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This book is dedicated to the place where it was conceived, in 
the Wind River Mountains. The nearest official landmark is 
indicated by a cross on a topographical map. That refers to a 
little brass plate embedded in a rock about the size of your desk. 
The plate reads 

U S Geological Survey 
for information write the Director 

Washington, DC 
Cooperation with the State 

Elevation 
Above / + \ sea 

10342 feet 
GWM8 

1938 
Benchmark 

The map, based on the 1937-1938 survey, locates the benchmark 
at 42°54.08' Ν, 109°21.40' W. It's in the J im Bridger Wilder-
ness, in Wyoming. That world is like geometry: tranquil, but 
grand; lonely, but populated by wonders. Entering it is an 
adventure. You'll experience fascination, challenge, and appre-
hension. And when you become comfortable there, you'll feel 
great joy. 
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Preface 

This book is a text for an upper-division general geometry course offered 
by many universities. It builds on knowledge gained in school and lower-
division university courses, to introduce advanced geometry, emphasizing 
transformations and symmetry groups in two and three dimensions. These 
theories underly many fields of advanced mathematics, and are essential 
for application in science, engineering, and graphics. The book analyzes 
the content of the lower-level courses from an advanced standpoint, to lend 
prospective and in-service teachers insight into the structure of their subject 
as well as excitement about its beautiful methods and where they lead. 

Mathematical preparation for this course should include vector and matrix 
algebra and the solution of square and nonsquare linear systems. Appendix 
C provides a streamlined summary of tha t material, with most of the 
nonobvious proofs. The book often uses simple concepts related to equiv-
alence relations, described briefly in appendix A. Concepts related to trans-
formations, their compositions and inverses, and transformation groups are 
developed in detail in section 6.1, but this book applies them only to isometries 
and similarities. The least upper bound principle is discussed in Appendix 
Β and applied once in section 3.14, which is about π. 

This should probably not be a student's first upper-division course with 
an algebraic flavor. All topics mentioned in the previous paragraph are indeed 
covered here, but if this is the first exposure to too many of them, there won't 
be enough time nor energy for geometry. 

Chapter 4 consists entirely of nonroutine exercises related to chapter 3, 
on elementary Euclidean geometry. These are not the sort tha t you'd find 
in a school text. Their goal is to show what you can do with school mathemat-
ics beyond what 's covered there routinely. You'll also find large exercise 
sets in the other chapters, to enrich and extend the theory presented in the 
text, and provide experience with the related computations. It's intended 
that results stated in some exercises be used in solving later ones. 

Often one aim of an exercise is to make students ask questions. They 
may need help to determine just what the problem is, what constitutes a 
solution, and where to look for a strategy. Instructors should welcome ques-
tions ; that's what we're here for. The author generally prefers to see several 
attempts at most exercises, each one more detailed or progressing farther 
t han its predecessor. In the end students will have portfolios of correct 

xi 
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solutions, an accomplishment they can build on later in applying the tech-
niques of this book. 

A complete solution manual is available to instructors. You can obtain 
one from John Wiley & Sons, Inc., Mathematics Editorial Office, if you prop-
erly identify your academic affiliation. Please use the manual only for class 
preparation. The solutions are copyrighted, and their further dissemination 
is not authorized. 

When pursuing geometry—or any other subject—it's often instructive 
for students to study a related area using some of the text's methods, then 
write a paper on it in a style modeled on the text. That gives practice in 
independent research, organization, and writing. One strategy for topic 
selection is to choose a subject that doesn't depend much on what's done 
in the course after the first weeks. That way, students aren't forced to 
postpone research and outlining until it's nearly too late. The first two 
chapters of this book raise a number of questions that could lead to excellent 
papers, questions to which it gives no specific attention later. Some of those 
are listed in sections 1.5 and 2.10. You're invited to add to the list. 

There's more than enough material in this text for a semester's course. 
There's always more than enough material! A major goal is to prepare 
students to go further on their own. Chapters 1 and 2 are intended for 
independent reading. The author tries to present the chapter 3 procis of 
elementary geometry in about three weeks, and assigns selected chapter 
4 exercises at the onset. Some of these may occupy students for the rest 
of the semester. Alternatively, chapter 4 exercises could be assigned at the 
beginning, but chapter 3 covered only at the very end. From chapter 5 an 
instructor is expected to pick favorites. Chapter 6 is essential. Only a little 
of chapter 7 is required for chapter 8, and that could be covered in a couple 
of lectures. From chapter 8, pick favorites again. Warning: The author 
has found it only barely within his capacity to present the classification of 
frieze groups (section 8.2) in lecture. Attempting to classify all the wallpaper 
groups (8.3) in lecture is unfeasible. A summary or limited selection is 
possible, however. 

The author acknowledges a tremendous debt to those who taught him 
geometry. His most vivid recollections are of teachers in Springfield, 
Ohio: Charles Sewell, Dietrich Fischer, and William Armstrong for middle-
school shop, art, and algebra; William Wain and Hugh Barber in high-school 
geometry and trigonometry. In later work, he learned from professors Richard 
Brauer at Harvard, Η. N. Gupta at Stanford and the University of Saskat-
chewan at Regina, and Friedrich Bachmann in Kiel. 

The author drafted and typeset this book entirely in WordPerfect. All 
illustrations not otherwise credited he produced with the DOS X(Plore) 
software, by David Meredith (1993). Text was added to the illustrations 
with WordPerfect. The author thanks Prof. Meredith for taking his needs 
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into account when developing tha t product. Both WordPerfect and 
X(Plore) work because of the generality in their design. 

The author also appreciates the assistance of San Francisco State graduate 
student Claus Schubert, who read and criticized most of the text and many 
of the exercises. Finally, editor Stephen Quigley provided support and 
maximum flexibility with publishers. 

1 The author's signature is the work of Scott Kim (see Kim 1981). Turn it upside down! 
Kim's techniques are ingenious. He fashioned the signature at a public book-signing in 
about one minute. The scratch work is his. 



This page intentionally left blank



About the author 

James T. Smith, Professor of Mathematics at San Francisco State University 
(SFSU), holds degrees in that subject from Harvard, SFSU, Stanford 
University, and the University of Saskatchewan. His mathematical research 
lies mostly in the foundations of geometry, with emphasis on multidimensional 
transformational geometry. His computer experience began with the UNIYAC 
I. During the early 1960s, Smith helped the Navy develop mainframe and 
hybrid digital-analog simulators for radiological phenomena. He's taught 
geometry and computing techniques since 1969, and was instrumental in 
setting up the SFSU Computer Science program. During the early 1980s, 
he worked in the IBM PC software industry. Smith has written seven research 
papers in geometry and six books on software development. 

X V 



This page intentionally left blank



Chapter 

ι 
Introduction 

Recently this author presented to prospective students a five-minute sketch 
of a geometry course, one of a sequence by various instructors. After the 
preceding sketch a student asked, "Where will we see applications of tha t? ' 
So the author began, Geometry is everywhere] 

Its very name stems from Greek words for earth and measure. How do 
you know how far from home you've traveled? The subject evidently 
originated—long before classical Greece—with problems of measuring land, 
and problems of constructing things. It extends to space and the stars. Instead 
of making difficult physical measurements on the ground, we now use the 
Global Positioning System (GPS)} There are satellites in orbit whose positions 
we know exactly at all times. We determine electronically the distances 
to four of them, then use programs based on advanced geometry to analyze 
that data and compute our position with extreme accuracy. The programs 
use trigonometry developed by ancient Greek mathematicians to solve 
astronomy problems. 2 

Some of us are enthralled by pure mathematics, too. From time to time 
even this author wants to ignore the world and think, just for peace and 
enjoyment. Often, geometry has been included as part of pure mathematics. 
Does it really depend on our physical experience? Ironically, pursuit of pure 
mathematics enhances the efficiency of our intellectual tools. A theory 
developed independent of an application can be applied wherever appro-
priate, often in areas far removed from the problem tha t stimulated the 
original study. 

This introductory chapter continues with a sampling of experiences that 
have excited this author about geometry. Perhaps they'll stimulate you, 
too. They'll suggest ways you might focus to gain insight about the geometry 

See Kaplan 1996, or—better—search for current GPS information on the Internet. 

See van der Waerden 1963, chapter VIII. 
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of your surroundings. The organization of advanced geometry is outlined 
in section 1.2. That's followed by an overview of the book and some suggestions 
for general reading in geometry. 

If you're using this as a course text, you may be searching for a paper 
topic. One strategy for topic selection is to choose a subject that doesn't depend 
much on what's done in the course after the first weeks. That way, you're 
not forced to postpone your research and outlining until it's nearly too late. 
The first two chapters raise a number of questions that could lead to excellent 
papers, questions to which the book gives no specific attention later. Some 
of those are listed in sections 1.5 and 2.10. 

1.1 Episodes 

Concepts 
Geometric designs in Southwest American art 
Geometric designs in kitchenware 
Perspective drawing 
Horizon line and vanishing points 
Desargues' theorem 
Geometry is everywhere^. 

Art of the Mimbres people 

Driving home from an East Coast mathematics conference one winter Sun-
day afternoon, ready for a break from the highway, the author noticed a 
small crowd gathering at the public library in Deming, a county seat in 
southern New Mexico. An opportunity? They were assembling for a lecture 
on Mimbres pottery. A geometric opportunity! The author browsed through 
the adjoining museum, noting the fine examples of craftsmanship and art 
recovered from ancient village sites near the Mimbres River, which runs 
through this small town. Some of the displays had been organized by J. J. 
Brody, of the University of New Mexico, the scheduled speaker. Prof. 
Brody showed and interpreted stunning work from about 1000 years ago. 
The water bowl in figure 1.1.1 depicts curlews and eels the artist might have 
seen at the river, arranged with twofold symmetry. If you rotate the bowl 
180° about its axis, it appears the same. This bowl is about five inches deep 
and ten in diameter. The artist had to distort the images on its curved inner 
surface so they would look right when viewed from above! Figures 6.0.1 
and the more abstract 8.0.1 and 8.5.2b are more abstract examples of Mimbres 
designs. From early times to the present, the many cultures of the American 
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Figure 1.1.1 
Mimbres bowl3 Potato mashers 

Figure 1.1.2 

Southwest have produced wonderful geometric art.4 A journey through that 
region is a succession of illustrations of many ideas in this book, particularly 
its study of symmetry in chapter 8. 

Mashers 

Two years later, after a summer conference, the author was shopping in 
an antique store in Atlanta, Georgia. Look! Potato mashers! He created 
a stir, rearranging the display to compare them. They're different! You 
can see that, in figure 1.1.2. One masher is bilaterally symmetric; its left 
and right halves are mirror images. It would display the twofold, translational 
and reflectional symmetry of a sine wave were it continued indefinitely. 
Another is distorted to break the reflectional symmetry.5 The wire pattern 
of the third has been doubled—its upper and lower parts are mirror images. 
Why did the designers employ these symmetry types? Are they purely decora-
tive, like those on the Mimbres kitchen bowl? Or do these designs enhance 
the tools' usefulness? Investigate some antique stores. You should be able 

3 Brody, Scott, and LeBlanc 1983, figure 114. 

4 The masterpieces of the contemporary Acoma artists of the Chino and Lewis families 
(see Dillingham 1994) incorporate some of the most intricate geometric designs this author 
has ever seen. You'll find more examples in fine art shops in the Southwest. 

5 Dan Wheeler provided this masher. 
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to find at least two other types of symmetry employed in potato masher 
designs. Analyze other tools the same way. Learn about symmetry in design. 
And watch the proprietors' reactions when you reveal that you're studying 
geometry] 

A mural In Napier 

Several years ago, in Napier, New Zealand,6 the author, a tourist, somewhat 
academic in appearance, very much so in demeanor, was driving along the 
main street, downtown. Suddenly he pulled aside, leaped out with camera, 
strode into the street at risk of life and limb, gestured vigorously to stop 
traffic in both directions, and snapped a photo of a scene alongside the street! 
What wonder could have stimulated that wild reaction? All downtown Napier 
is geometrically exciting. It was destroyed by a great earthquake in 1931, 
and rebuilt during the next few years. In what style? What was then current? 
Of course: Art Deco, with its parallels and streamlines and dynamic curves. 7 

Did a striking facade seize the academic's attention? No, but the scene surely 
stemmed from an artist's absorption with that style. The snapshot is figure 
1.1.3. It shows a mural on a fence that shields a construction project: a 
little plaza between street and harbor. The mural depicted what the viewer 
would see when construction was complete. 

Was it accurate? That's not an entirely fair question, since the mural 
didn't need to be accurate, but rather suggestive and exciting. This was the 
same situation artists met, or created, during the Renaissance in Italy. Earlier 
painters had designed for psychological effect by choosing the position and 
size of their figures; the most important were most central and largest. 
They made little attempt to produce on flat surfaces pictures corresponding 
closely to what we see in three dimensions. To fifteenth-century Italian artists, 
the effect produced by realistic depiction of three-dimensional scenes became 
important. They wanted us to see—or believe we're seeing—some aspects 
of the world the way they really are. 

You need mathematics to draw a three-dimensional scene realistically 
on a flat surface. The Italians and their German student Diirer studied the 
technique—called perspective drawing—deeply. They mastered it, and soon 
began producing magnificent examples, competing with each other in 
virtuosity. One idea, described in texts of those times, was to regard 

• the drawing surface as a window in a vertical plane ε between 
observer and scene (see figure 1.1.4), 

• each point Ρ of the scene connected with the observer's eye O, 

Napier is named for a nineteenth-century British military figure, a descendant of the 
Scottish mathematician John Napier (1550-1617), who invented logarithms. 

7 See Duncan 1988. 
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Figure 1.1.3 
Mural in Napier 

Figure 1.1.4 Creating 
a perspective image 

• and the intersection OP η ε as the image of point P . 8 

The image is part of the drawing if it falls in the window. Consider the image 
of a line g in the scene. It's formed by the intersections with ε of all lines 
through Ο and points on g. Should Ο happen to fall on g, the image 
would be a single point on ε. Otherwise, it would be the intersection g* = 
ε η ζ of ε with the plane ζ determined by Ο and g. That image g* is 
a line on ε. 

Was the Napier mural constructed according to this principle? Look a t 
it. The lines separating the tiles on the ground appear as lines in the mural. 
But on the ground, you could draw diagonal lines g through a sequence 
of opposite vertices of the rectangular tiles. Those lines don't pass through 
O, because they're on the ground; so their images should be lines. Is that 
so? Test figure 1.1.3 with a straightedge. No! The images of the diagonals 
aren't straight! That's what caused the excitement that stopped traffic in 
downtown Napier! It's precisely the same phenomenon you'll witness if you 
inspect many European paintings created during the century or so after 
the introduction of perspective drawing. Other artists wanted to produce 
the effect of perspective, but didn't know exactly how, and produced unreal-
istic—although probably not traffic-stopping—curved diagonals. 

Now continue studying figure 1.1.4. Let g' denote the parallel to g 
through O. Suppose g H ε and let V be the intersection eng' of ε with 
g'. Then V is on the image g* because g' lies in ζ. Consider any other 
line gx in the scene, not through O, with gxllg, as in figure 1.1.5. Use 
it to construct plane ζλ, line g * = ε η ζχ, line g[ II g1 through O, and 
point V, = εc\gλ analogously, so tha t Vt lies on the image g* of gx. 
Then g[=g' because gxll g, so V, = V. That is, if gt ε, then the images 

The term perspective reflects this concept; it stems from the Latin verb specio and prefix 
per-, which mean see and through. 
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Figure 1.1.5 
Images of 

parallel lines 

of all lines in the scene parallel to g pass through the single point V, which 
is called their vanishing point. On the other hand, if g II ε then g II g*, 
and the images of all lines in the scene parallel to g are themselves parallel 

In the Napier mural, the lines g lay on the ground, a plane γ ± ε. But 
the discussion leading to the notion of vanishing point made no use of 
that; it holds for the set of all parallels to any line g. What's special about 
lines g on the ground? It's more appropriate to consider lines g on or parallel 
to γ. For all those, g'l/γ; these g' all he in the plane δ II ε through Ο. 
Their vanishing points lie in the intersection h = δ η ε, a line in ε parallel 
to j ' at the same distance from the ground as O. That is, the vanishing 
points of all lines parallel to the ground γ He in a line h, called the horizon, 
the same distance above ground as O. 

Artists don't really erect windows and run cords through them from then-
noses to points in scenes they're drawing. Can you produce a perspective 
drawing using only points on the drawing plane? For example, a true 
perspective drawing of the tiled plaza? Figure 1.1.6 shows a perspective 
drawing PQRS of one rectangular tile Sf on the ground. The edges of & 
that correspond to lines PQ and RS are parallel to the drawing plane, 
and the other edge lines intersect at point Υ on the horizon h. Figure 1.1.7 
shows how to draw the image RSTU of a tile adjacent to PQRS: 

It looks like ΤΪ7 II h, so that I^J is the image of another line on the ground 
parallel to the drawing plane. Can we prove that? Another way to phrase 
the same question is to consider the following alternatives to steps 5 to 8: 

5.' draw g II h through U, 
6.' locate T'=gn ΡΫ. 

Condition TU II h is equivalent to equation Τ = Τ', which says that the 
two methods produce the same result. 

1. draw PR, 
2. locate Z = hr\PR, 
3. draw S2, 
4. locate U= Q*Vn S2, 

5. draw Q"S, 
6. locate X=hn Q"S, 
7. draw RX, 
8. locate T= ΡΫη RX. 
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There are many related questions. You're invited to adapt this construction 
to draw adjacent tile images left and right of PQRS, then images of its 
diagonal neighbors above them. You could proceed from either of those back 
to the image of the tile immediately above PQRS. Do you necessarily get 
the same image RSTU? Should you answer all these consistency questions 
affirmatively, another big one would remain: Is such a consistent plane 
diagram always a perspective image of something? That is, can you construct 
a corresponding three-dimensional scene? You could imitate mathematicians' 
work over the centuries, using elementary geometry to settle questions such 
as these. You'd find it frustrating; the arguments aren't o c c u l t individually, 
but there are so many intertwined problems, and no organizing system is 
obvious. As an introduction to some of the methods in chapter 5—elementary 
geometry beyond tha t covered in school—the following paragraphs prove 
that TUI/h in figure 1.1.7. You may find the proof roundabout and unnec-
essarily complicated. There's certainly a simpler proof of this particular 
result. But it's only one of a host of related questions. Mathematicians sought 
a general technique that would apply to the whole class of problems. 

Desargues' theorem 

By the late nineteenth century mathematicians realized that a theorem, 
proved by Gorard Desargues two centuries before, played a central role in 
this study. Several forms of his result are derived in section 5.3. One of 
them, the parallel case of theorem 5.3.1, is used here : 

Consider points A= A , B=B , and C=C on distinct lines 
I, m, and n, where I lln, asinfigure 1.1.8. Suppose AB inter-
sects A Β at Ν, BC intersects Β C at L, and CA intersects 
C A a t M. Then III m if and only if L, M, and Ν fall on a 
single fine. 
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Figure 1.1.8 
A theorem of Desargues 

Figure 1.1.9 
Proving 7 t / II h 

It's stated with different notation, so you need to work out the correspondence 
between points in the two figures: 

Figure 1.1.8 

Ν 
A,B,C; A'.B'.C; L 

Μ 

Figure 1.1.9 

RXn S'Z 
X,R,P; Z,S,Q; PR η Q~S 

PXn QlZ. 

According to the only i /par t of Desargues' theorem, the indicated points 
in figure 1.1.9—the three intersections listed vertically at right above—do 
fall on one dotted line. Now apply the theorem again, to a different pair 
of triangles: 

L Y 
A, B, C; A', B\ C; Ν X, S, Ρ; Z, R, Q; PR η Q~S 

Μ PXn Q"Z. 

Thus, according to Desargues' theorem, Y falls on the dotted line, too. Finally, 
apply the i /par t of the theorem to a third pair of triangles: 

A,B,C; Α',Β',Ο'; Ν 
Μ 

Χ, Τ, Ρ; Ζ, U, Q; RXn S~Z 
PXn Q'Z. 

In this situation, lines I, m, and η in figure 1.1.8 correspond to h, TU, 
and PQ. Since the three points listed vertically at right above fall on the 
dotted line, Desargues' theorem implies h II Ί*ϋ, which was to be proved. 9 

9 This proof should really verify that the intersections mentioned all exist. If any could fail 
to—that is, if certain lines could be parallel—additional arguments would be necessary. 
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Desargues' theorem has entered this argument three times. Its various 
forms appear whenever you consider perspective questions. In exercise 
5.11.13 you're invited to apply another form of the theorem to draw an 
analogous picture with an image plane that 's vertical, but neither parallel 
nor perpendicular to any tile edge. The most general form of Desargues' 
theorem is used as an axiom in projective geometry, the theory developed 
by Desargues and others over the next 250 years to handle questions in 
perspective drawing. 1 0 

Geometry is everywhere! 

These vignettes may suggest that you'll find geometry in unexpected places. 
But that 's not the right idea. You should expect it. Look about you. Enjoy 
what you see! Study the background, theory, and applications in this book, 
its exercises and projects. Working through these should convince you that 
geometry is everywhere] 

1.2 Advanced geometry 

Concepts 
AMS Mathematics subject classification 
Algebraic and differential geometry; topology 
Convex and discrete geometry; polyhedra 
Linear incidence geometry and ordered geometries; finite geometry 
Metric geometry and transformational geometry 
Geometric constructions 
Extremum problems 
Hyperbolic and elliptic non-Euclidean geometries 
Projective geometry and homogeneous coordinates 
Computational geometry 

This book is an introduction to a huge field in mathematics. The book itself 
covers only a tiny par t of that . The field is so large tha t experts may not 
agree on whether some current research is in fact geometry. Geometry 
researchers usually cannot understand current work in other par t s of the 
field. In fact, many of us have never considered an organized, thorough 
overview of geometry. This book can't provide that . But this section will 
attempt a rough sketch, so you can place the book in context and get some 
idea of directions you might follow later. 

For historical information, consult Cromwell 1997, chapter 3; Field 1997; and Pedoe 1976. 
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Consider the American Mathematical Society's Mathematical subject 
classification (1991-). You'll find about sixty main classes. Each has several 
subclasses, and some of those have a pageful of subsubclasses. Standard 
surveys of geometry (consult the references in section 1.4 for tastes of most 
areas) mention subjects in six classes: 

14. Algebraic geometry (with 15 research subclasses) 
51. Geometry (14 subclasses) 
52. Convex and discrete geometry (3 subclasses) 
53. Differential geometry (4 subclasses) 
55. Algebraic topology (8 subclasses) 
57. Manifolds and cell complexes (7 subclasses) 

The algebraic geometry class is listed nearer other algebra classes than 
the rest of geometry. It's devoted to the analytic geometry of polynomial 
equations and systems of such equations, excluding methods tha t make 
essential use of calculus. Investigations where derivatives play major 
roles—for example, the study of arc length and curvature—are classified 
as differential geometry. In some parts of geometry the size of objects plays 
a major role; in others, size is secondary to shape. For example, if you study 
photographs of a scene, size isn't very relevant; you seldom distinguish 
between corresponding features of different enlargements of the same negative. 
In topology, some aspects of shape are irrelevant. Topologists regard a sphere 
as essentially unchanged if you stretch or squeeze it like a balloon, as long 
as you don't pinch it together or tear it. Topologists study properties like 
connectivity: How many cuts of what sort are necessary to disconnect a rubber 
pretzel? The answer would change if you pinched it together or tore it first, 
but not if you merely stretched or squeezed it. Topology problems have led 
to so much mathematics that two of these classes, algebraic topology and 
manifolds and cell complexes, are devoted to them. The former is distinguished 
by its emphasis on group-theoretic methods. 

This text contains hardly any material from the classes mentioned in the 
previous paragraph. The situation changes with class 52, convex and discrete 
geometry. It has three subclasses: 

52A. General convexity 
52B. Polytopes and polyhedra 
52C. Discrete geometry 

Subclass 52A doesn't overlap this book much, although convex sets play major 
roles in chapters 3 and 8. In section 8.4, though, you'll study in detail many 
polyhedra—certain surfaces bounded by finitely many polygonal regions. 
Related current research—particularly in higher dimensions—could belong 
to 52B. The third subclass, discrete geometry, is the place for questions about 
how tiles fit together to fill a plane area, how cells analogous to those in a 
honeycomb fit together to fill space, etc. One long-unsolved problem in this 
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class is whether we can pack an extremely large number of balls of the same 
size more efficiently than the arrangement suggested by figure 8.0.7. 

The central class 51, geometry, is appropriate for most of the material 
in this book. Questions arising from detailed study of the axioms in chapter 
3, and related axiom systems, fall in several subclasses of class 5 1 : 

51A. Linear incidence geometry (related to the section 3.1 inci-
dence axioms) 

5 IE. Finite geometry and special incidence structures 
5 IF. Metric geometry (related to the notions of congruent figures, 

perpendicular lines, etc.) 
51G. Ordered geometries (related to the notion of order of points 

on a line) 
51M. Real and complex geometry 

Questions such as whether any of the incidence axioms can be derived from 
others lead to the study of finite systems of points, lines, and planes tha t 
satisfy some axioms but not others: subclass 5IE. 1 1 This is a surprisingly 
large area of geometry. Much of it you'd regard as pure mathematics, bu t 
it is applied in the design of computer codes and statistical experiments. 

Chapters 6 and 7 present the theory of isometries and similarities in two 
and three dimensions. These are correspondences between points of a plane, 
or between points of space, tha t preserve distances or multiply distances 
by a fixed ratio. If you slide a photograph across a table, the correspondence 
between the original location of each feature and its new location is an 
isometry. If you compare that photograph with a different enlargement, 
the correspondence between the locations of a single feature in the two prints 
is a similarity. Because you can define all relevant properties of these 
correspondences in terms of distance, their theory falls entirely in subclass 
5 IF, metric geometry. These correspondences are special kinds of mathemati-
cal transformations, so this theory is also part of transformational geometry. 

Subclass 51M, real and complex geometry, is a catchall. Here are some 
of its subsubclasses: 

51M04. Elementary problems in Euclidean geometries 
51M10. Hyperbolic and elliptic geometries (general) and 

generalizations 
51M15. Geometric constructions 
51M16. Inequalities and extremum problems 

Most of the material in chapters 4 and 5 belongs to 51M04. Subsubclass 
51M15 is devoted to the process of constructing geometric figures with limited 
tools. Many of us learned to use ruler and compass for a large class of such 
problems. Identifying figures that cannot be constructed that way requires 

See exercises 4.1.2 to 4.1.6. 
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advanced mathematics in this area. Subsubclass 51M16 includes such famous 
extremum problems as determining which smooth closed curves with a given 
length contain the largest area. You guessed it—circles! But that's not easy 
to prove. Recently, researchers have intensely studied compound soap bubbles. 
For example, how do four of these with a given total volume abut each other 
about a common point so that their total area is minimized? 

51M10 contains non-Euclidean geometry: the study of geometric struc-
tures that fail to satisfy the Euclidean parallel axiom. According to Euclid's 
axiom, given a line g and a point Ρ not on g, there's exactly one parallel 
to g through P. It can be shown that if Euclid's axiom failed but all the 
others held, then either there would always be more than one parallel to 
g through P, or else there would never be any parallel to g through P. 
These are called the hyperbolic and elliptic cases. 

An important area has almost escaped notice: projective geometry. It's 
par t of subclass 51A, Linear incidence geometry. In projective geometry, 
two lines in the same plane are always regarded as intersecting, as they 
might appear in a perspective drawing. This theory was first developed in 
the seventeenth century to handle that application. The modern version 
of the application belongs to computer graphics. The corresponding part 
of analytic geometry uses homogeneous coordinates; points in the plane 
correspond to coordinate triples <x, y, z>, and two such triples correspond 
to the same point ifone is a multiple of the other. Forexample, <1,2,3> and 
<2,4,6> correspond to the same point. During the early nineteenth century, 
mathematicians found that algebraic geometry is simplified by using homogen-
eous coordinates. During the late nineteenth century, others found that 
the two non-Euclidean geometries mentioned in the previous paragraph, 
as well as Euclidean geometry, can be regarded as the studies of special sets 
of points in projective geometry, defined by three special cases of a single 
condition. Projective geometry plays such a fundamental role in graphics, 
algebraic geometry, and non-Euclidean geometry, that it should be the next 
geometry course you study after this book. 

One further area of geometry is part of subsubclass 68Q20, nonnumerical 
algorithms, in class 68, computer science. This research, currently of great 
technological interest, is concerned with the efficiency of the computations 
involved in all the areas already mentioned. In earlier years, many of them 
required so much time that putting them to use in practical computer programs 
was entirely unfeasible. Therefore no great effort was made to refine the 
algorithms. But fast computer hardware is now so cheap that these computa-
tions are possible. 1 2 Sophisticated geometric algorithms underlie even the 
most popular graphics software. The new area of computational geometry 
is devoted to the development and refinement of these algorithms. 

The author changed computers three times as this book was written. His current machine 
is about five hundred times faster than the first one, but they cost about the same. 
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Concepts 
Overview 
Two- and three-dimensional geometry 
Vector and matrix algebra for analytic geometry 
Equivalence relations and least upper bounds 
Familiar concepts and notation 
Numbering results, exercises, and figures 
Symbol for terminating proofs 
Exercises and projects 
Bibliography 
Historical and etymological remarks 

Overview 

This book builds on mathematical knowledge you've gained in school and 
lower-division university courses, to introduce advanced geometry. Chapters 
1 and 2 provide background material, setting the subject in its intellectual 
context. The next two chapters review in considerable detail the content 
of school geometry courses from a more advanced viewpoint using sophisticated 
organization and more detailed arguments. They feature a wealth of non-
routine exercises to help you develop your techniques. This type of geometry 
doesn't stop there. Chapter 5, on triangle and circle geometry, extends these 
methods to open up several fields, including a few aspects of analytic geometry 
and trigonometry used in more advanced courses but rarely covered adequately 
in introductory ones. A new approach starts with chapters 6 and 7: the 
geometry of motions and similarities, often called transformational geometry. 
This theory melds concepts of motion, originating from synthetic techniques 
of school geometry, with analytic geometry phrased in terms of vector and 
matrix algebra. It's used to analyze dynamic systems, whose objects may 
change position and size. On the other hand, it's used to keep track of the 
description of an object relative to a changing coordinate system. When you 
study a transformation of a system, you often gain information by concentrat-
ing on aspects it does not change. An object's symmetry properties are those 
unchanged by motions that transform it. For example, sliding an infinite 
checkerboard two squares horizontally or vertically doesn't change it: The 
checkerboard displays two-dimensional translational symmetry. Rotating 
a milk carton 180° about its vertical axis doesn't change it: The carton displays 
twofold rotational symmetry. Chapter 8 is a thorough introduction to 
symmetry theory and some of its applications, particularly in art and design. 

Three-dimensional geometry receives the same emphasis in this book 
as plane geometry. That should fill gaps in many students ' backgrounds. 

1.3 This book 
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Although the solid geometry course disappeared from schools about the same 
time the author was graduated in 1957, contemporary applications in biology, 
chemistry, design, and engineering—for example, the GPS mentioned earlier— 
are essentially three-dimensional. The axiom system presented in chapter 
3 is three-dimensional, and spherical trigonometry is included in chapters 
4 and 5. Chapter 7 is devoted to the theory of motions in space, and section 
8.4 applies some of its concepts to study polyhedra and their symmetries. 

Appendices 

Analytic geometry is best pursued using vector and matrix algebra and the 
theory of systems of linear equations. For three and higher dimensions, 
they're virtually indispensable. Most students encounter this algebra first 
in school, then scattered among lower division calculus and physics courses. 
Appendix C presents an outline of the topics from this area that you'll need. 
It's all in one place, presented with consistent notation. A few additional 
concepts related to vector products are considered in detail in section 5.6. 

Appendices A and Β briefly cover two more topics used here but not normally 
covered in geometry courses: equivalence relations and the least upper bound 
principle. 

Familiar concepts and notation 

This text assumes that you're familiar with logical and set-theoretic concepts 
and notation commonly used in school and lower-division mathematics. 
In particular, it uses symbols &, and ~ for and, implies, and if and 
only if. Moreover, notation like 

the function χ -* χ2 stands for the function f such that f(x) = 
x2 for all appropriate x; 

a function g :A - Β stands for a function g with domain A and 
range included in B. 

The abstraction operator {:} is used to build sets such as {χ: χ * 0 } , and 
the empty set is denoted by φ = {χ:χ/x}- Finally, the membership and 
subset relations e and c are used frequently, as are the union and 
intersection operators υ and η . 

Many figures in the text imitate the style used in elementary geometry 
books, with tick marks like + indicating equal segments, curved ticks like 
A. indicating equal angles, and symbols like u. for right angles. 

Numbering of results, exercises, and figures; proofs 

Items in the text are numbered by chapter and section. For example, Lemma 
3.5.6 and Theorem 3.5.7 (Triangle inequality) are the sixth and seventh 
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numbered results in section 3.5. The former is a lemma, or auxiliary theo-
rem ; the latter, a noted result that will be referred to later by name. Within 
section 3.5, they might be referred to simply as lemma 6 and theorem 7. 
Proofs of such results are usually preceded by the word Proof and terminated 
by the symbol • . Sometimes, however, proofs are par t of the discussion 
leading to the statement of a theorem. Exercises and figures are numbered 
similarly. Items in chapter introductions are numbered as though they were 
in section 0. 

Exercises and projects 

Exercises are gathered in special sections. Chapter 4 consists entirely of 
nonroutine exercises related to chapter 3, Elementary Euclidean geometry. 
These are not the sort of exercises you'd find in a school text. They're much 
more substantial, and often involve several topics. The final sections of the 
other chapters contain all the exercises for those chapters. Each of these 
sections is clearly subdivided into exercises on various subjects. When you 
start a chapter, check out the organization of the corresponding exercises. 
As you read through the chapter, refer to the appropriate group of exercises 
for ones tha t will help you consolidate your knowledge. There were two 
reasons for not distributing the exercises into the text material. First, keeping 
them separate makes the text flow more gracefully. Second, in some instances 
the organization of the exercises is different from the text's. Sometimes, 
an exercise appropriate for one topic necessarily involves others, and placing 
it with the material on just one of those would be misleading. 

It's intended that results stated in some exercises be used in solving later 
ones. 

Often the intent of an exercise is to make you ask questions. You may 
need help to determine just what the problem is, what constitutes a solution, 
and where to look for a strategy. Don't be reluctant to ask. That 's what 
instructors are for. This author generally prefers to see several at tempts 
at most exercises, each one more detailed or progressing farther than its 
predecessor. If you can arrange that, you'll have in the end a portfolio of 
accomplishments that you can use later in applying the techniques of this book. 

When pursuing geometry—or any other subject—it's often instructive 
to study a related area using some of the text's methods, then write a paper 
on it in a style modeled on the text. This gives practice in independent 
research, organization, and writing. One strategy for topic selection is to 
choose a subject that doesn't depend much on what's done in the course after 
the first weeks. That way, you're not forced to postpone your research and 
outlining until it's nearly too late. The first two chapters of this book raise 
a number of questions that could lead to excellent papers, questions to which 
it gives no specific attention later. Some of those are listed in sections 1.5 
and 2.10. 
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Bibliography 

The bibliography contains references to all material cited in the text. 1 3 For 
example, the reference "Altschiller-Court [1935] 1964" leads to the second 
item in the bibliography. That particular edition is dated 1964, but the original 
one was published in 1935. When the author's identity is clear, a reference 
may consist simply of the date(s) in parentheses. Bibliographic entries present 
ISBN numbers and Library of Congress (LC) catalog numbers when they're 
available. Many include brief descriptive comments. 

Historical and etymological remarks 

Relevant historical comments are included throughout the text, with 
biographical sketches of some of the mathematicians responsible for this 
material. Don't regard these as authoritative; the author is no historian. 
Generally, no references are given for biographical material. Your best single 
source for that is the Dictionary of scientific biography.1* The author gleaned 
much information as well from published biographies and histories; and from 
obituaries, commemorative biographical sketches, and historical articles 
in journals. 

Original meanings of mathematical terms sometimes help you understand 
the mathematics, and they're almost always entertaining. This text includes 
many notes on the etymology of terms that occur here but are uncommon 
outside geometry. Your best source for more information of that kind is 
Schwartzman's Words of mathematics (1994). 1 5 

1.4 Reading about geometry 

Concepts 
Survey literature 

You may want to spend some time reading about geometry in general— diverse 
parts of the outline in section 1.2—while you work through the foundations 
and elementary topics in chapters 2 and 3. That would be appropriate, for 
example, if you were searching for a topic for independent, parallel study. 
You may find some of the following references accessible and interesting: 

And all items cited in the Instructor's solution manual. 
1 4 Gillispie 1970. 
1 5 Schwartzman is thorough; for example, he includes entries for about 80% of the nouns that 

occur from the beginning of section 5.1 through the proof of theorem 5.1.2. 
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Beck, Bleicher, Excursions into mathematics 
and Crowe 1969 

Coxeter 1969 
Eves 1963-1965 . . 
Forder [1950] 1962 
Hubert and Cohn- . 

Introduction to geometry 
A survey of geometry 
Geometry: An introduction 
Geometry and the imagination 

Vosson [1932] 1952 
Klein [1908] 1939 . . . Elementary mathematics from an 

advanced standpoint: Geometry 
Invitation to geometry 
An essay on the foundations of 
geometry 
A modern introduction to 
geometries 

Melzak l983 
Russell [1897] 1956 

Tuller 1967 

Some references in section 1.1 and in the introduction to chapter 8, although 
specialized, may be suitable as well, since they present a variety of aspects 
of geometry a t an introductory level. 

1.5 Projects 

Concepts 
Elementary geometry in school and university 
Conies and quadrics 
Geometric knowledge and physical experience 
Hyperbolic and elliptic area theory 
Perspective drawing 
Orthogonal projection 
Art Deco 

When pursuing geometry—or any other subject—it's often instructive to 
study a related area using some of your text's methods, then write a paper 
on it in a style modeled on the text. This gives practice in independent 
research, organization, and writing. One strategy for topic selection is to 
choose a subject that doesn't depend much on what's done in the course after 
the first weeks. That way, you're not forced to postpone your research and 
outlining until it's nearly too late. This chapter has raised a number of 
questions tha t could lead to excellent papers, questions to which it gives 
no specific attention later. For some of these topics, you can follow references 
cited elsewhere in this text. But for others, no references are offered. Search 
your library and ask faculty members for advice. 
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Project 1. How is geometry taught to children? The author doesn't remember 
anything specifically about geometry in his schooling until middle-school 
shop and art. (Girls didn't take shop!) How is it done now? You might want 
to compare an approach familiar to you with a different one. 

Project 2. How is geometry taught in secondary schools? Has secondary-
school geometry changed over the years? Compare your experience with 
a different one. 

Project 3. What geometry is presented in elementary mathematics, science, 
and engineering courses in university? How has this changed over the years? 

Project 4. Some years ago, conic sections and quadric surfaces received 
more attention in analytic geometry and calculus courses than they do now. 
Present a more complete treatment than that in your calculus text, using 
to best advantage some of the methods in this book. 

Project 5. Elite education in nineteenth-century England relied on Euclidean 
geometry to an extreme degree. Describe this practice and its effects. 1 6 

Project 6. Is geometric knowledge dependent on physical experience? (There's 
an enormous literature on this subject.) 

Project 7. Develop the theory of area in hyperbolic or elliptic geometry. 

Project 8. Investigate the development and/or use of perspective techniques 
in fine or practical art. 

Project 9. Use a software package to demonstrate, in perspective drawing, 
the effect of changing the relationships of eye, drawing plane, and important 
features of the scene. 

Project 10. How do orthographic, isometric, trimetric, and oblique projec-
tions differ from perspective drawing? What are their advantages and 
disadvantages? 

Project 11. Investigate the use of geometric design in the Art Deco style. 

Project 12. Investigate the life and work of David Eugene Smith. The editor 
of several items in the bibliography, Smith wrote the solid geometry text 1 7 

that the present author studied in secondary school. 

l B See Richards 1988 and Russell [1951] 1967. 
1 7 Smith 1924. David Eugene Smith is not related to the present author. 
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2 
Foundations 

This book presents geometry as a branch of applied mathematics: the mathe-
matical theory of certain properties of space. That classical viewpoint contrasts 
with a more recent view of geometry as a branch of pure mathematics, studied 
for its own sake, independent of concrete applications. This chapter is a 
brief historical introduction to foundational studies in geometry—the 
investigation of its most basic concepts and principles. 

Pure mathematics began to dominate our discipline about 1900, largely 
because of its efficiency and flexibility. That era also saw the first establish-
ment of truly solid foundations for geometry. This chapter displays the 
connection. It places in context the axiomatic structure of Euclidean geometry 
presented in chapter 3. Its conclusion, section 2.9, shows how you can regard 
a suitably formulated applied mathematical theory also as pure mathematics. 
The difference lies not in what mathematics you do, but in why you do it 
and how you describe it. Thus you can actually read chapter 3 with an applied 
or a pure mathematics interpretation. 

Much of chapter 3 should be familiar to you from elementary mathematics 
courses. It assumes a knowledge of the arithmetic and algebra of real 
numbers, then develops from axioms the traditional synthetic techniques 
of sohd geometry, and justifies the use of coordinates. The care for detail 
and rigor, however, reflects the standards of advanced mathematics. The 
theorems derived in chapter 3 are used extensively in the rest of the book 
to study a great variety of geometric phenomena. 

The present chapter, on foundations, shows what a geometric axiom system 
must do, and why. It discusses the extent to which traditional Euclidean 
geometry met those needs, and how it evolved into a more adequate frame-
work. It emphasizes why the chapter 3 axiomatization was chosen from 
several alternatives, and explains the need for detail and rigor. 

Each major area of mathematics includes a subdiscipline devoted to 
foundations. Most students consider this first, even if briefly and to little 

1 9 
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depth. But the foundation of a mathematical discipline rarely develops first 
historically. Mathematical problem solving combines the study of examples, 
imaginative speculation, precise and extensive deduction or calculation, and 
checking tentative results against examples. Mathematicians know—but 
rarely admit publicly—that the trial and error aspect of mathematics is mostly 
error. Usually, a mathematical subject evolves for years before it's clear 
of false starts, misconceptions, and inefficient reasoning. Only then do the 
critical foundational questions become apparent, and ripe for mathematicians 
to attack and settle. For geometry this process took not years, not centuries, 
but millennia. 

Foundations of geometry is a broad field with specialized subdivisions, 
but only the background for the one axiom system in chapter 3 is relevant 
to this book. You can't use chapter 2 as a general introduction to foundations 
of geometry, because other topics are mentioned at most fleetingly. Read 
it once, before chapter 3, to see what lies ahead, so that you can recognize 
landmarks of that theory as you pass them. Studying chapter 3 in detail, 
you'll probably lose sight of its overall purpose. So when you've finished, 
read this foundational chapter again, to review what you've accomplished. 

2.1 Geometry as applied mathematics 

Concepts 
Mathematical modeling 
An example in astronomy 
Testing for accuracy, not correctness 
Testing a geometric model 
Conventionalism 

Applied mathematics is characterized by its use of models. The process 
circulates, as shown in figure 2.1.1. A model is a collection of precisely form-
ulated concepts and principles that describe certain aspects of the subject 
understudy. (A "principle" is a statement involving the concepts.) The theory 
consists of all true statements, or theorems, about the model. Normally, 
a subject area specialist—a scientist—formulates the concepts and principles 
that make up the model. Specialists and mathematicians together deduce 
interesting theorems. Theorems don't refer to the subject matter direct-
ly; they stem from the model alone. Scientists then verify some theorems 
against empirical data from the subject area. Agreement of theorems with 
data confirms the model's accuracy. You can use further theorems about 
a model that has been judged suitably accurate, to explain or predict events 
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Subject 
Verification 

of theorems > 
Formulation of 

\
concepts and 

principles 

Theory Model 

Deduction 
of theorems 

FI g u re 2.1.1 Mathematical modeling 

concerning the subject area. If testing reveals disagreement, then either 
the subject matter was improperly delineated (the tests applied outside the 
appropriate area) or the model is improperly formulated. Reassessment 
is called for, and the process recycles. 

For example, astronomers may observe a comet's approach and work with 
mathematicians to formulate some equations as a model for its motion. They 
may compare locations predicted by the model with observations on later 
orbits. These may seem reasonable, but some adjustment of the equations 
may yield greater accuracy. On the other hand, the comet may once approach 
the sun so closely that it partially breaks up and the model no longer holds. 
Or perturbations from planets not considered in the model may add up over 
several orbits and cause the predictions to fail. The model should be presented 
with an explicit statement of the conditions under which it ought to be valid. 

Often at first, the subject matter of an applied mathematics investigation 
is only vaguely specified. After a model has been tested and judged acceptable, 
the subject can be more precisely delineated by including just those facets 
tha t the model most successfully describes. The comet model is a simple 
example—it might be restricted to apply only to a certain number of orbits. 

Subtle questions arise when geometry itself is regarded as a model of a 
physical system. The subject area—certain properties of space—is adjusted 
to include only those properties tha t the model describes with sufficient 
accuracy. Ordinarily, not much effort is devoted to describing the verification 
stage, though. After all, many scientific and engineering achievements over 
the centuries at test to the accuracy of geometric models. 

Notice that success isn't judged by a model's correctness, but by its accuracy, 
relative to the task for which it will be used. This criterion is particularly 
important for geometric models. For centuries, scientists studied essentially 
only one model, Euclidean geometry. Models whose theorems contradicted 
Euclid's—even only slightly—would have been regarded as incorrect, hence 
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useless. After nineteenth-century mathematicians began to consider non-
Euclidean models, philosophers of science wrestled mightily with the question 
of which model was correct. That was perhaps unfortunate; it would have 
been emotionally less complicated, and likely more productive, to concentrate 
on the accuracy of one's predictions, than to challenge the correctness of 
others' views. 

However, attempts to judge the accuracy of geometric models by testing 
theorems against empirical data have led to difficult conceptual problems 
in physics. The measuring techniques are themselves intertwined with the 
geometric theories. For example, Euclidean geometry includes the theorem 
that the sum S of the angles in a triangle is always exactly 180°, while the 
corresponding non-Euclidean theorem is S < 180°, with the difference 
180°- S increasing in proportion to the triangle's area. This seems a 
reasonable theorem to test. In the early 1800s, two of the founders of non-
Euclidean geometry, Carl Friedrich Gauss and Nikolai Ivanovich Lobachevski, 
both performed such measurements inconclusively. The 180°- S values 
that they measured for some very large triangles were small enough to fall 
within the expected errors of their instruments. 1 Better equipment might 
not help much, because in the non-Euclidean case, the sum might differ 
significantly from 180° only for triangles of vast astronomical dimensions. 
Validity of the required measurements would depend on the assumption 
that transportation over enormous distances (and times) wouldn't affect 
any critical properties of measuring devices. That is, you could also explain 
why an angle sum S seemed to measure less than 180° by assuming that 
the familiar physical theory of your measuring devices is inaccurate in that 
case, not your geometric model. You might judge it necessary to correct your 
measurements in much the same way that surveyors used to adjust theirs 
when extreme heat or cold affected their equipment. The belief that a change 
in physical assumptions can compensate for inaccuracies in a geometric model 
is called conventionalism. For an engaging introductory account, consult 
Rudolf Carnap's Philosophical foundations of physics (1966). 

1 See Trudeau 1987, 147-150; Miller 1972; and Daniels 1975. 
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Concepts 
How much rigor is necessary? 
A sophism 
Analysis: Assumptions weren't checked; the diagram is wrong. 
Opposite sides of a line 
Inside and outside of a segment or triangle 
Need for rigorous proofs 

Before the geometric modeling process is described in detail, it may help 
to consider a question you'll encounter in proving geometric theorems. How 
much rigor or formality is needed? This has probably troubled you already 
in an elementary geometry course. At that level it's hard to present and 
justify an answer. Rigor is certainly required to avoid errors in complicated 
investigations, but you need to start with simple exercises to learn the proof 
techniques. Moreover, it's even hard to distinguish what's simple from what's 
complicated. As a result, elementary geometry courses are often characterized 
by their demand for seemingly excessive formality and detail in proofs of 
results that are entirely obvious. Students may remember geometry as classes 
"where we had to write proofs line by line in two columns" instead of 
experiences studying significant and beautiful shapes in art and nature and 
learning practical techniques for drawing and design. 

This section presents a sophism—an example of an incorrect argument—to 
show why geometric investigations demand rigor even for apparently simple 
situations. It should give you an idea of the type of proof that the axiomatic 
framework developed in chapter 3 must accommodate. You'll see that quite 
simple geometric constructions can be very tricky to analyze. That will justify 
the use of formal techniques even at the beginning of a critical study of 
elementary geometry. 

Consider triangle AABC in figure 2.2.1. With a suitable scale, 

AJ3=1.03 m / S = 5 0 . 9 ° B C = 1 . 0 0 . 2 

The problem is to compute CA from these data. You may recognize this 
as a routine trigonometry problem that you can solve with the law of cosines 
(derived in section 5.5): 

CA = y](AB)2+ (BC)2- 2 (AB)(BC) cos 50.9° « 0.873 . 

On the other hand, you may attempt to solve it using a seemingly more 
elementary technique, as follows. As in figure 2.2.1, find the midpoint A' 

mlB means measure ofangle B. 

2.2 Need for rigor 
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of segment BC, the intersection X of the bisector of LA with the per-
pendicular bisector of BC, then the feet Y and Ζ of the perpendiculars 
from X to CA and AB. First, notice right triangles AAYX and AAZX They 
have the same hypotenuse AX and equal 3 angles at A, so they're congru-
ent—corresponding pairs of legs are equal. That is, ZA = YA and ZX = 
YX. Second, ΔΒΑ'Χ and ACA'X are right triangles with a common leg 
A'X and equal legs A'Β=A'C. Thus, they're also congruent, so their hypote-
nuses are equal: BX=CX. Third, right triangles ABZX and ACYX are 
congruent because they have equal hypotenuses BX = CX and a pair of 
equal legs ZX= YX. Therefore, their remaining legs are equal: BZ = 
CY. It seems to follow that CA = CY+ YA = BZ + ZA= AB, which contra-
dicts the trigonometry in the previous paragraph. 4 

It's easy to see that the second computation is wrong, because it concludes 
tha t AABC is isosceles without using any of the measurements AB, 
mlB, or BC. It seems to show that every triangle is isosceles, which is absurd! 
But where's the error? 

If you review the reasoning with congruences, which is discussed in detail 
in sections 3.5 to 3.8, you'll find no error. The fault lies instead in the failure 
of the assumptions that underlie equations CA = CY+ YA and BZ + ZA = 
AB. They're valid only when Y lies between C and A and Ζ between 
A and B. Although these relationships are shown in figure 2.2.1, they depend 
on point X, which is located wrong. The line AX there is not the true 
bisector. In fact, the contradiction really proves that in a nonisosceles triangle 
AABC, the constructed points X, Y, and Ζ cannot all fall within the 
triangle and on its legs as shown. 

In order to highlight the consequences of an error, and make it reasonable 
to resolve in a text, a simple example was chosen. What would happen if 
you committed a similar fault during a much more complicated analysis? 
The contradiction would probably not be clear—you'd just get a wrong answer. 

For readability, this paragraph uses equal to mean having equal measure. 

This example probably appeared first in 1892. See Ball and Coxeter [1892] 1987, 80. 
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How can you avoid pitfalls like that? It doesn't help just to insist on accurate 
diagrams, because geometry should enable you to make conclusions about 
configurations that you can't measure directly nor draw conveniently. What's 
necessary is to state clearly all the assumptions required by each step, and 
to verify tha t each one is valid before accepting the conclusion. 

Before you use a diagram to guide geometric reasoning, you must ensure 
that it really represents the situation you want to study. In this example, 
you could prove the triangle congruences without referring to any dia-
gram—your argument would be hard to understand but nevertheless correct. 
However, before proceeding with the step It follows that CA = CY + YA = 
BZ+ZA=AB, you'd need to check the validity of the underlying assumptions. 
A diagram certainly helps with that, and you must be sure it's accurate. 
You could prove this preliminary result: 

If CA<AB in ΔΑΒΟ, then the bisector of IA meets the perpendicular 
bisector of segment BC at a point X on the opposite side of line BC 
from A. Moreover, the feet Y and Ζ of the perpendiculars from X 
to lines CA and AB lie outside and inside the triangle legs, respectively. 

That is, the appropriate diagram is figure 2.2.2. The proof details are 
considered later, in exercise 4.5.6, after suitable tools have been introduced. 
Using the new diagram as a guide, you'd then modify the last step of the 
argument to read It follows that CA =YA- CY= ZA - BZ = .... But you 
couldn't fill in the last gap, the dots. In fact, this argument with congruences 
doesn't directly yield any numerical value for CA. You must use the law 
of cosines or some equivalent trigonometry. 

To facilitate correct arguments, any general framework for studying 
geometry must provide means for carrying out detailed proofs of results like 
the description of figure 2.2.2, as well as the more straightforward arguments 
with congruences and trigonometry. Until the mid-1900s, no elementary 
geometry textbooks provided that capability. Each troublesome example 
had to be considered separately, often with ad hoc methods that went beyond 
those explicitly described. The axiomatic system presented in chapter 3 

A 

Figure 2.2.2 
The correct diagram 
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fills the need, but at a price. For example, to permit fully rigorous proofs, 
the notions of opposite sides of a line, and of the inside and outside of a line 
segment, are discussed in detail before the traditional congruence techniques. 
Thus, some of the most delicate parts of elementary geometry are presented 
at the very beginning. Chapter 3 is appropriate for students at your level 
to use as a framework for precise reasoning about complicated problems, 
but it can't reasonably serve as an introduction to geometry. 

2.3 The axiomatic method 

Concepts 
Undefined concepts and definitions 
Unproved axioms and proved theorems 
Euclidean geometry 
The Declaration of Independence 
Controversy over the role of undefined concepts 

An effective model building technique is the axiomatic method, described 
by Aristotle around 330 B.C. in the text Posterior analytics.6 He emphasized 
the need for precise definition of the concepts used in a model and its theory, 
and the rigorous proof of theorems about the model. Complicated concepts 
should be defined, and difficult theorems proved, from simpler ones. Imagine 
a careful exposition of a mathematical model. Among its concepts are some 
that are specific to the model; they're not part of the underlying pure mathe-
matics or logic. You can't define some of these specific concepts— for instance, 
the first one mentioned—in terms of the others without circularity. Thus 
you must designate certain specific concepts as undefined in the model, and 
define all the others from those. Similarly, among the theorems about the 
model are some that are specific to it. You can't deduce some of these specific 
theorems—for instance, the first one mentioned—from the others without 
circularity. Thus you must designate certain specific theorems as unproved 
in the model, and prove all the others from those. The unproved theorems 
are called axioms.6 Axioms should be self-evident truths not based on simpler 
ones. The undefined concepts, axioms and definitions constitute the model. 

Aristotle 1975, chapters A2-A3, A10, and the associated Synopsis and Notes. Posterior 
means simply second book of. 

Some authors write postulate instead of axiom, and some use both terms, with slightly 
different meanings. This book never makes such distinctions, and always uses the word 
axiom. 
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ARISTOTLE was born in 384 B.C. at Stagira, in Greece, the son of a physi-
cian. From age 17 to 37 he studied at Plato's Academy in Athens. After 
Plato's death Aristotle spent twelve years moving about Greece. During 
343-342 B.C. he was tutor to the teenage prince of Macedonia, the future 
Alexander the Great. At age 49 he founded his own school in Athens. He 
retired in 322 B.C. and died that same year. Aristotle's works, mostly lecture 
notes published during his second period in Athens, cover the spectrum of 
human inquiry. They guided western philosophy for centuries. His formula-
tion of the axiomatic method and his influence on other Greek thinkers, 
especially Euclid, are particularly important for mathematics. 

A statement involving the concepts of the model is regarded as a theorem 
only after it has been rigorously proved from the axioms. 

This framework for organizing science was first applied extensively in 
Euclidean geometry, as described in section 2.4 and practiced in chapter 
3. Its general effectiveness is clear, however, and Aristotle felt that all schol-
arly inquiries should be reported this way. The method now pervades western 
culture. One of its most vivid occurrences outside mathematical disciplines 
lies in the Declaration of Independence in Congress, July 4, 1776: 

Axioms We hold these truths to be self-evident, that all men are created 
equal, that they are endowed by their Creator with certain unalien-
able Rights, that among these are Life, Liberty and the pursuit 
of Happiness.—That to secure these rights, Governments are 
instituted among Men, deriving their just powers from the consent 
of the governed, 

Theorem —That whenever any Form of Government becomes destructive 
of these ends, it is the Right of the People to alter or to abolish 
it . . . 

Axioms (Many destructive acts of the King are enumerated.) 
Theorem The history of the present King of Great Britain is a history of 

repeated injuries and usurpations, all having in direct object the 
establishment of an absolute Tyranny over these States 

Theorem We, therefore, ... declare, That these United Colonies are ... 
Absolved from all Allegiance to the British Crown... 

The Declaration's authors, principally Thomas Jefferson, were familiar with 
the axiomatic method and with Euclid, and assumed that those whom they 
addressed would be, too. 7 

Gary Wills (1978) and I. Bernard Cohen (1995) discuss the wording of the Declaration and 
Jefferson's intellectual milieu at length. Wills devotes an entire chapter to the use of the 
term self-evident. Cohen's first two chapters describe the fundamental position of 
Newtonian science and its Euclidean basis in the education and political thought of that 
era. Florian Cajori (1890, chapter 1) showed that most college graduates of Jefferson's time 
were familiar with Euclid. 
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The axiomatic method provides general guidelines for organizing a scientific 
investigation. Once an acceptable axiomatic model has been constructed, 
the system of undefined concepts, definitions, and proofs is useful in reporting 
the results, and can serve later as an effective framework for learning. 
Axiomatic models are sometimes adapted for instruction by moving into 
the hst of axioms some theorems with particularly difficult proofs. Students 
start from those theorems instead of struggling with their proofs. On the 
other hand, polishing an axiom system for archival publication sometimes 
involves exactly the opposite step. Investigators may discover that some 
axiom can be proved from the others. The proof may contain interesting 
and useful arguments. It's proper, then, to record that by relabeling the 
axiom as a theorem, and publishing the proof. This also makes the model 
simpler and perhaps easier to understand. 

Attributing this current description of the axiomatic method entirely to 
Aristotle is historically questionable. His work is not a polished text, but 
rough lecture notes, and it's often obscure. In particular, he may not have 
seen as clearly as we do now why some particular concepts should be left 
undefined. Authors using the method sometimes started with circular or 
nonsensical definitions. Euclid's are criticized in section 2.4. Jefferson gave 
no definitions. Until the nineteenth century an axiomatic model was not 
ordinarily applied to any subject area beyond that for which it was originally 
devised. To facilitate this practice, which is now common, mathematicians 
learned to leave the most basic definitions for later specification. Then they 
realized that those definitions couldn't be used in proving theorems, hence 
were superfluous. This observation also eliminated the need for philosophical 
discussion of the nature of such definitions. 

The general status of undefined concepts in axiomatic models—particu-
larly in geometry—remained muddled through the centuries. By the end 
of the nineteenth, geometric models had been developed that could have 
been presented entirely axiomatically in the sense just described. But then-
authors didn't quite do that, and controversy over the role of undefined 
concepts continued into the twentieth century. As discussed later in section 
2.9, the turning point finally occurred around 1900.8 From then on, the full 
axiomatic framework was used commonly and routinely. 

Blaise Pascal ([1658] 1948) described the axiomatic method concisely, but in essentially 
its full form, explicitly referring to undefined concepts. This work, published years after 
his death, was studied by generations of European students and scholars. But it seems to 
have had little influence in mathematics until the 1890s. Why 340 years passed before 
Pascal's outline was fully implemented is an intriguing question. 
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Concepts 
Evolution and influence of the Elements 
Its lack of undefined notions 
Euclid's axioms 
Their insufficiency 
Straightedge and compass constructions 
Incommensurable segments 
Segment calculus 
Hilbert's and Birkhoff's rigorous foundations 
What was the subject matter of the Elements? 

The earliest surviving exposition of an axiomatic model is Euclid's Elements 
([1908] 1956). Written about 300 B.C., perhaps sixty years after Aristotle's 
Posterior analytics, this textbook organized a large part of the geometry of 
that era into a single system. A masterful compendium, it proved so effective 
that it dominated mathematics instruction for two millennia. Euclid's thor-
oughness has been celebrated by the immense wealth of science, engineering, 
art and design based on the Elements. The oldest surviving edition dates 
from about A.D. 400, although some ancient commentaries discuss earlier 
editions in detail. During its first seven centuries, the text evidently suffered 
revision by editors and scribes, so it's not completely reliable as a record 
of the state of Greek mathematics in Euclid's time. Over later centuries, 
though, editions of the Elements varied only slightly. They provided the 
core—often nearly the entirety—of an educated westerner's experience with 
mathematics. Only about 1800 did mathematicians feel it appropriate to 
write new geometry textbooks, and until about 1950 even those differed little 
from Euclid's original presentation. 

The Elements has some major faults, which persisted for centuries in 
elementary geometry texts. They lie particularly in the definitions, axioms, 
and early theorems, at the very beginning of the book. 

If you should edit it according to Aristotle's guidelines, you'd probably 
include point, line, length, and angle equality, for example, among the 
undefined concepts. Euclid's intent isn't clear, since the Elements purports 
to define all geometric concepts used. Some of these "definitions" are vague, 
and it's not clear what's being defined in terms of what : for example, 

1. A point is that which has no part. 
2. A line is breadthless length. 
3. The extremities of a line are points. 
4. A straight line is a line which lies evenly with the points on itself.8 

9 Euclid [1908] 1956, vol. 1, 153. 

2.4 Euclid's Elements 
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Euclid uses the term line for what we call line segment. How do these 
descriptions distinguish a circular arc, for example, from a straight line 
segment? 

Euclid postulates only five axioms: 

1. To draw a straight line from any point to any point. 
2. To produce a finite straight line continuously in a straight line. 
3. To describe a circle with any centre and distance. 
4. That all right angles are equal to one another. 
5. That, if a straight line falling on two straight lines make the interior angles 

on the same side less than two right angles, the two straight lines, if produced 
indefinitely, meet on that side on which are the angles less than the two 
right angles.10 

With suitable interpretation, these become clear. Axiom 1 says that any 
given points Ρ and Q He in some segment PQ. Axiom 2 says tha t any 
segment PQ can be extended, if necessary, to produce a segment PQ' 
whose length exceeds any given distance. To interpret axiom 3, replace to 
describe by there is. Axiom 4 may seem strange until you see how Euclid 
defines a right angle: If Q is on the segment PS, R is not on line PQ, 
and miPQR = m/.RQS, then these two angles are right. No numerical angle 
measure is involved. Axiom 4 then says, if miPQR = mlRQS and 
m/.P'Q'R' = mlR'Q'S' asinfigure 2.4.1, then mlPQR = mlP'Q'R'. Axiom 
5 is the famous parallel axiom, figure 2.4.2. 

EucHd'e axioms, although clearly stated, are inadequate. They guarantee 
existence only of figures constructible with the classical Greek instru-
ments : an unmarked straightedge and a compass that might collapse 
if lifted off the drawing surface. You draw and extend segments with the 

R R' 

Figure 2.4.1 

ρ Q s ρ· S' 
Euclid's axiom 4 

Β Figure 2.4.2 Euclid's axiom 5, 
the parallel axiom: 

If mi ABC + m LBCD < two right 
angles, then lines AB and CD 
meet at a point X. C D X 

10 Ibid. 154-155. 
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straightedge. With the compass you can draw a circle with a given center 
Ο and radius OP. These tools are idealized conceptually to permit arbitrary 
magnitude and accuracy. But even then, later mathematics has shown, they 
won't suffice for drawing all line segments and circles—for example, a line 
segment whose length is π times that of a given unit segment. Also lacking 
are axioms required to describe the order of points on a line and to guarantee 
intersection of various fines and circles. Euclid's proof of the existence of 
an equilateral triangle AOPQ with a given edge OP, his very first theorem, 
is defective. It fails to establish the intersection Q of the two circles in the 
familiar construction of figure 2.4.3. Further, Euclid uses in some early proofs 
arguments by superposition—placing one figure atop another—a technique 
tha t isn't even mentioned in his definitions or axioms. Finally, many of 
Euclid's proofs can be criticized because they don't cover all cases. In these 
ways, the sophism of section 2.2 closely resembles a typical proof in the 
Elements] 

Nineteenth-century mathematical progress, especially the discovery of 
non-Euclidean geometry and investigations into the nature of the real number 
system, placed heavy strain on Euclid's approach. Throughout tha t century, 
mathematicians criticized the Elements. Gradually they identified and 
repaired its defects. In 1899—see section 2.8—David Hilbert published the 
first completely rigorous axiomatic presentation of Euclidean geometry. 

A major triumph in the Elements is its calculus of lengths of line segments. 
Now we use real numbers to represent lengths, and manipulate them with 
algebra and decimal arithmetic. But those techniques weren't developed 
until about fifteen centuries after Euclid! He calculated with the segments 
directly, not with numerical lengths. Euclid could do arithmetic only with 
integers and their ratios. He couldn't base segment computations on integer 
arithmetic alone, else he would have been limited to commensurable cases. 
(Segments A and Β are commensurable if for some integers m and n, 
you can make m copies of A, placed end to end, coincide with η similarly 
arranged copies of B.) This restriction was unacceptable because—for 
example—the diagonal D and side S of a unit square are not commensurable. 

Q 

Figure 2.4.3 
Euclid's equilateral 

triangle construction 

Ο Ρ 
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Little is known of EUCLID'S life except that he was teaching and writing 
mathematics around 300 B.C. in the university at Alexandria. The Macedo-
nian King, Alexander the Great, had founded that Egyptian port city in 332 
B.C. after wresting from King Darius of Persia the entire Eastern Mediterra-
nean region between Greece and Egypt. After Alexander's death in 323 B.C., 
the local commander, who had been one of Alexander's top generals, pre-
vailed in a power struggle and eventually became King Ptolemy I, the root 
of a long Egyptian dynasty. Ptolemy founded the university. 

Euclid's great work, the Elements, a compendium of theorems in elemen-
tary geometry organized as an axiomatic theory, has survived only in editions 
and commentaries from later centuries. For two millennia it served as the 
foundation for virtually all advanced mathematical studies. Two other ele-
mentary geometry books by Euclid survive, and three on astronomy, optics, 
and music. One further elementary geometry text and two advanced ones 
are known only through sparse references in subsequent literature. 

In modern language, the length / 2 of D is not a ratio of integers. 1 1 Euclid's 
method was essentially this: To compute with incommensurable segments 
like D, approximate them by segments commensurable with S, use integer 
arithmetic to compute with the approximations, then be sure the resulting 
error can be made arbitrarily small. 

That's the hardest mathematics in the Elements, a major obstacle to its 
use in teaching geometry. Until recently, texts could simplify or avoid this 
segment calculus only by departing significantly from the rigor demanded 
by the axiomatic method. Finally, in 1932, George David Birkhoff—see section 
2.8—formulated an axiomatic model of geometry, similar to those of Euclid 
and Hilbert, that avoids this obstacle without loss of rigor. Birkhoff explicitly 
built the real number system into the geometric model. His framework has 
evolved into the axiomatic development of geometry presented in chapter 3. 

Mathematicians and historians continue to study the Elements and other 
ancient mathematics to determine just how Euclid regarded the axiomatic 
foundation of his work. In view of the great skill he showed with the really 
difficult mathematical parts, why are his initial definitions so muddled, and 
why did he seem unaware that his axioms were so inadequate? There's a 
spectrum of interpretations. Many scholars now agree that the aspects of 
space constituting Euclid's subject matter included not all figures consisting 
of points, line segments, etc., but only those that can be constructed with 
the classical instruments. 1 2 In the paper "Did Euclid's Elements, Book I, 
develop geometry axiomatically?" Abraham Seidenberg (1974) suggested 

1 1 If /2=mln then 2 η1 = m1, and m would be even—that is, m = 2 ρ for eome p. 
Thus n2 = V4 m2 = 2p 2 , so η would be even, too. That would contradict the possibility 
of writing ml η with lowest terms. 

1 2 See Trudeau 1987, chapter 2; Mueller 1981, chapter 1; and the sources cited in the latter. 
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that excising most of the axioms and vague definitions from the Elements 
would leave a coherent and masterly, but clearly nonaxiomatic, text about 
the classical geometric constructions. Could the objectionable material have 
been inserted by later editors? More recently, Lucio Russo (1998) noted 
its similarity to text by Hellenistic mathematicians, particularly Hero, who 
worked in Alexandria during the first century A.D., about 300 years after 
Euclid. They wrote detailed descriptions of Euclid's axioms, evidently not 
intended as definitions of the terms mentioned, but as clarifications. Russo 
suggests that Euclid, like today's mathematicians, left the initial concepts 
undefined, and Hellenistic scientists understood why. But by A.D. 400, when 
Greek science had lost its vitality, editors awkwardly and inaccurately 
interpolated the descriptions into the Elements, ignoring the resulting logical 
problems. 

Is it reasonable tha t Euclid should have been so preoccupied with the 
artificially restricted straightedge and compass construction methods? Isn't 
one of the purposes of geometry to provide a theory on which you can base 
science and engineering, which certainly must transcend those methods? 
Seidenberg considered those questions deeply, particularly in the light of 
rigidly stylized mathematical prescriptions for religious rituals discovered 
in texts surviving from cultures preceding the Greek. He concluded tha t 

the elements of geometry as found in the ancient civilizations, in Greece, 
Babylonia, Egypt, India, and China, are a derivative of a system of ritual 
practices as disclosed in the Sulvasutras. They also suggest that the 
ritualists knew some deductive mathematics. Did they, then, also have 
the axiomatic method? Of course not, but they were concerned with exact 
thought. The ritual in general was to be carried out exactly ... the wrath 
of the gods followed the [slightest error]. Why the ritualists should want 
so much to be right is hard to say, unless it is that they were concerned 
with symbolic action and that there is not much point to symbolic action 
unless it is right. (Seidenberg 1974, 292) 

2.5 Coordinate geometry 

Concepts 
Thinking about numbers, independently of the objects they measure 
Development of decimal arithmetic and algebra 
Solving cubic and quartic equations 
Negative numbers 
Descartes and coordinate geometry 

It's 1637. Nearly two thousand years have passed, and Euclid's Elements 
is still the core of European mathematics. Several major new ideas and 



34 FOUNDATIONS 

techniques have taken root, though, over that time. People can now think 
of numbers independently of the objects they measure. Requirements of 
commerce have forced the gradual introduction of decimal notation and 
arithmetic, which are now routine. Computation is much more efficient than 
it was in Euclid's time. 

The same period has seen the slow introduction of algebraic methods, 
and the refinement of algebraic notation. Algebra is now commonly applied 
to various types of geometry problems, many of which arise in science or 
engineering. During the 1500s mathematicians achieved a tour de force, 
using algebra, complex numbers, and trigonometry flamboyantly to solve 
formidable cubic and quartic equations. Nevertheless, in 1637 algebra is 
not yet a familiar skill. It will soon become the medium for a great explosion 
of mathematical theory and applications in science. But most scientists aren't 
yet comfortable enough with algebra to rely on it heavily as the basis for 
research. They're surprisingly inept, for example, with negative numbers. 
You don't need algebra yet to run the family business, so the logic of the 
balance sheet hasn't permeated the language that will become the medium 
for science. 

In isolated cases during the preceding decades, applications of algebra 
to geometry have foreshadowed coordinate methods, but no general guidelines 
are yet established. War and chaos reign in central Europe. Churches and 
governments suppress independent thought everywhere. There isn't any 
mathematical mainstream yet to direct any flow of energy. 

This year, Rene Descartes, a French philosopher of independent means 
living in Holland, has published La giometrie ([1637] 1954), a deep and 
impressive account of coordinate geometry. It presents a new type of geo-
metric model, very different from Euclid's, based on the concept of number. 

Rene DESCARTES was born in France near Tours, in 1596. His father was 
a lawyer, a minor noble. His early schooling was with the Jesuits at La 
Fleche, who recognized his distinction in mathematics. In 1616 he earned 
a law degree from the university at Poitiers, but did not enter the profession. 
Instead, he traveled in Holland and Germany, witnessing the beginning of 
the Thirty Years' War, then to Italy and back to France. During that time 
he was apparently preoccupied with questions of philosophy, mathematics, 
and science. After 1628, Descartes lived in Holland, moving from city to city 
to find tolerance for his views. There he published a series of works on 
mathematics, physical science, and general philosophy which had tremen-
dous influence on western thought. He was involved in controversy with 
other European thinkers throughout his life. His work of greatest importance 
for geometry is the introduction of the coordinate method. Descartes left 
Holland in 1649 to take an appointment at the Swedish court. He died there 
in 1650. 



2.6 FOUNDATION PROBLEM 35 

In modern language, a coordinate model regards points as triples of numbers, 
or coordinates, and lines as sets of points whose coordinates are generated 
by linear parametric equations. It's clear now that coordinates let us translate 
difficult geometry problems about points, lines, curves, etc., into problems 
about numbers, then apply efficient algebraic tools. But Descartes' immediate 
aim is almost the exact opposite. While he does describe the translation 
explicitly, he's mostly concerned with geometric analysis of difficult algebra 
problems: solutions of cubic, quartic, and higher degree equations. He wants 
to use the familiar, inefficient geometric methods to study new problems. 

La geomitrie is not a beginner's introduction to coordinate geometry, but 
rather a demonstration of its use in solving a complicated problem. It was 
published as an appendix to a controversial and widely circulated philosophical 
treatise that analyzed the basis of all understanding: Discours de la mithode 
pour bien conduire sa raison, et chercher la verite dans les sciences. Descartes' 
work was translated, clarified, and publicized during the middle 1600s. With 
tha t of many other mathematicians who were concerned with the same 
problems at the same time, it laid the foundation for the application of 
algebra—and later, calculus—to geometry and science. By the time of 
Newton's work in the late 1600s, mathematical mainstreams had formed, 
algebra had become routine, and coordinate geometry had reached the form 
we know today. 

2.6 Foundation problem 

Concepts 
Are the Euclidean and coordinate models equivalent? 
What are numbers? 
Is every number the length of some segment? 
Defining the real number system 
Rephrasing and augmenting Euclid's axioms 

As mentioned in section 2.4, Euclid didn't use numbers per se as lengths 
of line segments. He calculated with segments directly using integer arith-
metic, and handled incommensurable segments with approximation tech-
niques. But coordinate geometry was based on the number system as it had 
evolved by Descartes' time. Euclidean geometry and coordinate geometry 
provide quite different but complementary models of the same subject. We 
know from experience that some theorems are easier to derive in Euclid's 
system, others with coordinate methods. Are there any that can be derived 
in one but not the other? This is the foundation problem: whether the two 
models are equivalent. That is, do they have the same theorems? 
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It's easy to see that Euclid's axioms are true if you interpret points as 
triples of coordinates and lines as point sets defined by linear equations. 
It follows that the theorems of Euclidean geometry are all true statements 
in coordinate geometry. What about the reverse? Can every true statement 
about the coordinate model be derived from Euclid's axioms? 

To settle this remaining half of the foundation problem you must justify 
the use of numbers in geometry, based on Euclid's axioms. What are numbers? 
In Descartes' time numbers could be described only vaguely, as conceptual 
objects manipulated by algebra and decimal arithmetic. Can you justify 
associating them with the points on a line, so that you can measure the length 
of a line segment as with a ruler? And so that you can identify points with 
triples of numbers and define lines by linear equations? 

Even if you successfully introduce numbers into Euclidean geometry, assign 
numerical lengths to all segments, and find linear equations for all lines, 
part of the foundation problem remains unsettled. Does every number 
represent the length of some segment? Answering that requires a solid 
understanding of both notions: number and segment. During the nineteenth 
century, mathematicians partially answered the question, in the negative. 
With the Greek instruments—unmarked straightedge and compass—you 
can't construct any segment of length π, for example. (See section 3.14.) 
At the time of those investigations, however, mathematicians didn't believe 
that Euclidean geometry ought to be restricted to constructible figures only, 
because they regarded the Elements as a foundation for science, and science 
didn't restrict itself that way. The foundation problem was veiled in the 
same fog that clouded the axiomatic basis of Euclidean geometry. 

The centuries after Descartes saw an enormous expansion of mathematical 
theory and applications, particularly involving differential and integral 
calculus. The use of limit operations became more and more refined, and 
their analysis involved delicate properties of numbers. An example was 
the demonstration that no constructible segment has length π. Puzzling 
questions arose about the number system. Mathematics needed a definitive 
analysis of numbers, their relationships, and our methods for computing 
with them. Various mathematicians worked on that, and by about 1900 
had provided several alternative definitions of the real number system that 
we use today. Moreover, they invented a method to show that any two 
definitions—for example, one based on the geometry of points on a line and 
one on decimal expansions—really yield the same arithmetic and algebra. 
(See section 2.9.) 

A precise definition of the real number system was what they needed to 
clarify and solve the foundation problem. Euclid's axioms did not in them-
selves justify identifying the set of points on a line with the real number 
system, just as they were inadequate even for rigorous proofs of the theorems 
in the Elements. Therefore the foundation problem reduced to this: 
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rephrase and augment Euclid's axioms to justify identifying the real 
number system with the set of points on some line and to justify using 
triples of real coordinates and linear equations to represent and reason 
with points and lines in general. 

2.7 Parallel axiom 

Concepts 
The parallel axiom is more complicated than the others. 
Mathematicians tried to prove it as a theorem, but failed. 
Is it independent of the other axioms? 
An answer requires a complete list of Euclid's unstated assumptions. 
That's equivalent to the foundation problem. 
Hilbert finally established the independence in 1899. 
But non-Euclidean geometry had strongly suggested it much earlier. 

Another train of thought also led mathematicians to the foundation prob-
lem: the possibility of non-Euclidean geometry. While that question is central 
to a general study of the foundations of geometry, it's only a sidelight to this 
book. Therefore only the core ideas are mentioned here. 

Euclid postulated explicitly only the five axioms listed in section 2.4. He 
also assumed others that were apparently so simple he didn't notice their 
use, and left them unstated. He seemed to avoid axiom 5, the parallel axiom, 
except when it was absolutely necessary. He referred to it first in the proof 
of his twenty-seventh theorem! Euclid didn't explain his strategy, but later 
mathematicians speculated that the parallel axiom was more complicated 
than the others. Its word count alone justifies such a conclusion. You can 
also argue tha t axioms 1 to 4 involve portions of space tha t are clearly 
delimited once you know the given points and distances. But that 's not true 
of the parallel axiom. Given points A to D as in figure 2.4.2, with 
mlABC+ mlBCD< 180°, you can't locate the intersection X of lines AB 
and CD without a complicated trigonometric calculation. The closer the 
angle sum to 180°, the farther X lies from the given points. 

Consequently, later mathematicians tried to find a proof of the parallel 
axiom based on axioms 1 to 4. They failed repeatedly. In each case, they 
left unjustified some steps in their proofs, and the missing arguments required 
axiom 5. Mathematicians began to suspect that the parallel axiom was 
independent—that it could not be proved from the other axioms. But what 
are the other axioms? Proving rigorously even the simplest theorems requires 
assumptions that Euclid had left unstated. A rigorous published proof of 
the parallel axiom would settle the matter—you could read which assumptions 
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David HlLBERT was born in 1862 near Konigsberg, in Prussia. His father 
and grandfather were judges. His father was very conservative in thought 
and behavior; his mother was the greater intellectual stimulus. Hilbert 
decided on mathematics during his gymnasium13 studies, and entered the 
university at Konigsberg, where he earned the doctorate under Lindemann 
in 1884. (Lindemann had just proved in 1882 that no segment of length π 
was constructible with the Greek instruments.) Hilbert's early research was 
in the area now called algebraic geometry, which is concerned with polyno-
mial equations for curves and surfaces. By 1892 he had solved one of the 
most important problems in the subject by a new, very original and powerful 
method. Hilbert was appointed Professor at Gottingen in 1895. During the 
succeeding years he worked with Felix Klein to make that university the 
mathematics center of the world. 

In his next research, Hilbert applied new algebraic techniques to great 
effect in the theory of numbers. Then he turned to the foundations of geom-
etry. Hilbert published in 1899 the first completely rigorous axiomatic 
development of Euclidean geometry. Soon after, he and his students ex-
tended this work to include various non-Euclidean geometries as well. In 
Paris, at the 1900 International Congress of Mathematicians, Hilbert posed 
a list of twenty-three problems that he thought would guide mathematics 
during the twentieth century. To a large extent his prediction has been 
accurate. During the early 1900s, he did research in analysis, recasting the 
theory of integral equations into its current form. Hilbert later considered 
questions in theoretical physics, and returned to problems in the foundations 
of mathematics. In the last area, his leadership directly inspired many im-
portant discoveries by other researchers in mathematical logic. 

Hilbert was the predominant figure in mathematics for the first third of 
the twentieth century. He directed the doctoral research of sixty-nine mathe-
maticians, many of whom became leaders in their areas. He was one of the 
last mathematicians to master and make important contributions to many 
diverse parts of the discipline. Hilbert's mathematical activity had largely 
ceased by 1932, but he lingered on, sad and alone near the empty university, 
through the war. He died in Gottingen in 1943. 

were used. But even a suggestion that the parallel axiom can not be proved 
from some assumptions requires a list of those assumptions. 

Before mathematicians could argue convincingly for the independence 
of the parallel axiom they would have to list all the geometric assumptions 
that Euclid had omitted from the axioms. Then they could ask a clear 
question: Is the parallel axiom provable from his other axioms and the tacit 
assumptions, or not? But they couldn't consider all the geometry that will 

In many countries, the terms gymnasium and lycee designate secondary schools devoted to 
preparation for university education. They include courses offered in the first years of 
American universities. 



2.8 FIRM FOUNDATIONS 39 

ever be invented, searching for tacit assumptions. How should they know 
when the list is complete? 

A solution to the foundation problem would suffice. Once mathematicians 
had become confident tha t they could derive any desired geometric theo-
rem—even if awkwardly—by coordinate methods, they realized tha t a list 
of all the geometric assumptions required to justify those techniques would 
yield a fully rigorous axiomatic model of Euclidean geometry. David Hilbert 
achieved that with his 1899 monograph, Foundations of geometry (1899). 

The independence of the parallel axiom had been strongly suggested years 
earlier. About 1830, Janos Bolyai and Nikolai Lobachevski had derived a 
large body of theorems, called non-Euclidean geometry, by replacing the 
parallel axiom with its negation. Included, for example, was the theorem 
that the sum of the angles in a triangle is always less than 180°. Of course 
these theorems contradicted the familiar Euclidean geometry, but they 
seemed consistent among themselves. This work remained unfamiliar for 
about twenty years, but was then studied intensively. Mathematicians 
discovered about 1870 that non-Euclidean geometry describes faithfully some 
well defined mathematical structures that had been overlooked until then. 
But if the parallel axiom were deducible from the others, these structures 
would satisfy that axiom, not its negation. 1 4 

In Foundations of geometry, Hilbert filled in the last steps of this argument. 
He gave a complete list of axioms, and rigorously demonstrated the independ-
ence of the parallel axiom. Two years later, he showed how to derive all 
non-Euclidean theorems from his axioms, with the parallel axiom negated. 1 5 

2.8 Firm foundations 

Concepts 
What must a firm foundation provide? 
Hilbert and the Italian school 
Geometric construction of real numbers 
Can a rigorous foundation be used for teaching? 
Birkhoff, School Mathematics Study Group (SMSG), and chapter 3 

By the late nineteenth century the need to establish a firm foundation for 
geometry was clear. Euclid's axiom system should be adapted and augmented 
as necessary, to 

1 4 Bonola [1911] 1955. 
1 5 Hilbert's 1902 paper on non-Euclidean geometry is translated and included as Appendix 3 

in later editions of Hilbert 1899. 
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• clarify the initial definitions, 
• justify all the steps in the proofs, 
• justify the use of real numbers as coordinates, and 
• facilitate study of the parallel axiom. 

In order to gain acceptance, this work should fit in with other mathematical 
fields under development. In particular, any geometric construction of the 
real number system should be recognizable as equivalent to those used as 
a foundation for differential and integral calculus. 

Two attacks on the foundation problem appeared simultaneously: the 
work of David Hilbert in Gottingen, and that of an Italian group including 
Giuseppe Peano, Alessandro Padoa, and Mario Pieri. These researchers 
had all studied earlier foundational work by German mathematicians and 
philosophers. Hilbert proceeded in isolation, but his book Foundations of 
geometry (1899) was the more complete and received the most attention. 
Hilbert's main concepts differed little from Euclid's, his mathematics was 
close to the mainstream, and his presentation was complete and polished. 
The Itahans explored new territory and invented new techniques and lan-
guage, but produced no really complete report. Pieri was particularly inter-
ested in finding out which concepts he could designate as undefined. In a 
major work published the same year (Pieri 1899), he defined all other concepts 
in terms of point and motion. At this time, Hilbert was busy developing 
Gottingen into the center that would dominate the world of mathematics 
until about 1930. The Italian group faded away after a decade. But around 
1900, as described in section 2.9, their influence led to significant redirection 
and progress in foundations of mathematics. 

Like Euclid, Hilbert didn't mention numbers in his axioms. He introduced 
χ and y axes with origin Ο and unit points U and U'. Considering the 
χ coordinates as though they were numbers, he derived with great labor 
all properties required for one of the accepted definitions of the real number 
system. For example, figure 2.8.1 shows how to construct the product C = 
Α· Β of two χ coordinates A and B. Hilbert had to derive many algebraic 
rules like Α Β = Β -A, whose geometric counterparts are not easy to see. 
Those results made it possible to regard the χ coordinates as actually being 
numbers. Then he proceeded to develop coordinate geometry, much as any 
introductory text would. 

Hilbert's approach is unsuitable for beginning students because it's too 
difficult to verify the required properties of the real number system. 1 6 It 
took nearly seventy years' more research, hindered by two world wars and 
the depression, to develop a foundation for Euclidean geometry appropriate 
for elementary texts. George David Birkhoff published an equivalent axiom 

The author has found only one beginner's text based on Hilbert's axiomatization: the 
apparently unsuccessful Halsted 1907. 
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Figure 2.8.1 The product C of 
χ coordinates A and B: 

If OU= OU' = 1, OB= OB, and U7AIB7C, 
then All = OA/OU' = OCIOB' = OCIOB = 
CIB, hence AB=C. 

U AB C = AB χ 

system (1932) that avoids the obstacle of constructing the real numbers. 
Collaborating with education professor Ralph Beatley, he produced an 
elementary text, Basic geometry (Birkhoff and Beatley 1941). Unlike Euclid 
and Hilbert, he introduced the real number system explicitly in his axioms 
for measuring lengths, angles, areas, and volumes. Thus Birkhoff avoided 
the difficult proofs required to derive these same statements as theorems 
from simpler axioms. 

Birkhoff's axioms received little notice until the 1950s, when his method 
was proposed by the School Mathematics Study Group (SMSG) as a way 
to reform elementary geometry instruction in the United Sta tes . 1 7 Their 

The SCHOOL MATHEMATICS STUDY GROUP (SMSG) was formed in 1958, 
when popular opinion held that the United States was not producing enough 
scientists and engineers to maintain its world stature. A principal cause of 
the deficiency, it was felt, was the poor quality of the secondary-school 
college-preparatory mathematics curriculum. SMSG was encouraged by the 
American Mathematical Society and financed by the National Science 
Foundation. Its organization consisted of a Director, Edward G. Begle, of 
Yale and later Stanford, a varying staff, and several committees, including 
an advisory committee of mathematicians from industry, government, univer-
sities, and secondary schools. During several consecutive summers from 1958 
on, SMSG writing groups met on various campuses to devise new secondary 
and (later) elementary school mathematics curricula, and to create appro-
priate experimental texts. Among these texts was one for the tenth grade: 
elementary Euclidean geometry using the axiom system of George David 
Birkhoff. The text was planned by a committee, and a draft was written by 
Edwin E. Moise and revised by the committee. It eventually became the text 
Geometry, by Moise and Floyd L. Downs, Jr. SMSG also produced an alterna-
tive geometry text that used coordinate methods more extensively. The 
School Mathematics Study Group was disbanded in 1974. 

1 7 See Wooton 1965. 
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George David BIRKHOFF was born near Holland, Michigan, in 1884. His 
father was a physician. He received his higher education at Harvard and at 
the University of Chicago, where he earned the doctorate under Ε. H. Moore 
in 1907. Birkhoff was one of the first distinguished American mathemati-
cians to receive his training entirely in this country. From 1914 to his death 
in 1944 he was Professor at Harvard. Birkhoff s mathematical research lay 
mostly in the area of analysis and its applications to physics, though his 
interests ranged widely and led to books on geometry and aesthetics. He was 
the acknowledged leader of the American mathematical community, and also 
served Harvard as Dean of the Faculty. Birkhoff's son Garrett (1911-
1996) followed in his footsteps, serving as Professor at Harvard 1936-1981. 
Also a mathematician with broad interests, Garrett Birkhoff helped develop 
lattice theory, which is used as a framework for multidimensional geometry. 

program met general acceptance, although efforts are under way during 
the 1990s to supplant it. Chapter 3 of this text is a detailed outline of the 
SMSG approach. It follows closely the first commercial text that adhered 
to their guidelines: Geometry, by SMSG authors Edwin E. Moise and Floyd 
L. Downs, Jr. (1964). Moise also published an advanced text ([1963] 
1990) that follows this approach. 

2.9 Geometry as pure mathematics 

Concepts 
The axiomatic method in foundations of geometry 
Confusion over definitions 
Pieri's and Hilbert's use and views of undefined concepts 
Hilbert's dispute with Frege 
Implicit definitions 
The 1900 congresses and Padoa's paper 
Pure, abstract mathematics 
Russell's reaction 
Huntington's axiomatization of the real number system 
Modularization of mathematics 

This book presents geometry as a branch of applied mathematics, through 
use of a model. A geometric model is a collection of precisely formulated 
concepts and principles that describe certain aspects of space. The theo-
rems—true statements about the model—can explain observed properties 
of space and predict new ones. To dispel confusion and ensure against error, 
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we follow the axiomatic method. An axiomatic model consists of undefined 
concepts, definitions, and unproved principles called axioms. We define all 
the required concepts in terms of simpler ones, except the most basic concepts, 
which we leave undefined. We accept a statement as a theorem only after 
proving it rigorously from the axioms. 

During the 1890s the axiomatic method was clarified to accommodate 
a rigorous solution of the foundation problem. This encouraged a shift in 
mathematicians' view of their discipline: the emergence of pure, abstract 
mathematics, independent of any application. Its efficiency and flexibility 
soon made it the dominant approach to higher mathematics. Pure mathe-
maticians don't really do mathematics differently, though. The distinction 
lies in why they do it and how they describe it. 

In this section, you'll observe the shift at a critical moment, through the 
words of some of its major figures. You'll see how their accounts of what 
they were doing differed at first from the substance of their mathematics, 
then converged to a streamlined, effective presentation of the axiomatic 
method of pure mathematics. 

Although philosophers as early as Aristotle recognized the need for unde-
fined concepts in an axiomatic presentation, scientists seemed uncomfortable 
with them. Euclid's Elements, for example, purports to define every concept 
used. It's easy for us now to criticize that as bad exposition betraying muddled 
thinking. Through the centuries, however, philosophers tried to elucidate 
the definitional status of the concepts of an axiomatic theory, while preserving 
Euclid's traditional style. They created a mess of distinctions between different 
kinds of concepts and definitions. As technology enabled more precise 
observations, and mathematical progress brought experience with a great 
variety of theories, it became hard to justify those sophisticated distinctions. 

David Hilbert and Mario Pieri presented the first really firm foundations 
for Euclidean geometry independently in 1899. They did leave their initial con-
cepts undefined. Pieri (1899, appendix C, 1) says exactly what he's doing: 

[This]... system of geometry... originates... with two concepts not taken 
from any other deductive science and about which one supposes to know 
nothing from the beginning: these are points and motion. All the other 
notions to which we are able to make reference concern pure logic ... 
or else they derive their origin from only these two ideas, combined with 
... definitions. 

For the goals of the purely deductive method, it is beneficial to preserve 
the major ̂ determination possible for the content of the primitive ideas, 
[because that would never enter into the discussion except] by means 
of the logical relations expressed in the ... primitive propositions. For 
that reason, we are not obliged to connect with these ... terms ... even 
a specification: it is sufficient to the understanding of the entire system 
... that it introduces itself generically around these ideas in the ... 
primitive propositions. 



44 FOUNDATIONS 

But Hilbert (1899, 4-6) simply does it, with little comment: 

E x p l a n a t i o n . We consider three distinct systems of things. Those 
of the first system we call points ... the things of the second system,. 
lines ... those of the third system we call planes ... 

We consider the points, lines, and planes as having certain mutual 
relations, and indicate these with words like "he on", "between",... The 
exact and complete description of these relations follows from the axioms 
of geometry ... 

The axioms of Group I establish a connection between the things just 
explained... 

Axiom I 1. Two distinct points always determine a line ... 

Axiom I 2. Any two distinct points of a line determine this line.... 

Axiom I 7. On any line there are at least two points. In any plane there 
are at least three points that don't he on any line. There 
are at least four points that don't he in any plane. ... 

The axioms of Group Π define the concept "between", and make possible, 
based on this concept, the ordering of the points on a line. ... 

Axiom II 1. If A, B, and C are points on a line and Β hes between 
points A and C, then Β is also between C and A.1 8 

Hilbert and Pieri disagreed about their ultimate purpose. In another paper 
(Pieri 1901, 368) written about the same time, Pieri stated that 

this science, in its more advanced parts as well as the more modest ones, 
is affirming and consolidating itself more and more as the study of a 
certain class of logical relations; it is freeing itself little by little of the 
bonds that still tie it (however feebly) to intuition, and it is consequently 

Mario PIERI was born in Lucca in 1860. His father was a lawyer. He 
studied at the universities in Bologna and Pisa, earning the doctorate in 1884 
with a dissertation in algebraic geometry. From 1888 to 1900, Pieri taught 
projective and descriptive geometry in Turin, at the Military Academy and 
the University. There he worked with a group of mathematicians led by Giu-
seppe Peano, researching and reformulating the foundations of various areas 
of mathematics. Pieri continued this work as he moved on in 1900 and 1908 
to professorships at Catania and Parma. Pieri provided one of the first com-
pletely rigorous foundations of Euclidean geometry, based on the concepts 
point and motion, and explored the use of several other combinations of basic 
concepts. He applied the same axiomatic methods to projective geometry, and 
was able to clarify the relationships between Euclidean, projective, and 
complex projective geometry. Pieri died of cancer in Lucca in 1913. 

There are seven axioms in Group I, five in Group II, and eight further axioms. 
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vesting itself with the form and qualities of an ideal science, purely 
deductive and abstract, like arithmetic. 

But Hilbert wrote in his short introduction (1899, 1), 

For a logically correct construction of geometry—just like arithmetic—only 
a few simple fundamental facts are required. These are called axioms 
of geometry. Selecting these axioms and exploring their interrelationships 
... amounts to the logical analysis of our spatial intuition.19 

Later, Hilbert demonstrated his axioms' logical correctness. They're all true 
when he interprets points, lines, and planes in the sense of coordinate geome-
try, hence any contradiction would lead to an inconsistency in arithmetic. 

Those were confusing words from Hilbert, the more renowned scientist. 
What was he doing? In December 1899, the eminent philosopher Gottlob 
Frege wrote to Hilbert (Frege 1980, chapter 4). Shouldn't axioms "express 
fundamental facts of our [spatial] intuition?" How can a s tatement like 
Axiom II 1 define betweenness? Properly formulated definitions shouldn't 
assert anything. They just simplify the language, and can't lead to contradic-
tion. How can points be intuitive things that we perceive in space, and at 
the same time be triples of coordinates? 

Hilbert's response seems to indicate that the nature of concepts was not 
his major concern, that he wrote Foundations of geometry to provide a 
framework for understanding important geometrical problems like the 
proposition "that the parallel axiom is not a consequence of the other axioms." 
Nevertheless, he countered Frege's criticism by claiming that "the whole 
structure of axioms yields a complete definition" at once for the entire system 
of concepts not explicitly defined. This idea, called implicit definition, was 
popular at the time. For example, Pieri used it to moderate his extreme 
position against any specification for undefined concepts: "This demand 
for intuitive clarity shouldn't bother anybody, if one considers that the 
primitive concepts . . . can be given . . . by means of implicit definitions" 
(Pieri 1901, 387). The implicit definition idea faded from use, because it 
requires us to accept, before any analysis, that certain systems of undefined 
concepts can be interpreted consistently in essentially one way only. 

Continuing, Hilbert pointed out "that every theory is only a scaffolding 
. . . of concepts together with their necessary relations to one another, and 
tha t the basic elements can be thought of in any way one likes." But he 
contentiously overstated his case: "if the . . . axioms . . . do not contradict 
one another . . . then they are true and the things defined by the axioms 
exist." Here he has stopped communicating. The two scientists were 

Hilbert started his first page with a short quotation from the philosopher Immanuel Kant 
([1781] 1965) that used the same word Anschauungfor intuition. In other writings, Hilbert 
supported and elaborated Kant's principle that mathematics is about certain objects, our 
knowledge of which is due to our intuition, rather than to experience or logic. See Peckhaus 
1994, section 4. 
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proceeding from different bases. To Frege, geometry was mathematics 
applied to an existing subject, space. But Hilbert was trying to say that the 
theory itself, without the application, provides sufficient rationale for his 
study: He was presenting pure mathematics with general applicability. 
For about a decade, he and some other German and Italian mathematicians 2 0 

had proceeded from that standpoint, without fanfare. Hilbert had no need 
for Frege's analysis of concepts, but he couldn't describe his position convinc-
ingly. 2 1 

A week later, exasperated with the inadequate answer, Frege fired back 
these axioms: 

E x p l a n a t i o n . We consider objects, that we call Gods. 

Axiom 1. All gods are omnipotent. 

Axiom 2. All gods are omnipresent. 

Axiom 3. There is at least one God. 

According to Hilbert's argument, if the existence of an omnipresent omnipotent 
being entailed no contradiction, then God must exist! Frege incorporated 
this savage parody into a widely circulated book review published three years 
later. 2 2 

This kind of controversy and discussion continued for several years. But 
with the arrival of the twentieth century it became obsolete. In August 1900, 
philosophers and mathematicians from the whole world assembled at con-
gresses in Paris to bid adieu to the old century and greet the new. Alessandro 
Padoa, a member of the Italian delegation led by Peano, presented the same 
paper at both meetings. He included an overview of the axiomatic method 
as it had evolved in his group, and was apparently the first mathematician 

Notably Gino Fano, who presented an axiomatization of projective geometry (1892) in 
almost the same style as Hilbert 1899. His axioms described higher-dimensional projective 
eubspaces, objects that were clearly nonintuitive—in fact entirely unfamiliar to most 
mathematicians. Tbepell (1986) suggests that Hilbert was little influenced by the Italians. 
But Fano did spend 1892-1893 in Gottingen! 

2 1 Steiner (1964) describes the dispute and presents Frege's position in detail. 

Frege is tacitly, but sarcastically, comparing Hilbert's response with St. Anselm's ontological 
argument for the existence of God. According to that argument (Hick 1967) God is synony-
mous with a perfect {omnipotent omnipresent) being. We can conceive of a perfect being. 
Could we also conceive that no such being existed? No, because otherwise our concept of 
perfection would include the possibility of its own nonexistence—it wouldn't be perfect. 
Since the nonexistence of a perfect being is inconceivable, God must exist. Kant refuted this 
argument in chapter 3, section 4, of the work Hilbert had cited in his introduction (see 
footnote 19). Kant claimed that existence is a property not of beings, but rather of noun 
phrases; it's inappropriate to ask whether a being exists, but reasonable to ask whether 
a noun phrase such as a perfect being describes anything real. With that interpretation, 
St. Anselm's argument makes no sense. Hilbert had studied at the same gymnasium and 
university as Kant, and had supported Kant's philosophy of arithmetic in his secondary 
Ph.D. subject examination and in lectures during the 1890s; see Reid's Hilbert biography 
(1970, 17) and Toepell's account (1986, 1.7.2) of the genesis of Hilbert 1899. 
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to get all the ideas concerning defined and undefined concepts completely 
straight: 

... during the period of elaboration of any deductive theory we choose 
the ideas to be represented by the undefined symbols and the facts to 
be stated by the unproved propositions; but, when we begin to formulate 
the theory, we can imagine that the undefined symbols are completely 
devoid of meaning and that the unproved propositions (instead of stating 
... relations between the ideas ...) are simply conditions imposed upon 
the undefined symbols. 

Then, the system of ideas that we have initially chosen is simply one 
interpretation of the ... undefined symbols; but... this interpretation 
can be ignored by the reader, who is free to replace it in his mind by 
another interpretation that satisfies the conditions ... 

Logical questions thus become completely independent of empirical 
or psychological questions... and every question concerning the simplicity 
of ideas and the obviousness of facts disappears ... 

It may be that there are several... interpretations of the ... undefined 
symbols that verify the [conditions].... The system of undefined symbols 
can then be regarded as the abstraction obtained from all these inter-
pretations, and the... theory can be regarded as the abstraction obtained 
from the specialized theories that result when ... the system of undefined 
symbols is successively replaced by each of the interpretations 

Thus, by means of just one argument that proves a proposition of the 
[abstract] theory we prove implicitly a proposition in each of the 
specialized theories.23 (Padoa 1901, 120-121) 

Padoa was describing lucidly what Hilbert was doing: pure, abstract 
mathematics, independent of any specialized application. 

Also attending was Bertrand Russell, who would soon become a major 
figure in philosophy, particularly in foundations of mathematics. He recalled 
the event and the Italians fifty years later in his autobiography: 

The Congress was a turning point in my intellectual life, because I there 
met Peano... In discussions... I observed that he was always more precise 
than anyone else, and that he invariably got the better of any argument 
... I decided that this must be owing to his mathematical logic ... By 
the end of August I had become completely familiar with all the work 
of his school... The time was one of intellectual intoxication... Suddenly, 
in the space of a few weeks, I discovered what appeared to be definitive 
answers to the problems which had baffled me for years ... I was 
introducing a new mathematical technique, by which regions formerly 
abandoned to the vaguenesses of philosophers were conquered for the 
precision of exact formulae. Intellectually, the month of September 1900 
was the highest point of my life. (Russell 1951, 232-233) 

Padoa explicitly compares his position with Blaise Pascal's much earlier work (Pascal 
[1658] 1948). See section 2.3, note 8. 
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Gottlob FHEGE was born in Wismar in 1848. His father was a school-
master. Frege was schooled there, and from 1869 studied at the universities 
in Jena, then Gottingen, where he earned the doctorate in 1873 with a disser-
tation in geometry. He took a position in Jena, attaining full professorship 
in 1896. His first major publication, the 1879 Begriffsschrift, presented a 
formula language for expressing mathematical reasoning. There Frege intro-
duced the notion of universal and existential quantifiers, and developed the 
underlying structure of modern first order logic. Despite the formal nature 
of the language, the underlying concepts lacked really precise definition in 
the modern sense—Frege was actually opposed to that! Frege based on the 
Begriffsschrift several later works in logic and a major project, the two 
volume 1893-1903 work Grundgesetze der Arithmetic, in which he developed 
the arithmetic of natural numbers based solely on logic and simple set theory. 
Bertrand Russell discovered a fundamental contradiction—now known by 
his name—in a prepublication version of the second volume. Frege was 
unable to fix it; this crisis led to the later development of type theory and 
axiomatic set theory by Russell and others. Frege never accepted the modern 
abstract approach in mathematics, which often makes use of his work in 
logic. After 1903 his work passed from center stage; he died in 1925. 

These meetings formed a watershed in philosophy of science. Soon after, 
the full axiomatic framework described by the Italian school was used 
commonly and routinely. 2 4 

Padoa's proposed change in mathematical practice was small, but pro-
found. It involved not so much the conduct of research, but rather the 
presentation of results. We should "imagine that the undefined symbols 
are ... devoid of meaning and that the unproved propositions... are simply 
conditions." But, he continues, we can use an intended interpretation as 
commentary to guide us, as long as it doesn't enter into the deductions of 
theorems. The benefit of such an abstract approach is that we can apply 
the theory to any interpretation that satisfies the axioms. The axiomatic 
development of Euclidean geometry in chapter 3 follows Padoa's guidelines. 

By removing all emphasis on intended applications, the abstract method 
encourages mathematicians to devise axiom systems that apply to broad 
classes of interpretations. This has led to a tremendous increase in the 
intellectual efficiency of our discipline—the modularization of mathematics. 
Pure mathematicians, uninterested in any particular application, can work 
out in detail the consequences of small, manageable axiom systems. During 
the first half of the twentieth century advanced mathematics—particularly 
abstract algebra and analysis—was reorganized along these lines. A major 
application might draw on several of these "prefabricated" theories to study 

For another facet of the Italians' activity at the congress, see note 11 in the introduction to 
chapter 8. 
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particular aspects of a complicated model. In later chapters, this book will 
use that technique to apply results from the theory of real numbers and from 
group theory. 

One of the first successes of abstract mathematics was Edward V. Hunting-
ton's axiomatization of the real number system (1902). Casting earlier 
mathematicians' work—particularly that of Richard Dedekind—into an 
abstract framework, he characterized the real number system as merely 
an interpretation of his model. From the model he derived all the standard 
theorems of arithmetic, algebra, and analysis. They could now be applied 
with confidence to any interpretation—for example, the decimal expansions 
used in arithmetic or the χ coordinates used in geometry. What about the 
vagueness suggested by the indefinite article in the phrase "an interpretation 
of his model"? Huntington showed that his axioms are categorical— two 
interpretations may differ in details of their construction, but not in any 
property of their arithmetic or algebra. His work filled the last gap in the 
foundations of Euclidean geometry. It has been used by every approach 
to the foundation problem since then. 

Any properly constructed axiomatic model can be adapted easily to the 
abstract form. You can regard the axiomatic presentation in chapter 3 either 
as applied mathematics—the development of a model for space—or as pure 
mathematics, independent of any application. And casting Hubert's Founda-
tions of geometry into abstract form requires changing only a few sentences 
of his expository prose, not his mathematics. 

To mathematicians, Hubert's inadequate explanation of his philosophy 
was no obstacle. They read his mathematics, understood what he was doing, 
and adapted his methods as their own. The geometer Hans Freudenthal 
explained (1962,619) why most mathematicians identify the birth of abstract 
mathematics with Hubert's book: "This thoroughly and profoundly elaborated 
piece of axiomatic workmanship was infinitely more persuasive than program-
matic and philosophical speculations on space and axioms ever could be." 

Alessandro PADOA was born in Venice in 1868. He attended the technical 
university at Padua, then the university at Turin, where he earned the 
doctorate in mathematics in 1895. He taught in secondary schools until 1909, 
when he took a position with the technical university in Genoa. Padoa was 
an effective contributor to and expositor of the Peano school's techniques in 
axiomatics and logic. The Italian academy of science honored him in 1934 
for his statesmanly activity with secondary teachers' organizations and 
conferences. Padoa died in 1937. 
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2.10 Exercises and projects 

Concepts 
Scholarship skills 
Decimal arithmetic 
Algebra 
Paradigmatic shift and cultural evolution 

This section lists exercises and projects that involve the material covered 
in chapter 2, and extend it in several directions. Because this material is 
mainly historical and philosophical, there are few exercises here like those 
in most mathematics texts. Instead, there are suggestions for research papers. 
Some could be short reports on specific, narrow questions. For others, your 
work could continue alongside your study of the rest of this text, and result 
in a major term paper. 

These projects are intended to help you acquire skills you'll need as a 
scholar: 

library research, deciding when you have an answer, 
critical reading, organizing a report, 
asking questions, detailed technical writing. 

This book's bibliography, particularly the items referred to in this chapter, 
provides a start for these topics. Many listed sources themselves contain 
references that will lead you further. You may also want to consult Mathemati-
cal reviews and the journal Historia mathematica, which report current 
literature and work in progress. 

Project 1. Find an interesting application in an applied mathematics, 
science, or engineering book, and one in the popular press. Describe all 
facets of the modeling processes used. Are they reported accurately and 
understandably? 

Project 2. Report on Gauss' experiment concerning the angle sum of a 
triangle. How are such measurements done now with lasers? What accuracy 
is possible? 

Project 3. This project is for those who've studied advanced physics. Describe 
the major features of conventionalism, and its application to relativity theory. 
The idea was introduced by Henri Poincare around 1900 and developed further 
by Hans Reichenbach. How did they differ? What questions are still debated? 
You'll find advanced discussions in the Reichenbach memorial volume Synthese 
34 (1977). 
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Project 4. Analyze one of the other sophisms in Ball and Coxeter [1892] 
1987. 

Project 5. Describe a nonmathematical work that 's based on the axiomatic 
method. How closely does it adhere to the section 2.3 guidelines? 

Project 6. How is Euclid's Elements ([1908] 1956) organized? Examine 
a later edition: for example, Playfair [1795] 1860. How do they differ? 

Project 7. Show how to add, subtract, multiply, divide, and compute square 
roots using ruler and compass. That is, given segments with lengths a and 
6, construct segments with lengths a + b, a - b, ab, alb, and \fa. 

Project 8. Describe some additional historical work along the lines mentioned 
at the end of section 2.4. 

Project 9. Find and interpret pictures of ri tual artifacts such as those 
Seidenberg mentions. 

Project 10. Describe the introduction of decimal notation and the decimal 
algorithms for computing a + b, a - b, ab, alb, and Ja. Suppose you 
need a result accurate to η decimal places. Can you specify how many 
decimals of a and b you need to know? 

Project 11. Describe the introduction of algebra to European mathematics. 

Project 12. Report on the solution of the general cubic equation. What 
was its connection with Descartes' book? 

Project 13. How does the position taken by Frege in his letter to Hilbert 
stand up to the problem that gave rise to conventionalism? Was Frege aware 
of the difficulty? 

Project 14. What else was going on in Paris in summer 1900 tha t relates 
to the substance of this chapter? Was mathematics ahead of or behind the 
trends? 

Project IS. Discuss this chapter in the light of the characteristics of 
paradigmatic shift and cultural evolution developed by Thomas Kuhn in 
The structure of scientific revolutions ([1962] 1970) and Raymond L. Wilder 
in Evolution of mathematical concepts (1968). 

This chapter should suggest many more questions that could lead to sim-
ilar projects, just as fruitful as those listed. In most cases, you should consult 
a mentor who is familiar with the area. It's easy to miss standard information 
sources. Before you dive in too deep, you should find out what background 
is required, and how closely such a project may be related to the subjects 
of this book. If you can find appropriate material, and have the background 
to relate it to geometry, you can gain great satisfaction from such a study. 
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Chapter 

3 
Elementary 

Euclidean geometry 

This chapter is an axiomatic development of Euclidean geometry. It doesn't 
aim to introduce you to this material, for you should have studied much of 
it already in elementary classes. Rather, most of the chapter is a review, 
and it provides a common basis for readers with different backgrounds. It 
also shows in action the axiomatic method, as described in sections 2.3 and 2.9. 

This book presents geometry as applied mathematics. The undefined 
concepts in this chapter are meant to refer to certain features of space; the 
axioms describe some of their fundamental properties. But the precise 
interpretation of the undefined concepts is left unspecified. Most of us acquire 
similar spatial experience as children. We regard these features, and the 
interpreted axioms, as intuitively clear. The axioms' validity is confirmed 
by engineering successes based on Euclidean geometry. Intuitive clarity 
persists, however, only until higher mathematics and physics presents us 
with feasible alternatives. At that point, mathematicians evade the issue. 
We're not concerned with the difficult problems of interpreting the undefined 
concepts and verifying the axioms. We leave those to philosophers of science. 

Thus, this chapter holds together even if you never interpret the undefined 
concepts nor confirm the t ruth of the axioms. That is, you can regard it as 
a chapter of pure mathematics. That's up to you. 

Euclidean geometry can be derived from several quite different axiom 
systems. This chapter is based on the SMSG axiomatization,1 whose genesis 
was outlined in section 2.8. 

This approach avoids the difficult mathematics employed by earlier 
axiomatizations to construct the real number system on a geometric basis. 

1 See Moise and Downs 1964, and Moise [ 1963] 1990. 
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The axioms themselves involve numbers as well as geometric concepts. Thus, 
a minimal familiarity with the real number system is required from the start 
to understand this material. You'll need to reason and manipulate with 
sets and functions, too. The necessary techniques are presented in detail 
in any standard intermediate algebra text and reviewed in most college algebra 
and calculus texts. For the proof of theorem 3.3.3 and the definition of arc 
length in section 3.14, some facts about equivalence relations and least upper 
bounds of sets of real numbers are required. If necessary, you can consult 
appendices A and Β for details of those concepts. 

You'll really find here just an outline of an axiomatic development. Routine 
proofs are omitted. Most others are only sketched. That's appropriate for 
a review. By supplying missing details, you familiarize yourself with material 
that you may at first recall only vaguely. The style is informal, like that 
of most introductory university mathematics texts. Use this style when you 
supply the missing arguments. But also convince yourself tha t greater 
formalization is possible—whatever is necessary to justify even the simplest 
steps in every proof. 

