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Preface�

The November Statement 

My first glimpse into mathematics, as opposed to arithmetic, came on a 
Saturday afternoon in late fall when I was about seven years old. I wanted 
to go out and toss a football around with my father. My father, however, 
had other ideas. 

For as long as I can remember, my father always kept a meticulous 
record of his monthly expenses on a large yellow sheet that, in retrospect, 
was a precursor of an Excel spreadsheet. One yellow sheet sufficed for 
each month; at the top, my father wrote the month and year, and the rest 
of the sheet was devoted to income and expenses. On this particular fall 
day, the sheet had failed to balance by 36 cents, and my father wanted to 
find the discrepancy. 

I asked him how long it would take, and he said he didn’t think it would 
take too long, because errors that were divisible by 9 were usually the re-
sult of writing numbers down in the wrong order; writing 84 instead of 
48; 84�48�36. He said this always happened; whenever you wrote down 



a two-digit number, reversed the digits, and subtracted one from the 
other, the result was always divisible by 9.1 

Seeing as I wasn’t going to be able to toss a football around for a while, I 
got a piece of paper and started checking my father’s statement. Every 
number I tried worked; 72 �27�45, which was divisible by 9. After a 
while, my father found the error; or at least decided that maybe he should 
play football with me. But the idea that there were patterns in numbers 
took root in my mind; it was the first time that I realized there was more 
to arithmetic than the addition and multiplication tables. 

Over the years, I have learned about mathematics and related subjects 
from four sources. In addition to my father, who was still attending Sun-
day-morning mathematics lectures when he was in his seventies, I was 
fortunate to have some excellent teachers in high school, college, and 
graduate school. When the Russians launched Sputnik in 1957, schools 
scrambled desperately to prepare students for careers in science and engi-
neering; the Advanced Placement courses took on added importance. I 
was in one of the first such courses, and took a wonderful course in calcu-
lus my senior year in high school from Dr. Henry Swain. One of my re-
grets is that I never got a chance to tell him that I had, to some extent, 
followed in his footsteps. 

In college I took several courses from Professor George Seligman, and I 
was delighted to have the opportunity to communicate with him as I was 
writing this book. However, the greatest stroke of good fortune in my ca-
reer was to have Professor William Bade as my thesis adviser. He was not 
only a wonderful teacher, but an inspired and extremely tolerant mentor, 
as I was not the most dedicated of graduate students (for which I blame 
an addiction to duplicate bridge). The most memorable day of my gradu-
ate career was not the day I finished my thesis, but the day Bill received a 
very interesting and relevant paper.2 We met at two and started going 
over the paper, broke for dinner around 6:30, and finished, somewhat 
bleary-eyed, around midnight. The paper itself was a breakthrough in the 
field, but the experience of going through it, discussing the mathematics 
and speculating on how I might use it to develop a thesis, made me real-
ize that this was something I wanted to do. 

There are a number of authors whose books had a profound effect on 
me. There are too many to list, but the most memorable books were 
George Gamow’s One, Two, Three . . . Infinity, Carl Sagan’s Cosmos, James 
Burke’s Connections, John Casti’s Paradigms Lost, and Brian Greene’s The 
Elegant Universe and The Fabric of the Cosmos. Only two of these books 
were published during the same decade, which attests to a long-standing 
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tradition of excellence in science writing. I’d be happy if this book was 
mentioned in the same breath as any of the above. 

I’ve had many colleagues over the years with whom I’ve discussed math 
and science, but two in particular stand out: Professors Robert Mena and 
Kent Merryfield at California State University, Long Beach. Both are ex-
cellent mathematicians and educators with a far greater knowledge and 
appreciation of the history of mathematics than I have, and writing this 
book was made considerably easier by their contributions. 

There have been several individuals of varying technical backgrounds 
with whom I have had illuminating conversations. My understanding of 
some of the ideas in this book was definitely helped by conversations with 
Charles Brenner, Pete Clay, Richard Helfant, Carl Stone, and David Wilc-
zynski, and I am grateful to all of them for helping me to think through 
some of the concepts and devising different ways of explaining them. 

Finally, I’d like to thank my agent, Jodie Rhodes, without whose persist-
ence this book may never have seen the light of day, and my editor, T. J. 
Kelleher, without whose suggestions both the structure and the presenta-
tions in this book would have been much less coherent—T.J. has the rare 
gift of improving a book on both the macro and the micro level. And, of 
course, my wife, Linda, who contributed absolutely nothing to the book, 
but contributed inestimably to all other aspects of my life. 

NOTES 
1. Any two-digit number can be written as 10T�U, where T is the tens digit and U 

the units digit. Reversing the digits gives the number 10U�T, and subtracting 
the second from the first yields 10T�U� (10U�T)�9T�9 U�9(T�U), which 
is clearly divisible by 9. 

2. B. E. Johnson, “Continuity of Homomorphisms of Algebras of Operators,” Jour-
nal of the London Mathematical Society, 1967: pp. 537–541. It was only four pages 
long, but reading research mathematics is not like reading the newspaper. Al-
though it was not a technically difficult paper (no involved calculations, which 
can slow down the pace of reading to a crawl), it contained a number of incredi-
bly ingenious ideas that neither Bill nor I had seen before. This paper essentially 
made my thesis, as I was able to adapt some of Johnson’s ideas to the problem 
that I had been addressing. 
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Introduction�

Not Just a Rock 

We advance, both as individuals and as a species, by solving problems. As 
a rule of thumb, the reward for solving problems increases with the dif-
ficulty of the problem. Part of the appeal of solving a difficult problem is 
the intellectual challenge, but a reward that often accompanies the solu-
tions to such problems is the potential to accomplish amazing feats. After 
Archimedes discovered the principle of the lever, he remarked that if he 
were given a lever and a place to stand, he could move Earth.1 The sense 
of omnipotence displayed in this statement can also be found in the sense 
of omniscience of a similar observation made by the eighteenth-century 
French mathematician and physicist Pierre-Simon de Laplace. Laplace 
made major contributions to celestial mechanics, and stated that if he 
knew the position and velocity of everything at a given moment, he would 
be able to predict where everything would be at all times in the future. 

“Given for one instant an intelligence which could comprehend all the 
forces by which nature is animated and the respective positions of the be-
ings which compose it, if moreover this intelligence were vast enough to 



submit these data to analysis, it would embrace in the same formula both 
the movements of the largest bodies in the universe and those of the 
lightest atom; to it nothing would be uncertain, and the future as the past 
would be present to its eyes.”2 

Of course, these statements were rhetorical, but they were made to em-
phasize the far-reaching potential of the solution to the problem. A casual 
onlooker, seeing Archimedes use a lever to reposition a heavy rock, might 
have said, “OK, that’s useful, but it’s just a rock.” Archimedes could have 
replied, “It’s not just this rock—it’s any object whatsoever, and I can tell 
you what length lever I need to move that object and how much effort I 
will have to exert in order to move the object to a desired position.” 

Sometimes we are so impressed with the more dazzling achievements 
of science and engineering that our inability to solve seemingly easy (or 
easier) problems appears puzzling. During the 1960s, one could occa-
sionally hear the following comment: If they can put a man on the moon, 
how come they can’t cure the common cold? 

We are a little more scientifically sophisticated now, and most people are 
willing to cut science some slack on problems like this, recognizing that 
curing the common cold is a more difficult problem than it initially 
seems. The general feeling, though, is that we just haven’t found a cure 
for the common cold—yet. It’s obviously a difficult problem, but consid-
ering the potential payoff, it’s no surprise that medical researchers are 
busily trying, and most of us would probably expect them to find a cure 
sooner or later. Sadly, for those suffering from runny noses and sore 
throats, there is a very real possibility that a cure for the common cold 
may never be found, not because we aren’t clever enough to find it, but 
because it may not exist. One of the remarkable discoveries of the twen-
tieth century is a common thread that runs through mathematics, the 
natural sciences, and the social sciences—there are things that we cannot 
know or do, and problems that are incapable of solution. We know, and 
have known for some time, that humans are neither omnipotent nor om-
niscient, but we have only recently discovered that omnipotence and om-
niscience may simply not exist. 

When we think of the scientific developments of the twentieth century, 
we think of the giant strides that were made in practically every disci-
pline, from astronomy through zoology. The structure of DNA. The the-
ory of relativity. Plate tectonics. Genetic engineering. The expanding 
universe. All of these breakthroughs have contributed immeasurably to 
our knowledge of the physical universe, and some have already had a sig-
nificant impact on our daily lives. This is the great appeal of science—it 
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opens doors for us to learn fascinating things and, even better, to use 
what we learn to make our lives richer beyond imagining. 

However, the twentieth century also witnessed three eye-opening re-
sults that demonstrated how there are limits—limits to what we can 
know and do in the physical universe, limits to what truths we can dis-
cover using mathematical logic, and limits to what we can achieve in im-
plementing democracy. The most well-known of the three is Werner 
Heisenberg’s uncertainty principle, discovered in 1927. The uncertainty 
principle shows that not even an individual possessed of omniscience 
could have supplied Laplace with the positions and velocities of all the 
objects in the universe, because the positions and velocities of those ob-
jects cannot be simultaneously determined. Kurt Gödel’s incompleteness 
theorem, proved a decade later, reveals the inadequacy of logic to deter-
mine mathematical truth. Roughly fifteen years after Gödel established 
the incompleteness theorem, Kenneth Arrow showed that there is no 
method of tabulating votes that can satisfactorily translate the preferences 
of the individual voters into the preferences of the society to which those 
voters belong. The second half of the twentieth century witnessed a pro-
fusion of results in a number of areas, demonstrating how our ability to 
know and to do is limited, but these are unquestionably the Big Three. 

There are a number of common elements to these three results. The 
first is that they are all mathematical results, whose validity has been es-
tablished by mathematical proof. 

It is certainly not surprising that Gödel’s incompleteness theorem, 
which is obviously a result about mathematics, was established through 
mathematical argument. It is also not surprising that Heisenberg’s un-
certainty principle is the result of mathematics—we have been taught 
since grade school that mathematics is one of the most important tools of 
science, and physics is a discipline that relies heavily on mathematics. 
However, when we think of the social sciences, we do not usually think of 
mathematics. Nonetheless, Arrow’s theorem is completely mathematical, 
in a sense even more so than Heisenberg’s uncertainty principle, which 
is a mathematical result derived from hypotheses about the physical 
world. 

Arrow’s theorem is as “pure” as the “purest” of mathematics—it deals 
with functions, one of the most important mathematical concepts. Math-
ematicians study all types of functions, but the properties of the func-
tions studied are sometimes dictated by specific situations. For instance, 
a surveyor would be interested in the properties of trigonometric func-
tions, and might embark upon a study of those functions realizing that 
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knowledge of their properties could help with problems in surveying. 
The properties of the functions discussed in Arrow’s theorem are clearly 
motivated by the problem Arrow initially started to investigate—how to 
translate the preferences of individuals (as expressed by voting) into the 
results of an election. 

The utility of mathematics is due in large measure to the wide variety of 
situations that are amenable to mathematical analysis. The following tale 
has been repeated time and time again—some mathematician does 
something that seems of technical interest only, it sits unexamined for 
years (except possibly by other mathematicians), and then somebody 
finds a totally unexpected practical use for it. 

An instance of this situation that affects practically everyone in the civi-
lized world almost every day would have greatly surprised G. H. Hardy, 
an eminent British mathematician who lived during the first half of the 
twentieth century. Hardy wrote a fascinating book (A Mathematician’s 
Apology), in which he described his passion for the aesthetics of mathe-
matics. Hardy felt that he had spent his life in the search for beauty in the 
patterns of numbers, and that he should be regarded in the same fashion 
as a painter or a poet, who spends his or her life in an attempt to create 
beauty. As Hardy put it, “a mathematician, like a painter or a poet, is a 
maker of patterns. If his patterns are more permanent than theirs, it is 
because they are made with ideas.”3 

Hardy made great contributions to the theory of numbers, but viewed 
his work and that of his colleagues as mathematical aesthetics—possess-
ing beauty for those capable of appreciating it, but having no practical 
value. “I have never done anything ‘useful’. No discovery of mine has 
made, or is likely to make, directly or indirectly, for good or ill, the least 
difference to the amenity of the world,”4 he declared, and undoubtedly felt 
the same way about his coworkers in number theory. Hardy did not fore-
see that within fifty years of his death, the world would rely heavily on a 
phenomenon that he spent a good portion of his career investigating. 

Prime numbers are whole numbers that have no whole number divisors 
other than 1 and the number itself; 3 and 5 are primes, but 4 is not be-
cause it is divisible by 2. As one looks at larger and larger numbers, the 
primes become relatively more infrequent; there are 25 primes between 
1 and 100, but only 16 between 1,000 and 1,100, and only 9 between 7,000 
and 7,100. Because prime numbers become increasingly rare, it becomes 
extremely difficult to factor very large numbers that are the product of 
two primes, in the sense that it takes a lot of time to find the two primes 
that are the factors (a recent experiment took over nine months with a  
large network of computers). We rely on this fact every day, when we type 
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in a password or take money from an ATM, because this difficulty in fac-
toring large numbers that are the product of two primes is the corner-
stone of many of today’s computerized security systems. 

Like number theory, each of the Big Three has had a profound, although 
somewhat delayed, impact. It took a while, but the uncertainty principle, 
and the science of quantum mechanics of which it is a part, has brought 
us most of the microelectronic revolution—computers, lasers, magnetic 
resonance imagers, the whole nine yards. The importance of Gödel’s 
theorem was not initially appreciated by many in the mathematical com-
munity, but that result has since spawned not only branches of mathe-
matics but also branches of philosophy, extending both the variety of the 
things we know, the things we don’t, and the criteria by which we evalu-
ate whether we know or can know. Arrow did not receive a Nobel Prize 
until twenty years after his theorem was first published, but this result 
has significantly expanded both the range of topics and the methods of 
studying those topics in the social sciences, as well as having practical  
applications to such problems as the determination of costs in network 
routing problems (how to transmit a message from Baltimore to Beijing 
as cheaply as possible). 

Finally, a surprising common element uniting these three results is that 
they are—well, surprising (although mathematicians prefer the word 
counterintuitive, which sounds much more impressive than  surprising). 
Each of these three results was an intellectual bombshell, exploding pre-
conceptions held by many of the leading experts in their respective fields. 
Heisenberg’s uncertainty principle would have astounded Laplace and 
the many other physicists who shared Laplace’s deterministic vision of 
the universe. At the same mathematics conference that David Hilbert, the 
leading mathematician of the day, was describing to a rapt audience his 
vision of how mathematical truth might some day be automatically ascer-
tained, in a back room far from the limelight Gödel was showing that 
there were some truths whose validity could never be proven. Social sci-
entists had searched for the ideal method of voting even before the suc-
cess of the American and French Revolutions, yet before he even finished 
graduate school, Arrow was able to show that this was an impossible 
goal. 

The Difficult We Do Today, but the Impossible Takes Forever 

There is a fairly simple problem that can be used to illustrate that some-
thing is impossible. Suppose that you have an ordinary eight-by-eight 
chessboard and a supply of tiles. Each tile is a rectangle whose length is 
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twice the length of a single square of the chessboard, and whose width is 
the length of one square of the chessboard, so that each tile covers exactly 
two adjacent squares of the chessboard. 

It is easy to cover the chessboard exactly with 32 tiles, so that all squares 
are covered and no tile extends beyond the boundary of the chessboard. 
Since each row can be covered by laying four tiles end to end, do that for 
each of the eight rows. Now, suppose that you remove the two squares at 
the ends of a long diagonal from the chessboard; these might be the 
square at the left end of the back row and the square at the right end of 
the front row. This leaves a board that has only 62 squares remaining. 
Can you cover this board exactly with 31 tiles, so that every square is cov-
ered? 

As you might suspect from the lead-in to this section, or from some ex-
perimentation, this cannot be done; there is a simple, and elegant, reason 
for this. Imagine that the chessboard is colored in the usual way, with al-
ternating black and red squares. Each tile covers precisely 1 black square 
and 1 red square, so the 31 tiles will cover 31 black squares and 31 red 
squares. If you look at a chessboard, the square at the left end of the back 
row and the square at the right end of the front row have the same color 
(we’ll assume they are both black), so removing them leaves a board with 
32 red squares and 30 black squares—which the 31 tiles cannot cover. It’s 
a simple matter of counting; the clever part is seeing what to count. 

One of the reasons for the power of both science and mathematics is 
that once a productive line of reasoning is established, there is a rush to 
extend the range of problems to which the line of reasoning applies. The 
above problem might be classed as a “hidden pattern”—it is obvious that 
each tile covers two squares, but without the coloring pattern normally 
associated with chessboards, it is not an easy problem to solve. Discover-
ing the hidden pattern is often the key to mathematical and scientific 
discoveries. 

When There Is No Music out There 

We are all familiar with the concept of writer’s block: the inability of a 
writer to come up with a good idea. The same thing can happen to math-
ematicians and scientists, but there is another type of block that exists for 
the mathematician or scientist for which there is no analogy from the 
arts. A mathematician or scientist may work on a problem that has no 
answer. A composer might be able to come to grips with the idea that, at 
the moment, he is incapable of composing music, but he would never ac-
cept the idea that there simply is no music out there to compose. Mathe-
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maticians and scientists are keenly aware that nature may frustrate all 
their efforts. Sometimes, there is no music out there. 

Physics is currently embarked on a quest started by Albert Einstein, 
who spent perhaps the last half of his life in search of a unified field the-
ory, which physicists now call a TOE, for theory of everything. Not all 
great physicists search for a TOE—Richard Feynman once remarked 
that, “If it turns out there is a simple ultimate law that explains every-
thing, so be it. . . . If it turns out it’s like an onion with millions of layers, 
and we’re sick and tired of looking at layers, then that’s the way it is.”5 

Feynman may not have been looking for a TOE, but Einstein was, and 
many top physicists are. 

Nevertheless, Einstein was almost certainly aware that there may be no 
TOE—simple and elegant, complicated and messy, or anything in be-
tween. During the latter portion of their careers, both Einstein and Gödel 
were at the Institute for Advanced Study in Princeton, New Jersey. Gödel, 
reclusive and paranoid, would talk only to Einstein. Given Gödel’s proof, 
that some things are unknowable, it is a reasonable conjecture that they 
discussed the possibility that there was no unified field theory to be dis-
covered, and that Einstein was chasing a wild goose. However, Einstein 
could afford to spend his creative efforts chasing a tantalizing wild 
goose—for he had made his reputation. 

It may seem surprising that even those who work in mathematics and 
science without the credentials of an Einstein do not live in fear of work-
ing on a problem that turns out to be unsolvable. Such problems have 
occurred with some frequency throughout history—and quite often, even 
though the wild goose escapes, the result has not been failure, but the 
discovery of something new that is usually interesting and sometimes 
immensely practical. The stories of those “failures,” and the surprising 
developments that occurred because of them, form the subject matter of 
this book. 

Of Bank Robbers, Mathematicians, and Scientists 

When asked why he robbed banks, Willie Sutton replied, “Because that’s 
where the money is.” Every mathematician or scientist dreams of making 
a remarkable discovery—not because that’s where the money is (although 
fame and fortune do occasionally await those who make such discover-
ies), but because that’s where the fascination is: to be the first to observe, 
or create, or understand something truly wonderful. 

Even if that’s where the wild geese lurk, we have a desperate need to 
solve some critical problems—and a strong desire to solve some intriguing 
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ones—and the only way we are going to do that is to train highly compe-
tent people, and some brilliant ones, to attack those problems with the 
tools of mathematics and science. For centuries, we sought a philoso-
pher’s stone whose touch would transmute base metals into gold. We 
failed, but the desire to find the philosopher’s stone led to the atomic 
theory and an understanding of chemistry, which allows us to reshape 
the material we find in the world to new and better uses. Is that not a 
much more desirable result for mankind than transmuting base metals 
into gold? 

At the very least, learning what we cannot know and cannot do prevents 
us from needlessly expending resources in a futile quest—only Harry 
Potter would bother to search today for the philosopher’s stone. We have 
no way of knowing—yet—if the quest for a TOE is the philosopher’s 
stone search of today. However, if history is any guide, we will discover 
again that failing to find a wild goose might still lead us to a golden egg. 

The Agent, the Editor, and Stephen Hawking’s Publisher 

In the introduction to his best seller A Brief History of Time, Stephen 
Hawking mentions that his publisher stated that for each equation he in-
cluded, the readership would drop by 50 percent. Nonetheless, Hawking 
had sufficient confidence in his readership that he was willing to include 
Einstein’s classic equation E �mc2. 

I’d like to think that the readers of this book are made of sterner stuff. 
After all, it’s a book about mathematics, and equations represent not only 
great truths, such as the one in Einstein’s equation, but the connecting 
threads that lead to those truths. In addition to Hawking’s publisher, I 
have received input from my editor, who feels that mathematics is abso-
lutely necessary in a book about mathematics, and my agent, who is 
happy to read about mathematics, but is decidedly unenthusiastic about 
reading mathematics. 

There is clearly a fine line here, and so I have tried to write the book to 
allow those who want to skip a section in which mathematics is done to 
do so without losing the gist of what is being said. Those brave souls who 
want to follow the mathematics can do so with only a high-school math-
ematics background (no calculus). However, readers interested in pursu-
ing the subject in greater depth can find references in the Notes (and 
occasionally a greater depth of treatment). In many instances, there is ac-
cessible material on the Web, and for most people it is easier to type in a 
URL than it is to chase something down in the library (especially since 
the neighborhood library is usually lacking in books outlining the math-
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ematics of Galois theory or quantum mechanics). As a result, there are 
many references to Web sites in the appendix—but Web sites do disap-
pear, and I hope the reader will forgive the occasional reference to such a 
site. 

I hope that Hawking’s publisher is wrong. If he is right and the popula-
tion of the world is 6 billion, the thirty-third equation will reduce the po-
tential readership for this book to less than a single reader. 

NOTES 
1. “Give me but one firm spot on which to stand, and I will move the Earth.” The 

Oxford Dictionary of Quotations, 2nd ed. (London: Oxford University Press, 1953), 
p. 14. 

2. Pierre-Simon de Laplace, Theorie Analytique de Probabilites: Introduction, v. VII, 
Oeuvres (1812–1820). 

3. G. H. Hardy,�A Mathematician’s Apology, public-domain version available at 
http:// www .math .ualberta .ca/ ~mss/ books/ A %20Mathematician %27s %20Apology 
.pdf. This quote is from Section 10. 

4. Ibid., Section 29.
 5. No Ordinary Genius: The Illustrated Richard Feynman, ed. Christopher Sykes (New 

York: Norton, 1995). 
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lPro ogue 
Why Your Car Never Seems to Be 
Ready When They Promised 

The $1 Million Questions 
Every year a small collection of distinguished scientists, economists, liter-
ary giants, and humanitarians gather in Stockholm for the award of the 
prestigious—and lucrative—Nobel Prizes, and nary a mathematician is 
to be found among them. The question of why there is no Nobel Prize in 
mathematics is a matter of some speculation; a popular but probably 
apocryphal anecdote has it that at the time the Nobel Prizes were en-
dowed, Alfred Nobel’s wife was having an affair with Gustav Mittag-Lef-
f ler, a distinguished Swedish mathematician. Yes, mathematics has its 
Fields Medal, awarded every four years, but it is awarded only to mathe-
maticians under forty. If you win it you are set for life, prestige-wise, but 
you’re not going to be able to put your kids through college on the pro-
ceeds. 

At the turn of the millennium, the Clay Mathematics Institute posted 
seven critical problems in mathematics—and offered an unheard-of 
$1 million for the solution of each. Some of the problems, such as the 
Birch and Swinnerton-Dyer conjecture, are highly technical and even 



the statement of the problem is comprehensible only to specialists in 
the field. Two of these problems, the Navier-Stokes equation and the 
Yang-Mills theory, are in the realm of mathematical physics. Solutions 
to these problems will enable a better understanding of the physical 
universe, and may actually enable significant technological advances. 
One of these problems, however, is related to one of the most mystify-
ing of life’s little annoyances: Why is your car never ready at the time 
the garage promised it? 

Putting a Man on the Moon 

When President John F. Kennedy promised that America would put a 
man on the moon by the end of the 1960s, he almost certainly did not 
foresee many of the numerous side effects that the space race would pro-
duce. Of course, the space race gave the microelectronic industry a huge 
boost, leading to calculators and personal computers. Two lesser results 
were Tang, an orange-f lavored drink for the astronauts that would soon 
be found on supermarket shelves, and Tef lon, a superslick material that 
would not only be used as a coating for numerous cooking devices, but 
would also insinuate itself into the English language as a synonym for a 
politician to whom charges of malfeasance would not adhere. Finally, the 
space race resulted in a series of insights as to why the world never seems 
to function as well as it should. 

America had previously engaged in one other mammoth technological 
undertaking, the Manhattan Project, but developing the atomic bomb 
was relatively simple when compared to the problem of putting a man on 
the moon—at least from the standpoint of scheduling. There were three 
major components of the Manhattan Project—bomb design and testing, 
uranium production, and mission training. The first two could proceed 
independently, although actual testing awaited the arrival of sufficient 
fissionable material from factories at places such as Hanford and Oak 
Ridge. Mission training began only when the specifications for the weapon 
were reasonably well known, and was relatively simple—make certain 
there was a plane that could carry it and a crew that could f ly it. 

From the standpoint of scheduling, putting a man on the moon was a 
far more difficult task. There was a tremendous amount of coordination 
needed between the industrial complex, the scientific branch, and the 
astronaut training program. Even as apparently simple a matter as plan-
ning the individual mission responsibilities of the lunar astronauts had 
to be carefully choreographed. In sending astronauts to the moon, a lot of 
tasks had to be precisely scheduled so as to make optimal use of the avail-
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able time while simultaneously making sure that outside constraints were 
also satisfied—such as making sure the space capsule was rotated so it did 
not overheat. Thus was born the branch of mathematics known as sched-
uling, and with it the discovery of how improving the individual compo-
nents that go into an ensemble can result in counterproductive—and  
counterintuitive—outcomes. 

So Why Is Your Car Never Ready When They Promised? 

Whether your neighborhood garage is in Dallas, Denver, or Des Moines, 
it encounters basically the same problem. On any given day, there are a 
bunch of cars that need work done, and equipment and mechanics avail-
able to do the job. If only one car comes into the shop, there’s no problem 
with scheduling, but if several cars need repairs, it’s important to do 
things efficiently. There may be only one diagnostic analyzer and only 
two hydraulic lifts—ideally, one would want to schedule the repair se-
quence so that everything is simultaneously in operation, as idle time  
costs money. The same thing can be said about the available mechanics; 
they’re paid by the hour, so if they are sitting on the sidelines while cars 
are waiting to be serviced, that costs money, too. 

One critical aspect of scheduling is a method of displaying the tasks to 
be done, how they relate to one another, and how long they will take. For 
instance, to determine if a tire has a leak, the tire must be removed before 
checking it in the water bath. The standard way of displaying the tasks, 
their times, and their relationships to each other is by means of a digraph. 
A digraph is a diagram with squares and arrows indicating the tasks to be 
done, the order in which they are to be done, and the time required—one 
such is indicated below. 

T1-4 T2-6 T3-5 T6-7 

T4-10 T5-2 

Task 1 requires 4 time units (hours, days, months—whatever), and tasks 
1 and 2 must be completed before task 4, which requires 10 time units, is 
undertaken. Similarly, task 3 must be completed before task 5 is begun. 
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Finally, task 6 can be done at any time—nothing needs to be done before 
it, and it is not a prerequisite for any other task. Additionally, each task 
must be assigned to a single worker and not broken up into subtasks—if 
we could do this, we’d simply label each subtask as a separate task. 

A little additional terminology is associated with the above digraph. A 
task is ready if all prerequisites for the task have been completed. In the 
above diagram, tasks 1, 2, 3, and 6 are ready at the outset, whereas task 5 
will be ready only when task 3 has been completed, and task 4 will be ready 
only when both tasks 1 and 2 are completed. Notice that it will take a 
minimum of 16 time units to complete all the tasks, as task 2 followed by 
task 4, which requires 16 time units, is the critical path—the path of long-
est duration. 

Numerous algorithms have been devised for scheduling tasks; we’ll ex-
amine just one of them, which is known as priority-list scheduling. The 
idea is simple. We make a list of the tasks in order of importance. When a 
task is finished, we cross it off the list. If someone is free to work on a task, 
we set that person to work on the most important unfinished task, as deter-
mined by the priority list—if several mechanics are free, we assign them in 
alphabetical order. The algorithm does not describe how the priority list is 
constructed—for instance, if the garage owner’s wife needs her oil changed, 
that item may be placed at the top of the priority list, and if someone slips 
the garage owner $20 for extra-fast service, that might go right behind it. 

To illustrate how all this stuff comes together, let’s suppose that times 
in the above digraph are measured in hours, and our priority list is T1, 
T2, T4, T3, T5, T6. If Al is the only mechanic on hand, there is no real 
scheduling to be done—Al just does all the jobs on the priority list in that 
order, and it takes him a total of 32 hours (the sum of all the times) to fin-
ish all the tasks. However, if the garage hires Bob, another mechanic, we 
use the priority list to construct the following schedule. 

Mechanic Task Start Times 

0  4  6  9  11  16  18  

Al T1 T3 T5 T6 Done 

Bob T2 T4 Idle Done 

Since tasks 1 and 2 are at the head of the priority list and both are ready at 
the start, we schedule Al for task 1 and Bob for task 2. When Al finishes 
task 1, at the end of 4 hours, the next task on the priority list is task 4—but 
task 4 isn’t ready yet, as Bob hasn’t finished task 2. So Al must bypass task 
4 and start in on task 3, the next task on the priority list. The rest of the dia-
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gram is pretty straightforward. This schedule is as good as we could hope 
for, as there are a total of 34 hours that must be scheduled, and there is no 
way we can schedule 17 hours for each mechanic (unless we allow a task to 
be broken up between two mechanics, which isn’t allowed by the rules). It 
finishes all tasks as quickly as possible, and minimizes the amount of idle 
time, two frequently used criteria in constructing schedules. 

When Making Things Better Actually Makes Things Worse 

The interaction between the task digraph and the priority list is compli-
cated, and unexpected situations can arise. 

T1-3 

T9-9 

T2-2 T3-2 T4-2 

T5-4 T6-4 T7-4 T8-4 

The priority list is just the tasks in numerical order: T1, T2, T3, . . . , T9. 
The garage has three mechanics: Al, Bob, and Chuck. The schedule that 
results appears below. 

Mechanic Task Start Times 

0  2  3  4  8  12  

Al T1 T9 Done 

Bob T2 T4 T5 T7 Done 

Chuck T3 Idle T6 T8 Done 

From a schedule standpoint, this is a “perfect storm” scenario. The 
critical path is 12 hours long, all tasks are finished by this time, and we 
have minimized the amount of idle time, as there are 34 hours of tasks to 
be done and three mechanics available for 12 hours would be a total of 36 
hours. 

If the garage has a lot of business, it might decide to hire an extra me-
chanic. If the jobs to be done conform to the above digraph and the same 
priority list, we would certainly expect that there would be a lot more idle 
time, but the resulting schedule contains a surprise. 
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Mechanic Task Start Times 

0  2  3  6  7  15  

Al T1 T8 Idle Done 

Bob T2 T5 T9 Done 

Chuck T3 T6 Idle Done 

Don T4 T7 Idle Done 

A postmortem on this schedule reveals that the trouble started when 
Don was assigned task 4 at the start. This made task 8 available “too 
early,” and so Al can take it on, with the result that task 9 gets started 3 
hours later than in the original schedule. This is certainly somewhat un-
expected, as you would think that having more mechanics available would 
not result in a later finishing time. 

The garage has an alternative to hiring an extra mechanic—it can up-
grade the equipment used for the various tasks. When it does so, it finds 
that the time for each task has been reduced by one hour. We’d certainly 
expect good things to happen after the upgrade. The original job digraph 
is now modified to the one below. 

T9-8 

T1-2 T2-1 T3-1 T4-1 

T5-3 T6-3 T7-3 T8-3 

When the same priority list (and, of course, the priority-list scheduling 
algorithm) is used for the original three mechanics, the following sched-
ule gets constructed. 

Mechanic Task Start Times 

0  1  2  5  8  13  

Al T1 T5 T8 Idle Done 

Bob T2 T4 T6 T9 Done 

Chuck T3 Idle T7 Idle Done 
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This schedule could well be the poster child for the how-making-ev-
erything-better-sometimes-makes-things-worse phenomenon. Improv-
ing the equipment reduced the length of the critical path, but actually 
slowed things down, rather than speeding things up! Yes, there are 
lots of other scheduling algorithms available, but the magic bullet has 
yet to be found—no algorithm yet studied has generated consistently 
optimal schedules. What is worse, there may be no such algorithm—at 
least, not one that can be executed in a reasonable period of time! 

However, there is one such algorithm that always works—construct all 
possible schedules that satisfy the digraph, and choose the one that best 
optimizes whatever criteria are used. There’s a major problem with that: 
there could be an awful lot of schedules, especially if there are a lot of 
tasks. We shall examine this situation in more depth in chapter 9, when 
we discuss what is known in mathematics as the P versus NP problem. 

The Short-Order Cook, Two Georges, and Moneyball 

When I was in graduate school, I would occasionally splurge by going out 
for breakfast. The diner I frequented was typical for the 1960s—a few ta-
bles and a Formica counter with individual plastic seats surrounding a 
large rectangular grill on which the short-order cook could be seen pre-
paring the orders. The waitresses would clip the orders to a metal cylin-
der, and when he had a free moment the cook would grab them off the 
cylinder and start preparing them. 

This particular cook moved more gracefully than anyone you are likely 
to see on Dancing with the Stars. When sections of the grill dried out or 
became covered with the charred remainders of eggs or hashed browns, 
he scraped them off and poured on a thin layer of oil. Eggs were cooked 
on one quadrant of the grill, pancakes and French toast on a second, 
hashed browns on a third, and bacon and ham on the fourth. He never 
seemed hurried, always arriving just in time to f lip over an egg that had 
been ordered over easy, or to prevent bacon or hashed browns from burn-
ing. Some people find fascination in watching construction workers, but 
I’ll take a good short-order cook over construction workers any time. 

There is a certain poetry to the smooth integration of an assortment of 
tasks that is sought in practically every enterprise that requires such an 
integration—but how best to accomplish it? A notable arena for such en-
deavors is professional sports, in which team chemistry, the melding of 
accomplished individuals into a cohesive unit, is the ultimate goal. Oft-
tried algorithms have decidedly mixed results. One such algorithm could 
be described as “buy the best.” Jack Kent Cooke hired George Allen to 
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coach the Washington Redskins, and said of him that “I gave George an 
unlimited budget, and he overspent it.” George Steinbrenner, the owner 
of the New York Yankees, is a firm believer in the theory that if one pays 
top dollar for top professionals, one produces top teams. The payroll for 
the New York Yankees in 2006 exceeded $200 million—and while the 
team got to the play-offs, they lost to the Detroit Tigers in the first round, 
an event cheered not only by Tiger fans but by confirmed Yankee haters 
such as myself. 

On the other side of the algorithm divide is the belief that if one tries to 
buy components by minimizing the dollars-spent-per-past-desirable-
outcome-achieved (such as purchasing a cleanup hitter using dollars per 
home run hit last year), good results can be obtained with a limited 
budget. This approach, known as “moneyball,” was developed by Billy 
Beane, the general manager of the Oakland Athletics, who constructed 
several remarkably successful teams while spending very little money. 
One of his disciples was Paul DePodesta, who took over my beloved Los 
Angeles Dodgers (actually, I’m a Cub fan, but the Dodgers are beloved of 
my wife, and when the woman is happy the man is happy)—and ruined 
them with the moneyball philosophy. DePodesta was summarily dis-
missed and replaced by Nick Colletti, a man with a solid baseball pedi-
gree, and the Dodgers have made it back to the play-offs twice in the last 
four years. 

While the examples cited above come from professional sports, the goals 
of any organization are similar. If the magic formula for organizational 
success in professional sports is discovered, you can bet the farm that 
management experts will study this formula in order to adopt it to other 
enterprises. Today the Dodgers, tomorrow Microsoft. 

So what’s the lesson? The lesson, which we shall investigate more thor-
oughly later in the book, is that some problems may well be so complex 
that there is no perfect way to solve them. 

Unless you are a professional mathematician, you have no chance of 
coming up with a solution to the Birch and Swinnerton-Dyer conjecture, 
but any person of reasonable intelligence can probably devise a variety of 
scheduling algorithms. Want to take a shot? One of the attractive aspects 
to a mathematical problem is that the only items needed are paper, pen-
cil, and time—but be aware that this problem has resisted the best efforts 
of several generations of mathematicians. 

Mathematics and science have stood at the threshold of great unsolved 
problems before. Two millennia of mathematicians had worked ardu-
ously to discover the solutions of polynomial equations of degree four 
or less, and in the sixteenth century the general solution of the quintic 
(the polynomial of degree five) was the goal of the best algebraists in the 
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world. The physics community was likewise poised at the turn of the 
twentieth century, seeking a way out of the ultraviolet catastrophe—the 
prediction that a perfectly black object in thermal equilibrium would 
emit radiation with infinite power. 

An equally challenging puzzle confronted social scientists a relatively 
short while ago. The dictatorships that had strangled Germany, Italy, and 
Japan had been overthrown as a result of the Second World War. With de-
mocracies emerging throughout the world, the social scientists of the day 
were eagerly continuing a quest begun two centuries previously, the search 
for the ideal method of translating the votes of individuals into the wishes 
of the society. 

All these efforts would lead to related dramatic discoveries—that there 
are some things we cannot know, some things we cannot do, and some 
goals we cannot achieve. Possibly some mathematician will pick up the 
Clay millennium jackpot by discovering that there is no perfect way to 
create schedules, and we’ll just have to resign ourselves to hearing that 
our car isn’t ready when we call the garage to inquire if we can pick it up. 
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Section I 

Describing 
the Universe 





1 lThe Measure of A l Things 

Missed It by THAT Much 
According to Plato, Protagoras was the first sophist, or teacher of virtue— 
a subject that greatly fascinated the Greek philosophers. His most famous 
saying was “Man is the measure of all things: of things which are, that 
they are, and of things which are not, that they are not.”1 The second part 
of the sentence established Protagoras as the first relativist, but to me the 
first part of the sentence is the more interesting, because I think Protago-
ras missed it by just a single letter. Things have their measure—it is an 
intrinsic property of things. Man is not the measure of all things, but the 
measurer of all things. 

Measurement is one of man’s greatest achievements. While language 
and tools may be the inventions that initially enabled civilization to exist, 
without measurement it could not have progressed very far. Measure-
ment and counting, the obvious predecessors to measurement, were 
man’s initial forays into mathematics and science. Today, Protagoras’s 
statement still raises questions of profound interest: How do we measure 
things that are, and can we measure things that are not? 



What Is This Thing Called Three? 

Math teachers in college generally teach two different types of classes: 
classes in which relatively high-level material is taught to students who 
will use it in their careers, and classes in which relatively low-level mate-
rial is taught to students who, given the choice of taking the class or a root 
canal without anesthesia, might well opt for the latter. The second type of 
class includes the math courses required by the business school—most 
of the students in these classes believe they will someday be CEOs, and in 
the unlikely event they ever need a math question answered they will hire 
some nerd to do it. It also includes math for liberal arts students, many of 
whom believe that the primary use for numbers are labels—such as “I 
wear size 8 shoes”—and the world would function better if different la-
bels, such as celebrities or cities, were used instead. After all, it might be 
easier to remember that you wear Elvis shoes or Denver shoes than to re-
member that you wear size 8 shoes. Don’t laugh—Honda makes Accords 
and Civics, not Honda Model 1 and Honda Model 2. 

Fortunately (for at my school all teachers frequently teach lower-level 
courses), the second type of math class also includes my favorite group of 
students—the prospective elementary school teachers, who will take two 
semesters of math for elementary school teachers. I have the utmost re-
spect for these students, who are planning on becoming teachers because 
they love children and want to make life better for them. They’re certainly 
not in it for the money (there’s not a whole lot of that), or for the freedom 
from aggravation (they frequently have to teach in unpleasant surround-
ings with inadequate equipment, indifferent administrators, hostile par-
ents, and all sorts of critics from politicians to the media). 

Most of the students in math for elementary school teachers are appre-
hensive on the first day of class—math generally wasn’t their best sub-
ject, and it’s been a while since they’ve looked at it. I believe that students 
do better if they are in a comfortable frame of mind, so I usually start off 
with Einstein’s famous quote, “Do not worry about your difficulties with 
mathematics; I assure you mine are far greater.”2 I then proceed to tell 
them that I’ve been teaching and studying math for half a century, and 
they know just about as much about “three” as I do—because I can’t even 
tell them what “three” is. 

Sure, I can identify a whole bunch of “threes”—three oranges, three 
cookies, etc.—and I can perform a bunch of manipulations with “three” 
such as two plus three is five. I also tell them that one of the reasons that 
mathematics is so useful is because we can use the statement “two plus 
three is five” in many different situations, such as knowing we’ll need $5 
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(or a credit card) when we purchase a muffin for $2 and a frappuccino for 
$3. Nonetheless, “three” is like pornography—we know it when we see it, 
but damned if we can come up with a great definition of it. 

More, Less, and the Same 

How do you teach a child what a tree is? You certainly wouldn’t start with 
a biologist’s definition of a tree—you’d simply take the child out to a park 
or a forest and start pointing out a bunch of trees (city dwellers can use 
books or computers for pictures of trees). Similarly with “three”—you 
show the child examples of threes, such as three cookies and three 
stars. In talking about trees, you would undoubtedly point out common 
aspects—trunks, branches, and leaves. When talking about threes to 
children, we make them do one-to-one matching. On one side of the page 
are three cookies; on the other side, three stars. The child draws lines 
connecting each cookie to a different star; after each cookie has been 
matched to different stars, there are no unmatched stars, so there are the 
same number of cookies as stars. If there were more stars than cookies, 
there would be unmatched stars. If there were fewer stars than cookies, 
you’d run out of stars before you matched up all the cookies. 

One-to-one matching also reveals a very important property of finite 
sets: no finite set can be matched one-to-one with a proper subset of itself 
(a proper subset consists of some, but not all, of the things in the original 
set). If you have seventeen cookies, you cannot match them one-to-one 
with any lesser number of cookies. 

The Set of Positive Integers 

The positive integers 1, 2, 3, . . . are the foundation of counting and arith-
metic. Many children find counting an entertaining process in itself, and 
sooner or later stumble upon the following question: Is there a largest 
number? They can generally answer this for themselves—if there were a 
largest number of cookies, their mother could always bake another one. So 
there is no number (positive integer) that describes how many numbers 
(positive integers) there are. However, is it possible to come up with some-
thing that we can use to describe how many positive integers there are? 

There is—it’s one of the great discoveries of nineteenth-century mathe-
matics, and is called the cardinal number of a set. When that set is finite, 
it’s just the usual thing—the number of items in the set. The cardinal 
number of a finite set has two important properties, which we discussed 
in the last section. First, any two sets with the same finite cardinal 
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number can be placed in one-to-one correspondence with each other; just 
as a child matches a set of three stars with a set of three cookies. Second, 
a finite set cannot be matched one-to-one with a set of lesser cardinal-
ity—and in particular, it cannot be matched one-to-one with a proper 
subset of itself. If a child starts with three cookies, and eats one, the re-
maining two cookies cannot be matched one-to-one with the original 
three cookies. 

Hilbert’s Hotel 

The German mathematician David Hilbert devised an interesting way of 
illustrating that the set of all integers can be matched one-to-one with a 
proper subset of itself. He imagined a hotel with an infinite number of 
rooms—numbered R1, R2, R3, . . . . The hotel was full when an infinite 
number of new guests, numbered G1, G2, G3, . . . arrived, requesting 
accommodations. Not willing to turn away such a profitable source of 
revenue, and being willing to discomfit the existing guests to some ex-
tent, the proprietor moved the guest from R1 into R2, the guest from R2 
into R4, the guest from R3 into R6, and so on—moving each guest into a 
new room with twice the room number of his or her current room. At the 
end of this procedure, all the even-numbered rooms were occupied, and 
all the odd-numbered rooms were vacant. The proprietor then moved 
guest G1 into vacant room R1, guest G2 into vacant room R3, guest G3 
into vacant room R5, . . . . Unlike every hostelry on planet Earth, Hilbert’s 
Hotel never has to hang out the No Vacancy sign. 

In the above paragraph, by transferring the guest in room N to room 2N, 
we have constructed a one-to-one correspondence between the positive in-
tegers and the even positive integers. Every positive integer is matched with 
an even positive integer, via the correspondence N ↔2N, every even positive 
integer is matched with a positive integer, and different integers are 
matched with different even positive integers. We have matched an infinite 
set, the positive integers, in one-to-one fashion with a proper subset, the 
even positive integers. In doing so, we see that infinite sets differ in a sig-
nificant way from finite sets—in fact, what distinguishes infinite sets from 
finite sets is that infinite sets can be matched one-to-one with proper sub-
sets, but finite sets cannot. 

Ponzylvania 

There are all sorts of intriguing situations that arise with infinite sets. 
Charles Ponzi was a swindler in early twentieth-century America who 
devised plans (now known as Ponzi schemes) for persuading people to 
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invest money with him for a significant return. Ponzi schemes are highly 
pernicious (which is why they’re illegal)—periodically, the country is in-
undated with a new version, such as pyramid investment clubs.3 Ponzi 
paid early investors with the funds from investors who anted up later, 
creating the impression that his investors were prospering—at least, the 
early ones. The last ones to invest were left holding the bag, as it is impos-
sible to continue paying profits to investors by this method unless later 
investors are found—and, eventually we run out of later investors. Every-
where, that is, but in Ponzylvania. 

B.P. (Before Ponzi), Ponzylvania was a densely populated country that 
had incurred overwhelming debt. Its inhabitants, like the rooms in 
Hilbert’s Hotel, are infinite in number—we’ll call them I1, I2, I3, 
. . . . Every tenth inhabitant (I10, I20, . . . ) has a net worth of $1, while all 
the others are $1 in debt. The total assets of inhabitants 1 through 10 is 
therefore minus $9, as are the total assets of inhabitants 11 through 20, 21 
through 30, and so on. Every group of 10 successively numbered inhabit-
ants has negative total assets. 

Not to worry; all that is needed is a good way of rearranging assets, so 
enter Charles Ponzi—a criminal in the United States, but a national hero 
in Ponzylvania. He collects a dollar from I10 and a dollar from I20, giving 
them to I1, who now has a net worth of $1. He then collects a dollar from 
I30 and a dollar from I40, giving them to I2, who also now has a net worth 
of $1. He then collects a dollar from I50 and a dollar from I60, giving them 
to I3, who also now has a net worth of $1. We’ll assume that when he comes 
to an inhabitant such as I10, who is now f lat broke (he originally had a dol-
lar, but it was given to I1 early on), he simply transfers a dollar from the 
next untapped dollar owner. He continues this process until he has gone 
through all the inhabitants—at the end of which everyone has $1! 

You don’t become a national hero by giving everyone assets of a dollar— 
so Ponzi embarks upon Stage 2 of his master financial plan. Since every-
one has a dollar, he collects the dollars from I2, I4, I6, I8, . . . and gives 
them to I1. I1, now infinitely wealthy, retires to his seaside villa. This 
process leaves I3, I5, I7, I9, . . . with $1 each. The key point here is that 
there are still infinitely many inhabitants, each of whom has a dollar. 
Ponzi now collects the dollars from I3, I7, I11, I15 (every other odd 
number), . . . and gives them to I2, who also retires to his seaside villa. At 
this juncture, there are still infinitely many inhabitants who have a dollar 
(I5, I9, I13, . . . ), so Ponzi collects a dollar from every other dollar-owning 
inhabitant (I5, I13, I21, . . . ) and gives them to I3. At the end of this proc-
ess, I3 retires to his seaside villa, and there are still infinitely many inhab-
itants who have a dollar. At the end of Stage 2, everyone is enjoying life on 
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his or her seaside villa. No wonder they renamed the country in his 
honor. 

The intellectual resolution of this particular Ponzi scheme involves re-
arrangements of infinite series, a topic generally not covered until a math 
major takes a course in real analysis. Suffice it to say that there are prob-
lems, which go to the heart of how infinite arithmetic processes differ 
from finite ones—when we tallied the total assets of the country by look-
ing at the total assets of I1 through I10 (minus $9) and adding them to the 
total assets of I11 through I20 (minus $9), and so on, we get a different 
outcome from when we total the assets by adding (I10� I20 �I1)� (I30 
� I40� I2) � (I50� I60� I3)�. . . �(1�1��1)�(1�1��1)�(1�1��1) 
� . . . �1�1�1�. . . . The two different ways of collecting money (doing 
arithmetic) yield different results. Unlike bookkeeping in the real world, 
in which no matter how you rearrange assets the total is always the same, 
a good bookkeeper in Ponzylvania can spin gold from straw. 

Georg Cantor (1845–1918) 

Until Georg Cantor, mathematicians had never conducted a successful 
assault on the nature of infinity. In fact, they hadn’t really tried—so great 
a mathematician as Carl Friedrich Gauss had once declared that infinity, 
in mathematics, could never describe a completed quantity, and was only 
a manner of speaking. Gauss meant that infinity could be approached by 
going through larger and larger numbers, but was not to be viewed as a 
viable mathematical entity in its own right. 

Perhaps Cantor’s interest in the infinite might have been predicted, 
given his unusual upbringing—he was born a Jew, converted to Protes-
tantism, and married a Roman Catholic. Additionally, there was a sub-
stantial amount of artistic talent in the family, as several family members 
played in major orchestras, and Cantor himself left a number of drawings 
that were sufficient to show that he possessed artistic talent as well. 

Cantor took his degree in mathematics under the noted analyst Karl 
Theodor Wilhelm Weierstrass, and Cantor’s early work traveled along the 
path marked out by his thesis adviser—a common trait among mathema-
ticians. However, Cantor’s interest in the nature of infinity persuaded 
him to study this topic intensely. His work generated considerable inter-
est in the mathematical community—as well as considerable controversy. 
Cantor’s work f lew in the face of Gauss, as it dealt with infinities as com-
pleted quantities in a manner analogous to finite ones. 

Among the mathematicians who had a great deal of difficulty accepting 
this viewpoint was Leopold Kronecker, a talented but autocratic German 
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mathematician. Kronecker exerted his inf luence from his chair at the 
prestigious University of Berlin, while Cantor was relegated to the minor 
leagues at the University of Halle. Kronecker was an old-school mathe-
matician who took Gauss at his word on the subject of infinity, and he did 
his best to denigrate Cantor’s works. This helped spark numerous out-
breaks of depression and paranoia in Cantor, who spent much of his later 
life in mental institutions. It did not help matters that Cantor proclaimed 
his mathematics to be a message from God, and that his other interests 
included attempting to convince the world that Francis Bacon wrote the 
works of Shakespeare. 

Nonetheless, between periods of confinement, Cantor produced works 
of stunning brilliance, results which changed the direction of mathemat-
ics. Sadly, he died in the mental institution where he had spent much of 
his adult life. Just as the greatness of Mozart and van Gogh became ap-
parent after their deaths, so did the work of Cantor. Hilbert described 
transfinite arithmetic, one of Cantor’s contributions, as “the most aston-
ishing product of mathematical thought, one of the most beautiful reali-
zations of human activity in the domain of the purely intelligible.”4 Hilbert 
continued by declaring that “No one shall expel us from the paradise 
which Cantor has created for us.”5 One can only wonder how Cantor’s life 
would have differed if Hilbert, rather than Kronecker, had been the one 
holding down the chair at the University of Berlin. 

Another Visit to Hilbert’s Hotel 

One of Cantor’s great discoveries was that there were infinite sets whose 
cardinality was greater than that of the positive integers—infinite sets 
that could not be matched one-to-one with the positive integers. Such a 
set is the collection of all people with infinitely long names. 

An infinitely long name is a sequence of letters  A through Z and 
blanks—one letter or blank for each of the positive integers. Some peo-
ple, such as “Georg Cantor,” have names consisting mostly of blanks— 
the first letter is a G, the second letter an  E, . . . , the sixth letter a 
blank, the twelfth letter an R, and letters thirteen, fourteen, . . . (the 
three dots stand for “on and on forever,” or some such phrase) are all 
blanks. Some people, such as “AAAAAAAAA . . . ,” have names consist-
ing exclusively of letters—every letter of her name is an A. Of course, it 
takes her quite a while to fill out the registration card at Hilbert’s Hotel, 
but we’ll dispense with that problem for the time being. 

The collection of all people with infinitely long names cannot be  
matched one-to-one with the integers. To see that this is the case, as-
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sume that it could be so matched. If so, then every person with an infi-
nitely long name could be assigned a room in Hilbert’s Hotel, and we’ll 
assume we’ve done so. We’ll demonstrate a contradiction by showing that 
there is a person with an infinitely long name who has no room in the 
hotel. 

To do this, we’ll construct the name of such a person, whom we’ll call the 
mystery guest, letter by letter. Look at the name of the person in room R1, and 
choose a letter different from the first letter of that name. That “different let-
ter” is the first letter of our mystery guest’s name. Then look at the name of 
the person in room R2, and choose a letter different from the second letter of 
that name. That “different letter” is the second letter of our mystery guest’s 
name. In general, we look at the nth letter of the name of the guest in room 
Rn, and choose a ‘different letter’ from that one as the nth letter of our mystery 
guest’s name. 

So constructed, our mystery guest is indeed roomless. He’s not in R1, be-
cause the first letter of his name differs from the first letter of the guest in R1. 
Our guest is not in R2, because the second letter of his name differs from the 
second letter of the guest in R2. And so on. Our mystery guest is nowhere to 
be found in Hilbert’s Hotel, and so the collection of people with infinitely long 
names cannot be matched one-to-one with the positive integers. 

Great results in mathematics have the name of their discoverer attached, 
such as the Pythagorean theorem. Mathematical objects worthy of study have 
the name of an important contributor affixed, such as “Cantor set.” Brilliant 
mathematical proof techniques are similarly immortalized—the above con-
struction is known as a “Cantor diagonal proof ” (if we were to arrange the 
names of the hotel guests in a list from top to bottom, with the first letters of 
each name comprising the first column, the second letters of each name com-
prising the second column, and so on, the line connecting the first letter of 
the first name to the second letter of the second name, thence to the third let-
ter of the third name, and so on, would form the diagonal of the infinite 
square that comprises the list). In fact, Cantor is one of the few mathemati-
cians to hit for the cycle, having not only proof techniques named for him, but 
theorems and mathematical objects as well. 

The Continuum Hypothesis 

It is fairly easy to see that the above proof technique shows that the collection 
of real numbers between 0 and 1 also has a different cardinal number than 
that of the positive integers. The real numbers between 0 and 1 (known as 
“the continuum”) are, when written in decimal expansion, simply infinitely 
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long names with letters 1 through 9 rather than A through Z and 0 instead 
of blank. For example, 1⁄4�.25000. . . . Cantor worked out the arithmetic of 
cardinal numbers, and designated the cardinal number of the positive inte-
gers as aleph-0, and the cardinal number of the continuum as c. 

A lot of mileage can be gained from the Cantor diagonal proof. Cantor 
used it to show that the set of rational numbers has cardinality aleph-0, as 
does the set of algebraic numbers (all those numbers that are roots of 
polynomials with integer coefficients). Also, it can be used to show the 
infinite analogy of the child’s result that there is no largest (finite) number. 
Cantor was able to show that, for any set S, the set of all subsets of S could 
not be matched one-to-one with the set S, and so had a larger cardinal 
number. As a result, there is no largest cardinal number. 

Filling the Gaps 

Leopold Kronecker, when he wasn’t making life miserable for Cantor, was 
a mathematician of considerable talent, and is also the author of one of 
the more famous quotations in mathematics: “God made the integers, all 
else is the work of man.”6 One of the first jobs that man had to do was fill 
in the gaps between the integers in the number line. The task of filling 
the gaps was to return in the nineteenth century, when mathematicians 
encountered the problem of whether there existed cardinal numbers 
between aleph-0 and c. As explained above, efforts to show that obvi-
ous sets, such as the set of rational numbers and the set of algebraic 
numbers, had different cardinal numbers from aleph-0 and c proved 
unsuccessful. Cantor hypothesized that there was no such cardinal 
number—every subset of the continuum had cardinality aleph-0 or c; this 
conjecture became known as the continuum hypothesis. Proving or dis-
proving the continuum hypothesis was a high priority for the mathemati-
cal community. In a key turn-of-the-century mathematics conference, 
David Hilbert listed the solution of this problem as the first on his fa-
mous list of twenty-three problems that would confront mathematicians 
in the twentieth century. Solution of just one of these problems would 
make the career of any mathematician. 

The Axiom of Choice 

The axiom of choice is a relatively recent arrival on the mathematical 
scene—in fact, it wasn’t until Cantor arrived on the mathematical scene 
that anybody even thought that such an axiom was necessary. The axiom 
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of choice is simple to state; it says that if we have a collection of nonempty 
sets, we can choose a member of each set. In fact, when I first saw this 
axiom, my initial reaction was “Why do we need this axiom? Choosing 
things from sets is like shopping with an inexhaustible budget. Just go 
into a store [set], and say, ‘I want this.’ ” Nonetheless, the axiom of choice 
is highly controversial—insofar as an axiom could ever be considered 
controversial. 

The controversy centers around the word choose. Just as there are activist 
judges and strict constructionists, there are liberal mathematicians and 
strict constructionists when it comes to the word choose. Is choice an ac-
tive process, in which one must specify the choices made (or a procedure 
for making those choices), or is it merely a statement of existence, in that 
choices can be made (this is somewhat reminiscent of Henry Kissinger’s 
remark that “mistakes were made in Administrations of which I was a 
part”)?7 If you are a strict constructionist who wants a recipe for choice, 
you won’t have any problem doing this with a collection of sets of positive 
integers—you could just choose the smallest integer in any set. In fact, 
there are many collections of sets in which constructing a choice function 
(a function whose value for each set is the choice that is made for that set) 
presents no problem. However, if one considers the collection of all non-
empty subsets of the real line, there is no obvious way to do this—nor is 
there an unobvious way, as no one has yet done it and the betting of many 
mathematical logicians is that it can’t be done. 

There is a significant difference between “sets of positive integers” and 
“sets of real numbers”—and that is the existence of a smallest positive 
integer in any nonempty set of positive integers—but there is no obvious 
smallest real number in any nonempty set of real numbers. If there were, 
we could find a choice function in exactly the same manner that we did 
for sets of positive integers—we’d simply choose the smallest real number 
in the nonempty set. 

It may have occurred to you that there are sets of real numbers that  
clearly have no smallest member, such as the set of all positive real num-
bers. If you think you have the smallest such number, half of it is still 
positive, but smaller. However, there might conceivably be a way to ar-
range the real numbers in a different order than the usual one, but one 
such that every nonempty set of real numbers has a smallest member. If 
there were, then the choice function would be the one defined in the last 
paragraph—the smallest number in each set. As a matter of fact, this  
idea is known as the well-ordering principle, and is logically equivalent to 
the axiom of choice. 

If finding a choice function for the collection of all subsets of real num-
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bers gives you a headache, you might prefer the following version of the 
dilemma, due to Bertrand Russell—if you have an infinite number of  
pairs of shoes, it is easy to choose one shoe from each pair (you could  
choose the left shoe), but if you have an infinite number of pairs of socks, 
there is no way to distinguish one sock from another, and so you can’t 
explicitly write out a way to choose one from each pair. 

The great majority of mathematicians favor the existence formulation— 
a choice exists (possibly in some abstract never-neverland in which we 
cannot specify how), and an incredible amount of fascinating mathemat-
ics has resulted from incorporating the axiom of choice. Far and away the 
most intriguing of the results is the Banach-Tarski paradox,8 the state-
ment of which usually results in people feeling that mathematicians have 
lost their collective minds. This theorem states that it is possible to de-
compose a three-dimensional sphere into a finite number of pieces and 
rearrange them by rotations and translations (moving from one point of 
space to another by pushing or pulling, but not rotating) into a sphere 
with twice the radius of the original. Tempting though it may be to buy a 
small golden sphere for a few hundred bucks, Banach-Tarskify it to dou-
ble its radius, and do so repeatedly until you have enough gold to retire to 
your seaside villa, not even Charles Ponzi can help you with this one. Un-
fortunately, the pieces into which the sphere can be decomposed (notice 
that I did not use the word cut, which is an actual physical process), exist 
only in the abstract never-neverland of what are called “nonmeasurable 
sets.” No one has ever seen a nonmeasurable set and no one ever will—if 
you can make it, then it is not nonmeasurable, but if you accept the axiom 
of choice in the existence sense, there is an abundance of these sets in 
that never-neverland. 

Consistent Sets of Axioms 

I’m not sure that other mathematicians would agree with me, but I think 
of mathematicians as those who make deductions from sets of axioms, 
and mathematical logicians as those who make deductions about sets of 
axioms. On one point, though, mathematicians and mathematical logi-
cians are in agreement—a set of axioms from which contradictory re-
sults can be deduced is a bad set of axioms. A set of axioms from which 
no contradictory results can be deduced is called consistent. Mathemati-
cians generally work with axiom sets that the community feels are con-
sistent (even though this may not have been proven), whereas among 
the goals of the mathematical logicians are to prove that axiom sets are 
consistent. 
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Just as there are different geometries (Euclidean, projective, spherical, 
hyperbolic—to name but a few), there are different set theories. One of 
the most widely studied is the axiomatic scheme proposed by Ernst 
Zermelo and Adolf Fraenkel, who came up with a system to which was 
added the axiom of choice.9 The industry-standard version of set theory is 
known as ZFC—the Z and F stand for you-know-who, and the C for the 
axiom of choice. Mathematicians are inordinately fond of abbreviations, 
as the mathematical aesthetic dictates that conveying a lot of meaning in 
very few symbols is attractive, and so CH is the abbreviation for the con-
tinuum hypothesis. 

