directions, so we can
achieve the maximum n(n+ 1) by marking all the segments pointing in two of the three
directions.

(Russian Mathematical Olympiad, 1999)

841. Assume by way of contradiction that the distance between any two points is greater
than or equal to 1. Then the spheres of radius 1

2 with centers at these 1981 points have
disjoint interiors, and are included in the cube of side length 10 determined by the six
parallel planes to the given cube’s faces and situated in the exterior at distance 1

2 . It
follows that the sum of the volumes of the 1981 spheres is less than the volume of the
cube of side 10, meaning that

1981 · 4π · ( 1
2

)3

3
= 1981 · π

6
> 1000,

a contradiction. This completes the proof.

Remark. If we naively divide each side of the cube into � 3
√

1981� = 12 congruent
segments, we obtain 123 = 1728 small cubes of side 9

12 = 3
4 . The pigeonhole principle

guarantees that some small cube contains two of the points, but unfortunately the upper
bound that we get for the distance between the two points is 3

4
3
√

3, which is greater than 1.
(Revista Matematică din Timişoara (Timişoara Mathematics Gazette), proposed by

T. Andreescu)
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842. We examine separately the cases n = 3, 4, 5. A triangle can have at most one right
angle, a quadrilateral four, and a pentagon three (if four angles of the pentagon were
right, the fifth would have to be equal to 180◦).

Let us consider an n-gon with n ≥ 6 having k internal right angles. Because the other
n − k angles are less than 360◦ and because the sum of all angles is (n − 2) · 180◦, the
following inequality holds:

(n− k) · 360◦ + k · 90◦ > (n− 2) · 180◦.

This readily implies that k < 2n+4
3 , and since k and n are integers, k ≤ � 2n

3 � + 1.
We will prove by induction on n that this upper bound can be reached. The base cases

n = 6, 7, 8 are shown in Figure 95.

Figure 95

We assume that the construction is done for n and prove that it can be done for n+ 3.
For our method to work, we assume in addition that at least one internal angle is greater
than 180◦. This is the case with the polygons from Figure 95. For the inductive step
we replace the internal angle greater than 180◦ as shown in Figure 96. This increases
the angles by 3 and the right angles by 2. The new figure still has an internal angle
greater than 180◦, so the induction works. This construction proves that the bound can
be reached.

Figure 96

(short list of the 44th International Mathematical Olympiad, 2003)

843. It seems that the situation is complicated by successive colorings. But it is not!
Observe that each time the moving circle passes through the original position, a new
point will be colored. But this point will color the same points on the fixed circle. In
short, only the first colored point on one circle contributes to newly colored points on the
other; all other colored points follow in its footsteps. So there will be as many colored
points on the small circle as there are points of coordinate 2πk, k an integer, on the
segment [0, 200π

√
2]. Their number is
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⌊
200π

√
2

2π

⌋
= �100

√
2� = 141.

(Ukrainian Mathematical Olympiad)

844. The solution is based on the pigeonhole principle. Let us assume that the sum of
lengths of the chords is greater than or equal to kπ . Then the sum of the lengths of the
arcs subtended by these chords is greater than kπ . Add to these arcs their reflections
about the center of the circle. The sum of the lengths of all arcs is greater than 2kπ ,
so there exists a point covered by at least k + 1 arcs. The diameter through that point
intersects at least k + 1 chords, contradicting our assumption. Hence the conclusion.

(Kvant (Quantum), proposed by A.T. Kolotov)

845. The center of the desired circle must lie at distance at least 1 from the boundary
of the square. We will be able to find it somewhere inside the square whose sides are
parallel to those of the initial square and at distance 1 from them. The side length of this
smaller square is 36.

The locus of all points that lie at distance less than 1 from a convex polygonal surface
P is a polygonal surface Q with sides parallel to those of P and whose corners are
rounded. The areas of P and Q are related by

S[Q] = S[P ] + (perimeter of P)× 1 + π.

This is because the circular sectors from the corners of Q complete themselves to a disk
of radius 1.

So the locus of the points at distance less than 1 from a polygon of area at most π
and perimeter at most 2π is less than or equal to π + 2π + π = 4π . It follows that the
area of the region of all points that are at distance less than 1 from any of the given 100
polygons is at most 400π . But

400π ≤ 400 · 3.2 = 40 · 32 = 362 − 42 < 362.

So the set of these points does not cover entirely the interior of the square of side length
36. Pick a point that is not covered; the unit disk centered at that point is disjoint from
any of the polygons, as desired.

(M. Pimsner, S. Popa, Probleme de geometrie elementară (Problems in elementary
geometry), Editura Didactică şi Pedagogică, Bucharest, 1979)

846. Place n disks of radius 1 with the centers at the given n points. The problem can be
reformulated in terms of these disks as follows.

Alternative problem. Given n ≥ 3 disks in the plane such that any 3 intersect, show
that the intersection of all disks is nontrivial.
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This is a well-known property, true in d-dimensional space, where “disks’’ becomes
“balls’’and the number 3 is replaced by d+1. The case d = 1 is rather simple. Translating
the problem for the real axis, we have a finite family of intervals [ai, bi], 1 ≤ i ≤ n, such
that any two intersect. Then ai < bj for any i, j , and hence

[max ai,min bj ] ⊂ ∩i[ai, bi],
proving the claim. In general, we proceed by induction on d. Assume that the prop-
erty is not true, and select the d-dimensional balls (disks in the two-dimensional case)
B1, B2, . . . , Bk−1, Bk such that

B1 ∩ B2 ∩ · · · ∩ Bk−1 = G 	= ∅ and B1 ∩ B2 ∩ · · · ∩ Bk−1 ∩ Bk = ∅.
LetH be a hyperplane (line in the two-dimensional case) that separatesG fromBk. Since
Bk intersects each of the ballsB1, B2, . . . , Bk−1, the setsXi = Bi∩H , i = 1, 2, . . . , k−1,
are nonempty. Moreover, since by hypothesis Bk and any d of the other k− 1 balls have
nontrivial intersection, any collection of d sets Xi has nontrivial intersection. But then,
by the induction hypothesis, all Xi have nontrivial intersection. Therefore,

H ∩ B1 ∩ B2 ∩ · · · ∩ Bk−1 	= ∅,
i.e., H ∩G 	= ∅, a contradiction. Our assumption was false, which proves the inductive
step. So the property is true in general, in particular in the two-dimensional case.

847. The problem is solved once we show that the faces of this polyhedron can be colored
black and white such that neighboring faces have different colors. Indeed, the edges of
the polygonal section will themselves be colored in such a way that consecutive edges
have different colors, and this can be done only if the number of edges is even.

To prove the claim, we will slightly generalize it; namely, we show that if in a planar
graph every vertex belongs to an even number of edges, then the faces of the graph and
its exterior can be colored black and white such that neighboring regions are of different
colors. Once we allow edges to bend, and faces to be bigons, we can induct on the number
of faces.

The base case consists of a face bounded by two edges, for which the property
obviously holds. Assume that the property holds true for all graphs with at most k faces
and let us prove it for an arbitrary graph with k + 1 faces. Choose a face of the graph,
which may look as in Figure 97. Shrink it to a point. Color the new graph as permitted
by the inductive hypothesis. Blow up the face back into the picture. Because an even
number of edges meet at each vertex, all the faces that share an edge with the chosen one
are colored by the same color (when moving clockwise around the chosen face we get
from one neighboring face to the next in an even number of steps). Hence the face can
be given the opposite color. This completes the argument.

(Kvant (Quantum))
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848. For finding the upper bound we employ Euler’s formula. View the configuration as
a planar graph, and complete as many curved edges as possible, until a triangulation of
the plane is obtained. If V = n is the number of vertices, E the number of edges and F
the number of faces (with the exterior counted among them), then V − E + F = 2, so
E − F = n + 2. On the other hand, since every edge belongs to two faces and every
face has three edges, 2E = 3F . Solving, we obtain E = 3n − 6. Deleting the “alien’’
curved edges, we obtain the inequality E ≤ 3n − 6. That the bound can be reached is
demonstrated in Figure 98.

Figure 98

(German Mathematical Olympiad, 1976)

849. If this were possible, then the configuration would determine a planar graph with
V = 6 vertices (the 3 neighbors and the 3 wells) andE = 9 edges (the paths). Each of its
F faces would have 4 or more edges because there is no path between wells or between
neighbors. So

F ≤ 2

4
E = 9

2
.

On the other hand, by Euler’s relation we have
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F = 2 + E − V = 5.

We have reached a contradiction, which shows that the answer to the problem is negative.

850. With the standard notation, we are given that F ≥ 5 andE = 3V
2 . We will show that

not all faces of the polyhedron are triangles. Otherwise, E = 3F
2 and Euler’s formula

yields F − 3F
2 + F = 2, that is, F = 4, contradicting the hypothesis.

We will indicate now the game strategy for the two players. The first player writes
his/her name on a face that is not a triangle; call this face A1A2 . . . An, n ≥ 4. The
second player, in an attempt to obstruct the first, will sign a face that has as many common
vertices with the face signed by the first as possible, thus claiming a face that shares an
edge with the one chosen by the first player. Assume that the second player signed a
face containing the edge A1A2. The first player will now sign a face containing the edge
A3A4. Regardless of the play of the second player, the first can sign a face containing
either A3 or A4, and wins!

(64th W.L. Putnam Mathematical Competition, 2003, proposed by T. Andreescu)

851. Start with Euler’s relation V −E + F = 2, and multiply it by 2π to obtain 2πV −
2πE + 2πF = 4π . If nk, k ≥ 3, denotes the number of faces that are k-gons, then
F = n3 + n4 + n5 + · · · . Also, counting edges by the faces, and using the fact that
each edge belongs to two faces, we have 2E = 3n3 + 4n4 + 5n5 + · · · . Euler’s relation
becomes

2πV − π(n3 + 2n4 + 3n5 + · · · ) = 4π.

Because the sum of the angles of a k-gon is (k − 2)π , the sum in the above relation is
equal to �. Hence the conclusion.

Remark. In general, if a polyhedron P resembles a sphere with g handles, then 2πV −
� = 2π(2 − 2g). As mentioned before, the number 2 − 2g, denoted by χ(P ), is called
the Euler characteristic of the polyhedron. The difference between 2π and the sum of
the angles around a vertex is the curvature Kv at that vertex. Our formula then reads∑

v

Kv = 2πχ(P ).

This is the piecewise linear version of the Gauss–Bonnet theorem.
In the differential setting, the Gauss–Bonnet theorem is expressed as∫

S

KdA = 2πχ(S),

or in words, the integral of the Gaussian curvature over a closed surface S is equal to the
Euler characteristic of the surface multiplied by 2π . This means that no matter how we
deform a surface, although locally its Gaussian curvature will change, the total curvature
remains unchanged.
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852. (a) We use an argument by contradiction. The idea is to start with Euler’s formula

V − E + F = 2

and obtain a relation that is manifestly absurd. By our assumption each vertex belongs
to at least 6 edges. Counting the vertices by the edges, we obtain 2E (each edge has two
vertices). But we overcounted the vertices at least 6 times. Hence 2E ≥ 6V . Similarly,
counting faces by the edges and using the fact that each face has at least three edges, we
obtain 2E ≥ 3F . We thus have

2 = V − E + F ≤ 1

3
E − E + 2

3
E = 0,

an absurdity. It follows that our assumption was false, and hence there is a vertex
belonging to at most five edges.

(b) We use the first part. To the map we associate a connected planar graph G. The
vertices of G are the regions. The edges cross the boundary arcs (see Figure 99). For
a border consisting of consecutive segments that separates two neighboring regions we
add just one edge! The constructed graph satisfies the conditions from part (a). We claim
that it can be colored by 5 colors so that whenever two vertices are joined by an edge,
they have different colors.

Figure 99

We prove the claim by induction on the number of vertices. The result is obvious if
G has at most 5 vertices. Now assume that the coloring exists for any graph with V − 1
vertices and let us prove that it exists for graphs with V vertices.

By (a), there is a vertex v that has at most 5 adjacent vertices. Remove v and the
incident edges, and color the remaining graph by 5 colors. The only situation that poses
difficulties for extending the coloring to v is if v has exactly 5 adjacent vertices and
they are colored by different colors. Call these vertices w1, w2, w3, w4, w5 in clockwise
order, and assume they are colored A,B,C,D,E, respectively. Look at the connected
component containing w1 of the subgraph ofG consisting of only those vertices colored
by A and C. If w3 does not belong to this component, switch the colors A and C on this
component, and then color v by A. Now let us examine the case in which w3 belongs to
this component. There is a path of vertices colored by A and C that connects w1 and w3.
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Next, let us focus on w2 and w4 (Figure 100). The only case in which we would not
know how to perform the coloring is again the one in which there is a path of vertices
colored by B and D that joins w2 to w4. Add v to the two paths (from w1 to w3 and
from w2 to w4) to obtain two cycles. Because of how we ordered the wi’s and because
the graph is planar, the two cycles will intersect at a vertex that must be simultaneously
colored by one of A or C and by one of B or D. This is impossible, so this situation
cannot occur. This completes the solution.

Remark. The famous four color theorem states that four colors suffice. This was first
conjectured by F. Guthrie in 1853, and proved by K. Appel and W. Haken in 1977 with
the aid of a computer. The above five-color theorem was proved in 1890 by P.J. Heawood
using ideas of A. Kempe.

853. We will prove a more precise result. To this end, we need to define one more type of
singularity. A vertex is called a (multi)saddle of index −k, k ≥ 1, if it belongs to some
incoming and to some outgoing edge, and if there are k + 1 changes from incoming to
outgoing edges in making a complete turn around the vertex. The name is motivated by
the fact that if the index is −1, then the arrows describe the way liquid flows on a horse
saddle. Figure 101 depicts a saddle of index −2.

Figure 101
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Call a vertex that belongs only to outgoing edges a source, a vertex that belongs only
to incoming edges a sink, and a face whose edges form a cycle a circulation. Denote by
n1 the number of sources, by n2 the number of sinks, by n3 the number of circulations,
and by n4 the sum of the indices of all (multi)saddles.

Figure 102

We refer everything to Figure 102. We start with the count of vertices by incoming
edges; thus for each incoming edge we count one vertex. Sources are not counted. With
the standard notation, if we write

E = V − n1,

we have overcounted on the left-hand side. To compensate this, let us count vertices by
faces. Each face that is not a circulation has two edges pointing toward the same vertex.
In that case, for that face we count that vertex. All faces but the circulations count, and
for vertices that are not singularities this takes care of the overcount. So we can improve
our “equality’’ to

E = V − n1 + F − n3.

Each sink is overcounted by 1 on the right. We improve again to

E = V − n1 + F − n3 − n2.

Still, the right-hand side undercounts saddles, and each saddle is undercounted by the
absolute value of its index. We finally reach equality with

E = V − n1 + F − n3 − n2 + |n4| = V + F − n1 − n2 − n3 − n4.

Using Euler’s formula, we obtain

n1 + n2 + n3 + n4 = V − E + F = 2.