Chapter 3 includes relatively few figures. A rigorous axiomatic development 
of geometry must proceed by logical steps solely from the undefined concepts 
and axioms. It must avoid any real dependence on figures. The sophism 
in section 2.2 showed why! Nevertheless, figures are essential guides to 
any study of geometry. Professional mathematicians generally construct 
more figures to follow material like this than beginners do. You should draw 
a figure for every case of every definition, every theorem, and every step 
in every proof. 

Edwin E. M O I S E was born in New Orleans in 1918. He attended Louisiana 
State and Tulane universities. After naval service in World War II, he 
studied at the University of Texas, which awarded him the Ph.D. in 1947 for 
work with R. L. Moore in topology. From 1947 to 1960 Moise rose through 
the ranks to full professor at Michigan, then moved to Harvard as Professor 
of Education. He worked with the School Mathematics Study Group 
(SMSG), writing its high school geometry text. Moise published that with 
coauthor Floyd L. Downs Jr. in 1964, accompanied by a now classic text to 
train teachers to use the SMSG approach. He moved again in 1971 to Queens 
College in New York, from which he retired in 1987. Moise continued work 
in topology throughout his career, and wrote several other texts, both about 
elementary subjects of interest to teachers and about advanced topology. 
Moise served in many professional leadership roles, including presidency 
of the Mathematical Association of America during 1967-1968. He died 
in 1998. 
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Since this chapter is not an introduction, few routine exercises are 
appropriate. The most instructive exercises relate several elementary 
geometry topics. Therefore, a selection of mostly nonroutine exercises in 
elementary Euclidean geometry is presented in chapter 4. 

The undefined concepts enter into this axiomatic theory gradually. There 
are seven, and they first appear in the sections noted here : 

point, line, plane 3.1 area 3.8 
distance 3.2 volume 3.10 
angle measure 3.4 

The axioms are presented in several groups: 

incidence axioms 3.1 congruence axiom 3.5 
ruler axiom 3.2 parallel axiom 3.7 
Pasch's axiom 3.3 area axioms 3.8 
protractor axioms 3.4 volume axioms 3.10 

3.1 Incidence geometry 

Concepts 
Points, lines, and planes 
Incidence 
Collinearity, coplanarity, and concurrence 
Incidence axioms 
Incidence geometry 

Point, line, and plane are the first undefined concepts. Lines and planes 
are regarded as point sets—subsets of the set of all points, which is called 
space. Letters A to Ζ are used to denote points, g to I for lines, and 
α to ε for planes. The words in, on, and through describe the membership 
and subset relations e and c among points and point sets; incident with 
means on or through. For example, the phrases Ρ is on g, g passes through 
P, and g and Ρ are incident mean Peg. And g is on a, a passes through 
g, and α and g are incident mean g c o t . A point set is called collinear 
if all its members fall on one line; a family of points and point sets is coplanar 
if all its members he in one plane. A family of point sets is called concurrent 
if all its members pass through a single fixed point. 

If you wish, you can interpret these terms intuitively, as we learned when 
children. You can then assemble the corresponding images into figures tha t 
will be invaluable for steering you through the theory of this chapter. But 
the intuitive representation will never be used essentially in the logical 
development of geometry. That will be based solely on the axioms. 
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The first of these are the incidence axioms I I to 15 below; they deal 
exclusively with the concepts just mentioned. Hilbert first stated them, in 
a ehghtly different form, in 1899.2 

Axiom 11. Any two distinct points Ο and Ρ He on a unique line OP. Each 
line passes through at least two distinct points. 

Axiom 12. Any three noncollinear points Ο, P, and Q he in a unique plane 
OPQ. Each plane passes through at least three noncollinear points. 

Axiom 13. If two distinct points Ο and Ρ he in a plane ε, then the line 
OP lies entirely in ε. 

Axiom 14. If two planes pass through a point O, then they pass through 
another point P^O. 

Axiom IS. There exist noncoplanar points Ο, P, Q, and R such that 
Ο, P, and Q are noncollinear and O ^ P . 

This book's pages illustrate axioms 13 and 14: they intersect not in just 
a single point, but along its whole spine. Axiom 15 ensures that geometry 
is three-dimensional. To axiomatize plane geometry, you could omit 14 and 
modify 15 to read, There's exactly one plane. 

Listed next are some immediate consequences of the incidence 
axioms; they're used in the proofs of most later theorems. The language 
of theorem 1 has been simplified by disregarding the distinction between 
a point and the set consisting of that point alone; this usage will be continued. 
You can supply simple proofs for the first two theorems. Theorem 4 is more 
complicated, so its proof is sketched here. It's convenient to organize the 
first part of the proof as a lemma: an auxiliary theorem not particularly 
interesting in itself. 

Theorem 1. The intersection of two distinct intersecting lines is a point. 
The intersection of a line and an intersecting but nonincident plane is a point. 
The intersection of two distinct intersecting planes is a line. 

Theorem 2. Through a point and a nonincident line passes a unique plane. 
Through two distinct intersecting lines passes a unique plane. 

Lemma 3. Points Ο to Ρ of axiom 15 are distinct, and no three are collinear. 

2 Hilbert 1899, chapter 1. Actually, Hilbert used the axioms in lectures five years earlier; see 
Toepell 1986, section 2.4. 
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Proof. Suppose Ο, P, and R lay on a line g; since Ο, P, and Q are 
noncollinear, Q couldn't lie on g. By theorem 2, g and Q would he in 
a plane, hence Ο, P, Q, and R would be coplanar—contradiction! Thus 
Ο, P, and 72 must be noncollinear. Similarly, triples O, Q, R and P, 
Q, R are noncollinear. 

If 0 = Q then Ο, P, and Q would he on the line OP —contradiction! 
Thus 0?Q. Similarly, 0?R, P?Q, and P?R. If Q = R, then Ο, P, 
Q, and R would he in the plane OPQ —contradiction! Thus Qf^R- *3 

Theorem 4. Through any point S pass at least three noncoplanar lines 
and three distinct planes. Through any line g pass at least two distinct 
planes. 

Proof. S can't lie in all four of the planes determined by points Ο to 
R of lemma 3, for then S would lie on 

(OPQ η OPR) η (OPQ η OQR )=OPnO~Q, 

hence S=0, which isn't on PQR. Without loss of generality, you can assume 
S isn't on OPQ. Then S lies on OS, PS, and Q~S. If these lines lay in 
a plane e, then Ο, P, and Q would fall on ε η OPQ, which is a line by 
theorem 1—contradiction! Thus S lies in these three noncoplanar lines 
and in three distinct planes OPS, OQS, and PQS. 

To show tha t g lies in at least two distinct planes, select any point S 
on g. By the previous paragraph, S lies on three noncoplanar lines. Select 
two lines h and k from these three so that g, h, and k are noncoplanar. 
Pairs g,h and g,k determine distinct planes through g. • 

We could continue developing incidence geometry—the consequences of 
the incidence axioms alone. But there's only such result, Desargues' theorem, 
that 's appropriate for this book. It's proved in section 5.3. 

3.2 Ruler axiom and Its consequences 

Concepts 
Distance 
Scale and coordinates on a line 
Ruler axiom and ruler placement theorem 
Betweenness 
Segments and rays 
Convex sets 

The symbol • is used throughout the book to mark the end of a proof. 
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The next undefined concept is distance. Actually, it's partly specified; it's 
a function that assigns to each pair P, Q of points a nonnegative real number 
PQ. Further details of the function are left undefined. 

A scale for a line g is a one-to-one function c from the point set g onto 
the set of all real numbers, such that for any points Ρ and Q on g, 

\c(P)-c(Q)\=PQ. 

The value c(P) is called the c coordinate of P. The following axiom was 
introduced by George David Birkhoff (1932). 

Ruler axiom. Each line has a scale. 

You may think of a scale as the correspondence between points and numbers 
that results when you place a ruler with its edge along g; and you can 
interpret PQ as the distance you'd measure by subtracting the numbers 
opposite Ρ and Q. However, this book will make no essential use of that 
intuitive idea. The idea does suggest that a line has many scales, all obtained 
from a given one by sliding the ruler or flipping it end over end. The idea 
underlies the proof of theorem 3 and is explored further in exercise 4.1.7. 
First, here's a simple theorem. You supply the proof. 

Theorem 1. PQ=QP for all points Ρ and Q. Moreover, PQ = 0 if and 
only if P=Q. 

One use of a scale is to describe the order of points on a line by referring 
to the order of their coordinates. Theorem 2 shows that this is independent 
of the scale used. Its proof depends on the following property of real num-
bers x, y, and z: 

| jc-z- | = | : c - v | + | , y - 2 | if and only if χ s y ζ ζ or xz y ζ ζ. 

When these conditions hold, y is said to lie between χ and z. 

Theorem 2. Let c and d be scales for a line g through points X, Y, 
and Z. If c(Y) lies between c(X) and c(Z), then d(Y) lies between 
d(X) and d(Z). 

The next result is a much stronger version of the ruler axiom. It shows 
what conditions determine a scale uniquely. 

Theorem 3 (Ruler placement theorem). Let Ο and Ρ be distinct 
points. Then there's a unique scale c for OP such that c(O) = 0 and 
c(P) > 0 . 
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Proof. By the ruler axiom there's a scale a for g = OP. Define a function 
b by setting 6(X) = a (X) - a(0) for each point X o n g , Then b is also 
a scale for g and 0 = 6 ( 0 ) £ fe(P). Incase b(P)>0, let c = b. Incase 
b(P)<0, define c by setting c(X) = - b ( X ) for each point X on In 
either case, c is a scale for g and 0 = c(O) < c ( P ) . Thus a scale c as 
described exists. To prove its uniqueness, suppose d is a scale for g such 
that d(O) = 0 and d ( P ) > 0 . It must be shown that c(X) = d(X) for each 
point X on g . First, 

| c ( X ) | = |c (X) - c ( 0 ) | = X O = | d (X) - d ( 0 ) | = | d ( X ) | . (*) 

If c ( X ) * 0 , then c(X) Ues between c(O) and c(P) , or c(P) lies between 
c(O) and c (X) ; by theorem 2, d(X) Hes between d(O) and d(P), or 

lies between d (O) and d(X). Thus c(X) ;> 0 implies d(X) * 0, 
and c(X) = d ( X ) follows from equations (*). By a similar argument, 
c ( X ) < 0 implies c f (X)<0 , hence c(X) = d ( X ) . * 

A point Y i s e a i d t o h e between points X and Z, written X-Y-Z, if all 
three fall on a line g and c(Y) hes between c(X) and c(Z) for some, 
hence any, scale c for g. Apparently, the concept of betweenness for points 
on a line has the same properties as the analogous concept for real numbers. 
Since the lat ter was defined using inclusive ζ and * inequalities, the 
conditions X-X-Z, X-Z-Z, and X-X-X are t rue for any points X and Z. 

Any points X and Ζ determine a segment 

XZ = {Y: X-Y-Z}. 

Its length is XZ. It contains its ends X and Z; the rest of the segment 
is called its interior. A segment XX consists of the point X alone; its length 
is zero and its interior empty. A symbol or word tha t denotes a segment 
is often used, as well, to denote its length. To determine the meaning, you 
must examine the context. 

Two distinct points Ο and Ρ determine a ray 

OP = {Q?0: O-Q-P or O-P-Q). 

The ray's origin is the point O; that doesn't belong to the ray itself. (See 
figure 3.2.1.) 

Theorem 4. Two rays OP and NQ are equal if and only if Ν = Ο and 
O-P-Q or O-Q-P. If Q-O-P, the line OP consists of Ο and the two opposite 
rays OP and OQ. 

A point set is called convex if it includes segment XZ whenever it contains 
X and Z. Figure 3.2.2 shows example convex and nonconvex sets. Convex 
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X Ζ 

ο Ρ 

Figure 3.2.1 
Segment XZ and ray oP Convex and nonconvex sets 

Figure 3.2.2 

sets are involved in many applications of geometry. Theorem 5 lists some 
of their properties that are needed in this chapter. 

Theorem 5. The empty set and all sets consisting of single points are convex. 
All segments, rays and lines are convex. All planes and the set of all points 
are convex. The intersection of any family of convex point sets is convex. 

3.3 Pasch's axiom and the separation theorems 

Concepts 
Triangles, vertices, and edges 
Pasch's axiom 
Line, plane, and space separation theorems 
Sides of a point in a line, of a line in a plane, and of a plane 

This section is concerned with the sides of a point within a line, of a line 
within a plane, and of a plane in space. Euclid virtually ignored these notions 
in the Elements. Section 2.2 showed that carelessness with them can lead 
to serious errors. Because betweenness considerations enter into so many 
other topics in elementary geometry, they must be appear early in any 
axiomatic development. Unfortunately, they're often delicate; this section 
must consider many details and so may appear tedious. 

Pasch's axiom connects incidence geometry with the ordering of points 
on a line. It lets you apply the betweenness concept in two- and three-
dimensional situations, to describe when points lie on the same or opposite 
sides of a line or a plane. Basically, the axiom indicates how a line can 
intersect a triangle. 

What is a triangle? Is it three points, or three edges? Does it contain 
interior points? There are several ways to define the concept. This seems 
the most effective: A triangle AXYZ is an ordered triple of noncollinear 
points X, Y, and Z. These are called the triangle's vertices. Segments 
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YZ, ZX, and XY are called the edges of AXYZ opposite X, Y, 
and Z. 

The vertices of AXYZ are ordered. This is not the same triangle as 
AYXZ, because these triangles have different first and second vertices. 
You can make six different triangles from the same set of vertices. That 
complication is not useful now, but it streamlines considerably the discussion 
of triangle congruence in section 3.5. 

Pasch's axiom. If a line in the plane of a triangle contains an interior point 
of one edge, it must intersect another edge. 4 (See figure 3.3.1.) 

Theorem 1. No line can contain points interior to all three edges of a triangle. 

Proof. (See figure 3.3.2.) Suppose collinear points Ο, P, and Q were 
interior to edges YZ, XZ, and XY of AXYZ. One of them must He between 
the other two; without loss of generality you can suppose O-P-Q. Then 
the line g = ΧΉ would contain point Ρ interior to edge OQ of AYOQ. 
By Pasch's axiom, g would intersect another edge, YO or YQ. But the 
lines tha t include those edges intersect g a t Ζ and X, which he outside 
the edges themselves—contradiction! • 

Because the betweenness relation for points on a line has the same proper-
ties as the corresponding relation for real numbers, it's easy to handle the 
notion of the sides of a point within a line. Theorem 2, the line separation 
theorem, gives the definition and main properties of this concept. Its proof 
doesn't require Pasch's axiom. The theorem is phrased just like theorems 
3 and 4, the analogous plane and space separation theorems. This formulation 

Ζ 

X Q Y 

Figure 3.3.1 
Pasch's axiom 

Figure 3.3.2 
Proof of theorem 1 

4 First stated by Moritz Pasch ([1882] 1926, 20). 
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was devised by SMSG about 1959.5 The proofs of the latter two theorems 
are too involved for beginning students, so SMSG actually included these 
results among their axioms and proved Pasch's axiom as a theorem. 6 

Theorem 2 (Line separation theorem). Let Ο be a point on a line 
g. Then g is the union of three disjoint convex sets: Ο itself and two opposite 
rays, called the sides of Ο in g. Two points X and Y on g he on the same 
side of Ο in g if and only if segment XY doesn't contain O. If Ρ and 
Q are points distinct from Ο such that P-O-Q, then OP and OQ are 
the sides of Ο in g. 

Theorem 3 (Plane separation theorem). Let g be a line in a plane 
ε. Then ε is the union of three disjoint convex point sets: g itself and two 
sides of g in ε. Two points X and Y in ε lie on the same side of g in 
ε if and only if segment XY doesn't intersect g. If Ρ is any point in ε 
not on g, then the two sides of ε are the sets 

{Qee.PQng=<t>}, {Qe ε: Q*g & PQ ng? φ}. 

Proof. (To understand this proof, you must be familiar with the notion 
of an equivalence relation. See appendix A for details of that theory.) Define 
a binary relation Ε on ε by setting 

XEY - X,Yeg or TΫΓΛg=φ 

for all X and Y on £. Clearly, Ε is reflexive and symmetric. It's transitive 
as well, for if XEY and YE Z, then one of the following cases holds: 

1. Any—hence all—of X, Y, and Ζ He in g. 
2. None of X, Y, and Ζ lies in g. Then gjcan't intersect XY or 

YZ. By Pasch's axiom, it can't intersect XZ, hence XEZ. 

Therefore Ε is an equivalence relation on ε. The equivalence class of any 
point Ο on g is {Q: Ο Ε Q}=g itself. That of Ρ is 

{ Q : P £ 0 J = { Q e * : P ( ? n g = 0 } . 

Let X and Υ be points on ε lying in neither of these classes. Then g 
contains points interior to edges PX and PY of APXY. It follows that 
XE Y; otherwise, g would contain points interior to all three edges of that 
triangle, contrary to theorem 1. Therefore, there's only one equivalence class 
besides g and { Q : Ρ Ε Q}, namely 

{Q:XEQ} = {Qe ε :PQ φ}. 

Any equivalence class is convex: If XEZ and X-Y-Z, then XZ lies in 
g or is disjoint from g; the same must hold for XY, BO XEY a l so .* 

5 See Wooton 1965. 
6 See Moise and Downs 1964, chapter 3. 
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Moritz PASCH was born in 1843 in Breslau, Prussia, to a merchant family. 
He studied chemistry and mathematics at the university there, earning the 
doctorate in 1865. From 1870 on he worked at the University of Giessen, 
attaining full professorship in 1875, and serving as dean and rector from 
1883 to 1894. Pasch's early research was in the area of algebraic geometry, 
but he's best known for his work in the foundations of geometry. His 1882 
book, Vorlesungen iiber neuere Geometrie, was the first rigorous axiomatic 
presentation of geometry, developing the Euclidean theory via projective 
geometry. Particularly noteworthy is his treatment of betweenness and 
separation properties. Pasch retired in 1911 and died at age 87 in 1930. 

Theorem 4 (Space separation theorem). Let ε be a plane. Then the 
set of all points is the union of three disjoint convex point sets: ε itself and 
its two sides. Two points X and Y he on the same side of ε if and only 
if segment XY doesn't intersect ε. If Ρ is any point not on ε, then the 
two sides of ε are the sets 

{Ο.:Ρ~0~ηε = φ}, { Q: Q c ε & PQ η ε ϊ φ). 

Proof. Define a binary relation Ε on the set of all points by setting 

XEY ~ Χ,Υεε or ΧΫ η ε = φ 

for all X and Y. Clearly, Ε is reflexive and symmetric. It's transitive 
as well, for if XE Y and YE Z, then one of the following cases holds: 

1. Any—hence all—of X, Y, and Ζ lie in ε. 
2. None of X, Y, and Ζ lies in ε but all lie in a plane δ whose 

intersection with ε is a line g. Then X, Y, and Ζ he on the same 
side of g in <5, hence XZ η ε = XZ r\g= φ. 

3. The only plane through X, Y, and Ζ is disjoint from ε, hence 
XZ ng= φ. 

Therefore Ε is an equivalence relation. The equivalence class of any point 
Ο on ε is {Q:OEQ} = ε itself. That of Ρ is 

{Q:PEQ} = {Q: Ρ~0~ηε = φ}. 

Let X and Y be points lying in neither of these classes. Then Ρ, X, and 
Y fall in a plane δ whose intersection with ε is a line g; and Ρ is on 
the side of g in δ opposite X and Y. Thus X and Y are on the same 
side of g in δ, and QEX because QX η ε = QX ng = φ. Therefore, 
there's only one equivalence class besides g and { Q : Ρ Ε Q }, namely 

{Q:XEQ}= {Q: Q$ ε & PQ ηεϊφ}. 

You can supply the proof that the two sides of ε are convex. • 
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The notions of the sides of a line in a plane and of a plane in space are 
used later in this chapter to define the interior of a triangle and of various 
other figures. 

3.4 Angles and the protractor axioms 

Concepts 
Angles 
Interior of an angle and of a triangle 
Crossbar theorem 
Degree measure 
Protractor axioms 
Linear and vertical pairs of angles 

Section 3.3 dealt with triangles without ever considering angles. This section 
defines that concept, and uses the sides of lines in a plane to define the interior 
of an angle and clarify that notion. You're invited to supply many of the 
figures for this section, and the simple proofs for most of the theorems. 
Theorems 4 and 5 are more complicated. The proofs sketched here are due 
to Moise.7 After this preparation, the section introduces angle measurement 
via new axioms. 

Theorem 1. Consider a point Ο on a line g, a point Ρ not on g, and 
let c be the plane through g and P. Then the ray OP lies entirely on 
one side of g in ε. 

An angle is a point set of the form 

iPOQ = OPuOu OQ, 

where Ο, P, and Q are noncollinear points; Ο is called its vertex. Often, 
when no confusion results, it's written simply LO. This convention is particu-
larly common with triangles: the angles of LXYZ are LX = LZXY, 
lY= LXYZ, and lZ= LYZX. By theorem 1 you can define the interior 
of iPOQ to be the set of all points in OPQ that he on the same side of OP 
as the ray OQ and on the same side of OQ as OP. (See figure 3.4.1.) 

Theorem 2. The interior of /.POQ is convex. All interior points of segment 
PQ lie in the interior of LPOQ. If R is a point in the interior of 
/.POQ, then the ray OR lies entirely in the interior of iPOQ. 

7 Moise [ 1963] 1990, section 4.3. 
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Figure 3.4.1 
Interior of iPOQ 

(intersection of shaded and 
scored half planes) 

Theorem 3. Suppose Q and R are points on the same side of a line OP 
in a plane ε. Then exactly one of the following conditions holds: 

1. Q lies in the interior of L POR, 
2. OQ = OR, 
3. R lies in the interior of IPOQ. 

Theorem 4. Let Ο be an interior point of edge SQ of ASPQ and let 
R be a point in plane SPQ on the same side of SQ as P. Then the ray 
OR intersects SP or PQ~. 

Proof. The line OR intersects SP or PQ; otherwise S, P, and Q 
would all lie on the same side of OR and QS couldn't intersect OR. Let 
Τ be an intersection of OR with SP or PQ. If Τ weren't in OR, then 
Τ would he on the side of SQ opposite R, hence opposite P, so Τ couldn't 
lie in SP or PQ by theorem 1. Thus Τ lies in OR. • 

Theorem 5 (Crossbar theorem). Let R be a point in the interior of 
LPOQ. Then OR intersects PQ. (See figure 3.4.2.) 

Proof. Select a point S£ Ο such that S-O-Q. Then S, P, and Q are 
noncollinear, Ο lies in SQ, and R is on the same side of SQ as P. By 
theorem 4, Oli intersects SP or P Q . By theorem 1, θί? can't intersect 
SP. • 

Angle measurement, like length, is another partly undefined concept. 
It's a function that assigns to each angle iO a real number mZO, called 
its measure, such that 0 < m / O < 180. Further details of the function are 
undefined. There are two common systems of angle measurement; the one 
described here is called degree measure. To distinguish it from the other 
system (radian measure), we write the symbol ° after the measure—for 
example, mZO = 90°, to be read "ninety degrees." Some properties of angle 
measurement are postulated by the protractor axiomsPl to P3 below. They 
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Figure 3.4.2 Figure 3.4.3 Linear and 
vertical pairs of angles Crossbar theorem 

were first stated, in a slightly different form, by George David Birkhoff 
(1932). 

Axiom PI. Let Ο and Ρ be distinct points in a plane ε and 0 < χ < 
180. Then on each side of OP in ε there's a point Q such that 
mlPOQ = x°. 

Axiom P2. If Q is a point in the interior of iPOR, then mlPOQ + 
mlQOR = mlPOR. 

Axiom P2 and theorem 3 yield the uniqueness of ray OQ in axiom PI , as 
follows. 

Theorem 6. In axiom PI , if R is a point on the same side of OP in ε 
as Q and m / P O Q = mLPOR, then OQ = OR. 

Proof. Otherwise mlQOR = 0°. • 

You may think of angle measurement as the correspondence between rays 
OQ and numbers produced by placing a protractor with its base along line 
OP and centered at 0. The protractor can lie in ε on either side of the 
line. However, this book will make no essential use of that intuitive idea. 

Let g and h be distinct lines intersecting at a point O. Let P,Q and 
R,S be pairs of points on g and h distinct from Ο such that P-O-Q and 
R-O-S. Then LPOR and /.POS are said to form a linear pair of angles, 
and iPOR and /.QOS, a vertical pair. (See figure 3.4.3.) 

Axiom P3. The sum of the measures of the angles of a linear pair is 180°. 

Theorem 7 (Vertical angle theorem). Angles of a vertical pair have the 
same measure. 
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Concepts 
Congruent segments and angles 
Congruent triangles 
SAS congruence axiom 
ASA, SSS, and SAA congruence theorems 
There's no SSA congruence theorem! 
Isosceles triangle theorem 
Equilateral triangles, scalene triangles 
Exterior angle theorem 
Triangle inequality 
Hinge theorem 

Using one new axiom, this section develops the theory of congruence—the 
precise concept corresponding to the informal notion "same size and shape." 
Congruence is indicated by the symbol =. Two segments are said to be 
congruent if they have the same length; two angles, if they have the same 
measure. Two triangles AXYZ and AX'Y'Z' are called congruent if their 
corresponding edges and angles are congruent: 

ΧΥ = ΧΎ' ΥΖ=Υ'Ζ' ZX=Z'X' 
lZ=lZ' ΔΧ = ΔΧ' ΖΥ = ΖΥ'. 

Segment congruence, angle congruence, and triangle congruence are all 
equivalence relations. 

Euclid recognized the fundamental nature of the following axiom, but 
presented it as a theorem, with a faulty proof. Hilbert first stated it as an 
axiom (1899, section 6) . 

SAS congruence axiom. Consider triangles AXYZ and AX'Y'Z'. If 
ΧΥ = ΧΎ', ZY = ZY', and YZ=Y'Z', then AXYZ= AX'Y'Z'. 

SAS means side-angle-side: If two triangles have two pairs of congruent 
edges (sides), and the angles between them are also congruent, then the 
triangles themselves are congruent. If you're given three equations in SAS 
pat tern among those that define triangle congruence, then you can infer 
the other three. Theorems 1, 3, and 5 allow you to s tar t with other sets of 
three equations: two pairs of angles and one of edges (ASA or SAA), or 
three pairs of edges (SSS). To avoid the difficult proofs of these theorems, 

3.5 Congruence 
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Figure 3.5.1 
There's no SSA theorem! 

Figure 3.5.2 
Proof of theorem 1 

SMSG included the ASA and SSS results among their axioms, and postponed 
SAA until they could use the parallel axiom to prove it easily.8 

Figure 3.5.1 shows there's no SSA congruence theorem! That is, triangles 
ΔΧΥΖ and ΔΧ'Υ'Ζ' may be incongruent, yet have two pairs of edges and 
one of angles congruent in the SSA pattern. See exercise 4.6.2 for further 
details. Our experience with incongruent similar triangles, which have 
congruent angles and edges with proportional but unequal lengths, shows 
there's no AAA congruence theorem, either. 

Theorem 1 (ASA congruence theorem). Consider triangles ΔΧΥΖ 
and ΔΧ'Υ'Ζ'. If tX=LX', ΧΥ = ΧΎ, and LY=LY', then ΔΧΥΖ = 
ΔΧ'Υ'Ζ'. 

Proof. (See figure 3.5.2.) Find the point Z" on XZ such that XZ" = 
X'Z'. By the SAS congruence axiom, ΔΧΥΖ" = ΔΧ'Υ'Ζ', so AXYZ" = 
LY' = LY. Therefore, YZ = YZ", hence Z = Z", and finally XZ = XZ" = 
X'Z'. By the SAS axiom, ΔΧΥΖ = ΔΧ'Υ'Ζ'. • 

Corollary 2 (Isosceles triangle theorem). Two angles of a triangle are 
congruent if and only if the opposite edges are. 

Proof. Consider ΔΧΥΖ. If Z X = lY, then ΔΧΥΖ = ΔΥΧΖ, hence 
YZ = XZ; and conversely. • 

A triangle with two congruent edges and two congruent angles is called 
isosceles. A triangle with three congruent edges is called equilateral. Clearly, 
a triangle is equilateral if and only if its angles are all congruent. A triangle 
that has no congruent edges nor angles is called scalene. 

Theorem 3 (SSS congruence theorem). Consider triangles ΔΧΥΖ 
and ΔΧ'Υ'Ζ'. If ΧΥ=ΧΎ, ΥΖ=Υ'Ζ', and ΖΧ=Ζ'Χ', then ΔΧΥΖ = 
ΔΧ'Υ'Ζ'. 

Moise and Downs 1964, chapter 5. This section's proofs are modeled after Moise 
[1963] 1990, section 6.2 and chapter 7. 
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Figure 3.5.3 
Proof of theorem 3 

Figure 3.5.4 
Proof of theorem 4 

Proof. (See figure 3.5.3.) It's enough to show lZ = lZ'. First, find a point 
Ρ in plane XYZ on the side of XY opposite Ζ so that lYXP=lX'. Next, 
find Z" on XP so that XZ" =X'Z' =XZ. By the SAS axiom, AXYZ" 
= AX'Y'Z', hence YZ" = Y'Z'=YZ. Segment ZZ" intersects ZY at a 
point Q. There are now five cases: 

1. Q-X-Y & Q?X, 
2. Q = X, 
3.X?Q & X-Q-Y & Y, 
4. Q=Y, 
5. Y? Q & X-Y-Q. 

The proof will be completed only for case 3, shown in figure 3.5.3. The other 
cases are left to you. By the isosceles triangle theorem, lXZQ = LXZ"Q 
and LQZY = lQZ"Y. Since Q lies in the interiors of IXZY and 
LXZ"Y, axiom P2 yields lZ=l YZ"X = lZ'. The result then follows from 
the SAS axiom. • 

The following exterior angle theorem is a weak version of corollary 3.7.11, 
which is proved after the parallel axiom is introduced. Often, you need only 
this weak version. Including it here allows presentation of several major 
results—for example, the SAA congruence theorem, triangle inequality, and 
hinge theorem—before tha t axiom. 

Theorem 4 (Exterior angle theorem). Consider AXYZ and a point 
W?X such that W-X-Y. Then mZ Y, mlZ < ml WXZ. 

Proof. (See figure 3.5.4.) Find the points Ρ and Q such tha t 

X-P-Z XP = PZ 
Y-P-Q YP = PQ. 

Note that Q hes in the interior of I WXZ. By the vertical angle theorem 
and the SAS axiom, AZPY = AXPQ, hence 
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Figure 3.5.5 
Proof of theorem 5 

Figure 3.5.6 
Proof of lemma 6 

mZZ = mlZXQ = mZ WXZ - mZ WXQ < mZ WXZ. 

The proof that mZY < ml WXZ is left to you. • 

Theorem 5 (SAA congruence). Consider triangles ΔΧΥΖ and 
ΔΧ'Υ'Ζ'. If ZX=ZX' , lY=lY', and ZX=Z'X', then ΔΧΥΖ = 
ΔΧ'Υ'Ζ'. 

Proof. Find the point Y" on XY such that XY"=X'Y'. Suppose X-Y"-Y 
and Y V Y as shown in figure 3.5.5; then ΔΧ Υ"Ζ = ΔΧ'Υ'Ζ' by the SAS 
axiom, so /.XY"Z= lY'' = ZY', contrary to the exterior angle theorem. Thus 
X-Y"-Y is impossible. You can show similarly that X-Y-Y" & Υ" ? Y is 
impossible. Therefore, Υ" = Y, and the result follows from the SAS axiom. • 

Lemma 6 is a weak preliminary version of theorem 8. 

Lemma6. In ΔΧΥΖ, YZ<XY if and only if mZX<mZZ. 

Proof. (See figure 3.5.6.) Suppose YZ<XY. Find the point Ρ on YZ 
such that YP=XY. By the isosceles triangle and exterior angle theorems, 

ml YXZ < ml YXP = ml YPX < ml YZX. 

Conversely, suppose mZX<mZZ. If YZ>XY, then mZZ<mZX by the 
preceding argument, contradiction! If YZ=XY, then m Z Z = m / X b y t h e 
isosceles triangle theorem, contradiction! Thus YZ < X Y. • 

Theorem 7 (Triangle inequality). If points X, Y, and Ζ are not collinear, 
then XY+YZ>XZ. 

Proof. Find the point Ρ such that Z-Y-P and YP=YX. Then apply 
the isosceles triangle theorem and lemma 6 to ΔΧΖΡ. • 
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R 

Figure 3.5.7 
Proof of theorem 8 

X 

Theorem 8 (Hinge theorem). In AXYZ and AX'Y'Z', suppose XY = 
X'Y' and XZ = X'Z'. Then mlX<mlX' if and only if YZ<Y'Z'. 

Proof. (See figure 3.5.7.) Suppose mlX<m/.X'. Find a point Ρ in the 
interior of LY'X'Z' so that lY'X'P= IX. By the crossbar theorem, XrP 
intersects Y'Z' at a point Q. Find the point Z" on XrP such that X'Z" = 
XZ. By the SAS axiom, ΑΧΥΖ = AX'Y'Z", hence YZ= Y'Z". Find a point 
R in the interior of LZ"X'Z' so that lZ"X'R = IRX'Z'. By the crossbar 
theorem XrR intersects QZ' a t a point S. By the SAS axiom AZ"X'S = 
AZ'X'S, hence SZ' = SZ". Finally, 

YZ = Y'Z" < Y'S + SZ" = Y'S + SZ' = Y'Z'. 

(This follows from the triangle inequality unless Y', S, and Z" are 
collinear; in tha t case, it's trivial.) 

You can provide the proof that YZ < Y'Z' implies miX< miX'. • 

3.6 Perpendicularity 

Concepts 
Right, acute, and obtuse angles 
Perpendicular lines and planes 
Feet of perpendiculars 
Distance from a point to a line or a plane 
Perpendicular bisectors 
Dihedral angles 

This section presents many frequently used and closely related definitions 
and theorems about perpendicular lines and planes. I t introduces the notion 
of the dihedral angles formed by intersecting planes, then uses properties 
of perpendicular lines to show how to measure these angles. No new axioms 
are necessary. The proofs are generally straightforward, and most are left 
to you for completion. Do that! And provide the figures, too. These proofs 
are excellent exercises, for they use most of the geometry developed earlier 
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Ρ 

o Q 
Figure 3.6.1 

Proof of theorem 2 

R 

in this chapter. The order of the theorems in this section is crucial. If you 
change it, you'll probably find that the proofs become much more difficult. 

An angle whose measure is 90° is called a right angle. Angles measuring 
less than that are called acute; those greater are obtuse. Two angles whose 
measures total 90° are called complementary. Two distinct intersecting 
lines g and h form four angles. If one of these is right, then all are, and 
the lines are said to be perpendicular, written g χ h. This adjective is often 
applied to a segment or ray if it would be appropriate to apply it to the 
corresponding line. For example, a segment could be perpendicular to a 
line, ray, or another segment. The word perpendicular is sometimes used 
as a noun to mean perpendicular line. 

Theorem 1. Let Ρ be a point on a line g in a plane ε. Then there's a unique 
perpendicular to g in ε through P. 

Theorem 2. Let Ρ be a point not on a line g. Then there's a unique 
perpendicular to g through P. 

Proof. (See figure 3.6.1.) Let ε be the plane through Ρ and g. Select 
any distinct points Ο and Q on g, then a point R in ε on the side of 
g opposite Ρ so that lQOR = IQOP. Now find the point S on OR such 
that OS = OP. Segment PS intersects g at a point T. If Ο = Τ, then 
IQOR and /QOP form a congruent linear pair. If 0?T, then ATOP = 
ATOS, hence /.OTP and LOTS are a congruent linear pair. In either case, 
PS χ g. Uniqueness follows from the exterior angle theorem. • 

Point Τ in the proof of theorem 2 is called the foot of the perpendicular 
from Ρ to g. 

Theorem 3. The foot of the perpendicular to a line g through a point Ρ 
not on g is the unique point on g whose distance from Ρ is minimum. 

The minimum distance in theorem 3 is called the distance from Ρ to g. 
The distance from a point Ρ to a line through Ρ is defined to be zero. 
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Lemma 4. Let P, Q and Χ, Y be pairs of distinct points. If PX = XQ and 
PY=YQ, then PZ = ZQ for every point Ζ on XY . 

Theorem S. Let g, h, and k be lines through a point Ο such tha t g± 
h,k and hf-k. Let ε be the plane through h and k, and I be any line 
through O. Then g±l if and only if I lies in ε. 

Proof. Suppose I Hes in ε. Select any distinct points Ρ and Q on g 
such that PO = OQ and find points X and Y on h and & lying on different 
sides of I in ε. The segment XY intersects I a t a point Z^O. The SAS 
axiom and lemma 4 yield PX=XQ, PY=YQ, and PZ=ZQ, so g±l follows 
from the SSS congruence theorem. 

Conversely, suppose g±l. Let δ be the plane through g and I. If I 
weren't in ε, then δη ε would be a line m ψ I · By the previous paragraph, 
m would be another perpendicular to g in δ through O, which would 
contradict theorem 1. Thus / must He in ε. • 

A line g and a plane ε are said to be perpendicular, writ ten g J_ ε, if 
g η ε is a point Ο and g is perpendicular to every line through Ο 
in ε. 

Theorem 6. If Ρ is a point and g a Hne, then Ρ lies in a unique plane 
perpendicular to g. 

Proof. First, suppose Ρ is on g. Select any two distinct planes γ and 
δ through g. By theorem 1 there exist perpendiculars h and k to g through 
Ρ in γ and δ; clearly, h^k. Let ε be the plane through h and k, so 
that g χ e by theorem 5. If g were perpendicular to a plane ^ e through 
P, then Hnes δη ε and ί η ε ' would be distinct perpendiculars to g through 
Ρ in δ, which would contradict theorem 1! Thus ε is unique. 

You can provide the proof for the case that Ρ is not on g. • 

A point X is said to be equidistant from points _P_ and Q if PX = 
XQ. The midpoint of segment PQ is the point X in PQ equidistant from 
Ρ and Q. If P ^ Q then the perpendicular bisector of PQ is the plane 
through X perpendicular to PQ. 

Theorem 7 (Perpendicular bisector theorem). For any distinct points 
Ρ and Q, the perpendicular bisector of PQ is the set of all points equi-
distant from Ρ and Q. 

Theorem 8. Any two lines g and Λ perpendicular to a plane £ are coplanar. 

Proof. Let P=gnε and Q = hnε. If Ρ = Q the result is trivial. Assume 
Ρ Q and let X be the midpoint of PQ . Let k be the perpendicular to 
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PQ through X in ε, and select any distinct points Y and Ζ on k 
equidistant from X_ It's easy to show that both g and h he in the perpendic-
ular bisector of YZ. • 

Theorem 9. If Ρ is a point and ε a plane, then Ρ lies on a unique line 
g perpendicular to ε. 

Proof. First, suppose Ρ is on ε. Select any two distinct lines h and 
k through Ρ in ε. By theorem 6 there exist planes α and β through 
Ρ perpendicular to h and k. Then g = anfl is a line through Ρ perpen-
dicular to ε. The proof that g is unique is left to you. 

Now suppose Ρ is not on ε. Select any point Q in ε. By the previous 
paragraph there's a line hi. ε through Q. If Ρ is on h, let g = h. Suppose 
Ρ is not on h. Let δ be the plane through Ρ and h, and k = δ η ε. By 
theorem 1 there's a perpendicular g' to k through P ; let Ο be its foot. 
By the previous paragraph there's a line g ± ε through O. By theorem 8, 
g and /i are coplanar; since O^Q, g must he in δ. Thus g-g' because 
g,g' ±k. In either case, Ρ lies on a line g ± ε. You can prove that g is 
unique. • 

The point g η e in Theorem 9 is called the foot of the perpendicular to 
ε through P. 

Theorem 10. The foot of the perpendicular to a plane £ through a point 
Ρ is the unique point in ε whose distance from Ρ is minimum. 

The minimum distance in theorem 10 is called the distance from Ρ 
to ε. 

Let δ and ε be planes whose intersection is a line g. Let δ' be one 
of the sides of g in δ and ε' be one of the sides of g in ε. The point set 
δ'uguε' is called a dihedral angle; g is its edge. Note that δ' hes entirely 
on one side of ε, and ε' entirely on one side of δ. The interior of the dihedral 
angle is the set of all points that lie on the same side of ε as δ' and on 
the same side of δ as ε'; it's apparently convex. Analogs of theorems 2 
to 4 of section 3.4 hold for dihedral angles. You should formulate and prove 
them. 

Let γ be a plane perpendicular to the edge g of a dihedral angle 
δ' ugOJ, intersecting g at a point O. Then γη δ' - OP and γη ε' = OQ 
for some points Ρ and Q noncollinear with O. The angle IPOQ is said 
to belong to the dihedral angle. (See figure 3.6.2.) The proof of the follow-
ing theorem is due to H. G. Forder. 9 

Forder[1928] 1958, chapter IV, paragraph 84. 
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Figure 3.6.2 
Proof of theorem 11 

Theorem 11 (Dihedral angle theorem). All angles belonging to dihedral 
angle δ' υ g u ε' are congruent. 

Proof. Let γ, Ο, Ρ, and Q be as just described for figure 3.6.2. Consider 
a plane y'-Lg distinct from γ and find points O', P', and Q' such that 
Y'ng = O' and 

γ'ηδ' = OrP' 
γ'ηε' = OrQ\ 

Let X be the midpoint of OO' and find points P" and Q" such that 

P' -O'-P" OP = O'P" 
Q'-O'-Q" OQ=0'Q". 

By the SAS axiom, AOXP=AO'XP" and AOXQ = AO'XQ", hence 

XP = XP" L OXP = L O'XP" 
XQ = XQ" L OXQ = L O'XQ". 

These angle congruences imply that the triples Ρ, X, P" and Q, X, Q" are 
coUinear, hence AXPQ = AXP"Q" by the vertical angle theorem and the 
SAS axiom. Thus PQ = P'Q", hence APOQ = AP'aQ" by the SSS theorem. 
Therefore IPOQ = iPO'Q" = iP'O'Q'. • 

The measure of a dihedral angle is defined to be the common measure 
of all the angles that belong to it. Two distinct intersecting planes δ and 
ε form four dihedral angles. If one of them has measure 90°, then all do, 
and the planes are said to be perpendicular, written δ ± ε. 

Theorem 12. Let δ and ε be planes whose intersection is a line g. Let 
h be a line in δ perpendicular to g. Then h ± ε if and only if δ ± ε. 
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3.7 Parallel axiom and related theorems 

Concepts 
Absolute geometry 
Parallel lines and planes, and the distance between them 
Alternate interior angles 
Parallel axiom—Euclid's and Playfair's versions 
Transitivity theorems for parallels 
Sum of the measures of the angles of a triangle 
Strong exterior angle theorem 
Invariance of betweenness under parallel projection 
Convex quadrilaterals: trapezoids, parallelograms, rhombi, 

rectangles, and squares 
Right triangles, their hypotenuses and legs; 30°-60° right triangles 
Oblique triangles 

All results in chapter 3 through corollary 3 of this section belong to absolute 
geometry: They're independent of the parallel axiom. To prove theorem 
4, the book uses the axiom for the first time, and thus specializes to Euclidean 
geometry. The theorems of absolute geometry could also have served as 
an introduction to non-Euclidean geometry. (That theory starts like Euclidean 
geometry, but postulates the denial of the parallel axiom.) This section 
continues with theorems specifically about parallel lines, then presents a 
catalog of frequently used properties of various types of quadrilaterals. The 
proofs of these results are all straightforward. Most of them, and the 
corresponding figures, are left to you as exercises. 

Coplanar disjoint lines g and h are said to be parallel, written glh. 
This adjective is often applied to a segment or ray if it would be appropriate 
to apply it to the corresponding line. For example, a segment could be parallel 
to a hne, ray, or another segment. The word parallel is sometimes used as 
a noun to mean parallel line. 

Theorem 1 (Alternate interior angles theorem, part 1). Let Ο, P, 
Q, and R be points in a plane ε, as shown in figure 3.7.1, with O^P 
and with Q and R on different sides of OP. If lQOP= /.RPO, then 
0"Q I PR. 

Proof. The lines' intersection would contradict the weak exterior angle 
theorem. • 

Corollary 2. Two coplanar perpendiculars to the same hne are parallel. 
Two lines perpendicular to the same plane are parallel. 
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Corollary 3. If Ρ is a point not on a line g, then there exists at least one 
parallel to g through P. 

John Playfair 1 0 introduced the following version of the parallel axiom 
in 1795. It's a simplification of Euclid's original version, which was quoted 
in section 2.4. Euclid's axiom, slightly modified, follows as theorem 4. 

Parallel axiom. If Ρ is a point not on a line g, then there exists at most 
one parallel to g through P. 

Theorem 4 (Euclid'sparallel axiom). Let Ο, P, Q, and R be points 
in a plane ε with Ο ^ Ρ and with Q and R on different sides of OP. 
If m/.QOP>vxlRPO, then OQ intersects PR on the same side of OP 
as R. 

Proof. Construct R' on the same side of OP as R, so that mlOPR' = 
mZQOP. Then R hes in the interior of /.OPR. By theorem 1, 0~Q / PR', 
so OQ and PR must intersect as claimed. • 

Theorem 5 (Alternate interior angles theorem, part 2). Let Ο be a 
point in a line g in a plane ε, let Q and R be points in ε on different 
sides of g, and let h be a line in ε through R. If OQ/h, then h 
intersects g a t a point P ^ O , and AQOP= IRPO. (See figure 3.7.1.) 

Corollary 6. Let g, h, and k be coplanar lines such that g±h and h^ 
k. Then h/k if and only if g±k. 

Corollary 7. Let ε be a plane and h and k be lines such that h ± ε and 
h τ* k. Then hjk if and only if k ± ε. 

Corollary 8 (Transitivity theorem for parallel lines). Let g, h, and 
k be distinct fines. If g/jk and hgk, then glh. 

Proof. Construct a plane perpendicular to k, then apply corollaries 7 
and 2. • 

Playfair [1795] I860, 11. 
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John PLAYFAIR was born near Dundee, Scotland, in 1748. He was edu-
cated for the ministry at the University of St. Andrews, ordained, and 
succeeded his father as a parish priest. But he soon resumed scientific study 
at the University of Edinburgh, and remained there for the rest of his life. 
Playfair became Professor of Mathematics at Edinburgh in 1785. His popular 
1795 book Elements of geometry, an edition of Euclid, included his well known 
improved version of the parallel axiom. Playfair was editor of the Transac-
tions of the Royal Society of Edinburgh, and his interests included several 
other sciences. He is best known for the pioneering work in geology he 
published in the 1802 treatise, Illustrations of the Huttonian theory of the 
earth. Playfair became Professor of Natural Philosophy at Edinburgh in 
1805, and remained active until his death in 1819. 

Corollary 9 (Triangle sum theorem). The sum of the measures of the 
angles of a triangle is 180°. 

Proof. Through a vertex construct a parallel to the opposite edge, and 
apply theorem 5. • 

Corollary 10. An equilateral triangle has three 60° angles. An isosceles 
right triangle has two 45° angles. 

Part of the triangle sum theorem belongs to absolute geometry: it's possible 
to prove, without using the parallel axiom, that the sum of the measures 
of the angles of a triangle is ί 180°.1 1 The argument, first published by Giro-
lamo Saccheri in 1733, is not given here, because it uses specialized methods 
and, of course, is unnecessary for the development of Euclidean geometry. 

The triangle sum theorem affords a much simpler proof of the SAA 
congruence theorem than the one given in section 3.5. Consider two triangles 
with a pair of congruent edges and two pairs of congruent angles in the SAA 
pattern. By the triangle sum theorem, the third pair of angles are congruent 
as well, so the triangles are congruent by the ASA congruence theorem. 
The triangle sum theorem also yields a stronger form of the exterior angle 
theorem than the one originally presented in section 3.5: 

Corollary 11 (Strong exterior angle theorem). Consider AXYZ and 
a point W?X such that W-X-Y. Then ml WXZ = ml Y+ mZZ. 

Two planes δ and ε are said to be parallel, written δ / ε, if they're 
disjoint. A hne g and a plane ε are said to be parallel, written g } ε, if 
they're disjoint. 

1 1 Moise [1963] 1990, section 10.4. 
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Theorem 12. Let g be a line, δ and ε be distinct planes and g ± δ. Then 
δ I ε if and only if g ± ε. 

Corollary 13 (Transitivity theorem for parallel planes). Let a, 
β, and γ be distinct planes. If α / γ and β I γ, then α / /? . 

Theorem 14 (Invariance of betweenness under parallel projec-
tion). Let parallel lines g, h, and j intersect a line k a t points X, Y, 
and Z, and a line k' a t points Χ', Y', and Z ' . If X-Y-Z, then 
X'-Y'-Z'. 

Proof. All these lines He in a plane e. The points X and X' lie on the 
same side of h in ε, as do Ζ and Z' . Since X and Ζ he on different sides 
of h, so must X' and Z ' . • 

By theorem 14, it makes sense to speak of the points in a plane ε between 
two parallel lines in ε, and of the points between two parallel planes. 

Consider four coplanar points P, Q, R, and S, no three of which are 
collinear, such that segments PQ, QR, RS, and SP intersect only a t 
their ends, if at all. The ordered quadruple PQRS is called a quadri-
lateral; the four points are its vertices, and the four segments, its edges. 
Its angles are 

lP=lSPQ lS = lRSP 
lQ=lPQR lR = /.QRS. 

Disjoint edges are said to be opposite. Two vertices are opposite if they're 
not ends of the same edge; this terminology is also applied to the correspond-
ing angles. Segments PR and QS are called the diagonals of PQRS.12 

Theorem 15. The following conditions on a quadrilateral in a plane ε are 
equivalent: 

1. each edge Hes entirely on one side of the line in ε that includes the 
opposite edge, 

2. each vertex Hes in the interior of the opposite angle, 
3. the diagonals intersect. 

A quadrilateral that satisfies the theorem 15 conditions is caUed a convex 
quadrilateral. (This usage is inconsistent with the earlier definition of 
convex; it does not mean tha t the quadrilateral is a convex point set.) 

Diagonal is composed of the Greek prefix dia- meaning across and root -gon meaning angle. 
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A trapezoid is a quadrilateral two of whose edges lie in parallel l ines. 1 3 

If the other two are congruent, it's called isosceles. 

Theorem 16. A trapezoid is a convex quadrilateral, hence its diagonals 
intersect. 

Proof. Consider a quadrilateral PQRS such that PQ } RS. In verifying 
condition 1 of theorem 15, only the following step is tricky. Suppose S and 
Ρ lay on opposite sides of QR. Then SP would intersect QR a t a point 
X. Construct line g parallel to lines PQ and R"S through X. Then P-X-S 
would imply Q-X-R by theorem 14, hence SP and QR would intersect 
at a point other than a vertex—contradiction! Therefore SP must he entirely 
on one side of QR. • 

A parallelogram is a quadrilateral PQRS such that PQ / RS and 
QR I SP. Clearly, a parallelogram is a trapezoid, hence its diagonals must 
intersect. 

Theorem 17. For any noncollinear points P, Q, and 72, there's a unique 
point S such that PQRS is a parallelogram. 

Theorem 18 (Parallelogram theorem). The following conditions on a 
quadrilateral PQRS are equivalent: 

1. PQRS is a parallelogram, 
2. PQ = RS and QR = SP, 
3. lP = LR and lQ = iS, 
4. PQ /R"S and PQ = RS, 
5. the diagonals of PQRS intersect at their common midpoint. 

A rhombus is a parallelogram with all edges congruent. 1 4 

Theorem 19. The diagonals of a parallelogram lie in perpendicular lines 
if and only if it's a rhombus. 

A rectangle is a parallelogram with all angles congruent. A square is a 
rectangle with all edges congruent—a rectangular rhombus. 

Theorem 20. All angles of a rectangle are right. Any parallelogram with 
one right angle is a rectangle. 

Trapezoid stems from the Greek word for table, which is derived in turn from tetra- and ped-
meaning four and foot, and a suffix meaning shaped like. 

Schwartzman (1994, 189) reports that rhombus stems from the Greek word for an object 
of that shape used in religious rituals. 
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Theorem 21. If g and h are parallel lines and Ρ and P' are points in 
g, then the distances from Ρ and P' to h are equal. Similar results hold 
for a parallel line and plane, and for parallel planes. 

The distances described in theorem 21 are called the distances between the 
parallel lines or planes. 

A triangle with a right angle is called a right triangle; the edge opposite 
the right angle is called its hypotenuse and the other edges, its legs. A triangle 
that 's not right is called oblique. 

Theorem 22. The midpoint of the hypotenuse of a right triangle is equidistant 
from the vertices. 

Theorem 23. Consider LOPQ with right angle 10. Then OP=lhPQ 
if and only if mZP = 60° and m/.Q- 30°. 

3.8 Area and Pythagoras' theorem 

Concepts 
Triangular and polygonal regions 
Interior and boundary points, edges, and vertices 
Area axioms 
Bases and altitudes of trapezoids and triangles 
Areas of squares, rectangles, triangles, trapezoids, and 

parallelograms 
Pythagoras' theorem 
Existence of a triangle with given sides 
Alternative area theories based on similarity or integration 

An area theory must answer two big questions: 

• To what figures does it assign areas? 
• How does it compute their areas? 

For the first question, in elementary geometry, the answer is fairly 
clear: figures built from triangles, with their interior points. These include 
all polygonal regions. Later, it may seem unfortunate that figures bounded 
by curves are excluded. But a theory general enough to include a large variety 
of curved figures is beyond elementary geometry. Section 3.14 does present 
an ad hoc theory that considers some figures bounded by circular arcs. The 
first task of the present section is to define precisely the polygonal regions 
that will be assigned areas. The computations are then based on some new 
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area axioms that closely describe the process we use naturally to determine 
areas of complicated figures from known results for simpler ones. One of 
the most important results in mathematics—Pythagoras' theorem—fits 
gracefully into this theory, even though you might not ordinarily consider 
it related to area. The section concludes by sketching some alternative, more 
difficult approaches to area theory. 

Consider three noncollinear points X, Y, and Z. The set of all points 
that he between points on edges of ΔΧΥΖ is called the triangular region 
determined by AXYZ. 

Theorem 1. If points X, Y, and Ζ are noncollinear, then the following 
sets coincide: 

1. the triangular region determined by AXYZ, 
2. the union of the edges of AXYZ with the intersection of the interiors 

of any two of its angles, 
3. the intersection of all convex point sets containing X, Y, and Z. 

This point set is convex. 

Proof. Show first that sets (1) and (2) coincide. Then show that (2) is 
convex, and finally that (1) and (3) coincide. • 

Theorem 2. If PQRS is a convex quadrilateral, then the following point 
sets coincide: 

1. the union of the triangular regions determined by APQR and 
ARSP, 

2. the union of the triangular regions determined by AQRS and 
ASPQ, 

3. the union of the edges of PQRS with the intersection of the interiors 
of any two opposite angles, 

4. the intersection of all convex point sets containing P, Q, R, 
and S. 

Theorem 3. If PQRS is a nonconvex quadrilateral, then exactly one pair 
of opposite vertices he on opposite sides of the line through the other two. 

The region Σ determined by a quadrilateral PQRS is defined to be the 
point set described four ways by theorem 2 if PQRS is convex; otherwise, 
if Q and S lie on opposite sides of PR in the plane PQR, then Σ is 
defined to be the union of the triangular regions determined by APQR 
and ARSP. 

Theorem 4. The region determined by a quadrilateral PQRS is convex 
if and only if PQRS is a convex quadrilateral. 
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This book will often use the same terms to describe a triangle or quadrilateral 
and the associated region. 

In general, a polygonal region1* is defined to be the union of a finite set 
of triangular regions, any two of which intersect, if at all, in a point or segment. 
Clearly, all triangular regions are polygonal regions; and the region deter-
mined by a quadrilateral is a polygonal region in the general sense. Figure 
3.8.1 shows some point sets that aren't polygonal regions. Figure 3.8.2 shows 
a point set tha t is a polygonal region, although its construction, indicated 
by solid outlines, doesn't reveal that. One way to reconstruct it from properly 
intersecting triangular regions is to dissect the left-hand triangle as suggested 
by the dotted lines. 1 6 

It's evident which points of the polygonal region displayed in figure 3.8.2 
should be regarded as interior: those interior to the left- or right-hand 
triangle. But it's surprisingly hard to define that notion for polygonal regions 
in general. In exercises 4.7.9 and 4.7.10 you'll describe some examples to 
show that the criterion just applied to this example doesn't work in general. 
Then you'll work out the details of a general definition of the concepts of 
interior and boundary points of a polygonal region Σ. Those are needed 
for the discussion of polyhedra in section 8.4. In particular, you can distinguish 
whether an edge or vertex of a constituent triangular region is a boundary 
point of Σ; if so, it's called an edge or vertex of Σ. 

Figure 3.8.1 Point sets Figure 3.8.2 
tha t are not polygonal regions Questionable region 

1 5 Polygon stems from the Greek poly- and gonia for many and angle. 

1 6 For some applications it's best to define polygonal region so that two constituent triangular 
regions must intersect, if at all, at a vertex of each or along an entire edge of each. To 
reconstruct the figure 3.8.2 region according to that definition, you could also dissect its 
right-hand triangle into three smaller triangles. With the more stringent intersection 
requirement, theorem 5 would require a rather complicated proof. That condition would 
make results in some applications of this theory easier. Since those aren't included in this 
book, however, the simpler definition is used. 
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The first result in this section about polygonal regions is required for stating 
area axiom A2. You can write its proof in a sentence or two. 

Theorem 5. If the intersection of polygonal regions Σ and Γ is empty or 
the union of a finite set of points and segments, then Σ υ Τ is a polygonal 
region. 

Area is another partly undefined concept, like length and angle measure. 
It's a function that assigns to each polygonal region Σ a positive real number 
ΆΣ called the area of Σ. Further details of the function are undefined. Some 
properties of area are postulated by the following area axioms A l to A3. 
They were first stated in 1941, in a slightly different form, by George David 
Birkhoff and Ralph Beatley. 1 7 

Axiom Al. Regions determined by congruent triangles have the same area. 

Axiom A2. If the intersection of polygonal regions Σ and Τ is empty or 
the union of a finite set of points and segments, then a (Σ υ Τ) = &Σ + aT. 

Axiom A3. The area of a square is the square of one of its edges. 

Often it's convenient to call two parallel edges of a trapezoid its bases, 
and the distance between the lines including these edges, the corresponding 
altitude. 

Theorem 6. The area of a rectangle is the product of a base b by the corre-
sponding altitude a. 

Proof. (See figure 3.8.3.) Axioms A1 and A2 yield aPQRS = aRUVW 
because APQS=AVUW and AQRS = AURW. By axioms A2 and A3, 

aPQRS = ιΛ (aPTVX - aQTUR - aRWXS) 
= ιΛ ((a + b)2 - a2 - b2) = ab. • 

Corollary 7. The area of a right triangle is half the product of its legs. 

Often it's convenient to call one edge of a triangle its base. (If the triangle 
is isosceles but not equilateral, and nothing else is stated, then base means 
the edge that's not congruent to the others.) If V is the vertex opposite the 
base and_F_ the foot of the perpendicular from V to the base hne, then 
segment FV is called the altitude on that base. Analyses of triangles often 
split into cases depending on whether F falls between the base vertices. 

1 7 Birkhoff and Beatley [1941] 1959, chapter 7. 
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Figure 3.8.3 
Proof of theorem 6 

Figure 3.8.4 
Proof of theorem 9 

Theorem 8. If the foot of an altitude of a triangle falls outside the base, 
then the nearer base angle is obtuse. If both base angles are acute, the foot 
is on the base. 

Theorem 9. The area of a triangle is half the product of a base b by the 
corresponding altitude a. 

Proof. Consult figure 3.8.4. There are two cases. • 

Corollary 10. The area of a trapezoid is half the product of an altitude by 
the sum of the corresponding bases. 

Proof. Draw a diagonal. • 

Corollary 11. The area of a parallelogram is the product of a base by the 
corresponding altitude. 

Pythagoras' theorem that the sum of the squares of the legs of a right 
triangle equals the square of its hypotenuse is often called the most important 
in mathematics. While that may be mere grandiloquence, the result does 
prove fundamental for many different subjects. Set in modern algebraic 
language, it may seem to be about lengths, hence inappropriate for inclusion 
in this section. But it was originally viewed as a theorem about the areas 
of squares erected on the triangle's edges. Therefore, it's appropriate to 
present a proof based on area. Section 3.9 will give another proof, based 
on similarity theory. 

Theorem 12 (Pythagoras' theorem). The square of the hypotenuse of 
a right triangle is the sum of the squares of its legs. 
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Figure 3.8.5 
Proof of 

Pythagoras' theorem 

Proof. Consult figure 3.8.5. Start with AOPQ where LO is a right angle. 
Construct R, S, T, U, and V as shown. Verify that V, Q, and Ο are 
collinearand VQ = b. Note that AOPQ=ARSP=ATUS=AVQU and that 
ORTV and PSUQ are squares. Then 

(PQ) 2 = aPSUQ = &ORTV - A&AOPQ 
= (a + b)2 - 4( ι Λα6) = σ 2 + 6 2 . • 

The following result is a converse of Pythagoras' theorem: A triangle 
is right if its edges satisfy Pythagoras' equation. For example, a triangle 
with edges of length 3, 4, and 5 is right because 3 2 + 4 2 = 5 2 . This provided 
ancient surveyors a practical method for constructing right angles—form 
a loop of rope with 3 + 4 + 5 = 12 equally spaced knots, and have assistants 
hold appropriate knots, stretching the rope taut into a right triangle. 

Corollary 13. Distinct points Ο, P, and Q, such that (OP) 2 + (OQ) 2 = 
(PQ) 2 , are noncollinear and form a right angle LPOQ. 

Proof. If Ο, P, and Q were collinear, then one of the equations 

OP + PQ=OQ PQ + QO = POQO + OP=QP 

would hold. But each of these is inconsistent with (PQ) 2 = (OP) 2 + 
(OQ) 2 , so the points must be noncollinear. Find a point Q' such that 
iPOQ' is a right angle and OQ' = OQ. Pythagoras'theorem and the SSS 
congruence theorem imply APOQ = APOQ'. • 

The following consequence of Pythagoras' theorem is a converse of the 
triangle inequality: You can construct a triangle with any given edge lengths 
as long as you don't violate the inequality. 

Theorem 14. Let x, y, and ζ be positive real numbers, each of which 
is less than the sum of the other two. Then there is a triangle whose edges 
have lengths x, y, and z. 
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Proof. Assume x>. y t z; the other cases are handled similarly. In 
case χ = z, construct an equilateral triangle with edge x. Now suppose 
x>z. Select any points Y and Ζ such tha t YZ = x. Define 

Then 0 < t since x2 i. y2. From 0 < χ - ζ < y follows 0 < y2 - (x - zf = 
y2 - x2 + 2xz - z2, so z 2 + x2 -y2 < 2xz, and t < z. Find the point W in 
YZ with YW=t, and let g be a perpendicular to YZ through W. Find 
a point X on g such that XW= Jz2 - t2. Then X, Y, and Ζ are noncollin-
ear, and by Pythagoras' theorem, XY= ζ and XZ = y. • 

Alternative area theories 

Couldn't we have constructed this area theory without new undefined concepts 
and new axioms? Couldn't we just define the area of a triangle by its formula 
and define the area of a polygonal region as the sum of the areas of its constitu-
ent triangles? There are two major problems with tha t process. 

First, the triangle area formula—half the product of a base and the corre-
sponding altitude—depends on which edge you select as base. Without this 
section's axiomatic development, how would you determine that the formula 
gives the same area no matter which base you select? In figure 3.8.6, this 
amounts to equations 

VtAB-CF=ViBC-AD 
(AB)/(BC) = (AD)/(CF). 

That is, you'd need to show that AABD and ABCF are similar. But 
similarity theory hasn't been developed yet. It will be, in the next section, 
but there it will be based on area! Thus, introducing triangle area by definition 
would require an alternative similarity theory not based on area. That 's 
the way Euclid discussed similarity; but it's much harder than the theory 
presented in this book. 1 8 

t = 
_ z2 + x2-y2 

2x 

C 

Figure 3.8.6 Different 
bases and altitudes 

A F Β 

IB Moiee [1963] 1990, chapter 20. 
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PYTHAGORAS was born around 580 B.C., the son of a wealthy merchant. 
He grew up on the Greek island Samos, just off the coast of Asia Minor. 
Little definite is known about his early life, but there's evidence that he 
studied with the philosophers Thales of Miletus and Pherecydes of Syros. 
The biographer Iamblichus (who died around A.D. 330) reported that 
Pythagoras traveled to Egypt, where he studied Egyptian culture and religion 
for many years, then was captured by invading Persians and taken to Baby-
lon. Evidently after studying Babylonian society and traditions for several 
years, Pythagoras returned to Samos. He found life there intolerable under 
a tyrannical government, so he emigrated around 530 B.C. to Croton in 
southern Italy, where he founded a religious and academic brotherhood. 
(Parts of Iamblichus' account are fantastic, his chronology of these wander-
ings is inconsistent, and there is apparently little confirmation from other 
sources. However, Egyptian and Babylonian ideas strongly influenced the 
teachings of the brotherhood. The unlikelihood that other Pythagoreans in 
Italy had directly encountered the Egyptian and Babylonian doctrines lends 
credence to Iamblichus' story.) 

Among the major tenets of the Pythagorean brotherhood were a strict 
regimen of personal behavior, belief in the immortality and transmigration 
of souls, a nongeocentric cosmology, and a belief that all knowledge can be 
reduced to numerical relationships. The Pythagoreans made many deep 
investigations in music and properties of numbers, and they gained knowl-
edge of much of the geometry later codified by Euclid. Many roots of these 
sciences had developed hundreds of years earlier in Egypt and Babylon; the 
exact role the Pythagoreans played in introducing them into Greek culture 
is still under study. 

The Pythagoreans became politically influential in southern Italy, gaining 
control of several cities. But that brought reaction. After an uprising in 509 
B.C. they were banished from Croton, and Pythagoras himself fled to another 
southern Italian city, Metapontum, where he died around 500 B.C. 

During the next decades, the brotherhood did regain some political power, 
but finally, after widespread unrest, they were driven almost entirely out of 
Italy around 450 B.C., and subsequent persecution in Greece led to the 
disappearance of their society. The last vestige of their political hegemony 
was in the city of Tarentum in southern Italy, where during 400-360 B.C. the 
Pythagorean Archytas, a friend and colleague of Plato, was prominent in 
science and government. 

Second, to define the area of a polygonal region as the sum of the areas 
of its constituent triangles, you'd need to prove first—without using new 
axioms—that the sum doesn't depend on the manner in which the region 
is divided into triangles. That's possible, but the proof requires as much 
mathematics as the entire area theory presented here . 1 9 

Ibid., chapter 14. 
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You can also approach area theory via integrals. Although calculus 
texts commonly use areas in motivating the definition of the integral, and 
perhaps even in proving some of its properties, that 's not essential. Real 
analysis texts develop integration theory with no reference to geometry. 
The advantage of this approach is tha t it yields immediately the areas of 
some regions bounded by curves. There are three disadvantages. First, 
the mathematics is too advanced for elementary geometry. Second, it's 
difficult to express concisely just what regions have areas. Third, it's hard 
to formulate and prove the theorem that the area of the union of two regions 
is the sum of their individual areas, provided they intersect only along their 
boundaries. Nevertheless, when you need areas for nonpolygonal regions, 
you have to use integral methods in some form. 

3.9 Similarity 

Concepts 
Similar triangles 
Similarity ratio 
Invariance of distance ratios under parallel projection 
AA, SAS, and SSS similarity theorems 
Ratio of areas of similar triangles 
Alternate proof of Pythagoras' theorem 

This section presents the theory of similar triangles, based on the area theory 
developed in section 3.8. The approach, much smoother than Euclid's original 
theory, was introduced by Moise in 1964. 2 0 

Triangles AXYZ and AX'Y'Z' are said to be similar, writ ten 
AXYZ~ AX'Y'Z', if their corresponding angles are congruent and their 
corresponding edges proportional—that is, 

lX= ίΧ' ΙΥ=ΙΥ' LZ=lZ' 

YZ = ZX = XY 

Y'Z' Z'X' X'Y' ' 

This ratio of corresponding edges is called the similarity ratio. It's sensitive 
to the order in which you mention the triangles: if AXYZ ~ AX' Y'Z' with 
ratio r, then AX'Y'Z' ~ AXYZ with ratio 1/r. Similarity is a symmetric 
relation. It's also reflexive: in fact, any two congruent triangles are similar, 

Moise and Downs 1964, chapter 12. For a rigorous treatment of Euclid's approach, see Moise 
[1963] 1990, chapter 20. 
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Ζ 

Figure 3.9.1 
Proof of theorem 2 

X Y 

with ratio 1. Theorem 1 shows that similarity is transitive, so it's an equi-
valence relation. 

Theorem 1 (Transitivity of similarity). If ΔΧΥΖ ~ ΔΧ'Υ'Ζ' and 
ΔΧ'Υ'Ζ' ~ ΔΧ'Ύ'Ζ", then ΔΧΥΖ~ ΔΧ"Υ"Ζ", and the ratio of the third 
similarity is the product of the ratios of the first two. 

Theorem 2. Let X' and Y' be distinct points on edges XZ and YZ of 
ΔΧΥΖ. Then XY / Χ Ύ ' if and only if 

XX' _ YT_ 
X'Z Y'Z 

Proof. (See figure 3.9.1.) Assume XY I X'Y'. If you regard XX' and 
X'Z as bases of ΔΧΧΎ and ΔΧ'ΖΥ', then these triangles have the same 
altitude h, hence 

aAXX'Y' _ *(XX')h _ K(XX')h _ XXJ. ( 1 ) 

ΆΔΧ'ΖΥ' Yi(X'Z)h V*(X'Z)h X'Z ' 

In the same way, 

ΆΔΥΥ'Χ' _ YY' 

αΔΥ'ΖΧ' Y'Z 
(2) 

Now regard X'Y' as the base of ΔΧΧΎ' and ΔΥΥ'Χ'. These triangles 
then have the same altitude, namely the distance between XV and Χ Ύ ' , 
hence 

a ΔΧΧΎ' = a ΔΥΥ'Χ' . (3) 

Equations (1) to (3) yield 

XX' _ YY' 

X'Z Y'Z 
(4) 

Conversely, assume equation (4). Find the point Y" on ZY such that 
XY" / ΧΎ' . By the previous paragraph, 

XXI _ Υ'Ύ' 
X'Z Y'Z 
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hence ΥΥ' = Υ"Υ'. Thus Y=Y" because X-X'-Z implies Y"-Y'-Z. • 

Corollary 3 (Invariance of distance ratios under parallel projec-
tion). Let parallel lines g,h,j intersect lines k and I a t points Χ,Υ,Ζ 
and X\Y\Z'. Then 

XY = X'Y' 
YZ Y'Z' ' 

Proof. Incase X?X'. draw XZ 7 . • 

Theorem 4 (AA similarity theorem). Consider AXYZ and 
AX'Y'Z'. If Z X = / X ' and lY=lY', then Δ Χ Υ Ζ - Δ Χ Ύ ' Ζ ' . 

Proo/. By the triangle sum theorem, LZ = ίΖ'. Find the points X" on 
ZX and Y" on ZY such that ZX" = Z'X' and Χ'Ύ"/ΧΥ. By the alternate 
interior angles and ASA congruence theorems, ΑΧ"Υ"Ζ = AX'Y'Z'. By 
theorem 2, 

xx" _ Y _ R 

X"Z Y"Z 

XZ _ X"Z±XX" _ 1 ± = i±ZIl = Y"Z± YY" _ _YZ_ 
X'Z' X"Z X"Z Y'Z Y"Z Y'Z' ' 

(There are two cases.) An analogous argument with X, Y, and Ζ permuted 
yields 

YZ _ XY_ 4 

YZ' X'Y ' 

Theorem 5 (SAS similarity theorem). Consider AXYZ and 
AX'Y'Z'. If iZ=lZ' and 

xz = yz 
X'Z' Y'Z' ' 

then AXYZ- AX'Y'Z'. 

Theorem 6 (SSS similarity theorem). Consider AXYZ and 
AX'Y'Z'. If 

XY _ YZ _ ZX 
X'Y' Y'Z' Z'X' ' 

then AXYZ- AX'Y'Z'. 

Theorem 7. Let AXYZ-AX'Y'Z' with ratio r. Then & α Λ Ι * = r

2 . 
a AX'Y'Z' 
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Ζ 

X 

Figure 3.9.2 
Theorem 8 

Theorem 8. In AXYZ, let LZ be a right angle and W be the foot of the 
perpendicular to XY through Z. Then X-W-Y, W?X,Y, and AXYZ~ 
AXZW- AZYW. (See figure 3.9.2.) 

Proof. X-W-Y and W^X, Y follow from the exterior angle theorem, and 
the similarities from the AA similarity theorem. • 

Theorem 8 affords a proof of Pythagoras' theorem quite different from 
the area proof given in section 3.8. Let x=YZ, y-ZX, and z = XY as 
shown in figure 3.9.2. Similarities AXYZ ~ AXZW and AXYZ ~ 
AZYW yield y/z = (XW)ly and xfz = (WY)/x, hence y2 = (XW)z and 
x2 = (WY)z. Therefore x2 + y2 = (XW+ WY)z = z2! You might use this 
proof if you wanted to develop similarity theory and reach Pythagoras' theorem 
without considering areas. 

3.10 Polyhedral volume 

Concepts 
Tetrahedra, their faces and interiors; regular tetrahedra 
Tetrahedral regions 
Congruent and similar tetrahedra 
Prisms, pyramids, their bases and altitudes; right and oblique prisms 
Lateral edges and faces 
Parallelepipeds, boxes, and cubes 
Polyhedral regions 
Polyhedral regions associated with prisms and pyramids 
Volume axioms 
Cavalieri's axiom is required 
Volumes of prisms, parallelepipeds, and pyramids 

This section presents a theory of volume analogous to that for area developed 
in section 3.8. Its major results are the volume formulas for prisms and 
pyramids. Detailed description and analysis of three-dimensional analogs 
of triangles, quadrilaterals, and polygonal regions is tedious work, only 
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outlined here. You'll probably find this material unfamiliar, and you're 
unlikely to locate any more complete elementary treatment in the literature. 
I t will challenge your spatial intuition. Most mathematical scientists use 
only the end results, which they justify by more advanced integral calculus 
methods. But this version of the theory is useful to specialists in foundations, 
to teachers who need to cover some of this material in elementary classes, 
and to software engineers who design programs to manipulate and depict 
solid figures and compute their volumes. 

A tetrahedron is an ordered quadruple of noncoplanar points. From them 
you can construct four triangles. The associated triangular regions are called 
the faces of the tetrahedron. Each face is opposite the remaining vertex. 
Each edge hes on two faces, which determine a corresponding dihedral angle. 
A tetrahedron has three pairs oiopposite edges, tha t don't intersect. (See 
figure 3.10.1.) A tetrahedron is called regular if all its edges are congruent. 

Theorem 1. The intersection of the interiors of either pair of opposite dihedral 
angles of a tetrahedron is the same. 

The intersection described in theorem 1 is called the interior of the 
tetrahedron. 

Theorem 2. These point sets associated with a tetrahedron Τ all coincide 

1. the set of all points between any two points on faces of T, 
2. the union of the interior and faces of T, 
3. the intersection of all convex sets tha t contain the vertices of T. 

The set described three ways by theorem 2 is clearly convex; it's called the 
tetrahedral region associated with T. 

Tetrahedra OPQR and O'P'Q'R' are called congruent if 

OP=0'P' 
PQ = P'Q' 

OQ=0'Q' 
QR = Q'R' 

OR = O'R' 
RP=R'P'. 

Figure 3.10.1 
Tetrahedron 
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Figure 3.10.2 
Oblique nonconvex 

quadrangular prism 

Congruence of tetrahedra is an equivalence relation. Clearly, it implies 
congruence of all pairs of corresponding faces and edge angles. With some 
effort, you can also prove that corresponding dihedral angles of congruent 
tetrahedra have equal measure. It's interesting but tedious to develop a 
theory analogous to the triangle congruence theorems in section 3.5, to specify 
exactly which subsets of these equations and congruences imply the rest. 
Exercise 4.3.8 invites you to try your hand on that. A theory of similar 
tetrahedra analogous to section 3.9 would also be interesting. The author 
has never seen that worked out. Later in this section, you may need a few 
rudimentary results like these to analyze prisms and pyramids. 

A prism is a point set 77 determined as in figure 3.10.2 by a polygonal 
region Σ, a plane ε parallel to the plane of Σ, and a line g that intersects 
these two planes. 2 1 For each point Ρ in Σ, let P' denote the intersection 
of ε with the line through Ρ equal or parallel to g. Let Σ' be the set of 
all these Ρ'. (Σ' is not visible in the figure.) The prism 77 is the union 
of all such segments ΡΡ'. Σ and Σ' are called its bases, the line g is a 
directrix of 77, and the distance between the two planes is its altitude. 
Qualities such as triangularity and squareness of the bases are also attributed 
to the prism. If 77 is triangular or quadrilateral, and Ρ is a vertex of 
Σ, then segment PP' is called a L·teral edge of 77. If Ρ and Q are adjacent 
vertices of Σ, as in the figure, then P Q Q ' P ' is a parallelogram, and its 
associated region is called a lateral face of 77. 

Theorem 3. If 77 is triangular (see figure 3.10.3), then Σ' and the 
intersection of 77 with any plane δ parallel to and between the base 
planes are triangular regions congruent to Σ. 

Proof. It's easy to show that the intersections of the lateral edges with 
δ or ε form triangles Τ congruent to Σ. You must also show that the points 
on the edges or interior to Σ correspond one to one with the points on the 
edges or interior to T. • 

Prism stems from a Greek word meaning something sawed. 
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Figure 3.10.3 Building a tr iangular prism 
from three tetrahedra 

A prism 77 based on a parallelogram Σ is called a parallelepiped.22 It 
has two pairs of opposite lateral faces that he in parallel planes. You could 
just as well take either pair of these as bases and one of the edge lines of 
Σ as directrix; you'd get the same point set 77. Thus, a parallelepiped has 
three alt i tudes: the distances between the three pairs of base planes. A 
parallelepiped has many pairs of equal angles and equal dihedral angles. 
It's interesting but tedious to develop a complete set of theorems about 
parallelepipeds analogous to those about parallelograms in section 3.7. 
Exercise 4.4.5 invites you to try your hand a t it. 

A prism is called right if its directrix is perpendicular to its base 
planes; otherwise, it's oblique. A right rectangular parallelpiped is called 
a box. If all its base and lateral edges are equal, so that its bases and lateral 
faces are square, it's called a cube. 

A polyhedral region is the union of a finite set of tetrahedral regions, the 
intersection of any two of which hes in a face plane. Clearly, all tetrahedral 
regions are polyhedral regions. 2 3 

Theorem 4. If the intersection of polyhedral regions 77 and Ψ lies in the 
union of finitely many planes, then 77 υ Ψ is a polyhedral region. 

Theorem 5. All prisms are polyhedral regions. The intersection of a prism 
with a plane parallel to and between its base planes is a polygonal region. 
All these have the same area as the base. 

T h e l a t t e r p a r t of t h i s w o r d is a con t r ac t i on of epipedon, t h e G r e e k w o r d for plane. T h a t ' s 
de r i ved in t u r n from epi- a n d pedon, wh ich m e a n upon a n d foot. 

T h e s e w o r d s s t e m from t h e Greek pref ixes letra- a n d poly- a n d for four a n d many, a n d t h e 
word hedra for base. 
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Proof. As shown in figure 3.10.3, you can build a triangular prism from 
three tetrahedra. You can build any prism from triangular prisms. • 

For the axiomatic development of this chapter, volume is another partly 
undefined concept, like length, angle measure, and area. It's a function that 
assigns to each polyhedral region 77 a positive real number v/7 called its 
volume. Further details of the function are undefined. Some properties 
of volume are postulated by the following volume axioms VI to V4. 

Axiom VI. Regions determined by congruent tetrahedra have the same 
volume. 

Axiom V2. If the intersection of two polyhedral regions 77 and Ψ lies in 
the union of finitely many planes, then v(77 υ Ψ) = v77 + νΨ. 

Axiom V3. The volume of a cube is the cube of one of its edges. 

Axiom V4 (Cavalieri's axiom). Polyhedral regions 77 and Ψ that lie 
between planes α and β as in figure 3.10.4 have the same volume if for 
each plane ε equal to α or β or parallel to and between them, 77 η ε and 
Ψ η ε are polygonal regions with the same area. 

In figure 3.10.4, 77 η £ and Ψ η ε are intended to be quadrilateral and 
triangular regions with the same area for every plane ε considered in axi-
om V4, so that the polyhedral regions 77 and Ψ have the same volume. 
Their nonhorizontal faces are transparent to ensure visibility of other parts 
of the figure. 

Axiom V4, different in flavor from the area axioms that VI to V3 imitate, 
codifies a method invented by Bonaventura Cavalieri in the early 1600s. 
Cavalieri's axiom provides the justification for theorem 6 and corollary 12 
in the volume calculations presented next. Intuitively, it says that if you 
cut a polyhedral region into infinitesimally thin parallel slices, then you 
can reshape and reassemble them without affecting the volume, as long 

Figure 3.10.4 
Cavalieri's axiom 
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Bonaventura CAYALIERI was born about 1598, to a noble family in Milan 
whose members had been active in public affairs for two centuries. He 
entered monastic life in 1615, then studied at the University in Pisa, showing 
great aptitude. He corresponded voluminously with Galileo Galilei. During 
1620—1629 he was stationed in Rome, Milan, Lodi, and Parma, where he 
taught theology and wrote a book called Geometria. In 1629, with Galileo's 
help, he was appointed Professor of Mathematics at Bologna. He published 
eleven books altogether. His major achievement was an elaboration of 
Archimedes' methods, which later led to integration. He also contributed to 
the development of the theory of conies. Cavalieri died in 1647. 

as you keep their areas the same and move them only within their individual 
planes. (See figure 3.10.4.) Later developments showed that the axiom is 
really a way of clothing an application of integral calculus in an elementary 
wrapper. While working out the proofs of the theorems in his 1899 book 
Grundlagen der Geometrie,2* David Hilbert noted that he seemed unable 
to base a theory of volume solely on the principles stated in axioms VI to 
V3. In an address to the International Congress of Mathematicians in Paris 
in August 1900 he suggested a list of open problems that might guide math-
ematics into the twentieth century. 2 5 History has demonstrated the accuracy 
of his judgment. His third problem was to determine whether axioms VI 
to V3 are sufficient for a theory of volume. It was one of the first to be solved. 
That same year, Hubert's student Max Dehn showed tha t the answer was 
no. Dehn reasoned that computing the volume of a polyhedral region 
77 on the basis of VI to V3 alone would require decomposing 77 and a cube 
into equal numbers of tetrahedra that would be congruent in pairs. He found 
an example 77 —a regular tetrahedron—for which that 's impossible. 2 6 

Theorem 6. Prisms with the same base area and altitude have the same 
volume. 

Lemma 7. The volume of a right square prism is its altitude times its 
base area. 

Proof. Let a and b denote its altitude and a base edge. If a = b, the 
result is just axiom V3. Otherwise let a denote the larger of these numbers. 
Imagine you have some building blocks: 

• cubes labeled A, Β and Δ with edges a, b, and a - b; 

Hilbert 1899. 

Hilbert 1900. 

Dehn 1900. 
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• three square prisms labeled ABB with altitude a and base 
edge b; 

• three square prisms labeled AAB with altitude b and base 
edge a. 

By dividing the prisms into congruent tetrahedra and applying axioms VI 
and V2, you can show that the three ABB prisms have the same vol-
ume; call it vABB. Similarly, the three AAB prisms have volume 
vAAB. Now, assemble all these blocks except Δ into a cube with edge a + 
b. By axioms V2 and V3, (a + bf = a3 + ZvAAB + 3vABB + b 3 , hence 

Second, assemble Δ, B, and all the AAB blocks into a polyhedral region 
77. Third, assemble the remaining blocks into a region 17'. Do this delib-
erately; make 77 = Π'! (You're challenged to figure out what this region 
looks like.) It follows that (a - 6) 3 + 6 3 + 3vAAB = a 3 + 3 ν ABB, hence 

Equations (1) and (2) imply vAAB = a2b and vABB = ab2. One of these 
or the other yields the desired result, depending on whether b or a is the 
altitude. • 

Theorem 8. The volume of any prism is its altitude times its base area. 

Proof. Make a square prism with the same altitude and base area. • 

Corollary 9. The volume of a box is the product of its altitudes. 

A pyramid is a point set 77 determined by a polygonal region Σ and 
a point Ο not in the plane of Σ; it consists of all points between Ο and 
points in Σ. The region Σ is called its base, the point Ο its apex, and the 
distance between Ο and the base plane is its altitude. Qualities such as 
triangularity and squareness of the base are also attributed to the pyramid. 
Triangular pyramid and tetrahedral region are the same notion; you base 
the pyramid on any face of the tetrahedron. If 77 is triangular or quadrilat-
eral, and Ρ is a base vertex, then segment OP is called a lateral edge of 
77. If Ρ and Q are adjacent base vertices, then triangular region 
aOPQ is called a lateral face of 77. 

Theorem 10. Let 77 be a triangular pyramid with altitude α, ε be its 
base plane, δ be a plane parallel to ε between ε and the apex O , 2 7 and 

νΑΑΒ + νΑΒΒ = α 2 6 + α6 2 . (1) 

vAAB - vABB = a2b - ab2. (2) 

That is, 6 should lie between ε and the plane through Ο parallel to ε. (This applies as 
well to the statement of theorem 11.) 
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Figure 3.10.5 
Theorem 10: 

OQ = a OQ' = b 

b be the distance from Ο to δ. Then 77 η δ is a triangular region similar 
to the base with ratio bla. (See figure 3.10.5.) 

Proof. Let Q be the foot of the perpendicular from Ο to the base plane 
and Q' = OQ η δ. For i = 1 to 3 , let Pt be a base vertex and P; = 
OP η δ. Then ΔΟΡ/Q' ~ ΔΟΡ,φ with ratio ο/α, so OP{ = (b/a)(OPi). 
Thus ΔΟΡ;Ρ2' ~ ΔΟΡ, P 2 with the same ratio, so P/Pa' = (δ/αΧΡ, ^ ). The 
same holds for the corresponding triangles in the other lateral faces, which 
yields the result. • 

Theorem 11. Every pyramid 77 is a polyhedral region. Let α be its altitude, 
ε be its base plane, δ be a plane parallel to ε between ε and the apex 
Ο 23 and b be the distance from Ο to ε. Then 77 η δ is a polygonal region 
with area (bla)2 t imes the base area. 

Proof. Build up the base from triangular regions, and 77 from the 
corresponding triangular pyramids. 77 η δ is the union of tr iangular re-
gions similar to the base triangles, with ratio bla. • 

Corollary 12. Pyramids with the same base area and altitude have the 
same volume. 

Theorem 13. The volume of a pyramid is one third of its altitude times its 
base area. 

Proof. Make a tr iangular prism with the same altitude and base area 
as a given pyramid 77. Label its base triangles APQR and AP'Q'R' as 
in figure 3.10.3. It's the union of three te t rahedra: 

1. base APQR and apex P ' ; 
2. base AP'Q'R' and apex Q, or base AQQ'R' and apex P ' ; 
3. base AQRR' and apex P ' . 

77 and (1) have the same volume because they have the same altitude and 
base area. (1) and (2) have the same volume because they have congruent 
bases APQR and AP'Q'R' and the same altitude as the prism. (2) and 
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(3) have the same volume because they have the same apex P ' and congruent 
bases AQQ'R' and AQRR' in the same plane. Thus, 77 has one third of 
the volume of the prism. • 

Suppose you had worked out a theory of similar tetrahedra as suggested 
earlier in this section. Then you'd have this result: If two tetrahedra are 
similar with ratio r, then their volumes have ratio r3. 

3.11 Coordinate geometry 

Concepts 
Cartesian coordinate system: origin, axes, and planes 
Distance formula 
Midpoint formula 
Parallelogram law 
Linear parametric equations for lines and planes 
Linear equation for a plane 
Plane coordinate geometry 

This section shows how to set up a Cartesian coordinate system, and describes 
the coordinate geometry concepts corresponding to distance, midpoints, 
parallelograms, lines, and planes. Proving lemma 5 requires the notion of 
similarity, so this theory must come after section 3.9. The discussion uses 
some vector algebra. You may consult appendix C to review that as necessary. 

Select a point Ο to be called the origin, and three perpendicular lines 
through Ο called the first, second, and third coordinate axes. The axes 
determine three perpendicular coordinate planes; the plane through the 
i th and jth coordinate axes is called the i,j plane. Select scales c, to 
c 3 for the axes, so that c,(0) = c 2 (0 ) = c 3 (0 ) = 0. The origin, axes, and 
scales constitute a Cartesian coordinate system. To each point Ρ assign 
three coordinates px to p3 —often called scalars—by setting pt = 
C;CP;)> where P ; is the foot ofthe perpendicular from Ρ to the ith coordinate 
axis. 2 8 Until the last two paragraphs of this section, a fixed coordinate system 
is assumed to be in use. 

In informal discussion it's often more convenient to refer to x, y, and ζ axes and to use 
notation like xP, yP, and zP for the corresponding coordinates of a point P. That system 
has two disadvantages—you tend to run out of letters, and it collides with vector component 
notation. Therefore it's not used in this book. But the author would use it for many simple 
coordinate geometry problems. 
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Theorem 1. Assignment of coordinates is a one-to-one correspondence 
between the set of all points and the set of all ordered triples of scalars. 

A letter such as Ρ often denotes both a point and its coordinate triple 
<P\>PiyPz>- The latter also serves as a space-saving abbreviation for a col-
umn vector when you're using vector algebra: 

P=<Pi,P2.P3

> 

Pi 

P 3 

Corresponding upper- and lowercase letters are used whenever possible, 
and some equations like these are left unstated. In figures in this text, a 
label such as P<1,2> simultaneously identifies a point and specifies its 
coordinates. Vector notation provides concise abbreviations for sums, 
differences, and scalar multiples of columns of coordinates: 

P±Q = 
P I ± 9 1 

P2

±Q2 

P3±aa 

tP = Pt = 

Pit 

P2

l 

P 3 i 

From Pythagoras' theorem, you can derive easily the following formula 
for the distance between two points in terms of their coordinates. Then you 
can apply this formula or theorem 3.9.2 to verify the formula for the coordi-
nates of the midpoint of a segment. 

Theorem 2 (Distance formula). The distance between points Ρ and 
Q is 

PQ=J(pl-ql)
2 + (p2-q2)

2 + (p3-q3)
2 . 

Thus (PQ)2 = (P-Q)-(P-Q), the dot product. 

/
o 2 2 

p1 +p2 + p 3 is often called the length or norm ||P|| 
of column vector P. Notice tha t PQ=\P -Q\. 

Theorem 3 (Midpoint formula). The midpoint of segment PQ is 
'Λ (P+Q) = <Vt (px + V2 (p2 + q2),

l/2 (p3 + q3)>. 

Theorem 4 (Parallelogram law). If the origin Ο and points Ρ and 
Q are not colhnear, then R = Ρ + Q forms with them a parallelogram 
OPRQ. 
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Q 1 

A " 
R 

Ο Ρ 

Figure 3.11.1 
Proof of theorem 4 

Figure 3.11.2 
Proof of lemma 5 

Lemma S. Let Ρ be a point distinct from the origin Ο. Then a point X 
lies on OP if and only if X = P i for some scalar t. 

Proof. For j = 1 to 3 let Pj and X} be the feet of the perpendiculars 
from X and Ρ to the j t h coordinate axis, as shown in figure 3.11.2. Let 
t = OXIOP. Then X lies on OP if and only if LOPPr AOXXj. That hap-
pens just when OXj/OPj = t, i.e., X = Pt. • 

A system of equations 

X j = p 2 i + q 2 i.e., X=Pt + Q, 

* 3 = P 3 i + < ? 3 

where p , to p 3 and q, to q3 are scalars, is called a system of linear 
equations in the parameter t. With vector notation, you can abbreviate it 
as shown. The equations assign to each scalar t a point X— <xt ,x2,x3>. The 
set of all those points is called the graph of the equations. 

Theorem 6. A point set g is a line if and only if it's the graph of a sys-
tem X=Pt + Q of linear parametric equations with P^O. Then g is the line 
through Q parallel or equal to OP, and the function X~>(OP)t is a scale 
for g. 

Proof. In case g is a hne through the origin O, select a point Ρ ^ Ο 
on g. By lemma 5, g is the graph of the equations X=Pt. 

Suppose g is a hne that doesn't pass through O. Let g' be the hne 
through Ο parallel to g. By the previous paragraph, g' is the graph of 
some equations X=Pt. Select any point Q on g. Consider the equations 

x2=p2t + q2 i.e., X=Pt + Q. 
X3

=P3t + a3 
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Let X be a point on G. If X= Q, then X=Pt + Q with T - 0. Otherwise, 
there exists T such that the point X' = Pt on G' forms with X, Q, and 
Ο a parallelogram XQOX'. By the parallelogram law, X=Pt + Q. Thus 
G is a subset of the graph of this system of equations. It's easy to show further 
that every point in the graph hes on G. Thus each line G coincides with 
the graph of a system X= Pt + Q. 

It's also easy to show that, conversely, the graph of an arbitrary system 
X = Pt + Q is the line through Q equal or parallel to OP. 

To verify that the function X- (OP)T is a scale for G, note tha t for any 
points X=Pt + Q and Y= Pu + Q, (XY)2 is the sum of the squares of the 
differences (Pjt + q,) - (PJU + QJ) = PJ(T - U), so 

(XY)2 = (ΡΪ +P2

2 +p!)(t - U)2 = (OP)2(T - U)2 

XY =(OP)\t -U\ = \(OP)t -(OP)u\ .• 

By theorem 6, the order of points on G corresponds to the order of correspond-
ing values of (OP) t, hence to the order of the t values. Corollary 7 arranges 
the parametric equations for a line PQ to make this correspondence 
particularly clear. 

Corollary 7. If Q, then X = P+ (Q - P)T is a system of equations 
for the line PQ. Moreover, 

ί = 0 ~ X = P 0 < ί ~ X hes in PQ 
t=l ~ X=Q O s t s l - X lies in PQ . 

Nonzero column vectors Ρ and P ' are called DEPENDENT when one—hence 
each—is a scalar multiple of the other. You can check tha t this happens 
just in case OP = OP'. By theorem 6, those lines coincide just when any 
two—hence all—lines with equations X=Pt + Q and X=P'T + Q' are equal 
or parallel. For tha t reason, dependent column vectors are often called 
PARALLEL. 

A system of equations 

xl = ρ , t + <3Ί u + r, 
X2-Ρ^Ί + Q2U + R2 i.e., X= Pt + Qu + R, 

*3=Ρ3 ί + <?3" + Γ3 

is called a system of LINEAR EQUATIONS IN PARAMETERS T AND U. They assign 
a point X to each pair T,U of scalars. The set of all those points is called 
the GRAPH of the equations. 

Theorem 8. A point set ε is a plane if and only if it's the graph of some 
system X= Pt + Qu + R of linear parametric equations with Ο, P, and 
Q noncollinear. In that case, ε is the plane through R parallel or equal 
to OPQ. 
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Proof. Suppose ε is a plane and select lines g ψ- h in ε that intersect 
a t a point R. By corollary 7, g and h have parametric equations X = 
Pt + R and X=Qt + R for some points P.Q/O. By theorem 6, g I OP 
and h I OQ, so ε/OPQ. A point X lies in ε if and only if it's on a line 
ΫΖ for some points Y=Pv + R and Z=Qw + R on g and h. That is, 

X lies in ε if and only if 

X=Y+(Z- Y)s = Pv + R + (Qw - Pv)s = Pv(l -s) + Qws + R 

for some scalars s, v, and w. Thus every point in ε lies in the graph of 
equations X= Pt + Qu + R. On the other hand, you can write any such 
X as Ρυ(1 - s) + Qws + R with s = Vi, v = 2t, and w = 2u, so ε coincides 
with that graph. 

Therefore, every plane ε is the graph of some equations X = Pt + 
Qu + R. It's also easy to show that, conversely, the graph of an arbitrary 
system X = Pt + Qu + R is the plane through R equal or parallel to 
OPQ.* 

Corollary 9. If points P, Q, and R are noncollinear, then plane PQR 
has equations X = P+(Q - P)t + (R - P)u. 

Another approach, theorems 10 and 11, provides an entirely different 
algebraic representation for a plane. 

Theorem 10. Consider points Ρ and Q distinct from the origin O. Then 
OP χ OQ if and only if the dot product P- Q = pxqx + p2<?2 + p3q3 = 0. 

Proof. By Pythagoras' theorem and its converse, OP χ OQ if and only 
if (PQ)2 = (OP)2 + (OQ)2. That is, 

(Pi " <?i)2 + (P 2 " a*)* + (Pa " 9a)2 = (Ρ* +ΡΪ +Ps) + (<7i2 + <ϊί + 9a) · 

You can simplify this equation to get Ρι9ι + ρ 2 ς 2 +p 3<7 3 = 0. • 

Nonzero column vectors Ρ and Q are called perpendicular when OP χ 
0(?, i.e., Ρ·ζ> = 0. By theorem 6, this happens just when intersecting lines 
with equations X = Pt + R and X = Qt + S are perpendicular. More 
generally, you can regard APOQ as the angle between independent nonzero 
column vectors Ρ and Q. Thus Ρ and Q are perpendicular when the 
angle between them is right. 

An equation 

plx1+p2x2+p3x3 = b i.e., PX=b, 

where p , to p 3 and b are scalars, is called a linear equation in the coor-
dinates of a point X. Its graph is the set of all points whose coordinates 
satisfy it. 
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Theorem 11. A point set ε is a plane if and only if it's the graph of some 
linear equation P-X=b with Pjt-O. 

Proof. If ε is a plane through the origin O, select a point i V Ο such that 
OP χ ε. By theorem 10, a point X Hes on £ if and only if Ρ·Χ=0. Thus 
£ is the graph of a linear equation. 

Suppose ε is a plane that doesn't pass through O. Let ε' be the plane 
through Ο parallel to ε. By the previous paragraph, ε' is the graph of 
an equation Ρ ·Χ = 0. Select any point Q on ε. Consider the equation 
Ρ·Χ=P-Q, which clearly holds when X=Q. If X is a point in ε distinct 
from Q, then there's a point X' in ε' such that XQOX' is a parallelogram. 
By the parallelogram law, X = Q + X'. Since X' hes in ε', 

PX=P(Q + X') = PQ + PX' =PQ + 0 = PQ. 

Thus ε is a subset of the graph of equation P-X = P-Q. It 's easy to show 
that every point in the graph hes in ε. Therefore each plane ε coincides 
with the graph of some linear equation. 

Conversely, consider a linear equation PX=b with P = <P1.P2.P3> f-
O. Suppose p ^ O . It's then easy to show that the graph of Ρ ·Χ= b is the 
plane ε through point <6/p 1 ,0 ,0> parallel or equal to the plane ε' through 
Ο perpendicular to OP. Similar results hold when p2 ^ 0 or p37

iO. 
Therefore the graph of any linear equation is a plane. • 

When you set up a Cartesian coordinate system for a problem con-
fined to a plane ε, select the origin in ε and the third axis perpen-
dicular to ε, so tha t ε is the 1,2 plane. Then ^ = 0 for every point 
X= <x1,x2,x3> in ε, and you can use the abbreviation <x1,x2> for X. 
Every line g in ε is the graph of a system of linear parametric equations 

XI =Pit + QI 
X2=p2t + q2 i.e., X=Pt + Q, 
x3 = 0 

where px and p2 are not both zero. You can ignore the third equation: 
A point set g in ε is a line if and only if it's the graph of a system of two 
linear parametric equations. Every line g in ε is also the graph of a lin-
ear equation ρ ,χ , +p2X2 +p3x3 — b. Given p , and p2 you can vary p 3 

at will because x3 is always zero for points on g. Thus you can ignore p 3 

altogether and just write the equation in two-dimensional vector notation 

p1x1+p2x2 = b i.e., P-X=b. 

Section 5.6 continues this development, deriving coordinate geometry 
techniques for distinguishing the sides of a plane and of a line in a plane, 
and formulas for triangle area and the volume of a tetrahedron. 
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3.12 Circles and spheres 

Concepts 
Circles, and their interiors and exteriors 
Equation of a circle 
Intersections of lines and circles 
Tangent lines and circles 
Chords and diameters of circles 
Spheres, and their interiors and exteriors 
Equation of a sphere 
Intersections of lines, planes, and spheres 
Tangent lines, planes, and spheres 
Chords and diameters of spheres 
Secant lines 

A comprehensive list of definitions and theorems concerning circles and 
spheres and their elementary properties constitutes this section. No figures 
and few proofs are included. You should supply all those. The proofs are 
straightforward; you'll need coordinates only to prove theorems 1 and 11. 

Let Ο be a point in a plane ε and r be a positive real number. Consider 
the following point sets: 

{ Ρ e ε : OP = r } = Γ —the circle in ε with center Ο and 
radius r, 

{ Pe ε : OP< r } —its interior, 
{ Pe ε : OP > r } —its exterior. 

A segment between Ο and a point on the circle Γ is also called a radius. 

Theorem 1. Set up Cartesian coordinates. Let Γ be the circle in the 
1,2 plane with center Z = <z1,z2> and radius r. Then a point X = 
<xl,x2> lies 

on Γ if (*! - z , ) 2 + (x2 - z2f = r2, 
interior to Γ if (xt - z{)2 + (χ2 - z2)

2 < r2, 
exterior to Γ if (xj - ζλ)

2 + (x2 - z2)
2 > r2. 

Theorem 2. Let Ρ and R be points on or interior to a circle Γ. Then all 
points Q-£P,R between Ρ and R lie in the interior of Γ. 

Proof. The result is trivial if P, Q, and R are collinear with the center 
Ο of Γ. Otherwise OQ < OP or OQ < OR by the hinge and exterior angle 
theorems. • 

Corollary 3. The interior of a circle is convex. 
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Theorem 4. The intersection of a coplanar line g and circle Γ is empty, 
a point, or exactly two points. The third case holds if and only if g contains 
a point interior to Γ. 

Proof. Theorem 2 implies that gnT cannot contain three distinct points, 
and that g intersects the interior of Γ whenever gnT contains two distinct 
points. Conversely, suppose g contains a point Q interior to Γ. If g passes 
through the center Ο of Γ, then the two points on g whose distance from 
Ο is the radius r of Γ he on Γ. Suppose Ο is not on g. Let R be the 
foot of the perpendicular to g through O; then OR ζ OQ<r. There exist 
exactly two points on g whose distance from R is ^ r 2 - (OR)2. 
By Pythagoras' theorem, those points lie in g n f . • 

Theorem 5. Consider two distinct coplanar circles Γ and Γ' with centers 
Ο and O' and radii r and r'. Exactly one of the following cases 
holds: 

0. r>00' + r'; Γ hes in the exterior of Γ', and Γ' in the interior 
of Γ. 

0'. r'>00' + r; like case (0) with Γ and Γ' interchanged. 
1. r = Oa + r'; ΓηΓ' is a point X such that O-O'-Χ; Γ doesn't 

intersect the interior of Γ', but all points of Γ' except X lie 
interior to Γ. 

1'. r' = 00' + r; like case (1) with Ο,Ο' and Γ,Γ' interchanged. 
2. Each of 00', r, and r' is less than the sum of the other two 

and ΓηΓ' consists of two distinct points X and Υ; Ο and 
O' he on the perpendicular bisector of XY; and each circle inter-
sects both the interior and the exterior of the other. 

3. 00' = r + r'; ΓηΓ' is a point X between Ο and O'; neither 
circle intersects the interior of the other. 

4. 00' > r + r'; each circle hes in the exterior of the other. 

Proof. The only tricky part is determining Γ η Γ' in case (2). Use theorem 
3.8.14 to construct two distinct points X, one on each side of 00', such 
that XO = r and XO' = r'. • 

In case (4) of theorem 5, the circles are said to be externally tangent; in cases 
(1) and ( l ' ) i internally tangent. 

If Ρ and Q are distinct points on a circle Γ, then segment PQ is called 
a chord of Γ. A chord through the center of Γ is called a diameter of Γ. 

Theorem 6. Let PQ be a chord of a circle Γ with radius r. Then PQ <. 
2r, and PQ = 2r if and only if PQ is a diameter of Γ. 
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Theorem 7. Let PQ and RS be chords of a circle intersecting at a point 
X. Then any two of the following conditions imply the third: 

1. RS is a diameter of Γ; 
2. PQ±R'S; 
3. X is the midpoint of PQ. 

Theorem 8. Let PR and P'R' be chords of circles with centers Ο and 
O' and the same radius. Let d and d' denote the distances from Ο and 
O' to PR and PrR'. Then PR s P'R' if and only if did'. 

A coplanar hne and circle are said to be tangent if their intersection is 
a point. A line that intersects a circle in two distinct points is called a secant 
hne. 2 9 

Theorem 9. Let Ρ be a point on a circle Γ with center Ο in a plane 
ε. The perpendicular to OP through Ρ in ε is the unique tangent to 
Γ through P. 

Theorem 10. Let Γ be a circle with center Ο in a plane ε, and Ρ be 
a point in ε exterior to Γ. There are exactly two tangents to Γ through 
P. If these intersect Γ at points Y and Z, then ΑΟΥ Ρ and AOZP are 
congruent right triangles. 

Proof. Let X be the midpoint of OP. By theorem 5, the intersection 
of Γ and the circle Γ' in ε with center X and radius OX consists of two 
points Y and Ζ noncollinear with Ο and P. Two pairs ΑΧΟΥ, AXOZ 
and AXPY, AXPZ of isosceles triangles are congruent by the SSS and 
SAS theorems. Applying the angle sum theorem to AOYP, you get 
2m/.OYX + 2mlXYP = 180°, so LOYP is right, and PY is tangent to 
Γ by theorem 8. So is PZ, by a similar argument. If W is a point on 
Γ such that PW is tangent to Γ, then iOWP is right by theorem 13, so 
XW= OX by theorem 3.7.22, hence W i s o n P ' , so W= Y or W=Z. By 
the SSS theorem, AOYP = AOZP. • 

Let Ο be a point and r be a positive real number. Consider the following 
point sets: 

{Ρ:ΟΡ = Γ}=Σ —the sphere with center Ο and radius r, 
{Ρ: OP < r } —the interior of Σ, and 
{ Ρ : OP > r} —the exterior of 2". 

A segment between Ο and a point on the sphere Σ is also called a radius. 

These terms stem from the Latin verbs tango and seco, meaning touch and cut. 
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Theorem 11. Set up Cartesian coordinates. Let Σ be the sphere with center 
Z= <z1,z2,za>. Then a point X = <xl,x2,x3> hes 

on Γ if (*! - zj2 + (xj - Z J J ) 2 + (x3 - z3)
2 = r 2 , 

interior to Σ if (JCI - zx)
2 + (xj - z2)

2 + (x3 - z3)
2 < r 2 , 

exterior to Σ if (xx- zY)
2 + ( X j ~ ziY + (χ3 ~ za)2 > r 2 · 

You should state and prove theorems about spheres analogous to theorem 
2, corollary 3, and theorem 4. Theorem 4 has another analog, as follows. 

Theorem 12. The intersection of a plane ε and a sphere Σ is empty, a 
point, or a circle. The last case holds if and only if ε contains a point interior 
to Σ. 

The analog of theorem 5 for spheres Σ and Σ' in place of circles Γ and 
Γ' is also easy to state and prove. The revised version of case (2) should 
read as follows: 

2. Each of OO', r, and r' is less than the sum of the other two and 
ΣηΣ' is a circle; Ο and O1 he on the perpendicular to the plane of 
this circle through its center; and each sphere intersects both the 
interior and exterior of the other. 

You can define the notions internally tangent, externally tangent, chord, 
and diameter for spheres exactly as for circles. Theorem 6 has an obvious 
analog for spheres. Theorem 7 has two, as follows. 

Theorem 13. Let PQ be a chord of a sphere Σ, let ε be a plane, and let 
PQ η ε be a point X. Then any two of the following conditions imply the 
third: 

1. ε passes through the center of Σ; 
2. PQ χ ε; 
3. X is the midpoint of PQ. 

Theorem 14. Let δ be a plane, let Σ be a sphere, and let δ ηΣ be a circle 
Γ. Let RS be a chord of Σ, and δ η RS be a point X. Then any two of 
the following conditions imply the third: 

1. RS is a diameter of Σ; 
2. δ χ R~S ; 
3. X is the center of Γ. 

Theorem 8 has an obvious analog for spheres. Here's another. 
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Theorem IS. Let Σ and Σ' be spheres with centers Ο and O' and the 
same radius. Let δ and δ' be planes whose intersections with Σ and 
Σ' are circles with radii r and r ' . Let d and c£' be the distances from Ο 
and O' to <i and δ'. Then r s r ' if and only if d i. d'. 

A line or a plane is said to be tangent to a sphere if their intersection is 
a point. A line that intersects a sphere but is not tangent is called a secant. 

Theorem 16. Let Ρ be a point on a sphere Σ with center O. The plane 
ε perpendicular to OP through Ρ is the unique plane tangent to Σ through 
P. A hne through Ρ is tangent to Σ if and only if it lies in ε. 

Theorem 17. Let X and Y be points on a sphere Σ and Ρ be a point 
not on Σ. If PX and ΡΫ are tangent to Σ, then PX=PY. 

3.13 Arcs and trigonometric functions 

Concepts 
Angular scales and angle parameters 
Major and minor arcs, semicircles, and their measures 
Inscribed angles and subtended arcs 
Cosines and sines 
Periodic functions 
Parametric equations for circles and spheres 
Basic identities 
Even and odd functions 
Tangents 
Right triangle trigonometry 

This section presents the plane trigonometry you need to analyze right tri-
angles: the simplest properties of the sine, cosine, and tangent. You'll find 
several conflicting definitions of these functions in various texts. Do you 
compute with the sine of an angle? Or of an arc? Or with the sine of the 
degree measure ofan angle or arc? Or its radian measure? Or with the sine 
of an arbitrary real number? For the program of this book the most convenient 
choice is to define the trigonometric functions for arbitrary real arguments 
related to degree measure. That conflicts with the radian measure definitions 
for analytic trigonometry, which facilitate using calculus to study circular 
motion. Radian measure is described in section 3.14 but never used in this 
book. Elementary trigonometry texts often define the functions for angle 
arguments first, then extend the definitions in stages. That tedious process 
is shortcut here. Angle measure is extended to incorporate arbitrary real 



3.13 ARCS AND TRIGONOMETRIC FUNCTIONS 111 

numbers in place of measures just between 0° and 180°. This mechanism 
is used to measure circular arcs, and leads to some useful theorems about 
arcs. The trigonometric functions are then defined and their most basic 
properties outlined. The section concludes with a theorem that summarizes 
their use in analyzing right triangles, and then a simple application. 
Applications to oblique triangles are covered in detail in section 5.5 and its 
exercises. 

Angle measurement 

The degree measure θ of an angle, introduced in section 3.4, lies in the 
interval 0° < Θ < 180°. This concept is convenient for elementary geometry 
because it assigns to each angle a unique measure. But it's inconvenient 
for angles used to study rotation. The measurement system is elaborated 
now to allow use of any real number θ —inside that interval or not—to 
designate an angle. In this context, θ is called an angle parameter. 

The new system is modeled on the linear scale concept introduced in section 
3.2. Instead of relating points on a line g to real numbers, it applies to the 
rays in a plane ε originating from a point O. To simplify the language, 
consider a single ray OA as a 0° angle, and when OA' is the opposite 
ray, call line AA! a 180° angle. Thus, in figure 3.13.1, mZAQA = 0 ° a n d 
ml AO A' = 180°. 3 0 

The arithmetic operations θ div 360 and θ mod 360 are used in these 
calculations. You can define them for any real number θ through the 
conditions 

a _ o«n„ 4 . , / 9 is an integer θ div 360 = q 
6- 360q + r { _ 1 8 0 < r , 1 8 0 0 m o d 3 6 O = r . 3 1 

For example (see figure 3.13.1), 

390 mod 360 = 30 -30 mod 360 = -30 
210 mod 3 6 0 = - 1 5 0 -570 mod 360 = 150 . 

-570°, 180° 390°, 30° 
•v.. . λ 

\ A B / - " 
Figure 3.13.1 * \ + 

» 180°<• ^ • I >0° 
Example rays Ζ' , - Ό \ ζ 

Β1 A' \ ^ 
210°, -330° N j*-30° 

3 0 Older texts use the terms zero and straight angle for angles measuring 0° and 180°. 
3 1 These operations are examples of modular arithmetic: the modulus is 360°. 
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A function ρ from the set of all real numbers onto the set of rays in a plane 
ε originating at a point Ο is called an angular scale at Ο in ε if 
ρ (a) = OA and ρ(β)=ΟΒ imply 

I (α -β) mod 360°| = mlAOB. 