The first significant dent in Hilbert’s first problem was made in 1940 by 
Kurt Gödel (of whom we shall hear much more in a later chapter), who 
showed that if the axioms of ZFC were consistent, then including CH 
as an additional axiom to produce a larger system of axioms, denoted 
ZFC�CH, did not result in any contradictions, either. 

This brought the continuum hypothesis, which had been under scru-
tiny by mathematicians (who would have liked either to find a set of real 
numbers with a cardinal number other than aleph-0 or c, or prove that 
such a set could not exist), into the realm of mathematical logic. In the 
early 1960s, Paul Cohen of Stanford University shocked the mathematical 
community with two epic results. He showed that if ZFC were consistent, 
CH was undecidable within that system; that is, the truth of CH could 
not be determined using the logic and axioms of ZFC. Cohen also showed 
that including the negation of CH (abbreviated “not CH”) to ZFC to produce 
the system ZFC �not CH was also consistent. In conjunction with Gödel’s 
earlier result, this showed that it didn’t matter whether you assumed CH 
was true or CH was false, adding it to an assumed-to-be-consistent ZFC 
produced a theory that was also consistent. In the language of mathemat-
ical logic, CH was independent of ZFC. This work was deemed so sig-
nificant that Cohen (who passed away in the spring of 2007), was awarded 
a Fields Medal in 1966. 

What did this mean? One way to think of it is to hark back to another 
situation in which an important hypothesis proved to be independent of a 
prevailing set of axioms. When Euclidean geometry was subjected to in-
vestigation, it was realized that the parallel postulate (through each point 
not on a given line l, one and only one line parallel to l can be drawn) was 
independent of the other axioms. Standard plane geometry incorporates 
the parallel postulate, but there exist other geometries in which the paral-
lel postulate is false—in hyperbolic geometry, there are at least two lines 
that can be drawn through any point off the line l that are parallel to l. 
Logicians say that plane geometry is a model that incorporates the paral-
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lel postulate, and hyperbolic geometry is a model that incorporates the 
negation of the parallel postulate. 

The Continuum: Where Are We Now? 

One of the preeminent physicists of today, John Archibald Wheeler (whom 
we shall encounter when we discuss quantum mechanics), feels that both 
the discrete structure of the integers and the fundamental nature of the 
continuum are vital to the work of physics, and weighs in with a physi-
cist’s point of view. 

For the advancing army of physics, battling for many a decade 
with heat and sound, fields and particles, gravitation and space-
time geometry, the cavalry of mathematics, galloping out ahead, 
provided what it thought to be the rationale for the real number 
system. Encounter with the quantum has taught us, however, that 
we acquire our knowledge in bits; that the continuum is forever 
beyond our reach. Yet for daily work the concept of the continuum 
has been and will continue to be as indispensable for physics as it 
is for mathematics. In either field of endeavor, in any given enter-
prise, we can adopt the continuum and give up absolute logical 
rigor, or adopt rigor and give up the continuum, but we can’t pur-
sue both approaches at the same time in the same application.10 

Wheeler sees a clash between the current quantum view of reality 
(Wheeler’s absolute logical rigor) and the continuum, a useful mathe-
matical idealization that can never be. Mathematicians are lucky—they 
do not have to decide whether the object of their investigation is either 
useful or a great description of reality. They merely have to decide if it is 
interesting. 

Given Cohen’s result on the undecidability of CH within ZFC, and since 
CH is independent of ZFC, what are the choices for continuing research? 
The problem has basically been removed from the domain of the mathe-
matician, most of whom are content with ZFC as an axiomatic frame-
work. The majority of logicians concentrate on the ZFC part of the problem, 
and much work is being done on constructing other axioms for set theory 
in which CH is true. Future generations of mathematicians may well de-
cide to change the industry standard, and abandon ZFC for some other 
system. 

Of what value is all this? From the mathematical standpoint, even 
though developments in the twentieth century have diminished the im-
portance of solving Hilbert’s first problem, the continuum is one of the 
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fundamental mathematical objects—added knowledge of its structure is 
of paramount importance, just as added knowledge of the structure of 
fundamental objects such as viruses or stars is of paramount importance 
in their respective sciences. From the real-world standpoint, physical real-
ity uses both discrete structures (in quantum mechanics) and the con-
tinuum (elsewhere). We have not yet discerned the ultimate nature of 
reality—possibly a greater knowledge of the continuum would enable us 
to make strides in that direction. 

Additionally, computations made using the assumptions of the contin-
uum are often much simpler. If the continuum is abandoned, there are 
no circles—just a bunch of disconnected dots equidistant from the center. 
One would not walk around a circular pond, traversing a distance of two 
times pi times the radius of the pond, but would walk in a sequence of 
straight line segments from dot to adjacent dot. The computation of the 
length of such a path would be arduous—and would turn out to equal 
2�r to an impressive number of decimal places. The circle is a continuum 
idealization that does not exist in the real world—but the practical value 
of the circle and the simplifying computations it entails are far too valua-
ble to be summarily abandoned. 

Finally, the quest for models that satisfy different systems of axioms of-
ten has surprising consequences for our understanding of the real world. 
Attempts to derive models in which Euclid’s parallel postulate was not  
satisfied led to the development of hyperbolic geometry, which was incor-
porated in Einstein’s theory of relativity, the most accurate theory we have 
on the large-scale structure and behavior of the Universe. As Nikolai 
Ivanovich Lobachevsky put it, “There is no branch of mathematics, how-
ever abstract, which may not some day be applied to phenomena of the real 
world.”11 

NOTES 
1. This quote is from Plato’s Theaetetus, section 152a. More on Protagoras can be 

found at http://en.wikipedia.org/ wiki/ Protagoras. Even though Wikipedia is 
user-edited, my experience has been that it’s accurate when dealing with math-
ematics, physics, and the histories thereof—possibly because no one has any dog 
in the race, possibly because there isn’t even a dog race with regard to matters 
such as this. 

2. This quote is so famous that most sources just reference Einstein! The vast ma-
jority of its occurrences seem to be from math teachers who, like myself, wish to 
put their students at ease. Many people think that Einstein was a mathematician 
rather than a physicist, but his only mathematical contribution of which I am 
aware is the “Einstein summation convention,” which is essentially a notation— 
like inventing the plus sign to denote addition. 

26 How Math Explains the World�



3. Even the Securities and Exchange Commission warns against them. See http:// 
www .sec .gov/ answers/ ponzi .htm . 

4. Carl B. Boyer, A History of Mathematics (New York: John Wiley & Sons, 1991), 
p. 570.

 5. Ibid.
 6. Ibid. 

7. See http:// archives .cnn .com/ 2002/ WORLD/ europe/ 04/ 24/ uk .kissinger/ .
 8. L. Wapner, The Pea and the Sun (A Mathematical Paradox) (Wellesley, Mass: 

A. K. Peters, 2005). This is a really thorough and readable exposition of all as-
pects of the Banach-Tarski theorem—including an understandable treatment of 
the proof—but you’ll still have to be willing to put in the work. Even if you’re not, 
there’s still a lot to like. 

9. See http:// mathworld .wolfram .com/ Zermelo -FraenkelAxioms .html. You’ll have 
to fight your way through standard set theory notation (which is explained at the 
top of the page) in order to understand them, but the axioms themselves are 
pretty basic. There is a link and a further explanation for each axiom. Most 
mathematicians never really worry about these axioms, as the set theory they 
use seems pretty obvious, and are only concerned with finding a useful version 
of the axiom of choice (there are others besides the well-ordering principle). The 
two industry standard versions that I have found most useful are Zorn’s Lemma 
and transfinite induction, and I believe that’s true for the majority of mathema-
ticians.

 10. H. Weyl, The Continuum (New York: Dover, 1994), p. xii. Hermann Weyl was one 
of the great intellects of the early portion of the twentieth century. He received 
his doctorate from Göttingen; his thesis adviser was David Hilbert. Weyl was an 
early proponent of Einstein’s theory of relativity, and studied the application of 
group theory to quantum mechanics. 

11. Quoted in N. Rose, �Mathematical Maxims and Minims, Raleigh N.C.,: Rome 
Press, 1988). 
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2Reality Checks 

Pascal’s Wager 
The French mathematician and philosopher Blaise Pascal was probably 
the first to combine philosophy and probability. Pascal was willing to ac-
knowledge the possibility that God might not exist, but argued that the 
rational individual should believe in God. His argument was based on 
the probabilistic concept of expectation, which is the long-term average 
value of a bet. If you bet that God existed and won, the payoff was life ever 
after—and even if the probability that God existed was small, the average 
payoff from making this bet dwarfed the average payoff you would re-
ceive if God did not exist. A slightly different version of this is to look 
under the streetlight if you lose your car keys one night—the probability 
of the keys being there may be small, but you’ll never find them where it’s 
dark. 

As the nineteenth century dawned, some of the leading thinkers of the 
era noted the success of physics and chemistry, and tried to apply some of 
the ideas and results to the social sciences. One such individual was Au-
guste Comte, who was one of the creators of the discipline of sociology, 



which is the study of human social behavior. His treatise, Plan of Scien-
tific Studies Necessary for the Reorganization of Society, outlined his phi-
losophy of positivism. Part of this philosophy can be expressed in terms 
of the relation between theory and observation—as Comte put it, “If it is 
true that every theory must be based upon observed facts, it is equally  
true that facts can not be observed without the guidance of some theory. 
Without such guidance, our facts would be desultory and fruitless; we 
could not retain them: for the most part we could not even perceive 
them.”1 

Simon Newcomb made significant contributions to astronomy and 
mathematics. He was a computer—in the days when this described a job 
occupation rather than an electronic device—and oversaw a program that 
revised the calculation of the positions of the astronomical bodies. He 
helped Albert Michelson calculate the speed of light, and also helped re-
fine the calculation of the amusingly named Chandler wobble, the change 
of spin of Earth around its axis. Newcomb did not confine himself to the 
physical sciences; his Principles of Political Economy (1885) was praised by 
the famed economist John Maynard Keynes as “one of those original 
works which a fresh scientific mind, not perverted by having read too 
much of the orthodox stuff, is able to produce from time to time in a half-
formed subject like economics.”2 High praise, indeed, from one of the 
leading economists of the twentieth century. To cap a distinguished ca-
reer, Newcomb was buried in Arlington National Cemetery, and Presi-
dent Taft attended the funeral. 

Obviously, both these individuals were among the leading intellectuals 
of their times—but they are both known for making predictions that 
would make the all-time Top 100 list under the heading of “Predictions 
You Wish You Hadn’t Made—At Least, Quite So Publicly.” Comte wrote a 
philosophical treatise examining things that would never be known, in-
cluding in his list the chemical composition of the stars. Several years 
later, Robert Bunsen and Gustav Kirchhoff discovered spectroscopy, and 
the analysis of the spectrum of light emitted by stars permitted their 
chemical composition to be deduced. Newcomb was interested in powered 
f light, but did calculations—later shown to be erroneous—that convinced 
him that such was impossible without the development of new methods of 
propulsion and much stronger materials. A few years later, Orville and 
Wilbur Wright achieved powered f  light with not much more than a  
wooden frame, wires for control, and an internal-combustion engine. 

As Niels Bohr so wryly observed, “Prediction is difficult—especially of 
the future.”3 Predicting what can or cannot be known in the area of math-
ematics is also difficult, but since most such predictions involve fairly ar-
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cane areas of study, they usually do not register on the public’s radar 
screen. However, predictions regarding the limitations of knowledge and 
achievement in the physical world are much more likely to come under 
scrutiny—and when one predicts that we will  never know the chemical 
composition of the stars, it takes an extremely long time to be proved cor-
rect. Making such predictions would seem to be a losing intellectual 
proposition—like taking the wrong side of Pascal’s Wager. You can al-
ways be proven wrong, and you are extremely unlikely to be proven 
right. 

It’s Tough to Be a Physicist 

One cannot help but be impressed by the extraordinary success of phys-
ics, a success to which mathematics makes a substantial contribution. I 
remember being amazed as a child when the New York Times published 
details of a partial solar eclipse that was to occur that day. The article in-
cluded the time of onset, the time of maximum coverage, the time of 
conclusion, and a graphic of the path of the eclipse—in which portions of 
the country one would be able to view this phenomenon. To think that a 
few laws propounded by Isaac Newton, coupled with some mathematical 
calculations, enable one to predict such phenomena with almost pinpoint 
accuracy is still a source of substantial wonder, and unquestionably repre-
sents one of the great triumphs of the human intellect. 

Most of the great theories of physics represent the scientific method in 
full f lower. Experiments are conducted, data is gathered, and a mathe-
matical framework explaining the data is constructed. Predictions are 
made—if those predictions involve as-yet-unobserved phenomena whose 
existence is later validated, the theory attains greater validity. The discov-
ery of the planet Neptune gave added weight to Newton’s theory of gravi-
tation, the precession of the perihelion of Mercury helped substantiate 
Einstein’s theory of relativity. 

Physics is sometimes thought of as being simply a branch of applied 
mathematics. I feel this does a severe injustice to physics. The difference 
between physics and mathematics is somewhat akin to the difference 
between the art of painting portraits and abstract expressionism. If you 
are hired to paint a portrait, it has to end up looking like the person whose 
portrait is being painted. Insofar as my limited understanding of abstract 
expressionism goes, anything you feel like putting on canvas qualifies as 
abstract expressionism—at least if it’s so abstract that nobody can recog-
nize what it is. This is a bit unfair to mathematics, some of which is  
highly practical—but some of it is so esoteric as to be incomprehensible 
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to anyone but a specialist, and totally useless for any practical purpose. 
My appreciation for abstract expressionism, as well as my understanding 
of it, is limited—but I might look at it anew, considering that a Jackson 
Pollock recently sold for $140 million. Maybe this analogy is not so bad, 
because highly abstract areas of mathematics have turned out to have 
significant—and unexpected—practical value, and $140 million is a lot 
of practical value. 

The successes of physics are extraordinary—but its failures are extraor-
dinary, too. 

One of the early theories of heat was the phlogiston theory. The phlogis-
ton theory states that all f lammable substances contain phlogiston, a 
colorless, odorless, weightless substance that is liberated in burning. I 
strongly doubt that anyone ever produced a truly axiomatic theory of 
phlogiston, but if anyone did, the moment that Antoine Lavoisier showed 
that combustion required oxygen, the phlogiston theory was dead as the 
proverbial doornail. No further treatises would be written on phlogiston 
theory because it had failed the acid test—it did not accord with observa-
ble reality. This is the inevitable fate that awaits the beautiful physical 
theory that collides with an ugly and contradictory fact. The best that can 
be hoped for such a theory is that a new one supersedes it, and the old 
theory is still valid in certain situations. Some venerable theories are so 
useful that, even when supplanted, they still have significant value. Such 
is the case of Newton’s law of gravitation, which still does an admirable 
job of predicting the vast majority of everyday occurrences, such as high 
and low tides on Earth. Even though it has been superseded by Einstein’s 
theory of general relativity, it is fortunately not necessary to use the tools 
of general relativity to predict high and low tides, as those tools are con-
siderably more difficult to use. 

Mathematics rarely worries about reality checks. There are exceptions, 
such as the tale related to me by George Seligman, one of my algebra in-
structors in college, whose classes I greatly enjoyed. The real numbers— 
the continuum discussed in the previous chapter—form a certain type of 
algebraic system of dimension 1.4 The less-familiar complex numbers 
(built up from the imaginary number i���1) form a similar structure of 
dimension 2, the quaternions one of dimension 4, and the Cayley num-
bers a structure of dimension 8. Seligman said that he had spent a couple 
of years deriving results concerning the structure of dimension 16 and 
was ready to publish them when someone showed that no such structure 
existed, and that the four known structures described above were all 
there were. Interestingly, at that time two manuscripts had been submit-
ted for publication to the prestigious Annals of Mathematics. One of the 
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papers outlined the structure of the object of dimension 16; the other 
showed that no such object existed. For Seligman, it was two years of 
work down the drain, but despite that setback he had a long and produc-
tive career. 

For the most part, though, mathematics is extremely resilient with re-
gard to the question of how many angels can dance on the head of a pin. 
While the question is open, mathematicians can write papers in which 
they derive the consequences of having a particular number of dancing 
angels, or of placing upper or lower limits on the number of angels. If the 
question is eventually answered, even the erroneous results can be viewed 
as steps leading toward the solution. Even if it is shown that this is a ques-
tion that cannot be answered, a perfectly reasonable approach is to add an 
axiom regarding the existence or nonexistence of dancing angels and to 
investigate the two systems that result—after all, this was the approach 
that was followed when it was shown that the continuum hypothesis was 
independent of the axioms of Zermelo-Fraenkel set theory. The physicist, 
ever mindful that his or her results must accord with reality, is indeed 
like the portrait photographer; whereas the mathematician, like the ab-
stract expressionist, can throw any array of blobs of paint on a canvas and 
proudly proclaim that it is art—as did the English mathematician G. H. 
Hardy, whom we encountered in the introduction. 

The Difference Between Mathematical and Physical Theories 

The word theory means different things in physics and mathematics. The 
dictionary does a good job of explicating this difference—a theory in sci-
ence is described as a coherent group of general propositions used as ex-
planation for a class of phenomena, whereas a theory in mathematics is 
a body of principles, theorems, or the like belonging to one subject. My li-
brary contains books on the theory of electromagnetism and the theory of 
groups. Even though the theory of groups is not my area of expertise, I  
have little difficulty navigating my way through it. On the other hand, I 
got a D in electromagnetism in college (to be fair, that was the first semes-
ter that I ever had a girlfriend, and so my attention to the course in electro-
magnetism was unquestionably diverted), and one of my goals on 
retirement is to read the book through to its conclusion. In my spare mo-
ments, I have picked it up and started reading—it’s still really tough sled-
ding. It’s not the mathematics that’s the problem—it’s the juxtaposition of 
mathematics and an understanding of, or a feel for, physical phenomena. 

A mathematical theory generally starts with a description of the objects 
under investigation. Euclidean geometry is a good example. It starts with 
the following axioms, or postulates. 
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1. Any two points can be joined by a straight line. 
2. Any straight line segment can be extended indefinitely in a straight 

line. 
3. Given any straight line segment, a circle can be drawn having the 

segment as radius and one endpoint as the center. 
4. All right angles are congruent. 
5. Through any point not on a given straight line, one and only one 

straight line can be drawn parallel to the given line through the given 
point. 

Certain nouns are not defined (point, straight line, etc.), and neither are 
certain verbs ( joined, extended indefinitely, etc.), although we all know 
what they mean. Once we accept these axioms, in the sense that we agree to 
work with them, the game is afoot—derive logical conclusions from them. 
That’s all the mathematician has to do. 

The theory of electromagnetism starts with Coulomb’s law, which states 
that the magnitude of the electrostatic force between two point charges is 
directly proportional to the magnitudes of each charge and inversely pro-
portional to the square of the distance between the charges. This law is 
analogous to Newton’s law of universal gravitation, which states that the 
magnitude of the gravitational force between two point masses is directly 
proportional to the mass of each object and inversely proportional to the 
square of the distance. The reason the two theories are not identical is 
that mass is inherently positive, whereas charge can be either positive or 
negative. We accept Coulomb’s law as the starting point because no meas-
urement has ever contradicted it. The game is again to derive logical con-
clusions from it—but that is far from all that the physicist has to do. The 
logical conclusions enable the physicist to devise experiments that will 
test not the validity of the conclusions—which is all that matters in math-
ematics—but whether the conclusion is consistent with observable real-
ity. Logical conclusions in physics are continually subjected to this reality 
check—because the utility of a physical theory is limited by how it ac-
cords with observable reality. 

When Two Theories Overlap 

Physicists have developed two highly successful theories: relativity, which 
does an excellent job of describing the gravitational force, and quantum 
mechanics, which does an even better job (at least, from the standpoint of 
the precision to which experimentation has confirmed the two theories) 
of describing the mechanical and electromagnetic behavior of particles at 
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the atomic and subatomic level. The problem is that relativity only mani-
fests itself in the realm of large objects, whereas quantum mechanical 
effects are significant only in the world of the really, really, really small. 
Many physicists agree that the single most important theoretical problem 
confronting physics is the construction of a theory (generally referred to 
as quantum gravity) that subsumes both these theories. Current contend-
ers include string theory and loop quantum gravity,5 and part of the dif-
ficulty in picking a winner is devising or discovering phenomenological 
results that will help distinguish between the two. After all, if the two 
theories predict different results when five black holes simultaneously 
merge, it might be a long wait for such an event to occur. 

The melding of theories in mathematics is seamless by comparison. 
Probably the first to achieve success in this area was Descartes, who 
wrote an appendix to his Discourse on Method which laid the foundation 
for analytic geometry. In terms of utility, the few pages Descartes wrote on 
analytic geometry far outstrip the volumes he wrote on philosophy, as ana-
lytic geometry enables one to apply the precise computational tools of alge-
bra to geometric problems. Ever since then, mathematicians have been 
happily co-opting results from one area and applying them to another. To-
pology6 and algebra are, on the surface, disparate fields of study. How-
ever, there are important results in topology obtained by using algebraic 
tools such as homology groups and homotopy groups (the precise defini-
tion of a group will be given in chapter 5) to study and classify surfaces, 
and there are equally valuable results obtained by taking advantage of the 
topological characteristics of certain important algebraic structures to 
deduce algebraic properties of these structures. 

Part of the charm of mathematics, at least to mathematicians, is how 
results in one area can often be fruitfully used in another apparently un-
related area. My own area of research in recent years was fixed-point the-
ory. A good example of a fixed point is the eye of a hurricane; while all 
hell breaks loose around the hurricane, the eye experiences not even a 
gentle zephyr. Many fixed-point problems are nominally placed in the 
domain of real analysis, but at the same time that I and a colleague sub-
mitted a solution to a particular problem that placed heavy reliance on 
combinatorics, the branch of mathematics that deals with the number 
and type of arrangements of objects, a mathematician in Greece submit-
ted a paper solving the same problem, also using combinatorics, but an 
entirely different branch of combinatorics than the one that I and my col-
league employed. It hasn’t happened yet, but I wouldn’t be surprised to 
see a conference on combinatorial fixed-point theory at some stage in the 
future. 
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The Standard Model 

When I studied physics in high school and college, atoms were portrayed 
as consisting of a nucleus of protons and neutrons, with electrons orbit-
ing around the nucleus in a manner akin to planets orbiting a star (al-
though some of my teachers did mention that this was not a totally 
accurate depiction). There were four forces—gravity, electromagnetism, 
the weak force (which governed radioactivity), and the strong force (which 
held nuclei together against the mutual repulsion of the positively charged 
protons in the nucleus). There were a few leftover particles, such as neu-
trinos and muons, and although it was understood that electromagnet-
ism was the result of movement of electrons, the jury was still out on how 
the other forces worked. 

Half a century later, much of this has been augmented and unified as the 
Standard Model.7 It is now known that there are three families of particles 
that admit a very attractive classification scheme, and that forces are con-
veyed through the interchange of various particles. However, even if the 
Standard Model is the last word, there are still numerous questions, such 
as “What causes mass?” (the current leading contender is something called 
the Higgs particle, which no one has yet seen and which always seems to 
be one generation of particle accelerators away) and “Why is electromagnet-
ism stronger than gravity by a factor of 1 followed by 39 zeroes?” 

One of the attractive features of a theory of quantum gravity is that it 
should allow for unification of the four forces. Nearly thirty years ago, 
Sheldon Glashow, Steven Weinberg, and Abdus Salam won the Nobel 
Prize for a theory8 that unified the electromagnetic force and the weak 
force into the electroweak force, which was present only at the ultrahigh 
temperatures that occurred immediately after the big bang. A number of 
physicists believe that there is a theory in which all the forces will coa-
lesce into a single force at an almost inconceivably high temperature, and 
then the various individual forces will separate as the temperature falls, 
somewhat as various components of a mixture will separate from the 
mixture as it cools. 

I’d love to see such a theory. I’m sure it would take me years of study 
before I had a hope in hell of comprehending it, for such a theory would 
undoubtedly be vastly different from any branch of mathematics I’ve ever 
studied. Most mathematical theories begin with a very general structure 
that has a relatively small set of axioms and definitions—such as the 
structure known as an algebra. A good example of an algebra is the col-
lection of all polynomials—you can add and subtract polynomials and 
multiply them by constants or other polynomials, and the result is still a 
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polynomial. Division, however, is not an allowed operation—just as some 
integers divided by other integers are not integers (such as 5 divided by 3), 
some polynomials divided by other polynomials are not polynomials. 

The study of algebras proceeds by adding other hypotheses. Algebras 
beget Banach algebras, which beget commutative Banach algebras, which 
beget commutative semi-simple Banach algebras—each additional adjec-
tive representing an additional hypothesis (or hypotheses). Physics doesn’t 
seem to follow this scheme—the axioms of a theory are constantly sub-
ject to review. In fact, the Standard Model is not so much the deductions 
as it is the Model itself—the deductions available from the hypotheses are 
generally used not as a way to build a better refrigerator, but as a check 
upon the validity of the Model. 

The Limitations of Physics 

It is generally within the last century that physics has come to grips with 
its own limitations. Although the Standard Model talks about particles 
and forces, one of the more modern ideas in physics is that information is 
just as much of a fundamental concept. In particular, much of what we 
have discovered concerning the limitations of physics can be classified in 
terms of information. 

Some of these limitations occur because the information we need is 
simply not accessible, if indeed it exists at all. We cannot know what hap-
pened before the big bang—if indeed anything did—because informa-
tion travels no faster than the speed of light. Nor can we know what lies 
over the hill—if there is a portion of the universe that is farther away 
from us in light-years than the time since the big bang, and if that portion 
is receding from us faster than the speed of light, no information from 
this portion will ever reach us. 

Some limitations are imposed because there is a limit to the accuracy of 
the information concerning it. Heisenberg’s famous uncertainty princi-
ple tells us that the more accurately we are able to ascertain the position of 
a particle, the less accurately we can know its momentum (or, as is more 
commonly thought, its velocity). The consequences of the uncertainty 
principle and other aspects of quantum mechanics, which will comprise 
a significant portion of the next chapter, are among the most eye-opening 
and counterintuitive results in the history of human knowledge. This 
limitation also hampers our ability to predict—negating Laplace’s famous 
statement concerning omniscience. We could say that the universe pre-
vents us from knowing how things will be by concealing from us how 
things are. 
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When Theories Do Battle 

In the middle of the twentieth century, there were two main contenders 
to explain the fact that over large scales of space and time, the universe 
appeared unchanging. Although the big bang theory,9 which posited the 
creation of the Universe in an enormous explosion, was to emerge trium-
phant, it had a strong rival in the steady state theory. One of the key as-
sumptions of the steady state theory10 was that one atom of hydrogen was 
created de nihilis per 10 billion years in every cubic meter of space. That’s 
not a whole lot of creation—but it requires abandoning the principle of 
matter-energy conservation that is nominally one of the bedrock princi-
ples of physics. However, there are limits to which scientific principles  
can be confirmed by experiment—and in the 1950s (and possibly now as 
well), it was impossible to measure with a precision that would invalidate 
such a result. 

There is an uncertainty (which has nothing to do with the uncertainty 
principle) that surrounds any set of hypotheses in physics. The best one 
can do with any set of hypotheses is to make deductions and test them by 
experiment, and the precision of all experiments is limited. In order to ob-
serve the creation of one atom of hydrogen per 10 billion years per cubic 
meter, one can’t just pick a cubic meter and observe it for 10 billion years. 
Even granted the fact that it would be hard to find someone or something 
willing to sit and watch a cubic meter of space for that long a time, you 
might be unfortunate and pick a cubic meter in which nothing happens— 
the steady state theory obviously talks about an average rather than an ex-
act occurrence. The steady state theory did not fall by the wayside because 
atom creation went unobserved—it fell because in an unchanging uni-
verse, there would have been no cosmic microwave background. Such a 
background was predicted by the big bang theory to be a relic of the big 
bang—and when it was observed by Arno Penzias and Robert Wilson in 
the 1960s, the big bang theory emerged as the clear-cut winner. 

Physics is frequently confronted with situations in which it must rely on 
statistical methods rather than observations—various theories that have 
predicted that protons decay, but with exceedingly long time intervals 
before they do, so the solution is to assume that there is a frequency dis-
tribution with which those protons decay and watch a large number of 
protons. Many physical theories are confirmed or refuted on the basis of 
statistical tests—not unlike theories in the social sciences, except for the 
fact that theories in the social science are often accepted or rejected on 
the basis of confirmation at the 95 percent level of confidence, whereas 
physical theories must meet much more stringent criteria. 
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Theories in mathematics never do battle in this fashion, and they are 
never resolved on the basis of statistical evidence. As with a great prob-
lem such as the truth or falsehood of the continuum hypothesis, the 
resolution of the problem adds something new to mathematics. It is true 
that theories fall in and out of favor with the mathematical community, 
and it is also true that theories are sometimes supplanted by more all-
encompassing theories. If there are competing explanations for phe-
nomena in the real world, mathematics may provide some of the tools 
needed to resolve the dispute, but without experiments and measure-
ment these tools are essentially useless. 

The last chapter in this section concerns which mathematical model 
best describes the small-scale structure of our universe—discrete struc-
tures or the continuum. Both theories, from a mathematical standpoint, 
are equally valid—but when it came to description of the universe, there 
could be only one winner. 

NOTES 
1. See http:// en .wikipedia .org/ wiki/ Auguste _Comte. As I have mentioned, Wiki-

pedia biographies are generally reliable, and often very well documented. 
2. See http:// en .wikipedia .org/ wiki/ Simon _Newcomb . 
3. See �http:// sciencepolicy .colorado .edu/ zine/ archives/ 31/ editorial .html. A quick 

Google search also finds that this quote is attributed to Mark Twain, who said lots 
of very clever things, and Yogi Berra, who said lots of things like this, and as a 
result gets a lot of credit for things like this which he may, or may not, have said. 

4. According to Seligman, the precise problem was to determine for which values 
of n there exists a bilinear map (the multiplication) of �n��n��n such that 
ab�0 if and only if either a �0 or b �0. If you’re not familiar with the notation, 
�n is the set of all n-dimensional vectors whose components are real num-
bers. Bilinear maps are generalizations of the distributive law in both varia-
bles—(a� b)c�ac�bc and a(b �c)�ab�ac. Additionally, because a and b are 
vectors, a bilinear map must satisfy (ra)b�r(ab) and a(rb)�r(ab) for any real 
number r. 

5. This is a terrific opportunity to plug two immensely enjoyable best sellers by 
Brian Greene, The Elegant Universe (W. W. Norton 1999) and The Fabric of the 
Cosmos (Alfred A. Knopf, 2004). Despite what reviewers may say, these wonder-
ful books are tough sledding—deep ideas never admit easy explanations, and 
both string theory and loop quantum gravity are incredibly deep ideas. Nonethe-
less, Greene does an excellent job with string theory in the first book, but since 
he is a believer in string theory, loop quantum gravity is given relatively short 
shrift. To be fair, loop quantum gravity is unquestionably a minority position in 
the physics community—but the right of a minority to become a majority is no-
where more religiously observed than in physics. 

6. Topology is the study of the properties of geometric figures or solids that are not 
changed by deformations such as stretching or bending. The classic example is 
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that a doughnut is topologically equivalent to a coffee mug, because each has 
precisely one hole (you know where it is in the doughnut; the hole in the coffee 
mug is where you put your finger through when you hold the mug). If you had a 
piece of clay, and poked a hole in it, you could shape it like a doughnut (easy) or 
a coffee mug (not so easy) by stretching and bending the clay without any fur-
ther tearing. 

7. See http://en.wikipedia.org/ wiki/Standard_Model. This is an excellent short ex-
position of the Standard Model, along with a beautiful chart that puts the peri-
odic table to shame. You have to click several times on the chart before you get to 
a readable resolution, but it’s worth it. 

8. See http://en.wikipedia.org/ wiki/ Electroweak. The first two paragraphs give you 
all you need, but if you like staring at equations, there’s a nice little window that 
has the basic equations of the theory—if E�mc2 is the most impressive equation 
you’ve ever seen, take a look. Because Wikipedia is user composed, the depth of 
treatment in different sections varies wildly. I’m not a physicist, but I can recog-
nize the symbols and what the equations are saying, but I have no idea where 
they come from and how they might be used. 

9. See http://en.wikipedia.org/ wiki/ Big_Bang. If explanatory Web sites were rated 
on a 1 to 10 scale, this one would be a 10—it’s as good as it gets. Good graphics, 
understandable explanations, excellent hyperlinking—this site is so good if it 
had pop-up ads, you wouldn’t mind it. 

10. See http:// en .wikipedia .org/ wiki/ Steady _State _theory. This site is nowhere near 
as impressive as the one for the big bang theory. No graphics, a rather perfunc-
tory explanation, but that’s not really surprising, because the steady state theory 
is dead, dead, dead. I imagine that sighs of relief were heard throughout the 
astrophysical community when this theory bit the dust, because matter-energy 
conservation is so fundamental a principle you’d hate to abandon it. 
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3Al lll Things Great and Sma

Glamour vs. Meat and Potatoes 
The theory of relativity is probably the most glamorous result of twenti-
eth-century physics. It is both beautiful and profound, and it made Albert 
Einstein an iconic figure. However, other than to show the equivalence of 
matter and energy, which has led to extremely destructive weapons and 
an energy technology which is widely used outside the United States but 
has fallen into disrepute here, exactly what has the theory of relativity 
done for the average person? 

The short answer is “not much.” The theory of relativity also involves 
gravity, but although gravity is used to turn dynamos much as gravity  
was used to turn waterwheels in the past, it is the electricity produced by 
the dynamos that powers our lives, not the gravity-induced fall of the wa-
ter that turns them. Unquestionably, the theory of relativity has had a 
significant impact upon the world, but it pales in comparison with the 
impact made by the study of the physics of the electron and the photon. 

The deeper understanding of the electron and the photon is the domain of 
quantum mechanics. Many great physicists have contributed to quantum 



mechanics, including Einstein, but there was no previous Isaac Newton in 
this branch of physics to be knocked off his or her pedestal. Yet quantum 
mechanics has changed our lives, perhaps more than any single branch of 
physics has ever done—although the classical theory of electromagnetism 
would be a strong contender. But quantum mechanics has been much more 
than a generator of technology; it has greatly changed and challenged our 
understanding of the nature of reality. 

What Does It All Mean? 

Ever since Pythagoras proved what is arguably the most important theo-
rem in mathematics, mathematics has generally had a very clear view of 
what it is trying to accomplish. Pythagoras knew, as it had been known 
since Egyptian times, that some of the classic triangles were right trian-
gles, such as the triangle with sides 3, 4, and 5. Noticing that 32�42�52, 
he was able to generalize this to show that in a right triangle, the square 
of the hypotenuse was equal to the sum of the squares of the other two 
sides. He knew what he wanted to prove, and when he proved it he knew 
what he had—a theorem so important that he ordered a hundred oxen to 
be barbecued in celebration. I sometimes tell my students this tale, add-
ing that this provides a measuring rod for the importance of mathemati-
cal theorems. The fundamental theorem of arithmetic (that every number 
can be uniquely expressed as a product of primes), the fundamental theo-
rem of algebra (that every nth-degree polynomial with real coefficients 
has n complex roots), and the fundamental theorem of calculus (that inte-
grals can be evaluated via anti-differentiation) are all sixty-oxen theorems, 
and to my mind, no other theorems come close to those. 

It’s different in physics—especially in quantum mechanics. Both physi-
cists and mathematicians “play” with what they have in an attempt to de-
duce new and interesting results, but when mathematicians deduce such 
a result, they almost never have to worry about what it means. It is what 
it is, and the next step is to find applications of the result, or deduce new 
consequences from it. 

Physicists, on the other hand, have to decide what the result means— 
what the mathematics actually represents in the real world. Quantum 
mechanics is such an incredibly rich and profound area that physicists 
are debating the meaning of results nearly a century old. Niels Bohr, one 
of the architects of the theory, expressed this sentiment perfectly when he 
declared, “If quantum mechanics hasn’t profoundly shocked you, you 
haven’t understood it yet.”1 
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Richard Arens 

My first teaching job took me to UCLA in the fall of 1967, a few years after 
the release of the film Mary Poppins. One of the supporting actors in the 
cast was the venerable British comedian Ed Wynn, who played the role of 
Mary Poppins’s Uncle Albert. At the time I arrived at UCLA, one of the 
senior members of the mathematics department was Richard Arens, who 
bore a striking physical resemblance to Ed Wynn—he had a bald head 
with a fringe of hair surrounding it, and an air of perpetual amusement. 

In the course of my work, I had occasion to read several papers that 
Arens had written. These papers were a treat—they contained interesting 
and unexpected results, almost invariably proved in an interesting and 
unexpected way (many results in mathematics are proved by techniques 
so well known that a few lines into the proof you can say to yourself some-
thing like “Cantor diagonal proof ”—this was used to show that the set of 
all infinitely long names cannot be matched one-to-one with the positive 
integers—and skip to the next section). 

At one stage in his impressive career, Arens decided that what was 
needed was for a mathematician to look at quantum mechanics. He did 
so for a number of years. I talked to him about it, and he said that he had 
studied it intensively, and had basically gotten nowhere. I suspect that 
“nowhere” for Richard Arens was a lot further than it might be for others, 
but nonetheless it indicates the depth and complexity that appears in 
quantum mechanics. 

Any Questions? 

For a number of years, I was the graduate adviser in the Mathematics 
Department at CSULB. One of my jobs was to keep tabs on our teaching 
associates, the graduate students we supported by having them teach 
lower-level classes. At the start of each year, I gave a short talk on what I 
considered generally good advice for teaching. One of the issues con-
cerned how to handle perplexing questions. I told them that every so 
often a student would ask them a question that they couldn’t answer off 
the top of their head. It’s happened to me, and I’m sure to practically 
every other math teacher as well. I told them that in that case, they 
should say, “That’s a very interesting question. Let me think about it 
and get back to you on it.” In doing this, they have paid respect, both to 
the questioner and the question, and have kept faith with what is one of 
the essential missions of a teacher—to answer questions as well as pos-
sible. Sometimes the correct answer to a question requires work, and it 
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is more important to have the correct answer later than an incorrect 
answer now. 

I’d like to give the same advice to readers of this book—especially in this 
chapter—but sometimes the answers are not known, even to the best 
minds in physics, and certainly not to me. So I would ask for a certain 
measure of indulgence on the part of the reader. What quantum mechan-
ics has shown us about the nature of reality and the limitations of knowl-
edge is truly fascinating—but the final version of this saga is a long way 
from being written, and may never be written. Unquestionably, though, 
what we have learned via quantum mechanics about reality and the limi-
tations of knowledge is so fascinating and compelling that this book 
would be incomplete without a discussion of this subject. 

Max Planck and the Quantum Hypothesis 

As the nineteenth century came to a close, physicists around the world 
were beginning to feel their time had come and gone. One physicist ad-
vised his students to pursue other careers, feeling that the future of phys-
ics would consist of the rather mundane task of measuring the physical 
constants of the universe (such as the speed of light) to ever-increasing 
levels of accuracy. 

Still, there were (apparently) minor problems that had yet to be resolved. 
One of the unsettled questions concerned how an object radiates. When 
iron is heated on a forge, it first glows a dull red, then a brighter red, and 
then white; in other words, the color changes in a consistent way with in-
creasing temperature. Classical physics was having a hard time account-
ing for this. In fact, the prevailing Rayleigh-Jeans theory predicted that 
an idealized object called a blackbody would emit infinite energy as the 
wavelength falling on it became shorter and shorter. Short-wavelength 
light is ultraviolet; the failure of the Rayleigh-Jeans theory to predict fi-
nite energy for a radiating blackbody exposed to ultraviolet light came to 
be known as the “ultraviolet catastrophe.”2 

When a scientific theory encounters an obstacle, several different things 
can happen. The theory can overcome the obstacle; this frequently occurs 
when broader ramifications of a new theory are discovered. The theory 
can undergo minor revisions; like software, the alpha version of a theory 
is often in need of fine-tuning. Finally, since any scientific theory is capa-
ble of explaining only a limited number of phenomena, it may be neces-
sary to come up with a new theory. 

The Rayleigh-Jeans theory operated under a very commonsense 
premise—that energy could be radiated at all frequencies. An analogy  
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would be to consider the speed of a car—it should be able to travel at all 
velocities up to its theoretical limit. If a car cannot go faster than 100 
miles per hour, for instance, it should be able to move at 30 miles per 
hour, or 40 miles per hour, or 56.4281 miles per hour. However, writing 
down a few numbers is somewhat deceptive, because they are all rational 
numbers. As we know from the previous chapter, there are uncountably 
many real numbers less than 100. 

One day in 1900, the German physicist Max Planck made a bizarre as-
sumption in an attempt to escape the ultraviolet catastrophe. Instead of 
assuming that energy could be radiated at all frequencies, he assumed 
that only a finite number of frequencies were possible, and these were all 
multiples of some minimum frequency. Continuing the analogy with the 
speed of the car, Planck’s hypothesis would be that something like only 
speeds that were multiples of 5—25 miles per hour, 40 miles per hour, 
etc.—would be possible. He was able to show almost immediately that  
this counterintuitive hypothesis resolved the dilemma, and the radiation 
curves he obtained from making this assumption matched the ones re-
corded by experiment. That day, while walking with his young son after 
lunch, he said, “I have had a conception today as revolutionary and as 
great as the kind of thought that Newton had.”3 

His colleagues did not immediately think so. Planck was a respected 
physicist, but the idea of the quantum—energy existing only at certain 
levels—was at first not taken seriously. It was viewed as a kind of mathe-
matical trickery that resolved the ultraviolet catastrophe, but did so by 
using rules that the real world did not obey. Ever since Isaac Newton in-
corporated mathematics as an essential part of a description of natural 
phenomena, it has generally been easier for a theoretician to sit down 
with pencil and paper, and derive mathematical consequences, than it 
has for an experimenter to devise and carry out a successful experiment. 
As a result, there is sometimes the feeling that mathematics is merely a 
convenient language to describe phenomena, but it does not give us an 
intuitive insight into the nature of the phenomena. 

Planck’s idea languished for five years, until Einstein used it in 1905 to 
explain the photoelectric effect. Eight years later, Niels Bohr used it to 
explain the spectrum of the hydrogen atom. Within another twenty years, 
Planck had won a Nobel Prize, and quantum mechanics had become one 
of the fundamental theories of physics, explaining the behavior of the 
world of the atom and making possible many of the high-tech industries 
of today. 

With the coming of the Nazis, German science suffered severely. Many 
of the leading scientists were either Jewish or had Jewish relatives, and 
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f led the country. Many others reacted with abhorrence to the Nazi re-
gime, and also departed. Planck, although deploring the Nazis, decided 
to stay in Germany. It was to be a tragic decision. In 1945, Planck’s  
younger son was executed for his part in the “Revolt of the Colonels,” the 
unsuccessful attempt by several members of the German armed forces to 
assassinate Hitler. 

The Quantum Revolution Continues 

Max Planck’s revolutionary idea did more than simply resolve the ultravi-
olet catastrophe. Possibly only one other moment in science has opened 
the door to such an unexpected world—when Anton von Leeuwenhoek 
took his primitive microscope and examined a drop of water, only to dis-
cover forms of life never suspected and never before seen. 

The quantum revolution has changed our world—technologically, sci-
entifically, and philosophically. Much of the incredible technology that  
has been developed since the 1930s—the computer, the medical scan-
ners, lasers, everything with a chip in it—are the result of the application 
of quantum theory to understanding the behavior of the subatomic world. 
Quantum mechanics has not only spawned sciences that did not exist 
prior to its conception, it has also greatly enriched some of the more ven-
erable areas of study, such as chemistry and physics. Finally, quantum 
mechanics has fostered discoveries so profound that they make us won-
der about the essential nature of reality, a topic that has been a matter of 
fierce philosophical debate for millennia. 

Libraries could be built housing only books devoted to discussions of 
quantum mechanics, so I’ll just concern myself with three of the most 
perplexing topics in quantum mechanics: wave-particle duality, the un-
certainty principle, and entanglement. 

Is Light a Wave or a Particle? 

Probably no question in science has created more controversy over a 
longer period of time than the nature of light. Greek and medieval phi-
losophers alike puzzled over it, alternating between theories that light 
was a substance and that light was a wave, a vibration in a surrounding 
medium. Almost two millennia later, Isaac Newton entered the debate. 
Newton, when he wasn’t busy with mathematics, mechanics, or gravita-
tion, found time to invent the science of optics. As had others, Newton 
puzzled over the nature of light, but finally voted for the theory that light 
was a substance. 
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We know the characteristics of substances, but what are some of the 
characteristics of waves? Not all waves behave similarly. Sound, one clas-
sic example of a wave, can go around corners. Light doesn’t. Water waves, 
another obvious type of wave, can interfere with each other. When two 
water waves collide, the resulting wave can be either stronger or weaker 
than the original waves—stronger where the high points of both waves 
reinforce each other, and weaker where the high points of one wave coin-
cide with the low points of the other wave. 

Such was the almost universal reverence in which Newton was held that 
few efforts were made to either validate or dispel the wave theory of light 
for more than a century, even though the noted physicist Christian Huy-
gens (1629–1695) strongly favored the view that light was a wave phenom-
enon. The individual who would finally perform the definitive experiment 
was Thomas Young, a child prodigy who could read by age two and who 
could speak twelve languages by the time he was an adult. In addition to 
being a child prodigy, fortune had favored Young in other respects, as he 
was born into a well-to-do family. 

Thomas Young was a polymath whose accomplishments extended into 
many of the realms of science, and even beyond. He made significant  
contributions to the theory of materials; Young’s modulus is still one of 
the fundamental parameters used to describe the elasticity of a sub-
stance. Young was also an Egyptologist of note, and was the first individ-
ual to make progress toward deciphering Egyptian hieroglyphics. 

After a brilliant performance as a student at Cambridge, Young decided 
to study medicine. Young was extremely interested in diseases and condi-
tions of the eye. He constructed a theory of color vision, observing that in 
order to be able to see all colors, it was only necessary to be able to see red, 
green, and blue. While still a medical student, he discovered how the 
shape of the eye changes as it focuses. Shortly after, he correctly diag-
nosed the cause of astigmatism, a visual fuzziness caused by irregulari-
ties in the curvature of the cornea. 

Young’s fascination with the eye led him to begin investigations into 
color vision and the nature of light. In 1802, he performed the experiment 
that was to show once and for all that light was a wave phenomenon. 

The Double-Slit Experiment 

Particles and waves behave differently as they go through slits. If one im-
agines waves coming onto shore, blocked by a jetty of rocks with one nar-
row opening, the waves spread out in concentric circles around the 
opening. If there are two narrow openings reasonably close to each other, 

All Things Great and Small 47�



the waves spread out in concentric circles around each opening, but the 
waves from each opening interact (the technical term is “interfere”) with 
the waves from the other opening. Where the crests (where the waves are 
highest) of one set of waves encounter the crests from another set of 
waves, the cresting is reinforced. Where the crests from one set of waves 
encounter the troughs (where the waves are lowest) from the other set, 
they tend to neutralize each other, diminishing the amplitude of the 
crests where crests meet troughs. 

The behavior of particles, on encountering a similar collection of nar-
row openings, is different. If two rectangular pieces of cardboard are 
lined up parallel to each other, a single narrow slit cut in the nearer of the 
two, and a paint sprayer directed at the nearer, a single blob of paint ap-
pears on the farther piece of cardboard directly behind the slit. The edges 
of the blob are not clearly defined, however, as paint particles spread out 
from the center but lessen in density the farther one is from the center. 
Cut two parallel slits in the nearer piece of cardboard and direct the paint 
sprayer at both, and similar blobs will appear on the farther piece of card-
board directly behind the slits. 

Young constructed an experiment that took advantage of this difference. 
He cut two parallel slits into a piece of cardboard and shone a light 
through the slits onto a darkened background. He observed the alternat-
ing bright bands of light interspersed with totally dark regions. This is 
the classic signature of wave interference. The bright bands occurred 
where the “high points” (the crests) of the light waves coincided, the dark 
regions where the crests of one light wave were canceled out by the 
troughs of the other. 

Einstein and the Photoelectric Effect 

Young’s double-slit experiment seemed to settle the issue of whether 
light was a wave or a particle—until Einstein put in his two cents’ worth 
during his “miracle year” of 1905. One of the papers he wrote during this 
year explained the photoelectric effect. When light falls upon a photoelec-
tric material, such as selenium, the energy in the light is sometimes suf-
ficient to knock electrons out of the surface of the metal. Light produces 
electricity, hence the term photoelectric. 

The wave theory of light predicted that the greater the intensity of the 
light, the greater should be the energy of the emitted electrons. In a clas-
sic experiment in 1902, Philipp Lenard showed that this was not the case, 
and that the energy of the emitted electrons was independent of the in-
tensity of the light. No matter how strong the light source, the emitted 
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electrons had the same energy. Lenard also showed that the energy of the 
emitted electrons depended upon the color of the incident light; if one 
used light of shorter wavelengths, the energy of the emitted electrons was 
higher than if one used light of longer wavelengths. This result also pro-
vides evidence how one’s adviser, and the interests of that adviser, often 
inf luence the career of the student. Lenard’s adviser at the University of 
Heidelberg was Robert Bunsen, who had discovered that the patterns of 
light, recognizable as bands of different color, characterized each ele-
ment, and could be used to deduce the composition of the stars. This 
seminal experiment earned Lenard the Nobel Prize in 1905, the same 
year that Einstein was to explain the reasons behind the phenomena 
Lenard had discovered. 

Einstein explained the photoelectric effect by invoking Planck’s idea of 
quanta. He assumed that light behaved as a collection of particles (each 
particle is called a “photon”), with each photon carrying energy that de-
pended upon the frequency of the light. The shorter the wavelength, the 
higher the energy of the associated photon. If you swing a bat faster, you 
will impart more energy to a baseball—assuming you hit it. When the 
short-wavelength (high-energy) photons hit an electron with enough en-
ergy to knock it out of the metal, that electron had more energy than one 
hit with a higher-wavelength (lower energy) photon—a Barry Bonds home 
run rather than a wind-assisted home run in Wrigley Field hit by a utility 
infielder. 

The explanation of the photoelectric effect won Einstein the Nobel 
Prize in 1921. Great experiments such as Lenard’s win Nobel Prizes, but 
great explanations such as Einstein’s not only win Nobel Prizes but also 
make history. Perhaps unhappy at being upstaged by Einstein, possibly 
exacerbated by his inability to find the explanation for the photoelectric 
effect he had discovered (and on which he could have cornered both the 
experimental and theoretical markets), Lenard disparaged Einstein’s 
theory of relativity as “Jewish science” and became an ardent supporter 
of the Nazis. 

Is Matter a Wave or a Particle? 

I have no idea how lengthy a typical doctoral dissertation is; I’m sure it 
varies with the field. Mine was about seventy typewritten pages and con-
tained enough results that I was able to squeeze three published articles 
out of it—all of which have long been forgotten. I’m sure there are other, 
much lengthier doctoral dissertations, even in mathematics. 

There are also shorter ones, much shorter. In 1924, Louis de Broglie 
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wrote a very short dissertation in which he put forth the novel idea that 
matter could also have wavelike qualities. The core of his dissertation was 
a single equation expressing a simple relation between the particle’s 
wavelength (obviously a wave property) and its momentum (a particle 
property). In 1927, this was experimentally confirmed, and de Broglie re-
ceived the Nobel Prize in 1929. 

To get a feel for this remarkable idea, imagine that we adjust the paint 
sprayer we described earlier so that the paint particles come out in a 
straight line, and very slowly—maybe one lonely particle of paint every few 
seconds. We aim this paint sprayer at the double-slit array, and after wait-
ing for an agonizingly long period of time, look behind the slits to see 
what the rear piece of cardboard looks like. To no one’s great surprise, 
it looks basically like it did when we turned the paint sprayer on full 
blast—two blobs with diffuse edges centered behind each of the two slits. 

Perform this exact same experiment using, instead of a paint sprayer, an 
electron gun firing electrons instead of paint particles (and using a detec-
tor that records the impact of an electron by illuminating a pixel at the 
point of impact), and something weird and totally unexpected (well, except 
possibly by de Broglie) happens. Instead of seeing two blobs of light with 
diffuse edges, we see alternating dark patches and light patches—the sig-
nature of wave interference. The conclusion is inescapable—under these 
circumstances, the electron behaves like a wave. Matter, like light, some-
times behaves like a particle, sometimes like a wave. 

Split Decisions—Experiments with Beam Splitters 

A number of intriguing experiments in this area are conducted with 
beam splitters. Imagine that a photon starts its journey at home plate of 
a baseball diamond and hits a double, sliding into second base. In this 
experiment, however, the photon can get to second base via the usual 
route—going to first base and then to second—or by a path which in 
baseball would get the batter declared out—by going to third base and 
then to second. This is the modern version of the double-slit experiment. 
There is a light detector behind second base that records the impact of the 
photon, just as before; the paths that the photons can follow converge at 
second base so that wave interference, if it exists, can be detected. The 
beam splitter sends the photon by one of the two routes, via first or third 
base, and does so randomly but with equal probability of going via either 
route. In this variation, the light detector reveals interference patterns, as 
did the double-slit experiment; the photons are acting as waves. 

Now change the experiment a little. Place a photon detector in the first-
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base coaching box (or the third-base coaching box, it doesn’t matter). A 
coach can always tell when a runner has run past him—or whether no 
runner has gone by. Similarly, a photon detector can determine whether a 
photon has passed. This has a dramatic effect on the light pattern behind 
second base; it now consists of two bright patches, indicating that the  
photons have behaved as particles. 

How Do Photons Know? 

When observed (via a photon detector), photons behave as particles. When 
not observed (when there is no photon detector), photons behave as waves. 
This is strange enough—how does a photon know whether it is being  
observed or not? This is one of the riddles at the core of quantum me-
chanics, and it is a riddle that pops up in different guises. 

Things get even stranger. In the 1970s, John Wheeler proposed a bril-
liant experiment, now known as a delayed-choice experiment. Position a 
photon detector far away from “home plate,” and equip it with an on-off 
switch. If the photon detector is on, the photons behave as particles, if it 
is off, the photons behave as waves. This is essentially a combination of 
the two previous experiments. 

Wheeler’s suggestion was to turn the photon detector on or off after the 
photon has left home plate. This is known as a delayed-choice experi-
ment, because the choice of whether to turn the detector on or off is de-
layed until after the photon has, presumably, already made its choice as to 
whether to behave as a wave or a particle. There appear to be two possibil-
ities—the behavior of the photon is determined the instant it leaves home 
plate (but if so, how does it know whether the photon detector is on or 
off?), or the behavior of the photon is determined by the final state of 
photon detector. If the latter is the case (as experiments conclusively 
showed), the photon must simultaneously be in both states when it leaves 
home plate, or is in an ambiguous state that is resolved when either it  
passes the photon detector and learns it is being observed, or gets to sec-
ond base without having been observed. 

As has been previously mentioned, the mathematical description of 
quantum phenomena is done by means of probability. An electron, before 
it is observed, does not have a definite position in space; its location is de-
fined by a probability wave, which gives the probability that the electron is 
located in a certain portion of space. Before it is observed, the electron 
is everywhere—although it is more likely to be in some places than oth-
ers. Additionally, in going from here to there, it goes via all possible routes 
available in going from here to there! However, the observation process 
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“collapses” the wave function, so that it can no longer be everywhere, and 
is instead somewhere in particular. The observation also collapses the 
electron’s ability to go from here to there via all possible routes, and in-
stead selects one route from the possible gazillions. 

Wheeler also proposed that nature could illustrate how counterintuitive 
quantum mechanics is via a grandiose delayed-choice experiment. In-
stead of a beam splitter in a laboratory, a quasar billions of light-years 
away, acting as a gravitational lens, would do what the beam splitter 
does—allow the photon to come to Earth by one of two differing paths. 
These paths could be focused out in space; if no photon detectors had 
been placed along the paths, an interference pattern would result, and if 
there were photon detectors in place, the photons would act like particles. 
The counterintuitive aspect is that the photon, billions of years ago as it 
passed the gravitational lens, appears to have made the “decision” to be-
have as a wave or a particle. Experiments have shown that this decision is 
not made by the photon but by the universe—if an observation is made, 
the photon acts as a particle; if not, it acts as a wave. 

Probability Waves and Observations: A Human Example 

Arcane though the idea of probability waves and observations collapsing 
them may seem, there is a simple analogue that takes place annually at 
every university in the country. Many students enter as undeclared ma-
jors—not certain whether their futures lie in biochemistry, business, or 
something else. As a result, they take a diverse assortment of courses, 
encouraged by the university’s general education policy of requiring stu-
dents to take courses in a number of disciplines. These students are like 
probability waves; their as-yet-unselected majors are a probabilistic amal-
gam of biochemistry, business, and a whole bunch of other alternatives. 

At some time, though, the student must select a major, usually done by 
conferring with an adviser who tells the student the options available, 
what the various majors require, and the career paths they allow (if the 
student does not already know), and the student makes his or her choice. 
This choice collapses the probability wave, and the student is now a de-
clared major. 

You’re Nobody Till Somebody Observes You 

A popular song from the 1950s was Dean Martin’s “You’re Nobody ‘Till 
Somebody Loves You.” In quantum mechanics, you’re only a probability 
wave until someone, or something, observes you. What constitutes an  
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observation in the physical universe, and when does it take place? A  
widely held view in the physics community is that an observation consists 
of an interaction with the universe. Our intuitive notion of reality—that 
things have definite states and attributes—collides with the world pre-
sented by quantum mechanics, in which things have a probabilistic mix-
ture of states and attributes, and only interaction with the universe can 
create an actuality from what was initially just a possibility. 

Schrödinger’s Cat 

Erwin Schrödinger came up with a tremendously provocative way to visu-
alize the weirdness inherent in quantum behavior. He imagined a box 
containing a cat, a vial of poison gas, and a radioactive atom, which has a 
probability of 50 percent that it will decay within an hour. If it does, it trig-
gers a mechanism releasing the poison gas, killing the cat (it seems likely 
that Schrödinger did not actually own a cat—although he may have 
owned one that was more trouble than it was worth). An hour goes by. In 
what state is the cat?4 

The conventional answer to the question is that the cat is either dead or 
alive, and we’ll know when we open the box. Quantum mechanics an-
swers this question by saying it’s half dead and half alive (or that it’s  
neither)—and the answer will be determined when the box is opened, 
and observation collapses the wave function. 

Counterintuitive though the half-dead, half-alive cat may be, that’s the 
interpretation that quantum mechanics gives—and how can we refute it? 
Without an observation (which need not consist of actually looking at the 
cat, but simply obtaining information about the state of the radioactive 
atom whose decay determines the outcome), how can we know? Could 
your reclusive neighbor, whom you hardly ever see, be in a half-dead, 
half-alive state, which is only determined when he interacts in some way 
with the world? Just recently, a man was found in a mummified condition 
in front of a TV set—he had been dead (and the TV set on) for thirteen 
months before anyone decided to check up on him. 

As a computational method, quantum mechanics is probably the most 
accurate in physics—confirmed to more decimal places than there are dig-
its (including pennies) in the national debt. Some physicists feel that this is 
all physics can do—give computational rules that enable us to build com-
puters and magnetic resonance imagers. A much larger number of physi-
cists feel that this is telling us something deep and important about 
reality—but the physics community has not yet come to a consensus about 
what reality is, and if they can’t, it’s going to be difficult for the rest of us. 
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Quantum Erasers 

The idea that photons and electrons are probability waves until they are 
observed, when they become objects, has been the subject of numerous 
experiments. One particular ingenious type of experiment is the quan-
tum eraser experiment, first conceived by Marlon Scully and Kai Druhl 
in 2000. Going back to the baseball version of the setup, imagine that 
when a photon passes one of the coaches, that coach slaps it on the back 
(much like a baseball coach) with an identifying label that enables us to 
tell which route the photon takes. When that happens, an observation has 
clearly taken place, and the photon acts as a particle—the pattern on the 
detector behind second base is the familiar two blobs that characterize  
particles. 

Now suppose that somehow, just as the labeled photons get to second 
base, the labels are removed (exotic as this labeling and unlabeling of 
photons might seem, there is a way to do it, but the details are not impor-
tant for this discussion). There is then no evidence of the labeling—the 
labels have been erased (hence the term quantum eraser). With no evi-
dence as to which way the photons got to second base, the interference 
pattern reemerges. 

Bizarre—unquestionably. Surprising—no; this was precisely the result 
predicted by Scully and Druhl. We understand what quantum mechanics 
is telling us: that photons and electrons are probability waves until they 
interact with the universe, and then they are particles. If we cannot deter-
mine that they have interacted with the universe—and that’s what quan-
tum erasing accomplishes—they are probability waves. Among the things 
we may never know is why it is this way, and whether it could have been 
another way. This is one of the long-range goals of physics: to tell us not 
only the way the universe is, but why this is the only way it could be—or 
if it could be some other way. 

It is a measure of how far we have come technologically that the May 
2007 issue of Scientific American contains an article on how to build your 
own quantum eraser.5 It doesn’t seem very complicated—but whenever 
I try to assemble something, I always seem to have parts left over (why 
don’t the manufacturers ever ship the right number of parts?). I remem-
ber reading an article on how, just prior to the test of the first atomic 
bomb, the physicists were concerned that the explosion might create an 
ultradense state of matter known as Lee-Wick matter, the appearance of 
which could (at least theoretically) result in the destruction of the uni-
verse. They convinced themselves that if that could happen, it would al-
ready have happened somewhere in the universe. However, they did not 
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include my efforts to put things together in their calculations (I was only 
four years old at the time), and so I think I’ll leave the construction of 
home quantum erasers to those with demonstrated mechanical ability. 