Because n4 ≤ 0, we have n1 + n2 + n3 ≥ 2, which is what we had to prove.
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Remark. The polyhedron can be thought of as a discrete approximation of a surface. The
orientation of edges is the discrete analogue of a smooth vector field on the surface. The
number n1 + n2 + n3 + n4 is called the total index of the vector field. The result we just
proved shows that if the polyhedron resembles a (triangulated) sphere, the total index of
any vector field is 2. This is a particular case of the Poincaré–Hopf index theorem, which
in its general setting states that given a smooth vector field with finitely many zeros on
a compact, orientable manifold, the total index of the vector field is equal to the Euler
characteristic of the manifold.

854. Figure 103 shows that this number is greater than or equal to 5.

Figure 103

Let us show that any coloring by two colors of the edges of a complete graph with 6
vertices has a monochromatic triangle. Assume the contrary. By the pigeonhole principle,
3 of the 5 edges starting at some point have the same color (see Figure 104). Each pair
of such edges forms a triangle with another edge. By hypothesis, this third edge must be
of the other color. The three pairs produce three other edges that are of the same color
and form a triangle. This contradicts our assumption. Hence any coloring of a complete
graph with six vertices contains a monochromatic triangle. We conclude that n = 5.

Figure 104

Remark. This shows that the Ramsey number R(3, 3) is equal to 6.

855. Let n = R(p − 1, q) + R(p, q − 1). We will prove that for any coloring of the
edges of a complete graph with n vertices by red or blue, there is a red complete subgraph
with p vertices or a blue complete subgraph with q vertices. Fix a vertex x and consider
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the n − 1 edges starting at x. Among them there are either R(p − 1, q) red edges, or
R(p, q − 1) blue edges. Without loss of generality, we may assume that the first case is
true, and let X be the set of vertices connected to x by red edges. The complete graph
on X has R(p − 1, q) vertices. It either has a blue complete subgraph with q edges, in
which case we are done, or it has a red complete subgraph with p − 1 edges, to which
we add the red edges joining x to X to obtain a red complete subgraph with p edges of
the original graph. This proves R(p, q) ≤ R(p − 1, q)+ R(p, q − 1).

To prove the upper bound for the Ramsey numbers we argue by induction on p+ q.
The base case consists of all configurations withp = 2 or q = 2, in which caseR(p, 2) =
R(2, p) = p = (

p

p−1

)
, since any graph with p vertices either has an edge colored red,

or is entirely colored blue. Let us assume that the inequality is true for all p, q ≥ 2,
p + q = n. Either p = 2, or q = 2, or otherwise

R(p, q) ≤ R(p − 1, q)+ R(p, q − 1) ≤
(
p + q − 3

p − 2

)
+
(
p + q − 3

p − 1

)
=
(
p + q − 2

p − 1

)
.

(P. Erdős, G. Szekeres)

856. We prove the property by induction on k. First, observe that

�k!e� = k!
1

+ k!
1! + k!

2! + · · · + k!
k! .

For k = 2, �k!e�+ 1 = 6, and the property was proved in the previous problem. Assume
that the property is true for a complete graph replaced with �(k − 1)!e� + 1 vertices
colored by k − 1 colors, and let us prove it for a complete graph with �k!e� + 1 vertices
colored by k colors. Choose a vertex v of the graph. By the pigeonhole principle, v is
connected to �(�k!e� + 1)/k� + 1 vertices by edges of the same color c. Note that⌊�k!e� + 1

k

⌋
+ 1 =

⌊
1

k

(
k!
1

+ k!
1! + k!

2! + · · · + k!
k!
)⌋

+ 1

= (k − 1)!
1

+ (k − 1)!
1! + (k − 1)!

2! + · · · + (k − 1)!
(k − 1)! + 1

= �(k − 1)!e� + 1.

If two of these vertices are connected by an edge of color c, then a c-colored triangle
is formed. If not, the complete graph on these �(k − 1)!e� + 1 vertices is colored by
the remaining k− 1 colors, and by the induction hypothesis a monochromatic triangle is
formed. This completes the proof.

Remark. This proves that the k-color Ramsey number R(3, 3, . . . , 3) is bounded from
above by �k!e� + 1.

(F.P. Ramsey)
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857. Yet another Olympiad problem related to Schur numbers. We can reformulate the
problem as follows:

Show that if the set {1, 2, . . . , 1978} is partitioned into six sets, then in one of these
sets there are a, b, c (not necessarily distinct) such that a + b = c.

The germs of the solution have already been glimpsed in the Bielorussian problem
from the introduction. Observe that by the pigeonhole principle, one of the six sets, say
A, has at least � 1978

6 � + 1 = 330 elements; call them a1 < a2 < · · · < a330. If any of the
329 differences

b1 = a330 − a329, b2 = a330 − a328, . . . , b329 = a330 − a1

is in A, then we are done, because a330 − am = an means am + an = a330. So let us
assume that none of these differences is in A. Then one of the remaining sets, say B,
contains at least � 329

5 � + 1 = 66 of these differences. By eventually renumbering them,
we may assume that they are b1 < b2 < · · · < b66. We repeat the argument for the
common differences

c1 = b66 − b65, c2 = b66 − b64, . . . , c65 = b66 − b1.

Note that

cj = b66 − b66−j = (a330 − am)− (a330 − an) = an − am.

So if one of the cj ’s is in A or B, then we are done. Otherwise, there is a fourth set
D, which contains � 65

4 � + 1 = 17 of the cj ’s. We repeat the argument and conclude
that either one of the sets A,B,C,D contains a Schur triple, or there is a fifth set E
containing � 17

3 � + 1 = 6 of the common differences dk = c17 − c17−k. Again either we
find a Schur triple in A, B, C, orD, or there is a set E containing � 5

2�+ 1 = 3 of the five
differences ei = d5 −d5−k. If any of the three differences e2 −e1, e3 −e2, e3 −e1 belongs
toA,B,C,D,E, then we have found a Schur triple in one of these sets. Otherwise, they
are all in the sixth set F , and we have found a Schur triple in F .

Remark. Look at the striking similarity with the proof of Ramsey’s theorem, which makes
the object of the previous problem. And indeed, Ramsey’s theorem can be used to prove
Schur’s theorem in the general case: S(n) is finite and is bounded above by the k-color
Ramsey number R(3, 3, . . . , 3).

Here is how the proof runs. Think of the partition of the set of the first N positive
integers into n subsets as a coloring c : {1, 2, . . . , N} → {1, 2, . . . , n}. Consider the
complete graph with vertices 1, 2, . . . , N and color its edges so that for i > j , (i, j) is
colored by c(i− j). IfN ≥ R(3, 3, . . . , 3) (the k-color Ramsey number), then there is a
monochromatic triangle. If i < j < k are the vertices of this triangle, then the numbers
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x = j − i, y = k− j , and z = k− i form a Schur triple. The fact that they have the same
color means that they belong to the same set of the partition. The theorem is proved.

(20th International Mathematical Olympiad, 1978)

858. First solution: We will prove that the maximum value of n is 11. Figure 105
describes an arrangement of 12 dominoes such that no additional domino can be placed
on the board. Therefore, n ≤ 11.

Figure 105

Let us show that for any arrangement of 11 dominoes on the board one can add one
more domino. Arguing by contradiction, let us assume that there is a way of placing 11
dominoes on the board so that no more dominoes can be added. In this case there are
36 − 22 = 14 squares not covered by dominoes.

Denote by S1 the upper 5 × 6 subboard, by S2 the lower 1 × 6 subboard, and by S3

the lower 5 × 6 subboard of the given chessboard as shown in Figure 106.
Because we cannot place another domino on the board, at least one of any two

neighboring squares is covered by a domino. Hence there are at least three squares in S2

that are covered by dominoes, and so in S2 there are at most three uncovered squares. If
A denotes the set of uncovered squares in S1, then |A| ≥ 14 − 3 = 11.

S

S

S

1

2

3

Figure 106

Let us also denote byB the set of dominoes that lie completely inS3. We will construct
a one-to-one map f : A → B. First, note that directly below each square s in S1 there
is a square t of the chessboard (see Figure 107). If s is in A, then t must be covered
by a domino d in B, since otherwise we could place a domino over s and t . We define
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f (s) = d . If f were not one-to-one, that is, if f (s1) = f (s2) = d, for some s1, s2 ∈ A,
then d would cover squares directly below s1 and s2 as described in Figure 107. Then s1
and s2 must be neighbors, so a new domino can be placed to cover them. We conclude
that f is one-to-one, and hence |A| ≤ |B|. It follows that |B| ≥ 11. But there are only
11 dominoes, so |B| = 11. This means that all 11 dominoes lie completely in S3 and
the top row is not covered by any dominoes! We could then put three more dominoes
there, contradicting our assumption on the maximality of the arrangement. Hence the
assumption was wrong; one can always add a domino to an arrangement of 11 dominoes.
The answer to the problem is therefore n = 11.

t

s s s

d

1 2

Figure 107

Second solution: Suppose we have an example with k dominoes to which no more can
be added. LetX be the number of pairs of an uncovered square and a domino that covers
an adjacent square. Let m = 36 − 2k be the number of uncovered squares, let m∂ be the
number of uncovered squares that touch the boundary (including corner squares), and
mc the number of uncovered corner squares. Since any neighbor of an uncovered square
must be covered by some domino, we have X = 4m−m∂ −mc. Similarly, let k∂ be the
number of dominoes that touch the boundary and kc the number of dominoes that contain
a corner square. A domino in the center of the board can have at most four unoccupied
neighbors, for otherwise, we could place a new domino adjacent to it. Similarly, a
domino that touches the boundary can have at most three unoccupied neighbors, and a
domino that contains a corner square can have at most two unoccupied neighbors. Hence
X ≤ 4k − k∂ − kc. Also, note that k∂ ≥ m∂ , since as we go around the boundary we
can never encounter two unoccupied squares in a row, and mc + kc ≤ 4, since there are
only four corners. Thus 4m−m∂ −mc = X ≤ 4k − k∂ − kc gives 4m− 4 ≤ 4k; hence
35 − 2k ≤ k and 3k ≥ 35. Thus k must be at least 12. This argument also shows that on
an n× n board, 3k2 ≥ n2 − 1.

(T. Andreescu, Z. Feng, 102 Combinatorial Problems, Birkhäuser, 2000, second
solution by R. Stong)

859. Let

Ik =
∫ π

2

0
(2 sin θ)2kdθ, k ≥ 0.
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Integrating by parts, we obtain

Ik =
∫ π

2

0
(2 sin θ)2k−1(2 sin θ)dθ

= (2 sin θ)2k(−2 cos θ)| π20 +
∫ π

2

0
(2k − 1)(2 sin θ)2k−24 cos2 θdθ

= (2k − 1)
∫ π

2

0
(2 sin θ)2k−2(4 − 4 sin2 θ)dθ

= 4(2k − 1)Ik−1 − (2k − 1)Ik.

Hence Ik = 4k−2
k
Ik−1, k ≥ 1. Comparing this with(

2k

k

)
= (2k)(2k − 1)(2k − 2)!

k2((k − 1)!)2 = 4k − 2

k

(
2k − 2

k

)
,

we see that it remains to check the equality 2
π
I0 = 1, and that is obvious.

860. We compute

A2 =

⎛⎜⎜⎜⎜⎜⎝
1 2 3 · · · n

0 1 2 · · · n− 1
0 0 1 · · · n− 2
...
...
...
. . .

...

0 0 0 · · · 1

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝

(1
1

) (2
1

) (3
1

) · · · (
n

1

)
0
(1

1

) (2
1

) · · · (n−1
1

)
0 0

(1
1

) · · · (n−2
1

)
...

...
...
. . .

...

0 0 0 · · · (1
1

)

⎞⎟⎟⎟⎟⎟⎠ .

Also,

A3 =

⎛⎜⎜⎜⎜⎜⎝

(2
2

) (3
2

) (4
2

) · · · (n+1
2

)
0
(2

2

) (3
2

) · · · (
n

2

)
0 0

(2
2

) · · · (n−1
2

)
...

...
...
. . .

...

0 0 0 · · · (2
2

)

⎞⎟⎟⎟⎟⎟⎠ .

In general,

Ak =

⎛⎜⎜⎜⎜⎜⎜⎝

(
k−1
k−1

) (
k

k−1

) (
k+1
k−1

) · · · (k+n−2
k−1

)
0

(
k−1
k−1

) (
k

k−1

) · · · (k+n−3
k−1

)
0 0

(
k−1
k−1

) · · · (k+n−4
k−1

)
...

...
...

. . .
...

0 0 0 · · · (
k−1
k−1

)

⎞⎟⎟⎟⎟⎟⎟⎠ .
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This formula follows inductively from the combinatorial identity(
m

m

)
+
(
m+ 1

m

)
+ · · · +

(
m+ p

m

)
=
(
m+ p + 1

m+ 1

)
,

which holds form,p ≥ 0. This identity is quite straightforward and can be proved using
Pascal’s triangle as follows:(
m

m

)
+
(
m+ 1

m

)
+ · · · +

(
m+ p

m

)
=
(
m+ 1

m+ 1

)
+
(
m+ 1

m

)
+ · · · +

(
m+ p

m

)
=
(
m+ 2

m+ 1

)
+
(
m+ 2

m

)
+ · · · +

(
m+ p

m

)
=
(
m+ 3

m+ 1

)
+
(
m+ 3

m

)
+ · · · +

(
m+ p

m

)
= · · · =

(
m+ p

m+ 1

)
+
(
m+ p

m

)
=
(
m+ p+ 1

m+ 1

)
.

861. The general term of the Fibonacci sequence is given by the Binet formula

Fn = 1√
5

[(
1 + √

5

2

)n
−
(

1 − √
5

2

)n]
, n ≥ 0.

Note that because F0 = 0, we can start the summation at the 0th term. We therefore have

n∑
i=0

Fi

(
n

i

)
= 1√

5

⎡⎣ n∑
i=0

(
n

i

)(
1 + √

5

2

)i
−

n∑
i=0

(
n

i

)(
1 − √

5

2

)i⎤⎦
= 1√

5

[(
1 + √

5

2
+ 1

)n
−
(

1 − √
5

2
+ 1

)n]

= 1√
5

[(
3 + √

5

2

)n
−
(

3 − √
5

2

)n]
.

But

3 ± √
5

2
=
(

1 ± √
5

2

)2

.

So the sum is equal to

1√
5

⎡⎣(1 + √
5

2

)2n

−
(

1 − √
5

2

)2n
⎤⎦ ,
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and this is F2n. The identity is proved.
(E. Cesàro)

862. Note that for k = 0, 1, . . . , n,

(ak+1 + an−k+1)(n+ 1) = 2Sn+1.

If we add the two equal sums
∑

k

(
n

k

)
ak+1 and

∑
k

(
n

n−k
)
an−k+1, we obtain

n∑
k=0

(
n

k

)
(ak+1 + an−k+1) = 2Sn+1

n+ 1

n∑
k=0

(
n

k

)
= 2n+1

n+ 1
Sn+1.

The identity follows.

863. Newton’s binomial expansion can be used to express our sum in closed form as

Sn = 1

4
[(2 + √

3)2n+1 + (2 − √
3)2n+1].

The fact that Sn = (k − 1)2 + k2 for some positive integer k is equivalent to

2k2 − 2k + 1 − Sn = 0.

View this as a quadratic equation in k. Its discriminant is

	 = 4(2Sn − 1) = 2[(2 + √
3)2n+1 + (2 − √

3)2n+1 − 2].