If ρ is an angular scale, then ρ(α)=ρ(β) if and only if α and β differ 
by a multiple of 360° —that is, by an even multiple of 180°. In contrast, 
p(ot) and ρ(β) are opposite rays just in case α and β differ by an odd 
multiple of 180°. Theorem 1 summarizes further properties of angular 
scales: 

Theorem 1. Let ρ be an angular scale at a point O, in some plane ε. 
Its initial ray OZ = p ( 0 ° ) and the ray Q Z ' = p ( 1 8 0 ° ) are opposite. 
Let OV=p(l°). For any number a, with a* = a mod 360° and OA = 
P(a ) . 

a* = 180° => OA = OZ'; 

0° < a* < 180° =• A lies on the same side of OZ in ε as 
U, and mlZOA = a*; 

oc* = 0° => OA = OZ; 
-180° < a* < 0° => A hes on the side of OZ in ε opposite U 

and mlZOA = -a*. 

Proof. Only the second and fourth statements need verification. Let 
β=-Π9° and ΟΒ=ρ(β), so that OB is the ray opposite U. Suppose 
0° < a* < 180°. Then mlZOA = | (0° - a) mod 360° | = a*. If A weren't on 
the same side of OZ as U, then it would fall on the same side as B, and 
either A would he in the interior of LZOB or Β would he in the interior 
of IZOA. That is, either 

mLZOA + mlAOB = mlZOB 

a* + I (a + 179°) mod 360° | = 179°, 

or 

mlZOB + ml BOA = mlZOA 
179° + | ( a + 179°) mod 360°| = a*. 

Either way, 

(a + 179°) mod 360° =±(179°- a ) , 

so (a + 179°) ± (179° - a) would be a multiple of 360°, which is impossible. 
Thus in this case A does lie on the same side of OZ as U. 

If -180°<<x* <0°, then mlZOA = | (0° - a) mod 360°| = -a*. By the 
previous paragraph, the ray opposite OA hes on the same side of 0~Z 
as U, so A iteelfhee on the opposite side. • 
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Theorem 1 provides a method for constructing an angular scale at a point 
Ο in a plane ε. Choose an initial ray OZ in ε, and call one of the sides 
of όί in ε positive and the other negative. For any θ with 0° < 
θ mod 360° < 180°, let p ( 0 ) be the ray Of on the positive side with 
m/.POT = θ mod 360°. If θ mod 360° < 0°, choose the ray Of on the 
negative side with miPOT= -Θ mod 360°. If θ mod 360° = 0° or 180°, 
p ( 0 ) should be the initial ray or its opposite. 

Theorem 2. This function ρ is in fact an angular scale a t Ο in ε. 

Proof. It's tedious to verify equation | (α - β) mod 360° | = mZ AOB in 
all cases. Here are some sample arguments. If A and Β are situated as 
in figure 3.13.1, then 

ml AOB = mlZOA - mlZOB 
= a mod 360" - β mod 360° 
= (oc - / ? ) m o d 360° 

mlBOA = mi AOB = - ( / ? - a) mod 360° = \(β - a) mod 360° | . 

If OA' lies opposite OA as in figure 3.13.1 and O A ' = ρ ( α ' ) , then a ' = 
a - 180° plus a multiple of 360°, so 

mZA'OB = 180° - mLZOA + mLZOB 
= 180° - α mod 360° + β mod 360° 
= (180° - a + /3)mod360° 
= I (a - 180°- β) mod 360° | 
= | ( α ' - β) mod 360° | . 

You can construct arguments for the remaining angles composed of rays 
in figure 3.13.1. • 

All uses of angle parameters in this book are applications of theorem 2. 
The next, final, result about angle measurement, however, is required only 
for the discussion of rotations in chapter 6. 

Theorem 3. Let ζ be any constant. If ρ is an angular scale a t point Ο 
in plane ε, then so are the functions θ ~*ρ(ζ + θ) and θ -+ p(f - θ). 
Moreover, if p ' is also an angular scale a t Ο and ρ ( Ο = Ρ ' ( 0 ° ) · then 
ρ'(θ)=ρ(ζ+ Θ) for all Θ, or else ρ'(θ) =p(f - Θ) for all Θ. 

Proof. The first conclusion stems from the equations 

| (a - / ? ) m o d 360°| = |((<"±a) - (i"±/3)) mod 3 6 0 ° | . 

To prove the second, consider the angular scale ρ" : θ ->p(f+ Θ). I t has 
the same initial ray as p', so by theorem 1 either p ' = p" or ρ'(θ) = 
p " ( - 0 ) for aU Θ. • 
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Figure 3.13.2 
An inscribed angle 

and its subtended arc 

Arcs 

Two distinct points Ρ and R on a circle Γ determine two subsets of 
Γ, called arcs. Each consists of P, i?j_and all jo in ts of Γ on one side of 
PR. They're designated by symbols PQR ana PSR, where Q and S are 
any other points in the arcs, as in figure 3.13.2. If PR is a diameter, the 
arcs are called semicircles. Otherwise, the one on the same side of PR as 
the center Ο is called the major arc; the other is minor. In figure 3.13.2, 
PQR is the major arc. 

You can measure arcs of a circle Γ with an angular scale at its center 
Ο in its plane. Given angle parameters ψ and ρ corresponding to rays 
OP and OR, let 

μ = \(ψ - ρ) mod 360° | ν = 360° -μ. 

One of these is > 180°. It's called the measure mPQR of the major arc. 
The other is the measure of the minor arc. Semicircles are assigned measure 
180°. The_single point Ρ and the entire circle are sometimes regarded 
as arcs PPP and PQP with measures 0° and 360°. 

Theorem 4. Let PQR and P'Q'R' be minor arcs of circles with centers 
Ο and O' and the same radius. Let d and d' denote the distances from 
Ο and O' to PR and P7R' • The_n these conditions are equivalent: 
mlPOR s. m/P'O'R', mPQR s mP'Q'R' and d * d'. 

Theorem S (Arc addjtiontheorem). Let P, Q, R,^S± and Γ be points on 
a circle, such that PQR nRST is the point R. Then PQR υ RST = PRT and 
mPQR + mRST = mPRT. 

Proof. You need to consider many cases separately and in combination, 
depending on the relationships of mPQR, mRST, and the measures 0°, 
180°, and 360°. • 

If P, Q, and R are distinct points on a circle Γ, then LPQR is said 
to be inscribed in _arc PQR. If S is any point on Γ in the interior of 
IPQR, then arc PSR is said to be subtended by /.PQR. (See figure 3.13.2.) 
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X Ρ 

Figure 3.13.3 
Corollary 9 Q 

R 

S 

Theorem 6. The measure of an inscribed angle is half that of its subtended 
arc. 

Proof. Consider IPQR inscribed in a circle Γ with center O. There 
are three cases: 

1. QP or QR is a diameter, 
2. Ρ and R lie on opposite sides of QO, 
3. Ρ and R he on the same side of QO. 

Case (1) is almost trivial. The others follow easily from case (1). The dotted 
lines in figure 3.13.2 suggest the proof for case (2) . • 

Corollary 7. All angles inscribed in the same arc are congruent. 

Corollary 8. An angle inscribed in a semicircle is a right angle. 

If you move leg QR of APQR in figure 3.13.2, mAPQR remains half 
of the subtended arc until the line QR becomes tangent t o j [ ^ as in figure 
3.13.3. At tha t stage, you should expect mlPQR = xh mPSQ. That 's no 
proof, but the equation is valid: 

Corollary 9. In figure 3.13.3, miPQR = lh mPSQ. 

Proof. If Ο lies in the interior of iPQR as in figure 3.13.3, then 

mAPQR = 90° + miPQO 
= 90° + ιΛ (180° - mAPOQ) 
= - VimlPOg 
= l/2($W- mPXQ) = l / 2 m P S Q . 

If Ο doesn't he in the interior, you need a slightly different argument. • 

Trigonometric functions 

The trigonometric functions relate angle parameters to coordinates in a plane 
ε. Consider the origin Ο and the points U=<1,0> and V=<0 ,1> . Choose 
OV as initial ray and regard as positive the side of the first axis that contains 
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V. The circle Γ with center Ο and radius 1 is called the unit circle. For 
any real number Θ, consider the intersection Τ = < ί 1 , ί 2 > o f f and the 
ray with angle parameter Θ. The coordinates cos θ = (j and sin θ = t2 

are the values of the cosine and sine functions for the argument Θ.32 (See 
figure 3.13.4.) This definition immediately yields the periodic and Pythagorean 
identities: For η = 0, ± 1 , ± 2 , . . . and any Θ, 

cos(0 + 360°n) = cos0 cos 20 + s in 2 0 = 1. 
sin (0 + 360° n) = s i n 0 

The cosine and sine functions provide in the next three results some basic 
coordinate methods for representing circles and spheres: their parametric 
equations. 

Corollary 11. Theorem 10 also holds for the circle with center Ζ = 
<z, ,z 2 > and radius r, and the mapping θ -* T= <tlt t2>, where 

tl = zl + rcoei? 
<2 = z 2 + r sin Θ. 

Corollary 12. The function <θ, φ> -* Τ = <ί 1 , ί 2 , t3>, where 

tl = zl + r cos θ 
t2 = z2 + r sin θ 
t3 = z 3 + r cos 

maps the set {<θ, φ> : 0° <L θ < 360° & 0° s φ s, 180°} onto the sphere 
with center Ζ = < z t , z 2 , z 3 > and radius r. 

Trigonometric s t e m s from t h e G r e e k words for triangle measurement. Sine i s t h e E n g -
l ish spe l l ing of t h e L a t i n word sinus t h a t n a m e s c e r t a i n cav i t ies in o u r c r a n i a l b o n e s . I t s 
u s e in t r i gonomet ry is a n e tymological m y s t e r y ; see S c h w a r t z m a n 1994, 200 . According 
to theo rem 13, cos θ = s in ( 9 0 ° - Θ). A n old t e r m for 9 0 ° - θ i s t h e complement of Θ. And 
cosine m e a n s sine of the complement. 
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The next result is easy to see in figure 3.13.4, but messy to prove for all 
possible cases, because of the periodic definitions. 

Theorem 13. For all Θ, the sine and cosine satisfy the cofunetion, half-turn, 
and supplementary-angle identities 

cosθ = s i n (90° -Θ) s i n 0 = cos(90°- Θ) 
cos(0+ 180°) = -cos*? s i n ( 0 + 180°)= - s i n 0 
cos(180°- θ) = -costf s in(180°- θ)= sinfl. 

Moreover, the cosine is an even function, and the sine is odd: 

cos(-0) = cos# s in ( -0 ) = -sine? 

One more trigonometric function is useful: the tangent. I ts value 
tan θ is defined for all θ? 90° + 180°re with η = 0, ± 1, ±2 , . . . by the equation 

, a _ sin θ tan θ = · 
CO8 0 

Theorem 14. The tangent is an even function. For τι = 0 , ± 1 , ± 2 , . . . and 
any Θ, the following periodic identity holds, or else both sides are unde-
fined: t a n ( 0 + 180° n) = t an Θ. 

Considering an isosceles right triangle and a right triangle with angles 
measuring 30° and 60°, you can easily determine 

cos30° = !/2 {5 sin30° = Vi tan30° = Va / 3 
cos45° = Vi J2 sin45° = Vt yfl tan45° = 1 
cos60° = Vz sin30° = Vi tan60° = . 

The periodic identities and theorem 11 then yield the values of the cosines, 
sines, and tangents of some arguments closely related to these. For example, 

cos480° =cos(120° + 360°) = cosl20° = cos (180°- 60°) 
= -cos 60° = - ιΛ. 

Using advanced trigonometry and calculus, mathematicians have derived 
methods for approximating all values of the trigonometric functions as closely 
as required for any application. 3 3 Moreover, given a value of one of the 
functions and some coarse information about the corresponding argument 
θ —for example, given s in# and 90°η <. θ< 90° (η. + 1) —you can approxi-
mate θ as closely as required. Detailed, cumbersome tables of these values 
and arguments were used for centuries. Now, algorithms are encoded in 
your calculator to provide them on demand. With the following theorem, 

Exercise 5.11.27 develops one method used by ancient mathematicians to approximate sines 
as accurately as necessary. 
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they yield easy solutions for many problems concerning right triangles. 
Theorem 16, a good example, is needed in section 5.5. 

Theorem 15. In any right triangle AABC with hypotenuse c and legs 
a and b opposite acute angles at vertices A and B, 

COB ml A = b/c a2 + b2 = c2 

sin ml Β = alc mZA + mZB = 90° 
tanrnZB = bla. 

Given two of the quantities a, b, c, ml A, and mlB —but not just the 
two angle measures—you can find the remaining quantities in the list by 
using the preceding equations and approximations of the cosine, sine, and 
tangent values. 

Proof. Introduce coordinates with the origin at A and the point U = 
<1,0> on ray AC, so that the second coordinate of Β is positive. Then 
use similar triangles. • 

Theorem 16. Consider figure 3.13.5,3 4 where PXQ is an arc of a unit circle 
with center Ο, θ = mlPOQ, and 0° < θ < 90°. Then sin θ = QR < PQ < 
PS = tan θ and OS = 1 /cos Θ. 

Proof. AOQR-AOSP, so 

i§. = 1Ά = OR = ί™1 OS _ OS _ OQ _ 1 
1 OP OR coed 1 OP OR οοβθ' 

s 

Figure 3.13.5 
Theorem 16 

Ο R Ρ 

Standard texts usually feature three more trigonometric functions: the secant, cosecant, 
and cotangent, abbreviated seed, cscd, and cot5, and defined by the equations 
sec θ = 1 /cos Θ, C 8 C 0 = sec(90°- Θ), and cotfi = tan(90°- Θ). Once useful for hand 
calculation with tables of function values, they now merely provide footnote material. The 
latter two equations explain two of the function names: Cosecant and cotangent mean secant 
and tangent of the complement. (See footnote 29.) The first equation, theorem 16, and figure 
3.13.5 illustrate the origin of the function names tangent and secant: tan θ and seed are 
the lengths PS and OS of segments that lie in lines tangent and secant to the circle. 
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By the exterior angle and isosceles triangle theorems, mZS < mZOQP = 
mZOPQ < mZPQS. By the hinge theorem, PQ < PS. • 

3.14 π 

Concepts 
Polygons inscribed in arcs; regular polygons 
Arc length and circumference 
Proportionality of arc length to radius and to arc measure in degrees 
π 
Archimedes' approximation to π 
Transcendence of π 
Radian measure 
Definition and area of a disk and a sector 
Definition and volume of a cylinder, a cone, and a ball 

From the earliest times, geometers considered measuring circumferences 
of circles. Circles are central to geometry. In practice, you measure one 
by wrapping it with a string, which you unwind along a ruler. But no concepts 
corresponding to wrapping and unwinding were incorporated into axiomatic 
geometry. The only tool for measuring length was a ruler. How can elemen-
tary geometry handle this problem? This section shows how to define and 
measure the length of any arc of a circle. It follows closely the methods of 
the ancient Greek geometers, introduces the number π as the length of 
the semicircle with radius 1, and presents Archimedes' approximate value 
for π. Where the ancients' methods left gaps in the reasoning, more modern 
techniques involving least upper bounds are employed. The section continues 
with radian measure and circular area, and concludes with very informal 
discussions of the volumes of cylinders andjmheres. 

You can estimate the "length" of an arc PQR of a circle Γ with center 
Ο as shown in figure 3.14.1. Choose an_integer n . > 0 , set P0 = P, Pn = 
R, and choose points Ρχ,.-.^Ρ^.ι on PQR distinct from these and each 
other, so tha t mPOP, < m P O P i + 1 for i = 1 to η - 1. The union Ρ 0 · Ρ „ 
of the segments Pi PUI is called a polygon inscribed in the arc. The points 
P; are called its vertices. For £ = 0 to η - 1 the segments P ;P i + 1 , angles 
/.PiOPi+l and triangles Δ Ρ ; Ο Ρ ί + 1 are its edges, central angles and cen-
tral triangles. The sum 

l(P0-Pn) = P0Pl+- +P„. 1 P„ 

is its length. If Ρ = R then P 0 = Pn, the arc is the whole circle, and the 
polygon is said to be closed. The length of every polygon inscribed in a given 
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Pt = R 

χ 

Figure 3.14.1 
A polygon 

inscribed in an arc 

arc should be shorter than the "length" of the arc, and you should be able 
to approximate this arc "length" as closely as you wish by taking η large 
enough and spacing the vertices evenly. But what number is the arc 
"length"? If you designate two perpendicular lines χ and y as in figure 
3.14.1, then you can regard each edge of an inscribed polygon as the hypo-
tenuse of a right triangle with legs parallel to χ and y. The length of the 
polygon is less than the sum of the lengths of all the legs, which cannot exceed 
eight times the radius of Γ. Thus the set of lengths of all polygons inscribed 
in the arc is bounded. Every bounded set of real numbers has a least upper 
bound. (See appendix Β for details of this concept.) That's the number we're 
looking for. The arc length_l(,PQR) is the least upper bound of the lengths 
of polygons inscribed in PQR. The arc length of the whole circle is called 
its circumference.36 

The first results in this section show that arc length is independent of 
the position of the arc in the circle, and proportional to the radius. 

Theorem 1. The lengths of arcs of equal measure in circles with radii r 
and r' have the ratio r / r ' . 

Proof. For each polygon inscribed in one arc you can construct a polygon 
in the other with congruent central angles. By the SAS similarity theorem, 
all corresponding central triangles are similar with ratio r/r', so the polygons' 
lengths stand in that ratio, too. Since multiplication by a fixed positive ratio 
doesn't change the ordering of numbers, the least upper bounds have the 
same ratio. • 

Corollary 2. Arcs of equal measure in circles of equal radius have the 
same length. 

The next results show that arc length behaves the way you should expect 
when you append one arc to another, and finally that arc length is proportional 
to arc measure in degrees. Because this concept is really a special case of 

This word stems from the Latin prefix circum- and verb fero meaning aroun d and carry. 
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the definite integral, the proofs seem overly complex and nongeometric. They 
use techniques employed by real analysis texts in estabhshing the foundation 
of integral calculus. 

Lemma 3. Suppose circular_arc PRT_^ is the union of arcs PQR and 
RST. Then l(PRT) = l(PQR) + l(RST). 

Proof. Given a polygon 77 inscribed in PRT, insert R as a new vertex, 
if it's not already there, to get a new inscribed polygon^ 77', which 
may be longer. 77' consists of two polygons, Φ inscribed in PQR followed by 
Ψ inscribed in RST, so that 

l(n)^l(n') = l(0) + l(W)^l(PQR) + l(RSf). 

Thus l(PQR) + l(RST)J^an upperbound forjhe set L_of lengths of all 
polygons inscribed in PRT^ so I (PRT) s l(PQR)+J(RST). 

Suppose^ l(PRT)<l(PQR±+l(RST). Then l(PRT)= u + υ for some 
u < I (PQR) and υ < l(RST). Since u couldn't be an upper bound 
for the lengths of goh/gons inscribed in PQR, there'd be some poly-
gon Φ inscribed in_PQR for which η<1(Φ). Similarly, there'd be a polygon 
Ψ inscribed in RST for which υ<1(Ψ). Υομ could assemble Φ and 
Ψ into a single polygon 77 inscribed in PRT. It would follow tha t 
1(Π) = 1(Φ) + 1(Ψ)>ιι + υ>1(ΡΡΤ), so l(PRT) wouldn't be an upper bound 
for the set L defined in the previous paragraph—contradiction! • 

Lemma 4. U_^PQR and ^JP^Q'R' are arcs in the same circle and 
mPQR < mP'Q'R', then l(PQR)<l(P'Q'R'). 

Proof. Find points S a n d J T on the circle_so that JWT and^PST 
are_arcs and mP'Q'R' = mPRT. Then l(PQR) < l(PQR) + l(RST) = 
l(PRT) = l(P'Q'R'). • 

Theorem 5. The lengths of arcs in a circle Γ have the same ratio as then-
degree measures. 

Proof. Let PlQ1R1 and P2Q2R2 be arcs in Γ and 

It must be shown tha t 

There are several cases, depending on r. 
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Case 1. If r = 1, just apply corollary 2. 
Case 2. If r is an integer > 1, then Ρββχ has the same measure as 

r arcs of measure m i ^ i ^ placed end to end, so lemma 3 yields the desired 
result. 

Case 3. Suppose^ is a rational number > 1 but not an integer. Then 
there's an arc PQR_and integers nl,n2> 1 such that r = nfn% and 
for^i_^ 1 and 2 , P,QiRi has the same measure as ft^_arcs of measure 
mPQR placed end to end. By case 2 , Z ( i ? = nJiPQR) for each i, 
and division yields the desired result. 

Case 4. Suppose r is an irrational number > 1 . If 

1{P2QJ12) 

then there'd exist some rational number q > 1, not an integer, such that 

You could find an arc PQi? such that 

mPQR 
:<7. 

hence mPQR < mP^R^ and J (POP) < / (^QJ-RJ ) by lemma 4 . 
Moreover, by case ( 3 ) , 

KPQR) -

The previous inequality and equation would imply 

—contradiction! You can draw a contradiction similarly from the hypothesis 

so the desired equation must hold. 
Case 5. If r < 1, then by cases ( 2 ) to ( 4 ) , 

and the result follows. • 
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Now define π- to be the length of a semicircle with radius 1 . 3 6 By 
proportionality, you get 

Theorem 6. The circumference of a circle Γ with radius r is 2 π τ . The 
length of a d ° a r c i n Γ is (π7180°) dr. 

About 250 B.C., the Greek mathematician Archimedes approximated π 
using a circle with radius 1 and inscribed and circumscribed regular poly-
gons. 3 7 An inscribed regular polygon is closed, with all central angles equal. 
The concept of a circumscribed regular polygon is analogous, except tha t 
the edges are tangent and the vertices are external to the circle. (See figure 
3.14.2.) Archimedes noted that every inscribed regular polygon is shorter 
than every circumscribed regular polygon, so the circumference 2π of the 
circle Hes between the lengths of any inscribed and circumscribed regular 
polygons. Computing the lengths of the two polygons with ninety-six edges 
laboriously, without the benefit of algebraic and decimal notation developed 
only centuries later, he found 3.140 < π < 3.143. You can pursue these details 
in exercise 4.9.2. 

We now know that π is irrational, so its digits never terminate or repeat. 
In fact, it's not even a root of any polynomial with rational coefficients. It's 
tha t property—called transcendence—that prevents any classical Greek 
ruler and compass construction of a segment of length π.33 

For a given radius, arc length is proportional to arc measure. That is, 
there's a constant k such that the length of a d ° arc is given by the formula 
k d. If you selected a fixed radius, you could use arc length to measure angles, 
instead of degree measure. That would free geometry from the influence 
of the arbitrarily chosen measure 180° for a semicircle. With radius 1, 
the arc length technique is called radian measure.39 Since the length of the 

According to Cajori (1919, 158) the first author to use the letter π for this quantity was 
William Jones (1706, 263). Jones did use π, but without claiming originality. 

Archimedes [1912] n.d., 9 1 - 9 8 . 

Niven (1956, chapter 9) uses advanced calculus to prove that π is transcendental, and 
Moise (1990, chapter 19) shows that you can't construct with the classical instruments any 
segment whose length is transcendental. 

The word radian, which stands for radial angle, originated around 1870 in the lectures and 
writings of Thomas Muir and James Thomson Sr. (see Muir and Thomson 1910). 

Inscribed and 
circumscribed 

regular polygons 

Figure 3.14.2 
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ARCHIMEDES was born about 287 B.C. in Syracuse, a Greek kingdom in 
southern Italy. His father was an astronomer, and his family was personally 
acquainted with the rulers. Archimedes studied at Alexandria, then returned 
to Syracuse, devoting his life to mathematics. He became famous for various 
mechanical inventions. Although he valued his theoretical work much more, 
practical problems clearly led him into new areas. Among his noted discover-
ies were the principles of hydrostatics and levers, and many results on 
centers of gravity. His most important work was the elaboration of the 
method of exhaustion, which Eudoxus and Euclid had discovered and utilized 
to some degree. Using the extended method, Archimedes solved many prob-
lems involving circles, conies, cones, and spheres that are now handled by 
integration. Actually, his methods form a foundation for integral calculus. 
That, however, wouldn't take form for another 1900 years. 

Archimedes was killed, against military orders, by a Roman soldier during 
the massacre following the fall of Syracuse after a siege in 212 B.C. The 
Romans embellished his tomb with a diagram illustrating his favorite 
discovery: the curved area of a sphere is equal to that of a tangent cylinder. 

180° arc is π, the constant is k = πΙ 180 and the radian measure of a 
d° angle is (/r/180)d. With degree measure, the constants π and 180 
would creep into almost every calculus formula that's related to geometry, 
so it's usually more convenient to use radian measure. This book, however, 
doesn't use calculus, so the method of angle measurement is irrelevant. 
To maintain tradition, it uses degrees. 

The first part of this section developed a theory for considering the length 
of arcs of a circle. Analogously, you can develop a theory for the area of a 
circular region, or disk—the union of a circle and its interior. This paragraph 
sketches that theory. It's convenient to extend the area concept to a sector—a 
part of a disk bounded by an arc and the radii at its endpoints—and to regions 
related to sectors and polygonal regions by the methods of section 3.8. You 
can add new axioms postulating that sectors with equal radii and congruent 
angles have the same area, and that the area of a disk with radius r is the 
least upper bound of the areas of its inscribed regular polygons. For η edges, 
the polygon's area is η times an edge times half the altitude a of the triangle. 
That's half its length times a. As η increases, the polygon's length 
approaches the circumference 2nr and a approaches r, so the 
area approaches lA (2nr)r = π τ 2 . You can show that πτ2 is in fact the 
least upper bound, the area of the disk. A tedious argument like that leading 
to theorem 5 shows that the area of a sector is proportional to the measure 
of its arc. 

Define a cylinder by imitating the definition of a prism in section 3.10. 
It has two bases—disks with the same radius in parallel planes—and consists 
of all points that he between points in the bases. Its altitude is the die-
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tance between the base planes. You can define a cone by imitating the defini-
tion of a pyramid. Its base is a disk, its apex a point not in its base plane, 
and it consists of all points that He between its apex and a base point. Its 
altitude is the distance between its apex and base plane. Finally, a ball is 
the union of a sphere and its interior. 

You can extend the theory of volume to handle regions related to polyhedral 
regions, cylinders, cones, and balls by the methods of section 3.10. You must 
modify CavaHeri's axiom to apply to aU regions whose intersections with 
planes have been covered by the previous discussion of areas. That gives 
the cylinder a volume equal to that of a prism with the same altitude and 
base area. That is, the volume of a cylinder is its altitude times its base area. 

Consider a cone and a triangular pyramid with the same apex and base 
plane. A plane parallel to the base plane, between it and the apex, intersects 
the cone and the pyramid to form a disk Σ and a triangular region T. 
Reasoning with similar triangles, you can easily show that the ratios of the 
areas of Σ and Τ to the base areas are the same. It follows that the cone 
and the pyramid have the same volume if they have the same apex and base 
area. That is, the volume of a cone is one third its altitude times its 
base area. 

FinaUy, the area and volume formulas already presented in this section, 
used aU together, yield the formula for the volume of a ball with radius 
r: it's %nr%. You can pursue the details of the calculation in exercise 4.8.3. 
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Chapter 

4 
Exercises on 

elementary geometry 

Chapter 3 was a fast, perhaps breathtaking, recapitulation of elementary 
geometry. Most of that material you'd already studied. It had become central 
to your later pursuit of the field, nevertheless somewhat foggy. A few areas 
were perhaps new to you. The learn by doing precept applies to review as 
well as initial study. To master elementary geometry, you need to draw 
the figures and work out the proofs in chapter 3. And you need to do exercises, 
to see how these methods apply in practice. The standard type of routine 
elementary geometry exercise, fit for beginning students new to the material, 
isn't appropriate for this book. For those, you can consult a good school text, 1 

or a workbook devoted to that kind of exercise. 2 Even better, devise routine 
exercises yourself. This chapter is a collection of meatier, nonroutine problems 
that complement chapter 3. Most of them require a combination of methods 
for solution. They're really problems in professional mathematics, not just 
elementary geometry. 

The exercises are collected in this chapter for two reasons. First, some 
require considerable discussion just to state, and others are clearly peripheral 
to the main course of the subject. Including them in chapter 3 would distract 
you from its highly organized flow. Second, the most beneficial problems 
exercise various combinations of solution methods, and it's sometimes unclear 
just where in chapter 3 they should be included. Although this chapter is 
organized roughly the same way as chapter 3, its latter sections have been 
shuffled to accommodate this particular problem selection. 

Some exercises in this chapter complete discussions begun earlier. For 
example, 

1 For example, Moise and Downs 1964. 
2 For example, Rich 1989. 

127 
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• Exercise 4.5.6 corrects the sophism discussed in section 2.2; 
• Exercise 4.6.2 completes the section 3.5 coverage of SSA triangle 

congruence; and 
• Exercise 4.8.3 derives the formula for the volume of a sphere men-

tioned in section 3.14. 

Others introduce entirely new subjects: for example, 

• Independence proofs for various axioms in section 4.1; 
• Arithmetic, geometric, and harmonic means in 4.5 and 4.6; and 
• Spherical trigonometry in section 4.9. 

There are a few original exercises here. But for most, the author acknowledges 
debt to his predecessors. Only a few exercises, with clear heritage, are given 
footnote citations. Others are old gems, whose origin would be hard to estab-
lish. The author has used much of this exercise set for decades. Each year 
new, different, solutions appear. You're encouraged to dive in, try out ideas 
old and new, and make these problems your old friends. 

Hints are provided for a few exercises. Sometimes they suggest an appro-
priate method. Don't feel constrained to follow that, however, since many 
problems yield to attack from several directions. Other hints are approximate 
solutions: for example, "the answer is about 14.14." These help you check 
the feasibility of your solution. But you need to find the exact answer, which 
isn't obvious, even given the approximation. Indeed, 14.14 is about the same 
as both 11 + π and 10 J2, but those numbers are different. 

4.1 Exercises on the Incidence and ruler axioms 

Concepts 
Models of axioms 
Finite geometric systems 
Independence of the incidence axioms 
Four-dimensional simphces 
Ruler placement along a hne 

The incidence axioms of section 3.1 entail only a small part of Euchdea η 
geometry. It's impossible to single out many applications of that material 
alone, so the exercises in this section are theoretical. 

Axiom 15 states roughly that there are enough points to do some three-
dimensional geometry. It's worded awkwardly. One reason for that was 
to facilitate the proof of the more informative lemma 3.1.3 and theorem 3.1.4. 
Exercise 1 explores alternate wordings. Exercise 2 shows that you can't 
do without 15, because the remaining axioms can be interpreted to describe 
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a structure—a model of those four axioms—that's all in one plane. But 
according to exercise 3, even with 15 you don't get very much geom-
etry : I I to 15 have a model consisting of just four points, so you can't prove 
from the incidence axioms alone that there are more than four. 

Exercise 1. Can you replace axiom 15 by the statement, There exist four 
noncoplanar points? How about, There exists a plane ε and a point not 
on ε? 

Exercise 2. Consider the mathematical system depicted by figure 4.1.1. 
It consists of 

• three points Ο, P, and Q; 
• three lines {Ο,Ρ}, {P,Q}, and {Q,0}; 
' one plane {0,P,Q}. 

Show that this system satisfies all the incidence axioms except 15. 

Exercise 3. Construct a system with four points, six lines, and four planes, 
that satisfies all the incidence axioms. 

Exercises 2 and 4 to 6 together demonstrate that the incidence axioms 
are independent: None is derivable from the others. For each axiom «Λ£ 
there's a model in which ^ is false but the rest are true. If you could derive 

from the other axioms, it would also be true in that model. 

Exercise 4, Part 1. Consider the system depicted in figure 4.1.2 with four 
points, five lines, and four planes. Which incidence axioms does it satisfy, 
and which not? Careful: Your answer should depend on whether you interpret 
the word three in 12 as meaning three distinct. 

Part 2. Modify the system of exercise 3 to produce one with four points, 
six lines, and three planes, that satisfies all the incidence axioms except 12. 

Ο Ρ 

Figure 4.1.1 Finite 
plane for exercise 2 

Figure 4.1.2 Finite model 
for exercise 4, par t 1 
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Exercise 5. Consider a mathematical system with five points, ten lines each 
containing just two points, and ten planes each containing just three points. 
Show that it satisfies all the incidence axioms except 14. Show how to interpret 
this system as a simplex—the simplest polyhedron—in four-dimensional 
analytic geometry. 

Exercise 6. Construct a mathematical system that satisfies all the incidence 
axioms except 13. Suggestion: You can do it by adding two points and some 
fines and planes to the system of exercise 3, and adjusting the content of 
some of the original fines and planes. 

Another interesting project along these lines would be to sp fit I I and 12 
each into two axioms (they consist of two sentences each), and explore the 
independence of the resulting system. 

The ruler axiom of section 3.2 excludes finite models like those considered 
in the previous exercises, since it states that the set of points on any hne 
corresponds to the infinite set of real numbers and shares many properties 
with it. It says that you can establish such a correspondence—a scale—in 
at least one way. Exercise 7 shows what other possibilities there are. These 
relate to the ways you can place a ruler along a line in famihar experience. 

Exercise 7. Given a scale c for a line g, and real constants a and 6 with 
b = ±l, show that the function d defined by setting d(P) = a + bc(P), for all 
points Ρ on g, is another scale. Conversely, show that if d is any scale 
for g, then there are constants a and b such that 6 = ±1 and d ( P ) = 
a + bc(P) for all P. 

4.2 Exercises related to Pasch's axiom 

Concepts 
Trihedral angles, their vertices and interiors 
Lines and planes in general position 
Partitioning a plane by lines 
Partitioning space by planes 
Recurrence formulas 
Bounded sets 
Difference equations 

An ordered triple ff = < OP, OQ, OR> of three noncoplanar rays with a 
common origin Ο is called a trihedral angle. Ο is its vertex. Clearly, & 
determines three angles LPOQ, LQOR, and iROP. (It might seem simpler 
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to define & as those angles' union, but that wouldn't let you distinguish 
one ray of & from another, which you must do to discuss congruence in sec-
tion 4.3.) 

Exerei&e 1. Show that a trihedral angle J£ determines three dihedral angles, 
the interiors of any two of which have the same intersection. That intersection 
is called the interior of d>. 

With η distinct points you can divide a line into two rays and η - 1 
segments that overlap only at common ends. The remaining exercises in 
this section generalize that familiar result to two and three dimensions. 
Exercise 6 introduces an algebraic method for solving polynomial difference 
equations that arise in this study. Give as much detail as possible in your 
geometric proofs, but don't sacrifice readability and grace. You should be 
able to confine your methods to those discussed in sections 3.1 to 3.3. These 
results depend only on the incidence, ruler, and Pasch axioms. 

The two-dimensional generalization of the notion of distinct collinear points 
is that of coplanar lines in general position: Each two intersect, but no three 
pass through the same point. For an example, see figure 4.2.1. 

Exercise 2. Show that a finite set 3>oi η coplanar lines in general position 
divides their plane ε into a finite number of disjoint partitions. One of these 
is the union of darkened in figure 4.2.1. Each of the others is the intersec-
tion of a finite number of sides in ε of members of SP. Let pn be the number 
of partitions. Show that p n + , = p„ + η + 1 for every η > 0. Compute 
p 1 0 . Suggestion: Starting with no lines and one partition, add lines one by 
one. Consider the new partitions created when you add the n+ l s t line. 
Figure 4.2.1 shows that p 4 = 12. You should find p 1 0 = 57. 

A formula such as p n + 1 =p„ + η + 1 that expresses each entry of a sequence 
Pi,p2,... in terms of one or more of its predecessors is called a recur-
rence formula. 

Figure 4.2.1 Coplanar lines 
in general position 
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Exercise 3. Express pn, for n>0, as a polynomial in terms of n. Use 
this formula to verify your value of pl0. Then compute pm. How does 
the ratio p2n lpn behave as η increases? Suggestion: You should find 
p 1 0 0 = 5052. 

A point set Σ is called bounded if there's a number b such that PQ < 
b for any points Ρ and Q in Σ. 

Exercise 4. In general, how many of the partitions in exercise 2 are unbound-
ed? How many for η = 100 ? Suggestion: For η = 100 you should find 
201 unbounded partitions. 

A family of planes is said to be in general position if the intersection of 
each three is a point, but no four pass through the same point. 

Exercise 5. Show that a finite set £P of planes in general position divides 
space into a finite number of disjoint partitions. One of these is the union 
of Each of the others is the intersection of a finite number of sides of 
members of 9>. Let qn be the number of partitions. Derive the recurrence 
formula qn+l = qn +pn - 1. Compute q, 0 . Suggestion: You should find 
q 1 0 = 177. 

An integer constant c and a formula that defines a sequence 
d^dj,... determine a difference equation problem: to find a formula for 
a sequence fuf2>... such that / , = c and fk+l -fk = dk for all k. 

Exercise 6. Suppose dltd2>... are given by a polynomial of degree n: 
There are coefficients a0 to an such that dk = a0 + axk + a2k

2 + ·•• + 
ank

n for all k. Show how to find a polynomial solution f of degree η + 1 
for the difference equation problem fx - c and - /* = by solving 
a system of linear equations for the coefficients of / . 

Exercise 7. Use the technique you developed in exercise 6 to find a formula 
that expresses qn for n > 0 , as defined in exercise 5, in terms of n. Use 
it to verify your value of ς 1 0 . Then compute o I 0 0 . How does the ratio 
q2Jqn behave as η increases? Suggestion: You should find Q 1 0 0 — 
166752. 

Exercise 8. In general, how many of the partitions in exercise 5 are 
unbounded? How many for n.= 100? Suggestion: For n. = 100 you should 
find 9903 unbounded partitions. 

This section's numerical results suggest a guideline for developing algo-
rithms for geometric software. Suppose you've used lines or planes to divide 
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a plane or space into partitions Z\, Σ2,... or Γ,, T2 and you know 
that only a few of the partitions have some specific property. If you must 
perform some operation on just those partitions, then you should try to avoid 
considering all the partitions and testing each in turn for that property. 
There are so many that such an algorithm could be too inefficient. You should 
look for some quicker way to identify the appropriate partitions. 

Mathematicians have extended and modified the techniques involved 
in this section to give more detail and to apply to related problems. 3 

4.3 Exercises on congruence and perpendicularity 

Concepts 
Angle between a line and a plane 
Congruent trihedral angles 
Congruent tetrahedra 

The first two exercises in this section are simple applications of t he theory 
in sections 3.5 and 3.6. Exercises 3 and 4 are a little more involved; those 
results are used often in more complex arguments about distances in triangles 
and about perpendicularity in three dimensions. You may find exercise 5 
the most challenging in this section. Although stated abstractly, it has a 
very concrete application in operations research: 

Your express company needs to drive four vans each morning from distri-
bution center X to retailers A to D. Assuming that only distances 
are relevant, where should you locate X to minimize fuel costs? 

The remaining exercises lead to a three-dimensional analog of the triangle 
congruence theory developed in section 3.5. The mathematics isn't difficult, 
but this study requires attention to organization, and facility with three-
dimensional examples. Exercises 7 and 8 are open-ended. The author has 
never seen a three-dimensional congruence theory published in detail. 

Virtually all exercises in the rest of this chapter routinely use the con-
gruence and perpendicularity notions from chapter 3 that are stressed here. 

Exercise 1. In figure 4.3.1, X and Y are distinct points in the intersection 
of distinct planes α and β, A is a point in α but not β, and Β is a 
point in β but not a. Also, AX = BY and AY = BX. Prove tha t 
LAXB^LAYB. 

See Wetzel 1978 for a summary, and follow its citations for more detail. 
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Figure 4.3.1 Figure 4.3.2 
Exercise 1 Exercise 2 

Exercise 2. In figure 4.3.2, Ο is a point in a plane ε, and Ρ is a point 
not in ε. Line OP is not perpendicular to ε. Find a point Q ψ- Ο in 
ε so that mlPOQ is as small as possible. 

The smallest angle in exercise 2 is called the angle between OP and ε. 

Exercise 3, Part 1. Prove that if point X is between but different from 
vertices A and Β of AABC, then CX<AC or CX<BC. 

Part 2. Prove that if point X lies inside AABC, then AX + BX < 
AC + BC. 

Exercise 4. Without using the parallel axiom prove that any three of the 
following conditions on noncoplanar points A to D implies the fourth: 

LB of AABC is right, iC of AACD is right, 
IB of AABD is right, iC of ABCD is right. 4 

Exercise S. Given four coplanar points A to D, find a point X such that 
AX+ BX+ CX+ DX is as small as possible. Suggestion: Treat various 
configurations separately. For example, consider 

1. all points on a line, 
2. D on the edge of AABC opposite B, 
3. ABCD a convex quadrilateral, and 
4. D in the interior of AABC. 

Case 4 may prove troublesome. Try subdividing the plane as in figure 4.2.1 
and considering X in various partitions. 

4 This form of exercise 4 is due to Η. N. Gupta (1967). 
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Two trihedral angles &=<OP,OQ,OR> and = <OrP',0'Q',0'R'> 
are called congruent if the angles iPOQ,... of ST are congruent to the 
corresponding angles IP'O'Q',... of £Γ' and corresponding dihedral angles 
of ST and 3"' have the same measure. Trihedral angle congruence is thus 
conveyed by six equations stating that corresponding angles and dihedral 
angles have the same measure. 

Exercise 6. Prove that if <OP,OQ,OR> is a trihedral angle, then 
mlPOQ + m/.QOR > m/.ROP. Suggestion: You may want to consider 
separately cases mlPOQ * mlROP and mlPOQ < miROP. 

Exercise 7. Find minimal sets of the six trihedral congruence equations 
that imply the rest. Suggestion: Perhaps you can prove that two trihedral 
angles are congruent if their three pairs of corresponding dihedral angles 
are. If so, can you get the same result from an even smaller set of equations? 
Try other possibilities, too. 

Two tetrahedra are called congruent if their four pairs of corresponding 
tr ihedral angles and six pairs of corresponding edges are congruent. 
Tetrahedral congruence is thus conveyed by six equations stating tha t 
corresponding edges have the same length, and sixteen more stating tha t 
pairs of corresponding angles have the same measure (twelve pairs of angles 
determined by vertices, and four pairs of dihedral angles). 

Exercise 8. Find minimal sets of the twenty-two tetrahedral congruence 
equations that imply the rest. Try to organize your results like the triangle 
congruence theory. 

4.4 Exercises involving the parallel axiom 

Concepts 
Angle chasing 
Properties of parallelepipeds 

Except for the last, the exercises in this section aren't about parallel lines. 
But to solve them, you'll need to use results that depend on the parallel axiom. 
The solution of exercise 1 is an elementary example of the angle chasing 
technique. Exercise 2 looks at first like it might yield to the same method. 
But it's deceptive and troubling—one of the simpler instances of a genre 
of problems in which angle chasing seems like tail chasing. The remaining 
exercises are tliree-dimensional. The last, which calls for a three-dimensional 
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analog of the theory of parallelograms developed in section 3.7, is open-
ended, although its mathematics is not hard. The author has never seen 
such a theory worked out in detail. 

Exercise 1. Which segment in figure 4.4.1 is shortest? Prove that your choice 
is correct. 

Exercise 2. Suppose Ε is a point inside square ABCD, and mlEAB = 
15° = mlEBA, as shown in figure 4.4.2. Without using trigonometry, show 
that &CDE is equilateral. 

Exercise 3, Part 1. Suppose α, β, and γ are planes intersecting in distinct 
lines g, h, and k as shown in figure 4.4.3. Using only the incidence axioms, 
prove that either the three lines are concurrent, or no two of them intersect. 

Part 2. Suppose α, β, γ, δ, and ε are planes intersecting in distinct 
lines g, h, k, and I as shown in figure 4.4.4. Prove that g and I are 
coplanar. How are you stymied when you try to prove this statement using 
only the incidence axioms? 

Arthur Winternitz (1940, section II.2) showed by a circuitous argument 
that the result in exercise 3, part 2, holds even in hyperbolic non-Euclidean 
geometry—the theory you get by replacing the parallel axiom by its negation. 
Thus, there ought to be a solution of part 2 that uses only the incidence, 
ruler, Pasch, and congruence axioms. You're challenged to find one. Winter-
nitz showed that you can't derive it from just the incidence axioms. 

C D C 

A Β 

Figure 4.4.1 
Exercise 1 

Figure 4.4.2 
Exercise 2 
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Figure 4.4.3 Figure 4.4.4 
Exercise 3, part 1 Exercise 3, par t 2 

Exercise 4. Prove tha t two noncoplanar lines have exactly one common 
perpendicular. Suggestion: Try building a right prism whose bases are 
quadrilaterals Ά and &l with two right angles each, such that ^ has an 
edge on one given line and 01 has one on the other. 

Exercise 5. Formulate and prove a set of theorems about parallelepipeds 
analogous to theorems 3.7.17-3.7.20 about parallelograms. More detail may 
be appropriate, because there are more concepts in three dimensions: 

Two dimensions Three dimensions 
parallelogram parallelepiped 

right prism with parallelogram bases 
rectangular prism 

rectangle box 
prism with two rhombic bases 
right rhombic prism 

rhombus cuboid (all faces rhombic) 
square cube 

4.5 Exercises on similarity and Pythagoras' theorem 

Concepts 
Arithmetic, geometric, and harmonic means 
Right-triangle trigonometry applications 
Correcting the section 2.2 sophism 

This section contains exercises that use similarity and Pythagoras' theo-
rem in various ways. In section 4.6 you'll find more exercises tha t stress 
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Pythagoras' theorem. The techniques emphasized here will be used routinely 
in the rest of this chapter. 

Exercise 1 demonstrates geometrically some properties of three mean 
operations used in many applications. The average m = Vi (x + y) of two 
numbers χ and y is called their arithmetic mean because the triple 
< x, m, y > forms an arithmetic series: y - m = m - x. The geometric mean 
of χ and y is the number g such that <x,g,y> forms a geometric 
series: ylg-glx, so g2~xy, hence g=\fxy. The harmonic mean of χ 
and y is the number h whose reciprocal is the average of those of χ 
and y: 

Exercise 1, Part 1. Given χ and y with x<y as in figure 4.5.1, show 
that h = 2z is their harmonic mean. Show geometrically that χ < h < 
m. Show algebraically that <h,g,m> forms a geometric series, so that 
x<h<g<m<y. 

Part 2. Let ABCD be a trapezoid with bases of length AB = χ and 
CD = y. Let the hne parallel to the bases through the intersection of the 
diagonals meet the other edges at points Ε and F. Show that EF is the 
harmonic mean h. 

Exercise 2, Part 1. Prove that if A to D are distinct noncollinear (not 
necessarily coplanar) points, and 

A' is the midpoint of AB, B' is the midpoint of BC, 
C is the midpoint of CD, D' is the midpoint of DA, 

then A'B'C'D' is a parallelogram or A' to D' are collinear and 
A'B' = CD'. 

Part 2. Prove that if A to F are distinct points, no four of which are 
collinear, 

A' is the midpoint of AB, D' is the midpoint of DE, 
B' is the midpoint of BC, E' is the midpoint of EF , 
C is the midpoint of CD, F' is the midpoint of FA , 

Figure 4.5.1 Constructing 
the harmonic mean 
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and Ο is a point such that A'B'C'O is a parallelogram, then D'E'F'O 
is also a parallelogram. 

Exercise 3. The measures of the angles and edges of a triangle are sometimes 
called its parts. Construct two incongruent triangles such that five parts 
of one equal five of the other. Describe all possible ways to do this. 

Theorem 3.13.15 provided a summary of right-triangle trigonometry. 
Exercise 4 demonstrates all cases of its use in practical applications. Exercise 5 
shows a typical application: measuring some particularly symmetric figures 
that you'll study in more detail in chapter 8. 

Exercised. Consider right triangle A ABC with legs a = BC, b = CA, 
hypotenuse c = AB, and acute angles IA and LB. 

Parti. Given a = 10 and 6 = 20, find c, mlA, and mlB. 
Part 2. Given 6 = 20 and c = 3 0 , find a, mlA, and mZB. 
Part 3. Given a = 10 and mZA = 40°, find 6, c, and mlB. 
Part 4. Given 6 = 20 and mZA = 40°, find a, c, and mlB. 
PartS. Given c = 30 and mZA = 40°, find a, b, and mlB. 

Exercise S. Find the measures of the dihedral angles formed by the faces 
of a regular tetrahedron and of a regular octahedron. The latter polyhedron 
consists of two square pyramids with a common base and eight equilateral 
faces. Suggestion: To gain insight and check the reasonableness of your solu-
tions, you may want to make stiff cardboard models. More precise and robust 
models of these and other commonly studied polyhedra are available as kits. 
You glue together plastic face tiles. To fit precisely, they should be manufac-
tured with the edges beveled to produce the correct dihedral angles. (See 
the discussion in section 8.5 under the heading 

Exercise 6 is the result you need to correct the sophism in section 2.2. 
It's included here only because part of the solution—already given in 2.2— 
uses Pythagoras' theorem. The argument you must supply here uses only 
methods covered through section 3.7. 

Exercise 6. Consider AABC with CA < AB. Prove that the bisector of 
L A meets the perpendicular bisector of BC at a point X on the opposite 
side of BC from A. Moreover, the feet Y and Ζ of the perpendiculars 
from X to CA. and AB he outside and inside the triangle legs, respectively. 
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Concepts 
Geometric interpretation of arithmetic, geometric, and harmonic 

means 
SSA congruence data 
Angles between tangents and secants to circles 
External and internal tangents to disjoint circles 

This section and the following three all contain exercises involving circles 
and spheres. Those here are general in scope. Sections 4.7 and 4.8 emphasize 
computation of areas and volumes of regions constructed from circles and 
spheres. Section 4.9 contains exercises on plane and spherical trigonometry, 
the value of π, and the curved areas of cylinders, cones, and spheres. 

Exercise 1 continues the study of arithmetic, geometric, and harmonic 
means begun in exercise 4.5.1. It was included in the work of the Alexandrian 
mathematician Pappus about A.D. 320. s 

Exercise 1. Given x<y, locate points A to C so that A-B-C, AB = 
x, and BC = y. Let Ο be the midpoint of AC, and D be the intersection 
of the perpendicular to AC through Β with a semicircle whose diameter 
is AC. Let Ε be the foot of the perpendicular to OD through B. Among 
the segments determined by points A to £ and O, find segments of length 

h the harmonic mean of χ and y, 
g their geometric mean, and 
m their arithmetic mean. 

Point out geometric meanings of the inequalities x<h<g<m<y. 

Although exercise 2 isn't about circles, you may want to use some of then-
properties to solve it. This result completes the triangle congruence theory 
begun in section 3.5. There you reviewed the SAS, ASA, SSS, and SAA 
theorems. An example indicated that there's no analogous SSA theorem. 
Nevertheless, as exercise 2 shows, SSA data can be useful. Sometimes they're 
enough to determine all the other parts of the triangle. In the other cases, 
you can almost do that ; you've only two choices. 

Exercise 2. Suppose you have SSA data about AABC: a = BC, b = 
CA, and mZA. 

5 See Eves 1963, volume 1, problem 1.5-17. 

4.6 Exercises on circles and spheres, part 1 



4.6 EXERCISES ON CIRCLES AND SPHERES, PART 1 141 

Parti. Suppose IA is obtuse or right. Prove that a>b and that all 
triangles with this same SSA data are congruent to A ABC. 

Part 2. Suppose LA is acute. Let d be the distance from C to AB. 
Show that d < b and d i. a. Prove that if a = d or a ζ b, then all triangles 
with this same SSA data are congruent to A ABC. Show that if d < a < 
b, then there's a triangle Τ incongruent with AABC such tha t all tri-
angles with this same SSA data are congruent to AABC or to T. 

Exercises 3 and 4 seem to relate to church window design and to packing 
balls in a box. They're really exercises on Pythagoras' theorem. 

Exercise 3'. In figure 4.6.1, arcs AGC and BHC have centers Β and 
A. The semicircles with centers D and F on AB have radius lA s, where 
s = AB. The circle with center Ε is tangent to the first two arcs and the 
semicircles. Find its radius r in terms of s. 

Exercise 4, Part 1. In figure 4.6.2, called a quincunx,6 the square has 
edge s and the circles, radius r. Find r in terms of s. Suggestion: r~ 

Part 2. Same as part 1, with nine spheres placed inside a cube. Sug-
gestion : r » 0.232 s. 

This section concludes with two exercises on tangents and secants to circles. 

Exercise 5. Investigate the angles between two tangents to a circle, between 
two secants, and between a tangent and a secant. Include all five cases shown 
in figure 4.6.3. In each case derive a formula for the measure of Ζ A in terms 

0.207 s. 

C 

A D F Β 

Figure 4.6.1 Exercise 3 Figure 4.6.2 Quincunx 

6 This word is a Latin compound: quinque + uncia = five + ounce or twelfth. 
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A A A 

Case 1 Case 2 Case 3 

Case 4 Case 5 

Figure 4.6.3 Exercise 5 

of the measures α and β of the indicated arcs. Suggestion: More general 
cases are best derived from more special ones. You may have to consider 
separate cases depending on the location of the center with respect to 
LA. Methods from the proof of theorem 3.13.6 may help. 

Exercise 6. Lines AB and CD are externally tangent to disjoint circles 
Γ and Δ at A, Β and C,D in figure 4.6.4. Line BrC is internally tan-
gent at C and B'. The internal tangent intersects the others at Ρ and 
Q. Prove that AB = CD = PQ. Suggestion: Methods appropriate for solv-
ing this exercise are used later to prove theorem 5.9.2. 

Β 

Figure 4.6.4 
Exercise 6 
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4.7 Exercises on area 

Concepts 
Dissecting polygonal regions 
Kites and lunes 
Interior and boundary of a polygonal region 
Open and closed subsets of a plane 

This section contains exercises on polygonal regions and regions construct© d 
from circles, emphasizing area. In exercises 3 to 8, the main technique 
required is dissection: splitting a given region into pieces that you can handle 
with the area theory developed in sections 3.8 and 3.14. All exercises except 
the last two involve area calculations. The last ones let you develop the 
concepts of boundary and interior of a polygonal region. Although polygonal 
regions are built from triangular ones, and the interior of a triangular region 
is a simple idea, you'll find it hard to pin down the corresponding notion 
for polygonal regions in general. The exercises provide a workable definition, 
which you'll need in chapter 8. 

Exercise 1. Figure 4.7.1 is an isosceles trapezoid ABCD with AB / CD, 
AB = bu CD = b 2 , BC = c = DA, and a point Ε on BC. Find d = 
BE so that AE splits ABCD into equal areas. 

Exercise 2. Consider a tetrahedron with three mutually perpendicular faces. 
Prove that the sum of the squares of their areas equals the square of the 
area of the other face. 

D C 

A Β 

Figure 4.7.1 
Exercise 1 

Figure 4.7.2 
Kurschak's tile 
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Figure 4.7.3 Figure 4.7.4 
Exercise 4 Exercise 5 

Exercise 3. Using figure 4.7.2, compute the area of the regular dodecagon 
with radius l . 7 

Exercise 4. In figure 4.7.3, each edge of an outer equilateral triangle is 
divided in the ratio 2 to 1. Find the area of the shaded inner triangle, in terms 
of the edge s of the outer one. Suggestion: It's approximately 0.14s2. 

Exercise 5. In figure 4.7.4, segments join the vertices of a square to midpoints 
of its sides. Prove that the quadrilateral in the middle is a square, and 
determine the ratio of its area to that of the outer square. Find an analogous 
result for a similar situation in which the outer figure is a rectangle. Sug-
gestion: The only computation in your solution should be counting. 

Exercise 6. In figure 4.7.5, some vertices of a square have been joined 
to edge midpoints to form a kite: a quadrilateral (shaded) with two adja-
cent pairs of congruent edges. Find its area, in terms of the edge s of the 
square. Suggestion: It's about 0.27s2. 

Figure 4.7.5 
Exercise 6: kite 

7 This exercise is due to J. Kurschak. See Alexanderson and Seydel 1978. 
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Figure 4.7.6 
Exercise 7 

Figure 4.7.7 
Exercise 8 

Exercise 7. Compute the area of the shaded region in figure 4.7.6. Called 
a lune,s it lies "between" arcs of two circles with radius 1. The solution 
may surprise you. 

Exercise 8. Compute the area of the shaded region in figure 4.7.7. The 
length of an edge of the square is 1. Suggestion: This exercise is related 
to exercise 3 ; the area is approximately 0.32. 

Even though a polygonal region 77 is the union of regions corresponding 
to triangles 7\ to Tn, and the notion of the interior of a tr iangular region 
is simple, tha t of the interior of 77 is surprisingly hard to make precise. 
The section's concluding exercises will force you to confront that difficulty, 
and will provide a definition you can use later, in chapter 8. For the moment, 
trust your intuition to answer correctly whether a given point Ρ is interior 
to 77. The problem is to describe in words how your intuition works. 

Exercise 9, Part 1. Is the interior of 77 always the union of the interiors 
of 7\ to Tn? Using η = 2, present an example where this is t rue and a 
counterexample where it's not. Suggestion: Your counterexample will 
probably involve triangles tha t intersect along an edge. 

Part 2. Does the interior of 77 ever consist of the union of the interiors 
of Tx to Tn and the points on their common edges? Using η = 2, present 
an example where this is true and a counterexample where it's not.9 

Suggestion: Your counterexample will probably involve a shared vertex. 
Part 3. Does the interior of 77 always consist of the union of the interiors 

of Tx to Tn and the points interior to common edges? Using η = 3 and 
triangles Ti tha t intersect, present an example where this is t rue and a 
counterexample where it's not. 

From the Latin word luna for moon. 

Does it make any difference whether you define polygonal region as in section 3.8, note 13, 
so that the 7"( intersect, if at all, only along entire edges? 
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You should be pleased that your intuition works in complicated situations, 
but troubled that it's hard to describe. You will need a precise definition 
of the interior of a polygonal region 77 in a plane ε. You may have noticed 
that part of the difficulty lies in deciding whether some points are on its 
boundary. In fact, the problems of defining interior and boundary are 
equivalent, because the interior of 77 should be the set of its nonboundary 
points, and its boundary should be the set of its noninterior points. Here's 
a precise definition: a point Ρ lies on the boundary of 77 just in case 

for every triangle Τ in ε, if Ρ is interior to T, then there exist 
points U and V interior to Τ such that U lies in 77 but V 
does not. 

You can use this to define the interior of 77 precisely, as the set of all non-
boundary points in 77. 

Exercise 10, Part 1. Show that you could replace the word triangle in this 
definition by circle or square. 

Part 2. Show that every boundary point of 77 lies on an edge of one of 
the triangles Tt. 

Part 3. Show that a point Ρ lies in the interior of 77 if and only if Ρ 
is interior to some triangle, all of whose interior points belong to 77. 

Part 4. First, a definition: A set Γ ofpoints inaplane ε is called open 
in ε if every point Ρ of Γ is interior to some triangle in ε, all of whose 
interior points belong to Γ. Part 3 showed that the interior of a polygonal 
region 77 in ε is open in ε. Now show that the boundary of 77 contains 
no set that's open in ε. 

PartS. A set Σ of points in ε is called closed in ε if its relative comple-
ment—the set of points in ε butnoi in Σ' —is open. Show that 77 is closed. 

4.8 Exercises on volume 

Concepts 
Dissecting volumes 
Prismoids and antiprisms 
Volumes of spheres and spherical caps 
Interior and boundary of a polyhedral region 
Open and closed point sets 

Like most exercises in the previous section, exercises 1 and 2 demonstrate 
dissection: splitting a given region into pieces that you can handle with the 
volume theory developed in sections 3.10 and 3.14. Exercise 3 provides the 
proof for the last result mentioned in section 3.14: the formula for the volume 
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of a sphere. Exercise 4 considers some volumes related to that of a sphere. 
Exercise 5 extends to three dimensions the discussion of interior and boundary 
points and open and closed sets presented for plane geometry in exercises 
4.7.9 and 4.7.10. 

Exercise 1. Make a polyhedron—called a prismoid—with two dissimilar 
rectangular faces ABCD and A'B'C'D' in parallel planes, so tha t pairs 
of corresponding edges he in parallel lines. The remaining four lateral faces 
are trapezoids whose bases are corresponding edges of the rectangles. Find 
its volume in terms of the rectangles'edges a, b and a',b' and the distance 
h between the base planes. Suggestion: If a,b,a',b',h = 2, 3 ,4 ,5 ,6 then 
the volume is 74. 

Exercise 2. Make cutouts like the two parts of figure 4.8.1, so that all edges 
α to Λ and those of the internal squares have the same length s. Make 
a polyhedron—called a square antiprism—by folding along the dotted lines 
and taping similarly lettered edges together. Find its volume. Sugges-
tion: Dissect the antiprism into several pyramids. If s = l, their total volume 
is approximately 0.957. 

Exercise 3. A plane through a point Ο divides a sphere with center Ο 
and radius r into two hemispheres. On their common circular base, construct 
a cylinder with altitude r. Using Cavaheri's axiom, show that the volume 
of the region between the cylinder and one of the hemispheres is the same 
as that of a certain cone. Apply the volume formulas for the cylinder and 
cone to derive the formula for the volume of the sphere. 

Exercise 4, Part 1. Let 0 i.h<r. A plane at distance h from Ο divides 
the sphere with center Ο and radius r into two parts. The smaller is called 

Figure 4.8.1 Antiprism cutouts for exercise 2 



148 EXERCISES ON ELEMENTARY GEOMETRY 

a spherical cap. Without using calculus, find a formula for its volume. 
Suggestion: If r = l and h = 1/2, the cap's volume is about 0.65. 

Part 2. Without using calculus, find the volume of material removed 
from of a hole with radius Vi drilled through the center of a sphere with 
radius 1. Suggestion: The hole's volume is about 0.47. 

Exercise S. Construct and solve a three-dimensional analog of exercises 
4.7.9 and 4.7.10. This must include precise definitions of the interior and 
boundary of a polyhedral region, and of open and closed sets in three-
dimensional space. 

4.9 Exercises on circles and spheres, part 2 

Concepts 
cos 36° 
Archimedes' approximation to π 
Great circles and antipodal points on a sphere 
Measuring great circular arcs and angles between them 
Spherical triangles 
Trigonometry of right spherical triangles 
Curved area of cylinders, cones, spheres, and spherical triangles 

This section contains some specialized problems on circles and spheres. 
Exercise 1 adds a new angle, 36°, to those for which elementary geometry 
yields the values of the trigonometric functions. Later exercises work out 
Archimedes' approximation to π, the beginnings of spherical trigonometry, 
and some example curved area calculations. 

Exercise 1, Part 1. Consider a regular pentagon ABCDE with edge 1. Show 
that two diagonals AC and BD meet at the point Ρ for which APDE is 
a parallelogram. Let x = PC. Use similar and congruent triangles to show 
that 

_ 1 χ = . 
1+x 

Compute the value of x. Finally, use χ and ABCP to compute cos 36°. 
Part 2. Consider a regular pentagon, hexagon, and decagon with the 

same radius. Show that you can make a right triangle from segments 
congruent to their edges. 1 0 

Part 2 is proposition 10 of book XIII of Euclid's Elements ([1908] 1956). 
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In exercise 2 you'll carry out Archimedes' approximation1 1 to Λ - as described 
earlier in section 3.14. You'll see that if you can perform the familiar 
ari thmetic operations and calculate square roots, then you can compute 
π as accurately as you might wish. Exercise 3, a sidelight, shows that our 
idea of circle geometry and π might be quite different if we considered only 
the geometry of the surface of the earth. 

Exercise 2. Consider regular polygons with η edges of length sn and 
tn, inscribed in and circumscribed about a circle with radius 1. Thus, 
1/2nsn < π < lAntn. Compute s 3 and f3. Find formulas for tn and s2n 

in terms of sn. Use these formulas to compute Vz nsn and the error bound 
εη = lAntn - l/2nsn for η = 6, 12, 24, 48, and 96. What's the resulting 
approximation of π and how accurate is it guaranteed to be? This is 
Archimedes' result. How big must η be to guarantee that the error is at 
most 10" 6? 

Exercise 3. Consider a sphere Σ with center Ο and radius R. A plane 
ε not through Ο intersects Σ in a circle Γ with center Ρ and radius 
r. The perpendicular to ε through Ρ meets Σ at a point Q on the side 
of ε opposite O. Let X be any point on Γ. You could call the length 
r' of arc QX the "radius of the circle measured on the sphere" and the 
ratio of the circumference of Γ' to 2 r ' as an "approximation to π measured 
on Σ." This approximation depends on the circle. What distance r' on 
the ear th (a sphere) gives the approximation π ~ 3? 

In exercise 4 you'll work out the beginning of spherical trigonometry. 
Exercise 8 and some exercises in section 5.11 pursue the subject further. 
First, you must understand what a spherical triangle is and how you measure 
it. A great circle on a sphere Σ is its intersection with a plane through its 
center O. Any two points Ρ and Q on Σ that aren't collinear with Ο 
determine a great circle Γ. Using calculus, it's shown that the shortest path 
between these points that hes entirely in Σ is the minor arc they define on 
Γ. (Two antipodal points—distinct points on Σ collinear with Ο —determine 
many great circles, and on any of these, either semicircle is a shortest path 
between them.) Thus, to develop geometry of the sphere analogous to that 
of the plane, it's useful to make arcs of great circles play the role of line 
segments. Instead of basing spherical geometry on the length of these arcs 
though, it's simpler to use their degree measures. That lets you state many 
results without mentioning the sphere's radius. 

Consider points A, B, and C on Σ that aren't coplanar with CK You 
can define the angle between the intersecting great circle arcs AB and 
BC as the dihedral angle formed by the sides of OB in the planes ABO 

See v a n d e r W a e r d e n 1963, c h a p t e r 7. 
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and BCO in which the arcs he. These gointsalso define^ a spherical triangle 
AABC whose edges are the minor arcs AB, BC, and CA of the great circles. 
(This is ambiguous if two of these points are antipodal. You must use more 
detailed language to handle that case.) A spherical triangle AABC has 
six measurements: 

ml A mlB _ mZC . . 
α = mBC b - mCA c = mAB. 

Exercise 4 develops equations for these measurements in a right spherical 
triangle with mZC = 90°. 

Exercise 4. Prove that in this right spherical AABC, cos a cos b = cos c and 

. . sin a . . cos a sin b 
SINMZA = cosmZA = 

sin c sin c 

• .75 sin b . D _ cos b sin a 
SINRNZ/i = cosmZ/J = . 

sin c sin c 
Construct examples like those in exercise 4.5.4 to show how to find any three 
of mZA, mZ/3, a, b, and c given the remaining two. Suggestion: You may 
find exercise 4.3.4 helpful. 

Exercises 5 to 7 develop informally a theory for the curved areas of cylinders, 
cones, and spheres. No axiomatic system in this book supports this; it's 
more delicate than the notions discussed in chapter 3. You'll derive various 
formulas here by means that seem reasonable, some by more than one route. 
But you'll find no compelling argument that different derivations will always 
yield the same result. A broader, consistent, and more robust theory can 
be based on calculus. 

Exercise 5. You can "unroll" the curved area of a cylinder or cone so it hes 
flat. Whatever the curved area is, it should be the same as the flat area. 
Derive formulas for these curved areas in terms of the base radius r and 
altitude h. 

Archimedes reasoned 1 2 that if he should divide the interior of a sphere 
with center Ο and radius r into very many regions like pyramids with 
apex Ο but with spherical triangular "bases," then their total volume 
% π r3 would be approximately the sum of the volumes of the corresponding 
triangular pyramids, which is Var times their total base area. That area 
would be approximately the same as the curved area α of the sphere. Thus, 

1 2 See van der Waerden 1963, Chapter 7. 
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he argued, */anr3 = Vara, hence α = 4 π τ 2 , provided the errors in the 
two approximations both disappear as the number of pyramids increases. 

Exercise 6. Present two more arguments for this formula. One, used in ele-
mentary texts now, is based on the difference of the volumes of two spheres 
of nearly equal radii. Archimedes gave the other,3 which he based on polygonal 
approximations to a circle and on the curved area formula for a cone. 

Exercise 7, Part 1. Derive a formula for the curved area of a cap of a sphere 
with radius r formed by a plane at distance h < r from its center. 

Part 2. Derive a formula for the curved area of the region of a sphere 
between two parallel planes at distances h and h + w <r from its center. 

Part 3. The state of Wyoming, a rectangle on a Mercator map, extends 
between latitudes 41° Ν and 45° Ν and longitudes 104°3'W and 111°3' 
W. What's its area? You may assume the earth is a sphere with radius 
r = 3959 miles. 1 3 

Part 4. Colorado, also rectangular, borders Wyoming to the south. Its 
edge arcs have exactly the same degree measures as Wyoming's, but it's 
shifted 2° eastward. What's its area? Why don't these areas agree exactly 
with the official figures in a reference book? 

Exercise 8. Consider a spherical AABC on a sphere Σ with center Ο 
and radius r. Planes AOB and AOC intersect the sphere in two great 
circles that divide j H n t o four regions called lunes. The A lune is the one 
that contains arc BC. What's its area, in terms of mZA and r? You can 
handle the Β and C lunes similarly. Show that the sum of the areas of 
these three lunes is half that of the sphere plus twice the area of spherical 
AABC. Derive a formula for the area of the spherical triangle in terms of 
r and the sum m of the measures of its angles. Finally, prove that 180° < 
m < 540°. These inequalities constitute the spherical triangle sum theorem. 

4.10 Exercises on coordinate geometry 

Concepts 
Constructing general, robust conceptual tool kits that are easy to use 
Analytic geometry tool kit 

Exercises 1 to 6 constitute a review of elementary three-dimensional ccordinat e 
geometry. Solving them, you'll construct a tool kit of analytic formulas and 

1° = 60' = sixty minutes; Γ = 60" = sixty seconds. 
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methods corresponding to many of the synthetic concepts in chapter 3. Here, 
phrases such as point P, line g, and plane ε mean coordinates of P, linear 
parametric equations for g, and linear equation or linear parametric equations 
for ε. Exercise 7 adapts the tools to plane geometry. For this tool kit, you 
should use the theory and notation summarized in appendix C for vector 
algebra and systems of linear equations. You may also want to consult a 
standard analytic geometry text. 1 4 For each part of these exercises, you should 
describe the corresponding method in detail and provide enough examples 
to demonstrate and check it in all relevant cases. 

Guidelines for constructing conceptual tool kits have emerged from recent 
software engineering projects. They apply to mathematical as well as pro-
gramming practice. Construct a tool kit for a whole field of applications, 
but independent of any particular one. Make your tools general, so that 
you can use them for every problem you encounter in that field. That way, 
you'll retain familiarity with them. Employ uniform methods across the 
entire tool kit, so it's easy to use and document. Write your documentation 
intending that your tools be used by others with different backgrounds, and 
by yourself later when you don't remember details of the underlying theory. 
Finally, develop your tool kit ahead of time, when you're concentrating on 
its theory and all its details. You won't be distracted by the immediate need 
for some special case. Having spent this effort in constructing your tools, 
you'll feel justified to continue with thorough documentation that could prove 
invaluable later. If you follow these guidelines, you'll create an intellectual 
tool kit that's easy, effective, and safe to use in a wide variety of applications. 

Many tasks of the tool kit you'll construct are best accomplished by turning 
them into problems about systems of linear equations, usually nonsquare. 
You should become adept with the elimination techniques described in 
appendix C for determining whether a system has a solution, for computing 
a unique solution, and for expressing infinitely many solutions in terms of 
parameters. Use them in the tool kit. 

Standard texts often use vector cross products for some of these tasks. 
Cross products aren't covered in appendix C. Instead, you should seek methods 
based on the elimination techniques just mentioned. Cross products are 
described in detail in section 5.6, and in exercise 5.11.33 you'll be invited 
to use them to streamline your tools. 

Exercise 1. Describe in detail coordinate geometry methods for the following 
tasks. For each task specify the proper form for the input and for the output, 
and present an algorithm—a computational procedure for hand calculation. 
It should work for all possible input cases. Provide an example of each case, 
show how your algorithm handles it, display your output, and check it. 

1 4 For example, Thomas and Finney [1951] 1979, chapter 11. 
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Task: given determine or find 

1. points Ρ and Q . . the distance PQ; 
2. points Pr*Q the line PQ; 
3. points P^Q and point X on PQ with 

a scalar t > 0 XQ/PQ = t; 
4. three points whether they're collinear; 
5. three distinct collinear whichone hes between the 

points others ; 
6. noncollinear points P,Q,R . . . . point X of parallelogram 

PQRX; 
7. four points , whether they're coplanar; 
8. noncollinear points P,Q,R . . plane PQR. 

Suggestion: As a style guide, here's a solution for task 7, the one algorithm 
among these eight with a traditional formulation that 's elegant but not 
straightforward. It's presented as a problem of determining whether a linear 
system has a solution; algorithms for other tasks might involve computing 
such a solution. 

Task 7 algorithm. Given points P, Q, R, S as columns of coordinates, append 
entry -1 to each, to build columns P',Q',R',S' of length four. The given 
points are coplanar just in case the matrix [P' Q' R' S'] with those col-
umns is singular. 

Explanation. If the points are coplanar, there's a nonzero vector Τ and a 
scalar tt such that T'X=tA when X=P,Q,R,S. Build a row 7" of length 
four by appending entry t 4 to T. Then T"X' = 0 for these X. Con-
versely, if these four equations hold for any nonzero row Γ' of length four, 
then the first three entries of T' constitute a nonzero row Τ of length three 
such that T'X=tA for these X. Finally, the four equations T"X' = 0 are 
together equivalent to one: T"[P' Q' R' S'] = O; and that has a nonzero 
solution just in case this matrix is singular. 

Example. The unit points on the three axes are not coplanar with the center 
of the cube they form with the origin, but they are coplanar with their centroid 
<xh, '/a, Vs>, because 

det 

1 0 

0 1 

0 0 
-1 -1 

0 -!• 
2 

Ο Ι 
2 

1 i-
2 

= - ' / 2 ^ 0 det 

0 I 
3 

1_ 
3 

1 -
3 

1 -1 -1 -1 

1 0 

0 1 0 

0 0 
= 0. 

Exercise 2. Continue exercise 1 for the following tasks. Assume tha t 
algorithms are available for all tasks in exercise 1. 
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Task: given determine or find 

9. lines g and h . . . whether g = h; 
10. lines gr^h . . whether they're intersecting, 

parallel, or noncoplanar; 
11. intersecting lines g^h . . the point g η h; 
12. point Ρ not on line g . , the parallel to g through P; 
13. point Ρ not on line g , the plane through Ρ and g; 
14. intersecting or parallel 

lines g?h . . their common plane. 

Exercise 3. Continue exercises 1 and 2 for the following tasks. Assume 
that algorithms are available for all previous tasks. 

Task: given determine or find 

15. planes δ and ε . whether δ = ε; 
16. whether they intersect; 
17. intersecting planes δ^ε... . the hne δη ε; 
18. a hne and a plane . whether they're incident, 

intersecting, or parallel; 
19. line g intersecting 

plane ε . point gn ε; 
20. point Ρ not on plane ε . the plane δ II ε through P; 
21. hne g parallel to plane ε . . . the plane δ II ε through g. 

Exercise 4. Continue exercises 1 to 3 for the following tasks. Assume that 
algorithms are available for all previous tasks. 

Task: given determine or find 

22. intersecting lines g^h whether g ±h; 
23. point Ρ not on hne g , . , the hne k ±g through P ; 
24. point Ρ on line g in . , the line k ±g through Ρ 

plane ε in ε; 
25. an intersecting line and 

plane . . whether they're χ ; 
26. point Ρ and line g . . the plane ε ± g through P; 
27. . . the line k ± ε through P; 
28. planes δ^ ε whether they're ± ; 
29. line and plane g, δ 

with g/.δ the plane ε ± δ through g; 
30. intersecting lines gf-h the hne k ±g,h; 
31. noncoplanar lines g, h . . the hne k ±g,h. 
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Exercise 5. Find coordinate formulas for the distance between 

1. a point and a line, 
2. two parallel lines, 
3. a point and a plane, 

4. a parallel line and plane, 
5. two parallel planes, 
6. two noncoplanar lines. 

Exercise 6, Part 1. How do you find a linear equation for a plane ε if you're 
given a system of linear parametric equations? 

Part 2. How do you find such a system if you're given a linear equation 

Exercise 7. Extract from exercises 1 to 6 the material that apphes to plane 
geometry, and present it using two-dimensional analytic formulas. 

The last exercise of this chapter investigates an alternate definition for 
the interior of a tetrahedron. Clearly, a point hes in the interior if it's between, 
but different from, two points on opposite edges. Is the converse true? The 
problem is included here because analytic methods may work better than 
synthetic ones. 

Exercise 8. Select two opposite edges of a tetrahedron T. Does every point 
interior to Γ he between points on these edges? 

for £? 
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Chapter 

5 
Some triangle and 

circle geometry 

This chapter's aim is to demonstrate the power of the methods of elementary 
Euclidean geometry developed in chapter 3. In most contemporary applica-
tions of geometry, these techniques have been supplanted by coordinate 
methods. In past centuries, though, geometers honed them to a high degree 
of sophistication. The results they attained are beautiful and often amazing. 
Although the bulk of that material hes outside the mainstream of contempo-
rary mathematics, some results—for example, the trigonometry in sections 
5.5 and 5.6—play critical roles in particular fields. Many books are devoted 
entirely to triangle and circle geometry. The best is Advanced Euclidean 
geometry, by Roger A. Johnson ([1929] 1960). The most readable—by far—is 
Geometry revisited, by H. S. M. Coxeter and Samuel L. Greitzer (1967). 
The bibliography includes yet other sources. 

Chapter 5 presents a sampler of this theory, tailored to include some of 
the most useful theorems, some of the most beautiful, and one example of 
a really deep and amazing result. 

Advanced Euclidean geometry is organized like a marvelous rug with 
vivid pictorial designs created from threads interwoven in several directions. 
You can chart many routes through parts of it by following various strands. 
Or you can step directly to one picture, examine it in detail, and follow some 
of these paths to other parts of the subject. Once you start such an excursion, 
you'll find it hard to stop! 

This chapter's tour examines a few neighboring regions of the carpet. 
You'll see tha t every one is closely related to some of the others. Some of 
the theorems were selected because of their importance for other areas of 
geometry. You've already used Desargues' theorem—section 5.3—to settle 
a question in perspective drawing in section 1.1, and you've used the 

157 
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trigonometry in section 5.5 in many contexts. The material at the end of 
the chapter is aimed straight at a wonderful result, Feuerbach's theorem 
about five circles related to a triangle. This tour de force shows the depth 
you can achieve with these methods. 

En route you'll encounter more strands of advanced Euchdean geometry 
that you could follow to many fascinating parts of the subject. To limit the 
excursions, these strands are generally abandoned quickly. The exercises 
in section 5.11 will pursue some of them. Return to others as you please 
in later years, and follow them into the vast literature of this fascinating 
part of geometry! 

5.1 Four concurrence theorems 

Concepts 
Standard triangle terminology and notation 
Edge bisectors of AABC 
Circumcircle, circumcenter O, and circumradius R 
Angle bisectors 
Incircle, incenter I, and inradius r 
Medians and centroid G 
Altitudes and orthocenter Η 

The theorems in this section often constitute the most intricate par t of an 
elementary geometry text. They're related to almost all advanced work in 
triangle and circle geometry. 

For triangle AABC as in figure 5.1.1, let Α', B', and C denote the 
midpoints of the edges a, b, and c opposite vertices A, B, and C. That 
notation is used throughout this chapter. The perpendicular bisectors of 
a and b meet at a point O; if they coincided or were parallel, the transitiv-
ity theorem for parallel lines and the alternate interior angles theorem would 
imply a lib. By the perpendicular bisector theorem, Ο is equidistant from 

C 

Figure 5.1.1 AABC, 
its circumcenter O, 
and its circumcircle 
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Β and C and from C and A, hence from A and B, so it hes on the perpen-
dicular bisector of c. This proves 

Theorem 1 (Edge bisectors theorem). The perpendicular bisectors of 
the edges of AABC meet a t a point Ο equidistant from its vertices. 

Ο is called the circumcenter of AABC. The circle with center Ο through 
A, B, and C is the circumcircle of AABC. Its radius R is the circumradius. 

Theorem 2. Any three noncollinear points he on a unique circle. 

Proof. Theorem 1 shows that the circle exists. To prove its uniqueness, 
note tha t the center of any circle through the vertices of a triangle is 
equidistant from them, hence must he on the edge bisectors, so must coincide 
with the circumcenter. • 

The bisector of angle IPOQ is the line g through its vertex Ο such 
that, if Λ is a point on g inside LPOQ, then LPOR = LROQ. An argument 
suggested by figure 5.1.2 shows that the bisector consists of Ο and all points 
equidistant from lines OP and OQ that are interior to iPOQ or its vertical 
counterpart. 

Now consider the bisectors of the angles of AABC, as in figure 5.1.3. 
Since the ends of edge a he on different rays of LA, tha t angle's bisector 
meets a a t some point X. For the same reason, the bisector of LC meets 
segment AX. The bisectors' intersection I is equidistant from edge lines 
AB and CA and from CA and BC, hence from BC and AB, so it 
hes on the bisector of LB. This proves 

Theorem 3 (Angle bisectors theorem). The angle bisectors of AABC 
meet at an interior point I equidistant from the edge lines. 

C 

g 

Β 

Figure 5.1.2 
Bisector of LPOQ 

Figure 5.1.3 AABC, its 
incenter I, and its incircle 
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C C 

A' 

Β C Β 

Figure 5.1.4 Proof of 
lemma 4: AABC, two 

medians, and centroid G 

Figure 5.1.5 AABC 
and its medial triangle 

AA'B'C 

I is called the incenter of AABC. The common distance r from 7 to the 
edge lines is the triangle's inradius. The circle with center 7 and radius 
r is the incircle. It's tangent to the edge lines at points 7 0 , Ib, and Ic 

within edges a, b, and c. You can show easily that the incircle is the only 
circle tangent to all three lines at points interior to the edges. Three more 
circles are tangent to these lines, however, at points outside the edges. They're 
studied in detail in section 5.9. 

Segments AA', BB', and CC in AABC are called its medians. 

Lemma 4. AA' and CC meet at a point G two thirds of the way from 

Proof. As shown in figure 5.1.4, C and C lie on different legs of LA 
and AA' lies in the interior of LA, so AA' and CC meet. Let X and 
Y be the midpoints of 73A' and CA'. By the same argument, YB' and 
CC meet at a point Z. Then YB' / AA! since Y and B' are edge midpoints 
of AAA'C. Similarly, AA' / XC', hence CZ = ZG = GC'.+ 

Theorem 5 (Medians theorem). The medians of AABC meet at a point 
G two thirds of the way from any vertex to the midpoint of the opposite side. 

Proof. Apply lemma 4 to ABAC: BB' and CC meet at the same point G 
as AA' and CC. • 

G is called the centroid of AABC. AA'B'C is its medial triangle. The 
following properties of these triangles, shown in figure 5.1.5, are easy to 
verify. 

Theorem 6. The edges of the medial triangle are parallel to those of 
AABC and half their length. Also, 

C to C. 
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AABC ~ AA'B'C = AAB'C = AA'BC = AA'B'C. 

The medians of AABC contain those of the medial triangle, hence these 
triangles have the same centroid. The edge bisectors of AABC contain the 
altitudes of the medial triangle. 

The feet of the altitudes of AABC through vertices A, B, and C are 
denoted by D, E, and F. From a given AABC it's simple to construct 
a new triangle whose medial triangle is AABC. Since the altitudes of 
AABC he in the edge bisectors of the new triangle, the altitude lines are 
concurrent. This proves 

Corollary 7 (Altitudes theorem). The altitude lines of triangle AABC 
meet at a point H. 

Η is called the orthocenter1 of AABC. It's shown in figure 5.1.6. 

Corollary 8. The circumcenter of a triangle is the orthocenter of its medial 
triangle. 

A set of lines that pass through a single point is called concurrent} Euclid 
described the concurrence of the edge bisectors and angle bisectors of a 
triangle. 3 He didn't mention concurrence of altitudes or medians. But the 
altitudes' concurrence is so closely related to that of the angle bisectors that 
it must have been familiar then. The medians' concurrence is included as 
a very elementary result in Archimedes' treatise "On plane equilibria." 4 

The terminology circumcircle, inradius, etc., was introduced in the late 

C 

and its orthocenter Η 
Figure 5.1.6 AABC 

A' 

Β 

1 The prefix ortho- occurs in many areas of mathematics. It stems from a Greek word for 
upright. Here that refers to the altitudes. 

From the Latin verb curro and prefix con-, which mean run and together. 
3 Euclid [1908] 1956, book IV, propositions 4 and 5. 
4 Archimedes [1912] n.d., book I, proposition 14. 
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nineteenth century. 8 At that time the following notation for points and 
distances related to AABC was standardized: 

ABC.... vertices, 
a b c opposite edges, 
A' B'C . . . midpoints of opposite edges, 
D Ε F . . . . feet of corresponding altitudes, 
/„ Ib Ic . . . . opposite incircle tangency points, 
G Η centroid, orthocenter, 
01 circumcenter, incenter, 
R r circumradius, inradius. 

Further standard notation is introduced later in this chapter. 

5.2 Menelaus' theorem 

Concepts 
Directed distances 
Menelaus' product 
Menelaus' theorem 

Menelaus' theorem is included in this chapter for two reasons. In the next 
section, it leads to Desargues' theorem, which was used in section 1.1 to settle 
a question in perspective drawing. In section 5.4, Menelaus yields Ceva's 
theorem, a generalization of three of the four concurrence theorems that 
started this chapter. 

Menelaus' and several related theorems involve both the order of 
points on various lines and some ratios of distances between them. To 
consider these simultaneously, it's convenient to use coordinate geometry 
on one line g at a time. Give g a scale c. In place of the distance PQ = 
\c(P) - c(Q)\ between points Ρ and Q on g consider their directed distance 

PtoQ = c(Q)-c(P), 

so that 

PtoQ=-(QtoP) PQ=\PU>Q\. 

Although the scale c is suppressed in this notation, you need it to compute 
the directed distance. Most authors use the same symbol PQ for directed 
and undirected distances; you must rely on the context to distinguish the 
concepts. However, directed distances see only limited use in this text, and 

6 See W. Η. Η. H. 1883. 
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Menelaus' theorem 
Figure 5.2.1 

A Β Ζ 

it seems worthwhile to make them visibly different. In a diagram, you can 
indicate the use of an unnamed scale for a line g by drawing an arrow from 
some point on g to a point with a larger coordinate, like this: —>— . 

Directed distances usually appear by twos, in ratios. That explains why 
the scale is suppressed from the notation: For any points P, Q, R, and 
S on g with R? S, the ratio ( P to Q)I(R to S) doesn't depend on the 
scale. That is, if d is another scale for g, then 

It's easy to prove that ; see exercise 4.1.7. Signs of ratios like this are often 
used to convey information about the order of points on g. For example, 
if P , Q, and R he on g and Qr^R, then 

Menelaus' theorem involves a product of ratios of directed distances between 
points on the edge lines of a triangle AABC. Assign scales to lines BC, 
CA, and AB, as indicated by the arrows in figure 5.2.1. Then select points 
X to Ζ on these lines but distinct from the vertices. The product 

AtoZ Β t o X C t o Y 
ZtoB XtoC YtoA 

of ratios of two directed distances on each line is called Menelaus'product. 
It doesn't depend on the choice of scales. Its sign gives information about 
how many of the points X, Y, and Ζ may he between the vertices. The 
product is positive if all three he within the edges or just one does, but negative 
if jus t two he within the edges. 

Theorem 1 (Menelaus' theorem). Χ, Υ, and Ζ are collinear if and only 
if Menelaus' product equals - 1 . 

Proof. Suppose X, Y, and Ζ he on a line g, as in figure 5.2.2. Find 
a l ine h^AB.CA. through A not parallel to BC nor g. Construct lines 
j and k parallel to h through Β and C. Then h, j , and k intersect 

P t o Q = c(Q)-c(P) = d(Q)-d(P) 
RtoS c(S)-c(R) d(S)-d(R) 

P t o Q 
QtoR 

;> 0 - P-Q-R. 
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Figure 5.2.2 
Proof of Menelaus' theorem 

Α Β Ζ 

g a t points A*, B*, and C* that form three pairs of similar triangles with 
associated ratios as follows: 

AAZA* ~ ABZB* ΔΒΧΒ* ~ ACXC* 

AtoZ _ AA* BtoX _ BB* 
ZtoB " BB* XtoC CC* 

These equations imply 

AtoZ BtoX C t o Y _ 1 

ZtoB XtoC YtoA 

This computation depends on the positions of X, Y, and Z. Since they're 
collinear, they can't all he within the edges, nor can just one of them. Thus, 
just one or all of them must he outside AABC. Figure 5.2.2 shows the case 
when just one—namely, Ζ —lies outside. If all three lay outside, then all 
three ratios of directed distances would be negative, and their product would 
still equal - 1 . 

Conversely, suppose Menelaus' product equals - 1 . Then all three or just 
one of X, Y, and Ζ must he outside AABC. You can assume that X and 
Y both he within the edges, as in figure 5.2.2, or both he outside. Let g = 
XY. If g/c, then 

BtoX = YtoA 
XtoC CtoY 

ACYC* ~ AAYA* 

CtoY _ CC^ 

YtoA AA* ' 

Mathematics flourished at Alexandria for many centuries after Euclid, 
waning gradually with the rise of Christianity and its antipathy toward 
Greek culture. MENELAUS worked there around A.D. 100. Principally an 
astronomer, he studied the precession of the equinoxes and other phenomena. 
To further that work he founded the subject of spherical trigonometry with 
a book, Sphaerica. Menelaus authored several other texts on geometry and 
astronomy as well. This section's theorem carrying his name is related to his 
work in spherical trigonometry, but here it's used as a key to some important 
theorems in plane geometry. 
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hence 

A t o Z _ j 
ZtoB 

and it would follow that A to Ζ = Β to Ζ, hence A = Β —contradiction! 
Therefore, g must intersect c a t a point Ζ'^Α,Β. By the previous 
paragraph, 

AtoZ' BtoX CtoY _ χ 

Z' toB XtoC YtoA 

hence 

AtoZ' _ AtoZ 

Z'toB ZtoB' 

This equation clearly implies Ζ = Ζ', so Ζ also falls on g. • 

5.3 Desargues' theorem 

Concepts 
Pencils of lines 
Euclidean forms of Desargues' theorem 
Does Desargues' theorem require metric notions? 

Section 1.1 used a form of Desargues' theorem to solve a fundamental problem 
in descriptive geometry. Desargues' theorem underlies various fundamental 
techniques in that field; in fact, it was originally discovered in that context. 6 

There are several forms of the theorem in Euclidean geometry. They can 
all be interpreted as specific instances of a single result in projective geometry, 
the theory tha t was developed to serve as a basis for the techniques of 
perspective drawing. That unified form of the theorem plays a central role 
in the modern axiomatic development of projective geometry. 

In this section, however, Desargues' theorem is considered only in the 
context of Euclidean geometry, hence some forms must be treated separately. 
Some of the distinctions have to do with situations where three lines are 
parallel or have a common intersection. To simplify the terminology, the 
families of all lines parallel to a given line and of all lines through a given 
point are called parallel and concurrent pencils.7 A set of lines is called 
copencilar if they all belong to the same pencil. Several styles of proof are 

6 The original publication is available in translation: Desargues 1648. 
7 This usage stems from the Latin word penicillus for brush. 
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4M 

A* 

Ο m 

η 

Concurrent case Parallel case 

Figure 5.3.1 First form of Desargues' theorem 

useful for various forms of Desargues' theorem. The first form considered 
here can be proved neatly from Menelaus' theorem. 

Theorem 1 (First form of Desargues' theorem and its converse). 
Consider coplanar triangles AABC and AA*B*C* as in figure 5.3.1, with 
three distinct lines I, m, and η and three distinct points L, M, and 
Ν such that 

A and A* he on I but not on m nor η, 
Β and Β* he on m but not on η nor I, 
C and C* lie on η but not on I nor m, 

L=B~CnB*~C*, M=CAn C*A*. N= AB η A*B*. 

Then I, m, and η are copencilar if and only if L, M, and Ν are collinear. 

Proof. The hypotheses imply AfA*, B?B*. and C ^ C * . In order to 
use directed distances, assign scales to all lines under consideration. Suppose 
I, m, and η all pass through a point O. Apply Menelaus'theorem first 
to the collinear points L, B*, and C* on the edge hnes of AOBC to get 

O to f i* B t o L C t o C * _ 1 

B* to Β LtoC C*toO 

then to the collinear points M, C*, and A* on the edge lines of &OAC 
to get 

C to Af A to A* Ο to C* _ 1 

M t o A A* to Ο C* to C 
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Gorard DESARGUES was born in 1593 in Lyon, the son of a minor govern-
ment official. Nothing is known of his education. By 1626 he'd moved to 
Paris and developed a reputation as a mathematician and engineer, particu-
larly interested in problems arising in graphic arts and architecture. There 
he met Descartes. They became lifelong friends, and influenced each other's 
mathematical work. Richelieu appointed Desargues an army engineer officer 
in 1628. He assisted in the design of the fortifications and dikes at La 
Rochelle. During the late 1620s and 1630s, Desargues researched and gave 
mathematics lectures in Paris. His principal interest was the analysis and 
application of perspective techniques, and he pioneered the projective theory 
of conic sections. His work was published in the late 1630s and 1640s, but 
in scattered fashion, and sometimes only as appendices to his students' 
works. His style was novel and overly concise. For these reasons, and 
because of the great attention given to the 1637 publication of Descartes' 
elements of analytic geometry, Desargues' work received little note during 
his lifetime and in fact for the next two hundred years. His student Blaise 
Pascal, however, achieved fame with a treatise on conic sections based on 
Desargues' work. Desargues continued to practice engineering and architec-
ture until he retired to his country estate near Lyon in 1650. He died there 
in 1662. 

and to the collinear points N, A*, and B* on the edge lines of ΔΟΑΒ 
to get 

O t o A * A to Ν BtoB* _ χ 

A* to A Ν to Β Β* to Ο 

Now multiply these three equations and simplify to get 

AtoN BtoL CtoM _ χ 

NtoB LtoC Μ to A 

By Menelaus'theorem, points N, L, and Μ on the edge lines of AABC 
are collinear. The proof that concurrence of I, m, and η implies collinear-
ityof L, M, and Ν is complete. 

Next, suppose that L, M, and Ν are collinear but I, m, and η aren't 
all parallel. Then two of these lines, say η and I, intersect a t a point 
O. Collinearity of B*, O, and Β follows by the previous paragraph's 
argument with 

A, B, C, A*, 73*, C*, L, Μ, N, and Ο replaced by 
C, L, C*. Α, Ν, Α*, Β*, Ο, B, and M. 

That is, Ο lies on m as well. Thus, collinearity of L, M, and Ν imphes 
copencilarity of I, m, and η. 

Finally, suppose tha t I, m, and η are parallel. Considering similar 
triangles, you get 
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Concurrent case Parallel case 

Figure 5.3.2 Second form of Desargues' theorem 

A to Ν Β to L CtoM _ A to A* BtoB* CtoC*' 
NtoB LtoC Μ to A BtoB* CtoC* A to A* 

= - 1 . 

By Menelaus' theorem, points N, L, and Μ on the edge lines of AABC 
are collinear. • 

In the second form of Desargues' theorem, AABC and AA*B*C* have 
parallel edges. You can supply the proof by considering similar triangles. 

Theorem 2 (Second form of Desargues' theorem and its converse). 
Consider coplanar triangles AABC and AA*B*C* as in figure 5.3.2, with 
three distinct fines I, m, and η such that 

A and A* he on / but not on m nor n, 
Β and B* lie on m but not on η nor I, 
C and C* he on η but not on / nor m, 

AB//A*B*, BCIIB*~C*. 

Then I, m, and η are copencilar if and only if CAll C*A*. 

The statements of Desargues' theorem involve only incidence notions 
(collinearity, concurrence, parallelism, etc.), but the proofs given and sug-
gested above involve metric notions (directed distances, similar triangles, 
etc.). When the figures are three-dimensional, however, as in the following 
form of the theorem, you can avoid metric techniques. 

Theorem 3 (Third form of Desargues' theorem and its converse). 
Consider noncoplanar triangles AABC and AA*B*C* with three distinct 
lines I, m, and η and three distinct points L, M, and Ν such that 
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Figure 5.3.3 Third form 
of Desargues' theorem: 

noncoplanar case 

A and A* he on I but not on m nor n, 
Β and B* lie on m but not on η nor I, 
C and C* he on η but not on I nor m, 

L = BC η B*C*, M=CAn C*A*, Ν = AB η A*B*. 

Then J, m, and /i are copencilar if and only if L, M, and Ν are collinear. 

Proof. If /, m, and n. are copencilar, then L, M, and 7V are collinear 
because they all he in the planes of both triangles. See figure 5.3.3 for the 
concurrent case; you may draw a figure for the parallel case. You may also 
supply the proof tha t collinearity of L, M, and Ν implies copencilarity 
of I, m, and n. • 

In 1907, Alfred North Whitehead showed how to use a three-dimensional 
construction to prove the coplanar case of Desargues' theorem—theorem 
1—without using metric concepts.8 Suppose AABC and AA*B*C* he in the 
same plane ε, and /, m, and η intersect in a common point O, as in 
figure 5.3.4. (To enhance the figure's legibility, lines CA and C*A* were 
omitted.) There's no loss in assuming that A hes between Ο and A* as 
in the figure—otherwise, just relabel the triangles. Select a point Ρ not on 
ε and a point R between but different from Ο and P. The plane δ = 
LMR intersects PA, PB, and PC at points A",^B", and C" between 
but different from Ρ and A, B, and C. Lines A*A" and OP intersect 
at a point Q between but different from Ο and P. Several triples of points 
are collinear because they lie in two distinct planes: 

B", C", L in δ and BCP 
C",A",M in δ and CAP 
C*,C",Q in A*A"M and C*OP 
Β*, B", Q in C*C"L and B*OP. 

W h i t e h e a d [1907] 1971 , 1 6 - 1 7 . 
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Figure 5.3.4 
Third form of Desargues' theorem: coplanar case 

By the proof of noncoplanar case of theorem 3, hnes AB and A"B" must 
be parallel or intersect in a point on LM, and lines A*B* and A"*B"must 
be parallel or intersect in a point on LM. One of AB j A"B" and A*B* / 
A"B" must fail because AB and A^B* aren't parallel. Assume AB 
and A"B" intersect at a point N* on LM; you can handle the other 
possibility similarly. Points A*, B*, and N* are collinear because they 
all he in the distinct planes δ and A"B"Q. This implies N=N*, hence 
iV lies in LM. The proof that concurrence of/, m, and η implies collin-
earity of L, M, and Ν is complete. You may supply a similar nonmetric 
proof that L, M, and Ν are collinear if I, m, and η are parallel. The 
proof of theorem 1 included a nonmetric argument that in this planar situation, 
collinearity of L, M, and 7V imphes copencilarity of /, m, and n. 

Several years before Whitehead's work, David Hilbert (1899, section 
23) had already shown that every proof of the plane Desargues theorem 
requires either metric concepts or a three-dimensional construction. 
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Alfred North W H I T E H E A D was born in 1861 in Ramsgate. His father was 
a schoolteacher and Anglican clergyman. Alfred's brother became a bishop. 
In grammar school, Alfred excelled in sports and mathematics. In 1880, he 
entered Trinity College, Cambridge; all his courses there were in mathemat-
ics. Upon graduation he became a fellow of the college, and soon was ap-
pointed senior lecturer in mathematics. In 1890 he married Evelyn Wade; 
they had three children. 

Whitehead's early mathematical work had to do with group theory and 
algebra. He published a book Universal algebra that developed in a round-
about way material that would later be included in the theories of linear and 
multilinear algebra. Around 1900 he began working more in foundations of 
mathematics, and published two small works on axiom systems for projective 
and descriptive geometry. 

During this period at Cambridge he guided the work of Bertrand Russell 
as a student, including Russell's dissertation on foundations of geometry. 
(Whitehead's father had been the Russells' vicar, and in that capacity had 
been called on to convince the young boy that the earth was round!) Early 
in the new century they began collaboration on Principia mathematica, a 
monumental work that attempted to demonstrate the logistic thesis, that all 
mathematics can be derived from logical principles alone. A major achieve-
ment in mathematical logic, the book provided a framework for much signifi-
cant research, although Godel showed later that logicism was inadequate as 
a philosophy of mathematics. (No system like Principia can entail all true 
arithmetic statements but no false ones.) 

By 1910, Whitehead's interests had turned almost entirely to philosophy 
of science, and he moved to the University of London. During his London 
period he produced three books on foundations of physics, especially relativity 
theory. Influenced by the tragedies of World War I, including the death of 
his son, an aviator, he turned even more to philosophical studies. He crossed 
the Atlantic in 1924 to become professor of philosophy at Harvard. There he 
wrote a series of works on philosophy of science, education, and religion, 
finally retiring in 1937 at age 76. Whitehead died in 1947. 

5.4 Ceva's theorem 

Concepts 
Ceva's theorem 
Deriving the medians, altitudes, and angle bisectors theorems 
Proving Ceva's theorem by mechanics 

A generalization of three of the four concurrence theorems in section 5.1 
was found about nineteen centuries after them. It's phrased in terms of 
Menelaus' product: 
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Theorem 1 (Ceva's theorem). In order to use directed distances, assign 
scales to the edge lines of AABC. If points X, Y, and Ζ he on these lines 
and are distinct from the vertices, then 

AtoZ BtoX CtoY = 1 

ZtoB XtoC YtoA 

if and only if lines / = AX , m = BY , and η = C*Z are copencilar. 

Proof. Each of these statements will be proved in turn: 

i. if X, Y, and Ζ he within the edges, then /, m, and η aren't all 
parallel; if they concur, then Menelaus' product equals 1; 

ii. if X, Y, and Ζ he within the edges and Menelaus' product equals 
1, then I, m, and η concur; 

Hi. if X and Y he outside the edges and Ζ within, and I, m, and 
η concur, then Menelaus' product equals 1; 

iv. if X and Y he outside the edges and Ζ within, and I, m, and 
η are parallel, then Menelaus' product equals 1; 

v. if X and Y he outside the edges and Ζ within, and Menelaus' 
product equals 1, then I, m, and η are copencilar; 

vi. if just one or all three of X, Y, and Ζ lie within the edges, then 
Menelaus'product is negative and I, m, and η aren't copencilar. 

Parts (Hi) to (v) cover all cases where exactly one of X, Y, and Ζ hes within 
an edge of AABC; if X or Y instead of Ζ hes inside, just relabel the 
triangle. 

Part(i). Suppose X, Y, and Ζ he within the edges, as in figure 5.4.1. 
You can easily see that I, m, and η can't be all parallel. Suppose they 
meet at a point W. Then W hes inside the triangle. Apply Menelaus'theorem 
to the collinear points Z, C, and Won the edge lines of AABX: 

AtoZ BtoC XtoW _ χ 

ZtoB CtoX WtoA 

Apply it again to the collinear points W, B, and Y on the edge hnes of 
AAXC: 

AtoW XtoB CtoY_ 1 

WtoX BtoC YtoA 

Multiply these equations to get 

A t o Z BtoX CtoY _ 
ZtoB XtoC YtoA 
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C 

Figure 5.4.1 Ceva's 
theorem, parts (i) and (ii) 

A 7 Ζ Β 

AtoZ BtoC XtoW 
ZtoB CtoX WtoA 

AtoW XtoB CtoY 
WtoX BtoC YtoA 

= ( - ! ) ( - ! ) = 1. 

Part(ii). Suppose X, Y, and Ζ he within the edges, as in figure 5.4.1. 
Then lines / and m meet at a point W inside the triangle, and hne CTf 
meets edge AB a t a point Z'. By par t ( i ) , 

AtoZ' BtoX CtoY _ ί 

Z'toB XtoC YtoA 

If Menelaus 'product equals 1, i.e. 

AtoZ BtoX CtoY _ 1 

ZtoB XtoC YtoA 

then 

A t o Z _ A t o Z ' 
Z t o B Z ' t o B " 

This implies Z = Z' , so W lies on η as well as I and m. 
Part (Hi). Suppose X and Y He outside the edges and Ζ within, and 

I, m, and η meet at a point W, as in figure 5.4.2. Then W lies outside 
the triangle. The proof for par t (i) is valid in this case as well. 

Part (iv). Suppose X and Y he outside the edges and Ζ within, and 
I, m, and η are parallel, as in figure 5.4.3. Reasoning with similar triangles, 
you get 

A t o Z B t o X C t o y _ A t o Z Β to A Z t o B _ 1 

ZtoB XtoC YtoA ZtoB AtoZ Β to A 

Part (v). Suppose X and Y he outside the edges and Ζ within, and 
I, m, and η aren't all parallel. Then at least two of these lines meet; 
suppose I meets m a t a point W. Then W hes outside the triangle, and 
the lines CW and AB meet at a point Z' . Proceed as in part (ii) to show 
that Z = Z' , hence W hes on n. The arguments for I or m meeting η 
are similar. 
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A Ζ Β A Ζ Β 

Υ 

Figure 5.4.2 Ceva's 
theorem, part (Hi) 

Figure 5.4.3 Ceva's 
theorem, part (iv) 

Part(vi). If just one or all three of X, Y, and Ζ he inside the edges, 
then Menelaus' product is negative, and you can verify that I, m, and η 
can't be parallel or concurrent. • 

Ceva's theorem directly implies concurrence of the medians of AABC. 
Let X, Y, and Ζ be the edge midpoints Α', B', and C, so tha t 

AtoZ BtoX CtoY _ AtoC Β to A' C t o B ' _ _ 1 

Z t o B X t o C YtoA C ' t o B A ' t o C B ' t o A 

By Ceva's theorem the medians are copencilar. They can't be parallel because 
the midpoints he within the edges, so they must concur. 

To derive the altitudes' concurrence from Ceva's theorem, first label the 
vertices of AABC so that LA and LB are acute. Then construct the circle 
with diameter AB, as in figure 5 .4 .4 . The feet D and Ε of the altitudes 
through A and Β he on this circle. Inscribed angles__ZCAD and LCBE 
are congruent because they subtend the same arc DJE, hence AADC ~ 
ABEC, so 

CE 
DC 

BC 
CA 

c 

Figure 5.4.4 
Deriving the altitudes' concur-

rence from Ceva's theorem 
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Giovanni CEVA was born around 1 6 4 7 in Milan, to a wealthy family. He 
studied in Pisa, and later in life received a regular stipend from the archduke 
of Tuscany as a sort of court mathematician. In his 1 6 7 8 book De lineis rectis 
is found the triangle theorem known by his name, and many elaborations, 
treated in the framework of mechanics. In several other books, he continued 
detailed studies in geometrical mechanics, many of which would be sup-
planted soon by calculus applications. He died in 1 7 3 4 . His Jesuit brother 
Tomasso was also a mathematician, and a poet. 

Similarly, 

BD _ AB AF _ CA 
FB BC EA AB' 

where F is the foot of the altitude through C. Now, choose scales for the 
edge lines as in figure 5.4.4, and let X,Y,Z = D,E,F. If iC is acute, as 
in the figure, 

AtoZ BtoX CtoY _ AF BD CE 
ZtoB XtoC YtoA FB DC EA 

_ AF BD CE _ CA AB BC _ 1 

EA FB DC AB BC CA 

If ZC is obtuse, then you must place minus signs before two of the fractions 
in each of these products, but you get the same result. By Ceva's theorem, 
the altitudes are copencilar. Since they're perpendicular to the edges of a 
triangle, they can't be parallel, so they must concur. 

To derive the concurrence of the angle bisectors of AABC from Ceva's 
theorem, you need a preliminary result. As in figure 5.4.5, the bisector g 
of LA meets the opposite edge at a point X. Let B* and C* be the feet 
of the perpendiculars to g through Β and C. If 7 3 * ^ X ^ 0 * , then 
AXBB*~AXCC* and AABB*~AACC*. From these similarities it follows 
that 

C 

Figure 5.4.5 Deriving the 
angle bisectors' concurrence 

from Ceva's theorem 

A Β 
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BtoX _ BB* _ AB 
XtoC CC* CA' 

On the other hand, if B* = X or C*=X, then BCi.g, AABC is isosceles, 
and you get the same result: 

B t o X _ 1 _ AB 
XtoC CA' 

By the same argument, the bisectors of LB and LC meet the opposite edges 
at points Y and Ζ such that 

CtoY _ BC AtoZ _ CA 

YtoA AB ZtoB BC ' 

The previous three equations entail 

A t o Z B t o X C t o Y _ CA AB BC _χ 

Z t o B X t o C YtoA BC CA AB 

By Ceva's theorem, the angle bisectors are copencilar. They can't be parallel 
because X, Y, and Ζ he within the edges, so they must concur. 

The original derivation of Ceva's theorem was quite different from that 
given in this section. Ceva didn't base it directly on Euclid; instead, he used 
some principles governing the center of gravity of a system of weights. Given 
points X, Y, and Ζ within the edges of AABC opposite angles A, B, 
and C, Ceva assigned weights to the vertices as follows: 

Vertex Weight 

(See figure 5.4.1.) Assuming that the supporting triangle has no mass, he 
then computed the center of gravity of the system of three weights. In such 
a computation, you can replace a subsystem of two weights u and υ by 
a single weight u + υ at its center of gravity. This is the point Ρ about 
which the moments of the weights u and υ are opposite; they're on opposite 
sides of P, and the products of u and υ by their distances from Ρ are 
equal. Since BX · ( YA · XC) = XC · (YA · BX), the moments about X of 
the weights at Β and C are opposite, so X is their center of gravity. You 
can replace those two weights by a single one at X. It follows that the center 
of gravity of the original system coincides with that of the new one consist-
ing of weights at A and X, hence it hes on AX. Similarly, since 
CY· (YA • BX) = YA-(CY- BX), you can replace the weights at C and 
A by a single one at Y, so the center of gravity of the original system 
hes on BY. Thus, it's the intersection of AX and BY. Now, Ceva rea-
soned, segments AX, BY, and CZ are concurrent if and only if the center 

A 
Β 
C 

CYBX 
YAXC 
YA-BX. 



5.5 TRIGONOMETRY 177 

of gravity of the original system also falls on CZ. That happens just in case 
you can replace the weights at A and Β by a single weight a t Z, i.e., 
jus t when their moments about Ζ are opposite: AZ • (CY · BX) = 
ZB · (YA · XC). This condition simply says Menelaus' product equals 1: 

A t o Z BtoX CtoY _ 1 

ZtoB XtoC YtoA 

This argument, of course, is not supported by the axiomatic foundation of 
chapter 3. But tha t foundation can be extended to describe the behavior 
of systems of weights, and justify the argument. 

If Χ, Y,Z = Α',Β', C in the preceding argument, so tha t figure 5.4.1 
represents the concurrence of the medians of AABC, then the weights 
assigned A, B, and C are all equal. Thus, in that case, Ceva's argument 
is identical to one used often in mechanics courses to demonstrate the medians' 
concurrence. 

5.5 Trigonometry 

Concepts 
Law of sines 
Law of cosines 
Determining other parts of a triangle from ASA, SAS, or SSS data 
Using SSA data 
Cosine and sine sum and difference formulas 
Cosine and sine double and half angle formulas 
SAS and ASA area formulas; Hero's SSS area formula 
Area formulas involving the circumradius 
Inequalities for approximating sine values 

This section completes the study of plane trigonometry begun in chapter 
3. In addition to the material you'd find in standard trigonometry texts, 
it presents several striking area formulas that go beyond what you'll find 
there. The section concludes with a method for approximating sine values, 
which also plays a major role in applying calculus to trigonometry problems. 

Classical trigonometry shows how to determine some parts of AABC 
—measures of LA, LB, and LC and lengths a, b, and c of the opposite 
edges—when you're given others. Theorem 3.13.15 and exercise 4.5.4 
summarized this for the case where L C is right. In tha t situation, given 
any two of a, b, c, m / A , and mLB, but not just the two angle measures, 
you can use Pythagoras' theorem, some simple equations involving the 
trigonometric functions, and computed values of these functions to find 
the remaining parts . For obhque triangles, you need more sophisticated 



178 SOME TRIANGLE AND CIRCLE GEOMETRY 

methods: the laws of sines and cosines presented in this section. By the 
triangle congruence theory in section 3.5, all parts of a triangle are fixed 
once you have SAS, SSS, or ASA data. Using the laws of sines and cosines 
you can actually compute the remaining parts. 

Law of sines 

The law of sines is usually phrased, the edges of a triangle are proportional 
to the sines of the opposite angles. Here's a more complete version of the 
law, which identifies the proportionality factor: 

Theorem 1 (Law of sines). If R is the circumradius of triangle 
AABC, then 

sinmZA sinmZB sinmZC 

Proof. You must consider four cases, according to the situation of A and 
C and diameter BX of the circumcircle. 

Case 1: If A and C he on different sides of the diameter, as in figure 
5.5.1, then LX = Ζ A because they're both inscribed in arc CAB, hence 
al(2R) = a /73X=s inmZX=sinmZA. 

Case 2: If A and C he on the same side, as in figure 5.5.2, the same 
equation holds because mZX+ mZ A = 180°. 

Case 3: If A lies on the diameter, as in figure 5.5.3, then a/(2R) = 
alAB = sin mZA. 