The Uncertainty Principle 

Some branches of mathematics, such as geometry, are highly visual; oth-
ers, such as algebra, are highly symbolic, although many important re-
sults have been obtained by looking at algebraic problems geometrically 
or geometric problems algebraically. Nonetheless, most of us have a pref-
erence for looking at things one way or the other. Einstein had a beautiful 
way of expressing this: in his later years, he remarked that he hardly ever 
thought about physics by using words. Possibly, he saw pictures; possibly, 
he saw relationships between concepts. I marvel at this facility—while I 
sometimes think in terms of pictures, they are almost always derived 
from words describing them. 

As physics probed ever deeper into the subatomic world in the first few 
decades of the twentieth century, it became harder and harder to visual-
ize the phenomena that were occurring. As a result, some physicists, 
including Werner Heisenberg, preferred to treat the subatomic world 
through symbolic representation alone. 

The Heisenberg who tackled this complex problem was very different 
from the Heisenberg who, at the end of World War I, was a “street-fight-
ing man,” engaging in pitched battles with Communists in the streets of 
Munich after the collapse of the German government following the war. 
Heisenberg was only a teenager at the time, and after the rebellious phase 
subsided, he switched his focus from politics to physics, displaying such 
talent that he became one of Niels Bohr’s assistants. As a result, Heisen-
berg was thoroughly familiar with Bohr’s “solar system” model of the 
atom, in which electrons were viewed as orbiting the nucleus much as 
planets orbit the sun. At that time, Bohr’s model was running into cer-
tain theoretical difficulties, and several physicists were trying to resolve 
them. One was Erwin Schrödinger, whom we have already met. 
Schrödinger’s solution entailed treating the subatomic world as consist-
ing of waves, rather than particles. Heisenberg adopted a different ap-
proach. He devised a mathematical system consisting of quantities called 
matrices (a matrix is a little like a spreadsheet—a rectangular array of 
numbers arranged in rows and columns) that could be manipulated in 
such a fashion as to generate known experimental results. Both 
Schrödinger’s and Heisenberg’s approaches worked, in the sense that 
they accounted for more phenomena than Bohr’s atomic model. In fact, 
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the two theories were later shown to be equivalent, generating the same 
results using different ideas. 

In 1927, Heisenberg was to make the discovery that would not only win a 
Nobel Prize, but would forever change the philosophical landscape. Recall 
that in the late eighteenth century, the French mathematician Pierre La-
place enunciated the quintessence of scientific determinism by stating that 
if one knew the position and momentum of every object in the universe, 
one could calculate exactly where every object would be at all future times. 
Heisenberg’s uncertainty principle6 states that it is impossible to know  
both exactly where anything is and where it is going at any given moment. 

These difficulties do not really manifest themselves in the macroscopic 
world—if someone throws a snowball at you, you can usually extrapolate 
the future position of the snowball and possibly maneuver to get out of 
the way. On the other hand, if both you and the snowball are the size of 
electrons, you’re going to have a problem figuring out which way to move, 
because you will not know where the snowball will go. 

We can get a sense of the underlying idea behind Heisenberg’s uncer-
tainty principle by looking at an everyday occurrence—the purchase of  
gasoline at a service station. The cost of the transaction is a number of 
dollars and cents—the penny is the quantum of our monetary system, 
the smallest irreducible unit of currency. The cost of the transaction is 
computed to the nearest penny, and this makes it impossible for us to 
determine precisely how much gasoline was actually purchased even if 
we know the exact price per gallon. 

If gasoline costs $2.00 per gallon (as it did in the good old days), round-
ing the cost of the purchase to a penny can result in a difference of 1/200 

of a gallon of gasoline (yes, if you adopt a reasonable rule for rounding, 
you can cut this to half of 1/200 of a gallon of gasoline, but the meters in a 
service station probably round a purchase of $12.5300001 to $12.54). If 
you start driving from a known position on a straight road and your car 
gets 30 miles to a gallon, 1/200 of a gallon of gasoline will take you 0.15 of 
a mile—792 feet. So the fact that cost is computed in pennies results in a 
positional uncertainty of 792 feet. I can remember the first time I had the 
use of a car of my own in the summer of 1961; I used to leave two quar-
ters in the glove compartment for gas in case of emergencies. Gas was 
about 25 cents a gallon then—at 30 miles per gallon, the cost computed 
in pennies will result in a positional uncertainty of 1.2 miles. The lower 
the cost of gasoline, the greater the positional uncertainty. In fact, if gaso-
line were free, you wouldn’t have to pay anything—and you’d have no idea 
where the car was. 

The uncertainty principle operates along similar lines. It states that the 
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product of the uncertainties of two related variables, called conjugate vari-
ables, must be greater than some predetermined set amount. Possibly the 
most familiar conjugate variables are the duration of a musical note and its 
frequency—the longer the note is held the more accurately we can deter-
mine its frequency. A note played for an infinitesimally short period of 
time simply sounds like a click; its frequency is impossible to determine. 

However, the devil in the details of the uncertainty principle comes 
from the fact that position and momentum (momentum is the product of 
mass and velocity) are conjugate variables. The more accurately we can 
determine the position of a particle, the less information we have about 
its momentum—and if we can determine its momentum to a high de-
gree of accuracy, we have only a limited idea of where it is. Since momen-
tum is the product of mass and velocity, a microscopic quantity of 
momentum that would amount to almost no velocity at all if allocated to 
an automobile will result in a lot of velocity if allocated to an electron. 

Heisenberg’s uncertainty principle is sometimes erroneously inter-
preted as an inability on the part of fallible humans to measure phenom-
ena sufficiently accurately. Rather, it is a statement about the limitations 
of knowledge, and is a direct consequence of the quantum-mechanical 
view of the world. As a fundamental part of quantum mechanics, the 
uncertainty principle has real-world ramifications for the construction of 
such everyday items as lasers and computers. It has also banished the 
simple cause-and-effect view of the universe that had been unquestioned 
since the Greek philosophers first enunciated it. Heisenberg stated one of 
the consequences of the uncertainty principle as follows: 

It is not surprising that our language should be incapable of de-
scribing the processes occurring within the atoms, for, as has 
been remarked, it was invented to describe the experiences of daily 
life, and these consist only of processes involving exceedingly large 
numbers of atoms. Furthermore, it is very difficult to modify our 
language so that it will be able to describe these atomic processes, 
for words can only describe things of which we can form mental 
pictures, and this ability, too, is a result of daily experience. . . . In 
the experiments about atomic events we have to do with things 
and facts, with phenomena that are just as real as any phenomena 
in daily life. But the atoms or the elementary particles themselves 
are not as real; they form a world of potentialities or possibilities 
rather than one of things or facts . . . Atoms are not things.7 

If atoms are not things, what are they? More than seventy-five years af-
ter Heisenberg’s revelation, physicists—and philosophers—are still 
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struggling with this question. The answer we found previously, that they 
are probability waves until they are observed, and things thereafter, is not 
entirely satisfying, but at the moment it is the best we can do. 

A Survey in Lower Wobegon 

Entanglement, the last of the three conundrums of quantum mechanics 
we shall investigate, can be translated into a familiar setting. Lower Wob-
egon, a town located just below Lake Wobegon,8 differs from Lake Wobe-
gon in that not only are all the children average, the town as a whole is, 
too—so average that whenever they are polled on a random subject, such 
as “Do you like asparagus?” 50 percent of the respondents answer yes and 
50 percent answer no. 

One day, a polling firm decided to sample the opinions of couples in 
Lower Wobegon. Each pollster was given three questions. Question 1 was 
“Do you like asparagus?” Question 2 was “Do you think Michael Jordan 
was the greatest basketball player of all time?” Question 3 was “Do you 
believe the country is headed in the right direction?” 

Two pollsters went into each home. One pollster would ask just one of 
the three questions of the husband and the other would ask just one of 
the three questions of the wife—each pollster randomly selecting the 
questions. Sometimes the questions asked of the husband and the wife 
were the same, sometimes they were different. When the results were 
tabulated, 50 percent of the questions were answered affirmatively and 50 
percent negatively, but there was something remarkable—when the hus-
band and wife were asked the same question, they always answered iden-
tically! 

Scratching their heads, the pollsters tried to come up with an explana-
tion for this bizarre occurrence. Finally, it occurred to someone that per-
haps the husbands and wives all had rehearsed their answers in advance. 
Even though the questions were not known, they may have formulated a 
rule such as the following: if the question contains the word was, answer 
yes; otherwise, answer no. 

Is there any way to test this hypothesis? Remarkably enough, it can be 
done. If each husband and wife has formulated such a question-answer-
ing rule, there are only four different possibilities—depending upon the 
three questions, the rule may result in three yeses, or three nos, or two 
yeses and one no, or two nos and one yes. 

Let us look at the responses of the husband and wife to the questions 
they were asked—even if they were asked different questions (of course, 
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we already know that if they were asked the same question, they re-
sponded identically). There are nine different ways the pollsters can ask 
the three questions. If the rule the husband and wife use results in three 
yeses or three nos, the husband and wife will always answer their ques-
tions identically. If the rule the husband and wife use results in two yeses 
and one no, let’s suppose that the answer to Questions 1 and 2 is yes and 
to Question 3 is no. 

The following table lists all the possibilities. 

Husband’s Husband’s Wife’s Wife’s 
Question # Response Question # Response 

1 Yes 1 Yes 

1 Yes 2 Yes 

1  Yes  3  No  

2 Yes 1 Yes 

2 Yes 2 Yes 

2  Yes  3  No  

3  No  1  Yes  

3  No  2  Yes  

3  No  3  No  

Notice that in five out of the nine cases (rows 1, 2, 4, 5, and 9 of the table) 
the answers of the husband and wife agree. When the rule for answering 
questions produces two yeses and one no, or two nos and one yes, the 
answers will agree in five out of nine cases. When the rule for answering 
questions produces three yeses, or three nos, the answers will always 
agree. So if husbands and wives have evolved a question-answering rule, it 
will show up in the data, because when the pollsters go into homes and ask 
questions of each spouse at random, the husband and wife will produce the 
same answer at least five times out of nine. 

Convinced that they had the answer to the mystery, the pollsters exam-
ined their data. Surprisingly, the answers of husband and wife corre-
sponded approximately half the time. The pollsters concluded that 
husbands and wives had not evolved a question-answering rule, but this 
still left a mystery: Why, when they were asked the same question, did the 
husband and wife always produce the same answer? 

Simple, concluded one pollster: when the first spouse was asked a ques-
tion, he or she communicated which question he or she had been asked 
and his or her answer; thus, when the second spouse was asked the same 
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question, he or she could answer identically. The solution was simple— 
prevent the spouses from communicating with each other. These precau-
tions were taken—each spouse was (discreetly) searched for 
communication devices and questioned in separate rooms. Still, when 
each was asked the same question, the answer given by each spouse was the 
same! 

What could explain this? There are two possibilities that seem to require 
belief in phenomena not currently addressed by science. The first possi-
bility is that husband and wife possess a sort of intuition—not an explicit 
means of communicating, but a knowledge of how the other would an-
swer the question. After all, many husbands and wives have the ability to 
complete each other’s sentences.9 The second possibility is that the mar-
riage is really more than just a uniting, but rather a welding; husband 
and wife are, in this situation, one. We see the husband and the wife as 
separate individuals, but with regard to questions asked by pollsters, they 
are a single entity—to ask a question of one is to ask a question of the 
other. This differs from the idea of “intuition” in that in the case of intui-
tion, the husband and wife are individual entities who answer the ques-
tions identically because they know how the other would answer them. A 
subtle difference, but a difference nonetheless. 

Entanglement and the Einstein, Podolsky, and Rosen Experiment 

Many quantum mechanical properties are similar to the wave-particle 
dilemma faced by photons—until an observation or a measurement is 
made, the property exists in a superposition of several different possibili-
ties. One such property is the spin around an axis. A photon may spin to 
the left or to the right around an axis once that axis is selected and the 
photon observed, but it will spin to the left 50 percent of the time and 
to the right 50 percent of the time, and do so randomly. This is clearly 
similar to the responses to poll questions of the inhabitants of Lower 
Wobegon. 

When a calcium atom absorbs energy and later returns to its initial 
state, it emits two photons whose properties parallel the responses to poll 
questions of husbands and wives in Lower Wobegon. The photons are 
said to be entangled—the result of the measurement of the spin of one of 
the photons automatically determines the result of the measurement of 
the spin of the other, even though initially neither photon possesses spin, 
but only a probability wave that allows for left and right spin equally. At 
least, that is a viewpoint that is largely accepted by physicists. 

Albert Einstein was extremely uncomfortable with this point of view, 
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and he and physicists Boris Podolsky and Nathan Rosen devised, in 1935, 
a thought experiment, known as the EPR experiment,10 that challenges 
the idea. Einstein, Podolsky, and Rosen objected to the concept that be-
fore the measurements, neither spin is known. Suppose two groups of 
experimenters, light-years apart, set out to measure the spins of these 
photons. If the spin of photon A is measured, and seconds later the spin 
of photon B is measured, quantum mechanics predicts that photon B 
would “know” the result of the measurement on photon A, even though 
there would not be enough time for a signal from photon A to reach pho-
ton B and tell photon B what its spin should be! 

According to Einstein, this left two choices. One could accept the so-
called Copenhagen interpretation of quantum mechanics, due primarily 
to Niels Bohr, that photon B knows what happened to photon A even with-
out a signal passing between them. This possibility, corresponding to 
“intuition” in Lower Wobegon, is doubtless the reason that quantum me-
chanics seems to open the door to mysticism in the real world. After all, 
what could be more mystical than knowledge of what happens to another 
body without a measurable transmission of information? Alternatively,  
one could believe that there is a deeper reality, manifested in some physi-
cal property as yet unfound and unmeasured, which would account for 
this phenomenon—this corresponds to “rehearsed answers” in Lower 
Wobegon. Einstein died holding firmly to this latter view, which is known 
in the physics community as “hidden variables.” 

Bell’s Theorem 

More than a hundred papers were written between 1935 and 1964 dis-
cussing the pros and cons of the hidden variables explanation, but these 
were just discussions and arguments—until the Irish physicist John Bell 
came up with a highly ingenious experiment that would subject the hid-
den variables theory to an actual test. Bell suggested that the experiment 
should consist of an apparatus that could measure the spin of each pho-
ton around one of three axes. The axis for each photon would be randomly 
selected, and the spins of the two photons recorded. These measurements 
would be recorded as pairs: the pair (2,L) indicates that axis 2 was selected 
for measurement and the photon was spinning left around this axis. 

Suppose that the two entangled photons are each imprinted with the 
following program: if axis 1 or axis 2 is selected, spin to the left; if axis 3 
is selected, spin to the right. Assuming the axis for each photon is ran-
domly selected, there are nine possible choices of axes, just as there 
were nine possible choices of questions for the two pollsters in Lower 
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Wobegon. Axial spin is another example of conjugate variables—it is im-
possible to simultaneously determine the spin of a photon around more 
than one axis. This parallels the situation in Lower Wobegon as well— 
each pollster only asked a single question. 

Bell devised this as a thought experiment to test whether the hypothesis 
that the photons had a hidden program imprinted on both, as suggested 
by Einstein, Podolsky, and Rosen, was valid. If such were the case, the 
two photons would have the same spin more than 5/9 of the time. Within 
a few years, thousands of trials of Bell’s experiment were performed— 
and the detectors did not record the same direction of spin for the photons more 
than half the time. This constituted undeniable proof that there was no 
hidden program with which the photons were imprinted. 

Was there another possible solution? With the hidden variables explana-
tion ruled out, the next most likely possibility was that somehow the pho-
tons could signal each other. The instant the first photon’s spin was 
recorded, it sent a message to the other photon along the lines of “Some-
one just measured my spin around axis 1 and I spun to the left.” 

The theory of relativity places no restrictions on the existence of signal-
ing mechanisms, but it does require that no signals can be sent faster 
than the speed of light. By the early 1980s, improvements in technology 
enabled a more sophisticated version of the above experiment to be per-
formed. In this experiment, the detector equipment for the two photons 
were placed a significant distance apart, and a randomizing device in-
stalled that would select the axis for the second photon after the spin of 
the first photon had already been measured. What made this experiment 
so interesting was that a new wrinkle had been added: the technology 
was now so good that the axis for the second photon could be selected in 
a shorter period of time than it would take a light beam to go from the 
first detector to the second. The first photon to be measured could there-
fore send a signal to the other photon, but it could not be received in time 
for the second photon to act upon it—the spin of the second photon was 
measured before a signal traveling at the speed of light from the first pho-
ton could reach it. The results of this experiment were obtained in a labo-
ratory by Alain Aspect11 in 1982 with a detector separation distance  
measured in the meters. The separation distance was increased to eleven 
kilometers in the late 1990s, but the results were still the same. If the same 
axis were chosen, the photons always spun in the same direction—but 
they spun in the same direction no more than half the time. 

This is one of the great mysteries of quantum mechanics, unresolved 
more than a century after Max Planck first hatched the idea of the quan-
tum. Although special relativity forbids either matter, energy, or informa-
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tion from traveling faster than light, what is happening here is that the 
probability wave has collapsed instantly throughout the entire universe. 

There is a dramatic moment in the first Star Wars movie (Episode Four) 
when Obi-Wan Kenobi senses a great disturbance in the Force. You don’t 
have to be Obi-Wan Kenobi to sense a disturbance in a probability wave; 
the universe does it for you by collapsing it instantaneously and every-
where when an observation is made. 

But how is this done? At present there are suggestions and ideas— in-
cluding the idea that this is something we may never know. Even if we 
never know it, the pursuit of this knowledge will undoubtedly result in 
developments, both technological and philosophical, that will greatly 
change our world. Sir Arthur Eddington, who led the 1919 expedition 
that confirmed Einstein’s theory of relativity, may have put it best when 
he said, “The Universe is not only stranger than we imagine, it is stranger 
than we can imagine”12—because who could ever have imagined wave-
particle duality, the uncertainty principle, and entanglement? 

Round 1 

Samuel Johnson had his Boswell, but John Wheeler certainly deserves 
one—possibly no physicist or mathematician is able to encapsulate the 
dilemmas faced by science so succinctly. A key component of the incom-
patibility between the physics of the large (relativity) and the physics of 
the small (quantum mechanics) is the mathematical model used to de-
scribe it. At the level of the really, really small, the hands-down winner— 
for the moment—is the discrete view, because Max Planck’s hypothesis 
resulted in discrete descriptions that were unbelievably successful in pre-
dicting values of all the relevant physical quantities. This triumph would 
have come as a vindication to a small band of quasi-religious mystics who 
lived two and a half millennia ago, and whom we will encounter in the 
next chapter. 

NOTES 
1. See http://en.wikipedia.org/ wiki/Niels_Bohr. Go to this site for the bio, but stay 

for the quotes. Neils Bohr is part Yogi Berra, part Yoda. Here’s a teaser quote, 
which should be studied assiduously by every public figure: “Never talk faster 
than you think.” 

2. See http:// en .wikipedia .org/ wiki/ Rayleigh -Jeans _Law. This brief site is tremen-
dously intriguing, as it has the equations for both the Rayleigh-Jeans law and 
Planck’s revision, as well as an attractive graphic that illustrates the ultraviolet 
catastrophe. 

All Things Great and Small 63�



3. J. Bronowski, The Ascent of Man (Boston: Little, Brown, 1973), p. 336. 
4. See http:// en .wikipedia .org/ wiki/ Schr %C3 %B6dinger %27s _cat. �Physics is re-

plete with tremendously provocative thought experiments. This site has a pretty 
thorough discussion. 

5. R. Hillmer and P. Kwiat, “A Do-It-Yourself Quantum Eraser,” Scientific Ameri-
can, May 2007. However, if in building this you accidentally erase the entire 
universe, neither I nor the publisher can be sued. 

6. See http:// en .wikipedia .org/ wiki/ Uncertainty _Principle. This site has a good 
derivation if you know linear algebra and the Cauchy-Schwarz inequality; this is 
usually upper-division mathematics and physics.

 7. W. Heisenberg, The physical principles of the quantum theory (Chicago: University 
of Chicago Press, 1930). 

8. A fictitious town, invented by Garrison Keillor and described on his National 
Public Radio show, A Prairie Home Companion, as a town where “the women are 
strong, the men are good looking, and all the children are above average.” The 
Lake Wobegon effect, in which everyone claims to be above average, has been 
observed in automobile drivers and college students (in estimating their mathe-
matical abilities). 

9. Remarkably, though, surveys have shown that a far greater proportion of wives 
complete their husbands’ sentences than vice versa. 

10. See http://en.wikipedia.org/ wiki/ EPR_experiment. This is an excellent site, and 
also has material on Bell’s inequality, thus saving me a search. 

11. See �http:// www .drchinese .com/ David/ EPR_Bell _Aspect .htm. If, as the TV 
show Mr. Ed put it, you want to go “right to the source and ask the horse,” this 
site enables you to download in PDF format the Big Three papers in this area 
(the EPR experiment, Bell’s theorem, and the Aspect experiment). All three ba-
sically require high-level degrees, but if you want to see the original versions, 
here they are. It also has photos of the three main protagonists—you might mis-
take Geraldo Rivera for Alain Aspect. 

12. See http:// www .quotationspage .com/ quote/ 27537 .html . 
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Section II 

The Incomplete 
Toolbox 





4Impossible Constructions 

The Brotherhood 
It was a powerful secret society of men bound together by common be-
liefs in religion and mysticism. Then, one day, their entire belief struc-
ture would be shattered by a discovery so profound it would transform the 
thinking of the civilized world. 

It sounds like a description of Opus Dei, the powerful clandestine Catho-
lic secret society that played a pivotal role in the blockbuster novel The Da 
Vinci Code. Alternatively, it might have described the core of the church 
during the seventeenth century, when it was confronted by Galileo’s shat-
tering discovery that the moons of Jupiter orbited a celestial body other 
than Earth. This secret society, however, existed some two millennia prior 
to Galileo. Founded by the philosopher-mathematician Pythagoras, the 
motto of the society—“All is number”—ref lected the view that the uni-
verse was constructed of either whole numbers or their ratios. The discov-
ery that was to rock their world was that the square root of 2, the ratio of 
the length of the diagonal of a square to its side, was incommensurable— 
that is, it could not be expressed as the ratio of two whole numbers. 



The Greeks actually constructed both numerical and geometrical proofs 
of this fact—the numerical proof was based on the concept of odd and 
even numbers. If the square root of 2 could be expressed as the ratio p/q 
of whole numbers, those numbers could be chosen to have no common 
factor (we learned in elementary school to cancel common factors to re-
duce fractions). If p/q��2, then p2/q2�2, and so p2�2q2. Since p2 is a 
multiple of 2, p must be an even number, as odd numbers have odd 
squares. Since p and q have no common factor,  q must be odd. Letting 
p�2n, we see that (2n)2�2q2, and so q2�2n2; the same reasoning as we 
used to show that p is even shows that q is even—and we have thus con-
cluded that q is both even and odd. 

The discovery of the incommensurability of the square root of 2 affected 
the development of Greek mathematics as profoundly as the discovery of 
the moons of Jupiter affected the development of astronomy. The Greeks 
turned from the philosophy of arithmos (the belief in number that is obvi-
ously the root of our word arithmetic) to the logical deductions of geome-
try, whose validity were assured. 

The geometry of the Greeks—later to be formalized by Euclid—was ini-
tially based on the line and the circle. The tools for exploring geometry 
were the straightedge, for drawing lines and line segments, and the com-
pass, for creating circles. There does not seem to be a record as to why the 
Greeks required that the straightedge be unmarked, so that no distances 
were inscribed upon it. Possibly the earliest Greek geometers had access 
only to the simplest tools, and the use of compass and unmarked straight-
edge simply became the traditional way to do geometry. However, it wasn’t 
until the Greeks began the exploration of figures other than those con-
structed with lines and circles that the utility of the marked straightedge 
began to reveal itself; it brought a certain ungainly aspect into geometri-
cal constructions, but greatly increased their scope. That exploration did 
not begin until four hundred years before the birth of Christ, and after 
another profound event was to shake the foundations of ancient Greece. 

The First Pandemic 

In 430 BC, the Athenians were engaged in the Peloponnesian War when 
a plague overtook the city. The historian Thucydides was taken ill but 
survived, and described the horrifying course of the disease.1 The eyes, 
throat, and tongue became red and bloody, followed by sneezing, cough-
ing, diarrhea, and vomiting. The skin was covered in ulcerated sores and 
pustules, accompanied by a burning, unquenchable thirst. The disease 
started in Ethiopia, and spread to Egypt, Libya, and then to Greece. The 
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plague lasted for almost four years, and killed a third of the Athenian 
population. Only recently have we discovered through DNA analysis that 
the disease was actually typhoid fever.2 

One can only imagine the desperation of the people, who were almost 
certainly willing to attempt anything that had even the remotest chance 
of alleviating the devastation. The oracle at Delos was consulted, and the 
recommended remedy was to double the size of the existing altar, which 
was in the shape of a cube. 

It was easy to double the edge of a cube, but this would have created an 
altar with a volume eight times the size of the initial one. The Greeks 
were highly skilled in geometry, and realized that in order to construct a 
cube whose volume was double the size of the initial one, the edge of the 
doubled cube would have to exceed the length of the original cube by 
a factor of the cube root of 2. None of the sages could use these instru-
ments to construct an edge of the desired length using only the compass 
and unmarked straightedge. Eratosthenes relates that when the crafts-
men, who were to construct the altar, went to Plato to ask how to resolve 
the problem, Plato replied that the oracle didn’t really want an altar of that 
size, but by so stating the oracle intended to shame the Greeks for their 
neglect of mathematics and geometry.3 In the midst of a plague, receiving 
a lecture on the mathematical deficiencies of Greek education was prob-
ably not what the craftsmen or the Athenian populace wanted to hear. 

It took four years for the plague to burn out, but the problem of con-
structing a line segment of the desired length endured—either because 
the Greeks relished the intellectual challenge of the problem, or as a pos-
sible defense against a recurrence of the plague. At any rate, the problem 
of constructing a line segment of the desired length was solved by several 
different mathematicians using a variety of approaches. 

Probably the most elegant of the solutions was that proposed by Ar-
chytas, who constructed a solution based on the intersection of three 
surfaces: a cylinder, a cone, and a torus (a torus looks like the inner tube 
of a tire). This solution demonstrated a considerable amount of sophisti-
cation—solid geometry is considerably more complex than plane geome-
try (I took a course in solid geometry in high school and received a B 
minus; to this day, it remains one of the toughest math courses I’ve ever 
taken). Two simpler solutions were found by Menaechmus using plane 
curves: the intersection of two parabolas, and the intersection of a hyper-
bola and a parabola.4 

Archytas’s and Menaechmus’s solutions are representative of a theme 
we shall see throughout this book—the quest for solutions to a problem, 
even an impossible one, often leads to fruitful areas where no man, or 
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mathematician, has gone before. Menaechmus is credited with the dis-
covery of the hyperbola and parabola,5 which are two of the four conic 
sections, the others being the circle and the ellipse. Each of the curves is 
the intersection of a plane and a cone, and each of the curves not only re-
curs constantly in nature, but has also been incorporated in many of the 
devices that characterize our technological age: the parabola in the para-
bolic ref lectors of satellite dishes; the ellipse in lithotripsy machines, 
which break up kidney stones using sound waves rather than invasive 
surgery; and the hyperbola in navigational systems such as loran. 

The Greeks did more than simply discover solutions to mathematical 
problems; they also used them. Plato invented a device known as Plato’s 
machine, which utilized geometry, to construct a line segment whose 
length was the cube root of the length of a given line segment. Plato, how-
ever, was not the only savant to tackle the physical construction of dou-
bling the cube. Another person to undertake this task was Eratosthenes. 
His construction, involving simple rotations of lines and attached trian-
gles, was capable of being adapted to construct not only cube roots, but 
any integer root. Eratosthenes supplied color commentary on his con-
struction, complete with a denigration of rival techniques. 

“If, good friend, thou mindest to obtain from any small cube a cube the 
double of it, and duly to change any solid figure into another, this is in thy 
power; thou canst find the measure of a fold, a pit, or the broad basin of a 
hollow well, by this method, that is, if thou thus catch between two rulers 
two means with their extreme ends converging. Do not thou seek to do 
the difficult business of Archytas’s cylinders, or to cut the cone in the 
triads of Menaechmus, or to compass such a curved form of lines as is 
described by the god-fearing Eudoxus.”6 

Eratosthenes’s self-serving remarks may have been prompted by his be-
ing given the nickname Beta (the second letter of the Greek alphabet) by 
his contemporaries, who felt that his not-inconsiderable achievements 
(among which were the first accurate measurement of the circumference 
of Earth, the compilation of a star catalog, and numerous contributions to 
mathematics, astronomy, and geography) never merited the supreme ac-
colades given to the best of the best. 

“[Eratosthenes] was, indeed, recognised by his contemporaries as a man 
of great distinction in all branches of knowledge, though in each subject 
he just fell short of the highest place. On the latter ground he was called 
Beta, and another nickname applied to him, Pentathlos, has the same 
implication, representing as it does an all-round athlete who was not the 
first runner or wrestler but took the second prize in these contests as well 
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as others.”7 It seems that even in ancient Greece, they felt that another 
name for the runner-up is “loser.” 

Other problems in geometry, although not appearing to have conse-
quences as significant as plague prevention, perplexed the Greek mathe-
maticians. Two of these problems, squaring the circle and trisecting the 
angle, were solved by the Greeks by reaching outside the realm of classi-
cal straightedge-and-compass constructions. The third problem, the con-
struction of regular polygons (a polygon is regular if all its sides are the 
same length and if all the angles formed by adjacent sides are equal—the 
square and the equilateral triangle are regular) with an arbitrary number 
of sides, eluded them. 

The term squaring the circle—constructing a square whose area is the 
same as that of a given circle—is often used as a shorthand for an impossi-
ble task. As with doubling the cube, the task was not impossible. Archimedes 
described a neat construction that began by “unrolling” the given circle to 
produce a line segment whose length was the circumference of the given 
circle.8 However, unrolling is not a straightedge-and-compass construction. 
Similarly, the task of trisecting the angle—constructing an angle whose 
degree measure is one-third the degree measure of a given angle—can 
easily be accomplished by making a mark on the straightedge that is being 
used (a method that is also ascribed to Archimedes), which also lies outside 
the framework of classical straightedge-and-compass constructions allowed 
in Euclidean geometry. These constructions showed that the Greeks, 
though recognizing the formal restrictions of Euclidean geometry, were 
willing to search for solutions to problems even if those solutions could 
only be found outside the system in which the problems were posed. 

We do not know if the Greeks ever conjectured that these tasks could 
not be accomplished within the framework of straightedge-and-compass 
constructions. It is certainly easy to believe that a mathematician such as 
Archimedes, having expended a good deal of effort on one of these prob-
lems, might well have reached such a conclusion. What we do know is 
that even today, when the impossibility of such tasks has been proven to 
the satisfaction of at least five generations of mathematicians, countless 
man-hours are spent formulating “proofs” and sending the results to 
mathematical journals. Some of the people who spend time on these 
problems are unaware that mathematicians have proved that trisecting 
the angle or squaring the circle is impossible.9 Others are aware, but ei-
ther believe that mathematical impossibility is not an absolute, or the 
proof of that impossibility is f lawed. 

There are simple straightedge-and-compass constructions to construct 
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regular polygons with three, four, and six sides, and there is a slightly 
more complex construction for a regular polygon with five sides. All these 
were known to the ancient Greeks, but a classical construction of other 
regular polygons proved elusive.10 In the late 1920s, a manuscript attrib-
uted to Archimedes (who else?) was discovered that outlined a method of 
constructing a regular heptagon by sliding a marked straightedge, but 
almost two millennia would elapse from the era of Archimedes before 
the four problems under discussion were finally resolved to the satisfac-
tion of the mathematical community. 

The Mozart of Mathematics 

Any list of the greatest mathematicians must include Carl Friedrich Gauss 
(1777–1855), the Mozart of mathematics, whose mathematical talents were 
evident at an extraordinarily young age. At the age of three, he was presum-
ably studying his father’s accounts, and correcting arithmetic errors if and 
when they occurred. Just as Mozart is renowned for having composed mu-
sic at an exceptionally young age, Gauss is also known for demonstrating 
genius at an early age. During an arithmetic lesson in elementary school, 
the class was asked to add the numbers from 1 to 100. Gauss almost im-
mediately wrote “5050” on his slate, and exclaimed, “There it is!” The 
teacher was stunned that a child could find the correct answer so quickly; 
the technique Gauss employed is still known as “the Gauss trick” to math-
ematicians. Gauss realized that if one wrote down the sum 

S�1�2�3�. . .�98�99� 100 

and then wrote down the same sum in reversed order 

S� 100�99�98�. . .�3�2�1 

if one were to add the left sides one would get 2S, and if one were to add 
the right side by thinking of it in terms of 100 pairs of numbers, each of 
which summed to 101 (1� 100, 2� 99, . . . , 99� 2, 100�1), one would ob-
tain 2S� 100� 101�10,100, and so S� 5050.11 

Even more incredible is the fact that when Gauss was given a table of 
logarithms at age fourteen, he studied it for a while, and then wrote on 
the page that the number of primes less than a given number N would 
approach N divided by the natural logarithm of N as N approached infin-
ity. This result, one of the centerpieces of analytic number theory, was not 
proved until the latter portion of the nineteenth century. Gauss did not 
supply a proof, but even to be able to conjecture this at the age of fourteen 
is simply extraordinary.12 
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When he was nineteen years old, Gauss supplied a straightedge-and- 
compass construction for the regular heptadecagon—the polygon with 
seventeen sides. Moreover, his construction technique showed that poly-
gons with 2 2

N 

+ 1  sides were regular (numbers of this form are known as 
Fermat primes,13 as they were first studied by the French mathemati-
cian Pierre de Fermat, of Fermat’s last theorem fame). More than two 
thousand years had elapsed since anyone had shown constructions of 
regular polygons other than the constructions known to the ancient 
Greeks. 

A list of Gauss’s accomplishments would take substantial time and 
space—suffice it to say that his career fulfilled its early promise. He is 
recognized today as one of the two or three greatest mathematicians of all 
time—and this does not even include his noteworthy accomplishments 
in the fields of physics and astronomy. 

Pierre Wantzel: The Unknown Prodigy 

I’m not a mathematical historian, and at the time of the writing of this 
book, the name of Pierre Wantzel was unfamiliar to me, and I suspect it 
would be equally unfamiliar to many of today’s mathematicians. Wantzel 
was born in 1814, the son of a professor of applied mathematics. Like 
Gauss, his talent for mathematics manifested itself at an early age— 
where Gauss was correcting errors in his father’s accounts, Wantzel was 
handling difficult surveying problems when he was only nine years old. 
After a brilliant academic career in both high school and college, Wantzel 
entered engineering school. However, feeling that he would experience 
greater success teaching mathematics than doing engineering, he be-
came a lecturer in analysis at the École Polytechnique—at the same time 
that he was a professor of applied mechanics at another college, while also 
teaching courses in physics and mathematics at other Parisian universi-
ties. 

Gauss had stated that the problems of doubling the cube and trisecting 
the angle could not be solved by straightedge-and-compass construction, 
but he had not supplied proofs of these assertions. This was standard op-
erating procedure for Gauss in many problems, but it sometimes left his 
colleagues in a dilemma as to whether they should work on a particular 
problem, only to find that Gauss had previously solved it. Wantzel, how-
ever, was the first to publish proofs of Gauss’s assertions—finally laying 
to rest these two problems. Wantzel had also simplified the proof of the 
Abel-Ruffini theorem on the roots of polynomials, and used this to show 
that an angle was constructable if and only if its sine and cosine were 
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constructable numbers. Simple trigonometry showed that the sine and 
cosine of a 20-degree angle were not constructable numbers.14 Addition-
ally, Wantzel polished off the problem of which regular polygons were 
constructable by showing that the only such regular polygons were those 
with n sides, where n is a product of a power of 2 and any number of Fer-
mat primes. 

Jean Claude Saint-Venant, who was one of the leading French mathema-
ticians of the period and a colleague of Wantzel’s, described his habits as 
follows: “He usually worked during the evening, not going to bed until 
late in the night, then reading, and got but a few hours of agitated sleep, 
alternatively abusing coffee and opium, taking his meals, until his mar-
riage, at odd and irregular hours.” Saint-Venant further commented upon 
Wantzel’s failure to achieve more than he had (even though his achieve-
ments would do credit to 99 percent of the mathematicians who have ever 
lived) by further stating, “I believe that this is mostly due to the irregular 
manner in which he worked, to the excessive number of occupations in 
which he was engaged, to the continual movement and feverishness of 
his thoughts, and even to the abuse of his own facilities.”15 

The Impossibility of Squaring the Circle 

By the middle of the nineteenth century, the lengths of line segments 
that could be constructed had been shown to be the result of applying ad-
dition, subtraction, multiplication, division, and the taking of square 
roots to integers (since cube roots cannot be obtained by this process, the 
cube could not be doubled nor the angle trisected). In order to square a 
circle of unit radius, since the area of the circle is �, one must be able to 
construct a line segment whose length is the square root of �, which can 
only be done if one can construct a line segment whose length is �. 

By this time, mathematicians had shown that the real line consisted of 
two types of numbers: the rational numbers such as 22/7, which could be 
viewed as either the quotient of two integers or the ratio of one integer to 
another, and the irrational numbers, those which could not be expressed 
as ratios. As we have seen, the Pythagoreans knew that the square root of 
2 is irrational; this knowledge was so well known to educated Greeks that 
a proof of it appears in one of the Socratic dialogues.16 The irrational 
numbers had been further subdivided into the algebraic numbers, those 
numbers that were the roots of polynomials with integer coefficients, and 
the transcendental numbers. In 1882, the German mathematician Ferdi-
nand von Lindemann wrote a thirteen-page paper showing that � was 
transcendental, thus showing that the circle could not be squared by 
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straightedge-and-compass construction. To this day Lindemann gets the 
credit, although much of the earlier work was done by the French math-
ematician Charles Hermite. Lindemann’s proof of the transcendentality 
of � is similar to Hermite’s proof that e, the base of the natural logarithm, 
is transcendental. In the nineteenth century, fame was the only reward 
for a mathematician—although today there are monetary prizes offered 
as incentives for the solutions of major problems. Then, as now, fame 
generally accrued to the person who placed the final brick in place on the 
edifice, rather than those who laid the foundation.17 

Learning from Impossibility 

All of the problems investigated in this chapter are great problems. A 
great problem is generally relatively simple to explain, piques our curios-
ity, is difficult to resolve, and has a resolution that extends the bounds of 
what we know beyond the problem itself. It makes us question whether 
the assumptions we have made are sufficient to solve the problem, and 
whether the tools we have are adequate for the job. 

The quest to double the cube and trisect the angle led to explorations far 
beyond the simple structures of line and circle that constitutes Euclidean 
plane geometry. The axioms of plane geometry, as given in the first book 
of Euclid’s Elements, are 

1. Any two points can be joined by a straight line. 
2. Any straight line segment can be extended indefinitely in a straight 

line. 
3. Given any straight line segment, a circle can be drawn having the 

segment as radius and one endpoint as center. 
4. All right angles are congruent. 
5. (Parallel postulate) If two lines intersect a third in such a way that the 

sum of the inner angles on one side is less than two right angles, 
then the two lines inevitably must intersect each other on that side if 
extended far enough.18 

The above postulates discuss only points, lines, angles, and circles. Even 
though an outline of the Elements reveals both plane and solid geometry, 
the geometrical figures that are discussed are polygons and polyhedra, 
circles and spheres. The duplication methods proposed by Archytas, Me-
naechmus, and Eratosthenes certainly transcend Euclidean geometry as 
outlined in the Elements. 

Attempts to square the circle led to a deeper analysis of the real line and 
the concept of number. The resolution of the problem of constructing 
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regular polygons revealed a surprising connection between geometry and 
an interesting class of prime numbers. Indeed, this is one of the persist-
ently surprising and appealing aspects of mathematics—there are unex-
pected connections between not only areas of mathematics, but also 
between mathematics and other areas. 

However, mathematics sometimes causes people to leap to unsup-
ported conclusions. In trying to fit the orbits of the planets into a coher-
ent pattern, Johannes Kepler was struck by the coincidence that, at the 
time, there were six planets and five regular solids. More planets would 
be discovered, but Greek mathematicians had proved that there were 
only five regular solids: the four-sided tetrahedron, the six-sided cube, 
the eight-sided octahedron, the twelve-sided dodecahedron, and the 
twenty-sided icosahedron. Based on inadequate data, Kepler constructed 
this model. 

“The Earth’s orbit is the measure of all things; circumscribe around it a 
dodecahedron, and the circle containing this will be Mars. Circumscribe 
around Mars a tetrahedron, and the circle containing this will be Jupiter. 
Circumscribe around Jupiter a cube, and the circle containing this will 
be Saturn. Now inscribe within the Earth an icosahedron, and the circle 
contained within it will be Venus. Inscribe within Venus an octahedron, 
and the circle contained within it will be Mercury. You now have the rea-
son for the number of planets.”19 

An exquisitely beautiful scheme—but dead wrong. The lure of pattern 
is so strong that just as we think we see a face on Mars when it is merely 
a land formation seen in light that accentuates features that appear to be 
human, we sometimes see mathematical patterns based on inadequate 
data or information. It is to Kepler’s eternal credit that he did something 
that must have been extremely difficult: when Tycho Brahe supplied him 
with better data to which he could not get the model to fit, he abandoned 
the model. In so doing, he formulated Kepler’s laws of planetary motion, 
which led to Newton’s discovery of the theory of universal gravitation. 

Pythagoreans Redux 

The fundamental tenet of the Pythagoreans was that the universe was 
constructed of whole numbers and the ratios of whole numbers. The dis-
covery that the square root of 2 was incommensurable destroyed this 
worldview—at the time of the Pythagoreans. However, in an intriguing 
twist, the Pythagoreans may have been right after all! Quantum mechan-
ics, so far the most accurate depiction of the universe that we have, is es-
sentially a modern version of the view espoused by the Pythagoreans. As 
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we have seen, the world according to quantum mechanics consists of a 
collection of whole numbers of basic units—mass, energy, length, and 
time are all measured in terms of quanta. The mathematics of the real 
number system, the residence of the square root of 2, is an ideal construct 
that has great utility and considerable intellectual interest. In the real 
world, though, if a square can actually be constructed out of material ob-
jects, its diagonal (also constructed out of material objects) is either a lit-
tle too short to reach from corner to corner or extends a little beyond. 

It makes one wonder if other ideas, known to previous civilizations but 
long since discarded, are waiting quietly on the sidelines to make a come-
back in modern guise. 

NOTES 
1. http:// www.perseus.tufts.edu/ GreekScience/ Thuc.�2 .47 -55 .html .

 2. International Journal of Infectious Diseases, Papagrigorakis, Volume 11, 2006. 
3. T. L. Heath, A History of Greek Mathematics I (New York: Oxford, 1931). 
4. http:// www -groups .dcs .st -nd .ac .uk/ ~history/ HistTopics/ Doubling _the _cube 

.html#s40. This gem of a Web site contains not only Archytas’s and Menaech-
mus’s solutions to duplicating the cube, but also Eratosthenes’ method of find-
ing roots. A certain comfort level with analytic geometry is required to stay up 
with Archytas, but Menaechmus’s solutions are fairly straightforward and a 
high-school graduate shouldn’t have much difficulty with them. Even if the 
reader doesn’t intend to “do the math” necessary to follow the constructions, the 
site is worth looking at simply to gain a greater appreciation of the sophistication 
of the ancient Greeks. The fact that they could do all these things using only ge-
ometry (no analytic geometry, which greatly simplifies all things geometrical) 
and not having access to pencil and paper, still causes me to shake my head in 
disbelief—and we haven’t even gotten to Archimedes. 

5. T. L. Heath, A History of Greek Mathematics I (New York: Oxford, 1931).
 6. Ibid.
 7. Ibid. 

8. A. K. Dewdney, Beyond Reason (New York: John Wiley & Sons, 2004), p. 135. This 
construction is by no means Archimedes’ finest hour—but an off day for 
Archimedes would make the career of many lesser mathematicians. He simply 
uses the length of the unrolled circumference as the base of a right triangle, and 
the radius of the circle as the height of that triangle. This results in a triangle 
whose area is 1⁄2�(2�r)�r��r2, and a standard construction will produce a 
square with the same area as the triangle. 

9. http:// www .jimloy .com/ geometry/ trisect .htm. This site probably sets the record 
for most erroneous trisections of an angle—some extremely ingenious and only 
subtly in error. I wish it had been in existence when I was a junior faculty mem-
ber at UCLA back in the late 1960s. Then as now, UCLA was the home of the 
Pacific Journal of Mathematics. Back then it would receive numerous submis-
sions for trisection of the angle—and the editors, generally a polite group, would 
respond not with a curt, “It’s impossible, don’t bother sending anything else,” 
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but with a detailed analysis of the error in the “proof.” And guess who got to 
perform that analysis? Junior faculty members—like me. I learned a lot of ge-
ometry tracing down those errors, but I could have saved a lot of time if this site 
had been accessible. 

10. http:// mathworld .wolfram .com/ GeometricConstruction .html.�This site has a 
reasonable version of how to construct equilateral triangles, squares, regular 
pentagons, and Gauss’s heptadecagon. Mathworld has a lot of good stuff—some 
of it is highly technical but it’s always a reasonable place to start. I think it’s 
mostly written either to sell or support Mathematica, a Wolfram product, which 
many mathematicians swear by. As a result, it sometimes reads a little like 
something in Math Reviews. 

11. http:// en .wikipedia .org/ wiki/ Carl _Friedrich _Gauss. I admit that Wikipedia has 
encountered some problems—since anyone is free to edit it, sometimes the indi-
vidual editing Wikipedia has an agenda and uses Wikipedia to promulgate that 
agenda. However, that rarely happens with mathematics—it’s hard to imagine 
anyone having an agenda about Carl Friedrich Gauss, the early years. Addition-
ally, there are often a lot of secondary references in Wikipedia that can be used 
either to pursue a subject in more depth or to authenticate the material. 

12. http:// www .math .okstate .edu/ ~wrightd/ 4713/ nt _essay/ node17 .html. This site 
not only has Gauss’ original conjecture, but several related ones. It helps to know 
a little calculus, but most of what is said requires only the knowledge of what 
natural logarithms are. 

13. http:// en .wikipedia .org/ wiki/ Fermat _number #Applications _of _Fermat _ 
numbers. There is an attractive theorem that states that if 2n�1 is a prime, then 
n must be a power of two. Fermat primes continue to be studied; a recent in-
triguing result is that no Fermat number can be the sum of its divisors. Num-
bers such as 6�1�2�3 and 28�1�2�4�7�14, which are the sum of their 
divisors, are called perfect numbers. Fermat numbers are also useful for gener-
ating sequences of random integers for use in computer simulations. 

14. http:// planetmath .org/ encyclopedia/ TrisectingTheAngle .html.�This site con-
tains a plethora of material on this and related problems. 

15. http:// www -groups.dcs.st -and.ac.uk/ ~history/ Biographies/ Wantzel.html. This site 
has a number of good biographies, including the best easy-to-find one of Want-
zel. 

16. The actual dialogue is Plato’s Meno, in which Socrates works with an unschooled 
servant boy to discover that the square root of 2 is irrational. A good account of the 
argument can be found in http:// www .mathpages .com/ home/ kmath180 .html. 
Although philosophy was not my best subject in high school (or anywhere else), I 
remember my instructor telling us that there was a lot of unconscious humor in 
Meno. Socratic dialogues were sometimes the equivalent of a paid appearance by 
Paris Hilton—Socrates was paid to conduct a dialogue as entertainment for 
the guests at a banquet. The subject of this dialogue was “virtue”—a sly dig at 
Meno, who my philosophy instructor told us was something of the Godfather of 
his day. 

17. http:// www -groups.mcs.st -and.ac.uk/ history/ Biographies/ Lindemann.html. As 
mentioned previously, this site has numerous good biographies and secondary 
references. It also has terrific internal hyperlinking, so you can jump around 
and get a lot of related information. 
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18. One of the great benefits of living in the Information Age is the extraordinary 
amount of classic material that is available online. Here is a wonderful version 
of Euclid’s classic work, complete with useful Java applets. http://aleph0.clarku 
.edu/ ~djoyce/ java/ elements/ toc .html . 

19. http:// www .astro .queensu .ca/ ~hanes/ p014/ Notes/ Topic _019 .html. The quote 
appears in the section entitled “Kepler the Mystic.” 
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5 i
The Hope Diamond 
of Mathemat cs 

The Curse 
The Hope Diamond is probably the most famous diamond in the world. 
Its fame comes not so much from its size—at 45.52 carats, it’s certainly 
impressive, but the Kohinoor Diamond tips the scales at 186 carats—nor 
from its brilliant blue color, which is due to traces of boron impurities. Its 
fame is based on the belief that all who possess it will suffer a curse in-
f licted by the Hindu goddess Sita, who will exact revenge because the 
diamond was originally the eye of an idol dedicated to her, and was stolen 
from it. 

Legend1 has it that a jeweler named Tavernier stole the diamond origi-
nally, and was torn to death by wild dogs on a trip to Russia. The Hope 
Diamond was owned at one time by Louis XVI and Marie Antoinette, 
who were beheaded during the French Revolution. The diamond’s name 
comes from one of its owners, Henry Thomas Hope, whose grandson 
Henry Francis Hope gambled and spent his way to bankruptcy. The 
Hope (it is customary to refer to famous diamonds by name only) was even-
tually purchased by Evalyn Walsh McLean—whose riches could purchase 



diamonds, but not forestall tragedy. Her firstborn son died at age nine in 
a car crash, her daughter committed suicide when she was twenty-five, 
and her husband was declared insane and lived out his life in a mental 
institution. 

The Hope left a swath of misfortune in its wake—but this pales in com-
parison to the sufferings of the major players in the search for the solu-
tion to polynomial equations of ever-higher degree. 

A Mathematician’s Job Interview 

Mathematics students are told of the mathematician who applied for a job 
with a corporation. When asked what he could do, the mathematician re-
plied that he solved problems. The interviewer took him to a room in which 
a fire was blazing. There was a table on which rested a bucket of water, and 
the mathematician was instructed to put out the fire. The mathematician 
grabbed the bucket, dumped water on the fire, and extinguished it. He 
then turned to the interviewer and asked, “Do I get the job?” 

“You’ll have to take the advanced test,” replied the interviewer. The 
mathematician was taken to another room in which a fire was blazing. 
There was a table, under which rested a bucket of water, and the mathe-
matician was instructed to put out the fire. The mathematician grabbed 
the bucket—and placed it on top of the table. Why on Earth, students 
want to know, would he do that? Because mathematicians like to reduce a 
new problem to one they’ve previously solved. 

Progress in mathematics is often cumulative, with previous results 
being used to derive ever deeper and more complex results. Such is the 
story of the search for the solutions of polynomial equations, such as 
ax3�bx2�cx�d�0, which is the general polynomial equation of degree 3. 
Polynomials are the only functions that we can calculate,2 because they 
involve only addition, subtraction, multiplication, and division. With rare 
exceptions, when we calculate a value such as a logarithm or the sine of an 
angle (for example, by using a calculator), the logarithm or sine is approxi-
mated by a polynomial, and it is this approximate value that is calculated. 

Early Results: Solutions of Linear and Quadratic Equations 

The story of the search for the solution to polynomial equations starts 
tamely enough in ancient Egypt, whose mathematicians were sufficiently 
adept to solve linear equations. An example of one such is the equation 
7x�x�19, which nowadays is comfortably solved by sixth-graders, who 
would add the terms on the left to obtain 8x�19, and then divide both 
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sides by 8 to show that x�19/8. Algebra was unavailable to Ahmes of 
Egypt, who contributed a section entitled “Directions for Knowing All 
Dark Things” (many modern-day students would doubtless agree with 
this definition of mathematics) to the Rhind papyrus, one of the first 
mathematical manuscripts. Ahmes solved this problem using a method 
that can only be described as tortuous.3 

The Hanging Gardens may have been the only physical contribution of 
Babylonians to the wonders of the ancient world, but their mathematical 
accomplishments were quite impressive for the times. They were capable 
of solving certain quadratic equations (equations of the form ax2�bx�c�0) 
using the method of completing the square,4 which is used in high-school 
algebra to generate the full solution to this equation. The resulting for-
mula is known as the quadratic formula. It was described early in the 
ninth century by the Arab mathematician Al-Khowarizmi, who is also re-
sponsible for giving the name algebra to algebra. 

Del Ferro and the Depressed Cubic 

Time passed—approximately seven centuries. There would be no signifi-
cant advance in equation solving until the middle of the fifteenth century, 
when a collection of brilliant Italian mathematicians embarked upon a 
quest to solve the equation ax3�bx2�cx�d�0. This equation, which is 
known as the general cubic, was to prove a far tougher nut to crack. 

As the degree of the polynomial increases, different types of numbers 
are needed to solve it. Equations such as 2x�6�0 can be solved with 
positive integers, but 2x�6�0 requires negative numbers, and 2x�5�0 
requires fractions. Quadratic equations introduced square roots and com-
plex numbers into the mix, and it was clear that an equation such as  
x3�2�0 would require cube roots. Roots that are not whole numbers are 
known as radicals, and the goal was to find a formula that could be con-
structed from integers, radicals, and complex numbers that would give all 
solutions to the general cubic equation. Such a formula is referred to as 
“solution by radicals.” 

The first mathematician to make a dent in solving cubics by radicals 
was Scipione del Ferro, who late in the fifteenth century managed to find 
a formula that solved a restricted case of the general cubic, the case where 
b�0. These “depressed cubics” have the form ax3�cx�d�0, and del 
Ferro’s mathematical fame would undoubtedly have increased signifi-
cantly had the world learned of his advance. This, however, was an era in 
which Machiavelli was writing of the importance of subterfuge—and 
subterfuge, in Italian academe, was often how one survived. 
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Duels—of an intellectual nature—were one method by which up- and-
comers of the time would obtain prestigious academic positions. A chal-
lenger would pose a list of questions, or mathematical problems, to an 
established academic, who would counter with a list of his own. After a 
predetermined amount of time, the results would be announced—as 
might be expected, to the victor belonged the spoils. The depressed cubic 
solution was del Ferro’s ace in the hole—if challenged, he would present 
a list of depressed cubics to his challenger. As far as we know, del Ferro 
never had to play his trump card.5 

A Duel of Wits with Equations As Weapons 

Upon his death, del Ferro bequeathed the solution to his student Antonio 
Fior, a mathematician of less talent but greater ambition than his mentor. 
Del Ferro had kept the solution as a defense, but Fior decided to use it 
to make a name for himself, and issued a challenge to the well-known 
scholar Niccolo Fontana. 

Fontana had been severely wounded as a child when a soldier slashed 
his face with a sword. This affected his speech, and led to his being given 
the nickname Tartaglia—the Stammerer—the name by which he is 
known today. When Fior presented his thirty-problem challenge to Tar-
taglia, Tartaglia countered with a list of thirty problems on a variety of 
mathematical topics—only to discover that Fior’s list consisted of thirty 
depressed cubics. 

It was a classic all-or-nothing situation—Tartaglia was either going to 
solve none of the problems, or all thirty, depending upon whether or not 
he could generate the solution to the depressed cubic. Tartaglia obtained 
the formula 

3 n/2 + m3/27  + n2/4 − 3 −n/2 + m3/27  + n2/4 

for the root of the depressed cubic x3�mx�n. As you can see, you are not 
likely to stumble upon this formula using hit-or-miss techniques. 

I’ll check out this formula with the depressed cubic x3�6x� 20. The 

result is expressed as x� 3 10 + 108 − 3 −10 + 108 . Simplifying this 
expression is a good problem for an advanced high-school algebra stu-
dent, but those who prefer modern technology can check with a pocket 
calculator that x�2, which is indeed a solution of the equation. 

There is a subtle deceptiveness to all mathematical textbooks that teach-
ers realize but students generally don’t; an awful lot of trial-and-error 
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goes into establishing a result such as the solution of the depressed cubic, 
and most of that is error. We know that great composers such as Beethoven 
made sketchbooks of their ideas, and we can read them to discover some 
of the passages Beethoven considered using before arriving at the final 
version. Many mathematicians do the same—they keep records of their 
failed attempts, because sometimes what doesn’t work for one problem 
might well solve another. However, these records generally don’t make it 
into the archives, and as a result we have no idea how long it took del 
Ferro to discover his approach. Using modern notation, del Ferro’s even-
tual successful solution isn’t that difficult to follow. 

We can divide our depressed cubic by the coefficient of x3 to arrive at an 
equation that has the form 

x3�Cx�D�0 

Instead of presenting the solution in the form it is usually given in a text-
book, let’s try to reconstruct what del Ferro did. Mathematicians often try 
different things in the hope of getting lucky, and so del Ferro tried as-
suming the solution had the form x�s�t. There’s a valid reason for try-
ing something like this, as using two variables (s and t) rather than one 
introduces an extra degree of freedom into the problem. This is a stan-
dard weapon in the mathematician’s arsenal of problem-solving tech-
niques, as the price one must pay for having to solve for additional 
variables may be more than offset by the ease of the solution. After mak-
ing this substitution, the depressed cubic becomes 

(s�t)3�C(s�t)�D� 

(s3�3s2t�3st2�t3)�C(s�t)�D� 

(s3�t3�D)�3st(s�t)�C(s�t)� 

(s3�t3�D)�(C�3st)(s�t) 

At this point, del Ferro undoubtedly realized he might have hit the jack-
pot. If he could find s and t such that s3�t3�D� 0 and C�3st�0, the last 
equation would become 

0� 0 (s�t)�0 

and x�s�t would be a root of the depressed cubic. So del Ferro was led to 
the system of two equations 

3st�C 
t3�s3�D 

We are now left with the problem of finding s and t that satisfy the two 
equations; but here’s how the bucket of water gets moved from under the 
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table to the top of the table—these equations reduce to a quadratic! Solv-
ing 3st�C for t in terms of s yields t�C/3s, and substituting this into 
t3�s3�D results in the equation 

C3/(27s3)�s3�D 

Multiplying through by s3 and collecting all the terms on one side gives 

s6�Ds3�(C3/27)�0 

This equation is quadratic in s3, for it can be written 

(s3)2�Ds3�(C3/27)�0 

Using the quadratic formula, we obtain two possible solutions for s3, but 
if the cube root of either is taken and  t computed from the formula 
t�C/3s, the quantity s�t will be the same and will solve the original de-
pressed cubic. 

It doesn’t seem so difficult when it is neatly presented in a textbook, but 
when you have only a month and your future is at stake, it’s a lot tougher. In 
a desperate race against time, an exhausted (no wonder) Tartaglia managed 
to find an ingenious geometrical approach to the problem, which yielded 
the solution just before the period allowed for the challenge expired. He 
solved all of Fior’s problems, easily winning the contest. Tartaglia mag-
nanimously did not require Fior to pay for losing the bet—in this case, he 
had bet thirty sumptuous feasts—but this may have been small consola-
tion for Fior, who faded into obscurity as Tartaglia’s fame increased. 

Cardano and Ferrari—Scaling the Summit 

One person to learn of Tartaglia’s success was Girolamo Cardano, cer-
tainly one of the most unusual individuals ever to appear on the mathe-
matical scene. Cardano was brilliant but bedeviled—aff licted with a 
number of infirmities, including hemorrhoids, ruptures, insomnia, and 
impotence. Compounding these physical problems was an assortment of 
psychological ones. He had acrophobia, an uncontrollable fear of mad 
dogs, and may not have been a masochist, but had formed the habit of 
inf licting physical pain upon himself because it was so pleasant when he 
stopped. We know all this because Cardano, who would have been a sta-
ple of late-night talk shows had such existed in the sixteenth century, 
wrote an extensive autobiography in which no details, no matter how inti-
mate, seem to have been spared. 

Cardano was fascinated by Tartaglia’s victory, and wrote several letters 
imploring Tartaglia to tell him the secret of his success. Tartaglia re-
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sponded with the sixteenth-century equivalent of “Sorry, my agent is 
working on a book deal,” but Cardano persisted, and finally persuaded 
Tartaglia to leave his home in Brescia and visit Cardano in Milan. During 
this visit, Cardano managed to talk Tartaglia into revealing his secret— 
but in return, Tartaglia made Cardano take the following oath: “I swear to 
you by the Sacred Gospel, and on my faith as a gentleman, not only never 
to publish your discoveries, if you tell them to me, but I also promise and 
pledge my faith as a true Christian to put them down in cipher so that 
after my death no one shall be able to understand them.”6 

Like many of his contemporaries, Cardano placed great stock in dreams 
and omens, and was also a practicing astrologer. One night he dreamed of 
a beautiful woman in white, and he assiduously (and successfully) courted 
the first such woman who crossed his path, despite despairing of his 
chances; at the time he was poor as a church mouse. Soon after his meet-
ing with Tartaglia, he heard a squawking magpie and believed that it pres-
aged good fortune. When a young boy appeared at his doorstep looking for 
work, Cardano somehow saw this as the good fortune promised by the 
magpie and took him in. Maybe there was something to the squawking 
magpie theory, as the boy proved to have substantial mathematical ability. 
At first the boy, whose name was Ludovico Ferrari, was merely a servant in 
Cardano’s household, but gradually Cardano taught him mathematics, 
and before Ferrari had reached his twentieth birthday, Cardano had passed 
on the secret of solving depressed cubics to him. The two mathematicians 
decided to tackle the problem of solving the general cubic. 

Cardano and Ferrari achieved two major breakthroughs. The first was 
to find a transformation that reduced the general cubic equation to a de-
pressed cubic, which Tartaglia’s technique enabled them to solve. This 
transformation moves a different bucket of water from under the table to 
the top of the table. 