Is this a perfect square? The numbers (2 + √
3) and (2 − √

3) are one the reciprocal of
the other, and if they were squares, we would have a perfect square. In fact, (4 ± 2

√
3)

are the squares of (1 ± √
3). We find that

	 =
(
(1 + √

3)2n+1 + (1 − √
3)2n+1

2n

)2

.

Solving the quadratic equation, we find that

k = 1

2
+ (1 + √

3)2n+1 + (1 − √
3)2n+1

22n+2

= 1

2
+ 1

4
[(1 + √

3)(2 + √
3)n + (1 − √

3)(2 − √
3)n].

This is clearly a rational number, but is it an integer? The numbers 2 + √
3 and 2 − √

3
are the roots of the equation

λ2 − 4λ+ 1 = 0,
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which can be interpreted as the characteristic equation of a recursive sequence xn+1 −
4xn + xn−1 = 0. Given that the general formula of the terms of the sequence is (1 +√

3)(2+√
3)n+ (1−√

3)(2−√
3)n, we also see that x0 = 2 and x1 = 10. An induction

based on the recurrence relation shows that xn is divisible by 2 but not by 4. It follows
that k is an integer and the problem is solved.

(Romanian Team Selection Test for the International Mathematical Olympiad, 1999,
proposed by D. Andrica)

864. We have

an + bn
3
√

2 + cn
3
√

4 =
3
√

2(1 + 3
√

2 + 3
√

4)n

(
3
√

2)n
= 2− n

3 (
3
√

2 + 3
√

4 + 2)n

= 2− n
3 (1 + (1 + 3

√
2 + 3

√
4))n = 2− n

3

n∑
k=0

(
n

k

)
(ak + bk

3
√

2 + ck
3
√

4).

Hence

an + bn
3
√

2 + cn
3
√

4 = 2− n
3

n∑
k=0

(
n

k

)
ak + 2− n

3

n∑
k=0

(
n

k

)
bk

3
√

2 + 2− n
3

n∑
k=0

(
n

k

)
ck

3
√

4.

The conclusion follows from the fact that 2−n/3 is an integer if n is divisible by 3, is
an integer times 3

√
4 if n is congruent to 1 modulo 3, and is an integer times 3

√
2 if n is

congruent to 2 modulo 3.
(Revista Matematică din Timişoara (Timişoara Mathematics Gazette), proposed by

T. Andreescu and D. Andrica)

865. First solution: We prove the formula by induction on n. The case n = 1 is straight-
forward. Now let us assume that the formula holds for n and let us prove it for n + 1.
Using the induction hypothesis, we can write

[x + y]n+1 = (x + y − n)[x + y]n = (x + y − n)

n∑
k=0

(
n

k

)
[x]n−k[y]k

=
n∑
k=0

(
n

k

)
((x − k)+ (y − n+ k))[x]k[y]n−k

=
n∑
k=0

(
n

k

)
(x − k)[x]k[y]n−k +

n∑
k=0

(
n

k

)
(y − (n− k))[x]k[y]n−k

=
n∑
k=0

(
n

k

)
[x]k+1[y]n−k +

n∑
k=0

(
n

k

)
[x]k[y]n−k+1

=
n+1∑
k=1

(
n

k − 1

)
[x]k[y]n−k+1 +

n∑
k=0

(
n

k

)
[x]k[y]n−k+1
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=
n+1∑
k=0

((
n

k

)
+
(

n

k − 1

))
[x]k[y]n−k+1 =

n+1∑
k=0

(
n+ 1

k

)
[x]k[y]n+1−k.

The induction is complete.

Second solution: The identity can also be proved by computing ( d
dt
)ntx+y in two different

ways. First,(
d

dt

)n
tx+y = (x + y)(x + y − 1) · · · (x + y − n+ 1)tx+y−n = [x + y]ntx+y−n.

Second, by the Leibniz rule,(
d

dt

)n
(tx · ty) =

n∑
k=0

(
n

k

)((
d

dt

)k
tx

)((
d

dt

)n−k
ty

)
=

n∑
k=0

(
n

k

)
[x]k[y]n−ktx+y−n.

The conclusion follows.

866. The binomial formula (Q + P)n = ∑n
k=0

(
n

k

)
q
QkP n−k is of no use because the

variables Q and P do not commute, so we cannot set P = −Q. The solution relies on
the q-Pascal triangle. But the q-Pascal triangle is written as(

n

k

)
q

= qk
(
n− 1

k

)
q

+
(
n− 1

k − 1

)
q

.

With the standard convention that
(
n

k

)
q

= 0 if k < 0 or k > n, we have

∑
k

(−1)kq
k(k−1)

2

(
n

k

)
q

=
∑
k

(−1)kq
k(k−1)

2

(
qk
(
n− 1

k

)
q

+
(
n− 1

k − 1

)
q

)

=
∑
k

(−1)kq
k(k+1)

2

(
n− 1

k

)
q

−
∑
k

(−1)k−1q
k(k−1)

2

(
n− 1

k − 1

)
q

.

Now just shift the index in the second sum k → k + 1 to obtain the difference of two
equal sums. The identity follows.

867. Let G(x) = ∑
n ynx

n be the generating function of the sequence. It satisfies the
functional equation

(1 − ax)G(x) = 1 + bx + bx2 + · · · = 1

1 − bx
.

We find that

G(x) = 1

(1 − ax)(1 − bx)
= A

1 − ax
+ B

1 − bx
=
∑
n

(Aan + Bbn)xn,
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for some A and B. It follows that yn = Aan +Bbn, and because y0 = 1 and y1 = a+ b,
A = a

a−b and B = − b
a−b . The general term of the sequence is therefore

1

a − b
(an+1 − bn+1).

868. The first identity is obtained by differentiating (x + 1)n = ∑n
k=1

(
n

k

)
xk, then setting

x = 1. The answer is n2n−1. The second identity is obtained by integrating the same
equality and then setting x = 1, in which case the answer is 2n+1

n+1 .

869. The identity in part (a) is the Vandermonde formula. It is proved using the generating
function of the binomial coefficients, by equating the coefficients of xk on the two sides
of the equality (x + 1)m+n = (x + 1)m(x + 1)n.

The identity in part (b) is called the Chu–Vandermonde formula. This time the
generating function in question is (Q + P)n, where Q and P are the noncommuting
variables that describe the time evolution of the position and the momentum of a quantum
particle. They are noncommuting variables satisfyingPQ = qQP , the exponential form
of the Heisenberg uncertainty principle. The Chu–Vandermonde formula is obtained by
identifying the coefficients of QkPm+n−k on the two sides of the equality

(Q+ P)m+n = (Q+ P)m(Q+ P)n.

Observe that the powers of q arise when we switch P ’s and Q’s as follows:(
m

j

)
q

QjPm−j
(

n

k − j

)
q

Qk−jP n−k+j =
(
m

j

)
q

(
n

k − j

)
q

QjPm−jQk−jP n−k+j

= q(m−j)(k−j)
(
m

j

)
q

(
n

k − j

)
q

QkPm+n−k.

870. The sum is equal to the coefficient of xn in the expansion of

xn(1 − x)n + xn−1(1 − x)n + · · · + xn−m(1 − x)n.

This expression is equal to

xn−m · 1 − xm+1

1 − x
(1 − x)n,

which can be written as (xn−m−xn+1)(1 −x)n−1. Hence the sum is equal to (−1)m
(
n−1
m

)
if m < n, and to 0 if m = n.

871. The sum from the statement is equal to the coefficient of xk in the expansion of
(1 + x)n + (1 + x)n+1 + · · · + (1 + x)n+m. This expression can be written in compact
form as
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1

x
((1 + x)n+m+1 − (1 + x)n).

We deduce that the sum is equal to
(
n+m+1
k+1

)− (
n

k+1

)
for k < n and to

(
n+m+1
n+1

)
for k = n.

872. The generating function of the Fibonacci sequence is φ(x) = 1
1−x−x2 . Expanding

like a geometric series, we obtain

1

1 − x − x2
= 1

1 − x(1 + x)
= 1 + x(1 + x)+ x2(1 + x)2 + · · · + xn(1 + x)n + · · · .

The coefficient of xn is on the one handFn and on the other hand
(
n

0

)+(n−1
1

)+(n−2
2

)+· · · .
The identity follows.

873. We introduce some additional parameters and consider the expansion

1

(1 − a1x)(1 − a2x2)(1 − a3x3) · · ·
= (1 + a1x + a2

1x
2 + · · · )(1 + a2x

2 + a2
2x

4 + · · · )(1 + a3x
3 + a2

3x
6 + · · · ) · · ·

= 1 + a1x + (a2
1 + a2)x

2 + · · · + (a
λ1
1 a

λ2
2 · · · aλkk + · · · )xn + · · · .

The term a
λ1
1 a

λ2
2 · · · aλkk that is part of the coefficient of xn has the property that λ1 +2λ2 +

· · · + kλk = n; hence it defines a partition of n, namely,

n = 1 + 1 + · · · + 1︸ ︷︷ ︸
λ1

+ 2 + 2 + · · · + 2︸ ︷︷ ︸
λ2

+ · · · + k + k + · · · + k︸ ︷︷ ︸
λk

.

So the terms that appear in the coefficient of xn generate all partitions of n. Setting
a1 = a2 = a3 = · · · = 1, we obtain for the coefficient of xn the number P(n) of the
partitions of n. And we are done.

874. The argument of the previous problem can be applied mutatis mutandis to show that
the number of ways of writing n as a sum of odd positive integers is the coefficient of xn

in the expansion of

1

(1 − x)(1 − x3)(1 − x5)(1 − x7) · · · ,
while the number of ways of writing n as a sum of distinct positive integers is the
coefficient of xn in

(1 + x)(1 + x2)(1 + x3)(1 + x4) · · · .
We have

1

(1 − x)(1 − x3)(1 − x5)(1 − x7) · · · = 1 − x2

1 − x
· 1 − x4

1 − x2
· 1 − x6

1 − x3
· 1 − x8

1 − x4
· 1 − x10

1 − x5
· · ·

= (1 + x)(1 + x2)(1 + x3)(1 + x4) · · · .
This proves the desired equality.
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Remark. This property is usually phrased as follows: Prove that the number of partitions
of n into distinct parts is equal to the number of partitions of n into odd parts.

(L. Euler)

875. The number of subsets with the sum of the elements equal to n is the coefficient of
xn in the product

G(x) = (1 + x)(1 + x2) · · · (1 + xp).

We are asked to compute the sum of the coefficients of xn for n divisible by p. Call this
number s(p). There is no nice way of expanding the generating function; instead we
compute s(p) using particular values of G. It is natural to try pth roots of unity.

The first observation is that if ξ is a pth root of unity, then
∑p

k=1 ξ
p is zero except

when ξ = 1. Thus if we sum the values of G at the pth roots of unity, only those terms
with exponent divisible by p will survive. To be precise, if ξ is a pth root of unity
different from 1, then

p∑
k=1

G(ξk) = ps(p).

We are left with the problem of computing G(ξk), k = 1, 2, . . . , p. For k = p, this is
just 2p. For k = 1, 2, . . . , p − 1,

G(ξk) =
p∏
j=1

(1 + ξkj ) =
p∏
j=1

(1 + ξ j ) = (−1)p
p∏
j=1

((−1)− ξ j ) = (−1)p((−1)p − 1)

= 2.

We therefore have ps(p) = 2p + 2(p − 1) = 2p + 2p − 2. The answer to the problem
is s(p) = 2p−2

p
+ 2. The expression is an integer because of Fermat’s little theorem.

(T. Andreescu, Z. Feng, A Path to Combinatorics for Undergraduates, Birkhäuser
2004)

876. We introduce the generating function

Gn(x) =
(
x + 1

x

)(
x2 + 1

x2

)
· · ·

(
xn + 1

xn

)
.

Then S(n) is the term not depending on x in Gn(x). If in the expression(
x + 1

x

)(
x2 + 1

x2

)
· · ·

(
xn + 1

xn

)
= S(n)+

∑
k 	=0

ckx
k

we set x = eit and then integrate between 0 and 2π , we obtain
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∫ 2π

0
(2 cos t)(2 cos 2t) · · · (2 cos nt)dt = 2πS(n)+ 0,

whence the desired formula

S(n) = 2n−1

π

∫ 2π

0
cos t cot 2t · · · cos ntdt.

(communicated by D. Andrica)

877. Let us assume thatn is not a power of 2. We consider a more exotic kind of generating
function where the sequence is encoded in the exponents, not in the coefficients:

f (x) = xa1 + xa2 + · · · + xan and g(x) = xb1 + xb2 + · · · + xbn.

In fact, these are the generating functions of the characteristic functions of the setsA and
B. By assumption,

f 2(x)− f (x2) = 2
∑
i<j

xai+aj = 2
∑
i<j

xbi+bj = g2(x)− g(x2).

Therefore,

(f (x)− g(x))(f (x)+ g(x)) = f (x2)− g(x2).

Let h(x) = f (x) − g(x) and p(x) = f (x) + g(x). We want to prove that if n is not a
power of 2, then h is identically 0. Note that h(1) = 0. We will prove by strong induction
that all derivatives of h at 1 are zero, which will make the Taylor series of h identically
zero. Note that

h′(x)p(x)+ h(x)p′(x) = 2xh′(x2),

and so h′(1)p(1) = 2h′(1). Since p(1) = f (1)+ g(1) = 2n, which is not a power of 2,
it follows that h′(1) = 0. Assuming that all derivatives of h of order less than k at 1 are
zero, by differentiating the functional equation k times and substituting x = 1, we obtain

h(k)(1)p(1) = 2kh(k)(1).

Hence h(k)(1) = 0. This completes the induction, leading to a contradiction. It follows
that n is a power of 2, as desired.

(communicated by A. Neguţ)

878. We use the same generating functions as in the previous problem. So to the set An
we associate the function
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anx =
∞∑
a=1

cax
a,

with ca = 1 if a ∈ An and ca = 0 if a /∈ An. To Bn we associate the function bn(x) in a
similar manner. These functions satisfy the recurrence a1(x) = 0, b1(x) = 1,

an+1(x) = xbn(x),

bn+1 ≡ an(x)+ bn(x) (mod 2).

From now on we understand all equalities modulo 2. Let us restrict our attention to the
sequence of functions bn(x), n = 1, 2, . . . . It satisfies b1(x) = b2(x) = 1,

bn+1(x) = bn(x)+ xbn−1(x).

We solve this recurrence the way one usually solves second-order recurrences, namely
by finding two linearly independent solutions p1(x) and p2(x) satisfying

pi(x)
n+1 = pi(x)

n + xpi(x)
n−1, i = 1, 2.

Again the equality is to be understood modulo 2. The solutions p1(x) and p2(x) are
formal power series whose coefficients are residue classes modulo 2. They satisfy the
“characteristic’’ equation

p(x)2 = p(x)+ x,

which can be rewritten as

p(x)(p(x)+ 1) = x.

So p1(x) and p2(x) can be chosen as the factors of this product, and thus we may assume
that p1(x) = xh(x) and p2(x) = 1 + p1(x), where h(x) is again a formal power series.
Writing p1(x) = ∑

αax
a and substituting in the characteristic equation, we find that

α1 = 1, α2k = α2
k , and α2k+1 = 0 for k > 1. Therefore,

p1(x) =
∞∑
k=0

x2k .

