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PREFACE

I must admit my difficulty to explain the title given to this book. As a matter of fact, it has
been an exercise to overcome the sense of amazement exhibited  by my co-speakers.

The questions:
¿Can you imagine a hatful of maths within a paper folded hat of those made for us when little chil-
dren?

¿How many maths can be associated to the paper folded aeroplane of our childhood?
Not to mention our beloved pajarita, well known all around but difficult to draw properly by

almost everybody (try it if you are sceptical).

The hereby questions have to do with persons who know at least the relationship between
origami and paper folding, for most people are unaware of it. Learned persons use to mention Una-
muno at this point, and that´s all. Commonly you may come across questions like this: Explain me
what papiroflexia means (papiroflexia is the Spanish word for origami), because it sounds like the
name of a disease ...

Therefore, if with origami happens what already we know, and mathematics are rather un-
popular, as also is recognised, the resultant of mixing both may be at least quite risky.

Nevertheless, my consciousness of the close affinity between geometry and origami, and my
fondness of geometry made me to endure an special affection towards origami.

Well before I came across origami, I had already published two treatises dealing with ge-
ometry.

The first of them, under the name of Tubes bent in space, was a study based on pure space
geometry to solve certain problems of the automotive industry. The second one was entitled 3D
measuring machines, geometric principles and practical considerations and aimed at the comput-
erisation of a 3D measuring mechanical outfit, through analytical geometry. It consisted basically in
a great deal of combined calculus programs to enable the 3D measurements of any component at the
workshop.

While digging out into the geometrical profile of origami I discovered that the art of folding
paper had many other ways of relationship with the mathematics such as infinitesimal calculus, al-
gebra, topology, projective geometry, etc. Eventually this particularity forced my decision for the
final title of the book.

In spite of that, there remains an important question that should be clarified: ¿Which helps to
which? ¿Origami to mathematics or viceversa?

The answer is not a simple one, for sometimes the paper folder employs mathematics not
been aware of it. For example, if I take a square of paper and fold its lower side over the upper one,
the result is a folding line which is the axis of  symmetry that converts one side into the other; but I
do not necessarily need to know that I had played with the geometrical concept of symmetry to pro-
ceed with the rest of my folding.
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Origami receives more sophisticated geometrical help to design folding bases. In passing, I
tackle this matter when dealing with the triangle´s incenter and its related hyperbola. But one who
masters this subject is our ingenious creator Anibal Voyer. Not long ago, he lectured on that in the
conference held at the Spanish Institute of Engineering under the title of  Engineering, origami and
creative design. Afterwards, and with the same materials, he wrote a comprehensive article in PA-
JARITA (No 68, October 1999; bulletin of  the AEP –Spanish Association for paperfolding-), this
time entitled INTRODUCTION TO CREATION.

Many mathematical demonstrations can be fulfilled by means of origami. Nevertheless, to be
fair, both, maths and origami demonstrations should be performed in order to obviate the risk of
taking for exact a folded figure which is not such. Moreover, the best will be to add some CAD
(Computer Aided Design) evidences.

It should be recognised the ingeniousness that led origami to demonstrations such as the
limits of convergent series, the Poncelet´s theorem on conics or problem solving of maxima and
minimums. The book will deal with all this and with some other simpler things developed under the
excuse of not having available neither a pencil nor a rule, a square or a set square.

In this respect, I wondered whether splitting out simple and no so simple matters. Eventually
I decide not to do so. I thought the entanglement produced would be greater as compared with the
advantages to be obtained.

I hope the reader will follow out each subject up to his mathematics limitations, ignoring the
points to be jumped: that will not impair him to proceed.

Another question I should like to point out is this: now and again I intend to prove the lack
of mathematical rigour shown in certain paperfoldings which, on the other hand are believed to en-
close perfection.

Anybody can object that my strict attitude does not make any sense because the inherent im-
perfection of folding (not being the less important that induced by the thickness of paper) hide, by
far, the supposed geometrical imperfection.

I am prepared to agree with the objectors. Not only that: I should like to render here my most
sincere homage to those who had the intuition to almost reach perfection in folding geometrical
figures.

But that will not weaken my purpose to discern perfect –there are many of them- and imper-
fect constructions, from the point of view of pure geometry. It should be added that the contrary is
equally true: a faultless design, mathematically speaking, will end up in an imperfect construction
by the reasons already mentioned. What matters is to know the cause of imperfection.