Once again, by dividing by the coefficient of x3, we can assume our gen-
eral cubic equation has the form 

x3�Bx2�Cx�D�0 

If we let x�y�B/3, this equation becomes 

(y�B/3)3�B(y�B/3)2�C(y�B/3)�D�0 

Expanding the first two terms gives 

(y3�By2�(B2/3)y�(B3/27))�B(y2�(2B/3)y�(B2/9))�(y�B/3)�D�0 

It isn’t necessary to completely simplify the left-hand side to note that 
there are only two terms involving y2; the term �By2 that occurs in the 
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expansion of (y�B/3)3, and the term By2 that occurs in the expansion of 
B(y�B/3)2; these terms cancel so the result is a depressed cubic in y, 
which del Ferro’s technique enables us to solve for y. Then if x�y�B/3, x 
is a root of the original cubic. 

That was the first breakthrough, but the second was even more exciting: 
Ferrari discovered a technique for transforming the general quartic equa-
tion (finding the roots of a polynomial of degree four) to a cubic, which 
they now knew how to solve. These were the most significant develop-
ments in algebra in millennia—but both advances ultimately rested on 
Tartaglia’s solution to the depressed cubic, and Cardano’s oath prevented 
them from publishing their results. 

Several years later, Cardano and Ferrari traveled to Bologna, where they 
read the papers of Scipione del Ferro. These papers contained del Ferro’s 
solution of the depressed cubic—which coincided with the solution that 
Tartaglia had found. Cardano and Ferrari managed to persuade them-
selves that since del Ferro had previously obtained the solution, using it 
would not break Cardano’s pledge to Tartaglia. 

Cardano published his classic work, Ars Magna (“the great art”), in 
1545. Algebra was indeed Cardano’s “great art”—though he was an ac-
complished physician (for his time) who had treated the pope, and though 
he wrote the first mathematical treatment of probability (Cardano was an 
inveterate gambler), his contributions to algebra are the ones for which he 
is best remembered. The description given earlier for the procedure used 
to solve the depressed cubic is taken from Ars Magna. 

In Ars Magna, Cardano gave full credit to the giants on whose shoulders 
he stood. The preface to the chapter on the solution of the cubic began 
with the following paragraph: “Scipio Ferro of Bologna well-nigh thirty 
years ago discovered this rule and handed it on to Antonio Maria Fior of 
Venice, whose contest with Niccolo Tartaglia of Brescia gave Niccolo occa-
sion to discover it. He gave it to me in response to my entreaties, though 
withholding the demonstration. Armed with this assistance, I sought out 
its demonstration in [various] forms. This was very difficult.”7 

Tartaglia did not take this revelation well, accusing Cardano of violating 
his sacred oath. Cardano did not reply to these accusations, but Ferrari, 
who was known as something of a hothead, did. This culminated in 
a challenge match between Tartaglia and Ferrari—but Ferrari had the 
home-field advantage and emerged victorious. Tartaglia blamed his defeat 
on the vigor with which the onlookers supported the home favorite (there’s 
something quaintly charming about a citizenry that will riot in response 
to a contest of the intellect rather than, as is the case nowadays, in re-
sponse to the results of a soccer match, but possibly there wasn’t a whole 
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lot to root for back in the sixteenth century). Ferrari, naturally, felt that his 
own brilliance was responsible for his victory. At this point, the story of 
the search for a solution by radicals to polynomial equations pauses for 
two centuries, awaiting the arrival of the final characters in this drama. 

The travails suffered by many of the major characters in this drama are 
the stuff of which miniseries are made. Cardano’s wife died young, his 
elder son Giambattista was executed for murder, and his other son was 
imprisoned for criminal activities. Cardano himself was thrown in jail for 
heresy (not a good era in which to be a heretic), but he was later pardoned. 
Cardano’s epitaph might well be the last line of his Ars Magna: “Written 
in five years, it may last thousands.”8 Ludovico Ferrari died from poison, 
which many historians believe was administered by his sister. 

The Insolubility of the Quintic 

The general cubic had been solved by reducing it to a depressed cubic, and 
the quartic had been solved by reducing it to a cubic—but the solutions to 
each polynomial of higher degree were becoming ever more involved and 
complicated. It appeared that the future of solving the general quintic— 
the polynomial of degree five—was going to follow the same path: find the 
transformation that reduced it to a quartic, and then use Ferrari’s formula. 
This seemed a rather dreary prospect. Perhaps that’s why more than two 
centuries passed, and though mathematics made considerable advances, 
most were in calculus and related areas. Trying to find the general solu-
tion to the quintic was no longer a top priority of the mathematical com-
munity— calculus was newer and a whole lot sexier. 

As sometimes happens in both mathematics and science, the tools avail-
able to the community are simply inadequate for solving certain prob-
lems, and the mathematical or scientific community hits the wall. New 
and different techniques are required—although often the community 
simply doesn’t realize it until those techniques actually make an appear-
ance. Such was the case with the solution of the quintic. The resolution of 
this problem did not occur until the turn of the nineteenth century, when 
three brilliant mathematicians broke new ground with a totally different 
approach, one which was to forever alter the direction of mathematics. 

Paolo Ruffini 

For nearly 250 years after Cardano and Ferrari had solved the quartic, 
mathematicians had tried to crack the mystery of the quintic. Some of 
the great names of mathematics foundered on the shoals of this problem, 
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including Leonhard Euler and Joseph-Louis Lagrange. The latter pub-
lished a famous paper, Ref lections on the Resolution of Algebraic Equations, 
in which he stated that he planned to return to the solution of the quintic, 
which he obviously hoped to solve by radicals. 

Paolo Ruffini was the first mathematician to suggest that the quintic 
could not be solved by radicals, and he offered a proof of it in General 
Theory of Equations in Which It Is Shown That the Algebraic Solution of the 
General Equation of Degree Greater Than Four Is Impossible. In it, he states, 
“The algebraic solution of general equations of degree greater than four is 
always impossible. Behold a very important theorem which I believe I am 
able to assert (if I do not err): to present the proof of it is the main reason 
for publishing this volume. The immortal Lagrange, with his sublime 
ref lections, has provided the basis of my proof.”9 

Unfortunately, that introduction turned out to be prescient—there was 
a gap in his proof. However, not only had Ruffini glimpsed the truth, he 
had realized that the path to the solution led through an analysis of what 
happened to equations when the roots of a polynomial were permuted. 
Even though he did not formalize the idea of a permutation group, he 
proved many of the initial basic results in the theory. 

Ruffini was yet another mathematician to be dogged by bad luck. He 
never really received credit for his work—at least in his lifetime. The only 
top mathematician to give him the respect he deserved was Augustin-
Louis Cauchy, but when his paper was examined by leading French and 
English mathematicians, the reviews were neutral (the English) to unfa-
vorable (the French). Ruffini was never notified that his proof contained a 
gap—had a leading mathematician done so, he would have had a shot at 
patching the proof. Usually, the person most familiar with a f lawed proof 
has the best chance of fixing it—but Ruffini was never given the chance. 

Groups in General—Permutation Groups in Particular 

One of the most important accomplishments of mathematics is that it has 
shown that apparently dissimilar structures possess many important 
common attributes. These attributes can be codified into a set of axioms, 
and conclusions derived for all structures that satisfy those axioms. One 
of the most important such objects is called a group. 

To motivate the definition of a group, consider the set of all nonzero real 
numbers. The product of any two nonzero real numbers x and y is a 
nonzero real number xy; this product satisfies the associative law: 
x(yz)�(xy)z. The number 1 has the property that for any nonzero real 
number, 1x�x1�x. Finally, each nonzero real number has a multiplica-
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tive inverse x�1 that satisfies xx�1�x�1x�1. These are the key properties 
used to define a group G, which is a collection of elements and a way of 
combining two of those elements g and h into an element gh in G. This 
way of combining elements is usually referred to as multiplication, and 
the element gh that results is called a product, although as we shall see 
there are many groups in which “multiplication” bears no resemblance to 
arithmetic. The multiplication must satisfy the associative law: a(bc)�(ab)c 
for any three elements a, b, and c of the group. The group must contain an 
identity element, which could be denoted by 1, which satisfies g1�1g�g 
for any member g of the group. Finally, each member g of the group must 
have a multiplicative inverse g�1, which satisfies gg�1�g�1g�1. 

An interesting example of a group, which has an important and surpris-
ing connection to the problem of solving the quintic, is found by examin-
ing what happens when we shuff  le a deck of cards. It is possible to  
completely describe a shuff le by thinking of where cards end up relative 
to where they start. For instance, in a perfect shuff le, the top twenty-six 
cards are placed in the left hand and the bottom twenty-six cards in the 
right. The mechanics of the classic “waterfall” shuff le releases the bot-
tom card from the right hand, then the bottom card from the left, then 
the next-to-bottom card from the right hand, and so on, alternating cards 
from each hand. We could describe the perfect shuff le by means of the 
following diagram, which describes where a card starts in the deck and 
where it ends up; the top card in the deck is in position 1, and the bottom 
card in position 52. 

Starting 
Position  1  2  3  . . .  24  25  26  27  28  29  . . .  50  51  52  

Ending 
Position  1  3  5  . . .  47  49  51  2  4  6  . . .  48  50  52  

We could produce a shorthand for this using algebraic notation. 

Starting Position (x ) Ending Position

 1�x�26 2x�1
 27�x�52 2x�52 

The set of all shuff les of a deck of cards forms a group. The product gh 
of two shuff les g and h is the rearrangement that results from first per-
forming shuff le g, then shuff le h. The identity element of this group is 
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the shuff le that doesn’t change the position of any card—the “phantom 
shuff le” that is sometimes performed by magicians or cardsharps. The 
inverse of any shuff le is the shuff le that restores the cards to their origi-
nal position. For instance, we can use the above diagram to get a look at a 
portion of the inverse to the perfect shuff le. 

Starting 
Position  1  2  3  4  . . .  49  50  51  52  

Ending 
Position 1 27 2 28  . . . 25 51 26 52 

Again, using algebraic notation. 

Starting Position (x ) Ending Position

 x is odd (x� 1)/2
 x is even 26�x/2 

To see that this is indeed the inverse of the perfect shuff le, notice that if 
a card starts out in position x, where 1 �x�26, the perfect shuff le puts 
it in position 2x�1 (an odd number), so the inverse puts it in position 
((2x�1)� 1)/2�x—back where it started. If a card starts in position x, 
where 27�x�52, the perfect shuff le puts it in position 2x�52 (an even 
number), so the inverse puts it in position 26�(2x�52)/2� x—again, 
back where it started. Similarly, one can show that if one performs the 
inverse first and follows it with the perfect shuff le, every card returns to 
its original position. Although it is not germane to the quintic problem, 
performing eight perfect shuff les of a deck of fifty-two cards restores the 
deck to its original order—if g denotes the perfect shuff le, this is written 
g8�1, and mathematicians say that g is an element of order 8. Showing 
that shuff ling satisfies the associative law is not difficult—but it isn’t es-
pecially interesting, so I’ll skip the demonstration. 

Notice that the perfect shuff le—and its inverse—leave the top card of 
the deck unchanged. If we were to consider all the shuff les that leave the 
top card of the deck unchanged, we would discover that they also form 
a group—the product of any two such shuff les leaves the top card un-
changed, and the inverse of such a shuff le also leaves the top card un-
changed. A subset of a group that is itself a group is called a subgroup. 

One way in which the group of all shuff les differs from the group of 
nonzero real numbers is that the latter group is commutative—no matter 
which order you multiply two numbers, the result is the same: for exam-
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ple, 3�5�5�3. The same cannot be said of shuff les. If shuff le g simply 
f lip-f lops the top two cards (and leaves the other cards in the same posi-
tion), and if shuff le h just f lip-f lops the second and third card, let’s follow 
what happens to the third card in the deck. If we perform g first, the third 
card stays where it is, but then migrates to position 2 after we then per-
form h. If we perform h first, the third card initially moves to position 2, 
and then g moves it to position 1. So performing the shuff les in different 
orders produce different results—the order of shuff ling (multiplication 
in this group) does make a difference. 

Although a standard deck of cards contains fifty-two cards, one could 
obviously shuff le a deck of any number of cards. The group of all pos-
sible shuff les of a deck of n cards is known as the symmetric group Sn . 
The structure of S —that is, the number and characteristics of its sub-n 

groups—becomes more complex the higher the value of n, and this is the 
key fact that determines why the quintic has no solution in terms of radi-
cals. 

Niels Henrik Abel (1802–1829) 

Niels Henrik Abel was born into a large, and poor, Norwegian family. At 
the age of sixteen, he embarked upon a program of reading the great 
works of mathematics; but when he was eighteen, his father died. Abel, 
though not in good health himself, assumed the responsibility for taking 
care of his family. Despite these obligations, he decided to attack the 
quintic, and initially thought he had obtained a solution in the manner of 
Cardano and Ferrari. After realizing that his proof was in error, he came 
to precisely the opposite conclusion: it was impossible to find an algebraic 
expression for the roots of the general quintic. Working along the same 
general lines as Ruffini, but avoiding the proof pitfalls that had plagued 
the Italian mathematician, Abel was able to show that the general quintic 
could not be solved by radicals, bringing to an end a quest that had started 
more than three millennia earlier in Egypt. 

After publishing a memoir outlining his proof, Abel went to Berlin, 
where he began publishing his results on a variety of topics in the newly 
launched Crelle’s Journal. These results were favorably viewed by German 
mathematicians, and Abel then traveled to Paris, where he hoped to ob-
tain recognition from the leading French mathematicians. 

However, France was a hotbed of mathematical activity, and Abel wrote 
to a friend, “Every beginner has a great deal of difficulty getting noticed 
here.”10 Discouraged and weakened by tuberculosis, Abel returned home, 
where he died at the tragically young age of twenty-seven. Unbeknownst 

The Hope Diamond of Mathematics 93�



to Abel, his papers had been generating increasing excitement in the 
mathematical community, and two days after his death a letter arrived 
bearing an offer of an academic position in Berlin. 

Évariste Galois 

The third major player in the solution of the quintic also suffered simi-
larly from bad luck. Évariste Galois was born nine years later than Abel in 
a suburb of Paris. The son of a mayor, he did not exhibit any exceptional 
ability in school—but by age sixteen he realized that despite the judg-
ments of his teachers, he possessed considerable mathematical talents. 
He applied to the École Polytechnique, a school which had been attended 
by many celebrated mathematicians, but his mediocre performance in 
school prevented him from being accepted. He wrote a paper and pre-
sented it to the academy at age seventeen—but Augustin-Louis Cauchy, 
one of the leading mathematicians of the era, lost it. He submitted an-
other paper to the academy shortly thereafter—but Joseph Fourier, the 
secretary of the academy, died soon after the receipt of the paper and it, 
too, was lost. Jonathan Swift once remarked that one could recognize gen-
ius by the fact that the dunces would conspire against them; Galois seems 
to have been particularly unfortunate in that geniuses conspired against 
him, albeit inadvertently. 

Frustrated by all this incompetence, Galois sought an outlet in the poli-
tics of the times, and joined the National Guard. An active revolutionary, 
in 1831, he proposed a toast at a banquet that was viewed as a threat 
against King Louis Philippe. This declaration was followed by a mistake 
that was to prove fatal—he became involved with a young lady whose 
other lover challenged Galois to a duel. Fearing the worst, Galois spent 
the night before the duel jotting down his mathematical notes, entrust-
ing them to a friend who would endeavor to have them published. The 
duel took place the next day, and Galois died from his wounds a day later. 
He was barely twenty years old. 

Although Abel was the first to show the insolvability of the quintic, Ga-
lois discovered a far more general approach to the problem that was to be 
of great significance. Galois was the first to formalize the mathematical 
concept of a group, which is one of the central ideas in modern algebra. 
The connection between groups, polynomial equations, and fields is one 
of the primary themes of the branch of mathematics known as Galois 
theory. Galois theory not only explains why there is no general solution to 
the quintic, it also explains precisely why polynomials of lower degree 
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have solutions. Remarkably, Galois theory also provides clear explana-
tions of three compass-and-straightedge impossibilities we have previ-
ously examined: why the cube cannot be duplicated, why the angle cannot 
be trisected, and why only certain regular polygons are constructable. 

Galois Groups 

When I first learned the quadratic formula in high school, my algebra 
teacher mentioned that there were such formulas for polynomials of degree 
three and degree four, but no such formula existed for polynomials of de-
gree five. At the time, I didn’t completely understand what the teacher 
meant, and interpreted his remark to mean that mathematicians simply 
hadn’t discovered the formula yet. It wasn’t until later that I realized that 
although there were formulas that did give the roots of fifth-degree polyno-
mials, those formulas used expressions other than radicals—if the “lan-
guage” for describing solutions consisted simply of whole numbers, 
radicals, and algebraic expressions involving them, then that language sim-
ply doesn’t have a means of expressing the roots of all fifth-degree polyno-
mials. One of my goals as a student was to find out why this was so—but in 
order to fully understand it, one must learn Galois theory. In order to un-
derstand Galois theory, it is necessary first to take an introductory course in 
abstract algebra, which usually comes about the third year of college. 

Nonetheless, it is possible to understand some of the basic ideas sur-
rounding the theory. Using the quadratic formula, the polynomial 
x2�6x�4 has two roots: A�3��5 and B�3��5. These roots satisfy two 
basic algebraic equations: A�B� 6 and AB�4. Admittedly, they satisfy 
a whole bunch more, such as 5(A�B)�3(AB)3�5�6�3�64��162, but 
this equation was obviously constructed from the other two. They also 
satisfy A�B�2�5, but this equation is qualitatively different from the 
first two: the only numbers that appear in the first two equations are ra-
tional numbers, whereas the last equation contains an irrational number. 
Notice also that if we tried something like A�2B, we would get the irra-
tional number 9��5, so the equations that can be constructed from A 
and B that involve only rational numbers are definitely limited. 

Look once again at the two equations A�B� 6 and AB�4, but instead of 
writing them in this form, write them in the form ���� 6 and ���4, 
where the plan is to look at the various possible ways of inserting the two 
roots A and B into the � and � locations in order to get a true statement. 
There are two ways that this can be done. One is the original way we ob-
tained these equations—insert A into the � and B into the �, which 
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gives the original two (true) statements A�B� 6 and AB�4. If a deck of 
two cards is shuff led, where A is initially on top and B is initially on the 
bottom, then � represents the letter that ends on top and � the letter that 
ends on the bottom after the shuff le. The substitution A for � and B for 
� corresponds to the phantom shuff le. The only other shuff le of two 
cards has A ending on the bottom and B on top, so when B is substituted 
for � and A for �, the resulting statements B�A� 6 and BA�4 are still 
true. The Galois group of a polynomial consists of all those shuff les that 
result in all the algebraic equations with rational numbers being true 
statements. So the Galois group of the polynomial x2�6x�4 consists of 
the two shuff les (phantom and switch top-two cards) that comprise S2. 

It is not always the case that both shuff les in S2 are in the Galois group 
of the polynomial. To see such a case, consider the polynomial x2�2x�3, 
whose two roots A and B are 3 and �1. The two roots satisfy A�2B� 1, so 
examine the algebraic equation with rational coefficients ��2�� 1. If A 
and B are switched in the left side of the equation, the resulting equation 
is B�2A�1, which is not a true statement, as the sum B�2A actually 
equals 5. For this polynomial, the only shuff le that generates true state-
ments from the original equations is the identity element (the phantom 
shuff le), so in this case the Galois group of x2�2x�3 consists of just the 
phantom shuff le. 

There is a famous quote from the American astronomer Nathaniel Bow-
ditch, who translated Laplace’s Celestial Mechanics into English. Bowditch 
remarked, “I never come across one of Laplace’s ‘Thus it plainly appears’ 
without feeling sure that I have hours of hard work before me to fill up the 
chasm and find out and show how it plainly appears.”11 The same is gener-
ally true for the statement “It can be shown,” so I am loathe to include it 
unless I absolutely must—but here I absolutely must. It can be shown that 
a polynomial has roots that can be expressed in terms of radicals only 
when its Galois group has a particular structure in terms of its subgroups. 
This structure is known as solvability; it is quite technical to describe, but 
the name is clearly motivated by the problem of solving the problem of 
finding the roots of a polynomial by radicals. The Galois group of the poly-
nomial x5�x�1 can be shown (oops, I did it again) not to be solvable, and 
so the roots of that polynomial cannot be found by radicals. 

Later Developments 

The insolvability of the quintic proved to be a significant moment in the 
development of mathematics. It is not possible to say with certainty what 
would have happened had quintics, and polynomials of higher degree, 
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proven to have solutions by radicals, but one can say with some assurance 
that mathematics is a lot more interesting a subject because the quintic 
does not have such a solution. 

Mathematics is a language used to describe a variety of phenomena— 
but a language needs words. Some of the most important words in the 
mathematical language are functions. Functions, such as powers or roots, 
can be combined in two basic ways—algebraically (using addition, sub-
traction, multiplication, and division), and compositionally (one after the 
other, like successive shuff les—one can square a number and then take 
its cube root). The insolvability of the quintic amounts to a declaration 
that the vocabulary of functions that can be constructed with powers and 
roots is inadequate to describe the solutions of a certain equation. This 
naturally stimulated a search for other functions that could be used to 
describe these solutions. 

Where do functions come from? Often they arise from need. The trigo-
nometric functions are used for expressing quantities determined by an-
gles, as well as in describing periodic phenomena, and the exponential 
and logarithmic functions are used for describing growth and decay proc-
esses. Many functions arise as solutions to important equations (usually 
differential equations) that occur in science and engineering. For exam-
ple, Bessel functions (named after the nineteenth-century mathemati-
cian and physicist William Bessel, who was the first to calculate the 
distance to a star) occur as solutions to the problem of how a membrane 
such as a drum vibrates when it is struck, or how heat is conducted in a 
cylindrical bar. 

In 1872, the German mathematician Felix Klein was able to find a gen-
eral solution for the quintic in terms of hypergeometric functions, a class 
of functions that occur as a solution to the hypergeometric differential 
equation.12 In 1911, Arthur Coble solved the sextic, the general polyno-
mial of degree six, in terms of Kampé de Fériet functions—a class of 
functions of which I had never heard and I doubt that 99 percent of living 
mathematicians have, either. The trend appears bleak—it looks as if the 
general solution to polynomials of ever-higher degree, if such solutions 
can be found, will be in terms of ever-more obscure classes of functions. 
Functions are indeed like words: their utility depends largely on the fre-
quency with which they are used, and functions (or words) that are so 
specialized that only a few know them have limited value. 

The solving of equations is central not only to mathematics, but to the 
sciences and engineering. Mathematicians may be interested to know 
that the solution to a particular equation exists, but to build something it 
is necessary to know what that solution is—and to know it to three, five, 
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or eight decimal places. Numerical analysis is not, as its name would sug-
gest, the analysis of numbers; it is the branch of mathematics that deals 
with finding approximate solutions to equations—to an accuracy of three, 
five, eight (or whatever) decimal places. Knowing that it may not be pos-
sible to find an exact formula for the solution to an equation, yet realizing 
that to build something may require an accurate approximation to that 
solution, impelled mathematicians to devise techniques for finding these 
approximate solutions and, equally important, knowing how accurate 
these solutions are. An inexpensive pocket calculator will give the cube 
root of 4 as 1.587401052; but if this number is cubed, the answer will not 
be 4—although it will be very close to it. The cube root of 4 as given by 
the calculator is accurate to nine decimal places—good enough for build-
ing all mechanical devices and many electronic ones. From a practical 
standpoint, numerical analysis can generally determine the roots of poly-
nomials with sufficient accuracy to build anything whose construction 
depends upon knowing those roots. 

At the moment, though, the quest for solutions of polynomials is go-
ing in new directions. Just as the search for the roots of polynomials 
took an abrupt turn at the dawn of the nineteenth century and brought 
group theory into the picture, relatively new branches of mathematics 
are currently being brought to bear on the problem. Many of the most 
widely studied groups are connected with symmetries of objects. For 
instance, we have looked at S3 as the set of all shuff les of a three-card 
deck. However, if one imagines an equilateral triangle with vertices A, 
B, and C, initially starting with A as the top vertex and B and C as the 
bottom left and bottom right vertices, the triangle can be rotated or re-
f lected so that the new position of the triangle corresponds to one of the 
shuff les. 

Triangle 1 2 3 4 5 6 
Top Vertex A C B A C B 
Bottom B C A B C A C B B A A C 

We can actually see how the group structure arises in this example— 
there are two fundamentally different operations from which the others 
are constructed. These are a counterclockwise rotation of 120 degrees, 
which we could denote by R. Triangle 2 is obtained from triangle 1 by do-
ing R. The other basic operation is to leave the top vertex unchanged but 
f lip the bottom two; we denote this by F. Triangle 4 is obtained from tri-
angle 1 by doing F. Similarly, triangle 3 is obtained from triangle 1 by 
performing R twice; this operation is denoted RR, or R2. Triangle 5 is 
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obtained from triangle 1 by performing R first, then F, denoted RF; trian-
gle 6 is likewise obtained by performing F first and then R� or FR. 

This is essentially the same group as the shuff les of a three-card deck— 
one can identify R with the shuff le that simply puts the top card on the 
bottom of the deck, and F with the shuff le that leaves the top card alone 
but switches the position of the second and third cards. This process of 
identifying two apparently different groups with each other is known as 
isomorphism—a process that enables mathematicians to translate truths 
known about one object to truths known about the other. The proof that 
the general quintic has no solution involves a group isomorphic to the 
group of symmetries of the regular icosahedron—the regular platonic 
solid with twenty faces, all of which are equilateral triangles. Mathemati-
cians nowadays are looking to geometry in the hope that they can dis-
cover things that will translate into problems involving roots of 
polynomials. 

The French politician Georges Clemenceau once said that war was too 
important to be left to the generals. Similarly, group theory was too im-
portant to be left to the mathematicians. Group theory is employed exten-
sively in the sciences, because group theory is the language of symmetries, 
and science has discovered that symmetry plays a fundamental role in 
many of its laws. I’m not sure whether anyone has written Group Theory 
for Anthropologists or Group Theory for Zoologists, but there are books with 
similar titles written for biochemists, chemists, engineers—probably the 
greater part of the alphabet, and I’d be willing to bet that every letter of 
the alphabet is represented when it comes to describing types of groups 
(we already observed that the letter s is used for “solvable group”). Notic-
ing patterns, and missing elements of patterns, is often the key to impor-
tant discoveries, and group theory provides an organizing framework that 
often points the way to the missing element. 

The story of the search for solutions by radicals to polynomial equations 
did not end with the discovery that one could not find formulas for the 
quintic; rather, it branched off to generate useful and exciting results that 
even Cardano and Ferrari, who scaled the summit of what could be done 
in this area, would undoubtedly have found every bit as enchanting as 
those revealed in Cardano’s Ars Magna. 

NOTES 
1. See http:// history1900s .about .com/ od/ 1950s/ a/ hopediamond .htm . 
2. It would be more accurate to say that polynomials are the only everywhere dif-

ferentiable functions we can calculate. For example, the function f(x), beloved of 
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analysts, defined by f(x)� 0 if x is rational and f(x)� 1 if x is irrational, can be 
calculated for every valuable of the variable. This function is highly artificial, as 
it never shows up in any process related to the real world. 

3. A. B. Chace, L. S. Bull, H. P. Manning, and R. C. Archibald, The Rhind Mathe-
matical Papyrus (Oberlin, Ohio: Mathematical Association of America, 1927–29). 
A good description of this method, known as the method of false position, can 
be found at http:// www -groups.dcs.st -and.ac.uk/ ~history/ HistTopics/ Egyptian_ 
papyri .html . 

4. An example of solving an equation by completing the square is 

x2�4x�5�0 
x2�4x�5 
x2�4x�4�5�4 (the “completing-the-square” step) 
(x�2)2�9 
x�2� 3 or �3 
x� 5 or x��1 

5. W. Dunham, Journey Through Genius (New York: John Wiley & Sons, 1990). 
6. As quoted at http:// www -history.mcs.st -andrews.ac.uk/ Biographies/ Cardan.html. 
7. G. Cardano, Ars Magna (Basel, 1545).

 8. Ibid. 
9. As quoted at http:// www -groups.dcs.st -and.ac.uk/ ~history/ Biographies/ Ruffini 

.html . 
10. Carl B. Boyer, A History of Mathematics (New York: John Wiley & Sons, 1991), 

p. 523. 
11. Quoted in F. Cajori, The Teaching and History of Mathematics in the United States 

(Whitefish, MT: Kessinger Publishing, 2007). 
12. The geometric series with ratio r is the infinite sum 1 �r�r2�r3� . . . ; hyper-

geometric series generalize this series. A more extensive discussion of this topic 
can be found at http:// en .wikipedia .org/ wiki/ Hypergeometric _functions, but 
unless you plan on a career that requires a substantial knowledge of advanced 
mathematics, you can skip this discussion. 
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6 lNever the Twain Sha l Meet 

It Takes an Adult 
There are some pleasures that even three-year-olds can enjoy, such as ice 
cream and warm sunshine on your face on a nice spring day—but there 
are some pleasures that are reserved for adults. Intelligent conversation. 
Vegetables. Geometry. 

Believe me, I didn’t wake up at age eighteen and say, “Math looks inter-
esting—maybe I should major in it.” I liked math ever since we first 
started counting things back in kindergarten, or even before. Well, I liked 
math until I hit geometry, and then there was a miserable year when 
I struggled to get Bs because I kept not seeing how to prove some things 
and skipping steps in things I could see how to prove. Advanced alge-
bra and trig rekindled my enthusiasm, and when I got to analytic geom-
etry and calculus I was back on the math track—partially because these 
two subjects almost completely eliminate the necessity for knowing any-
thing but basic stuff in geometry. 

I can’t remember what bothered me most about geometry, but I do re-
member that indirect proofs were near the top of the list. An indirect 



proof is one in which you assume the negation of a conclusion, show that 
this leads to a contradiction, and consequently the only option left is that 
the sought-after conclusion must be correct. A large number of indirect 
proofs in geometry are the result of Euclid’s infamous fifth postulate— 
the parallel postulate. 

Noncontroversial Geometry 

Noncontroversial geometry is everything up to, but not including, the 
parallel postulate. It includes basic objects that we can’t really define but 
everybody knows what they are, some definitions involving basic objects, 
some obvious arithmetic and geometric facts, and the four postulates that 
precede the parallel postulate. 

Basic objects are things like points. Euclid defined a point as that which 
has no part.1 Works for me—I’m not philosopher enough to say exactly 
what these abstract constructs are, but I (and you) know what Euclid was 
getting at, so we can move on. Obvious arithmetic facts were such state-
ments as equals added to equals are equal. Euclid’s one obvious geometric 
fact was that things that coincided with each other were equal—if line seg-
ments AB and CD can both be positioned to coincide, then AB�CD. 

We come now to the four noncontroversial postulates. I’ll assume that 
line segments have endpoints, but straight lines don’t. Using this termi-
nology, the postulates are 

Postulate 1: Any two points can be connected by a unique line seg-
ment. 

Postulate 2: Any line segment can be extended to a straight line. 
Postulate 3: There is a unique circle with given center and radius. 
Postulate 4: All right angles are equal.2 

There is an amazing amount of geometry that can be done using only 
those four postulates—but that doesn’t concern us here. 

The Parallel Postulate 

Euclid’s initial version of the parallel postulate was, to say the least, un-
wieldy. 

Postulate 5 (Euclid): If a straight line falling on two straight lines makes 
the interior angles on the same side less than two right angles, the two 
straight lines, if extended indefinitely, meet on that side on which the  
angles are less than two right angles.3 

To understand what is happening here, think of a triangle with all its 
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sides extended indefinitely. Look at the side you consider to be the base 
of the triangle. The “interior angles” referred to above are the angles the 
base makes with the other two sides; the sum of those two angles is less 
than the 180 degrees, that is, the sum of the two right angles. If one 
changed the orientation of the sides by a sufficient amount that they in-
tersected on the other side of the base, the “interior angles” here would 
again sum to less than 180 degrees. So what happens when the interior 
angles sum to precisely 180 degrees? The two other lines don’t meet on 
either side of the base, so they either have to meet on the base (but that 
would happen only if the base coincided with the sides) or not meet. 

As you can see, this formulation of the parallel postulate is not easy to 
work with, and even back in ancient Greece suggestions were made to 
revise it. It was Proclus who suggested a version that we frequently use 
today (two parallel lines are everywhere the same distance apart), but it 
was the Scottish mathematician John Playfair who gets the credit, as he 
wrote a very popular geometry text at the turn of the nineteenth century 
incorporating it. Then as now, credit accrues to the individual with the 
best public relations department. 

Postulate 5 (Playfair’s Axiom): Through each point not on a given line, 
only one line can be drawn parallel to the given line.4 

This was the form in which I learned the parallel postulate. It has two obvi-
ous advantages. The first is that it is much easier to understand, visualize, 
and use than Euclid’s original formulation. The second advantage is more 
subtle—it leads one to ask the question, is it possible to create geometries in 
which more than one line can be drawn parallel to the given line? 

Certainly, such a geometry cannot exist on the plane, as that’s the habi-
tat of Euclidean plane geometry with the five postulates. However, if we 
move into Euclidean three-dimensional space, we can have infinitely 
many lines through a given point parallel to a given line—parallel, that is, 
in the sense that both lines, when extended, do not meet. Simply take a 
line and a plane parallel to that line but not containing it. If one fixes a 
point in that plane, any line through that point will obviously not meet 
the given line—although all but one of these are called skew lines in 
modern terminology (there is one that is genuinely parallel to the given 
line because it lies in a plane with the given line). 

Girolamo Saccheri 

Not all Italian mathematicians were as colorful as Tartaglia, Cardano, 
and Ferrari. Girolamo Saccheri was ordained a Jesuit priest and taught 
philosophy and theology at the University of Pavia. He also held the chair 
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of the mathematics department there, leading me to wonder if that situa-
tion was something like what happened during the Great Mathematics 
Teacher Drought of the 1970s, where the paucity of math teachers at the 
junior and senior high school level sometimes resulted in shop or PE 
teachers becoming algebra instructors. A good friend of mine had ma-
jored in political science while she was in college. When she became a 
middle-school teacher (the West Coast equivalent of junior high) in the 
1970s, someone was needed to fill an algebra staffing gap; she did so and 
had a satisfying and successful career as an algebra teacher. 

Anyway, not much was heard from Saccheri until 1733, when his bomb-
shell Euclides ab Omni Naevo Vindicatus (variously translated, I’ll go with 
“Euclid Freed from Every Flaw”) was published. It was more of a time 
bomb, not being recognized for its value until substantially later. In it, 
Saccheri was to make the first important moves toward the development 
of non-Euclidean geometry. 

Saccheri did what others before him attempted to do—prove the parallel 
postulate from the other four postulates. He started with a line segment 
(the base) on which he constructed two line segments of equal length (the 
sides), each making a right angle with the base. He then connected the 
endpoints of the two line segments (the top), making a figure that is now 
known as a Saccheri quadrilateral—and which you, when you do this, 
will immediately recognize as a rectangle. 

However, you know it’s a rectangle because each point of the top is the 
same distance from the base (the sides of equal length make it so), and 
you have accepted Proclus’s version of the parallel postulate. Saccheri 
didn’t assume the parallel postulate. By using the other postulates, he 
was able to show quite easily that the vertex angles, which are the two 
angles made by the top with the sides, had to be equal. There were then 
three possibilities: the vertex angles could be right angles (which would 
then demonstrate that the parallel postulate could be proved from the 
other four), the vertex angles could be obtuse (greater than 90 degrees), or 
the vertex angles could be acute (less than 90 degrees). 

Saccheri first developed an indirect proof in which he showed that the 
hypothesis that the vertex angles were obtuse led to a contradiction. He 
then attempted to show that the hypothesis that the vertex angles were 
acute also led to a contradiction—but after much work was unable to do 
so without fudging the proof by assuming that lines that met at a point at 
infinite distance (this is called “a point at infinity”) actually met at a point 
on the line. At this juncture, Saccheri had two choices—go with the 
fudged proof in order to show the result in which he had an emotional 
investment, or admit that he was unable to show that the hypothesis that 

104 How Math Explains the World�



the vertex angles were acute led to a contradiction. In retrospect, had he 
chosen the second option, he could possibly have advanced the discovery 
of non-Euclidean geometries by decades—but he went with the first. 

Saccheri also was the first to realize an important property of non-Eucli-
dean geometries: the assumption that the vertex angles were acute led to 
the conclusion that the sum of the angles in a triangle must be less than 
180 degrees. Most investigations of whether the universe is Euclidean 
or non-Euclidean involve measuring the angles of a triangle—the larger 
the triangle the better—to see if this measurement will reveal the under-
lying geometry of the universe. A triangle the sum of whose angles is less 
than 180 degrees, and such that the result is outside the range for experi-
mental error, would unquestionably show that the universe was non-Eu-
clidean. However, a triangle the sum of whose angles is close to 180 
degrees would only provide confirming evidence that the universe was 
Euclidean, and would not constitute a definitive result. 

Another Visit from the Dancing Angels 

Saccheri published his results in 1733. Some thirty years later, the German 
mathematician Johann Lambert, a colleague of Leonhard Euler and Joseph 
Lagrange, took another shot at the problem using a very similar approach. 
Instead of using Saccheri quadrilaterals (two right angles with two equal 
sides), he looked at a quadrilateral with three right angles and deduced con-
clusions about the fourth angle using postulates one through four. Like 
Saccheri, he disposed of the possibility that the fourth angle could be ob-
tuse, but unlike Saccheri, he recognized that no contradiction could be ob-
tained if one assumed that the fourth angle were acute. Under the assumption 
that the fourth angle was acute, Lambert managed to prove several impor-
tant propositions about models for non-Euclidean geometry—much as 
George Seligman, my undergraduate algebra teacher, had managed to prove 
results about algebras of dimension 16. However, Lambert did not construct 
models for non-Euclidean geometries, so at the time of his death it wasn’t 
clear whether angels could dance on the head of this particular pin. Lam-
bert would be more fortunate than Seligman, as help was on its way—but 
the final verdict would not be in for nearly a century. 

An Unpublished Symphony from the Mozart of Mathematics 

At the turn of the nineteenth century, three mathematicians were to 
travel essentially the same path toward the construction of non-Eucli-
dean geometries—and they all did it in essentially the same fashion, by 
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substituting an alternative for Playfair’s Axiom. Each of the three worked 
with “Through each point not on a given line there exists more than 
one parallel to the given line,” and each deduced much the same conclu-
sions—although history gives the lion’s share of the credit to Nikolai 
Ivanovich Lobachevsky and János Bolyai. 

Although Gauss was undoubtedly the first to reach the conclusion that a 
consistent geometry was possible using the above alternative to Playfair’s 
Axiom, Gauss lived in a different era—and played mathematics by a dif-
ferent set of rules than those commonly used today. Gauss’s unofficial 
motto was Pauca, Sed Matura—which translates from the Latin as “Few, 
but ripe,” and expresses his attitude toward publishing. Gauss did not 
publish anything until he was convinced that doing so would add to his 
prestige (which, considering his prestige, meant he would publish only 
the crème de la crème), and also that the result had been polished to a 
fare-thee-well. Of course, like any mathematician, he certainly did not 
burn his papers, and he was willing to communicate his results privately. 
One day, he received a visit from Carl Jacobi, at the time generally re-
garded as the second-best mathematician in Europe. Jacobi wanted to 
discuss a result he had obtained, but Gauss extracted some papers from a 
drawer to show Jacobi he had already obtained the result. A disgusted 
Jacobi remarked, “It is a pity that you did not publish this result, since you 
have published so many poorer papers.”5 

Newton had probably set the gold standard for recalcitrance when it 
came to publishing. He stuck his work on gravity in a drawer—probably 
as the result of a vicious academic dispute with Robert Hooke over the 
nature of light. Some years later, the astronomer Edmond Halley (of Hal-
ley’s comet fame) came to visit Newton, and inquired of him what would 
be the motion of a body under an inverse square law of gravitational at-
traction. Newton astounded Halley by telling him that he had calculated 
it to be an ellipse, and Halley was so impressed that he underwrote the 
cost of publishing Newton’s Principia—which Newton had difficulty 
finding when Halley visited him, because he wasn’t sure where he had 
hidden it. When Newton didn’t avoid publication, he published anony-
mously—but his solution to a problem posed by Johann Bernoulli was so 
elegant that even though the solution was anonymous, Bernoulli knew it 
was Newton’s, declaring that he knew the lion by his claw. 

Publication is a very different matter nowadays. With rare exceptions 
(such as when Andrew Wiles announced a solution to Fermat’s last theo-
rem), mathematicians generally publish, or try to publish, what they’ve 
got—even if it isn’t a polished solution to a problem, or even a complete 
one. 
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There are good reasons for this. Young mathematicians, especially at 
prestigious universities, are well aware of the adage “publish or perish.” 
The final tenure decision on assistant professors generally occurs no later 
than six years after the initial hiring, and no matter how good a teacher 
you are, at a top-ranked university, you’d better have something to show, 
publication wise, for those six years—or you’re going to be looking for 
another job. As a result, the pressure to publish—even prematurely—is 
enormous. Additionally, even for the tenured, getting something out 
there is important because (1) it helps to make a contribution, and (2) by 
doing so, you may supply the critical piece of the puzzle that can turn an 
unproven result, or Someone Else’s theorem, into Yours and Someone 
Else’s theorem. I know, because I read a paper by the esteemed Czecho-
slovokian mathematician Vlastimil Pták, had one of the few really good 
ideas I’ve had,6 and wrote up a short paper that appeared in the Proceed-
ings of the American Mathematical Society. The best result in this paper 
was to become known as the Pták-Stein theorem (as far as I know, the 
only thing that’s named after me)—and nine months later a paper ap-
peared elsewhere with the exact same result. As Tom Lehrer put it in his 
hilarious song “Nikolai Ivanovich Lobachevsky,” 

And then I write�
By morning, night,�
And afternoon,�
And pretty soon�
My name in Dnepropetrovsk is cursed,�
When he finds out I published first!7�

Gauss had a long history of investigation of alternative geometries. At 
age fifteen, he told his friend Heinrich Christian Schumacher that he  
could develop logically consistent geometries besides the usual Euclidean 
geometry. Initially, he set out along the road of trying to deduce the paral-
lel postulate from the other four, but eventually reached the same conclu-
sion he had at fifteen, that there were other consistent geometries. In 
1824, he wrote to Franz Taurinus, in part to correct an error in Taurinus’s 
purported proof of the parallel postulate. After doing so, Gauss wrote, 
“The assumption that the sum of the three angles of a triangle is less 
than 180� leads to a curious geometry, quite different from [the Euclid-
ean], but thoroughly consistent, which I have developed to my satisfac-
tion. . . . The theorems of this geometry appear to be paradoxical and, 
to the uninitiated, absurd; but calm, steady ref lection reveals that they 
contain nothing impossible.”8 It seems fairly clear that Gauss had not 
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constructed a model for a consistent geometry, but merely had convinced 
himself that one was possible. 

Gauss concluded his letter to Taurinus by saying, “In any case, consider 
this a private communication, of which no public use or use leading to 
publicity is to be made. Perhaps I shall myself, if I have at some future 
time more leisure than in my present circumstances, make public my  
investigations.” Several years later, in a letter to the astronomer Heinrich 
Olbers, he reiterated both his results and his desire not to go public with 
them. 

Nonetheless, he was sufficiently impressed with the possibility that the 
geometry of the real world might not be Euclidean that he conceived of an 
experiment to resolve the matter. Saccheri and Gauss had both deduced 
that if the parallel postulate did not hold, the sum of the angles in a trian-
gle would total less than 180 degrees. Gauss laid out a triangle using 
mountains around his home in Göttingen; the sides of the triangle were 
approximately 40 miles long. He measured the angles of the triangle and 
computed their sum; had the result been significantly less than 180 de-
grees, he would have been able to reach an earthshaking conclusion. It  
was not to be: the sum of the angles differed by less than 2 seconds 
(1/1,800 of a degree), a difference that could certainly have been the result 
of experimental error. 

Wolfgang and János Bolyai 

Wolfgang Bolyai (a.k.a. Farkas Bolyai) was a friend of Gauss from their 
student days at Gottingen. As students, they had discussed what they re-
ferred to as the problem of parallels, and over the years they maintained 
friendship by correspondence when Wolfgang returned to Hungary.  
However, Wolfgang’s son János was unquestionably the mathematical 
star of the family. Wolfgang gave János instruction in mathematics, and 
the son proved to be an extraordinarily quick learner. Wolfgang fell ill one 
day when János was thirteen, but the father had no qualms about sending 
in his son to pinch-hit for his lectures at college. I’m not sure how I would 
have felt if a thirteen-year-old showed up in place of my usual professor. 

When János was sixteen, Wofgang wrote to Gauss, asking him to take 
János into Gauss’s household as an apprentice to facilitate the advance-
ment of his career. Possibly the letter went astray, but Gauss did not an-
swer, and so János entered the Imperial Engineering Academy, planning 
on a career in the army. In addition to being an extremely talented math-
ematician, János was a superb duelist and an enthusiastic violinist. He 
once accepted a challenge in which he fought thirteen consecutive duels 
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against cavalry officers, but stipulated that he be allowed to play a violin 
piece after every two duels. He won all thirteen duels; there are no re-
views of his violin performances. 

While at the academy, János evinced interest in the parallel postulate. 
Like everyone else, his initial efforts were devoted to trying to prove it. 
His father, who had battled unsuccessfully with the problem, urged his 
son to expend his effort elsewhere. “Do not waste one hour’s time on that 
problem,” wrote Wolfgang. “It does not lead to any result, instead it will 
come to poison all your life. . . . I believe that I myself have investigated 
all conceivable ideas in this connection.”9 

János was not the first son to disregard his father’s advice, and in 1823 
sent this communiqué to his father: “I am resolved to publish a work on 
parallels as soon as I can complete and arrange the material, and the op-
portunity arises. At the moment I still do not clearly see my way through, 
but the path which I have followed is almost certain to lead me to my goal, 
provided it is at all possible. . . . All I can say at present is that out of noth-
ing I have created a strange new world.”10 

János had, indeed, created a strange new world. He developed a com-
plete system of geometry, constructing three distinct families of different 
sets of postulates. The first system incorporated the five classic postu-
lates of Euclid—this is obviously Euclidean geometry. The second sys-
tem, now known as hyperbolic geometry, included the first four postulates 
of Euclid and the negation of the parallel postulate. This was to be János’s 
great contribution, a systematic development of non-Euclidean geometry. 
Finally, his last system, absolute geometry, was based only on Euclid’s 
first four postulates. 

János’s work, the only thing he ever published, was included as a twenty-
four-page appendix to a textbook written by his father. His father sent the 
work to Gauss, who wrote to a friend that he considered János Bolyai to be 
a genius of the first order. However, his letter to Wolfgang was quite dif-
ferent. Gauss commented, “To praise it would amount to praising myself. 
For the entire content of the work . . . coincides almost exactly with my 
own meditations which have occupied my mind for the past thirty or 
thirty-five years.”11 

Although this was not intended to be a put-down, it had a devastating ef-
fect on János, who was tremendously disturbed that Gauss had earlier tra-
versed the same path. János’s life deteriorated significantly thereafter. He 
received a small pension when he was mustered out of the army and went 
to live on a family estate. Isolated from the mathematical community, he 
continued to develop some of his own ideas, and left twenty thousand 
pages of notes on mathematics behind him. János was to become even 
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more embittered when his towering achievement—being the first person 
to publish a consistent non-Euclidean geometry—was taken from him. 

Nikolai Ivanovich Lobachevsky 

The third discoverer of non-Euclidean geometry in this recitation was in 
actuality the first—or at least the first to publish. Nikolai Ivanovich Lo-
bachevsky was the son of a poor government clerk. His father died when 
Nikolai was seven, and his widow moved to Kazan in eastern Siberia. 
Nikolai and his two brothers received public scholarships to secondary 
schools, and Nikolai entered Kazan University, intending to become a 
medical administrator. Instead, he would spend the rest of his life there 
as a student, teacher, and administrator. 

He was obviously an extremely talented student, for he graduated from 
the university before his twentieth birthday with a master’s degree in 
both physics and mathematics. He then received an assistant professor-
ship and became a full professor at age twenty-three. Admittedly, other 
talented mathematicians have become full professors at an early age, but 
nonetheless this was an impressive achievement. 

Lobachevsky worked along roughly the same lines as Gauss and Bolyai, 
substituting the assumption that through each point not on a given line 
there existed more than one parallel to the given line, and going on from 
there to develop hyperbolic geometry. He published this in 1829 (thus 
establishing priority, for Gauss never published and Bolyai’s effort was 
published in 1833) in a memoir entitled On the Foundations of Geometry. 
However, instead of publishing it in a reviewed journal it appeared in the 
Kazan Messenger, a monthly house organ published by the university. Lo-
bachevsky, believing that it deserved a wider and more knowledgeable 
audience, then submitted it to the St. Petersburg Academy—where it was 
summarily rejected by a buffoon of a referee who failed to appreciate its 
value. The last sentence may seem rather strong, but having had a few 
papers bounced in my career by similar buffoons, I can sympathize with 
Lobachevsky. At any rate, Lobachevsky’s effort was another addition to 
the lengthy list of great papers that initially got bounced. 

To Lobachevsky’s credit, he refused to be discouraged, and finally had a 
book published in 1840 in Berlin with the title Geometric Investigations on 
the Theory of Parallels. Lobachevsky sent a copy of the book to Gauss, who 
was sufficiently impressed to write a congratulatory letter to Lobachevsky. 
Gauss also wrote to his old friend, Schumacher, with whom he had first 
discussed alternative geometries, that although he was not surprised at 
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Lobachevsky’s results, having anticipated them, but nonetheless he was 
intrigued by the methods he had used to derive them. Gauss even studied 
Russian in his old age so that he could read Lobachevsky’s other papers! 

Lobachevsky’s life differed significantly from János Bolyai’s. Lobachevsky 
became the rector of Kazan University at age thirty-four and lived com-
fortably thereafter, yet he never ceased his attempts to have his efforts in 
non-Euclidean geometry recognized. For the fiftieth anniversary of Ka-
zan University, he made one final attempt. Even though he had become 
blind, he dictated “Pangeometry, or a Summary of the Geometric Foun-
dations of a General and Rigorous Theory of Parallels,” which was pub-
lished in the scientific journal of Kazan University. 

Recognition for Lobachevsky would eventually follow, although not un-
til after his death. Just as Hilbert had saluted the efforts of Cantor, the 
English mathematician William Clifford said of Lobachevsky, “What Ve-
salius was to Galen, what Copernicus was to Ptolemy, that was Lo-
bachevsky to Euclid.”12 Today, all three of the major participants are 
recognized as codiscoverers of non-Euclidean geometry, although the 
bulk of the credit goes to Bolyai and Lobachevsky, who developed their 
ideas independently—and published them. Sadly, when Bolyai learned of 
Lobachevsky’s work, he initially believed that it was an attempt by Gauss 
to rob him of his rightful place in the mathematical firmament, and that 
Gauss had given Lobachevsky some of Bolyai’s ideas. Nonetheless, when 
Bolyai examined Lobachevsky’s work, he retained enough integrity to 
comment that some of Lobachevsky’s proofs were the work of a genius, 
and the entire opus was a monumental achievement. 

Another Parallel 

It is fascinating how often history repeats itself—even the history of 
mathematics. We have seen that the story of the continuum hypothesis is 
much like the story of the parallel postulate. An axiomatic system is out-
lined, and the status of an additional axiom is in doubt—is it provable  
from the original axioms, or not? In both cases, the additional axiom 
turned out to be independent of the original set—the inclusion of either 
the additional axiom or its negation resulted in consistent systems of axi-
oms. What is just as fascinating is how the stories parallel each other—a 
great mathematician (Kronecker for Cantor, Gauss for Bolyai) either de-
liberately (Kronecker) or inadvertently (Gauss) prevents a lesser mathe-
matician from achieving the recognition he deserves, and it is left to 
posterity to bestow the accolades. Meanwhile, the effect is to ruin a life. 
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Mathematics is no different from most other human endeavors, in that 
there are individuals of estimable achievement but substantially less than 
estimable character. 

Eugenio Beltrami and the Last Piece of the Puzzle 

There was one final obstacle that had not yet been surmounted: the devel-
opment of a model that would exhibit the wondrous geometric properties 
that Gauss, Bolyai, and Lobachevsky had formulated. This was accom-
plished by Eugenio Beltrami, an Italian geometer, who in 1868 wrote a 
paper in which he actually constructed such a model. Beltrami was defi-
nitely trying to find a concrete realization for the theory that the three 
early non-Euclidean geometers had developed, for he wrote in this pa-
per that “We have tried to find a real foundation to this doctrine, instead 
of having to admit for it the necessity of a new order of entities and 
concepts.”13 Beltrami also played an important role in the history of non-
Euclidean geometry, as it was he who first focused attention on the work 
Saccheri had done. 

Many interesting curves in mathematics have resulted from the analy-
sis of a physical problem. One such curve is the tractrix, which is the 
curve generated by the following situation. Imagine that the string of a 
yo-yo is completely extended and the free end fastened to a model train 
traveling on a straight track. The train moves at a constant velocity, keep-
ing the string taut. The tractrix represents the curve traced out by the 
center of the yo-yo; it gets closer and closer to the track, but never quite 
reaches it. 

If the tractrix is rotated round the railroad track, the track represents a 
central axis of symmetry for the resulting surface, which is known as 
a pseudosphere. The pseudosphere is the long-sought model for a non-
Euclidean geometry, and every triangle drawn on its surface has the sum 
of the angles less than 180 degrees. 

Is the Universe Euclidean or Non-Euclidean? 

Gauss’s experiment in measuring the sum of the angles in a triangle 
whose sides were approximately 40 miles long was the first to try to deter-
mine whether the geometry of the universe could be non-Euclidean. Re-
call that Gauss found, to within experimental error, that his measurement 
was consistent with a Euclidean universe. This is still a question that fas-
cinates astronomers, and so experiments have continued up through the 
present day, with the lengths being employed now on the order of billions 
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of light-years. The latest data, from the Wilkinson Microwave Anisotropy 
Probe, comes down firmly on the side of the Greeks—as best we can de-
termine, the large-scale geometry of the universe is f lat, much as it ap-
peared to the Greeks even before it occurred to them that Earth itself  
might actually be round. 

NOTES
 1. R. Trudeau, The Non-Euclidean Revolution (Boston, Mass: Birkhauser, 1987), 

p. 30. Items such as points and lines are called primitive terms. Euclid was say-
ing that points are the smallest objects that there are, and cannot be subdivided. 
He also says such things as “a line is breadthless length,” but qualifies it with 
the adjective “straight” as the situation dictates. 

2. Ibid., p. 40. I’m not enough of an expert to be sure that these statements are ab-
solute translations from Greek, but these are basically the ones everyone uses. 

3. Ibid., p. 43. You have to wonder why this particular version of the parallel postu-
late was chosen. It seems awfully awkward, and it was no wonder that substi-
tutes were sought. It’s usually easier to work with a simple characterization of a 
concept than a more complicated one. 

4. Ibid., p. 128. 
5. D. Burton, The History of Mathematics (New York: McGraw-Hill, 1993), p. 544. 
6. Linus Pauling was once asked how he got so many good ideas. He replied to the 

effect that he just got a lot of ideas and threw the bad ones away. I attempted to 
do this, but ran into two obstacles—I didn’t have anywhere near the number of 
ideas that Pauling had, and when I threw away the bad ones, not much was left. 
There were a few, though. 

7. Tom Lehrer received a bachelor’s degree in mathematics from Harvard at age 
eighteen, and a master’s degree one year later. Headed for a brilliant mathemati-
cal career, he was sidetracked by becoming one of the three greatest humorists 
of the twentieth century, in my opinion (the other two being Ogden Nash and 
P. G. Wodehouse). He was probably the first politically incorrect black humor-
ist—yes, before Lenny Bruce and Mort Sahl—and his songs are classics. There 
will always be a soft spot in my heart for “Nikolai Ivanovich Lobachevsky,” “The 
Old Dope Peddler,” and “The Hunting Song,” but the one most likely to incite a 
riot is “I Wanna Go Back to Dixie.” Enjoy. Visit http:// members.aol.com/quentn-
cree/ lehrer/ lobachev .htm .

 8. Burton, History of Mathematics, p. 545. 
9. Ibid., p. 548.�

10 Ibid., p. 549.�
11. Ibid. pp. 549–50.

 12. Ibid. p. 554. 
13. See http:// www -groups.dcs.st -and.ac.uk/ ~history/ Biographies/ Beltrami.html. 
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7 i iEven Log c Has L mits 

Liar, Liar 
Back when I was in college and my GPA needed a boost, I would seek out 
the comforting shelter of the Philosophy Department, which always of-
fered an assortment of introductory courses in logic. The one I took be-
gan by examining this classic syllogism: 

All men are mortal.�
Socrates is a man.�
Therefore, Socrates is mortal.�

OK, not exactly a deduction requiring a Sherlock Holmes—but there are 
more interesting formulations that might have intrigued even the great 
detective. One such syllogism, which did not appear in introductory logic, 
initially appears to be a clone of the one above: 

All Cretans are liars. 
Epimenides is a Cretan. 
Therefore, Epimenides is a liar. 



It seems pretty much the same—unless the first statement was made by 
Epimenides! If so, is Epimenides lying with the first statement? After all, 
a liar is one who lies some of the time, but not necessarily all the time. If 
he is a liar, then the first statement could be a lie—and so some Cretans 
might not be liars, and we cannot legitimately make the deduction. 

There’s some wiggle room here; what exactly characterizes a liar? Does 
he or she need to lie with every statement, or is someone a liar if he oc-
casionally lies? After some refining, the liar’s paradox, as this sequence of 
statements is often called, was condensed to a four-word sentence: this 
statement is false. Is the statement This statement is false true or false? 
Assuming that true and false are the only alternatives for statements, it 
cannot be true (if so, it would be true that it is false, and would therefore 
be false), and it cannot be false (if so, it would be false that it is false, and 
would therefore be true). Assuming that it is either true or false leads to 
the conclusion that it is both true and false, and so we must place the sen-
tence This statement is false outside the true-false realm. You may be able 
to detect in this argument the faint echo of the classic odd-even proof that 
the square root of 2 is irrational, which proceeds by showing that a 
number simultaneously has two incompatible characteristics. 

Some might place the liar’s paradox under the heading of “snack food 
for thought”; on the surface it may seem little more than a curiosity- pro-
voking, but pedantic, point of linguistics. But Kurt Gödel, a talented 
young mathematician, looked more deeply at the liar’s paradox, and used 
it to prove one of the most thought-provoking mathematical results of the 
twentieth century. 

The Colossus 

At the summit of the mathematical world in 1900 perched a colos-
sus—David Hilbert. A student of Ferdinand von Lindemann, the 
mathematician who had proved that � was transcendental, Hilbert 
had made brilliant contributions to many of the major fields of mathe-
matics—algebra, geometry, and analysis, the branch of mathematics that 
evolved from a rigorous examination of some of the theoretical difficul-
ties that accompanied the development of calculus. Hilbert also submit-
ted a paper on the general theory of relativity five days prior to Einstein, 
although it was not a complete description of the theory.1 By any stand-
ard, though, Hilbert was a titan. 

During the International Congress of Mathematicians in Paris in 1900, 
Hilbert made perhaps the most inf luential speech ever made at a mathe-
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matical meeting. In it, he set the agenda for mathematics in the twentieth 
century by describing twenty-three critical problems2—although, unlike 
the Clay Institute, he was unable to offer financial incentives for their so-
lution. The first problem on Hilbert’s list was the continuum hypothesis, 
as we have seen this was shown to be undecidable within the Zermelo-
Fraenkel formulation of set theory. Second on the list was to discover 
whether the axioms of arithmetic are consistent. 

Recall that an axiomatic scheme is consistent if it is impossible to obtain 
contradictory results within the system; that is, if it is impossible to prove 
that the same result can be both true and false. Only one proposition 
need be both true and false for a scheme to be inconsistent, but it may 
seem that one could never prove that a proposition that is both true and 
false does not exist. After all, mustn’t one be able to prove all the results 
stemming from a particular axiom scheme in order to decide whether the 
scheme is consistent? 

Fortunately not. One of the easiest systems of logic to analyze is proposi-
tional logic, which is the logic of true/false truth tables. This system, which 
is frequently taught in Math for Liberal Arts courses, involves constructing 
and analyzing compound statements that are built up from simple state-
ments (which are only allowed to be true or false) using the terms not, and, 
or, and if . . . then. In the following truth table, P and Q are simple state-
ments; the rest of the top line represents the compound statements whose 
truth values depend upon the truth values of P and Q, and how we compute 
them. It is rather like an addition table where we use TRUE and FALSE 
rather than numbers, and compound statements rather than sums. 

Row P Q NOT P P AND Q P OR Q IF P THEN Q 

(1) TRUE TRUE FALSE TRUE TRUE TRUE 

(2) TRUE FALSE FALSE FALSE TRUE FALSE 

(3) FALSE TRUE TRUE FALSE TRUE TRUE 

(4) FALSE FALSE TRUE FALSE FALSE TRUE 

The first two columns list the four possible assignments of the values 
TRUE and FALSE to the statements P and Q; for example, row 3 gives the 
truth values of the various statements in the top when P is FALSE and Q 
is TRUE. 

The truth value assigned to NOT P is just the opposite of the truth value 
assigned to P. As an example, if P is the true statement The sun rises in the 
east, then NOT P is the false statement The sun does not rise in the east. 
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The truth value assigned to P AND Q also ref lects common understand-
ing of the word and, which requires both P and Q to be true in order for 
the statement P AND Q to be true. The last two columns require a little 
more explanation. 