Since p1(x)+ p2(x) = p1(x)
2 + p2(x)

2 = 1, it follows that in general,

bn(x) = p1(x)
n + p2(x)

n =
( ∞∑
k=0

x2k

)n
+
(

1 +
∞∑
k=0

x2k

)n
, for n ≥ 1.
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We emphasize again that this is to be considered modulo 2. In order for bn(x) to be
identically equal to 1 modulo 2, we should have(( ∞∑

k=0

x2k

)
+ 1

)n
≡
( ∞∑
k=0

x2k

)n
+ 1 (mod 2).

This obviously happens ifn is a power of 2, since all binomial coefficients in the expansion
are even.

If n is not a power of 2, say n = 2i(2j + 1), j ≥ 1, then the smallestm for which
(
n

m

)
is odd is 2j . The left-hand side will contain an x2j with coefficient equal to 1, while the
smallest nonzero power of x on the right is n. Hence in this case equality cannot hold.

We conclude that Bn = {0} if and only if n is a power of 2.
(Chinese Mathematical Olympiad)

879. We will count the number of committees that can be chosen from n people, each
committee having a president and a vice-president.

Choosing first a committee of k people, the president and the vice-president can then
be elected in k(k − 1) ways. It is necessary that k ≥ 2. The committees with president
and vice-president can therefore be chosen in

1 · 2

(
n

2

)
+ 2 · 3

(
n

3

)
+ · · · + (n− 1) · n

(
n

n

)
ways.

But we can start by selecting first the president and the vice-president, and then
adding the other members to the committee. From the n people, the president and the
vice-president can be selected inn(n−1)ways. The remaining members of the committee
can be selected in 2n−2 ways, since they are some subset of the remaining n− 2 people.
We obtain

1 · 2

(
n

2

)
+ 2 · 3

(
n

3

)
+ · · · + (n− 1) · n

(
n

n

)
= n(n− 1)2n−2.

880. Rewrite the identity as

n∑
k=1

k

(
n

k

)(
n

n− k

)
= n

(
2n− 1

n− 1

)
.

We claim that both sides count the number of n-member committees with a physicist
president that can be elected from a group of nmathematicians and n physicists. Indeed,
on the left-hand side we first elect k physicists and n− k mathematicians, then elect the
president among the k physicists, and do this for all k. On the right-hand side we first



760 Combinatorics and Probability

elect the president and then elect the other members of the committee from the remaining
2n− 1 people.

881. We will prove that both terms of the equality count the same thing. To this end, we
introduce two disjoint sets M and N containing m, respectively, n elements.

For the left-hand side, choose first k elements in M . This can be done in
(
m

k

)
ways.

Now add these k elements toN and choosem elements from the newly obtained set. The
number of ordered pairs of sets (X, Y ) with X ⊂ M , Y ⊂ N ∪X, |X| = k, and |Y | = m

is equal to
(
m

k

)(
n+k
m

)
. Varying k, we obtain, for the total number of pairs (X, Y ),

n−1
2∑

k=m

(
n

2k + 1

)(
k

m

)
.

The same problem can be solved differently, namely choosing Y first. If we fix the
cardinality of Y ∩ N , say |Y ∩ N | = j , 0 ≤ j ≤ m, then |Y ∩ M| = m − j , and so
there are

(
n

j

)(
m

m−j
)

ways to choose Y . Now X contains the set Y ∩ M , the union with

some (arbitrary) subset of M\Y . There are j elements in M\Y , so there are 2j possible
choices for X. Consequently, the number of pairs with the desired property is

m∑
j=0

(
n

j

)(
m

j

)
2j .

Setting the two numbers equal yields the identity from the statement.
(I. Tomescu, Problems in Combinatorics, Wiley, 1985)

882. We prove the identity by counting, in two different ways, the cardinality of the set of
words of length n using the alphabet {A,B,C} and satisfying the condition that precisely
k of the letters are A, and all of the letters B must be among the first m letters as read
from the left.

The first count is according to the number of B’s. Place m symbols X in a row and
following them n−m symbols Y :

XX . . . XX︸ ︷︷ ︸
m

YY . . . YY︸ ︷︷ ︸
n−m

.

Choose i of the X’s (in
(
m

i

)
ways), and replace them by B’s. Choose k of the n − i

remaining symbols (in
(
n−i
k

)
ways), and replace them by A’s. Any remaining X’s or Y ’s

are now replaced by C’s. We have constructed
(
m

i

)(
n−i
k

)
words satisfying the conditions.

Summing over i, we have the sum on the left.
The second count is according to the number of A’s among the first m letters of the

word. We start with the same sequence of X’s and Y ’s as before. Choose i of the m X’s
(in

(
m

i

)
ways), replace each of them by A and replace each of the other m− i X’s by B
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of C (this can be done in 2m−i ways). Then choose k − i of the n − m Y ’s (in
(
n−m
k−i

)
ways) and replace each of them by A, and replace the remaining Y ’s by C. We have
constructed

(
m

i

)(
n−m
k−i

)
2m−i words satisfying the conditions. Summing over i, we obtain

the right-hand side of the identity.
(Mathematics Magazine, the case m = k − 1 proposed by D. Callan, generalization

and solution by W. Moser)

883. For a counting argument to work, the identity should involve only integers. Thus it
is sensible to write it as

q∑
k=0

2q−k
(
p + k

k

)
+

p∑
k=0

2p−k
(
q + k

k

)
= 2p+q+1.

This looks like the count of the elements of a set partitioned into two subsets. The right-
hand side counts the number of subsets of a set with p + q + 1 elements. It is better to
think of it as the number of elements of {0, 1}n. We partition this set into two disjoint sets
A and B such that A is the set of n-tuples with at least p+ 1 entries equal to 1, and B, its
complement, is the set of n-tuples with at least q + 1 entries equal to 0. If the position of
the (p + 1)st 1 is p + k + 1, 0 ≤ k ≤ q, then there are

(
p+k
p

) = (
p+k
k

)
ways of choosing

the positions of the first p ones. Several subsequent coordinates can also be set to 1, and
this can be done in 2q−k ways. It follows that 2q−k

(
p+k
k

)
elements inA have the (p+ 1)st

1 in position p+ k+ 1. Therefore, the first sum counts the elements of A. Similarly, the
second sum counts the elements of B, and the conclusion follows.

(French contest, 1985, solution from T.B. Soulami, Les olympiades de mathéma-
tiques: Réflexes et stratégies, Ellipses, 1999)

884. A group of 2n+ 1 people, consisting of n male/female couples and one extra male,
wish to split into two teams. Team 1 should have n people, consisting of �n2� women and
�n+1

2 � men, while Team 2 should have n+ 1 people, consisting of �n2� women and �n+1
2 �

men, where �x� denotes the least integer greater than or equal to x. The number of ways
to do this is counted by the first team, and is cncn+1.

There is a different way to count this, namely by the number k of couples that are
split between the two teams. The single man joins Team 1 if and only if k and n have
opposite parity. The split couples can be chosen in

(
n

k

)
ways. From the remaining n− k

couples, the number to join Team 1 is �n−k2 �, which can be chosen in cn−k ways. Since
these couples contribute �n−k2 � women to Team 1, the number of women from the k split
couples that join Team 1 must be �n2� − �n−k2 �, which equals either � k2� for n odd or � k2�
for n even. Since

(
k

�k/2�
) = (

k

�k/2�
)
, these women can be chosen in ck ways. Thus the left

side also counts the choices.
(American Mathematical Monthly, proposed by D.M. Bloom, solution by Ch.N.

Swanson)
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885. We count the points of integer coordinates in the rectangle

1 ≤ x ≤ p′, 1 ≤ y ≤ q ′.

Their total number isp′q ′. Now let us look at the expression in the first set of parentheses.
The terms count the number of points with integer coordinates that lie below the line
y = q

p
x and on the lines x = 1, x = 2, . . . , x = p′. Here it is important to remark that

since p and q are coprime, none of these points lie on the line y = q

p
x. Similarly, the

expression in the second parentheses counts the number of points with integer coordinates
that lie above the line y = q

p
x and on the lines y = 1, y = 2, . . . , y = q ′. These are all

the points of the rectangle. That there are no others follows from the inequalities⌊
p′q
p

⌋
≤ q ′ and

⌊
q ′p
q

⌋
≤ p′.

Indeed, ⌊
p′q
p

⌋
=
⌊
p′(2q ′ + 1)

2p′ + 1

⌋
=
⌊
q ′ + 1

2

1 + 1
2p′

⌋
≤
⌊
q ′ + 1

2

⌋
= q ′,

and the other inequality is similar.
Thus both sides of the identity in question count the same points, so they are equal.
(G. Eisenstein)

886. First solution: For each pair of students, consider the set of those problems not
solved by them. There are

(200
2

)
such sets, and we have to prove that at least one of them

is empty.
For each problem there are at most 80 students who did not solve it. From these

students at most
(80

2

) = 3160 pairs can be selected, so the problem can belong to at most
3160 sets. The 6 problems together can belong to at most 6 · 3160 sets.

Hence at least 19900−18960 = 940 sets must be empty, and the conclusion follows.

Second solution: Since each of the six problems was solved by at least 120 students, there
were at least 720 correct solutions in total. Since there are only 200 students, there is
some student who solved at least four problems. If a student solved five or six problems,
we are clearly done. Otherwise, there is a student who solved exactly four. Since the
two problems he missed were solved by at least 120 students, there must be a student (in
fact, at least 40) who solved both of them.

(9th International Mathematical Competition for University Students, 2002)

887. First solution: We prove the formula by induction on m. For m = 1 it clearly is
true, since there is only one solution, x1 = n. Assume that the formula is valid when
the number of unknowns is k ≤ m, and let us prove it for m + 1 unknowns. Write the
equation as
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x1 + x2 + · · · + xm = n− xm+1.

As xm+1 ranges between 0 and n, the right-hand sides assumes all values between 0 and
n. Using the induction hypothesis for all these cases and summing up, we find that the
total number of solutions is

n∑
r=0

(
m+ r − 1

m− 1

)
.

As before, this sums up to
(
m+n
m

)
, proving the formula form+1 unknowns. This completes

the solution.

Second solution: Let yi = xi + 1. Then y1, . . . , ym is a solution in positive integers to
the equation y1 + y2 + · · · + ym = n + m. These solutions were counted in one of the
examples discussed at the beginning of this section.

888. Since each tennis player played n− 1 games, xi + yi = n− 1 for all i. Altogether
there are as many victories as losses; hence x1 + x2 + · · · + xn = y1 + y2 + · · · + yn.
We have

x2
1+x2

2 + · · · + x2
n − y2

1 − y2
2 − · · · − y2

n = (x2
1 − y2

1)+ (x2
2 − y2

2)+ · · · + (x2
n − y2

n)

= (x1 + y1)(x1 − y1)+ (x2 + y2)(x2 − y2)+ · · · + (xn + yn)(xn − yn)

= (n− 1)(x1 − y1 + x2 − y2 + · · · + xn − yn)

= (n− 1)(x1 + x2 + · · · + xn − y1 − y2 − · · · − yn) = 0,

and we are done.
(L. Panaitopol, D. Şerbănescu, Probleme de Teoria Numerelor şi Combinatorica

pentru Juniori (Problems in Number Theory and Combinatorics for Juniors), GIL, 2003)

889. LetB = {b1, b2, . . . , bp} be the union of the ranges of the two functions. For bi ∈ B,
denote by nbi the number of elements x ∈ A such that f (x) = bi , and by kbi the number
of elements x ∈ A such that g(x) = bi . Then the number of pairs (x, y) ∈ A × A for
which f (x) = g(x) = bi is nbi kbi , the number of pairs for which f (x) = f (y) = bi is
n2
bi

, and the number of pairs for which g(x) = g(y) = bi is k2
bi

. Summing over i, we
obtain

m = nb1kb1 + nb2kb2 + · · · + nbpkbp ,

n = n2
b1

+ n2
b2

+ · · · + n2
bp
,

k = k2
b1

+ k2
b2

+ · · · + k2
bp
.

The inequality from the statement is a consequence of the inequality 2ab ≤ a2 + b2.
(T.B. Soulami, Les Olympiades de Mathématiques: Réflexes et stratégies, Ellipses,

1999)
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890. Let a < b < c < d be the members of a connected set S. Because a − 1 does not
belong to the set, it follows that a+ 1 ∈ S, hence b = a+ 1. Similarly, since d + 1 /∈ S,
we deduce that d − 1 ∈ S; hence c = d − 1. Therefore, a connected set has the form
{a, a + 1, d − 1, d}, with d − a > 2.

(a) There are 10 connected subsets of the set {1, 2, 3, 4, 5, 6, 7}, namely,

{1, 2, 3, 4}; {1, 2, 4, 5}; {1, 2, 5, 6}; {1, 2, 6, 7},
{2, 3, 4, 5}; {2, 3, 5, 6}; {2, 3, 6, 7}{3, 4, 5, 6}; {2, 4, 6, 7}; and {4, 5, 6, 7}.

(b) Call D = d − a + 1 the diameter of the set {a, a + 1, d − 1, d}. Clearly, D > 3
and D ≤ n− 1 + 1 = n. For D = 4 there are n− 3 connected sets, for D = 5 there are
n− 4 connected sets, and so on. Adding up yields

Cn = 1 + 2 + 3 + · · · + n− 3 = (n− 3)(n− 2)

2
,

which is the desired formula.
(Romanian Mathematical Olympiad, 2006)

891. The solution involves a counting argument that shows that the total number of
colorings exceeds those that make some 18-term arithmetic sequence monochromatic.

There are 22005 colorings of a set with 2005 elements by two colors. The number
of colorings that make a fixed 18-term sequence monochromatic is 22005−17, since the
terms not belonging to the sequence can be colored without restriction, while those in
the sequence can be colored either all black or all white.

How many 18-term arithmetic sequences can be found in the set {1, 2, . . . , 2005}?
Such a sequence a, a+r, a+2r, . . . , a+17r is completely determined by a and r subject
to the condition a + 17r ≤ 2005. For every a there are � 2005−a

17 � arithmetic sequences
that start with a. Altogether, the number of arithmetic sequences does not exceed

2005∑
a=1

2005 − a

17
= 2004 · 2005

2 · 17
.

So the total number of colorings that makes an arithmetic sequence monochromatic does
not exceed

22005−17 · 2004 · 2005

34
,

which is considerably smaller than 22005. The conclusion follows.
(communicated by A. Neguţ)

892. Let us consider the collection of all subsets with 2 elements of A1, A2, . . . , Am.
We thus have a collection of 6m subsets with two elements of A. But the number of
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distinct subsets of cardinal 2 in A is 4950. By the pigeonhole principle, there exist
distinct elements x, y ∈ A that belong to at least 49 subsets. Let these subsets be
A1, A2, . . . , A49. Then the conditions of the problem imply that the union of these
subsets has 2 + 49 × 2 = 100 elements, so the union is A. However, the union of any 48
subsets among the 49 has at most 2 + 2 × 48 = 98 elements, and therefore it is different
from A.