Case 4: If C lies on the diameter, proceed as in case (3). • 

Figure 5.5.1 Proving the 
law of sines, case (1) 

Figure 5.5.2 Proving the 
law of sines, case (2) 
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Figure 5.5.3 Proving the Figure 5.5.4 Proving 
law of sines, case (3) the law of cosines 

Law of cosines 

The law of cosines results from applying Pythagoras' theorem twice: 

Theorem 2 (Law of cosines). In AABC, a2 = b2 + c2 - 26c cos mi A. 

Proof. Assign a scale to AB so that c = (A to B). As in figure 5.5.4, let 
F be the foot of the altitude through C and hc = CF. Set χ = (A to F) and 
y = (BtoF), so tha t c = x + y. Then ar/6 = cosmZA and 

= b2 - x2 + y2 

= b2-x2 + (c- x2) 
= b2 + c2 -2cx 
= b2 + c2 - 26c cosmZA. • 

By relabeling the triangle, you can derive analogous equations 

b2 = c2 + a2 - 2 ca cos mlB 

c2 = a2 + b2 - 2 ab cos mZC. 

Finding unknown parts of a triangle 
from SSS, SAS, or ASA data 

If you know SSS data for AABC, you can use the law of cosines to find its 
angle measures. For example, 

, Λ -a2 + b2 + c2 

cos mZA = , 
26c 

and you can determine mZA from the cosine value. You can find the other 
measures from the analogous equations just stated. 

If you know SAS data—for example c, mZA, and 6 —then you can find 
the unknown edge from the law of cosines: 
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a = vV + c 2 - 2 i > ccosmZA . 

Now you have SSS data, so you can proceed as in the previous para-
graph to find another angle measure, for example mZ/3. Then mZC = 
180°- mZA - mlB. 

If you know ASA data—for example mZA, b, and mZC —then mZC = 
180°- mZA - mZJ3. Use the law of sines to find the unknown edges: 

Section 3.5 showed that SSA data don't necessarily allow you to compute 
the remaining parts. But according to exercise 4.6.2 there are at most two 
possibilities. Exercise 5.11.22 will lead you through the corresponding 
computation. 

Addition, subtraction, double and half angle formulas 

The familiar formulas for sines and cosines of sums and differences of angle 
measures are closely interrelated. It's efficient to derive first the cosine 
difference formula from the law of cosines, then get the others from that. 

Theorem 4. For any a and b, cos (a - b) = cos a cos b + sin a sin b. 

Proof. If a - b = 0°, this merely says 1 = 1. Now assume that 0° < a - b < 
180°. By the law of cosines and the distance formula, the square of the dis-
tance between points A = < cos a, sin α > and Β = <cos b, sin b> in figure 
5.5.5 is 

l 2 + l 2 - 2 - M c o s ( a - b) = (coso - cosb) 2 + ( s ino - s inb ) 2 , 

2 - 2cos(a - b) = 
= cos 2 a - 2 cos a cos b + cos 2 b + s in 2 a - 2 sin a sin b + sin 2 b 
= (cos 2 a + s in 2 a) + (cos 2 b + sin 2 6) - 2 (cos a cosb + sin a sin 6) 
= 2 - 2 (cos a cos b + sin a sin b), 

a = 
b sinmZA 
s i n m / S 

_ bsinmZC 
sinrnZB 

hence 

A<cos a,sin a>. 
B ^ £ 0 £ ^ s m 6 > Figure 5.5.5 

Proving theorem 4 
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which yields the desired formula. Finally, consider the general case. Given 
any a and 6, find the integer η such that 0°s a - b + 180°n < 180°. By 
the equations 

cos(i + 180°) = -cos t sin(< + 180°) = - s in t 

and the case just considered, 

cos(a - b) = (-1)" cos (a - b + 180°n.) = ( - l )"cos(a + 180°n, - 6) 
= ( - l ) " [ c o s ( a + 180°n,)cosb + s in(a + 180°ra) s i n b ] 
= ( - l ) " c o s ( a + 180 0n,)cosb + ( - l ) r t s i n ( a + 1 8 0 ° 7 I ) s i n b 
= cos a cos b + sin a sin b. • 

Corollary 5 (Cosine and sine sum and difference formulas). For any 
a and b, 

cos (α ± b) = cos a cos b τ sin a sin b 
s in(a ± b) = sin a cos b ± cos a sin b. 

Proof. You can derive the cosine sum formula by substituting - b for 
b in theorem 4. To get the sine formulas, use the cofunction identities: 

s i n ( a ± b ) = cos[90°- (a±b)] = c o s [ ( 9 0 ° - a ) τ b] 
= cos(90° - a ) cos b ± sin(90° - o) sin b 
= sin a cos b ± cos a sin b. • 

Corollary 6 (Cosine and sine double angle formulas). For any a, 

sin 2a = 2 sin a cos a 
cos2a = cos 2 a - s in 2 a = 1 - 2 s in 2 a = 2cos 2 a - 1. 

Proof. Set b = a in the addition formulas and simplify, using the 
Pythagorean identity. • 

Corollary 7 (Cosine and sine half angle formulas). For any a, 

2,\, \_ l + cosa - 2 / 1 / \ _ 1 - c o s a cos ( 7 2 a ) = sin ( Λ a ) = . 
2 2 

Proof, cos ( 2 - 7 2 a ) = 1 - 2 sin 2
 ( 7 2 a ) = 2 c o s 2 ( 7 2 a ) - 1 by corol-

lary 6. • 

Area formulas 

Since you can determine all parts of a triangle once you know SAS, SSS, 
or ASA data, you can find its area. The next two theorems give the three 
formulas. 
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Theorems (SAS and ASA area formulas). The area of AABC is 

Α Λ D/~» 1/ κ ,λ - c 2 s inmZA sinmZB &AABC = V2 bcsinmZA = . 
2s inmZC 

Proof. As in figure 5.5.4, let F be the foot of the altitude through C and 
he = CF. Then Λ,,/6 = sin mZA and &AABC = V2 chc = Vi bcsinmZA. 
Now use the law of sines: 

1/ L · , A 1/ L /A s inmZB 7 2 ocsinmZA = V2 ocs inmZA 
sin mZB 

= c sin mZA sin mlB 
sin mZ/3 

= — ^ — c sin mZA sin ml Β. • 
sinmZC 

The SSS triangle area formula is phrased in terms of the semiperi-
meter9 s = V2 (a + b + c) of AABC. (Its perimeter is the sum of the lengths 
of its edges.) First, here's an algebraic result that you'll need to derive the 
SSS formula and another one later. It's stated specifically for Ζ A, but 
analogous formulas hold for the other angles. 

Lemma 9. c o s m Z A = s ( s " o ) and sin Vt mZA = ( s " b ) ( s " c ) . 
be be 

Proof. By the sine half angle formula and the law of cosines, 

• 1/ , Λ - 1 " cosmZA _ 1 am V2 ml A = = — 
2 2 

-a2 + b2 + c'< 

26c 

= 26c + a 2 - 6 2 - c 2

 = a 2 - ( 6 - c ) 2 

46c 46c 

_ 1 a + 6 - c a - 6 + c _ (s - c)(s - 6) 
6c 2 2 be 

You can derive the other formula similarly. • 

Theorem 10 (Hero's SSS area formula). The area of AABC is 

aAABC = Js(s-a)(s - b)(s -c). 

Proof. By the SAS area formula and the Pythagorean identity, 

This word stems from the Greek prefixes semi- and peri-, meaning half and around, and 
the verb metron, to measure. 
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a AABC = V2 be sinmZ A = V2 be ^ 1 - cos 2mZA 

= bc . 1 + cos mZA 1 - cos mZA 

'N 2 2 

Now substitute the lemma 9 formulas and simplify. • 

You can find in most trigonometry texts the three area formulas just 
presented. However, when you combine them with the version of the law 
of sines given in theorem 1, you get some striking and unfamiliar area formu-
las involving the circumradius. 

Theorem 11. The area of AABC is 

a. A ABC = = 2u 2 s inmZAs inmZBs inmZC 
4 B 

= 4Rs sin 7 2 mZ A sin V2 mZB sin V2 mZ C. 

Proof. By theorem 8 and the law of sines, 

aAA.BC = 7 2 facsinmZA = V2 abc 8 * n m ^ = % abc-^-
a 2R 

a AABC = 7 2 be sin mZ A 

= V2 s inmZA s inmZB sinmZ C 
s inmZB s inmZC 

= 7 2 ( 2 B ) 2 s inmZA sinmZ Β sinmZ C. 

Now by Hero's formula and the lemma 9 formulas for all three angles, 

( aAABC) 4 = [ s ( s - a ) ( s - b)(s - c ) ] 2 

- c2(abc)2 (s ~b)(s~ c ) ( s " c ) ( s " q ) ( s ~ a)(s - b) 
be ca ab 

= s2(4RaAABC)2 ^ " 0 0 8 m ^ 1 - cosmZB 1 - cosmZC 
2 2 2 

(aAABC) 2 = 16 Β V e i n 2 (V2 mZA)sin 2 ( ' /2 mZB)s in 2 ( ' /2 m Z C ) . • 

HERO flourished in Alexandria around A . D . 62. No biographical informa-
tion about him is available. He wrote thirteen books on mathematics, 
science, and engineering. His triangle area formula occurs in one on mensu-
ration, entitled Metrica. 
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Inequalities for approximating sine values 

So far, this book has computed values sin θ for only a few arguments Θ. 
Section 3.13 considered 0 = 0", 30°, 45°, and closely related angles, and 
exercise 4.9.1 added 36° to this hst. How are other values computed? You 
can apply the half angle formula to compute s in# for θ= 18°= V2-36 0 , the 
difference formula to handle 15° = 45° - 30° and 3° = 18° - 15°, and the 
double angle and difference formulas to compute sin 3n° for each integer 
n.. The half angle formula yields sin θ for all integral multiples θ of 
ΐ ' / 2° , 3 Λ°, etc. The Pythagorean identity sin 2 θ + cos2 θ = 1 and the 
definition tan θ = sin θ/cos θ provide the corresponding cosine and tangent 
values. How are other values computed, to enable us to use effectively the 
trigonometric formulas derived in this section? 

With some reflection, you'll see that the only ways to use previously intro-
duced methods to extend the list of arguments θ for which sin 6 is known are 

• to continue using the half angle and sum formulas to reach sums 
θ of terms of the form 3°/2", and 

• to find geometric constructions analogous to exercise 4.9.1 for 
new Θ. 

The latter feat is possible for a few Θ, but those aren't easily tabulated, 
it's hard to carry out the construction and the algebra, and hard to use the 
results. After centuries of investigation, mathematicians determined in the 
mid-18008 that these methods will never yield algebraic formulas for trigono-
metric function values for some arguments: for example, sin 1° or sin 2° . 1 0 

Even two thousand years ago, however, Alexandrian mathematicians had 
discovered how to approximate values sin θ with any desired degree of accu-
racy. 1 1 You can reproduce some of their work in exercise 5.11.27. 

Approximation requires manipulation with inequalities, not just equa-
tions. For given arguments θ you must calculate numbers y then show 
that I y - sin θ | is less than some tolerance, so that you can compute with 
y in place of sin θ without making unacceptable errors. Some trigonometric 
inequalities are simple; for example, if 0° < θ < 90° then 0 < s i n 0 < 1 
and O < c o s 0 < l , hence sin θ< tan θ because tan θ = sin θ I cos Θ. Theorem 
12 is a refinement of this last inequality; it will be used to derive an 
approximation for s i n l " and estimate the error. Controlled approximation 
is an essential calculus technique, and standard calculus texts derive from 
theorem 12 the formulas for the derivatives of the trigonometric functions. 1 2 

Moise ([1963] 1990, section 19.11) presents that result. It requires algebraic techniques 
beyond those assumed for or covered in this book. 

1 1 See van der Waerden 1963, chapter VII. 
1 2 For example, see Thomas and Finney 1979, section 2.10. 



5.5 TRIGONOMETRY 185 

S S 

y Y 

Ο Ρ ο Ρ 

Figure 5.5.6 
Proving theorem 12 

Figure 5.5.7 Proving 
theorem 12, continued 

Theorem 12. If O ° < 0 < 9 O ° , then sin θ < πθ/180" < tan θ.13 

Proof. Consider figure 3.13.5 and theorem 3.13.16: s i n 0 = QR < PQ, 
t h e j e n g t h of a polygon inscribed in PXQ, and PS = tan Θ. Thus PQ < 
l(PX§), the least upper bound of such lengths. By theorem 3.14.6, 
l(PXQ) = πθ/180°. That establishes the first of the desired inequalities. 

Now consider the related figure 5.5.6. Given X ^ Q in the arc, find 
Y, then line g II QX through Y, and the intersection Z, so that AOXQ ~ 
AOYZ and XQ<YZ. By the exterior angle theorem, mlYSZ < mlYZO = 
mLOYZ<mlYZS, hence YZ<YS. Repeat this argument with XQ replaced 
by each edge, in turn, of a polygon 77 inscribed in PXQ; it shows that the 
length 1(17) <PS = t a n d ^ T h a t is, PS is an upper bound for the lengths 
of jjolygons inscribed in PXQ. Since the arc length is the least upper bound, 
I (PXQ) i. t a n 0 . Could these be equal? 

To show that equality is impossible, consider figure 5.5.7; select any point 
X^ P, Q in the arc, and leave it fixed. Find Y and the perpendiculars 
h and g' to OX through X and Y, then their intersections S' and 
Z' with 0"Q, so tha t AOXS' ~ AOYZ' and XS' < YZ'. By the exterior 
angle theorem, mZ YSZ' < mlOZ'Y= mlOS'X< 90° < mZ YZ'S, hence 
YZ' < YS and therefore XS' <YS. By the previous paragraph applied to 
PVX and XWQ, 

l(PXQ) = l(PVX) + l(XWQ) 
i. PY + XS' < PY +YS = PS = tan Θ. • 

When θ is very small, cos θ is only slightly smaller than 1, hence 
sin 0 / co8 θ= t an θ is only slightly larger than sin Θ, and by theorem 12, 
πθ/\80° hes between them. This number, which is certainly easy to compute, 

If you use radian measure, these inequalities become sin θ < θ < tan#. 
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should be a close approximation to either one. How close is it? You can use 
theorem 12 to estimate the approximation error, as follows. The inequality 
πθ/180" < tan θ and the sine half angle formula imply 

πθΙ 180° - sin 0 < tan 0 - sin 0 
= (1 - cos 0) tan 0 = 2 sin 2 ('Λ θ) tan θ. (1) 

Apply theorem 12 again with Vz 0 in place of 0: 

2 sin 2 ( > / ι 0) tan 0<2{π- Vt 0/18O") 2 tan 0. (2) 

Now suppose you know tan # i roughly for some 0X slightly larger than 
0. Since the sine is an increasing function and the cosine is decreasing, the 
tangent is increasing, so 

t a n 0 < t a n 0 ! . (3) 

For example, consider 0 = 1 ° and 0l = l1/2°. As mentioned earlier, you 
can compute tan I V 2 0 by using trigonometric formulas. Rounding up to 
one significant digit, you'll find tan 0X » 0.03. Inequalities (1) to (3) with 
0=1" and 0X = IV2 ° yield an estimate of the approximation error: 

7Γ0/18Ο 0- sin θ < 2(π • Vt 0/18O°) 2 tan θ1 « 0.000004. 

Therefore sin 1° » π 1180 => 0.0174533, with the first five decimal places 
guaranteed correct. (Correct to seven decimals, s i n l ° = 0.0174524.) 

Current programs for approximating sine values use a variant of this 
method for small arguments, but apply more recently developed calculus 
techniques for estimating the approximation error. For larger arguments 
they employ the sine and cosine sum and difference formulas, with elaborate 
attention to round-off error. 

5.6 Vector products 

Concepts 
Dot products 
Cross products 
Distinguishing sides of lines and planes 
Determinant criteria for colhnearity and coplanarity 
Determinant formulas for triangle area, and volume of a tetrahedron 
When do four planes, or three lines in a plane, have a common point? 

This section is a digression. It covers the geometric aspects of vector dot 
and cross products. These are used occasionally in the rest of the book. Since 
they're sometimes not covered in more elementary courses, and depend on 
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some trigonometry presented in section 5.5, it seemed inappropriate merely 
to refer to them in appendix C. They're developed fully here, using the vector 
algebra notation reviewed in the appendix. 

Dot products 

You can use the law of cosines with a coordinate system and vector algebra 
to measure angles. Regard points P= <P1.P2.P3> and Q = <qt, q2, qa> 
as vectors, with dot product P-Q = pxqx + p2q2

 +
 P3<Z3- Theorem 1 gives a 

formula for P-Q, which you can turn into one for mlPOQ if Ρ and Q 
aren ' t collinear with the origin O. Corollary 2 presents a general angle 
formula. 

Theorem 1. If points Ρ and Q are noncollinear with the origin O, then 
PQ = (OP)(OQ) cos mZPOQ. 

Proof. By the law of cosines: 

(PQ)2 = (OP)2 + (OQ)2 - 2(OP)(OQ) cos mlPOQ 

( P i ~ Qi)2 + ( P 2 " Q2)2 + (Pz ~ Q s ) 2 

= p2 + p2 +p2 + q2 + q2 + ql - 2(OP)(OQ) cos mZPOQ 
- 2 p l 0 l - 2 p 2 o 2 - 2 p 3 g 3 = - 2 ( O P ) ( O Q ) cos mZPOQ. • 

Corollary 2 (Angle formula). If Ρ , X, and V are noncollinear points, 
then 

(P-V)-(X-V) cos mZPVX = — - - • 
(VP)(VX) 

Proof. Let P' = Ρ - V and X' = X - V. By the parallelogram law, 
OP' = VP, OX' = VX, and PX = P'X', so AP'OX' = APVX and 
mZPVX=mZP'OX' . • 

For the rest of this heading, work in a fixed plane ε with a two-
dimensional coordinate system. 

The angle formula leads to some convenient procedures for determining 
whether two points X and Y he on different sides of a hne g = VP. First, 
consider the point R = V+ <v2 - p 2 , px - vx> shown in figure 5.6.1. It has 
two important properties: 

VR=sl(v2-p2)
2 + (p1-vlf = VP 

(PR)2 = [ (ρ , - υ,) - (ϋ, - p 2 ) ] 2 + [(p 2 - v2) - (Pl - v,)]2 

= 2 ( p , - υ,)2 + 2 ( p 2 - υ2)
2 

= 2(VP)2 =(VP)2 + (VR)2. 
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Figure 5.6.1 
Proof of theorem 3 

By the converse of Pythagoras' theorem, VP ± Vti. Now, X and R he 
on the same side of g just in case X is in VR or iRVX is acute. By the 
angle formula, that happens just when 

0<(R - V)-(X- V) 

= (v2 -ρζ)(χχ - UT) + (p , - υχ)(χ2 " "ζ) 

= ( P I - Vi)(x2 - υ2) - (p2 - U 2 ) ( x , - U j ) 

= det P l " X l ~ V l 

[p 2 - υ2 x2- u2 ' 

That determinant is often abbreviated det [Ρ - V, X - V]. Notice that X 
lies on g just in case X = V or /.RVX is right—that is, just when the 
determinant is zero. This discussion has demonstrated 

Theorem 3. A point X hes on a line g = VP just in case 

d e t [ P - V,X- V] = 0. 

Points X and Y he on different sides of g just when this determinant and 
det [Ρ - V, Y - V] have different signs. 

In theorem 3, which sign corresponds to which side of g depends on the 
choice of points Ρ and V. If you change them, either both determinants 
change sign, or neither does. 

Let S = < s 1 , s2> denote the vector R - V considered earlier, and let 
ί = S-V. Apoint X hes on g if and only if (R - V) · (X - V) = 0. That 
equation is equivalent to S-X=S-V, i.e., s,:^ + = i, a linear equation 
for g. Thus, you can interpret the previous discussion as 

Theorem 4. Points Y and Ζ he on different sides of the line with equa-
tion sxxx + s2x2 = t just when one of s1y1 + s2y2 and slz1 + s2z2 is 
greater than t and the other is less. 

The determinant in theorem 3 provides a convenient formula for the area 
of a triangle: 
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Figure 5.6.2 
Theorem 5 

Theorem 5. If points Ρ , V, and X are noncollinear, then the area of 
APVX is 

aAPVX = ± V» det [Ρ - V, X - V]. 

The + sign is correct just when X hes on the same side of VP as the point 
R considered earlier. 

Proof. If X lies on the same side of VP as R, indicated by the solid 
line in figure 5.6.2, then mlPVX = 90° ± mlRVX, so sinmlPVX = 
cosmlRVX. Otherwise, as indicated by the dotted lines, mlPVX = 
mlRVX-90o or mZPVX+ mlRVX= 270°; in those cases s i n m Z P ^ X = 
-cosmZPVX By the SAS area formula, equation VP=VR, and the angle 
formula, 

aAPVX= l/t(VP)(VX) einmlPVX 
= ± '/2 (VR)(VX) cos mlRVX 
= ±1/t(R-V)-(X-V) 
= ±V2det[P -V,X -V]. • 

Cross products 

The cross product W of vectors X and Y is used only in three 
dimensions : 

=ΐχ y 

υυγ = det 

w2 = det 

u)3 = det 

x2 y% 

xi yy 

xi yi 

x2 y~i 

You should verify its most basic properties algebraically: 
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(a) X x Y = Ο if and only if X and Y are collinear with O; 
(b) X-(XxY) = 0 = (X*Y)-Y; 
(c) X x Y = - ( Y x X ) ; 
(d) (sX)xY=s(X*Y) = Xx(sY); 
(e) X x ( Y ± Z ) = (Xx Y ) ± ( X x Z ) ; 

(f) (XxY)-Z= det 
* 1 3Ί 2 1 

* 2 - ^ 2 Z 2 

* 3 ^ 3
 Z3 

This determinant is often abbreviated det [Χ, Υ, Z]. 
Now set up a fixed coordinate system with origin O. If points X and 

Y are noncollinear with O, then according to property (b) and the converse 
of Pythagoras' theorem, X x Y falls on the perpendicular k to plane 
OXY through O. The next results show that it's one of the two points that 
he on k at a certain distance from O. (Which one depends on your coordinate 
system.) You can verify lemma 6 directly through algebra. 

Lemma 6. If points X and Y are noncollinear with the origin O, and 
Z = X x Y , then (OZ)2 = (OX)2 (OY)2 - (X-Y)2. Therefore, if XY = 
0, then OZ=(OX)(OY). 

Theorem 7. If points X and Y are noncollinear with the origin and Z = 
X x Y , then OZ= (OX)(OY) sin m/XOY. 

Proof. Construct line h A. OX through Ο in OXY, and let X' and 
Y' be the feet of perpendiculars from Y to OX and h. Then OX'YY' 
is a rectangle, so OY' = OY sin mZXOY and Y = X' + Y'. Therefore 

Z = Xx Y = X x (X' + Y') = (XxX') + (Xx Y') —by property (c) 
= X x Y' —by property (a) 

OZ = (OX)(OY') —by lemma 8 
= (OX)(OY)sinmZXOY. • 

The cross product leads to some convenient procedures for determining 
whether two points X and Y he on different sides of a plane ε = VPQ. 
First, consider point 

R=V+(P-V)*(Q-V). 

You can check by using parallelograms that Ρ - V and Q - V are noncol-
linear with O, so R - Vf Ο and Vft ± VP and χ V^>, hence V2? ± 
e. Points X and Λ he on the same side of ε just in case X is in VR 
or ZXVi? is acute. By the angle formula and property (f), that happens 
just when 
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0 < (R - V) · (X - V) 
= [(P-V)x(Q-V)]-(X-V) 
= d e t [ P - V,Q - V,X- V). 

Notice that X hes on ε just in case X= V or /.RVX is right—that is, just 
when the determinant is zero. This discussion has demonstrated 

Theorem 8. A point X lies on a plane ε - VPQ just when 

d e t [ P - V,Q -V,X-V] = 0. 

Points X and Y he on different sides of ε just when this determinant and 
det [Ρ - V, Q - V, Υ - V] have different signs. 

In theorem 8, which sign corresponds to which side of ε depends on the 
choice of points P, Q, and V. If you change them, either both determinants 
change sign, or neither does. 

Let S = <s, , SJJ , s 3 > denote the vector R - V considered earlier, and let 
t = S-V. A point X hes on ε if and only if (R - V) · (X - V) = 0. That 
equation is equivalent to S-X= S-V, i.e., slx1 +s2x2 +s3x3 = t, a linear 
equation for ε. Thus, you can interpret the previous discussion as 

Theorem 9. Points Y and Ζ he on different sides of the plane with equation 
slxl + s2x2 + s3x3 = t just when one of s1yl + s2y2 + s3y3 and s,z, + 
s2z2 + s3z3 is greater than t and the other is less. 

The determinant in theorem 8 provides a convenient formula for the volume 
of a tetrahedron: 

Theorem 10. If points P, Q, V, and X are noncoplanar, then 

vPQVX = ± 7 6 det [Ρ - V, Q - V, X - V]. 

The + sign is correct just when X lies on the same side of VPQ as the 
point R considered earlier. 

Proof. Let W be the foot of the perpendicular from X to VPQ. Then 
mlWVX= 90° - mlRVX if X and R he on the same side of VPQ, else 
mlWVX= 90° + mlRVX. Therefore, 

vPQVX= Va (aAVPQ)(WX) —by theorem 3.10.13 
= Vz [72 (VP)(VQ) s inmiPVQ](WX) —by the SAS area formula 
= V» (VR) (WX) —by theorem 7 
= Ve(VR)(VX) s i n m Z W X 
= ± 7 6 ( VR)( VX) cos mlRVX 
= ± L / 6 (R - V) · (X - V) —by the angle formula 
= ±V,[(P-V)x(Q-V)]-(X-V) 
= ± 1 / 6 d e t [ P - V,Q - V,X-V] —by property (f) . • 
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When do four planes, or three lines in a plane, 
have a common point? 

You've seen how to use determinants to tell whether three points he on a 
line in plane analytic geometry or four points he on a plane in three dimen-
sions. You can also use them to investigate whether three lines or four planes 
have a common point. But this process is more complicated because you 
must take into account the possibility of parallel lines and planes. The three-
dimensional theory is developed fully here. The plane analogy is summarized 
in theorem 12; you can supply the details. 

Set up a fixed coordinate system with origin O. A plane ε has linear 
equation PX-b for some vector Ρy Ο and some scalar 6. If 6 = 0, then 
ε passes through the origin O. Otherwise, equations Ρ·Χ=0 and Ρ·Χ = 
b have no common solution, so the former represents the plane δ/ε through 
O. Moreover, OP is the perpendicular to δ and ε through O. Since there's 
only one such line, it follows that equations P-X=b and Q-X=c represent 
equal or parallel planes just when P = sQ for some scalar s. 

You can write any linear equation P-X=b with a dot product Ρ* -X* 
of four dimensional vectors P* and X* formed by appending fourth entries 
p 4 = - b and x4 = 1 to Ρ and X: 

PX= [Pi P2 P31 = 6 - P*X*= [ p , p 2 p 3 p 4 ] = 0. 

Now consider four planes εί with equations 

Pi* -X* = p I L X , +pitX2 + P I 3 * 3 + P i 4 = 0 

for i = l to 4. Therowe P*' forma 4 x 4 matrix P*. If the planes have 
a common point X, then P*X* = Ο because for each i, its i th entry is 
the matrix product of (the i th row of P*) times X*. Since X*^0, P* 
is singular. 

P* is also singular when the planes εί are all parallel to a single line. 
In that case the planes δί/εί through Ο all contain a single line g through 
O. Take any point Xf Ο on g. Then 

0 

= 0 

because for each i, pnxt +pi2x2

 +Pisx3 ~ 0 is an equation for dt. 

Theorem 11. d e t P * = 0 if and only if planes ελ to ε4 have a common 
point or are all parallel to a single line. 
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Proof. The previous discussion established the if clause. Conversely, 
suppose P* is singular. Then P*W=0 for some four-dimensional vector 
W^O. If wi?

i0, then X= <wxlw4, w2lw4, w3/u>4> is a point on each 
*,· because P*X* = P*(W(l/w4)) = (P*W)(l/w4) = 0. • 

The plane analog of theorem 11 is simpler. Set up a fixed coordinate system 
in a plane ε, with origin O. A fine g in ε has hnear equation P-X=b 
for some vector P/O and some scalar b. Equation Ρ·Χ=0 represents 
the line hjg through O. Equations P-X=b and Q-X=c represent equal 
or parallel lines just when P=sQ for some scalar s. You can rewrite equa-
tion P-X=b as Ρ* -X* = 0 with a dot product of ί/iree-dimensional vectors 
P* and X* formed by appending third entries p3 = -b and x3 = 1 to Ρ 
and X. Now consider three hnes gt with equations 

Pt* -X* = pnxx +pi2x2 +pi3 = 0 

for i = l to 3. The rows P? form a 3 x 3 matrix P*. 

Theorem 12. d e t P * = 0 if and only if hnes gx to g3 have a common point 
or are all parallel. 

5.7 Centroid 

Concepts 
Notation for centroid and medians 
Centroid as average of the vertices 
Centroid of any finite point set 
Minimizing the sum of squares of the distances from a point to three 

vertices 

This section presents a few pretty and representative properties of the cen-
troid G and medians of a triangle AABC, shown in figure 5.7.1. Theorems 
1 to 3 present some properties that you might call "balancing" or "averaging." 
You can supply the simple proof of theorem 1. 

Theorem 1. Each median divides AABC into two triangles with equal 
areas. The three medians divide it into six triangles with equal areas. The 
segments between the vertices and the centroid divide it into three triangles 
with equal areas. If da, db, and dc are the distances from the centroid 
to edge lines a to c, then ada = bdb = cdc. 
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C 

Figure 5.7.1 
The edge midpoints 

A', 73', and C ; the medians; 
and the centroid G of AABC 

A C Β 

Theorem 2. If you set up a coordinate system and regard A to C and 
G as coordinate vectors, then 

G = V3(A + B + C) (A- G) + (B-G) + (C-G) = 0. 

Proof. A' = 7 2 (73 + C) and by the medians theorem, G = Vs (A + 2A'). • 

Theorem 2 suggests a generalization of the centroid concept to arbi-
trary finite sets of points Ρ, to Pn: Set up a coordinate system, regard the 
points as coordinate vectors, and define their centroid G as the average 
(Pj + ••· + Pn)/n. For this to make sense, however, you need to show that 
you get the same G no matter what coordinate system you use. That problem 
is addressed in sections 6.1 and 6.2 under the Invariance headings. 

Theorem 3. Consider a hne g in plane ABC, and call one of its sides 
positive. Let e and ea to ec denote + or - the distances to g from G 
and A to C. Use + just on the positive side of g. Then e = 

Proof. Let e'a denote + or - the distance from A' to g, with the 
sign chosen the same way. Then e'a = 7 2 e b + 7 2 e c and e = ' / 3 e a + 2Δe'a. 
(See figure 5.7.2.) • 

The remaining properties considered in this section involve a pretty formu-
la for the sum of the squares of the lengths ma, mb, and mc of the medians. 

1/3(ea + eb + ec). 

C 

G A' 

A Β 
Figure 5.7.2 

Theorem 3 
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The formula is the first of several in this chapter, selected mainly for their 
elegance. In turn, these are just a small sample of a great wealth of such 
formulas tha t you can find in the l i terature. 

Theorem 4. m\ = - V* a2 + XA b2 + lA c2 

mb

2 = lA a2 - lA b2 + Vi c 2 

ml = lA a2 + x/% b2 - ιΛ c2 

m2

a + mb

2 + m* = 3A (a2 + b2 + c2). 

Proof. Apply the law of cosines to AABC and AABA' as in figure 
5.7.1: 

b2 = c 2 + a2 - 2 ca cos mZB 
ml = (lA a)2 + c 2 - 2(lA a)c cos mlB. 

Derive m 2 =-1Aa2 + lA b2 +1Ac2 by subtracting twice the second equation 
from the first. You can supply the remainder of the proof. • 

Few of the elegant triangle geometry formulas such as theorem 4 find 
immediate application. This one, however, leads to an interesting minimal 
property of the centroid: G is the point to which the sum of the squares 
of the distances from the vertices is least. Proving that requires a preliminary 
computation: 

Lemma 5. (PA)2 + (PB)2 + (PC)2 = 3(PG)2 + V» (a2 + b2 + c 2) for any 
point P. 

Proof. If P-G, this equation is just theorem 4. Therefore, let P^ 
G. Construct the line gxPG through G, and regard as positive the side 
of g on which Ρ hes. As in theorem 3, let ea to ec be + or - the distances 
from g to the corresponding vertices. Use + on the positive side. By theorem 
3, ea + eb + ec = 0 because G hes on g. Now consider the case in figure 
5.7.3, where Ρ isn't collinear with A and G. By the law of cosines, 

(PA)2 = (PG)2 + (GA)2 - 2(PG)(GA) cosm/PGA 
= (PG)2 + (GA)2 - 2(PG)ea. 

This equation holds even if P, G, and A fall on a line, because then PA = 
±(PG - ea). Similar equations hold for the other vertices. Adding all three, 
you get 

(PA)2 + (PB)2 + (PC)2 

= 3 ( P G ) 2 + (GA)2 + (GB)2 + (GC)2 - 2(PG)(ea + eb + ec) 
= 3(PG)2 + (GA)2 + (GB)2 + (GC)2 

= 3(PG)2 + (2A ma)
2 + (2A mb)

2 + (2A mc)
2 

= 3(PG)2 + % (m2

a + mb

2 + ml) 
= 3(PG)2 + %• 3A(a2 + b2 + c2). • 
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A, 
8 

Figure 5.7.3 
Proof of lemma 5 

From lemma 5 you can see that (PA)2 + (PB)2 + (PC)2 achieves its mini-
mum value when PG = 0, which yields 

Theorem 6. The centroid is the point to which the sum of the squares 
of the distances from the vertices is least. This minimum value is 
3A(a2 + b2 + c2). 

5.8 Orthocenter 

Concepts 
Notation for the feet of the altitudes of a triangle 
Orthic triangle 
Orthocentric quadruples 

The feet of the altitudes of AABC through vertices A, B, and C are usually 
denoted by D, E, and F. When AABC is obhque, they form ADEF, 
the orthic triangle of AABC. You'll see it play an important role in the rest 
of this chapter. Its list of fascinating properties continues even further. 
For example, if Δ ABC is acute, the orthic triangle has the shortest perimeter 
of any triangle whose vertices he on each of the edges of AABC. Proving 
that requires methods best introduced later, in section 6.3, so it's presented 
as exercise 6.11.7. 

Theorem 1. The altitudes and orthic triangle of an oblique AABC form 
angles as shown in figure 5.8.1. Their complements and sums satisfy the 
indicated equations. In particular, the altitudes of AABC bisect the angles 
of the orthic triangle, and AABC ~ AAEF ~ ADBF ~ ADEC. 

Proof. Because lAEH and LAFH are right, Ε and F lie on circle 
Γα with diameter AH, and mlAEF + mZFEH = 90° = mlAFE + 
mlEFH. Figure 5.8.2 displays Γα and the corresponding part of figure 5.8.1. 
You can verify every angle congruence indicated there by observing that 
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the angles are inscribed in the same arc of Γα. Now, notice that L A HE = 
/.BHD, move to circle rb with diameter BH, and verify the corresponding 
angle congruences there. In the same way, you can handle circle Fc with 
diameter CH, which contains all the remaining angle congruences of fig-
ure 5.8.1. It remains to verify the rightmost equations in tha t figure, which 
involve sums of angle measures. They merely reflect the sums of the angle 
measures in right triangles AAFC, ABDA, and ACEB.+ 

The next result isn't particularly interesting in itself, but it finds many 
applications in triangle and circle geometry. 

Theorem 2. If altitude line CF intersects the circumcircle of AABC a t 
P?C, then HF = FP. 

Proof. Suppose /A and LB are acute, as in figure 5.8.3. By the triangle 
sum theorem, mlFHB = 9 0 ° - ml ABE = ml A. Moreover, LA = LHPB 
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because they're inscribed in the circumcircle and subtend the same arc 
BXC. By the ASA theorem, AHFB = APFB, so HF = FP. 

You can provide a similar proof for a triangle with LA or IΒ obtuse. 
If LA or LB is right, then H = F=P.+ 

A quadruple <A,B,C,H> of points is called orthocentric if A, B, and 
C form an oblique triangle and Η is its orthocenter. Theorem 3, which 
is apparent from figure 5.8.1, says that you could record the four points of 
an orthocentric quadruple in any order. 

Theorem 3. Any three points of an orthocentric quadruple form an oblique 
triangle whose orthocenter is the fourth point. 

Theorem 4. The four triangles formed by an orthocentric quadruple have 
the same circumradius. Conversely, if three coplanar circles with radius 
R pass through a point Η and intersect by twos at three distinct points 
A, B, and C, then <A,B,C,H> is an orthocentric quadruple and A, 
B, and C he on a circle with radius R. 

Proof. Suppose an orthocentric quadruple <A,B,C,H> forms four tri-
angles as in figure 5.8.4. Consider the point Ρ in figure 5.8.3. By theorem 
2, AHBA = APBA, so they have the same circumradius. But APBA and 
AABC have the same circumcircle, so AHBA and AABC have the same 
circumradius. 

Conversely, suppose circles with centers Oa, Ob, and Oe and radius 
R intersect as in figure 5.8.5. Then OaHObC, ObHOeA, and OcHOaB 
are rhombi, so 

AOb I ifOc 1 BOa BOc I tiba I COb COa / lfOb / AOc. 

Figure 5.8.4 
Theorem 4 

Figure 5.8.5 
Proving theorem 4 
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By the parallel case of the second form of Desargues' theorem, BC / O^Oc. 
Consider the line g J . BC through H. It's also perpendicular to O^Oc, so 
it must pass through A. That is, Η hes on the altitude of AABC through 
A. Similarly, it hes on the other altitudes. • 

5.9 Incenter and excenters 

Concepts 
Notation for the incircle and excircles of a triangle 
Gergonne and Nagel points 
Area formulas involving the inradius and exradii 
Harmonic quadruples of points 

The first results in this section complete the discussion of angle bisectors 
in section 5.1. You can prove theorem 1 by extending the techniques used 
there to derive the angle bisectors theorem. The earlier discussion of the 
bisector of an angle Δ ABC —the line g containing all points equidistant 
from AB and B~C and interior to LABC —led to the notions of incenter 
and incircle. The line h±g through Β in plane ABC also consists of points 
equidistant from AB and BC. It's called an external angle bisector of 

Theorem 1. As shown in figure 5.9.1, the interior and exterior angle bisectors 
of AABC meet by threes at the incenter I and three points Ea,Eb, Ec tha t 
are also equidistant from the triangle's edge lines. These four points form 
an orthocentric quadruple. AABC is the orthic triangle of Δ E a E b E c . 

AABC. 

Figure 5.9.1 
Theorem 1 
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Points Ea, Ε],, Ec are called the excenters of AABC. Each is equidistant 
from the edge lines; these distances are called the exradii ra,rb, rc of 
AABC. In figure 5.9.1, the circle / "wi th center I and tangent to AABC 
at points I0,Ib,Ic is the incircle. Its radius is r, the inradius. The circles 
ra,rb,rc whose centers and radii are the corresponding excenters and exradii 
are called the excircles of AABC. They touch the edge lines at points 
Eao> Eab>--- a s indicated in the figure. The next theorem—a tedious prerequi-
site for some surprising results—gives formulas for many of the distances 
in figure 5.9.1, in terms of the semiperimeter s of AABC. 

Theorem 2. s =AEab=AEac = BE^ = BEbc = CE„ = CEcb 

s-a = AIb =AIC = BEca=BEcc = CEbo = CEbb 

s-b=AEcb=AEcc=BIa =BIC =CEm = CEab 

s-c=AEbb = AEbc = BEaa=BEae = CIa =CIb. 

Proof. These formulas all stem from the fact that any point Ρ outside 
a circle Γ is equidistant from the points of contact of the two tangents through 
P. For example, 

AEab = b + CEab =b + CEaa 

= b + a- BEM =b + a- BEac 

= b + a - (AE^ -c) = a + b + c- AEM = 2s - AEab 

2AEab=2s. 

(This method of reasoning is useful for exercise 4.6.6.) • 

You can use these formulas with Ceva's theorem to derive several concurrence 
results. Two examples are shown in figure 5.9.2: 

Corollary 3. Segments AIn, BIh, and CIC are concurrent, as are segments 
AEaa> BEbb, and CECC. 

Figure 5.9.2 
Constructing the Gergonne 

and Nagel points 
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The intersections of these triples of concurrent segments are called the 
triangle's Gergonne and Nagel points. 

Theorem 4. The area a AABC = rs = r„(s - a ) = rb(s - b) = rc(s - c). 

Proof, a AABC = aAIAB + aAIBC + aAICA = Vz cr + lA ar + Va br = 
rs. To derive the second formula, note tha t AIIbA ~ AEaEabB in figure 
5.9.1, so tha t by theorem 1, rlra = IIbIEaEab = IbAIEabB = (s - a)ls. • 

You can use theorem 4 with the area formulas in section 5.5 to derive 
some spectacular equations about distances and angles related to a triangle. 
Exercises 5.11.25 and 5.11.26 provide samples. 

The last part of this section features some very special properties of figure 
5.9.1. Through the material in the next section, they lead to the final topic 
of this chapter, Feuerbach's theorem. That amazing result relates the incircle 
and excircles to another triangle and circle that you've already started to 
analyze. Par t of the argument leading to Feuerbach's theorem is presented 
here in order to streamline section 5.10. 

The next result involves a technique tha t has been studied deeply and 
used in many different geometric investigations: harmonic quadruples of 
points. Since Feuerbach's theorem is the only one of those applications in-
cluded in this book, the theory of harmonic points is not fully developed here. 
Only the necessary features are mentioned. You may want to pursue this 
attractive subject further in another text. 1 4 A quadruple <A,B,C,D> of 
points on a line g to which you've assigned a scale is called harmonic if 

(A to B)(C to D) = (A to D)(B to C ) . 

Clearly, the validity of this equation is independent of your choice of scale. 
Take care when you encounter this notion in the literature; you'll find many 
equivalent forms of the equation, with the letters permuted, or using ratios 
instead of products. The first result about harmonic quadruples provides 
an alternative equation that 's simpler for some algebraic manipulations. 
The next ones show that certain constructions—in particular par t of figure 
5.9.1—yield harmonic quadruples. 

Theorem 5. Let A, B, C, and D be collinear points and Ο be the mid-
point of BD. Then <A, B,C,D> is a harmonic quadruple if and only if 
(OB)2 = (0 to A ) ( 0 to C) . 

Proof. Choose a scale so that Ο has coordinate 0 and points A, B, 
C, and D have coordinates a, b, c, and -b. Then <A,B, C,D> is 
harmonic 

For example, Davis 1949, chapter 6, or Eves 1963-1965, chapter 2. 
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Figure 5.9.3 
Theorem 6 

- (A to B)(C to D) = (A to D)(B to C) 
- (b-a)(-b-c) = (-b-a)(c-b) 
- b2 = ac 
~ (OB)2 = (0 to A ) ( 0 to C ) . * 

Theorem 6. Suppose Ο is a point not on a hne g; suppose lines k, I, 
m, and η pass through Ο and intersect g at points V, 7, X, and 2? 
in the order V-I-X-E; and suppose I ± τι, as in figure 5.9.3. Then 7?* 
7£, and <V,I,X,E> is harmonic just in case IVOI = lIOX. 

Proof. Clearly, 7^2?. Choose a scale for g so that ( ν ^ ο 7 ) is positive. 
Then by the law of sines, < V, I, Χ, Ε > is harmonic 

- (VI)(XE) = (VE)(IX) ~ — — = — — 
ΟΙ OE OE 01 

sin mZVQ7 sin mlXOE _ sinrnZVOE sin mZ7QX 

sin m/OVT sin mZOXE sin mZOVE sin mlOXI ' 

Since LOVI= lOVE and mlOXE = 180°- mZOX7, it follows that 
< V, I, Χ, Ε > is harmonic 

~ sin mZ VOI sin mZXOT? = sin mZ VOE sin mZ70X 

- sin mZ VOI cos mZ70X = cos mZ VOI sin mZ70X. 

Since cosm/VO7? i0? icosmZ7OX, it follows that <V,7,X,7?> is harmonic 

i. ,f7r\r 8inmZVO7 sin mZ/OX _ . , r r i V 

- tanmZ VOI= = = tanmZ70X 
cos m Ζ VOI cos m Ζ 70X 

- lVOI=HOX. • 

Corollary 7. In figure 5.9.1, let X denote the intersection of angle bisector 
Al with edge a. Then <A,7,X,2? a > is a harmonic quadruple. Analogous 
results hold for the other bisectors. 

Proof. This part of figure 5.9.1 is detailed in figure 5.9.4. Let C, A, and 
Ea play the roles of Ο, V, and Ε in theorem 6. • 
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Figure 5.9.4 Proving 
corollaries 7 and 8 

Corollary 8. In figure 5.9.1, let X and D denote the intersections of 
edge BC with angle bisector AI and the altitude through A. Then 
<D,Ia,X, Em> is harmonic. 

Proof. This par tpf figure 5.9.1 is detailed in figure 5.9.4. The altitude 
and radial hnes IIa and E^E^ are all perpendicular to the edge line, 
hence they're parallel. By corollary 7, (AI)(XEa) = (AEa)(IX), hence 

AI _ AEa 

IX XEa' 

But distance ratios are invariant under parallel projection, so 

Al=DIa AEa _ DE^ 

IX IaX XEa XE^' 

Therefore, (DIaKXE„) = {DEJ^X). • 

Corollary 9. In figure 5.9.1, let X denote the intersection of edge α with 
the opposite angle's bisector AI . Then edge midpoint A' is the midpoint of 
^E^ and (A'Iaf = (A'D)(A'X). Analogous results hold for the other 
corresponding bisectors and edges. 

Proof. BIa = s - b = CE^ by theorem 2. Thus A' is the midpoint of 
^a^aa · Now apply corollary 8 and theorem 5. • 

Theorem 10. Let X denote the intersection of edge a of AABC with angle 
bisector AI and suppose iB^lC. Then Χψ-Ια and X hes on two tangents 
to the incircle Γ. One is the edge line and the other touches Γ a t a point 
P. AI also bisects LPXIa. Moreover, 

• if ml Β > mlC as in figure 5.9.5, then Β·Ια·Χ , 
mlCXP = mlB - mlC; 

• if mlB <mlC as in figure 5.9.1, then B-X-Ia and 
mZCXP = m ' B - mlC + 180°. 
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C 

Figure 5.9.5 Theorem 10 
incase miB> miC 

A Β 

Proof. By the SSS congruence theorem, AIXP = AIXIa, hence LlXP= 
LlXla. Either B-I0-X and Ρ hes in the interior of LAXC, or and 
Ρ hes in the interior of LAXB. Since LAXP= LAXIa, Ρ must he interior 
to whichever of LAXB and LAXC has the larger measure. Since 
mLAXB= 180°- Vt mlA - mlB and mLAXC- 180°- l/i mZA - mZC by 
the triangle sum theorem, Ρ hes interior to LAXC if mZB>mZC, hence 
B-Ia-X in that case, and B-X-Ia in the other. Incase m Z B > m Z C , 

mLCXP= 180°- 2 mLBXA 
= 180° - 2 (180°- mZB - mZBAX) 
= -180°+ 2 mZJB + 2 mZBAX 
= mZA + 2mZ/i - 180° 
= mZA + 2 mZ/3 - (mZA + mLB + mZC) 
= mlB - mZC. 

You can verify the analogous equation for the other case. • 

5.10 Euler line and Feuerbach circle 

Concepts 
Eule' 1' ie 
Feuerbach, or nine point circle 
Power of a point relative to a circle. 

If AABC isn't equilateral, then one of its vertices isn't equidistant from 
the other two, hence isn't on the perpendicular bisector g of the opposite 
edge. The altitude hne h perpendicular to that edge doesn't intersect 
g. Since the circumcenter and orthocenter Ο and Η lie on g and h, 
respectively, these points are different. OH is called the Euler line of 
AABC. 
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C 

Figure 5.10.1 
Theorems 1 and 3 

Β A C 

Theorem 1. The centroid G of a nonequilateral triangle is on the Euler 
line, two thirds of the way from Η to O. 

Proof. If ZC is right, then C = H, C' = 0, and the result is just the 
medians theorem. Assume ZC isn't right, as in figure 5.10.1. Then Ο is 
the orthocenter of the medial triangle AA'B'C Since that 's similar to 
AABC with ratio lA, OC = lAHC. Further, lOC'G= IHCG because 
OC'/tiC. By the medians theorem, C'G = lACG. Therefore, AOC'G-
A HCG with ratio A by the SAS similarity theorem. It follows that LCGO=-
LCGH. Therefore C, G, and Η are collinear. • 

Corollary 2. A nonequilateral triangle and its medial triangle have the 
same Euler line. 

Proof. They have the same centroid. • 

The circumcircle of the medial triangle AA'B'C is called the Feuerbach 
circle of AABC. 

Theorem 3. The midpoint Ν of segment OH is the center of the Feuerbach 
circle. Its radius is half the circumradius R of AABC. 

Proof. Segments CC and A'B' have the same midpoint P. Let Q 
and Q' be the feet of the perpendiculars to A'B' through C and C Then 
PQ = PQ'. The perpendicular bisector k of A'B' is parallel to OC' and 
intersects OH a t a point TV'. Since distance ratios are invariant under 
parallel projection, N'H=N'O. That is, N' = N. By analogous arguments, 
TV also hes on the perpendicular bisectors of the other two edges of the medial 
triangle. • 

The Feuerbach circle is often called the nine point circle of AABC. Theorem 
4 shows why. It was discovered and published independently by Charles-
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Figure 5.10.2 
Theorem 4 

Jvdien Brianchon and Victor Poncelet in 1821 and by Karl Wilhelm Feuerbach 
in 1822. 1 5 

Theorem 4 (Ninepoint theorem). The Feuerbach circle passes through 
the feet of the altitudes, so it's also the circumcircle of the orthic triangle. 
Moreover, it passes through the midpoints K, L, and Ν of segments 
AH, BH, and CH. 

Proof. By theorem 3.9.2, LA'I tibj KB' and KLI ABf ArB', as shown 
in figure 5.10.2. Moreover, tiC ±AB, so A'B'KL is a rectangle, so Κ A' 
and LB' are diameters of a circle Φ. Similarly, Β'C'LM is a rectangle, 
so LB' and MC are diameters of a circle, which must coincide with 
Φ. Therefore Φ is the Feuerbach circle and K, L, and Μ he on it. Since 
iKDA' is right, D lies on Φ. By analogous arguments, Ε and F lie 
on Φ. • 

Corollary 5. The four triangles determined by an orthocentric quadruple 
have the same Feuerbach circle. 

Corollary 6. The Feuerbach circle of the orthocentric quadruple consisting 
of the incenter and excenters of a triangle is its circumcircle. 

The rest of the section is devoted to Feuerbach's theorem, the most involved 
result in this chapter: The Feuerbach circle of a triangle is tangent to the in-
circle and excircles. Several methods of proof are available. Feuerbach's orig-
inal derivation depended heavily on distance computations using the law 
of cosines, similar to those near the end of section 5.5. They involved stu-
pendous algebraic manipulations. The proof presented here, selected for its 
simplicity, was published by Roger A. Johnson in 1929. 1 6 

The original publications are available in translation: Brianchon and Poncelet 1820 and 
Feuerbach 1822. 

Johnson [1929] 1960, chapter XI. 
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Τ C 

V 

A 

Figure 5.10.3 
Lemma 7 

Figure 5.10.4 
Lemma 8 

If lB = lC, then clearly the Feuerbach circle, the incircle, and the excircle 
opposite A are all tangent at A'. Thus, to prove the theorem, you may assume 
mlB>mlC. (You can exchange Β and C in the following argument to 
construct an analogous one for the opposite case.) Lemma 7 is the first step. 

Lemma 7. Suppose mlB>mlC, as in figure 5.10.3, so tha t edge BC 
isn't tangent to the Feuerbach circle Φ. Let g be the tangent to Φ a t 
A', and select a point Τ on g interior to ZCA'B'. Then mlCA'T = 
mlB - mZC. 

Proof. First, mZCA'T= mZCA'B' - mlTA'B'. Now use corollary 3.13.6 
to show ITA'B' =IA'C'B'. (See exercise 4.6.5.) Clearly, ICA'B' = IB 
and LA'C'B' = ZC. • 

The next step is a simple general result about intersecting tangent and 
secant lines. 

Lemma 8. Let points U, V, and W he on a circle Γ as in figure 5.10.4. 
Consider a point Τ ψ- W on the tangent to Γ a t W, and suppose T-U-
V. Then (TU)(TV) = (TW)2. 

Proof. Use corollary 3.13.6 as in the proof of lemma 7 to show /.TWU = 
/.TVW. Then ATWU ~ ATVW by the AA theorem, hence TU/TW = 
TWITV. • 

Lemma 8 imphes that for any points U and V on Γ collinear with 
T, the product (TU)(TV) has the same value; it's called the power of 
Τ relative to Γ. This notion underhes extensive theories of coaxial systems 
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of circles and circular inversion. 1 7 But the power concept is used only once 
in this book, in lemma 9, the next step en route to Feuerbach's theorem. 
You'll find in the literature some proofs of the theorem that make much more 
sophisticated use of those theories. 

Reconsider figures 5.9.1 and 5.9.5, in particular the intersection X of 
edge fine BC with bisector AI, and the point Ρ not on BC where a 
tangent from X touches the incircle. Notice Χ^Α', the midpoint of 
BC. Thus line PA' isn't tangent to the incircle; they intersect at a point 
Qt^P, shown in figure 5.10.5. Moreover, A' D, the foot of the altitude 
through A; hence A', Q, and D are noncollinear. 

Lemma 9. If mZB>mZC, then mlA'QD = mZB - mZC. 

Proof. P, Q, and X aren't collinear, so they he on a circle Δ, shown 
in figure 5.10.5. If BC and Δ aren't tangent, they intersect at a point 
D'jtX; otherwise let D' denote X. Clearly, A'-P-Q; this implies that 
D' and X he on the same side of PA'. By corollary 5.9.9, 

the power of A' relative to the incircle Γ. (See figure 5.10.6.) By lemma 8, 

which is also the power of A' relative to Δ. (See figure 5.10.5.) By lemma 

(A'X)(A'D)=(A'Ia)
2, 

(A'iay = (A'P){A'Q), 

8 again, 

(A'P)(A'Q) = (A'X)(A'D'). 

C C 

Figure 5.10.5 
Lemma 9 

Figure 5.10.6 
Proving lemma 9 

1 7 See Johnson [1929] 1960, chapter III; Coxeter and Greitzer 1967, chapter 5; or Davis 1949, 
chapters 8 and 9. 
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Thus (A'X)(A'D) = (A'X)(A'D'), hence A'D'=A'D, hence D' = D, 
because these points He on BC on the same side of A' . 1 8 That is, P, Q, 
X, and D all he on Δ, as in figure 5.10.5. Now you can compute the desired 
angle measure: 

mlA'QD = mlPQD^ Vt mPXD 
= V» (360° - mPQD) = 180° - Vt mPQD 
= 180°- mlPXD = mlCXP=mlB - mlC. 

The last equation in this chain was proved earher, as theorem 5.9.10. • 

Lemma 10. Under the assumption mlB > m / C , the Feuerbach circle is 
internally tangent to the incircle at point Q. (See figure 5.10.7.) 

Proof. Clearly, Q ^ D , the foot of the altitude through A. Moreover, 
DQ isn't tangent to the Feuerbach circle Φ, because A' and the midpoint 
L of AH he on opposite sides of tiQ, yet both fall on Φ. Therefore, D~Q 
and Φ intersect at a point Q'^D. (See figure 5.10.8.) Let g be the tangent 
to Φ at A', and select a point Τ on g interior to iCA'Q'. Then 

mlA'Q'D = ' / 2 (360°- m A ' Q O ) = 180°- Vi mArQrD. 

Use corollary 3.13.6 as in the proof of lemma 7 to show 

180°- VzmA^D = 180°- mlDA'T= mlCA'T. 

By lemmas 7 and 9, 

miCA'T=mlB -mlC = mlA'QD, 

C Τ C 

A 

D 

g 

Figure 5.10.7 
The Feuerbach circle Φ 

and the incircle Γ of LABC 

Figure 5.10.8 
Proving lemma 10 

1 8 This implies D'/ X, so BC and Δ can't be tangent—a case left open in the second 
sentence of this proof. 
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Figure 5.10.9 
Proving lemma 10 

hence Q = Q', so Q lies on both the incircle and the Feuerbach circle. 
By lemma 7 and theorem 5.9.10 the tangent g to the Feuerbach circle 

Φ at A' is parallel to the tangent h to the incircle Γ at P. The tangent 
k to Φ at Q intersects g and h at points Τ and U, shown in figure 
5.10.9. By theorem 3.12.10 and the parallelism, L UQP = LTQA' = lQA'T = 
iQPU. By theorem 3.12.10 again, k is also tangent to Γ. • 

Figure 5.10.10 Feuerbach's theorem: 

The Feuerbach circle Φ of AABC is tangent internally to the incircle Γ 
and externally to the excircles Γα , rb, and rc opposite A, B, and C. 
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Karl Wilhelm FEUERBACH was born in Jena in 1800. His father was a 
famous professor of law. His brothers included an archaeologist, a law 
professor, a philosopher, and an orientalist. In 1822 Feuerbach earned the 
doctorate from Jena and took a position at the gymnasium in Erlangen. He 
wrote three papers in mathematics, which included his famous theorem on 
the nine point circle and codiscovery of homogeneous coordinates. In 1827 
Feuerbach became ill, and lived as a recluse until he died in 1834. 

By exchanging Β and C in the discussion from lemma 7 to this point, 
you can prove that the Feuerbach circle and the incircle are also tangent 
in case m.lB < mlC. These two versions of lemma 10 constitute jus t half 
of Feuerbach's theorem; the other half has to do with the excircle. You're 
invited to prove it, as exercise 5.11.19, following the same pat tern. 

Theorem 11 (Feuerbach's theorem). The Feuerbach circle is tangent 
internally to the incircle and externally to the three excircles. (See figure 
5.10.10.) 

5.11 Exercises 

Concepts 
Analytic proofs of this chapter's major theorems 
Circumcenter, incenter, circumsphere, insphere, and centroid of a 

tetrahedron 
Orthocenters of rhombic tetrahedra 
Homothetic centers of two circles 
Finding triangle measurements from SAS, SSS, ASA, and SSA data 
Tangent sum, difference, double angle, and half angle formulas 
Chebyshev polynomials 
Approximating sine values 
Survey of spherical trigonometry 
Using cross products and determinants in analytic geometry 
Exercises that can utilize algebra software 

This section contains thirty-eight exercises related to the earlier parts of 
the chapter. They're gathered together here because the material covered 
in chapter 5 is so tightly interrelated. Even routine problems such as exercise 
1, intended to provide computational experience with the concepts in section 
5.1, benefit from apphcation of formulas derived much later in the chapter. 
Often a problem tha t seems to be about one subject yields most easily to 
methods introduced to study another. You'll find here a few straightforward 
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applications of the major results in the text, and of the methods used in 
deriving them. But many of these exercises carry on the tradition started 
in chapter 4; they complete the development of theories and techniques 
started in the text, or extend them to new subjects. 

For example, exercises 7 to 9 introduce the theory of tetrahedra: the three-
dimensional analog of this whole chapter. Exercises 21 to 24 complete the 
development of plane trigonometry begun in chapters 3 and 4 and pursued 
hotly in section 5.5. With these exercises, the book contains the entire 
geometric content of the familiar trigonometry course, seen from an advanced 
viewpoint. Another family of exercises, 28 to 32, carries out a parallel develop-
ment of spherical trigonometry, a neglected but highly practical branch of 
mathematics whose repertoire of applications is increasing. 

Exercises in section 4.10 encouraged you to assemble an analytic geometry 
tool kit for use in a wide variety of applications. Analytic techniques were 
developed and extended in sections 3.11 and 5.6, using vector algebra notation 
and concepts summarized in appendix C. Several exercises in the present 
section apply and enhance those techniques. Most of the straightforward 
computations in exercises 1 and 2 are probably familiar to you from more 
elementary courses. But these quickly give way to much more complicated 
examples. Analytic proofs of some of the major theorems of triangle geometry 
require algebraic computations that touch or exceed the limit of human 
capability. Joint efforts of computer scientists and mathematicians have 
produced algebra software that can help with such work. You're invited 
to use it to carry out some of the computations in the last two exercises, which 
feature an analytic proof of Feuerbach's theorem, the chmax of this chapter. 

Related exercises are gathered under headings. Under a particular heading, 
the simpler exercises usually precede the deeper, more complex ones. 

Basic exercises 

The first few exercises in this section illustrate its most basic ideas. This 
arrangement shows why the exercises are gathered at the end of the chapter. 
An efficient solution of exercise 1, for example, will probably use concepts 
from sections 5.1, 5.5, and 5.9. Other basic exercises involve material covered 
in 5.7 and 5.8. Exercise 1 could be stated simply, illustrate with a partic-
ular triangle as many as possible of the concepts introduced in chapter 5. 

Exercise 1. Consider in detail AACB shown with a coordinate system in 
figure 5.11.1. Calculate the following scalars and vectors: 

centroid G inradius r 
circumcenter . . . Ο Nagel point Ν 
circumradius . . . 2? orthocenter Η 
incenter I 
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Write allscalarsin lowest terms with mteger denominators. Suggestion: The 
Nagel point has y coordinate =0.27 . 

Exercise 1 used a particularly simple triangle to limit computational com-
plexity. That restricts somewhat the repertoire of concepts it can illustrate. 
You may want to pose and solve similar exercises with less special triangles, 
and calculate more features. For example, try an isosceles triangle that 's 
not right, and show that the feet of its altitudes do all he on its Feuerbach 
circle. 

The next exercise uses the same analytic methods in a general context. 
It's really three related exercises for the analytic geometry tool kit tha t you 
assembled in section 4.10. For any triangle AABC there's a Cartesian coor-
dinate system with the arrangement shown in figure 5.11.2. 

Exercise 2. Prove the edge bisectors, altitudes, and medians theorems ana-
lytically, using AABC in figure 5.11.2. 

The angle bisectors theorem doesn't yield easily to these methods, mainly 
because the formulas for the slopes of the bisectors are too complicated. 
You'll find an exercise on tha t theorem at the end of this section, with a 
suggestion to use mathematical software to help with the algebra. 

Exercise 3. Prove that the quadrilateral in figure 5.11.3, formed from the 
intersections of adjacent quadrisectors of the angles of a rhombus, is a square. 

The next exercise has a particularly nice figure. Draw it! 

Figure 5.11.1 
Exercise 1 

Figure 5.11.2 
Exercise 2 
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Figure 5.11.3 
Exercise 3 

Exercise 4. The altitude lines of an oblique AABC through vertices A, 
B, and C meet its circumcircle at points Χ^Α, Υ?Β, and Ζψ-C. Show 
that the edge lines of AXYZ are parallel to those of the orthic triangle, and 
these triangles are similar, with ratio 2. 

ExerciseS. Show that points B, C, E, and F in theorem 5.8.1 all fall 
on a circle Γ that's orthogonal to Γα —that is, the tangents to Γ and Γα at 
their intersections are perpendicular. Suggestion: Where does the tangent 
g to Γα at F intersect B"C ? 

Exercise 6 is one of many inequahties that involve triangle features 
introduced in this chapter. To solve it, you need apply only the triangle 
inequahty and the most basic properties of the centroid. 

Exercise 6. Let ma, mh, and mc be the lengths of the medians of a tri-
angle with perimeter ρ. Show that 3Ap< ma + mb + mc<p. 

Exercises on tetrahedra 

Most of the plane geometric results covered in this chapter have three-
dimensional analogs. You can derive some of them, such as the three in 
exercise 7, exactly as in plane geometry. Understanding the three-dimensional 
situations strengthens your hold on the basic plane theory. In other cases, 
such as exercise 8, the analogy isn't perfect; you must adjust the statement 
to get an interesting result. These two exercises will seem somewhat more 
difficult than the basic ones included under the previous heading, but that 
probably stems only from the effort necessary to visualize unfamiliar three-
dimensional configurations. Exercise 9, the last on tetrahedra, is considerably 
more tedious. Its solution uses methods you've encountered already in the 
proof of theorem 5.9.2 and in exercise 4.6.6. 

Exercise 7. Invent and prove three-dimensional analogs of the edge bisectors, 
angle bisectors, and medians theorems and related results in section 5.1. 
Use tetrahedra and spheres in place of triangles and circles. Relate the 
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centroid of a tetrahedron to its vertices, the midpoints of its edges, and the 
centroids of its faces. 

Exercise 8. This exercise develops a three-dimensional altitudes theorem. 
Since the altitude lines of a tetrahedron don't necessarily have a common 
point, the problem is to describe when that happens. First, you need some 
preliminary results relating tetrahedra and parallelepipeds. 

Part 1. From a parallelepiped & with bases AB'CD' and C'DA'B 
and directrix AC, construct twin tetrahedra ABCD and A'B'CD' as 
suggested by figure 5.11.4. Show tha t they're congruent, tha t BCD / 
B'C'D', and that every tetrahedron ABCD can be constructed this way 
from some parallelepiped. 

Part 2. ABCD is called rhombic if the faces of & are all rhombic. Show 
that ABCD is rhombic if and only if each edge hes in a plane perpendicular 
to the opposite edge line. 

Part 3. Show that the altitude lines of a rhombic tetrahedron intersect 
at its twin's circumcenter. 

Part 4. Show tha t if any two pairs of altitude hnes of a tetrahedron 
intersect, then it's rhombic. 

Part 5. The intersection of the four altitude lines of a rhombic tetrahedron 
is called its orthocenter. Show that the common perpendiculars of the three 
pairs of opposite edges of a rhombic tetrahedron intersect at its orthocenter. 

Exercise 9. Demonstrate the equivalence of the following three properties 
of a tetrahedron ST: 

(a) The incircles of the faces of & are tangent in pairs. 
(b) There's a sphere tangent to all edges of 
(c) The sums of the lengths of the three pairs of opposite sides of 

Sf are equal. 

Β A' Β A' 

Figure 5.11.4 Twin tetrahedra 
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Exercises on Menelaus', Desargues', 
Ceva's, and Feuerbach's theorems 

Exercises under this heading include applications of major theorems of this 
section, additional uses of methods employed to derive them, and an alternate 
proof. Analytic proofs are included under a later heading. Exercise 10 apphes 
Menelaus' theorem to quadrilaterals. Can you generalize it to handle polygons 
with more than four vertices? 

Exercise 10. Assign scales to the lines in figure 5.11.5, in order to use directed 
distances. Prove that 

AtoE' C'toD' BtoD CtoE _1 

E'toC D'toB DtoC EtoA 

Exercise 11. An intersection of two distinct common tangents to two distinct 
circles is called their external nomothetic center if the circles he on the same 
side of both tangents, and their internal homothetic center if they're on 
different sides of both tangents. Consider three circles, each two of which 
have an external homothetic center. Show that those three homothetic cen-
ters are collinear. What about internal homothetic centers? Combinations 
of internal and external homothetic centers? 

Exercise 12. Consider points D,E,F ψ A, B, C on the edge lines opposite 
these vertices of AABC. Suppose lines AD, BE, and CF are 
copencilar; let BC meet EF a t A*, CA. meet FD at B*, and AB 
meet DE at C*. Show that A*, B*, and C* are collinear. 

Exercise 13. Draw the scene in figure 1.1.3 on a vertical panel placed 
obhquely, so that no tile edge is parallel or perpendicular to the image plane. 
Start with a perspective image of a single tile, analogous to figure 1.1.6. 
Then construct the image of the rest of the tiling. Imitate the section 1.1 
discussion, using Desargues' theorem to show that your technique is consistent. 

Β 

Figure 5.11.5 
Exercise 10 



5.11 EXERCISES 217 

Figure 5.11.6 
(Ο to A ) ( 0 to Β ) = (Ο to C) 

if (O to P) = 1 

Exercise 14. Figure 5.11.6 displays a geometric algorithm for multiplying 
coordinates of points on a line g, relative to a particular scale. Let Ο and 
Ρ be the points on g with coordinates 0 and 1, and select any line h τ* 
g through Ο and any point Q ? Ο on h. Given any points A and Β on 
g, find R on h and C on g so tha t BR / PQ and R~C I QA. 

Part 1. Show tha t 

(O to A ) ( 0 toB) = (0 t o C ) . 

This equation of course implies that you get the same point C regardless 
of your earlier choices of h and Q. 

Part 2. Now suppose you knew Desargues* theorem but not the equation 
in part (1). Choose a point Q'^Q,0 on h. Construct C according to 
the algorithm, using Q' in place of Q. Show how Desargues' theorem implies 
C=C. 

Part 3. Same as par t (2) , but now choose a fine h' ψ- g,h through O, 
select Q' r^O on h', and construct C according to the algorithm, using 
Q' and h' in place of Q and h. 

In his 1899 book Foundations of geometry, David Hilbert showed how 
to formulate geometric axioms without mentioning scalars, how to define 
scalars as the points on a particular line g, and how to use Desargues' 
theorem as in the preceding exercise to define the product of two scalars. 
He handled addition similarly, and derived all the standard algebraic proper-
ties of these operations from his geometric axioms. 

Exercise 15 demonstrates another way to prove Ceva's theorem, in addition 
to the two proofs in section 5.4. In exercise 16, you can apply the same method 
to derive some related formulas. 

Exercise IS. Prove statement (i) of Ceva's theorem by considering ratios 
of areas of the six triangles that make up AABC in figure 5.4.1. Can you 
extend tha t method to apply to any of statements (ii) to (vi)? 
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Exercise 16. Prove that in figure 5.4.1, 

WX+WY+WZ = 1 AW _ AY + AZ 
AX BY CZ WX CY ZB ' 

Exercise 17 is a converse of part of theorem 5.7.1. To solve it, you may 
need to analyze when positive scalars x, y, and ζ have the same geometric 
and arithmetic means—that is, when Jxyz = Va(x + y + z). 

Exercise 17. Show that if AAZW, ABXW, and ACYW in figure 5.4.1 
have equal areas, then W is the centroid of AABC. 

Exercise 18. Using concepts and techniques introduced in sections 5.1 and 
5.4, describe the center of gravity of the union of the edges of a triangle. 
You may assume that the center of gravity of a segment is its midpoint. 

Exercise 19. Finish the proof of Feuerbach's theorem begun in section 5.10 
by showing that the Feuerbach circle of any triangle is tangent externally 
to its excircles. 

Plane trigonometry 

Several exercises under this heading complete the treatment of plane 
trigonometry started in section 3.13 and continued in 5.5. The last two 
exercises augment this chapter's list of arcane and entertaining formulas 
involving various triangle geometry concepts. They're just a sample of the 
huge stock to choose from. Exercise 20 connects the trigonometry in section 
5.5 with Menelaus' theorem. 

Exercise 20. Write Menelaus' product in terms of trigonometric functions 
of angles LACZ, LZCB, LBAX, LXAC, iCBY, and LYBA in figure 5.4.1. 
How should you treat these angles consistently as positive or negative, so 
that the sign of the product is correct in all cases? 

The next two problems summarize and provide examples for the part of 
a plane trigonometry course commonly called "solving triangles." They show 
how to determine the remaining side(s) or angle(s) of a triangle when you're 
given ASA, SSS, SAS, or SSA data. The last of these, often called the 
"ambiguous" case, is segregated from the others because SSA data sometimes 
don't determine the triangle uniquely. You made a preliminary study of 
that case in exercise 4.6.2. 

Exercise 21, Part 1. Design an algorithm for computing the remaining 
angle measure and edge lengths of AABC given ASA data ml A, b = 
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CA, and mZC. Clearly, any valid input must satisfy the conditions 0° < 
mlA, mZC<180° , and 0 < 6 . Is any further condition necessary? If so, 
and you don't check it at the onset, how might your algorithm fail? Demon-
strate your algorithm for the data sets 

ml A b mlC 

55° 65 75° 
85° 95 105° 

Part 2. Same problem for SSS data a = BC, b, and c = BA. Must valid 
input satisfy any conditions beyond the obvious 0 < a, b, c ? Try your algo-
ri thm on the data sets 

a b c 

70 65 82 
70 152 82 
70 153 82 

148 65 82 

PartS. Same problem for SAS data a, mlB, and c. Must valid input 
satisfy any conditions beyond the obvious 0 < a, c and 0° < mlB < 180°? 
Try your algorithm on the data set 

a mlB c 

70 50° 82 

Exercise 22. Design an algorithm for computing all possible values of the 
remaining angle measure and edge lengths of AABC given SSA data a = 
BC, b = CA, and mZA. According to exercise 4.6.2 there are at most two 
possible solution sets mlB, mlC, and c=AB. Clearly, any valid input 
must satisfy the conditions 0 < a, b and 0° < mZA < 180°. Is any further 
condition necessary? If so, and you don't check it at the onset, how might 
your algorithm fail? Demonstrate your algorithm for the data sets 

a b mlA 

80 90 100° 
90 80 100° 
80 80 80° 
30 60 30° 
30 60 28° 
28 60 28° 

Exercise 23. Derive algebraically the formulas for tan (α ± β) in terms 
of t a n a and tan/3, and the formula for t a n 2 α in terms of t a n a . Derive 
a formula for tan Vi α in terms of sin α and cos α that doesn't require a 
± sign. 
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Exercise 24. Show that for η = 0 , 1 , 2 , . . . there's a polynomial T„ of degree 
η —called a Chebyshev polynomial—such that for all x, coenx = 
T n(cosjc). Derive the recursion formula Tn+1(y) = 2yTn(y) - T^^y). 
Write out the formulas for T0 to Ts, sketch their graphs, and describe their 
roots, local extreme, and symmetry. What happens if you try something 
like this for sin rax? 

Exercise 25. Let ra, rb, and rc be the exradii of AABC; r and R, its 
inradiue and circumradius; Δ its area; s its semiperimeter; and ha, 
hb, and he be the lengths of its altitudes. Prove that 

1 . 1 . 1 1 1 . 1 , 1 - A2 — + — + — = — = — + — + — rrarbrc = Δ1 

r„ rh r„ r h„ hh /i„ 
a ο c a ο C 

ra + rb + rc= 4fl + r rarb + rbrc + rcra = s2. 

Exercise 26. Prove that the sum of the cosines of the measures of the angles 
of a triangle equals 1 plus the ratio of its inradius to its circumradius. 

Exercise 27 shows how to approximate s in l° accurately, using theorem 
5.5.12 and values of s inl ' / i 0 and s i n 3 / 4 ° computed via subtraction and 
half angle formulas. Van der Waerden reports 1 9 that Aristarchus of Samos 
first used this technique around 280 B.C. to approximate sin 3°. About A.D. 
150 the Alexandrian astronomer Claudius Ptolemy employed it system-
atically to compute what amounts to a table of values sin θ for θ = 
1°, 2°, 3° The method should remind you of real analysis arguments. 
That isn't surprising, since theorem 5.5.12 is an important step in justifying 
the formula for the derivative of the sine function. 

Exercise 27, Parti. Derive algebraic formulas for sin I V 2 0 and sin 3 /* 0 

and check them with your calculator. 
Part 2. Show that since - sin/3 = 2 cos μ sin v, where μ = ιΔ (α + β) 

and v=V2(a - β). 
Part 3. Suppose 0° < β < a < 90°. Prove that 

2 cos μ sin ν < a ~ P sin β. 
β 

Part 4. Combine parts (2) and (3) to show that when 0° < γ<β<α< 90°, 

sina < sin/? < @- sin γ. 
α γ 

1963, Chapter VII. 
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Part S. Use α,β,γ = 1ιΛ °, 1°, 3A ° in par t (4) , with the values you 
calculated in par t (1), to estimate sin 1 °. What's the maximum possible 
error? 

Spherical trigonometry 

The exercises under this heading complete the survey of spherical trigonometry 
begun in the section 4.9 exercises. For a century, this material has been 
a mathematical backwater. In most geometry texts, you could only find it 
briefly mentioned as a contrast to the familiar plane Euclidean geometry. 
Its practical aspects were confined to applications texts: astronomy, geodesy, 
navigation. Its applications now reach into broader areas as we learn to 
write software to recognize objects in a three-dimensional environment and 
to control machines that move them about and/or display their images. These 
exercises generally follow the treatment in Marcel Berger's terse but pene-
trat ing monograph. 2 0 

Exercise 28, Part 1. Prove the law of sines for a spherical triangle 
AABC: 

sin mZ A _ sin mZ Β _ s inmZC 

sin m B C sin m CA sin mAB 

Part 2. Prove Menelaus' theorem for^spherical AABC: If Χ, Υ, Ζ are 
points on the great circles containing BC, CA, AB, and Χ, Υ, Ζ lie on a 
great circle, then 

s i n m A Z s inm BX s inmCy" _ , 

s i n m Z B s i n m X C s inmYA 

Exercise 28 suggests some questions that would make a good project of 
larger scope. This form of Menelaus' theorem doesn't use "directed" arcs 
as its plane form uses directed distances. All terms in the Menelaus product 
are sines, so it comes out +1 instead of - 1 as in the plane. Is it possible 
to make such distinctions consistently on the sphere? Is there a converse 
of this form of Menelaus' theorem? Is there a spherical form of Ceva's 
theorem? 

Exercise 29 is mainly a problem in visualization. Parts 1 and 2 require 
careful reasoning about the sides of various planes. In pa r t 2 you should 
concentrate on the plane ε through Ο perpendicular to OB, and its inter-
sections with planes OAB and OBC. The only computation you need for 
those par ts is angle addition. 

Berger 1987, section 18.6. 
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Exercise 29, Part 1. Consider a spherical triangle AABC on a sphere 
Σ with center O. The perpendicular to OBC through Ο intersects Σ at 
two points. One hes on the same side of OBC as A; call it A'. Define 
B' and C similarly. Show that Α', B', and C aren't coplanar with 
O. Thus they form a spherical AA'B'C called the polar triangle of 
AABC. Show that AABC is in turn the polar triangle of AA'B'C. 

Part 2. Let a', b', and c' be the measures of the arcs of the polar triangle 
opposite Α', B', and C . Show that 

o' = 180° - ml A mlA' = 180° - a 

and derive similar formulas for the measures of its other arcs and angles. 
Part 3. Let a, b, and c be the measures of the arcs of AABC opposite 

A, B, and C. Show that 

a<b + c mlA+mlB<mlC-r 180° 
b<c + a mZB + mZC<mZA + 180° 
c<a + b mZC + mZA<mZB + 180°. 
a + b + c< 360° 

Part 4. Consider the following problem in more detail: For a vertex 
V of the spherical triangle, which intersection of Σ with OV' should be 
called V ? Do parts (1) to (3) fail if you make one or more of these choices 
differently? What if you set up a coordinate system with origin O, made 
the sphere's radius 1, and chose A' = Β x C, etc.? 

Exercise 30. Prove the cosine laws for a spherical triangle AABC: If 
a, b, and c are the measures of the arcs of AABC opposite A, B, and 
C, then 

cosa = coebcosc + s inbsinccosmZA, 
coemZA = -cosmZB cosmZC + sinmlB s inmZC cosa. 

Suggestion: Prove the first equation geometrically. You may have to consider 
the case c = 90° separately. For the second, apply exercise 29. 

Exercise 31. Imitate exercises 21 and 22 for spherical triangles. Include 
discussions of SAA and AAA data, too. 

Exercise 32, Part 1. From the following data, find the airline distances 
from San Francisco to Bucharest and Christchurch. Assume that the earth 
is a sphere with radius r = 3959 miles. 

City Latitude Longitude 

San Francisco 
Bucharest 
Christchurch 

37°46' Ν 
44° 25' Ν 
43°33' S 

122°25'W 
26°07' Ε 

172°40' Ε 
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How far have you been from home? 
Part 2. Find the fraction of the earth's area covered by the spherical 

triangle formed by these cities. Describe the triangle by listing a few places 
on or near each of its edges. 

Analytic geometry 

In the section 4.10 exercises, you constructed a tool kit of analytic formulas 
and methods corresponding to many synthetic techniques developed in chapter 
3. You were asked to avoid vector cross products, but to use solutions of 
linear systems instead. 

Exercise 33. Restudy those tools now in the hght of section 5.6, and employ 
cross products and determinants where appropriate to streamline them. 
(This is the main use of cross products: given vectors X and Y, to find 
a vector Ζ such tha t Χ·Ζ = 0 = Υ·Ζ.) 

Exercise 34. Extend as follows the tool kit tha t you revised in 
exercise 33: 

Task: 
Given Determine or find 

1. hnes g and h, their angle; 
2. planes δ and ε, their dihedral angle; 
3. points P, Q not on plane ε, .. . whether Ρ and Q lie on the same 

side of ε; 
4. points P, Q coplanar with whether Ρ and Q he on the same 

a line g but not on it, side of g in their plane ; 
5. noncollinear points P,Q,R, . . . area of APQR; 
6. noncoplanar points P,Q,R,S, . volume of tetrahedron PQRS. 

The next two exercises continue the program begun in exercise 2 to prove 
the major theorems of this chapter analytically. Desargues' theorem is harder 
to handle than Menelaus' or Ceva's, even though it doesn't involve directed 
distances. Thus it's placed by itself. The suggested analytic methods don't 
favor any particular choice of coordinate system; their heavy reliance on 
parametric equations and vector algebra makes tha t nearly irrelevant. 

Exercise 35. Prove Menelaus' and Ceva's theorems analytically. First, show 
that if XY is a directed line, T=tX+ (1 - t)Y, and t ? 0, then 

X to Γ = 1 -t 
Τ to Y t 
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Use fractions like this to formulate Menelaus' product, and use the determi-
nant conditions in section 5.6 to indicate when three points are collinear 
or three lines have a common point. 

Exercise 36. Prove Desargues' theorem analytically. 

In exercise 2, you worked through analytic proofs of the edge bisectors, 
altitudes, and medians theorems, but not the angle bisectors theorem. It 
doesn't yield easily to analytic methods, mainly because the formulas for 
the slopes of the bisectors are too complicated. The problem is posed here, 
with the suggestion that you use algebra software to carry out, or at least 
verify, the tedious calculations. For this work and exercise 38, the author 
used the weakest such package available at the time. 2 1 It was able to carry 
out the computations, but only barely. Learning how to control it, though, 
led to a deeper understanding of the algebra. You have to know algebra 
very well in order to use algebra software effectively. 

Exercise 37. Prove the angle bisectors theorem analytically, by the method 
of exercise 2. 

Exercise 38. This final exercise leads you through an analytic proof that 
the incircle of AABC is internally tangent to the Feuerbach circle. It proceeds 
somewhat like Feuerbach's pubhshed proof (1822). But you're encouraged 
to employ algebra software to confront the calculations directly, instead of 
Feuerbach's devices to limit their complexity. 

Suggestion: Use the coordinate system in figure 5.11.2, with 

A = <xA,0> B = <xB,0> C = <0,yc> 
xA<0 xB>0 yc>0. 

Use the standard abbreviations a for BC= Jxl+y% and b for CA= <jyc + x\ 
in your computations, and replace a2 and b2 by xB + yl and y% + x\ as 
appropriate. By introducing variables a and b in addition to xA, xB, and 
yc, you minimize the role of square roots. You can apply polynomial algebra, 
and your polynomials will be hnear in a and b. 

First, compute the inradius r of AABC and the coordinates of its incenter 
7 as in exercises 1, 2, and 37. Second, find the circumradius 7? of AABC 
via one of the equations derived in this chapter. Since the medial triangle 
AA'B'C is similar to AABC with ratio '/a, its circumradius 7?' = 'Λ 7Z. 
Third, compute the coordinates of the circumcenter O' of the medial triangle. 
Fourth, show that Feuerbach's result is implied by the equation (70 ' ) 2 -
( r - 7 i ' ) 2 . Finally, rewrite this equation as p(xA,xB,yc,a,b) = 0, where 
ρ is a sixth-degree homogeneous polynomial. You may then use algebra 

2 1 Derive 1989-
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software to compute the coefficients of ρ —the author 's polynomial had 
168 terms—and verify tha t they're all zero. 

You may want to continue exercise 38 as a project: Prove that the excircles 
are externally tangent to the Feuerbach circle, and investigate the devices 
Feuerbach used to manage the algebra. 
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Chapter 

6 
Plane isometries 

and similarities 

With this chapter you leave classical geometry, which concentrated on 
properties of figures constructed from points, lines, planes, circles, and spheres. 
You enter transformational geometry, whose fundamental objects are points 
and transformations. A transformation is a function that relates all points to 
others in a one-to-one way; it induces a correspondence between figures as 
well. You can use transformations to describe correspondences between 
various figures of classical geometry, to study positions of figures before and 
after motions, and to analyze the relationships between corresponding parts of 
symmetric figures. You can adapt transformational geometry to study aspects 
of a single figure that may differ when you use different coordinate systems. 
You'll investigate how figures change under various transformations; and 
—perhaps more important—you'll study figures and properties tha t don't 
change. 

The transformations you'll study here—isometries and similarities—are 
closely related to the classical geometric notions of congruence and similarity. 
Isometries are transformations that preserve distance between points. 1 An 
isometry can change a triangle's location or its orientation in a plane. By 
the SSS congruence principle, though, an isometry cannot change a triangle's 
size or shape. In fact, two triangles are congruent just in case they're related 
by some isometry. This result doesn't lead to much new in the theory of 
triangle congruence, but does provide an easy way to extend the theory to 
figures of any type. You don't have to invent different congruence notions 
for each type, but can just call figures congruent if they're related by some 
isometry. The connection between the theory of similar figures and the study 

The word stems from the Greek words isos and metron for equal and measure. 

227 
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of similarity transformations, which multiply all distances by a constant 
ratio, is analogous. 

Formulation of a general theory of congruent figures is the first of many 
uses of transformations in the foundations of geometry. They provide a 
tool for determining what's common between the geometric theories tha t 
result from various alternative axiom systems—for example, from assuming 
the negation of Euclid's parallel axiom. Those studies he beyond the scope 
of this text, but not far! 2 

The correspondence between locations of objects before and after a motion 
is clearly an isometry. This connection is so suggestive that many authors 
use the term motion instead of isometry. But isometry doesn't encompass 
everything involved in motion; it ignores what happens during the event. 
That requires additional apparatus not included in transformational geometry, 
so motion is a misnomer here. 

The connection between transformations and symmetry is perhaps not 
so obvious. We exhibit bilateral symmetry because there's a close correspon-
dence between points on our left and right sides. Some features are pre-
served ; we can easily recognize an acquaintance's mirror image. Most familiar 
animals appear bilaterally symmetric. About a thousand years ago, an artist 
in the Mimbres region of New Mexico exploited that when she portrayed 
the dancer in figure 6.0.1, costumed to evoke simultaneously images of a 
deer, a man, and a bat. But many features of life are not symmetric. For 
example, it's hard for us to recognize the mirror image of text in figure 6.0.2. 
In fact, symmetry is defined in terms of isometry: a figure is symmetric 
if it's unchanged under some isometry. A plane figure is bilaterally symmetric 
if it's unchanged when you reverse the two sides of some hne. 

The symmetric frieze ornament in figure 6.0.3, a pottery design from the 
San Ildefonso Pueblo in New Mexico, is designed to be repeated as required, 
and remains unchanged as your gaze steps along it. A rotationally symmetric 
design remains the same if you turn it through a particular angle. For 
example, the dharmachakra, the 24-spoked wheel of right conduct on the 
flag of India (figure 6.0.4) symbolizes righteousness, truth, and recurrence. 3 

You've tasted transformational geometry if you've studied coordinate trans-
formations in analytic geometry. That application needs a different 
approach; you're not interested in corresponding points, but rather in 
corresponding coordinate pairs or triples assigned to a single point by different 
coordinate systems. This chapter's theory can be adapted to that end. But 
that's not pursued, because the book's overall emphasis isn't on analytic 

2 For an introduction, consult Behnke et al. [1960] 1974, chapters 4 and 5. 
3 According to an official Indian government publication (Sivaramamurti 1966, 8, 14), the 

chakra represents "the Wheel of Law . . . whose message of righteousness was binding even 
on the greatest monarch... . The wheel of life is inexorable . . . . [It] moves on into a cycle 
of births and deaths, culminating in final liberation . . . . The wheel is thus the symbol of 
creation." 
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Figure 6.0.1 Figure 6.0.2 
Bilateral symmetry 4 Bilateral asymmetry 

Figure 6.0.3 Figure 6.0.4 
Frieze pat tern 5 India's flag 

From Brody, Scott, and LeBlanc 1983, plate 5. Where did the artist intentionally break the 
overall symmetry? Like most surviving Mimbres pottery, this example was recovered from 
a grave. Mimbres funeral ceremonies evidently included punching a hole in the bottom of 
each bowl to be buried. 

Kenneth M. Chapman 1970, plate 124p. This example originated not fer from the Mimbres, 
but is probably less than a century old. 
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methods. Coordinate transformation techniques are demonstrated in exercise 
6.11.31. 

What methods does this chapter use to study transformations? It must 
depart from the classical methods of earlier chapters. Many practical applica-
tions involve computation with coordinates. That's so cumbersome that it's 
generally avoided in formulating the theory. The computations involve vectors 
and matrices, so matrix algebra affords some simplification—you can handle 
matrices as whole entities instead of manipulating their entries. But even 
greater simplification results from employing the algebra of compositions 
and inverses of functions. These are the substance of much of modern algebra, 
particularly group theory. The more deeply you study transformational 
geometry, particularly its applications to symmetry, the more benefit you 
gain by using group-theoretic methods. This chapter is an introduction to 
those techniques. The theory is developed with minimal use of matrix algebra. 
The matrix computations typical in applications are demonstrated in the 
exercises that conclude the chapter. 

The chapter begins by collecting in section 6.1 the relevant general informa-
tion about functions, composition, and inverses. Since this material is 
fundamental to several areas of higher mathematics, you may have encoun-
tered much of it already in other courses. Section 6.2 introduces three types 
of plane isometries—translations, rotations, and reflections—and some of 
their properties. Sections 6.3 to 6.5 discuss them in greater detail. The 
chapter's principal result is the structure theorem in 6.6. That enables you 
to classify every plane isometry as one of several types. You'll see that the 
earlier introductory treatment omitted one type: ghde reflections, which 
are handled in section 6.7. The connection with matrix algebra is established 
in section 6.8, and used in 6.9 to refine the classification. 

This chapter overview has only once mentioned the other kind of transfor-
mation this book studies: similarities. They're introduced in section 6.10. 
Their study requires only one new technique. Otherwise, methods already 
introduced for isometries work as well for similarities; there's just more 
detail. 

The chapter concludes with exercises. These pursue further most of the 
ideas introduced in the previous sections, and will give you much more 
experience with computation. 

For simplicity, chapter 6 is limited to plane transformational geometry. 
But all of it extends to three dimensions. In fact, most apphcations of plane 
isometries and similarities were originally handled by specialized methods 
that were less algebraic, more classical, in flavor. The corresponding three-
dimensional results are just enough more complicated that a new apparatus 
was required to handle them. Logically, the three-dimensional material 
should be integrated into this chapter, because we really live in three-
dimensional space, and its complexities make more apparent the need for 
the new methods. But that would make the chapter too bulky, it wouldn't 
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be so easy for you to discern its simple structure, and the text would become 
less flexible for instructors and students. So the three-dimensional results 
are presented together in chapter 7, with a separate set of exercises. Much 
of the theory in tha t chapter is identical to the corresponding plane theory, 
once the definitions are properly formulated. So chapter 7 is even more 
streamlined, with many details left to you. 

Chapter 2 and occasional passages in other previous chapters have offered 
some details of the history of the material presented there. It's not too hard 
to find sources for that, because it was often controversial. Researchers 
reported the background for their ideas, and cited where they agreed or 
differed with their predecessors. With transformational geometry, the task 
isn't so simple. Its techniques evolved over a century and a half, beginning 
in the late 1700s. They were introduced to solve hard applications problems. 
Mathematicians concentrated on their successes and on new problems. They 
rarely dwelled on philosophical, organizational, or pedagogical aspects of 
their work. The order of development of the material from this chapter on 
was often opposite to its logical order. Many of the complex techniques for 
applying the theory were introduced early in this period. Leonhard Euler, 
in 1775, would have found familiar most of the computational exercises in 
these chapters. 6 Determinants came into use during the early 1800s, and 
transformation groups and matrices in the mid-1800s. The last par t of this 
material to fall into place is the first par t presented; the language and 
techniques for dealing with functions, their compositions, inverses, and image 
sets were refined and cast in the form of section 6.1 only in the early 1900s. 
The history of transformational geometry is thus blurred. When you try 
to find the origin of a specific concept or result, you often find traces of it 
in works all the way back to Euler's time, even though it wasn't stated 
explicitly until much later. You can't readily use history pedagogically, as 
punctuation for the presentation of the theory. So there are fewer historical 
references in these later chapters. Don't let their absence give you the 
impression tha t the theory was revealed all at once, or tha t its history is 
bland! It's involved and intriguing—a challenging field of study. 

For example, Euler ([1775] 1968) formulated equations for isometries, even though the 
matrix algebra used for that purpose in theorems 6.8.2 and 7.1.7 wasn't developed until the 
late 1800s. 
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6.1 Transformations 

Concepts 
Functions; domain, value, image, and range 
Linear functions 
Preserved and invariant properties of figures 
Function composition 
Associativity and noncommutativity 
Surjections, injections, and bisections 
Inverse functions 
Transformations 
Symmetric group, transformation groups 
Geometric transformations 

This section summarizes elementary material about functions, on which 
the rest of this chapter is based. Together with appendices A and C, it forms 
the algebraic foundation for the entire book. You may have met much of 
this material already in precalculus and calculus courses. But its application 
to transformational geometry has a flavor so different from those subjects 
that the fundamentals are presented here for emphasis. You can regard trans-
formational geometry as a very sophisticated development of these few ele-
mentary ideas and some others from chapter 3. For that reason it's important 
that you understand in complete and precise detail these definitions, examples, 
and first results. The first four exercises in section 6.11 will help you. 

As you study this material in other geometry texts or other application 
areas, you'll encounter conflicting terminology and notation. Its apphcations 
spread over all mathematics, and what's convenient and graceful for one 
area can appear somewhat inappropriate for another. Moreover, this 
mathematics is younger than most of that in earlier chapters, and its ter-
minology and notation are still evolving. This book's conventions result from 
many compromises. Several footnotes indicate its differences from other 
usage, and some of the reasons for the divergence. 

This section concludes by mentioning some topics to which this chapter 
naturally leads, but which he just beyond its scope. 

Functions 

The function concept pervades mathematics. In this book, for example, it 
has appeared among the undefined concepts and axioms: 

• The distance function assigns to each pair of points Χ, Y the dis-
tance XY. 
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• A scale for a line g assigns to each point Ρ on g a coordinate 
c ( P ) . 

• The area function assigns to each polygonal region Σ its 
area &Σ. 

Functions also occur in later developments, either implicitly or explic-
itly. For example, 

• A function assigns to each pair P, Q of distinct points the line PQ. 
• Each coordinate system has a function that assigns to each point 

X a triple <x1>x2,x3> of coordinates. 
• An angular scale at a point Ο in a plane ε assigns to each real 

number a ray in ε with origin Ο. 

Section 3.13 introduced angular scales to help define sin χ and cos* as 
real-valued functions of real numbers χ. You've met many functions of that 
type in algebra. The following examples of exponential, power, polynomial, 
and linear functions are considered in detail later in this section: 

2* x3 x1'3 x(x2 - 1) ax+b for specified constants a,b. 

Also, in two or three dhnensions, given matrix and vector constants A and 
B, you've worked with the linear function that assigns to each vector X 
the vector value AX + B.1 

Here's the formal definition that unifies these examples. A function f 
assigns to each element χ of a set D a unique value f(x) in a set S. This 
sentence is often abbreviated / : D - S and read / maps D into S.s The 
uniquely determined set D of χ to which / applies is called the domain 
of / . But the set S is not uniquely determined; if / : D - S, then / also 
maps D into any set that contains S. Often it's more convenient to refer 
to a formula such as 2* for the value f(x) than to refer to f by name. 
In a case like that , you can refer to the function x — 2" that maps χ to 
2*. Since that doesn't mention the set D or S, you must determine them 
from the context. In this example, D could be the set Μ of all real numbers 
x, and S could be any set that contains all x>0. When there's no doubt 
which letter is the bound variable, you can use just the formula and refer 
to the function 2X. Be careful, though—the phrase function ax+b is 
ambiguous unless you know that a and b are constants. 9 

Even though they still call ax + b a linear function, most authors of linear algebra texts 
reserve the term linear in higher dimensions to functions of the form AX. They'd call 
AX+B anaffinefunction. 

8 Authors often use the terms function and mapping interchangeably. 
ο 

Many older books that apply advanced algebra to geometry use postfix functional nota-
tion; instead o f / ( x ) they write (x)f. Because it clashes with calculus notation, that 
practice is disappearing. In this text it survives in usages like the function χ -* χ'. But here, 
the symbol ' is not a function name, just part of a formula for the function value. 
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Two functions / and g are regarded as equal if they have the same domain 
D and f(x)=g(x) for every xeD. 

If / : D - S, then to each subset A c D corresponds the image set 
f[A] = {f(x) : x e A}. The image f[D] of the domain is called the range 
off. 

Preserved and invariant properties 

In many apphcations, a function maps its domain D into itself. For example, 
all the trigonometric and algebraic functions mentioned under the previous 
heading map the domain D = Μ into itself. A function f:D-D is said 
to preserve a property 9 of members of D if f(x) has property &> whenever 
χ does. You can use an image set to describe that situation—if A = 
{xeD: χ has 3 s }, then f preserves & just when / [ A ] c A . For example, 
χ ~> 2' preserves the property of being an integer, but not that of being an 
odd integer. $P is called invariant under / if f(x) has 3> if and only if 
χ does: 9> is invariant under / just when f[A]=A. For example, being 
positive is invariant under χ -* χ3 but not under χ -* 2*. 

You can consider properties of pairs, or sequences <xl,xI, ·•·> of any 
number of elements of D the same way. For example, 2 1 and J C 3 are called 
strictly increasing functions because they leave order invariant: 

ι , ί ΐ , - 2*1 i 2 l ! - x3 s xi . 

On the other hand, sin χ doesn't preserve order; you can have xl<.x2 but 
sin Xj > sin x 2 . 

You can consider properties of subsets or sequences of subsets of D the 
same way. For example, the property being a bounded open interval is 
invariant under / ( x ) = 2*; if a<b, then 

/ • t { x : a < x < f e } ] = { v : 2 ° < ^ < 2 ° } 

because a < χ < b if and only if 2° < 2" < 2b. But that property isn't pre-
served by s inx; for example, 

s i n [ { x : 0 ° < x < 3 6 0 e } ] = { v : -lsyil), 

which is a bounded closed interval, not an open one. 

Function composition 

If / : S - Τ and g:D-> S, then the composition of / with g is the function 
f°g:D~ Τ such that (f°g)(x)=f(g(x)) for all x e D . 1 0 For example, 

1 0 M a n y a u t h o r s u s e d to define composi t ion b a c k w a r d . T h e y cal led g° f:x- f(g(x)) t h e 
composit ion of g:D- S w i th / : S - T, l e t t i n g t h e lef t - to-r ight o r d e r e m p h a s i z e t h a t you 
perform g first, t h e n / . As you see , t h a t collides w i t h prefix n o t a t i o n for funct ion v a l u e s . 

(cont inued. . . ) 
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if D = S=T=M, f:x-2x, and g:x~>x3, then f°g:x~2x\ 
You can check that if A c D, then (f°g)[A] =f[g[A]]. If D = S = T 

and / and g both preserve some property S> of elements, subsets, or 
sequences of elements or subsets of D, then so does f°g. And if 9> is 
invariant under both / and g, then it's invariant under f°g. 

Functions f:S-T and g:D - S are said to commute if f°g = g°f.n 

This equation is almost never true. I t doesn't make sense unless D = S = 
T, and even then it's usually false. Consider the example given two para-
graphs earlier: f°grig°f because 

/ ( # ( * ) ) = 2* 3 g(f(x)) = (2x)3 = 2Sx. 

As a second example, consider linear functions h(x) = ax + b and j(x) = 
cx + d. Compositions of linear functions are linear: 

h(j(x)) = a ( c x + d) + b = (ac)x + (ad + b) 
j(h(x)) = c(ax + b) + d = (ac)x + (be + d), 

but h and j commute only when ad + b = be + d. 
Although the commutative law is generally not true in this context, function 

composition does have some features reminiscent of elementary algebra. 
Fundamental to everything in this chapter, for example, is the associative 
law: If e : Τ - U, f: S - T, and g : D - S, then (e°f)°g = e° (f°g), 
because 

((e ο f) ο g)(x) = (e ο f)(g(x)) = e(f(g(x)) 
= e((f°g)(x)) = (eo(f°g))(x) 

for each χ e D. The associative law lets you omit parentheses in such repeated 
compositions. Often that makes them more readable and intuitive. In 
calculus, for example, if you need to differentiate the function 2 8 i n * you 
regard it as the composition of 2X with x3 then einx; you don't have to 
ask whether it's the composition of 2X with s i n * or of 2X with s in 3 x. 

Long—sometimes very long—compositions occur in this book. It's tedious 
to write the ° symbol so much. Therefore, compositions will usually be 
abbreviated by juxtaposition; for example, fg will stand for f°g, and 

fg(x)=f(g(x)) fg[A]=f[g[A]] fgh=f(gh) = (fg)h. 

Be careful not to confuse this with algebraic notation for multiplication of 
numbers: 2xeinx still means the product of 2X and sinac, not the com-
position! But remember that in this book, if / and g denote functions, then 

(...continued) 
So those authors often used postfix notation, with (x)(g0 /) = ((x) g)f. As mentioned in 
the previous footnote, that practice is disappearing. 

The word commute stems from the Latin prefix con- and verb muto, which mean with and 
change. 
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fg usually means their composition, and the equation fg = gf is probably 
false! 

Surjections, injections, and bljectlons 

A function f: D - S is said to map D onto S surjectively if S = 
f[D], the range of / . 1 2 For this phrase to make sense, you must specify 
S. For example, when D = S = M, functions x3 and x(x2 - 1) are surjec-
tive but 2* and s in* are not. Should you change S to {x:x>0} or 
{χ. -1 i xz 1}, then 2X or sinx, respectively, would become surjective. 

f is said to map D into S injectively if / ( Λ ; , ) ^ f(x2) whenever Xj ψ-
x2.

13 Functions 2* and x3 are injective but x (x 2 - 1) and sin χ are not. 
These functions display all four possible combinations of surjectivity and 
injectivity! 

/ is said to map D to S bijectively if it's both surjective and injective. 
The function x3 is brjective; so is the linear function ax + b unless a = 
0. Abijective function f:D-S has an inverse f~l: S - D, which maps 
each ye S to the unique xeD for which f(x)=y. (Surjectivity means 
there's at least one such x; injectivity means there's at most one.) For these 
examples, 

y = f(x) =x3 =• x = ym => f'\y) = ym =* Γ\χ) = χ113 

y - g(x) = ax+ b =>· x = a'1y-a'1b 
=• f-\y) = axy - alb -> Γ\χ) = alx - alb. 

You derive the formula for the inverse function value by solving equation 
y=f(x) for χ in terms of y, then reversing χ and y. Notice that the inverse 
of a nonconstant linear function is linear] 

You should verify that the inverse of a bijection f:D-S is a bijection 
f'1: S- D, and its inverse is the original function / . 1 4 

Authors often write merely / maps D onto S, omitting the adverb surjectively. Then the 
subtle distinction between into and onto becomes too important. Moreover, since no 
convenient adjective or noun matches the preposition onto, they must refer awkwardly to 
onto functions or to the property of onto-ness. Surjective and surjectivity are more graceful. 
The adjectives surjective, injective, and bijective were coined by a pseudonymous group of 
French mathematicians for use in Bourbaki 1939, the first installment of a multivolume 
encyclopedia that reformulated advanced mathematics. Sur means on in French, and the 
root -ject- comes from the past participle of the Latin verb iacio, which means throw. 

Authors often refer to one-to-one functions, employing an adverb where an adjective would 
be appropriate. Moreover, since no convenient noun matches one-to-one, they must use the 
awkward term one-to-one-ness. Injective and injectivity are more graceful. 

Many authors use the term one-to-one correspondence for bijection. The term correspondence 
emphasizes the symmetric nature of such a relation, whereas bijection stresses its asymmet-
ric left-to-right nature. The left-to-right convention became predominant in this context 
after authors found that symmetric terminology obscures the distinction between a bijection 
and its inverse. For an example of this awkwardness, consult the research papers by 

(continued...) 
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It 's also easy to verify the following propositions about compositions: 

• If / : S - Τ and g : D - S are both surjective, then so is / g : Z> - T. 
• If / : S - Τ and g:D~S are both injective, then so is fg-.D-* T. 
• If f: S - Τ and g:D~S are both bijective, then so is fg:O- T, 

and (fgyl=glf'x:T-D. 

Be sure you understand the reversed order of the functions in the previous 
sentence. If ζ = f(g(x)), then z = f(y), where y=g(x), so tha t y = 
f'\z) and x = g'1(y) = g~l(f~l(z)). In general, to undo the result of two 
or more successive operations, you must undo them all in reverse order. 
Think of donning your stockings, shoes, and overshoes, then removing them! 

Exercise 6.11.2 provides an interesting sidelight on the previous paragraph, 
as follows. Suppose / : S - Τ and g: D - S. If fg is surjective, then / 
must be surjective, but not necessarily g. If fg is injective, then g must 
be injective, but not necessarily / . If fg is bijective, then / is surjective 
and g injective, but neither is necessarily bijective. To ensure tha t you 
understand the concepts under this heading, complete that exercise, proving 
the positive clauses and finding counterexamples to justify the others. 

Suppose f:D-D bijectively and 9> is a property of elements, subsets, 
or sequences of elements or subsets of D. It's possible for f but not f'x 

to preserve 9*. For example, consider f(x) = x3, f~x(x) = xxl3 and the 
property χ > 2; tha t inequality implies x3 > 2 but not xxl3 > 2 . But if 
SP is invariant under / , then it's also invariant under For example, 
the property x1 > x2 is invariant under both x3 and x113. 

Transformations; identity functions 

A bijection f:D-D is called a transformation of D.Xi One bijection, in 
particular, is ubiquitous: the identity function iD : x-*x. Note tha t the 
identity function for D = M is linear: iK(x)=x=lx + 0. It's easy to verify 
the following general propositions about identity functions: 

• If f:D" S, then fiD = f= i§f- If / is bijective, then f'1f= iD and 
ff'x = i s . If f is a transformation of D, then / " ' / = iD = ff'1. 

• Suppose f:D-S bijectively and g: Z) - S bijectively. If fg = iD 

or gf= i s , then g = fl and f = g'\ 

• Every property of elements, subsets, or sequences of elements or 
subsets of D is invariant under iD. 

1 4 (...continued) 
Hermann Wiener (1890-1893), which introduced the general approach taken in this 
chapter. 

1 5 Authors often use the term permutation instead of transformation, particularly when the 
domain is finite. 
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The symmetric group; transformation groups 

The family SP of all transformations of D is called the symmetric group 
of D. This chapter is concerned with subfamilies & oi SP that satisfy three 
requirements: 

• the identity iD must belong to £T\ 
• 2Γ must contain the inverse of each of its members; and 
• Si must contain the composition of any two of its members. 

If & satisfies these conditions, it's called a transformation group on D. 
Thus a subfamily of the symmetric group is a transformation group just in 
case it contains the identity and is closed under inversion and composition. 
D always has at least two transformation groups: the symmetric group 
itself, and the trivial group that has only one member iD. Each clearly 
satisfies the conditions. 

If a transformation f belongs to a transformation group ST, so do any 
n.-term compositions f ° ••• °f and f'1 ° • • · ° f~l; they're called powers of 
/ and written / " and / ' and f" stand for / and the identity. You 
can verify that some laws analogous to elementary algebra hold for this 
concept. For example, /« •» = / « / » , ^«» = (f«)» a n d ^nyx = f-n 

When one transformation group is a subset of another, it's called a subgroup. 
For example, the trivial group is a subgroup of every transformation group, 
and every group is a subgroup of itself. A subgroup of a group <S that 's 
different from 'S is called a proper subgroup. 

Transformation groups are often characterized by invariants: If 9> is 
a property of elements, subsets, or sequences of elements or subsets of 
D, then the family of all permutations of D under which S> is invariant 
forms a transformation group on D. This family clearly contains the identity 
and is closed under inversion and composition. 

Members of the symmetric group of two- or three-dimensional space 
M2 or Μ3 are called geometric transformations.16 

Linear transformations 

Among the most useful geometric transformations are the two- and three-
dimensional linear functions Χ-AX+ Β for specified matrix and vector 
constants A and Β with invertible A. The identity function is linear: 
X~> X=IX+ O. Just as in the one-dimensional case, the composition of linear 
maps is linear: If φ(Χ)=ΑΧ + Β and χ(Χ) = CX + D, then 

T h i s t e r m i s a l so u sed more broadly, for ana logous concepts in project ive, non -Euc l idean , 
a n d h igher-d imensional geometry, a n d some t imes for p e r m u t a t i o n s of s e t s of l i ne s or o t h e r 
figures i n s t e a d of j u s t po in t s . 
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<PZ(X)=A(CX+ D) + B = (AC)X+ (AD + B) 

and (AC)" 1 = C~lA~l, Moreover, the inverse of a linear function is linear: 

and (A"1)"1 = A. Notice how matrix multiplication and inversion correspond 
to function composition and inversion! The case B = D = 0 shows that the 
noncommutativity of matrix multiplication and of linear function composition 
are two aspects of the same phenomenon. 

Invariance of betweenness 

Betweenness is invariant under linear transformations. To verify that, consider 
a transformation X-* X' = AX + Β and points P, Q, and R. You must 
show that P-Q-R if and only if P'-Q'-R'. First, P-Q-R implies tha t Q = 
tP+ (1 - t)R for some scalar t such that Os i s 1, hence 

Q' = AQ + B = A(tP+(l - t)R) + B 
= t(AP + B) + (l - t)(AR + B) = tP' + (1 - t)R', 

hence P'-Q'-R'. Thus X-+X' preserves betweenness. Its inverse is also 
linear, hence preserves betweenness, so P'-Q'-R' implies P-Q-R also. 

It follows tha t any property you can define in terms of betweenness is 
invariant under linear transformations X-* X' (regardless of whether it 
was originally defined that way). For example, collinearity is invariant: 
For any points P, Q, and R, 

P, Q, and R are collinear 
if and only if P-Q-R or Q-R-P or R-P-Q, hence 

if and only if P'-Q'-R' or Q'-R'-P' or R'-P'-Q', hence 
if and only if P', Q', and R' are collinear. 

Similarly, all these properties are definable in terms of betweenness: 

coplanarity being being 

φ'\Χ) = A'lX - A'lB 

convexity 
a segment 
a ray 
a line 

a half plane 
a plane 
a half space 

being 
an angle 
a triangle 
a tetrahedron 

being the interior of 
an angle 
a triangle 
a tetrahedron 

Therefore, they're all invariant under linear transformations. 
The argument in the previous paragraph is more general than its context. 

It actually shows that if betweenness is invariant under any transformation 
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φ, then all properties definable in terms of betweenness are also invariant 
under φ. 

Are linear transformations the only ones under which betweenness is 
invariant? The answer is yes, but its proof requires analysis methods beyond 
the scope of this book. 1 7 

Linear transformations don't necessarily preserve distance or even 
similarity. For example, under the transformation 

X - X ' = 
1 2 

0 1 

the image of AOUV is AO'U'V, where 

O = <0,0> = O' 
£ / = < ! , 0 > = U' 

V = < 0 , 1 > 
V' = <2 ,1>. 

Notice that OVr* O'V; and these triangles aren't similar. 
The rest of this chapter is a detailed, fairly complete study of those geometric 

transformations that do preserve distance—called isometries—and those 
that preserve similarity but not necessarily distance—called similarities. 
All isometries and similarities are linear, but not vice-versa. Detailed study 
of linear transformations that aren't isometries hes beyond the scope of this 
book." 

6.2 Isometries 

Concepts 
Definition 
Physical motions and time are not geometric concepts 
Translations 
Rotations 
Reflections 
The isometry group 
Noncommutativity 
Invariance 
Rigidity theorem 
Uniqueness theorem 

Chapter 15 of Martin 1982 is an introduction to that theory in two dimensions. Virtually 
all the results in Methods of geometry about isometries and similarities have both two- and 
three-dimensional analogues in the theory of general linear transformations. But those are 
often cast in projective geometric language, and hard to find in the literature. You could 
start a search with the research paper Ellers 1979 and its references. 
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This section introduces plane isometries and some related concepts. It presents 
common examples, but gives few details. Those come later, in sections 6.3 
to 6.5 and 6.7, which study in depth four types of isometries. This section 
and the next are arranged to provide a quick route to the classification 
theorem, which shows that every isometry is one of those four types. 

The rest of chapter 6 is concerned with points in a single plane ε. It's 
always the same plane, so it's never again mentioned explicitly. For example, 
in the rest of this chapter, point means point in ε. 