The word or is used in two different senses in the English language: the 
exclusive sense and the inclusive sense. When assigning truth values to 
the statement P OR Q, doing so for the “exclusive or” would result in the 
statement being true precisely when exactly one of the two statements P 
and Q were true, whereas doing so for the “inclusive or” would result in 
the statement being true if at least one of the two statements P and Q 
were true. The example that I give to Math for Liberal Arts students to 
distinguish between the two occurs when your waiter or waitress asks 
you if you would like coffee or dessert after the meal. Your server is going 
with the inclusive or, because you will never hear a server say, “Sorry, you 
can only have one or the other,” when you say, “I’d like a cup of coffee and 
a dish of chocolate ice cream.” Propositional logic has adopted the “inclu-
sive or,” and the table above ref lects this. 

Finally, the truth values assigned to the statement IF P THEN Q are 
motivated by the desire to distinguish obviously false arguments: those 
that start from a true hypothesis and end with a false conclusion. This 
has a tendency to cause some confusion, because both the following com-
pound statements are defined to be true. 

If London is the largest city in England, then the sun rises in the east.�
If Yuba City is the largest city in California, then 2�2 � 4.�
The objection students make to the first statement being true is that�

there’s no connecting logical argument, and the objection to the second is 
that it’s impossible to reach the arithmetic conclusion just because the 
hypothesis is false. IF P THEN Q does not mean (in propositional logic) 
that there is a logical argument starting from P and ending with Q. One 
of the original goals of propositional logic was to distinguish obviously 
fallacious arguments from all others; there’s something clearly wrong 
with an argument that goes 2�2�4, therefore the sun rises in the west. It’s 
tempting to think of IF P THEN Q as an implication (which means there 
is some underlying connecting argument), but it’s not the way proposi-
tional logic regards it. 

Propositional logic incorporates a method of computing the true/false 
value of a compound statement, just as arithmetic can compute a value for 
x�yz when numerical values of x, y, and z are given. For instance, if P and 
Q are TRUE and R is FALSE, the compound statement (P AND NOT Q) 
OR R is evaluated according to the above table in the following fashion. 
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(TRUE AND NOT TRUE) OR FALSE 
(TRUE AND FALSE) OR FALSE 
FALSE OR FALSE 
FALSE 

Finally, just as arithmetic statements such as x(y�z)�xy�xz is univer-
sally true because no matter what values of x, y, and z are substituted, both 
sides evaluate to the same number, it is possible for two compound state-
ments to have identical values no matter what the truth values of the indi-
vidual statements that make up the compound statements are. In this case, 
the two statements are called logically equivalent; the truth tables below 
shows that NOT (P OR Q) is logically equivalent to (NOT P) AND (NOT Q). 

Row P Q P OR Q NOT (P OR Q) 

(1) TRUE TRUE TRUE FALSE 

(2) TRUE FALSE TRUE FALSE 

(3) FALSE TRUE TRUE FALSE 

(4) FALSE FALSE FALSE TRUE 

The last column of this truth table has the same values as the last col-
umn of the following table. 

Row P Q NOT P NOT Q (NOT P) AND 
(NOT Q) 

(1) TRUE TRUE FALSE FALSE FALSE 

(2) TRUE FALSE FALSE TRUE FALSE 

(3) FALSE TRUE TRUE FALSE FALSE 

(4) FALSE FALSE TRUE TRUE TRUE 

A situation in which this equivalence arises occurs when your server 
asks you if you would like coffee or dessert, and you reply that you don’t. 
The server does not bring you coffee and also does not bring you dessert. 

Propositional logic was shown to be consistent in the early 1920s by Emil 
Post, using a proof that could be followed by any high-school logic student.3 

Post showed that under the assumption that propositional logic was incon-
sistent, any proposition could be shown to be true, including propositions 
such as P AND (NOT P), which is always false. The next step was to tackle 
the problem of the consistency of other systems—which brings us back to 
the second problem on Hilbert’s list, the consistency of arithmetic. 

Even Logic Has Limits 119�



Peano’s Axioms 

Numerous formulations of the axioms of arithmetic exist, but the ones that 
mathematicians and logicians use were devised by Giuseppe Peano, an Ital-
ian mathematician of the late nineteenth and early twentieth century. His 
axioms for the natural numbers (another term for the positive integers) were 

Axiom 1: The number 1 is a natural number. 
Axiom 2: If a is a natural number, so is a�1. 
Axiom 3: If a and b are natural numbers with a�b, then a�1�b�1. 
Axiom 4: If a is a natural number, then a�1�1. 

If these were the only axioms, not only would you be able to balance your 
checkbook, but mathematicians would have no difficulty showing that the 
axioms were consistent. It was Peano’s fifth axiom that caused the problems. 

Axiom 5: If S is any set that contains 1, and has the property that if a 
belongs to S, so does a� 1, then S contains all the natural numbers. 

This last axiom, sometimes called the principle of mathematical induc-
tion, allows mathematicians to prove results about all natural numbers. 
Suppose that one day you find yourself at a boring meeting, and with 
nothing better to do you start jotting down sums of odd numbers. After a 
short while you have compiled the following table: 

1�1 
1�3�4 
1�3�5�9 
1�3�5�7�16 

Suddenly, you notice that all the numbers on the right are squares, and 
you also notice that the number on the right is the square of the number 
of odd numbers on the left. This leads you to form the following conjec-
ture: the sum of the first n odd numbers (the last of which is 2n�1) is n2. 
You can write this as a single formula: 

.1�3�5�	 	 	�(2n�1)�n2 

So how are you going to prove this? There are at least two cute ways to do 
this. The first is an algebraic version of Gauss’s trick. Write down the 
sum S in both increasing and decreasing order. 

S�1 �3 �	 	 	�(2n�3) �(2n�1) 
S�(2n�1) �(2n�3) �	 	 	�3 �1 

Each sum contains precisely n terms, so if we add the left sides of both 
equations we get 2S, and by looking at the sums of each column, we no-
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tice that 1�(2n�1)�2n�3�(2n�3), and so on. Adding the right sides, 
we get n sums of 2n, or 2n2. So 2S�2n2, and the result follows. 

The second way is so easy that third graders to whom I’ve presented talks 
understand the idea. It requires looking at these sums on a checkerboard. 
The number 1 is represented by the square in the upper-left-hand corner of 
the checkerboard. The number 3 is represented by all the squares in the sec-
ond row or column that share a vertex with the upper-left-hand corner square. 
Together, 1 �3 makes up the square in the upper left hand corner that is two 
checkerboard squares on a side. The number 5 is represented by all the 
squares in the third row or column that share a vertex with a square used in the 
representation of 3. Together, 1�3�5 makes up the square in the upper-left-
hand corner that is three checkerboard squares on a side. And so on. 

You can also use the principle of mathematical induction. 
The line 

1�12 

establishes the proposition (the sum of the first n odd numbers is n2) for 
n�1. If we assume the proposition is true for the integer n, all we need do 
is to show that the proposition is true for n�1. This proposition would be 
that the sum of the first n�1 odd numbers is (n�1)2. Written formally, 
we need to establish that, under the assumption

 1�3�5�	 	 	�(2n�1)�n2 (the formula is valid for the 
integer n) 

we can proceed to prove

 1�3�5�	 	 	�(2(n�1)�1)�(n�1)2 (the formula is valid for 
the integer n�1) 

The basic facts of algebraic and arithmetic manipulation can be deduced 
from the Peano axioms, but to do so is somewhat technical, and so for the 
remainder of this proof we’ll just assume the usual laws of arithmetic 
and algebra, such as a�b�b�a. 

Simplifying the expression in parentheses on the left side of the equa-
tion yields 

(n�1)21�3�5�	 	 	�(2n�1)�

Continuing, we obtain 

]�(2n�1)1�3�5�	 	 	�(2n�1)�[1�3�5�	 	 	�(2n�1)
�n2�(2n�1) (this substitution is our assumption) 
�(n�1)2 (basic algebra) 

Even Logic Has Limits 121 



If A denotes the set of all positive integers n such that the sum of the 
first n odd integers is n2, we have shown that A contains 1, and if n be-
longs to A, then n�1 belongs to A. By Axiom 5, A contains all the positive 
integers. 

A substantial number of deep results use mathematical induction as a 
key proof technique. Demonstrating the inconsistency of arithmetic 
would make a lot of mathematicians very unhappy—including David 
Hilbert, whose basis theorem (an important result in both ring theory 
and algebraic geometry) was proved using mathematical induction. It 
seems fairly safe to say that Hilbert definitely hoped that someone would 
prove that the Peano axioms for arithmetic were consistent; after all, no 
one wants to see one of his most famous results put in doubt. 

So there is a lot riding on establishing that the Peano axioms for arith-
metic are consistent, and Hilbert was well aware of this—that’s why it’s 
Problem Number 2, ahead of some truly famous problems like the Gold-
bach conjecture (every even number is the sum of two primes) and the 
Riemann hypothesis (a technical result with immense potential, but 
which requires an acquaintance with complex variables and infinite se-
ries to understand it). Suffice it to say that the Clay Mathematics Institute 
will pay $1 million to anyone who manages to demonstrate the consist-
ency or inconsistency of the Peano axioms. 

A Postdoc Shakes Things Up 

There is a belief that mathematicians do their best work before they are 
thirty. Possibly forty would be a more reasonable estimate—the Fields 
Medal is awarded only for work done prior to that age. Nonetheless, some 
of the most important results in mathematics have been the work of 
graduate and postdoctoral students. 

There is a good deal of debate on why this should be the case; my own 
belief is that to some extent, work on a particular problem sometimes  
becomes ossified, in the sense that the leading mathematicians have 
blazed a trail that most others follow—and sometimes that trail leads just 
so far and no further. Young mathematicians are less likely to have been 
indoctrinated—I recall vividly Bill Bade, my thesis adviser, handing me 
reading material that would bring me up to date, but not suggesting what 
line I should pursue after I had finished reading the papers. 

Kurt Gödel was born six years after Hilbert propounded his twenty-
three problems, in what is now the Czech Republic. His academic talents 
were apparent from an early age. Gödel initially debated between study-
ing mathematics and theoretical physics, but opted for mathematics be-
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cause of a course he took from a charismatic instructor who was confined 
to a wheelchair. Gödel was highly conscious of his own health prob-
lems—a consciousness that was later to prove his undoing, so it is possi-
ble that the instructor’s condition had a significant impact on Gödel’s 
decision. 

Mathematicians in Europe generally have to overcome two hurdles on 
the road to a tenured professorship: the doctoral dissertation (as do Amer-
ican mathematicians), and the habilitation (thankfully not required of 
American mathematicians), which is an additional noteworthy perform-
ance after the doctorate has been awarded. Gödel had become interested 
in mathematical logic, and his doctoral dissertation consisted of a proof 
that a system of predicate logic proposed in part by Hilbert was com-
plete—every true result in the system was provable. This result was a 
considerable leap beyond Post’s demonstration that propositional logic 
was consistent—and Gödel’s proof used mathematical induction to estab-
lish the result. For his habilitation, Gödel decided to go after really big 
game—the consistency of arithmetic, number two on Hilbert’s list of 
twenty-three problems. 

In August 1930, having completed his work, Gödel submitted a contrib-
uted paper for a mathematics conference that featured an address by 
Hilbert entitled “Logic and the Understanding of Nature.” Hilbert was 
still on the trail of axiomatizing physics and proving arithmetic was con-
sistent, and he ended his speech with supreme confidence: “We must 
know. We shall know.” It is somewhat ironic that Gödel’s contributed pa-
per at the same conference contained results, delivered in a twenty-minute 
talk, that were to dash forever Hilbert’s dream of “We shall know.” In an 
address delivered far from the limelight (or what passes for limelight at a 
mathematics conference), Gödel announced his result that one of two 
conditions must exist: either arithmetic included propositions that could 
not be proved (now known as undecidable propositions), or that Peano’s 
axioms were inconsistent. To this day, no one has shown that Peano’s axi-
oms are inconsistent, and despite the lingering uncertainty you can get 
almost infinite odds from any mathematician that they are not. This re-
sult is known as Gödel’s incompleteness theorem. 

Unlike Einstein’s theory of relativity, which took the world of physics by 
storm and was accepted almost immediately, the mathematics commu-
nity initially did not appreciate the significance of Gödel’s work. Nonethe-
less, during the ensuing five years or so, his results gained widespread 
recognition and acceptance. He continued to do impressive work in math-
ematical logic, despite encountering problems in terms of his health. Al-
though Gödel was not a Jew, he could easily have been mistaken for one 
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(he was once attacked by a gang of thugs who thought he was Jewish), and 
when one of his inf luential teachers was murdered by a Nazi student in 
1936, Gödel suffered a nervous breakdown. When World War II began, 
Gödel left Germany and traveled to America by way of Russia and Japan, 
ending up at Princeton. 

Health problems, both physical and mental, continued to plague Gödel. 
His circle of friends and acquaintances at Princeton was very select—there 
were periods during which the only person to whom he spoke was Einstein. 
Toward the end of his life, paranoia gained the upper hand, and his health 
problems led him to believe that people were trying to poison him. He died 
in 1978 from attempting to avoid being poisoned by refusing to eat. 

Proofs of Gödel’s Incompleteness Theorem 

There are many different ways to go about demonstrating Gödel’s theo-
rem. I have elected to go with demonstrating here that it is plausible and 
have given a reference to formal proof in the notes to this chapter that 
gives the f lavor of Gödel’s original proof.4 

Gödel took the liar’s paradox, and modified the sentence This statement 
is false (which, as we have seen, lies outside the realm of statements that 
can be judged to be true or false) to This statement is unprovable. That was 
Gödel’s starting point, but by a technique known as Gödel numbering, 
which is described in the proof, he linked unprovability of statements to 
unprovability of statements about integers in the Peano axioms frame-
work. If the statement This statement is unprovable is unprovable, then it is 
true, and the link Gödel established with arithmetic showed that there 
exist unprovable statements in number theory. If the statement This state-
ment is unprovable is provable then it is false, and Gödel’s proof linked this 
conclusion to the inconsistency of the Peano Axioms.5 

What exactly is meant by the word unprovable? It means just what it says, 
that there is no proof that will determine the truth or falsity of the state-
ment. Needless to say, the existence of unprovable statements raises some 
questions. There are two schools of thought on the subject. Recall that 
the uncertainty principle is interpreted by most physicists to mean that 
conjugate variables do not have specifically defined values, not that hu-
mans are just not good enough to measure the specifically defined varia-
bles. One group of mathematicians interpret unprovability in the same 
fashion—it isn’t that we aren’t bright enough to prove that a statement is 
true or false, it’s that if logic is used as the ultimate arbiter, it is inade-
quate to the task. Others view an unprovable statement as one that is in-
herently true or false, but the system of logic used just doesn’t reach far 
enough to discern it. 
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The Halting Problem 

At approximately the same time that Gödel came up with his incomplete-
ness theorem (which perhaps should be called the incompleteness or in-
consistency theorem, but this doesn’t sound as good), mathematicians 
were beginning to construct computers, and also to formulate the theory 
that underlies the process of computation. The first relatively complicated 
computer programs had been written, and mathematicians discovered a 
nasty possibility lurking within the computational process: the computer 
might go into an infinite loop, from which the only rescue was to halt the 
program manually (this probably meant disconnecting the computer 
from the power source). Here is an easy example of an infinite loop. 

Program Statement Number Instruction 

1 Go to Program Statement 2 
2 Go to Program Statement 1 

The first instruction in the program sends the program to the second 
instruction, which sends it back to the first instruction, and so on. 

In the early days of computer programming, entering an infinite loop 
was a common occurrence, and so a natural question arose: Could one 
write a computer program whose sole purpose was to determine whether 
a computer program would enter an infinite loop? Actually, the question 
was phrased differently, but equivalently: If a program either halts or 
loops, is it possible to write a computer program that determines whether 
another computer program will halt or loop? This was known as the halt-
ing problem. 

It was quickly shown that it was not possible to write such a computer 
program; this result was known as the unsolvability of the halting prob-
lem. The following proof is due to Alan Turing, one of the early giants in 
the field. Turing was not only a tremendously talented mathematician 
and logician, but he also played a major role in helping decipher German 
codes during World War II. However, he was a homosexual in an environ-
ment tremendously intolerant of homosexuality, and was forced to un-
dergo chemical treatments, which resulted in his eventual suicide. 

Suppose that the halting problem is solvable, and there is a program H 
that, given a program P and an input I, can determine whether P halts or 
loops. The output from the program H is the result; H halts if it deter-
mines that P halts on input I, and H loops if it determines that P loops on 
input I. We now construct a new program N that examines the output of 
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H and does the opposite; if H outputs “halt,” then N loops, and if H out-
puts “loop,” then N halts. 

Since H presumably is able to determine whether a program halts or 
not, let’s take the program N and use it as the input to N. If H determines 
that N halts, then the output of H is “halt,” and so N loops. If H deter-
mines that N loops, then the output of H is “loop,” and so N halts. In 
other words, N does the opposite of what H thinks it should do. This con-
tradiction resulted from our assumption that the halting problem was 
solvable; therefore, the halting problem must be unsolvable. 

That probably wasn’t so hard to follow. It looks like the proof incorpo-
rates elements similar to those that existed in the liar’s paradox, and looks 
are not deceptive in this case. Mathematicians have shown that even 
though the results appear to be in disparate areas, Gödel’s theorem and 
the unsolvability of the halting problem are equivalent; each can be proved 
as a consequence of the other. 

Flash forward to the present. The unsolvability of the halting problem 
turns out to be equivalent to a problem whose unsolvability will probably 
ensure the continued existence of a multibillion dollar industry. The year 
2007 marked the twenty-fifth anniversary of the first appearance of a 
computer virus. The Elk Cloner virus was developed for Apple II comput-
ers by Rich Skrenta, a Pittsburgh high-school student, and did nothing 
more sinister than copy itself to operating systems and f loppy disks (re-
member them?), and display the following less-than-memorable verse on 
the monitor screen. 

Elk Cloner: The program with a personality 
It will get on all your disks 
It will infiltrate your chips 
Yes it’s Cloner! 
It will stick to you like glue 
It will modify RAM too 
Send in the Cloner!6 

Skrenta was to prove no threat to Keats or Frost as a literary figure, but 
from this humble effort sprung the whole spectrum of malware. It also 
resulted in the obvious question: Is it possible to write a program that 
will detect computer viruses? Happily for the continued existence of 
firms such as Norton and McAfee, computer programs can be written to 
detect some viruses, but the criminals will always be ahead of the police, 
at least in this area. The existence of a computer program to detect all 
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viruses is equivalent to the halting problem; no such program can be 
written.7 

What Is, or Might Be, Undecidable 

I’m not sure what the future holds in this area, but I am sure of what 
mathematicians would like to see. Just as stock market traders would 
like to hear a bell ring at a market bottom, mathematicians would like a 
quick way to determine whether a problem on which they are working is 
undecidable. Regrettably, Gödel’s theorem does not come with an algo-
rithm that tells them precisely which propositions are undecidable. The 
example Gödel constructed of an undecidable proposition is mathemati-
cally useless; it involves formulas whose Gödel number satisfies that 
formula. The Gödel number of a formula is referenced in the footnotes, 
but there is not a single mathematically important formula in arithmetic 
that incorporates the Gödel number of that formula. What mathemati-
cians would really like is a tag attached to such outstanding problems as 
the Goldbach conjecture, which says either, “Don’t bother—this proposi-
tion is undecidable,” or “Keep at it, you might get somewhere.” It seems 
highly unlikely that anyone will ever find a way to tag all propositions; 
the history of the field (think of the unsolvability of the halting problem) 
is that it is far more likely to be shown that no such way to tag proposi-
tions exists. 

However, some extremely interesting problems have been shown to be 
undecidable. Unfortunately, there have been relatively few—nowhere 
near enough to reach some sort of general conclusion as to the type of prob-
lem that is undecidable. By far the most important was Cohen’s dem-
onstration that the continuum hypothesis was undecidable within 
Zermelo-Fraenkel set theory (with the axiom of choice) if that theory 
were consistent. There have been at least two other interesting problems 
that have been shown to be undecidable—and one is related to a cur-
rently unsolved problem that is intriguing and easy to understand. 

The Word Problem—No, We’re Not Discussing Scrabble 

In chapter 5, the group of symmetries of an equilateral triangle was 
found to consist of combinations of two basic motions: a 120-degree 
counterclockwise rotation, labeled R, and a move in which the top vertex 
is unchanged but the bottom two are interchanged, called a f lip and la-
beled F. 
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If I denotes the identity of the group (the symmetry that leaves all the 
vertices in their original positions), then we have the following relation-
ships between F and R. 

F2�I (recall that F2�FF; two f lips of the triangle result in the origi-
nal position) 

R3�I (likewise for three successive 120-degree counterclockwise 
rotations)�

FR2�RF�
R2F�FR�

As shown in chapter 5, there are a total of six different symmetries of 
the equilateral triangle, which can be produced by I, R, R2, F, RF, and FR. 
Suppose that we used the above four rules to try to reduce lengthy words 
using only the letters R and F to one of those six. Here’s an example. 

RFR2 FRF �FR2 R2F FR2 (replaced first two and last two) 
� F R3R F2 R2 (R2R2�R3R�R4) 
� FIRIR2 (R3�F2�I) 
� FRR2 (FI � F, RI�R) 
�FR3�FI�F (Whew!) 

It is easy to show that any “word” using just the letters R and F can be 
reduced by using the three basic relationships to one of the six words cor-
responding to the symmetries of the equilateral triangle. Here’s the game 
plan: let’s show that any string of three letters can be reduced to a string 
of two or fewer letters. There are eight possibilities; I’ll just write out the 
end result. 

RRR�I 
RRF�FR 
RFR�F 
RFF�R 
FRR �RF 
FRF�R2 

FFR�R 
FFF�F 

Since every string of three letters can be reduced to a string of two or 
fewer letters, keep doing this until you get a word of two or fewer letters; it 
must be one of the basic six that are the elements of the group. We say that 
the group S3 of the symmetries of the equilateral triangle is generated by 
the two generators R and F subject to the four basic relationships. 

There are many (not all) groups that are defined by a collection of gen-
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erators that are subject to a number of relationships, as in the above ex-
ample. The word problem for such a group is to find an algorithm that 
when given two words (such as RFR2 FRF and RFR), will decide whether 
they represent the same element of the group. For some groups, this can 
be done, but in 1955, Novikov gave an example of a group for which the 
word problem was undecidable.8 The Novikov family has made great con-
tributions to mathematics. Petr Novikov, of word problem fame, had two 
sons: Andrei was a distinguished mathematician, and Serge was a very 
distinguished mathematician, winning a Fields Medal in 1970. 

Incidentally, when Rubik’s Cube first appeared, lots of papers on solu-
tions for it appeared in journals devoted to group theory9—for Rubik’s 
Cube involves a group of symmetries with generators (rotations around 
the various axes) subject to relationships. 

Do You Always Get There from Here? 

The last of the three problems that has been shown to be undecidable is 
known as Goodstein’s theorem. To get a feel for this problem, here’s a 
currently unsolved problem, the Collatz conjecture, that has some aspects 
in common with it. Many mathematicians feel it may be undecidable, but 
it is easy to understand. Paul Erdos, the prolific and peripatetic mathema-
tician whose lifestyle consisted of visiting various universities for short 
periods, used to offer monetary prizes for the solutions to interesting 
problems. Because Erdos was basically supported by the mathematical 
community, living with mathematicians whose universities he visited, 
the money he collected for honoraria was used to fund these prizes. They 
ranged from $10 up; he offered $500 for a proof (one way or the other) of 
the Collatz conjecture. Of the Collatz conjecture, he said “Mathematics is 
not yet ready for such problems.”10 

When you first see this problem, it looks like something a nine-year-old 
kid dreamed up while doodling with numbers. Pick a number. If it is 
even, divide by 2; if it is odd, multiply by 3 and add 1. Keep doing this. 
We’ll do an example in which 7 is used as the starting number. 

7,22[�3�7� 1],11[� 22/2],34,17,52,26,13,40,20,10,5,16,8,4,2,1 

It took a while, but we finally hit the number 1. Here’s the unsolved 
problem: Do you always eventually hit the number 1 no matter where you 
start? If you can prove it, one way or the other, I think that the money is 
part of Erdos’s estate; he died in 1996. The New York Times did a front-
page article on him after he died. He was once humorously described by 
his colleague Alfréd Rényi, who said, “A mathematician is a machine for 
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turning coffee into theorems,” as Erdos drank prodigious quantities.11 

Goodstein’s theorem12 is reminiscent of this problem; it defines a se-
quence (called a Goodstein sequence) recursively (the next term is de-
fined by doing something to the previous term in the sequence, just as in 
the above unsolved problem), although the sequence it defines is not as 
simple to state as the one in the Collatz conjecture. It can be shown that 
every Goodstein sequence terminates at 0—although one cannot show 
this using the Peano axioms alone; one must use an additional axiom, the 
axiom of infinity, from Zermelo-Fraenkel set theory. As such, it is an in-
teresting proposition that would be undecidable using only the Peano ax-
ioms—as opposed to the uninteresting undecidable propositions used by 
Gödel in his original proof. It is also worth pointing out that the provabil-
ity of Goodstein’s theorem in a stronger version of set theory lends cre-
dence to the point of view that these theorems are inherently true or false, 
and that an adequate system of logic can determine it. 

So, unless another graduate student with the talent of Gödel shows up 
to prove that the overwhelming consensus of mathematicians is wrong, 
and that the Peano axioms are actually inconsistent, mathematicians will 
continue to rely on mathematical induction. It is one of the most useful 
tools available—and the existence of undecidable propositions is a small 
price to pay for such a valuable tool. If some graduate student comes 
along to accomplish such an unlikely task, he or she can be assured of 
two things: a Fields Medal, and the undying hatred of the mathematical 
community, whom he or she will have deprived of one of the most valua-
ble weapons in its arsenal. 

NOTES 
1. See http:// www -groups.dcs.st -and.ac.uk/ ~history/ Biographies/ Hilbert.html. This 

may have been the last time in human history when there were polymaths who 
could make truly significant contributions in several fields. In addition to Hilbert, 
Henri Poincaré (of Poincaré conjecture fame) also did important work in both 
mathematics and physics. 

2. See http://en .wikipedia.org/wiki/ Hilbert’s_problems. This contains a list of all 
twenty-three problems along with their current state. Most of the ones not dis-
cussed in this book are fairly technical, but number three is easily understood— 
given two polyhedra of equal volumes, can you cut the first into a finite number 
of pieces and reassemble it into the second? That this could not be done was 
shown by Max Dehn. 

3. A. K. Dewdney, Beyond Reason (Hoboken, N.J.: John Wiley & Sons, 2004). The 
proof of the consistency of propositional logic is given on pp. 150–152. 

4. Ibid. The proof of the impossibility theorem is given on pp.153–158. See 
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http://www.miskatonic.org/godel.html. The text box from Rudy Rucker’s Infinity 
and the Mind contains Gödel’s argument in computer-program form. 

5. See http:// www .cs .auckland .ac .nz/ CDMTCS/ chaitin/ georgia .html. This site ac-
tually has an article that appeared relating Gödel’s theorem and information 
theory. It’s pretty close to readable if you’re comfortable with mathematical nota-
tion. 

6. See http:// en .wikipedia .org/ wiki/ Elk _Cloner .
 7. Science 317 (July 13, 2007): pp. 210–11. 

8. See http:// www -groups.dcs.st -and.ac.uk/ ~history/ Biographies/ Novikov.html. 
9. See http://members.tripod.com/~dogschool/. Here’s� a short course in group 

theory with good graphics that will get you through the group theory that under-
lies the Rubik’s Cube. The explanation for the reason this site has the whimsical 
title “The Dog School of Mathematics” can be found by going to the home page.

 10. See http://en.wikipedia.org/ wiki/Collatz_conjecture. This site has a lot of stuff, 
much of which can be read with only a high-school background—but not all 
of it.

 11. See http://en.wikipedia.org/ wiki/ Paul_Erdos. This site gives you a nice picture 
of Erdos’s life as well as his accomplishments.

 12. See http://en .wikipedia.org/ wiki/Goodstein%27s_theorem. The opening para-
graph calls attention to the fact that Goodstein’s theorem is a nonartificial exam-
ple of an undecidable proposition. The mathematics is a little hard to read for the 
neophyte, but the persistent may be able to handle it. 
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Al
Space and T me: Is That 

l There Is? 

The Second Solution 
High-school algebra is more than five decades in my rearview mirror, but 
the more things change, the more high-school algebra remains pretty 
much the same. The books are a lot more interesting graphically and a 
whole lot more expensive—but they still contain problems such as the one 
in the next paragraph. 

Susan’s garden has the shape of a rectangle. The area of the garden is 50 
square yards, and the length of the garden exceeds the width by 5 yards. 
What are the dimensions of the garden? 

The setup for this problem is straightforward. If you let L and W denote 
the dimensions of the garden, then you have the following equations. 

LW�50 (area �50 square yards) 
L�5�W (length exceeds width by 5 yards) 

Substituting the second equation into the first results in the quadratic 
equation L(L�5)�50. Regrouping and factoring, L2�5L�50�0�(L�10) 
(L�5). There are two solutions to this equation. One of these is L�10; 



substituting this into the second equation gives W�5. It’s easy to check 
that these numbers solve the problem; a garden with a length of 10 yards 
and a width of 5 yards has an area of 50 square yards, and the length ex-
ceeds the width by 5 yards. 

However, there is a second solution to the above quadratic equation; 
L��5. Substituting this into the second equation gives W��10, and 
this pair of numbers gives a satisfactory mathematical solution to the pair 
of equations. Search as you might, though, you’re not going to find a gar-
den with a width of negative 10 yards—because width is a quantity that is 
inherently positive. 

The high-school student knows what to do in this case: discard the solu-
tion W��10 and L ��5, precisely because it is meaningless in the con-
text of the problem. If such an equation were to occur in physics, the  
physicist would not be quite so quick to cast aside the apparent meaning-
less solution. Rather, he or she might wonder if there was some hidden 
underlying meaning to the apparently “meaningless” solution that was 
yet to be revealed, as there is a rich history of interesting physics underly-
ing apparently meaningless solutions. 

The Gap in the Table 

The dictionary definition of mathematics is usually similar to the one 
I found in my ancient Funk & Wagnalls—the study of quantity, form, 
magnitude, and arrangement. When an arrangement manifests itself so 
that, in part, it explains phenomena in the real world, exploration is often 
undertaken to see whether undiscovered phenomena correspond to miss-
ing parts of the arrangement. A classic such case is the discovery of the 
periodic table of the elements. 

In the nineteenth century, the chemists were attempting to impose order 
and structure to the apparently bewildering array of the chemical ele-
ments. Dmitry Mendeleyev, a Russian chemist, decided to try to organize 
the known elements into a pattern. To do so, he first arranged these ele-
ments in increasing order of atomic weight, the same physical property 
that had attracted the attention of John Dalton when he devised the atomic 
theory. He then imposed another level of order by grouping the elements 
according to secondary properties such as metallicity and chemical reac-
tivity—the ease with which elements combined with other elements. 

The result of Mendeleyev’s deliberations was the periodic table of the 
elements, a tabular arrangement of the elements in both rows and col-
umns. In essence, each column was characterized by a specific chemical 
property, such as alkali metal or chemically nonreactive gas. The atomic 
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weights increased from left to right in each row, and from top to bottom 
in each column. 

When Mendeleyev began his work, not all the elements were known. As 
a result, there were occasional gaps in the periodic table—places where 
Mendeleyev would have expected an element with a particular atomic 
weight and chemical properties to be, but no such element was known to 
exist. With supreme confidence, Mendeleyev predicted the future discov-
ery of three such elements, giving their approximate atomic weights and 
chemical properties even before their existence could be substantiated. 
His most famous prediction involved an element that Mendeleyev called 
eka-silicon. Located between silicon and tin in one of his columns, Men-
deleyev predicted that it would be a metal with properties resembling 
those of silicon and tin. Further, he made several quantifiable predic-
tions: its weight would be 5.5 times heavier than water, its oxide would be 
4.7 times heavier than water, and so on. When eka-silicon (later called 
germanium) was discovered some twenty years later, Mendeleyev’s pre-
dictions were right on the money. 

While this may be the most notable success of discovering an arrange-
ment to which the real world conformed in part, and then attempting to 
discover aspects of the real world that conformed to other parts of the ar-
rangement, this story has been frequently repeated in physics. 

The Garden of Negative Width 

One of the most famous of these examples occurred when Paul Dirac pub-
lished an equation in 1928 describing the behavior of an electron moving 
in an arbitrary electromagnetic field. The solutions to Dirac’s equation oc-
curred in pairs, somewhat analogous to the way that the complex roots of 
a quadratic ax2�bx�c whose discriminant b2�4ac is negative occur in 
complex conjugate pairs, having the form u�iv and u�iv. Any solution in 
which the particle had positive energy had a counterpart in a solution 
in which the particle had negative energy—an idea almost as puzzling as 
a garden whose width is negative. Dirac realized that this could corre-
spond to an electron-like particle whose charge was positive (the charge 
on an electron is negative), an idea initially greeted with considerable  
skepticism. The great Russian physicist Pyotr Kapitsa attended weekly 
seminars with Dirac. No matter what the topic of the seminar, at its end 
Kapitsa would turn to Dirac and say, “Paul, where is the antielectron?”1 

The last laugh, however, was to be Dirac’s. In 1932, the American physi-
cist Carl Anderson discovered the antielectron (which was renamed the 
positron) in an experiment involving the tracks left by cosmic rays in a 
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cloud chamber. It isn’t recorded whether, after the discovery of the posi-
tron, Dirac turned to Kapitsa and said, “There!” If Dirac could have re-
sisted the temptation, he would have been one of the rare people able to 
do so. Dirac shared the Nobel Prize in 1933. 

In mathematics, one way to avoid the dilemma posed by the existence of 
gardens of negative width is to restrict the domain of the function (the set 
of allowed input values) under consideration. Thus, when considering the 
equations for the garden described at the outset of this chapter, one might 
consider only those values of L and W (the length and width of the gar-
den) that are positive. Thus restricted, the quadratic equation we obtained 
has only one solution in the allowed domain of the function, and the 
problem of gardens of negative width is eliminated. 

However, as in the example of Dirac’s equation, the physicist cannot 
cavalierly restrict the domain of functions that describe phenomena. By 
doing so, the restricted domain might describe phenomena that are 
known—but in the part of the domain that was excluded might lurk 
something unexpected and wonderful. 

Complex Cookies 

Mathematical concepts are idealizations. Some idealizations, such as 
“three” or “point,” have close correspondences with our intuitive under-
standing of the world. Some, such as i (the square root of �1) have utility 
without such close correspondence. A staple mathematical tool in quan-
tum mechanics is the wave function, which is a complex-valued function 
whose squares are probability density functions. Probability density func-
tions are fairly easy to understand: I am more likely to be in Los Angeles 
(my home) next Tuesday than I am to be in Cleveland, but there are cer-
tainly events that would necessitate a trip there. Low-probability events, to 
be sure—but not impossible ones. The complex-valued function whose 
square is a probability density function does not seem to have any corre-
spondence to the world—it is a mathematical entity that, when properly 
manipulated, gives accurate results about the world. 

But what have complex numbers to do with the real world? We cannot 
buy 2 �3i cookies for 10�15i cents per cookie—but if we could, we could 
pay the bill! Using the formula that cost equals number of cookies times 
the price per cookie, the total cost would be 

(2�3i)� (10�15i)�20�30i�30i�45� 65 cents 

Analogous situations frequently occur in physics—real phenomena have 
unreal, but useful, descriptions. Does the utility of these descriptions 
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end in the universe we know—or have we just not discovered complex 
cookies? 

Heisenberg said something about the role of mathematics that seems 
appropriate to quote at this juncture, even though we aren’t talking about 
quantum mechanics: “. . . it has been possible to invent a mathematical 
scheme—the quantum theory—which seems entirely adequate for the 
treatment of atomic processes; for visualisation, however, we must con-
tent ourselves with two incomplete analogies—the wave picture and the 
corpuscular picture.”2 In other words, complex cookies may not be a part 
of what we can visualize with the accuracy that we can depict them math-
ematically—but if it works, that’s all we need to worry about. 

The Standard Model 

The Standard Model represents the way physicists currently view the uni-
verse. There are two types of particles: the fermions, which are the parti-
cles of matter, and the bosons, which are the particles that transmit the 
four forces currently thought to act in the universe. These forces are elec-
tromagnetism, which is transmitted by photons; the weak nuclear force, 
which is responsible for radioactive decay and is transmitted by W and Z 
bosons; the strong nuclear force, which holds the nuclei together (coun-
teracting the repulsive electric force generated by the protons in the nu-
cleus) and is transmitted by gluons; and the gravitational force, for which 
the transmitting particle has yet to be found. 

The Standard Model is the culmination of centuries of effort, but even if 
it is shown to be accurate in every detail (and in some instances it has 
been experimentally confirmed to more than fifteen decimal places), 
physicists know that it leaves many questions unanswered. The masses of 
the particles are numbers that are measured experimentally; is there a 
deeper theory that can predict those masses? The fermions divide nicely 
into three separate “generations” of particles; why three, and not two, 
four, or some other number? The four forces vary greatly in many re-
spects. Electromagnetism is almost forty orders of magnitude stronger 
than gravity, which is why you can run a comb through your hair (assum-
ing you have some; I don’t) on a cold winter day and generate enough static 
electricity to overcome the gravitational attraction of Earth and pick up a 
small Post-it. Electromagnetism and gravity have infinite range—the 
strong force is confined to the interior of the atom. Electromagnetism 
is both attractive and repulsive, which fortunately is gathered in equal 
amounts in every un-ionized atom (so we are not walking bundles of elec-
tric charge, except on cold winter days), but gravity is always attractive.  
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Electrical storms in the center of the Milky Way do not affect us, but the 
gravity that emanates from the black hole at its center most certainly 
does. 

Above all, is there a deeper level to reality than the one shown by the 
Standard Model? We have already seen that the Aspect experiments  
have confirmed that there are no hidden variables underlying quantum-
mechanical properties, but that merely eliminates a deeper reality in 
one specific situation. 

Beyond the Standard Model 

Physics at the moment is awash with myriad variations of Dirac’s antie-
lectron. There are numerous attempts to go beyond the Standard Model 
(which categorizes the array of particles and forces now thought to com-
prise our universe) by answering the question, Why these particles and 
forces? The quest for an elegant theory of everything will undoubtedly 
continue, because only the discovery of such a theory or a proof that no 
such theory is possible can derail the quest. As a result, mathematical 
descriptions that extend the Standard Model are currently abundant. We 
shall examine some of the consequences of these models—the particles, 
structures, and dimensions whose existence might possibly never be 
known. 

The Other Side of Infinity 

There is probably only one thing on which every mathematical model for 
physics agrees—in this universe, there is no such thing as infinity. 

That’s not to say that there is no such thing as infinity in any universe. 
In an intriguing and provocative article3 (which initially appeared in 
Scientific American), the physicist Max Tegmark classified four differ-
ent types of “parallel universes” that could be explored. His Level IV 
classification consisted of mathematical structures. Tegmark argues 
cogently, if not necessarily persuasively, for a concept he calls “mathe-
matical democracy.” The multiverse (which is the collection of all pos-
sible universes) consists of every possible physical realization of a 
mathematical model. 

There is certainly good reason to consider this possibility. The Nobel  
Prize–winning physicist Leo Szilard, ref lecting on the “unreasonable ef-
fectiveness” of mathematics in physics, declaring that he could see no ra-
tional reason for it. John Archibald Wheeler, whom we encountered in a 
discussion on the physical utility of the continuum, wondered, “Why these 
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equations?”4 Unsaid, but implied, was “Why not other equations?” Why 
does the universe in which we live support Einstein’s equations in general 
relativity and Maxwell’s equations in electromagnetism, but not some other 
set of equations? Tegmark proposes a possible answer: the multiverse sup-
ports all possible (consistent) sets of equations; it just does so in different 
sectors, and we happen to be living in the Einstein-Maxwell sector. 

One of the great debates that raged in physics for centuries is the nature 
of light—is it a wave or is it a particle? The answer to this, that it’s both, 
would not be fully appreciated until the twentieth century, but in the 
middle of the nineteenth century Maxwell’s equations, which described 
electromagnetic behavior, appeared to give the nod to waves, as the equa-
tions led to solutions that were obviously wavelike. Nonetheless, a prob-
lem still remained: waves were thought to need a medium in which to 
propagate. Water waves need water (or some other liquid) and sound 
waves need air (or some other substance to transmit the alternating rar-
efactions and compressions that constitute waves). The medium in which 
electromagnetic waves were believed to propagate was the exquisitely 
named luminiferous aether. With such a lovely appellation, it was a pity 
that experiments initially conducted by Albert Michelson and Edward 
Morley in 1887, and which continue up to the present day, have demon-
strated to an extraordinarily high degree of precision that there is no such 
thing as luminiferous aether. The Michelson-Morley result led quickly to 
the Lorentz transformations, which expressed the relationships between 
distance and time in a coordinate frame moving at constant velocity with 
respect to another frame, and these transformations helped Einstein for-
mulate special relativity, best known for the formula E�mc2. However, 
Einstein also managed to derive the following expression for mass as a 
function of its velocity 

m0=m 
v c− 21 (  /  )  

Here m  is the mass of the object at rest, and m is its mass when it is 0
moving with velocity v.5 It is easy to see that when v is greater than 0 but 
less than c, the denominator is less than 1, and so the mass m is greater 
than the rest mass m0. Equally easy to see is that as v gets closer to c, the 
denominator approaches 0, and m gets larger and larger: when v is 90 
percent of the speed of light, the mass has more than doubled; when v is 
99 percent of the speed, the mass has increased by a factor of 7; and when 
v is 99.99 percent of the speed of light, the mass is more than 70 times 
what it was at rest. 

As we noted above, our universe (or the physicists currently populating 
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our sector of it) abhors infinities much the same way as it was thought 
that nature abhorred a vacuum. As a result, no particle with a finite mass 
can travel at the speed of light—for then the denominator in the above 
equation would be 0, and the mass m would be infinite. This does not 
prevent light from traveling at the speed of light, for photons, the parti-
cles of light, are massless—they have no rest mass. 

Enter the Tachyon? 

Einstein’s theory also showed that infinite energy would be required to 
enable a particle with nonzero mass to move at the speed of light. How-
ever, a closer look at the above equation—which was derived for objects in 
our universe—reveals a potential counterpart of Dirac’s antielectron. If v 
is greater than c, the denominator requires us to take the square root of a 
negative number, resulting in an imaginary number. The rules govern-
ing the arithmetic of imaginary numbers dictate that the result of di-
viding a real number by an imaginary number is an imaginary number, 
so if it were possible to accelerate an object beyond the speed of light, the 
mass of the object would become imaginary. Objects with imaginary 
masses traveling faster than the speed of light are called tachyons—from 
the Greek word for “speed.” No messengers from the other side of infin-
ity have yet been detected in our universe—but absence of evidence is not 
evidence of absence. Tachyons have such a bad reputation in contempo-
rary physics that a theory that allows them is said to have an instability,6 

but they have not been totally ruled out. While there is no way to envision 
how a tachyon that “slowed down” to speeds less than that of light could 
suddenly become a particle with real mass, some particles known to exist 
do change character; there are three different species of neutrinos, and 
they change species as they travel. Bizarre as the notion of a particle 
changing its species appears, it is the only current explanation for what is 
referred to as the solar neutrino deficit problem. Decades of collecting 
neutrinos resulted in only one-third the expected number of neutrinos; 
the only way to account for this is to assume that neutrinos actually 
change species in f light, as the neutrino collectors could detect only a 
single species of neutrino. 

String Theory 

Earlier in this chapter we referred to John Archibald Wheeler’s remark, 
“Why these equations?” An equally valid, and perhaps more down- to-
this-universe question, is “Why these particles?” Why are the particles 
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that comprise our universe, the photons and quarks and gluons and elec-
trons and neutrinos of the Standard Model, the particles? Why do they 
have the masses and interaction strengths that they do? These questions 
are beyond the scope of the Standard Model. The Standard Model is a ta-
ble of “what” that enables us to predict “how”—but completely unad-
dressed is the question of “why.” 

Possibly, “why” is a question lurking beyond the realm of physics—but 
maybe not. The last century has seen science’s view of the fundamental 
particles change first from atoms to neutrons, protons, and electrons, and 
then to the particles that comprise the Standard Model. Perhaps there 
are even more fundamental particles that make up those in the Stand-
ard Model. The leading candidate theory in this area is string theory7 

(and a more evolved version, known as superstring theory), which postu-
lates that all the particles in this universe are the vibrational modes of 
one-dimensional objects known as strings. A violin string of a fixed 
length and tension can be made to vibrate only in particular patterns. 
When a violinist draws a bow over a single string, the sound is melodi-
ous, rather than the caterwauling of discordant sounds. That is because 
each vibrational pattern corresponds to a particular note. The strings that 
comprise string theory can vibrate only in particular patterns—and these 
patterns are the particles that comprise our universe. 

The strings that lie at the heart of these theories are incredibly tiny8— 
direct observation of strings is as difficult as trying to read the pages of a 
book from a distance of 100 light-years. This certainly appears to rule out 
the possibility of direct observation, but science does not always need di-
rect observation; often, consequences suffice. Scientists had not actually 
seen an atom until revealed by the scanning microscopes of the 1980s, 
but the atomic theory was firmly in place more than a hundred years be-
fore that. Much effort is being expended to find predictions that string 
theory makes that could be experimentally or observationally verified. 
However, string theory is itself a work in progress, and as it goes through 
various incarnations (there have been at least four generations of string 
theory so far), the predictions change. 

Nonetheless, string theory generally makes two types of predictions 
that transcend the Standard Model: it predicts particles that have yet to be 
observed, and geometrical and topological structures for the universe 
that remain unverified. Both of these merit a look—not only because they 
are fascinating in and of themselves, but because it is possible that some 
future theory may show us that these lead to contradictions, and we shall 
have to look elsewhere. 

I was fortunate to attend a lecture several years ago at Caltech given by 
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Edward Witten. Witten is a Fields Medalist and a leading exponent of 
string theory. The lecture was attended by many leading scientists, and 
there was a question-and-answer period after the lecture. One of the 
questions directed at Witten was “Do you really believe that this is the 
way things are?” Witten’s answer was unequivocal: “If I didn’t believe it, I 
wouldn’t have spent ten years working on it.” That convinced me—at the 
time of the lecture. On my way home, it struck me that centuries earlier 
Isaac Newton, who had expended ten years working on an explanation for 
alchemy, might have answered a question regarding the validity of al-
chemy in the same fashion. 

More Posited Particles 

There are two major classes of particles that have yet to be detected, but 
are nonetheless the subject of investigation. The first class of particles 
consists of those that are part of the Standard Model, but have not yet 
been detected. The star in this particular firmament is the Higgs parti-
cle, which is the vehicle by which mass is imparted to all nonmassless 
particles (photons, the particles of light, are examples of massless parti-
cles). As observed earlier, the Higgs particle seems to remain tantaliz-
ingly out of reach of whatever energy range the current generation of 
particle accelerators can deliver, but many physicists feel it’s just a matter 
of time before one turns up in the snares that have been set for it. 

More interesting, from a mathematical standpoint, are the supersym-
metric particles. These particles are the ephemeral dance partners for the 
chorus line of particles making up the Standard Model, and exist in most 
of the currently popular variations of string theory. Like Dirac’s antielec-
tron, they emerge as the result of a pairing process in the underlying 
mathematics. For Dirac, however, the pairing process resulted from hav-
ing opposite charge. Supersymmetric particles occur from a pairing in-
volving spin—the mass particles of the Standard Model have spin 1⁄2, 
their supersymmetric particles have spin 0. 

The detection of a Higgs particle, or a supersymmetric one, depends 
upon the mass of these particles. All the unobserved particles are heavy 
(when measured as a multiple of the mass of the proton); the projected 
mass of these particles varies with which theory is being employed. What 
does not vary is what is necessary to create them—lots of energy. Einstein’s 
great mass-energy equation, E�mc2, can be compared to the exchange rate 
between varying currencies. The atomic bomb, or the energy generated by 
thermonuclear fusion in the heart of a star, is the result of converting mass 
into energy—a very little mass generates a lot of energy, because that mass 
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is multiplied by c2. In order to produce a particle of mass m, one must look 
at the equivalent equation m�E/c2; and it takes a lot of E to produce a very 
little m. This means that particle accelerators have to be built ever larger to 
supply the E necessary to create the new particles; and the larger the m of 
the new particles, the larger the necessary E. There are string theories in 
which the masses of the key particles are accessible to the next generation 
of accelerators—but also there are string theories in which this is not the 
case. The key parameter is the size of the fundamental entity—the vibrat-
ing string—and the smaller the string, the more energy is needed. 

The Man of the Millennium 

One of my great disappointments of 1999 was Time magazine’s failure to 
nominate a Man of the Millennium. It was some consolation that it nom-
inated Einstein as the Man of the Century (good choice!), but it missed a 
golden opportunity. For me, Isaac Newton was even more of a clear-cut 
choice for Man of the Millennium than Einstein was for Man of the Cen-
tury, and there aren’t a whole lot of opportunities to nominate a Man of 
the Millennium. 

Isaac Newton is best known for his theory of gravitation, but this is only 
one of his many accomplishments in both mathematics and physics. 
However, Newton’s biggest accomplishment transcends mathematics and 
physics, and is the reason that he deserves to be Man of the Millennium: 
he formulated the scientific method, which helped to kick-start the 
Industrial Revolution and all that has happened since. The scientific 
method, as Newton employed it, consisted of gathering data (or examin-
ing existing data), devising a theory to explain the data, mathematically 
deriving predictions from the theory, and checking to see whether those 
predictions were valid. He did this not only for gravitation, but for me-
chanics and optics, and transformed Western civilization. 

The Man of the Century 

Newton’s theory of gravitation is unquestionably one of the great intellec-
tual achievements of mankind. It not only explains most everyday stuff, 
such as the orbits of the planets and the motion of the tides; it is even deep 
enough to allow for concepts such as black holes, which were at best blue-
sky (or black-sky) ideas until a few decades ago. However, the physicists of 
the late nineteenth century realized that the theory wasn’t perfect—some 
measurements (notably the precession of the orbit of Mercury) differed 
significantly from the values calculated using Newton’s theory. 
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Einstein did not simply tinker with Newton’s theory; he devised a differ-
ent way of looking at the universe. Nonetheless, both Newton and Ein-
stein visualized a universe in which events could be specified by four 
numbers (dimensions)—three numbers denoting spatial location, one 
denoting temporal location. For Newton, however, these four numbers 
were absolute; all observers would agree on how much spatial distance 
there was between two events occurring at the same time, and all observ-
ers would agree on how much time had elapsed between two events oc-
curring at the same point in space. One of Einstein’s contributions was 
the observation that these numbers were relative; a consequence of Ein-
stein’s theory was that moving observers would disagree as to how much 
time had elapsed between two events occurring at the same point in 
space. Moving rulers shorten and moving clocks run more slowly, accord-
ing to Einstein—and an experiment in which two perfectly synchronized 
atomic clocks were compared, one of which stayed on the ground while 
the other was f lown in a jet around the world, proved that Einstein was 
right. 

Nonetheless, both Newton and Einstein used four numbers to discuss 
the universe; their universes are four-dimensional. There are two ques-
tions that immediately occur. The first—is our universe really four-
dimensional?—asks whether Newton, and then Einstein, got it right. The 
second—are there other, non-four-dimensional universes?—is somewhat 
deeper, and starts to get into the realm of philosophy (or pure mathemat-
ics). 

These two questions have occupied physicists for the better part of a 
century. It is the quest for the theory of everything, by which physicists 
will not only explain what happens, but why it happens and whether other 
things can happen (other universes exist) or they can’t (ours is the only 
possible universe). Although a theory of everything will still leave many 
questions unanswered, such an accomplishment would close the books 
on one of the great questions of mankind. 

The Geometry of the Universe 

One of Newton’s most famous statements, to be found in his Principia, 
was “I frame no hypotheses; for whatever is not deduced from the phe-
nomena (observational data) is to be called an hypothesis and hypothe-
ses . . . have no place in experimental philosophy. In this philosophy 
particular propositions are inferred from the data and afterwards ren-
dered general by induction. Thus it was that . . . [my] laws of motion and 
gravitation were . . . discovered.”9 
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He may not have framed them, at least for publication, but it is hard to 
believe that he did not at least speculate about them. Among Newton’s 
substantial mathematical achievements was the development of calculus 
(which was also developed independently by Gottfried Leibniz). The de-
velopment of Newtonian gravitation in contemporary textbooks is in-
variably phrased in terms of calculus, as it is so clearly the correct 
mathematical tool for expressing the results. Interestingly enough, New-
ton used calculus sparingly in his Principia; the great majority of his re-
sults were developed using only Euclidean geometry. Newton’s ability to 
use geometry was extraordinary, and it is impossible to believe that once 
he had expressed the gravitational force between two bodies as varying 
inversely with the square of the distance between them, he did not specu-
late upon the connection between this fact and geometry. The fact that 
the surface area of a sphere is a multiple of the square of the radius was 
known to the Greek geometers, and if there is a finite amount of “gravita-
tional stuff ” emanating from a material body, that gravitational stuff 
must be spread out over the surface of an expanding sphere. The exist-
ence of such gravitational stuff emanating from material bodies in an 
expanding sphere would explain the inverse square law of gravitation, 
and surely Newton must have had some thoughts along these lines. 

Another Gap in Another Table 

The Standard Model is not an equation, but a table. There is a gap in the 
Standard Model, a particle that fits in perfectly but has not yet been ob-
served. Just as Mendeleyev’s organization of the elements led him to pre-
dict missing elements and their properties, the gap in the Standard Model 
cries out to be filled by a boson that transmits the gravitational force (as 
the other bosons transmit the other forces). This hypothetical particle is 
known as the graviton. 

Gravitons are in some respects a natural way to explain Newton’s in-
verse square law of gravity. Electromagnetism is also a force in which the 
strength of the attraction or repulsion varies as the inverse square of the 
distance between electromagnetic particles, and the reason is that pho-
tons spread out over the surface of the expanding sphere (expanding at 
the speed of light) whose center is the source of the emission. If the same 
number of photons are spread out over two spheres, and the larger has a 
radius three times the radius of the smaller, the larger sphere has a sur-
face area nine times as large as the surface area of the smaller sphere. 
Assuming that the same number of photons are used to cover the surface 
of the sphere, the photon density (which is a measure of the strength of 
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the force) on the surface of the larger sphere is 1/9�1/32, the photon den-
sity on the surface of the smaller sphere. 

Just as Newton almost certainly realized, it is reasonable to postulate a 
similar mechanism to account for the strength of the gravitational field. 
But it is here that we encounter one of the major unsolved problems con-
fronting contemporary physics. The three theories that account for the 
behavior of the nongravitational forces are all quantum theories that ac-
count for the forces by describing the behavior of particles. Relativity, the 
theory that best describes the gravitational force, is a field theory; it 
speaks of a gravitational field that extends throughout space, and de-
scribes the behavior of this field. 

This was also the case with Maxwell’s equations, the original description 
of the electromagnetic force. These equations describe how the electric 
and magnetic fields relate to each other. In the first half of the twentieth 
century, quantum electrodynamics was invented, which described how 
the electromagnetic fields were produced as the result of electrically 
charged particles (which are fermions) interacting by exchanging photons 
(which are bosons). Quantum electrodynamics served as the model for 
subsequent quantum theories—the electroweak theory, which provides a 
unified description of the electromagnetic and weak forces, and the charm-
ingly named quantum chromodynamics, which provides a description of 
the strong force. However, even though the particle transmitting the grav-
itational force is in place—at least theoretically—a successful quantum 
theory of gravity has yet to emerge. The development of this theory is per-
haps the most important goal of contemporary theoretical physics. 

Lightning in a Bottle 

In 1919, Einstein’s general theory of relativity was spectacularly confirmed 
by Eddington’s observations of the gravitational def lection of light by the 
Sun of light from stars. In the same year, Einstein received an extraordinary 
paper from Theodor Kaluza,10 a little-known German mathematician. 

Kaluza had done something frequently done by mathematicians, but 
only occasionally by physicists: he had taken well-known results and 
placed them in a new and hypothetical environment. The well-known re-
sults in this case were Einstein’s treatment of general relativity; the hypo-
thetical environment in which he placed them was a universe consisting 
of four space dimensions (rather than the three familiar to us) and one 
time dimension. 

Kaluza probably chose four space dimensions because it is the next step 
up the complexity ladder from three dimensions. However, Kaluza’s ap-
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proach caught lightning in a bottle—literally. Not only did this assump-
tion result in Einstein’s equations of general relativity, which wasn’t 
surprising, but other equations emerged from this treatment—and these 
equations were none other than Maxwell’s equations describing the elec-
tromagnetic field. 

Every so often, a bizarre assumption results in something totally won-
derful and unexpected. Max Planck made a similar bizarre assumption 
when he postulated that energy came in discrete packets; this assump-
tion resolved many of the existing problems in theoretical physics at the 
time, even though it was to be years before the assumption was empiri-
cally validated. Paul Dirac made a similar assumption about the existence 
of the antielectron. Kaluza’s assumption, and the almost-miraculous si-
multaneous appearance of the two great theories describing the era’s two 
known forces (gravity and electromagnetism), made a great impression 
on Einstein. Einstein’s enthusiasm was understandable—he spent much 
of his career in search of a unified field theory that would successfully 
combine the theories of electromagnetism and gravity. Kaluza’s discovery 
looked like the fast track to such a theory. 

There was just one problem: Where was the fourth spatial dimension? 
Recall Kapitsa asking Dirac, “Paul, where is the antielectron?” The nor-
mal three spatial dimensions (north-south, east-west, up-down) seem to 
suffice to locate any point in the universe. We seem stuck with three di-
mensions—as it undoubtedly seemed to Kaluza and Einstein. Then a 
suggestion from the mathematician Oskar Klein appeared to present an 
attractive possibility for a fourth dimension. 

Klein proposed that the fourth dimension was an extremely small one 
when compared with the usual three dimensions with which we are fa-
miliar. The page you are now reading appears to be two-dimensional, but 
it is in reality three-dimensional; it’s just that the thickness (the third di-
mension) is very small compared with the height and width of the page 
that comprise the other two dimensions. This suggestion resurrected, at 
least in theory, Kaluza’s four spatial dimensions. However, there still re-
mained the problem that no one had ever seen the fourth spatial dimen-
sion, and the state of the art in both theory and experiment were 
insufficient to the task of exposing it, if indeed it did exist. The Kaluza-
Klein theory, as it was called, died a quiet death. 

The Standard Model Redux 

One of the great discoveries in the last century is the fact that an atom 
can change its species. Like the shape-shifters of science fiction, species 
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changing allows particles to assume other forms, and species changing 
among neutrinos accounts for the solar neutrino deficit. But neutrinos 
are highly standoffish (a neutrino can travel light-years through solid 
lead without interacting); atoms are the stuff of the real world. An atom 
that started life as an atom of nitrogen can, through the process known 
as beta decay, become an atom of carbon. This is one of the many inter-
esting phenomena associated with radioactivity, and is an action pro-
moted by the weak force. 

The weak force is weak when compared with the strong force, the force 
that holds the nucleus of an atom together against the electrical repulsion 
generated by the protons residing in the nucleus. Although Einstein and 
Kaluza certainly knew of the phenomena of beta decay, and also were well 
aware that something had to be holding the nucleus together; the weak 
and strong forces had not been isolated when they were developing their 
theory. 

In the half century between 1940 and 1990, remarkable progress was 
made in developing the theories of these forces. A theory that combined 
the electromagnetic force and the weak force was developed by Sheldon 
Glashow, Abdus Salam, and Steven Weinberg. This theory postulates that 
at the exceedingly high temperatures that existed in the early universe, 
these two forces were actually a single force, and the cooling of the uni-
verse enabled the two forces to establish themselves as separate forces, in 
a manner similar to the way different substances in a mixture will pre-
cipitate out as the mixture cools. Quantum chromodynamics, the theory 
of the strong force, was in large part developed by David Politzer, Frank 
Wilczek, and David Gross. Both these theories, which won Nobel Prizes 
for their discoverers, have been subjected to experiment and have so far 
survived; together, they help to comprise the Standard Model of the parti-
cles and forces that make up our universe. 

The electroweak theory that combines electromagnetism and the weak 
force is a significant step forward to realizing Einstein’s dream of a uni-
fied field theory. The current view is that its idea of forces separating as 
the universe cools is a template for the ultimate unified field theory—for 
one inconceivably brief moment after the big bang, at some inconceivably 
high temperature, all the four forces were a single force, and as the uni-
verse cooled, they separated out. First to separate out would have been 
gravity, then the strong force, and finally electromagnetism and the weak 
force, separated as described by the electroweak theory. 

The development of this theory is a work in progress, but it is one 
that is encountering a major obstacle. The electroweak theory and quan-
tum chromodynamics are quantum theories, which rely heavily on quan-
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tum mechanics to produce their extraordinarily accurate results. 
Relativity, the best theory we have on gravitation, is a classical field theory 
that makes no mention of quantum mechanics. The experimental levels 
at which the theories have been confirmed differ remarkably. We can 
probe subatomic structure at distances of 10�18 meter and have found 
nothing that would contradict the existing electroweak and chromody-
namic theories. However, the best we can do to measure the effect of 
gravity is to confirm it at distances of one-tenth of a millimeter, or 10�4 

meters. Part of the difficulty is the extraordinary weakness of gravity 
when compared to the other forces; the gravity of Earth cannot overcome 
the static electric force when you run a comb through your hair on a cold 
winter day, and it requires the gravity of a star to tear apart an atom. 