(G. Dospinescu)

893. First, it is not hard to see that a configuration that maximizes the number of partitions
should have no three collinear points. After examining several cases we guess that the
maximal number of partitions is

(
n

2

)
. This is exactly the number of lines determined by

two points, and we will use these lines to count the number of partitions. By pushing
such a line slightly so that the two points lie on one of its sides or the other, we obtain a
partition. Moreover, each partition can be obtained this way. There are 2

(
n

2

)
such lines,

obtained by pushing the lines through the n points to one side or the other. However,
each partition is counted at least twice this way, except for the partitions that come from
the sides of the polygon that is the convex hull of the n points, but those can be paired
with the partitions that cut out one vertex of the convex hull from the others. Hence we
have at most 2

(
n

2

)
/2 = (

n

2

)
partitions.

Equality is achieved when the points form a convex n-gon, in which case
(
n

2

)
counts

the pairs of sides that are intersected by the separating line.
(67th W.L. Putnam Mathematical Competition, 2006)

894. First solution: Consider the set of differences D = {x − y | x, y ∈ A}. It contains
at most 101 × 100 + 1 = 10101 elements. Two sets A + ti and A + tj have nonempty
intersection if and only if ti − tj is in D. We are supposed to select the 100 elements in
such a way that no two have the difference in D. We do this inductively.

First, choose one arbitrary element. Then assume that k elements have been chosen,
k ≤ 99. An element x that is already chosen prevents us from selecting any element from
the set x+D. Thus after k elements are chosen, at most 10101k ≤ 10101×99 = 999999
elements are forbidden. This allows us to choose the (k + 1)st element, and induction
works. With this the problem is solved.

Second solution: This solution can be improved if we look instead at the set of positive
differencesP = {x−y | x, y ∈ A, x ≥ y}. The setP has

(101
2

)+1 = 5051 elements. The
inductive construction has to be slightly modified, by choosing at each step the smallest
element that is not forbidden. In this way we can obtain far more elements than the
required 100. In fact, in the general situation, the argument proves that ifA is a k-element
subset of S = {1, 2, . . . , n} andm is a positive integer such that n > (m−1)(

(
k

2

)+1), then
there exist t1, t2, . . . , tm ∈ S such that the sets Aj = {x + tj |x ∈ A}, j = 1, 2, . . . , m,
are pairwise disjoint.

(44th International Mathematical Olympiad, 2003, proposed by Brazil)



766 Combinatorics and Probability

895. (a) For fixed x ∈ A, denote by k(x) the number of sets B ∈ F that contain x.
List these sets as B1, B2, . . . , Bk(x). Then B1\{x}, B2\{x}, . . . , Bk(x)\{x} are disjoint
subsets ofA\{x}. Since each Bi\{x} has n− 1 elements, andA\{x} has n2 − 1 elements,
k(x) ≤ n2−1

n−1 = n+ 1. Repeating the argument for all x ∈ A and adding, we obtain∑
x∈A

k(x) ≤ n2(n+ 1).

But ∑
x∈A

k(x) =
∑
B∈F

|B| = n|F |.

Therefore, n|F | ≤ n2(n+ 1), which implies |F | ≤ n2 + n, proving (a).
For (b) arrange the elements 1, 2, . . . , 9 in a matrix

1 2 3
4 5 6
7 8 9

and choose the sets of F as the rows, columns, and the “diagonals’’ that appear in the
expansion of the 3 × 3 determinant:

{1, 2, 3}, {4, 5, 6}, {7, 8, 9}, {1, 4, 7}, {2, 5, 8}, {3, 6, 9},
{1, 5, 9}, {2, 6, 7}, {3, 4, 8}, {3, 5, 7}, {2, 4, 9}, {1, 6, 8}.

It is straightforward to check that they provide the required counterexample.
(Romanian Team Selection Test for the International Mathematical Olympiad, 1985)

896. At every cut the number of pieces grows by 1, so after n cuts we will have n + 1
pieces.

Let us evaluate the total number of vertices of the polygons after n cuts. After each
cut the number of vertices grows by 2 if the cut went through two vertices, by 3 if the cut
went through a vertex and a side, or by 4 if the cut went through two sides. So after n
cuts there are at most 4n+ 4 vertices.

Assume now that after N cuts we have obtained the one hundred polygons with 20
sides. Since altogether there are N + 1 pieces, besides the one hundred polygons there
are N + 1 − 100 other pieces. Each of these other pieces has at least 3 vertices, so the
total number of vertices is 100 · 20 + (N − 99) · 3. This number does not exceed 4N + 4.
Therefore,

4N + 4 ≥ 100 · 20 + (N − 99) · 3 = 3N + 1703.

We deduce that N ≥ 1699.
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We can obtain one hundred polygons with twenty sides by making 1699 cuts in the
following way. First, cut the square into 100 rectangles (99 cuts needed). Each rectangle
is then cut through 16 cuts into a polygon with twenty sides and some triangles. We have
performed a total of 99 + 100 · 16 = 1699 cuts.

(Kvant (Quantum), proposed by I. Bershtein)

897. We give a proof by contradiction. Let us assume that the conclusion is false. We
can also assume that no problem was solved by at most one sex. Denote by bi and gi
the number of boys, respectively, girls, that solved problem i, and by p the total number
of problems. Then since bi, gi ≥ 1, it follows that (bi − 2)(gi − 2) ≤ 1, which is
equivalent to

bigi ≤ 2(bi + gi)− 3.

Let us sum this over all problems. Note that condition (ii) implies that 441 ≤ ∑
bigi .

We thus have

441 ≤
∑

bigi ≤ 2(bi + gi)− 3 ≤ 2(6 · 21 + 6 · 21)− 3p = 504 − 3p.

This implies that p ≤ 21, so 21 is an upper bound for p.
We now do a different count of the problems that will produce a lower bound for p.

Pairing a girl with each of the 21 boys, and using the fact that she solved at most six
problems, by the pigeonhole principle we conclude that some problem was solved by
that girl and 4 of the boys. By our assumption, there are at most two girls who solved
that problem. This argument works for any girl, which means that there are at least 11
problems that were solved by at least 4 boys and at most 2 girls. Symmetrically, 11 other
problems were solved by at least 4 girls and at most 2 boys. This shows that p ≥ 22, a
contradiction. The problem is solved.

(42nd International Mathematical Olympiad, 2001)

898. First, let us forget about the constraint and count the number of paths from (0, 0)
and (m, n) such that at each step one of the coordinates increases by 1. There are a total
ofm+n steps, out of which n go up. These n can be chosen in

(
m+n
n

)
ways from the total

of m+ n. Therefore, the number of paths is
(
m+n
n

)
.

How many of these go through (p, q)? There are
(
p+q
q

)
paths from (0, 0) to (p, q)

and
(
m+n−p−q

n−q
)

paths from (p, q) to (m, n). Hence(
p + q

q

)
·
(
m+ n− p − q

n− q

)
of all the paths pass through (p, q). And, of course,(

r + s

s

)
·
(
m+ n− r − s

n− s

)
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paths pass through (r, s). To apply the inclusion–exclusion principle, we also need to
count the number of paths that go simultaneously through (p, q) and (r, s). This number is(

p + q

q

)
·
(
r + s − p − q

s − q

)
·
(
m+ n− r − s

n− s

)
.

Hence, by the inclusion–exclusion principle, the number of paths avoiding (p, q) and
(r, s) is(

m+ n

n

)
−
(
p + q

q

)
·
(
m+ n− p − q

n− q

)
−
(
r + s

s

)
·
(
m+ n− r − s

n− s

)
+
(
p + q

q

)
·
(
r + s − p − q

s − q

)
·
(
m+ n− r − s

n− s

)
.

899. Let E = {1, 2, . . . , n} and F = {1, 2, . . . , p}. There are pn functions from E to F .
The number of surjective functions is pn − N , where N is the number of functions that
are not surjective. We compute N using the inclusion–exclusion principle.

Define the sets

Ai = {f : E → F |i /∈ f (E)}.
Then

N = ∣∣∪pi=1Ai
∣∣ =

∑
i

|Ai | −
∑
i 	=j

∣∣Ai ∩ Aj ∣∣+ · · · + (−1)p−1
∣∣∩pi=1Ai

∣∣ .
ButAi consists of the functions fromE toF\{i}; hence |Ai | = (p−1)n. Similarly, for all
k, 2 ≤ k ≤ p−1,Ai1 ∩Ai2 ∩· · ·∩Aik is the set of functions fromE to F\{i1, i2, . . . , ik};
hence |Ai1 ∩ Ai2 ∩ · · · ∩ Aik | = (p − k)n. Also, note that for a certain k, there are

(
p

k

)
terms of the form |Ai1 ∩ Ai2 ∩ · · · ∩ Aik |. It follows that

N =
(
p

1

)
(p − 1)n −

(
p

2

)
(p − 2)n + · · · + (−1)p−1

(
p

p − 1

)
.

We conclude that the total number of surjections from E to F is

pn −
(
p

1

)
(p − 1)n +

(
p

2

)
(p − 2)n − · · · + (−1)p

(
p

p − 1

)
.

900. We count instead the permutations that are not derangements. Denote by Ai the set
of permutations σ with σ(i) = i. Because the elements in Ai have the value at i already
prescribed, it follows that |Ai | = (n−1)!. And for the same reason, |Ai1∪Ai2∪· · ·∪Aik | =
(n − k)! for any distinct i1, i2, . . . , ik, 1 ≤ k ≤ n. Applying the inclusion–exclusion
principle, we find that
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|A1 ∪ A2 ∪ · · · ∪ An| =
(
n

1

)
(n− 1)! −

(
n

2

)
(n− 2)! + · · · + (−1)n

(
n

n

)
1!.

The number of derangements is therefore n! − |A1 ∪ A2 ∪ · · · ∪ An|, which is

n! −
(
n

1

)
(n− 1)! +

(
n

2

)
(n− 2)! − · · · + (−1)n

(
n

n

)
0!.

This number can also be written as

n!
[

1 − 1

1! + 1

2! − · · · + (−1)n

n!
]
.

This number is approximately equal to n!
e

.

901. For a vertex x, denote by Ax the set of vertices connected to x by an edge. Assume
that |Ax | ≥ �n2� + 1 for all vertices x.

Now choose two vertices x and y such that y ∈ Ax . Counting with the inclusion–
exclusion principle, we get

|Ax ∪ Ay | = |Ax | + |Ay | − |Ax ∩ Ay |.
Rewrite this as

|Ax ∩ Ay | = |Ax | + |Ay | − |Ax ∪ Ay |.
From the fact that |Ax ∪ Ay | ≤ n we find that |Ax ∩ Ay | is greater than or equal to

2
⌊n

2

⌋
+ 2 − n ≥ 1.

If follows that the set Ax ∩ Ay contains some vertex z, and so x, y, z are the vertices of
a triangle.

(D. Buşneag, I. Maftei, Teme pentru cercurile şi concursurile de matematică (Themes
for mathematics circles and contests), Scrisul Românesc, Craiova)

902. If them-gon has three acute angles, say at verticesA,B,C, then with a fourth vertex
D they form a cyclic quadrilateralABCD that has three acute angles, which is impossible.
Similarly, if them-gon has two acute angles that do not share a side, say at verticesA and
C, then they form with two other vertices B and D of the m-gon a cyclic quadrilateral
ABCD that has two opposite acute angles, which again is impossible. Therefore, the
m-gon has either exactly one acute angle, or has two acute angles and they share a side.

To count the number of suchm-gons we employ the principle of inclusion and exclu-
sion. Thus we first find the number ofm-gons with at least one acute angle, then subtract
the number of m-gons with two acute angles (which were counted twice the first time).
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If the acute angle of the m-gon is AkA1Ak+r , the condition that this angle is acute
translates into r ≤ n. The other vertices of the m-gon lie between Ak and Ak+r ; hence
m−2 ≤ r , and these vertices can be chosen in

(
r−1
m−3

)
ways. Note also that 1 ≤ k ≤ 2n−r .

Thus the number of m-gons with an acute angle at A1 is

n∑
r=m−2

2n−r∑
k=1

(
r − 1

m− 3

)
= 2n

n∑
m−2

(
r − 1

m− 3

)
−

n∑
r=m−2

r

(
r − 1

m− 3

)
= 2n

(
n

m− 2

)
− (m− 2)

(
n+ 1

m− 1

)
.

There are as many polygons with an acute angle at A2, A3, . . . , A2n+1.
To count the number of m-gons with two acute angles, let us first assume that these

acute angles are AsA1Ak and A1AkAr . The other vertices lie between Ar and As . We
have the restrictions 2 ≤ k ≤ 2n − m + 3, n + 2 ≤ r < s ≤ k + n if k ≤ n and no
restriction on r and s otherwise. The number of such m-gons is

n∑
k=1

(
k − 1

m− 2

)
+

2n+1−(m−2)∑
k=n+1

(
2n+ 1 − k

m− 2

)
=

n∑
k=m−1

(
k − 1

m− 2

)
+

n∑
s=m−2

(
s

m− 2

)
=
(
n+ 1

m− 1

)
+
(

n

m− 1

)
.

This number has to be multiplied by 2n+ 1 to take into account that the first acute vertex
can be at any other vertex of the regular n-gon.

We conclude that the number of m-gons with at least one acute angle is

(2n+ 1)

(
2n

(
n

m− 2

)
− (m− 1)

(
n+ 1

m− 1

)
−
(

n

m− 1

))
.

903. Denote by Un the set of z ∈ S1 such that f n(z) = z. Because f n(z) = zm
n

, Un
is the set of the roots of unity of order mn − 1. In our situation n = 1989, and we are
looking for those elements of U1989 that do not have period less than 1989. The periods
of the elements of U1989 are divisors of 1989. Note that 1989 = 32 × 13 × 17. The
elements we are looking for lie in the complement ofU1989/3 ∪U1989/13 ∪U1989/17. Using
the inclusion–exclusion principle, we find that the answer to the problem is

|U1989| − |U1989/3| − |U1989/13| − |U1989/17| + |U1989/3 ∩ U1898/13| + |U1989/3 ∩ U1989/17|
+ |U1989/13 ∩ U1989/17| + |U1989/3 ∩ U1989/13 ∩ U1989/17|,

i.e.,

|U1989| − |U663| − |U153| − |U117| + |U51| + |U39| + |U9| − |U3|.
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This number is equal to

m1989 −m663 −m153 −m117 +m51 +m39 +m9 −m3,

since the −1’s in the formula for the cardinalities of the Un’s cancel out.
(Chinese Mathematical Olympiad, 1989)

904. Here we apply a “multiplicative’’ inclusion–exclusion formula for computing the
least common multiple of several integers, which states that the least common multiple
[x1, x2, . . . , xn] of the numbers x1, x2, . . . , xn is equal to

x1x2 · · · xn 1

(x1, x2)(x1, x3) · · · (xn−1, xn)
(x1, x2, x3) · · · (xn−2, xn−1, xn) · · · .

For three numbers, this formula reads

[a, b, c] = abc
1

(a, b)(b, c)(a, c)
(a, b, c),

while for two numbers, it reads

[a, b] = ab
1

(a, b)
.

Let us combine the two. Square the first formula; then substitute the products ab, bc,
and ca using the second. In detail,

[a, b, c]2 = ab · bc · ca 1

(a, b)2(b, c)2(c, a)2
(a, b, c)2

= [a, b][b, c][c, a](a, b)(b, c)(c, a) 1

(a, b)2(b, c)2(c, a)2
(a, b, c)2

= [a, b][b, c][c, a] (a, b, c)2

(a, b)(b, c)(c, a)
.