A plane isometry <p:P-+ P' is a transformation ofthe plane that preserves 
distance: 

(1) to each point Ρ corresponds another, its image P'; 
(2) distinct points P^Q have distinct images P' ^ Q'; 
(3) every point X is the image P' of some point P; 
(4) the distance between any points Ρ and Q is the same as tha t 

between their images: PQ = P'Q'. 

Condition (2) is redundant : If P^Q, then PQ?0, so P'Q't 0 by 
(4), hence P'^Q'. Nevertheless, the definition is usually phrased this way 
to emphasize that an isometry (1) is a function, (2) is injective, (3) is surjective, 
and (4) preserves distance. 

Many authors use the term motion in place of isometry, suggesting physical 
action. That idea isn't formally incorporated into this text because it involves 
time—the situations before, during, and after the action—and time isn't 
ordinarily regarded as a geometric concept at this level. Instead, this text em-
phasizes the bijective correspondence between points Ρ and P'. It alludes 
to physical motion only occasionally, as an informal guide to your intuition. 

Translations 

A familiar isometry τ: X~> X', the translation shown in figure 6.2.1, can 
be described by its effect on a single point O. Once you know V=0', you can 
define a t once the image of any point X not on g = OV; it's the point 
X' tha t makes ΟVX'X a parallelogram. Determining the image of a point 
W on g takes two parallelograms, as shown, or you can just refer to a scale 
on g. Phrasing the definition like this is awkward. It's easier jus t to say 



242 PLANE ISOMETRIES AND SIMILARITIES 

that if you introduce a coordinate system with origin O, then X'=X+V 
for any X. By the parallelogram law, this gives the same result as the original 
definition, so it makes no difference which coordinate axes you use. You 
can regard the identity transformation as the translation r with V=0. 

Theorem 1. The translation r : X - X + V is an isometry. 

Proof. It's surjective—any point Y is the image of Υ - V. Find Y -
V in figure 6.2.1! And it preserves distance: P' - Q' = (Ρ + V) -
(Q+V) = Ρ - Q, so P'Q'=PQ by theorem 3.11.2. • 

Using the word trans^ion for this concept isn't as obscure as it might 
seem. The Latin prefix trans- means across, and latus is the past participle 
of the irregular verb few, which means carry. So to translate X to X', you 
carry X across the parallelogram, just as you carried Ο to V.l& 

Rotations 

You can conceive of a rotation, another kind of isometry, in much the same 
way. You've an intuition of rotation as a physical action. Hold this book 
in a vertical plane in front of you, your thumbs pressing on opposite spots 
on its covers, its spine toward you. Rotate it in that plane through 20° with 
your fingers, keeping your thumbs stationary. Which direction? Suppose 
friends on your right and left request the positive, counterclockwise direction. 
You try to comply, but one or the other always disagrees. Facing each other, 
they have opposite senses of direction. What one perceives as 20° the other 
sees as -20°. Perhaps intuition isn't entirely adequate! Your problem is 
to describe the rotation X~*X' so that everyone agrees, and so that you 
can specify its effect on every point in all cases. 

One solution is to specify not the center Ο and angle measure, but a 
particular angle, designating one ray as initial and the other as terminal. 
Actually, it's handier to mention just the rays; that lets you specify opposite 
rays for 180° and coincident rays for 0° or 360° rotations. To define the 
rotation X -* X' about Ο that carries the initial ray OA to the terminal 
ray OB, use an angular scale at Ο as in section 3.13. Suppose the rays 
correspond to angle parameters α and β, and let θ = β - α. Set X' = Ο 
if X=0; otherwise find an angle parameter ξ for ray OX, and let X' 
be the point such that OX = OX' on the ray with angle parameter 
ξ + θ. Figure 6.2.2 displays an example. This definition doesn't specify 
α, β, or ξ completely, but any other parameters a 1 ( filt and ξ1 for the 
same rays would differ from them by multiples of 360°, so ξχ + (/?, - a j 
would correspond to the same ray OX'. 

Translate sometimes has this sense in English religious parlance: St. Mark's body was 
translated from Alexandria to Venice in A.D. 828. Transfer has the same etymology. 
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Β: β" 
Υ' Υ 

Χ': ξ° + θ" 

*Χ 
Χ: ξ° 

Figure 6.2.2 The rotation 
pg about Ο tha t maps 

OA to OB 

Figure 6.2.3 Rotation 
preserves distance: 

XY = X'Y' 

Because the angle parameter θ figures so directly in the definition, the 
rotation is often denoted by pg. Since adding a multiple of 360° has no 
effect on ray OX', nor on the intuitive geometric notion of rotation, you 
don't have to restrict θ to the interval 0° < θ < 180°; it can take any value 
at all! If (9 = 0°, then X ' = X and pe is the identity. If θ= 180°, pg is 
called the half turn σ0 about O . 1 9 

Theorem 2. For any Θ, the rotation ρθ is an isometry. 

Proof. Consider points X and Y noncollinear with O, with angle param-
eters ξ and η, as in figure 6.2.3. Then 

m / X O Y = \(ξ- η) mod 360° | . 

The images X ' and Y' have angle parameters ξ' = ξ + θ and η' = 
η + θ, so 

m / X O Y = \(ξ' - i7')mod 360°| = mZX'OY'. 

Triangles ΔΧΟΥ and Δ Χ Ό Υ ' are thus congruent, and XY = X'Y'. You 
should also prove this equation for the remaining case, where X and Y 
are collinear with O. • 

Reflections 

The reflections constitute a third type of isometry. They're perhaps less 
familiar, bu t much easier to describe. The reflection X' = ag(X) of a 
point X across a line g is X itself if X is on g, else it's the point on the 

Some authors call σ0 a point reflection. 
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Y 

X, 

Figure 6.2.4 Reflection 
4 g across g preserves 

distance: ΧΥ = ΧΎ. 
X· 

Υ' 

opposite side of g such that g is the perpendicular bisector of XX' 
—see figure 6.2.4. 

Theorem 3. The reflection ag across line g is an isometry. 

Proof. It's surjective because X= ag(X') = ag(ag(X)). Figure 6.2.4 
sketches a proof that ag preserves the distance between points X and Y 
when they he on the same side of g —that is, XY= X'Y'. If you show as 
well that XY'=X'Y, then interchange the labels Y and Υ', you'll get 
a proof for X and Y on opposite sides of g. Finally, you can supply the 
even simpler argument that XY = X'Y' when X and/or Y hes on g. • 

The isometry group 

There are other plane isometries besides the examples already given, but 
their details are postponed until section 6.7. The rest of this section concen-
trates on concepts that relate to all isometries. 

Theorem 4. The isometries form a subgroup of the symmetric group of the 
plane. 

Proof. This means that the identity transformation ι is an isometry, 
the inverse of an isometry φ is an isometry, and the composition of two 
isometries φ and χ is an isometry. That is, ι, φ'λ, and ψ-φχ preserve 
distance. The first is trivial: t preserves everything. To see that φ1 

preserves distance, consider two points Ρ and Q. Let X= φ~ι(Ρ) and 
Y=(p\Q). Then φ(Χ) = Ρ and <p(Y) = Q. Moreover, XY = 
φ(Χ)φ(Υ) because φ is an isometry, so 

φ\Ρ)φ-\0.) = ΧΥ= φ(Χ)φ(Υ) = PQ. 

Finally, to verify that ^ ( P ) ^ ( Q ) = PQ, note first that x(P)x(Q) = PQ 
because χ is an isometry. Let Χ- χ(Ρ) and Y = / f ( (?) . As before, 
φ(Χ)φ(Υ)=ΧΥ, so 
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ψ(Ρ)ψ(0) = <px(P)<px(Q) = φ(Χ)φ(Ύ) 
= XY = X(P)X(Q) = PQ.* 

Theorem 4 is this book's first result of the form the elements of a transforma-
tion group & that preserve ... form a subgroup of ST. Here, ST is the group 
of all transformations of the plane—its symmetric group—and the dots 
... represent distance. You'll see many theorems that fit this pattern. They're 
all proved similarly. 

Isometries don't necessarily commute. Figure 6.2.5 shows tha t ψχ ^ 
χ φ for the reflections φ = ag and x~oh across selected lines g and h. 
You should investigate various other pairs φ and χ of isometries to get 
an idea of when their compositions φχ and χφ are or are not equal. Under 
the last heading of this section you'll see that any two translations commute. 
You'll study that question systematically later. 

Invariance 

A property of sets ^ or sequences <Xl,X2, ...> of points is called invariant 
under a transformation X-* X' if 8C or <X1,X2, ...> has that property 
when and only when its image {X':Xe^} or <Xl\X2', ...> does. Distance, 
viewed as a property of pairs of points, is invariant under isometries by 
definition. Many other properties are invariant under isometries because 
you can define them in terms of distance. Theorem 5 presents a basic example. 

Theorem 5. Betweenness is invariant under any isometry X-* X'. 

Proof. If Χι, X2, and X3 are points, then 

Xl-X2-X3 ** Χχ X2 + X2 X3 = Χχ X3 

·» X{X2 + X2X3 = X{X3 *· X[-X2-X3. • 

°k(X) 

Figure 6.2.5 
ogah{X)?ahag(X) 
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The critical idea of this proof is that you can define betweenness in terms 
of distance: Xl-X2-X3 *» X1X2 + X2X3 =XlX3. You can use similar argu-
ments to show that any property definable in terms of distance is invariant 
under isometries. At the end of section 6.1 you saw a long list of frequently 
used properties that are definable in terms of betweenness, hence in terms 
of distance. Invariance is frequently used implicitly in the rest of this chapter. 
For example, whenever you use a compound concept like the area of an 
isometric image of a triangle, you're alluding to two facts: 

• The image of a triangle Si is a triangle. (Being a triangle is in the 
list of properties definable in terms of betweenness.) 

• It has the same area as &. (You can define area of a triangle in 
terms of distance via Hero's formula, theorem 5.5.10.) 

You can supply such arguments when they're needed. 

Fixpoints; rigidity and uniqueness theorems 

A fixpoint of a transformation φ is a point X that it leaves fixed: 
<p(X) = X. Often it's easier to analyze a transformation by considering its 
fixpoints than by studying how it changes other points. Translations, except 
for the identity, have no fixpoints. Rotations, except for the identity, have 
exactly one. The reflection in a line g has a whole line of fixpoints. And 
the fixpoints of the identity transformation constitute the whole plane. Are 
these the only possibilities for the fixpoint set of an isometry? The next two 
results—the rigidity theorems—answer that question. 

Theorem 6. If an isometry X-*X' has fixpoints P?Q, then every point 
X on PQ is fixed. 

Proof. There are three cases: P-Q-X, Q-X-P, and X-P-Q. In the first 
case, where P-Q-X, theorem 5 implies P'-Q'-X', i.e. P-Q-X'. Thus X and 
X' are on the same side of Q in PQ and QX=Q'X' = QX', so X = X'. 
You can prove the remaining cases similarly. • 

Theorem 7. The only isometry with three noncolhnear fixpoints is the 
identity. 

Proof. Suppose an isometry <p:X-X' has noncolhnear fixpoints A, 
B, and C. Then all edge points of AABC are fixed. For every point X 
you can find two distinct edge points Ρ and Q with X on PQ —see figure 
6.2.6. By theorem 6, X is fixed. Thus φ leaves every point fixed. • 

Corollary 8 (Uniqueness theorem). If χ and ψ are isometries, and 

χ(Α)=ψ(Α) χ(Β)=ψ(Β) χ(0=ψ(0 

for noncolhnear points A, B, and C, then χ-ψ. 
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C 

A 

X· 

Β Ο Ζ W 

V 

χ 

Figure 6.2.6 
Proving theorem 7 Translations commute 

Figure 6.2.7 

Proof. A, B, and C are fixpoints of φ = χψ'ι, so φ is the identity. • 

The uniqueness theorem is used often to prove that two isometries defined 
different ways are actually the same. Here's a typical example, which you 
can check by another method. Set up a coordinate system with origin O, 
and consider translations τν: X - X + V and TW : X -* X + W. Figure 6.2.7 
shows tha t TVTW(X) = TWTV(X) for the indicated point X. Often, such 
figures are valid only for a restricted set St of points X. But if SC includes 
three noncollinear points, no matter how near each other, then by the unique-
ness theorem, the equation holds for all points X. In this case, you can 
certainly pick three noncolhnear points X for which the equation holds, 
so & is the entire plane and TVTW= TWTV. That is, any two translations 
commute. Of course, you could prove the same result algebraically: 

But the uniqueness theorem is especially helpful when there are different 
cases to consider and no algebraic solution. 

6.3 Reflections 

Concepts 
Mirror images 
Triangle orientation 
Reflections reverse orientation 
Reflections in perpendicular hnes 
Half turns 

TVT„(X) = TW(X) + V = (X+ W) + V= (X+ V) + W 

= TV(X) + W=TWTV(X). 
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Section 6.2 introduced the reflection X' = ag(X) of a point X across a hne 
g: If X hes on g, then X' =X, else X' ^ X and g is the perpendicular 
bisector of XX' . You saw that ag is a plane isometry. It's self-inverse: 
a'g

x = ag because agag(X) = X for each X. Why is it called a reflection? 
Stand with your eye at point Y on the same side of a mirror g as point 
X in figure 6.3.1. The mirror image of X appears to be at X', because hght 
from X reflects from the mirror to Y so that the incidence and reflection 
angles IXPO and lYPQ are equal. 2 0 

The hght ray reflected from X to Y strikes mirror g at the point Ρ 
for which the path length XP + PY is as short as possible. Figure 6.3.2 
shows such a path for an arbitrary point Ρ on g. Since XP = X'P, the 
shortest XP + PY is the smallest sum X'P + PY, which occurs when Ρ 
hes on YX' as in figure 6.3.1. 

As a child you learned that a mirror reverses orientation; it reflects your 
right-hand gesture as one of your image's left hand. To learn some techno-
logical skills such as driving, you must develop intuition to process these 
reversed perceptions efficiently. This situation has a mathematical coun-
terpart. Figure 6.3.3 should reinforce your intuition that if a figure 0C is 
oriented, then its image 9C' = {X' : X e 0C} under a reflection ag:X-+X 
has the opposite orientation. 

What is an oriented figure? That concept is too general to formulate easily. 
In fact, it's more general than necessary; you need only consider triangles. 
Section 3.3 defined AABC as the ordered triple of its vertices. Thus, for 
example, AABC and ACBA are different, even though we use the same 
figure to represent them. Using figure 6.3.3, you can classify the six triangles 
with these vertices according to your intuitive notion of orientation: 

Figure 6.3.1 Mirror image 
X ' of X as seen from Y 

Figure 6.3.2 Path from X to 
Υ via another point Ρ on g 

The word reflection stems from the past participle of the Latin verb reflexo, which means 
bend back; the Greek σ in the traditional notation refers to the German word Spiegel for 
mirror. 
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C* C 

Figure 6.3.3 
Reflection across g 

reverses orientation. 

Β 

Class (+): AABC ABCA ACAB 
Class (-): ACBA AACB ABAC. 

How can you distinguish these classes mathematically, without relying on 
figure 6.3.3 and your intuition? The determinant formula for triangle area 
derived in section 5.6 provides the tool. Choose a coordinate system, and 
regard the vertices as coordinate vectors. The triangles all have the same 
area; according to theorem 5.6.5, it's ± Vi times each of the determinants 

det[A-B,C-B] d e t [ B - C , A - C ] det[C-A,B -A] 
d e t [ C - Β,Α-B] det[A - C,B - C] det [B - A, C - A]. 

Those in the first row are all equal. For example, by subtracting the right-hand 
column from the left, multiplying a column by - 1 , and interchanging columns, 
you get 

det[A - B,C - B] = det[(A - B) - (C - B),C - B] 
= de t [A - C C - B ] 
= - d e t [ A - C,B - C] 
= det[B - C,A - C]. 

Moreover, each determinant in the second row is the negative of the one 
above it. Thus, all of the triangles in one row have the same positive 
determinant—they constitute class (+). The others have the same negative 
determinant—they constitute class (-). You can then call the triangles pos-
itively or negatively oriented, with respect to the chosen coordinate system. 
(The coordinate system for figure 6.3.3 evidently oriented AABC positively.) 

To show that a reflection og:X-*X' reverses orientation, you could find 
equations for the coordinates of X' in terms of those of X, then show tha t 
det [Α' - B', C -B'] and det [A - B,C - B] always differ in sign, so tha t 
AA'B'C and AABC have opposite orientation. (In fact, these determin-
ants always have the same magnitude; they differ only in sign!) Deriving 
the required equations for the reflection across an arbitrary line g is tedious. 
(See exercise 6.11.24.) Moreover, it's unnecessary, because a cleaner 
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argument in section 6.9 will yield this general result. But you can check 
it easily for some special lines g. For example, if g is the first axis, then 
ag has equations oc[ = xl, x£ = - a j , and you get det [Α' - B', C - B' ] from 
det [A - B, C - B] by changing the signs of the entries in its second row. 
If g is the second axis, change signs in the first row. If g is the diag-
onal line xl = x2, then ag has equations x[-x2, x'2 = xx, and you get 
det [Α' - B', C -B'] from det [A - B, C - B] by interchanging its rows. 
In each of these examples, the determinant merely changes sign. 

The remainder of this section is concerned with the commutativity of 
reflections ag and ah across lines g and h. When does that occur? That 
is, for what lines g and h is agah = ahag1 Clearly, this equation holds if 
g-h. Figure 6.3.4 shows that if gx h, then agah(P) = ohog(P) for points 
Ρ not on g or ft. You can verify that it also holds for points Ρ on the lines. 
Thus the reflections commute if the hnes are equal or perpendicular. 
Conversely, suppose the reflections commute, but gth. Find a point X 
on g but not h. Then 

agoh(X) = ohag(X) = ah(X), 

so Y= o~h(X) is a fixpoint of og, and Y hes on g. Moreover, X^Y because 
X isn't on h, so h is the perpendicular bisector of XY and g= XY, hence 
g χ h. This argument, and further inspection of figure 6.3.4, demonstrates 

Theorem 1. ag and ah commute just when g-h or g±h. If g±h, then 
agaH = ohag is the half turn σ0 about the intersection 0 = gnh. 

Corollary 2. A half turn a0 commutes with a line reflection oh just when 
Ο hes on h. In that case, σ0σΗ = σΗσ0 = ag, the reflection across the line 
g ± h through O. 

Proof. If Ο lies on h, then 

°οσκ - ot°hOh ~ ° t - °hahog = aha0 

by theorem 1. Conversely, 

a0(P)=a,ah(P) 

σ„(Ρ) 

-ι 

J " 

C 

σ,(Ρ) 

Figure 6.3.4 ag and 
ah commute if g χ h. 
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°~0°~h = σΗσο 
=* o0ah(0) = ahaQ(0) = oh(0) 

oh(0) is a fixpoint of σ0 

=»• ah(0) = 0 —the only fixpoint of σ0 — 
=* Ο is a fixpoint of ah 

Ο hes on ft.. • 

You can complete this discussion of commutativity and reflections by verifying 
that two half turns σ0 and σΡ never commute unless 0 = P. In the next 
section, you'll see what kind of isometry σ0 σΡ is in general. 

6.4 Translations 

Concepts 
Definition of a translation 
Equations for a translation 
Compositions of translations and vector addition 
Translation group 
Compositions of reflections in parallel lines 
Compositions of half turns 
Translations preserve orientation 

Section 6.2 presented two definitions of a translation: a purely geometric 
one using parallelograms and an equivalent formulation in terms of vector 
algebra. The latter is more convenient, but requires you to choose a coor-
dinate system at the start of the discussion. Each translation is determined 
by the image V of the origin O; you can define the translation τν with 
vector V by setting τν(Χ) =X+ V for each point X (regarded as a coordinate 
vector). This includes the case rv(0) = 0+V=V. As shown in figure 6.2.1, 
you can construct the point X+ V from V, O, and X using parallelograms, 
with no reference to coordinates. Therefore, the definition of r v depends 
only on V and O, not on other details of the coordinate system. Theorem 
1 displays the equations for r v in terms of the coordinate system. 

Theorem 1. The components of X' = τν(Χ) are 

x[ - xl + v1 

Not only do translations τν correspond one to one with their vectors V, 
but composition of translations corresponds to vector addition. Further, 
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this analogy relates the inverse of a translation to the negative of its vector, 
and the identity, or trivial, translation corresponds to the zero vector: 

Theorem 2. For any vectors V and W, TVTW= TV+W= TWTV and l y 1 = 
τ_ν. Moreover, τ0 is the identity transformation ;. 

Proof. For all points X, 

TVTW(X) = τν(Χ+ W) = (X+ W) + V=X+ (W+ V) 

= X+(V+W)=TV+W(X) 

τ0(Χ)=Χ+Ο = Χ= i(X). 

Moreover, 

TWTy = TW+y = Γ ν + Μ τ = TyTw 

ΤνΤ_γ = Ty + ̂ y) — X0 — I — Γ ( . Ν ) + Ν = T_yTy. • 

Corollary 3. The translations form a transformation group on the plane. 

Proof. The composition TVTW of two translations is the translation 
TV+W. The inverse τν'

ι of a translation is the translation r . v . Finally, the 
identity transformation is a translation: / = r 0 . • 

The next results show how to build translations from reflections or half 
turns. 

Theorem 4. The composition agah of the reflections across equal or parallel 
lines g and h is a translation r. With respect to any coordinate system, 
r has vector V= 2(P - Q), where Ρ and Q are the intersections of g 
and h with a common perpendicular k. 

Proof. If g = h, then V is the zero vector and agah = ι = τν. If g^h, as 
in figure 6.4.1, then 

V=2(P-Q) = agoH(X)-X, 

so τν(Χ) = agaH(X) for any point X on the side of h opposite g. This 
equation holds for three noncollinear points—pick them near X in figure 
6.4.1—so by the uniqueness theorem, ogo~h — TV. • 

Corollary 5. The composition aPaq of half turns about points Ρ and Q 
is a translation r. With respect to any coordinate system, r has vector 
V=2(P-Q). 

Proof. Let g and h be the perpendiculars to k = PQ through Ρ and 
Q. Then aPaQ = ogahakoh = agah. Now apply theorem 4. • 
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h 8 

Figure 6.4.1 atah is a 
translation when g II h. X o„(X) 

•4· 
Q k Ρ 

Given vector V and point Ρ you can find a point Q, or given V and Q 
you can find P, such that V = 2 ( P - Q ) . That yields 

Corollary 6. Every translation r is the composition σΡσ0 of two half turns. 
You can choose Ρ or Q arbitrarily; the other then depends on r. If P^ 
Q, then r is the composition agah of the reflections across the perpendicu-
lars g and h to PQ through Ρ and Q. 

In section 6.5 you'll need to analyze all compositions of three reflections. 
The next result provides a s tar t for that study. 

Corollary 7. A composition o~gahah of reflections across parallel or equal 
lines g, h, and k is the reflection across a fourth line copencilar with these 
three. 

Proof. Al ine / perpendicular to g, h, and k intersects them at points 
P, Q, and S. Choose a coordinate system, and find the point R on I such 
that P - Q = R - S. Let V = 2 ( P - Q) = 2(R - S) and be the perpen-
dicular to I through R. By theorem 4, agah = r v = a}ok, so τν(Χ) = 
ogoh(X) for any point X. • 

Transformations correspond so closely to vectors that properties of vectors 
are often attributed to translations. For example, we refer to parallel 
translations or to the angle between them. By the length \ T\ of a translation 
we mean the length of its vector: | τ \ = P r ( P ) for any point P. 

The last idea considered in this section is the effect of translation on 
orientation. Figure 6.4.2 should reinforce your intuition that any translation 
preserves orientation. You could deduce tha t from theorem 4 or corollary 
5 if you'd shown already that every reflection reverses orientation or every 
half turn preserves it. However, neither of those results has been proved 
yet. Instead, you can use coordinates and determinants to construct the 
following argument, similar to the one devised for some special reflections 
in section 6.3. 
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B' 

Β 

Figure 6.4.2 Translation 
preserves orientation. 

Theorem 8. Suppose a translation τν maps AABC to AA'B'C. Then 

Concepts 
Definition of a rotation 
Equation of a rotation about the origin 
Composition of rotations and angle addition 
Group of rotations about Ο 
Compositions of reflections in intersecting hnes 
Compositions of rotations and translations 

Section 6.2 defined the rotation X-+X' about a point Ο that carries initial 
ray OA to terminal ray OB using an angular scale ρ at Ο as follows. 
Suppose ρ assigns those rays angle parameters a and β, and let θ = 
a - β. For any point X^O, find an angle parameter ξ corresponding to 
ray OX, and let X' = pe(X) be the point on the ray with angle parameter 
ξ + θ, such that OX' = OX. When you study a rotation in a broader context, 
you're often not free to choose the scale; some other aspect of your problem 
may have specified it already. Does it make any difference which angular 
scale you use? The answer is no. According to theorem 3.13.3, if p ' is another 
ecaleat O, then there are constants ζ and η such that n = ± l and for all 
ζ> ρ(ζ) - p\C + ηξ). If you used scale p ' to describe p, you'd find 
that the initial and terminal rays and ray OX correspond to parameters 

d e t [ A - B , C - B ] = de t [A ' -B'.C -B'}, 

so rv preserves orientation. 

Proof, det [A' -B',C - B'] 
= det [(A + V) - (Β + V), (C + V) - (Β + V)] 
= d e t [ A - 7 i , C - B ] . * 

6.5 Rotations 
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α' = ζ+ πα, β' = ζ + ηβ, and ξ' = ζ+ ηξ. To determine pe(X), you'd 
compute 

ξ' + (β' - α ' ) = (C+ ηξ) + (C+ ηβ) - ( f + ηα) 
= ζ-+η(ξ+β-α) = ξ+η(ξ+θ), 

and you'd find that the corresponding ray is p'(f+ η(ξ+ θ))= ρ (ξ' + θ) = 
ΟΧ', the same one you got with scale ρ. 

Now choose a coordinate system with origin O. Use any angular scale 
at O. For any real number θ consider the rotation pg:X—X' that carries 
the ray with parameter 0° to the one with parameter Θ. Theorem 1 displays 
the equations for pg in terms of the coordinate system. Later, section 6.8 
will derive equations for a rotation about a point different from the origin. 

Theorem 1. The components of X' = pe(X) are 

x[ = xx cos θ - x2 sin θ 

x2 - xl sin θ + x2 cos θ . 

Proof. Suppose X has angle parameter ξ. Then OX' = OX and X' 
has parameter ξ+ θ. Using the cosine and sine addition formulas (corollary 
5.5.5) you get 

Xi = OX cos ξ 
x2 = OX sin ξ 

x( =ΟΧ'οο8(ξ+ θ) 
= ΟΧ[οο&ξcoed - βίηξβίηθ] = Χ^ΟΒΘ - x 2 s i n # 

χ'2 =ΟΧ'ΒΪη(ξ+ θ) 
= ΟΧ[οοβξβίηθ + βίηξοοβθ] = χ^ϊηθ + χ2οοβθ. • 

Not only do rotations ρβ about Ο correspond to angle parameters Θ, 
but composition of these rotations corresponds to angle addition. Further, 
this analogy relates the inverse of a rotation to the negative of its parameter, 
and the identity rotation corresponds to parameter zero: 

Theorem 2. ρηΡβ-ρη+β - ΡβΡη

 a n ( i Ρβ1 = P-e for any angle parameters 
7 and Θ. Moreover, p0. is the identity transformation i. 

Proof. First, ρηρβ(0) = ρη(0) = Ο. Consider a point X t Ο for 
which ray OX has angle parameter ξ; let ρΗ(Χ)=Χ' and pg(X') = X". 
Then OX' and OX" have parameters ξ + η and (ξ + η) + θ = 
ξ+(η + θ), so ρΗ+Β(Χ)=Χ". I t follows tha t ρηρβ = ρη+β· Similarly, 
ΡβΡη-Ρβ+η =Ρη*β- Clearly, ρ0. = ι. Finally, ρθ

ι=ρ.β because p.epff = 
Ρ-Θ+Θ = ΡΟ' = Ι · • 
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According to theorem 2, the composition of rotations about O, the inverse 
of any such rotation, and the identity transformation are all rotations 
about O: 

Corollary 3. The rotations about Ο form a transformation group on the 
plane. 

In section 6.4 you saw that a composition of reflections across parallel 
hnes is a translation. The next result shows that if the lines intersect, the 
composition is a rotation. In fact, every rotation is such a composition of 
two reflections. 

Theorem 4. If rays OA and OB have angle parameters α and β, then 
p2(a-p) is the composition aaab of the reflections across hnes a-OA 
and b= OB. 

Proof. If a = b, then p2(a-p)= 1 = aa°b • If α J - b, the result is contained 
in theorem 6.3.1. 

Now assume LAOB is acute, as in figure 6.5.1. Select a point X on the 
side of b opposite A but on the same side of a as B, with m Ζ XQB< 
mi BOA as shown. Let X' = ob(X) and X" = σα(Χ') = aaab(X). Then 
rays OX, OB, OX', OA, and OX" all fall in a single half plane as 
shown, and miXOX" = 2mZ BOA, so X" =p2(a_P)(X). You can select three 
noncollinear points X that satisfy the same conditions, so aaab = pUa.p) 
by the rigidity theorem. 

If iAOB is obtuse, replace A by a point A'j^O such that A-O-A'. Then 
iA'OB is acute, O A ' = a , and OA' has parameter α + 180°. By the 
previous paragraph, aaab = p2(a + m._p) = ρ2(α_β) + 360. = ρ2(α_β). • 

Given an angle parameter θ and a ray OA with parameter α you can 
find a ray OB with parameter β, or given θ and OB you can find OA, 
such that θ = 2(α - β). Setting α = OA and b= OB yields 

A,a 

Figure 6.5.1 
Proof of theorem 4 

O' 
Β 

β 

Χ 
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Corollary 5. Every rotation ρ about Ο is the composition oaab of two 
reflections across lines through O. You can choose either line α or 6 
arbitrarily; the other then depends on p. 

The next result continues the analysis of compositions of three reflections 
that you started with corollary 6.4. 

Corollary 6. A composition agohak of reflections across hnes through 
Ο is the reflection across a fourth line copencilar with these three. 

Proof. Find points A, B, and D^O on g, h, and k. Suppose rays 
OA, OB, and OD correspond to angle parameters α, β, and δ. Find 
the ray OC tha t corresponds to the parameter γ for which a - β = 
γ - δ, and let ; = 0"C. Then agah = ρ2(α.β) = pnr-a) = a}ak, so 
W k = o)- • 

Theorems 6.4.2 and 6.5.2 showed that the composition of two translations 
or of two rotations about the same center is a translation or rotation, 
respectively. Theorems 6.4.4 and 6.5.4 showed that the composition of two 
reflections is a translation or a rotation. The final two results in this section 
describe the composition of a rotation and a translation, and of rotations 
about different centers. 

Corollary 7. The composition of a rotation ρ r* ι and any translation τ 
is a rotation about some center. 

Proof. By corollary 6.4.6, τ=σβσΗ for some line g through the center 
Ο of ρ and some line h parallel to g. By corollary 5, ρ = a(ag for some 
hne fr*g through O. Therefore ρ τ - aiagogah = ofah, a rotation about 
the intersection Ρ of f and h. You can supply a similar argument 
for τρ. • 

Corollary 8. Any composition of two rotations is a rotation or a translation. 

Proof. By theorem 2 it's enough to consider rotations ρ and p' about 
distinct centers Ο and O'. Let h = 00'. By corollary 5, p = agah and 
p' = ahag. for some lines g and g' through Ο and O'. Therefore pp' = 
agahahag, = o~gag.. By theorem 6.4.4 or theorem 4, this composition is a 
translation or a rotation. • 

Corollary 7 doesn't mention the relationship of the angle parameters of the 
constituent rotations to that of the composition. Corollary 8 doesn't show 
how the parameters of the constituent rotations determine whether the com-
position φ is a rotation or a translation, and in the former case how they 
are related to the angle parameter of φ. You can work out the connections 
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in exercise 6.11.10 by analyzing the lines used in the proofs, or you can refer 
ahead to theorem 6.9.3, which derives these results through matrix algebra. 

6.6 Structure theorem 

Concepts 
Congruent figures 
Structure theorem 
Even and odd isometries 
Group of even isometries 

Previous sections introduced the concept of a plane isometry, and described 
three familiar types in detail: reflections, translations, and rotations. You 
saw that all translations and rotations are compositions of two reflections. 
This section's main result is the structure theorem. It shows tha t every 
isometry is the identity transformation, or a reflection, or the composition 
of two reflections, or the composition of three. It's the fundamental tool for 
classifying plane isometries. Section 6.7 investigates the only type not yet 
introduced: the composition of three reflections. In section 6.8 the structure 
theorem plays a central role in connecting the study of isometries with matrix 
algebra. 

The proof of the structure theorem proceeds via three preliminary results, 
which are arranged to make the argument as concise as possible. Lemma 
2 and theorem 3 are hard to illustrate cleanly because each describes 
two or three different cases. You should work out separate figures for all 
cases. 

Lemma 1. Suppose AABC and AABZ are congruent triangles. Then 
C = Z or σΛ(Ζ). 

Proof. By theorem 3.12.5 case (2), the circles with centers A and Β 
and radii AC = AZ and BC = BZ intersect at exactly two points Ζ and 
Z' , and AB is the perpendicular bisector of ZZ'. See figure 6.6.1. • 

Lemma 2. Suppose AABC and A A YZ are congruent triangles. Then 
there exists an isometry χ such that Β = χ(Υ), C = %(Z), and χ is the 

(0) identity transformation, 
(1) reflection across a hne through A, or 
(2) composition of the reflections across two hnes through A. 
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Figure 6.3.1 
Proving lemma 1 A Β 

Proof. If Β = Y, lemma 1 yields the result with alternative (0) or (1). 
Otherwise, the perpendicular bisector h of BY passes through A because 
AB = AY. Then B=ah(Y); let Z' = ah(Z). By the SSS congruence prin-
ciple, ΔΑΒΖ' = A A YZ = AABC. By lemma 1 with Z' in place of Z, either 

(1) C = Z', or 
(2) C=og(Z'), where g=AB. 

In case (1), let χ= o~h; in case (2) , χ = agah. • 

Theorem 3. Suppose AABC and AXYZ are congruent triangles. Then 
there exists an isometry φ such that Α=φ(Χ), Β = φ(Υ), C=(p(Z), 
and φ is 

(0) the identity transformation, 
(1) a reflection, 
(2) the composition of reflections across two lines, or 
(3) the composition of reflections across three lines. 

Proof. If A = X, lemma 2 yields the result with alternative (0) , (1), or 
(2) . Otherwise, let k be the perpendicular bisector of AX. Then A = 
ak(X); let Y' = ak(Y) and Z' = ah(Z). By the SSS principle, AAY'Z' = 
AXYZ = AABC. By lemma 2 with Y' and Z' in place of Y and Z, there 
exists an isometry χ such tha t Β = χ(Υ'), C = x(Z'), and χ is the 

(1) identity transformation, 
(2) reflection across a line through A, or 
(3) composition of the reflections across two lines through A. 

Let <p = xak. • 

According to theorem 3, congruent triangles are always related by some 
isometry. By the SSS congruence principle, triangles related by an isometry 
are always congruent. Thus, you should be able to define triangle congruence 
in terms of isometry in section 3.5. Some axiomatizations of geometry do 
exactly that. But this idea has more practical consequences, too. You can 
now easily extend the notion of congruence: Two figures 9 and 3F' are 
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called congruent—in symbols, & = —if &' = <p\&\ for some isometry 
φ. That's much more graceful than defining congruence separately for each 
interesting class of figure. You should check that this new definition is 
consistent with the section 3.5 definitions for segment and angle congruence, 
and with any other special cases you may have encountered earlier. 

Theorem 4 (Structure theorem). The group of plane isometries consists 
of the identity, reflections, and compositions of two or three reflections. 

Proof. Consider any isometry ψ, select any triangle AXYZ, and let 
Α=ψ(Χ), Β=ψ(Υ), and C=ifr(Z). By theorem 3, there exists an isometry 
φ such that A = φ (Χ), Β=φ(Υ), C=<p(Z), and φ is 

(0) the identity transformation, 
(1) a reflection, 
(2) the composition of reflections across two hnes, or 
(3) the composition of reflections across three hnes. 

By the uniqueness theorem, φ - ψ. • 

To what extent do these isometry types overlap? The identity transforma-
tion ι is a composition of two reflections: i-agag for any line g. Similarly, 
every reflection is a composition of three: ag - ag ag ag. You could write the 
structure theorem more tersely: Every plane isometry is a composition of 
two or three reflections. Is there any overlap between these two classes? 
The equation agah= o~jakat for lines g, h, j , k, and / leads to contra-
diction, as follows. Let (p=-agah and x-oxak so that φχ=σ^ By theo-
rems 6.4.4 and 6.5.4 and corollaries 6.5.7 and 6.5.8, each of φ and χ, and 
hence their composition, is a rotation or a translation. But the fixpoint set 
of a rotation or a translation is empty, a single point, or the entire plane, 
whereas that for a reflection is a line. Therefore, φχ ψ σ, —contradiction! 
No composition of two reflections is a composition of three. 

Compositions of two reflections are called even isometries; compositions 
of three are called odd. By the previous paragraph, every isometry is even 
or odd, but none is both. The inverse of an even isometry—a translation 
or rotation—is also a translation or rotation, hence it's even. Summarizing 
these results about even isometries, here is 

Theorem 5. The even isometries—the translations and rotations—constitute 
a group. 

The notions of even and odd isometry are closely connected with that of 
orientation, mentioned several times in earlier sections. Since orientation 
was defined via coordinates and a determinant, that aspect of the theory 
is presented later, in section 6.8. 
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You've considered the reflections and the even isometries already in 
considerable detail. The next section investigates the remaining type: 
compositions of three reflections. 

6.7 Glide reflections 

Concepts 
When do a translation and a reflection commute? 
Glide reflections 

In sections 6.4 and 6.5 you saw that the composition φ of reflections across 
three copencilar hnes g, h, and k is a reflection across another line of 
the same pencil. This section investigates φ when g, h, and k aren't 
copencilar. 

The first consideration seems unrelated, but it will provide the answer. 
When does a translation commute with a reflection? 

Theorem 1. Let τ : P-* P' be a translation that 's not the identity. Then 
τ and a reflection ag commute if and only if PP' II g for some point P. 

Proof. Figure 6.7.1 depicts the if argument. To verify the converse, suppose 
PP' and g intersect at a single point O. You'll find tha t rog(0) and 
agx (O) he on different sides of g. • 

When r and ag commute, their composition φ is called a glide reflection. 
In that case, φφ = Tagagr- ττ. This equation lets you determine r if you 
know φ; for any point P, let Ρ" = φφ(Ρ). Then r ( P ) is the midpoint of 
PP". You can also determine g, since σί = φτ'1. Thus you can call τ the 
corresponding translation and g the axis of φ. The vector corresponding 
to r is often called the vector of φ. 

When its translation is the identity, a ghde reflection φ is just a reflection. 
Otherwise, you can see from figure 6.7.1 that φ has no fixpoint. In tha t 
case, φ is an odd motion, but not a reflection. Therefore, it's the composition 
of the reflections in three noncopencilar hnes. Theorem 2 is the converse 
of this statement. 

Theorem 2. Klines k, h, and g are not copencilar, then okahag is a ghde 
reflection, but not a reflection. 

Proof, case 1: k and h intersect at a point O, which may not lie on 
g. Find the line h' ±g through O; it intersects g at a point P. (See figure 
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Ο 

Ρ Ρ' 

g 

τσ,(Ρ)=σ,τ(Ρ) 

Figure 6.7.1 
A commuting translation 

τ and reflection ag 

Figure 6.7.2 
Case (1) of the proof 

of theorem 2 

6.7.2.) Let k' be the image of h' under the rotation ahoh, so that ahah = 
σκσΗ·. Find the hne m χ k' through P, and the hne I ' i m through P. 
Then oKaa = σΡ = avam and ι o~Kav = r, a translation. If P' = 
τ(Ρ), then P' hes on m, hence ram is a glide reflection, but not a reflec-
tion. Finally, 

Case 2: k/h. Then k and g intersect at a point. By case (1), 
atohak is a ghde reflection τση with translation ι and axis m. Choose 
a point P, and set 0=τ\Ρ) a n d r ( P ) = Q. Then Ρΐ)= PQ, so r" 1 

and am commute and T'lam is a ghde reflection, but not a reflection. 
Finally, 

6.6 Isometries and orthogonal matrices 

Concepts 
Orthogonal matrices A 
Inverses and products of orthogonal matrices are orthogonal 
Equation of a rotation about the origin Ο 
Equation of a reflection across a hne through Ο 
Equations X' = AX + V always represent isometries 
Every isometry has a unique equation X' = AX + V 
Angle parameters for arbitrary rotations 
Determinants of orthogonal matrices and parity of isometries 
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So far, your study of isometries has employed mostly synthetic methods. 
You've used coordinates only to formulate equations for translations, rotations 
about the origin, and a few special line reflections. And those have figured 
only in rudimentary discussions of orientation. It's time to use coordinates 
more seriously to derive equations for all plane isometries and to complete 
the discussion of orientation. Section 6.9 will then use equations to study 
various compositions of isometries. 

For this section, use a fixed coordinate system with origin O, and the 
usual angular scale. 

The most efficient way to formulate equations for arbitrary plane isometries 
uses matrix algebra. For example, you can restate as single matrix equations 
the pairs of equations derived in sections 6 .5 and 6 .3 for a rotation pe about 
Ο and a reflection ah across the first axis. For each of these isometries 
X ~> X' the components of X' are 

x[ = Xj cos θ - x2 sin θ 
Pe 

A„ = 

x2 - xl sin Θ+ x2 cos θ 

X' =AgX 

cos θ -sin θ 

sin θ cos θ 
H = 

= * 1 

4 = " * 2 

X' = HX 

1 0 

0 -1 

Orthogonal matrices 

In this process, orthogonal matrices play a central role: matrices whose 
transposes are their inverses. That is, a square matrix A is orthogonal 
if A'A is the identity matrix I. For example, the matrices Ae and Η are 
orthogonal: 

AgAg — 
cos θ sin θ 

-sind cos θ 

c o s 2 0 + s i n 2 0 

0 

H'H = 
1 0 

0 -1 

cos θ -sin θ 

sin θ cos θ 

0 

s i n 2 0 + cos 2 0 

1 0 

0 ( - D 2 

= 7 

= 1. 

These examples show that some isometries that fix the origin Ο correspond 
to orthogonal matrices. In fact, every orthogonal matrix A represents 
an isometry X~* X' = AX tha t fixes O. To prove that, note tha t X-*X' 
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bijectively because A is invertible. Moreover, 0'=AO = 0 and for any 
points Ρ and Q, 

(P'Q')2 = (P' - Q')-(P' - Q') 
= ( P ' - Q')'(P' - Q') 
= (AP-AQ)l(AP-AQ) 
= (A(P-Q))'A(P-Q) 
= (P - QYA'AiP - Q) 
= (P-Q)'(P-Q) = (PQ)2. 

Thus P'Q'= PQ; the transformation X~*X' preserves distance. 
For any vector V, the transformation X~*X" =X' + V=AX+ Β is also 

an isometry: 

(P"Q")2 = (P" - Q")-(P" - Q") 

= ((/>' + V) - (Q' + V))-((P' + V) - (Q' + V)) 
= ( P ' - Q ' ) - (P ' - Q') = (P'Q')2 = (PQ)2. 

You'll soon see that you can represent every plane isometry X -* X" this 
way; there's always an orthogonal matrix A and a vector V such that 
Χ" =AX+ V for every point X. 

First, here are some simple and useful facts about orthogonal matrices. 
Clearly, the identity matrix / is orthogonal. The inverse of an orthogonal 
matrix A is orthogonal, for if Α'Α = Ι, then At=A~l and 

(A" 1 ) '^" 1 = (Α'^Ά' = (AA" 1 ) ' = Γ = I. 

Moreover, the product of orthogonal matrices A and Β is orthogonal: 

(AB) ' (AB) = ΒΆιΑΒ = BlB = I.21 

Now consider a line g = OP, where ray OP has angle parameter Θ. 
Find the ray OB with parameter ιΛθ, and let b=OB, as in figure 6.8.1. 
Consider the rotation pe = abah = ogab. This equation implies 

Figure 6.8.1 

1 This paragraph closely parallels the definition of a transformation group in section 6.1. Had 
this book defined the notion matrix group, it could speak in terms of the group of orthogonal 
matrices. But it avoids the more abstract group concepts because they're not so useful 
in this context. 
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°g ~ °bahab ~ °bah°hahPb ~ PeOhP'e • 

Isometries pe and ah correspond to orthogonal matrices Ae and H, so 
σβ corresponds to the orthogonal matrix 

AgHAg1 — AgHA.g 

cos 0 -sin 0 

sin 0 cos 0 

cos 0 sin 0 

sin 0 - cos 0 

cos2θ- sin2 θ 

1 0 

0 -1 

c o s ( - 0 ) - s i n ( - 0 ) 

s i n ( - 0 ) c o s ( - 0 ) 

cos 0 sin 0 

- s i n # cos^ 

2 8 in0cos0 

2 cos (9 sin θ -(cos2 θ- s in 2 (9) 

cos 2(9 

sin 2 0 

sin 2 0 

-cos 2 0 

Theorem 1. Any isometry that fixes the origin has equation φ (X) = 
AX, for some orthogonal matrix A. Every orthogonal matrix A has the 
form A = Ae or A = AgHA'e

l for some angle parameter 0. 

Proo/. You've already seen that for any orthogonal matrix A the transfor-
mation X-AX is an isometry tha t fixes O. Now consider an arbitrary 
isometry φ tha t fixes O. According to sections 6.6 and 6.7, φ must be 

(0) the identity, 
(1) a reflection ag across a line g, 
(2) a composition of two reflections, or 
(3) a ghde reflection. 

A glide reflection with a fixpoint is a reflection, so case (3) is included in 
ca se ( l ) . By sections 6.4 and 6.5, a composition φ of two reflections is 

(2 a) a translation, or 
(2b) a rotation p. 

A translation with a fixpoint is the identity, so case (2a) is included in case 
(0). Since/? fixes only its center and ag fixes only the points on g, just 
these cases remain: 

(0) 
(1) 

(2b) 

φ is the identity, with orthogonal matrix / , or 
φ is a reflection ag across a line g through the origin, with 
orthogonal matrix ΑθΗΑβ\ or 
φ is a rotation ρ about the origin, with orthogonal ma-
trix Ag. • 

Finally, consider an arbitrary isometry ψ. Let B=ifr(0) and r be the 
translation with vector -B. The isometry φ=τψ fixes the origin: 
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φ(0)=τψ(0)=τ(Β)=Β-Β=0. 

By the previous paragraph, there's an orthogonal matrix A such that 
φ (X ) = AX for every point X. Since r" 1 is the translation with vector 
-(-23) = 23, 

ψ(Χ)= τ-ιφ(Χ)= τι(ΑΧ)=ΑΧ + Β. 

The transformation determines A and 23 uniquely; for if AX+B = CX + 
D for every point X, then substituting X= Ο yields 23 = C, and substituting 
the kth unit vector shows that the kth columns of A and C are equal. 
This discussion has proved 

Theorem 2. The plane isometries are the transformations φ : X ~* X' = 
AX + 23 where A is an orthogonal matrix and 23 is an arbitrary vector. 
A and 23 are determined uniquely by φ. 

A more concise argument for theorem 2 is presented in the proof of theorem 
7.1.7. It doesn't refer to matrices Ag and H, but uses the uniqueness theorem 
and some simpler matrix algebra. But that proof conveys little geometric 
insight; it's reserved until you've gained more experience. 

A rotation φ: X -* X' about a center Ρ?0 has equation X' = AX + 23 
for some orthogonal matrix A. Let r be the translation with vector 
-23. Then τ φ: X~> AX is an even isometry that fixes Ο —that is, a rotation 
pg about Ο with angle parameter Θ. Thus A = Ae. Rotations with any 
center correspond to angle parameters just like the rotations about O! 

Parity 

If A is an orthogonal matrix, then 

1 = det I = det A'A = det A' det A = (det A) 2 , 

hence det A = ±1 . If φ is an isometry with matrix A, this determinant 
is called its parity, par φ. A rotation pg about Ο —an even isometry— 
has parity detAg= cos2 (9+ sin 2 (9= 1. In contrast, a reflection og across 
a hne g through Ο —an odd isometry—has parity d e t ( A g H A p ) = 
(det Ag)(detH )(det Ag)'

1 = det Η = - 1 . Theorem 3 shows that this 
pattern persists; parity provides an easy algebraic way to tell when φ is 
even or odd. 

Theorem 3. φ is even if par ψ = +1 , and odd if par φ = - 1 . 

Proof. A transformation φ : X — X' = AX + 23 preserves orien-
tation of a triangle APQR just in case d e t [ P ' - R',Q' - R'] and 
d e t [ P - R, Q - R] have the same sign. But 
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d e t [ P ' -R',Q'-R'] 
= det[(AP + B) - (AR + B), (AQ + B) - (AR + B)] 
- d e t [ A P - AR.AQ - AR] 
= det[ A(P-R),A(Q-R)] 
= detA[P-R,Q-R] 
= det A d e t [ P - R,Q - R] 
= ± d e t [ P - R,Q - R]. • 

Theorem 4. par φχ = par φ par χ and par φ'1 = par φ for any isometries 
φ and χ. 

6.9 Classifying isometries 

Concepts 
Compositions of reflections 
Identity, reflections, translations, rotations, and glide reflections 
Groups of even isometries 
Rotations about arbitrary centers 
Compositions of rotations and translations 
Sets of fixpoints and fixed lines 
Conjugacy 
Transforming coordinate systems 
Conjugacy classes 

In previous sections you've seen that all plane isometries have simple matrix 
equations, and you've studied some particular isometries, their matrices, 
and their relationships in considerable detail. Parts of these analyses aren't 
yet complete. For example, although you've seen that the sets of all transla-
tions and of all rotations about a point Ο form groups, you haven't studied 
in detail the compositions of translations and rotations, nor of rotations about 
different centers. This kind of work often involves analyzing an isometry 
with a comphcated definition, to fit it into the pat tern of this chapter: Is 
it the identity, a translation, rotation, reflection, or ghde reflection? What 
is its vector or center or axis? You've already started using the appropriate 
tools, without much attention to them. This section organizes them. They 
are employed to solve the example problems just mentioned, and to study 
in detail another kind of relationship—conjugacy—that's used to analyze 
symmetries in chapter 8. 



268 PLANE ISOMETRIES AND SIMILARITIES 

Classification 

The structure theorem in section 6.6 displayed a preliminary classification. 
A plane isometry is 

the identity, or 
a reflection, or 
a composition of reflections across two lines g and h,or 
a composition of reflections across three hnes g, h, and k. 

These classes aren't disjoint, since i-ogag and ag = o~go~gog for any g. 
Clearly, ag ah is the identity only when g = h. And by corollaries 6.4.7 and 
6.5.6 and theorem 6.7.2, agohak is a reflection just when g, h, and k are 
copencilar. Therefore, a slight modification of the language just displayed 
yields a classification with disjoint classes: 

Theorem 1. A plane isometry is 

(0) the identity, or 
(1) a reflection, or 
(2) a composition of reflections across two distinct fines, or 
(3) a composition of reflections across three noncopencilar hnes. 

For the rest of this heading, use a fixed coordinate system with origin 
O. Theorem 1 permits further refinement: 

Corollary 2. A plane isometry is 

(0) the identity /, or 
(1) a reflection ag across a line g, or 
(2a) a translation r v with vector Vj* 0, or 
(2b) a rotation pe with center Ο and 0mod 360° ^ 0°, or 
(3) a ghde reflection agrv with Vf O. 

You can often use fixpoint information effectively to identify an isometry. 
This table shows the fixpoint sets of the isometry classes in corollary 2: 

Class Isometry 

(0) ι 
(1) o, 
(2a) τν with V? Ο 
(2b) pe with 0 mod 360° 7*0° 
(3) ogTv with Vji Ο 

Fixpoint set 

the entire plane 
the hne g 
empty 
the center Ο 
empty 

In exercise 6.11.12 you can work out an analogous description of the sets 
of fixed lines. You'll find several examples of the use of fixpoint information 
later in this section. 
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Classes (0) and (2) together form the group oieuen isometries. Those 
in (1) and (3) are called odd. By theorem 6.8.3, you can tell whether an 
isometry is even or odd by ascertaining whether its parity—the determinant 
of its matrix—is +1 or - 1 . 

Rotations and translations 

The group of even isometries has some interesting subgroups. Corollary 
6.4.3 showed tha t the translations constitute a subgroup. In chapter 8 a 
yet smaller one is used to analyze ornamental pa t terns : the group of all 
translations TCV, where V is a specified nonzero vector. This set forms 
a group because it's closed under composition and inversion, and contains 
the identity: 

rcVTdV = T(c+d)V TcV * = r - ( c V ) = r ( - c ) V ' =
 T0 = T0V-

You can allow c and d to be any scalars, or restrict them to be integers. 
You get two different groups, depending on your choice. 

Theorem 6.5.3 showed tha t the rotations about a specified center also 
form a subgroup. For those about the origin, you've seen that composition 
corresponds to addition of angle parameters: ρηρβ = ρη+θ. This is also true 
for other centers. If φ : X -* Αη Χ + Β and χ : Χ -* Αβ Χ + C are rotations 
about a center Ρ with angle parameters η and Θ, then 

φχ(Χ) = φ(ΑβΧ + 0)=Αη(ΑβΧ+ C) + Β 

= ΑηΑβΧ + ΑηΟ + Β=Αη+θΧ + ΑηΟ + Β, 

so φχ has angle parameter η + θ. It follows tha t φ'ι has param-
eter -η. 

You can use the matrix representation of a rotation φ : X -* Αη Χ + Β with 
angle parameter η to analyze compositions of φ with other isometries. 
For example, if T:X-*X+V is any translation, then 

φτ(Χ) = φ(Χ+ V) = Αη(Χ+ V) + Β = Αη Χ + ANV + Β 

τφ(Χ)= τ(ΑηΧ+Β) = ΑηΧ+Β + V, 

so φτ and τφ are both rotations with the same angle parameter η, unless 
φ was the identity. For another rotation χ : X - * ΑΘΧ+ C you get 

φχ(Χ) = φ{ΑβΧ+ Ο=Αη(Α0Χ+ C) + Β = Αη+βΧ+ ΑηΟ + Β. 

As in the previous paragraph, φχ is a rotation with parameter η + θ, 
unless Αη+β is the identity matrix, in which case φχ is a translation. This 
proves 

Theorem 3. The composition of a rotation that 's not the identity with any 
translation is a rotation with the same angle parameter. The composition 
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of rotations with parameters χ and ψ is a rotation with parameter 
η + θ unless (η + θ) mod 360° = 0°. In that case, it's a translation. 

You can use theorem 3 to derive the equation of a rotation ψ with angle 
parameter θ but unknown center Ρ if you can find B= ψ(Ο). Consider 
Ρ=Τ-ΒΨ', since p(0) = 0, ρ is a rotation about Ο with angle parameter 
Θ. You know its equation, and from ψ=τΒρ you can derive the equation 
for ψ. 

Conjugacy 

In section 6.8, the isometry peahpg

x played a major role in deriving the 
matrix equation for a reflection across an arbitrary line g through O. This 
pat tern occurs so commonly, particularly in studying symmetry, that it's 
studied in detail. For any transformations μ and φ, the composition 
φμφ'1 is called the conjugate of μ by φ. When λ is a conjugate of μ, 
we write λ ~ μ. The next two theorems present some basic properties of 
conjugacy. They're used frequently, without mention, in later discussions. 

Theorem 4. Conjugacy is an equivalence relation. That is, for any λ, 
μ, and ν, 

μ ~ μ (reflexivity) 
λ~μ — μ ~ λ (symmetry) 
λ~μ&μ~ν=*λ~ν (transitivity). 

Conjugate isometries have the same parity. 

Proof, μ is its own conjugate by i. If λ is the conjugate of μ by φ, 
then μ is the conjugate of λ by φ'1. If λ is the conjugate of μ by φ and 
μ is the conjugate of ν by χ, then λ is the conjugate of ν by φ χ: 

Λ=φμφ-1 = φχνχΛφΛ = (φχ) ν(φχ)1. 

Finally, if λ = φμφ'1, then par>i = par $opar μ ο&τ(φ'Χ) = (par φ)*ρ&τμ = 
par μ, by corollary 6.8.4. • 

The equivalence classes generated by the conjugacy relation are called 
conjugacy classes. 

Theorem S. The only transformation that 's conjugate with the identity 
ι is / itself. Now consider any transformations φ, χ, and ψ, and let 
χ' and ψ' denote the conjugates of χ and ψ by φ. Then 

(a) χ'ψ' is the conjugate of χ ψ by φ, 
(b) Of')"1 is the conjugate of χ'ι by φ, and 
(c) χ' and ψ' commute just in case χ and ψ commute. 
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Proof. First, φιφ'1 = φφ'1 = i. Moreover, 

(a) φχψφ'1 = φ χι ψφ'1 = φχφιφψφ'\ 

(b) OrT1 = (φχφ1)1 = (φ-ιΥιχιφ-1 = W'V"' 
(c) χ'Ψ' = Ψ'Χ' ~ φχφ'ιφψφ'χ = φψφιφχφ'ι 

- φχψφ~ι = φψχφ~ι 

- χψ-ψ'ιφψχψ'ιψ 
- χψ= Ψχ· • 

Transforming coordinate systems 

The conjugacy concept is even more closely connected to the equations of 
isometries than the section 6.8 examples suggest. The connection is based 
on the idea of transforming a coordinate system All you need to describe 
# is the isosceles right triangle ΔΟΙ/ , ί^ in figure 6.9.1 tha t consists of 
the origin Ο and the axis points (7, and U2 with coordinate 1. An isometry 
φ t ransforms <& into another system 3) defined by the image APV^ 
of Δ017, U2. What if you use both coordinate systems—for instance, to study 
different aspects of some geometric figure? How are a point's # and ® 
coordinates related? Theorem 6 answers that question, and theorem 7 con-
nects these considerations with conjugacy. 

Theorem 6. If an isometry φ transforms coordinate system # into system 
3), then the ^ coordinates of each point X are the same as the 3) coordi-
nates of Y= <p(X). 

Proof. Consider figure 6.9.1. The figure formed by ΔΟΪ7 1ί7 2 and X is 
congruent to that formed by APVxV2 and Y. • 

Theorem 7. Isometries χ and ψ are conjugate if and only if there are 
coordinate systems under which they have the same matrix equation. 

Y' 

Figure 6.9.1 
Transforming a 

coordinate system 
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Proof. Consider coordinate systems # and Q>, points X and Y, and 
an isometry φ as in theorem 6. Suppose χ : X ~* X' has equation X' = 
AX + B with respect to Important: This equation treats X and X' 
as vectors of & coordinates! By theorem 6, the & coordinates of X' are 
the same as the S> coordinates of Υ' = φ(Χ'). Thus 

X'=AX+B « Χ' = χ(Χ) 

~ Υ' = φχφι(Υ). 

If ψ=φχφ'\ then X'=AX+B ~ Υ' = ψ(Υ). Since the 0 coordinates 
of Y and Y' are the same as the <S coordinates of X and X', you can 
conclude that 

Y'=AY+B ~ Y' = ψ(Υ) 

when you regard Y and Y' in the left-hand equation as vectors of 2 > 
coordinates. 

Conversely, suppose χ and ψ have the same equation with respect to 
coordinate systems <S and 3>. By theorem 6.6.3, # and @ are related 
by an isometry φ as in figure 6.9.1. Since the i? coordinates of X and 
X' are the same as the 3> coordinates of Y and Υ', 

X ' = A X + B - Y'=AY+B ~ Y ' = ^ ( Y ) . 
with X and X' with Y and Y' 
interpreted interpreted 
as vectors of as vectors of 
* coordinates 3> coordinates 

But the first paragraph of this proof guaranteed X' = AX + Β ~ Y' = 
ΨΧΨι(Υ)· Therefore ψ(Υ) = φχφ' \Y) for all Y; having the same 
equation implies conjugacy. • 

You now have two proofs of theorem 4; the word same in theorem 7 makes 
it obvious tha t conjugacy is an equivalence relation! 

Conjugacy classes 

By theorem 7, the half turns about any two points Ο and Ρ are conju-
gate ; with respect to coordinate systems with origins Ο and P, each has 
matrix form X -* X' = -X. By theorem 6.8.2, no other isometries have 
equations of this form, so the half turns constitute a single conjugacy class. 
But this result doesn't give complete information about the conjugate χ = 
φσρφ'1 of σΡ by an isometry φ. Even without theorem 7, you can con-
clude that it's a half turn; χ is even and self-inverse. You can classify it 
completely by fixpoint analysis: 
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X is a fixpoint of χ 
~ φσΡφ\Χ)=Χ 
~ σΡφ\Χ) = φ-χ(Χ) 
«· ( β 1 (X) is a fixpoint of σΡ 

~ ( β

1 ( Χ ) = Ρ 
- Χ=φ(Ρ). 

Thus = φσΡφ = σ^ ( ί > ) because ^ has exactly one fixpoint, φ(Ρ). 
You can jus t as easily analyze reflections. By theorem 7, reflections 

across any two hnes g and h are conjugate; with respect to coordinate 
systems with first axes g and h, each has the matrix form 

X-+X' = 
1 0 

0 -1 

By theorem 6.8.2, no other isometries have equations of this form, so the 
reflections constitute a single conjugacy class. Again, this result doesn't 
give complete information about the conjugate ψ = <pcrg(p~l of ag by an 
isometry φ. You can classify it completely by fixpoint analysis: 

X is a fixpoint of ψ 
~ φσ,φ-\Χ) = Χ 
— σβφ-\Χ) = φ\Χ) 
— φ~*(Χ) is a fixpoint of ag 

— <p~l(X) hes on g 
— X hes on the image set φ [ g ]. 

The fixpoints of ψ constitute the hne φ [ g ], so ψ must be the reflection 
across that line. That is, φσίφ~1 = aplg]. This paragraph and the previous 
one have proved 

Theorem 8. The half turns constitute a single conjugacy class. Moreover, 
φσΡφ'ι = o~p(P) for any point Ρ and any isometry φ. Similarly, the reflec-
tions constitute a single conjugacy class, and <pog<p~l = σφ1ί] for any hne 
g and any isometry φ. 

Analyzing translations is a httle more comphcated. Consider a point 
Ο and translations r and v; let 

Τ = r ( O ) t = OT 
U=v(0) u = OU. 

By theorem 7, τ and υ are conjugate just in case t = u. With respect to 
coordinate systems with origin Ο and with Τ and U on the positive rays 
of the first axes, they have matrix forms 
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X-*X'=X + 
t 

0 
X-*X'=X + 

u 

0 

and these are the same just in case t = u. Theorem 9 provides complete 
information about the conjugate υ = φτφ'ι of r by an isometry φ: 

Theorem 9. The conjugacy class of a translation τ whose vector has length 
t consists of all translations with vectors of that length. If r and an isometry 
φ have equations r : X-*X'=X+T and φ :Χ-*Χ' =AX+B with respect 
to a single coordinate system, then υ = φτφ'1 is the translation with 
vector AT. 

Proof. The second sentence remains to be proved. Since X = A'1X' -
A'XB, it follows that φ1 has matrix form X~> A'lX - A'lB and 

v(X) = φτφι(Χ) = φτ(ΑιΧ - A^B) = φ(Α'Χ - Α~λΒ+ Τ) 
= Α(Α'ιΧ-ΑιΒ+Τ) + Β = Χ + ΑΤ.+ 

The final results of this section provide analogous information for ghde 
reflections and rotations. Their proofs differ. The argument for theorem 
10 can use the concise techniques of function composition. But theorem 11 
uses matrix computation, because that 's convenient for handhng angle 
parameters. 

Theorem 10. Choose a coordinate system. The conjugacy class of a glide 
reflection χ with axis g and vector V consists of all ghde reflections with 
vectors whose length is the same as that of V. The conjugate of χ by an 
isometry φ : X— X' = AX+ Β is the glide reflection with axis <p[g] and 
vector AV. 

Proof. Find points Ο and P o n g with V=P - O, so that r v = σ0σΡ 

and x=ogTv. If φ is an isometry, then by theorems 8 and 9, 

φχφ'1 = φσβφ'χφτνφ'ι φσ,φ'1 = arlg] φτνφ-χ=τΑν. 

Define 0' = φ(0), Ρ' = φ(Ρ), and V = Ρ' -Ο', so that O' and P' lie 
on <p[g] and 

φτνφ'ι = φσ0φ'ιφσΡφ'ι = σ0.σΡ. = τν·. 

Thus φχφ'1 is the ghde reflection with axis <p[g] and vector V. 
Conversely, assuming that ψ is a ghde reflection with axis g' whose 

vector V has the same length as V, find points O' and P' on g' with 
V'=P'-0', so that iy. = σ0.σΡ. and ψ=σ£.τν.. By theorem 6.6.3, 
there's an isometry φ such that φ(0) = 0' and <p(P) = P'. It follows that 
(p[g]=g'. Then 
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τ ν ~ <rp{0)aplP) = φσ0φ'λφσΡφ'ι = φσ0σΡφ'γ = φτνφ'ι 

ψ = φσ/ιφ'ιφτνφ~ι = φσβτνφ'ι = φχφ'1. • 

Theorem 11. Suppose χ is a rotation, not the identity, with angle parameter 
θ and center P. Its conjugate by an isometry φ is a rotation ψ with center 
<p(P). Moreover, ψ has angle parameter θ or -Θ, depending on whether 
φ is even or odd. 

Proof, ψ-φχφ'1 is a rotation with center φ(Ρ) because that 's its only 
fixpoint: 

φχφ'\Χ)=Χ ~ χφ'1 (X) = φ'ι(Χ) ~ φι(Χ) = Ρ - Χ= φ(Ρ). 

Suppose φ is even. From the matrix representations φ:Χ~*ΑηΧ+Β and 
χ-.X^AgX+C, you get 

φχφ'Χ(Χ) = Αη AgA~1X+ a constant vector 

= ΑηΑβΑ.ηΧ+-

= Αη + β.ηΧ+-

= ΑβΧ+-, 

so φχφ'1 is a rotation with parameter Θ. 
Now suppose ω is an odd isometry. Consider the even isometry φ = 

σΗω, where h is the first axis. Then φχφ'1 is a rotation ρ with param-
eter Θ: 

Ρ = (v)jr(ffAw)-' = σ,,ωχω^σ; 
ohpah = ωχω1. 

ι _ οκ(ωχω-1)σΗ, 

From the matrix equation ρ : X~* AgX+ B, you see that 

ωχω~ι(Χ) = HAgHX+ a constant vector, 

where Η is the matrix corresponding to the reflection ah. Thus 

H = 

HAgH = 

1 0 

0 -1 

1 0 cos θ - s in θ 1 0 

0 - 1 sin θ cos θ 0 -1 

cos θ - sin θ 1 0 

sin θ - cos θ 0 -1 

cos θ sin θ 

- sin θ cos θ 

cos(-0) - s i n ( - 0 ) 

s i n ( - 0 ) cos(-0) 
= A_ 
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Therefore, ω χω1 is a rotation with parameter -η. • 

Corollary 12. Rotations with angle parameters η and θ are conjugate 
just in case | η mod 360° \=\θmod 360°| . 

You can use theorem 11 to derive the equation of a rotation ψ with center 
P, as follows. Let ρ be the rotation about the origin with the same angle 
parameter, and let φ=τΡ, so that ψ=φρφ'ι. The equations of φ, ρ, 
and φ'ι are easy to find, and from those you derive the equation for ψ. 

6.10 Similarities 

Concepts 
Similarities and their ratios 
Contractions and dilations 
Invariants 
Similarity group 
Uniqueness theorem 
Classification theorem 
Equation X' = rAX + Β of a similarity 
Fixpoint theorem 
Homothetic rotations and reflections 
Even and odd similarities 

Studying geometric transformations more general than isometries usually 
requires methods beyond those developed in this chapter. But one broader 
family of transformations, the similarities, needs little new. Let r be a 
positive real number. A plane similarity with ratio r is a plane transforma-
tion ψ :P~* P' such that for all points Ρ and Q, 

A similarity can't have two different ratios because r (PQ) = r' (PQ) and 
Pr^Q imply r = r'; so it makes sense to call r the ratio of ψ. 

P'Q' = r(PQ). 

Figure 6.10.1 Dilation 
about Ο with ratio r 

Ο Ρ Ρ' 

r=1.7 OP'=r(OP) 
OQ^riOQ) 
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Evidently, every isometry is a similarity with ratio 1. As another example, 
select any point Ο and consider the transformation φτ0:Ρ-*Ρ' such that 
0' = 0 and for PfO, P' is the point on OP with OP' = r(OP). (See 
figure 6.10.1.) If Ο is the origin of a Cartesian coordinate system, so that 
you can regard points as vectors, then P' = rP for every point P. If r < 
1 or r > l , then φ τ 0 is called a contraction or dilation about O.22 

Theorem 1. φ τ 0 is a similarity with ratio r. 

Proof. By theorem 3.11.2, 

(P'Q')2 = (Ρ' -Q')-(P' -Q') = (rP-rQ)(rP-rQ) 
= r2(P-Q)-(P-Q) = r2(PQ)2.* 

You'll see soon, in the classification theorem, tha t every similarity is an 
isometry or the composition of an isometry with a dilation or contraction. 
That's why there's not much new in this section. First, though, theorems 
2 and 3 record some general properties of similarities tha t you'll need for 
this analysis. 

Theorem 2. A similarity ψ: Χ->Χ' with ratio r leaves angle measure 
and betweenness invariant. Thus any geometric property that you can define 
in terms of betweenness is invariant. In particular, ψ is a colhneation. 
The image of a circle with radius t is a circle with radius rt. The image 
of a triangle with area s is a triangle with area r2s. 

Proof. The equation mZX YZ=mlX'Y'Z' follows from the SSS similarity 
principle. For betweenness, proceed as in the proof of theorem 6.2.5, taking 
into account ratio r: 

X-Y-Z ~ XY+YZ = XZ 
- r(XY) + r(YZ) = r(XZ) 
- X'Y' + Y'Z' = X'Z' 
~ X'-Y'-Z'. 

If Ο is the center of circle Γ with radius t, then a point X hes on Γ if 
and only if OX=t. This condition is equivalent to 0'X' = rt, so X lies 
on Γ if and only if X' hes on the circle with center O' and radius rt. 
The area result follows from theorem 3.9.7. • 

Theorem 3. A composition of similarities with ratios r and s is a similar-
ity with ratio rs. The inverse of a similarity with ratio r is a similarity 

Many authors also use the term dilation when r < 1. That jars, so this text uses contraction 
in that case. Don't confuse dilation with dilatation; the latter term has a different meaning 
—see the heading Dilatations in section 6.11. 
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with ratio r"1. Therefore, the similarities form a transformation group that 
contains all isometries. 

Proof. \iP~*P' and P'-*P" are similarities with ratios s and r, then 
for all points Ρ and Q, P"Q" = r (P'Q') = rs (PQ), so the composi-
tion Ρ - Ρ" is a similarity with ratio rs. Moreover, PQ = r'lr(PQ) = 
r'x (P'Q'), so the inverse transformation P' -» Ρ is a similarity with 
ratio r"1. • 

Corollary 4 (Uniqueness theorem). Plane similarities χ and ψ coincide 
if χ(Χ) = ψ(Χ) for three noncollinear points X. 

Proof. Suppose χ and ψ have ratios r and s, points Xx and X2 

are distinct, χ(Χι)=ψ(Χι), and χ(Χ2) = ψ(Χ2). Then r (XXX2) = 
χ(Χχ)χ(Χ2) ~ Ψ(Χ\)Ψ(Χ%) = s (ΧΧΧ2), hence r = s. Since its ratio is 
r/s = l , the similarity φ = χψ'ι is an isometry. Since φ fixes three noncol-
linear points, it's the identity, by theorem 6.2.7. • 

Lemma 5 is a preliminary version of theorem 8. It's introduced now, to 
facilitate use of the equation of a similarity in the final version of theorem 8. 

Lemma 5. Given any point Ο and any similarity ψ with ratio r, there's 
an isometry χ such that ψ = χφΤιο· 

Proof. The composition χ = ψφ]}0 is a similarity with ratio r r " ' = l , 
hence it's an isometry. Moreover, ψ-χφΤιο·^ 

Theorem 6. The similarities are the transformations X ~> X' = rAX + Β 
where r>0, A is an orthogonal matrix, and Β an arbitrary vector. The 
transformation determines r, A, and Β uniquely; r is the similarity ratio. 

Proof. Every such equation defines a similarity: the composition of the 
isometry X~> AX + Β with φ τ 0 . On the other hand, given a similarity 
ψ : Χ~*Χ', lemma 5 provides an isometry χ such that ψ = χφΓιο· By 
theorem 6.8.2 there's an orthogonal matrix A and a vector Β such that 
χ(Χ)=ΑΧ+Β for all X, so that ψ has the desired equation. If equations 
X' = Γ Α , Χ - Γ B J and X' = sA2X+ B2 represented the same transforma-
tion, it would be a similarity with ratio r = s. But then the transformation 
X -* X" = r~lX' would be an isometry with equations X" = A, X + r'lBx 

and X" =A2X+r'1B2, so AX=A2 and r'lB1 = r'lB2 by theorem 6.8.2, 
hence Bx = B2. • 

Theorem 7 (Fixpoint theorem). If ψ:Χ~*Χ' is a similarity with ratio 
r, then r = l or ψ has exactly one fixpoint. 

Proof. First consider the case r < l . Select any point X0 and define points 
XUX2,... by the rule Xm+1=X^. Then 
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Xx X2 — ΧόΧχ — τ (Χ 0 Χι), 
Χ2Χ3 = Χ ί Χ 2 = Γ (Χ1 ^2) = Γ (Χ0 -^ΐ) · 

so in general, 

XnXm*l = r>n(XoX\)-

Now let m < η and consider the i th coordinates xmi and xni of points 
X m and Xn: 

\Xmi ~ Xni\ * XmXn * XmXm+l + Xm + lXm + 2 + " + Xn-lXn 

= rm(X0Xx) + rm+l (XM + •·· + r - iXoX,) 

= rm(l + r + — + r*—)(X0X1)-

The sum in parentheses is the initial part of a convergent geometric series, so 

rm(X0Xl) 
Xni\ s ' ' (*o*i> = 1 - r 

Since l im m rm = 0, you can make | * m i - Λ η ί | arbitrarily small by taking 
m sufficiently large and n> m. That is, xoi, xu, x2i, . . . is a Cauchy 
sequence; it has a limit x{. Let X be the vector whose i th component, 
for each i, is oc-. Then X is a fixpoint. To see that, use the equation X ' = 
r AX + Β provided by theorem 6: 

i th component of X' = i th component of rAX+ Β 

= (ZjraijXj) + bi 

= (Ejraijhmnxnj) + bi 

= 0im^jraiJxnj) + bi 

= l i m n ( ( E ; rai}xnj) + b) 

= hm„( i th component of rAXn + B) 

= l im„(i th component of X n ) 

= h m n ( i t h component of X n + 1 ) 

= hmaxn+lΛ = xt = i th component of X. 

Thus X ' = X, as claimed. 
Now consider the case r > 1. Since ψ'1 is a similarity with ratio < 1, 

it has a fixpoint X by the preceding paragraph. But then X is a fixpoint 
of ψ, too. 

Finally, to prove uniqueness, suppose r ̂  1 and ψ has fixpoints X and 
Y. Then X 'Y ' = r (XY) = r ( Χ Ύ ' ) , so X ' Y ' = 0, X ' = Υ', and X = Y. • 

The Cauchy sequence technique for proving the fixpoint theorem has a 
flavor different from that of the rest of this book. The only other par t based 
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on limits is the discussion of π in section 3.14. Cauchy sequences occur 
frequently in real analysis. In fact, similarities with ratio r < 1 are examples 
of the contraction mappings that you study in analysis: mappings such that 
X'Y's. r (XY) for all X and Y. And the proof of the fixpoint theorem is 
just an adaptation of a familiar proof of the contraction mapping theorem. 
That result 2 3 —every contraction mapping has a fixpoint—has several major 
apphcations. For example, it establishes the convergence of various iterative 
approximation methods such as the Newton-Raphson technique, and it implies 
the existence of solutions to first-order ordinary differential equations satis-
fying Iipechitz conditions. You can prove the fixpoint theorem without using 
analysis methods, but that proof will be less succinct, and may require different 
arguments for two and three dimensions. 2 4 

Compositions χφ,ι0 where χ is a rotation about Ο or a reflection across 
a hne through Ο are called homothetic rotations or reflections™ 

Theorem 8 (Classification theorem). A plane similarity is an isometry, 
a homothetic rotation, or a homothetic reflection. 

Proof. By the fixpoint theorem, if a similarity ψ isn't an isometry, then 
it has a fixpoint O. Let r be its ratio, and define χ= ψφτ-\0> so that 
Ψ ~ ΧΨτ,ο· Then χ is an isometry with fixpoint O'. By the discussion 
following corollary 6.9.2, it's a rotation about O' or a reflection across a 
hne g through O'. • 

A similarity t/r:X~>X' = rAX+B with r > 0 preserves orientation just 
in case the isometry χ : X ~- AX + Β does—that is, just in case det A = 
1. To see this, note that for any points P, Q, and R, 

det[P' -R',Q' -R'] 
= det[(rAP + B) - (rAR + B),(rAQ + B) - (rAR + B)] 
= det [rA(P-R),rA(Q-R)] 
= (det rA) det [P - R, Q - R ] 
= r2(det A) det [P - R,Q - R). 

ψ is called even if orientation is preserved; odd if it's reversed. 

See Bartle 1964, 170 for the contraction mapping theorem. 

See Exercises 6.11.41-44 and Martin 1982, 141. 

Homothetic stems from the Greek prefix homo- and verb tithenai, which mean same and put. 
It's the opposite of antithetic. 
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6.11 Exercises 

Concepts 
Curved mirrors 
Classifying isometries defined as compositions or by equations 
Constructions with isometries and similarities 
Billiards and dual billiards problems 
Equations of reflections 
Determining equations of isometries and similarities 
Coordinate transformations 
Alias and alibi interpretations of equations 
Reflection calculus 
Distance-preserving functions 
Dilatations 

This section contains forty-five exercises related to earlier parts of the chapter. 
Like other exercises in this book, they're essential components of its develop-
ment. A few—for example, exercises 1, 5, and 12—provide more experience 
with reasoning techniques introduced earher. Others, particularly those 
on the classification and the equations of isometries, show you how to do 
the computations required to use the theorems derived in the text. The theory 
is streamlined into an efficient outhne of the results important for applica-
tions. But those computations seem unwieldy at first. That would obscure 
the main points of the theory, so the computations are clustered here. Some 
may require awkward matrix arithmetic. There was no effort to avoid that. 
If you find a calculation too tedious, use mathematical software. 2 6 

This chapter's theory is often applied to analytic geometry problems. That 
work usually has a different flavor because it uses coordinate transformations. 
Those apply to the numbers used to locate points, not to the points themselves, 
like geometric transformations here. Exercise 31 shows how to make the 
transition. A few exercises introduce topics that could be developed much 
further. Those on reflection calculus, and on dilatations, for example, lead 
into deep studies in foundations of geometry. Chapter 7 extends the theory 
of isometries and similarities to three dimensions. Most of the exercises 
in this section can be extended as well. You'll see tha t in section 7.7. 

Basic exercises 

Exercises 1 and 2 present some important properties that apply to transforma-
tions in general, not just those in geometry. For instance, exercise 2, par t 
1, asks what you can say about functions φ and χ whose composition is 

X(Plore) (Meredith 1993) is a good choice. 
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surjective, and what you can not say, in general. To show that you can not 
claim tha t φ or χ has some property you must provide a counter-
example: specific functions whose composition is surjective, but for which 
& is not true. Searching for counterexamples for exercise 2, you should 
concentrate on functions whose domains and ranges are very small finite 
sets. You won't need more than that to make the required properties fail, 
and you'll avoid confusion by other phenomena that are really irrelevant. 
That kind of reasoning may seem nongeometric to you, but no—those tiny 
counterexamples are always contained in the larger ones that may seem 
closer to geometry, and they're much easier to understand. 

Exercise 1. Prove that two self-inverse transformations of a set D com-
mute if and only if their composition is self-inverse. 

Exercise 2. Consider functions (p:S->T and χ-.D-S, so that φ χ :D-< Τ. 
Part 1. Prove that if φ χ is surjective, then φ must be surjective. Find 

an example where φ χ is surjective, but χ is neither surjective nor injective. 
Part 2. Prove that if φ χ is injective, then χ must be injective. Find 

an example where φ χ is injective, but φ is neither injective nor surjective. 
Part 3. Prove that if φ χ is bijective, then φ must be surjective and 

χ injective. Find an example where φχ is bijective, but neither φ nor 
X is. 

Exercises 3 and 4 present some fundamental facts about linear functions. 
It wasn't necessary to state them in the text of chapter 6 or 7 because all 
linear functions considered there are isometries or similarities, and for those 
function classes these facts are evident. Had chapter 6 introduced isometries 
through their equations, however, the results in these exercises would have 
been incorporated in the text before that point. To prove them, use appendix 
C material about Gauss elimination, matrix invertibihty, and determinants. 

Exercise 3. Consider a matrix A, a vector B, and the hnear function 
X-AX+B t ha tmape Mn to itself, where n = 2 or 3. Show that these 
conditions are equivalent: 

(a) A is invertible, (c) X-AX + B is injective, 
(b) X-+AX+B is bijective, (d) X~*AX+B is surjective. 

Exercise 4. Let η = 2 or 3. Show that the range of a hnear function 
X -* AX + Β tha t maps Mn to itself is a point, line, plane, or the entire 
space. In which cases is φ bijective? Suggestion: First consider the function 
φ:Χ-*ΑΧ. 
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Theorem 6.6.3 shows that you can map any triangle onto any congruent 
one with an isometry; the uniqueness theorem, corollary 6.2.8, says tha t 
you can do that in only one way. The latter statement requires you to regard 
a triangle as an ordered triple of vertices. You'd lose the uniqueness if you 
defined a triangle as a mere set of vertices or as its boundary—the union 
of its edges—for there are several isometries that map the set of vertices 
and the boundary of an equilateral triangle onto themselves. You'll see much 
more detail on these considerations in chapter 8. In exercise 5 you can study 
the same question for a simpler example, a segment. As defined in section 
3.2, a segment is the set of points between its vertices, not an ordered pair 
of vertices. 

Exercise S. Show that if Σ and Τ are segments of the same length, then 
there's a rotation ρ such that ρ[Σ] = Τ. Could there be another isometry 
φ such tha t φ[Σ]=Τ? Could there be another rotation? 

At the beginning of section 6.3 you saw how to find the shortest path from 
one point to another via a point on a mirror line g by reflecting one of the 
points across g. And you saw how this relationship corresponds to the equality 
of incidence and reflection angles. Exercise 6 shows that the relationship 
holds for a smoothly curved mirror as well. You need differential calculus 
to work with the curve. 

Exercise 6. Consider a smooth curve Γ and points A and Β not on Γ. 
(See figure 6.11.1.) Suppose point Ο hes on Γ and 

AO+OBsAX+XB 

for every point X on Γ. Let g be the tangent to f a t Ο and select points 
U and V on g such that U-O-V. Prove tha t lUOA = LVOB. Sugges-
tion: Use a coordinate system with first axis g and origin O. Since Γ 
is smooth, there's a differentiable function / on an open interval & containing 
0 such tha t for any xx e a point X= <xx,x2> hes on Γ jus t in case 
x2=f(xx). 

Figure 6.11.1 
Exercise 6 
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For a provide 
reflection axis 
translation vector 
rotation center and an angle parameter 
ghde reflection axis and vector. 

Exercises 8 and 9 are aperitifs—you'll use this classification to verify some 
properties of isometries in general. 

Exercise 8. Show that an isometry φ is even if and only if φ = χχ for some 
isometry χ. 

Exercise 9. Show that every plane isometry is the composition of two self-
inverse isometries. 

Exercise 10. Prove a result like theorem 6.9.3 by continuing the proofs of 
corollaries 6.5.7 and 6.5.8 and analyzing the angles formed by the hnes 
mentioned there, without referring to any equations of transformations. 
Suggestion: Be careful about the sig/is of the angle parameters. You don't 
need to get precisely the same result as the theorem. It was postponed from 
section 6.5 to section 6.9 because consistent assignment of angle parameters 
for different centers is so hard to describe. 

Exercise 11 presents a nearly obvious result that you may use in several 
later exercises to find the axis of a ghde reflection. 

Exercise 11. Show that the axis of a ghde reflection φ:Χ-*Χ' consists 
of the midpoints of all segments XX'. 

The next exercise invites you to use a technique from section 6.3 to 
derive Fagnano's theorem, a morsel of triangle geometry mentioned in 
section 5.8. 

Exercise 7. Show that of all triangles with vertices X, Y, and Ζ on the 
edges of an acute AABC, the orthic triangle has the shortest perimeter. 
Suggestion: Show first that for a given X on BC the shortest XY+ YZ + 
ZX is σχ}}(Χ)σ(<λ(Χ) =2(AX)sinm/A. 

Classifying Isometries 

Most exercises under this heading ask you to classify an isometry. That 
means decide whether it's the identity or one of these types of isometries, 
and provide the information in the right-hand column: 
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Exercise 12. Construct a table analogous to the one following corollary 6.9.2, 
to show the possible sets of hnes tha t are fixed by the various isometries. 
A fixed line might or might not consist entirely of fixed points. Lines tha t 
do are called pointwise fixed. What isometries have pointwise fixed hnes? 
What isometries have fixed fines, no point of which is fixed? 

The remaining exercises under this heading and some later ones require 
you to classify various isometries according to the scheme presented earher. 
The main tools available are their fixpoints and parity—discussed in earher 
sections—and exercises 11 and 12. Use those tools! 

Exercise 13. Let VXV2- • • Vn be a convex polygon and θχ,θ2,..., θη be 
the measures of the corresponding vertex angles. At each vertex V( draw 
arc AJBi with measure di and radius ViAi = ViBi small enough that no 
two of these arcs intersect. (See figure 6.11.2 for an example with η = 4.) 
Consider translations 

r, with vector BlA2 

τ2 with vector B2 A3 

τη with vector BnAx 

and for i = l η consider rotation pt with center V{ and angle parameter 
di. Classify the isometry τηpn τη. l />„_,··· τχ px.

27 

Exercise 14. Classify the composition of ghde reflections with perpendicular 
axes g and h and vectors V and W. 

Exercise IS. Classify the compositions of the reflection across the first 
coordinate axis and the translation with vector < 1, 2>, in both orders. 

Exercise 16. Let a, b, and c denote the lines containing the edges opposite 
vertices A, B, and C of AABC. Let D, E, and F denote the feet of 

Figure 6.11.2 
Exercise 13 

This exercise is due to Lawrence Levy (1970, 32). 
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the corresponding altitudes. Show that D and F he on the axis of φ = 
oaahac. Classify φ when 

(a) mZA = mlB = 60° (c) mZA = mZC = 45° 
(b) mlA = mlB = 45° (d) το. IA = 30° and mZC = 90°. 

Constructions 

Following a more traditional approach to geometry, you'd have paid more 
attention to constructing the objects under study—probably with tools limited 
to straightedge and compasses. In fact, Euclid's axiomatization is sometimes 
viewed as a study of just those constructions, rather than of the space in 
which we live. This text has avoided them because they're no longer in the 
mathematical mainstream. The next seven exercises, however, merge trans-
formational geometry into the older stream. 2 8 Each can be solved by traditional 
methods with no reference to transformations, but the isometries and similar-
ities you've studied in this chapter shed more hght on them. And if you seek 
the simplest constructions with straightedge and compasses, transformations 
may point the way. 

Exercise 17. Suppose you want to carom ball A off the back, right, and 
front walls g, h, and k of a billiards table, to strike ball B, as in figure 
6.11.3. How do you find the point Ρ on g at which you must aim? 
Suggestion: Try more modest coups first. 

Exercise 18. Consider nonparallel hnes g ψ- h and three points P, Q, 
and R. Find a three-segment path beginning on g and ending on h, such 
that P, Q, and R are the midpoints of its segments. Can there be more 
than one such path? What if g = h or g II hi 

Did your solution of exercise 17 require that the table be rectangular? 
Probably not. Could you extend it to apply to a convex polygonal table with 
any number of edges? Probably so—you can buy or build novelty bil-
liards games like that. Exercise 18 didn't place any limitations on points 

Ρ g 

Figure 6.11.3 
Exercise 17 

k 

Several exercises under this heading are due to Max Jeger [1964] 1966. 
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Figure 6.11.4 
Exercise 19 Ο ο 

\ 

Ρ, Q, andi? . Can you extend it to apply to any number of points? Exercises 
34 and 35 consider closed polygonal paths of this sort. 

Exercise 19. Consider two circles on the same side of line g. Find a point 
Ρ on g such that tangents through Ρ to the circles make equal angles with 
g. How many such points are there? Suggestion: Reflect one of the circles 
across g, as in figure 6.11.4. 

Exercise 20. Consider two points A and Β on the same side of hne g. 
Find points Ο, P, and Q on g such that 2mlOPA = mlQPB. Sug-
gestion: Consider exercise 19. 

Exercise 21. Consider a point Ρ and concentric circles Γ and Δ. Look 
for points Q and R on Γ and Δ such that APQR is equilateral. Under 
what condition on Ρ, Γ, and Δ is a solution possible? How many solutions 
can there be? Suggestion: On which two circles must Q he? 

Exercise 22. Given AABC with m/.A<90", find points C, and C 2 on 
the edge opposite C and points At and Bx on the edges opposite A and 
Β such that AlBlClC2 is a rectangle and ClC2 = 2(B1Ci). 

Exercise 23. Consider a point B, two circles Γ and Δ, and any number 
i > 0 . Find points C and D on Γ and Δ such that C-B-D and BC/BD = 
t. How many solutions could there be? Describe, as completely as you can, 
the set SB of points Β for which a solution is possible. Suggestions: On 
which two circles must C he? Describing SB is difficult; you may want 
to plot the points Β corresponding to several thousand pairs of points C 
and D on / " a n d Δ. The details of your description may vary depending 
on the situation of the circles. 

Exercises on equations 

Each exercise under this heading is concerned with the equation X' = AX+ Β 
of a transformation φ:Χ-*Χ'. In exercises 24 to 26 the problem is simply 
to find the equation—that is, the entries of A and B. 
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Exercise 24. Two rotations about the point Z = < 1 , 2 > each map the line 
2xx - x2 = 0 onto the line xt - x2 = - 1 . Determine their equations, accurate 
to four decimal places. 

Exercise 25. Consider a point P= <p}, p2> f- Ο and the hne g± OP 
through O. 

Part 1. Show that at has matrix 

Part 2. Consider the line h± OP through a point Q. Show that ah : 
X-+X' has equation 

X'=AX+ —KQ. 
ptp 

Part 3. Find an equation for the reflection across the hne h with equa-
tion Xj + 2x2 = 3 . 

Part 4. Find an equation for the ghde reflection with axis h and 
vector < 2 , - l > . 

Exercise 26. Consider points A = <1,0>, B = <2 ,0>, and C = <0 ,2> , 
and the feet D and F of the altitudes of AABC through A and C. 
According to theorem 5.8.1, AABC ~ A DBF. 

Part 1. Find the equations of the similarity φ : X ~* X' tha t maps 
AABC onto A DBF. 

Part 2. What's its ratio? 
Part 3. Express φ as a composition of some or all of these: reflection, 

translation, rotation, glide reflection, dilation, and contraction. 
Part 4. Find its fixpoint. 
Suggestion: The entries of the matrix and vector for φ form the solution 

of a system of six linear equations in six unknowns. You might want to solve 
that for part (1), then work on (3). Or you could solve (3) first geometrically, 
then do (1). 

Exercise 27 asks you to classify four transformations. First, show that 
they're isometries. Then you have the same tools at hand as for earher classifi-
cation exercises. Use them! The logic is the same, but now you compute 
with coordinates. 

A = I - —K, where K=PP' = 
ptp 

Pi P\P2 

P2P1 Pi 

Exercise 27. Show that each of the following systems of equations represents 
an isometry φ, and classify it. 
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(a) 
'*; = 

4 = 

\ X l + \ X 2 

-±x,+?-x~ 
5 1 5 1 

(c) ' 
X[ = 

Χ2 = 

6 2 

— XN ~ 1 
5 i 

(b) 
' x[ = 

, * 2 = 

(d) < 
' X[ = 

X2 = - 7 ^ " 

-«o + l 
5 2 

- 1 
5 ^ 

The next three exercises could have been placed under the earlier Classifying 
isometries heading. To solve them you don't really need to work with their 
equations. But tha t might be the simplest way. 

Exercise 28. Classify the compositions of the 1° rotation about point 
< 2 , 3 > and the translation with vector <4 ,5> , in both orders. 

Exercise 29. Classify the compositions of the 1° rotation about point 
< 2 , 3 > and the 4° rotation about point <5 ,6> , in both orders. 

Exercise 30. Classify the compositions of the 10° rotation about the origin 
and the reflection across the line with equation xx + x2 = 1, in both orders. 

A geometric transformation φ associates with points of a figure those 
of a corresponding figure—its image—perhaps in another place. You could 
call this the alibi version of the concept—alibi is the Latin word for elsewhere. 
There's another version, often used in analytic geometry. Suppose the figure 
is a coordinate system; then so is its image. A point Ρ with coordinates 
<xux2> relative to the first system has coordinates <xl,x2> relative 
to the second. Associated with φ is a coordinate transformation tha t maps 
the coordinate pair <xltx2> to <x[, x2>. Some texts regard that as the 
basic geometric transformation concept: Points of a figure Φ have two cor-
responding coordinate pairs. You could call it the alias version—alias is 
the Latin word for otherwise, to which we often add known as. Suppose you 
want to use two coordinate systems to model different aspects of some 
phenomenon. It's usually easy to find the isometry φ that transforms one 
into the other; it's par t of the problem framework. Then you can derive 
an equation for φ. How do you use tha t to find equations tha t relate 
the corresponding coordinate pairs < x l f x 2 > and <x[,x'2> of a point PI 
(These considerations were introduced, with shghtly different notation, 
under the heading Transforming coordinate systems in section 6.9.) Figures 
Φ in your model may be described by equations that relate the two coordi-
nates of points Ρ of Φ. How do you convert an equation tha t relates xx 

and x2 to one for x[ and x2? Exercise 31 provides some examples of this 
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process. You'll have to decide when and how to use the equation of φ and 
that of its inverse. You'll see that how you transform equations that describe 
figures depends on whether they're single equations or pairs of parametric 
equations. 

Exercise 31. Suppose that, in addition to your standard Cartesian coordinate 
system with origin O, you're using an auxiliary one with 

• origin O' = < 3 , 2>, 
• unit point U' for the first axis located below and left of O' on the 

hne through O' with slope 1, and 
• unit point V for the second axis located above and left of O'. 

A point X = <xltx2> has coordinates x[ and x2 relative to this coor-
dinate system. 

Part 1. Find formulas for x[ and x2 in terms of xx and x2. 
Part 2. Find the equation of the unit circle / ' w i t h center Ο in terms 

of the auxiliary coordinate system: X must he on Γ if and only if x[ 
and x'2 satisfy the equation. 

Part 3. x2 = xf is the equation of a parabola 77. Find the equation of 
77 in terms of the auxiliary coordinate system. 

Part 4. xx = cos t and x2 = 2 sin t for 0 s t < 2 π are parametric equa-
tions for an ellipse Λ. Find parametric equations for Λ in terms of the 
auxiliary coordinate system. 

Reflection calculus 

During the 1920s Gerhard Thomsen discovered how to formulate many 
familiar properties of plane figures in terms of equations involving composi-
tions of point and line reflections. The first few exercises under this heading 
introduce this method. You can solve them by manipulating equations 
involving reflections, half turns, translations, and occasionally vector alge-
bra. You never have to use coordinates explicitly. You can call this method 
a reflection calculus. 

Exercise 32. Show that for any points Ο, P, and Q, the composition 
σοσΡσο is a half turn about point R = Ο - P+ Q, and OPRQ is a (possibly 
degenerate) parallelogram. 

Exercise 33. Describe the figure formed by points A, B, C, and G for 
which οΑσ0σΒσβσ0σβ = ι. Suggestion: Reason with vectors. 

Exercise 34. Construct a pentagon with given edge midpoints Mx to 
M 5 . Is it unique? Generahze your solution to apply to polygons with more 
edges. 
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Gerhard THOMSEN was born in Hamburg in 1899, the son of a physician. 
He served a year in World War I, then became one of the first students of the 
new university at Hamburg. Thomsen completed the Ph.D. in 1923 with a 
dissertation on differential geometry. He served as assistant in Karlsruhe 
and Hamburg, studied a year with Tullio Levi-Civita in Rome, then presented 
his Habihtationsschrift in Hamburg, on a problem in gravitational physics. 
In 1929 he became Ausserordentlicher Professor at Rostock. There he con-
tinued work on differential geometry, collaborating with Wilhelm Blaschke, 
and published as well in mathematical physics and foundations of geometry. 
In 1933, reacting to the Nazification turmoil in his university, he pubhshed 
an inflammatory lecture that seemed to support some Nazi aims but attacked 
Nazi suppression of education in the sciences. This evidently attracted the 
attention of the secret police. Thomsen died, an apparent suicide, on a 
Rostock railroad track in 1934. 

Exercise 35. When can you construct a quadrilateral with given edge 
midpoints? When is it unique? How about a hexagon? Suggestion: What 
kind of figure is formed by the midpoints of the edges of a quadrilateral? 
Of a hexagon? 

Exercises 34 and 35 are closely related to exercise 17 on billiards and to 
exercise 18. Can you imagine the pentagon and hexagon as dual billiards 
tables? You play on the outside, grazing the corners instead of rebounding 
from the sides! 

A development of the reflection calculus and results obtained with it were 
pubhshed in Thomsen 1933a. Exercises 36 to 39 are selected from section 
4 of t ha t book. 

Exercise 36. Consider points Ρ and Q, lines g and h, and the isometry 
φ = ogaPahaQ. Under what condition on the points and lines is φ-ιΐ 
Suggestion: First, classify agaP and ahaq. 

Exercise 37. Prove tha t these conditions on hnes g and h are 
equivalent: 

(a) g II h; 
(b) for every point P, agahaPagohoP= ι but σίσ)ισΡ-£ ι; 
(c) for some point P, agahaPagahoP= t but ogahaPjti. 
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Exercise 38. Consider some lines a, b, and c and the isometry 

φ = a,aaabaaabaaacabaaacaaa,aaab. 

Prove that φ is the identity if and only if a, b, and c are copencilar or form 
an isosceles triangle with congruent edges on b and c. Suggestion: It's 
easy to show that copencilarity implies φ = ι. When there's a triangle, 
consider the line g through the feet J3* and C* of the altitudes perpen-
dicular to b and c. When is g II a? What isometry is γ = o~baaac ? 

Exercise 39. Show that for any hnes a, b, and c, 
OQ 

aaabacaaabacabocaaabacaaacabaaacabacabaaacab = i. 

Exercises on the definitions of Isometry and similarity 

The next two exercises are concerned with functions that map the plane 
to itself but satisfy (seemingly) weaker conditions than isometries or 
similarities. 

Exercise 40. Show that any function φ : X ~* X' from the plane to itself 
that preserves distance is an isometry. That is, from the hypothesis that 
X'Y'=XY for all X and Y, deduce that φ is injective and surjective. 
Suggestion: For surjectivity, given Y, you must find X such that Y = 
X'; select two points Ρ and Q and observe the relationship of Y to P' 
and Q'. 

Exercise 41. Let r be any positive number and φ be a function from the 
plane to itself such that X'Y'-r(XY) for all X and Y. Prove that φ 
is a similarity with ratio r. Suggestion: Use exercise 40. 

It 's possible to weaken the definitions of isometry and similarity even 
further than these exercises suggest. For example, invariance of the property 
of separation by distance 1 —that is, the condition Χ Υ - 1 if and only 
if X'Y' = 1 —implies that φ is an isometry. 3 0 

Responding to a question from Thomsen, Hellmuth Kneser (1931) showed that this equation 
is the shortest thafs true for all lines a, b, and c, except for equations like σααα = ι and 
others such as aaababaa = ι that are derivable from it. 

Modenovand Parkhomenko [1961] 1965, appendix. 
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Dilatations 

A dilatation31 is a plane transformation φ : X-* X' such tha t the image 
S' ~ <P[§] of any line g is a line parallel or equal to g. The last four exer-
cises of this chapter develop the theory of dilatations, which plays a major 
role in some axiomatizations of geometry. 3 2 You should solve them without 
using any limit concepts from analysis. Your solutions will provide a proof 
of the fixpoint theorem for similarities, theorem 6.10.8, that, unlike the proof 
in the text, requires no analysis. In your solutions of exercises 43 to 45, you're 
expected to use the results in the preceding exercises. 

Exercise 42. Prove that the dilatations form a transformation group. Of 
the various types of isometries and similarities considered in this chapter, 
which are dilatations and which not? 

Exercise 43. Show tha t 

(a) the only dilatation with two distinct fixpoints is the identity, and 
(b) if φ and χ are dilatations and φ(Χ) = χ(Χ) for two distinct 

points X, then φ- χ. 

Suggestions: For (a) show first that a dilatation φ : X~> X' with distinct 
fixpoints Ρ and Q fixes every point not on PQ, then consider points on 
the hne. Note that any hne through a fixpoint is fixed and any point on two 
fixed lines is fixed. 

Exercise 44. Show that every dilatation φ:Χ~*Χ' that's not a translation 
has a fixpoint. Suggestion: Find Ρ and Q such that PP'Q'Q is a quadrilat-
eral, then show that it can't be a parallelogram. 

Exercise 45. Prove that every dilatation that 's not a translation is a 
contraction, a dilation, or the composition of a contraction or dilation with 
the half turn about its center. 

Be careful not to confuse the terms dilation and dilatation1. The first stems from the Latin 
prefix dis-, meaning apart, with the past participle latus of the irregular Latin verb Zero, 
which means carry. The second is from the related regular verb dilato, which means 
broaden. 

For example, Artin 1957, chapter 2. 
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Chapter 

7 
Three-dimensional 

isometries and 
similarities 

Chapter 6 introduced plane transformational geometry. You studied plane 
isometries and similarities in depth. New concepts entered gradually, so 
that each new idea was related as closely as possible to basic geometry, where 
our visual intuition provides a clear guide. With tha t background, you've 
studied the effects of plane motions, and plane Cartesian coordinate transfor-
mations. You're prepared to analyze symmetries of plane ornamentation 
undertaken later, in chapter 8. And you're prepared to study more general 
types of plane transformations tha t fall beyond the scope of this book. 

But you haven't many techniques yet to handle motions and coordinate 
transformations in three-dimensional space, where you hve. Nor are you 
ready yet to analyze the three-dimensional symmetries of polyhedra and 
crystals. For that, this chapter provides a complete coverage of three-
dimensional isometries and similarities. You'll see tha t it's a straightfor-
ward extension of the two-dimensional theory. Of course, there are more 
isometry types in three dimensions, but the algebra techniques you used 
in two dimensions apply without change in this chapter. 

Because you've already met, in simpler form, most of the ideas discussed 
in this chapter, it's more streamlined. Concepts are introduced and studied 
in the order tha t leads most quickly to the main results of the theory. To 
tha t end, the chapter relies more heavily on algebra. Sometimes this is 
"brutally" efficient. For example, section 7.1 derives the matrix equation 
X' = AX + Β for an isometry X -* X' directly from the uniqueness and rigid-
ity theorems, before considering in detail even one particular type of isometry. 

295 
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That plan makes various general techniques available for use earlier. But 
following it in chapter 6 would have prevented you from applying your 
geometric experience effectively in learning new concepts. 

The greater reliance on algebra is also due to the greater complexity of 
three dimensions. Many problems to which we now apply algebraic plane 
transformational geometry methods could be solved without that theory. 
Algebra reveals its usefulness as it helps reduce the complexity in three 
dimensions. 

7.1 isometries 

Concepts 
Definition 
The isometry group 
Invariance 
Rigidity theorem 
Uniqueness theorem 
Orthogonal matrices 
Equations of isometries 
Conjugacy 
Parity 

This section extends to three dimensions the notion of isometry that you 
studied in chapter 6. It also presents various properties shared by all such 
isometries: the fixpoint, rigidity, and uniqueness theorems, representation 
of isometries X-X' by equations X'=AX+B with orthogonal matrices 
A, the relationship of these equations to conjugacy, and the distinction 
between even and odd isometries. You'll study particular types of isometries 
in later sections. 

The equations require a Cartesian coordinate system. Introduce a 
"standard" system 1$ now, with origin Ο and unit vectors Ux to U3, and 
refer to it as necessary. 

In the three-dimensional theory, an isometry is a distance-preserving 
transformation of the set of all points—not just those in some plane. As 
in two dimensions, you can show that the identity transformation / is an 
isometry, the inverse <p~x of an isometry φ is an isometry, and the com-
position φ χ of two isometries φ and χ is an isometry: 

Theorem 1. The isometries form a subgroup of the symmetric group of 
the set of all points. 
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There's a whole catalog of properties of three-dimensional figures tha t 
are invariant under isometries: the invariant properties of plane figures 
tha t you've already considered—especially betweenness—plus 

This text won't pursue those details. As necessary, you can supply invariance 
proofs like that of theorem 6.2.5, because you can define all these concepts 
in terms of distance (using betweenness if appropriate). 

Rigidity and uniqueness theorems 

The uniqueness theorem is a major tool in the plane theory. To see that an 
isometry under analysis is really a familiar one, you need only show that they 
agree at three noncollinear points. An analogous tool performs the same 
function in three dimensions. The plane version was derived from the 
rigidity theorems 6.2.6 and 6.2.7; its three-dimensional form requires analogs 
of those results. The first one is already vahd in three dimensions: 

Theorem 2. If an isometry X~>X' has distinct fixpoints Ρ and Q, then 
it fixes every point X on PQ. 

You can check that the original proof is vahd, too. For the next result, you 
must edit the statement of theorem 6.2.7; its proof remains valid. 

Theorem 3. If an isometry X ~* X' has noncollinear fixpoints P, Q, and 
R, then it fixes every point X on the plane PQR. 

Three-dimensional geometry enters with a new rigidity result. I ts proof, 
exercise 7.9.1, is merely a three-dimensional version of the proof of theo-
rem 6.2.7. 

Theorem 4. The only isometry with four noncoplanar fixpoints is the identity. 

With this foundation, you can easily state the three-dimensional uniqueness 
theorem. Its proof is the same as that of the two-dimensional version, corol-
lary 6.2.8. 

Corollary 5 (Uniqueness theorem). If χ and ψ are isometries and 
χ(Ρ) = φ(Ρ) for four noncoplanar points P, then χ-ψ. 

measure of a dihedral angle 
volume of a tetrahedron 
perpendicularity 
parallelism, etc. 

being a 
plane 
half space 
dihedral angle 
tetrahedron 
sphere 
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Orthogonal matrices 

The entire analytic treatment of isometries with matrix algebra works in 
three dimensions just as it did in two. Appendix C presents an outline of 
the elementary features of vector and matrix algebra, independent of 
dimension. The notion of orthogonality, introduced in section 6.8, applies 
to square matrices A of any dimension: A is orthogonal if A'A = I, i.e., 
its transpose is its inverse. As noted there, the identity matrix I is orthogonal, 
the inverse of an orthogonal matrix is orthogonal, and the product of two 
orthogonal matrices is orthogonal. That section also showed tha t for any 
orthogonal matrix A and vector B, the mapping X~*AX+B is an isometry. 

These analogies suggest that every three-dimensional isometry φ should 
have an equation φ(Χ)=ΑΧ+ Β for some orthogonal matrix A and some 
vector B. The argument for the corresponding plane result, theorem 6.8.2, 
required the equations for two special types of isometries, including some 
rotations. You could take that approach in three dimensions, deriving analogs 
of those special equations. But that's difficult because equations of three-
dimensional rotations are generally more complicated. The argument in 
the next proof, however, doesn't depend on individual equations nor on the 
dimension; so the desired result holds in three dimensions as well. The 
first step is to show that you can map your preselected coordinate system 
O,17,, U2, U3 into any other one by applying a transformation of the form 
X -* AX + Β with an orthogonal matrix A. 

Theorem 6. Given points B,Vl,V2,V3 such that BVj=l for j = 1 to 3 
and BVj to BV3 are perpendicular, there's an orthogonal matrix A such 
that AUj + Β = V for j = 1 to 3 . 

Proof. Construct the matrix A whose 7th column is Aj = Vj -B. Then 
AUj + B = A: + B=Vh as desired. Moreover, Α,·Α ; = (BV:)2 = 1. Now 
suppose jr^k. Since BVj χ BVk, Pythagoras' theorem implies 

(OA,) 2 + (OAk)
2 = (BVj)2 + (BV„)2 = (VjVk)

2. 

But Vj -V„=Aj -A„, so 

(VjVk)
2 = (Vj-VkHVj-Vk) = (Aj -A„HAj-Ak) = (AjAkf. 

The converse part of Pythagoras' theorem now yields OA- JL OAk, and 
Aj-Ak = 0 by theorem 3.11.10. It follows that A is orthogonal: A'A = 
I. To see that, note that the y, feth entry of A'A is the ./throw of A1 times 
the feth column of A —that is, Aj-Ak. According to the equations just 
derived, that's 1 if j = k or 0 if jr*k. It's the j.kth entry of I.1 • 

T h e word orthogonal, a synonym for perpendicular, s t e m s from t h e Greek words orlhos a n d 
gonia for upright a n d angle. Ma t r i ces like A were t e r m e d or thogonal because t h e i r co lumn 
vectors a r e pe rpend icu la r , a s no t ed in t h i s proof. 
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Theorem 7. The three-dimensional isometries are the mappings X -* 
φ(Χ) = ΑΧ+ B, where A is an orthogonal matrix and Β is an arbitrary 
vector. The isometry φ determines A and Β uniquely. 

Proof. You've already seen that this equation always defines an isometry. 
It remains to show that an arbitrary isometry φ has such an equation, and 
only one. First, φ maps your standard coordinate system 0,Ul,U2,U3 

into another system B,VX,V2,V3. By theorem 6, there's an orthogonal 
matrix A such that AUj + B = Vj for j=l to 3 . The isometry X-*AX + 
Β agrees with φ a t four noncoplanar points Ο and Ul to U3. By the 
uniqueness theorem, the two isometries coincide: φ (X ) = AX+ Β for every 
X, as required. Finally, you can use the last paragraph of the proof of theorem 
6.8.1 to show tha t φ determines A and Β uniquely. • 

The short algebraic argument in the proof of theorem 6 could have been 
used in chapter 6 to avoid some matrix calculations. But it has so little visual 
content that the longer argument was used instead. It's difficult to determine 
just how this material was originally discovered. In essence, it's already 
present in Euler [1775] 1968. 

Conjugacy 

Chapter 6 used the notion of conjugacy to classify plane isometries. It plays 
the same role in three dimensions. Its definition in section 6.9 applies to 
any transformations μ and φ; the composition φμφ'1 is the conjugate 
of μ by φ. We write λ ~ μ to indicate that a transformation λ is a conjugate 
of μ. The basic theorems 6.9.4 and 6.9.5 hold for three-dimensional isom-
etries, too. In particular, conjugacy is an equivalence relation, and the 
equivalence class of an isometry is called its conjugacy class. Sections 7.2 
to 7.5 use conjugacy to classify isometries. 

The section 6.9 discussion of coordinate transformations, equations of 
isometries, and their conjugacy is essentially valid for three dimensions, 
too. An isometry φ transforms your standard coordinate system IS into 
another system ® defined by Ρ=φ(0) and ν} = φ(υ}) for j=l to 3 
as in figure 7.1.1. Theorem 9, the analog of theorem 6.9.6, shows how a point's 
<& and S> coordinates are related. 

Theorem 9. If an isometry φ transforms coordinate system # into system 
3>, then the 'β coordinates of each point X are the same as the S> coordi-
nates of Y= <p(X). 

Proof. Consider figure 7.1.1. The figure formed by O, Ux to U3, and 
X is congruent to tha t formed by P, V t to V3, and Y. • 
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Υ' 
\ 
\ 

Figure 7.1.1 
Transforming 

a coordinate system 

Theorem 10, the main result about conjugacy, is the analog of theorem 
6.9.7; you can use its proof unchanged, if you cite theorem 6 of this section 
in place of theorem 6.6.3. 

Theorem 10 (Conjugacy theorem). Two isometries are conjugate if and 
only if there are coordinate systems under which they have the same matrix 
equation. 

As in two dimensions, the determinant par φ of the orthogonal matrix A 
corresponding to an isometry φ is called its parity. Since equation A'A = 
7 implies (det A)2 = (det A')(det A ) = det (A'A ) = det 7 = 1, the parity 
is ± 1. Isometries with parity 1 are called even. For example, the identity 
is an even isometry. The others are called odd. This section concludes with 
some simple facts about parity that you've already met in the plane theory. 
The connection between parity and orientation is discussed in the next section. 

Theorem 11. par φχ=ρ&τ φ par χ and par φ'ι = par φ for any isometries 
φ and χ. 