Finally I should like to assert my limitations. I am not an origami creator. To me, origami, as
well as mathematics are a source of recreation, of personal fun.

Much of the content of this book was already widespread throughout countless publications.
My main work has consisted in adding coherence and math demonstrations whenever needed. The
reader will be able to judge how much in it is due to my own creativity or to my profile of recreator.
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In connection with the above mentioned demonstrations I have to say that not always are
shown all their steps, in some occasions because of its simplicity and in others, on the contrary, due
to its complexity. When this complexity would carry us too far away of origami, I have preferred to
take for granted what is already demonstrated in specialised books of mathematics.

A demonstration is made once and is not repeated anymore. So, it may happen that if the or-
der of a certain themes has been changed as required by book editing, a subject may have its demon-
stration not in its first appearance. Nevertheless I hope that the intended demonstrative rigour is kept
generally throughout the book

I wish to add that I had no intention whatsoever to cover all the exhaustive information
available. My ruling criterion to choose the subjects was, in the first place to show a didactic or re-
search projection, and then to keep an adequate balance between maths and paperfolding.

I mentioned before the use of CAD along this book. All its figures have been drawn with
CAD. There is no special difficulty with 2D figures but that may not be the case with 3D ones:
sometimes I have been forced to develop calculus programs to help the analytical CAD support.

The reader will find a bibliography at the end of the book. Since in origami not always is
easy to assign the name of the author to a given work, I have made this assignment in the text only
in cases when the situation was clear to me. The list of acknowledgements is, besides that, a kind of
fuzzy bibliography.

.
Hereinbefore I said that origami is performed just only with paper used at the same time as

raw material and instrument. But as a matter of fact, I have taken licence to some exceptions that do
not injure its foundation and, at the same time, help the practice. Those exceptions may be such as
marking with a pencil by transparency, using scissors to cut or mark creases, the use of adhesive
paper or glue to fix 3D figures, etc.

I never had the intention to compete with origami process creators that achieve complex
geometrical figures of a great merit: now bodies out of a single paper, now figures made out of
moduli, in both cases perfectly locked up: whenever the risk of loosing the balance between origami
and maths, I always reverted to the licence I mentioned before.

I have to refer also that the reader will find in between some chapters (just to cover blank

spaces in the text) the so-called Interlude. What is shown there has nothing to do with maths,

but represents a series of beautiful figures that will break with the possible tiresome mathematical
developments. The crease pattern and complete figure are shown together to graphic scale. I should
recommend the curious reader to try to get the first without looking at it, just fixing his attention in
the finished figure: it´s an exciting exercise. Many of the complete figures have been taken from, or
merely inspired by Makio Araki and Toshikazu Kawasaki.

A relation of  origami symbols is included to help those fond of maths but not familiar with
origami practises. At the end, the only thing left is to ask for patience and comprehension to those
inclined to origami rather than to maths. This is the kindest request of

THE AUTHOR
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1. ORIGAMI RESOURCES TO DEAL WITH POINTS, STRAIGHT LINES AND SUR-
FACES.
1.1. OBTENTION OF POINTS.

POINTS OBTAINED AS:
ORIGI-

NAL
INTERSECTION

EDGE / FOLD
TRANSPORTATION
PREVIOUS POINTS

INTERSECTION OF
TWO FOLD LINES

1 2    3    4    5 2         3       4       5 3    4    5
A
B
C
D

     E    J
     F    L
           M

G(D)  H(C)  J1(J)  J2(J)
           I(F)            L1(L)

          K

Example. G(D): G is obtained in  Fig. 2 when revolving D around EF.

PHASES

BA

6
D

E
LJ

L2J

K

1
F

J1

5
C

M

G
H

I

D

A

1
C

2

E

B

4
L2J

1

L

J

1J

LJ

F

G

3

J

K L

I
H

M
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1.2. OBTENTION OF STRAIGHT LINES (valley, mountain)
1.2.1. THROUGH ONE POINT: infinity, a)
1.2.2. THROUGH TWO POINTS: just one, b)

1.2.3. SYMMETRICAL TO THE EDGE a THROUGH POINT P: The folding line
is the axis of symmetry. There is an infinity of solutions: a paper edge can be

folded over one inner point, in many ways.

1.2.4. FOLDING OF A PAPER CORNER E over the edge a.

As can be seen, there is an infinity of solutions: The envelope of all those folding
lines is a parabola so defined: focus E; axis EB; directrix a; vertex V. Therefore, for
point P on the parabola, we have PA = PE.