The identity follows.

905. We solve the problem for the general case of a rectangular solid of width w, length
l, and height h, where w, l, and h are positive integers. Orient the solid in space so that
one vertex is at O = (0, 0, 0) and the opposite vertex is at A = (w, l, h). Then OA is
the diagonal of the solid.

The diagonal is transversal to the planes determined by the faces of the small cubes, so
each time it meets a face, edge, or vertex, it leaves the interior of one cube and enters the
interior of another. Counting by the number of interiors of small cubes that the diagonal
leaves, we find that the number of interiors that OA intersects is equal to the number of
points on OA having at least one integer coordinate.
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We count these points using the inclusion–exclusion principle. The first coordinate
of the current point P = (tw, tl, th), 0 < t ≤ 1, on the diagonal is a positive integer
for exactly w values of t , namely, t = 1

w
, 2

2 , . . . ,
w
w

. The second coordinate is an integer
for l values of t , and the third coordinate is an integer for h values of t . However, the
sum w + l + h doubly counts the points with two integer coordinates, and triply counts
the points with three integer coordinates. The first two coordinates are integers precisely
when t = k

gcd(w,l) , for some integer k, 1 ≤ k ≤ gcd(w, l). Similarly, the second and third
coordinates are positive integers for gcd(l, h), respectively, gcd(h,w) values of t , and
all three coordinates are positive integers for gcd(w, l, h) values of t .

The inclusion–exclusion principle shows that the diagonal passes through the interi-
ors of

w + l + h− gcd(w, l)− gcd(l, h)− gcd(h,w)+ gcd(w, l, h)

small cubes. For w = 150, l = 324, h = 375 this number is equal to 768.
(American Invitational Mathematics Examination, 1996)

906. Because the 1997 roots of the equation are symmetrically distributed in the complex
plane, there is no loss of generality to assume that v = 1. We are required to find the
probability that

|1 + w|2 = |(1 + cos θ)+ i sin θ |2 = 2 + 2 cos θ ≥ 2 + √
3.

This is equivalent to cos θ ≥ 1
2

√
3, or |θ | ≤ π

6 . Because w 	= 1, θ is of the form ± 2kπ
1997k,

1 ≤ k ≤ � 1997
12 �. There are 2 · 166 = 332 such angles, and hence the probability is

332
1996 = 83

499 ≈ 0.166.
(American Invitational Mathematics Examination, 1997)

907. It is easier to compute the probability that no two people have the same birthday.
Arrange the people in some order. The first is free to be born on any of the 365 days. But
only 364 dates are available for the second, 363 for the third, and so on. The probability
that no two people have the same birthday is therefore

364

365
· 363

365
· · · 365 − n+ 1

365
= 365!
(365 − n)!365n

.

And the probability that two people have the same birthday is

1 − 365!
(365 − n)!365n

.

Remark. Starting with n = 23 the probability becomes greater than 1
2 , while when

n > 365 the probability is clearly 1 by the pigeonhole principle.
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908. Denote by P(n) the probability that a bag containing n distinct pairs of tiles will be
emptied, n ≥ 2. Then P(n) = Q(n)P (n− 1) where Q(n) is the probability that two of
the first three tiles selected make a pair. The latter one is

Q(n) = number of ways to select three tiles, two of which match

number of ways to select three tiles

= n(2n− 2)(2n
3

) = 3

2n− 1
.

The recurrence

P(n) = 3

2n− 1
P(n− 1)

yields

P(n) = 3n−2

(2n− 1)(2n− 3) · · · 5
P(2).

Clearly, P(2) = 1, and hence the answer to the problem is

P(6) = 34

11 · 9 · 7 · 5
= 9

385
≈ 0.023.

(American Invitational Mathematics Examination, 1994)

909. Because there are two extractions each of with must contain a certain ball, the total
number of cases is

(
n−1
m−1

)2
. The favorable cases are those for which the balls extracted

the second time differ from those extracted first (except of course the chosen ball). For
the first extraction there are

(
n−1
m−1

)
cases, while for the second there are

(
n−m
m−1

)
, giving a

total number of cases
(
n−1
m−1

)(
n−m
m−1

)
. Taking the ratio, we obtain the desired probability as

P =
(
n−1
m−1

)(
n−m
m−1

)
(
n−1
m−1

)2 =
(
n−m
m−1

)(
n−1
m−1

) .
(Gazeta Matematică (Mathematics Gazette, Bucharest), proposed by C. Marinescu)

910. First, observe that since at least one ball is removed during each stage, the process
will eventually terminate, leaving no ball or one ball in the bag. Because red balls are
removed 2 at a time and since we start with an odd number of red balls, the number of
red balls in the bag at any time is odd. Hence the process will always leave red balls
in the bag, and so it must terminate with exactly one red ball. The probability we are
computing is therefore 1.

(Mathematics and Informatics Quarterly, proposed by D. Macks)
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911. Consider the dual cube to the octahedron. The vertices A, B, C, D, E, F , G,
H of this cube are the centers of the faces of the octahedron (here ABCD is a face of
the cube and (A,G), (B,H), (C,E), (D, F ) are pairs of diagonally opposite vertices).
Each assignment of the numbers 1, 2, 3, 4, 5, 6, 7, and 8 to the faces of the octahedron
corresponds to a permutation ofABCDEFGH , and thus to an octagonal circuit of these
vertices. The cube has 16 diagonal segments that join nonadjacent vertices. The problem
requires us to count octagonal circuits that can be formed by eight of these diagonals.

Six of these diagonals are edges of the tetrahedronACFH , six are edges of the tetra-
hedronDBEG, and four are long diagonals, joining opposite vertices of the cube. Notice
that each vertex belongs to exactly one long diagonal. It follows that an octagonal circuit
must contain either 2 long diagonals separated by 3 tetrahedron edges (Figure 108a), or
4 long diagonals (Figure 108b) alternating with tetrahedron edges.

a b
A B

D C

E F

GH

A B

CD

G

FE

H

Figure 108

When forming a (skew) octagon with 4 long diagonals, the four tetrahedron edges
need to be disjoint; hence two are opposite edges of ACFH and two are opposite edges
of DBEG. For each of the three ways to choose a pair of opposite edges from the
tetrahedronACFH , there are two possible ways to choose a pair of opposite edges from
tetrahedron DBEG. There are 3 · 2 = 6 octagons of this type, and for each of them, a
circuit can start at 8 possible vertices and can be traced in two different ways, making a
total of 6 · 8 · 2 = 96 permutations.

An octagon that contains exactly two long diagonals must also contain a three-edge
path along the tetrahedron ACFH and a three-edge path along tetrahedron the DBEG.
A three-edge path along the tetrahedron the ACFH can be chosen in 4! = 24 ways. The
corresponding three-edge path along the tetrahedron DBEG has predetermined initial
and terminal vertices; it thus can be chosen in only 2 ways. Since this counting method
treats each path as different from its reverse, there are 8 · 24 · 2 = 384 permutations of
this type.

In all, there are 96 + 384 = 480 permutations that correspond to octagonal circuits
formed exclusively from cube diagonals. The probability of randomly choosing such a
permutation is 480

8! = 1
84 .

(American Invitational Mathematics Examination, 2001)
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912. The total number of permutations is of course n!. We will count instead the number
of permutations for which 1 and 2 lie in different cycles.

If the cycle that contains 1 has length k, we can choose the other k − 1 elements in(
n−2
k−1

)
ways from the set {3, 4, . . . , n}. There exist (k− 1)! circular permutations of these

elements, and (n − k)! permutations of the remaining n − k elements. Hence the total
number of permutations for which 1 and 2 belong to different cycles is equal to

n−1∑
k=1

(
n− 2

k − 1

)
(k − 1)!(n− k)! = (n− 2)!

n−1∑
k=1

(n− k) = (n− 2)!n(n− 1)

2
= n!

2
.

It follows that exactly half of all permutations contain 1 and 2 in different cycles, and so
half contain 1 and 2 in the same cycle. The probability is 1

2 .
(I. Tomescu Problems in Combinatorics, Wiley, 1985)

913. There are
(
n

k

)
ways in which exactly k tails appear, and in this case the difference is

n− 2k. Hence the expected value of |H − T | is

1

2n

n∑
k=0

|n− 2k|
(
n

k

)
.

Evaluate the sum as follows:

1

2n

n∑
m=0

|n− 2m|
(
n

m

)
= 1

2n−1

�n/2�∑
m=0

(n− 2m)

(
n

m

)

= 1

2n−1

(�n/2�∑
m=0

(n−m)

(
n

m

)
−

�n/2�∑
m=0

m

(
n

m

))

= 1

2n−1

(�n/2�∑
m=0

n

(
n− 1

m

)
−

�n/2�∑
m=1

n

(
n− 1

m− 1

))

= n

2n−1

(
n− 1⌊
n
2

⌋ ).
(35th W.L. Putnam Mathematical Competition, 1974)

914. Use n cards with the numbers 1, 2, . . . , n on them. Shuffle the cards and stack them
with the numbered faces down. Then pick cards from the top of this pack, one at a time.
We say that a matching occurs at the ith draw if the number on the card drawn is i. The
probability that no matching occurs is

n∑
i=0

(−1)i

i! = p(n),
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which follows from the deragements formula (see Section 6.2.4.). The probability that
exactly k matches occur is(

n

k

)
p(n− k)(n− k)!

n! = 1

k!p(n− k) = 1

k!
n−k∑
i=0

(−1)i

i! .

Denote by X the number of matchings in this n-card game. The expected value of X is

E(X) =
n∑
k=0

kP (X = k) =
n∑
k=0

k
1

k!
n−k∑
i=0

(−1)i

i! =
n∑
k=1

1

(k − 1)!
n−k∑
i=0

(−1)i

i! ,

because

P(X = k) = 1

k!
n−k∑
i=0

(−1)i

i! .

Let us compute E(X) differently. Set

Xi =
{

1 if there is a match at the ith draw,

0 if there is no match at the ith draw.

Then

E(X) = E(X1 + · · · +Xn) =
n∑
i=1

E(Xi) = n
1

n
= 1,

because

E(Xi) = 1 · P(Xi = 1) = (n− 1)!
n! = 1

n
.

Combining the two, we obtain

n∑
k=1

1

(k − 1)!
n−k∑
i=0

(−1)i

i! = 1,

which proves the first identity. The proof of the second identity is similar. We have

E(X2) = E

⎛⎝( n∑
i=1

Xi

)2
⎞⎠ =

n∑
i=1

E(X2
i )+ 2

∑
i<j

E(XiXj).

But
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E(X2
i ) = E(Xi) = 1

n
and E(XiXj) = 1 · 1 · P(Xi = 1, Xj = 1) = 1

n(n− 1)
.

Hence E(X2) = 1 + 1 = 2.
On the other hand,

E(X2) =
n∑
k=1

k2 1

k!
n−k∑
i=0

(−1)i

i! ,

which proves the second identity.
(proposed for the USA Mathematical Olympiad by T. Andreescu)

915. Denote by Ai the event “the student solves correctly exactly i of the three proposed
problems,’’ i = 0, 1, 2, 3. The event A whose probability we are computing is

A = A2 ∪ A3,

and its probability is

P(A) = P(A2)+ P(A3),

since A2 and A3 exclude each other.
Because the student knows how to solve half of all the problems,

P(A0) = P(A3) and P(A1) = P(A2).

The equality

P(A0)+ P(A1)+ P(A2)+ P(A3) = 1

becomes

2[P(A2)+ P(A3)] = 1.

It follows that the probability we are computing is

P(A) = P(A2)+ P(A3) = 1

2
.

(N. Negoescu, Probleme cu… Probleme (Problems with… Problems), Editura Facla,
1975)

916. For the solution we will use Bayes’ theorem for conditional probabilities. We denote
byP(A) the probability that the eventA holds, and byP(B

A
) the probability that the event

B holds given that A in known to hold. Bayes’ theorem states that
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P(B/A) = P(B)

P (A)
· P(A/B).

For our problem A is the event that the mammogram is positive and B the event that
the woman has breast cancer. Then P(B) = 0.01, while P(A/B) = 0.60. We compute
P(A) from the formula

P(A) = P(A/B)P (B)+ P(A/not B)P (not B) = 0.6 · 0.01 + 0.07 · 0.99 = 0.0753.

The answer to the question is therefore

P (B/A) = 0.01

0.0753
· 0.6 = 0.0795 ≈ 0.08

The chance that the woman has breast cancer is only 8%!

917. We call a successful string a sequence of H ’s and T ’s in which HHHHH appears
before T T does. Each successful string must belong to one of the following three types:

(i) those that begin with T , followed by a successful string that begins with H ;
(ii) those that begin with H , HH , HHH , or HHHH , followed by a successful string

that begins with T ;
(iii) the string HHHHH .

Let PH denote the probability of obtaining a successful string that begins withH , and
let PT denote the probability of obtaining a successful string that begins with T . Then

PT = 1

2
PH,

PH =
(

1

2
+ 1

4
+ 1

8
+ 1

16

)
PT + 1

32
.

Solving these equations simultaneously, we find that

PH = 1

17
and PT = 1

34
.

Hence the probability of obtaining five heads before obtaining two tails is 3
34 .

(American Invitational Mathematics Examination, 1995)

918. Let us denote the events x = 70◦, y = 70◦, max(x◦, y◦) = 70◦, min(x◦, y◦) = 70◦
by A,B,C,D, respectively. We see that A ∪ B = C ∪D and A ∩ B = C ∩D. Hence

P(A)+ P(B) = P(A ∪ B)+ P(A ∩ B) = P(C ∪D)+ P(C ∩D) = P(C)+ P(D).

Therefore, P(D) = P(A)+ P(B)− P(C), that is,
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P(min(x◦, y◦) = 70◦) = P(x◦ = 70◦)+ P(y◦ = 70◦)− P(max(x◦, y◦) = 70◦)
= a + b − c.

(29th W.L. Putnam Mathematical Competition, 1968)

919. In order for n black marbles to show up in n + x draws, two independent events
should occur. First, in the initial n+ x − 1 draws exactly n− 1 black marbles should be
drawn. Second, in the (n+ x)th draw a black marble should be drawn. The probability
of the second event is simply q. The probability of the first event is computed using the
Bernoulli scheme; it is equal to (

n+ x − 1

x

)
pxqn−1.

The answer to the problem is therefore(
n+m− 1

m

)
pmqn−1q =

(
n+m− 1

m

)
pmqn.

(Romanian Mathematical Olympiad, 1971)

920. First solution: Denote by p1, p2, p3 the three probabilities. By hypothesis,

P(X = 0) =
∏
i

(1 − pi) = 1 −
∑
i

pi +
∑
i 	=j

pipj − p1p2p3 = 2

5
,

P (X = 1) =
∑

{i,j,k}={1,2,3}
pi(1 − pj)(1 − pk) =

∑
i

pi − 2
∑
i 	=j

pipj + 3p1p2p3 = 13

30
,

P (X = 2) =
∑

{i,j,k}={1,2,3}
pipj (1 − pk) =

∑
i 	=j

pipj − 3p1p2p3 = 3

20
,

P (X = 3) = p1p2p3 = 1

60
.

This is a linear system in the unknowns
∑

i pi ,
∑

i 	=j pipj , and p1p2p3 with the solution∑
i

pi = 47

60
,

∑
i 	=j

pipj = 1

5
, p1p2p3 = 1

60
.