Corollary 12. The even isometries constitute a subgroup of the isometry 
group. 

Corollary 13. Conjugate isometries have the same parity. 

Parity 
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Leonhard EULER was born in Basel in 1707. He was taught first 
by his father, a protestant minister, who had attended Jakob 
Bernouilh's lectures at the university there. In 1720 Euler entered 
the university. He studied with Johann Bernouilh, and received a 
degree in philosophy in 1723 with a comparison of Newton's and 
Descartes' ideas. He started theological studies, but dropped those 
for mathematics. Although he pubhshed some papers on mechanics, 
Euler could find no job at Basel. In 1727, however, Peter the Great 's 
reign was ending, the Academy of Science at St. Petersburg was being 
formed, and the intelligentsia there was becoming dominated by 
Germans. On Bernouilli's recommendation, they offered Euler a 
job; he became Professor there in 1731. The Academy had scientific, 
educational, and technological assignments, and provided a very rich 
atmosphere. Euler produced about 90 papers on mathematics there 
during the period 1727-1741, and a treatise on mechanics. He worked 
on cartography, shipbuilding, and navigation as well. 

Euler's brother also had an Academy position, as an artist. In 1733 
Euler married the daughter of another Swiss artist a t the Academy. 
Two sons were born in St. Petersburg. Later, in Berlin, they had 
another son and two daughters; eight other children died in infancy. 
In 1738, Euler contracted a disease tha t left him bhnd in one eye. 

Political turmoil in Russia, particularly resentment against 
German influence, arose during the late 1730s, simultaneous with 
Frederick the Great's reorganization of the Academy of Science a t 
Berlin. After prolonged negotiations, Euler moved there in 1741. 
However, he retained many connections with the St. Petersburg 
Academy, editing its mathematical pubhcations and publishing there 
his own texts on calculus and navigation. Euler stayed in Berlin for 
25 years. During that period he produced about 380 papers in pure 
and applied mathematics, and was elected to the Academies in 
London and Paris as well. Euler was very influential in the develop-
ment and administration of the Berlin Academy, actually running it 
for many years. But he and the King were incompatible; Frederick 
wouldn't appoint him President. 

In 1766, Euler returned to St. Petersburg. The long, stable reign 
of Catherine the Great had begun. One of Euler's sons became profes-
sor of physics there; another, an artillery officer. An illness in 
1769-1771 led to Euler's total bhndness. But his scientific output 
actually increased! Besides many research papers, he pubhshed texts 
on algebra, calculus, navigation, and life insurance, and treatises on 
optics and lunar theory. His first wife died in 1773; in 1776 he 
married her half-sister. Euler died of a brain hemorrhage in the 
midst of heavy work in 1783. 
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7.2 Reflections 

Concepts 
Reflections across planes 
Conjugate reflections 
Structure theorem 
Even and odd isometries 
Orientation 

Reflections play a fundamental role in the theory of plane isometries. They 
provide components from which you can construct all other isometries, and 
they facilitate the distinction between even and odd isometries. Their three-
dimensional counterparts are the reflections across planes. The reflection 
X' = ac(X) of a point X across a plane ε is X itself if X is on ε, else 
it's the point on the opposite side of ε such that ε is the perpendicular 
bisector of XX'. The plane ε is called the mirror of ac. To study these 
reflections, it's sometimes convenient to use the theory of plane isometries. 
Theorem 1 follows directly from the plane theory and the definition of 
ac. (See figure 7.2.1.) You can supply the proof. 

Theorem 1. ac is self-inverse. Its fixpoints are the points in ε. It fixes 
any plane αχ. ε, and its restriction to α is the (two-dimensional) reflection 
of the points on α across the intersection g = a Γ \ ε . 

Corollary 2. ae is an isometry. 

Proof. (See figure 7.2.1.) Any two points X and Y lie in some plane 
α χ ε, and ac operates on X and Y just as the (two-dimensional) reflection 
of α across g = ar\ε. That preserves the distance X Y. • 

a Figure 7.2.1 
Reflection 

ae: X-*X' across ε 
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Theorem 3. An isometry φ that leaves a plane ε pointwise fixed is the 
identity or oc. 

Proof. Select a point X not on ε, construct the hne h ± ε through 
X, and let P=hr>ε. (See figure 7.2.1.) Since φ fixes Ρ and ε, it maps 
h to a line through Ρ perpendicular to ε. That is, φ fixes h, so 
φ(Χ) is one of the two points X and ae(X) on h whose distance from 
Ρ is PX. Thus φ agrees either with ι or with ac a t four noncoplanar 
points: X and any three noncollinear points on ε. The uniqueness theorem 
yields φ = ι or at. • 

Corollary 4. φσεφ'ι = σφ[ι:] for any isometry φ and any plane ε. 

Proof. Use the argument under the section 6.9 heading Conjugacy classes 
to show tha t φσεφ'λ leaves plane φ[ε] pointwise fixed, but isn't the 
identity. • 

The equation of the reflection σε:Χ-*Χ' across a plane ε is generally 
unwieldy—see exercise 7.9.20. But for some special planes it's very simple. 
For example, if ε is the plane through the first two coordinate axes, then 
o~e has equations 

This matrix A is orthogonal, with determinant - 1 . 
Any plane ε contains the first two axes of some coordinate system, so 

any two reflections have the same equations with respect to suitably chosen 
coordinate systems. With the conjugacy theorem, corollary 4, and corol-
lary 7.1.13, this imphes 

Theorem 5. The reflections constitute a single conjugacy class. All reflec-
tions are odd. 

Structure theorem 

According to the structure theorem in two-dimensional transformational 
geometry, every plane isometry is the identity, a reflection, or the composition 
of two or three reflections. That result is the basis for classifying plane 
isometries. An analogous one holds in the three-dimensional theory. You'll 
notice tha t its proof is organized just like that of theorem 6.6.4, the two-
dimensional result. 

X'=AX A = 
1 0 0 
0 1 0 
0 0 - 1 
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Theorem 6 (Structure theorem). The three-dimensional isometry group 
consists of the identity, the reflections, and the compositions of two, three, 
and four reflections. 

Proof. An isometry φ maps a tetrahedron Γ into a congruent tetrahedron 
Δ. If Γ = Δ, then φ is the identity by the rigidity theorem. If Γ and 
Δ share three vertices but not four, then φ is the reflection across the plane 
δ through those vertices, by theorem 3. 

If Γ and Δ share two vertices, then there's a plane γ through those 
vertices such that Γ and the tetrahedron σγ[Δ] share three vertices. (Make 
γ "bisect" a certain dihedral angle.) By the previous paragraph, σγφ is 
the identity or the reflection across a plane δ, so φ=σγ or σγσΛ. 

If Γ and Δ share one vertex, then there's a plane β through it such 
that Γ and the tetrahedron σρ[Δ] share two. By the previous paragraph, 
θβψ= σγ or σγσ, for some planes γ and δ, so φ = σβσγ or σβσγσί. 

Even if Γ and Δ share no vertices, there's a plane α —the perpendic-
ular bisector of any segment joining two corresponding vertices—such that 
Γ and the tetrahedron σα[Δ ] have at least one vertex in common. By the 
previous paragraph, σαφ = σβσγ or afaYax for planes β, γ, and δ, so 
φ is the composition of three or four reflections. • 

Corollary 7. An isometry is even or odd depending on whether it's a 
composition of an even or odd number of reflections. 

Proof. Every isometry is a composition of reflections, which are odd. • 

Orientation 

You can distinguish even from odd isometries in three dimensions, as in 
two, by their effects on oriented figures. Informally, you can consider left-
and right-hand gestures. Formally, consider tetrahedra—section 3.10 defined 
them as ordered quadruples of noncoplanar points. In figure 7.2.2, the vertices 
of tetrahedron PQRS are arranged as you might point with your right thumb, 
with Ρ on the thumb, and AQRS oriented as your fingers are curled. The 
reflection across the plane maps them to points P' to S', arranged like 
the corresponding left-hand gesture. There are twenty-four tetrahedra with 
vertices Ρ to S listed in various orders. Using the figure, you can classify 
them according to your intuitive notion of orientation: 

Class m: PQRS, PRSQ, and ten others; 
Class PQSR, PRQS, and ten others. 

How can you distinguish these classes mathematically, without relying on 
the figure and your intuition? The determinant formula for tetrahedral 
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Figure 7.2.2 
Reflection across a plane 

reverses orientation. 

volume, theorem 5.6.10, provides the tool. These te t rahedra all have the 
same volume: ±Vis times each of the determinants 

SH: det[P-R,Q -R,S -R], det [P - S, R - S, Q - S ],... 
SB : d e t [ P - S, Q-S.R-S], det[P-Q,R- Q,S - Q] 

You can show tha t the determinants in the first class are all equal to the 
same value; and all those in the second, to its negative. Thus all those in 
one class have the same positive determinant; the others have the same 
negative determinant. Accordingly, you can call the tetrahedra positively 
or negatively oriented. (Which class of te trahedra is positive depends on 
the standard coordinate system that you chose at the onset of this chapter. 
If you reverse the scale on any one axis, you'll interchange the positive and 
negative classes.) The following computation shows that an even isometry 
X~* X' = AX+ Β preserves a tetrahedron's orientation, whereas an odd one 
reverses it: 

d e t [ P ' -R'.Q' - R',S' - R'] 
= det[(AP+B) - (AR + B),(AQ + B) - (AR + B), 

(AS + B) - (AR + B)] 
= det [AP - AR, AQ - AR, AS-AR] 
= det [A(P - R), A(Q - R), A(S - R)] 
= det(A[P-R,Q~R,S-R]) 
= (det A) (det [P - R, Q - R, S - R]) 
= ± d e t [P-R,Q-R,S-R]. 

Figure 7.3.1 
Translation 

τ:Χ^Χ' = Χ+ V 
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Concepts 
Translations 
Conjugate translations 
Rotations 
Angle parameters for rotations 
Conjugate rotations 
Commuting reflections 
Half turns 

The previous section introduced three-dimensional reflections, and showed 
that each three-dimensional isometry is the identity, a reflection, or the 
composition of two, three, or four reflections. Section 7.2 studies the 
compositions of two reflections in detail. They're the translations and 
the rotations. 

Translations 

Translations are handled in three dimensions exactly as in the plane. The 
translation corresponding to a vector V is the transformation τν : 
X-* X' = X+ V displayed in figure 7.3.1 on the preceding page. (This is just 
the corresponding two-dimensional figure 6.2.1 with a third axis inserted.) 
The following theorem summarizes some main facts about translations. 
You can prove it just as you proved the analogous planar results in sections 
6.2 and 6.4. 

Theorem 1. Composition of translations corresponds to vector addition: 
For any vectors V and W, TV

TW = TV+W
 a n ^ τν1 = Moreover, τ0 = 

ι. Therefore, the translations form a subgroup of the isometry group. 

Just as in two dimensions, you can construct translations from reflections. 

Theorem 2. The composition a,ac of reflections across parallel planes 
δ and ε is the translation r with vector 2 ( P - Q), where Ρ and Q are 
the intersections of δ and ε with any line k perpendicular to δ 
and ε. 

Proof. Verify that a0ac(X) = r ( X ) for four noncoplanar points X, as 
in figure 7.3.2, then apply the uniqueness theorem. • 

7.3 Translations and rotations 
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Figure 7.3.2 σδσε is a 
translation when δ II ε. 

\Q\ 

x a,(X) ata.(X) 

The conjugacy properties of three-dimensional translations are also 
analogous to the results for plane transformations. Theorem 3 is in fact 
identical to theorem 6.9.9. 

Theorem 3. The conjugacy class of a translation τ whose vector has length 
t consists of all translations with vectors of length t. If τ and an isom-
etry φ have equations τ:Χ->Χ'=Χ+Τ and φ: X-X' = AX+ Β with 
respect to a single coordinate system, then φτφ'1 is the translation with 
vector AT. 

Proof. The first sentence follows directly from the conjugacy theorem. 
The proof of the second is the same as tha t of theorem 6.9.9. • 

Rotations 

Pursuing the analogy with the theory of plane isometries, you'll next ask 
what's the composition o~6ae of the reflections across two distinct intersecting 
planes δ and ε. It's called a rotation about its axis g= δ η ε. The following 
theorem justifies this terminology. To prove it, apply theorem 7.2.1. 

Theorem 4. Consider distinct planes δ and ε through a line g perpendicu-
lar to a plane a. (See figure 7.3.3.) Choose an angular scale on α with 
center P = ang. Choose half planes δ' and ε', each with edge g. If 
rays α η δ' and α η ί ' have angle parameters ζ and η, then the restric-
tion of p = asac to a is the (two-dimensional) rotation of α about Ρ with 
angle parameter θ = 2(η - ζ). The fixpoints of ρ constitute its axis g. 
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In theorem 4 you can choose δ' a n d c ' in four ways. Another choice 
might add 180° to ζ and/or η. Since angle parameters are determined 
only mod 360°, your choice has no effect on Θ. Since θ depends only on 
the difference of two parameters, it depends only on ρ and the orientation 
of the angular scale. You can specify orientation by designating a ray on 
g as positive. (Informally, align it with your thumb when the knuckles and 
fingertips of your right fist fall along rays with zero and positive angle 
parameters.) 

For theoretical considerations it's best to describe a rotation as a specific 
composition of plane reflections. For practical computations, however, it's 
often helpful to specify a positive axial ray and an angle parameter. For 
example, a rotation with angle parameter θ about one of the three coordinate 
axes fixes that coordinate of each point X, and operates on its other coor-
dinates like the corresponding two-dimensional rotation about the origin. 
For the first coordinate axis, the rotation has equations 

JCj = x2 cos θ - x3 sin θ X'=AX A = 
0 

C O 8 0 
s in# 

0 
- s in0 
cos# x'3 = x2 sin Θ+ x3 cos θ 

The analogous rotations about the second and third axes have matrices 

cos θ 0 - sin θ 
0 1 0 

sin θ 0 cos θ 

cos θ - sin θ 0 
sin θ cos θ 0 

0 0 1 

For other axes, the matrices have no such obvious form. In practice, if you 
must compute with the matrix of a rotation, you generally choose one of the 
coordinate axes as the rotational axis. 

It's harder to phrase results about conjugacy and rotations in three dimen-
sions than it was in the plane theory, because the angles are harder to 
describe. It seems easiest to use the next theorem to refer angle questions 
back to the planes whose reflections combine to form a rotation. 

Theorem 5. Suppose line g is the intersection of planes δ and ε. Consider 
the rotation p- aAae and an isometry φ. Then φρφ'χ is the rotation 
a9\»\a9\t\ withaxie <p[g]. A rotation is conjugate with ρ just in case it's 
the composition of the reflections across planes ("and η that form a dihedral 
angle whose measure is the same as that of one of those formed by δ 
and ε. 

Proof, φρφ'1 = φσ{σ{φ'ι = φσβφ'ιφσιφ'ι = o p i e i a f l t ] . You can check 
that the stated condition on ζ and η is equivalent to the existence of an 
isometry φ such that φ[δ] = ζ and φ[ε] = η. • 
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When do two reflections commute? What's their composition in that case? 
To answer those questions, you can prove the following corollary of theorems 
2 and 4. It's similar to the solution of the corresponding two-dimensional 
problem. 

Theorem 6. Reflections oa and at commute just when planes δ and 
ε are equal or perpendicular. In the former case, σ{ ac is the identity. In 
the latter, it's self-inverse but not the identity. Its restriction to a plane 
perpendicular to its axis is a (two-dimensional) half turn . 

A self-inverse three-dimensional rotation that's not the identity is called 
the half turn about its axis g, and it's denoted by ag.

2 Several exercises 
in section 7.7 examine half turns in detail. Exercise 21 derives the equation 
of ag in terms of the equation of g. 

7.4 Glide and rotary reflections 

Concepts 
Commuting translations and reflections 
Ghde reflections 
Commuting rotations and reflections 
Rotary reflections 
Reflections across points 

Previous sections have analyzed reflections, and compositions of two reflec-
t ions—that is, translations and rotations. What kind of isometry is a 
composition of three reflections? It's either the composition of a translation 
with a reflection, or of a rotation with a reflection. The next two headings 
describe these possibilities in turn. Each one asks first, when is the order 
of these components significant? 

Glide reflections 

Theorem 1. A translation r v commutes with the reflection ac across 
a plane ε jus t when V= Ο or O V / c . 

Proof. You can easily verify that aerv and rvac coincide under either 
condition. To show that they differ when neither condition holds, consider 
what they do to a point on ε. • 

Some authors call at the reflection across g. 
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Figure 7.4.1 Proving theorem 2 

When V = Ο or OV / ε, the composition φ = acrv is called a gZide 
reflection. The translational component is uniquely determined by φ because 
φφ = r 2 v . By decomposing the translational component into reflections 
across planes ζ and η, you can see that φ = σ^σ(ση is a glide reflection 
when ε J . ζ, η and ζI η. (See the left-hand diagram of figure 7.4.1—ignore 
plane <5.) The reflectional component of φ is unique, too, because its mirror 
is the set of midpoints lA (X+ φ(Χ)) for all X. A ghde reflection has no 
fixpoint unless it's a reflection. 

Theorem 2. If planes α, β, and γ have a common perpendicular plane 
δ, then σα σβ σγ is a ghde reflection. 

Proof. Let o = a n i , b = β η δ, and c = γ η δ, as in the right-hand 
diagram of figure 7.4.1. By theorem 7.2.1, each of σα, σρ, and σγ fixes 
δ, and they operate on a point X in <5 in the same way as the two-
dimensional reflections of δ across a, b, and c, respectively. Thus, 
Ψ ~ σασρσγ affects X in the same way as the composition of three two-
dimensional reflections. By the theory of plane isometries, that 's a two-
dimensional ghde reflection. Therefore, there exist lines e, z, and y in 
δ such that e x z , e±y, and φ operates on points in δ in the same way 
as the composition of its two-dimensional reflections across e, z, and y. 
Construct planes ε, ζ", and η perpendicular to δ through e, z, and 
y, as in the left-hand diagram of figure 7.4.1. Each of ac, σ(, and ση fixes 
δ, and they affect points in δ in the same way as the two-dimensional 
reflections of δ across e, z, and y, respectively. That is, <p(X) -
aca(an(X) for all X in δ. Thus, the even isometry σησ(σιφ fixes each 
point in δ. By theorem 7.2.3, it's the identity, so φ = σίσ(ση. This is a ghde 
reflection, since σ(ση is a translation r v with V= Ο or OV I ε. • 

Rotary reflections and Inversions 

Next, consider compositions of rotations and reflections. When is the order 
of the components significant? The following theorem says when it's not. 
Its proof, similar to that of theorem 1, is exercise 7.9.2. 
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Figure 7.4.2 
Proving theorem 4 

Theorem 3. A rotation ρ commutes with a reflection at just when ρ = 
ι, or its axis g is perpendicular to ε, or it's a half turn about a hne 
in ε. 

When ρ = ι or ρ is a rotation with axis perpendicular to ε, the composi-
tion φ= aep is called a rotary reflection. By decomposing the rotational 
component into reflections across planes ζ and η, you can see tha t 
φ = σεσ(ση is a rotary reflection when ε χ ζ, η and ζ intersects η, as in 
figure 7.4.2. Clearly, φ has either a plane ε of fixpoints, or exactly one 
fixpoint P, called the center of φ. In the first case, φ = σε. In the second, 
if φ isn't self-inverse, it has exactly one fixed plane ε —its mirror—which 
consists of all points of the form ιΛ (X + φ(Χ)). In tha t case, φ also 
determines its rotational component uniquely, since ρ = σεφ. 

However, a self-inverse rotary reflection has no unique mirror or rotational 
component. This situation occurs when ζ χ η in figure 7.4.2. Then, φ is 
a composition of reflections across three mutually perpendicular planes. 
It's called the reflection σΡ across center Ρ=gn ε} The next result justifies 
tha t terminology—the point reflection depends only on P, not on g or 
ε. You can supply the proof. See exercises 7.7.7, 7.7.8, and 7.7.10 for a more 
detailed study of point reflections. 

Theorem 4. The reflection σΡ across a point Ρ is self-inverse, and P = 
lA(X+ <p(X)) for every point X, so φ(Χ) = 2Ρ - X. If ε is any plane 
through Ρ and g is the hne through Ρ perpendicular to ε, then 
σΡ= atag. 

The next result shows that a composition of three reflections is a rotary 
reflection, unless theorem 2 has classified it already as a ghde reflection. 

Theorem 5. If planes α, β, and γ have no common perpendicular plane, 
then σα σβ σγ is a rotary reflection. 

Proof. You can show that h = β η γ is a line. Erect plane δ χ α through 
h, then find plane η through h such that σβσγ= σΛση (by making two 

3 Some authors call ar the inversion with center P, but that usage conflicts with the notion 
of inversion with respect to a circle or sphere. 
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dihedral angles have equal measure). Erect plane ε J . η through the line 
a = α η δ, then find plane ζ ι. ε through a. (See figure 7.4.2.) It follows 
tha t aaOpOr= σασ.ση = σαση = aea(an. This isometry is a rotary reflec-
tion because σ(ση is a rotation with axis g= fn η perpendicular to ε. • 

7.5 Classifying Isometries 

Concepts 
Commuting translations and rotations 
Screws 
Classification 

According to the structure theorem, each isometry is the identity, a reflection 
across a plane, or a composition of reflections across two, three, or four planes. 
In section 7.2 you studied reflections. Section 7.3 was devoted to compositions 
of two reflections: the translations and rotations. And section 7.4 described 
compositions of three: the ghde and rotary reflections. This section covers 
the last case, compositions of four reflections. Then it summarizes the entire 
classification scheme. 

Screws 

A composition of four reflections could be a translation or a rotation. But 
there's one more type, whose description is facilitated by the next theorem. 
Its proof, which resembles those of theorems 7.4.2 and 7.4.4, is exercise 7.9.3. 

Theorem 1. A translation r v commutes with a rotation ρ just when 
V = Ο, p= i, or OV is parallel to the axis g of p. 

When τν commutes with p, the composition φ = ρτν is called a screw. 
A screw determines its rotational and translational components ρ and 
TV uniquely. If it's neither a rotation nor a translation, then φ has no 
fixpoints but exactly one fixed line g, V= φ(Ρ) - Ρ for any point Ρ on 
g, and ρ = φτν'

ι. 
The next result seems like a special case, but Hermann Wiener showed 

in 1890 4 tha t it provides the key to identifying any composition of four 
reflections. 

4 Wiener 1890-1893, part II. 
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Figure 7.5.1 Figure 7.5.2 
Proving lemma 2 Proving theorem 3 

Lemma 2. For any lines b and c, the composition (p=obac is a screw. 

Proof. This argument is designed to apply when b and c are skew (see 
figure 7.5.1). You can verify that it also works when they're coplanar. (You'll 
need additional figures for the parallel and intersecting cases.) First, find 
a l ine a perpendicular to b and c, plane β through a and b, and plane 
γ through a and c. Erect planes δ ± β through b and ε ± γ through 
c. Then δ ± γ also, so abac = (σβσδ)(σγσε) = (σβσγ)(σδσε). This is a 
screw because σβ σγ is a rotation with axis a and σδ q, is a translation paral-
lel to a. • 

Theorem 3. Every even isometry φ is a screw. 

Proof. Suppose φ is neither a translation nor a rotation. Then there 
exist distinct points Ρ and Q such that (p(P) = Q. Let δ be the perpendicu-
lar bisector of segment PQ, so that <pOg(Q) = Q. Since φσ6 is odd, it 's 
a composition of three reflections. Since it has a fixpoint, it's a rotary 
reflection, and φσό = σεσ(ση for some planes ε, ζ, and η such tha t ε± 
ζ, η. The intersection g = ζ η η is a line; otherwise, φσ6= oc, and φ 
would equal σεσδ, a rotation or translation. Erect the plane γ Α. δ through 
g, as shown in figure 7.5.2. Find the plane β through g such tha t σ(ση = 
σγσβ (by making two dihedral angles have equal measure) . Then ε χ. β 
also, hence φ = φσδσδ = σεσ( ση σδ = σεσγ σβσδ = ocab, where b = β η δ and 
c = γ η ε. By lemma 2, this is a screw. • 
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Hermann WIENER was born in 1857 in Karlsruhe. His father Christian 
Wiener was Professor of Descriptive Geometry at the Technical Institute 
there. His younger brother Otto became a physicist, noted for work on the 
wave theory of light. 

Wiener began university studies at Karlsruhe, but completed his Ph.D. 
at Munchen in 1880 with a dissertation on plane curves. His training was 
influenced significantly by Felix Klein, a close collaborator at Munchen with 
Wiener's cousin Alexander Brill. In 1880, Klein moved to Leipzig, and 
Wiener followed. After a year, though, he returned to Karlsruhe as assistant 
to his father. He continued research, and obtained a lecturer position in the 
university at Halle in 1885. 

There Wiener wrote a series of research papers that clarified the relation-
ships of several fundamental theorems and techniques in Euclidean and 
projective geometry, including Desargues' theorem and the use of self-inverse 
transformations. He made the first extensive use of calculations with reflec-
tions, like those in this and the preceding chapter. He regarded this calculus 
as an algebra of geometric objects, in contrast to the algebra of numbers used 
in coordinate geometry. 

Wiener also pioneered the abstract axiomatic approach to geometry, 
emphasizing its usefulness, but he never built a complete theory. Hubert's 
famous remark that he could regard geometry as a theory of tables, chairs, 
and bar stools just as well as one of points, hnes, and planes stemmed from 
his excitement after hearing a lecture by Wiener in 1890. That took place 
in Halle at the first meeting of the German Mathematical Society. Wiener 
was one of the original members. 

In 1894 Wiener became Professor of Mathematics at the technical univer-
sity in Darmstadt, where he remained until he retired in 1927. Darmstadt 
lay outside the mainstream, and Wiener never continued his major research 
work. In 1911 he revised and marketed a set of geometric models originally 
developed by his father; they came into widespread use in secondary and 
technical school instruction. Wiener served his university well—he was 
elected Dean of his faculty for two terms. He died in 1939. 

Wiener's results were extended and incorporated into major works on 
foundations of geometry for the next sixty years. In particular, crucial steps 
in the work of Hilbert, Thomsen, and the present author were established 
or proposed originally by Hermann Wiener. 

Classification theorem 

You've now completed the analysis of compositions of reflections. The following 
theorem refines and summarizes the classification begun with the structure 
theorem. 

5 Wiener 1890-1893. 
6 See Reid 1970, chapter 8. 
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Theorem 4 (Classification theorem). A three-dimensional isometry is 

(0) the identity i, or 
(1) the reflection at across a plane ε, or 
(2a) a translation r v with vector Vy O, or 
(2b) a rotation i, or 
(3a) a glide reflection σετν with mirror ε and vector V y O, or 
(3b) a reflection across a point P, or 
(3c) a rotary reflection oep with mirror ε and rotational component 

ρ that 's not self-inverse, or 
(4) a screw ρτν with rotational component ρ ψ- ι and vector 

VfO. 

These classes are disjoint. 

You might like to provide a table of fixed points, lines, and planes for each 
of the eight isometry types listed in the classification theorem, analogous 
to those after corollary 6.9.2 and in exercise 6.11.12. 

Finding fixpoints, fixed lines, and fixed planes of an isometry φ : X ~* 
X' when you know its equation X' = AX + Β is a substantial exercise in 
solving possibly singular linear systems. You'll find examples under the 
heading Exercises on equations in section 7.7. The practical details of those 
computations tend to differ considerably from those of the theory presented 
so far. They're outlined in some paragraphs that precede the exercises. 

Section 6.9 applied the classification of plane isometries to describe rotations 
and translations in more detail. It also pursued the notion of conjugacy beyond 
the level achieved by theorems 7.2.5, 7.3.3, and 7.3.5. For analogous three-
dimensional studies, see the Conjugacy exercises heading in section 7.7. 

7.6 Similarities 

Concepts 
Complete analogy with the two-dimensional theory 
Hometheties and homothetic rotations 
Classification theorem 

You could really write this section on three-dimensional similarities yourself. 
Their theory is entirely analogous to its plane counterpart. Except for its 
main result, the classification theorem, this section just makes the necessary 
adjustments to the definitions and theorem statements. You can adapt every 
proof in section 6.10 to work in three dimensions. 
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A similarity with ratio r ie a transformation ψ:Ρ~*Ρ' of the set of all 
points, such that P'Q' = r (PQ) for all Ρ and Q. As an example, select 
any point Ζ and consider the transformation φτΖ:Ρ-*Ρ' such that Z'-
Ζ and for P?Z, P' is the point on Z~P with' ZP' = r (ZP). If r = l , 
then φΓ z is the identity; if r < 1 or r > 1, it's called a contraction or dilation 
about Z. 

A similarity ψ: Χ-*Χ' with ratio r leaves invariant angle measure, 
betweenness, and any geometric property that you can define in terms of 
them. In particular, ψ is a collineation, and the image of a plane is a plane. 
The image of a circle or sphere with radius t is a circle or sphere with radius 
rt. That of a triangle with area s is a similar triangle with area r2s. And 
the image of a tetrahedron with volume υ is a similar tetrahedron with 
volume r3v. 

A composition of similarities with ratios r and s is a similarity with 
ratio rs. The inverse of a similarity with ratio r is a similarity with ratio 
r"1. Therefore, the similarities form a transformation group that contains 
the isometries. 

The section 6.10 proof of the fixpoint theorem was chosen specifically to 
apply to the three-dimensional case as well: Unless a similarity ψ is an 
isometry, it has exactly one fixpoint. 

The uniqueness theorem takes a slightly different form in three dimen-
sions: Similarities χ and ψ coincide if χ(Χ) = ψ(Χ) for four nonco-
planar points X. This follows from the fixpoint theorems, since χψ'χ, a 
similarity with four noncoplanar fixpoints, must be an isometry, hence the 
identity. 

A similar argument shows that every similarity ψ: X ~* X' is the 
composition of an isometry and a dilation or contraction with the same ratio 
r and arbitrarily chosen center, so that ψ has an equation X' = rAX + Β 
with an orthogonal matrix A. Moreover, ψ determines A and Β uniquely, 
and every such equation defines a similarity. Since ψ preserves orientation 
just in case the isometry X -* AX does, ψ is termed even or odd depending 
on whether det A = +1 or - 1 . 

The similarities φΓ z and φτΖ σζ are called homotheties with center 
Z. A composition of one of these with a rotation about an axis through Ζ 
is called a homothetic rotation. If ψ is a similarity but not an isometry, 
then it has a fixpoint Z. Define χ - ψφτ-\ζ or χ= ψσζφτ ι ζ depending 
on whether ψ is even or odd, so that χ is an even isometry with fixpoint 
Ζ and ψ-χφΤιζ °Γ Χψτ,ζ

σζ· By theorem 7.5.4, χ is a rotation about an 
axis through Z, so ψ is a homothetic rotation. This proves 

Theorem 1 (Classification theorem). A similarity is an isometry or a 
homothetic rotation. 
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7.7 Exercises 

Concepts 
Distance-preserving functions 
Dilatations 
Compositions of commuting point and plane reflections and half turns 
Conjugates 
Compositions of reflections, translations, and rotations 
Classifying isometries and similarities, given their equations 
Finding fixpoints and fixed hnes of isometries, given their equations 
Reflection calculus 
Three-reflections theorems 

This section contains thirty-two exercises related to the material covered 
earher in this chapter. The first three ask for some straightforward proofs 
omitted earher. Several others, listed under the headings Commuting reflec-
tions and half turns, Conjugacy exercises, and Classifying Isometries, extend 
the chapter's methods beyond the essentials covered earher, and provide 
a nearly complete t reatment of the interrelationships among reflections, 
translations, and rotations. The conjugacy exercises firmly establish results 
you'll often find used without mention in apphcations. The exercises under 
the heading Exercises on equations familiarize you with the algebraic and 
numerical computations often required to apply the theory. Some require 
tedious arithmetic to evaluate determinants and solve linear systems. There 
was no effort to avoid that. You're expected to use mathematical software 
for tha t work. Finally, exercises 5 and 6 and those under the heading 
Reflection calculus provide excursions into areas less central to the program 
of this book. You've already met their two-dimensional counterparts in 
chapter 6. 

General exercises 

Exercises 1 to 3 ask for several proofs omitted from earher sections of this 
chapter. 

Exercise 1. Prove theorem 7.1.4: The only isometry with four noncoplanar 
fixpoints is the identity. Suggestion: Imitate the proof of theorem 6.2.7. 

Exercise 2. Prove theorem 7.4.3: A rotation ρ commutes with a reflection 
ae just when ρ = ι, or its axis g is perpendicular to the mirror ε, or it's 
a half turn about a line in ε. Suggestion: Imitate the proof of theorem 7.4.1. 
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Exercise 3. Prove theorem 7.5.1: A translation τν commutes with a rotation 
ρ just when V=0, p= i, or OV is parallel to the axis of p. Sugges-
tion : Imitate the proofs of theorems 7.4.2 and 7.4.4. 

Exercise 4 is the three-dimensional analog of exercise 6.11.8. 

Exercise 4. Show that an isometry φ is even if and only if φ - χχ for some 
isometry χ. 

Exercises 5 and 6 pursue excursions into less central themes, already 
begun in two-dimensional exercises under the section 6.11 headings 
Exercises on the definitions of Isometry and similarity and Dilatations. If 
you've solved those in the most efficient way, you should need little to adapt 
your work to three dimensions. 

Exercise S. Formulate and prove three-dimensional versions of exercises 
6.11.40-6.11.41 on the definitions of isometry and similarity. 

Exercise 6. Formulate and prove three-dimensional analogs of exercises 
6.11.42-6.11.45 on dilatations. 

Commuting reflections and half turns 

The conditions in plane geometry under which reflections and half turns 
commute—the nontrivial self-inverse isometries—were laid out at the end 
of section 6.3. Those ideas played essential roles in the rest of that chapter. 
In three-dimensional geometry there are three types of nontrivial self-inverse 
isometries. A complete treatment of their commutativity would have 
clogged the earlier sections of this chapter unacceptably, so they covered 
only a few aspects. In fact, the theory in this chapter was streamlined 
to allow that omission. But its applications require all the commutativity 
details, so they're presented here systematically, as exercises. 

Exercise 7. Show that the composition oPaq of two point reflections is 
the translation with vector 2(P - Q), and they don't commute unless 
P=Q. 

Exercise 8. Show that point and plane reflections σΡ and ae commute 
just when Ρ hes on ε, and in that case aPat is the half turn about the 
line g ± ε through P. 

Exercise 9. Show that 
Part 1. a half turn ag commutes with a plane reflection ac if and 

only if g hes in ε or g ± ε; 
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Part 2. if g lies in ε, then agat is the reflection across the plane 
perpendicular to ε through g; 

Part 3. if g ± ε, then ag ac is the reflection across g η ε. 

Exercise 10. Show that a point reflection σΡ and a half turn ag commute 
if and only if Ρ hes on g, and in tha t case aPag is the reflection in the 
plane ε ±g through P. 

Exercise 11. Show that half turns ag and oh about distinct lines g and 
h commute if and only if g _L h, and in tha t case, agah is the reflection 
across the intersection of g and h. 

Conjugacy exercises 

The conjugacy classes of two-dimensional isometries were described in 
complete detail under that heading in section 6.9. That information is 
important for apphcations, because authors often handle, for example, all 
60° rotations interchangeably without mentioning explicitly the conjugacy 
relation that connects them. The same is true in three-dimensional apphca-
tions. Earher sections of chapter 7 contained the most essential conjugacy 
results: the general ideas near the end of section 7.1, and theorems 7.2.5, 
7.3.3, and 7.3.5. Further results were omitted because their proofs are 
unwieldy and repetitive. They're offered here as exercises. 

Exercise 12 shows that, like the plane reflections, the half turns and point 
reflections each constitute single conjugacy classes. 

Exercise 12. Show that φσΡψ'λ = σφ(Ρ) and φσΛφ'λ = σφ[ί·[ for any 
point P, any line g, and any isometry φ. Suggestion: Consider fixpoints! 

Exercise 13. Describe the conjugacy class of a ghde reflection. 

Exercise 14. Describe the conjugacy class of a rotary reflection. 

Exercise 15. Describe the conjugacy class of a screw. 

Classifying isometries 

Earher in this chapter, a ghde reflection was defined as a composition of 
a translation and a commuting plane reflection, a rotary reflection as a 
composition of a rotation and a commuting plane reflection, and a screw 
as a composition of a translation and a commuting rotation. With these 
notions, you can classify all isometries. Exercises 16 to 18 give you some 
practice. What kinds of isometries are the analogous compositions whose 
components don't commute? 



320 THREE-DIMENSIONAL ISOMETRIES AND SIMILARITIES 

Exercise 16. What's the composition of a translation and a plane reflection 
when they don't commute? 

Exercise 17. What's the composition of a rotation and a plane reflection 
when they don't commute? 

Exercise 18. What's the composition of a translation and a rotation when 
they don't commute? 

Exercises 16 to 18 don't cover the whole subject of commutativity. When 
do isometries of the various other types commute, and what are their 
compositions? Most of the combinations are too rare to warrant special 
treatment—except one: the composition of two rotations. In two dimensions 
its description is simple; see theorem 6.9.3. In three, that's not true unless 
the rotations commute. Exercise 19 investigates the situation. 

Exercise 19. When do two rotations commute? What's their composition 
in that case and in general? 

Exercises on equations 

As in two-dimensional transformational geometry, the theory of isometries 
in three dimensions seems very different from the practice of computing 
with them. That's the effect of streamhning to present the essential details 
of the theory efficiently, in a form that 's easy to remember. The exercises 
under this heading present the computational details. In the first two, closely 
related to two-dimensional exercise 6.11.25, you derive equations for plane 
reflections and half turns in terms of the equations of their mirrors and axes. 

Exercise 20. Consider a point P=<p1,pi,p3>?iO and the plane δ χ OP 
through Ο. Show that as has matrix 

A = Ι--Ϊ-Κ, 
ptp 

where K=PP'. Now consider the plane c i OP through a point Q. Show 
that ac:X— X' has equation 

X' = AX+ — KQ. 
ptp 

Exercise 21. Find an equation for the half turn X -* X' about the hne g 
with parametric equations X=tP+Q. Suggestion: Use the matrix K = 
PP' introduced in exercise 20. 
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In the next two exercises, you start from geometric descriptions of certain 
isometries and find their equations. These involve very tedious computations. 
Use mathematical software wherever possible! 

Exercise 22. Find equations for 
(a) the reflection across the plane ε with equation 

x1 + 2x2 + 3 x 3 = 4; 
(b) the ghde reflection with mirror ε and vector <3, -2 , l / 9 > ; 
( c ) the half tu rn about the line through points < 1 , 1 , 2 > and 

< 2 , 1 , 1 > . 

Exercise 23. Consider the plane ε in exercise 22, its intersections P, 
Q, and R with the coordinate axes, and the line g i « through Q. Find 
equations for 

(a) the rotation p:X-*X' about g tha t maps QR to QP, with 
coefficients accurate to four decimal places; 

(b) the rotary reflection pat. 

Suggestion: The equation has the form X' = AX + Β for some matrix A 
and some vector B. Find four points X, no three of which are coplanar, 
for which you know X'. From the four equations X' = AX + Β construct 
a system of twelve hnear equations for the twelve entries of A and B, then 
solve it. 

The final two exercises under this heading ask you to classify an isometry 
or similarity, given its equation. To classify an isometry, 

• identify its class among those listed in the classification theorem; 

• find an equation for its mirror—if it has one; 

• find its vector—if it has one; 

• find an equation for its axis—if it has one—and specify a vector to 
indicate a positive ray, then find a corresponding angle parameter. 

To complete a classification, you may need to find fixpoints or fixed lines 
of an isometry φ:Χ-*Χ' =AX+B. For a fixpoint, you'll have to solve the 
hnear system X = X' —that is, X = AX+B, or (I-A)X = B. If I- A 
is invertible, there's just one fixpoint X. Otherwise, reduce the system to 
an equivalent one for which you can identify the solutions readily. There 
are four cases. You might 

• derive an inconsistent equation equivalent to 0 = 1 —there's no 
fixpoint; 

• reduce the system to three trivial equations, each equivalent to 0 = 0 
—every point is fixed; 
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• reduce it to two trivial equations and a nontrivial one that identifies 
a plane of fixpoints, with equation c, re, + c 2 x2 + c 3 x3 = d; 

• reduce it to one trivial equation and two equations 

. 'xi~cixk = d i 
Xj-CjXk = dj , 

where {i, j , k} = {1,2, 3} —you can convert those to parametric 
equations for a line of fixpoints: 

x- = t c- + d-
ι ι I 

• Xj = t Cj + dj 

xk = ί · 1 + 0 . 
To find fixed lines g of an isometry φ, note that ψ maps points tP+Q 

with Ρ ^ Ο to points 

A ( i P + Q ) + B = i P * + Q', 

where P*=AP and Q '=AQ + 5 . Thus φ maps the line g II OP through 
Q onto a line g ' // OP* through Q'. It follows that g II g' just in case 
P* is a scalar multiple of P. But φ preserves length, so gllg' just in case 
P* = ±P. The first step in finding fixed hnes is to find all vectors Ρ 
such that P* = ±P. Solve the linear systems AP = ±P —that is, 
(A±I)P= O. Second, find the points Q for which g = g'. For each P, 
both Q and Q' must he on g, so 

Q' - Q= AQ + B - Q = (A -I)Q + B = tP 

for some t. You must solve the system 

(I-A)Q + tP=B 

of three linear equations in four unknowns: t and the components of Q. 
That general procedure for finding fixed hnes may be more involved than 

what you really need. For these classification exercises, your main fixed-
line problem is probably to find the axis g of a screw φ: X ~* X' = AX + Β 
that has no fixpoint. Here's a neater alternative for that special situation. 
Since φ affects points X on g like a translation with vector V, 

χ· -X=V=(X')' -X', 

AX + B - X = [A(AX+ B) + B] - [AX+B] 

(A2 - 2A + I)X=(I -A)B 

(I-A)2X=(I-A)B. 

You can find the points X on g by solving that singular linear system! 
You can recognize a similarity X -»AX+ Β with ratio r by computing 

AAt = r2I; then classify the corresponding isometry X-* r" 'AX+ r ' B . 
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These exercises are stated in terms of exact fractions. To get exact solu-
tions, you'll need mathematical software that operates with exact fractions. 7 

You won't be able to carry out the computations by hand or by calculator 
with decimal arithmetic. 

You could convert each fraction in an exercise to a decimal approximation, 
and use decimal arithmetic. Do some exercises that way, too! Carry as many 
decimal digits as your calculator permits. You'll have to make certain decisions 
in the classification procedure by testing whether some computed number 
d = 0. With approximate decimal arithmetic, you'll never get d = 0 exactly. 
So you'll have to decide how close to zero is close enough. In practice, tha t 
can be a critical decision. It's important enough in some areas of computer 
graphics that it's worth covering in more detail there. But these exercises 
provide exact fractions so you can clearly relate theory to computation without 
worrying about approximation errors tha t depend on your equipment. 

Exercise 24. For these matrices A verify that the equation X'= AX defines 
an isometry or similarity φ : X -* Χ', and classify it. 

(a) 

(c) 

9518 131 526 
9555 1911 9555 
142 1894 211 
1911 1911 1911 
449 218 9482 
9555 1911 9555 

(b) 

(d) 

_12 jn 36 
49 49 49 
24 __36 _ 23 
49 49 49 
41 12 24 
49 49 49 

-6 2 3 

2 - 3 6 

3 6 2 

Exercise 25. For these matrices A and vectors Β verify that the equation 
X'=AX+B defines an isometry or similarity φ: X-+X', and classify it. 

(a) Same A as exercise 24(a) , B = <*A,iA,l2A>; 

(b) Same A as exercise 24(a) , B = <5,6, 7>; 
(c) Same A as exercise 24(b), 

(d) Same A as exercise 24(c) , 

(e) A = 

9518 131 526 
9555 1911 9555 
142 1894 211 
1911 1911 1911 
449 218 9482 
9555 1911 9555 

B = <*A,*A,12A>; 

B = < 9 6 8 / 1 9 5 , 8 8 / S 9 , - 6 1 6 / 1 9 5 > ; 

B = < ° 6 8 / 1 9 5 I 8 8 / 3 9 ) _ e i 6 / l 9 5 > . 

7 X(Plore) (Meredith 1993) is a good choice. 
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(f) A = 

-9518 -655 526 

-710 9470 -1055 

-449 -1090 -9482 

B = <968,440,-616>. 

Reflection calculus 

Just as in two dimensions, geometers have developed approaches to three-
dimensional geometry that rely very heavily on algebraic computations with 
compositions of self-inverse isometries—plane and point reflections and half 
turns. Because of the greater variety, these approaches are not so elegant 
as their plane counterparts. The three-reflections theorems provide basic 
tools in both two and three dimensions. The two-dimensional results are 
theorems 6.4.7,6.5.6, and 6.7.2, and exercise 6.11.32. Their analogs haven't 
appeared yet in this more streamlined chapter. They're presented as exer-
cises 26, 27, and 29. The intervening exercise 28 is an extension of lemma 
7.5.2 that you'll need for exercise 29. 

Exercise 26. Show that for any points P, Q, and R, the composition 
aPaQaR is the reflection across point S = Ρ - Q + R, and PQRS is a 
(possibly degenerate) parallelogram. 

Exercise 27. Show that the composition φ of the reflections across three 
planes is self-inverse in just three cases: 

(a) they're all perpendicular to a single line g, or 
(b) their intersection contains a line g, or 
(c) they're mutually perpendicular. 

Also show that in case 

(a) φ is the reflection across a plane perpendicular to g, and 
(b) φ is the reflection across a plane through g, and 
(c) φ is the reflection across the intersection of the three planes. 

Exercise 28. According to lemma 7.5.2, for any lines b and c the composi-
tion ab ac is a screw. Fill in the blanks and prove this extension of the 
lemma: 

<76 <7C = / if and only if...; 
it's a translation if and only if . . . ; 
it's a rotation if and only if . . . ; 
if it's not a translation, then its axis is the line that's perpendicu-
lar to b and c, and its angle parameter is . . . ; 
if it's not a rotation, then its vector is 
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Exercise 29. Show tha t the composition φ of the half tu rns about three 
hnes is self-inverse in just three cases: 

(a) the lines are mutually perpendicular, or 
(b) some pair of them is parallel, or 
(c ) they have a common perpendicular hne m. 

Show also tha t in case 

(a) φ—ι, 
(b) φ is the half turn about a hne I, 
(c ) φ is the half turn about a hne I χ m. 

Exercise 30 is the three-dimensional analog of exercise 6.11.9. 

Exercise 30. Show that every isometry φ is the composition of two self-
inverse isometries. Suggestion: Consider separately the various types of 
isometry. 

Working in the 1920s and early 1930s on the two-dimensional reflection 
calculus—see that heading in section 6.11—Gerhard Thomsen evidently 
considered analogous three-dimensional questions. Thomsen's Ph.D. stu-
dent H. Boldt developed tha t material into a full theory, pubhshed as his 
dissertation in 1934. It isn't as clean as its two-dimensional counterpart. 
That 's understandable; three-dimensional theorems are generally more 
complicated. As you've seen in previous exercises on commuting reflections 
and on the three-reflections theorems, enlarging the class of nontrivial self-
inverse isometries from two types to three brings minor comphcations to 
almost every elementary theorem. Consequently, even only slightly less 
elementary results become unwieldy when stated solely in terms of reflec-
tions and half turns. Exercises 31 and 32 are taken from Boldt 1934. They're 
closely related to the two-dimensional reflection calculus exercises in 
section 6.11. 

Exercise 31. Describe the figure formed by points A, B, C, and G for 
which ο~ΑσβσΒσασασα= ι. Find an analogous result with points A, 
B, C, D, and G. Suggestion: Reason with vectors. 

Exercise 32, Part 1. Under what conditions on hnes g and h is 

Part 2. Under what conditions on a hne g and points Ρ and Q 
is ogapaQagaQap= z? 

Part 3. Under what conditions on a line g and points Ρ and Q 
is ogdp(TqagOpOQ = i? 
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Part 4. Under what conditions on lines g and h do there exist points 
Ρ and Q such tha t agah= σΡσ^Ί 

Part 5. Under what conditions on hnes g and h do there exist points 
Ρ and Q such that agahatah= OpOq? 

Suggestion: Exercise 28 is helpful. 



Artists and artisans have always exploited symmetry in constructing attractive 
and efficient designs. This chapter's title, a self-referential calligraphic design 
by Scott Kim, 1 displays twofold rotational symmetry. Turn the book 180° 
and admire! The design in figure 8.0.1, from the Mimbres culture 1250 years 
ago in New Mexico, displays fourfold rotational symmetry. It adorns a medi-
um with a practical aspect: the interior of a water bowl.2 You saw a frieze 
pattern in figure 6.0.3 that displayed the same rotational symmetry as this 
chapter's title. Frieze patterns are designed to be repeated indefinitely to 
decorate edges and ribbons. You can also wind a frieze around an object, 
overlaying repeated parts appropriately, to get a pat tern on the inside or 
outside of a circular band. Wound about a bowl, the figure 6.0.3 frieze would 
resemble figure 8.0.1. 

The frieze pattern in figure 8.0.2 was used about two hundred years ago 
on pottery from Tesuque Pueblo, about 270 miles from the Mimbres region.3 

This one combines repetitive and reflectional symmetry; it appears the same 
upside down. But it has no rotational symmetry. 

Figures 8.0.3 and 8.0.4 show Kin Kletso, one of the smaller villages in 
the Chaco Canyon area of New Mexico that were occupied around A.D. 1050 
-1175. Its architecture uses repetition in two perpendicular directions, 
perhaps like that of the office building or neighborhood you're working in. 

From Kim 1981, 28. See also the signature concluding the preface to the present book. 
2 From Brody, Scott, and LeBlanc 1983, plate 37. Most Mimbres pottery has been recovered 

from graves. Mimbres funeral ceremonies evidently included punching a hole in the bottom 
of each bowl to be buried. 

3 From Chapman 1970, plate 66a. You'll see this design again as a circular band pattern on 
a jar in figure 8.5.6. 
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Figure 8.0.1 Mimbres bowl 
with fourfold rotational symmetry 

Figure 8.0.2 Tesuque 
frieze ornament 

Parts of Chaco structures once repeated this design in three perpendicular 
directions; grids of rooms were stacked floor upon floor. The numerals in 
figure 8.0.4 indicate the number of floors. You'll see reflectional and rotational 
aspects in this grid, as well as three circular kivas for rituals, placed in the 
grid with little regard to its symmetry. The overall design is at once utili-
tarian, ceremonial, and delightful and satisfying for the onlooker. 

Nature doesn't require human intervention to create symmetry. Many 
animals and flowers display bilateral or rotational symmetry. Figure 8.0.5 
shows the structure of Devils Postpile in California's Sierra Nevada. Its 
hexagonally symmetric basalt columns fit together precisely, not because 
some hand stacked them like cells in a beehive, but because they pulled apart 
as an ancient lava flow cooled and contracted. Gravity and exposure to cool 
air and substratum affect the lava flow's behavior in the vertical direction. 
But if its horizontal plane sections are perfectly homogeneous, they should 
pull apart into regular shapes that fit together to fill the planes: equilateral 
triangles, squares, or regular hexagons. Cooling tends to shrink their 
perimeters. Of those types of figures with a given area, the hexagon has 
the shortest perimeter. Figure 8.0.5 and the top view in figure 8.0.6 show 
many basalt columns that are approximately regular hexagonal prisms. 

We like to stack other objects, too, such as the balls in figure 8.0.7. Can 
you visualize their repetition in three noncoplanar directions? Can you see 
the rotational and reflectional symmetry? Can you imagine each ball contained 
in a polyhedral cell, so that the cells are stacked face to face with no space 
between? Without our assistance, nature stacks molecules in crystals. 
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Figure 8.0.3 Aerial Figure 8.0.4 
photograph of Kin Kletso4 Kin Kletso floor plan 5 

Figure 8.0.5 Basalt Figure 8.0.6 
columns a t Devils Postpile6 Top view of columns6 

4 Lekson [1984] 1986, figure 4.87. 

5 Ibid., figure 4.89. The numerals represent the number of floors of the building at each 
location. 

6 Photographs by Dr. Wymond Eckhardt. 
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Figure 8.0.7 
Stack of balls7 

Figure 8.0.8 Contemporary 
Mexican lamp8 

Polyhedral ornamentation is common; consider the elegant lamp in figure 
8.0.8. Try to puzzle out its rotational and reflectional symmetry—the most 
complicated of all these examples. 

This chapter is about geometry, art and design. It analyzes in detail the 
symmetries of examples like figures 8.0.1 to 8.0.8. The chapter 6 introduction 
called a figure symmetric if it's unchanged by some isometry. Two figures 
display the same symmetry if they're unchanged by the same isometries. 
To analyze the symmetry of a figure F, study the isometries tha t leave it 
unchanged—they're called its symmetries. This is the official definition of 
that word, and it's consistent with the usage in the sentence before last. 
An isometry φ is a symmetry of F if and only if φ[Ρ] - F. According to 
the definition in section 6.1, the set 'Sp of symmetries of F is a subgroup 
of the group of all isometries: 

• the identity ι belongs to % because i[F] = F; 
• 'Sp contains the inverse of each of its members, because φ [F ] = 

F implies ^ " ' [ J P ] = (p'l<p[F] =F; 
• *&ρ contains the composition of any two of its members, because 

<p[F]=F and x[F]=F imply <px\F\ = cp[F] =F. 

'Sp is called the symmetry group of F.9 

How do the symmetry groups of the objects in figures 8.0.1 to 8.0.8 differ? 
They have several distinguishing properties. Perhaps the most evident has 

7 Photograph by the present author. 

From a Sundance Catalog Company advertisement. 

9 Don't confuse this with the symmetric group, which consists of all transformations of F! 
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to do with translations belonging to the groups. Translations τ and υ are 
called independent if for some (hence any) point Ο the points O, 
T(O), and v(O) are noncollinear; a translation φ is independent from 
τ and υ if O, r ( O ) , v(0), and φ(Ο) are noncoplanar. The symmetry 
groups of this chapter's title, and of the Mimbres bowl and Mexican lamp 
in figures 8.0.1 and 8.0.8 contain no translation at all. The symmetry groups 
of the friezes in figures 6.0.3 and 8.0.2 contain translations, but no two are 
independent. A single layer of rectangular rooms, "tiles", or balls in figure 
8.0.3,8.0.6, or 8.0.7 has a symmetry group with two independent translations 
but not three—provided you regard them as extending indefinitely in two 
dimensions. The groups of the stacks of rooms or balls or of the Devils Post-
pile in figure 8.0.5 each contain three independent translations, provided 
you regard them as extending indefinitely in all three dimensions. You can 
regard these four classes of symmetry groups as zero-, one-, two-, or three-
dimensional: They contain no translation, one translation on which all others 
depend, or two or three independent translations. If you study these examples 
and figures 6.0.1 and 6.0.4 very carefully, ignoring inconsequential irreg-
ularities, you can catalog all the symmetries in their groups. You'll conclude 
that the groups all differ. 

Exactly what qualities do you consider in distinguishing symmetry groups? 
This isn't as simple a question as it might seem at first. Independence of 
translations is one. On the other hand, you wouldn't distinguish between 
the symmetry groups of figure 8.0.1 and tha t of the bowl it depicts, even 
though their centers differ. (One's in your hand, the other's in a museum.) 
Precise criteria are described in section 8.1 under the Conjugacy heading. 

You know these are not the only ways to construct symmetric designs. 
Look about you for ornaments such as logos or balls with zero-dimensional 
groups, one-dimensional fences or ribbons, two-dimensional tiling or wall-
paper patterns, and three-dimensional packing schemes that display different 
rotational and reflectional symmetries. How can you classify such designs? 
How many different classes are there? That's the subject of this chapter. 
To study it you'll use rather elaborate group-theoretic analyses. 

This book is not the place to find a great wealth of examples of symmetry. 
Sections 8.1 to 8.4 are devoted to the details of the geometric theory. Barely 
more than a minimal number of figures illustrate its apphcations. Those 
from the art world are selected as much as possible from a single area, the 
Pueblo cultures of New Mexico. This shows how group-theoretic geometric 
analysis, a sophisticated product of Europe, can be used to study a r t from 
an almost entirely independent culture. The exercises in section 8.5 suggest 
numerous other apphcations. To gain familiarity with them, you'll need 
to consult the references cited later in this chapter introduction, particularly 
their bibliographies. Need to isn't the right way to say it! You'll probably 
become immersed in wonderful figures from the worlds of advertising, anthro-
pology, architecture, art, botany, commercial design, crystallography, geology, 
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molecular chemistry, music, and zoology. You'll begin to notice examples 
all about you, and you'll startle your friends by stopping frequently to admire 
beautiful symmetries they don't even notice! 

Much of this chapter's mathematics is presented almost in the reverse 
order from that of its discovery. Artists acquire extensive intuitive knowledge 
of the possibilities for zero-, one-, and two-dimensional symmetry groups 
without recording any detailed conscious analysis. Some cultures tacitly 
identify which combinations they use, and regard others as foreign. Artists 
of some cultures have gathered together at one place and time descriptions 
of all possibilities in one or another of the dimensional classes, without explic-
itly proving that the possibilities were exhausted. 

Since the Renaissance, European scientists have apphed mathematical 
methods to this subject, and recorded their findings. The group-theoretic 
approach, which brings unity to their work, was developed only since the 
late 1800s, to solve the hardest problem of those mentioned so far: classify-
ing crystal symmetries. A long train of research 1 0 led to simultaneous pub-
lications by E. S. Fedorov ([1891] 1971) and Arthur Schonfhes (1891), 
enumerating and dassifying the 230 types of crystal symmetry. Classifying 
230 types of anything requires an elaborate methodology; the group theory 
was present in these works, though not in the present-day form. Fedorov, 
Director of Mines in the Urals, did this as a sideline, and wrote mostly in 
Russian, hence proceeded outside the main stream of science at that time. 1 1 

Schonfhes, a professor at Gottingen, worked very much in the mainstream 
of geometry. The two corresponded at length, and Schonfhes granted Fedorov 
priority for the discovery.1 2 

As you'll see in section 8.1, the study of plane figures with zero-dimensional 
symmetry group is simple enough that it needs only a small amount of 
organization beyond the basic geometry of regular polygons, which had been 
developed by Euclid's time. So it's reasonable to presume that the analysis 
of those symmetries was common knowledge by Renaissance times. Section 
8.4 describes polyhedra with many different zero-dimensional groups. By 
the mid 1800s, the German and French mineralogists Hessel and Bravais 
had completed the investigation of symmetric polyhedra. They used httle 
theory beyond Euclid's analysis of the regular polyhedra; however, there 
are so many cases that the present book does not present the details of their 
study. Fedorov completed the study of the seventeen two-dimensional sym-

See the historical accounts Schneer 1983 and Burckhardt 1967/1968. 
1 1 Russian scientists were concerned about their linguistic isolation. At the 1900 International 

Congress of Philosophy, they were major participants in discussions of a possible interna-
tional scientific language. Louis Couturat and Giuseppe Peano, the senior French and 
Italian mathematicians at the congress, soon developed specifications for two such lan-
guages, Ida and Interlingua. The Italian contributions to that congress played a major role 
in the foundations of geometry; see sections 2.8 and 2.9. 

1 2 Burckhardt 1967/1968, section 5. 
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metry groups along with his 1891 classification of crystals, 1 3 but he didn't 
mention the one-dimensional problem. 

This field of geometry then passed from the spotlight for some years. Hilbert 
included a higher-dimensional generalization of the classification in his list 
(1900) of problems that would guide mathematics into the twentieth century. 
Several books on crystallography appeared during the next ten years. But 
significant renewed attention evidently had to await the development in 
Gottingen, during the 1910 decade, of modern higher algebra as a routine 
tool for organizing studies in all disciplines of mathematics. 

Detailed study of three-dimensional symmetry groups remains a domain 
for specialists. However, popular interest in the one- and two-dimensional 
groups was rekindled in the early 1920s. First, Hilbert included them in 
his 1920/1921 lectures on visual geometry. Their translation Geometry and 
the imagination (Hilbert and Cohn-Vosson [1932] 1952) introduced the 
present author to this material and sparked his love for geometry. Next, 
three papers appeared in the Zeitschrift fur Kristallographie in 1924 and 
1926. The first was just a letter to the editor by the well known Zurich 
mathematician Georg Polya. He pointed out that the crystallographic methods 
could be used to classify familiar ornamental pat terns. He didn ' t publish 
the details: 

The proof of the completeness of the enumeration is an easy exercise 
for anyone who knows Schonflies' results and his text. I'm not including 
my proof here because it doesn't seem sufficiently rounded out.1 4 

The very next paper in that journal, by its editor Paul Niggli, also a professor 
at Zurich, provided the proof (Niggh 1924). He first pointed out that Fedorov 
had already done so in principle, but no one had yet presented the proof clearly. 
Niggh then adapted some parts of his own book on crystallography to yield 
the classification of plane ornaments. Soon after, he pubhshed the analo-
gous but simpler analysis of the one-dimensional symmetry groups (Niggh 
1926). This Zurich activity stemmed from Schonflies' and Hilbert's work 
in Gottingen. Polya, a Hungarian, had done postdoctoral research there 
in 1912/1913 before he accepted the professorship at Zurich. Andreas Speiser, 
by then already a professor at Zurich, had completed his Ph.D. research a t 
Gottingen in 1909. In 1923, Speiser pubhshed the first group theory text 
incorporating the new Gottinger approach to algebra. Its second edition 
(Speiser 1927) featured the classifications by Fedorov, Polya, and Niggli. 
That was the first appearance in book form of the group-theoretic analysis 
of ornamental symmetry. From then on, presentations and extensions of 
these methods appeared frequently. 

Fedorov 1891. 

Polya 1924, 280, translated by the present author. Polya was renowned for his mathematics 
and revered for his pedagogy. The style of his letter, with its pictures of seventeen different 
ornaments, made it famous. 
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The scope of symmetry analysis, its apphcations, and its literature are 
vast. This chapter only touches the surface. Some major areas are mentioned 
only in passing, if at all. For further information, you may want to consult 
some of the references mentioned next. See the bibliography for more detailed 
citations. 

Sources that concentrate on art and scientific applications, with little 
or no attention to instruction in technical geometry 

Blackwell 1984 

Hargittai 1986 

Hargittai and Hargittai 1994 

Jones [1856] 1972 

Schattschneider 1990 

Senechal and Fleck 1977 

Senechal and Fleck 1988 

Stevens 1974 

Stewart and Golubitsky 1992 

Washburn and Crowe 1988 

Weyl1952 

Geometry in architecture 

Symmetry: Unifying human 
understanding 

Symmetry: A unifying concept 

The grammar of ornament: Illustrated 
by examples of various styles of ornament 

Visions of symmetry: Notebooks, periodic 
drawings, and related work of M. C. 
Escher 

Patterns of symmetry 

Shaping space: A polyhedral approach 

Patterns in nature 

Fearful symmetry: Is God a geometer? 

Symmetries of culture: Theory and prac-
tice of plane pattern analysis 

Symmetry 

Sources with some emphasis on introductory instruction in geometry 
or group theory 

Beck et al. 1969 

Crowe 1986 

Farmer 1996 

Foster (no date) 

Gallian 1994 

Hilton et al. 1997 

Excursions into mathematics. Chapter 
1, "Euler's formula for polyhedra, and 
related topics." 

Symmetry, rigid motions, and patterns 

Groups and symmetry: A guide to discov-
ering mathematics 

The Alhambra, past and present: A geo-
meter's odyssey 

Contemporary abstract algebra 

Mathematical reflections in a room with 
many mirrors 
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Sources that pursue the study of symmetry beyond the scope of this book 

Armstrong 1988 
Cromwell 1997 
Fejes Toth 1964 
Grunbaum and 

Shepherd 1987 
Hilbert and Cohn-Vosson 

[1932] 1952 

Klemm 1982 

Martin 1982 

Senechal 1995 

Shubnikov and Koptsik 1974 
Yale [1968] 1988 

Groups and symmetry 

Polyhedra 

Regular figures 

Tilings and patterns 

Geometry and the imagination 

Symmetrien von Ornamenten und 
Kristallen 

Transformation geometry: An introduc-
tion to symmetry 

Quasicrystals and geometry 

Symmetry in science and art 

Geometry and symmetry 

Arthur Moritz SCHONFLIES was born in 1853 in Landsberg an der Warte. 
From 1870 to 1877 he studied at the University of Berlin, and earned the 
doctorate with a dissertation in synthetic geometry supervised by Kummer. 
From 1878 through 1880 he taught in gymnasiums in Berlin and at Colmar, 
in the Alsace. Schonflies returned to academic life, earned Habilitation in 
Gottingen in 1884, and was appointed Ausserordentlicher Professor there in 
1892. During this period he pursued his own research in geometry, and 
edited the works of Plucker. Schonflies pubhshed a monograph on the 
general theory of rigid motions, and wrote the major article on that subject 
in the Enzyklopadie der mathematischen Wissenschaften. He applied this to 
crystallography, and with Fedorov characterized the 230 crystal types. 
Schonflies wrote the authoritative work on mathematical crystallography in 
1891. In 1895, with W. Nernst, he produced a noted popular book on mathe-
matics in science. 

Schonflies moved to a full professorship at Konigsberg in 1899, and at 
about fifty undertook study of a new area, set theory. He produced several 
monumental reports on the subject during 1900-1913, providing some of the 
first clean discussions and proofs of now-standard concepts and theorems 
about infinite sets. Schonflies moved again, in 1911, to Frankfurt am Main. 
There he continued his work on set theory and in 1923 produced a new 
edition of his crystallography book. In all, he produced no fewer than four 
major Enzyklopadie articles. Schonflies retired in 1923, and died in Frankfurt 
in 1928. 
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Concepts 
Simple closed polygons 
Regular polygons 
Conjugacy 
Symmetry groups of polygons 
Finite cyclic isometry groups 
Modular arithmetic 
Dihedral groups 

We're all familiar with the use of polygons 1 5 in design, both for practical 
purposes and for ornamentation. For η i 3, a simple closed polygon with 
vertices V0 to Va_ x is defined as the union of η edges 

Σ0=ΨΪ> s^w** ···. ί . - ι = ΰ ϋ - En-i=x~ya, 

provided 

• no pair of successive edges, nor ΣΗ and Σ0, are collinear; 
• no edges intersect, except that 2Tfc and Σ,,+ Ι share Vk+1 forfc = 0 

to η -1, and ΣΗ and Σ0 share V 0. 

Numerical prefixespenta-, hexa-,dodeca- specify polygons with 5 , 6 , 
.... 12 edges and vertices. Figure 8.1.1 displays a simple closed pentagon. 
Since all polygons in this chapter are simple and closed, those adjectives 
will be omitted. 

The regular polygons are favorites, because all edges are congruent, as 
are the angles between intersecting edges. Exercise 8.5.5 invites you to survey 
the uses of these highly symmetric objects in practical and ornamental design. 

Figure 8.1.1 
Simple closed pentagon 

The Greek prefix and root poly- and gon mean many and angle. 

8.1 Polygonal symmetry 
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Figure 8.1.2 
Regular hexagon 

Figure 8.1.3 Decagonal 
stellation of a (dotted) 

regular pentagon 

Figure 8.1.4 Affine-regular 
hexagon (opposite edges 

are parallel) 

Figure 8.1.5 Eared 
dodecagon made from a 

(dotted) regular hexagon 

You should consider somewhat less symmetric polygons, too. Figures 8.1.2 
to 8.1.5 present some examples. (Figure 8.1.1 showed no symmetry at all.) 

You can easily catalog, and thus distinguish, the symmetries of these 
examples. That amounts to hsting the symmetry groups of the figures: 

Figure Rotations Reflections 

8.1.1 0° none 
8.1.2 71-60° 6 hnes through the center 
8.1.3 n- 72° 5 hnes through the center 
8.1.4 n-180° 2 lines through the center 
8.1.5 n-60° none 

(n represents any integer.) These figures all have different symmetry. 
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Figure 8.1.6 
Letters with the 
same symmetry 

r r 

Conjugacy 

What criterion governs whether figures have different symmetry? It can't 
be that their symmetry groups differ, because we regard the letters Η and 
Η in figure 8.1.6 as having the same symmetry, even though the half turns 
and horizontal and vertical reflections in their symmetry groups $ H and 
® H have different centers and axes. How are these groups related? The 
letters are similar. A similarity, the composition φ = δ τ of a horizontal 
translation τ followed by a dilation δ with ratio r = 2.2, maps Η onto 
H. You can use φ to relate the groups. To each symmetry ψ of the smaller 
Η corresponds the conjugate similarity ψφ=φψφ~1. It's an isometry because 
its similarity ratio is r l r " 1 = 1. Moreover, ψφ leaves the larger Η 
unchanged: ^"'[H] is the smaller H, which is unchanged by ψ, then map-
ped back onto the larger one by φ, so that φψφ'λ[\\) = Η. Therefore 
ψφ is a symmetry of the larger Η . The conjugation ψ~*ψφ maps ®H to 
55 H . This correspondence is bijective because it has an inverse, the conjugation 
ω~*ωφ, which maps S0H to SSH. The close relationship between the groups 
doesn't depend on all details of the figures—just those that we commonly 
call symmetry properties. For example, the conjugation ψ ~* ψχ defined 
by the similarity χ= δ τ2 maps the symmetry group % of the smaller 
Η in figure 8.1.6 bijectively onto the symmetry group iS x of the large X. 
(Each group consists of the identity, the half turn about the letter's center, 
and the reflections across its horizontal and vertical axes.) When a conjuga-
tion ψ ~* ψφ maps one isometry group <S onto another group <SV = 
ψφ[@], they're called conjugate. When their symmetry groups are conjugate, 
two figures are said to display the same symmetry. In particular, similar 
figures have conjugate symmetry groups, and display the same symmetry. 

Theorem 1. The conjugation ψ -* ψφ defined by a similarity χ maps an 
isometry group 'S bijectively onto a conjugate isometry group 55 9. It leaves 
the identity fixed: ιφ = ι. Moreover, for any isometries ψ and ω in 'S, 
ψφωφ={ψωΥ and (ψφ)'ι = (Ψ'Ύ-

Proof. The previous paragraph established that conjugation is bijective 
and the elements of ψφ[&] = W are isometries. The equations 

ιφ= φ ι φ1 = ι 
ψφωφ = φψφ'Χφωφ'ι = φψωφ'1 = (ψω)φ 
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(ψ*)1 = (φψφ1)1 = φψ'φ1 = (ψ-1Υ 

imply that ψν[^β] contains the identity, the composition of any of its elements 
ψ* and ω*, and the inverse of any element ψχ, so it's an isometry 
group. • 

The last s ta tement in theorem 1 imphes that you can perform a group 
operation in Λ? = either directly—for example, ψχωχ —or by oper-
ating on the corresponding isometries in 'S, then mapping the result— 
ψω in this example—back to its counterpart (ψω)χ in Ji?. The groups are 
conjugate in the sense of the original Latin participle conjugates: joined 
together as in friendship or wedlock. 

When we use the word same in informal language, we assume that it refers 
to a relationship that enjoys the reflexive, symmetric, and transitive proper-
ties of an equivalence relation. (See appendix A.) For the vague notion of 
figures displaying the same symmetry properties, the previous paragraph 
and theorem 1 developed a precise counterpart: possessing conjugate symmetry 
groups. Whenever such a notion of sameness is formahzed, the justification 
of its use should include verification that it is indeed an equivalence relation. 
The next theorem does tha t for conjugacy. 

Theorem 2. The conjugation ψ-*ψ' defined by the identity ι leaves each 
isometry ψ fixed—that is, ψ'= ψ —hence it maps each isometry group 
<8 to itself: = If a conjugation ψ -* ψ* defined by a similarity ψ 
maps an isometry group S to Λ? = S ' , then the inverse conjugation 
ω~>ωφ maps Jf? back to Έ. Moreover, if a conjugation ω -* ωχ maps 
Ji? to a third isometry group then the conjugation ψ -* ψχφ maps S 
to 

The proof is straightforward; most of it is contained in the previous discus-
sion. The three sentences of theorem 2 imply that conjugacy is an equivalence 
relation: 

• every isometry group is conjugate to itself; (Reflexivity) 

• if an isometry group 'S is conjugate to an iso-
metry group Jif, then Ji? is also conjugate (Symmetry) 
to «; 

• if & is conjugate to Jif, and Λ? is conjugate to 
an isometry group then 'S is also conjugate (Transitivity) 
to J. 
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Symmetry groups of polygons 

You've probably already noticed the following properties of symmetry groups 
of polygons: 

Theorem 3. The symmetry group of a polygon Π is finite. It contains no 
translation or ghde reflection with nonzero vector. 

Proof. Clearly, the symmetry group of a bounded figure can contain no 
translation or glide reflection with nonzero vector. Select any three con-
secutive vertices of Π. Any symmetry φ of Π must map them into three 
consecutive image vertices, and by the uniqueness theorem, corollary 6.2.8, 
these images determine φ completely. There are only finitely many possi-
bilities for the image vertices, so there are only finitely many possibilities 
for φ. • 

The remainder of this section considers finite symmetry groups in detail, 
and concludes with a converse of theorem 3: Every finite group of plane 
isometries is the symmetry group of some polygon. 

Finite cyclic symmetry groups 

The simplest finite isometry groups are those that contain only rotations, 
such as the symmetry group of the eared dodecagon in figure 8.1.5. These 
groups are called cyclic. 

Theorem 4. Consider a nontrivial finite isometry group consisting of 
m rotations. These must be Po.m-im ror & = 0 to m -1, with a uniquely 
determined center O. 

Proof. Suppose <8 contained nontrivial rotations ρΝη and poe with Nj* 
O. Let P = ρΝη(0). Then O^P and # would contain ΡΝ,ηΡο.βΡΝ,η

 = 

ρΡΘ and the nontrivial translation Po,eP'p)e> contradicting theorem 3! 
Thus, all nontrivial rotations ρΟΘ in S must have the same center O. 
Assign them angle parameters between 0° and 360°, and let θ denote 
the smallest of these parameters. <8 contains the rotations ρ%β for all 
integers k, so they can't all be distinct: Poi.e=Po.e with j<k for some 
j and k, hence PQ'J = t. That is, some positive power of poe is the 
identity; let m be the first power for which Pog = i, so that 0 = 360°/ 
m. If prie = pog with 0 i j < k < m, then ρ%~β' = ι with 0<k-jzk< 
m, contradiction! Thus, the powers pog for k = 0 to m - 1 are all distinct. 

It remains to show that these powers constitute all the members of 
Indeed, if ρ0η is any member of <8, then you can divide η by θ to find 
an integer quotient ρ and a remainder λ such that 0° s. λ < θ and η = 
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ρθ + λ. I t follows that Po,x = Ρο,η Ρο,β belongs to which contradicts the 
choice of θ unless λ = 0°; and that entails η=ρθ. Finally, divide ρ by 
m to get an integer quotient q and remainder k such that 0 ζ k < m and 
ρ = qm + k. As desired, 

Ρο,η = Ρο.Ρθ = Ρ8.Θ = PST" = (Po.eYPo.r Po.e 

Therefore, # has exactly m elements pQ g for k = 0 to m - 1.4 

The proof of theorem 4 suggests a connection between a finite cyclic 
isometry group 55 with m elements and arithmetic modulo m.16 If θ = 
360°/m and Ozj,k<m, then 

Ρό,βΡο,β = PojePo.ke - Poxj*h)e ~ Po*ek-

It's possible that j + k>m, which is inconvenient if you want to consistently 
use angle parameters between 0° and 360°. So you can divide i= j + k 
by m to get integer quotient q and integer remainder I such tha t 0 i 
l<m and i = qm + l. I t follows tha t 

PO*ek ~ Po!e+l = iPo,e)qPo.e= Ρο,β 

The remainder / is often written i mod m, so that the rule for composition 
of rotations in 'β can be stated 

Ρο'.θΡο.β = Po.e where l = (j + k) mod m. 

If 0 < k < m, then -k = (-1) m + (m - k) and 0 ζ m - k < m, hence 
(-k) mod m = m - k. The equations 

(Po.*)"1 = (Ρο.β)'ιΡο.β= Poj" 

and 0 mod m = 0 then yield the rule for inversion of a rotation in ®: 

(.Ρο,β)1 ~ Po.e where I = (-k) mod m. 

A cyclic isometry group with two elements contains just the identity and 
a half tu rn about the center O. It's the symmetry group of a parallelogram 
that 's neither a rectangle nor a rhombus. For any larger cyclic isometry 
group i? with center Ο and m elements you can construct a regular poly-
gon with m edges and center O, then add ears as in figure 8.1.5 to get 
a polygon with 2m edges and symmetry group SS. 

Theorem 5. Every finite cyclic isometry group is the symmetry group of 
some polygon. Any two finite cyclic isometry groups with the same number 
of elements are conjugate. 

Analogous to arithmetic modulo 360 as introduced in section 3.13. 
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Proof. The previous discussion established the first statement. Further, 
if you follow its algorithm, starting with two finite cyclic groups, each with 
η elements, you'll construct similar polygons, whose symmetry groups are 
conjugate by theorem 1. • 

The second statement in theorem 5 suggests use of a common symbol <Bm 

to designate all finite cychc groups with m elements. 

Dihedral groups 

All regular polygons with m edges are similar, so their symmetry groups 
are conjugate, by theorem 1. They're called dihedral groups, and a common 
symbol 3)m is used to designate them. 1 7 Study the regular pentagon and 
hexagon in figures 8.1.7 and 8.1.8, and list their symmetries. Do the same 
for an equilateral triangle and a square. You'll see a pattern, and conclude 

Theorem 6. The symmetry group ®m of a regular polygon 77 with m edges 
has 2 m elements. It consists of the cychc group <Sm plus m reflections 
across lines through the center of 77. If m is odd, each of these lines passes 
through a vertex and the midpoint of the opposite edge. If m is even, half 
of them pass through two opposite vertices, and the other half, through two 
opposite midpoints. 

It's also customary to consider dihedral groups with four and two elements. 
It's not too painful to consider a nontrivial line segment as a regular polygon 

Figure 8.1.7 Regular Figure 8.1.8 Regular 
pentagon: hnes of symmetry hexagon: hnes of symmetry 

The Greek prefix and root di- and hedron mean two and face. This terminology stems from 
the fact that symmetry groups were first studied in detail for three-dimensional figures. 
A polygon is the boundary of a polygonal region, which was regarded as a flat figure, almost 
a polyhedral region, but with only two faces. 
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Figure 8.1.9 
Defining a 

Vierergruppe @>2 

with two vertices. (See figure 8.1.9.) Its symmetry group contains four 
elements: the identity, the half turn about its midpoint O, the reflection 
across its line g, and the reflection across the line h ±g through O. Clearly, 
all such groups are conjugate; they're regarded as dihedral groups and 
designated by the symbol S>2. Such a group is also commonly called a Vierer-
gruppe.18 Finally, a group that contains just the identity and a single line 
reflection is also called dihedral. All such groups are conjugate, and are 
designated by the symbol 2^. 

The final result of this section is a converse of theorem 3. 

Theorem 7. Every finite group of plane isometries is cyclic or dihedral. 1 9 

Proof. No finite isometry group S can contain any translation or ghde 
reflection with nonzero vector. Let % be the cyclic subgroup consisting of 
all rotations in 'S. If = 'S, then 'S is cyclic. Thus you can assume tha t 
"S contains the reflection across some line g. The mapping φ-* (pag is a 
bijection from IS to the set of all reflections in ® because 

• φσί is odd, hence a reflection, for each φ in <&; 
' 9°g- X°g implies φ = (<pog)og = (xag)ag = χ for each φ and 

χ in <β; 

• ψσί is even, hence in 'β, for each reflection ψ in <&, and 
φ=(ψσΒ)σβ. 

If 'β contains only the identity, then ® contains only one reflection, hence 
'S is a dihedral group 3>γ. Thus you can assume that 'β is nontrivial, with 

This term apparently stems from an early diagram that displayed some patterns like figure 
8.1.9 in the four plane quadrants defined by g and h. They looked like prints of someone 
on all fours—alle Vierer in German. 

Several authors call this result Leonardo's theorem, because Weyl (1952, 66, 99) wrote that 
Leonardo da Vinci, in notebooks dating from about 1500, had essentially tabulated the 
symmetries in the finite cyclic and dihedral groups. But Senechal (1990, 329) suggests that 
closer inspection of the notebooks doesn't support Weyl's claim. 
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center Ο. This point lies on the mirror of each reflection ψ in 55; otherwise, 
55 would contain jiy>o,36ovm> a ghde reflection with nonzero vector. Define 
m distinct hnes gk = Po.wkimig] f ° r k = 0 , . . . , m - 1 , so that g0 = g, 
agag=pO360.klm, and agi= paa60.klmot is in 55. In fact, 55 consists pre-
cisely of <€m plus 0 ^ for A = 0 , m - 1 . Choose any point V / O on 
g, and define Vk = Po.wkimJV) ^or k = 0, m - 1 so that V0 = V. 
If m = 2 , then segment VQVJ has symmetry group 49. If m>2, then 
V„ to V m . 1 are the vertices of a regular polygon with symmetry group 
55. That is, 5S is a dihedral group 2 > M . (Figures 8 . 1 . 7 and 8 . 1 .8 illustrate 
cases m = 5 and 6 of this construction.) • 

8.2 Friezes 

Concepts 
Frieze groups and friezes 
Lattices and grids 
Decision trees 
Classifying friezes 
Frieze group notation 

The previous section considered bounded plane ornaments: designs derived 
from regular polygons. They possess rotational and reflectional symmetries 
in various combinations. Their symmetry groups are finite, and the discussion 
concluded with a detailed analysis of all finite groups of plane isometries. 

The next more complicated symmetric figures display repetition as well. 
These patterns, called friezes, repeat indefinitely, or at least are always 
extensible, in two opposite directions, but not in any other direction. You've 
seen examples already in figures 6 . 0 . 3 and 8 . 0 . 2 . Repetition means doing 
something over and over. So you must construct a frieze by making a 
fundamental cell first, then appending duplicate cells as many times as you 
wish in two opposite directions. There must be a smallest repeated cell. 
The continuous stripe in figure 8 .2 .1 , for example, is not regarded as a frieze. 

The examples so far have been bounded by parallel hnes, but that 's not 
really necessary. A frieze can extend indefinitely far in a different direction, 
as long as it doesn't repeat in that direction and its opposite. Figure 8 . 2 . 2 
depicts an unbounded frieze; but the closely related pattern suggested by 
figure 8 .2 .3 is not a frieze because it repeats in two nonopposite directions. 

As in the previous section, the task here is to classify frieze patterns. 
You might object that since the notion frieze is not yet totally clear, how can 
frieze classes be defined precisely? A single technique solves both problems. 
Friezes will be classified according to their symmetry groups. It's easy to 
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Figure 8.2.1 Figure 8.2.2 
Not a frieze An unbounded frieze 

define frieze group without referring to the notion frieze itself. Then we can 
define a frieze as a figure whose symmetry group is a frieze group! Because 
the groups display less variety than the friezes, it 's easier to classify the 
groups. 

The symmetry groups of the examples in figures 8.0.2 and 8.2.2 contain 
line reflections as well as horizontal translations. That of figure 6.0.3 contains 
those translations and some half turns. In each case the translations in the 
group are the powers of a particular translation, with a shortest possible 
vector V, stretching from some cell to the corresponding point in its nearest 
replica. There are always two choices for V; it could point either right or 
left. 

This suggests defining a frieze group to be a group <S of plane isometries 
that contains all integral powers r " of a nontrivial fundamental translation 
r, but no other translations, τ will denote the corresponding vector, so 
tha t 'S contains the translations with vectors ητ for τι = 0 ,±1 ,±2 
but no others. The only other fundamental translation for <8 is r"1. As 
suggested earlier, & frieze is defined as a plane figure whose symmetry group 
is a frieze group. 

It's useful to consider some terminology, notation, and preliminary results, 
to gain familiarity with the techniques before considering details of the 
classification. First, hnes parallel and perpendicular to τ are called 
horizontal and vertical. Next, a point Ο determines a lattice of points 
O n = Γ " ( 0 ) for ra = 0 ,± l ,±2 , . . . ; the midpoint of segment OnOntl is denoted 
by On+ ,Λ. Similarly, a vertical line ν determines a grid of vertical hnes 

Figure 8.2.3 
Not a frieze 



346 SYMMETRY 

i 
j 0 = 
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Figure 8.2.4 A lattice 
and a grid for a frieze group 

with fundamental translation r 

vn= τ"[υ] for η = 0 ,±1 ,±2 , . . . ; the line parallel to and midway between 
vn and i> n + 1 is denoted by vn+%. (See figure 8.2.4.) The following four 
theorems discuss which rotations, reflections, and ghde reflections can belong 
to a frieze group. These isometry types are considered individually. Later 
in this section, the classification theorem describes how the various types 
interrelate. 

Theorem 1. If a frieze group 45 with fundamental translation r contains 
a nontrivial rotation ρ with center O, then ρ = σ0. Moreover, 45 contains 
the half turns about the lattice points Onl2 for η = 0, ± 1 , ± 2 , . . . , but no 
other rotations. 

Proof. 45 will contain the translation υ = ρτρ'1 whenever it contains 
p, and by theorem 6.9.9, υ II ΐ only if ρ is the identity or a half turn. In 
that case, ση = σητ

η by corollary 6.4.5, so 45 contains ση . Finally, 
suppose 45 contains another rotation φ. Then φ = σ? for some point Ρ by 
the first sentence of this proof, and 45 must contain the translation 
σΡσ0 with vector 2(P-0), which then must equal ητ for some integer 
τι. It follows that P= O n / 2 . • 

Theorem 2. If a frieze group 45 with fundamental translation τ contains 
a reflection across a nonhorizontal line υ, then u i r . Moreover, 45 contains 
the reflections across grid hnes vn/2 for n = 0 , ± l , ± 2 but no other 
reflections across nonhorizontal hnes. 

Proof. Imitate the proof of theorem 1, citing theorem 6.4.4 instead of 
corollary 6.4.5. • 

Theorem 3. A frieze group 45 contains a reflection across at most one 
horizontal hne. 

Proof. If 45 contained reflections across distinct horizontal hnes g and 
h, then it would contain the translation ogah, whose vector is perpendicular 
to r, hence not a multiple of r. • 
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Theorem 4. If a frieze group $ contains a glide reflection γ with nonzero 
vector V, then its axis g is horizontal and V=l/anT for some integer 
n . Moreover, all ghde reflections in 'β with nonzero vector have the same 
axis. 

Proof, γ2 is the translation with vector 2V, hence 2V=HT for some 
integer n. Suppose β is a ghde reflection in Ή with nonzero vector χ/ιτητ 

and axis / . Then f IIg II τ, β=φσ( and γ- σίψ, where φ and ψ are the 
translat ions with vectors x/imr and χ/ιητ. Thus S contains γβ = 
φσίσχψ = φχψ, where χ = σ{ ag is a translation with vector W, which is 
nonzero and vertical unless f=g. Translation γ β has vector Vzmr + 
V2nr+ W, which must be a multiple of r. That can't happen if W is 
nonzero. • 

Before beginning the classification theorem itself, try to predict its out-
come. What are the symmetry groups of the example friezes you've seen 
so far? What others can you imagine? Use theorems 1 to 4 to guide you. 
To aid visualization and memory, use simple bounded friezes constructed 
from familiar pat terns, such as letters of the alphabet. For example, the 
frieze 

•••ΑΑΑΑΑΑΑΑΑΑ··· 

has the same group as the pattern in figure 8.2.2; it consists of all powers 
of the fundamental translation r, and reflections across all vertical hnes 
separating or bisecting A cells. The symmetry group of the frieze 

• B B B B B B B B B B · · • 

contains the same translations, the reflection across the horizontal center 
line, and the ghde reflections obtained from them by composition. The next 
three letters give nothing new, but the group of the frieze 

• F F F F F F F F F F - ' 

contains just the translations. So does the next in sequence, but 

•ΗΗΗΗΗΗΗΗΗΗ·· 

has a much richer group: all the isometries mentioned so far, plus the half 
turns about the midpoints of the vertical lines bisecting or separating Η 
cells. Then, nothing new occurs until 

•••NNNNNNNNNN ·•·, 

whose group contains the translations and those half turns, but none of the 
reflections or ghde reflections. Try the rest of our alphabet, and any others 
you know. Are these five the only possible frieze types? 
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Why limit the search to friezes constructed from single letters? Try pairs! 
A schedule for a class that meets twice a week might display this 
pattern: 

•MWMWMWMWMW--. 

Its group contains the translations and half turns mentioned earher, reflections 
across vertical lines that quadrisect MW cells, and ghde reflections whose 
vectors are odd multiples of V2 f. Another pattern uses lowercase 
letters: 

• pbpbpbpbpb ·.. 

Its group contains the same translations and ghde reflections as the previous 
one, but none of the half turns or hne reflections. 

There are many more pairs, and triples, etc. Keep trying! How do you 
know when you're done? That's what the classification theorem will tell 
you. 

Unguided, you may get lost in the complicated proof of the theorem. Its 
underlying structure, a decision tree, not only organizes the proof, but provides 
a practical way to classify friezes. Given a frieze group SS, we'll ask in 
succession four questions: 

(O) Is there a rotation in ®? 
(h ) Is there a reflection across a horizontal hne? 
(υ ) Is there a reflection across a nonhorizontal hne? 
(γ) Is there a ghde reflection? 

Once those are answered, you'll be able to specify exactly what isometries 
belong to , and determine its conjugacy class. Thus the possible frieze 
classes can be identified as 

( O & / 1 & U & γ) 

(O&h&v&noty) 

(O & not h & υ & not γ) 

(not Ο & not h & not υ & not γ). 

These are organized as a tree in figure 8.2.5; space permitted highlighting 
just one of the sixteen possible outcomes. This kind of tree grows upside 
down like a family tree; the rooi's at the top, branches grow downward, and 
the leaves are at the bottom. 

So far you've seen examples from only seven different frieze classes, but 
sixteen seem possible now. Are there really nine more? No. Proving the 
classification theorem, you'll find that questions (Ο) , (h), (υ), and (γ ) are 
not independent; some listed outcomes are impossible for geometric reasons. 
In fact, you'll prune the tree severely, removing several large branches. 
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Figure 8.2.5 Frieze tree before pruning 

Now, start the proof of the classification theorem. Consider a frieze group 
S , and suppose it contains a rotation with center O. You're analyzing the 
right half of the frieze tree, branch (O) , as indicated by figure 8.2.6. By 
theorem 1, you know exactly which rotations 'β contains: the half tu rns 
about lattice points Onl2 for n. = 0 , ± l , ± 2 and no others. 

Next, suppose ® also contains the reflection about a horizontal fine 
h. You're analyzing branch (O&h) of the tree, as in figure 8.2.7. *& must 
contain (p = o0ak. Then Ο must he on h, else φ would be a ghde reflec-
tion with axis perpendicular to ?. Therefore φ is the reflection across hne 
vxh through O. The answer to question (v) is affirmative; you can 
prune branch (O & h & not υ). By theorems 2 and 3, you know exactly 
which hne reflections 'β contains: oh, the reflections across grid fines 
υηΙ2 for 7i = 0 , ± l , ± 2 and no others. Moreover, S contains ghde reflec-
tions vnah for η = 0 , ± 1 , ± 2 , . . . , with axis h and vector nr. Thus the 
answer to question (γ) is also affirmative; you can prune leaf (O & h & υ & 
not γ). If $ contained a ghde reflection φ with axis h and vector 
(n + 1 / 2 ) r , then it would also contain the translation τ~ηφ with vector 
' Λ Γ , which is impossible. By theorem 4, therefore, ® contains only the 
ghde reflections rnah. This paragraph has completely described the mem-
bers of % in terms of vector r and center O. It's the symmetry group of 
the frieze •••ΗΗΗΗ···. 

Ο 
yes 

Ο 
yes 

h 
yes 

• · •HHHH • • · 

Figure 8.2.6 
Branch (O) 

Figure 8.2.7 
Branch (O&h) 
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Ο 
yea 

Ο 
yea 

no h — no h — ··· 
. . . - υ —] yes 

• -MWMW ••· •ΝΝΝΝ·· 

Figure 8.2.8 Branch 
(O &noth& υ) 

Figure 8.2.9 Branch 
(O & not h & not υ) 

Consider branch (0& not h&v), as indicated in figure 8.2.8. By theorem 
4, 55 contains reflections across grid hnes vnl2 for n = 0 , ± l , ± 2 but 
no others. 55 must contain φ = σ0συ, a ghde reflection with horizontal axis 
h through Ο and vector 2 ( 0 - P ) , where Ρ is the foot of the perpendicular 
from Ο to v. Thus, the answer to question (γ ) is affirmative; you can 
prune leaf (O & not h & v & not γ). Translation φ2 also belongs to 55, 
so its vector 4(0-P) = mr for some integer m. Were m even, 55 would 
contain ah = φτ'ηΙ2, contrary to the branch definition. Therefore m is 
odd: m = 2 fc+ l , and φ has vector 2 ( 0 - P ) = Vzm r = (k + ιΛ)τ. This 
equation implies that O, hence all lattice points, must he midway between 
adjacent grid lines. Moreover, by this equation, 55 contains for each integer 
η the ghde reflection φτη'κ with axis h and vector (η + ιΑ)τ. I t cannot 
contain ghde reflection χ with axis h and vector ητ, else it would contain 
ah - χτ'η, which is impossible. By theorem 4, you've now described all 
members of 55, in terms of vector τ and center O. It's the symmetry group 
of the frieze •••MWMW---. 

The next branch to visit is (O & not h & not υ), depicted in figure 8.2.9. 
By theorem 4, a ghde reflection γ in 55 would have a horizontal axis, and 
55 would contain γσ0, a ghde reflection with a vertical axis, contrary to 
theorem 4 or the branch definition. The answer to question (γ) is 
negative; you can prune leaf (O & not h & not ν&γ). You can now describe 
allmembereof 55 in terms of vector ? and center O. It's the symmetry 
group of the frieze • · · NNNN 

Analyze branch (notO&h). It's easy to see—in figure 8.2.10—that 
the answers to questions (u) and ( γ) must be no and yes. You can prune 
branch (not O&h&v) and leaf (not 0&h& not υ & not γ). 55 contains 
a ghde reflection φ if and only if it contains the translation φσΗ, hence 
it contains ghde reflections σΗτ

η for n = 0 , ± l , ± 2 but no others. These 
sentences completely describe the members of 55 in terms of vector r and 
axis h. It's the symmetry group of the frieze · • · BBBB 

You can analyze the remaining branch (not Ο & not h), shown in figure 
8.2.11, all at once. First, suppose 55 contains a reflection across a vertical 
hne v. If 55 also contained a ghde reflection γ with nonzero vector, then 
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• · · - h 1 yes 
• Β Β Β Β - · · 

Figure 8.2.10 Figure 8.2.11 
Branch (not O&h) Branch (not Ο & not h) 

γ would have a horizontal axis, and 'S would contain the half tu rn 
γσυ, contrary to the branch definition. You can prune leaf (not Ο & 
not h & υ & γ), and use theorem 3 to describe all the reflections in <S in 
terms of vector r and axis υ. It 's the symmetry group of the frieze 
• -AAAA- · ·. Next, suppose 8 contains no reflection at all. If it contains no 
ghde reflection, then it contains only the translations—it's the symmetry 
group of the frieze · · • F F F F - · ·. Finally, suppose 'S contains no reflection, 
but does contain a ghde reflection γ with axis h and nonzero vector V. 
By theorem 4, h is horizontal and V=xAm.T for some integer m. 
Were m even, <8 would contain ah = γτ'η'2, contrary to the branch 
definition. Therefore m is odd: m = 2k + 1, and γ has vector χΑηιτ-
(k + X / 2 ) r . By this equation, 'S contains for each integer η the ghde reflection 
YTn'k with axis h and vector (η + ιΑ)τ. It cannot contain ghde reflection 

χ with axis h and vector n r , else it would contain oh=xr'n, which is 
impossible. By theorem 4, you've now described all members of ® in 
terms of vector ? and axis h. It's the symmetry group of the frieze 
• · · pbpb' · ·. Analysis of this last branch is complete, and the proof is finished! 
Here's the complete statement of the result : 

Theorem S (Frieze classification theorem). Every frieze group is the 
symmetry group of a frieze similar to one of these: 

• AAAAAAAAAA BBBBBBBBBB F F F F F F F F F F - · · 

• · HHHHHHHHHH NNNNNNNNNN MWMWMWMWMW- · 
• pbpbpbpbpb--

Moreover, you can classify any frieze by applying the decision tree in figure 
8.2.12 to its symmetry group. 

Two frieze groups classified alike by theorem 5 are symmetry groups of 
similar figures, hence they're conjugate, by theorem 8.1.1. On the other 
hand, the decisions required by theorem 5 to classify a frieze are all phrased 

no o 

no 
no 

I 
• F F F F 

υ — 
7 —\yes 

• pbpb 

h -
yes 

•AAAA-
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*- no/yes -» 

— Ο half turn? 

h h horizontal 

reflection? •BBBB- · · • -ΗΗΗΗ· •· 
υ υ 

•AAAA NNNN ·• ···MWMW··· vertical reflection? 

ι — r — I 
- F F F F pbpb-- glide reflection? 

Figure 8.2.12 The frieze tree 

in terms of geometric properties of its symmetries that are preserved under 
the conjugation ψ-* ψφ defined by a similarity φ. For example, if φ maps 
frieze F to frieze F', and you ask question (O) of the figure 8.2.5 decision 
tree regarding F, you're asking whether the symmetry group &F of F 
contains the half turn σ0 about some center O. You'll get the same answer 
if you ask whether symmetry group 5fF. of F' contains the half turn 
σφ(0)= σ8 about some point φ(0). Therefore, theorem 5 classifies conjugate 
frieze groups alike. In summary, 

Theorem 6. Two frieze groups are classified alike by theorem 5 if and only 
if they're conjugate. 

This text refers to the seven types of frieze groups by displaying alphabetic 
examples. Although effective, this is not standard notation. Two other 
notational systems have emerged as standard. One was established by the 
geometer L. Fejes T o t h . 2 0 Another has emerged from the crystallographic 
literature. Here are the corresponding group designations: 

Frieze group notation 
Example frieze Fejes T o t h Crystal 

• · · AAAAAAAAAA- · · ξ 2 pml 1 
• B B B B B B B B B B ··· pi ml 

• • • F F F F F F F F F F - - $, p i l l 
• · • ΗΗΗΗΗΗΗΗΗΗ· · · %\ pmm2 
•-NNNNNNNNNN- • $ 2 pi 12 
• • • MWMWMWMWMW- • • J | pma2 
•pbpbpbpbpb-- S i 3 plal 

Fejes T6th 1964, section 3. 
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Fejes Toth's notation stemmed from the order of his presentation. Groups 
Si, OV. ΈΙ> and 3? contain no half turn ; the first contains no nontransla-
tional symmetries, but the others contain horizontal, vertical, and ghde reflec-
tions, respectively. Groups $ 2 , § 2 , and $ | all contain half t u rn s ; the 
first contains no other nontranslational symmetries, but the others contain 
horizontal and ghde reflections, respectively. In the pxyz notation, χ is 
m or 1 depending on whether the group contains a vertical reflection or 
not; y is m, a, or 1 depending on whether it contains a horizontal reflec-
tion, a glide but no horizontal reflection, or neither; and ζ is m or 1 
depending on whether the group contains a half tu rn or not. 

Artists have constructed friezes since prehistoric times. Owen Jones 
included examples of all seven frieze classes in the illustrations of ancient 
Egyptian ornaments in his classic text The grammar of ornament.21 You 
can find hundreds of examples from other cultures in later studies of 
ornamentation. 2 2 The group-theoretic approach was developed to study a 
much harder problem: three-dimensional crystal symmetry. I ts success 
in classifying the 230 crystal symmetry classes, and the route from tha t 
scientific work to its application in ar t is outlined in the introduction to this 
chapter. 

Symmetry analysis of art work is where mathematics, ar t criticism, and 
anthropology intersect. It was born in Polya's and Niggh's 1924 papers and 
Speieer's 1927 book. The world was soon engulfed in depression and war. In 
1942 Niggh's niece Edith Muller wrote a famous Ph.D. thesis under Speieer's 
supervision. 2 3 She described the frieze and wallpaper groups in detail, then 
used them to classify the ornamentation of the splendid Moorish palace, 
the Alhambra, in Granada. Simultaneously, anthropologists were beginning 
to see the relevance of symmetry analysis for the study of native American 
cultures. 2 4 Thirty years passed, however, before tha t work was extended. 
In their elegant and profusely illustrated 1988 book Symmetries of culture, 
two pioneers in the application of symmetry analysis, anthropologist Dorothy 
K. Washburn and mathematician Donald W. Crowe, survey recent work. 
Anthropologists now infer differences in culture from differences in orna-
mental symmetry. Washburn has paid particular attention to the puzzhng 
migratory pat terns of the pre-European cultures of the American 
Southwest: 

2 1 Jones [1856] 1972. 
2 2 For example, all seven frieze patterns are found by Crowe and Washburn on San Ildefonso 

pottery (1985), by Gerdes and Bulafo in Inhambane basketry (1994a, 92), by the Hargittais 
in Hungarian needlework (1994, 135), and by McLeay in Australian cast ironwork (1994) 

2 3 Muller 1944: Gruppentheoretische und strukturanalytische Untersuchungen der maurischen 
Ornamente aus der Alhambra in Granada. 

2 4 Washburn and Crowe 1988, 12-14. 
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Since a number of... studies have shown that design structures within 
a population group are generally homogeneous and nonrandom, imported 
materials should be recognizable by their different structural layouts. 
In a study of black-on-white cylinder jar designs from Chaco Canyon, 
New Mexico, Washburn found that the locally made Pueblo II one-
dimensional rotational (pll2) design system was replaced in the Pueblo 
ΠΙ period by two-dimensional layouts. Formal attributes of these atypical 
vessels suggested a nonlocal origin and, indeed, likely models for the 
form and design system can be found in the Mixtec and Toltec cultures 
of the Valley of Oaxaca.25 

Artists of these cultures create designs that go beyond the limits of frieze 
group analysis. For example, Muller noted that close inspection of the 
Alhambra frieze patterns reveals that many are intertwined; such a pattern 
has a front and a back, like figure 8.2.13. These are really three-dimensional 
objects. The translations in their symmetry groups are all multiples of a 
single translation, but the groups may contain some of the three-dimensional 
isometries studied in chapter 7. Washburn and Crowe are deeply concerned 
with analysis of colored patterns such as those in the shaded figure 8.2.14. 
There you must determine whether an isometry that leaves fixed the outlines 
of various regions in a figure also preserves their colors, or perhaps permutes 
them. For references, consult Washburn and Crowe 1988 and Grunbaum 
and Shephard 1987. 

Figure 8.2.13 Figure 8.2.14 
Bicolored 

San Ildefonso frieze2 7 

Intertwined 
Alhambra frieze' ,26 

2 5 Ibid. 27. 

Muller 1944, figure 19. 

Chapman 1970, plate 132r. 

2 6 

27 
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Paul NlGGLI was born in Zofingen, Switzerland, in 1888. His father 
was a Gymnasium teacher. During his school years, Niggli s tar ted 
work in mineralogy and geology by making a geological map of his 
home region. He entered the Eidgenossische Technische Hochschule 
(ΕΤΗ) in Zurich in 1907, planning to become a secondary teacher. 
But he stayed on for the Ph.D., which he received in 1912. Niggh's 
first scientific position was at the Carnegie Geophysics Laboratory in 
Washington, D.C. There he began a series of fruitful collaborations 
that lasted throughout his career. From 1915 to 1920 he taught a t the 
universities in Leipzig and Tubingen. During tha t period he wrote 
the first "user-friendly" text that explained to geoscience students the 
mathematical crystallography recently developed by Fedorov and 
Schonfhes. In 1920 Niggli accepted concurrent full professorships in 
mineralogy and petrology at the ΕΤΗ and the University of Zurich. 
He became a world leader in the field, editing the Zeitschrift fiir 
Kristallographie for twenty years, producing a long series of influen-
tial monographs and texts, and authoring over sixty research papers. 
He served as rector for several years a t each of his universities. 
Niggh died in 1953. 

8.3 Wallpaper ornaments 

Concepts 
Wallpaper ornaments and wallpaper groups 
Fundamental translations 
Lattices and grids 
Rectangular, rhombic, square, centered rectangular, and hexagonal 

configurations 
Isomorphy 
Crystallographic restriction 
m-centers 
Classifying wallpaper ornaments 
Wallpaper group nomenclature 

A wallpaper ornament is a symmetric plane figure that repeats indefinitely 
—or a t least is always extensible—in two nonparallel directions. You can 
construct one by making a basic cell first, then juxtaposing duphcate cells 
as many times as you wish in two different, nonparallel directions and their 
opposites. Figures 8.3.1 and 8.3.2 present two examples, with basic cells 
identified. The symmetry group ^ of a wallpaper ornament, called a 
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wallpaper group, consists of all plane isometries that leave the pattern fixed. 
It contains all compositions φηχη of powers of two nonparallel translations 
φ and χ (indicated in figures 8.3.1 and 8.3.2), but no other translations. 
Thus, 9V contains the translations with vectors τηφ+ηχ for m,n = 
0,±1,±2 but no others. Figure 8.2.3 is an example of a pattern whose 
symmetry group contains two nonparallel translations: vertical φ and 
horizontal χ as indicated. But it's not a wallpaper ornament, because its 
symmetry group contains every vertical translation, not just the powers of 
φ. This section presents an analysis and a classification of wallpaper groups, 
analogous to the study of frieze groups in section 8.2. 

Lattice and grid 

A glance at figures 8.3.1 and 8.3.2 shows that the translations φ and χ 
mentioned in the previous paragraph aren't unique. You could use other 
pairs φ*χ1 and φηχη in place of φ and χ. (See exercise 8.5.19.) This 
ambiguity is inconvenient; theorems 1 and 2 provide a more definite way 
to specify the translations φ and χ. 

Theorem 1. A wallpaper group ^ contains a shortest nontrivial trans-
lation r. 

Proof. Consider a point Ο as shown, for example, in figure 8.3.1. The 
points Ρ = φ''χι(0) for integers k and I are the lower ends of the Γ 
motif8. The distance condition 0 ^ OP ί. Οφ(0) is satisfied by at least one 
but only finitely many of these points. Find such a point P= φΗχι(0) with 
OP as small as possible, and set r = φΗχι. (In figure 8.3.1, k = I = 1 and 
τ = ΨΧ-) • 

k = 1 1=1 τ - φ χ 
m = 1 η = 0 ν - φ 
A basic cell is shaded. A basic cell is shaded. 

Figure 8.3.1 
pi wallpaper pattern 

Figure 8.3.2 
ρ 6 wallpaper pattern 
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Translation r in theorem 1 is still not uniquely determined; any trans-
lation φ in W with the same length as τ —for example, φ = τ'1 —is 
appropriate. Select one such translation r, and call it the first fundamental 
translation for Of. 

Theorem 2. Suppose the first fundamental translation τ has been selected 
for wallpaper group 4V". Then <9t contains a translation υ not parallel to 
r such that 

• no translation in W not parallel to τ is shorter than υ, 
• if T= r ( O ) and U= v(O) then 60°<; mlTOU* 90°, 
• mlOUTu 60°, and 
• U doesn't he on the same side of the perpendicular bisector k of 

OT as T. 

Proof. Use the notation of the previous proof. Since <pkxl+l isn't parallel 
to r, the following condition is satisfied by at least one but only finitely 
many points Q = φηχη(0) for integers m and η: φηχη is not parallel 
to r and OfOQi. <phxl*l(0). Find such a point Q with OQ as small 
as possible, and set υ = φΜχη. (In figure 8.3.1, m = l, n = 0, and ν = 
φ.) Should miTOUiW, replace υ by its inverse. If mlTOU< 60°, 
the hinge theorem would imply a contradiction—all angles of LOUT would 
measure less than 60° because TU^OU* OT. Similarly, miOUT> 60° 
would imply that all angles of LOUT would measure more than 60°. Finally, 
U couldn't he on the same side of k as T, for tha t would imply OU > 
OT. • 

Select one such translation υ as described in theorem 2, and call it the second 
fundamental translation for W. There's only one choice unless LOUT is 
equilateral. In that case, there are two—one point on each side of OT —and 
you may choose either one. According to the next result, the two fundamental 
translations determine all the translations in <W. 

Theorem 3. For each translation ψ in <W there exist unique integers 
m and η such tha t ψ= Tmvn. 

Proof. Use coordinate geometry with origin Ο so that points Τ = 
r ( O ) and U=v(0) have coordinates <£,0> and < 0 , u > with t,u> 
0. Find real numbers x and y and integers m and η such tha t 
ψ(0) has coordinates <x,y>, mt ζ x< mt + 1, and nu ζ y<nu+ 1. Then 
Ή contains the translation ω = ψτ'ηυ'η. Point Ψ=ω(0) is distinct from 
Τ and U and lies on OT or OU or in the interior of parallelogram 
OTVU. W also contains translations ωτ'1, ων1, and ωτ'ΧυΧ, and W = 
cov~l(U) = ωτ'ιυ'ι(Υ) = ωτ'ι(Τ). In the interior case, shown in figure 
8.3.3, LOWT, iTWV, IVWU, and /.UWO would be smallest angles of 
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U V 

Ο Τ 

A fundamental cell is shaded. 

Figure 8.3.3 
Proving theorem 3 

Figure 8.3.4 Lattice and grid 
determined by a point Ο and 

fundamental translations τ and v 

AOWT, ATWV, AVWU, and AUWO, so each would measure at most 
60°, which is impossible because their total measure must be 360°. Thus 
W must he on OT or OU. By theorem 1 or 2, W=0, hence ψ= τ'νΐί 
T m v n = rm'i)"', then r m " m ' = vn''", which is impossible unless m-m' = 
ri- η - 0, so m and η are unique. • 

Given any point O, select a first fundamental translation r as in theorem 
1. Then theorem 2, with perhaps an arbitrary choice between two possibilities, 
yields a second fundamental translation v. These define the lattice of points 
Omn= Tmvn(0) for all integers m and n, and the grid of lines parallel to 
τ or ν through lattice points. A parallelogram O m n O m + l i n O m + 1 > „ + 1 O m r t + 1 

is called a fundamental cell. No lattice points he in its interior, and only 
these four he on its edges. These notions are illustrated in figure 8.3.4. The 
rest of this section uses the notation 

T= O 1 0 = r ( O ) X= midpoint of OT 
U = O01 = v(O) Y = midpoint of OU 
V = O u = τυ(0) Ζ = midpoint of OV. 

Some lattice configurations require special considerations. When τ ± 
v, the configuration is called rectangular, after the shape of the fundamental 
cell. In the rhombic configuration, | r | = | ν \ and the fundamental cells are 
rhombi. The square configuration is both rectangular and rhombic. In the 
centered rectangular configuration of figure 8.3.5, U hes on the perpendicular 
bisector of OT. This terminology stems from a tendency to see U as the 
center of a rectangle in the lattice, rather than as the vertex of a parallelo-
gram. The confusion extends further. Some authors don't impose minimality 



8.3 WALLPAPER ORNAMENTS 359 

conditions on fundamental translations, but instead merely require tha t 
they satisfy the conclusion of theorem 3. They'd regard parallelogram 
OSTU in figure 8.3.5 as fundamental. This book calls OSTU a basic cell, 
but not fundamental, because OS, OU> OT. Some authors who take the 
opposing view note tha t OSTU is a rhombus, and call this configuration 
rhombic as well. One configuration is both rhombic and centered rectangu-
lar: when OT= TU= UO. In that case, regular hexagons like those in the 
figure 8.3.2 lattice stand out, and the configuration is called hexagonal. 

Isomorphy 

A wallpaper group might contain only translations—for example, consider 
the symmetry groups of the patterns in figures 8.3.1 and 8.3.6. Should all 
such groups be classified alike? It seems so; we tend to say tha t two such 
designs display only the translational symmetry required of all wallpaper 
patterns. A criterion that leads to this conclusion will be different from the 
one used in sections 8.1 and 8.2 to classify symmetry groups of polygons and 
friezes. The patterns in figures 8.3.1 and 8.3.6 are not similar; the latter 
was made from the former by changing the horizontal and vertical scaling 
independently. They're related by a transformation called an affinity, not 
one of the similarity transformations studied in this book. You can't expect 
the groups to be conjugate as defined in section 8.1. 

We need a less restrictive criterion than conjugacy. Two wallpaper groups 
W and W will be classified the same if their relationship has some but 

Grid lines are solid. 
A fundamental cell is shaded. 

Figure 8.3.5 Centered 
rectangular configuration 

Figure 8.3.6 
Figure 8.3.1 distorted 
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not all properties of conjugacy. The new criterion is isomorphy.23 Transforma-
tion groups # and 'Β' are called isomorphic if there's a bijection φ~*φ' 
from » to 'β' —called an isomorphism—that preserves compositions. That 
is, for any members φ and χ of (φχ)' = φ'χ'. Conjugate groups are 
isomorphic. If ψ is an isometry and 'β' consists of the conjugates 
ψφψ'λ of members φ of then the conjugation φ~*φ'-ψφψ~Χ is an 
isomorphism, because 

(<PX)' = Ψ{<ΡΧ)ΨΛ = (ΨΨΨ'ΗΨΧΨ'1) = φ'χ'-

But as you'll see, isomorphic isometry groups are not necessarily conjugate. 
(Exercise 8.5.13 verifies that isomorphy is an inappropriate criterion for 
classifying symmetry groups of friezes.) 