Extra Dimensions Resurrected 

The advent of string theory resurrected the Kaluza-Klein theory of addi-
tional space dimensions—but in a way that seems almost impossible to 
grasp. After decades of work, string theorists have realized that there is 
only one possible extra-dimensional space-time that will result in equa-
tions compatible with the known universe—but that extra-dimensional 
space-time requires ten spatial dimensions and one time dimension. If 
we have as yet been unable to see any evidence of the one extra spatial 
dimension of the Kaluza-Klein theory, what possible chance do we have 
of seeing the seven extra ones required by space-time theorists? And what 
of the extent of these extra dimensions: Are they large, in the sense that 
the normal three spatial dimensions are large, or are they small—and if 
so, how small? 

Ever since Newton developed the mathematics of calculus to help for-
mulate his theories of mechanics and gravitation, advances in physics 
have gone hand in hand with advances in mathematics—but there are  
times that each leads the other. When Maxwell developed his theory of 
electromagnetism, he used off-the-shelf vector calculus that had been 
around for nearly a century; and when Einstein came up with general  
relativity, he discovered that the differential geometry worked out decades 
previously by Italian mathematicians was just the right tool for the job. 
However, string theory has been forced to develop much of its own math-
ematics, and consequently the mathematics—the language in which the 
results of string theory is expressed—is incompletely understood. 

Compounding this problem is one that has affected physics ever since it 
began relying upon mathematics to phrase its results—the necessity of 
approximation. When equations cannot be solved exactly—and as we have 
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seen, this is a frequently occurring situation—one possibility is to solve 
the exact equations approximately, but another is to replace the exact equa-
tions with equations that approximate them and solve the approximating 
equations. Physicists have been doing this for centuries—for small angles, 
the sine of the angle is approximately equal to its radian measure (just as 
360 degrees constitute a full circle, 2� radians do as well), and for most 
purposes using the angle in an equation rather than its sine results in a 
much more tractable equation. The equations of string theory sometimes 
utilize such approximations in order to be solved, and when dealing with 
something as unknown as infinitesimally small strings and equally in-
finitesimally small dimensions, it is hard to be certain that the solutions 
one obtains ref lect the way the universe really is. 

So how can we tell if string theory, with its ten spatial dimensions, is on 
the right track? There are two possible approaches, but both are long 
shots. Confirmation of the existence of strings would constitute infer-
ential proof of the existence of extra dimensions, as mathematical anal-
yses have mandated that the string scenario holds true only in the  
eleven-dimensional (ten spatial dimensions, one time dimension) uni-
verse described above. However, string theory does not unequivocally 
mandate the size of the strings. Although some versions of string theory 
place the size of the strings in the neighborhood of 10�33 meter, which 
would render them undetectable by any conceivable equipment technol-
ogy as we know it could muster, there are versions in which strings are 
(relatively) huge, and possibly detectable, inferentially if not directly, by 
the next generation of particle accelerators. 

The other approach relies upon the fact that the inverse power law that 
gravity satisfies depends upon the number of spatial dimensions. We see 
gravity as an inverse square law because, in our three-dimensional universe, 
gravitons spread out over the boundary of a sphere, whose surface area var-
ies as the square of the radius. In a two-dimensional universe, gravitons 
would spread out over the boundary of an expanding circle, whose circum-
ference varies directly (is a constant multiple of) the radius. In higher di-
mensions, the gravitational force would drop precipitously. The boundary of 
a p-dimensional sphere varies in size as the (p�1)st power of the radius, and 
so we would see an inverse (p�1)-power law for gravitation. 

That is, if we could measure the gravitational force at distances for 
which the extra spatial dimensions are significant. The bad news is that 
the extra spatial dimensions are required by current theory to be no 
larger than about 10�18 meter—and gravity so far can be measured accu-
rately only on scales of about 10�4 meter. Thirteen orders of magnitude is 
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a monumental gap, so this is an ultra long shot—more so if the extra spa-
tial dimensions are smaller than 10�18 meter. 

The Shadow of the Unknowable 

While the physics community is pursuing the ultimate theory of reality 
with both enthusiasm and optimism, it is hard not to ref lect on what we 
have learned during the last century about the limitation of knowledge in 
the physical universe. There are at least two paths by which the ultimate 
nature of reality may be something that is forever hidden to us. The first 
is that the nature of space-time may be so chaotic at Planck length (the 
length of a string) and Planck time (the time it takes light to travel the 
length of a string) that we simply cannot measure things accurately  
enough to determine some critical features of space and time. The sec-
ond is that the complexity of the axiomatic structure of whatever theory 
ultimately describes reality admits undecidable propositions—or some-
thing similar to them. It may be that those undecidable propositions have 
no impact on reality—much as the undecidable propositions examined 
by Gödel were of meta-mathematical, rather than mathematical, interest. 
On the other hand, it may be that a proposition lurks somewhere that says 
that the ultimate nature of reality—the “atoms,” as it were, of space, time, 
and matter—are forever beyond our reach. The quest for a theory of eve-
rything may well meet the same fate as Hilbert’s desire to prove arithme-
tic consistent. Some mathematician with a solid background in physics, 
or some physicist who has studied Gödel’s incompleteness theorem, may 
be able to show that a theory of everything cannot exist. Indeed, if some-
one asked me to bet, this is where I’d place my money. 

NOTES 
1. See http:// physicsweb .org/ articles/ world/ 13/ 3/ 2. This site is courtesy of Physics 

World, a magazine for physicists and possibly those who are just interested in 
physics. At any rate, what I’ve read on the site is quite well written.

 2. W. Heisenberg, Quantum Mechanics (Chicago: University of Chicago Press, 1930). 
3. See http:// arxiv .org/ PS _cache/ astro -ph/ pdf/ 0302/ 0302131v1 .pdf. There is a less- 

technical version of this (Scientific American, May 2003)—but they’ll try to sell 
you a digital subscription. I’ve been a subscriber for thirty years; it’s a great 
magazine—but this slightly more technical version is free. It is also one of the 
most interesting papers I’ve read in the past decade. Although portions of it are 
a little rugged, READ IT, READ IT, READ IT!

 4. Ibid. 
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5. See http:// en .wikipedia .org/ wiki/ Theory _of _relativity. This site is an excellent 
primer on relativity, and has references that take you much deeper (click on the 
links to the main articles).

 6. B. Greene, The Fabric of the Cosmos (New York: Vintage, 2004), p. 502. This is an 
absolutely wonderful book, as is another book by the same author that will be 
referenced in note 7. Greene is a top-notch physicist and an expositor with a 
sense of humor. Nonetheless, there are portions of the book that I had to work to 
understand. This isn’t surprising; this stuff isn’t simple. As a local used-car 
salesman frequently remarked in his TV ads, while pointing out the virtues of 
a 1985 Chevy, “Flat worth the money!”

 7. B. Greene, The Elegant Universe (New York: W. W. Norton, 1999). This is the first 
of the two Greene books—it treats some of the same topics as Fabric, but goes 
much more deeply into relativity and string theory. However, between Elegant 
and Fabric, five years elapsed, and a lot happened in string theory, so a reasona-
ble plan is to look at this book first (after all, it was written first), and then follow 
up with the other.

 8. Greene, Fabric of the Cosmos, p. 352.
 9. I. Newton, Philosophiae Naturalis Principia Mathematica (1687). For obvious rea-

sons, everyone refers to it as Principia. You know you’ve encountered a mathe-
matical logician if you say “Principia” and he or she thinks you’re referring to 
the classic work in mathematical logic by Betrand Russell and Albert N. White-
head—best known for the fact that it takes them eight-hundred-plus pages to get 
around to 1 �1�2. 

10. See http://en.wikipedia.org/ wiki/ Kaluza. This was basically Kaluza’s one mo-
ment of glory. Like Cantor, he had a good deal of difficulty getting a professor-
ship in the German university system—despite Einstein’s support. 
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Information: 
The Goldilocks 
Dilemma 





9Murphy’s Law 

Nobody knows who Murphy is, but virtually everyone knows Murphy’s 
Law, which sums up much of life’s frustrations in seven words: if any-
thing can go wrong, it will. 

We’ve already seen some of the reasons that Murphy’s Law has such a 
trenchant take on reality. On our earlier visit to the garage, we saw that 
changes that seem to be logical ways to improve an existing situation can 
actually make things worse. Later, when we look at what chaos theory has 
to say on the subject, the tiniest, almost-unmeasurable deviation from the 
plan may cause things to go drastically wrong—for want of a nail, the 
shoe was lost, and so on. 

It’s hard for simple things to go wrong. If the only item on your daily 
agenda is to go to the supermarket and purchase a few basic items, it’s 
awfully hard to foul that up. Yes, the supermarket can be out of some-
thing (not your fault), or you may forget something on your list (your 
fault, but it wasn’t the fact that the task was too complicated; your mind 
was on other matters), but these foul-ups do not arise out of the inherent 
difficulty of the problem. What mathematics has discovered is that there 



are some problems that are so intrinsically difficult that it may not be pos-
sible to get them right; at least not in a reasonable amount of time. 

Another Visit to the Garage 

Every so often, we are confronted by an uncomfortably lengthy “to-do” list. 
Early in life, I adopted the strategy of getting the more onerous chores 
done first. There were a couple of reasons for this. The first was that at the 
outset I always had more energy, and the distasteful jobs always require 
more energy, either physical or emotional. The second was that once the 
onerous chores are out of the way, I could see the finish line, and this 
seemed to give me renewed energy for completing the remaining jobs. 

I had stumbled on a strategy for scheduling tasks that goes by the name 
of “decreasing-times processing.” If one takes a close look at the schedules 
that exhibited the unusual anomalies in our earlier trip to the garage, 
some of the problems were the result of lengthy tasks being scheduled too 
late. In an attempt to prevent this, the decreasing-times processing algo-
rithm was devised. It consists of constructing the priority list by arranging 
the tasks in decreasing order of required time (ties are resolved by choos-
ing the task with the smallest number first, so if T3 and T5 require the 
same time, T3 is scheduled first). 

T1-3 

T9-9 

T2-2 T3-2 T4-2 

T5-4 T6-4 T7-4 T8-4 

The priority list is T9, T5, T6, T7, T8, T1, T2, T3, T4. With four mechan-
ics, the schedule looks like this. 

Mechanic Task Start and Finish Times 

0  2  3  6  10  12  

Al T1 T9 Done 

Bob T2 T5 T8 Idle Done 

Chuck T3 T6 Idle Done 

Don T4 T7 Idle Done 
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There’s a lot of idle time here, but that’s to be expected. The important 
point is that all tasks are finished after twelve hours, and that’s the opti-
mal solution. 

Let’s see what happens when we look at the three mechanics when the 
task times were all reduced by one hour. 

T9-8 

T1-2 T2-1 T3-1 T4-1 

T5-3 T6-3 T7-3 T8-3 

The priority list is the same as the above: T9, T5, T6, T7, T8, T1, T2, T3, 
T4. This leads to the following schedule. 

Mechanic Task Start and Finish Times 

0  1  2  5  8  10  

Al T1 T9 Done 

Bob T2 T4 T5 T7 Idle Done 

Chuck T3 Idle T6 T8 Idle Done 

Once again, this is the best we can do. Is this the sword that cuts through 
the Gordian knot of scheduling? Regrettably not. As you might have sus-
pected from the fact that this problem still has a $1 million bounty on its 
head, neither the priority-list algorithm nor decreasing-times processing 
will always deliver the optimal schedule. However, decreasing-times pro-
cessing is superior to the list-processing algorithm in the following impor-
tant respect: the worst-case scenario with decreasing-times processing is 
substantially superior to the worst-case scenario with the list-processing 
algorithm. Suppose that T represents the length of the optimal schedule. 
If m mechanics are available, then the worst that can happen with the list-
processing algorithm is a schedule of length (2�1/m)T. However, if de-
creasing-times processing is used, the worst that can happen is a schedule 
whose length is (4T�m)/3.1 

There is one such algorithm that always works: construct all possible 
schedules, and choose the one that best optimizes whatever criteria are 
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used. There’s a major problem with that: there could be an awful lot of 
schedules, especially if there are a lot of tasks. 

How Hard Is Hard? 

The difficulty of doing something obviously depends upon how many 
things need to be done. Finding the best schedule to perform four tasks 
is a slam dunk, but finding the best schedule to perform a hundred tasks 
is generally a Herculean undertaking. Working with a hundred compo-
nents is obviously more time consuming than working with four compo-
nents. Let’s look at three different types of jobs. 

The first job is something we all do; paying bills by mail. Generally, 
you have to open the bill, write a check, and put the check in an enve-
lope. Roughly speaking, it takes as much time to do this for the electric 
bill as it does for a credit card bill, and so it takes four times as long to 
pay four bills as it does to pay one. Paying bills by mail is linear in the 
number of components. 

The second job is something that happens to all of us: you’ve put index 
cards in some sort of order, either in a card box or on a Rolodex, and you 
drop it. You’ve got to put the cards back in order. It turns out that this is 
relatively more time consuming than paying bills, for an obvious reason: 
as you continue to sort the cards, it takes longer and longer to find the 
correct place for each additional card. 

Finally, there is the scheduling problem. This is even more brutal than 
sorting the cards for an important reason: all the components must fit to-
gether correctly, and you only know whether they fit together correctly 
when you’ve finished fitting them together. When you sort the cards, you 
can hold the last card in your hand and realize that you’ll be finished when 
you’ve put that card in the correct spot. Such an assessment is not possible 
with scheduling. As Yogi Berra so famously put it, it ain’t over ’til it’s 
over. 

Dropping the Rolodex 

Suppose we have just dropped our Rolodex on the f loor. We now have a 
bunch of file cards with names, addresses, and phone numbers on them, 
and we wish to put the cards in alphabetical order. There is a very simple 
way to do this: take the cards and go through them one at a time, remov-
ing each card from the unsorted pile and placing it alphabetically in the 
new pile by comparing the card we just removed from the old stack with 
each card in the new stack, one by one, until we find its rightful place. For 
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instance, suppose the top four cards on the old stack, in order, are Betty-
Al-Don-Carla. We keep track of the old stack, the new stack, and the num-
ber of comparisons that were necessary at each stage. 

Number of 
Comparisons 

Step Old Stack New Stack for This Step 

1  Al-Don-Carla  Betty  0  

2  Don-Carla  Al-Betty  1  

3 Carla Al-Betty-Don 2 

4  Al-Betty-Carla-Don  3  

If there are N cards in the new stack, the maximum number of com-
parisons that will be needed is N. For instance, at stage 3 above, the card 
to be compared is Carla, and the old stack is Al-Betty-Don. Carla is be-
hind Al (first comparison), behind Betty (second comparison), in front of 
Don (third comparison). 

N

We can now look at the worst-case scenario for total number of compari-
sons. We’ve seen that the maximum number of comparisons needed 
is the number of cards in the new stack, and since the new stack builds 
up one card at a time, with N cards the maximum number of compari-
sons is 1 �2�3�	 	 	�(N � 1)�N(N�1)/2, which is a little less than 
1⁄2 N2. Sorting N cards, even using an inefficient algorithm (better ones 
are available than the one-at-a-time comparison we used in this example), 
requires fewer than N2 comparisons; such a task is said to be doable in 
polynomial time (we’d say the same thing if we needed fewer than N4 or 

12 comparisons). Problems that can be solved in polynomial time as a 
function of the number of components (cards in the above example) are 
known as tractable problems. Those problems that can’t be solved in poly-
nomial time are called intractable problems. 

The Traveling Salesman Problem 

This may well be the problem that kicked off the subject of task complex-
ity. Suppose that a salesman has a bunch of different cities to visit, but he 
starts and ends at his home base. There is a table giving the distance be-
tween each city (or, in today’s more hectic world, the travel times or pos-
sibly the costs); the goal is to devise a route that starts at home and ends 
there, visits all cities once, and minimizes total travel distance (or travel 
times or costs). 
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Let’s start by looking at the number of different possible routes we could 
take. Suppose there are three cities other than home, which we will label 
generically as A, B, and C. There are six different available routes. 

Home → A → B → C → Home 
Home → A → C → B → Home 
Home → B → A → C → Home 
Home → B → C → A → Home 
Home → C → A → B → Home 
Home → C → B → A → Home 

Mercifully, there is a fairly easy way to see how many different routes 
there are in terms of the number of cities. There are six ways to order the 
three cities, as we listed above; think of 6 � 3�2�1. If we have to arrange 
four cities, we could place any of the four cities first, and arrange the 
other three in 3 �2�1 ways. This gives a total of 4 �3�2�1 ways of ar-
ranging four cities; mathematicians use the factorial notation 4! to abbre-
viate 4 �3�2�1. The number of ways of arranging N cities in order is N!; 
the argument is basically the one used to show that four cities can be ar-
ranged in 4! different orders. So if the traveling salesman must visit N 
cities, the number of different routes he could take is N! 

As N gets larger, N! eventually dwarfs any positive power of N, such as 
N4 or N10. For instance, let’s compare a few values of N! with N4. 

N N4 N! 

3  81  6  

10 10,000 3,628,800 

20 160,000 2.43�1018 

No matter what power of  N we choose to compare with  N!, N! always 
swamps it, although when we compare N! with higher powers, such as N10, 
it takes higher values of N before this phenomenon starts showing up. 

Greed Is Not Always Good 

Nothing makes us happier than having the easy solution to a problem be-
ing the best solution; but, unfortunately, the world is so constructed that 
this is rarely the case. There is an “easiest” way to construct a passable 
algorithm for the traveling salesman problem; this algorithm is known as 
the nearest neighbor algorithm. Whenever the salesman is in a particular 
town, simply go to the nearest unvisited town (in case of ties, go in alpha-
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betical order). If there are N towns (other than home), it’s easy to see that 
we have to find the smallest of N numbers to find the nearest neighbor, then 
the smallest of N�1 numbers to find the nearest unvisited neighbor to the 
first town, then the smallest of N�2 numbers to find the nearest unvisited 
number to the second town, etc. So the worst that could happen is that we 
had to examine a total of N�(N�1)�(N�2)�	 	 	�1�N(N� 1)/2 num-
bers. Like the card-by-card comparison algorithm when we dropped the 
Rolodex, this is an algorithm such that the time taken is on the order of 
N2, where N is the number of towns. 

The nearest neighbor algorithm is an example of what is known as a 
“greedy” algorithm. There’s a technical definition of “greedy algorithm,”2 but 
it’s pretty clear here what’s going on; it’s an attempt to construct a path doing 
the least possible work while still doing some work (simply grabbing the first 
number available would do the least possible work). Greedy algorithms some-
times give reasonable solutions, but often greed, like crime, doesn’t pay. 

On our first trip to the garage, we discovered that there are situations in 
which upgrading all the equipment actually results in a longer comple-
tion time. There’s an analogous situation for the traveling salesman prob-
lem using the nearest neighbor algorithm; it is possible to shorten all the 
intracity distances and end up with a longer overall trip. 

Let’s look at a distance table with three towns other than the hometown. 

Home A B C 

Home 0 100 105 200 

A  100  0  120  300  

B  105  120  0  150  

C  200  300  150  0  

This is a mileage chart similar to the ones found on road maps that used 
to be available at gas stations. The nearest town to home is A, the nearest 
unvisited town to A is B, then the salesman must go to C and then home. 
The total distance for this trip is 100 � 120� 150� 200�570. Suppose we 
have a slightly different mileage chart in which all intracity distances 
have been reduced. 

Home A B C 

Home 0 95 90 180 

A  95  0  115  275  

B  90  115  0  140  

C  180  275  140  0  
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Now the nearest town to home is B, the nearest unvisited town to B is A, 
then the salesman goes to C and returns home. The total distance is 
90� 115�275� 180�660. Of course, this example was constructed to il-
lustrate how greed can be one’s downfall; the proximity of B to home 
lured us into taking a path that is significantly shorter than the best path. 
If we go first to A, then to B, then to C, and return home, the total dis-
tance is 95� 115� 140� 180�530, a considerable improvement. This also 
shows that the nearest neighbor algorithm doesn’t always give us the 
shortest overall trip. 

The traveling salesman problem is considerably simpler than the 
scheduling problem, in the sense that all one needs are the intracity dis-
tances—none of this stuff about digraphs and whether tasks are ready 
and lists. There is a fairly obvious way to improve on the nearest neighbor 
algorithm using a technique called “look-ahead.” Instead of greedily grab-
bing the shortest distance, we can use a little foresight and look for the 
route that minimizes the total distance traveled to the next two towns we 
visit, rather than just the distance to the next town. 

We have to pay a price for this improvement. If there are N towns, we 
can visit the first two towns in N�(N�1) ways, then the next two towns 
in (N�2)�(N�3), the next two towns in (N�4) �(N�5) towns, and so on. 
The total number of distances we must examine is therefore N�(N�1) 
�(N�2)�(N�3)�(N�4)�(N�5)�	 	 	. Each of the products in these 
expressions contains a monomial term N2, and there are approximately 
N/2 such products, so the total number of distances we must examine is 
on the order of N3/2. A similar argument shows that if we “look ahead” by 
computing the shortest distance for the next k towns we visit, the compu-
tational overhead is on the order of Nk�1. 

When You’ve Solved One, You’ve Solved Them All 

Part of the appeal of mathematics is that the solution of one problem fre-
quently turns out to be the solution of others. Calculus is replete with 
such situations—one such example is that finding the slope of the tan-
gent to a curve turns out to solve the problem of determining the instan-
taneous velocity of a moving object when we know its position as a  
function of time. 

In this chapter, we’ve taken a close look at three problems: schedule con-
struction, the traveling salesman problem, and the card-sorting problem. 
We’ve shown the last of these is tractable, but we have yet to determine 
the status of the other two—although, as Han Solo said in Star Wars just 
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before the walls of the garbage-crunching machine started closing in, 
we’ve got a really bad feeling about them. They look as if they are intracta-
ble, and this would be bad news, as it would mean that we would be con-
fronted with problems of considerable practical significance that simply 
can’t be solved in a reasonable period of time. 

Schedule construction and the traveling salesman problem are only a 
few of more than a thousand such problems that are currently in limbo 
with regard to whether they are intractable. However, as the result of the 
work of Stephen Cook, there is a surprising unifying theme that connects 
all these problems. If you solve one of them, in the sense of finding a 
polynomial-time algorithm, you’ve solved them all. 

In the 1960s, the University of California, Berkeley was an exciting place 
to be. Mario Savio was leading the Free Speech Movement in front of 
Sproul Hall. I was putting the finishing touches on my thesis (although it 
must be admitted that historians of this era usually neglect to mention 
this seminal event). Finally, two assistant professors in mathematics and 
computer science were to become famous: Theodore Kaczynski (later to 
be known as the Unabomber) and Stephen Cook. 

What Stephen Cook did was to connect a wide variety of problems (in-
cluding the schedule construction problem and the traveling salesman 
problem) by means of a transformational technique. He discovered an 
algorithm that, when applied to one of these problems, would change the 
problem into the form of the other in polynomial time. So, if you could 
solve the traveling salesman problem in polynomial time, you could trans-
form the schedule construction problem in polynomial time into a  
traveling salesman problem, which you could also solve in polynomial 
time.3 Two successive polynomial-time algorithms (one for transforming 
the first problem into the second, one for solving the second) comprise a 
polynomial-time algorithm: for example, if one has a polynomial, such as 
P(x)�2x2�3x�5, and we substitute another polynomial, such as x3�3, 
for x in that expression, the result—2(x3�3)2�3(x3�3)�5—is still a pol-
ynomial, though admittedly of higher degree. 

This greatly raises the stakes for determining whether (or not) there is 
a polynomial-time algorithm for schedule construction. If you can find 
one, using Cook’s transformational methods, you will have polynomial-
time algorithms for more than a thousand other useful problems. You 
will not only gain undying fame, you will also make lots of money by han-
dling all these problems for a fee—plus, you get to collect one of the Clay 
Mathematics Institute Millennium Prizes of $1 million for finding such 
an algorithm. If you can demonstrate that no such algorithm exists, you 
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still get the fame and the $1 million. It’s a mystery why people are still 
trying to trisect the angle when it’s known to be impossible, when they 
could be trying to find a polynomial-time algorithm for the traveling 
salesman problem and become rich and famous for doing so. 

Cook’s Tough Cookies 

Cook came up with his idea in the early 1970s; by the late 1970s, more 
than a thousand problems were known to be every bit as difficult to solve 
as the scheduling problem or the traveling salesman problem. Admit-
tedly, many of these are minor variations of one problem, but it is worth 
looking at some of the problems to realize how pervasive these really 
tough problems are. 

Satisfiability. This is the problem that Cook first examined. Recall that 
propositional logic worked with compound statements such as IF (P AND 
Q) THEN ((NOT Q) OR R). There are three independent variables in this 
proposition: P, Q, and R. The problem is to determine whether there is an 
assignment of the values TRUE and FALSE to the variables P, Q, and R 
such that the compound statement above is TRUE. It’s not too hard to see 
that all you need to do is let P be FALSE, then P AND Q must be false, 
and any implication in which the hypothesis is FALSE must be TRUE. 

The problem is that lengthier compound statements cannot be eyeballed 
so easily. 

The knapsack problem. Imagine that we have a collection of boxes with 
different weights, and inside each box is an item with a given value. If the 
knapsack can contain only a maximum weight W, what is the maximum 
value of the contents of boxes that can be placed inside the knapsack? 
There are two attractive greedy algorithms here. The first is to sort the 
items in terms of decreasing value and start stuffing them into the knap-
sack, most valuable item first, until you can’t stuff any more inside. The 
second is to sort the items in terms of increasing weight and start stuff-
ing them into the knapsack, lightest first, until you are forced to stop. 

Remember moneyball, the idea that a team could be put together by 
maximizing some quantity, such as most home runs hit last year per dol-
lar of current salary? There is a version of that which applies to the knap-
sack problem. One might sort the items in terms of decreasing value per 
pound; this strategy might be described as “rare postage stamps first,” as 
I believe rare postage stamps are the most valuable item on the planet as 
measured in dollars per pound. 

Graph coloring. The diagram used to illustrate tasks at the garage is 
called a digraph, which is short for directed graph. A digraph is a collec-
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tion of vertices (the task squares in our diagram) with arrows connecting 
some of them to indicate which tasks must be performed before other 
tasks. Instead of drawing arrows, which indicate a direction, we might 
just draw lines connecting some of the vertices. This is very much like 
an intracity road map, with cities represented by hollow circles at the  
vertices and lines (which are called edges) connecting the cities indicat-
ing major highways (or not so major ones, if you’re out in a rural area). A 
graph is a collection of vertices and edges; two vertices may or may not 
be connected by an edge, but two cities cannot be connected by more 
than one edge. 

Suppose we decided to fill in each of the hollow circles with a color, sub-
ject only to the following rule: if two vertices (the hollow circles) are con-
nected by an edge, they must be colored differently. Obviously, one way to 
do this is simply to color each city a different color. The graph coloring 
problem is to determine the minimum number of colors needed to color 
vertices connected by an edge with different colors. 

Mathematicians always like to point out how the most seemingly ab-
stract problem can have unexpected practical applications. The graph 
coloring problem has lots of these. One such rather surprising applica-
tion is the assignment of frequencies to users of the electromagnetic 
spectrum, such as mobile radios or cell phones. Two users who are close 
to each other cannot share the same frequency, whereas distant users 
can. The frequencies correspond to the colors. 

The Big Question 

The big question in this area, one of the Clay Mathematics Institute’s 
million-dollar babies, is whether the tough problems that have been de-
scribed in this section can be done in polynomial time. Interestingly 
enough, while an affirmative answer to this question would mean that 
speedy ways of scheduling or planning routes for the traveling salesman 
exist (at least in theory; we’d still have to find them), a negative answer 
would have an upside as well! There is one very important problem for 
which a negative answer would be highly satisfactory: the factorization 
problem. 

The problem of whether an integer can be factored is, like scheduling 
and graph coloring, known to be one of Cook’s tough cookies. If no poly-
nomial time algorithm exists for doing so, those of us who have bank ac-
counts can breathe a little easier, because as described in the introduction, 
the difficulty of factoring numbers that are the product of two primes is 
key to the security of many password-protected systems. 
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The Experts Weigh In 

In 2002, William Gasarch took a poll of a hundred leading experts in this 
area, asking the question whether the class P of problems solvable in 
polynomial time was equal to the class NP of Cook’s tough cookies. The 
envelope, please.4 

Sixty-one voted that P �NP (no polynomial-time algorithm exists for 
any tough cookie). 

Nine voted for P � NP. 
Four thought that it was an undecidable question in ZFC! 
Three thought that it could be resolved by demonstrating an explicit 

way to solve one of the tough cookies in polynomial time, rather 
than merely showing an algorithm must exist. 

Twenty-two respondents wouldn’t even hazard a guess. 

Gasarch also asked the respondents to estimate when the problem would 
be solved. The median guess was in 2050, almost forty-eight years after 
the poll was taken. 

Here are a couple of views from the two opposing camps. 
Bela Bollobas: 2020, P�NP. “I think that in this respect I am on the 

loony fringe of the mathematical community. I think (not too strongly) 
that P�NP and this will be proved within twenty years. Some years ago, 
Charles Read and I worked on it quite a bit, and we even had a celebra-
tory dinner in a good restaurant before we found an absolutely fatal  
mistake. I would not be astonished if very clever geometric and combi-
natorial techniques gave the result, without discovering revolutionary 
new tools.” 

Richard Karp: P�NP. “My intuitive belief is that P is unequal to NP, but 
the only supporting arguments I can offer are the failure of all efforts to 
place specific NP-complete problems in P by constructing polynomial-
time algorithms. I believe that the traditional proof techniques will not 
suffice. Something entirely novel will be required. My hunch is that the 
problem will be solved by a young researcher who is not encumbered by 
too much conventional wisdom about how to attack the problem.” 

Notice that one person feels that standard methods suffice, while the 
other feels that it will require someone who can “think outside the box.” 
I’d vote for the latter; my impression of the history of difficult problems is 
that many more of them seem to succumb to new approaches rather than 
to pushing current ideas as far as they will go. 
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DNA Computers and Quantum Computers 

A poll of computer scientists showed that the vast majority believe that no 
polynomial-time algorithm will be found—but the majority of experts 
has been wrong many times in the past. Even if they are right, there are 
some viable alternatives that are being explored. 

All the algorithms that we have investigated in this section have been im-
plemented sequentially—for instance, when exploring all the possible routes 
in the traveling salesman problem, we envision a computer that examines 
the N! routes one at a time. Another way of handling the problem is to break 
up the problem into smaller, more manageable chunks, and hand each 
chunk to a different computer. This is known as parallel computing, and it 
holds the possibility of greatly speeding up computation. There are several 
ways to accomplish this outside the realm of using standard computers. 

The first of these is DNA computing, which was first achieved by Leon-
ard Adleman of the University of Southern California in 1994 (it’s not just 
a football factory). The idea is to use the ability of strands of DNA to select 
from a multitude of possible strands the one strand that complements it. 
Since a quart of liquid contains in the neighborhood of 1024 molecules, 
there is the possibility of greatly speeding up computation—although it’s 
not a viable possibility for very large problems. 

A potentially more powerful technique is quantum computing, which 
uses the uniquely quantum phenomenon of superposition to perform 
massively parallel operations. In a classical computer, which uses 1s and 
0s, a 3-bit register always records a definite 3-digit binary integer, such as 
110 ( �4�2�6 as a decimal integer). However, a 3-qubit (a qubit is a quan-
tum bit) register exists in a superposition of all eight 3-digit binary inte-
gers, from 000 (decimal integer 0) to 111 (decimal integer 7). Consequently, 
an N-qubit register exists in a superposition of 2N states; under the right 
circumstances, the wave collapse can realize any one of these 2N possibili-
ties. Since qubits can be very small indeed (possibly even subatomic), a 
100-qubit register can encompass 2100 different states (approximately 1030), 
and 100 subatomic particles do not take up a whole lot of space. 

While the possibilities for quantum computers are extremely exciting, 
there are major problems to overcome. One of these is the decoherence 
problem—the environment tends to react with quantum computers and 
initiate wave collapse. One would want wave collapse to reveal the answer, 
rather than having wave collapse occur as the result of random environ-
mental interactions, and so the computer must be kept isolated from the 
environment for significantly longer periods of time than have presently 
been achieved. 

Murphy’s Law 167�



Settling for Good Enough 

Both DNA computing and quantum computing reach into the physical 
universe for assistance in solving a mathematical problem. This is the re-
verse of the way matters usually proceed—normally, mathematics is used 
to solve a problem in the physical universe. Barring a bolt from the blue in 
the form of a Clay Millennium Prize, the most useful approach is to de-
velop approximate solutions—as we have seen, this is an important area in 
applied mathematics. For instance, there are algorithms that can find so-
lutions to the traveling salesman problem that are within 2 percent of the 
best solution, and do so in a reasonable period of time. However, approxi-
mate solutions for one problem are not readily transformable into approxi-
mate solutions for another problem—for example, the decreasing-times 
algorithm for the scheduling problem is generally only within 30 percent 
of the best solution. The fact that the problems that Cook showed to be 
equivalent appear to require separate approximate solutions is part of the 
charm—and frustration—of mathematical research. Maybe the next great 
result in this area is an algorithm for transforming approximation tech-
niques for one of Cook’s tough cookies into approximation techniques for 
the others such that the transformed approximation is within the same 
percentage of the best solution as the original approximation. 

NOTES
 1. COMAP, For All Practical Purposes (New York: W. H. Freeman & Co., 1988). As I’ve 

already remarked, I think this is a terrific book; ideal for people who like math-
ematics, and pretty good for people who can’t stand it but have to take a course 
in it. Estimation is an extremely important part of mathematics. These are ex-
amples of worst-case estimates. Worst-case estimating is also valuable because it 
often highlights precisely which situations result in the worst case, which can 
lead to better algorithms. 

2. http:// mathworld .wolfram .com/ search/ ?query� greedy�algorithm & x�0 & y� 0 . 
3. A. K. Dewdney, Beyond Reason (Hoboken, N.J.: John Wiley & Sons, 2004). Dewd-

ney shows how to transform the satisfiability problem into the vertex cover prob-
lem (a problem in graph theory) by showing how to transform logical expressions 
into graphs. I don’t think this is a general template for transformational tech-
niques. My impression is that there are a bunch of hubs, serving the same func-
tion for this area of mathematics that hub airports do for air travel; to show that 
problem A is transformable into problem B, one transforms problem A to a hub 
problem, and then the hub problem into problem B. 

4. http:// www.math.ohio -state.edu/ ~friedman/ pdf/ P-P10290512pt.pdf. 
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10The Disorganized Universe 

The Value of the Unpredictable 

It might be thought that true unpredictability would be an absolute bar-
rier to knowledge. While the unpredictability of the random and near 
random is a source of uncertainty with respect to individual events, the 
analysis of aggregations of random events is the domain of the subjects of 
probability and statistics, two of the most highly practical mathematical 
disciplines. We can only acquire information about the long-term aver-
ages of the next f lip of the penny; yet information of that type suffices to 
provide a major foundation stone for our civilization. 

Although we never give the matter much thought, on any day there is 
always the chance that we may suffer or cause an injury while in a car. 
The absence of insurance would probably not deter any of us from driv-
ing, although we would risk financial devastation if either of those two 
events occurred and we were unable to pay for them. Insurance enables 
us to avoid such devastation, because we can pay a reasonably small pre-
mium to protect ourselves against such an outcome. Insurance compa-
nies compile detailed records in order to determine what to charge a 



middle-aged male driver with one accident in the past five years who 
wants to insure his 2005 Honda Civic. I sometimes have to bite my lip 
when contemplating my auto insurance bill, especially in view of the fact 
that there is a teenage driver in the family. Balancing this is the realiza-
tion of how different my life would be (if I even had a life to live) had not 
merchants gathered in coffeehouses in the seventeenth century in order 
to share jointly the cost of voyages of exploration and commerce. In a 
sense, aided by the increased accuracy in risk assessment resulting from 
developments in probability and statistics, we are still doing that today. 

Random Is As Random Does 

Part of the reason for the success of mathematics is that a mathematician 
generally knows what other mathematicians are talking about, which is 
not something you can say about just any field. If you ask mathemati-
cians to define a term such as group, you are going to get virtually identi-
cal definitions from all of them, but if you ask psychologists to define 
love, you will probably get several variations that depend upon the school 
of psychological thought to which the respondent adheres. 

The shared vocabulary of mathematics is not necessarily esoteric. Most 
people have just as good a take on some ideas as do mathematicians. If 
you were to ask John Q. Public for a definition of the word random, he 
would probably say something like “unpredictable.” Somewhat surpris-
ingly, the mathematical definition of the term random variable goes out-
side the realm of mathematics into the real world for its definition; a 
“random variable” is a mathematical function that assigns numbers to 
the outcomes of random experiments, which is a procedure (such as roll-
ing a die or f lipping a coin) in which the outcome of the procedure cannot 
be determined in advance. Mathematicians use the term nondeterminis-
tic, which sounds a lot more erudite than unpredictable—but both words 
basically boil down to the same thing. Deterministic means that future 
events depend on present and past ones in a predictable way. Nondeter-
ministic events are ones that cannot be so predicted. 

But is rolling a die or f lipping a coin truly random, in the sense that it 
is absolutely unpredictable? If one rolls a die, the initial force on the die is 
known, the topography over which the die is traveling is known, and 
the laws of physics are the only ones in play, might it not be possible, in 
theory anyway, to predict the outcome? Obviously, this is a tremendously 
complicated problem, but the potential gain for gamblers in the world’s 
casinos makes this a tempting problem to solve. In the middle of the 
twentieth century, a gambler spent years developing a method of throw-
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ing the dice in which they spun frantically but did not tumble; this 
method was so profitable that the gambler was banned from casinos, and 
it is now a rule in craps games that both dice must hit the wall, which 
contains numerous bumps that presumably randomize the outcome of 
the throw. 

But does it? If we roll a fair die, will the number 1 (and all the other num-
bers) come up one-sixth of the time? After all, it seems reasonable that 
once the die is thrown, only one possible outcome is in accordance with 
the laws of physics and the initial conditions of the problem—how the 
gambler held the die, whether his hands were dry or damp, and so on. And 
so, if the universe knows what’s going to happen, why shouldn’t we? 

Let’s grant this argument, temporarily, that given sufficient informa-
tion and sufficient computational capability, we can determine the out-
come of a thrown die. Does that leave anything that can be said to be  
perfectly random—in the universe, or in mathematics? 

One possibility that occurs to us is the randomness that appears in 
quantum mechanics, but randomness in quantum mechanics, though 
it has been confirmed to an impressive number of decimal places, is still 
an infinite number of decimal places short of perfectly random. Maybe 
mathematics can deliver something ultimately and perfectly random, 
something that we cannot, under any circumstances, predict. 

The Search for the Ideal Random Penny 

Let’s try to construct a sequence of f lips for a penny that conforms to our 
intuitive idea of how a random penny should behave. We would certainly 
expect that an ideal random penny should occasionally come up heads  
three times in a row—and also occasionally (but much more rarely) come 
up heads 3 million times in a row. This leads us to the realization that 
there must be an infinite sequence of f lips in order to determine whether 
or not the penny is truly random. Notwithstanding that there are certain 
technical problems in what we mean by “half” when dealing with an infi-
nite set (those familiar with probability can think of it as having a proba-
bility of 0.5), we can try to construct such a sequence. If we use H to 
denote heads and T to denote tails, the sequence H,T,H,T,H,T,H,T . . . 
obviously satisfies the restriction that half the f lips are heads and half are 
tails. Equally obviously, it is not a random sequence; we know that if we 
keep f lipping, sooner or later heads or tails will occur twice in a row, and 
they never do in this sequence. Not only that, but this sequence is perfectly 
predictable, which is about as far from perfectly random as one can get. 

OK, let’s modify this sequence, so that each of the possible two-f lip 
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pairs (heads-heads, heads-tails, tails-heads, tails-tails) occurs one-quarter 
of the time. The following sequence will do that. 

H,H,H,T,T,H,T,T, H,H,H,T,T,H,T,T, H,H,H,T,T,H,T,T, . . . 

In case it isn’t clear what’s going on here, we repeat the pattern 
H,H,H,T,T,H,T,T (heads-heads, heads-tails, tails-heads, tails-tails) end-
lessly. This satisfies two requirements: heads and tails each occur half the 
time, and each of the two-f lip possibilities occurs one-quarter of the time. 
And yet we still don’t have a random sequence; many easily conceivable 
patterns have been left out. Tails, for example, never occurs three times 
in a row, as it certainly would given infinitely many f lips, and almost cer-
tainly would, even after only a hundred. 

There is a surprisingly deep question contained here: Can you construct 
a sequence of f lips that is perfectly in accord with the laws of probability, 
in that each specific sequence of N f lips will occur 1⁄2N of the time? 

Number Systems: The Dictionaries of Quantity 

The decimal number system (also known as the base-10 number system) 
that we learn in elementary school is similar to a dictionary. Instead 
of the letters of the alphabet, the decimal number system uses the char-
acters 0,1,2,3,4,5,6,7,8,9. From these ten characters, it forms all the words 
that can be used to describe quantity. It’s an amazingly simple dictionary; 
for example, the number 384.07 is actually defined as the sum 3 �102�8 
�101�4�100�0�10�1�7�10�2, where the expression 10�2�1/102. The 
quantitative value of the word 384.07 is deducible from the “letters” used 
and their positions in the word. I tell my prospective elementary school 
teachers that it’s a lot simpler dictionary than the Merriam-Webster, 
where one can’t deduce the meaning of the word from the letters that 
make it up, and you have to decide in a split second whether duck means 
“quacking waterfowl” or “watch out for rapidly approaching object.” 

One way to define the real numbers is the set of all decimal representa-
tion of the above form, where we are only allowed to use finitely many 
numbers to the left of the decimal point but infinitely many thereafter. 
With this convention, 384.07�384.0700000. . . . The rationals are all 
those numbers, such as 25.512121212 . . . , that eventually settle down 
into a repetitive pattern to the right of the decimal point. A calculator will 
show (or you can do it by hand) that .5121212 . . .  �507/990. 

Instead of the “10” that we use in the decimal system, it is possible to 
use any positive integer greater than 1. When “2” takes the place of “10” 
in the decimal system, the result is the binary, or base-2, number system. 
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The alphabet for the binary number system consists of the digits 0 and 1, 
and a number such as 1011.01 is the binary representation for the number 
1�23�0�22�1�21�1�20�0�2�1�1�2�2. Writing each of these 
terms in the familiar decimal system, this number is 8 �0�2�1�0�1⁄4 

�11.25. The binary system is the natural one to use in storing informa-
tion in a computer. Originally, information was displayed by means of a 
sequence of lights: when the light was on, the corresponding digit was a 
1; off corresponded to 0. Thus, a row of four lights in the order on-off-off-
on corresponded to the binary number 1001�1�23�0�22�0�21�1�2 
0, whose decimal value is 8 �0�0�1�9. Computers now store informa-
tion magnetically: if a spot is magnetized, the corresponding digit is a 1; 
if it is not magnetized, the corresponding digit is a 0. 

There is a simple correspondence between an infinite sequence of coin 
f lips and binary representations of numbers between 0 and 1. Given a 
sequence of f lips, simply replace H with 0 and T with 1, remove the com-
mas, and stick a decimal point to the left of the first digit. The infinite 
sequence of coin f lips that alternates heads and tails (H,T,H,T,H, . . . ) 
becomes the binary number .01010. . . . One can also execute this proce-
dure in reverse, going from a binary number between 0 and 1 to an infi-
nite sequence of coin f lips. The search for the ideal random penny thus 
morphs into a search for a binary number. The requirement that each 
specific sequence of N f lips will occur 1⁄2N of the time becomes the re-
quirement that each specific sequence of N binary digits (0s and 1s) will 
occur 1⁄2N of the time. A number that possesses this property is said to be 
normal in base 2. We’ll take a closer look at such numbers shortly. 

The Message in Pi 

The number pi plays an important role in Carl Sagan’s best-selling novel 
Contact,1 about man’s first encounter with an advanced civilization. One of 
the chapters, entitled “The Message in Pi,” outlined the idea that the aliens 
had delivered a message for mankind hidden deep in the gazillion digits of 
the expansion of pi. Possibly the fact that pi is known to be a transcendental 
number prompted Sagan to posit a transcendental message hidden in pi. 
The lure of mysticism in pi appeared more recently in the movie Pi and has 
doubtless appeared other places of which I am unaware. 

It seems awfully unlikely that an alien civilization has so manipulated 
the geometry of the universe in which they evolved that the ratio of the 
circumference of a circle to its diameter contains a message. In fact, it 
seems impossible, considering that the truths, and the parameters, of 
plane geometry are independent of wherever it is studied. Not only that, 
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the question arises as to how one would translate the message in pi. The 
digits used in expressing pi are a function of the base of the number, and 
there would have to be a dictionary that translates blocks of digits into  
characters in the language in which the message is presented. For exam-
ple, ASCII is the code that translates blocks of eight binary digits stored 
in a computer into printable characters; the number 01000001 (whose 
decimal representation is 65) corresponds to the character A. In one 
sense, however, Sagan was right: mathematicians believe that pi contains 
not only whatever message the aliens encoded, but every message, re-
peated infinitely often! 

A normal number in base 10 is one in which, on average, each decimal 
digit, such as 4, appears 1/10 of the time—but each pair of successive deci-
mal digits, such as 47, appears 1/100 of the time (there are 100 such pairs, 
from 00 to 99), each triple of successive decimal digits, such as 471, ap-
pears 1/1,000 of the time, and so on. This is the mathematical equivalent of 
the “ideal random penny” for which we searched a little while ago, except 
that instead of an ideal random penny with two sides whose tosses would 
generate a normal number in base 2, we would imagine a perfectly bal-
anced roulette wheel with 10 numbers, 0 through 9. It is possible to for-
mulate an equivalent definition of normality for any number base. For 
example, a number that is normal in base 4 is one such that each of the 4N 

possible N-digit sequences occurs 1⁄4N of the time. 
Are there any normal numbers, in any base, that we have actually found? 

Obviously, we cannot f lip pennies (perfect or not) forever. There are a few 
that are known. David Champernowne, who was a classmate of Alan Tur-
ing (whose proof of the unsolvability of the halting problem appears 
in chapter 7), constructed one in 1935. This number, known as Cham-
pernowne’s constant, is normal in base 10. The number is 
.123456789101112131415 . . . , which is formed simply by stringing to-
gether the decimal representations of the integers in ascending order. 
When I saw this result, I jumped to the conclusion that Champernowne’s 
constant2 was also normal in other bases—after all, it’s an idea, rather 
than a specific number, and I naively assumed that whatever proof 
method worked to show that it was normal in base 10 would work for  
other bases as well. If there’s a Guinness Book of Records for Most Conclu-
sions Erroneously Jumped To, I’m probably entitled to an honorable men-
tion. If you look at Champernowne’s constant in base 10, it’s between .1 
and .2—but in base 2, it’s a different number. In binary notation, 1 �1, 
2� 10, 3 � 11, 4 � 100, 5� 101, 6� 110, 7�111, so Champernowne’s con-
stant in base 2 starts off .11011100101110111. . . . Any number whose base 
2 representation starts off .11 . . . is bigger than 3⁄4 (just as .12 . . . in base 
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10 shows that the number is bigger than 1/10 �2/102, .11 . . . in base 2 shows 
that the number is bigger than 1⁄21�1⁄22). 

However, in 2001, the base-2 incarnation of Champernowne’s constant 
was shown to be normal in base 2. Thus, writing H for every appearance 
of 0 and T for every appearance of 1 would be an example of a sequence of 
tosses that appear to come from a perfectly random penny. 

There are a very few known examples of numbers that are normal in 
every base; all the ones that are known are highly artificial.3 By “highly 
artificial,” I mean that you are not going to encounter the number in the 
real world. Obviously, we encounter numbers such as 3.089 (the current 
price in dollars of a gallon of gasoline in California) and the square root of 
2 (when finding the length of the diagonal of a square one foot on a side), 
but numbers such as Champernowne’s constant simply don’t show up  
when we measure things. Numbers that are normal in every base do not 
appear in the real world, but the real line is chock-full of such numbers. 
Borel’s normal number theorem4 states that if you pick a real number at 
random (there’s that word again), you are almost certain (in a sense that 
can be made mathematically specific) to pick a number that is normal in 
every base. In ordinary usage, when a person is asked to pick a number, he 
or she will usually pick a number that measures something, such as 5.  
When a mathematician describes picking a random real number, he or 
she envisions a process somewhat like a lottery, in which all the real num-
bers are put into a hat, the hat is thoroughly shaken, and a number is 
picked out by someone wearing a blindfold. If one does that, the number 
that is picked out will almost certainly be normal in every base. Again,  
“almost certainly” has a highly technical definition, but one can get an 
idea of what is meant by realizing that if a real number is picked at random 
in the sense described above, it is almost certain that it will not be an inte-
ger. Integers form what is known as a set of Lebesgue measure zero; the 
technical statement of Borel’s normal number theorem is that all numbers 
except for a set of Lebesgue measure zero are normal in every base. 

Transcendentals such as pi seem to be prime candidates for numbers 
that are normal in every base. If pi were shown to be such a number, then 
Sagan would have been right: the message from the aliens would be en-
coded in the digits of pi, as the encoded message would simply be a se-
quence of digits. However, every message is a sequence of digits, so if you 
dig deep enough into pi, you will find the recipe for the ultimate killer 
cheesecake, as well as your life story (even the part that hasn’t happened 
yet), repeated infinitely often. 

Sagan used to talk about how we are all made of star stuff; the explo-
sions of supernovas create the heavier elements that are used to construct 
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our bodies. He would undoubtedly have been just as intrigued by the in-
tricate way we are all connected to the real line. If a real number is se-
lected at random, it is almost certain that the digits of that number tell 
the complete stories of every human being who has ever lived, or will ever 
live, and each story is told infinitely often. 

The ideal random penny, whose f lips can be viewed as the binary digits 
of a number that is normal in every base, turns out to be not just a tool for 
deciding who should kick off and who should receive in the Super Bowl, 
but an oracle of more-than-Delphic stature. It answers every question that 
could ever be answered, if only we knew how to read the tea leaves. But of 
course, we never will. 

Tumbling Dice: Why We Can’t Know What the Universe Knows 

Earlier in the chapter, we asked whether the roll of a die was unpredictable; 
after all, if the universe knows what is going to happen, why can’t we? In the 
latter portion of the twentieth century, a new branch of mathematics 
emerged. Chaos theory, as it was to be called, emerged as it was discovered 
that unpredictable phenomena come in two f lavors: inherently unpredicta-
ble phenomena, and phenomena that are unpredictable because we cannot 
obtain sufficient information. Inherently unpredictable phenomena exist 
only in an idealized sense—the f lips of an ideal random penny correspond 
to the binary digits of a number that is normal in every base, but such a 
number does not correspond to any quantity that can actually be measured. 

The phenomenon of chaos, as it appears in both mathematics and phys-
ics, is a specific type of deterministic behavior. Unlike random phenom-
ena, which are completely unpredictable, chaotic phenomena are in 
theory predictable. The mathematical laws underlying the phenomena 
are deterministic; the relevant equations have solutions, and the present 
and past completely determine the future. The problem is not that the 
laws themselves result in unpredictable phenomena, it is that we cannot 
predict the phenomena because of information underload. Unlike quan-
tum mechanics, where we cannot know the value of parameters because 
those values do not exist, we cannot (as yet) know the value of parameters 
because it is impossible for us to gather the requisite information. 

Now You’re Baking with Chaos 

The dictionary defines chaos as “a state of extreme confusion and disor-
der.” The recent profusion of restaurant-based reality shows and movies 
portray the kitchen in such a fashion—harried chefs screaming at wait-
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resses and ingredients destined for the entrée ending up in the dessert. 
So, giving a nod to popular culture, we turn to the chaotic bedlam of the 
kitchen for a look at some sophisticated chaos mathematics you can do 
with a rolling pin. 

Imagine that one has a cylinder of dough, and we roll it out so that it is 
twice as long as it was originally, and then cut it in half and place the right 
half on top of the left half. We then repeat this rolling and cutting pro-
cess, which is called the baker’s transformation. Think of the pie dough 
as occupying the segment of the real line between the integers 0 (where 
the left end of the dough is located) and 1 (where the right end is located). 
The baker’s transformation is a function B(x), which tells us where a 
point that was originally located at x is located after the rolling, cutting, 
and placing. B(x) is defined by 

B(x)�2x  0 � x � 1⁄2 

B(x)�2x�1 1⁄2 
 x � 1 

A simple description is that a point on the left half of the dough moves 
to twice its distance from the left end after the baker’s transformation, 
but a point on the right half doubles its distance from the left end after 
the rolling, and then is moved one unit toward the left end after the cut-
ting and placing. 

This doesn’t look very complicated, but surprising things happen. Two 
points that are originally located very close together can end up very far 
apart quite quickly. I’ve chosen two different points that are initially very 
close to each other, and to honor my wife, who was born on September 1, 
1971, her birthday is the first starting point, x�.090171. The second 
starting point is located at .090702, only 1/1,000,000 of a unit to the right of 
the first starting point. 

After one iteration, the two points have drifted .000002 apart, and even 
after twelve iterations they are only about .004 apart. But after the six-
teenth iteration, one of the points is in the left half of the dough, and the 
other is now in the right half. The next iteration moves them widely 
apart—the first point is not far away from the right end, whereas the sec-
ond point is very near the left end. 

Start Iteration 

1  12 13 14 15 16 17  

0.090171 0.180342 0.340416 0.680832 0.361664 0.723328 0.446656 0.893312 

0.090172 0.180344 0.344512 0.689024 0.378048 0.756096 0.512192 0.024384 
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This example shows that two points that start out very close together 
can, after a limited number of iterations, occupy positions that are 
quite distant from one another. This phenomenon has serious impli-
cations with regard to using mathematics to predict how systems will 
behave. 

If we were to multiply all the numbers in the above chart by 100, so we 
could think of them as representing temperature, we can interpret the 
chart as follows: we have a process in which if we start with a temperature 
of 9.0171 degrees, after seventeen iterations the temperature is 89.3312 
degrees; whereas if we start with a temperature of 9.0172 degrees, after 
seventeen iterations we end up with a temperature of 2.4384 degrees. Un-
less we are in a laboratory exercising exquisite control over an experi-
ment, there is no way we can measure the temperature accurately to 
.0001 degree. Thus, our inability to measure to exquisite accuracy makes 
it impossible to render accurate predictions; small initial differences may 
result in substantial subsequent ones. This phenomenon, one of the 
centerpieces of the science of chaos, is technically known as “extreme 
sensitivity to initial conditions,” but the colloquial expression “the butter-
f ly effect” describes it far more picturesequely: whether or not a butterf ly 
f laps its wings in Brazil could determine whether there is a tornado in 
Texas two weeks later. 

A careful examination of the baker’s transformation reveals that it is the 
cutting process that introduces this difficulty. If two points are both on 
the left half of the dough, the baker’s transformation simply doubles the 
distance between them—similarly for two points on the right half of the 
dough. However, if two points are very close but one is on the left half of 
the dough and the other on the right, the point on the left half ends up 
very near the right end, but the point on the right half ends up very near 
the left end. The baker’s transformation is an example of what is called 
a discontinuous function—a function in which small differences in the 
variable can result in large differences of the corresponding function 
values. Although discontinuous functions occur in the real world—when 
you turn on a light, it instantaneously goes from zero brightness to maxi-
mum brightness—it may be argued, with some justification, that natu-
ral physical processes are more gradual. When the temperature cools, it 
does not drop from 70 degrees to 50 degrees instantaneously, like the 
lightbulb—it goes from 70 degrees to 69.9999 degrees to 69.9998 de-
grees . . . to 50.0001 degrees to 50 degrees.5 This is a continuous process; 
small increases in time result in small changes in temperature. Nothing 
chaotic there, right? 
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Chaos in the Laboratory 

The butterf ly effect was actually discovered in conjunction with continu-
ous processes. The development of the transistor made reasonably priced 
computers available in the late 1950s and early 1960s. Formerly, comput-
ers had been hugely expensive arrays of power-hungry vacuum tubes, but 
by the early 1960s, all universities and many businesses had purchased 
computers. Business, of course, was using the computers to speed up the 
computations and store the data needed for commerce, but the universi-
ties were using computers to explore computationally intensive problems 
that were previously inaccessible. 

Dr. Edward Lorenz, a professor at MIT, began his career as a mathemati-
cian, but later turned his attention to the problem of describing and fore-
casting the weather. The variables involved are governed by differential 
equations and systems of differential equations,6 which describe how the 
rates at which variables change are related to their current values. These 
equations, though quite complicated, are associated with continuous 
processes. 

Solving differential equations is an important part of science and engi-
neering, because these are the equations that ref lect the behavior of 
physical processes. However, rarely can one obtain exact solutions to dif-
ferential equations. As a result, the industry standard approach is to use 
numerical methods that generate approximate solutions, and numerical 
methods are most effectively implemented by computers. 

One day in 1961, Lorenz programmed a system of differential equations 
into a computer that probably computed at less that one-tenth of 1 percent 
of the speed of whatever happens to be sitting on your desk at the moment. 
As a result, when the time came for lunch, Lorenz recorded the output, 
turned off the computer, and grabbed a bite. When he returned, he decided 
to backtrack a little, and did not use the most recent output of the computer, 
but the output it had generated some iterations previously. He expected the 
output from the second run to duplicate the output of the previous run (af-
ter all, they were running the same iterations), but was surprised to see that 
after a while, the two sets of outputs differed substantially. 

Suspecting that there was either a bug in the program (this happened 
frequently) or a hardware malfunction (this happened more frequently in 
1961 than it does today), he checked both possibilities assiduously—only 
to find that neither was the case. Then he realized that in reinitializing 
the computer for the second run, he had rounded off the computer output 
to the nearest tenth; if the computer said that the temperature was 62.3217 
degrees, he had rounded it off to 62.3 degrees. In those days, one had to 
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type in all data by hand, and rounding things off would save substantial 
typing time. Lorenz figured, quite naturally, that rounding off should 
make little difference to the computations—but as we saw in the table on 
page 177, even a difference in the sixth decimal place can cause signifi-
cant changes in the values of later iterates, at least in the baker’s transfor-
mation. Lorenz was the first to document and describe a butterf ly effect 
in a system in which variables changed gradually rather than discontinu-
ously. Lorenz is also responsible for the term butterf ly effect. At a 1972 
meeting of the American Association for the Advancement of Science, he 
presented a paper titled “Predictability: Does the Flap of a Butterf ly’s 
Wings in Brazil Set Off a Tornado in Texas?” Later investigations were to 
reveal that chaotic behavior frequently arose from nonlinear phenomena, 
a common feature of many important systems. Linear phenomena are 
those in which a simple multiple of an input results in a like multiple of 
the output. (Hooke’s law is an example of a linear phenomenon. Apply 2 
pounds of force to a spring and it stretches 1 inch; apply 8 pounds of force 
to the spring and it stretches 4 inches.) 

Extreme sensitivity to initial conditions was to be a much more perva-
sive phenomenon than originally suspected. Once chaotic behavior had 
been described, it was not so surprising that complicated systems such as 
the weather were subject to the butterf ly effect. In the mid-1980s, though, 
it was shown that the orbit of the now-demoted planet Pluto was also cha-
otic.7 The clockwork universe of Newton, in which the heavenly bodies 
moved serenely in majestic and predictable orbits around the sun, had 
given way to a much more helter-skelter scenario. Pluto turns out to be 
eerily similar to the electron in Heisenberg’s uncertainty principle; we 
may know where it is, but we don’t know where it’s going to be. Well, not 
really: we don’t know where Pluto is going to be because we don’t know 
where it and the other bodies in the solar system are (and how fast and in 
what direction they are moving) with sufficient accuracy. 

Strange Developments 

Many systems exhibit periods of stability separated by episodes of transi-
tion between these periods. The geysers at Yellowstone Park are a good 
example. Some, like Old Faithful, are very regular in the timing of their 
eruptions; others are more erratic. A well-studied example in mathemati-
cal ecology is the interplay between the relative populations of predator 
and prey, such as foxes and rabbits. The dynamics of how the fox and rab-
bit populations change is qualitatively straightforward. In the presence of 
an adequate supply of food for the rabbits, the rabbit population will ex-
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pand, providing more prey for the foxes, whose population will also ex-
pand. The foxes will prey on the rabbits, reducing the rabbit population. 
This reduction will reduce the survival rate of the foxes, enabling the rab-
bit population to expand again—and so on. 

The logistic equation models the relative populations of predator and 
prey. It has the form f(x)�a x (1�x), where a is a constant between 0 and 
4, and x is a number between 0 and 1 that represents the rabbit fraction of 
the total population (rabbits divided by the sum of rabbits and foxes) at a 
given time. The value of the constant a ref lects how aggressive the preda-
tors are. Imagine that we contrast two different types of predators: boa 
constrictors and foxes. Boa constrictors have slow metabolisms; a few 
meals a year keep them satisfied. Foxes, however, are mammals, and 
need to eat much more frequently in order to survive. 

Suppose that x is the rabbit fraction of the population at a given time; then 
f(x) represents the rabbit fraction of the population one generation later. 
This new value of f(x) is used as the rabbit fraction of the population 
to compute the new rabbit fraction after the next generation. Suppose, 
for example, that f(x)�3�(1�x), and that at some moment x�.8 (80 per-
cent of the population consists of rabbits, 20 percent of foxes). Then 
f(.8) �3�.8�.2�.48, so one generation later the rabbits constitute 48 per-
cent of the population. We then compute f(.48) �3� .48� .52�.7488, so two 
generations later the rabbits constitute 74.88 percent of the population. 

A fraction x is called an equilibrium point if the rabbit fraction of the 
population either stays at x or periodically returns to x. It’s not too diffi-
cult to see why the value of a might change the equilibrium points. If the 
only predators around are boa constrictors, the rabbit fraction of the total 
population would undoubtedly be much higher than if the predators were 
foxes, who burn food quickly and need to eat a lot more often than boa 
constrictors. Back in the 1980s, when computer monitors had amber 
screens and blinking white rectangular cursors, there used to be a soft-
ware simulator for the logistic equation: a program called FOXRAB.8 

While others played Pong on computers, I used to spend time watching 
FOXRAB, which simply output numbers representing the fraction of the 
total population that consisted of rabbits. 