It follows that p1, p2, p3 are the three solutions to the equation

x3 − 47

60
x2 + 1

5
x − 1

60
= 0.

Searching for solutions of the form 1
q

with q dividing 60, we find the three probabilities

to be equal to 1
3 , 1

4 , and 1
5 .
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Second solution: Using the Poisson scheme

(p1x + 1 − p1)(p2x + 1 − p2)(p3x + 1 − p3) = 2

5
+ 13

30
x + 3

20
x2 + 1

60
x3,

we deduce that 1 − 1
pi

, i = 1, 2, 3, are the roots of x3 + 9x2 + 26x + 24 = 0 and

p1p2p3 = 1
60 . The three roots are −2,−3,−4, which again gives pi’s equal to 1

3 , 1
4 ,

and 1
5 .

(N. Negoescu, Probleme cu. . . Probleme (Problems with. . . Problems), Editura Fa-
cla, 1975)

921. Set qi = 1 − pi , i = 1, 2, . . . , n, and consider the generating function

Q(x) =
n∏
i=1

(pix + qi) = Q0 +Q1x + · · · +Qnx
n.

The probability for exactly k of the independent events A1, A2, . . . , An to occur is equal
to the coefficient of xk in Q(x), hence to Qk. The probability P for an odd number of
events to occur is thus equal toQ1 +Q3 + · · · . Let us compute this number in terms of
p1, p2, . . . , pn.

We have

Q(1) = Q0 +Q1 + · · · +Qn and Q(−1) = Q0 −Q1 + · · · + (−1)nQn.

Therefore,

P = Q(1)−Q(−1)

2
= 1

2

(
1 −

n∏
i=1

(1 − 2pi)

)
.

(Romanian Mathematical Olympiad, 1975)

922. It is easier to compute the probability of the contrary event, namely that the batch
passes the quality check. Denote by Ai the probability that the ith checked product has
the desired quality standard. We then have to compute P(∩5

i=1Ai). The events are not
independent, so we use the formula

P(∩5
i=1Ai) = P(A1)P (A2/A1)(A3/A1 ∩ A2)P (A4/A1 ∩ A2 ∩ A3)

× P(A5/A1 ∩ A2 ∩ A3 ∩ A4).

We find successivelyP(A1) = 95
100 ,P(A2/A1) = 94

99 (because ifA1 occurs then we are left
with 99 products out of which 94 are good),P(A3/A1∩A2) = 93

98 ,P(A4/A1∩A2∩A3) =
92
97 , P(A5/A1 ∩ A2 ∩ A3 ∩ A4) = 91

96 . The answer to the problem is
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1 − 95

100
· 94

99
· 93

98
· 92

97
· 91

96
≈ 0.230.

923. We apply Bayes’ formula. Let B be the event that the plane flying out of Eulerville
is a jet plane and A1, respectively, A2, the events that the plane flying between the two
cities is a jet, respectively, a propeller plane. Then

P(A1) = 2

3
, P (A2) = 1

3
, P (B/A1) = 2

7
, P (B/A2) = 1

7
.

Bayes formula gives

P(A2/B) = P(A2)P (B/A2)

P (A1)P (B/A1)+ P(A2)P (B/A2)
=

1
3 · 1

7
2
3 · 2

7 + 1
3 · 1

7

= 1

5
.

Thus the answer to the problem is 1
5 .

Remark. Without the farmer seeing the jet plane flying out of Eulerville, the probability
would have been 1

3 . What you know affects your calculation of probabilities.

924. We find instead the probability P(n) for no consecutive heads to appear in n throws.
We do this recursively. If the first throw is tails, which happens with probability 1

2 , then
the probability for no consecutive heads to appear afterward is P(n − 1). If the first
throw is heads, the second must be tails, and this configuration has probability 1

4 . The
probability that no consecutive heads appear later is P(n− 2). We obtain the recurrence

P(n) = 1

2
P(n− 1)+ 1

4
P(n− 2),

with P(1) = 1, and P(2) = 3
4 . Make this relation more homogeneous by substituting

xn = 2nP (n). We recognize the recurrence for the Fibonacci sequence xn+1 = xn+xn−1,
with the remark that x1 = F3 and x2 = F4. It follows that xn = Fn+2, P(n) = Fn+2

2n , and
the probability required by the problem is P(n) = 1 − Fn+2

2n .
(L.C. Larson, Problem-Solving Through Problems, Springer-Verlag, 1990)

925. Fix N = m + n, the total amount of money, and vary m. Denote by P(m) the
probability that A wins all the money when starting with m dollars. Clearly, P(0) = 0
and P(N) = 1. We want a recurrence relation for P(m).

Assume that A starts with k dollars. During the first game, A can win, lose, or the
game can be a draw. If A wins this game, then the probability of winning all the money
afterward is P(k + 1). If A loses, the probability of winning in the end is P(k − 1).
Finally, if the first game is a draw, nothing changes, so the probability of A winning in
the end remains equal to P(k). These three situations occur with probabilities p, q, r ,
respectively; hence
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P(k) = pP (k + 1)+ qP (k − 1)+ rP (k).

Taking into account that p + q + r = 1, we obtain the recurrence relation

pP (k + 1)− (p + q)P (k)+ qP (k − 1) = 0.

The characteristic equation of this recurrence is pλ2 − (p+ q)λ+ q = 0. There are two
cases. The simpler is p = q. Then the equation has the double root λ = 1, in which
case the general term is a linear function in k. Since P(0) = 0 and P(N) = 1, it follows
that P(m) = m

N
= m

n+m . If p 	= q, then the distinct roots of the equation are λ1 = 1 and
λ2 = q

p
, and the general term must be of the form P(k) = c1 + c2(

q

p
)k. Using the known

values for k = 0 and N , we compute

c1 = −c2 = 1

1 − (
q

p
)N
.

Hence the required probability is

m

m+ n
if p = q and

1 − (
q

p
)m

1 − (
q

p
)m+n if p 	= q.

(K.S. Williams, K. Hardy, The Red Book of Mathematical Problems, Dover, Mineola,
NY, 1996)

926. Seeking a recurrence relation, we denote by E(m, n) this expected length. What
happens, then, after one toss? Half the time you win, and then the parameters become
m+1, n−1; the other half of the time you lose, and the parameters becomem−1, n+1.
Hence the recurrence

E(m, n) = 1 + 1

2
E(m− 1, n+ 1)+ 1

2
E(m+ 1, n− 1),

the 1 indicating the first toss. Of course, this assumesm, n > 0. The boundary conditions
are that E(0, n) = 0 and E(m, 0) = 0, and these, together with the recurrence formula,
do determine uniquely the function E(m, n).

View E(m, n) as a function of one variable, say n, along the line m+ n = constant.
Solving the inhomogeneous second-order recurrence, we obtain E(m, n) = mn. Alter-
nately, the recursive formula says that the second difference is the constant (−2), and
so E(m, n) is a quadratic function. Vanishing at the endpoints forces it to be cmn, and
direct evaluation shows that c = 1.

(D.J. Newman, A Problem Seminar, Springer-Verlag)

927. Let x and y be the two numbers. The set of all possible outcomes is the unit square

D = {(x, y) | 0 ≤ x ≤ 1, 0 ≤ y ≤ 1}.
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The favorable cases consist of the region

Df =
{
(x, y) ∈ D | x + y ≤ 1, xy ≤ 2

9

}
.

This is the set of points that lie below both the line f (x) = 1 − x and the hyperbola
g(x) = 2

9x .

The required probability is P = Area(Df )
Area(D) . The area of D is 1. The area of Df is

equal to ∫ 1

0
min(f (x), g(x))dx.

The line and the hyperbola intersect at the points ( 1
3 ,

2
3) and ( 2

3 ,
1
3). Therefore,

Area(Df ) =
∫ 1/3

0
(1 − x)dx +

∫ 2/3

1/3

2

9x
dx +

∫ 1

2/3
(1 − x)dx = 1

3
+ 2

9
ln 2.

We conclude that P = 1
3 + 2

9 ln 2 ≈ 0.487.
(C. Reischer, A. Sâmboan, Culegere de Probleme de Teoria Probabilităţilor şi Statis-

tică Matematică (Collection of Problems of Probability Theory and Mathematical Statis-
tics), Editura Didactică şi Pedagogică, Bucharest, 1972)

928. The total region is a square of side β. The favorable region is the union of the
two triangular regions shown in Figure 109, and hence the probability of a favorable
outcome is

(β − α)2

β2
=
(

1 − α

β

)2

.

Figure 109

(22nd W.L. Putnam Mathematical Competition, 1961)

929. Denote by x, respectively, y, the fraction of the hour when the husband, respectively,
wife, arrive. The configuration space is the square
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D = {(x, y) | 0 ≤ x ≤ 1, 0 ≤ y ≤ 1} .
In order for the two people to meet, their arrival time must lie inside the region

Df =
{
(x, y) | |x − y| ≤ 1

4

}
.

The desired probability is the ratio of the area of this region to the area of the square.
The complement of the region consists of two isosceles right triangles with legs equal

to 3
4 , and hence of areas 1

2(
3
4)

2. We obtain for the desired probability

1 − 2 · 1

2
·
(

3

4

)2

= 7

16
≈ 0.44.

(B.V. Gnedenko)

930. The set of possible events is modeled by the square [0, 24]× [0, 24]. It is, however,
better to identify the 0th and the 24th hours, thus obtaining a square with opposite sides
identified, an object that in mathematics is called a torus (which is, in fact, the Cartesian
product of two circles. The favorable region is outside a band of fixed thickness along
the curve x = y on the torus as depicted in Figure 110. On the square model this region
is obtained by removing the points (x, y) with |x− y| ≤ 1 together with those for which
|x − y − 1| ≤ 1 and |x − y + 1| ≤ 1. The required probability is the ratio of the area of
the favorable region to the area of the square, and is

P = 242 − 2 · 24

242
= 11

12
≈ 0.917.

Figure 110

931. We assume that the circle of the problem is the unit circle centered at the origin O.
The space of all possible choices of three points P1, P2, P3 is the product of three circles;
the volume of this space is 2π × 2π × 2π = 8π3.
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Let us first measure the volume of the configurations (P1, P2, P3) such that the arc
�

P1P2P3 is included in a semicircle and is oriented counterclockwise from P1 to P3. The
condition that the arc is contained in a semicircle translates to 0 ≤ ∠P1OP2 ≤ π and
0 ≤ ∠P2OP3 ≤ π − ∠P1OP2 (see Figure 111). The point P1 is chosen randomly on
the circle, and for each P1 the region of the angles θ1 and θ2 such that 0 ≤ θ1 ≤ π and
0 ≤ θ1 ≤ π − θ1 is an isosceles right triangle with leg equal to π . Hence the region of
points (P1, P2, P3) subject to the above constraints has volume 2π · 1

2π
2 = π3. There

are 3! = 6 such regions and they are disjoint. Therefore, the volume of the favorable
region is 6π3. The desired probability is therefore equal to 6π3

8π3 = 3
4 .

Figure 111

932. The angle at the vertex Pi is acute if and only if all other points lie on an open
semicircle facing Pi . We first deduce from this that if there are any two acute angles
at all, they must occur consecutively. Otherwise, the two arcs that these angles subtend
would overlap and cover the whole circle, and the sum of the measures of the two angles
would exceed 180◦.

So the polygon has either just one acute angle or two consecutive acute angles. In
particular, taken in counterclockwise order, there exists exactly one pair of consecutive
angles the second of which is acute and the first of which is not.

We are left with the computation of the probability that for one of the points Pj , the
angle at Pj is not acute, but the following angle is. This can be done using integrals. But
there is a clever argument that reduces the geometric probability to a probability with
a finite number of outcomes. The idea is to choose randomly n − 1 pairs of antipodal
points, and then among these to choose the vertices of the polygon. A polygon with one
vertex at Pj and the other among these points has the desired property exactly when n−2
vertices lie on the semicircle to the clockwise side of Pj and one vertex on the opposite
semicircle. Moreover, the points on the semicircle should include the counterclockwise-
most to guarantee that the angle at Pj is not acute. Hence there are n − 2 favorable
choices of the total 2n−1 choices of points from the antipodal pairs. The probability for
obtaining a polygon with the desired property is therefore (n− 2)2−n+1.

Integrating over all choices of pairs of antipodal points preserves the ratio. The events
j = 1, 2, . . . , n are independent, so the probability has to be multiplied by n. The answer
to the problem is therefore n(n− 2)2−n+1.

(66th W.L. Putnam Mathematical Competition, 2005, solution by C. Lin)
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933. The pair (p, q) is chosen randomly from the three-dimensional domain C × intC,
which has a total volume of 2π2 (here intC denotes the interior of C). For a fixed p, the
locus of points q for which R does not have points outside of C is the rectangle whose
diagonal is the diameter through p and whose sides are parallel to the coordinate axes
(Figure 112). If the coordinates of p are (cos θ, sin θ), then the area of the rectangle is
2| sin 2θ |.

x

y

p

θ

Figure 112

The volume of the favorable region is therefore

V =
∫ 2π

0
2| sin 2θ |dθ = 4

∫ π/2

0
2 sin 2θdθ = 8.

Hence the probability is

P = 8

2π2
= 4

π2
≈ 0.405.

(46th W.L. Putnam Mathematical Competition, 1985)

934. Mark an endpoint of the needle. Translations parallel to the given (horizontal) lines
can be ignored; thus we can assume that the marked endpoint of the needle always falls
on the same vertical. Its position is determined by the variables (x, θ), where x is the
distance to the line right above and θ the angle made with the horizontal (Figure 113).

The pair (x, θ) is randomly chosen from the region [0, 2)× [0, 2π). The area of this
region is 4π . The probability that the needle will cross the upper horizontal line is

1

4π

∫ π

0

∫ sin θ

0
dxdθ =

∫ π

0

sin θ

4π
dθ = 1

2π
,

which is also equal to the probability that the needle will cross the lower horizontal line.
The probability for the needle to cross either the upper or the lower horizontal line is
therefore 1

π
. This gives an experimental way of approximating π .

(G.-L. Leclerc, Comte de Buffon)
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x

θ

Figure 113

935. First solution: We will prove that the probability is 1 − 35
12π2 . To this end, we start

with some notation and simplifications. The area of a triangle XYZ will be denoted by
A(XYZ). For simplicity, the circle is assumed to have radius 1. Also, let E denote the
expected value of a random variable over all choices of P,Q,R.

If P,Q,R, S are the four points, we may ignore the case in which three of them are
collinear, since this occurs with probability zero. Then the only way they can fail to form
the vertices of a convex quadrilateral is if one of them lies inside the triangle formed
by the other three. There are four such configurations, depending on which point lies
inside the triangle, and they are mutually exclusive. Hence the desired probability is 1
minus four times the probability that S lies inside triangle PQR. That latter probability
is simply E(A(PQR)) divided by the area of the disk.

LetO denote the center of the circle, and let P ′,Q′, R′ be the projections of P,Q,R
onto the circle from O. We can write

A(PQR) = ±A(OPQ)± A(OQR)± A(ORP)

for a suitable choice of signs, determined as follows. If the points P ′,Q′, R′ lie on no
semicircle, then all of the signs are positive. If P ′,Q′, R′ lie on a semicircle in that order
andQ lies inside the triangleOPR, then the sign on A(OPR) is positive and the others
are negative. If P ′,Q′, R′ lie on a semicircle in that order andQ lies outside the triangle
OPR, then the sign on A(OPR) is negative and the others are positive.