For example, the symmetry groups ^ a n d ^ ' o f figures 8.3.1 and 8.3.6 
are isomorphic. If r, υ and τ', υ' are pairs of fundamental translations 
for these groups, then by theorem 3, to any members φ and φ' of <9Ϋ and 
W correspond unique integers k,l and k', I' such that φ=τ''νι and 
φ' = ( Γ ' ) * ' ( Ι > ' ) ' ' · Thus φ-+ φ' = (τ'Ϋ(υ')1 is a bijection from <9C to W. 
In fact, it's an isomorphism—if χ = rmvn, then 

(φχ)' = ((rkv')(rmvn))' = ( T

k + m

v

, + n y = ( r ' )* + "« (v')i
+» 

= ((τ')"(υ')')((τ')'η(νΎ) = φ'χ'. 

This argument depended on few details of the figures—simply tha t they 
are wallpaper patterns whose symmetry groups consist solely of translations. 
It follows that any wallpaper group that consists solely of translations is 
isomorphic to the symmetry group of figure 8.3.1. The class of all such groups 
is called pi. 

The following theorem lists several properties of isomorphisms. It clarifies 
the notion of isomorphy, and will be used to show that various wallpaper 
groups are not isomorphic. 

Theorem 4. Suppose φ - φ' is an isomorphism between wallpaper groups 
<9t and W. Then ϊ - ι and (φ'1)1 = (φ')'1. If a member φ of ^ is a 
translation, ghde reflection, reflection, or rotation through angle 360°/n 
for some integer n > 0 , then so is the corresponding isometry φ' in 9f'. 

Proof, ϊ = ι because φ'ι' = (φί)' - φ' for any φ. Moreover, (φ'1)1 = 
(φ')-1 because φ'(φΛ)' = (φφ'ι)' = ι ' = ι . 

If φ is a translation or a ghde reflection, then its powers φη are all 
different, hence so are those of φ', which is therefore a translation or a ghde 
reflection. 

Thi s t e r m s t e m s from G r e e k words isos a n d morphe m e a n i n g same a n d form. 
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If φ were a translation but φ' a glide reflection, you could find a 
t r a n s l a t i o n ^ ' in W (one of its fundamental translations would do) such 
that χ'2φ' ψ- ψ'χ'2· By the previous paragraph, the corresponding element 
χ of 4V- would be a translation or a ghde reflection, hence χ2 would be 
a translation and χ2φ - φχ2. That would contradict the previous inequal-
ity. Thus φ' is a translation when φ is. This argument in reverse shows 
that φ' is a ghde reflection when φ is. 

If φ is a reflection, then φ' is a ghde reflection by the previous paragraph. 
Further, φ'2 = ι because φ2=ι, so φ' is a reflection. 

If φ is a rotation through angle 3607 /1 for some integer n>0, then 
η is the first k>0 for which φ>ι=ι. Since ((o') f e = ((£>*)', it follows tha t 
η is the first k > 0 for which (φ')Ιι=ι, hence φ' is a rotation through 
angle 3 6 0 7 n . • 

Theorem 4 implies that any wallpaper group isomorphic to the symmetry 
group of figure 8.3.1 consists solely of translations. Lemma 5 summarizes 
the properties of such groups: 

Lemma 5 (pi). Any wallpaper group that consists solely of translations 
is isomorphic to the symmetry group W of figure 8.3.1. The class of all such 
groups is called pi. No other wallpaper group is isomorphic to 9f. 

Lemma 5 is the first of a sequence of lemmas tha t together constitute 
the wallpaper classification theorem. Each lemma will define one or more 
classes of wallpaper groups <J¥" concisely in terms of the symmetries they 
include. From that definition will be derived a complete description of the 
membership of each Ή —the vectors, axes, centers, and angles of its 
symmetries—in terms of a lattice. Two wallpaper groups W and W in 
the same class with different lattices are always isomorphic; you can define 
a bijection φ -» φ' between them by describing φ uniquely in terms of its 
vector, axis, center, or angle and the lattice of Φι, then specifying φ' as 
the isometry with the corresponding description in terms of the lattice of 
W'. The bijection preserves composition because you can always describe 
the composition φχ of symmetries in 9f in terms of the descriptions of 
φ and χ, and you can describe φ'χ' in terms of φ' and χ'. Your descrip-
tions of φ χ and φ' χ' will differ only in their references to the lattices of 
<9t and W', so (φχ)'-φ'χ'· This process is carried out in detail in the 
example preceding theorem 4. You can supply analogous details, if you 
wish, for the remaining classes of wallpaper groups. 

Lemma 7, the next in the sequence, will classify the remaining wallpaper 
groups that contain no nontrivial rotations. One lemma per class would 
be cumbersome because there are seventeen different classes, so each lemma 
summarizes the results for several classes. The entire classification process 
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will be outlined following lemma 7. Three more lemmas concerned with 
groups that contain various rotations will complete the classification theorem. 
The crystallographic notation for the groups—for example, the symbol pi—is 
discussed last in this section. 

Reflectional symmetry 

The next theorem begins to analyze the relationships of the symmetries that 
constitute wallpaper groups. What limitations result from the simultaneous 
presence of translations and ghde reflections? The statement of this theorem 
is the most complicated one in the book. Suppose you're setting up a lattice 
to analyze a wallpaper group and have selected the point Ο and first 
fundamental translation τ conveniently. Should contain an odd isometry 
with axis g, then the second fundamental translation ν can be situated 
in a special way with regard to g, and 9t must also contain an odd isometry 
with axis parallel to g and vector closely related to the lattice as described 
in the theorem. The theorem will be used to provide explicit descriptions 
of the wallpaper groups that contain only trivial or 180° rotations. 

Theorem 6. If wallpaper group W contains a ghde reflection χ with axis 
I, then you can select the second fundamental translation υ and find a 
ghde reflection γ in W with axis g III and such that 

(1) | r | = | i / | , and rhombic 
( l a ) τν IIg, and γ = ag or γ2 = τν, or configuration 
( lb ) Tv'l/lg, and y-ag or γ2 = τυ'ι; or 

(2) U hes on the perpendicular bisector k of OT, and centered 
(2a) g± τ, and γ- at or γ2= τ'Χυ2, or rectangular 
(2b) g II τ, and γ-ag or γ2 = r; or configuration 

(3) τ xv, and 
(3a) g ± τ, and γ= ag or γ2 = υ, or rectangular 
(3b) g II τ, and γ= ag or γ2 = τ. configuration 

Proof. Suppose I is not parallel to r. The parallel case is considered 
later. For each integer n, the ghde reflection φ=τηχτ'η with axis g = 
τη[1]/ΙΙ belongs to W; pick η so that g intersects grid hne OT at a 
point Ρψ- Τ between Ο and Τ. 

Suppose g is not perpendicular to τ. The perpendicular case is considered 
later. Then atTO~t and otTxag are translations in Ή not parallel to τ 
but equally long. Exactly one of these, as shown in figure 8.3.7, must satisfy 
the second condition of theorem 2; call it υ. Depending on that selection, 
g II τυ or rv'1. (In the two situations shown, the acute angles α between 
τ and g are 40° and 55°; they he between 30° and 60°, making 60° <; 
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mlTOU s 90° as required. Values of α outside tha t range would entail 
that 4V contain a nontrivial translation shorter than r.) Consider first 
the case g II τυ. Since φ2 is a translation in W parallel to g, you can find 
aninteger η such that φ2(0) hes between (τν)η(0) and (rv)n+l(0) 
but φ2(0) ϊ (τυ)η+ι(0). That imphes <p2(0) = (τυ)η(0), else 
(τυ)~ηφ2(0) would be a lattice point inside the fundamental cell. If η 
is even, then γ = (τυ)'ν"ίφ is a reflection in 4V with axis parallel to g; 
if η is odd, then γ = (τν)''Λ(η'1)φ is a ghde reflection in 4V with axis paral-
lel to g and γ2=τν. The previous sentence is conclusion ( la ) of the theo-
rem. The case g II τυ'1 is argued similarly, with τν'1 and U in place of 
τν and O; it leads to conclusion ( lb ) . 

Next suppose g ± τ. Use theorem 2 to find a second fundamental 
translation v. Suppose, as in figure 8.3.8, tha t υ is not perpendicular to 
v. The perpendicular case is considered later. Ή contains translat ions 
ω = φυφ'1 and ω'ιυ; the latter is parallel to, hence not shorter than, r. 
By theorem 2, U doesn't he on the side of k opposite O. I t doesn't he on 
the same side either, because tha t would make ω1 υ shorter than r. 
Therefore U hes on k. Since φ2 ia a translation in 4V parallel to r M n 2 , 
the previous paragraph's argument with r _ 1 t i 2 in place of τυ shows tha t 
4V contains ag or a ghde reflection γ such that γ2=τ~ιυ2 —conclusion 
(2a) of the theorem. 

ω ( Ο ) ωΛ\ 

Figure 8.3.8 
Proving theorem 6 

when g χ τ but not υ χ τ 
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If υ±τ, the same argument with υ in place of τΛυ2 leads to conclusion 
(3a) of the theorem. 

Now suppose g II τ. Use theorem 2 to find a second fundamental translation 
v. Then 9V contains translation ω = φυφ'λ, which has the same length 
as υ. If U didn't lie on k and υ weren't perpendicular to τ then 
ωυ(Ο) would be a lattice point between but different from Ο and T, 
which is impossible. If U lies on i or ν ± τ, the argument referred to 
in the previous paragraph, with τ in place of τ~ιυ2, leads to conclusion 
(2b) or (3b) of the theorem. • 

Now resume the classification of wallpaper groups begun in lemma 5. 
All wallpaper groups 9t contain a pi subgroup. What groups contain a 
ghde reflection? Theorem 6 offers twelve possibilities for the relationship 
between a ghde reflection and a lattice for W. Place lattice point Ο on the 
axis of a ghde reflection. In each of the (1) and (2) subcases with γ f- ov 

consider the ghde reflection σ= ν1 γ. If Ρ=σ(0), then midpoint Μ of 
OP hes on the axis of a, and σ(Μ) = Μ, hence a is a reflection. Thus 
in cases (1) and (2), W contains a reflection. 

Suppose <W contains a ghde reflection but no reflection or nontrivial 
rotation. For example, consider the symmetry group of figure 8.3.9. Theorem 
6, subcase (3a) with y2 = v, or (3b) with γ2 - τ must hold. Suppose the 
former, depicted in figure 8.3.10; subcase (3b) with γ2 = τ leads to an 
analogous conclusion. Consider glide reflection τγ = γτΛ. Find Ρ = 
τγ(0)\ midpoint Μ of OP lies on the axis of τγ. Find M' = ry(M); 
you can see that τγ has the same vector Vi υ as γ, but axis MM'. Ghde 
reflection ν γ = γ ν has the same axis as γ but vector 3 / 2 v. In fact, 
9V contains glide reflection τηυηγ for each m and n; its vector is 
(η + ιΔ) v. The axes of these ghde reflections, determined by the value of 
m, constitute the lines perpendicular to r midway between grid hnes. 

f i l l ! 
f I f I f 
Γ l Γ I f 
Γ L f l Γ 

Figure 8.3.9 
pg wallpaper pattern 

Figure 8.3.10 
Analyzing case (3a) 
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Now suppose φ is any glide reflection in 4V. If its axis h were not parallel 
to these axes, 4V would contain a nontrivial rotation φ γ. If it were parallel, 
but φ^(η + χΛ)ν for any integer n , then 4V would contain translation 
φ2 parallel to υ but not a power of v. Thus h ± τ and φ = (η + Vi) υ for 
some n. You can check that νηγφ'1 is a translation parallel to r, so 
υηγφ'ι = τ"1 for some m, hence φ=τ'ηνηγ. Therefore 4V must consist 
precisely of the translations rmvn and ghde reflections τηυηγ for all m 
and η. Moreover, since m and η identify the axis and vector of the ghde 
reflection, each member of 4V has a unique description of this form. This 
paragraph, with the discussion under the previous heading, has shown that 
all wallpaper groups containing a ghde reflection but no reflection or non-
trivial rotation are isomorphic to the symmetry group of figure 8.3.9. These 
groups constitute a family called pg. 

What groups contain a reflection, but no nontrivial rotation? Theorem 
6 offers six possibilities for the relationship between a reflection's axis and 
the group's lattice. Place lattice point Ο on the axis of a reflection. In each 
subcase of theorem 6 with alternative γ=σν the ghde reflections φ = 
TmvnY belong to 4V. Their axes are parallel to g and pass through lattice 
points or points midway between two lattice points. You can verify tha t 
vectors φ are multiples of the vector of the glide reflection in the other 
alternative of the subcase, and the correspondence between pairs m,n and 
the vector and axis is bijective. For example, in subcase ( l a ) the axis of 
φ passes through r m " n ( 0 ) or r m n " 1 ( X ) depending on whether m - η 
is even or odd, φ = x/i(m + η)(τ + ν), and you can determine m and η 
from their sum and difference. In each subcase these axes are perpendicular 
to a translation in 4V; you can use the argument of the previous paragraph 
to show that W can contain no further ghde reflections. In the example 
subcase, displayed in figure 8.3.11, 4V contains no reflection with axis parallel 
to g through points midway between lattice points: m - η and m + η 
are both odd, so XA (m + η) ^ 0. This happens in all four subcases of (1) and 
(2). But (3) is different; in subcase (3b), for example, displayed in figure 
8.3.12, φ = ην, so 4V contains reflection rmy across the axis through 
Tm'x(X) if m is odd. According to the discussion under the previous heading, 
aU case (1) and (2) groups are isomorphic, as are all case (3) groups. This 
paragraph has shown—or given instructions for showing—that all wallpaper 
groups containing a ghde reflection but no reflection or nontrivial rotation 
are isomorphic to the symmetry group of figure 8.3.11 or that of 8.3.12. These 
groups constitute families called cm and pm. None of them is isomorphic 
to any pg group because they contain reflections and pg groups don't. 
No cm group 4V is isomorphic to any pm group 4V', because 4V con-
tains ghde reflections (with axes through points midway between lattice 
points) that commute with no reflections in 4V, but every ghde reflection 
in 4V' commutes with the reflection in 4V' across the same axis. 
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Figure 8.3.11 
cm wallpaper pattern 

Figure 8.3.12 
pm wallpaper pat tern 

Lemma 7 summarizes the results of the previous three paragraphs: 

Lemma 7(pg, pm, and cm). Suppose wallpaper group 9f contains 
a ghde reflection but no nontrivial rotation. If it contains no reflection, it's 
called a pg group and is isomorphic to the symmetry group of figure 8.3.9. 
If the axis of every ghde reflection is the axis of some reflection, W is called 
a pm group, and is isomorphic to the group of figure 8.3.12. Otherwise, 

is called a cm group, and is isomorphic to the group of figure 8.3.11. 
The isomorphism classes defined by lemmas 5 and 7 are disjoint. 

Rotational symmetry 

The next several theorems are technical steps that help narrow down the 
variety of rotations you must study to analyze a wallpaper group Ή. Suppose 
you've used theorems 1 and 2 to set up a lattice and grid as in figure 8.3.4. 

Theorem 8. If 9f contains r o t a t i o n s p o e and ppg then Ο = Ρ or OP > 

Proof. <W contains translation φ- Ρρ,βΡο,-e· so pPff(0) = φΡο.-β(Ο) = 
φ(Ο) and 20P= OP + Οφ(Ο) * Οφ(Ο). By theorem 1, Cty(O) = 0 or 
Οφ(Ο) ϋ OT. The first case implies Ο = P. • 

Theorem 9. If 9f contains a nontrivial rotation pog, then there exists 
a point Ρ ψ-Ο such that 

• Ή contains ppg, and 
• if <9t contains pRg, then R = Ο or OR s OP. 

Vt OT. 



8.3 WALLPAPER ORNAMENTS 367 

Proof. 4V also contains ρΤβ = τρ0θτ'
ι. By theorem 8, O^OPi OT for 

at least one but only finitely many points Ρ such tha t 4V contains ppg. 
Choose one such tha t OP is smallest. • 

Theorem 10 (Crystallographic restriction). If 4V contains a nontrivial 
rotation poe, then the rotations about Ο in 4V form a cyclic group <β with 
two, three, four, or six elements. 

Proof. Replacing θ by θ mod 360° lets you assume O°<0<36O°. If 
18O°<0<36O°, you could replace θ by (-0)mod36O°. Thus you can assume 
0°< θ < 180°. Find a point Ρ as described by theorem 8. Let Q = 
ppg(0) and R = pQg(P), so that 4V also contains Pqfi = Ρρ,βΡο,βΡρ1,β 
and pRg = Pq,ePp.ePQ.e- By theorem 9, Q = R or QRj. OP. If 0 = R, then 
θ = 60°. The next step is to show tha t OP and QR can not intersect a t 
a point X interior to both as in figure 8.3.13. Were that the case, you could 
argue from congruence principles that mlPOR = Θ, and tha t miQOP = 
mlOQP = θ + mlOQR because AOPQ is isosceles; since OR * QR, 
applying the hinge theorem to AORQ would yield mlOQR * mlQOR = 
mlQOP+miPOR = 2d+VD.iOQR, hence 0 = 0 ° , contradiction! This shows 
that θ < 60° is impossible. 

From θ i. 60° it follows tha t the group <β of all rotations about Ο in 
4V is finite. Otherwise, <β would contain rotations poe with arbitrarily 
small θ>0°. Suppose # has m elements. By theorem 8.1.4, 'β consists 
of rotations Po,3eo-/m f ° r k = 0 to m - 1. From θ >. 60° it follows tha t 
m i 6. Figure 8.3.14, constructed like figure 8.3.13 with θ — /?ο,3βο·/β» shows 
that m = 5 is impossible, because OR < OP in that case, too. (In fact, OR « 
0.38 OP.) • 

When the cyclic group of rotations in 4V about a point Ο contains exactly 
m elements, Ο is called an m-center of 4V. The symmetry group of 
the wallpaper pattern in figure 8.3.2 has 6-centers, 3-centers, and 2-centers 

Ο R R Ο 

Q p Q ρ 

Figure 8.3.13 Proving 
theorem 10: OR>OP 

and θ < 60° is impossible. 

Figure 8.3.14 
Proving theorem 10: 

0 = 36075 is impossible. 
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(triangle vertices, incenters, and edge midpoints), but the figure 8.3.1 group 
has no centers at all. 

Corollary 11. If has a 4-center, then it can't have a 3- or 6-center. 

Proof. In either case, W would contain a 30° rotation. • 

Theorem, 12. If Ο is an m-centerof W, so is φ(0) for any φ in 9f. 

Proof. pog belongs to <W if and only if ρψ(ο\β = ΨΡο,βΨbelongs 
to W. • 

The classification theorem 

A wallpaper group ^ is classified according to a decision tree much like 
the one used for frieze groups in section 8.2. The frieze tree is particularly 
elegant—you ask the same sequence of yes/no questions, no matter which 
branch the answers lead to. For the wallpaper groups, a tree like that would 
be too large and the questions too complicated to study conveniently. Instead, 
you select the first branch of the wallpaper tree by asking whether Of has 
any m-centers, and if so, what's the largest m. Thus, five main branches 
extend from the root: no m-centers, 2-centers only, 3-centers only, 4-centers, 
and 6-centers. After determining the appropriate branch for <W, you ask 
several yes/no questions that depend on answers to previous questions. 
The complete tree is shown in figure 8.3.15.2 9 Its leaves are labeled by the 
crystallographic designations of the seventeen different isomorphism 
classes of wallpaper groups. The four classes discussed so far—pi, pg, 
cm, and pm—constitute the rightmost four leaves of the tree. The crystallo-
graphic notation is discussed at the end of this section. 

As noted under the heading Isomorphy, wallpaper groups falling into 
the same class are isomorphic. In fact, the seventeen classes are all disjoint. 
Most questions in figure 8.3.15 that lead you to classify two wallpaper groups 
differently are phrased to contradict plainly one of the properties of iso-
morphic wallpaper groups listed in theorem 4. Where the inference is not 
obvious, this section includes a short argument—for example, the one imme-
diately before lemma 7. 

The rest of the tree is discussed next in detail, branch by branch. The 
discussion is organized in lemmas 13,14,15, and 16, which summarize the 
results for groups with 6-centers, with 3-centers only, with 4-centers, and 
with 2-centers only. With lemmas 5 and 7, these constitute the proof of 
theorem 17, the wallpaper classification theorem. 

Adapted from Washburn and Crowe 1988, 128. Many details of this presentation of the 
classification theorem and its proof are adapted from Martin 1982, chapter 11, and Arm-
strong 1988, chapter 26. 
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Figure 8.3.15 The wallpaper tree 

Sixfold symmetry 

Consider a wallpaper group 4V with a 6-center O. You're following the 
leftmost branch of the tree in figure 8.3.15. By corollary 11, 4V can't have 
a 4-center. Select a first fundamental translation r for 4V. Since translation 
υ = Ρο,βο'τΡο,-βο· belongs to 4V, is not parallel to r, and has the same 
length, you may call it the second fundamental translation, so tha t U = 
Ρο,βο·(Τ), as in figure 8.3.16. By theorem 12, Τ and U are 6-centers. 
By theorem 8, any other center inside or on equilateral AOTU must he 
outside or on the circles with centers Ο, T, and U with radius r = 
l/z OT. That is, it must he in the shaded region Σ of figure 8.3.16. The 
incenter J. of AOTU hes in Σ, and 4V contains y0 0 6 0 . p T 6 0 . = / ? / 1 2 0 . . By 
theorem 8, no point Χψ-1 in Σ can be the center of a 120° rotation in 
4V, because IX<r. Let Ο', T', and U' be the midpoints of the edges 
of AOTU as shown. Then 4V contains half turns 

Ρι,ηο'Ρτ,Μ· = σο· Ρι,-ΐ2θ·Ρο.βο· = στ· Ρι,ΐ2θ·Ρο.βο· = συ·-

No point X?- Ο', Τ', U' in Σ can be the center of a half turn in 4V, because 
0'X<r. If <W contained ρΙβ0·, then it would contain σ1, which is impos-
sible because IO' <r; thus I is a 3-center. If 9Ϋ contained / O O . 6 0 . , then 
it would contain ρο,ΐ20·· which is impossible because IO'<r; thus O' 
is a 2-center. Similarly, T' and U' are 2-centers. A similar discussion 
with any lattice point in place of Ο shows tha t all lattice points are 6-
centers; for all translations φ in 4V, φ (I) is a 3-center; φ(Ο'), 
φ(Τ'), and φ(ϋ') are 2-centers; and there are no other centers. The 
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translations and rotations described in the previous sentence constitute the 
symmetry group W of figure 8.3.2. The class of all wallpaper groups 
isomorphic to Ή is called p6. 

Suppose a wallpaper group 9f contains a p6 subgroup i¥6 and another 
isometry φ. Continue using the lattice and grid described in the previous 
paragraph. Since <9f6 contains all possible translations and rotations, 
φ must be odd. By theorem 12, φ(Ο) is a 6-center, hence a lattice point 
Omn. Odd isometry τ^ϋ^φ belongs to W and fixes O, so it's the reflection 
og across a line g through O. Further, ograg is a translation in <W, so 
og(T) = agTOg(0) is a lattice point, one of points Vn= pOn60.(T) for η 
= 0 to 5. Note that V0 = Τ and Vx = U. These points determine a regular 
hexagon with center at O, and g is one of its six hnes of symmetry g0 

to gb, shown in figure 8.1.10. Apparently, W contains 

(Jgkagl = / Ό , 2 ( * - / ) · 3 0 " = Po,(k-l) 60" 

for each k and I, so 'W contains reflections across all these hnes of 
symmetry. It follows that <W must consist of 9fe and the isometries φ = 
Tmvnog^ for all m, n, and k. These isometries constitute the symmetry 
group ^ of figure 8.3.17. The class of all wallpaper groups isomor-
phic to m i s c a l l e d p6m. 

Lemma 13 summarizes the results of the previous two paragraphs: 

Lemma 13 (p6 and ρ6m). Suppose wallpaper group 9i contains a 60° 
rotation. If it contains no reflection, it's called a p6 group and is isomorphic 
to the symmetry group of figure 8.3.2. Otherwise, ^ is called a p6m group 
and is isomorphic to the group of figure 8.3.17. The isomorphism classes 
defined by lemmas 5, 7, and 13 are all disjoint. 

Figure 8.3.16 Figure 8.3.17 
p6m wallpaper pattern 6-centers 
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Threefold symmetry 

Now suppose 4V is a wallpaper group with a 3-center Ο but no 6-center. 
It can have no 2- or 4-center, either. Consider any nontrivial translation 
φ in 4V. Use theorems 9 and 12 to find a 3-center X a t minimal nonzero 
distance from O. Then Ρχ-ηο-Ρο,-ιχ· =Ργ,ΐ2ο·> where ΔΟΧΥ is equilateral, 
so Y is a 3-center. Repeating this argument shows tha t all heavy dots in 
figure 8.3.18 are 3-centers. (Ignore points I, A , and B.) They form the 
vertices of a family of equilateral triangles with edge length OX. No other 
points inside or on any of the six triangles with vertex Ο can be a center, 
because they're closer to Ο than X. Let Τ be the point such that OXYT 
is a parallelogram. No other point A inside ΔΧΥΤ can be a center, because 
Ργ.-ΐ20'PA,-wo- =ΡΒ.Ι2Ο·> where ΔΑ YB is equilateral and Β hes inside or on 
ΔΟΧΥ. Repeating this argument shows that the heavy dots in figure 8.3.18 
are the only centers. By theorem 12, <p(0) is a 3-center. If φ(0) = Χ, 
then 4V would contain ρΧΛ20· φ - Pw. which is impossible. Thus 
φ(0) can't be any of the six centers nearest O. But 4V contains translations 
Γ = Ρχ,-ΐ20·Ρο,ΐ20' a n d v = Ργ,-ΐ2ο· Ρ O.120' with vectors T-O and 1 7 - 0 . 
Therefore you can select τ and υ as basic translations for 4V. The 120° 
rotations about the indicated centers and the translations rmvn for all m 
and η constitute the symmetry group 4V of figure 8.3.19. The class of 
all wallpaper groups isomorphic to 4V is called p3. 

Now suppose a wallpaper group 4V, as in the previous paragraph, has 
a 3-center, no 6-center, and contains a p3 subgroup 4V3 and another isometry 
φ. As before, it has no 2- or 4-center. This paragraph will show tha t 4V 
must contain the reflection across a line through one the centers. The follow-
ing paragraph will determine that there are just two possibilities for 4V. 
By theorem 12, <p(0) is a center. Suppose φ(0) is a lattice point. Then 
4V contains a translation χ such that χ(φ(0)) = 0. Since 4V3 contains 

"Λ' •r 

-V. -V 

Figure 8.3.18 Analyzing 
groups with 3-centers only 

Figure 8.3.19 
p3 wallpaper pa t te rn 
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all possible translations and rotations, φ is odd, hence χφ is odd. Since 
χ φ fixes Ο, it's the reflection across a hne g through O, as required. 
Now suppose φ(Ο) is not a lattice point. Then <W contains a translation 
χ such that χ(φ(0)) is one of the six centers nearest O. Suppose it's 
X; you can construct a similar discussion for the other possibilities. Let 
Y' be the midpoint of segment OX. Then σγ.χφ(0) = 0, so σγ.χφ = 
ag for some line g through O. From figure 8.3.18 you can see that if C 
is a center, then so is aT(C); since χφ(Χ) is a center, so is og(X) = 
σγ,χφ(Χ). In fact, og(X) is one of the vertices Vt in figure 8.1.8 
because OX= Oag(X), and g is one of the lines gt because it's the 
perpendicular bisector of X Vt. The line h±gl = OT through Y' intersects 
gi at a point F. One of agag and agag is the ±120° rotation ρ about 
O, so σγ.χφρ= ag or ag . eIn the latter case, X<pp=arag, the ghde 
reflection with axis h and vector 2 (Y' - F), and <W would contain the 
translation (χφ)2 with nonzero vector 4(Y' - F) = X - Y, which is shorter 
than r, contradiction! In the former case, χφρ = σγ. ag = σγ· σ0% = θγγ,, 
as required. 

The previous paragraph showed that if wallpaper group W contains 
a p3 subgroup 9f3 and another isometry, it must contain ag for some line 
g through some center. Redefine O, and other features of figure 8.3.18 
as necessary, to make Ο that center. Since X is a center, so is og(X). In 
fact, ag(X) is one of the vertices V, in figure 8.1.8 because OX = 
Oag(X), and g is one of the hnes g{. Because <9f contains Po,w> & 
contains ag for all three even indices i or all three odd indices. But 
Ή can't contiain reflections of both types, because their composition would 
be a rotation about Ο through an odd multiple of 60°, and Ο is not a 6-
center. In either case, W consists of and the compositions χσ for 
all χ in <W3 —as noted earlier, all even isometries in 9f are in 9f3, and 
if φ is an odd isometry in <W then X~fog is an even isometry in <2¥, 
hence in 4V-,, and φ = χα, . The isometries χ and χσα with χ in W3 

α β OF 

constitute the symmetry group <9C of figure 8.3.20. The isometries χ 
and xag with χ in Ή3 constitute the symmetry group W' of figure 
8.3.21. The classes of all wallpaper groups isomorphic to ^ a n d t o W 
are called p31m and p3ml. You may find it difficult to distinguish groups 
in these classes. The simplest criterion is that all p3ml centers he on lines 
of symmetry, while some p31m centers do not. Thus, p3ml groups satisfy 
the following condition, but p31m groups do not: For every rotation 
ρ there's a reflection a such that pa is a reflection. By theorem 4, p3ml 
and p31m groups cannot be isomorphic. Past authors have often reversed 
the designations p3ml and p31m—be careful! Exercise 8.5.20 explains 
in part why these groups are so easily confused. 
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>- >- ^ ^ Χ Χ Χ X 

y y y y χ χ χ χ 

y y y y χ χ χ χ 

y y y y χ χ χ χ 

Figure 8.3.20 Figure 8.3.21 
p31m wallpaper pat tern p3ml wallpaper pat tern 

Lemma 14 summarizes the results of the previous three paragraphs: 

Lemma 14(p3, p31m, and p3ml). Suppose wallpaper group 4V contains 
a 120° rotation but no 60° rotation. If it contains no reflection, it's called 
a p3 group and is isomorphic to the symmetry group of figure 8.3.19. If 
every center is on the axis of some reflection, 4V is called a p3ml group 
and is isomorphic to the group of figure 8.3.21. Otherwise, 4V is called a 
p31m group and is isomorphic to the group of figure 8.3.20. The classes 
defined by lemmas 5, 7, 13, and 14 are all disjoint. 

Fourfold symmetry 

Next, consider a wallpaper group 4V with a 4-center O. By corollary 11, 
it can have no 6- or 3-center. By theorem 12, φ(0) is a 4-center for every 
isometry φ in 4V. By theorem 9, there is a center X^O closest to O. 
See figure 8.3.22. If 4V contained ρΧ90·, then it would also contain a half 
turn σΝ = ΡΟ,Μ-ΡΧ,ΟΟ· with center Ν closer to Ο t han X, contradiction! 
Thus X isa2-center, and so is Y=pO90.(X). Further, 4V contains pzso. = 
axPo.-w> where Ζ is the point such that OXZY is a square. Therefore, 
Ζ is a 4-center. By theorem 12, X' = σζ(Χ) and Y' = σζ ( Y) are 2-centers 
and Τ=σχ(0), U = p090.(T), and R = az(0) are 4-centers. If φ is a 
translation in Ο then 0' = φ(0) must be a 4-center. If Μ is the midpoint 
of OO', so t ha t φ = σΜσ0, then σΜ must belong to 4V, hence OM i 
OX, hence OO'tOT. Therefore, τ=σχσ0 and υ = σγσ0 are shortest 
nontrivial translations in 4V, and r ( O ) = Τ, υ(0) = U. Use them to set 
up the lattice as in figure 8.3.4. By theorem 8, if A and Β are any centers, 
then AB * OX. Every point inside or on square OPRQ lies within tha t 
distance of one of the centers already mentioned. Therefore there are no 
others inside or on it, and all centers are images of these under translations 
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+ + + + 
υ Χ' ν β + + + + 
Χ', • • + + + + 
) Χ ' Τ + + + + 

Figure 8.3.22 Analyzing Figure 8.3.23 
groups with 4-centers p4 wallpaper pattern 

in <9t. Circles · in figure 8.3.22 indicate 2-centers, squares • indicate lattice 
points, and diamonds • indicate 4-centers that aren't lattice points. The 
translations and rotations catalogued in this paragraph constitute the 
symmetry group <W of figure 8.3.23. The class of all wallpaper groups 
isomorphic to <W is called p4. 

Now suppose a wallpaper group <W, as in the previous paragraph, has 
a 4-center and contains a p4 subgroup W4 and another isometry φ. As 
before, it has no 3- or 6-center. This paragraph will show that <9f must con-
tain the reflection across a hne through O, or across XY. The following 
paragraph will determine that there are just two possibilities for W. By 
theorem 12, φ(0) is a center. Suppose φ(0) is a lattice point. Then 
W contains a translation χ such that χ(φ(0)) = 0. Since 9t4 contains 
all possible translations and rotations, φ is odd, hence χφ is odd. Since 
χ φ fixes Ο, it's the reflection across a line g through 0, as required. 
Now suppose φ(0) is not a lattice point. It must nevertheless be a 4-center 
since Ο is, so <W contains a translation χ such that χ(φ(0))-Ζ. Then 
σΝχφ(0) = Ο, so οΝχφ = σΒ for some hne g through O. From figure 
8.3.22 you can see that if C is a center, then aN(C) is a center. Since 
χφ(Χ) is a center, so is ag (X) = σΝχφ(Χ). In fact, ag(X) is one of the 
four centers nearest Ο in figure 8.3.22 because OX= Oag(X), and g = 
OZ, OV, OW, or OT, because it's the perpendicular bisector of XX'. If 
g = OZ, then χφ = σ^α^ = σ^, as required. Otherwise, one of the 
equations 

°~N°OVP0, 90° = °~N°~OV °~OV °0~Z ~ °ΝσΟΖ = °XY 
σΝσοΤνσο = aNadto σο\ν σόζ = σΝ σόζ = σΧΥ 
σΝσζΡτΡθ,-90' ~ °~ΝσθΎ σΟΤ σΟΖ = σΝσΟΖ = °~ΧΫ 
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implies tha t belongs to 4V, as required. 
The previous paragraph showed that if wallpaper group 4V contains a 

p4 subgroup 4V4 and another isometry, it must contain or ag for some 
line g through O. In the latter case, an argument in the previous paragraph 
shows that g - OZ, OU, OW, or OT. Since 4V contains the composition 
of the reflections across any two of these lines, it contains either all or none 
of them. Therefore 4V contains aoz or σχγ. It can't contain both, because 
then 4V would contain σοζ - σΝ, but Ν is no center. In the first case, 
4V consists of 4V4 and the compositions χσοζ for all χ in 4V4 —as noted 
earher, all even isometries in 4V are in 4V4> and if φ is an odd isometry 
in 4V then χ = φοοζ is an even isometry in 4V, hence in 4V4, and φ = 
χσοζ. The isometries χ and χσοζ with χ in 4V4 constitute the symmetry 
group 4V of figure 8.3.24. The isometries χ and χθχγ with ^ in 4V4 

constitute the symmetry group 4V' of figure 8.3.25. The classes of all 
wallpaper groups isomorphic to 4V and to 4V' are called ρ· ί /η and 
p4g . Note that p<fm groups satisfy the following condition, but p4g groups 
do not: For every 90° rotation ρ there's a reflection a such tha t pais a 
reflection. By theorem 4, p4m and p4g groups cannot be isomorphic. 

Lemma 15 summarizes the results of the previous three paragraphs : 

Lemma 15 (p4, p4m, and p4g). Suppose wallpaper group 4V contains 
a 90° rotation. If it contains no reflection, it's called a p4 group and is 
isomorphic to the symmetry group of figure 8.3.23. If every 4-center hes 
on the axis of some reflection, 4V is called a p4m group and is isomorphic 
to the group of figure 8.3.4. Otherwise, 4V is called a p4g group and is 
isomorphic to the group of figure 8.3.25. The classes defined by lemmas 5, 
7, 13, 14, and 15 are all disjoint. 

+ + + + 
+ + + + 
+ + + + 
+ + + 

Figure 8.3.24 
p4m wallpaper pat tern 

/ / / / 
\ \ \ \ 

/ / / / 
\ \ \ \ 

/ / / / 
\ \ \ \ 

/ / / / 

Figure 8.3.25 
p4g wallpaper pa t te rn 
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Twofold symmetry 

Next, consider a wallpaper group <W with a 2-center Ο but no 3-, 4-, or 
6-center. Select basic translations τ and υ and let X, Y, and Ζ be the 
midpoints of segments between lattice points as in figure 8.3.26. Then 
W contains σχ= τσ0, σγ=υσ0, and σζ= σγσ0σχ, so Χ, Υ, and Ζ 
are centers. If C is any center, then ac a0 is a translation in 9t, so 
c r c (0) = σ0σ0(0) is a lattice point Omn, and C = xfo tn Τ + xfo η U, using 
Ο as the origin of a coordinate system for this vector calculation. On the 
other hand, for any integers m and η there's a translation χ in Ή such 
that xQ/imT+VznU) is Ο, X, Y, or Z. Therefore all such points are 
centers. In short, the centers of 9f are these four points and their images 
under translations in W. The translations and the half turns about these 
centers constitute the symmetry group Ή oi figure 8.3.27. The class of all 
wallpaper groups isomorphic to 4¥" is called p2. 

Now suppose a wallpaper group <9t, as in the previous paragraph, has 
a 2-center O, no 3-, 4-, or 6-center, includes a p2 subgroup <W2, and con-
tains og for some hne g. Select a first fundamental translation r. By 
theorem 6 you can select the second fundamental translation ν and set 
up the lattice so that 

(1) ι τ I = I f ( and (2) U hes on the per- (3) τ LV and 

( la) τν II g or pendicularbisec- ( 3 a ) g ± T o r 

(lb) rv'1 Kg; or tor * o f 0 T a n d (3b) g II τ. 
(2a) g ι. τ or 
(2b) g II T; or 

U V 
φ · · 

. . y. z. . . 

Φ Φ 

Ο Χ Τ 

Figure 8.3.26 Analyzing 
groups with 2-centers 

Figure 8.3.27 
p2 wallpaper pattern 
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The rest of this paragraph shows that in cases (1) and (2), g passes through 
a center. In subcases ( la ) and ( lb) , by the argument in the first paragraph 
oftheproof of theorem 6, you can assume that g intersects OT a t a point 
Ρ ψ-Τ between Ο and T, or it intersects OT/a t a point P^U between 
Ο and U. In subcases (2a) and (2b), since σ0σχ = r and σ0σγ = υ, you 
can assume Pj^X.Y and Ρ hes between Ο and X or Y. In subcase 
( l a ) , og(T) is a center, hence ag(T) = Z or U, and X or Ο hes on g. 
In ( lb ) , ag(0) is a center, hence ag(0) = Z or V, and X or Τ hes on 
g. In subcase (2a), ag(0) is a center, hence ag(0) = 0 or X, and Ο or 
Y hes on g. In (2b), ag(X) is a center, hence ag(X)=X or U, and Ο 
or Υ hes on g. 

In cases (1) and (2), redefine the lattice and grid if necessary, replacing 
Ο by a center on g, but using the same fundamental translations. 4V 
contains ag and the reflection agaQ across the line h±g through O. 

In case (1) <2V contains reflections across all lines parallel or perpendicular 
to τυ through lattice points. More precisely, it consists of 4V2 and the 
compositions χ <7ov for all χ in 4V2 —all even isometries in 4V are in 
4V2, and if φ is an odd isometry in iV then χ = φσ0^ is an even isometry 
in 4V; hence in 4V2, and φ—χοον. These isometries constitute the symmetry 
group 4V of figure 8.3.28. The class of all wallpaper groups isomorphic to 
4V is called cmm. 

In case (2) 4V contains reflections across all lines parallel or perpendicular 
to r through lattice points. You can describe its members just hke those 
of the cmm group in the previous paragraph if you refer to r ' = τν'1 and 
parallelogram OSTU in figure 8.3.5 in place of r and OTVU. I t follows 
tha t <3V is isomorphic to the cmm group, hence it's a cmm group, too. 
(Parallelogram OSTU is not a fundamental cell because neither τ' nor 
υ is a shortest nontrivial translation in 4V. Nevertheless, equations τ' = 
τν'1 and τ=τ'υ imply that you can use r ' a n d ν to set up the isomorphism 
as discussed earher under the heading Isomorphy.) 

In subcase (3a) similar arguments show that 4V contains σ 0 & or 
o~h, where h is the perpendicular bisector of OX. In the first situation, 

X X X X 

Figure 8.3.28 Χ Χ Χ X 
cmm wallpaper pat tern 

X X X X 

X X X X 
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Figure 8.3.29 
pmm wallpaper pattern 

Figure 8.3.30 
pmg wallpaper pattern 

W contains reflections across all lines parallel to τ or υ through centers, 
and you can verify that 9t consists of W2 and the compositions χσοΤ] for 
a l l - i n 4¥j. These isometries constitute the symmetry group <W of figure 
8.3.29. In the second situation, W contains both oh and the reflection 
across o~x[h]. More precisely, it consists of 9ft

 a n d the compositions 
Xah for a l l - i n 9f2 · These isometries constitute the symmetry group 
W of figure 8.3.30. The classes of all wallpaper groups isomorphic to 
W and to W are called pmm and pmg. Note that cmm and pmm groups 
satisfy the following condition, but pmg groups do not: Every half turn 
commutes with some reflection. Moreover, cmm groups contain distinct 
commuting reflections, but pmm groups do not. By theorem 4, cmm, 
pmm, and pmg groups cannot be isomorphic. Subcase (3b) leads similarly 
to pmm and pmg groups. 

Finally, suppose a wallpaper group W includes a p2 subgroup W2, 
and contains a ghde reflection but no reflection. Since the composition of 
a ghde reflection with a half turn about a point on its axis is a reflection, 
no center can he on the axis of any glide reflection in W. Select a first 
fundamental translation τ. By theorem 6 you can select the second funda-
mental translation v, set up the lattice, and find a ghde reflection γ in 
4V" with axis g such that 

(1) | r | = | i / | and 

( la ) τν II g and γ2=τν, or 
( lb) τν'1

 II g and γ2 = τν'1; or 

(2) U lies on the perpendicular bisector k of OT and 

(2a) g±T and γ2 = τ^ν2, or 
(2b) g II τ and y2 = τ; or 
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(3) r χ υ and 

(3a) g ± τ and γ2 = υ, or 
(3b) g II τ and γ2 = τ. 

You can verify that cases (1) and (2) are impossible; the equations for 
y2 all require tha t Y(0) be a center inside but not on a fundamental 
parallelogram. To visualize this, it helps to show first that you can assume 
in case (1) and subcase (2a) that g intersects OT a t a point Ρ^Ο,Χ, 
Τ between Ο and Τ. Moreover, if γ is a ghde reflection satisfying condition 
(3a) , then γ' = σ0γ satisfies (3b), and vice versa. You can verify tha t 
4V consists of 4V2 and the compositions χ γ for all χ in 4V2. These isom-
etries constitute the symmetry group 4V of figure 8.3.31. The class of all 
wallpaper groups isomorphic to 4V is called pgg. 

Lemma 16 (p2, cmm, pmm, pmg, and pgg). Suppose wallpaper group 
4V contains a half turn but no 90° or 60° rotation. If 4V contains no ghde 
reflection, it's called a p2 group and is isomorphic to the symmetry group 
of figure 8.3.27. If 4V contains a ghde reflection but no reflection, it's called 
a pgg group and is isomorphic to the symmetry group of figure 8.3.31. 
Suppose 4V contains a reflection. If some half tu rn commutes with no 
reflection, 4V is called a pmg group and is isomorphic to the symmetry 
group of figure 8.3.30. If each half turn commutes with some reflection but 
distinct reflections never commute, 4V is called a pmm group and is 
isomorphic to the symmetry group of figure 8.3.29. Otherwise, 4V is called 
a cmm group and is isomorphic to the symmetry group of figure 8.3.28. 
The classes defined by lemmas 5, 7, and 13 to 16 are all disjoint. 

Conclusion 

The lemmas just listed constitute the proof of the following theorem: 

Theorem 17 (Wallpaper classification theorem). Each wallpaper group 
belongs to exactly one of the seventeen isomorphism classes defined by the 
tree in figure 8.3.15. 

J •—1 J '—1 J 

Figure 8.3.31 J r — J r — J 
pgg wallpaper pat tern 
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Authors have used several systems of notation for the isomorphism classes 
of wallpaper groups. Two systems have emerged as standard. One was 
established by the geometer L. Fejes Toth.30 Another arose from the crystallo-
graphic literature. Methods of geometry has used standard abbreviations 
for the four-symbol crystallographic designations. Table 8.3.1 shows the 
correspondence between this notation and Fejes Toth's, indexed by the lemmas 
that summarize the discussion of the classes. For an explanation of the 
crystallographic symbols and correlation with five other systems, con-
sult Schnattschneider 1978. 3 1 

Table 8.3.1 

Crystallographic and Fejes Toth symbols for wallpaper groups 

Abbreviated 
crystallo- Fejes 
graphic Toth 

Lemma symbol symbol 

5 Pi 

7 cm 3BJ 
pm 

Pg <B3 

13 p6 2B6 

ρ 6m 

14 p3 
p3ml 

® 3 

p31m 

Abbreviated 

Lemma 

crystallo-
graphic 
symbol 

Fejes 
Toth 
symbol 

15 p4 <B4 

p4m 

P4g © 2 

16 p2 3B2 

cmm <2B2 

pmm © 2

2 

pmg SB3 

pgg <B2

4 

Fejes Toth 1964, section 4. 
Schattschneider warns that several authors have confused the p3ml and p31m groups. 
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Evgraf Stepanovich FEDOROV was born in 1853 in Orenburg, Russia. His 
father was a military engineer. Fedorov grew up in St. Petersburg, where 
he attended a military gymnasium and engineering school. After graduation 
he alternated between military service and the study of medicine and several 
sciences. Eventually he became Director of Mines in the Urals. Fedorov 
started his major scientific work at age sixteen, a monograph on polyhedra 
and crystal structure that he finished twelve years later. It was pubhshed 
in 1885 in an obscure mineralogy journal. Although it received little atten-
tion, it was the basis of his major 1891 work that counted and classified the 
230 types of symmetry groups of crystal structures. (This work included 
implicitly the seventeen wallpaper groups.) Fedorov corresponded with the 
better known German mathematician Arthur Schonflies, who was working 
in the same area. Each provided major parts of the work; they share credit. 
During his administrative career, Fedorov continued to contribute to mineral-
ogy and crystallography as a sidehne. Some of his works were translated, 
but he remained isolated. He died in 1919. 

8.4 Polyhedra 

Concepts 
Polyhedral surfaces 
Connected polyhedra 
Euler's theorem 
Regular polyhedra 
Dual polyhedra 
Cuboctahedron and rhombic dodecahedron 
Convex polyhedra 
Deltahedra 
Polyhedral symmetry groups 
Transitive symmetry groups 

Polygonal regions and their boundaries were introduced in sections 3.8,4.7, 
and 8.1, and used for describing portions of planes and reasoning about area. 
Some of them—for example, the regular polygons—are simpler than others. 
Simplicity is exploited in various computations and constructions: for example, 
calculating π in exercise 4.9.2, the Kin Kletso floor plan in figure 8.0.4, 
and the hexagonal pattern in figure 8.4.1, which could represent a tiled floor, 
chicken-wire fencing, or a cross section of a honeycomb. Such figures are 
beautiful and entertarining, as well; compare Kurschak's tile in figure 4.7.2 
and the p6 wallpaper pat tern in figure 8.3.2. We study polygonal sym-
metry to explain the properties of these figures, and to enable us to use them 
effectively. 
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Figure 8.4.1 
Hexagonal grid 

Figure 8.4.2 
Modular architecture3 2 

Polyhedral regions were introduced in sections 3.10 and 4.8, and used 
for describing portions of space and reasoning about volume. Some of them, 
too, are simpler than others. This simplicity is exploited in various com-
putations and constructions: for example, volume calculations in 3.10 and 
4.8 and modular architecture in figure 8.4.2. And we find these figures 
beautiful and entertaining—see the ornamental lamp in figure 8.0.8. 

This section develops a theory of polyhedra—boundaries of polyhe-
dral regions and their symmetries—analogous to the theory of polygons. 
Unlike earlier sections of the chapter, this one doesn't attempt to cover its 
subject matter exhaustively. The theory of polyhedra is rich enough that 
entire books are devoted to various of its aspects. You'll find here only 
glimpses of them. Perhaps those will entice you to further study. 

Polyhedra 

Just as you built polygonal regions from triangles that intersect properly, 
you can construct polyhedral surfaces from polygonal regions—faces—that 
intersect properly. The faces don't need to be coplanar. For example, see 
figure 8.4.3, built from a quadrilateral and several triangular regions 
tilted this way and that according to the shading. (The χ values 
in the captions of figures 8.4.3 to 8.4.11 are explained under the heading 
Euler's theorem.) 

You could flatten this surface into a plane, but not the open box surface 
in figure 8.4.4. 

Pearce 1978, plate 13.70. 
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Figure 8.4.3 
Polyhedral surface, χ = 1 

Figure 8.4.4 
Open box, χ = 1 

Neither of the previous surfaces encloses a sohd region, but the closed 
cube in figure 8.4.5 and the regular tetrahedron and octahedron in figures 
8.4.6 and 8.4.7 certainly do. The faces of the closed surfaces in figures 8.4.8 
to 8.4.10 meet in more complicated ways; each surface encloses two regions. 
Although the faces of the surface in figure 8.4.11 intersect as simply as 
possible, it's complicated in another way; the surface encloses a single region 
with a hole. For area and volume computations it's useful to consider unions 
of disjoint polygonal or polyhedral regions. Is it useful to consider unions 
of disjoint polyhedral surfaces, for example the union of figures 8.4.5 and 
8.4.6? Complexity has arisen before the beginning of the theory of polyhedra! 
Should the theory comprehend all these examples, or just the simpler ones? 
Should it comprehend only boundaries of polyhedral regions, or should it 
also study surfaces like figures 8.4.3 and 8.4.4 that don't enclose a region? 

The questions stem from the fact that each of these examples can be studied 
using some of the techniques that constitute the theory. And some methods 
of analysis—particularly Euler's theorem—eeem to work with examples whose 
faces are interconnected in the most complicated ways. That is, they don't 
obviously fail. But it's difficult to apply them correctly to some figures, and 

Figure 8.4.5 
Closed cube, χ = 2 

Figure 8.4.6 Regular 
tetrahedron, χ - 2 
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Figure 8.4.7 Regular 
octahedron, χ = 2 

Figure 8.4.8 Two cubes 
joined along an edge, χ = 3 

Figure 8.4.9 Two cubes joined Figure 8.4.10 Two tetrahedra 

in those cases they provide information that 's hard to organize. Analysis 
and classification are simplified by restricting the class of examples under 
study. 

The theory began with Euclid.3 3 In book XIII of the Elements, he described 
the regular polyhedra in detail. Figures 8.4.5 to 8.4.7 show the cube and 
the regular tetrahedron and octahedron. The regular dodecahedron and 

Euclid [1908] 195G, book XIII, propositions 13 to 17. 

along a face, with a flap, χ = 3 joined at a vertex, χ = 3 

Figure 8.4.11 Cube with a 
hole, χ = 2 or 0 
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Figure 8.4.12 Regular 
dodecahedron, χ = 2 

Figure 8.4.13 Regular 
icosahedron, χ = 2 

icosahedron3 4 are displayed in figures 8.4.12 and 8.4.13. By Euclid's time, 
mathematicians had determined, presumably through investigation of models, 
how the various parts of these wonderful objects are related. Euclid didn't 
report that process. He provided instructions for constructing them with 
ruler and compasses (and presumably tools to cut and pas te) . But those 
constructions couldn't have been devised without prior knowledge of the 
figures. Euclid states that there are only five regular polyhedra, but he doesn't 
really specify criteria for being a polyhedron or for being regular. He didn't 
investigate the scope of his methods. 

This subject came to be known as solid geometry, and mathematicians 
agreed that it's concerned with surfaces that enclose solid regions, not like 
figures 8.4.3 and 8.4.4. Are polyhedral regions, as introduced in section 3.10, 
the primary objects of study, or should their surfaces be regarded as more 
fundamental? That question wasn't important to Euclid, who was interested 
only in a few important examples. Evidently, you can't determine from a 
polyhedral region, considered as a point set, all details of the surface used 
to define it. For example, including or excluding the hghtly dotted edges 
of the top and bottom faces of figure 8.4.11 has no effect on the enclosed region, 
but changes the character of the faces; with those edges included, no face 
has a hole. Euler was probably the first to consider the question and give 
a clear answer: 

Consideration of solids must be directed toward their surfaces. Indeed, 
once known from the surface by which it is included on all sides, a solid 
can be investigated routinely in a similar way, by which the types of 
its plane figures are defined in terms of its perimeter.35 

In other words, you can study the region in terms of its surface structure, 
but not necessarily vice versa. 

Tetra-, hexa-, octa-, dodeca-, and icosa- are Greek prefixes meaning four, six, eight, twelve, 
and twenty. Some authors call a cube a regular Ziexahedron! 

Euler [1758] 1953, 73, translated by the present author. 



386 SYMMETRY 

A theory of constructions of polyhedral regions, which would consider 
all structural details, would require attention to many inessential features 
not pertaining to the surface. Euler's suggestion has led instead to a theory 
of surface constructions. The objects under consideration include all their 
surface structure details, but no data directly describing regions they may 
enclose. 

That can be a major problem. Think of a quilt, made of a million triangular 
patches, that covers a ball. Available to the theory is a database that tells 
which patches abut which along their various edges. Now consider a second 
database, identical to the first, but missing one patch. The first quilt encloses 
a region, the ball; but the second one doesn't. How do you determine that 
by inspecting the databases? After an exhausting search, you may find that 
the second database includes some patches—neighbors of the missing one 
—with edges not shared by others. Is that enough evidence to claim the 
second quilt doesn't enclose a region? No! Consider figure 8.4.9! It's diffi-
cult to describe precisely the class of objects studied by the theory under 
development. 

It's generally agreed that the faces of these objects should be simply con-
nected polygonal regions: polygonal regions whose boundaries form simple 
closed polygons. 3 6 , 3 7 To be sure, surfaces whose faces have disjoint components 
or holes do occur in practice, but you can always replace a troublesome face 
by one or more simply connected ones. For example, the top and bottom 
faces of figure 8.4.11 have holes. But if you cut them along the lightly dotted 
lines, you make them simply connected without altering the enclosed poly-
hedral region. 

Consider a nonempty family 9 of simply connected polygonal regions, 
called faces, and the sets of their edges and vertices. (These are line segments 
andpointe; they may belong to more than one face.) There's at least one 
face, each face has at least three edges and three vertices, each edge has 
at least two vertices and borders at least one face, and each vertex is on at 
least two edges and one face. What assemblies of faces fall within the scope 
of the theory under development? & is said to intersect properly if the 
intersection of two distinct faces is always empty, an edge of each, or a vertex 
of each, and each edge is shared by at most two faces. Its union is called 
a polyhedral surface. Proper intersection requires that an edge have at most 

A polygonal region Π was defined in section 3.8, its boundary 9/7 in 4.7, and simple closed 
polygon in 8.1. 

Points Ρ and Q in the plane e of Π are called mutually accessible if there's a poly-
gon Ρ 0 · · 'Ρ„-ι contained in 9/7 or in ε - 3/7 such that P = P0 and Pn.t = Q. Mutual 
accessibility is clearly an equivalence relation on ε. Its structure is simplest when there 
are only three equivalence classes: 9/7, the interior of Π, and its exterior. That happens 
just when Π is simply connected. Mutual accessibility thus affords a characterization of 
simple connectedness that seems more intuitive to the author than the definition just 
presented in the text. Proving they're equivalent, however, is very difficult. Since only the 
definition in the text is needed—for Euler*s theorem—that proof is not included. 
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two incident vertices; that seems appropriate, because otherwise it would 
be hard to identify the edges and vertices from a drawing. Proper intersection 
also requires that an edge have at most two incident faces. The faces of the 
joined boxes in figures 8.4.8 and 8.4.9 do not intersect properly, so those 
objects he outside the scope of the theory under development. It seems less 
appropriate to exclude those, because we use them commonly as containers. 
But including them would make the theory too complicated. The faces in 
figures 8.4.3 to 8.4.7 and 8.4.10 to 8.4.13 all intersect properly. 

In the remainder of this section, whenever the term polyhedral surface 
is used, it refers to a nonempty properly intersecting family of faces as well 
as its union. 

The boundary of a polyhedral surface is the union of its edges that border 
only one face. A polyhedral surface with finitely many faces but no boundary 
points is called a polyhedron. Each edge borders exactly two faces. The 
polyhedral surface in figure 8.4.3 tha t can be flattened, and the open box 
in figure 8.4.4, are not polyhedra according to this definition, but the regular 
polyhedra, the pierced cube, and the joined tetrahedra in figures 8.4.5 to 
8.4.7 and 8.4.10 to 8.4.13 are. So is any union of finitely many examples 
such as these. 

Euler's theorem 

Consider the sets Ψ of vertices and δ of edges of a polyhedron &. These 
sets have cardinalities #y , #S, and The number χ = #Ψ - #& + #& 
is called the Euler characteristic of 9. It's important to realize that Ψ and 
δ are sets—each member is counted only once, even if it's a vertex or edge 
of more than one face. The Euler characteristics of figures 8.4.3 to 8.4.13 
are shown in their captions (including analogous χ values for the nonpoly-
hedral figures 8.4.3, 8.4.4, 8.4.8, and 8.4.9). What patterns appear? Figures 
8.4.3 and 8.4.4, which enclose no region, have characteristic 1. Most of these 
examples have characteristic 2. Figures 8.4.8 to 8.4.10, which seem to enclose 
two regions each, have characteristic 3. Figure 8.4.11, with a hole, has charac-
teristic 2 or 0, depending on whether you include the hghtly dotted edges 
to make its top and bottom faces simply connected. Consider a polyhedral 
surface 9 tha t is the union of disjoint surfaces ^ and &2 with character-
istics χΧ and χ2. Since the vertex and edge sets of ^ and ^ are disjoint, 
the characteristic of 9 is χ λ + χ2. 

The Euler characteristic encodes some striking geometric properties of 
polyhedra, and provides a handy tool for reasoning about them. But it's 
difficult to state theorems about it tha t have both simple hypotheses and 
simple conclusions. Formulating a simple conclusion often requires stating 
a list of hypotheses to rule out exceptional cases. The next four paragraphs 
are aimed at a concise statement of one major result about the character-
istic: Euler's theorem, which states very general conditions on polyhedra 
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entailing χ = 2 . Figures 8.4.3, 8.4.4, 8.4.8, and 8.4.9 have been excluded 
because they're not polyhedra. The remaining examples with χ ^ 2 are 
excluded by connectedness criteria. 

If the following condition holds, a polyhedron 9 is called vertex-
connected: 

for any distinct vertices V and W there exist sequences of edges 
E0 to En.x and vertices Vx to Vn.x, called a path of vertices 
and edges from V to W, such that if V0 = V and Vn = W, then 
Ej = VjVj+1 for j = 0 to η - 1. 

Unions of disjoint polyhedra, which can have arbitrarily large characteristic, 
will be excluded from Euler's theorem because they aren't vertex-connected. 
But that condition doesn't exclude figure 8.4.10, which is vertex-connected. 
If the following condition holds, a polyhedron & is called face-connected: 

for any distinct faces F and G there exist sequences of edges 
E0 to En.x and faces Fx to Fn.x, called a path of faces and 
edges from F to G, such that if F0 = F and Fn = G, then Ej = 
FjnFj+x for j = 0 to η- I. 

In figure 8.4.14 the heavy edges indicate a path of vertices and edges from 
V0 to V4 and the shaded faces indicate a path of faces and edges from Fx 

to F 5 . Since each vertex of a polyhedron belongs to some face, all face-
connected polyhedra are vertex-connected. But not vice versa; figure 8.4.10 
isn't face-connected, because there's no path of edges and faces from the top 
face to the bottom face. Figures 8.4.5 to 8.4.7 and 8.4.11 to 8.4.13 are all 
face-connected. 

Figure 8.4.11, the cube with a hole, shows that the Euler characteristic 
is sensitive to the connectivity of the faces. Without the lightly dotted edges, 
χ = 2; adding one of them reduces χ to 1; adding the second makes χ = 
0. You can verify that adding further edges between existing vertices of 
the same face doesn't affect χ. This is a reason for requiring that the faces 
of a polyhedron be simply connected. The value of χ evidently has something 
to do with the number and nature of the holes in a polyhedron. Bore another 
hole from top to bottom alongside the first, adding additional edges to the 

Figure 8.4.14 
Path of vertices and edges 
from V0 to V4 

Path of faces and edges 
from Fx to F 5 
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top and bottom faces to keep them simply connected; tha t should result 
in χ - - 2 . More holes, interconnected in various ways, should yield other 
values even more negative. The presence of holes yields values χ ^ 2. In 
analogy to the terminology of polygonal regions, freedom from holes is called 
simple connectedness, defined in the next paragraph. 

A cycle on a polyhedron 9 is a sequence of vertices V0 to Vn and edges 
Ej = VjVj+1 for 7 = 0 to η - 1 and En= VnV0 such that the only edge 
intersections are Ej η Ej+X = {VJ+j} for y = 0 to n - 1 and EanE0 = 
{V0}. 9 is called simply connected if for any cycle on 9, there exists 
a nonempty set 'β of faces, such tha t 

• '•f- is the family of edges that border faces in both 'β and 9 - 'β, 
• any path of faces and edges from a face in <B to one in 9 - <8 contains 

an edge in 

The polyhedra in figures 8.4.5 to 8.4.7, 8.4.12, and 8.4.13 (the regular 
polyhedra) are all simply connected. But the cube with a hole in figure 8.4.11 
is not; you can verify that the cycle consisting of the hghtly dotted top and 
bottom edges and the vertical edges joining them does not divide the faces 
into disjoint sets 'β and 9 - 'β as required. 

How stable is the characteristic value χ = 2 when you modify the poly-
hedron, maintaining connectivity properties? Experiment! For example, 
add a diagonal edge to a face of the cube or dodecahedron in figure 8.4.5 
or 8.4.12; you add an edge and a face, so χ remains the same. Add a pyramid 
to another face; you add one vertex, η edges, and η new faces, but lose 
one old face, the base of the pyramid. Again, χ remains unchanged. These 
experiments provide the intuition that underlies the following famous theorem. 

Theorem 1 (Euler's theorem). If the polyhedron 9 is face-connected 
and simply connected, then χ = 2. 

Proof. Define sequences of sets SB0 c 9BX c SB2 c · · · of edges and 90 c 
9X c 92 c · · · of faces as follows. First, select any face F0; set SS0 = φ and 
90 = {F0}. Given SBk and 9^, form SBk+x by appending to 3Bk an edge 
Bk+X not in SSh but bordering exactly one face in 9k. If there's none, 
stop the sequence. Otherwise, Bk+X borders exactly one other face Fk+X, 
which cannot belong to 9k; append it to 9k to form 9k+x. Notice tha t for 
each k a face belongs to 9k if and only if it has an edge in SBk, and 
#&k = k = #9k-I. Define SB = \lkSBk and 9* =Dk9k. 

Every face F^F0 is linked to F0 by a path of faces and edges in SB and 
9*. To see this, suppose the sequences have just stopped with SB=SBk and 
9* = 9k. Because 9 is face-connected, some path of edges and faces links 
F0 to F. Proceed from F0 crossing those edges. If one of them didn't belong 
to SBk, the first tha t didn't would border exactly one face in 9k, and the 
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sequence would be able to progress. This paragraph implies When 
the sequences stop, SB = SBk, &=&k, and #SB = #&- 1. 

There's no cycle of vertices and edges in δ - SB. To see this, suppose 
there were such a cycle. Consider any edge in ^ and the two faces F and 
F' it borders. By the previous paragraph they're linked by a path of faces 
and edges in SB. That would contradict the simple connectivity of SF —any 
such path must contain an edge belonging to 

Select any vertex V 0. For each j , every vertex V y V0 i s h n k e d t o V0 

by a path of vertices and edges not in 9Br To verify this statement, proceed 
recursively. It's trivially true for j - 0. Suppose it's true for j = k. Then 
V ishnkedto V0 by a path & of vertices and edges not in SBh. If 3> doesn't 
contain Bk+l, then it's a path of vertices and edges not in SBk+1, as desired. 
Otherwise, replace S A + 1 in & by the concatenation of all remaining edges 
of the face F containing Bk+l that 's not in & k + l . By the first paragraph 
of this proof, none of those are in SBk+x, and because F is simply connected 
they form a path connecting the ends of Bk+x. The resulting path of vertices 
and edges not in SBk+l links V to V 0, as desired; the statement is true 
for j = k+ 1. 

By the previous paragraph, every vertex V^V0 ishnkedto V0 by a path 
of vertices and edges in S - 38. In fact, this path is unique, for if two distinct 
pathe of vertices and edges in δ - SB hnked V to V0, there'd be a cycle 

of vertices and edges in δ-SB, contradicting the third paragraph of this 
proof. 

The function λ that maps each vertex V?V0 to the last edge A(V) 
of the path of vertices and edges in δ - SB that links V to V0 is a bijection 
from r-{V0} to δ - SB, so # r - 1 = # ( < ? - SB). It follows tha t #<? = 
#(<? - SB) +#3B = #V- 1 + # * · - 1, hence χ = #y - #δ + # ^ = 2. • 

By 1630 Descartes knew the essence of theorem 1, but a more than a century 
elapsed before it was stated explicitly by Euler. 3 8 Euler and other mathemati-
cians presented proofs, using various methods and with varying degrees 
of precision and rigor. That given here is due essentially to von Staudt . 3 9 

Although the arguments in all these proofs are simple—von Staudt used 
only two sentences—several attempts were required before the intersection 
and connectivity hypotheses were stated precisely. Cromwell gives a detailed 
historical account.4 0 Lakatos 1976 is an entire book in dialogue form devoted 
to this problem. For information on polyhedra with χ ^ 2, consult the 

Euler [1758] 1953, number 33. 

Von Staudt 1847, section 50. 

1997, chapter 5. 
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marvelous hand-lettered and illustrated book Stewart 1980, or a reference 
on combinatorial topology.4 1 

Rademacher and Toeplitz present von Staudt 's argument ominously. 4 2 

All but one of the faces of the polyhedron represent fields in a low-lying island 
beset by the tides. The fields are walled by dikes along their edges; vertices 
represent villages situated a t dike intersections. The remaining face— F0 

in the proof just given—is the surrounding cruel sea. One by one the fields 
are flooded by breaches in the dikes. SBk consists of the first k dikes tha t 
fail, and 9h is the set of fields flooded by those failures. Eventually all fields 
are flooded by a minimal set of breaches. Village V0 i n t hep roo f i s t he sea t 
of government. It can communicate with all other villages by sending 
messengers along unbroken dikes, because only a minimal set of breaches 
occurred. But the messengers have no choice of route, and any further breach 
will isolate at least one village. 

Regular polyhedra 

The regular polyhedra were described in detail by Euchd around 300 B . C . 4 3 

Since Plato had discussed them about fifty years earlier, they're also known 
as Platonic figures.44 Each has congruent regular polygonal faces, and the 
same number of faces meet a t each vertex. For some ρ z 3 each face has 
ρ edges; since each edge hes on exactly two faces, p#& = 2#S. For some 
q * 3 each vertex hes on q edges; since each edge joins exactly two vertices, 
q#r=2#£. These two equations with Euler's equation #Ψ-#$ + #9 = 
2 imply 

Ρ q ρ q 2 #s 2 

This inequality prevents ρ and q from being very large. In fact, only five 
p, q pairs are possible. They're tabulated in table 8.4.1 with the corresponding 
values of #y , #£, and #«f and the name of the polyhedron. 

According to the previous paragraph, table 8.4.1 lists the only possibilities 
for regular polyhedra—if they exist, they must have these properties. Do 
they really exist? You can convince yourself of tha t by building each one 

4 1 For example, see Eves 1963-1965, chapter 15. 
4 2 Rademacher and Toeplitz [1933] 1957, chapter 12. 
4 3 Euclid [1908] 1956, book XIII. 
4 4 Plato presented in Timaeus ([1965] 1971, section 21 ft) a theory of the structure of matter, 

in which he assigned to the elements fire, air, water, and earth basic units having the shapes 
of the regular tetrahedron, octahedron, icosahedron, and the cube. He attributed their 
various chemical and physical properties to the way in which these units are constructed 
from 30° and 45° right triangles. The dodecahedron—the regular polyhedron most like 
a perfect sphere—he assigned to the universe as a whole. 
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Table 8.4.1 The regular polyhedra 

Ρ 9 
Ρ Q 

l/#<? = 

ρ q 2 
name 

3 3 V 3 Ve 4 6 4 tetrahedron 

3 4 Vll Vl2 6 12 8 octahedron 

3 5 VlB Vao 12 30 20 icosahedron 

4 3 Vn Via 8 12 6 cube 

5 3 Vie Vao 20 30 12 dodecahedron 

from the required number of equilateral triangles, squares, or regular 
pentagons. But how do you know they fit exactly1! You can easily use a 
Cartesian coordinate system to find the vertices of a cube: all eight possibili-
ties for <±1,±1,±1>. Each edge has length 2. Those points with two positive 
coordinates and one negative form the vertices of a regular tetrahedron whose 
edges have length 2 ^ 2 . The centroids of the six faces of the cube con-
stitute the vertices < ±1,0,0 >, <0 ,±1 ,0>, < 0 , 0 , ± 1 > of a regular octa-
hedron β whose edges have length y[2. Any face Τ of β and the nearest 
vertex V of the cube also form a regular tetrahedron &, and the faces of 
& that contain V are coplanar with the faces of β that intersect T. This 
shows that the dihedral angles of ST and ΰ, hence of any 4 5 regular tetrahe-
dron and octahedron, are supplementary. 

Consider adjacent faces AVWX and AVWX' of that octahedron, and 
points P, Q, and Q' on edges VW, WX, and WX': for example, 

V = < 1 , 0 , 0 > Ρ = tV + (1-t)W = <t,l-t, 0 > 
W = <0, 1, 0 > Q =tW+(I-t)X =<0, t , l - t > 
X = < 0 , 0 , 1> Q' = tW+(l- t)X' = <0, t,-l + t>. 
X' = < 0 , 0 , - l > 

Determine t > 0 so that PQ = QQ' and therefore APQQ' is equi-
lateral; you get 

(PQ)2 = 6 i 2 - 6t + 2 0 = (PQ)2 - (QQ')2 = 2(t2 + t - 1) 
(QQ')2 = 4t2 -8t + 4 t^-Vt + VtJE. 

This conclusion requires an argument that any two regular tetrahedra are similar, hence 
have the same dihedral angles, and an analogous argument for regular octahedra. You can 
supply those, using methods described in chapter 3. 
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Construct R = tX+ ( 1 - i) V= < 1 - t, 0, t>, so tha t APQR is equilateral. 
Continue constructing points on all twelve edges, with coordinates 

< ± ί , ± ( 1 - ί ) . υ > , < ± ( 1 - f ) . 0 , ± i > , < 0 , ± t , ± ( l - ί ) > · 

(In each case all four ± combinations occur.) Repeated application of the 
SSS congruence principle shows tha t these points form twenty congruent 
tr iangles: the faces of a regular icosahedron with edge QQ1 = 3 - / 5 . 

Eight of these faces he within faces of the octagon; corresponding 
icosahedral and octahedral faces share the same centroid, with coordinates 
< ± 1 / 3 , ± 1 / 3 , ± 1 / 3 > . All eight ± combinations occur. In exercise 8.5.25 you'll 
calculate the coordinates of the centroids of the other twelve icosahedral 
faces, and show that altogether they form the twenty vertices of a regular 
dodecahedron with edge -Vz + V3 / 5 . 

The programs that drew the regular polyhedra in figures 8.4.5 to 8.4.7, 
8.4.12, and 8.4.13 actually used the coordinates derived in the previous three 
paragraphs. 

Dual polyhedra 

The construction of a regular dodecahedron in the previous paragraph suggests 
a more general method for analyzing polyhedra. On each of the η faces 
of a polyhedron & select a point C symmetrically situated with respect 
to its vertices; can you regard those η points as the vertices of a new 
polyhedron SP"i In the special case just considered, each face of & was 
a regular polygon and C its center. Applied to the regular polyhedra, the 
method is spectacularly successful: 

Polyhedron 9> New polyhedron &>' 
η with η faces with η vertices 

4 Regular tetrahedron -* Regular tetrahedron 

6 Cube Regular octahedron 
8 Regular octahedron ^ C u b e 

12 Regular dodecahedron Regular icosahedron 
20 Regular icosahedron Regular dodecahedron 

In each case, carrying out the construction twice in succession produces a 
polyhedron similar to the original, related to it by a contraction about their 
common center. For this reason, 9' is called the dual of &. The cube and 
regular octahedron are dual, as are the regular dodeca- and icosahedra. 
The regular tetrahedron is self-dual; its dual is a similar tetrahedron related 
to the original by the reflection across their common center followed by a 
contraction about it. These relationships are illustrated by figures 8.4.15 
to 8.4.19. 
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Figure 8.4.15 Regular 
tetrahedron and its dual 

Figure 8.4.17 Regular 
octahedron and its dual 

Figure 8.4.16 
Cube and its dual 

Figure 8.4.18 Regular 
dodecahedron and its dual 

Figure 8.4.19 Regular 
icosahedron and its dual 
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How general is this dualization method? It seems clear that you can dualize 
any polyhedron 9 whose faces have centers of some sort . 4 6 Even if 9 is 
convex, though, you may have trouble identifying a dual polyhedron 9'. 
Knowledge of its vertices doesn't necessarily tell you how to join them with 
edges and faces. You'll gain more familiarity with dual polyhedra in the 
rest of this section and some exercises in section 8.5. 

Cuboctahedron and rhombic dodecahedron 

Each vertex of a regular polyhedron is surrounded by the same number of 
regular faces, all with the same number of edges. What possibilities arise 
when you relax one those constraints? For example, is there a polyhedron 
with each vertex surrounded by two triangles and two quadrilaterals? Is 
there a highly symmetric one? Euler's theorem is the theoretical tool for 
attacking such questions, so you need to rephrase the question, including 
its hypotheses: Is there such a face-connected and simply connected 
polyhedron? If so, suppose it has f3 triangular faces and f4 quadrilaterals. 
Let V and & denote its vertex and edge sets. Visiting all vertices and 
counting edges, triangles, and quadrilaterals you find 

4 # r = 2 # < ? 2 # r = 3 / 3 2 # r = 4 / 4 

and by Euler's theorem, 

# y - # # + ( / j + / 4 ) = 2. 
Using the first three equations to eliminate all unknowns but #V from the 
last, you find #Ψ=\2, which entails #<f = 24, f3 = S, and / 4 = 6. You need 
eight triangles and six quadrilaterals, and you must connect them to get 
twenty-four edges and twelve vertices. 

In fact, you can make a highly symmetric polyhedron from these components 
by truncating the vertices of a cube, obtaining the object in figure 8.4.20. 
Because the cube and regular octahedron are so closely related, you could 
just as well truncate an octahedron, as in figure 8.4.21. The resulting 
polyhedron 9 is called a cuboctahedron. 

Can you visualize its dual polyhedron 9 "I That must have fourteen 
vertices, one at the center of each face of 9. If the dual of 9' is to be similar 
to 9, then 9' must have twelve faces. It would be a dodecahedron, but 
not regular, because regular dodecahedra have twenty vertices, not fourteen. 
It couldn't be dual to the cuboctahedron as defined under the previous heading, 
because the centroids of the faces surrounding a vertex of a cuboctahedron 
aren't coplanar. 

You don't really have to use centers. In each of figures 8.4.15 to 8.4.19 you could move any 
vertex of the dual polyhedron slightly off center, and still have a polyhedron clearly related 
to the original. 
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Figure 8.4.20 Truncating Figure 8.4.21 Truncating 
a cube to make a regular octahedron to make 

a cuboctahedron a cuboctahedron 

To construct use a Cartesian coordinate system to divide space into 
cubical cells separated by planes perpendicular to the axes, through "lattice" 
points with integral coordinates. Consider one cell 1$. It has four pairs of 
opposite edges, which he on four planes through its center. Planes parallel 
to these through other lattice points dissect every cell into six square pyramids 
with common apex at the cell center. Thus each edge W Y of <8 is coplanar 
with the centers X and Ζ of two cells adjacent to *&, and WXYZ is a 
rhombus. Each of the six faces of forms the base of one of the pyramids 
constituting an adjacent cell. The union of # and these six pyramids is 
a polyhedron 3>' with a total of twelve congruent rhombic faces. (Tallying 
four rhombi at the apices of each of the six pyramids counts each rhombus 
twice.) &' is called a rhombic dodecahedron; it's displayed in figure 8.4.22. 
&' has fourteen vertices: the apices of the six pyramids and the eight vertices 
of Each vertex of is shared by three obtuse or four acute face angles. 
Since the centers of the faces of are the midpoints of the edges of 
the dual of (as defined under the previous heading) is a cuboctahedron. 
Although the cuboctahedron was reportedly known to Archimedes about 
250 B.C., the rhombic dodecahedron was first discussed by Johannes Kepler 
around 1610. 

Figure 8.4.22 
Rhombic docecahedron 
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Deltahedra 

All faces of the cuboctahedron are regular polygons, but they don't all have 
the same number of edges. All faces of the rhombic dodecahedron are 
congruent, but they're not regular. What's possible if you require tha t all 
faces be congruent regular polygons? 

First, no such polyhedron can have only regular faces with more than 
five sides, because then each angle a t a vertex would be at least 120°, and 
three of them would total more than 360°. If all faces were regular pentagons, 
only three could meet at any vertex. Visiting all vertices and counting edges 
and faces, you'd find that 3#T = 2#<? = 5 # ^ . Euler's theorem would yield 
2 = #V-#£ + #&= Viotir, hence # T = 2 0 and # ^ = 1 2 : the polyhedron 
must be a regular dodecahedron. If all faces were squares, it would be a 
cube. 

If all faces of a polyhedron are equilateral triangles, it's called adeltahedron. 
(Equilateral triangles resemble the Greek letter Δ.) There are three regular 
deltahedra: the tetrahedron, octahedron, and icosahedron. You can make 
a regular octahedron by joining two pyramids along their congruent square 
bases; any such polyhedron is called a dipyramid. Two more deltahedra 
fall into this category: the equilateral triangular and pentagonal dipyramids 
shown in figures 8.4.23 and 8.4.24. 

You can join other polyhedra along faces so that only equilateral triangles 
remain. For example, s tar t with a tr iangular prism with square faces or 
the square antiprism constructed in exercise 4.8.2, and erect equilateral 
pyramids on all square faces, to obtain the deltahedra in figures 8.4.25 and 
8.4.26. Erecting pyramids on the faces of a polyhedron is called stellation, 
from the Latin word stella for star. 

All deltahedra displayed so far have been convex. A polyhedron ieconvex 
if it has no vertices on different sides of any face plane. By adjoining polyhedra 

Figure 8.4.23 Equilateral Figure 8.4.24 Equilateral 
tr iangular dipyramid pentagonal dipyramid 
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Figure 8.4.25 Deltahedral Figure 8.4.26 Deltahedral 
stellation of a triangular prism stellation of a square antiprism 

you can construct nonconvex deltahedra freely, particularly if you use chains 
of regular tetrahedra, each adjoined to the next along a face.4 7 

What other convex deltahedra are there? Suppose a deltahedron &> has 
a vertex V belonging to just three faces—a trihedral vertex. Let X, Y, 
and Ζ denote the remaining vertices of those faces. 3> could be a regular 
tetrahedron. If not, edges XY, YZ, and ZX belong to three distinct faces 
that don't contain V. If they have a common vertex, then & is an equilateral 
triangular dipyramid. If not, two of those edges—for example XY and 
YZ —belong to faces AXYW and AYZW with W. If Y belonged 
to just one more face AYWW, then ZXWW would be a square, Y would 
be the apex of a pyramid with this square base, this pyramid would form 
half a regular octahedron, VX YZ would be a regular tetrahedron erected 
oniteface AXYZ, and AVXY and ΑΧYW would be coplanar because 
the dihedral angles of a regular tetrahedron and a regular octahedron are 
supplementary. That's impossible; moreover, if Y belonged to five faces, 
9> would fail to be convex. Therefore, the only convex deltahedra with 
trihedral vertices are the regular tetrahedron and the equilateral triangular 
dipyramid. 

Now consider a convex deltahedron '&> with no trihedral vertex. Let 
u4 and u5 denote the numbers of vertices of SP at which four and five vertices 
meet. Visiting all vertices and counting edges and faces, you'll find that 

4υ4 + 5vs = 2#S = 3#&. 

These equations and Euler's theorem yield 

2 = # T - #<$• + #.Ψ= (v4 + vs) - (2v4 + 5 / 2 V5) + ( 4 / 3 V 4 + 5 / 3 v s ) 

= L/3 V4 + Ve U 5 . 

For an example study, see Trigg 1978. 
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Multiply by 6 to get 

2u 4 + i>5 = 12. 

Clearly v4 s. 6. If v4 - 6, then u5 = 0 and 9> is a regular octahedron. If 
i>4 = 5, then u 5 = 2 and 9> is a pentagonal dipyramid. If v4 = 4, then 
i>8 = 4; no such deltahedron has been displayed yet. If i>4 = 3 , then u 5 = 
6 and & is a stellated triangular prism as in figure 8.4.25. If v4-2, then 
i>5 = 8, and is a stellated square antiprism as in figure 8.4.26. If v4 = 
1, then υ 5 = 10; no such deltahedron has been displayed yet. If υ4 = 0, 
then u 5 = 12 and & is a regular icosahedron. 

In exercise 8.5.37 you'll show tha t a convex deltahedron with υ4 = u 5 = 
4 must be a Siamese dodecahedron as shown in figure 8.5.12. In exercise 
8.5.36 you'll show that the one remaining case in the previous paragraph, 
v4 = 1 and υ6 = 10, is impossible. Therefore there are precisely eight types 
of convex deltahedra: 

regular tetrahedron, octahedron, and icosahedron; 
equilateral tr iangular and pentagonal dipyramids; 
stellated equilateral tr iangular prism and square diprism; 
Siamese dodecahedron. 

Whereas the first five of these types were extremely familiar to ancient 
mathematicians, the last three were first discussed by Rausenberger 
(1915); the proof that there are only eight types is due to Freudenthal and 
van der Waerden (1947). 

Polyhedral symmetry 

Polygonal symmetry groups—the dihedral groups and their subgroups studied 
in section 8.1—are easy to visualize. The analogous three-dimensional 
groups—symmetry groups of polyhedra—are more complicated and harder 
to imagine. You'll benefit by handling models of the polyhedra as you read 
about their groups. Instructions for making models from railroad board 
and rubber bands are included in section 8.5, as well as references to other 
types of models. 

A symmetry φ of a polyhedron 9 must map any quadruple 
<Vlt...,V4> of noncoplanar vertices of 9> to another such quadruple 
<V[ V 4 >; moreover, φ is the only isometry with q)(,Vi) = Vi' for all 
i. Given V, to V4 there are only finitely many possibilities for V{ to V4, 
hence there are only finitely many possibilities for φ. That is, the symmetry 
group 'β of a polyhedron is finite. Therefore, it can contain no screw or ghde 
reflection with nonzero vector; 'β must consist entirely of rotations and 
rotary reflections. To describe 'β for a given polyhedron, first determine 
its nontrivial rotations. The rotations about each axis a constitute a cychc 
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subgroup <8a of 'β. If % has η elements, a is called an η-fold axis. I t 
may be troublesome to find all the axes. Once you see an axis a, hold a 
model pointing a straight ahead of you; it's easy then to enumerate the 
elements of S 0 . Having found all rotational symmetries p, find any odd 
symmetry φ of 9. Each composition <pp is again an odd symmetry; 
moreover, if χ is any odd symmetry of 9, then ρ = φ'λχ is an even, hence 
rotational, symmetry and χ = φρ. Thus if 'β contains any odd symmetry 
φ, then exactly half its members are even symmetries p; its odd symmetries 
are the compositions$ipp. 

As examples, consider right prisms 3Pn whose bases are regular polygons 
with η edges. When re = 4, adjust the distance between bases so that &>n 

is not a cube. Call the bases horizontal and the other faces vertical, and 
use similar terminology for hnes parallel to them. Figure 8.4.27 shows 
exampleefor JI = 3 and 6. (They're typical; some properties of &n depend 
on whether η is odd or even.) Each prism has an η-fold vertical axis a 
of symmetry joining the centers of its bases. Midway between the bases 
are η twofold horizontal axes. For odd η each horizontal axis joins the 
center and midpoint of an opposite face and edge. For even η half the 
horizontal axes join centers of opposite faces; the other half join midpoints 
of opposite edges. Besides these In rotations, the symmetry group 'β of 
(Pn contains reflection σε across the plane midway between the bases, and 
the compositions of ae with all 2 η - 1 nontrivial rotations. These composi-
tions consist of η - 1 rotary reflections about a with mirror ε, and the 
reflections across η vertical planes through the horizontal axes. Thus 
'β contains 4n symmetries in all: it's called a S)^ group. 

How can you modify a prism &n to maintain the vertical rotational 
symmetries but eliminate some or all of the others? First, the corresponding 
right pyramid \ in figure 8.4.28 displays the vertical rotations and reflec-

Figure 8.4.27 Figure 8.4.28 
Pyramid with # β ι 

symmetry group 
Prisms with ®3 f t and 
&6 h symmetry groups 

6l> 
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tions, but none of the others. Its symmetry group, with 2n elements, is 
called a "^nt) group. In this notation, due to Schonfhes (1891) and explained 
by Cromwell,4 8 symbols S> and # evoke analogies with the dihedral and 
cyclic groups studied in section 8.1; subscripts h and υ indicate the presence 
of horizontal and vertical plane reflections. 

Next, you could append a polyhedron W with n-fold cyclic but not dihedral 
symmetry to one base of a prism 3>n but not the other. Figure 8.4.29 is an 
example. The Y motif appears painted on the prism, but regard it as 
constructed from molding with rectangular cross section and glued on, so 
that the result is a polyhedron ^ . The symmetry group of & consists only 
of the η vertical rotations. It's called a group, and is isomorphic to the 
corresponding planar cyclic group studied in section 8.1. 

You could also append copies of W to both bases of &>n. If you align them 
properly, as in figure 8.4.30, the symmetric group of the resulting polyhedron 
will consist of the η vertical rotations and the half turns about the η 
horizontal axes; the polyhedron displays no reflectional symmetry. This 
is called a 3>n dihedral group. It's isomorphic to the corresponding planar 
dihedral group studied in section 8.1: the vertical rotations correspond to 
the rotations in the planar group; the half turns, to the planar line reflections. 

Make a copy of & with opposite orientation. (Apply glue to its opposite 
face.) Append W to one base of a prism &η and its opposite to the other, 
as in figure 8.4.31, where the motifs are Y and Y . (These opposite motifs 
appear alike in the figure because you're looking down at the outside of the 
top face and down at the inside of the bottom face.) The symmetry group 
of the resulting polyhedron consists of the vertical rotations and the corre-
sponding rotary reflections with horizontal mirror. It's called a ^ group. 

Figure 8.4.29 
Polyhedron with cyclic 

<g3 symmetry group 

Figure 8.4.30 
Polyhedron with dihedral 

® 3 symmetry group 

48 Cromwell 1997, chapter 8. 
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Figure 8.4.31 
Polyhedron with 

% h symmetry group 

Figure 8.4.32 
Antiprism with 

0>3u symmetry group 

Now consider a right antiprism \ whose regular polygonal bases have 
τι edges. When τι = 3, adjust the distance between bases to ensure tha t 
\ is not a regular octahedron—this example is shown in figure 8.4.32. Its 
symmetry group 'β is called a 3>m group. This contains the same vertical 
rotations and plane reflections as a 3)^ group, and the same numbers of 
horizontal rotations and rotary reflections. But in these two types of symmetry 
group, the relationships of the horizontal rotations and rotary reflections 
to the vertical rotations and reflections are different. In particular, no 3>m 

group contains reflection ac across horizontal plane ε, but it contains 
reflection a0 across the center Ο of \ (midpoint of the segment joining 
the base centers) just when η is odd; all groups contain ae, and they 
contain a0 just when η is even. 

In exercise 8.5.39 you'll append to the bases of a prism & 2 n two opposite 
copies of a structure with % but not 0>„ symmetry, aligned so that the 
symmetry group 'β of the resulting polyhedron contains the same vertical 
rotations and rotary reflections as a 3>m group, but no vertical plane 
reflections or horizontal rotations, 'β is called an £P2n group. 

In previous examples of polyhedral symmetry groups, all nonvertical axes 
were twofold. That's clearly not the case for regular polyhedra, which are 
considered next. 

Each of the four altitudes of a regular tetrahedron is a threefold axis, and 
the three lines joining midpoints of its opposite edges are twofold axes. Thus 
its symmetry group 'β contains 12 rotations. (Count the identity just 
once!) Since 'β contains an odd symmetry—for example, the reflection across 
the perpendicular bisector of any of its six edges—it must have twenty-four 
members altogether, 'β is called a &d group. Since there are only twenty-four 
permutations of its vertex set, the symmetries of a regular tetrahedron 
correspond bijectively to the permutations of its vertices. 
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The previous sentence explains why we regard regular tetrahedra as highly 
symmetric)—their symmetries include all possible permutations of their vertex 
sets. Since a symmetry of any polyhedron preserves vertex adjacency, not 
every highly symmetric polyhedron can have this property; it holds in this 
case because any two vertices of a tetrahedron are adjacent. However, a 
regular tetrahedron shares a significant property with other highly symmetric 
polyhedra. Its symmetry group if is transitive in the following sense. 
Suppose each triple <V,e,F> and <V',e',F'> consists of an incident 
vertex, edge, and face; then if contains a symmetry φ such that φ(Υ) = 
V, <p(e) = e\ and ^ ( F ) = F ' . 

A cube has three fourfold axes joining centers of opposite faces, four 
threefold axes joining opposite vertices, and six twofold axes joining mid-
points of opposite edges. Its symmetry group if thus contains twenty-four 
rotations. Since it contains plane reflections, if must have forty-eight 
members altogether. You can see it's transitive. 

Any symmetry of a cube must preserve the set of face centers. Therefore 
it's a symmetry of the cube's dual octahedron. Similarly, every symmetry 
of a regular octahedron must be a symmetry of its dual cube. These two 
cubes are homothetic about their common center (see figures 8.4.16 and 
8.4.17), so they have exactly the same symmetry group, which must also 
be the symmetry group of the octahedron. Since any two cubes or any two 
regular octahedra are similar, their symmetry groups are conjugate. That 
is, all cubes and regular octahedra have conjugate symmetry groups. These 
are called' 0h groups. 

The regular dodecahedron and icosahedron are related like the cube and 
regular octahedron; each is homothetic with the dual of its dual. Therefore, 
all regular dodecahedra and icosahedra have conjugate symmetry groups. 
They're called &h groups. 

A regular dodecahedron has six fivefold axes joining centers of opposite 
faces, ten threefold axes joining opposite vertices, and fifteen twofold axes 
joining midpoints of opposite edges. Its symmetry group if thus contains 
sixty rotations. Since it contains plane reflections, if must have one hundred 
twenty members altogether. You can see it's transitive. 

Earher in this section a regular tetrahedron was constructed by selecting 
half the vertices of a cube 'S. From such a tetrahedron you can easily 
reconstruct so every symmetry of the tetrahedron is also a symmetry 
of <S. Since all regular tetrahedra are similar, you can conclude tha t every 
srd group is conjugate to a subgroup of an group. 

Figure 8.4.33 shows both tetrahedra constructed from a cube according 
to the previous paragraph. They interpenetrate; you can dissect their faces 
and edges to form a polyhedron that Kepler called a Stella octangula. I t has 
the same vertex set as the cube. Its symmetry group, called a 2Th group, 
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Figure 8.4.33 
Stella octangula, with 
&h symmetry group 

consists of all symmetries of one of the tetrahedra, plus their compositions 
with the reflection about the center of the cube. 

Euclid constructed a regular dodecahedron & from a cube, so that the 
vertices of the latter are a subset of those of 3>. In (See exercise 8.5.25.) 
Therefore every symmetry of the cube is also a symmetry of the dodeca-
hedron; you can conclude that every ^ group is conjugate to a subgroup 
of an Jh group. 

By appropriately appending Y motifs to all faces of a regular tetrahedron, 
octahedron, or icosahedron 9, you can build a polyhedron with all the 
rotational symmetries of 9, but no others. Its symmetry group is called 
a tetrahedral, octahedral, or icosahedral group, abbreviated 9, Φ, or 
& group. By the previous discussion every tetrahedral group is conjugate 
to a subgroup of an octahedral group, and every octahedral group is conjugate 
to a subgroup of an icosahedral group. 

The previous paragraphs have described nearly all finite groups of three-
dimensional isometries. Table 8.4.2 displays the complete list, in Schonflies' 
notation. A few of its entries represent classes of polyhedra not previously 
discussed. Exercise 8.5.40 requires you to supply example polyhedra for 
them. 

The German and French mineralogists Johann Friedrich Christian Hessel 
and Auguste Bravais proved in 1830 and 1848 that this hst includes all pos-
sible finite groups of three-dimensional isometries. Hessel's work was 
pubhshed obscurely, however, and not noticed until its republication in 1891. 
For complete proofs, consult the books by Martin, Senechal, and Cromwell.49 

Cromwell presents a decision tree for these groups in the same style as those 
in sections 8.2 and 8.3. Bravais' results played the same role in the classifica-
tion of the crystallographic symmetry groups as the far simpler study of finite 
groups of plane isometries—cychc and dihedral groups—plays in the section 
8.3 classification of wallpaper patterns. Bravais' work led directly to the 
monumental crystal study by Schonflies and Fedorov forty years later. 

Martin 1982, section 17.2; Senechal 1990; and Cromwell 1997, chapter 8. 
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Table 8.4.2 The finite three-dimensional isometry groups 

Type Members Example 

#i Just the identity ι 

% ι and a plane reflection 

# i t and a point reflection 

^2 ι and a half turn 

&2V i, Si vertical half turn, and two ver-
tical plane reflections 

^2h i, a vertical half turn, a horizon-
tal plane reflection, and a point 
reflection 

3> 2 ι, a vertical half turn, and two hori-
zontal half turns 

®2„ i, a vertical half turn, reflections 
across perpendicular planes con-
taining its axis, half turns about 
horizontal axes midway between 
them, and ±90° rotary reflections 
with horizontal mirror 

® 2 A i, a vertical and two horizontal half 
turns with perpendicular axes, and 
reflections across the three planes 
they determine 

« ^ 2 n - 2 

4 

Tetrahedron with no equal 
edges 

Right pyramid with isosce-
les nonequilateral triangular 
base 

See exercise 8.5.40. 

Right pyramid with non-
rhombic nonrectangular 
parallelogram base 

Right pyramid with non-
square rectangular base 

See exercise 8.5.40. 

See exercise 8.5.40. 

See exercise 8.5.40. 

Right rectangular prism with 
unequal dimensions 

Discscussed earher 
for η Ϊ 3 
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Karl Georg Christian VON STAUDT was born in Rothenburg ob der Tauber 
in Bavaria in 1798. His parents' families had belonged to the ruling nobility 
of that free city of the Holy Roman Empire for many generations. Rothen-
burg was absorbed into the Electorate of Bavaria in 1802. Von Staudt was 
schooled first at home, then at the Gymnasium in nearby Ansbach. His spent 
his first university years at Gottingen, where he studied with and served as 
assistant to Gauss. Von Staudt was awarded the Ph.D. in astronomy from 
the university at Erlangen in 1822, for work already done under Gauss' 
direction. He worked first in secondary schools in Wurzburg and Nurnberg, 
and achieved some note as a teacher. In 1832 von Staudt married Jeanette 
Drechsler, daughter of a Nurnberger judge. She died in 1848 after bearing 
a son and a daughter. In 1835 von Staudt was appointed Professor of 
Mathematics at Erlangen. He came to a faculty preoccupied with the 
immediately practical aspects of mathematics and science, but he confined 
his research to narrow areas of geometry and number theory. Von Staudt 
became one of the first in Germany to stress the abstract framework of 
geometry in order to achieve deep understanding and results of great 
generality. In particular, he showed how to develop real and complex 
projective geometry from synthetic axioms, independent of other areas of 
geometry. He was able to incorporate this work in his lectures only after 
1842. Von Staudt pubhshed four books on geometry during 1847-1860. 
During that period he also devoted considerable effort to university 
governance and administration. His activity was curtailed during the 1860s 
by asthma. Von Staudt died in 1867 at Erlangen. 

Auguste BRAVAIS was born in 1811 in Annonay, about seventy-five kilo-
meters south of Lyons, the ninth often children of a physician. Although he 
won honors in mathematics in school, he had trouble with university 
entrance examinations, which delayed his matriculation for a year. But in 
1828 he entered l'Ecole Polytechnique in Paris and soon became a top 
student. In 1831, wanting to see the world, he joined the Navy and became 
an officer. During the next few years he studied plant oceanography, and 
with his brother pubhshed research of some note. Auguste earned the Ph.D. 
from the university at Lyons in 1837, for research on surveying and on the 
stability of ships. The next year he joined an expedition to explore northern 
Scandinavia; he soon pubhshed related research work in several areas of 
science. Back in France, he became a mountaineer, ascending peaks in the 
Alps to study minerals. In 1844 Bravais was appointed to teach astronomy 
at Lyons. The next year, he became Professor of Physics at l'Ecole Polytech-
nique. In 1848-1849 he completed a classification of the finite groups of 
motions in three dimensions, as well as a catalog of the types of crystal 
lattices. This work led directly to the complete classification of crystals forty 
years later by Schonflies and Fedorov. Bravais was appointed to l'Acadomie 
des Sciences in 1854. Two years later, ill from overwork, he resigned from 
l'Ecole Polytechnique and the Navy. Bravais died in 1863. His important 
book on crystallography was pubhshed in 1866. 
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8.5 Exercises 

Concepts 
Examples of functional and ornamental symmetry 
Subgroup relationships among symmetry groups 
Interior of a simple closed polygon 
Triangulation 
Convex polygons 
Involutions 
Generating sets of groups 
Generators of translation groups 
Polyhedral models 
Schlegel diagrams 
Inradii and circumradii of regular polyhedra 
Interior of a polyhedron 

This section contains forty-one exercises related to earher parts of the chapter. 
Their chief goal is to introduce the detailed study of examples of the types 
of symmetry considered here. In eleven of these exercises you'll examine 
functional and ornamental designs incorporating polygonal symmetry, 
friezes, wallpaper patterns, and polyhedral symmetry. You'll determine 
their symmetry groups and see how they're related. In five more exercises 
you'll search for further examples of symmetric design. Perhaps you can 
challenge other readers to classify these and find even more interesting ones. 
A few exercises complete some discussions in earlier sections. But there's 
no effort here to introduce new topics. To extend the scope of the inquiries 
in this text, go to the literature. The references in earher sections, particularly 
those in the chapter introduction, should point the way. Bon voyage! 

General exercises 

The first two exercises encourage you to become alert to examples of symmetry 
all around you. When you discover a new example, you should consider 
whether the symmetry is functional or ornamental, and what other types 
of symmetry could have served the design just as well. 

Exercise 1. Figure 8.5.1 shows some household objects. Describe their 
symmetries. Is symmetry necessary for these designs? Could the designers 
have used other symmetry types? 

Exercise 2. Find and describe more examples of household symmetry, 
comparable to those in figure 8.5.1. 
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(a) 

(b) (c) 

(d) (e) 

Figure 8.5.1 Figure 8.5.2 
Household symmetry Five symmetric 

examples5 0 designs8 1 

Exercises on polygons and polygonal symmetry 

In exercises 3 to 5 you'll continue exploring examples of symmetry, finding 
and analyzing functional and ornamental polygonal designs. After that, 
two exercises remind you of the role of matrix algebra in this subject, and 
study the relationships between various polygonal symmetry groups. The 
last two exercises investigate the notion of regular polygon a little more deeply 
than section 8.1, and make the connection between the notion of simple closed 
polygon used here, and that of polygonal region introduced in chapter 3. 

Exercise 3. Identify the symmetry groups of the ornaments in figure 8.5.2, 
from the San Ildefonso, Mimbres, Mescalero Apache, Cochiti, and Pima 
cultures of the southwestern United States. 

8 0 Photograph by the author. 

5 1 From Kate 1997. 
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Exercise 4. Classify uppercase Latin and Greek letters according to their 
symmetry groups. Use the most symmetric typefaces you can find. How 
about letters in other alphabets? 

Exercise 5. Survey functional and ornamental symmetric polygons. Find 
examples of designs or ornaments with or 3>n symmetry groups, for 
7i = 2 , 3 , 4 , . . . . Go up to as large an η as you can. Consider these categories 
or others you might think of: 

( a ) Household objects, as in figure 8.5.1. 
(b ) Coins, medals, medallions. Find famihar examples with seven 

or eleven vertices, 
(c ) Nuts, bolts, and other tools and machinery. What kind of nut 

has five edges? 
(d) Logos, as in figure 8.5.3. 
(e ) Road signs. For example, the Kansas highway sign in figure 8.5.4. 
(f ) Architecture: rooms and buildings. 
(g) Ornament. Analyze the plate by contemporary San Ildefonso artist 

Tse-pe in figure 8.5.5. (It's rich brown, with smooth and rough 
textures and a turquoise pebble.) Which symmetry groups are 

Figure 8.5.3 
Symmetric logos 

Figure 8.5.4 
Kansas highway sign5 

.52 

52 Photograph by the author. 
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Figure 8.5.5 
Plate by Tse-pe1 

,53 

Figure 8.5.6 
Tesuque ja r 8 4 

employed in the two-century-old jar in figure 8.5.6 from nearby 
Tesuque Pueblo? Find other examples from various cultures, 

(h) Flowers, fruits, vegetables. 

Exercise 6. Find the matrices for the elements of a 3>6 group with center 
at the origin. 

Exercise 7, Part 1. For which m and η is a <Sm group a subgroup of a 
\ group? In that case, how many subgroups are isomorphic to it? Are they 
all conjugate? 

Part 2. Same as part 1 for # m and 2>„. 
Part 3. Same as part 1 for ® m and 2>„. 
Part 4. How many subgroups has a 2>6 or 3)13 group? 

Exercise 8. Suppose the η vertices of a simple closed polygon 77 fall in 
order on a circle. 

Part 1. Show that 77 is regular if its edges are all congruent. What if 
the vertices are not in order, or don't fall on a circle? 

Part 2. Show that 77 is regular if its vertex angles are all congruent 
and η is odd. What if η is even? 

Dillingham 1994, 243. 

Frank and Harlow 1974, plate 39. 
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Exercise 9, Part 1. Define the notion interior of a simple closed polygon 
77. Suggestion: This is harder than it seems. First, show how to find some 
point Ε tha t clearly should be called exterior. The interior points X are 
those for which the segment EX crosses Π an odd number of times. Now 
you need to define the word crosses. 

Part 2. Let 77 be the union of a simple closed polygon Π and its interior. 
Devise instructions—a triangulation algorithm—for dividing Π into 
triangular regions that intersect only along edges. This will show tha t Π 
is a polygonal region as defined in section 3.8. Suggestion: This, too, is harder 
than it seems, and you probably won't find a completely rehable algorithm. 
But you'll learn by proposing one and defending it against or accepting others' 
objections. If 77 is convex—that is, two vertices never he on different sides 
of any edge line—the problem is simpler. You'll find it discussed in books 
on computational geometry; for example, see Preparata and Shamos 1985. 

Exercises on frieze groups 

Exercises 10 to 12 continue your exploration of functional and ornamental 
symmetry examples. After those, two exercises clarify the relationship 
between conjugacy and isomorphy of frieze groups, and introduce the use 
of generators for describing isometry groups. Exercise 15 asks you to devise 
a frieze classification tree more compact than the one in section 8.2. 

Exercise 10. Identify the symmetry groups of the friezes in figure 8.5.7 
from various cultures of the southern and southwestern United States. 

Exercise 11. Classify friezes constructed from repeated letters of the upper 
case Latin and Greek alphabets, using the typefaces you chose in exercise 
4. Which friezes are classified the same, even though the letters are classified 
differently? Which frieze groups fail to occur? Can you construct examples 
of those using repeated pairs of letters? Which pairs? 

Exercise 12. Survey functional and ornamental friezes. Consider these 
categories and others you may think of: 

(a) border ornaments on clothing and flat ar t works; 
(b) pottery decoration; 
(c ) architectural ornaments, fences, balusters, and gratings ; 
(d) tools. 

Find friezes representing all seven classes. 
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Figure 8.5.7 
Five American friezes' 

Exercise 13. In section 8.2, frieze groups are partitioned into conjugacy 
classes. But frieze groups may be isomorphic without being conjugate. Divide 
them into isomorphism classes. Suggestion: To prove that two of these groups 
are nonisomorphic, concentrate on their involutions—self-inverse elements 
different from the identity. 

Exercise 14. A subset £f of a group <S generates it if no proper subgroup 
of 'β contains £f. For example, a finite cychc isometry group is generated 
by a set consisting of a single rotation; the corresponding dihedral group 
is generated by a set consisting of that rotation and a single reflection. Find 
generating sets as small as possible for each of the conjugacy classes of frieze 
groups. Which have two-element generating sets? Which have generating 
sets consisting solely of involutions? 

Exercise 15. Since there are seven conjugacy classes of friezes and 7 < 
2 3 , it must be possible to classify a frieze with at most three successive 
questions. Design a tree with that property; try to keep the questions as 
simple as possible.5 6 

From Kate 1997. Figure 8.5.7(e) has been altered slightly to enhance its symmetry. 

Designing efficient decision trees is a challenge. For example, the key to central Californian 
marine shelled gastropods in Light et al. 1961, 243-259, organizes about ninety species. 
Unlike the frieze tree, that one doesn't ask the same question of each branch at each level, 
so it can be more efficient. But its depth is twelve, considerably greater than the 
theoretically optimal 7 = riog290"|. You may have to ask as many as twelve questions to 

(continued...) 
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Exercises on wallpaper groups 

These five exercises on wallpaper groups continue the emphasis of the previous 
exercises. You'll survey and analyze more examples of symmetry and clarify 
the use of generators for describing these groups. Exercise 20 investigates 
the subgroup relationships between wallpaper groups. I t shows why you 
can't use this concept to describe why one wallpaper pat tern might seem 
more symmetric than another, and may give you an idea why it's sometimes 
so hard to classify wallpaper pat terns. 

Exercise 16. Identify the symmetry groups of the ten wallpaper pat terns 
in figure 8.5.8. 

Exercise 17. Construct examples of all classes of wallpaper patterns from 
repeated letters of the upper- or lowercase Latin, Greek, or Cyrillic alphabets. 
Use the typefaces you chose in exercise 4. When possible, use single-letter 
motifs. You may vary their spacing to produce different symmetries. Use 
motifs based on two or more letters if required. But use letter 0 only as 
absolutely necessary. (You should have to resort to that in only three cases.) 

Exercise 18. Use this book's references, your library, museums, and 
commercial shops to find more examples of wallpaper patterns. In particular, 
find examples of the classes not represented in exercise 16. Challenge other 
readers to classify them. 

Exercise 19. Suppose φ and χ are the fundamental translations of a 
wallpaper group 4¥; and consider any integers m,, m2, nlt and n2. Show 
that φη"χηη and φη'χη' generate the group of all translations in 4V" if 
and only if 

[m2 n2\ 

Exercise 20. Consider p3ml and plm3 groups <S and Show that 
each is isomorphic to a subgroup of the other. Find another pair of wallpaper 
group classes with this property. Suggestion: Find a p3ml pattern inside 
a plm3 pattern, and vice versa. 

At first thought, it seems reasonable to call a figure G "at most as 
symmetric as" a figure Η if the symmetry group 'β of G is isomorphic 
to a subgroup of the symmetry group Λ? of H. But exercise 8.5.20 belies 

(...continued) 
a particular specimen—for example, Acmaea limatula. 
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(a) (b) 

(c) (d) 

Figure 8.5.8 (part 1 of 3) 
Example wallpaper patterns ,57 

(a) is an Iranian design from Wade 1982. (b) and (c) are Arab ornaments and (d) to 
(j), Japanese kimono and obi designs, from Audsley and Audsley [ 1882] 1968. The latter 
authors and their contemporaries termed these diaper ornaments, not because of their 
functionality, but because diaper stems from Greek words meaning all white. These 
patterns are designed to be printed on plain white cloth! 
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(e) (f) 

(g) (h) 

Figure 8.5.8 (part 2 of 3) 
Example wallpaper pat terns 

that; it's possible that each group is isomorphic to a subgroup of the other, 
yet the two figures have different symmetry properties. You can show that 
this can't happen for cyclic and dihedral groups, or for the frieze groups. 
Perhaps this phenomenon accounts for the difficulty we sometimes have 
in distinguishing the symmetry properties of wallpaper pat terns. 
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(i) (j) 

Figure 8.5.8 (part 3 of 3) 
Example wallpaper patterns 

Exercises on polyhedra 

Models are the best tools for studying polyhedra. Beautiful, expensive 
commercial products are available.5 8 Since they're either ready-made or 
require assembly and fastening with glue, they don't offer much experience 
in construction. You don't get the insight that results from trying several 
times to fit the faces together. However, there's a simple way to construct 
models with inexpensive materials. 

To make a regular tetrahedron, for example, first decide on the edge length. 
3 inches works well.5 9 You need a piece of stiff cardboard—railroad board 
is best—large enough that you can cut from it five equilateral triangles with 
edges somewhat longer than 3 inches. Cut out one equilateral triangle Τ 
as in figure 8.5.9 to use as a template. Use right triangle trigonometry to 
compute the Τ edge length 3 + V2 / 3 « 3.87 inches, and to locate points 
A, B, and C near the vertices lA inch from the edges. Puncture Τ a t 

See Symmetries [no date], Cuisenaire Dale Seymour Publications 1998, and Key Curricu-
lum Press 1997-1998, or more recent editions of these catalogs. 

Stewart (1980) recommended these specifications. The edge length, tab width, hole 
diameter, rubber-band dimension, and rigidity of the railroad board must be compatible. 
Different specifications could produce a model that sags or buckles. 
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Figure 8.5.9 Equilateral 
tr iangular face template 

Figure 8.5.10 Equilateral 
tr iangular face for models 

those spots with holes just large enough to accommodate a pencil point. 
Use the punctured Τ' as a template to make four copies T" with pencil 
marks at Λ, B, and C. With straightedge and stylus score the edges of 
AABC. With pencil mark the segments S from those points perpendicular 
to the nearest edges. Use a hand punch to make circular holes with diameter 
lA inch centered at A, B, and C. Make scissor cuts along the remaining 
portions of segments S, removing the corners from triangles Τ'. The 
resulting face components resemble figure 8.5.10. Bend the rectangular 
flaps away from you along the scores. Use them as exterior tabs with 
llA -inch rubber bands to attach faces to each other. You've now assembled 
a regular tetrahedron with exterior tabs. The tabs make the model less than 
ideal in appearance, but that's an acceptable trade-off for ease of manufacture, 
disassembly, and reuse. 

You should make a stock of triangular, square, pentagonal, hexagonal, 
..., tabbed faces, with the same edge length, and acquire a supply of rubber 
bands of the appropriate type. When you're finished with a particular model, 
you can disassemble it for easy storage, or for reuse of its components. 6 0 

Exercise 21. Make and thoroughly inspect models of the polyhedra considered 
in section 8.4. 

Exercise 22. Describe the following intersections, including all possible 

(a) of a regular tetrahedron with a plane parallel to two opposite edges, 
(b) of a cube with a plane perpendicular to the line joining two opposite 

(c) of a regular octahedron with a plane parallel to two opposite faces, 

cases: 

vertices, 

Stretched rubber bands may deteriorate if the model is stored assembled. 
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(d) of a regular dodecahedron with a plane parallel to two opposite 

(e) of a regular icosahedron with a plane perpendicular to the line 
joining two opposite vertices. 

A Schlegel diagram for a convex polyhedron is a perspective image of its 
edges on the plane of one face F, with exterior focal point so close to F 
that the images of all the other edges fall within F. For example, figure 
8.5.11 is a Schlegel diagram of a cube, with focus near the center of a face 
F. The outside square is the image of F; the inside one, that of the opposite 
face. Evidently, a Schlegel diagram for a polyhedron with η faces divides 
the plane into η - 1 polygonal regions and a surrounding unbounded region 
representing the face nearest the focus. 