One might expect the system to evolve smoothly as the constant a gradu-
ally increases from 0 to 4, a small increase in a resulting in a small change 
in the equilibrium points, but the number of equilibrium points of the 
system behaves very unusually. If a is less than 3, the system has only 
one equilibrium point; the relative populations eventually remain the 
same over time. For instance, if a�2, the equilibrium point is x� .5; if the 
population ever consists of 50 percent rabbits, then f(.5)�2�.5�.5� .5, 
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and after the next generation (and every subsequent generation) there 
will be 50 percent rabbits. Other values of x drift toward .5 as time passes. 
For instance, if x� .8, then f(.8) �2�.8�.2� .32, f(.32)�2� .32 � .68 � 

.4352, and f(.4352)�.49160192; after just three generations, a rabbit popu-
lation of 80 percent has become a rabbit population of almost 50 percent. 

At a�3, there are two equilibrium points. This state of affairs continues 
until a�3.5, when there are four points; but as a increases to 3.56, the 
number of equilibrium points increases to eight, then sixteen, then 
thirty-two, . . . . When a�3.569946, something utterly bizarre happens: 
there are no equilibrium points at all! As a increases from 3.6 to 4, we 
see the development of chaos; the number of equilibrium points vary 
unpredictably, with intervals characterized by an absence of equilibrium 
points followed by intervals in which the smallest change in the value of 
a creates a wildly different number of equilibrium points. It’s a com-
pletely deterministic system, but it’s one in which it’s impossible to pre-
dict the number of equilibrium points. In a chaotic system such as this 
one, the equilibrium points are called strange attractors. 

The following table gives an indication of how the number of equilib-
rium points of the system changes as a increases. The numbers on the 
top line represent the generations; the values in the table indicate the frac-
tion of the population consisting of rabbits. In each case, the first genera-
tion starts off with half of the total population consisting of rabbits; the 
rest of the table shows the rabbit fraction for generations 126–134. When 
a�2.8, the population stabilizes at 64.3 percent rabbits. When a� 3.1, the 
rabbit population oscillates between 76.5 percent and 55.8 percent. When 
a�3.5, there are four equilibrium points; and when a�3.55, there are 
eight equilibrium points (generation 135 repeats the value of generation 
127, generation 136 repeats the value of generation 128, and so on). 

Generation 1 126 127 128 129 130 131 132 133 134 

a� 2.8 0.5 0.643 0.643 0.643 0.643 0.643 0.643 0.643 0.643 0.643 

a� 3.1 0.5 0.765 0.558 0.765 0.558 0.765 0.558 0.765 0.558 0.765 

a� 3.5 0.5 0.383 0.827 0.501 0.875 0.383 0.827 0.501 0.875 0.383 

a� 3.55 0.5 0.355 0.813 0.54 0.882 0.37 0.828 0.506 0.887 0.355 

The Prevalence of Chaos 

Chaotic behavior can be seen in a wide variety of phenomena: the relative 
populations of predator and prey, the spread pattern of disease epidemics, 
the onset of cardiac arrhythmia, prices in energy markets, the f lipping of 
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the climate between periods of benign temperature and ice ages. Climate 
f lipping is one of the reasons that many scientists are concerned about 
the phenomenon of greenhouse warming. The climate record contains 
periods where there have been relatively abrupt transformations, and it is 
not at all clear what causes the climate to seesaw from one temperature 
regime to another. Those who feel that humans must take measures to 
prevent global warming point to the fact that it is impossible to know 
whether the relative fraction of carbon dioxide in the atmosphere is the 
trigger of chaotic behavior, but until we are more knowledgeable, it seems 
prudent to err on the side of caution. On the other side of the argument, 
the climate seems to have had its own strange attractors for millions of 
years before man began using fossil fuels as a power source, so we’re just 
Johnny-come-latelies in cycles that have been going on for millions of  
years without us. 

There’s a lot to gain by being able to model chaotic systems. Imagine 
how valuable it would be to be able to predict cardiac arrhythmia before it 
actually shows up. We’ve actually taken an important step by knowing 
that cardiac arrhythmia is a chaotic phenomenon rather than a random 
one. If it were random, there would be no hope of doing anything about 
individual cases; the best we could do is to know what percentage of peo-
ple displaying certain patterns would be liable to suffer heart attacks. 
With chaotic behavior, there is the possibility that we can do things in 
individual situations. This probably lies some distance in the future,  
though, as chaos is a very young discipline.9 But at least it’s not a disci-
pline characterized by extreme confusion and disorder. 

NOTES 
1. C. Sagan, Contact (New York: Simon & Schuster, 1985). 
2. See http://mathworld.wolfram.com/NormalNumber.html. Like many of the ref-

erences in Mathworld, you have to be a pro to take full advantage of the informa-
tion, but the basics are reasonably comprehensible. 

3. See http:// mathworld .wolfram .com/ AbsolutelyNormal .html . 
4. Borel’s normal number theorem states that the set of numbers that are not nor-

mal in every base is a set of Lebesgue measure zero. You need an upper-division 
math course to be really comfortable with Lebesgue measure, but it attaches  
numbers to sets that generalize the idea of length. The Lebesgue measure of the 
unit interval, all real numbers between 0 and 1, is 1, as you would expect. How-
ever, the Lebesgue measure of all the rational numbers in that interval is 0. The 
proof of Borel’s normal number theorem uses the axiom of choice. Probability 
for sets of real numbers is closely tied up with Lebesgue measure, so when 
we say that a randomly selected number is almost certain to be normal, that is 
simply a restatement of Borel’s normal number theorem in the more-intuitive 

The Disor ga nized Universe 183�



language of probability rather than the less-intuitive language of Lebesgue  
measure. 

5. Technically, the temperature sliding down from 70 degrees to 69.9999 degrees 
is discontinuous unless it passed through every real number between 70 and 
69.9999; this is a consequence of the intermediate value theorem for continuous 
functions. The purpose of this illustration was to give the reader the idea of a 
nonjumpy transition without getting overly technical. 

6. One of these equations is the Navier-Stokes equation, a partial differential equa-
tion whose solution is one of the Clay Mathematics Institute’s millennium prob-
lems. 

7. G. J. Sussman and J. Wisdom, “Numerical Evidence That the Motion of Pluto Is 
Chaotic,” Science 241: pp. 433–37. 

8. See http:// www .jaworski .co .uk/ m10/ 10 _reviews .html. I can’t believe this is still 
around! 

9. For those interested in reading further about the history and early development 
of chaos, I recommend James Gleick’s Chaos: Making a New Science (New York: 
Viking, 1987). Gleick is a terrific science writer, a worthy heir to Paul de Kruif, 
Isaac Asimov, and Carl Sagan. Chaos has advanced considerably since this book 
was published, though. 
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11 ialsThe Raw Mater

The Importance of Being Earnest 
In early 1996, the journal Social Text published an article by Professor 
Alan Sokal of New York University. Entitled “Transgressing the Bounda-
ries: Towards a Transformative Hermeneutics of Quantum Gravity”1 

(huh?), the article put forth the viewpoint that “physical ‘reality’ . . . is at 
bottom a social and linguistic construct” (say what?). The article was in 
fact a giant intellectual hoax, and would soon become a cause célebre. 
Sokal submitted his article because he feared that the view that the world 
is how we perceive it, rather than how it is, was distorting one of the fun-
damental goals of science: the search for truth. The acceptance of the ar-
ticle by the journal had numerous side effects. It helped to increase the 
degree of scrutiny with which articles dealing with technical subjects 
were examined and also revealed how publication likelihood was affected, 
at least in the liberal arts,2 by the concordance of the article with the 
philosophical or political positions of the editorial staff. 

Mostly, however, it helped expose a disturbing trend: the belief that it 
is the perception of reality, rather than reality itself, that matters most. 



Sokal found such a view abhorrent—as would most scientists, whose job 
it is to investigate reality. As he put it, “I’m a stodgy old scientist who be-
lieves, naively, that there exists an external world, that there exist objec-
tive truths about that world, and that my job is to discover some of  
them.”3 

Failure to pay attention to the realities of the external world has been the 
cause of numerous tragedies, from Icarus to Challenger. As Richard Feyn-
man remarked during the investigation that followed the disaster that 
occurred when the shuttle Challenger was launched under unsafe condi-
tions, “For a successful technology, reality must take precedence over 
public relations, for Nature cannot be fooled.”4 

Among the great objective truths that we have learned about the exter-
nal world is that not all things are possible. One plus one will always 
equal two, no matter whether we give 110 percent or resort to wishing on 
a star5—because, at bottom, arithmetic is not a social or linguistic con-
struct. If we add up the numbers in our checkbook correctly and the bal-
ance is $843.76, that’s what we’ve got. Unfortunately, never more, if we 
want to buy a Lexus without resorting to five years of monthly payments, 
and fortunately, never less, if we want to go to dinner and a movie without 
worrying that we will be thrown in debtor’s prison if we can’t pay for it. 

Nature supplies us with the raw materials from which the universe is 
constructed. Some of those raw materials are, well, material: the matter 
from which every thing in the universe is made. Some of those raw mate-
rials are less substantial, such as energy. There are relationships between 
and among the raw materials of the universe that dictate what is and 
what is not possible. This was first glimpsed by the French chemist Anto-
ine-Laurent Lavoisier, who discovered that in a chemical reaction, the to-
tal mass of the products of the chemical reaction was equal to the total 
mass of the substances that reacted. This result, known as the law of 
conservation of mass, marked the beginning of theoretical chemistry. A 
trio of nineteenth-century scientists would significantly expand upon  
this result, extending to energy what Lavoisier did for matter. 

The Heat Is On 

In the summer of 1847, William Thomson, a young Briton, was vacation-
ing in the Alps. On a walk one day from Chamonix to Mont Blanc, he 
encountered a couple so eccentric they could only be British—a man car-
rying an enormous thermometer, accompanied by a woman in a carriage. 
Thomson, who was later to become one of the greatest of British scien-
tists and be granted the title Lord Kelvin, engaged the pair in conversa-
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tion. The man was James Prescott Joule, the woman his wife, and they 
were in the Alps on their honeymoon. Joule had devoted a substantial 
portion of his life to establishing the fact that, when water fell 778 feet, 
its temperature rose 1 degree Fahrenheit. Britain, however, is notoriously 
deficient in waterfalls, and now that Joule was in the Alps, he certainly 
did not intend to let a little thing like a honeymoon stand between him 
and scientific truth. 

A new viewpoint had arisen in physics during the early portion of the 
nineteenth century: the idea that all forms of energy were convertible into 
one another. Mechanical energy, chemical energy, and heat energy were 
not different entities, but different manifestations of the phenomenon of 
energy. James Joule, a brewer by trade, devoted himself to the establish-
ment of the equivalence between mechanical work and heat energy. These 
experiments involved very small temperature differences and were not 
spectacular, and Joule’s results were originally rejected, both by journals 
and the Royal Society. He finally managed to get them published in a 
Manchester newspaper for which his brother was the music critic. Joule’s 
results led to the first law of thermodynamics, which states that energy 
cannot be created nor destroyed, but only changed from one form to an-
other. 

Some twenty years before Joule, a French military engineer named Nico-
las Carnot had been interested in improving the efficiency of steam en-
gines. The steam engine developed by James Watt was efficient, as steam 
engines went, but nonetheless still wasted about 95 percent of the heat 
used in running the engine. Carnot investigated this phenomenon and 
discovered a truly unexpected result: it would be impossible to devise a 
perfectly efficient engine, and the maximum efficiency was a simple 
mathematical expression of the temperatures involved in running the en-
gine. This was Carnot’s only publication, and it remained buried until it 
was resurrected a quarter of a century later by William Thomson (Lord 
Kelvin), just one year after his chance meeting with Joule in the Swiss 
Alps. 

Carnot’s work was the foundation of the second law of thermodynamics. 
This law exists in several forms, one of which is Carnot’s statement con-
cerning the maximum theoretical efficiency of engines. Another formu-
lation of the second law, due to Rudolf Clausius, can be understood in 
terms of entropy, a thermodynamic concept that involves a natural direc-
tion of thermodynamic processes: a cube of ice placed in a glass of hot 
water will melt and lower the temperature of the water, but a glass of 
warm water will never spontaneously separate into hot water and ice. 

The Austrian physicist Ludwig Boltzmann discovered an altogether dif-
ferent formulation of the second law of thermodynamics in terms of 
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probability: systems are more likely to proceed from ordered to disordered 
states, simply because there are a lot more disordered states than ordered 
ones. The second law of thermodynamics explains why clean rooms left 
unattended become dirty, but dirty rooms left unattended don’t become 
clean: there are many more ways for a room to be dirty than for it to be 
clean. The first and second laws of thermodynamics seem to appear in so 
many diverse environments that they have become part of our collective 
understanding of life: the first law says you can’t win, and the second law 
says that it’s not possible to break even. 

Carnot, Joule, and Boltzmann came at thermodynamics from three dif-
ferent directions: the practical (Carnot), the experimental (Joule), and the 
theoretical (Boltzmann). They were linked not only by their interest in  
thermodynamics, but by difficult situations bordering on the tragic. Car-
not died of cholera when he was only thirty-six years old. Joule suffered 
from poor health and a childhood spinal injury all his life and, though 
the son of a wealthy brewer, became impoverished in his later years. 
Boltzmann was a manic depressive who committed suicide because he 
feared his theories would never be accepted; ironically, his work was rec-
ognized and acclaimed shortly after his death. 

The Ultimate Resource 

There are striking parallels between energy and money. Each is the ulti-
mate resource in its own particular arena. Money is how we evaluate and 
pay for goods and services, and energy is the measure of how much effort 
is necessary to produce those goods and supply those services. Just as dif-
ferent currencies can be exchanged for each other, various forms of en-
ergy can be converted into each other. 

The first law of thermodynamics, as described earlier, states that there 
are no free lunches in the universe—energy cannot be created from noth-
ing. Nor, and this is often ignored, can energy be destroyed, but it can be 
transmuted. The second law, which addresses the transmutation of en-
ergy, also has a monetary analogue: in real life, money is never used with 
perfect efficiency. There are always middlemen extracting money for 
making arrangements, and nature does the same thing whenever energy 
is used. Energy can never be used with perfect efficiency; this is one of 
the reasons that perpetual motion machines can never be built. 

Recent developments, though, have made it appear that there may be 
chinks in the laws of thermodynamics. One such chink is a consequence 
of a topic discussed in an earlier chapter: only gravity (of the four forces) 
is capable of exerting an extra-dimensional inf luence. We can never di-
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rectly observe a fourth spatial dimension, because the process of observ-
ing a fourth dimension involves the use of the electromagnetic spectrum, 
and current theories do not allow the electromagnetic force to probe a 
fourth dimension. However, the gravitational force can leak into other 
dimensions—as we mentioned, this is one way that we might be able to 
discern the existence of those other spatial dimensions.6 If this does in-
deed prove to be the case, the first law of thermodynamics would no 
longer hold; but it would open up an extremely appealing possibility. If 
gravitational energy from our three dimensions could leak out elsewhere, 
why couldn’t gravitational energy from other dimensions leak into ours? 
This might enable us to obtain free lunches from extra-dimensional ca-
terers, and at the same time necessitate a new first law of thermodynam-
ics: in the universe as a whole, energy cannot be created or destroyed. 
There have been other instances in which the Law of Conservation of 
Energy has been restructured. Einstein’s classic equation E�mc2 gives 
the “exchange rate” for matter and energy; 1 unit of matter is converted 
into c2 units of energy. This necessitated a restatement of the law of con-
servation of energy: the totality of matter and energy are conserved ac-
cording to Einstein’s formula, much as the total value of cash remains the 
same even if some of it is in dollars and some in euros. Given this history 
for the law of conservation of energy, it would not be completely surpris-
ing if yet another change lurked in its future. 

Why Entropy Increases 

In order to know why entropy increases, we have to know how to calculate 
entropy. The symbol �x, which appears frequently in mathematics, rep-
resents the change in the quantity x—if, at the end of the month, x repre-
sents my bank balance, �x is the amount of money that the state of 
California, which employs me, deposits directly to that account. In ther-
modynamics, S represents the amount of entropy in the system. The 
symbol �S, the change in the entropy of the system, is the sum of all the 
quantities �Q/T in a system, where T is a temperature at which a compo-
nent of the system resides and �Q is the heat change in that component 
at the temperature T. For those who have had calculus, it’s more formally 
defined as the integral of dQ/T—for those who haven’t had calculus, an 
integral is simply the sum of lots of very small things. 

I’ll borrow an example from Brian Greene’s The Fabric of the Cosmos7 

and imagine that we have a glass of water with some ice cubes in it. Heat 
f lows from hotter to colder because heat is a measure of how fast mole-
cules are moving; when fast-moving molecules collide with slow-moving 
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ones, the faster ones slow down (losing heat) and the slower ones speed 
up (gaining heat). Let’s assume that 1 unit of heat is transferred from a 
small amount of water at temperature T1 to an ice cube at temperature T2. 
Since water is warmer than ice, T2 
 T1. 

Heat accounting is very similar to checkbook accounting; units gained 
are viewed as positive (we add deposits in our checkbook), and units lost 
are viewed as negative (we subtract checks or withdrawals, and subtract-
ing a positive number yields the same result as adding a negative one). So 
the contribution to the change in entropy from the loss of the heat unit 
from the small amount of water is �1/T1. The contribution to the change 
in entropy from the gain of the heat unit by the ice cube is �1/T . The to-2
tal change in entropy from this heat transaction is �1/T �1/T2; this ex-1
pression is positive since T 
T1. As the water cools and the ice melts, 2
each one of these heat transactions changes the entropy by a positive 
amount, and so the entropy of the system increases. 

Once the system has reached equilibrium, with all the cubes melted and 
the system at a uniform temperature, no more heat transactions can take 
place and the glass of water is at maximum entropy. The glass of water is 
a microcosm of what is happening in the universe. For the most part, 
warm things are cooling and cool things are warming, entropy is increas-
ing, and we are headed toward a dim and distant future where everything 
is at the same temperature, no more heat transactions can take place, and 
things are really, really dull because nothing can happen. This is the so-
called heat death of the universe. 

At least entropy doesn’t always increase everywhere at every time; the 
second law only requires entropy to increase in reversible procedures,  
and, fortunately, a lot of the really interesting procedures do not fall into 
that category. The freezing of ice cubes, or the birth of a child, requires a 
local decrease in entropy—but it is always at the expense of the increase 
in entropy in the universe as a whole, because the universe must supply 
heat to run the refrigerator to freeze the ice cubes, and in order to produce 
the child it requires a lot of entropy in the form of material and energy. 

Local decreases in entropy take place for a variety of reasons, not just 
because you need to use electricity to run your refrigerator to make the 
ice cubes. Gravity, of which there’s a lot lurking around the universe, con-
tributes to local decreases in entropy that help power our existence. A 
cloud of hydrogen gas, when viewed strictly from the standpoint of its 
thermodynamic properties, is a high-entropy system. What the thermo-
dynamic viewpoint fails to take into consideration is the role that gravity 
plays in causing a local entropy decrease. The cloud, if it is large enough, 
collapses under its own gravitation until its mass is dense enough to 
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cause thermonuclear fusion, and a star is born. If the star is large enough, 
an even more dramatic entropy decrease is in the offing, as the star will 
eventually explode in a supernova, a process that creates the heavy ele-
ments from which planets, and living things, can eventually form. 

Another Look at Entropy 

Statistical mechanics offers an alternative definition of entropy. Statisti-
cal mechanics arose from the problem of discovering and utilizing the 
vast amount of information there is in any assemblage of molecules. Any 
sizable assemblage of molecules, such as a glass of water, contains at least 
1024 molecules, each occupying a specific location (requiring three coor-
dinates to specify) and moving in three different directions (also requir-
ing three coordinates to specify the north-south velocity, the east-west 
velocity, and the up-down velocity). Even if we could acquire knowledge 
(which we can’t) of all this information for every molecule in the glass of 
water, what on Earth would we do with it? Talk about information over-
load! If each computer had a terabyte of storage (a trillion bytes; I wouldn’t 
be surprised if they’re on the market soon, if they’re not already) and each 
coordinate used a single byte, you would need a computer for every man, 
woman, and child on Earth simply to store that information about a glass 
of water. 

We encounter the same problem in analyzing the attributes of large as-
semblages of anything, such as the income distribution of the population 
of the United States. The IRS undoubtedly has reasonably accurate date 
for, say, 100 million people, but if we had a book with the information for 
all 100 million people in it, our eyes would undoubtedly glaze as we tried 
to examine it. Boil it all down to a small chart, such as the percentage of 
people making less than $25,000, the percentage making between $25,000 
and $50,000, the percentage making between $50,000 and $75,000, the 
percentage making between $75,000 and $100,000, and the percentage 
making more than $100,000, and we are much more able to appreciate it 
and use it to make decisions. Statistical mechanics was born when it was 
realized that similar principles applied to the positions and motions of 
large assemblages of molecules. 

Any macrostate of a system, such as a glass of water with ice cubes in it, 
is an assemblage of microstates—the temperature, velocity, and location 
of the individual molecules. The definition of entropy offered by statisti-
cal mechanics is a measure of the number of microstates associated with 
each macrostate. A glass of water with ice cubes in it has fewer micro-
states comprising it than a glass of water at a uniform temperature, 

The Raw Materials 191�



because we are confining the ice cube molecules substantially. Their lo-
cation and velocity is highly restricted, whereas an individual water 
molecule is free to zip around and go anywhere. The second law of thermo-
dynamics, in this viewpoint, is a statement about probability; it is more 
likely that if a system evolves from one state to another, it will move to-
ward a state with higher probability. When we throw a die, it is less likely 
to land less than 3 than greater than 3 because there are only two states 
less than 3 (1 and 2) but three states greater than 3 (4, 5, and 6). 

This gives a probabilistic explanation of why the ice cubes melt: there 
are fewer states with ice cubes and hot water than with lukewarm water at 
a uniform temperature. It also points out why systems tend toward equi-
librium: these are the states of highest probability, and any deviation 
therefrom will naturally tend to evolve back toward a state of higher prob-
ability. 

However, the statistical view of the second law opens a door that is hid-
den in the classical formulation. A system is not compelled to be in its 
maximum-probability state, it is just more likely to be there than any-
where else. Unlikely though it may be, a glass of water at uniform tem-
perature may undergo a highly unlikely series of transitions, resulting 
in a glass with rectangular cubes of ice immersed in hot water—or, even 
more unlikely, with ice cubes shaped like miniature replicas of the Par-
thenon. When I was younger, I read One, Two, Three . . . Infinity, a won-
derful book by the physicist George Gamow.8 In it, he describes a similar 
situation in which all the air molecules in a room migrate to an upper 
corner, leaving the unfortunate inhabitants gasping for breath. He then 
does the calculation, and shows that we would have to wait roughly for-
ever for this to happen. I confess that I was definitely relieved to hear that 
this was one more thing I wouldn’t have to worry about—but I probably 
wouldn’t have worried about it had I not read the book. 

Order and Disorder 

Everyday life offers us a way to visualize the number of microstates asso-
ciated with a given macrostate. Linda, my wife, and I have a very different 
view of the purpose of my closet. Linda thinks that the closet exists for 
clothes to be hung in their proper places. Left to her own devices, she 
sorts the hangers from left to right; shirts on the left, pants on the right. 
The shirts and pants are further subdivided by whether they are work 
clothes (characterized by whether they have stains from the colored over-
head markers I use when lecturing) or dress clothes (those that are still 
pristine; all shirts and pants were initially purchased to be dress clothes, 
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but Linda realizes that they are not all destined to remain so). A final or-
der is imposed when she sorts them by color. I haven’t figured out what 
her color sorting strategy is; if somebody compelled me to do it, I would 
probably go with ROY G BIV (an acronym long ago committed to memory 
for the colors of the spectrum in the order they appear in a rainbow: red, 
orange, yellow, green, blue, indigo, violet). However, I have a friend who 
sorts his books by color and does so alphabetically; he would sort the 
above colors in the order blue, green, indigo, orange, red, violet, yellow). 

I, on the other hand, have a total disregard for such niceties. If the 
clothes are on hangers, it’s fine with me. So it takes me a little extra time 
to find the right shirt and pants. Big deal. Linda scrutinizes the closet 
every few months, and her reaction is always the same: I’ve messed 
things up again. There is only one right order in which to hang the 
clothes, and all other orders are characterized by the phrase “messed up.” 
For her, there are only two macrostates: the correct order (and there’s only 
one microstate corresponding to the “correct order” macrostate) and 
messed up (and she believes that I’ve generated every possible microstate 
corresponding to the “messed-up” macrostate). 

Nature and my closet have this in common: there are considerably more 
microstates corresponding to a disordered macrostate than to an ordered 
one. For a quantitative demonstration of this, suppose that we have two 
pairs of shoes: sneakers (what I wear most of the time) and loafers (what 
I wear on formal occasions), and two boxes in which to put the shoes. 
These boxes are large enough for all four shoes to fit, but one box is for 
the sneakers, and one for the loafers. The following is a table of all the 
different ways to put the four shoes in the two boxes. There is an obvious 
quantitative criterion for what constitutes order in this situation: the 
number of pairs of shoes in the proper box. The abbreviation LB stands 
for loafer box, and SB is for sneaker box. 

Left Right Left Right # Pairs in 
Loafer Loafer Sneaker Sneaker Correct Box 

LB LB LB LB 1 

LB LB LB SB 1 

LB LB SB LB 1 

LB LB SB SB 2 

LB SB LB LB 0 

LB SB LB SB 0 

LB SB SB LB 0 
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Left Right Left Right # Pairs in 
Loafer Loafer Sneaker Sneaker Correct Box 

LB SB SB SB 1 

SB LB LB LB 0 

SB LB LB SB 0 

SB LB SB LB 0 

SB LB SB SB 1 

SB SB LB LB 0 

SB SB LB SB 0 

SB SB SB LB 0 

SB SB SB SB 1 

There are three macrostates: 2 pairs in the correct box (the most ordered 
macrostate), 1 pair in the correct box, and 0 pairs in the correct box 
(the most disordered macrostate). There is 1 microstate corresponding 
to the most ordered macrostate, 6 microstates corresponding to the next-
most-ordered macrostate, and 9 microstates corresponding to the most 
disordered macrostate. It doesn’t always work out as neatly as this, but the 
more the possible number of microstates, the more likely it is that the or-
dered macrostates are far less probable than the disordered ones. What 
makes it so unlikely that the air molecules in the room will all migrate to 
the upper three inches is that there are on the order of 1025 air molecules 
in the room, and the number of microstates in which all these molecules 
are up near the ceiling is almost infinitesimal when compared with the 
number of microstates in which the molecules are spread out all over the 
room (to the great relief of the inhabitants of that room). 

Entropy and Information 

We are living in what has been described as the Information Age. Amer-
ica, the country whose vast industrial complex once churned out the au-
tomobiles and refrigerators that contributed so greatly to its wealth, has 
nearly abandoned the production of these material commodities to places 
where it can be done more efficiently (thanks to more modern production 
equipment) or more cheaply (thanks to an abundant supply of labor). Yet 
America still retains much of its leadership of the industrial world be-
cause the new coin of the realm is neither automobiles nor refrigerators, 
but information; and America is at the forefront of the manufacture and 
distribution of information. 

But how does this relate to the concepts we have been examining? It was 
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Boltzmann, the architect of statistical mechanics, who realized that when 
one talks about order and disorder, about the number of microstates associ-
ated with a given macrostate, the concepts being discussed related to the 
information one had about the system. Let’s look again at the example of 
the loafers and sneakers above. The most ordered macrostate is the one 
where every shoe is in its correct box, the least ordered one is the one where 
no pair of shoes is in its correct box, and the number of microstates corre-
sponding to each varies inversely with the precision with which we can lo-
cate the shoes if all we know is the macrostate. 

The more microstates that are associated with a given macrostate, the 
less we are able to say with precision about the individual components of 
the system. When we know that both pairs of shoes are in the correct box, 
we know with certainty where the left loafer is. By checking the table on 
pages 193–194, if we know that only one pair of shoes is in the correct  
box, the left loafer is in the loafer box in 4 out of 6 microstates—a proba-
bility of 2/3. However, if no pair of shoes is in the correct box, the left  
loafer is in the loafer box in only 3 of the 9 microstates, a probability of 
1/3. This analysis is typical; as entropy increases, the information that we 
have about the system decreases. Since the second law of thermodynam-
ics tells us that entropy is on the rise in the universe as a whole, the inexo-
rable progress of time is increasing what we cannot know. The heat death 
of the universe is also an information death; the universe is tending to-
ward a state in which there is nothing left to do, and very little of a physi-
cal nature to know. 

This is the exact opposite of what our everyday experience tells us. Every 
day science gathers more and more information about the universe 
around us; but that is because entropy is still capable of suffering local 
defeats. There is still lots of information to be gathered, and there will be 
into the far distant future. But even as we are greedily sucking up expo-
nentially more information, in the far, far, far distant future we will head 
inexorably toward a universe in which we cannot know almost anything, 
because there will be almost nothing to know. 

Black Holes, Entropy, and the Death of Information 

As science progresses, many of its important ideas traverse a common 
path. The first stage is the formulation of a hypothetical construct (the 
Sokal article now has me using that term), an object whose existence ex-
plains certain phenomena. The next stage is indirect confirmation; experi-
ments or observations suggest that the construct does indeed exist. Finally, 
we hit the jackpot, a direct observation of the object under consideration. 
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This path is traveled not just in the physical sciences, but in the life sci-
ences as well; it describes both the atom and the gene. 

It also describes the black hole, whose existence was first hypothesized 
more than two centuries ago by the English geologist John Michell. In a 
paper published by the Royal Society, Michell stated, “If the semi-diame-
ter of a sphere of the same density as the Sun were to exceed that of the 
Sun in the proportion of 500 to 1, a body falling from an infinite height 
toward it would have acquired at its surface greater velocity than that of 
light, and consequently supposing light to be attracted by the same force 
in proportion to its vis inertiae (inertial mass), with other bodies, all light 
emitted from such a body would be made to return towards it by its own 
proper gravity.”9 The basic idea of a black hole is clearly contained in this 
statement: the gravity of the object is so strong that no light can escape 
from it. 

With the development of Einstein’s theory of relativity, interest in the 
concept of a black hole picked up steam. In the 1930s, work was initiated 
by the astrophysicist Subrahmanyan Chandrasekhar and continued by 
Robert Oppenheimer (among others), who in just a few years would head 
the Manhattan Project, which developed the first atomic bomb. They con-
cluded that stars possessing greater than a certain mass would undergo 
an unstoppable gravitational collapse and become a black hole. Black 
holes thus progressed from hypothetical construct to entities that might 
conceivably be observed, either indirectly or directly. Supermassive black 
holes, with masses millions of times the mass of the Sun, are now be-
lieved by many physicists to lurk at the core of major galaxies, including 
the Milky Way galaxy in which Earth resides. In 2004, astronomers 
claimed to have detected a black hole orbiting the supermassive black 
hole at the center of the Milky Way galaxy (fortunately, Earth is situated a 
comfortable distance away from the center).10 Although we will never see 
a black hole, as John Michell was well aware, the evidence for their exist-
ence is now extremely strong. 

What is known about black holes is that they are completely determined 
by their mass, their charge, and their spin. These are the only things we 
can ever know about a black hole, and so when we see a black hole with a 
given mass, charge, and spin (the macrostate), all the gazillions of possible 
microstates occurring within the black hole correspond to that single mac-
rostate. Black holes are therefore the ultimate limit of how high the en-
tropy can go. The higher the entropy, the less the information, and a black 
hole of a given mass, charge, and spin conveys the least possible informa-
tion about the region of space it occupies. The goings-on in the inside of 
the black hole appears to be high on the list of things we cannot know. 
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Over the course of the next decade or so, astrophysical measurements 
should reveal the future of the universe: whether it is destined to expand 
forever or whether it will eventually recollapse in what has been termed 
the big crunch. Black holes will merge with other black holes until there 
may be only one giant black hole with all the matter in the universe, col-
lapsing ever in on itself. 

This was the conventional view of black holes until Stephen Hawking 
showed in the 1970s that black holes are not as black as initially thought. 
Quantum-mechanical processes allow matter to escape from the black 
hole in a process known as Hawking radiation.11 Just as water in a glass 
slowly evaporates as its individual molecules acquire enough velocity to 
escape the bounds of the glass, the matter within a black hole evaporates 
over time. Surprisingly, though, the rate at which the matter disappears 
depends strongly on the size of the black hole. A black hole the size of the 
Sun will take on the order of 1067 years to evaporate. Considering that the 
age of the universe itself is approximately 1014 years, solar mass black 
holes will be hanging around until the far, far, far distant future. Should 
the universe collapse into a black hole via the big crunch, it may take 
close to forever for it to evaporate, but evaporate it will. 

The Universe and Princess Leia 

Hawking’s work also led the way to the surprising result that the entropy 
of a black hole is proportional to its surface area, rather than its volume. 
What makes this result surprising is that we have already seen that en-
tropy is a measure of disorder, and we would certainly expect volume to 
be capable of displaying more disorder than the vessel that contains the 
disorder. 

As a result, some physicists have speculated that all the order and disor-
der we see in our universe is merely a projection of order and disorder on 
a multidimensional boundary that in some sense encloses our universe 
the way the surface of a basketball encloses the region inside it. This is 
something akin to the way a hologram works. A hologram is a clever de-
vice that projects the illusion of a three-dimensional object from the in-
formation inscribed on a two-dimensional one. 

There is a scene early in Episode 4 of Star Wars (that’s the first one 
filmed back in the mid-1970s) in which Luke Skywalker and his droids 
discover an old holographic projection device. They crank it up and a 
holographic image of Princess Leia appears. The image is a little fuzzy, 
but it is nonetheless three-dimensional, and the holographic Princess 
Leia certainly possesses a considerable amount of passion as she makes 
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her pitch for help. We know the holographic image of Princess Leia is 
just a holographic image, but we can conjecture about whether the im-
age, if somehow it were imbued with consciousness, would realize that it 
is only that, a holographic projection. If this is the way the universe is, 
and we are but holographic projections of some sort, how would we ever 
know? 

What Mathematics Has to Say About This 

From a mathematical standpoint, it is easy to put lower-dimensional ob-
jects into one-to-one correspondence with higher-dimensional objects. 
To see a simple example of how to put the points on a line segment into 
one-to-one correspondence with the points in a square, take a number 
between 0 and 1 and write out its decimal expansion, then simply use the 
odd-numbered digits (the tenths, thousandths, and hundred thousandths, 
etc.) to define the x coordinate and the even-numbered digits (the hun-
dredths, ten thousandths, and millionths, etc.) to define the y coordinate. 
Thus, the number .123456789123456789123456789 . . . would correspond 
to the point in the square (.13579246813579 . . . , .2468135792468. . . . ). 

To map points in the square to the line, simply interleave the digits alter-
nately—the exact reverse of what was done above. The point (.111111 . . . , 
.222222 . . . ) would correspond to the point .12121212 . . . on the line. 

The problem here is that these transformations are discontinuous. 
Points close to one another can end up widely separated, analogous to the 
baker’s transformation we saw when we were discussing chaos. In fact, it 
can be shown in topology that every one-to-one transformation of the por-
tion of the real line between 0 and 1 onto the square in the plane must be 
discontinuous.12 

This has interesting consequences for Princess Leia, as well as for us, if 
we are holographic projections. One would expect that the recipe for con-
structing the holographic Princess Leia would be continuous in the fol-
lowing sense: just as all the points in Princess Leia are close to one another 
(at least, they are all within Princess Leia), the recipe for constructing her 
would consist of instructions close to one another. But mathematics shows 
this cannot be the case. The recipe for constructing Princess Leia (or, if 
not Princess Leia, some other holographic projection) must be widely 
scattered. Instead of a single block of instructions on how to construct 
Princess Leia, the instructions for doing so may appear all over the book 
that represents the totality of all the holographic recipes. We might expect 
that pages 5–19 of the holographic recipes are devoted to construction of 
Princess Leia, but what might actually happen is that one line of page 5 
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might concern itself with the princess, with the next line on Princess Leia 
appearing on page 8,417,363. 

The Blind Holographer 

I don’t know about you, but this makes me doubt the holographic expla-
nation. I’m not comfortable with the idea that the instructions for mak-
ing yours truly are scattered all over hell and gone; I’d be a lot more 
comfortable if they were close together, like me. There is a hole in this 
argument, though: the theorem from topology that states that any trans-
formation between objects of different dimensions must be discontinu-
ous relies on the fact that the objects are continua of higher dimensions, 
characterized by the real numbers. The universe is quantized, the ele-
ments in it discrete, and this would also be true of the boundary of the 
universe (I think). In this case, my objections might not be valid, but I’ve 
never seen a theorem from topology addressing this point. 

Another reason that casts doubt, at least for me, upon the universe-
as-hologram theory is an updated version of the watchmaker theory es-
poused by the eighteenth-century theologian William Paley. Paley argued 
that just as a watch is too complicated a contrivance to simply occur natu-
rally and the existence of a watch implies the existence of a watchmaker, 
so do the complexity of living things imply the existence of a creator. In 
his 1986 book, The Blind Watchmaker, 13 Richard Dawkins argued that 
natural selection plays the role of blind watchmaker, without purpose or 
forethought, but directing the evolution of living things. 

The updated version of Paley’s argument would be that the existence of 
a hologram (the universe) implies the existence of a holographer outside 
the universe. Just as a character in a novel cannot write the novel in 
which he is a character, a character in a hologram cannot create the holo-
gram. So where does the hologram come from, and where do the rules 
come from that govern how the hologram is played? Maybe it’s like a self-
extracting file on a computer. I confess that my knowledge of the physics 
behind this theory is nonexistent, but nonetheless it seems to me that the 
universe-as-hologram theory requires either a blind holographer, a con-
cept that is to this theory what natural selection is to evolution, or the ex-
istence of a holographer outside the universe. Possibly the blind 
holographer will prove to be as much of a bombshell for physics as natu-
ral selection was to evolutionary biology. 
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NOTES 
1. See http://skepdic.com/sokal.html. This is an excellent summary of the Sokal 

hoax. The Skeptic’s Dictionary has a lot of good stuff, especially for those of us 
who are confirmed skeptics. It has great sections on UFOs, the paranormal, and 
junk science. You can get more of an education from this site than you can from 
a degree in practically any one of the currently trendy areas of academia. 

2. It pains me to say this, but the hard sciences and mathematics are not immune 
from this. People have a difficult time with ideas that challenge their cherished 
beliefs. That’s why I’m such a great respecter of science; it has a built-in mecha-
nism (replicability) to counter this. 

This also works when something challenges the established paradigm. Cold 
fusion sounded great, but when nobody could duplicate the critical experiments, 
it passed from view. 

3. See http:// skepdic .com/ sokal .html . 
4. See� http:// www .brainyquote .com/ quotes/ authors/ r/ richard _p _feynman .html. 

The quotes on this site are well worth the five minutes it takes to read them. 
Feynman died before the Sokal hoax, but the following quote is certainly appli-
cable: “The theoretical broadening which comes from having many humanities 
subjects on the campus is offset by the general dopiness of the people who study 
these things.” 

5. The song lyrics “When you wish upon a star / Makes no difference who you are” nails 
it, because nothing will happen that wouldn’t have happened anyway. Remarks 
like this f low freely when you spend a little time with The Skeptic’s Dictionary. 

6. So far, no such leakage has been detected. That doesn’t mean that reasonable 
theories based upon such a leakage can’t be constructed, although they may be 
hard to test. Recall that the steady state theory required the creation of one hy-
drogen atom per cubic meter every 10 billion years. The steady state theory did 
make predictions (or rather, it didn’t make the key predictions that the big bang 
theory did), and as a result it was possible to reject it based on experimental evi-
dence.

 7. B. Greene, The Fabric of the Cosmos (New York: Vintage, 2004), pp. 164–67. I’ve 
said this before: this is a terrific book. Not an easy book (don’t believe blurbs to 
the contrary), but utterly, completely, and totally worth the effort.

 8. G. Gamow, One, Two, Three . . . Infinity (New York: Viking, 1947). This was the 
book that started me on math and science, and if you have bright, inquisitive 
children age twelve or older, give this to them. There will be a bunch of math 
they won’t understand, but a lot that they will, and some of the science is obso-
lete or erroneous, but who cares? That can be corrected, and none of the math is 
erroneous. 

9. See http:// www .manhattanrarebooks -science .com/ black _hole .htm.�This quote 
can be found in more erudite sources, I’m sure. 

10. See http:// www .mpe .mpg .de/ ir/ GC/ index .php. Nice photos and graphics from 
the Max Planck Institute. 

11. See �http:// en .wikipedia .org/ wiki/ Hawking _Radiation. There’s probably more 
math here than you want to absorb, but this is a good article explicating the basic 
ideas. 
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12. There are many different ways of showing this fact (in fact, when I give exams in 
a first-year course in topology, I ask students to show this in at least two ways). 
One way to show that the unit interval cannot be mapped continuously onto a 
solid square one unit on a side is to take one point out of the middle of each. Do-
ing so separates the unit interval into two distinct pieces; in the language of to-
pology, it is disconnected. However, removing a point from the middle of the 
solid unit square still leaves an object that is connected; you can walk from any 
point to another with your path still in the square without the point, like avoid-
ing a gopher hole in your back yard.

 13. R. Dawkins, The Blind Watchmaker (New York: W. W. Norton, 1986). This is a 
great book, but it touches on ideas that make some people nervous. Dawkins has 
since become one of the leading spokesmen for atheism. Of course, that’s his 
point—that evolution can occur without the direction of a creator. I think every-
one should read this book, as it will make you think, no matter what your point 
of view. 
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Section IV 

The 
Unattainable 
Utopia 





12 ionCracks in the Foundat

The Foundation of Democracy 
Elections are the foundation of democracy. We vote on matters as impor-
tant as who will be the next president, and as trivial as who will be the 
next American Idol. 

When a candidate receives a majority of votes, there is no difficulty de-
termining the winner of the election—but when no candidate receives 
a majority of the votes, problems can arise. Although the winner of the 
election is sometimes unclear (as in the 2000 presidential election), often 
the election is decided by the choice of the rules that govern the election. 
American elections have a long history of exposing the soft underbelly of 
the election rules that are currently in use. 

Presidential elections currently use the Electoral College rather than the 
popular vote to decide the outcome, but this system first ran into trouble 
in the election of 1800, when Thomas Jefferson and Aaron Burr, the two 
leading candidates, received the same number of electoral votes. The 
Twelfth Amendment was passed to resolve the problems that occurred in 
this election by transferring the election to the House of Representatives 



in case no candidate has an electoral majority, but the 1824 election re-
vealed that the system had not been fixed. The leading candidate, the son 
of a former president of the United States, failed to win the popular vote. 
The election was eventually decided not by the voters but by a relative 
handful of highly placed government officials. It may sound like a de-
scription of the 2000 presidential election, but history does have a ten-
dency to repeat itself. 

The 1824 election featured four major candidates: the charismatic gen-
eral Andrew Jackson, who had helped defeat the British in the War of 
1812; John Quincy Adams, the son of a former president who was the 
secretary of state at the time of the election; William Crawford, the secre-
tary of the treasury; and Henry Clay, the Speaker of the House. After the 
votes were cast, Jackson had received a plurality of both the popular vote 
and the Electoral College vote, but he had not obtained the needed Elec-
toral College majority. As provided by the Twelfth Amendment, the elec-
tion went to the House of Representatives (a specter that brief ly reappeared 
during the 2000 election as well); but the Twelfth Amendment stipu-
lated that only the top three vote getters could be considered. This elimi-
nated Clay, who encouraged his electors to vote for Adams, a man he 
disliked personally but with whom he shared some important political  
views. As a result, Adams won, despite the fact that Jackson had received 
not only the most popular votes, but also the most votes in the Electoral 
College. When Adams later appointed Clay as secretary of state, it seemed 
to many that this was the payoff for Clay’s votes. 

Even today, the system still has not been fixed. The Electoral College 
places a different weight on popular votes cast in different states, and try-
ing to assess the relative weights of those votes is not an easy task. If one 
defines the value of an individual’s vote as the fraction of an electoral vote 
that it represents, then votes of individuals in low-population states with 
three electoral votes are often considerably more valuable than the votes 
of individuals in populous states such as California or New York. Using 
this method of evaluation, a Wyoming voter has almost four times the 
Electoral College clout as a California voter.1 

There is an alternative—and more mathematically interesting—way to 
measure the weight of a vote. The Banzhaf Power Index (BPI) counts how 
many coalitions (a coalition is a collection of votes) a voting entity can join 
such that its joining that coalition changes the coalition from a losing one 
to a winning one. 

Although the BPI can be computed for both individual voters and blocs 
of voters, it is easier to understand how it is computed in the context of an 
electoral college. To see how the BPI is computed, suppose there are three 
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states in an electoral college of 100 votes. The states have 49, 48, and 3 
electoral votes. To compute the BPI of the 3-vote state, we count the losing 
coalitions that become winning ones once the 3-electoral-vote state joins 
it. By itself, the 49-vote state is a losing coalition, but if the 3-vote state 
joins it, the 52-vote total assures victory. Similarly, by itself the 48-vote 
state loses, but if the 3-vote state joins it, the coalition is a winning one. 
This computation shows that the 3-vote state has a BPI of 2, as does each 
of the other states. The small state has tremendous clout in this election, 
far out of proportion to its actual electoral total, and the candidates should 
be working just as hard to win this state as either of the big ones. 

The opposite side of this picture is that a state with an apparently sizable 
number of electoral votes may actually be powerless to swing an election. 
If there are three states, each with 26 electoral votes, and a fourth state 
with 22 electoral votes (again, the electoral vote total is 100), whichever 
candidate wins two of the large states wins the election; it makes no dif-
ference how the small state votes. There is no losing combination of states 
the small state can join that will turn that combination into a winner; the 
small state has a BPI of 0. Each of the big states has a BPI of 4, as it can 
join either of the other big states, or an alliance of a big state plus the 
small state, and turn a losing combination into a winning one. The voters 
of the small state are effectively disenfranchised. 

Power index analyses have been done that show that a California voter is 
almost three times as likely to swing a presidential election as a voter 
from the District of Columbia.2 So everyone knows that the Electoral Col-
lege is not a truly democratic way to decide a presidential election—but 
how we measure this depends upon the mathematics one chooses to use 
to analyze the situation. 

In an ideal democracy, each vote should have equal weight, so we might 
decide to give each voter a total of 100 points, and ask him to distribute 
those points among the various candidates. Called the preference inten-
sity method, a variation of this was used for more than a century in deter-
mining the members of the Illinois House of Representatives.3 A simple 
example shows that there are potential problems with this method. Con-
sider an election with two candidates, A and B, and three voters (we could 
as easily be discussing larger groups of people as well as individuals). The 
first voter allocates 100 points to A and none to B, whereas the other two 
voters allocate 70 points to B and 30 points to A. A majority prefers B to A, 
but the lone voter that prefers A to B carries the day, as A wins the elec-
tion by 160 points to 140. Are we content with an election process that al-
lows a vocal minority to outshout the majority? 

The investigation of the problems in determining which voting 
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method to use in a democracy goes back more than two centuries. 
Probably the first person to notice that there were problems associated 
with determining the preferences of the majority was a French mathe-
matician-turned-bureaucrat who played a significant role in the French 
Revolution. 

A Voting Paradox 

Marie-Jean-Antoine-Nicolas de Caritat, Marquis of Condorcet, was born 
in 1743, at a time when it was a very good thing to be a marquis. Among 
the numerous benefits conferred upon members of the aristocracy was 
the availability of higher education. While at college, he focused on math 
and science, and at graduation was well on the way to becoming one of 
the leading mathematicians of the eighteenth century. Joseph-Louis La-
grange, a brilliant mathematician and physicist who did groundbreaking 
work in the theory of probability, differential equations, and orbital me-
chanics (Lagrange points are locations at which small bodies orbiting two 
larger ones appear not to move), described Condorcet’s thesis as being 
“filled with sublime and fruitful ideas which could have furnished mate-
rial for several works.”4 Praise from Lagrange was praise, indeed. 

However, soon after the publication of this paper, Condorcet met Anne-
Robert-Jacques Turgot, an economist who later became controller general 
of Finance under Louis XVI. The friendship blossomed, and Turgot ar-
ranged for Condorcet to be appointed inspector general of the mint, a 
similar position to the one awarded Isaac Newton by the English govern-
ment. 

When the French Revolution began, it was considerably less than a good 
thing to be a member of the aristocracy, but Condorcet actively welcomed 
the forming of the new Republic. He became the Paris representative to the 
Legislative Assembly, then later the secretary of the assembly, and helped 
to construct a plan for a state education system. Unfortunately for Con-
dorcet, when the French Revolution underwent a sea change, he made 
two critical mistakes. He could possibly have survived his first mistake, 
which was joining the moderate Girondists and asking that the king’s life 
be spared. His second mistake, though, proved to be fatal. Condorcet 
failed to recognize that control of the Revolution was about to be seized by 
the more radical Jacobins. He argued vigorously for a more moderate con-
stitution, which he had helped to write, and soon found himself on the 
French Revolution equivalent of an enemies list. A warrant for his arrest 
was issued, and Condorcet went into hiding. He later attempted to f lee, 
but was caught and sent to prison. Two days later, in 1794, he was found 
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dead in his cell. It is not known whether he died of natural causes or was 
killed. 

Condorcet’s present fame rests neither on his mathematical discoveries 
nor his role in the French Revolution, but is based to a much greater ex-
tent on what is known as the Condorcet paradox. This may be somewhat 
of a misnomer, as it is more of an eyebrow raiser than an actual paradox. 
The Condorcet paradox was the first difficulty discovered in the quest for 
the ideal voting system. It can occur when the ballot contains three or 
more candidates, and the voters are asked to rank them, from top to bot-
tom, in order of preference. Rank-order voting has been adopted for na-
tional elections by several countries (Australia is a leading example) and 
although it is not used in the United States in national elections, it is used 
in some local elections, and is gaining ground. There are at least two 
good reasons to consider rank-order voting: it helps us prioritize our op-
tions, and it does a much better job of eliminating the need for runoff 
elections (which are both time consuming and expensive) than does sim-
ply voting for a single candidate. 

One of the chief problems of a society is how we should allocate our re-
sources. Three items of current concern to which we must allocate 
resources are terrorism, health care, and education. To illustrate the Con-
dorcet paradox, suppose we polled three different individuals to rank 
these items in order of importance. Here are the ballots that were col-
lected. 

First Choice Second Choice Third Choice 

Ballot 1 Terrorism Health care Education 

Ballot 2 Health care Education Terrorism 

Ballot 3 Education Terrorism Health care 

Two out of three voters felt that terrorism was more important than 
health care, and two out of three voters felt that health care was more im-
portant than education. If an individual voter felt that terrorism was more 
important than health care, and health care was more important than 
education, that voter would logically feel that terrorism was more impor-
tant than education. But the majority does not appear to behave so logi-
cally; two out of three voters feel that education is more important than 
terrorism! If we are using the majority decision to determine how to al-
locate funds, we run into an insurmountable problem: it is impossible to 
spend more on terrorism than on health care, more on health care than 
on education—and more on education than on terrorism. 
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This simple example illustrates a problem that would perplex social sci-
entists for more than a century: How can one translate a collection of indi-
vidual ballots, consisting of a ranking of preferences, into a ranking of 
preferences for the group as a whole? The Condorcet paradox points out 
that if we simply look at pairs of candidates and determine which of the 
pair the majority prefers, we run into the problem that it is impossible to 
maintain what mathematicians call transitivity, which is a property of rela-
tionships such that if A is preferred to B and B is preferred to C, then A is 
preferred to C. Individual preferences are transitive; it seems reasonable 
to require that whatever method we adopt to discover group preferences, 
what we discover should be transitive as well. The Condorcet paradox  
highlights the need to determine precisely what properties we want in go-
ing from a collection of individual rankings to a societal ranking. 

So Who Really Won? 

As Western civilization began its gradual march toward democracy, dif-
ferent methods of translating individual rankings to societal ones were 
suggested. It soon became apparent that the outcome of elections could 
depend on what voting method was adopted. 

Numerous methods have been used to determine the winner of an elec-
tion in which rank-order voting is used. Some of the methods that have 
been frequently employed to determine a winner are

 1. Most first-place votes. The winning candidate is the one who receives 
the most first-place votes. This method, which has been described as 
winner take all, is used in England to elect members of Parliament, 
and is common in the United States as well on all levels.

 2. Runoff between the top-two first-place vote getters. The candidates who 
place either first or second in the number of first-place votes are 
matched head-to-head, and the winner is the one preferred by a ma-
jority of voters. If voters submit preference lists on the ballot, this 
method does not need a second election (which is customarily held in 
the real world, and results in additional monetary costs to both candi-
dates and governments), as it is easy to compute which of the two 
candidates is preferred by a majority of voters. Nevertheless, top-two 
runoffs are used in electing the mayors of many large cities, includ-
ing New York, Chicago, and Philadelphia.

 3. Survivor (after the popular television show). The candidate who re-
ceives the fewest first-place votes is voted off the island. That candi-
date is removed from consideration and stricken off the existing 
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ballots, which are then reexamined. The whole process is repeated, 
until only two remain. The winner of this two-person contest is the 
one preferred by the majority. The fact that it is possible to avoid run-
offs with this method has resulted in it being referred to as instant 
runoff voting (IRV). This method is used by Australia in its national 
elections, and was adopted in Oakland, California, in 2006.

 4. Numerical total. Each voter ranks the candidates on a ballot, and each 
rank is assigned a point value: for example, a first-place vote could 
give a candidate 5 points, a second-place vote 4 points, and so on. The 
winner is the candidate who receives the most total points. This 
method was suggested by the fifteenth-century mathematician Nich-
olas of Cusa for electing the Holy Roman Emperors,5 but today it is 
used only for major elections in a few small countries. However, it is 
widely used in nonpolitical elections; the American and National  
League most valuable players are chosen this way.

 5. Head-to-head matchups. Each candidate is matched head-to-head with 
each other candidate. The candidate with the most number of head-to-
head victories is the winner. One major advantage of this method, as 
we shall see later, is that it avoids the Condorcet paradox. However, 
this method will frequently not give a clear winner; if two candidates 
tie for first using this method, the winner is determined by the result 
of the head-to-head matchup between these two candidates. The most 
widespread use of this method is in round-robin tournaments, which 
frequently occur in sports, or in games such as chess. 

Each of these methods has its advocates, and each has been used in 
many elections. However, the hypothetical election shown in the table 
gives us a sense of how difficult it may be to find a good method of select-
ing a winner from a collection of preference rankings. Five candidates— 
A, B, C, D, and E—are running for office. Fifty-five ballots were cast, but 
only six different preference rankings occurred. Here are the results.6 

Number First Second Third Fourth Fifth�
of Ballots Choice Choice Choice Choice Choice�

18 A D E C B 

12 B E D C A 

10 C B E D A

 9 D C E B A

 4 E B D C A

 2 E C D B A 
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Admittedly, the above tabulation does seem to resemble something you 
see when you visit your optometrist, but let’s check the results of each 
method of voting.

 1. Most first-place votes. A is a clear winner.
 2. Runoff between the top two. A and B are the two candidates in the run-

off, as they have 18 and 12 first-place votes, respectively. A is preferred 
to B by only the 18 voters who placed him first; B is preferred to A by 
the other 37 voters, and so B is the winner.

 3. Survivor. This takes a little work to determine the winner. E receives 
the fewest first-place votes in the first round, and is therefore elimi-
nated. The table now looks like this. 

Number of First Second Third Fourth 
Ballots Choice Choice Choice Choice 

18 A D C B 

12 B D C A 

10 C B D A

 9 D C B A

 4 B D C A

 2 C D B A 

It’s the end of the line for D, who received only 9 first-place votes. 
The table now reduces to this. 

Number of First Second Third 
Ballots Choice Choice Choice 

18 A C B 

12 B C A 

10 C B A

 9 C B A

 4 B C A

 2 C B A 

At least the table is getting easier to read. B receives only 16 first-
place votes, leaving A and C in a two-person race. Eliminating B 
leaves this. 
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Number of Ballots First Choice Second Choice 

18 A C 

12 C A 

10 C A

 9 C A

 4 C A

 2 C A 

So C survives by a vote of 37 to 18. 
4. Numerical total. We’ll assume that the rule here is 5 points for a first-

place vote, 4 points for a second-place vote, and so on. You don’t have 
to spend time hauling out the calculator. I’ll do it for you. The result 
is that D wins this contest, with 191�5�9�4�18�3� (12�4�2)� 

2� 10 points.
 5.  Head-to-head matchups. You can probably see this one coming. E 

wins all head-to-head matchups. He or she beats A by 37 to 18, B by 33 
to 22, C by 36 to 19, and D by 28 to 27. 

Each of the previous methods has liabilities, and the prior example 
helps to illustrate what these liabilities are. If we use the most first-place 
votes to determine the winner, we may end up with someone who is pre-
ferred by a small minority and loathed by the majority. If we use the run-
off method, it is possible for someone who has almost a clear majority of 
first-place votes to lose to someone who has an insignificant number of 
first-place votes. The Survivor method may result in a winner who is 
clearly preferred to only one of the candidates, who just happens to be the 
other candidate left when it comes down to a two-person race. The nu-
merical totals method may yield different results depending upon the 
scoring: a 7-5-3-2-1 scoring system weights first-place votes more heavily 
than does a 5-4-3-2-1 scoring system. Finally, head-to-head matchups may 
result in a winner whom the fewest voters feel has the qualities of a 
leader. 

This example has obviously been carefully tweaked: D wins the numeri-
cal total by a small amount, and E barely beats D in the head-to-head 
matchup. Nevertheless, it becomes obvious that in a hotly contested elec-
tion, the result depends not only on the ballots that were cast, but also on 
the method for determining the winner. We’re back to the question posed 
at the start of this chapter: Is there a best voting method for determining 
the outcome of an election? 

Imagine for a moment that an election consultant is shown the results 
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of this hypothetical election, and is asked whether he can come up with 
something better. After studying the example, he might observe that 
some of the difficulty was engendered by the fact that A is a candidate 
that polarizes the electorate: eighteen voters prefer A to any other, but the 
remaining thirty-seven voters rank A dead last. The obvious thing to do 
would be to devise an algorithm that would help alleviate the problem 
of polarizing candidates. This can certainly be done, but in doing so our 
election consultant would undoubtedly notice that no matter what algo-
rithm he devised, other situations that would generally be considered 
undesirable might arise. In fact, that’s exactly what happened to Kenneth 
Arrow when he started his investigations. 

The Impossibility Theorem 

Kenneth Arrow was born in New York in 1921. His career was surpris-
ingly similar to Condorcet’s: Arrow, like Condorcet, started his career as 
a mathematician. Like Condorcet, he detoured into economics; and, like 
Condorcet, it brought him fame and fortune. Like Condorcet, Arrow’s 
work has triggered an intensive investigation of the problem he first 
brought to attention. One important exception is that as of this writing, 
Arrow is alive and well, living happily in Palo Alto, and has not yet been 
forced to f lee for his life because he offended the Jacobins or some other 
political hierarchy. Arrow attended City College in New York, where he 
majored in mathematics. He continued his mathematical education at 
Columbia University, obtaining a master’s degree, but became interested 
in economics as the result of meeting Harold Hotelling,7 a prominent 
economist and statistician, and decided to obtain a doctorate in econom-
ics. World War II intervened, and Arrow served as a weather officer in the 
Army Air Corps. Arrow spent his tour of duty doing research, eventually 
publishing a paper on the optimal use of winds in f light planning. 

After the war, Arrow resumed his graduate studies, but also worked for 
the RAND Corporation (one of the first of the think tanks) in Santa 
Monica, California. He became interested in the problem of constructing 
methods of translating individual preference rankings into preference 
rankings for the society. Arrow decided that he would concentrate on 
those societal ranking methods that were transitive, because transitivity 
is a property that is easy to express mathematically. This fact readily al-
lows deductions to be made. 

Arrow described his progress toward his most famous result, which re-
sembled the efforts of our hypothetical election consultant. At first he 
tried to devise an algorithm that would eliminate some of the difficulties 
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encountered by existing methods, but after each proposed algorithm 
eliminated one problem but introduced another, he began to consider the 
question of whether it was impossible to achieve the desired result. 

I started out with some examples. I had already discovered that 
these led to some problems. The next thing that was reasonable 
was to write down a condition that I could outlaw. Then I con-
structed another example, another method that seemed to meet 
that problem, and something else didn’t seem very right about it. 
I found I was having difficulty satisfying all of these properties 
that I thought were desirable, and it occurred to me that they  
couldn’t be satisfied. 

After having formulated three or four conditions of this kind, I 
kept on experimenting. And lo and behold, no matter what I did, 
there was nothing that would satisfy these axioms. So after a few 
days of this, I began to get the idea that maybe there was another 
kind of theorem here, namely, that there was no voting method 
that would satisfy all the conditions that I regarded as rational and 
reasonable. It was at this point that I set out to prove it. And it ac-
tually turned out to be a matter of only a few days’ work.8 

What were the conditions Arrow had discovered that could not be simul-
taneously satisfied by any voting method? Arrow’s original formulation is 
somewhat technical;9 here is a slightly weaker version of Arrow’s condi-
tions that is a little more natural than the one that appears in his disserta-
tion.

 1. No voter should have dictatorial powers. The first condition is some-
thing we would certainly want a democracy to have. In other words, 
when any one individual casts a ballot, the rest of the voters can al-
ways vote in such a way that the voting method overrides that indi-
vidual’s preferences.