We first calculate

E(A(OPQ)+ A(OQR)+ A(ORP)) = 3E(A(OPQ)).

Write r1 = OP, r2 = OQ, θ = ∠POQ, so that

A(OPQ) = 1

2
r1r2 sin θ.

The distribution of r1 is given by 2r1 on [0, 1] (e.g., by the change of variable formula
to polar coordinates, or by computing the areas of annuli centered at the origin), and
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similarly for r2. The distribution of θ is uniform on [0, π ]. These three distributions are
independent; hence

E(A(OPQ)) = 1

2

(∫ 1

0
2r2dr

)2 (
1

π

∫ π

0
sin θdθ

)
= 4

9π
,

and

E(A(OPQ)+ A(OQR)+ A(ORP)) = 4

3π
.

We now treat the case in which P ′,Q′, R′ lie on a semicircle in that order. Set
θ1 = ∠POQ and θ2 = ∠QOR; then the distribution of θ1, θ2 is uniform on the region

0 ≤ θ1, 0 ≤ θ2, θ1 + θ2 ≤ π.

In particular, the distribution on θ = θ1 + θ2 is 2θ
π2 on [0, π ]. Set rP = OP, rQ =

OQ, rR = OR. Again, the distribution on rP is given by 2rP on [0, 1], and similarly
for rQ, rR; these are independent of each other and the joint distribution of θ1, θ2. Write
E′(X) for the expectation of a random variable X restricted to this part of the domain.

Letχ be the random variable with value 1 ifQ is inside triangleOPR and 0 otherwise.
We now compute

E′(A(OPR)) = 1

2

(∫ 1

0
2r2dr

)2 (∫ π

0

2θ

π2
sin θdθ

)
= 4

9π

and

E′(χA(OPR)) = E′
(

2A(OPR)2

θ

)
= 1

2

(∫ 1

0
2r3dr

)2 (∫ π

0

2θ

π2
θ−1 sin2 θdθ

)
= 1

8π
.

Also, recall that given any triangleXYZ, if T is chosen uniformly at random insideXYZ,
the expectation of A(TXY) is the area of triangle bounded by XY and the centroid of
XYZ, namely, 1

3A(XYZ).
Letχ be the random variable with value 1 ifQ is inside triangleOPR and 0 otherwise.

Then

E′(A(OPQ)+ A(OQR)+ A(ORP)− A(PQR))

= 2E′(χ(A(OPQ)+ A(OQR))+ 2E′((1 − χ)A(OPR))

= 2E′(
2

3
χA(OPR))+ 2E′(A(OPR))− 2E′(χA(OPR))
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= 2E′(A(OPR))− 2

3
E′(χA(OPR)) = 29

36π
.

Finally, note that the case in which P ′,Q′, R′ lie on a semicircle in some order occurs
with probability 3

4 . (The case in which they lie on a semicircle proceeding clockwise
from P ′ to its antipode has probability 1

4 ; this case and its two analogues are exclusive
and exhaustive.) Hence

E(A(PQR)) = E(A(OPQ)+ A(OQR)+ A(ORP))

− 3

4
E′(A(OPQ)+ A(OQR)+ A(ORP)− A(PQR))

= 4

3π
− 29

48π
= 35

48π
.

We conclude that the original probability is

1 − 4E(A(PQR))

π
= 1 − 35

12π2
.

Second solution: As in the first solution, it suffices to check that for P,Q,R chosen
uniformly at random in the disk, E(A(PQR)) = 35

48π . Draw the lines PQ,QR,RP ,
which with probability 1 divide the interior of the circle into seven regions. Set a =
A(PQR), let b1, b2, b3 denote the areas of the other three regions sharing a side with
the triangle, and let c1, c2, c3 denote the areas of the other three regions. Set A = E(a),
B = E(b1), C = E(c1), so that A+ 3B + 3C = π .

Note that c1 + c2 + c3 + a is the area of the region in which we can choose a fourth
point S such that the quadrilateral PQRS fails to be convex. By comparing expectations
we find that 3C + A = 4A, so A = C and 4A+ 3B = π .

We will compute B + 2A = B + 2C, which is the expected area of the part of the
circle cut off by a chord through two random points D,E, on the side of the chord not
containing a third random point F . Let h be the distance from the center O of the circle
to the line DE. We now determine the distribution of h.

Set r = OD. As seen before, the distribution of r is 2r on [0, 1]. Without loss of
generality, we may assume that O is the origin and D lies on the positive x-axis. For
fixed r , the distribution of h runs over [0, r], and can be computed as the area of the
infinitesimal region in which E can be chosen so the chord through DE has distance to
O between h and h + dh, divided by π . This region splits into two symmetric pieces,
one of which lies between chords making angles of arcsin(h

r
) and arcsin(h+dh

r
) with the

x-axis. The angle between these is dθ = dh

r2−h2 . Draw the chord throughD at distance h
to O, and let L1, L2 be the lengths of the parts on opposite sides of D; then the area we
are looking for is 1

2(L
2
1 + L2

2)dθ . Because

{L1, L2} = {
√

1 − h2 +
√
r2 − h2,

√
1 − h2 −

√
r2 − h2},
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the area we are seeking (after doubling) is

2
1 + r2 − 2h2

√
r2 − h2

.

Dividing by π , then integrating over r , we compute the distribution of h to be

1

π

∫ 1

h

2
1 + r2 − 2h2

√
r2 − h2

2rdr = 16

3π
(1 − h2)3/2.

Let us now return to the computation of B + 2A. Denote by A(h) the smaller of the
two areas of the disk cut off by a chord at distance h. The chance that the third point is
in the smaller (respectively, larger) portion is A(h)

π
(respectively, 1 − A(h)

π
), and then the

area we are trying to compute is π − A(h) (respectively, A(h)). Using the distribution
on h, and the fact that

A(h) = 2
∫ 1

h

√
1 − h2dh = π

2
− arcsin(h)− h

√
1 − h2,

we obtain

B + 2A = 2

π

∫ 1

0
A(h)(π − A(h))

16

3π
(1 − h2)3/2dh = 35 + 24π2

72π
.

Using the fact that 4A+ 3B = π , we obtain A = 35
48π as in the first solution.

Remark. This is a particular case of the Sylvester four-point problem, which asks for
the probability that four points taken at random inside a convex domain D form a non-
convex quadrilateral. Nowadays the standard method for computing this probability
uses Crofton’s theorem on mean values. We have seen above that when D is a disk the
probability is 35

12π2 . When D is a triangle, square, regular hexagon, or regular octagon,

the probability is, respectively, 1
3 , 11

36 , 289
972 , and 1181+867

√
2

4032+2880
√

2
(cf. H. Solomon, Geometric

Probability, SIAM, 1978).
(first solution by D. Kane, second solution by D. Savitt)
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N the set of positive integers 1, 2, 3, . . .

Z the set of integers

Q the set of rational numbers

R the set of real numbers

C the set of complex numbers

[a, b] closed interval, i.e., all x such that a ≤ x ≤ b

(a, b) open interval, i.e., all x such that a < x < b

[a, b) half-open interval, i.e., all x such that a ≤ x < b

|x| absolute value of x

z complex conjugate of z

Re z real part of z

Im z imaginary part of z

−→v the vector v

‖−→x ‖ norm of the vector −→
x
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〈−→v ,−→w 〉 inner (dot) product of vectors −→v and −→w
−→v · −→w dot product of vectors −→v and −→w
−→v × −→w cross-product of vectors −→v and −→w

�x� greatest integer not exceeding x

{x} fractional part of x, equal to x − �x�∑n
i=1 ai the sum a1 + a2 + · · · + an∏n
i=1 ai the product a1 · a2 · · · an

n! n factorial, equal to n(n− 1) · · · 1

x ∈ A element x is in set A

A ⊂ B A is a subset of B

A ∪ B the union of the sets A and B

A ∩ B the intersection of the sets A and B

A\B the set of the elements of A that are not in B

A× B the Cartesian product of the sets A and B

P(A) the family of all subsets of the set A

∅ the empty set

a ≡ b (mod c) a is congruent to b modulo c, i.e., a − b is divisible by c

a|b a divides b

gcd(a, b) greatest common divisor of a and b(
n

k

)
binomial coefficient n choose k
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On the n× n zero matrix

In the n× n identity matrix

detA determinant of the matrix A

trA trace of the matrix A

A−1 inverse of A

At transpose of the matrix A

A† transpose conjugate of the matrix A

f ◦ g f composed with g

limx→a limit as x approaches a

f ◦ g f composed with g

f ′(x) derivative of f (x)

df

dx
derivative of f (x)

∂f

∂x
partial derivative of f with respect to x

f (n)(x) nth derivative of f (x) with respect to x∫
f (x)dx indefinite integral of f (x)∫ b
a
f (x)dx definite integral of f (x) from a to b∫

D
f (x)dx integral of f (x) over the domain D

φ(x) Euler’s totient function of x

∠ABC angle ABC

�

AB arc of a circle with extremities A and B
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sign(σ ) signature of the permutation σ

div
−→
F divergence of the vector field

−→
F

curl
−→
F curl of the vector field

−→
F

∇f gradient of f∮
C
f (x)dx integral of f along the closed path C
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AM–GM, see arithmetic mean–geometric
mean inequality

argument by contradiction, 1
arithmetic mean–geometric mean inequality,

39
axiom of choice, 189

basis, 77
Bayes’ formula, 314
Bernoulli scheme, 314
binary operation, 87

associative, 87
commutative, 87

Binet formula, 102
binomial coefficient, 294

quantum, 296

cab-bac identity, 202
Cantor set, 129
Cantor’s nested intervals theorem, 116
Catalan numbers, 299
Cauchy’s criterion for convergence, 109
Cauchy’s equation, 189
Cauchy–Schwarz inequality, 32, 33

for integrals, 157
Cayley–Hamilton theorem, 83
Cesàro–Stolz theorem, 114
characteristic equation

of a differential equation, 195
of a sequence, 100

Chebyshev polynomial, 58
Chebyshev’s inequality, 158

Chebyshev’s theorem, 59
Chinese Remainder Theorem, 268
congruent, 258
conic, 212

equation of tangent line, 213
continued fraction expansion, 271, 277
coordinates

affine, 206
Cartesian, 206
complex, 209
cylindrical, 175
polar, 175
spherical, 175

coprime, 253
critical point, 134, 170
Crofton’s theorem, 226
cross-product, 202

area, 204

de Moivre’s formula, 235
derivative, 134

partial, 168
determinant, 63

rule of Laplace, 67
Vandermonde, 63

differentiable function
multivariable, 167

directrix, 212
divergence theorem, see Gauss–Ostrogradski

theorem
divisor, 253
dot product, 202
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eigenvalue, 79
eigenvector, 79
ellipse, 212
ellipsoid, 219
Euclid’s algorithm, 271
Euclid’s theorem, 1, 254
Euler’s formula, 235, 289

for homogeneous functions, 168
Euler’s substitutions, 217
Euler’s theorem, 266
Euler’s totient function, 265
exact differential equation, 192

Fermat’s infinite descent principle, 248
Fermat’s little theorem, 4, 261
Fibonacci sequence, 8
flux, 180
focus, 212
Fourier series, 164
Fubini’s theorem, 177
function

concave, 142
continuous, 128
contractive, 110
convex, 142
differentiable, 134
harmonic, 169

Gauss–Ostrogradski theorem, 180
Gaussian integral, 177
generalized mean inequality, 147
generating function, 298
gradient, 183
graph, 282
greatest integer function, 250
Green’s theorem, 179
group, 90

Abelian, 91
Klein, 91
special linear, 272

Hölder’s inequality, 142
for integrals, 157

holomorphic function, 182
hyperbola, 212
hyperboloid

of one sheet, 219
of two sheets, 220

identity element, 87
identity matrix, 61
inclusion–exclusion principle, 308
induction, 3

strong, 7
inductively, see induction
infinite descent, see Fermat’s infinite descent

principle
integral

Fresnel, 175
Gaussian, 175

integrals
computed recursively, 151
definite, 150
indefinite, 147
multivariable, 174

integrating factor, 193
intermediate value property, 131
inverse, 88

modulo n, 258
of a matrix, 69

invertible matrix, see inverse of a matrix
irreducible polynomial, 56

Jacobian, 174
Jensen’s inequality, 146

Lagrange multipliers, 171
Leibniz formula, 151
L’Hôpital’s rule, see L’Hôpital’s theorem
L’Hôpital’s theorem, 137
limit

of a function, 126
of a sequence, 104

linear
combination, 77
dependence, 77
independence, 77

linear Diophantine equation, 270
linear map, see linear transformation
linear transformation, 79

matrix, 61
circulant, 66
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commutator, 84
rank, 77
transpose conjugate, 71

mean value theorem, 139
Minkowski’s inequality, 157
mod, see modulo
modulo, 258

n-gon, 9

order, 14
total, 14

ordinary differential equation
first-order, 191
higher-order, 195
homogeneous, 195
inhomogeneous, 195

orthological triangles, 204

parabola, 212
paraboloid

elliptic, 220
hyperbolic, 220

Pascal’s triangle, 295
Peano curve, 129
Pell’s equation, 276
permutation, 283

cycle, 283
inversion, 283
signature, 283
transposition, 283

Perron–Frobenius theorem, 84
pigeonhole principle, 11
point group, 93
Poisson scheme, 314
polynomial, 45

monic, 45
prime, see prime number
prime number, 254
probability, 310

geometric, 318
Pythagorean triple, 274

quadric, 219
equation of tangent plane, 220

Ramsey number, 292

Ramsey theory, 291
rational curve, 216
regular polyhedron, 290
relatively prime, see coprime
residue, 258
residue class, see residue
Riemann sum, 153
ring, 95
Rolle’s theorem, 139
root, 46
roots of unity, 236
ruled surface, 221

Schur number, 294
separation of variables, 191
sequence

Cauchy, 109
convex, 114, 143
first difference, 114
linear recursive, 100
second difference, 114

series, 117
geometric, 117
p-series, 117
ratio test, 118
telescopic, 120

spectral mapping theorem, 79
squeezing principle, 105
Stirling’s formula, 162
Stokes’ theorem, 179
Sturm’s principle, 42
system of linear equations, 73

Taylor series, 159
Tonelli’s theorem, 177
trace, 61
triangle inequality, 36

vector, 201
vector field

curl, 180
divergence, 180

vector space, 77
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basis, 77
Viète’s relations, 48

Wallis formula, 153
Weierstrass’criterion, see Weierstrass’ theorem

Weierstrass’ theorem, 109
Wilson’s theorem, 264

zero matrix, 61
zero of a polynomial, 46


	Putnam and Beyond
	Contents
	Preface
	A Study Guide
	1 Methods of Proof
	2 Algebra
	3 Real Analysis
	4 Geometry and Trigonometry
	5 Number Theory
	6 Combinatorics and Probability
	SOLUTIONS
	Methods of Proof
	Algebra
	Real Analysis
	Geometry and Trigonometry
	Number Theory
	Combinatorics and Probability

	Index of Notation
	Index