Exercise 23 Why is the use of Schlegel diagrams restricted to convex 
polyhedra? Make Schlegel diagrams for the regular polyhedra, cuboctahedron, 
rhombic dodecahedron, equilateral triangular and pentagonal prisms and 
dipyramids, square antiprism, and the deltahedrally stellated triangular 
prism. 

Exercise 24. Consider a regular polygon Ρ with η edges. Describe the 
duals of the right prism with base Ρ and the corresponding equilateral 
pyramid, dipyramid, and antiprism. 

Exercise 25, Part 1. Following the discussion under the section 8.4 heading 
Regular polyhedra, consider a regular octahedron ff whose vertices are 
the points with coordinates ±1 on the axes of a Cartesian coordinate system. 
Locate points on the edges of ΰ that form the vertices of a regular icosahedron 

Find the coordinates of the centroids of the faces of and show that 
they form the vertices of a regular dodecahedron. Suggestion: You'll need 
the exact formula for the cosine of an interior angle of a regular pentagon 
—see exercise 4.9.1 and section 5.5. 

faces, 

71 

Figure 8.5.11 Schlegel 
diagram of a cube 

^1 
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Part 2. Compare this proof tha t a regular dodecahedron exists with 
Euclid's. 6 1 

Exercise 26. Define the notions inradius r and circumradius R of a regular 
polyhedron 9>. The closer R/r is to 1, the closer 9> is to spherical. For 
each regular polyhedron derive a formula for this ratio. Do your results 
justify Plato's claim tha t the regular dodecahedron is most like a perfect 
sphere? 

Exercise 27. For each regular polyhedron, compute the dihedral angle 
between adjacent faces. (You'll need this information for beveling should 
you plan to build finely joined models.) 

Exercise 28. The paragraph in section 8.4 that enumerates the symmetry 
group &d of the regular tetrahedron only mentions eighteen isometries. 
What are the other six? 

Exercise 29, Part 1. Each symmetry of a cube permutes the four lines 
through opposite vertices. The twenty-four rotational symmetries correspond 
bijectively with those permutations. Label the axes and choose angle 
parameters for the rotations conveniently, then describe such a bijection 
exphcitly. 

Part 2. Describe in detail the odd symmetries of a cube. 

Exercise 30. Define the notion interior of a convex polyhedron. Show that 
the interior is a convex point set. Can you extend this notion to apply to 
any polyhedron? 

Stanislaus Ferdinand Victor SCHLEGEL was born in 1843 in Frankfurt am 
Main. He studied in Berlin during 1860-1863, and became a secondary-
school teacher, serving from 1866 on in Breslau, Stettin, Mecklenburg, and 
Hagen. He earned the Ph.D. from the University at Leipzig in 1881, did some 
research on Grassmann's Ausdehnungslehre (a precursor of vector analy-
sis) and other geometrical topics, and wrote many expository books and 
papers on mathematics for teachers and engineers. Schlegel turned to school 
administration in Hagen in 1893 and died there in 1905. 

Euclid [1908] 1956, book XIII, proposition 17. 
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Exercise 31. Prove that for any face-connected simply connected polyhedron 
with υ vertices, e edges, and / faces, 

(a) 2 e * 3 u (b) 2e 2 3 / 
(c) 3 / i 6 + e (d) 3 u ^ 6 + e 
(e) 6vz 12 +2e* 12 + 3u (f ) 2u2>4 + / . 

Exercise 32. Show that a face-connected simply connected polyhedron must 
have at least one face with fewer than six edges. 

Exercise 33, Part 1. Show that no face-connected simply connected 
polyhedron has exactly seven edges. 

Part 2. For what η is there such a polyhedron with exactly η edges? 

Exercise 34. A European football is made of leather pieces in the shapes 
of regular pentagons and hexagons. They're sewn together so that each 
pentagon is surrounded by hexagons and each hexagon is surrounded 
alternately by pentagons and hexagons. From Euler's theorem, deduce how 
many pentagons and hexagons must be used. How many vertices and edges 
are there? How is the ball related to the regular polyhedra? What's the 
symmetry group of the ball? Draw its Schlegel diagram. 

Exercise 35. Find and describe in detail all deltahedra with eight faces 
that aren't regular octahedra. 

A polyhedral vertex incident with exactly η edges is called n-valent. 

Exercise 36. Show that there's no convex deltahedron with one 4-valent 
and ten 3-valent vertices. 

Exercise 37. Show that a convex deltahedron ® with eight vertices, half 
4-valent and half 5-valent, must be connected like the Siamese dodecahedron 
in figure 8.5.12. Show that there actually is a deltahedron with this 
structure. 6 2 

Exercise 38. Identify the symmetry groups of the cuboctahedron, rhombic 
dodecahedron, the deltahedra in figures 8.4.25 and 8.4.26, and the Siamese 
dodecahedron. 

This de l t ahedron w a s s tud ied f i rs t—at l eas t in p r i n t—by Rausenbe rge r (1915) , t h e n a g a i n 
by F r e u d e n t h a l a n d v a n de r W a e r d e n (1947) . T h e i r pub l i ca t i ons a d d r e s s e d a u d i e n c e s of 
G e r m a n a n d D u t c h seconda ry school t e a c h e r s . T h e l a t t e r a u t h o r s n a m e d t h e po lyhed ron 
to sugges t a r e s e m b l a n c e to S i a m e s e t w i n s . 
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Figure 8.5.12 
Siamese dodecahedron 

PLATO was born about 427 B.C. in Athens, the son of noble, aristocratic 
parents. Through family connections he knew the philosopher Socrates, who 
was certainly the greatest influence on his development. The mathematician 
Theodorus of Cyrene was also in Athens during Plato's youth, and is reported 
to have been his teacher. After Socrates' execution in 399 B.C., Plato traveled 
for several years, then returned to Athens and founded there a school, the 
Academy, which he headed until his death about 347 B.C. 

Under Plato's direction, the Academy became the center of studies in 
science, philosophy, and law; it was perhaps the first university. Its mem-
bers included Theaetetus and Eudoxus, who made major discoveries in 
geometry essential to Euclid's later codification of that subject. A correspon-
dent was the Pythagorean scientist and statesman Archytas of Tarentum, 
who was a major influence on Plato's own ideas. 

Plato's writings, most in the form of dialogues, all survive, and have 
maintained a major influence on western philosophy ever since. They include 
inquiries into virtually all areas of the philosophy of his time. Plato was not 
himself a mathematician, so mathematics appears only occasionally in his 
works. The main example is in the dialogue Timaeus, in which Plato, 
through the words of the probably fictitious, vaguely Pythagorean title 
character, expounds his theory of the structure of matter based on properties 
of the regular polyhedra. 

Timaeus was written during 368-348 B.C. (though its setting is some fifty 
years earher). In 368 and 361 B.C., Plato visited cities in Sicily and in south-
ern Italy, where Pythagoreans were influential, hoping to put into practice 
there his theory of the ideal political state. After meddling into local affairs, 
he was imprisoned, and apparently was extricated only through the efforts 
of his friend Archytas. Plato's political aspirations were never realized, but 
these escapades perhaps enhanced the Pythagorean influence on his late 
writings and on the mathematical work among the scholars at the Academy. 

Plato's greatest student was Aristotle, who left the Academy to found his 
own school, the Lyceum. The Academy, however, continued in existence until 
A.D. 529. 
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Exercise 39. Construct a polyhedron with an S?2n symmetry group, in the 
style of figure 8.4.30. Show how to construct convex polyhedra with <&n, 
2>„, 9>2n, W^, and &h symmetry groups. 

Exercise 40. Construct polyhedra with symmetry groups <Sit

 <&2h, 2>2, 
and 2>2„, as described in table 8.4.2. 

Exercise 41. Use this book's references, your library, museums, commercial 
shops, and buildings in your neighborhood to find functional and ornamental 
examples of polyhedra with as many different symmetry groups as possible. 
Expand the selection in exercises 1 and 2. 
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Concepts 
Binary relation 
Reflexivity, symmetry, and transitivity 
Equivalence relation 
Equivalence class 

A binary relation on a set S is a set R of ordered pairs <x,y> of elements 
x,yeS. If <x,y>eR, then χ and y are said to stand in the relation 
R; this is written xRy. Certain binary relations are mathematical versions 
of the idea of "likeness." Precisely, R is an equivalence relation on S if 
it satisfies three conditions: 

xRx for each xe S Reflexivity 
xRy =*• y Rχ for any x,y e S Symmetry 
xRy & y Rz =*· xRz for any x,y, ze S Transitivity 

Many equivalence relations appear unannounced in this book: for example, 
the congruence relations on the sets of all segments, of all angles, and of 
all triangles, and the similarity relation on the set of all triangles. 

An equivalence relation always effects a classification of the elements 
of S into sets of like elements. The equivalence class of an element xe S 
is the set 

x/R = {se S-.xRs). 

423 

A 
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relations 
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Reflexivity implies xex/R, so each xe S belongs to at least one equivalence 
class. By transitivity, and by symmetry and transitivity, 

χ ε ylR & sexIR =>• yRx & xRs =*• yRs sey/R 

xe ylR & sey/R =» yRx & yRs =» xRy & yRs 
=*· xR s s e x/i?. 

You can restate these two arguments: 

xe ylR => xIRzylR 
xe ylR => ylRzxIR; 

that is, 

x e ylR => xlR = ylR. 

It follows that 

xe (ylR)o(zlR) =* xey/R & xez/R =*· x/R = y/R = z/R, 

hence each x e S belongs to exactly one equivalence class. 
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Concepts 
Upper bounds and least upper bounds 
Lower bounds and greatest lower bounds 
Least upper and greatest lower bound principles 
Theoretical computation of the digits of the least upper bound 

When parts of calculus are developed rigorously, based on fundamental proper-
ties of the real number system, the least upper bound principle is often used 
to justify propositions about limits of various kinds. This appendix derives 
it from detailed considerations of decimal expansions. 1 The principle is easy 
to state. An upper bound of a set S of real numbers is a number b ζ each 
member of S. For example, 2 is an upper bound for the set S of values 
f(x) = x2/(l + x2), indicated by the dotted hne in figure B.l . The least 
upper bound principle says that if a nonempty set S of real numbers has 
any upper bound, then it has a least upper bound. 

A companion principle involves lower bounds: If a nonempty set S of 
real numbers has any lower bound, then it has a greatest lower bound. You 
can test your understanding of this discussion by creating an analogous one 
for the greatest lower bound principle. 

For further information, consult Mostow, Sampson, and Meyer 1963, chapter 4. 
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If a set S has a maximum element χ —that is, x e S and χ ^ each 
member of S —then χ must be the least upper bound. However, many 
bounded sets have no maximum elements—for example, the set S in figure 
B.l. As you can see, any number 2: 1 is an upper bound for S, and 1 is 
the least upper bound, but 1 f S. 

To prove the least upper bound principle, consider a nonempty set S 
with upper bound 6. You'll see how to construct the decimal expansion 

k-y ^3 
k0.klk2k3--- = k0 + — + — + — + ••· 

of the least upper bound if of S. Here, k0 is an integer and 
kltk2,k3,... are selected from the digits 0 to 9. (If k0 ζ 0, the expan-
sion is usually written fe0.feife2/V" ! but if k0<0, you need a subtrac-
tion to obtain the usual expansion.) 

StepO: Determine k0. S has an integer upper bound: the first integer 
2t b. Not every integer is an upper bound, however—select any χ e S and 
consider the first integer s x. Therefore, you can find an integer kQ such 
that 

k0 is not an upper bound for S, 

kQ + 1 is an upper bound for S. 

Step 1: Determine kx. Consider the eleven numbers 

k0,k0 + V\o, ...,k0 + 9 / i o ,k 0 + 1. 
The first is not an upper bound for S, but the last is. Therefore, you can 
find &i among 0 to 9 such that 

k0 + O./Zj is not an upper bound for S, 
kB + 0. kx + Vio is an upper bound for S. 

Step n + l: Determine kn+l, assuming you've already found k0,...,kn 

such that 
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ϋζ, = k0 + O.&f · -kn is not an upper bound for S, 

Kn + '/ιο" is an upper bound for S. 

Consider the eleven numbers 

Kn,Kn+ lAon+1 Kn + 9 / i o n + \ Kn + Vro*. 

The first is not an upper bound for S, but the last is. Therefore, you can 
find kn+1 among 0 to 9 such that 

^ζι+ι = k0

 + 0-&i' 'K+i is n o t a n upper bound for S, 
Kn+l + Vion+l is an upper bound for S. 

Continue this process indefinitely, obtaining k2,k3,k4,. 
such tha t for each η > 0, 

in succesion, 

Kn = k0 + Q.k1---kn is not an upper bound for S, 
Kn + Vio" is an upper bound for S . 

The real number Κ = k0 + O.k^ks - constructed by step is (0) , (1), 
(2) , . . . is an upper bound for S. To see this, suppose, on the contrary, that 
K<xeS. Then x-K>0. Find a positive integer η such tha t Vio" < 
χ - Κ. Then Kn + Vio" ζ Κ + Vio" < χ, contradicting the result jus t estab-
lished that Kn + Vion is an upper bound for S. 

Moreover, no number L < Κ can be an upper bound for S. To see that, 
find a positive integer η such tha t Vio" <K - L. Then 

L<K- Vio" =[k0 + 0.kxk2-• -knkn+1-•] - '/ιο" 

k n+1 

Λ+1 10' 

vn+2 
n+2 

- V n 

MO 

sKn+[ 9Aon+1 + 9 / . o n + 2 + • · · ] - Vwn 

<.Kn+ Vio" -Vion=Kn. 

If L were an upper bound, this inequality would contradict the result 
established earlier tha t Kn is not an upper bound for S. 

You've seen that Κ is an upper bound for S, but no number < Κ is. 
Therefore, Κ is the least upper bound of S, as claimed. 
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Appendix 

Concepts 
Scalars 
Vectors, rows and columns, matrices 
Adding and subtracting vectors and matrices 
Multiplying them by scalars 
Products of vectors and matrices, scalar and dot products 
Systems of hnear equations, linear substitution 
Transposition 
Unit vectors and identity matrices 
Gauss and Gauss-Jordan ehmination 
Invertible and singular matrices, inverses 
Determinants 

This appendix summarizes the elementary linear algebra used in this book. 
Much of it is simple vector and matrix algebra that you can learn from the 
summary itself, particularly if you devise and work through enough two-
and three-dimensional examples as you read it. Some of the techniques 
summarized here require you to solve systems of linear equations by methods 
covered in school mathematics and commonly subsumed under the title Gauss 
elimination. There are no examples here to lead you through a full review 
of elimination, so if you need that, you should consult a standard hnear alge-
bra text. 1 Almost all the hnear algebra used in the book is two- or three-

For example, Larson and Edwards 1991, chapter 1. 
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dimensional, so there's little need for the full multidimensional apparatus, 
particularly for determinants. However, many simple techniques, even in 
three dimensions, are best explained by the general theory summarized here. 

In the context of vector and matrix algebra, numbers are often called 
scalars. For the material in this appendix, the scalars could be any complex 
numbers, or you could restrict them to real numbers. Applications in this 
book only need real scalars. 

Vectors 

An n-tuple (pair, triple, quadruple,.. .) of scalars can be written as a hori-
zontal row or vertical column. A column is called a vector. In this book, a 
vector is denoted by an uppercase letter; in this appendix it's in the range 
Ο to Z. Its entries are identified by the corresponding lowercase letter, 
with subscripts. The row with the same entries is indicated by a superscript 
t. For example, consider 

X = Xl = [*!,...,*„]. 

You can also use a superscript t to convert a row back to the corresponding 
column, so that Xtl = X for any vector X. Occasionally it's useful to con-
sider a scalar as a column or row with a single entry. 

In analytic geometry it's convenient to use columns of coordinates for 
points. Coefficients of linear equations are usually arranged in rows. For 
points, that convention tends to waste page space. This book uses the com-
pact notation <xx, x2, x3> to stand for the column [xx, x2, x3]'. 

You can add two vectors with the same number of entries: 

xi+yi 
X+ Y = 

. V 

+ 

7«. xn+yn. 

Vectors satisfy commutative and associative laws for addition: 

X+Y=Y + X X+(Y+Z) = (X+Y) + Z. 

Therefore, as in scalar algebra, you can rearrange repeated sums at will 
and omit many parentheses. 

The zero vector and the negative of a vector are defined by the equations 

0 = 
0 •* , - * i 

-x= - = 
0 
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Clearly, 

-0 = 0 
-(-X) = X 

x+o=x 
X+(-X) = 0. 

You can regard vector subtraction as composition of negation and addition. 
For example, X - Y = X + (-Y), and you can rewrite the last equation 
displayed above as X - X = O. You should state and verify appropriate 
manipulation rules. 

You can multiply a vector by a scalar: 

"*1 x1s 

Xs = s = 
xns 

This product is also written sX.2 You should verify these manipulation 
rules: 

XI = X X0 = O 
X(-l) = -X Ot=0 

(Xr)s = X(fs) 

X(r + s) = Xr + Xs 
(X + Y)s = Xs+Ys. 

X(-s) = -(Xs) = (-X)s 

(associative law) 

(distributive laws) 

Similarly, you can add and subtract rows X' and Y' with the same num-
ber of entries, and define the zero row and the negative of a row. The product 
of a scalar and a row is 

sX' = s [*! xn]= [sx1 sxn]. 

These rules are useful: 

Χ'±Υ' = (Χ±Υ)' -(Χ') = (-Χ)1 s(x') = (sxy. 

Finally, you can multiply a row by a vector with the same number of entries 
to get their scalar product: 

XtY=[xl,...,xn) 
yi 

A notational variant used in analytic geometry is the dot product: Χ· Y = 
X1 Y. (Don't omit the dot. Vector entries are often point coordinates, and 

2 Xs is more closely compatible with matrix multiplication notation, discussed later. Each 
form has advantages, so this book uses both. 
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the juxtaposition Χ Y usually signifies the distance between X and Y.) 
With a little algebra you can verify the following manipulation rules: 

O'X=0 = X'O (sX')Y=s(X'Y)=X'(Ys) 
X'Y=Y'X (-X')Y= -(X'Y) = X'(-Y) 

(X' + Y')Z = X'Z + Y'Z (distributive laws) 
X'(Y+Z)=X'Y + X'Z. 

Matrices 

An m x n matrix is a rectangular array of mn scalars in m rows and η 
columns. In this book, a matrix is denoted by an uppercase letter; in this 
appendix it's in the range A to O. Its entries are identified by the correspond-
ing lowercase letter, with double subscripts: 

A = 
"11 a In 

a„ 
\- m rows. 

I 
η columns 

A is called square when m = n. The ati with i=j are called diagonal 
entries, m x l and 1 x η matrices are columns and rows with m and η 
entries, and l x l matrices are handled like scalars. 

You can add or subtract m x η matrices by adding or subtracting cor-
responding entries, just as you add or subtract columns and rows. A matrix 
whose entries are all zeros is called a zero matrix, and denoted by O. You 
can also define the negative of a matrix, and the product sA of a scalar 
s and a matrix A. Manipulation rules analogous to those mentioned earlier 
for vectors and rows hold for matrices as well; check them yourself. 

You can multiply an mxn matrix A by a vector X with η entries; 
their product AX is the vector with m entries, the products of the rows 
of A by X: 

AX = 

a n • In α,,χ, Η 1-α, χ 
11 1 1η η 

aml • • <3„„ mn α , χ, + — + α χ 
ml 1 mn η 

You can verify the following manipulation rules: 

OX=0 = AO (sA)X=(AX)s = A(Xs) 
(-A)X= -(AX)=A(-X) 
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(A + B)X = AX+BX 
A(X+ Y)=AX + AY. 

(distributive laws) 

The definition of the product of a matrix by a column was motivated by 
the notation for a system of m hnear equations in η unknowns xx to 
xn; you can write AX = R as an abbreviation for the system 

° 1 1 * 1 + - + alnXn = r l 

Similarly, you can multiply a row X1 with m entries by an m x n matrix 
A; their product X'A is the row with η entries, the products of X' by 
the columns of A: 

X'A = [Xl xm] 
a π a in 

a ml 

= [*ι°„ + · · · + xmaml χ1α1η+·- + xmama]. 

Similar manipulation rules hold. Further, you can check the associative law 

X'(AY) = (X'A)Y. 

You can multiply an Ixm matrix A by an m x n matrix B. Their product 
AB is an /x η matrix that you can describe two ways. Its columns are the 
products of A by the columns of B, and its rows are the products of the 
rows of A by B: 

AB = 
'11 *lm 

*lm 

'11 

' m l 

'In 

anbn+- + almbml 

anbn+- + almbml 

a n b l n + - + aimbn 

a l l b l n + " + a l m b n 

The i,kth. entry of A S is thus α ί 1 6 1 Α + ··· +aimbmk. You can check these 
manipulation rules: 

AO=0=OB (sA)B = s(AB) =A(sB) 
(-A)C= -(AC) = A(-C) 

(A + B)C =AC + BC 
A(C + D) = AC + AD. 

(distributive laws) 



434 APPENDIX C 

The definition of the product of two matrices was motivated by the formulas 
for hnear substitution; from 

y\ = b \ l X \
 + - + KXn 

ym = b m l X l + - + bmnXn 

\ z i = a n y i + - + a i m y m 

zt = anyx + - + almym 

you can derive 

' 2 1 = ( 0 l l ^ 1

+ ' + a l m b m l ) ^ l + " + ( a l l f a l n

 + -" + a i m b m n ) 3 C

n 

zt = (anbn + - + abnbmi)xl + -+(anbla + - + almbm)xu . 

That is, from Ζ = AY and Y=BX you can derive Z=(AB)X. In short, 
A(BX) = (AB)X. From this rule, you can deduce the general associa-
tive law: 

A(BC) = (AB)C. 

Proof: jth column of A(BC) = A( j t h column of BC) 
= A ( B ( ; t h column of C)) 
= (AB)O 'th column of C) 
= ;'th column of (AB)C. • 

The commutative law AB = BA doesn't generally hold. For example, 

0 0 0 0 0 0 0 0 0 0 0 0 

0 1 1 0 1 0 1 0 0 1 0 0 

This example also shows that the product of nonzero matrices can be O. 
Every m x n matrix A has a transpose A', the n*m matrix whose 

j,ith entry is the i , ; t h entry of A: 

A' = 
" 1 1 

"ml 

'In " 1 1 

"In 

"ml 

The following manipulation rules hold: 

A " = A 0 ' = 0 
(Α + Β)' = Α' + Β' (sA)' = s(A'). 

The transpose of a vector is a row, and vice-versa, so this notation is consistent 
with the earlier use of the superscript t. If A is an It-m matrix and Β 
is an m x η matrix, then 

(ΑΒ)' = ΒΆ'. 
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Proof: j . i t h entry of (AB)1 = i, j t h entry of AB 
= ( i th row of A) ( j t h column of B) 
= ( j t h column of B ) ' ( i t h row of A) ' 
= ( j t h row of B)(ith column of A) 
= j . i t h entry of BW. • 

Consider vectors with η entries. Those of the j t h unit vector U' are 
all 0 except the j t h , which is 1. For any row X1 with η entries, 
X'U' is the j t h entry of X'. For any m~xn matrix A, AUj is the j t h 
column of A. For example, 

U1 X'U1 = [x1,...,xn] = *1 

an « 1 2 · 
1 

AUl = ° 2 1 A 2 2 ' • a2n 0 
= 

a2l 

am2 • • a 
mn 

0 . °ml . 

The τιχη matrix I whose j t h column is the j t h unit vector is called 
an identity matrix. Its only nonzero entries are the diagonal entries 1 . 
Clearly, V — I. For any mxn matrix A, AI = A. Proof: 

j t h column of A / = A ( j t h column of J ) 
- AUJ = j t h column of A. • 

In particular, for any row X1 with η entries, Χ'Ι = X'. 
Similarly, you may consider rows with m entries. The unit rows 

( [ / ' ) ' are the rows of the m x m identity matrix J. You can verify that for 
any column X with m entries, (U')'X is the i th entry of X. For any 
m~x-n matrix Α, (ΙΙ')Ά is the i th row of A. This yields 7A = A for any 
m x η matrix A. In particular, IX = X for any column X of length m. 

Gauss elimination 

The most common algorithm for solving a hnear system AX - R is called 
Gauss elimination. Its basic strategy is to replace the original system step 
by step with equivalent simpler ones until you can analyze the resulting 
system easily. Two systems are called equivalent if they have the same sets 
of solution vectors X. You need only two types of operations to produce the 
simpler systems: 

I. interchange two equations, 
II. subtract from one equation a scalar multiple of a different equation. 
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Obviously, type (I) operations don't change the set of solution vectors; they 
produce equivalent systems. If you perform a type (II) operation, subtracting 
s times the i th equation from the jth, then any solution of the original 
system clearly satisfies the modified one. On the other hand, you can recon-
struct the original from the modified system by subtracting (-s) times its 
i th row from its ./'th, so any solution of the modified system satisfies the 
original—the systems are equivalent. 

The simpler systems ultimately produced by Gauss elimination have 
matrices A of special forms. A linear system and its matrix A are called 
upper triangular if a y = 0 whenever i >j, and diagonal if a i ; = 0 when-
ever i/j-

The first steps of Gauss elimination, called its downward pass, are type 
(I) and (II) operations that convert the original mx/ι system 

' Ο , , Ϊ , + Ο , Λ +- + α1αχΛ = M 

a2lxx + a22x2 +-+a2nxn = r2 

0 m l * l + 0 m 2 * 2 + - + a m A = rm 

into an equivalent upper triangular system: 

anxl + a12x2+- + almxm +·· + alnXn 
— 

a22x2+- + a2mxm +·· + a2nXn — r2 if m s. η 

am„xm + •• 
mm m 

+ amnXn = 

allXl ~*~al2X2 *** = rx 
a22X2 · + σ 2 Λ 

= 
r2 

°ηηΧη = rn if m > η 
0 = 

rn*l 

0 = rm 

, or 

The algorithm considers in turn the diagonal coefficients an to a m . l m . , , 
called pivots. If a pivot is zero, search downward for a nonzero coef-
ficient; if you find one, interchange rows—a type (I) operation—to make 
it the new pivot. If not, then proceed to the next equation. Use a nonzero 
pivot akk with type (II) operations to eliminate the xh terms from all 
equations after the fcth. This process clearly produces an equivalent upper 
triangular system. 

You can apply the downward pass to any hnear system. In this book, 
it's used mostly with square systems, where m = n. Until the last heading 
of this appendix—Gauss-Jordan elimination—assume that 's the case. 
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If the downward pass yields a square upper tr iangular matrix with no 
zero pivot, the original system and its matrix are called nonsingular. This 
property is independent of the right-hand sides of the equations; it depends 
only on the original matrix A. In the nonsingular case, you can perform 
more type (II) operations—constituting the upward pass—to convert any 
system AX = R to an equivalent diagonal system: 

= Γ2 

annXn = rn · 

This system clearly has the unique solution 

X= <rl/an, r2/a22 rjam>. 

Given any nxp matrix C, you can repeat the process ρ times to solve 
equation AB = C for the unknown n x p matrix B. If you solve the hnear 
systems AX=jth column of C for j = 1 to ρ and assemble the solutions 
X as the corresponding columns of B, then AB = C. Proof: 

jth column of Α Β = A( jth column of B) 
= A(solution X of AX= jth column of C) 
= jth column of C. • 

On the other hand, if A is singular—the downward pass yields an upper 
triangular matrix with a zero pivot—then you can construct a nonzero solu-
tion of the homogeneous system AX=0. For example, the system 

2 * t + 3 * 2 + 4x3 = 0 
0*2 + 5*3 = u 

6*3 = 0 

has solution X= <-1.5s, s, 0> for any values of s. In general, proceed back 
up the diagonal, solving the system as though you were performing the upward 
pass. When you encounter a zero pivot, give the corresponding X entry 
an arbitrary value—the parameter s in this example. Use a distinct param-
eter for each zero pivot. 

The previous two paragraphs are crucial for the theory of matrix inverses, 
hence they're worth recapitulation. If an matrix A is nonsingular—the 
downward pass yields an upper triangular matrix with no zero pivot—then 
for every nxp matrix C, the equation AB = C has a unique solution 
B. But if A is singular, then at least one such equation—in particular, 
AX= Ο —has multiple solutions. 

a22X2 
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Matrix inverses 

A matrix A is called invertible if there's a matrix Β such that AB = I = 
Β A. Clearly, invertible matrices must be square. A zero matrix Ο isn't 
invertible, because 073= 0 ^ 7 for any B. Also, some nonzero square matri-
ces aren't invertible. For example, for every 2x2 matrix B, 

0 0 
B = 

0 0 bn bl2 
= 

0 0 

0 1 0 1 . b2l b22 . b2l b22 . 
th 

hence the leftmost matrix in this display isn't invertible. When there exists 
Β such that AB = 7 = BA, it's unique; if also AC = 7 = CA, then B = 
BI-B(AC) = (BA)C = IC = C. Thus an invertible matrix A h a saun ique 
inverse A'1 such that 

A A 1 = 7 = A 1 A . 

Clearly, 7 is invertible and 7"1 = 7. 
The inverse and transpose of an invertible matrix are invertible, and any 

product of invertible matrices is invertible: 

(A" 1)" 1 = A (A4)"1 = ( A 1 ) ' (AB)'1 = B~lA~l. 

Proof: The first result follows from the equations AA~1 = 7=A~1A; the second, 
from Αι(Α'χΥ = (A^A)' = Γ = Ι and (A-')'A' = (AA'1)' = Ρ = 7. The 
third follows from (AB)(B'1A~1) = ((AB)B'1)A1 = (A(BB'1))A'1 = 
(A7)A _ 1 = AA'1 = I and equation (B'1A'1)(AB) = 7, which you can 
check. • 

The main result about inverses is that a square matrix A is invertible 
ifandonlyifit 'snonsingular. Proof: If A is nonsingular, use Gauss elim-
ination to solve equation AB = 7. To show that also Β A = I, the first step 
is to verify that A' is nonsingular. Were that not so, you could find X ^ 
Ο such that AlX= O, as mentioned under the previous heading. But then 
X = I'X = (AB)'X = ΒΆ'Χ =B'0 = 0 —contradiction! Thus A' must 
be nonsingular, and you can solve equation A'C = 7. That entails 

BA = I'BA" = (A'C)'BAH = C'A"BA" = CAT? A" = C'7A" 
= C'A" = (A'C) ( = 7 ' = 7. 

Thus Β is the inverse of A. Conversely, if A has an inverse B, then A 
must be nonsingular, for otherwise you could find Xr* Ο with AX= O, 
which would imply Ο = ΒΑΧ = IX = Χ —contradiction! • 

Determinants 

The determinant of an nt-n matrix A is 

det A = Σ , α ι > f ) ( 1 ) a 2 i f l ( 2 )- · · α η „ ( η ) s i gn^ , 
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where the sum ranges over all re! permutations φ of {1 n), and 
8ign#> = ± l depending on whether φ is even or odd. In each term of the 
sum there's one factor from each row and one from each column. For example, 
the permutation 1,2,3-» 3 ,2 ,1 is odd because it just transposes 1 and 3, 
so it corresponds to the term a13a22a3l(-l) in the determinant sum for a 
3x3 matrix A. For the theory of permutations, consult a standard algebra 
text. 3 

Usually you don't need the full apparatus of the theory of permutations. 
Most of the determinants you'll meet in this book are 2 x 2 or 3 x 3 , and 
for them it's enough to write out the sums in full. For the 2x2 case there 
are two permutations of {1,2}, and 

det A = det 
" 1 2 

— 0 H & 2 2 « 1 2 « 2 1 · 

Clearly, the determinant of a 2x2 matrix is zero if and only if one row or 
column is a scalar multiple of the other. 

For the 3 x 3 case, there are six permutations of {1,2,3} and 

« 1 1 « 1 2 « 1 3 

det A = det « 2 1 « 2 2 « 2 3 — Cln(l22(l33 « 1 2 « 2 3 « 3 1 ~ ' ~ « 1 3 « 2 1 « 3 2 

« 3 1 « 3 2 « 3 3 

- a13a22a31 - aua23a33 - a12a21a33 

Figure C.l shows a handy scheme for remembering this equation. The 
indicated diagonals in the diagram, with their signs, contain the factors of 
the terms in the determinant sum. 

The most important properties of determinants are closely tied to the linear 
system techniques summarized under the previous two headings. 

« 1 1 « 1 2 « 1 3 

det « 2 1 « 2 2 « 2 3 

« 3 1 « 3 2 « 3 3 

+ + + - -

« 1 1 « 1 2 ° 1 3 « 1 1 « 1 2 

\ s\ s\ s 

« 2 1 « 2 2 « 2 3 « 2 1 « 2 2 

« 3 1 « 3 2 « 3 3 « 3 1 « 3 2 

F i g u r e d Evaluating a 3 x 3 determinant 

3 For example, Mostow, Sampson, and Meyer 1963, section 10.3. 
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First, the determinant of an upper triangular matrix is the product of 
its diagonal entries; in particular, identity matrices have determinant 1. 
Proof: Each term in the determinant sum except α , , ^ - ο ^ contains at 
least one factor ai} with i > j , and that factor must be zero. • 

Next, if Β results from a square matrix A by interchanging two rows, 
then de t J3=-de tA. Proof: Each term in the sum for det Β corresponds 
to a term with the opposite sign in the sum for det A. • 

A square matrix A with two equal rows has determinant zero. Proof: 
Interchanging them reverses the sign of the determinant but doesn't change 
the matrix. • 

If all rows of square matrices A, B, and C are ahke except tha t the 
i th row of A is the sum of the corresponding rows of Β and C, then 
detA = det.B + det C. Proof: Each term in the sum for detA is the sum 
of the corresponding terms of detZJ and de tC . • 

A square matrix A with a row of zeros has determinant zero. Proof: 
By the previous paragraph, detA = detA + detA. • 

If Β results from a square matrix A by multiplying the i th row of A 
by a scalar s, then detB = sdetA. Proof: Each term in the sum for 
det Β is s times the corresponding term of detA. • 

If Β results from a square matrix A by subtracting s times its i th row 
from its j th , then de tB = detA. Proof: Construct C from A by replacing 
its ./'throw by (-s) times its ith row, so that d e t 5 = detA + det C. Construct 
D from A by replacing its ./'th row by its ith, so that d e t C = -sdetD. 
Then D has two equal rows, so de tD = 0, hence de tC = 0, hence det Β = 
detA. • 

A square matrix A has determinant zero if and only if it's singular. 
Proof: By the previous discussion, detA is (-1)* times the product of the 
diagonal entries of the matrix that results from A through the downward 
pass of Gauss elimination; k is the number of row interchanges required 
in that process. • 

An n x n matrix A has the same determinant as its transpose. 
Proof: detA' is the sum of the terms α,φ(ΆΛ··-αψ{μ)ιΛ signup for all the permu-
tations φ of {1 , . . . , »} . You can rearrange each term's factors and write 
it in the form α ι > χ ( Ι ) · •αΗ^Η)Β\%ηφ = a l t , ( 1 ) - - a s s i g n * , where χ= <p\ 
Since the permutations φ correspond one-to-one with their inverses χ, 
detA' = Σχα1ζ0)·• anmβϊ%ηχ= detA. • 

By the previous paragraph, you can formulate in terms of columns some 
of the earlier results that relate determinants to properties of their rows. 
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The next sequence of results leads slowly to the important equation 
det AB = det A detB. Its proof uses some special matrices. 

A type (I) elementary matrix E1' results from the i ixn identity matrix 
by interchanging its i th and j t h rows, where i ^ j . Clearly, detuJ'; = - 1 . 
You can check that interchanging the ith and j t h rows of any n*n matrix 
A yields the matrix EijA. Thus d e t £ i ; A = det Ε "det A and Ε1ίΕ1ί = Ι, 
so Ε 1' is its own inverse. 

A type (Π) elementary matrix Eli,c results from the n*n identity matrix 
by subtracting c times its ith row from its j t h , where i ^ j . Clearly, 
det .E'•'·" = 1. You can check that subtracting c times the ith row from the 
j t h of any n*n matrix A yields the matrix E'J,CA. Thus aetE'icA = 
det Eij-C det A and E^E"'= I, so (Ε^-'Τ1 = E^0, another type (II) 
elementary matrix. 

If D and A are η χ η matrices and D is diagonal, then det DA = 
det D det A. Proof: Each row of DA is the product of the corresponding 
row of A and diagonal entry of D. • 

If A and Β are nx/ ι matrices, then det AB = det A det B. Proof: If 
AB has an inverse X, then A(BX) = (AB)X= I, so A has an inverse. 
Thus if A is singular, so is AB, and detA7i = 0 = detAdetJB. Now suppose 
A is invertible. Execute the downward pass of Gauss ehmination on A, 
performing type (I) and type (II) operations until you get an upper triangular 
matrix U. Each operation corresponds to left multiplication by an elementary 
matrix, so EkEk.l-E2ElA=U for some elementary matrices Ex to Ek. 
The diagonal of U contains no zero, so you can perform more type (II) 
operations until you get a diagonal matrix D. Thus ΕχΕ^· • • Ek+2Ek+1 U = 
D for some more elementary matrices Eh+l to Et. This yields 

E,E,.i • -Eh- -E^A = D A = E^E^ — E^-E^E^D. 

These inverses are all elementary matrices and 

det AB = detiE;^1 •••Ek

1---ErfE^DB) 
= det E{1 det E2

1 · · · det det E,:{ det Ef1 det D det Β 
= de t^ - ' JS , - 1 · • · Ek

l • • • ErfE^D) det Β 
= det A det 73. • 

Determinants play important roles in analytic geometry. In three 
dimensions, these involve the cross product of two vectors. For a detailed 
description, see section 5.6. 

Gauss-Jordan elimination 

To solve a linear system AX=B whose m x n matrix A isn't square, first 
perform the downward pass of Gauss elimination, converting it to an upper 
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triangular system as described earlier. Instead of the upward pass, however, 
complete the process described next, called Gauss-Jordan elimination. 

If m > n, then the last m - η equations have the form 0 = rh with m < 
kin. If any of these rk 0, the system has no solution. Otherwise, you 
can ignore those last equations, and the system is equivalent to an mx m 
upper triangular system. Proceed as described earlier. 

If m<n, use further type (II) operations to eliminate all xk terms above 
diagonal entries with coefficients a^^O. If any equation in the resulting 
equivalent system has the form 0 = rk with rh^0, the original system 
has no solution. Otherwise, ignoring equations of the form 0 = 0, proceed 
backward through the system as in the upward pass of Gauss elimination. 
When you encounter a zero pivot, assign the corresponding X entry a 
parameter representing an arbitrary value. Use a different parameter for 
each zero pivot. 
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analysis, 89, 121, 220, 280, 444 
analytic geometry, 14, 34 -35 , 3 9 - 4 0 , 1 0 0 -

106, 157, 212, 223-225, 228, 447, 460 

tool kit for, 152-155, 213, 223 
Analytics (Aristotle), 26, 443 
angle(s), 64 

acute, 72 
addition of, 66 
belonging to dihedral angle, 74 
between line and plane, 134 
between translations, 253 
between vectors, 104, 187 
complementary, 72, 116 
congruent, 67 
dihedral (see dihedral angle) 
equal (see equal angles) 
inscribed, 114 
interior of, 64 
linear pair of, 66 
obtuse, 72 
of quadrilateral, 79 
right, 72 
straight, 111 
trihedral (see trihedral angle) 
vertex of, 64 
vertical, 66 
zero, 111 

angle bisector, 159, 204 
external (see external angle bisector) 
of tetrahedron, 214 

angle bisectors theorem, 159, 161, 
175, 199, 215, 224 

angle chasing, 135 
angle formula, 187 

463 
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angle measure, 55, 6 4 - 6 6 
angle parameter, 111 
angle sum theorem. See theorem, 

triangle sum 
angular scale, 112, 254 
Anselm, Saint, 46 
anthropology, 2, 51, 353, 447, 450, 461 
antipodal points, 149 
antiprism, square. See square antiprism 
Apache culture, Mescalero, 408 
apex 

of cone, 125 
of pyramid, 98 

applied mathematics, 1, 19-22, 43, 53 
approximation 

of π, 119, 123, 149 
of trigonometric function values, 184, 

Arab ornament, 414 
arc(s), 114 

addition of, 114, 121 
length of, 119-120 
major, 114 
minor, 114 
subtended, 114 

arc measure, 114 
archaeology. See anthropology 
Archard, G. D., 459 
Archimedes, 97, 124, 150, 161, 396, 443 

biographical sketch of, 124 
See also approximation, of η 

architectural ornament, 411 
architecture, 334, 409, 445, 456 

modular, 382 
Pueblo, 327, 453 

Archytas, 88, 421 
area, 81, 84, 444, 454 

alternative theories of, 87-89 
of cone, 150 
of cylinder, 150 
of disk, 124 
of parallelogram, 84 
of polygonal region, 84, 88 
of rectangle, 84 
of right triangle, 84 
of sector, 124 
of spherical cap, 151 
of spherical lune, 151 
of spherical triangle, 151 
of square, 84 
of trapezoid, 85 
of triangle, 85, 87 

area addition, 84, 88 
area axioms, 55, 82, 84 
area formula 

ASA, 182 

area formula (continued) 
determinant, 188 
Hero's, 182 
SAS, 182 
SSS, 182 

Aristarchus, 220 
Aristotle, 26, 27, 29, 43, 421, 443 

biographical sketch of, 27 
arithmetic 

decimal, 34, 51, 425 
modular, 111 
scalar, via constructions, 51, 217 

arithmetic mean, 138, 140 
arithmetic series, 138 
Armstrong, Μ. Α., 335, 368 
Armstrong, William, xii 
art, 2, 228, 353, 459, 461 
art deco, 4, 18, 448 
Artin, Emil, 293, 444 
ASA area formula, 182 
ASA triangle data, 180, 218, 

spherical, 222 
associative law, 235, 430-434 
astronomy, 1, 164, 220 
Audsley, W. and G., 414, 444 
averaging, 193 
axial rotation. See rotation, axial 
axiom (s), 26 

area, 55, 82, 84 
Birkhoff's, 32, 41 
categorical, 49 
Cavalieri's, 96, 125 
congruence, 55, 67 
for descriptive geometry, 461 
Euclid's, 30, 33, 36, 37, 39 
Hubert's, 31, 38-40, 44, 450 
Hubert's non-Euclidean, 39 
Huntington's, for real arithmetic, 451 
incidence, 11, 55, 56, 128-130, 131, 462 
independent, 129 
model of, 129 
parallel, 12, 37-39, 45, 55, 76-78 
Pasch's, 55, 6 0 - 6 1 , 131 
Pieri's, 43 
protractor, 55, 6 5 - 6 6 
ruler, 55, 58, 130, 131 
SAS, 55, 67 
for sector area, 124 
SMSG, 42, 53 
volume, 55, 96, 125, 447 

axiomatic method, 26, 43, 51, 53, 456, 458 
axis 

coordinate, 100 
of glide reflection, 261 
n-fold, 400 
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axis (continued) 
of rotation, 307 
of screw, 323 

Bachmann, Friedrich, 444 
balancing, 193 
ball, 125 

volume of, 125, 147 
Ball, W. W. Rouse, 24, 444 
balls, stack of, 328, 330 
Barber, Hugh, xii 
Barnes, Jonathan, 443 
Bartle, Robert G., 280, 444 
basalt hexagons, 328-329 
base 

of cone, 125 
of cylinder, 124 
of prism, 94 
of pyramid, 98 
of trapezoid, 84 
of triangle, 84, 87 

basic cell, 355, 356 
basketry, Inhambane, 353 
Beatley, Ralph, 41, 84, 445 
Beck, Anatole, 17, 334, 444 
Behnke, Heinrich, 228, 444 
Berger, Marcel, 221, 444 
Berlant, Tony, 446 
Bernays, Paul, 451 
Bernouilli, Jakob, 301 
Bernouilli, Johann, 301 
between, 44, 5 8 - 5 9 
between parallel lines, 79 
between parallel planes, 79 
betweenness, 6 0 - 6 1 

invariance of, 79, 239, 245 
bibliographic entries, 16, 443 
bijection, 236 

inverse of, 236 
bijective function, 236 
bilateral symmetry, 228 
billiards, 286 

dual, 291 
binary relation, 423 
biographical sketch 

of Archimedes, 124 
of Aristotle, 27 
of Birkhoff, George David, 42 
of Bravaie, Auguste, 406 
of Cavalieri, Bonaventura, 97 
of Ceva, Giovanni, 175 
of Desargues, Gerard, 167 
of Descartes, Ren£, 34 
of Euclid, 32 
of Euler, Leonhard, 301 

biographical sketch (continued) 
of Fedorov, Evgraf Stepanovich, 381 
of Feuerbach, Karl Wilhelm, 211 
of Frege, Gottlob, 48 
of Hero, 183 
of Hilbert, David, 38 
of Menelaus, 164 
of Moise, Edwin Evariste, 54 
of Padoa, Alessandro, 49 
of Pasch, Moritz, 63 
of Pieri, Mario, 44 
of Plato, 421 
of Playfair, John, 78 
of Pythagoras, 88 
of Schlegel, Stanislaus Ferdinand 

Victor, 419 
of Schdnflies, Arthur, 335 
of School Mathematics Study 

Group (SMSG), 41 
of Staudt, Georg Karl Christian von, 406 
of Thomsen, Gerhard, 291 
of Whitehead, Alfred North, 171 
of Wiener, Hermann, 314 

biology, 459, 460 
Birkhoff, Garrett, 42 
Birkhoff, George David, 32, 4 0 - 4 2 , 

58, 84, 445 
axioms of, 32, 41 
biographical sketch of, 42 

bisector 
angle (see angle bisector) 
perpendicular, 73 

Blackwell, William, 334, 445 
Blanc, Charles, 448 
Blankenagel, John C, 456 
Blaschke, Wilhelm, 291 
Bleicher, Michael N., 17, 444 
Boldt, H., 325, 445 
bolts, 409 

Bolyai, Janos, 39, 445 
theorem of, 454 

Bonola, Roberto, 39, 445 
border ornament, 411 
Bosse, Α., 447 
bound 

greatest lower, 425 
least upper, 54, 119-120, 425 
lower, 425 
upper, 425 

boundary 
of polygonal region, 83, 146 
of polyhedral region, 148, 382 
of polyhedral surface, 387 

bounded point set, 132 
Bourbaki, Nicolas, 236, 445 
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box, 95 
open, 383 
volume of, 98 

Bradley, A. Day, 445 
branch of tree, 348 
Brauer, Richard, xii 
Bravais, Auguste, 332, 404, 406 

biographical sketch of, 406 
Brewster, David, 453 
Brianchon, Charles-Julien, 205, 446 
Brill, Alexander, 314 
Brody, J. J., 2, 229, 327, 446, 448 
bubbles, soap, 12 
Bucharest, 222 
Bulafo, Gildo, 353, 450 
Burckhardt, J. J., 332, 446, 449, 458 

symmetry group, 405 
ΐ?2 symmetry group, 405 
<Sn symmetry group, 405, 422 
<Siv symmetry group, 405 
Cailliet, Emile, 456 
Cajori, Florian, 27, 123, 446, 452 
calculus, 36, 117, 123, 124, 425, 460 

differential, 184, 186, 220, 283 
integral, 89, 93, 97, 121, 124, 150, 447 
reflection, 290-291, 314, 324-325, 

445, 460, 461 
segment, 31 

calligraphy, 452 
cap, spherical. See spherical cap 
Carnap, Rudolf, 22, 446 
Carslaw, H. S., 445 
Cartesian coordinate system, 100, 105 
cast ironwork, 353 
categorical axioms, 49 
Cauchy sequence, 279 
Cavalieri, Bonaventura, 96, 97 

axiom of, 96, 125 
biographical sketch of, 97 

cell 
basic, 355, 356 
fundamental, 358, 359 

center 
of circle, 106 
of gravity, 176 
homothetic, 216 
of rotary reflection, 311 
of sphere, 108 
of wallpaper group, 367 

centered rectangular lattice, 358 
centroid 

of finite point set, 194 
minimal property of, 196 
of tetrahedron, 215 

centroid (continued) 
of triangle, 160, 193, 205, 212, 214, 218 

Ceva, Giovanni 
biographical sketch of, 175 
theorem of, 172, 176, 221, 223 

Ceva, Tomasso, 175 
Chaco Canyon culture, 327, 329, 

354, 447, 453 
chakra, 228 
Chapman, Kenneth M., 229, 327, 446 
characteristic, Euler, 387 
chasing angles, 135 
chicken wire, 381 
chord 

of circle, 107 
of sphere, 109 

Christchurch, 222 
«i symmetry group, 405, 422 
circle (s) , 106, 119 

center of, 106 
chord of, 107 
circumference of, 120, 123 
diameter of, 107 
exterior of, 106 
Feuerbach, 205-211, 213, 218 
great, 149 
interior of, 106 
nine point (see circle, Feuerbach) 
orthogonal, 214 
parametric equations for, 116 
radius of, 106 
secant line of, 108, 141, 207 
sector of (see sector, circular) 
tangent, 107 
tangent line to, 108, 142, 207 
unit, 116 

circle geometry, 157, 452 
circular definition, 28 
circular region. See disk 
circularity in reasoning, 26 
circumcenter 

of tetrahedron, 214 
of triangle, 158-159, 204, 212 

circumcircle, 158-159, 161, 461 
circumference of circle, 120, 123 
circumradius 

of regular polyhedron, 419 
of tetrahedron, 214 
of triangle, 159, 178, 183, 212 

circumscribed polygon, 123 
circumsphere of tetrahedron, 214 
classical geometry, 227 
classification 

of finite three-dimensional 
symmetry groups, 405, 406 
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classification (continued) 
of finite two-dimensional 

symmetry groups, 343 
of frieze groups, xii, 351-352 
of three-dimensional isometries, 315, 

321-323 
of three-dimensional similarities, 316, 

321-323 
of two-dimensional isometries, 268, 

288-289 
of two-dimensional similarities, 280, 288 
of wallpaper groups, xii, 368-369, 

379, 449 
See also classification theorem 

classification theorem 
for friezes, 351 
for isometries, 268, 315 
for similarities, 280, 316 
for wallpaper patterns, 361, 368, 

379, 449 
See also classification 

closed polygon, simple. See simple 
closed polygon 

closed subset 
of group, 238 
of plane, 146 
of space, 149 

cm wallpaper group, 365-366 
cmm wallpaper group, 377, 379 

symmetry group, 401, 405, 422 
<S„k symmetry group, 401, 402, 405, 422 
&„„ symmetry group, 400-401, 405 
Cochiti Pueblo, 408 
codes, 11 

cofunction identity, 117 
Cohen, I. Bernard, 27, 446 
Cohn-Vosson, Stefan, 17, 333, 451 
coins, 409 
Cole, M, 444 
collinearity, 55 

determinant condition for, 188 
Colorado, 151 
colored frieze, 354 
column(s), 101, 430, 432 

difference of, 431 
scalar multiple of, 101, 431 
sum of, 430 

column vector, 101, 430 
comet example, 21 
commensurable, 31 
commutative law, 235, 430, 434 
commute, 235 
commuting reflections, 250, 309, 318-319 
compass. See instruments, classical Greek 
complementary angles, 72, 116 

complex geometry, 11, 44, 406 
complex numbers, 34, 430, 453 
composition, function, xi, 230, 231, 234 
computational geometry, 12, 457 
computer graphics, 12 
computer science, 12 
concurrent point sets, 55 
cone, 125 

altitude of, 125 
apex of, 125 
area of, 150 
base of, 125 
volume of, 125 

Congress, International 
of Mathematicians, 38, 46, 97, 451 
of Philosophers, 46-47 , 332, 452, 456 

congruence axiom 55, 67 
congruence theorem 

ASA, 68 
SAA, 69, 70, 78 
SSS, 68 

congruent angles, 67 
congruent figures, 227, 260 
congruent segments, 67 
congruent tetrahedra, 93, 96, 135 
congruent triangles, 67-70, 84, 141 
congruent trihedral angles, 135 
conic sections, 18 
conjugacy class, 270, 299 
conjugacy theorem, 271, 300 
conjugate, 270, 299 
conjugate groups, 338-339 
conjugation, 338 

connected polygonal region, simply, 386 
connected polyhedron 

face-, 388 
simply, 389 
vertex-, 388 

constructible figures, 30, 3 2 - 3 3 
constructions, classical, 11, 286, 452 

of regular polyhedra, 385, 391-392 
for scalar arithmetic, 51, 217 
of trigonometric function values, 184 

contraction, 277, 316 
contraction mapping, 280 
conventionalism, 22, 50, 51, 460 
convex point set, 59 
convex deltahedron, 398-399 
convex polyhedron, 397 

interior of, 419 
convex quadrilateral, 79, 82 
coordinate ( s ) , 40, 45, 58, 100 

Cartesian, 100 
homogeneous, 12, 211 

coordinate axes, 100 
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coordinate plane, 100 
coordinate system, Cartesian, 35, 100, 105 
coordinate transformation, 228, 271, 

289, 299-300 
copencilar lines, 165 
coplanarity, 55 

determinant condition for, 191 
correspondence, one-to-one, 236 
cosecant, 118 
cosine, 110, 116 
cosine double angle formulas, 181 
cosine half angle formulas, 181 
cosine sum and difference formulas, 181 
cosines, law of, 179 
cotangent, 118 
course outline, xii 
Court, Nathan Altshiller-. See 

Altehiller-Court, Nathan 
Couturat, Louis, 332 
Coxeter, Harold Scott Macdonald, 17, 24, 

157, 208, 444, 446, 461 
Cromwell, Peter, 9, 335, 390, 401, 447 
cross product, 152, 189, 223 
crossbar theorem, 65 
Crowe, Donald W., 17, 334, 353, 

368, 444, 447, 461 
crystallographic notation, 352, 368, 380 
crystallographic restriction, 367 
crystallography, 332, 352, 353, 380, 404, 

406, 446, 449, 451, 453, 458, 459 
<β, symmetry group, 405 
cube, 95, 383, 384, 392 

construction of, 392 
symmetry group of, 403, 419 
truncated, 396 
volume of, 96 
See also under polyhedron, regular 

cuboctahedron, 395-396 
dual of, 395 
Schlegel diagram of, 418 
symmetry group of, 420 

cuboid, 138 
Cuisenaire Dale Seymour Publications, 

416, 447 
cultural evolution, 51 
culture, 331, 353, 447, 461 
cyclic group, finite, 340, 342, 401 
cylinder, 124 

altitude of, 124 
area of, 150 
base of, 124 
volume of, 125 

a 2 symmetry group, 405, 422 
3>JA symmetry group, 405 

S 2 p symmetry group, 405, 422 
Dale Seymour Publications, Cuisenaire, 

416, 447 
Daniels, Norman, 22, 447 
Davies, Charles, 453 
Davis, David Roy, 201, 208, 447 
decimal arithmetic, 34, 51, 425 
decision tree, 348, 368, 404, 412 
Declaration of Independence, 27, 462 
Dedekind, Richard, 49 
definition, 26, 47 

circular, 28 
implicit, 45 

degree measure, 65, 110, 123 
Dehn, Max, 97, 447, 456 
Deicke, A. W., 452 
deltahedrally stellated square 

antiprism, 398 
deltahedrally stellated triangular 

prism, 398-399 
Schlegel diagram of, 418 

deltahedron, 397, 420, 450, 457, 461 
convex, 398-399 
nonconvex, 398 
symmetry group of, 420 

dependent vectors, 103 
Derive software, 224, 447 
Desargues, Girard, 167, 447 

biographical sketch of, 167 
theorem of, 7, 9, 57, 165-170, 

224, 314, 447, 454 
Descartes, Reno, 34-35, 51, 167, 390, 447 

biographical sketch of, 34 
descriptive geometry. See geometry, 

incidence 
determinant, 223, 231, 438 
determinant area formula, 188 
determinant condition 

for collinearity, 188 
for coplanarity, 191 

determinant volume formula, 191 
Devils Postpile, 328, 329 
dharmachakra, 228 
diagonal entry, 432 
diagonal hnear system, 436 
diagonal matrix, 436 
diagonal of quadrilateral, 79 
diagrams, use of, 25 
diameter 

of circle, 107 
of sphere, 109 

diaper ornament, 414 
difference 

equation, 132 
of columns, 101, 431 
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difference (continued) 
of matrices, 432 
of rows, 431 
of vectors, 101, 431 

difference formula (s) 
cosine and sine, 181 
tangent, 219 

differential calculus, 184, 186, 220, 283 
differential geometry, 10 
dihedral angle, 74 

edge of, 74 
interior of, 74 
measure of, 75 
of regular octahedron, 139 
of regular polyhedron, 419 
of regular tetrahedron, 139 

dihedral group, 342, 401 
dikes, 391 
dilatation(s), 293 

group of, 293 
dilation, 277, 293, 316 
Dillingham, Rick, 3, 410, 448 
dipyramid. See equilateral dipyramid 
directed distance, 162 
directrix of prism, 94 
discrete geometry, 10 
disk, 124 

area of, 124 
dissection, 

of polygonal region, 143 
of polyhedral region, 147 

distance 
directed, 162 
formula, 101 
between parallel hnes, 81 
between parallel planes, 81 
from point to line, 72 
from point to plane, 74 
between points, 55, 58 

distributive 
law, 431-433 

div operation, 111 
β)η symmetry group, 401, 405, 422 
3>„h symmetry group, 400, 405 
a„„ symmetry group, 402, 405 
dodecahedron 

regular (see regular dodecahedron) 
rhombic (see rhombic dodecahedron) 
Siamese (see Siamese dodecahedron) 

domain of function, 233 
dot product, 104, 431 
double angle formula 

cosine and sine, 181 
tangent, 219 

Downs, Floyd L., Jr., 41-42, 53, 
54, 68, 127, 455, 462 

downward pass, 436, 441 
Dresden, Arnold, 461 
dual billiards, 291 
dual polyhedron, 393 

of cuboctahedron, 395 
of equilateral dipyramid , 418 
of equilateral pyramid , 418 
of regular polyhedron, 394 
of rhombic docecahedron, 396 
of right prism, 418 
of square antiprism, 418 

Duncan, Alastair, 4, 448 
Diirer, Albrecht, 4 

eared polygon, 337 
earth, radius of, 152 
Eckhardt, Wymond, 329 
edge(s) 

of dihedral angle, 74 
lateral (see lateral edge) 
path of, 388 
of polygonal region, 83 
of polyhedron, 386 
of quadrilateral, 79 
of simple closed polygon, 336 
of spherical triangle, 150 
of tetrahedron, 93 
of triangle, 61 

edge bisectors theorem, 159, 213, 214 
Edwards, Bruce H., 453 
Edwards, Paul, 451 
elementary matrix, 441 
elimination, 152 

Gauss (see Gauss elimination) 
Gauss-Jordan, 442 

Ellers, Erich W., 240, 448 
elliptic geometry, 11-12 
empty set, 14 
end 

of segment, 59 
of proof, 15, 57 

Enriques, Federigo, 445 
equal angles, 24 

symbol for, 14 
equal functions, 234 
equal segments, 24 

symbol for, 14 
equation (s) 

of axial rotation, 308 
cubic, 34-35 , 51 
difference, 132 
of glide reflection, 288, 321 
of half turn about line, 320-321 
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equation(s) (continued) 
of isometry, 231, 265-266, 295, 299, 448 
of line reflection, 265, 288 
linear (see linear equation) 
linear parametric (see linear 

parametric equations) 
linear system of (see linear system) 
parametric, of circle, 116 
parametric, of sphere, 116 
of plane reflection, 320-321 
of point reflection, 311 
polynomial, 10 
Pythagoras', 86 
quartic, 34 -35 
of rotation about point, 255, 263, 

276, 288 
of similarity, 278, 288 
of translation, 251, 305-306 

equidistant points, 73 
equilateral dipyramid, 397 

dual of, 418 
Schlegel diagram of, 418 

equilateral prism, Schlegel diagram of, 418 
equilateral pyramid. See pyramid, 

equilateral 
equilateral triangle, 31, 68 
equivalence class, 423 
equivalence relation, xi, 62, 423 
Escher, Maurits C, 334, 458 
ethnomathematics, 450 
etymology, 17, 458 
Euclid, 24-33 , 43, 51, 60, 67, 87, 

89, 124, 149, 384, 391, 404, 
419, 421, 448, 455, 457, 458 

axioms of, 30, 33, 36, 37, 39 
biographical sketch of, 32 

Euclidean geometry. See geometry, 

Euclidean 
Eudoxus, 124, 421 
Euler, Leonhard, 231, 299, 301, 

385-387, 390, 448 
biographical sketch of, 301 
theorem of, 387, 389, 444, 448, 453, 460 

Euler characteristic, 387 
Euler line, 204 
even isometry (isometries), 260, 269, 300 

group of, 269, 300 
even similarity, 280, 316 
Eves, Howard, 17, 201, 391, 448 
evolution, cultural, 51 
exact fraction, 324 
excenter 

of tetrahedron, 214 
of triangle, 200 

excircle, 200, 201, 206, 211, 461 

exercises, xi, 15 
exhaustion, method of, 124 
exradius 

of tetrahedron, 214 
of triangle, 200 

exsphere of tetrahedron, 214 
exterior 

of circle, 106 
of sphere, 108 

external angle bisector 
of tetrahedron, 214 
of triangle, 199 

external tangent to two circles, 143 
externally tangent circles, 107 
externally tangent spheres, 109 
extremum problem, 11 

face(s) 
lateral (see lateral face) 
path of, 388 
of polyhedral surface, 382, 387 
of tetrahedron, 93 

face-connected polyhedron, 388 
Fagnano, Giovanni Francesco, 284 
Fano, Gino, 46, 448 
Farmer, David W., 334, 448 
Fedorov, Evgraf Stepanovich, 332, 333, 

335, 381, 404, 406, 446, 449, 458, 459 
biographical sketch of, 381 

Fejes Toth, L., 335, 352, 380, 449 
Feuerbach circle, 205-211, 213, 218 
Feuerbach, Karl Wilhelm, 206, 211, 449 

biographical sketch of, 211 
theorem of, 201, 206, 210-211, 218, 224 

Field, Judith Veronica, 9, 449 
finite geometry, 11 
Finney, Ross L., 153, 184, 460 
Fischer, Dietrich, xii 
fixed line, 268, 315, 322 

pointwise, 285 
fixed plane, 315 
fixed point. See fixpoint 
fixpoint, 246, 315, 321-322 
fixpoint set, 268 
fixpoint theorem, 278, 316 
Fladt, Kuno, 444 
flag of India, 228-229 
Fleck, George, 334, 459 
foot of perpendicular, 72, 74 
football, 420 
Forder, Henry George, 17, 74, 449 
formula 

angle, 187 
ASA area, 182 
cosine double angle, 181 
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formula (continued) 
cosine half angle, 181 
cosine sum and difference, 181 
distance, 101 
Hero's, 182 
SAS area, 182 
sine double angle, 181 
sine half angle, 181 
sine sum and difference, 181 
SSS area, 182 

Foster, Lorraine, 334, 449 
foundation problem, 35, 37, 40, 43 
foundations of geometry, 19, 39, 

53, 157, 228, 449, 451, 455, 
456, 458, 460, 461, 462 

four-dimensional geometry, 130 
Frank, Larry, 410, 449 
Franklin, Benjamin, 446 
Frege, Gottlob, 45 -46 , 48, 51, 449, 460 

biographical sketch of, 48 
Freudenthal, Hans, 49, 399, 420, 449, 450 
frieze(s), 344-345 

classification of, xii, 351-352 
classification theorem for, 351 
colored, 354 
intertwined, 354 

frieze group, 345, 352-353, 451, 454, 455 
notation for, 352 

frieze tree, 348-349, 412 
function(s), 14, 54, 232-233 

bijective (see bijection) 
composition of, xi, 230, 231, 234 
domain of, 233 
equal, 234 
identity, 237 
image set of, 234 
injective, 236 
juxtaposition of, 235 
linear, 238, 282 
notation for, 14 
one-to-one, 236 
range of, 234 
strictly increasing, 234 
trigonometric, 110, 115-118 
value of, 233 

fundamental cell, 358, 359 
fundamental translation, 345, 357, 413 

Gabriel, Gottfried, 449 
Galilei, Galileo, 97 
Galiulin, R. V., 449, 459 
Gallian, Joseph Α., 334, 450 
Gardner, Martin, 446 
gastropods, 412 
Gauss, Carl Friedrich, 22, 50, 406, 454 

Gauss elimination, 429, 435-437 
downward pass of, 436, 441 
upward pass of, 437 

Gauss-Jordan elimination, 442 
general position, 131, 132 
generating set, 412 
geology, 460 
geometric mean, 138, 140 
geometric series, 138 
geometry, 1, 9 

absolute, 76, 78 
affine, 444 
algebraic, 10, 12 
analytic (see analytic geometry) 
circle, 157, 452 
classical, 227 
complex, 11, 44, 406 
computational, 12, 457 
coordinate (see geometry, analytic) 
descriptive (see geometry, incidence) 
differential, 10 
discrete, 10 
elementary university, 18 
elliptic, 11-12 
Euclidean, 11, 18, 27, 2 9 - 3 3 , 

35, 53, 76-77 
exotic, 444 
finite, 11 
foundations of, 19, 39, 53, 157, 228, 449, 

451, 455, 456, 458, 460, 461, 462 
four-dimensional, 130 
hyperbolic, 11, 12, 22, 37-39, 

76, 445, 461 
incidence, 11, 12, 44, 55-57 , 

60, 128-130, 165, 462 
inversive, 453 
metric, 11 
multidimensional, 42, 448 
non-Euclidean, 461 (see also specific 

geometries under the current heading) 
ordered, 11 
projective, 9, 12, 44, 46, 165, 

240, 405, 406, 448 
real, 11 
school, 13, 18 
solid, 13, 295, 385, 443, 459, 461 
three-dimensional (see geometry, solid) 
transformational, 11, 13, 227, 

230-231, 452, 454, 462 
triangle, 157, 452 
visual, 333, 451 

geometry surveys, 16-17, 444, 446-449, 
451, 453-454, 461-462 

Georgia, 3 
Gerdes, Paulus, 353, 450 
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Gergonne point, 201 
Gillispie, Charles Coulston, 16, 450 
ghde reflection, 261, 310 

axis of, 261 
equation of, 288, 321 
vector of, 261 

Global Positioning System (GPS), 1, 452 
God, existence of, 46, 451 
Goe, George, 454 
Golubitsky, Martin, 334, 460 
Gottingen, 38, 40, 46, 48, 332, 

333, 335, 406, 445, 457 
Gould, Sydney H., 444 
GPS (Global Positioning System), 1, 462 
graph 

of linear equation, 104 
of hnear parametric equations, 102, 103 

gravity, center of, 176 
great circle, 149 
greatest lower bound, 425 
Greitzer, Samuel L., 157, 208, 446 
grid, 345, 358 

hexagonal, 382, 453 
group (s) 

«1- 405 
405 

2̂A» 405, 422 
405 
405, 422 

«•». 401, 405, 422 
401, 402, 405, 422 

*». 400-401, 405 
conjugate, 338-339 

405 
cyclic, 340, 342, 401 
2>2, 405,422 
ffljA, 405,422 
2>2„, 405,422 
dihedral, 342, 401 
dilatation, 293 
»„, 401,405,422 
2>„A, 400,405 
2)„„, 402,405 
of even isometries, 269, 300 
finite cyclic, 340, 342, 401 
frieze, 345, 352-353, 451, 454, 455 

404, 405 
Jk, 403,405 
of isometries, 244, 260, 296 
β, 404,405 
eh, 403,405 
of rotations with given center, 256, 269 
Sfln, 402,405,422 
of similarities, 278, 316 

group (continued) 
symmetric, 238, 330 
symmetry, 330, 447 

404,405 
&d, 402, 405, 419 

403-404, 405, 422 
transformation, xi, 231, 238 
transitive, 403 
translation, 252, 269, 306 
trivial, 238 
See also frieze group; Vierergruppe ; 

wallpaper group 
group theoretical methods, 230 
group theory, 333, 446, 448, 459 
Grunbaum, Branko, 335, 450 
Gupta, Haragauri Narayan, xii, 134, 450 
gymnasium, 38 

half angle formulas 
cosine and sine, 181 
tangent, 219 

half turn 
about axis, 309 

equation of, 320-321 
about point (see point reflection) 

half-turn identity, 117 
Halsted, George Bruce, 40, 445, 450 
Hargittai, Istvan, 334, 353, 450 
Hargittai, Magdolna, 334, 353, 450 
Harker, David, 449, 459 
Harker, Katherine, 449 
Harlow, Francis H., 410, 449 
harmonic mean, 138, 140 
harmonic quadruple, 201 
Heading, J, 451 

Heath, Sir Thomas L., 443, 448 
Hedrick, E. R., 453 
Heiberg, Johann Ludwig, 448 
Heijenoort, Jean van, 456 
Heil, Erhard, 451 
Hellenistic mathematicians, 33 
Hermes, Hans, 449 
Hero, 33, 183 

area formula of, 182 
biographical sketch of, 183 

Hessel, J. F. C, 332 
hexagonal grid, 382, 453 
hexagonal lattice, 359 
hexahedron, regular. See cube 
Hick, John, 46, 451 
Hilbert, David 17, 31, 38-40, 43, 49, 51, 

56, 67, 97, 170, 217, 314, 333, 335, 
447, 449, 451, 456, 457, 460, 461 

axioms of, 31..38-40, 44, 450 
biographical sketch of, 38 
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Hilbert (conlinuted) 
non-Euclidean axioms of, 39 
problems of, 38, 97, 333, 447, 451 

Hilton, Peter, 334, 451 
hinge theorem, 70-71 
history of mathematics, 446, 450, 461, 462 
Holton, Derek, 451 
homogeneous coordinates, 12, 211 
homogeneous linear system, 437 
homothetic center, 216 
homothetic reflection, 280 
homothetic rotation, 280, 316 
homothety, 316 
honeycomb, 381 
horizon, 6 
horizontal, 345 
household objects, symmetric, 407-409 
Howson, A. G., 452 
Hull, Lewis, 451 
Huntington, Edward V., 49, 451 

axioms of, for real arithmetic, 451 
hyperbolic geometry. See geometry, 

hyperbolic 
hypotenuse, 81 

0 symmetry group, 404, 405 
Iamblichus, 88 
icosahedron, regular. See regular 

icosahedron 
identity 

cofunction, 117 
half-turn, 117 
periodic, 116, 117 
Pythagorean, 116 
supplementary-angle, 117 

identity function, 237 
identity matrix, 435 
Ido, 332 
&h symmetry group, 403, 405 
image set, 234 
implicit definition, 45 
in, 55 
incenter 

of tetrahedron, 214 
of triangle, 159-160, 199, 212 

incidence axioms, 11, 56, 128-130, 
131, 462 

incident, 55 
incircle of triangle, 159-160, 200, 211, 461 
inclusive inequality, 59 
increasing function, strictly, 234 
Independence, Declaration of, 27, 462 
independent axioms, 129 
independent translations, 331 
India's flag, 228-229 

inequality (inequalities) 
for approximating sine values, 184-186 
geometric, 11 
inclusive, 59 
triangle (see triangle inequality) 

Inhambane, 353, 450 
initial ray, 112 
injective function, 236 
inradius 

of polyhedron, 419 
of tetrahedron, 214 
of triangle, 160, 161, 200, 212 

inscribed angle, 114 
inscribed polygon, 119 
insphere of tetrahedron, 214 
instruments, classical Greek, 11, 30, 

3 2 - 3 3 , 36, 38, 51, 123, 286. See also 
constructions, classical 

integral calculus. See calculus, integral 
interior 

of angle, 64 
of circle, 106 
of convex polyhedron, 419 
of dihedral angle, 74 
of line segment, 26, 59 
of polygonal region, 83, 145-146 
of polyhedral region, 148 
of segment, 26, 59 
of simple closed polygon, 411 
of sphere, 108 
of tetrahedron, 93, 155 
of triangle, 145 
of trihedral angle, 131 

Interlingua, 332 

internal tangent to two circles, 143 
internally tangent circles, 107 
internally tangent spheres, 109 
International Congress. See Congress, 

International 
international language, 332 
intersection, 14 

proper, 83, 96, 386 
intertwined frieze, 354 
into, 233 
intuition, 45 
invariance 

of betweenness, 79, 239, 245 
of distance ratios, 91 

invariant property, 237, 245-246, 297 
inverse 

of matrix, 438 
of bijection, 236 

inversion, 208, 311 
inversive geometry, 208, 453 
invertebrate, 412, 454 
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involution, 412 
Iranian ornament, 414 
ironwork, cast, symmetry in, 353 
irrationality 

of it, 123 
of ^2 , 32 

ISBN numbers, 16 
isometric projection, 18 
isometry (isometries), 11, 227, 241, 

292, 296 
equation of, 231, 265-266, 295, 299, 448 
even (see even isometry) 
odd, 260, 300 
structure theorem for (see structure 

theorem) 
uniqueness theorem for, 246, 297 
See also under classification; 

classification theorem 
isometry group, 244, 296 
isomorphic transformation groups, 360 
isomorphism, 360 
isomorphism class, 412 
isomorphy, 360 
isosceles trapezoid, 80 
isosceles triangle, 24 
isosceles triangle theorem, 68 
Italian artists, 4 

Jefferson, Thomas, 27, 446, 462 
Jeger, Max, 286, 452 
Johnson, Roger Α., 157, 206, 208, 449, 452 
Jones, Owen, 334, 353, 452 
Jones, William, 123, 452 
Jowett, B., 457 
juxtaposition of functions, 235 

Kaal, Hans, 449 
Kambartel, Friedrich, 449 
Kansas road sign, 409 
Kant, Immanuel, 45, 46, 452, 458 
Kaplan, Elliott D., 1, 452 
Kate, Maggie, 408, 412, 452 
Kepler, Johannes, 396, 403 
Key Curriculum Press, 416, 452 
Kim, Scott, xiii, 327, 452 
Kin Kletso, 327, 329 
Klein, Felix, 17, 38, 314, 453 
Klemm, Michael, 335, 453 
Kline, Morris, 458 
Kneser, Hellmuth, 292, 453 
Knobloch, Eberhard, 456 
Koptsik, Vladimir Aleksandrovich 335, 459 
Kuhn, Thomas, 51, 453 
Kummer, Ernst-Eduard, 335 

Kurschak, J., 144 
tile of, 143, 381, 443 

Lakatos, Imre, 390, 453 
lamp, ornamental, 330, 382 
language, international, 332 
Larson, Roland E., 429, 453 
lateral edge 

of prism, 94 
of pyramid, 98 

lateral face 
of prism, 94 
of pyramid, 98 

Latham, Marcia L., 447 
lattice, 345, 358 

centered rectangular, 358 
hexagonal, 359 
rectangular, 358 
rhombic, 358 
square, 358 

lattice theory, 42 
law 

of cosines, 179 
spherical, 222 

of sines, 178 
spherical, 221 

LC numbers, 16 
leaf of tree, 348 
least upper bound, 54, 119-120, 425 
LeBlanc, Steven Α., 229, 327, 446 
Lee, Desmond, 456 
leg of right triangle, 81 
Legendre, Adrien-Marie, 453 
Lekson, Stephen H., 329, 453 
lemma, 15, 56 
length 

of arc, 119-120 
of segment, 59 
of semicircle (see pi) 
of translation, 253 
of vector, 101 

Leonardo da Vinci, 343 
theorem of, 343 

Levi-Civita, Tullio, 291 
Levy, Lawrence S., 285, 453 
Levy, S., 444 
Library of Congress (LC) numbers, 16 
Light, Sol Felty, 454 
limit, 425 
Lindemann, Ferdinand von, 38 
line(s), 30, 36-37 , 44, 55 

Euler, 204 
fixed (see fixed line) 
parallel, 76, 78 
perpendicular, 72-73 
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line reflection, 243-244, 248 
equation of, 265, 288 

line segment. See segment 
line separation theorem, 61-62 
linear algebra. See algebra, linear 
linear equation, 104 

graph of, 104 
linear function, 238, 282 
linear pair of angles, 66 
linear parametric equations, 35 -36 , 

102-103 
graph of, 102-103 

hnear scale, 58, 130, 162 
linear substitution, 434 
linear system, xi, 14, 152, 433, 

435-437, 441 
diagonal, 436 
homogeneous, 437 
nonsingular, 437 
nonsquare, 441 
singular, 437 
square, 436 
upper triangular, 436 

literature, symmetry in, 459 
Lobachevski, Nikolai Ivanovich, 39, 

445, 447 
logical notation, 14 
logos, symmetric, 409 
Lopez, Bernard, 449 
lower bound, 425 
lune 

circular, 145 
spherical, 152 

lycoe, 38 

machinery, symmetry in, 409 
major arc, 114 
Madison, James, 446 
manual, solution, xii, 16 
mapping, 233 
Marchisotto, Anna Elena, 454, 456 
Martin, George E., 240, 280, 335, 368, 454 
masher, 3 
mathematical software. See software, 

mathematical 
Mathematical subject classification, 10,443 
mathematics 

applied, 1, 19-22, 43, 53 
pure, 1, 19, 43, 49 
recreational, 444 

matrix (matrices), 432 
diagonal, 436 
difference of, 432 
elementary, 441 
identity, 435 

matrix (matrices) (continued) 
inverse of, 438 
invertible, 438 
negative of, 432 
nonsingular, 437 
orthogonal, 263, 298 
scalar multiple of, 432 
singular, 437 
square, 432 
sum of, 432 
upper triangular, 436 

matrix algebra. See algebra, linear 
matter, structure of, 391, 421, 457 
maximum element, 426 
McCleary, John, 454 
McGuinness, Brian, 449 
McLeay, Heather, 353, 454 
mean 

arithmetic, 138, 140 
geometric, 138, 140 
harmonic, 138, 140 

measure 
of angle, 55, 6 4 - 6 6 
of arc, 114 
of dihedral angle, 75 

mechanics, 175-177 
medallions, symmetric, 409 
medals, symmetric, 409 
medial triangle, 160 
median 

of triangle, 160, 174, 177, 193, 214 
of tetrahedron, 214 

medians theorem 
for triangles, 160, 174, 177, 213, 214 
for tetrahedra, 214 

Melzak, Zdzisiaw Alexander, 17, 454 
membership relation, 14, 55 
Menelaus 

biographical sketch of, 164 
product of, 163, 171, 218 

Menelaus' theorem, 163, 218, 223 
spherical, 221 

Meredith, David B., xii, 281, 454 
Mescalero Apache culture, 408 
method of exhaustion, 124 
metric geometry, 11 
Meyer, Jean-Pierre, 455 
midpoint, 73 
Miller, Arthur I., 22, 454 
Miller-Slotnick, Morris, 446 
Mimbres culture, 2, 228, 327, 408, 446 
minor arc, 114 
minute, 151 
mirror, 248, 

curved, 283 
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mirror (continued) 
of plane reflection, 302 
of rotary reflection, 311 

mod operation, 111 
model (s) 

of axioms, 129 
geometric, 42, 49 
mathematical, 2 0 - 2 1 , 26, 50 
of polyhedra, 140, 148, 399, 

416-417, 460 
Modenov, P. S., 292, 454 
modular architecture, 382 
modular arithmetic, 111 
modulus, 111 
Moise, Edwin Evariste, 42, 53, 64, 68, 

123, 127, 184, 454-455, 462 
biographical sketch of, 54 

Moore, Eliakim Hastings, 42 
Moore, Robert Lee, 54 
Moser, William O. J., 446 
Mostow, George D., 455 
motion, 13, 44, 228, 241, 335 
Mozambique, 450 
Mueller, Ian, 32, 455 
Muir, Thomas, 123, 455 
Muller, Edith; 353-354, 455 
multidimensional geometry, 42, 448 
multiplication. See product 
music, symmetry in, 459 

Nagel, Ernest, 450 
Nagel point, 201, 212 
Napier, John, 4 
Napier, New Zealand, 4 
Nazification, 291 
needlework, symmetry in, 353 
negative 

of matrix, 432 
of row, 431 
of vector, 430 

negative orientation, 305 
Nemenyi, P., 451 
Nernst, Walther, 335 
New Math. See SMSG 
New Mexico 2, 228, 327, 331, 354, 410, 453 
New Zealand, 4, 222 
Newson, Mary Winston, 451 
Newtonian science, 27, 35 
Niggh, Paul, 333, 353, 355, 455, 457 
nine point circle. See circle, Feuerbach 
Niven, Ivan M., 123, 455 
Noble, C. Α., 453 
non-Euclidean geometry. See under 

geometry 
nonsingular linear system, 437 

nonsingular matrix, 437 
norm of vector, 101 
notation 

crystallographic, 352, 368, 380 
frieze group, 352 
function, 14 
logical, 14 
postfix, 233, 235 
prefix, 234 
Schonflies' symmetry group, 401, 405 
set theoretic, 14 
triangle, 158, 162, 196, 200 
wallpaper group, 380, 458 

number 
complex, 34, 430, 453 
negative, 34 
real (see real number system) 
transcendental, 123 

numbering of results and exercises, 14 
nuts, symmetric, 409 

C symmetry group, 404, 405 
oblique projection, 18 
oblique triangle, 81 
obtuse angle, 72 
octahedron, regular. See regular 

octahedron 
odd isometry, 260, 269, 300 
odd similarity, 280, 316 
on, 44, 55 
0k symmetry group, 403, 405 
one-to-one correspondence, 236 
one-to-one function, 236 
onto, 236 
ontological argument. See God, 

existence of 
open box, 383 
open subset 

of plane, 147 
of space, 149 

operations research application, 133 
opposite angles of quadrilateral, 79 
opposite edge of triangle, 61 
opposite edges of quadrilateral, 79 
opposite edges of tetrahedron, 93 
opposite face of tetrahedron, 93 
opposite rays, 59 
opposite vertex of tetrahedron, 93 
opposite vertex of triangle, 61 
opposite vertices of quadrilateral, 79 
order of points on line, 44, 58, 60 
ordered geometry, 11 
orientation, 260 
oriented figure, 248 
oriented tetrahedron, 305 
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origin, 100 
of ray, 59 

ornament, 409, 444, 452, 453, 459 
Arab, 414 
architectural, 411 
border, 411 
diaper, 414 
Iranian, 414 
polyhedral, 422, 457 
wallpaper (see wallpaper ornament) 

orthic triangle, 196, 284 
orthocenter 

of rhombic tetrahedron, 215 
of triangle, 161 

orthocentric quadruple, 198 
orthogonal circles, 214 
orthogonal matrix, 263, 298 
orthographic projection, 18 

π. See pi 
pi wallpaper pattern, 356, 360, 361 
p2 wallpaper pattern, 376, 379 
p3 wallpaper pattern, 371, 373 
p31m wallpaper pattern, 372, 373 
p3ml wallpaper pattern, 372, 373 
p4 wallpaper pattern, 374, 375 
p4g wallpaper pattern, 375 
p4m wallpaper pattern, 375 
p6 wallpaper pattern, 356, 370 
p6m wallpaper pattern, 370 
Padoa, Alessandro, 42, 46 -49 , 456 

biographical sketch of, 49 
paper topics, xii, 2, 15-18, 50 -51 
Pappus, 141 
paradigmatic shift, 51 
parallel axiom, 12, 37-39, 45, 55, 76-78 
parallel line and plane, 78 
parallel lines, 76 

points between, 79 
transitivity theorem for, 77 

parallel planes, 78 
points between, 79 
transitivity theorem for, 79 

parallel projection, 79 
parallel ray, 76 
parallel segment, 76 
parallel translations, 253 
parallel vectors, 103 
parallelepiped, 95, 137 
parallelogram, 80 

area of, 84 
parallelogram theorem, 80 
parameter, angle, 111 
parametric equations 

of circle, 116 

parametric equations (continued) 
hnear (see linear parametric equations) 

Paris, 38, 46, 51, 97, 451 
parity, 269, 300 
Parkhomenko, A. S., 292, 454 
part of triangle, 139 
partition 

of plane by lines, 131-132 
of space by planes, 132 

Pascal, Blaise, 28, 47, 167, 456 
Pasch, Moritz, 61, 63, 456 

axiom of, 55, 6 0 - 6 1 , 131 
biographical sketch of, 63 

path of faces or vertices and edges, 388 
Peano, Giuseppe, 40, 44, 46-47 , 332 
Pearce, Peter, 382, 456 
Peckhaus, Volker, 45, 456 
Pedersen, Jean, 451 
Pedoe, Dan, 9, 456 
pencil, 165 
perfect being, 46 
Perfect, Hazel, 451 
perimeter of triangle, 182 
periodic identity, 116, 117 
permutation, 237, 439 
perpendicular bisector, 73 
perpendicular bisector theorem, 73 
perpendicular, foot of, 72, 74 
perpendicular lines, 72-73 
perpendicular plane, 73, 75 
perpendicular ray, 72 
perpendicular segment, 72 
perpendicular vectors, 104 
perspective drawing, 4, 5-10, 165, 167 
pg wallpaper pattern, 364-366 
pgg wallpaper pattern, 379 
Pherecydes, 88 
physics 

foundations of, 446, 454 
symmetry in, 460 

pi, 119, 123, 452 
approximation of, 119, 123, 149 
irrationality of, 123 
nonconstructibility of, 31, 36, 38 
transcendence of, 123 

Pieri, Mario, 40, 43 -45 , 454, 456 
axioms of, 43 
biographical sketch of, 44 

Pima culture, 408 
pivot, 436 
plane ( s ) , 44, 55 

coordinate, 100 
fixed, 315 
parallel, 78 
partition of, 131-132 
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plane(s) (continued) 
perpendicular, 75 

plane reflection, 302 
equation of, 320-321 
mirror of, 302 

plane separation theorem, 61-62 
plane trigonometry, 110, 139, 

177, 212, 218 
Plato, 27, 88, 391, 419, 421, 456 

biographical sketch of, 421 
Platonic figure. See regular polyhedron 
Playfair, John, 77-78, 457 

biographical sketch of, 78 
Plucker, Julius, 335 
pm wallpaper pattern, 365, 366 
pmg wallpaper pattern, 378, 379 
pmm wallpaper pattern, 378, 379 
Poincaro, Henri, 50 
point, 44, 45, 55 
point reflection, 243, 311 

equation of, 311 
point set, 55 
pointwise fixed line, 285 
polar triangle, 222 
Polya, Georg, 333, 353, 457 
polygon 

affine-regular, 337 
circumscribed, 123 
eared, 337 
inscribed, 119 
regular, 123, 336, 410 
simple closed (see simple 

closed polygon) 
stellation of, 337 
symmetry group of, 340 

polygonal region, 81, 83 
area of, 84, 88 
boundary of, 83, 146 
dissection of, 143 
edge of, 83 
interior of, 83, 145-146 
simply connected, 386 
vertex of, 83 

polyhedral ornament, 422 
polyhedral region, 95 

boundary of, 148, 382 
dissection of, 147 
interior of, 148 
volume of, 96, 447 

polyhedral surface, 386, 387 
boundary of, 387 
face of, 382, 387 
vertex of (see polyhedral vertex) 

polyhedral vertex, 386-387 
trihedral, 398 

polyhedral vertex (continued) 
valency of, 420 

polyhedron (polyhedra), 10, 382, 
386, 387, 444, 447, 448, 460 

convex (see convex polyhedron) 
dual, 393 
edge of, 386 
face-connected, 388 
model of, 140, 148, 399, 416-417, 460 
regular (see regular polyhedron) 
self-dual, 393 
simply connected, 389 
stellation of, 397 
symmetry group of, 399 
vertex of (see polyhedral vertex) 
vertex-connected, 388 

polynomial equations, 10 
polytope, 10 
Poncelet, Victor, 206, 446 
position, general, 131, 132 
positive orientation, 305 
postfix notation, 233, 235 
postulate, 26 
pottery, symmetry in, 2 - 3 , 228-229, 

327-328, 3 5 3 - 354, 409-411, 
446, 447, 448, 449 

Poudra, M., 447 
Powell, Arthur B., 450 
power 

of point, 207 
of transformation, 238 

prefix notation, 234 
Preparata, Franco P., 411, 457 
prerequisites, xi 
preserved property, 234 
prism, 94 

altitude of, 94 
base of, 94 
deltahedrally stellated triangular (see 

deltahedrally stellated 
triangular prism) 

directrix of, 94 
equilateral (see equilateral prism) 
lateral edge of, 94 
lateral face of, 94 
right (see right prism) 
stellated triangular (see deltahedrally 

stellated triangular prism) 
volume of, 98 

prismatoid, 445 
prismoid, 147, 445 
problems, Hubert's, 38, 97, 333, 447, 451 
product 

cross, 152, 189, 223 
dot, 104, 431 
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product (continued) 
of matrix by matrix, 433 
of matrix by scalar, 432 
of matrix by vector, 432 
Menelaus', 163, 171, 218 
of row by matrix, 433 
of row by scalar, 431 
of row by vector, 431 
scalar, 431 

of vector by scalar, 431 
projection 

isometric, 18 
oblique, 18 
orthographic, 18 
parallel, 79 
trimetric, 18 

projective geometry. See geometry, 
projective 

proof, 15, 23, 25 
symbol for ending, 15 
two-column, 23 

proper intersection, 83, 96, 386 
proper subgroup, 238 
protractor axioms, 55, 6 5 - 6 6 
Ptolemy I, 32 
Ptolemy, Claudius, 220 
Pueblo culture, 331, 354, 448 

Acoma, 3, 448 
Cochiti, 408 
San Ildefonso, 228, 353, 354, 

408, 409, 446, 447 
Tesuque, 327-328, 410 
See also Chaco Canyon culture 

pure mathematics, 1, 19, 43, 49 
pyramid, 98 

altitude of, 98 
apex of, 98 
equilateral, dual of, 418 
lateral edge of, 98 
lateral face of, 98 
right regular (see right 

regular pyramid) 
volume of, 99 

Pythagoras 
biographical sketch of, 88 
equation of, 86 

Pythagoras' theorem, 85 -86 , 92, 451 
converse of, 86 

Pythagorean identity, 116 
Pythagoreans, 88, 421 

quadric surfaces, 18 
quadrilateral, 76, 79 

angle of, 79 
convex, 79, 82 

quadrilateral (continued) 
diagonal of, 79 
edge of, 79 
opposite angles, edges, vertices of, 79 
region, 82 
vertex of, 79 

quasicrystal, 335, 458 
Quigley, Stephen H., xiii 
quilting, symmetry in, 451 

Rademacher, Hans, 391, 457 
radian, 65, 110, 123, 185 
radius 

of circle, 106 
ofearth, 152 
of sphere, 108 

railroad board, 416 
range of function, 234 
ratio 

distance, invariance of, 91 
of similarity, 89, 91, 100, 276, 316 

Rausenberger, O., 420, 457 
ray(s) , 59 

initial, 112 
opposite, 59 
origin of, 59 
parallel, 76 
perpendicular, 72 

real geometry, 11 
real number system 32, 34 -36 , 40, 

49, 53, 61, 425, 430, 451 
recreational mathematics, 444 
rectangle, 80 

area of, 84 
rectangular lattice, 358 

centered, 358 
recurrence formula, 132 
reflection (β) 

across line 
three-dimensional (see half turn 

about axis) 
two-dimensional (see hne reflection) 

across point (see point reflection) 
across plane (see plane reflection) 
commuting, 250, 309, 318-319 
homothetic, 280 
rotary (see rotary reflection) 

reflection calculus. See calculus, reflection 
reflexive relation, 423 
region 

circular (see disk) 
nonpolygonal, 89 
polygonal (see polygonal region) 
polyhedral (see polyhedral region) 
quadrilateral, 82 
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region (continued) 
tetrahedral region, 93, 96 
triangular, 82, 84 

regular dodecahedron, 384-385, 391 
construction of, 393, 419 
symmetry group of, 403 
See also under polyhedron, regular 

regular hexahedron. See cube 
regular icosahedron, 385, 393, 

394, 397, 403 
construction of, 393 
symmetry group of, 403 
See also under polyhedron, regular 

regular octahedron, 139, 384, 
392, 394, 396, 397 

construction of, 392 
dihedral angle of, 139 
symmetry group of, 403 
truncated, 396 
See also under polyhedron, regular 

regular polygon, 123, 336, 410 
regular polyhedron, 384-385, 

391-393, 421, 457 
circumradius of, 419 
construction of, 385, 391 
dihedral angle of, 419 
dual of, 394 
inradius of, 419 
Schlegel diagram of, 418 

regular pyramid. See right 
regular pyramid 

regular tetrahedron, 93, 383, 384, 392, 397 
construction of, 392 
dihedral angle of, 139 
symmetry group of, 402, 403, 419 
See also under polyhedron, regular 

Reichenbach, Hans, 50, 460 
Reid, Constance, 46, 457 
relation 

binary, 423 
equivalence, 423 
reflexive, 423 
symmetric, 423 
transitive, 423 

rhombic dodecahedron, 396 
dual of, 396 
Schlegel diagram of, 418 
symmetry group of, 420 

rhombic lattice, 358 
rhombic tetrahedron, 215 

orthocenter of, 215 
rhombus, 80 
Rich, Barnett, 127, 457 
Richards, Joan L., 18, 457 

right angle, 72 
symbol for, 14 

right prism, 95 
dual of, 418 
square, volume of, 97 
symmetry group of, 400 

right regular pyramid, symmetry 
group of, 400, 401 

right triangle, 81 
area of, 84 
hypotenuse of, 81 
leg of, 81 

right-triangle trigonometry, 118, 140 
rigidity theorems, 246, 297 
rituals, religious, 33, 80, 229, 242, 327 
road signs, symmetric, 409 
Robinson, Julia, 457 
root of tree, 348 
Rosemann, W., 451 
rotary reflection, 311 

center of, 311 
mirror of, 311 

rotation (s) 
about a center, 242-243, 254 

equation of, 255, 263, 276, 288 
group of, 256, 269 

axial, 307 
equation of, 308 

homothetic, 280, 316 
rotational symmetry, 13, 228 
row(s), 430, 432 

difference of, 431 
negative of, 431 
scalar multiple of, 431 
sum of, 431 
zero, 431 

Rowe, David E„ 456 
ruler. See instruments, classical Greek 
ruler axiom, 55, 58, 130, 131 
Russell, Bertrand A. W., 17, 18, 

47, 48, 171, 458 
Russo, Lucio, 33, 458 

symmetry group, 402, 405, 422 
Saccheri, Girolamo, 78 
Sampson, Joseph H., 455 
San Francisco, 222 
San Ildefonso Pueblo, 228, 353, 

354, 408, 409, 446, 447 
SAS axiom. See axiom, congruence. 
SAS area formula, 182 
SAS similarity theorem, 91 
SAS triangle data, 179, 218, 

spherical, 222 
scalar, 100, 430, 432 
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scalar arithmetic via constructions, 51, 217 
scalar multiple 

of column, 101, 431 
of matrix, 432 
of row, 431 
of vector, 101, 431 

scale 
angular, 112, 254 
linear, 58, 130, 162 

scalene triangle, 68 
Schattschneider, Doris, 334, 380, 458 
Schlegel diagram, 418 

of cuboctahedron, 418 
of equilateral dipyramid and prism, 418 
of regular polyhedron, 418 
of rhombic dodecahedron, 418 
of square antiprism, 418 
of stellated triangular prism, 418 

Schlegel, Stanislaus Ferdinand Victor 
biographical sketch of, 419 

Schmidt, Philip Α., 457 
Schneer, Cecil J., 332, 458 
Schdnflies, Arthur, 332-333, 

404, 406, 446, 449, 458 
biographical sketch of, 335, 
symmetry group notation of, 401, 405 

School Mathematics Study Group 
(SMSG), 41-42, 53 -54 , 
62, 68, 455, 462 

axioms of, 42, 53 
biographical sketch of, 41 

Schubert, Claus, xiii 
Schwartzman, Steven, 16, 458 
Scott, Catherine J., 229, 327, 446 
screw, 312 

axis of, 323 
secant function, 118 
secant line 

of circle, 108, 141, 207 
of sphere, 110 

second, 152 
sector, circular, 124 

area of, 124 
segment ( s ) , 30, 59 

congruent, 67 
end of, 59 
equal (see equal segments) 
interior of, 26, 59 
length of, 59 
parallel, 76 
perpendicular, 72 

segment calculus, 31 
Seidenberg, Abraham, 3 2 - 3 3 , 51, 458 
self-dual polyhedron, 393 
self-evident truths, 26, 27 

self-inverse transformation, 282 
semicircle, 114 
semiperimeter, 182, 200 
Senechal, Marjorie, 334-335, 

343, 404, 449, 458-459 
series 

arithmetic, 138 
geometric, 138 

sets, 14, 54 
notation for, 14 
point, 55 

set theory, 14, 236, 335, 445 
Sewell, Charles, xii 
Seydel, Kenneth, 144, 443 
Seymour Publications, Cuisenaire Dale, 

416, 447 
Shamos, Michael Ian, 411, 457 
Shepherd, Geoffrey C , 335, 450 
Shubnikov, Aleksei Vasilevich, 335, 459 
Siamese dodecahedron, 399, 420 -421 

symmetry group of, 420 
side of line in plane, 25 -26 , 

60, 62, 64, 188 
side of plane in space, 60, 62, 190, 191 
side of point in line, 6 0 - 6 2 
sign, Kansas road, 409 
similar figures, 227 
similar tetrahedra, 94, 100 
similar triangles, 87, 8 9 - 9 2 
similarity (similarities), 11, 228, 

240, 276, 292, 317, 452, 453 

classification of (see under 
classification) 

classification theorem for, 280 
equation of, 278, 288 
even, 280, 316 
group of, 278, 316 
odd, 280, 316 
uniqueness theorem for, 278, 316 

similarity ratio, 89, 91, 100, 276, 316 
similarity theorem 

AA, 91 
SAS, 91 
SSS, 91 

Simons, Leo G., 447 
simple closed polygon, 336 

interior of, 411 
simplex, 130 
simply connected polygonal region, 386 
simply connected polyhedron, 389 
sine, 116 
sine double angle formula, 181 
sine half angle formula, 181 
sine sum and difference formulas, 181 
sines, law of, 178 
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singular linear system, 437 
singular matrix, 437 
sinus, 116 
sipatsi, 450 
Sivaramamurti, C , 228, 459 
Slater, Michael B. P., 454 
Smith, David Eugene, 18, 446, 

447, 449, 459, 461 
Smith, Norman Kemp, 452 
SMSG. See School Mathematics 

Study Group 
soap bubbles, 12 
Socrates, 421 
software engineering, 133, 152 
software, mathematical, xii, 12, 18, 212, 

221, 224, 281, 317, 321, 323, 447, 454 
solid geometry, 13, 295, 385, 443, 459, 461 
solution manual, xii, 16 
solving triangles, 218 
sophism, 23, 140 
space, 55 

partition of, 132 
space separation theorem, 61-62 
Speiser, Andreas, 333, 353, 448, 455, 459 
sphere, 108 

center of, 108 
chord of, 109 
diameter of, 109 
exterior of, 108 
interior of, 108 
parametric equations of, 116 
radius of, 108 
secant line of, 110 
tangent, 109 
tangent line to, 110 
tangent plane to, 110 
See also ball 

spherical cap, 148 
area of, 151 
volume of, 148 

spherical law 
of cosines, 222 
of sines, 221 

spherical lune, 152 
spherical triangle 

area of, 151 
edge of, 150 

spherical triangle sum theorem, 152 
spherical trigonometry, 149-150, 

164, 212, 221-223 
square, 80 

area of, 84 
square antiprism, 147 

dual of, 418 
Schlegel diagram of, 418 

square antiprism (continued) 
stellation of, 398 
symmetry group of, 402 

square lattice, 358 
square linear system, 436 
square matrix, 432 
SSA triangle data, 140, 218-219, 

spherical, 222 
SSS area formula, 182 
SSS similarity theorem, 91 
SSS triangle data, 179, 218, 

spherical, 222 
St. Petersburg, 301, 381 
stack of balls, 328, 330 
statistics, 11 
Staudt, Georg Karl Christian 

von, 390, 459, 
biographical sketch of, 406 

Steiner, Hans-Georg, 460 
Stella octangula, 403, 404 

symmetry group of, 403 
stellation 

of polygon, 337 
of polyhedron, 397 
of square antiprism, 398 
of triangular prism (see deltahedrally 

stellated triangular prism) 
Stevens, Peter S., 334, 460 
Stewart, Β. M., 391, 416, 460 
Stewart, Ian, 334, 460 
straight angle, 111 
straightedge. See instruments, 

classical Greek 
strictly increasing function, 234 
structure theorem for isometries 

plane, 230, 258, 260 
three-dimensional, 304 

subgroup, 238 
proper, 238 

subset, 14 
substitution, linear, 434 
subtended arc, 114 
subtraction 

of columns, 101, 431 
of matrices, 432 
of rows, 431 
of vectors, 431 

Sulvasutras, 33 
sum 

of columns, 101, 430 
of matrices, 432 
of rows, 431 
of vectors, 101, 430 
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sum formula (s) 
cosine and sine, 181 
tangent, 219 

superposition, 31 
Suppes, Patrick, 450 
supplementary-angle identity, 117 
surface 

polyhedral (see polyhedral surface) 
quadric, 18 

surjective function, 236 
surveying, v, 22, 86 
surveys of geometry. See geometry 

surveys 
Suss, Wilhelm, 444 
symmetric figure, 228, 330 
symmetric group, 238, 330 
symmetric relation, 423 
Symmetries, 416, 460 
symmetry, 13, 228, 330, 449, 450 

bilateral, 228 
in cast ironwork, 353 
of household objects, 407-409 
in literature, 459 
in logos, 409 
in machinery, 409 
in music, 459 
in needlework, 353 
in physics, 460 
in pottery (see pottery) 
in quilting, 451 
in road signs, 409 
rotational, 13, 228 
same, 338-339, 359-360 
in textiles, 450 
in tools, 409, 411 
translational, 13, 228 

symmetry group(s), 330, 447 
classification of (see under 

classification) 
of cube, 403, 419 
of cuboctahedron, 420 
of deltahedron, 420 
of polygon, 340 
of polyhedron, 399 
of regular dodecahedron, 403 
of regular icosahedron, 403 
of regular octahedron, 403 
of regular tetrahedron, 402, 403, 419 
of rhombic dodecahedron, 420 
of right regular prism, 400 
of right regular pyramid, 401 
Schonfhes notation for, 401, 405 
of square antiprism, 402 
of Stella octangula, 403 

& symmetry group, 404, 405 
tangent circles, 107 
tangent double angle formula, 219 
tangent function, 110, 117 
tangent half angle formula, 219 
tangent line 

to circle, 108, 142, 207 
to sphere, 110 
to two circles, 142 

tangent plane and sphere, 110 
tangent spheres, 109 
tangent sum and difference formulas, 219 
Tarski, Alfred, 450 
&d symmetry group, 402, 405, 419 
Tesuque Pueblo, 327-328, 410 
tetrahedral region, 93, 96 
tetrahedron (tetrahedra), 93 

altitude of, 215 
angle bisector of, 214 
centroid of, 215 
circumcenter of, 214 
circumradius of, 214 
circumsphere of, 214 
congruent, 93, 96, 135 
edge of, 93 
excenter of, 215 
exradius of, 214 
exsphere of, 214 
external angle bisector of, 214 
face of, 93 
incenter of, 214 
inradius of, 214 
insphere of, 214 
median of, 214 
opposite edges of, 93 
opposite face and vertex of, 93 
oriented, 305 
regular (see regular tetrahedron) 
rhombic (see rhombic tetrahedron) 
similar, 94, 100 
theory of, 212, 214 
volume of, 96, 191 

textiles, symmetry in, 450 
3j, symmetry group, 403-404 , 405, 422 
Thales, 88 
Theaetetus, 421 
Theodorus, 421 
theorem, 14, 20, 26, 42 

AA similarity, 91 
alternate interior angles, 76-77 
altitudes, 161, 175, 214, 216 
angle bisectors, 159, 161, 175, 

199, 215, 224 
arc addition, 114 
ASA congruence, 68 
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theorem (continued) 
Bolyai's, 454 
Ceva's, 172, 17G, 221, 223 
classification (see classification 

theorem) 
concurrence, 158, 171 
congruence (see congruence theorem) 
conjugacy, 271, 300 
contraction mapping, 280 
crossbar, 65 
Desargues', 7, 9, 57, 165-170, 

224, 314, 447, 454 
dihedral angle, 75 
edge bisectors, 159, 213, 214 
Euler's, 387, 389, 444, 448, 453, 460 
exterior angle, 69, 78 
Fagnano's, 284 
Feuerbach's, 201, 206, 

210-211, 218, 224 
fixpoint, 278, 316 
frieze classification, 351 
fundamental, of algebra, 454 
hinge, 70-71 
invariance of betweenness, 79 
isosceles triangle, 68 
Leonardo's, 343 
line separation, 61-62 
medians, 160, 174, 177, 213, 214 

for tetrahedra, 214 
Menelaus', 163, 218, 223 

spherical, 221 
parallel projection, 79 
parallelogram, 80 
perpendicular bisector, 73 
plane separation, 61-62 
Pythagoras', 85-86, 92, 451 

converse of, 86 
rigidity, 246, 297 
SAA congruence, 69, 70, 78 
SAS similarity, 91 
similarity (see similarity theorem) 
space separation, 61-62 
spherical triangle sum, 152 
SSS congruence, 68 
SSS similarity, 91 
structure (see structure theorem) 
three-reflections, 324-325 
transitivity (see transitivity theorem) 
triangle sum (see triangle sum theorem) 
uniqueness (see uniqueness theorem) 
vertical angle, 66 
wallpaper classification, 361, 368, 379 

theory, 2 0 - 2 1 , 45 -47 
three-reflections theorems, 324-325 
Thiel, Christian, 449 

Thomas, George B., Jr., 152, 184, 460 
Thomsen, Gerhard, 290-292, 314, 325, 

445, 453, 460-461 
biographical sketch of, 291 

Thomson, James, 123, 455 
through, 55 
tick marks, 14 
tiling, 450 
Timaeus, 391, 421, 456 
Toepell, Michael-Markus, 46, 56, 461 
Toeplitz, Otto, 391, 457 
tool kit, 151-152, 212, 223 

for analytic geometry, 152-155, 213, 223 
guidelines for, 152 

tools, symmetry in, 409, 411 
topology, 10 
toroid, 460 
transcendental number, 123 
transfer, 242 
transformation, 227, 237, 281-282 

affine, 359, 448, 452 
coordinate, 228, 289, 299 
of coordinates, 228, 271, 289, 299-300 
self-inverse, 282 

transformation group(s), xi, 231, 238 
isomorphic, 360 

transformational geometry. See 
geometry, transformational 

transitive group, 403 
transitive relation, 423 
transitivity theorem 

for parallel lines, 77 
for parallel planes, 79 
for similarity, 90 

translation(s), 241-242, 251, 305-306 
angle between, 253 
equation of, 251, 305-306 
fundamental, 345, 357, 413 
group of, 252, 269, 306 
independent, 331 
length of, 253 
parallel, 253 
trivial, 252 
vector of, 251 

translation group, 252, 306 
translational symmetry, 13, 228 
transpose of matrix, 434 
trapezoid, 80 

altitude of, 84 
area of, 85 
base of, 84 
isosceles, 80 

tree, 348 
branch of, 348 
decision, 348, 368, 404, 412 
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tree (continued) 
frieze, 348-349, 412 
leaf of, 348 
root of, 348 
wallpaper, 368, 369, 379 

triangle ( s ) , 60 
area of, 85, 87 (see also area formula) 
base of, 84, 87 
centroid of (see centroid, of triangle) 
circumcenter of, 158-159, 204, 212 
circumradius of, 159, 178, 183, 212 
congruent, 67-70, 84, 141 
edge of, 61 
equilateral, 31, 68 
excenter of, 200 
exradius of, 200 
external angle bisector of, 199 
Gergonne point of, 201 
incenterof, 159-160, 199, 212 
incircle of, 159-160, 200, 211, 461 
inradius of, 160, 161, 200, 212 
interior of, 145 
isosceles, 24, 68 
medial, 160 

median of, 160, 174, 177, 193, 214 
Nagel point of, 201, 212 
oblique, 81 
opposite edge and vertex of, 61 
orthic, 196, 284 
orthocenter of, 161 
part of, 139 
perimeter of, 182 
polar, 222 
right (see right triangle) 
scalene, 68 
similar, 87, 89 
spherical (see spherical triangle) 
vertex of, 60 

triangle geometry, 157, 452 
triangle inequality, 70 

converse of, 86 
triangle notation, 158, 162, 196, 200 
triangle solving, 218 
triangle sum theorem 

planar, 50, 78 
spherical, 152 
testing the, 22 

triangular linear system, upper, 436 
triangular matrix, upper, 436 
triangular prism, deltahedrally 

stellated. See deltahedrally stellated 
triangular prism 

triangular region, 82, 84 
triangulation, 411 
Trigg, Charles W., 398, 461 

trigonometric functions, 110, 115-118 
approximating values of, 117, 

184-186, 220-221 
constructing values of, 184 
tables of values of, 117, 220 

trigonometry, 453, 457 
plane, 110, 139, 177, 212, 218 
right-triangle, 118, 140 
spherical, 149-150, 164, 212, 221-223 

trihedral angle(s) , 130 
congruent, 135 
interior of, 131 
vertex of, 130 

trihedral vertex of polyhedron, 398 
trimetric projection, 18 
trivial group, 238 
trivial translation, 252 
Trudeau, Richard J., 22, 32, 461 
truncated cube, 396 
truncated regular octahedron, 396 
Tse-Pe, 409-410 
Tuller, Annita, 17, 461 
two-column proofs, 23 
typeface, 409, 411 

U.S. Geological Survey (USGS), ν 
undefined concept, 26, 28, 43 -44 , 47, 53, 

55, 58, 65, 84, 96 
Unger, Leo, 451 
union operator, 14 
uniqueness theorem 

for isometries, 246, 297 
for similarities, 278, 316 

unit circle, 116 
unit row or vector, 435 
unproved theorem. See axiom 
upper bound, 425 
upper triangular linear system, 436 
upper triangular matrix, 436 
upward pass, 437 
USGS (U.S. Geological Survey), ν 

valency of polyhedral vertex, 420 
value, function, 233 
vanishing point, 6 
vector(s), 101, 430 

angle between, 104, 187 
column, 101, 430 
dependent, 103 
difference of, 101, 430 
of glide reflection, 261 
length of, 101 
negative of, 430 
norm of, 101 
parallel, 103 
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vector (β) (continued) 
perpendicular, 104 
scalar multiple of, 101, 431 
sum of, 101, 430 
of translation, 251 
unit, 435 

vector algebra. See algebra, linear 
Venice, 242 
Veraart. Albert, 449 
vertex (vertices) 

of angle, 64 
path of, 388 
of polygonal region, 83 
of polyhedral surface (see 

polyhedral vertex) 
of quadrilateral, 79 
of triangle, 60 
of trihedral angle, 130 
trihedral (see polyhedral vertex) 

vertex-connected polyhedron, 388 
vertical, 345, 400 
vertical angle theorem, 66 
vertical angles, 66 
Vierergruppe, 343 
visual geometry, 333, 451 
volume, 55, 92, 96-97 , 125 

addition, 96 
axioms, 55, 96, 125, 447 
of ball, 125, 147 
of box, 98 
of cone, 125 
of cube, 96 
of cylinder, 125 
of polyhedral region, 96, 447 
of prism, 98 
of pyramid, 99 
of right square prism, 97 
of sphere, 125, 147 
of spherical cap, 148 
of tetrahedron, 96, 191 

volume formula, determinant, 191 

W. Η. Η. H., 162, 461 
Wade, David, 414, 461 
Waerden, Bartel Leendert van der, 1, 149, 

150, 220, 420, 450, 454, 461 
wallpaper group(s), 353, 356, 

368, 451, 458 
center of, 367 
cm, 365-366 
cmm, 377, 379 
notation for, 380, 458 
p i , 356,360,361 
p2, 376,379 

wallpaper group (continued) 
p3, 371,373 
p31m, 372,373 
p3ml, 372,373 
p4, 374, 375 
p4g, 375 
p4m, 375 
p6, 356,370 
p6m, 370 
pg, 364-366 
pgg, 379 
pm, 365, 366 
pmg, 378,379 
pmm, 378, 379 

See also classification; classification 
theorem 

wallpaper ornament, 331-333, 355, 
413-416, 449, 457. See also 
wallpaper group 

wallpaper tree, 368, 369, 379 
Wain, William, xii 
Washburn, Dorothy K, 334, 353, 

368, 447, 461 
Wentworth, George, 461 
Wetzel, John E., 133, 461 
Weyl, Hermann, 334, 343, 457, 461 
wheel on Indian flag, 228-229 
Whitehead, Alfred North, 169, 458, 462 

biographical sketch of, 171 
Wiener, Hermann, 237, 312, 462 

biographical sketch of, 314 
Wilder, Raymond L., 51, 462 
Wills, Gary, 27, 462 
Winternitz, Arthur, 136, 462 
Wooton, William, 41, 62, 455, 462 
WordPerfect, xii, 454 
Worrall, John, 453 
Wyoming, ν 

area of, 151 

X(Plore), xii, 454 

Yale, Paul B., 335, 462 
Young, John Wesley, 452 

Zahar, Elie, 453 
zero angle, 130 
zero matrix, 432 
zero row, 431 
zero vector, 430 
Zuckerman, Herbert, 457 
Zurich, 333, 355 
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