 2. If every voter prefers candidate A to candidate B, then the voting method 
must prefer candidate A to candidate B. The second condition is una-
nimity. This also seems like an obvious and natural condition for a 
reasonable voting method to satisfy: if everybody loves it, the society 
should do it.

 3. The death of a loser should not change the outcome of the election. At first 
glance, this condition seems almost unnecessary. We all accept the 
fact that the death of a winner must necessarily alter the outcome of 
an election, but how can the death of a loser alter the outcome of an 
election? To see how this can happen, we’ll assume that the death of a 
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loser simply results in his or her being removed from the ballot. Sup-
pose we have an election with the following collection of ballots. 

Number of Ballots First Choice Second Choice Third Choice 

40 A C B 

35 C B A 

25 B A C 

This is a very interesting example, for as we shall see, no matter who 
wins, the death of the “wrong” loser can alter the outcome of the elec-
tion. 

Suppose our voting method results in A winning the election. Now sup-
pose that C dies. Once his name (or letter) is removed from the ballot, we 
see that 35�25�60 people prefer B to A, so B would win. 

Suppose instead that our voting method results in B winning, and A 
dies. In this case, 40�35�75 people prefer C to B, so C would win. 

Finally, suppose C wins, and B dies. In this scenario, 40�25� 65 people 
prefer A to C, again changing the outcome of the election. 

No matter what voting method is used to determine the winner, the  
death of the wrong loser changes the outcome of the election. This is 
clearly very undesirable. 

This condition also brings into focus another aspect of the election proc-
ess. It is a well-known political aphorism that the presence of a third can-
didate who has no real chance of winning can have a significant effect on 
the outcome of an election, as did the presence of Ralph Nader in the 
2000 election. This is simply the reverse of the “dead loser” condition 
above; instead of a losing candidate dying, a candidate who cannot win 
(and is destined to be a loser) enters an election and changes the outcome. 
Obviously, we cannot be certain what would have happened in the 2000 
election had Nader not been a candidate, but it is generally thought that 
he drew the great majority of his votes from liberals who would have 
voted for Al Gore rather than George Bush. Nader received 97,000 votes in 
Florida, the pivotal state in the election. Bush eventually carried the state 
by less than 1,000 votes, so Nader’s presence probably changed the out-
come of the election. 

The previous example shows that no voting method can prevent the 
death of a loser from changing the outcome in an election in which there 
are three candidates and a hundred voters. But what would happen if 
there were more candidates, or a different number of voters? What Arrow 
showed in his famous impossibility theorem, for which he was awarded 
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the Nobel Prize in Economic Science in 1972, was that no transitive vot-
ing method can satisfy all three of the above conditions as long as there 
are at least two voters considering at least three different alternatives. 

The Present State of Arrow’s Theorem 

The noted evolutionary biologist Stephen Jay Gould once proposed a the-
ory he called “punctuated equilibrium,”10 in which the evolution of spe-
cies might undergo dramatic changes in a short period of time, and then 
settle down for an extended period of quiescence. While this theory has 
yet to be demonstrated to the complete satisfaction of evolutionary biol-
ogists, it makes for an accurate description of progress in science and 
mathematics. This is precisely what happened here. Arrow’s theorem, 
which was undeniably a significant advance, has been followed by a long 
period during which the result has been extended by relatively small 
amounts. There have been important developments in related problems, 
which will be discussed in the next chapter, but Arrow’s theorem itself is 
essentially still the state of the art. 

Because Arrow’s theorem is a mathematical result, it is interesting to 
see how mathematicians work with it. The most obvious place to start is 
to examine the five hypotheses that appear in our formulation of Arrow’s 
theorem. These are: rank ordering of individual and group selections, 
transitivity of the group selection algorithm, absence of a dictator, una-
nimity, and the requirement that the death of a loser should not change 
the outcome of the election. 

One of the most intriguing facts about Arrow’s theorem is that the five 
components are independent of each other, but together they are incom-
patible. One of the first questions a mathematician will ask upon seeing 
an interesting theorem is, are all the hypotheses required to prove the re-
sult? It has been shown that if any one of the components of Arrow’s 
theorem is removed, the remaining four are compatible, in the sense that 
it is possible to construct voting methods satisfying the four remaining 
conditions.11 For instance, if we allow the society to have a dictator (a voter 
whose ballot is universally adopted), the four remaining conditions are 
automatically satisfied. 

Since any individual’s selection is transitive, and the group selection 
process is simply to adopt the dictator’s ballot, the group selection process 
will be transitive as well. The unanimity requirement will also be satis-
fied; if everyone agreed that Candidate A was preferable to Candidate B, 
the dictator also felt this way, and since the dictator’s ballot is adopted, the 
group selection process prefers Candidate A to Candidate B. In practice, 
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near unanimity is not an uncommon occurrence in dictatorships. In pre-
war Iraq, Saddam Hussein’s choices were reported to have received 99.96 
percent of the vote; recently, Bashar al-Assad was reelected president of 
Syria with 97.62 percent of the vote. Finally, the death of a loser will not 
affect the outcome of the election, for the removal of the loser from the 
ballot will not change the dictator’s ordering of the remaining candidates, 
and so the ordering of those other candidates by the society also will not 
change. So a dictatorship is an example of a “voting method” that satis-
fies the other four conditions we have been considering. 

The unanimity requirement has come in for some mathematical scru-
tiny that has real-world antecedents. As mentioned previously, in an elec-
tion with multiple choices, there are frequently options to which a voter 
is indifferent. One modification of rank ordering, preference intensity, 
has been discussed previously. At the time of this writing, there are ten 
announced Republican candidates for president. Senator John McCain, 
former governor Mitt Romney, and former mayor Rudy Giuliani have at-
tracted the lion’s share of the attention. A voter may have decided how to 
rank these three candidates, but has no strong feelings about any of the 
other. Some variations of Arrow’s theorem replace the condition if all vot-
ers prefer A to B, the voting method prefers A to B by something along the 
lines of if no voter prefers B to A, then the voting method shall not prefer B to 
A. This is clearly a modification of the unanimity requirement, to allow 
for the possibility that a voter may see no reason to prefer A to B, or vice 
versa, but the modification is not one that most people would regard as a 
significant change. 

One way to dispense with the dilemma presented by transitivity is to 
simply require that the voting method be able to choose between two al-
ternatives, and not worry about whether the method is transitive or not. 
Consider once again the situation we encountered with the Condorcet 
paradox: the majority prefers A to B and B to C, yet prefers C to A. If the 
voters were ignorant of the results of the A versus B race and the B ver-
sus C race, they would not be troubled with the verdict that the majority 
prefers C to A. Ignorance in this case is bliss, for the subject of the Con-
dorcet paradox never arises. The Condorcet paradox is more likely to 
trouble social scientists than actual voters, and by simply requiring that 
the voting method be able to choose between two alternatives, the transi-
tivity problem is eliminated. The head-to head method certainly accom-
plishes this. 

The two components of Arrow’s theorem that are most frequently cited 
as the source of the incompatibility of the five conditions are rank order-
ing and the dead loser condition. As we have noted, many of the most 
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important elections in the United States simply require the voter to make 
a single selection, so in practice the Arrow’s theorem complications do 
not arise (although, as will be seen in the next chapter, other complica-
tions do). However, the advantages of rank ordering that have been cited 
(prioritizing and the avoidance of runoff elections) are sufficiently valua-
ble to persuade social scientists (a more pragmatic group than pure math-
ematicians) to continue to study voting methods using rank ordering. 

The dead loser condition is probably the one that most frequently ap-
pears in versions of Arrow’s theorem—although Arrow himself thought 
that the dead loser condition was the most pragmatically dispensable of 
the five components. This raises the question of how we might mathe-
matically assess the value of a voting method—which is itself a subject 
that is currently being pursued. Just as the first law of thermodynamics 
compelled us to abandon the quest for free energy from the universe and 
directed our search toward the maximization of efficiency, Arrow’s theo-
rem forces us to search for criteria by which to evaluate voting systems, as 
there can be no perfect voting system. 

The Future of Arrow’s Theorem 

Niels Bohr’s oft-quoted observation, “Prediction is difficult—especially of 
the future,”12 is applicable to developments in most scientific endeavors. 
Even though it is impossible to predict what will happen, there are three 
possible directions for future results that would raise eyebrows—and pos-
sibly win Nobel Prizes if the result were spectacular enough. 

As has been observed, most of the results related to Arrow’s theorem 
involve conditions quite similar to Arrow’s original ones. Finding an im-
possibility theorem with a significantly different set of conditions would 
be extremely interesting, and is a direction which is quite probably being 
pursued at the moment by social scientists wishing to make a name for 
themselves. However, just as Arrow found that there was no social prefer-
ence ranking method satisfying all five conditions, future mathemati-
cians might discover that these conditions, or simple variants of them, 
might be the only ones that yield an impossibility theorem. The result 
that it is impossible to find a significantly different impossibility theorem 
might be even more startling than Arrow’s original result. 

Finally, one of the ways in which mathematics has always engendered 
surprises is the variety of environments to which its results are applied. 
Just as Einstein’s theory of relativity proved to be an unexpected and sig-
nificant application of differential geometry, there may be significant 
applications of Arrow’s theorem (which is, at its core, a result in pure 
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mathematics) in areas vastly different from the social preference setting 
for which it was originally formulated. 

I can’t resist the opportunity to insert an idea that has occurred to me 
(and probably others). One of the consequences of the theory of relativity 
is that there is no “absolute time”; one observer may see event A as pre-
ceding event B, but another observer may see event B as preceding event 
A. For each observer, the temporal ordering of events is a rank ordering, 
but the theory of relativity shows that there is no way that the rank order-
ing of events can be incorporated into a definitive ordering of events on 
which all observers can agree. Does this sound familiar? It seems a lot 
like Arrow’s theorem to me. 

That Reminds Me of a Problem I’ve Been Working On 

Whenever a new result appears in mathematics, especially a break-
through result such as Arrow’s theorem, mathematicians look at it to 
see whether there is anything about it they can use. Possibly the conclu-
sion of the theorem will supply the vital missing step for a proof, or pos-
sibly the proof technique can be adapted to suit their particular needs. 
A third possibility is a little more indirect: something about the theo-
rem will look familiar. It’s not exactly the same problem that is cur-
rently stumping them, but there are enough similarities to make them 
think that with a little tweaking, the theorem is something they can use 
in one way or another in their own research. And it was a little tweaking 
of Arrow’s theorem that led researchers directly into politics’ smoky 
back rooms. 

NOTES 
1. See http:// www .hoover .org/ multimedia/ uk/ 2933921 .html . 
2. See http:// www.cs.unc.edu/ ~livingst/ Banzhaf/. 
3. See http:// lorrie .cranor .org/ pubs/ diss/ node4 .html . 
4. See http:// www .cooperativeindividualism .org/ condorcetbio .html . 
5. See http:// en .wikipedia .org/ wiki/ Nicholas _of _Cusa .

 6. COMAP, For All Practical Purposes (New York: COMAP, 1988). The examples 
used in this chapter are based on the wonderful textbook For All Practical Pur-
poses. If you are going to buy one book from which to continue examining some 
of the topics in this book, as well as others you might find interesting, I would 
recommend this one. It was originally constructed by a consortium of teachers 
of courses with the intention of creating a book that would enable students with 
a minimal background in mathematics to learn some mathematics that relates 
to the modern world. It succeeded admirably. Early editions of this book can be 
purchased on eBay for less than $10. 
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7. Hotelling is the author of Hotelling’s rule in economics, which says that when 
there is a competitive market for an asset, the asset price will rise at approxi-
mately the rate of interest. It sounds good, but my bank pays about 4 percent, 
and the price at the pump is going up a whole lot faster. A good discussion of this 
can be found at http:// www .env -econ .net/ 2005/ 07/ oil _prices _hote .html . 

8. COMAP, For All Practical Purposes (New York: COMAP, 1988; the authors and 
publishers are the same). This is the book referred to in note 6; there are several 
editions, and this is the original. 

9. K. J. Arrow, “A Difficulty in the Concept of Social Welfare,” Journal of Political 
Economy 58(4) (August 1950): pp. 328–46. 

10. See http:// en .wikipedia .org/ wiki/ Punctuated _equilibrium . 
11. See http:// www.csus.edu/ indiv/ p/ pynetf/ Arrow _and_Democratic_Practice.pdf. 
12. See http:// en .wikipedia .org/ wiki/ Niels _Bohr . 
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13The Smoke-Filled Rooms 

The Art of the Possible 

Otto von Bismarck, the German chancellor, might be most famous for 
the warrior’s approach he took to unifying Germany, but he was a  
shrewd—and quotable—politician in all respects. “Laws are like sau-
sages: it is better not to see them being made,” he once advised. Not sur-
prisingly, then, that he considered politics “the art of the possible.”1 

During a long career that saw both military victories and political tri-
umphs (Bismarck was responsible for engineering the unification of Ger-
many), he undoubtedly witnessed and participated in many back-room 
negotiations. Bismarck probably would have been quite familiar with the 
following scenario. 

A committee to which you belong needs to elect a chair, and you and 
your fellows have decided to use an instant runoff setup to do so. Four 
candidates are running for the position. If any candidate receives a major-
ity of the first-place votes, he is elected; otherwise, there is a runoff be-
tween the two candidates who received the most first-place votes. You 
head a faction consisting of four people, and there are two other factions 



consisting of five and two people, respectively. Of the four candidates for 
chair, your faction wholeheartedly endorses A, would settle for B, and 
loathes and detests D. 

Everyone in your faction casts an identical ballot: their first choice is A, 
followed by B, C, and the detestable D. The other two factions have al-
ready cast their ballots as follows. 

Number of Votes First Place Second Place Third Place Fourth Place 

5 D C B A 

2 B D A C 

Glumly, you note that if you cast your four ballots, the results will look 
like this. 

Number of Votes First Place Second Place Third Place Fourth Place 

5 D C B A 

2 B D A C 

4 A B C D 

There will be a runoff between A and D, which D will win, 7 to 4. Intol-
erable. Suddenly, a bright idea occurs to you, and you locate a small room 
filled with the requisite amount of smoke in which to caucus. You point 
out to the other members of your faction that if they are willing to switch 
A and B on their ballots, B will receive six first-place votes (a majority) and 
win the election. No ballot they cast will enable A to win, but by switching 
A and B they can ensure an acceptable result and guarantee that D will 
not win. 

This technique also works in more subtle situations. Suppose now that 
the other seven ballots are tabulated as follows. 

Number of Votes First Place Second Place Third Place Fourth Place 

5 D C B A 

2 C B D A 

If your faction votes as originally intended, the tabulation will look like 
this. 
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Number of Votes First Place Second Place Third Place Fourth Place 

5 D C B A 

2 C B D A 

4 A B C D 

In this case, no candidate has a majority, and it now goes to a runoff 
between A and D as before, which D wins. However, if your faction 
switches the votes for A and B, the tabulation changes. 

Number of Votes First Place Second Place Third Place Fourth Place 

5 D C B A 

2 C B D A 

4 B A C D 

This forces a runoff between B and D, which (mercifully), B wins 6 
to 5. 

That’s sausage making for you. This tactic, which has occurred count-
less times in the history of elections, is known as insincere voting. Al-
though your faction prefers A, it will settle for B, and the possibility of D 
winning is sufficiently terrifying that your faction will not vote for its 
true preferences in order to avoid that outcome. 

This example also illustrates two conditions that are necessary in order 
for insincere voting to be effective: the decision method must be known 
in advance (in this case, top-two runoff), and the votes of the others must 
be known in order that a strategy can be accurately plotted. In the exam-
ple we have been studying, if the votes of the other factions are not 
known, you could inadvertently undermine your own desires by switch-
ing your first-place vote from A to B. The only reason to vote against your 
preferences is if you know that you can gain by doing so. 

Recall that when Kenneth Arrow first began his investigations, he was 
looking for a system of transferring the preferences of individuals into 
the preferences of the society, and he attempted to find one that would 
simultaneously satisfy several apparently desirable attributes. Although 
Bismarck might have nodded approvingly about how the possible was 
brought about in the previous example, it is clear that the outcome that 
was achieved resulted from knowledge of the votes already cast. Intui-
tively, it seems clear that the knowledge of the votes that have already 
been cast put those voting last in a more favorable position than those vot-
ing first. This certainly seems to add an element of jockeying for position 
to an election, as well as violating the “one man, one vote” idea that is 
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central to democratic elections: the votes of later voters are worth more 
than the votes of earlier voters. So the question arises: Does there exist a 
voting method that eliminates the possibility of insincere voting? 

The Gibbard-Satterthwaite Theorem 

Like the quest for the perfect system of translating individual preferences 
into the preferences of the society, the quest for a voting method that 
eliminates the possibility of insincere voting ends in failure (by this time, 
you’re probably not too surprised that this would be the case). The Gib-
bard-Satterthwaite theorem2 states that any voting method must satisfy at 
least one of three conditions. The phrasing below is slightly different 
from that in Arrow’s theorem, which was stated as “No voting method 
exists which satisfies . . .”; it is a little easier to phrase the last condition of 
the Gibbard-Satterthwaite theorem if we state it as “Every voting method 
must satisfy one of the following conditions.” As a result, some of the 
conditions look like negations of similar conditions in Arrow’s theorem. 

1. Some voter has dictatorial power. This is the negation of one of the 
conditions in Arrow’s theorem. 

2. Some candidate is unelectable. The Gibbard-Satterthwaite theorem 
does not specify why the candidate is unelectable. It may possibly be 
that he is extremely unpopular, or is running for an office for which 
he is not eligible. Or, as has happened in American politics, he may 
be dead. 

3. Some voter with full knowledge of how the other voters will cast their 
ballots can alter the outcome by switching his or her vote to ensure 
the election of a different candidate. 

The last condition is, of course, the critical one, as it is the essence of 
insincere voting. 

There are two important points to notice about the Gibbard-Satterthwaite 
theorem. First, it is far more likely that insincere voting will inf luence the 
outcome of an election if the number of ballots is relatively small, as it is 
obviously unlikely that a voter casting a ballot for senator in California (or 
even Wyoming) can inf luence the outcome of an election by changing his 
or her vote. However, there are many elections in which relatively few bal-
lots are cast—chairmanship of committees and nominating conventions 
are two such examples—and when one considers the possibility of indi-
vidual voters banding together as a bloc, the scope of the theorem widens 
significantly. 
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Additionally, it is highly unlikely that any California voter would have 
knowledge of how the other voters would cast their ballots; but once 
again, in small elections such as committee chairmanships or nominat-
ing conventions, it is not at all unlikely that there would be voters possess-
ing such knowledge. Voting in the United States Senate also seems  
subject to insincere voting; there is a time frame established for many 
votes, and the running tabulation is openly displayed. As a result, even 
though the Gibbard-Satterthwaite theorem is far less widely known than 
Arrow’s celebrated result, it is nonetheless not only a significant contribu-
tion to the social sciences, but also one with considerable real-world rami-
fications. 

Fair Representation 

In an ideal democracy, everyone who wishes to participate in the decision-
making process would be able to do so by casting a vote. However, the 
Founding Fathers recognized that most people were too occupied with  
their lives—with such essentials as farming, shopkeeping, or manufac-
turing—to be constant participants, and opted for a republic rather than 
a democracy. In a republic, the voters elect their representatives, who 
make the decisions. 

Unfortunately, under a republican system, it is impossible for all the fac-
tions to be fairly represented. A simple example of this might be some 
political body with five different subgroups, but only three leadership po-
sitions. At least two of those subgroups must necessarily be excluded 
from the leadership. 

The American republic has a similar problem. Election to each of our 
houses of Congress is done on a state-by-state basis. The Senate has two 
members from each state, so in that house every state has an equal share 
of leadership positions. Membership in the House of Representatives is a 
little trickier. The House has a fixed number of representatives (435); the 
allocation of representatives to each state is done on the basis of the cen-
sus, which is performed every ten years. It doesn’t seem like such a diffi-
cult job to determine how many representatives each state should get: if a 
state has 8 percent of the total population, it should receive 8 percent of 
the representatives. A quick calculation shows that 8 percent of 435 is 
34.8, so the question is whether to round off that .8 of a representative to 
34 or 35. 

Most elementary school students learn the following algorithm for 
rounding numbers to whole numbers: round to the nearest integer un-
less the number to be rounded is midway between two integers (such as 
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11.5), and then round to the nearest even integer. Using this algorithm, 
34.8 is rounded to 35, and 34.5 would be rounded to 34. This is an emi-
nently reasonable algorithm for rounding for the purposes of calculation, 
but it encounters a problem when rounding for representation in the 
House of Representatives. 

Suppose that the United States consisted of the original thirteen colo-
nies. Twelve of these colonies each have 8 percent of the population; the 
remaining colony has only 4 percent of the population. According to the 
above calculation, each of the Big 12 is entitled to 34.8 representatives,  
which is rounded by the elementary-school algorithm to 35 representa-
tives. The small colony gets only 17.4 representatives, which is rounded 
down to 17. This procedure designates a total of 12�35�17� 437 repre-
sentatives to a House that has room for only 435. 

This might seem like a minor problem in number juggling, but the 
presidential election of 1876 turned on the method by which these  
numbers were juggled!3 In that year, Rutherford B. Hayes won the elec-
tion by 185 electoral votes to 184 for his opponent, Samuel Tilden (who, 
incidentally, won the popular vote by a convincing margin). Had the 
rounding method used been different, a state that supported Hayes 
would have received one less electoral vote, and a state that supported 
Tilden would have received one more. This difference would have swung 
the election. 

The Alabama Paradox4 

The Founding Fathers recognized the importance of determining the 
number of electoral votes that each state should receive; indeed, the 
first presidential veto ever recorded occurred when George Washing-
ton vetoed an apportionment method recommended by Alexander 
Hamilton. (Congress responded by passing a bill to utilize a rounding 
method proposed by Thomas Jefferson.) Nevertheless, when the dis-
puted election of 1876 occurred, the Hamilton method, also known as 
the method of largest fractions, was the one being used, having been 
adopted in 1852. 

To illustrate the Hamilton method, we’ll start by assuming that we are 
going to assign representatives to a country that has four states, for a rep-
resentative body that has thirty-seven members. The following table gives 
the percentage of the population residing in each of the four states, and 
also the quota for each state, which is the exact number of representatives 
to which the state is proportionally entitled. 
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State Fraction of Population Quota (37 � Fraction) 

A  .14  5.18  

B  .23  8.51  

C  .45  16.65  

D  .18  6.66  

Each quota is a mixed number; an integer plus a fractional part, the 
fractional part being expressed as a decimal. Each state is initially as-
signed the integer part of its quota, as indicated by the following table. 

State Quota Initial Assignment Remaining Fraction 

A 5.18 5 .18 

B 8.51 8 .51 

C  16.65  16  .65  

D 6.66 6 .66 

The total initial assignment of representatives is 5 �8�16�6� 35, 
which is 2 representatives short of the desired total of 37. These two rep-
resentatives are assigned to the states in decreasing order of the leftover 
fraction. D has the largest leftover fraction (.66), and so gets the first of 
the two remaining representatives. C has the next largest leftover fraction 
(.65), and is awarded the second remaining representative. A and B come 
up short in this process. The final tally is shown in the following table. 

State Percentage of Population Number of Representatives 

A  .14  5  

B  .23  8  

C  .45  17  

D  .18  7  

In 1880, C. W. Seaton, the chief clerk of the U.S. Census Office, discov-
ered a curious anomaly in the Hamilton method. He decided to compute 
the number of representatives each state would receive if the House had 
anywhere from 275 to 350 seats. In so doing, he discovered that Alabama 
would have received 8 representatives if the House had 299 representa-
tives, but if the size of the House increased to 300, Alabama would receive 
only 7 representatives! Thus the Alabama paradox. 
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299 REPRESENTATIVES�
Rounded Final 

State 1880 Pop % Pop Std. Quota Quotas Appor Rank 

Kentucky 1648690 3.34 9.99 9 10 0.98 

Indiana 1978301 4.01 11.98 11 12 0.98 

Wisconsin 1315497 2.66 7.97 7 8 0.97 

Pennsylvania 4282891 8.67 25.94 25 26 0.94 

Maine 648936 1.31 3.93 3 4 0.93 

Michigan 1636937 3.32 9.91 9 10 0.91 

Delaware 146608 0.30 0.89 0 1 0.89 

Arkansas 802525 1.63 4.86 4 5 0.86 

Mississippi 1131597 2.29 6.85 6 7 0.85 

New Jersey 1131116 2.29 6.85 6 7 0.85 

Iowa 1624615 3.29 9.84 9 10 0.84 

Massachusetts 1783085 3.61 10.80 10 11 0.80 

New York 5082871 10.30 30.78 30 31 0.78 

Connecticut 622700 1.26 3.77 3 4 0.77 

West Virginia 618457 1.25 3.75 3 4 0.75 

Nebraska 452402 0.92 2.74 2 3 0.74 

Minnesota 780773 1.58 4.73 4 5 0.73 

Louisiana 939946 1.90 5.69 5 6 0.69 

Rhode Island 276531 0.56 1.68 1 2 0.68 

Maryland 934943 1.89 5.66 5 6 0.66 

Alabama 1262505 2.56 7.65 7 8 0.65 

300 REPRESENTATIVES�
Rounded Final 

State 1880 Pop % Pop Std. Quota Quotas Appor Difference 

Wisconsin 1315497 2.66 7.99 7 8 0.99 

Michigan 1636937 3.32 9.95 9 10 0.95 

Maine 648936 1.31 3.94 3 4 0.94 

Delaware 146608 0.30 0.89 0 1 0.89 

New York 5082871 10.30 30.89 30 31 0.89 

Mississippi 1131597 2.29 6.88 6 7 0.88 

Arkansas 802525 1.63 4.88 4 5 0.88 

New Jersey 1131116 2.29 6.87 6 7 0.87 

Iowa 1624615 3.29 9.87 9 10 0.87 
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Massachusetts 1783085 3.61 10.84 10 11 0.84 

Connecticut 622700 1.26 3.78 3 4 0.78 

West Virginia 618457 1.25 3.76 3 4 0.76 

Nebraska 452402 0.92 2.75 2 3 0.75 

Minnesota 780773 1.58 4.74 4 5 0.74 

Louisiana 939946 1.90 5.71 5 6 0.71 

Illinois 3077871 6.23 18.70 18 19 0.70 

Maryland 934943 1.89 5.68 5 6 0.68 

Rhode Island 276531 0.56 1.68 1 2 0.68 

Texas 1591749 3.22 9.67 9 10 0.67 

Alabama 1262505 2.56 7.67 7 7 0.67 

Those above charts are only half of two, and Seaton had to draw up 
seventy-five. One can only marvel at the tenacity of Seaton; in those 
days, in order to crunch the numbers, you really had to crunch the num-
bers without technological assistance, although Seaton may well have 
had other members of the U.S. Census Office assist him with the com-
putation. Not only that, but one also has to feel sorry for Seaton, who 
would have been much better served had he been a mathematician or a 
social scientist. A major discovery like this should be named Seaton’s 
paradox, but that’s not what happened. At least he could feel the thrill of 
discovery. 

The paradox can also be seen in this example. 

State House Size 323 House Size 324 

Fraction Quota Number Quota Number 
of pop. of reps of Reps 

A 56.7 183.14 183 183.71 184 

B 38.5 124.36 124 124.74 125 

C 4.2 13.57 14 13.61 13 

D  0.6  1.93  2  1.94  2  

The Population Paradox 

Other defects would appear in the Hamilton method. In 1900, Virginia 
lost a seat to Maine in the House of Representatives despite the fact that 
Virginia’s population was growing faster than Maine’s. 

Here’s a simple example. Suppose that a state has three districts, the 
state’s representative body has twenty-five members, and the districts are 
allocated representatives by the Hamilton method. 
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Population Number of 
District (in thousands) Fraction of State Quota Representatives 

A  42  10.219  2.55  3  

B  81  19.708  4.93  5  

C  288  70.073  17.52  17  

The next time the census is taken, the population of District A has in-
creased by 1,000, District C has increased by 6,000, while the population 
of District B is unchanged. The table now becomes 

Population Number of 
District (in thousands) Fraction of State Quota Representatives 

A  43  10.2871  2.57  2  

B  81  19.3780  4.84  5  

C  294  70.3349  17.60  18  

The population of District A has increased by 2.38 percent, whereas the 
population of District C has increased by 2.08 percent. District A is grow-
ing more rapidly than District C, but has actually lost a representative. It 
would certainly seem fairer that if District C is to gain a representative, it 
should do so at the expense of District B, which isn’t growing at all, and, 
in fact, could even be shrinking and still receive the same number of 
seats under the Hamilton method. 

The New States Paradox 

The Hamilton method failed one last time in 1907, when Oklahoma joined 
the Union. Prior to Oklahoma’s entrance into the Union, the House of Rep-
resentatives had 386 seats. On a proportion basis, Oklahoma was entitled to 
5 seats, so the House was expanded to include 386 �5� 391 representatives. 
However, when the seats were recalculated, it was discovered that Maine  
had gained a seat (from 3 to 4), and New York had lost a seat (from 38 to 37). 

They’re suffering from similar problems in the following example, 
where a representative house has twenty-nine seats. 

District Population (in thousands) Quota Number of Representatives 

A  61  3.60  3  

B  70  4.13  4  

C  265  15.65  16  

D  95  5.61  6  
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Now suppose a new district with a population of 39,000 is added. In a 
twenty-nine-seat house, its quota is 2.30, so it is entitled to two seats, and 
a new house is constituted with thirty-one seats. Here is the table that 
results. 

District Population (in thousands) Quota Number of Representatives 

A  61  3.57  4  

B  70  4.09  4  

C  265  15.50  15  

D  95  5.56  6  

E  39  2.28  2  

District A has gained a seat at the expense of District C. 
Possibly the Hamilton method could have survived two of the three 

paradoxes discussed here, but the trifecta killed it. The method cur-
rently used, the Huntington-Hill method, adopted in 1941, is a round-
ing method that is arithmetically somewhat more complex than the 
Hamilton method. However, as might be suspected, it, too, falls prey to 
paradoxes. Two mathematical economists, Michel Balinski and H. Pey-
ton Young, were later to show that it couldn’t be helped. 

The Balinski-Young Theorem 

As we have seen, representation is a consequence of the method chosen to 
round fractions. A quota method is one that rounds the quota to one of the 
two integers closest to it; for example, if the quota is 18.37, a quota method 
will round it to either 18 or 19. The Balinski-Young theorem6 states that it 
is impossible to devise a quota method for representation that is impervi-
ous to both the Alabama paradox and the population paradox. 

Although we have introduced this problem in what is probably its most  
important and controversial context—the structure of the House of Repre-
sentatives and the Electoral College—the problem discussed here has other 
important applications. Many situations require quantities to be divided into 
discrete chunks. As an example, a city’s police department has obtained  
forty new police cars; how should these be assigned to the city’s eleven pre-
cincts? A philanthropist has left $100,000 in his will to his alma mater for 
twenty $5,000 scholarships in arts, engineering, and business; how should 
the twenty scholarships be allocated among these areas? The Balinski-Young 
theorem shows us that there is no fair way to do this, if we define fairness to 
mean immunity to the Alabama and populations paradoxes. 
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Perhaps we should say there is no fair way to do this in the short run. 
What we mean by this is that there is no way to allocate representatives to 
states in such a way that every time a census occurs, each state is allo-
cated representatives via a quota method that does not run afoul of the 
Alabama and population paradoxes. However, there is a method of doing 
this that will give each state its fair share in the long run. Simply compute 
the quota for each state and use a randomized rounding procedure to de-
termine whether the number of representatives allocated to that state is 
the lower or higher of the two possibilities. For instance, if a state has a 
quota of 14.37 representatives, put 100 balls with numbers 1 through 100 
in a jar, blindfold the governor of the state, and have him or her pull out a 
number. If it is 1 through 37, the state receives 14 representatives; other-
wise, it receives 15. In the long run, each state will receive its quota of 
representatives. 

The immediate problem, though, is that this procedure produces Houses 
of Representatives with varying numbers of representatives. There are 
fifty states; if each state is awarded the number of representatives equal to 
the lower of the two possible integers, there would be only 385 representa-
tives. Similarly, there could be as many as 485 representatives. In the long 
run, of course, there will be an average of 435 representatives. 

Recent Developments 

Mathematical research is a lot more efficient than when I entered the 
field in the 1960s. Back then, the institution at which you were teaching 
subscribed to a number of journals; and most mathematicians had indi-
vidual subscriptions to the Notices of the American Mathematical Society, 
which printed abstracts of papers published, about to be published or 
delivered at conferences. If you saw something that interested you, you 
asked the author for a preprint if the paper wasn’t readily available. You 
read the article, then looked at the bibliography and found other articles 
of interest, which you xeroxed if they were in your library, or which you 
obtained by writing the author. Collaboration was still a key aspect of 
mathematical activity, but it was generally done with colleagues you knew 
locally or people you had met at conferences. 

The Internet completely reshaped the way mathematics is done. The 
American Mathematical Society maintains MathSciNet,7 a searchable 
database of practically every article that has been published in the last 
fifty years. If you are interested in a particular theorem, such as the 
Gibbard-Satterthwaite theorem, you simply type it into the MathSciNet 
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search engine—as I just did. Back came a list of sixty-one papers, the 
most recent being this year, and the earliest in 1975. If the paper was 
synopsized in Math Reviews, it can be obtained and read almost immedi-
ately. 

This process has made mathematical research much more efficient— 
and frenetic. The number of publications has jumped exponentially. In 
addition, the Internet has enabled communication between mathemati-
cians in all parts of the world who might never have come into contact. I 
have recently collaborated with mathematicians in Germany, Poland,  
and Greece whom I never would have met (barring a chance meeting at 
a conference) were it not for the Internet. 

MathSciNet also reveals an interesting divergence between the present 
state of affairs vis-à-vis the Gibbard-Satterthwaite theorem and the Balin-
ski-Young theorem. Insincere voting is related to bluffing in poker; and 
strategy is a key aspect of game theory, an area of mathematical econom-
ics which has resulted in several Nobel Prizes. Of particular interest at 
the moment is research into areas in which information may or may not 
be public, such as computing the transactional costs in routing networks. 
In such a network, the owner of a link is paid for the link’s use. A user of 
the network wants to obtain information, which must be transmitted 
through a succession of links, at the minimum cost; one obvious strategy 
is simply to ask the cost of each link. However, the owner of a link may 
profit by lying about the cost of using his link; this is similar to insincere 
voting. A key idea being explored is games that are strategy proof; that is, 
those in which there is no incentive for a player to lie about or hide infor-
mation from other players. It is easy to see how this is related to voting. 

On the other hand, only twenty-two articles are listed on MathSciNet con-
cerning the Balinski-Young theorem, the most recent being in 1990. The 
field is evidently dormant, despite the fact that there is an obvious gap in 
the area; I have not been able to find any work incorporating the new states 
paradox in Balinski-Young type theorems. Nonetheless, because of the im-
portance of the Electoral College, the current (Huntington-Hill) method of 
selecting representatives is currently being investigated8 by mathemati-
cians and political scientists to see if better methods are available. 

As is often the case, when an ideal result is shown to be impossible, it is 
important to develop criteria for the evaluation of what can be achieved 
under various circumstances. An impossible result establishes budgetary 
constraints, and it is up to us to determine what to optimize, and how to 
accomplish that, while living within our budget. 
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NOTES 
1. See http:// www .brainyquote .com/ quotes/ authors/ o/ otto _von _bismarck .html. I’m 

a big fan of quotes, and this site has a lot of great ones. 
2. Allan Gibbard is a professor of philosophy at the University of Michigan, and 

Mark Satterthwaite is a professor of strategic management and managerial eco-
nomics at Northwestern University. Despite the Midwestern locales of these two 
universities, the Gibbard-Satterthwaite theorem was not hatched over a dinner 
table while the two were discussing insincere voting. The original result is due 
to Gibbard; the improvement to Satterthwaite, as the following papers indicate: 
Allan Gibbard, “Manipulation of Voting Schemes: A General Result,” Economet-
rica 41 (4) (1973): pp. 587–601; Mark A. Satterthwaite, “Strategy-proofness and 
Arrow’s Conditions: Existence and Correspondence Theorems for Voting Proce-
dures and Social Welfare Functions,” Journal of Economic Theory 10 (April 1975): 
pp. 187–217. 

3. See� http:// en .wikipedia .org/ wiki/ United_States _presidential _election , _1876. 
An interesting sidelight to the election is that there was a minor third party in 
this election called the Greenback Party. Insert cynical remark here. 

4. See� http:// occawlonline .pearsoned .com/ bookbind/ pubbooks/ pirnot_awl/ 
chapter1/  custom3/deluxe-content.html#excel. This site has Excel spreadsheets 
you can download for both the Alabama paradox and the Huntington-Hill ap-
portionment method. 

5. See http:// www .cut -the -knot .org/ ctk/ Democracy .shtml. �This site not only has 
explanations of all the paradoxes, but nice Java applets that you can use to see 
them in action. 

6. M. L. Balinski and H. P. Young, Fair Representation, 2nd ed. (Washington, D. C.: 
Brookings Institution, 2001). Unlike the authors of the Gibbard-Satterthwaite 
theorem, who were separated by time and probably distance, Balinski and Young 
were together at New York University for much of the period during which the 
relevant ideas were formulated and the Balinski-Young theorem proved. 

7. MathSciNet is a wonderful database, but you either have to belong to an institu-
tion that subscribes to it (many colleges and universities, as well as some re-
search-oriented businesses, are subscribers), or have a tidy chunk of change 
burning a hole in your pocket. 

8. See http:// rangevoting .org/ Apportion .html . 
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14l lyThrough a G ass Dark

The Half-Full Glass 

Although mathematics and physics have shown us that there are things 
we cannot know and feats we cannot accomplish, just because utopia is 
unattainable does not mean that dystopia is inevitable. I was born in a 
world just coming into the electronic age, at a time when the values cher-
ished by the Western democracies were threatened as never before and 
never since, so when I look at what the world today has to offer and the 
threats it presents, it seems to me that the glass is much more than half 
full. 

The sciences, along with their common language of mathematics, will 
continue to investigate the world we know and the worlds we hypothesize. 
Along with future discoveries will come future dead ends, which will also 
serve to tell us more about the universe. I feel that this book would be 
incomplete without some sort of summary of what we have learned about 
the limitations of knowledge, but I also feel that it would be incomplete if 
it did not make an attempt to foresee what the future may hold in this 
area. An added reason for doing so is that it is unlikely that I will be 



remembered for any sort of spectacular success in my later years; maybe 
I can be remembered for a spectacular failure, like Comte or Newcomb. 
After all, we live in a society in which notoriety and fame are often con-
fused. 

Besides, mathematics is an area in which a really good question can  
achieve so much publicity that its eventual resolution, and those who re-
solve it, almost become historical footnotes to the question itself. Pierre 
de Fermat, Bernhard Riemann, and Henri Poincaré are among the greats 
of mathematics—but Fermat is almost certainly best remembered for 
Fermat’s last theorem, Riemann for the Riemann hypothesis, and Poin-
caré for the Poincaré conjecture. Fermat’s last theorem fell a decade ago 
to Andrew Wiles, who was denied a Fields Medal for his accomplishment 
because he was too old (Fields Medals are reserved for thirtysomethings 
and twentysomethings, and Wiles missed it by a year or so). The Poincaré 
conjecture succumbed more recently, and argument still exists in the 
mathematical community as to who should get the lion’s share of the 
credit, with the Russian mathematician Grigori Pereleman in the lead. 
The Riemann hypothesis is still just that—a hypothesis. Besides, one can 
go into the annals with a great conjecture, even if one is not a great math-
ematician. Most mathematicians would be hard-pressed to name a single 
one of Christian Goldbach’s mathematical accomplishments,1 but every-
one knows Goldbach’s conjecture—the elegantly simple “every even 
number is the sum of two primes”—a conjecture understandable to 
grade-school children but still standing unproved after more than a quar-
ter of a millennium of effort. 

The Impact of Age 

There is a perception that mathematicians and physicists do their best 
work before they are thirty. That’s not necessarily true, but it is true that 
the young make a disproportionate contribution to these subjects. This 
may be because the young are less willing to accept the generally accepted 
paradigms. Unquestionably, age confers both disadvantages and advan-
tages. 

Sometimes these disadvantages force practitioners into other areas. It 
is said with some truth that as physicists age, they become philosophers. 
They tend to pay less attention to discovering the phenomena of reality 
than to ref lecting on the nature of reality. With the possibility of multiple 
dimensions and the nature of quantum reality still unresolved, there is 
no question that there is considerable room for ref lection. 

When I was young, like most boys growing up in my era, I was ex-
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tremely interested in both sports and games—the difference being that 
in a sport you keep score and sweat from your own exertion, and in a 
game you merely keep score (sorry, Tiger, golf is a game, not a sport). One 
of my interests was chess; I studied the game avidly and read stories 
about it. I recall one story about a chess grand master traveling incognito 
on a train, and who is drawn into a pickup game with an up-and-coming 
young phenom. At one stage, the grand master observes that as one ages, 
one no longer moves the pieces, one watches them move.2 

I think there is a profound amount of both truth and generality in that 
remark; I believe it applies to mathematicians as well as grand masters, 
and I certainly feel that it applies to me. I am no longer capable of con-
structing lengthy and complicated proofs, but I have acquired a good deal 
of “feel” for what the right result should be. Some years ago, I had the 
pleasure of working with Alekos Arvanitakis, a brilliant young mathema-
tician from Greece. I have never met Alekos; he contacted me because he 
had obtained results relevant to a paper that I had written, and we started 
to e-mail and eventually began collaborating. He brought new insight and 
considerable talent to a field I felt I had been worked out (in the sense that 
nothing really interesting was left to prove). I would suggest something 
that felt like it ought to be true, and within a week Alekos had e-mailed 
me a proof. I felt somewhat guilty about coauthoring the paper, feeling 
that Alekos had done most of the heavy lifting, but I decided that at least 
I had a sense of what needed to be lifted. I could no longer move the 
pieces as well as I did when I was younger, but I could watch them move 
as if of their own volition. 

Classifying the Dead Ends 

Looking back through the previous chapters, it seems to me that the 
problems and phenomena we have investigated fall into a number of dis-
tinct categories. 

Of these, the most ancient are the problems that we are unable to solve 
within a particular framework. The classic examples of these are prob-
lems such as the duplication of the cube and the roots of the quintic. In 
both cases, the problem was not so much an inability to solve the problem 
as it was to solve the problem using given tools. The usual way to deal 
with such problems is to invent new tools. That’s exactly how the cube 
was duplicated and the roots of the quintic found: by using tools other 
than those available to formal Euclidean geometry, and finding ways 
other than solutions by radicals to express certain numbers. 

Undecidable propositions could well belong in this category. Recall that 
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Goodstein’s theorem was undecidable in the framework provided by the 
Peano axioms, but admitted a solution when the axiom of infinity from 
Zermelo-Fraenkel set theory was incorporated into the axiom set. This 
raises an obvious question: Is the nature of undecidability simply a mat-
ter of choosing the correct axioms, or the correct tools? 

Or are there genuinely undecidable propositions that do not lie within 
the reach of any consistent axiom set? 

A second category of insoluble problems exists because of the inability 
to obtain adequate information to solve the problem. Failure to obtain 
this information may occur because the information simply does not ex-
ist (many quantum-mechanical phenomena come under this heading), 
because it is impossible to obtain accurate enough information (this de-
scribes random and chaotic phenomena), or because we are exposed to 
information overload and simply cannot analyze the information effi-
ciently (this describes intractable problems). 

We come now to the third category of problems we cannot solve: those in 
which we are asking for too much. So far, the most significant problems 
we have found in this area are the ones from the social sciences, involving 
the quest for voting systems or systems of representation. There are in-
numerable formal problems that fall under this description, such as the 
problem of covering the chessboard with the two diagonal squares re-
moved with 1�2 tiles, and possibly the techniques involved for analyzing 
such problems will be useful in more practical situations. 

Finally, there are the questions that turn out to have several right an-
swers. The independence of the continuum hypothesis and the resolution 
of the dilemma posed by the parallel postulate fall into this category. It 
seems reasonably safe to predict that there will be other surprises await-
ing us; questions to which the answers lie outside the realm of what we 
would expect, including the possibility that there are questions whose 
answers depend upon the perspective of the questioner. For example, the 
theory of relativity answers the riddle of which came first, the chicken 
or the egg, with the answer that it depends upon who’s asking the ques-
tion—and how fast and in what direction they are moving. 

There is one last recourse when we are absolutely, completely, and totally 
stymied: try to find an approximate solution. After all, we don’t need to 
know the value of � to a gazillion decimal places; four decimal places suf-
fice for most problems. Although it is impossible to find exact solutions 
by radicals to certain quintics, one can find rational solutions to any de-
sired degree of accuracy. It is extremely important to be able to do this. 
Salesmen, after all, are very likely to continue traveling even in the ab-
sence of a polynomial-time solution to the traveling salesman problem, 
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and if we can find a polynomial-time algorithm approximating the exact 
solution within a few percent, we can save substantially on both fuel and 
time. “Good enough” is sometimes more than good enough. 

Two Predictions I Feel Are Likely 

A common theme that emerges from many of the problems that we have 
examined is that if the system we are describing is sufficiently complex, 
there will be truths that we will be unable to ascertain. Of course, the  
paramount example of this is Gödel’s result on undecidable propositions, 
but I would expect that mathematicians and logicians of the future would 
be able to do one of two things: either describe what makes an axiomatic 
system sufficiently complex to admit undecidable propositions, or show 
that such a description is impossible. There may already be partial results 
in this area, but if the latter result had been proven, I think it would be a 
sufficiently breathtaking result that it would be widely known in the math-
ematical community. I think the same will hold for Hilbert’s quest to axi-
omatize physics: either it will be shown that this cannot be done  
successfully, or if successful, it will result in physical analogues of unde-
cidable propositions. The existence of analogues of the uncertainty princi-
ple will arise not from a quantum hypothesis (although that hypothesis 
specifically resulted in the uncertainty principle), but from the axiomati-
zation itself. That axiomatization will show that there must be results  
along the lines of the uncertainty principle, but it will not tell us what 
those results are. 

I admit there is a certain vagueness about the predictions made in the 
previous paragraph, so I will offer a more concrete one. It will be shown 
for every one of the myriad of NP-hard problems that any polynomial-time 
algorithm devised for solving it admits anomalies of the form we encoun-
tered when discussing how priority-list scheduling can lead to situations 
in which making everything better makes things worse. This was also  
seen when we applied the nearest neighbor algorithm to the traveling 
salesman problem; it is easy to construct an array of towns and distances 
between them such that, if all the distances were shortened, the nearest 
neighbor algorithm resulted in a path with a longer total distance than the 
total distance given by that algorithm for the original configuration. 

If I were a young, but tenured, specialist in this area (the specification of 
tenure is necessary because this might be a problem requiring an im-
mense amount of time, and you don’t want to risk your chance of tenure 
on a problem for which you might not achieve quick results), or a mature 
specialist who was looking for an eye-opening result, I’d give this one a 
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shot. After all, it doesn’t seem so unlikely that Cook’s techniques for dem-
onstrating the equivalence of NP-hard problems could be modified to 
show that a hole in one algorithm must necessarily result in holes in oth-
ers. I’m not capable of moving these pieces, but I really believe that I can 
see them move. 

Falling Off the Train 

Whenever one considers memorable prognostications that have proven to be 
incredibly wrong, one has to at least mention a classic that occurred a couple 
of decades ago. The Soviet Union had just collapsed, the United States was 
the world’s only superpower, and Francis Fukuyama produced a widely 
publicized essay entitled “The End of History?” This less-than-prescient 
comment is taken from that essay: “What we may be witnessing is not just 
the end of the Cold War, or the passing of a particular period of post-war 
history, but the end of history as such: that is, the end point of mankind’s 
ideological evolution and the universalization of Western liberal democracy 
as the final form of human government.”3 

Karl Marx may have been discredited as an economic theorist, but he 
really nailed it this time with his observation that when the train of his-
tory rounds a corner, the thinkers fall off.4 Even conservatives would 
likely welcome the universalization of Western liberal democracy as the 
final form of human government, but the events of the last two decades 
have shown that the millennium, at least in the sense of the ultimate ful-
fillment of Fukuyama’s prediction, is not yet at hand. 

In retrospect, Isaac Asimov had a much clearer view of how history un-
folds. Asimov may not have been the first of the great popularizers of 
science (my nominee would be Paul de Kruif, author of the classic Mi-
crobe Hunters), but he was undoubtedly the most prolific. He has works in 
every major category of the Dewey decimal system except philosophy, 
which he perhaps resisted because his academic background was in bio-
chemistry rather than physics. It is rather surprising that his popularized 
science works are written as rather straightforward presentations of facts 
(“the moon is only one-forty-ninth the size of the Earth, and it is the near-
est celestial body”), because his fame originally came from his highly 
entertaining and often-prescient science fiction. He was one of the three 
great early writers of science fiction (Arthur C. Clarke and Robert Hein-
lein being the others), and his ideas were often unbelievably ingenious. 
One of his earliest published stories, “Nightfall,” describes the difficulty 
experienced by a civilization in trying to discover the mysteries of gravi-
tation in a planetary system with six nearby stars. I found particularly 
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amusing a story he wrote in which he described the logical consequences 
surrounding the discovery of thiotimoline, a substance that dissolved in 
water 1.2 seconds before the water was added. 

Asimov’s best-known major work of science fiction is the Foundation 
trilogy.5 In it, a future interstellar empire is collapsing, a collapse foreseen 
by Hari Selden, a mathematical sociologist who uses statistics to predict 
the future history of the empire. Selden’s computations are upset by the 
arrival of the Mule, a mutant whose special psychic abilities enable him 
to seize and hold power. Others, such as Georg Hegel, had emphasized 
that history is shaped by specific individuals, whom he called “world-his-
torical individuals.” Asimov’s contribution was to note that the propensity 
of civilizations to produce such individuals may invalidate any hope of 
applying techniques, such as those used in statistical mechanics, to his-
tory. After all, no single air molecule has the capability to alter the behav-
ior of large quantities of other air molecules the way a single individual 
can alter the course of history. 

Does this mean it is impossible to come up with a mathematical scheme 
for assessing or predicting history? It’s an interesting question, and I am 
unaware of any Hari Seldens, past or present, who have attempted any 
sort of scheme with any success. Possibly, when the mathematics of chaos 
is sufficiently well developed, it may be possible to set some sort of limits 
on what might be accomplished in this area. 

In the 1960s, the French mathematician René Thom inaugurated a 
branch of mathematics now called catastrophe theory.6 This was an at-
tempt to analyze dramatic changes in behavior of phenomena arising 
from small changes in the parameters describing the phenomena. Sound 
familiar? It certainly has a good deal of the f lavor of chaos theory. Addi-
tionally, catastrophe theory looks at nonlinear phenomena, as does much 
of chaos theory. A major difference, however, is that catastrophe theory 
views dramatic shifts in behavior of the underlying parameters as mani-
festations of standardized geometrical behavior in a larger parameter 
space. From a practical standpoint in actually predicting impending ca-
tastrophes, this isn’t much help. It might be nice to know that the next 
stock market collapse is simply the expected behavior of a well-defined 
geometrical structure in a higher-dimensional space, but unless we 
can get a handle on exactly what the parameters governing that higher-
dimensional space measure, and do so in some a priori manner, it’s not 
very useful. 

There are, of course, numerous applications of mathematics in the so-
cial sciences; courses in these applications are offered at almost every 
institution above the secondary level. Some have proved remarkably 

Through a Glass Darkly 243�



successful, primarily in areas offering easy quantification of the relevant 
parameters. However, just because it is easy to quantify the relevant pa-
rameters does not guarantee success; almost all the major stock market 
crashes have been characterized by an utter inability on the part of the 
major prognosticators to predict them. Possibly, some future Hari Selden 
may glimpse the multidimensional geometrical structures in whose 
shapes are written the portents of the future, but I think it more likely 
that some future Kenneth Arrow may discover that even though those 
geometrical structures may exist, there is no way for us to determine 
what they are. 

In the Footsteps of Aquinas 

Some of the greatest minds in history have endeavored mightily, as did 
Saint Thomas Aquinas, to prove the existence of a deity; and some equally 
great minds have endeavored just as mightily to prove that a deity cannot 
exist. These proofs have one thing in common. They have utterly failed to 
convince the other side. 

It is hard to imagine a proof on any subject that would elicit greater in-
terest on the part of the public. Such a proof would answer, one way or 
another, one of the most profound questions that has ever been asked. It 
is also likely that the appearance of such a proof would generate a fire-
storm of controversy as to its validity. It is unlikely that such a proof 
would be a simple one, as most of the simple lines of proof have been ex-
hausted centuries ago. 

I’ve seen several of these proofs employing dubious hypotheses and/or 
dubious logic, although I have yet to see any proofs on either side employ-
ing purely mathematical reasoning, with numbers, shapes, tables, or any 
of the other concepts of mathematics. Possibly the easiest is the one that 
argues for the nonexistence of God via the following paradoxical construc-
tion: If God exists, he or she must be all-powerful, so can God make a 
stone so heavy that he or she cannot lift it? If he or she cannot make such 
a stone, then he or she cannot be all-powerful. If he or she can make such 
a stone, then the fact that he or she cannot lift it provides evidence that he 
or she cannot be all-powerful. 

There is a limit even to the all-powerful, and overcoming such a paradox 
is one of them. One might with equal validity argue that the inability to 
duplicate the cube using compass and straightedge proves the nonexist-
ence of God. 

In fairness, a rebuttal should be given for one of the classic arguments 
given for the existence of God; the “first cause” argument. It is argued 
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that something cannot arise from nothing, and therefore something must 
have been here first, that something being God. It sounds convincing, 
but it simply doesn’t hold up. One current cosmological theory postulates 
the existence of an eternal multiverse. Our universe arose from the big 
bang some 13 billion years or so ago, but these events may have occurred 
infinitely often previously in a multiverse that has existed forever. At 
present, there is simply no way to know. 

Both sides have been so busy trying to construct proofs supporting their 
case that it seems to me they have overlooked the obvious. Once the at-
tributes of a deity are precisely defined, there may be a proof that it is 
impossible to prove the existence or nonexistence of such a deity. Alterna-
tively, the deity hypothesis may possibly be shown to be independent of 
a set of philosophical axioms, adjoining either the deity hypothesis or its 
negation to those axioms leads to a consistent axiom set. 

I must admit to a bias in favor of such a resolution. An awful lot of intel-
lectual firepower has been brought to bear on this issue, but as yet no di-
rect hits have been scored. I think society would be better served if 
individuals with the ability to make headway on such a problem devoted 
themselves to finding cures for AIDS or bird f lu. This is probably a pipe 
dream on my part, a delusion somewhat substantiated by the fact that 
even though it has been known for centuries that it is impossible to tri-
sect the angle using compass and straightedge, probably thousands of 
individuals are even now struggling to achieve the impossible. I shudder 
to think how many people might devote themselves to attempting to dis-
prove a result such as the independence of the deity hypothesis. 

I Know What I Like 

We decorate our residences and offices with pictures, and we surround 
ourselves with music. Despite the obvious and nearly universal appeal of 
the visual and auditory arts, I stand (or sit) with Rex Stout’s corpulent 
detective Nero Wolfe, who once stated that cooking is the subtlest and 
kindliest of the arts. For me, the ethereal beauty of Monet’s water lilies, or 
the transcendent majesty of a Beethoven symphony, pales in comparison 
to a steaming bowl of hot and sour soup, followed shortly thereafter by a 
succulent dish of kung pao chicken (extra spicy). 

Much though I love Monet, Beethoven, Nero Wolfe, and Chinese cui-
sine, these passions are not universally shared. In fact, Arrow’s theorem 
sheds some light on artistic (and culinary) preferences of a group; there is 
no way to translate individual preferences in these areas into a societal 
ranking consistent with the five conditions set down in Arrow’s theorem. 
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However, just as political success awaits the candidate who can appeal to 
the majority, fame and fortune undoubtedly await the individual who dis-
covers the key to creating widely appreciated art, music—or food. Mathe-
matics has met with little success in this area. 

Garrett Birkhoff was one of the preeminent American mathematicians 
of the first half of the twentieth century. He made noteworthy contribu-
tions to celestial mechanics, statistical mechanics, and quantum me-
chanics, in addition to his work in pure mathematics. Generations of  
college students—including mine—learned the theories of groups, rings, 
and fields from his landmark text on abstract algebra,7 coauthored with 
the equally eminent Saunders Mac Lane. 

Birkhoff also had a keen interest in aesthetics, and attempted to apply 
mathematics to the evaluation of art, music, and poetry. To be fair, his 
efforts were nowhere near as laughable as the reaction of Charles Bab-
bage, one of the pioneers in the construction of mechanical computa-
tional devices. On reading a poem by Tennyson that included the line  
“Every moment dies a man, / Every moment one is born,” Babbage sent a 
note to Tennyson pointing out that, to be strictly accurate, Tennyson  
should have written, “Every moment dies a man, / Every moment one and 
one-sixteenth is born.” 

Birkhoff’s basic formula for computing aesthetic value was that the 
aesthetic measure of a work of art was equal to the quotient of its aes-
thetic order divided by its complexity—orderly things were beautiful, 
complex things were not. The mathematicians whose musical tastes I 
have ascertained generally seem to conform to this rule; Bach generally 
receives a better reception among mathematicians than does Shostako-
vitch. In fact, when a friend introduced me to a Bach chaconne, he  
started by describing it by saying that it has 256 measures (256�28) di-
vided into 4 sections of 64 measures (64 �26), and I liked it even before I 
heard a single note. 

To some extent, the idea that order is more attractive accords with statisti-
cal surveys that have determined some fairly obvious broad generalities in 
aesthetics: the majority prefers symmetry to asymmetry, pattern to absence 
of pattern. However, some of Birkhoff’s subsidiary formulas are almost  
painful to read. For example, to compute the aesthetic order of a poem, 
Birkhoff devised the formula O�aa�2r�2m�2ae�2ce, where aa stands 
for alliteration and assonance, r for rhyme, m for musical sounds, ae for al-
literative excess, and ce for excess of consonant sounds. To be fair to Birkhoff, 
his efforts antedate Arrow’s theorem by decades, and he admitted that in-
tuitive appreciation outweighed mathematical calculation. Nonetheless, 
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Birkhoff believed that the intuitive appreciation stemmed from an uncon-
scious application of the mathematical aspects of his formulas. 

If I were to hazard a guess, the complexity of aesthetic factors is highly 
likely to serve as a barrier to any sort of aesthetic predictability. Evi-
dence for this is the total inability of husbands to predict what their 
wives will appreciate; as against that, wives often seem to have an un-
canny ability to know what their husbands will like. If there’s a theorem 
in here somewhere, it wouldn’t surprise me in the least if it is a woman 
who finds it. 

The Ultimate Questions 

Is it possible for mathematics to come up with a way to know where the 
dead ends are, or what we cannot know? This book is filled with specific 
examples of dead ends that we have circumvented and things we have  
found that we cannot know, but is it conceivable that there exists a meta-
theorem somewhere that delineates some of the characteristics of math-
ematical or scientific ideas that are beyond the reach of knowledge? Or is 
there a meta-theorem that says it is impossible for a meta-theorem as de-
scribed in the previous sentence to exist? 

I think that results in this area are unlikely to be so grandiose, and  
that the dead ends and limits to knowledge will arise only in specific 
circumstances rather than as the result of an ultimate meta-theorem 
about the limits of knowledge. Mathematics can only discuss mathe-
matical objects; although the scope of what constitutes mathematical 
objects is continually expanding. As great a mathematician as Gauss 
was, he did not foresee the possibility of treating infinities as completed 
quantities, and infinities are clearly something he could have consid-
ered to have the potential for being mathematical objects. We do not yet 
have the mathematical objects needed to discuss art, or beauty, or love; 
but that does not mean they do not exist, only that if they exist, we  
haven’t found them. Indeed, if we exist in Tegmark’s Level 4 multiverse, 
which consists of realizations of mathematical objects, then since art,  
beauty, and love exist, they are mathematical objects; we just have not 
found the way to describe them mathematically. Maybe Keats really was 
right about beauty being truth, and vice versa; most mathematicians 
believe at least half of it, that truth is beauty. If some future Kurt Gödel 
manages to construct a mathematical theory of interpersonal relation-
ships, and in so doing proves that there are aspects to love that we can-
not know, how deliciously ironic it would be that mathematics could 
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prove what poets, philosophers, and psychologists have only been able 
to conjecture. 

NOTES 
1. See http:// www -history.mcs.st -andrews.ac.uk/ Biographies/ Goldbach.html. I 

couldn’t resist and looked up Goldbach’s biography. He knew a lot of the greats 
and actually did some useful mathematics, but never in the article did I see the 
word dilettante, which, it seemed to me, best described him. 

2. Although I couldn’t locate a copy of the book, I recall the story being in I. 
Chernev and F. Reinfeld The Fireside Book of Chess (New York: Simon & Schus-
ter, 1966). 

3. See http:// www .wesjones .com/ eoh .htm . 
4. See http:// www .facstaff .bucknell .edu/ gschnedr/ marxweb .htm .

 5. I. Asimov Foundation (New York: Gnome Press, 1951); Foundation and Empire 
(New York: Gnome Press, 1952); Second Foundation (New York: Gnome Press, 
1953). Also see http:// www .asimovonline .com/ asimov _home _page .html. This is 
the home page for a complete introduction to Isaac Asimov. One could spend the 
better part of a lifetime reading his books and short stories, and it would proba-
bly be the better part of the reader’s lifetime. 

6. See http:// en .wikipedia .org/ wiki/ Catastrophe _theory.�This provided an intro-
duction to catastrophe theory, along with a description of various types of catas-
trophes. Regrettably, there are no predictions of future catastrophes. 

7. G. Birkhoff and S. Mac Lane, Algebra (New York: Macmillan, 1979). This is a  
later edition of the book that I used. 
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