1.2.5 FOLDING OF ONE EDGE OVER AN INTERNAL POINT.
Same approach as in Point 1.2.4:

a) b)

a a

PP

A

V

a B a

E

B

P E
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•  Once the folding line is obtained, it makes no difference to fold the point over the edge
or viceversa.

•  Corner E can be considered as an internal point of a larger rectangle.
Therefore, the result is a series of straight lines whose envelope is a parabola.

1.2.6 FOLD A PAPER EDGE over two inner points.

There may be a unique or a double solution; the edge and the straight line determined by
those two points are symmetrical with respect to the folding line. In the second case both
creases are perpendicular: bisectors of two supplementary angles.

1.2.7 PERPENDICULAR BISECTOR OF A SEGMENT.

Let two points in a piece of paper. If we fold it in such a way that one of the points will lay
over the other, the folding line will be the perpendicular bisector of the segment determined
by both points. By so doing we can see that the points are symmetrical with respect to the
folding line, which is the characteristic of a perpendicular bisector. It´s advisable to mark
heavily both points in order to let them coincide by transparency.

1.2.8 BISECTOR OF THE ANGLE FORMED BY TWO STRAIGHT LINES.

1- The bisector of edges ed is the folding line f.
2- c (valley) is the bisector of lines ab (mountain).
3- g (valley) is the mean parallel of edges hi.
4- j (valley) is the mean parallel of lk (mountains).

a
a
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1.2.9 PERPENDICULAR LINES.

1- If edge a is folded over itself, the folding line becomes perpendicular to that edge.
This can be expressed as: A → A; a → a.

2- If an existing fold (mountain) is folded over itself by means of a valley fold, both,
mountain and valley folds become  perpendicular.

1.2.10 STRAIGHT LINE PARALLEL TO ANOTHER THROUGH ONE POINT.

1- Get the parallel to existing fold a, through point P.
2- Get b perpendicular to a through P (P → P; a → a).
3- Get through P the perpendicular to b: the answer is c, parallel to a.

1.2.11 TRANSPORTATION OF A  SEGMENT OVER A STRAIGHT LINE

1- Transport segment AB, situated on an existing fold line, over the other fold a.
2- Fold the  bisector of lines a / AB to get points A´ B´ which are the answer.

d

f

e

a
c

b

h

g

i
l

j
k

4321

a
c

b

PP

b

a

P

a

1 2 3

1 2

aA
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1.3 RELATION WITH SURFACES

1.3.1 EULER CHARACTERISTIC APPLIED TO THE PLANE

If both figures are obtained by folding a rectangle, the above condition can be checked:

1) Faces = 12     Vertices = 20     Sides = 31   ........  12 + 20 = 31 + 1
2) Faces = 11     Vertices = 16     Sides = 26   ........  11 + 16 = 26 + 1

Total of faces by left sides: 7+1+1+1+1= 11 = total amount of faces = C     (2)
Adding up (1) and (2) we´ll have:

Total sides A = V – 1 + C     ;     C + V = A + 1

A
B

A´

B ´

A
B

a
1 2

3

I
I

I

I

I

I
I

II

III

IV

V

We shall show it from figures 2 and 3.
The heavy broken line is such that it passes just once through all the
vertices. As any side has two vertices, it follows that the broken line is
made out of so many sides as vertices in it, minus 1.

15 A = 16 V – 1     ;     Sides in broken line = Vertices – 1    (1)
There are left 26 – 15 Sides to be determined. Let´s associate these
11 Sides left, to the amount of faces.
•  Faces to which, from broken line, one only side is left (I): 7.
•  After the former operation: faces to which one only side is left

(II): 1
•  Idem (III): 1
•  Idem (IV): 1
•  Idem (V): 1

Faces (C) + Vertices (V) = Sides (A) + 1

V A

1

C C

V
A C

2

A
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1.3.2 INTERACTION OF STRAIGHT LINES AND SURFACES.

We shall call paper strip to a rectangle such that its length is much greater than its width.

1. If two paper strips of the same width are superimposed, the common surface is a rhomb (one
square if the strips lay orthogonally). That common surface is, obviously, a parallelogram: con-
gruent acute angles in A, B, C (vertical and alternate / interior). ∆ADE = ∆CDF as straight an-
gled  with ang.A = ang.C and ED = EF (same strip width). The parallelogram with two adjacent
congruent sides is a rhomb or a square.

2. If both strips have different width, the common surface is a rhomboid (a rectangle in case of
orthogonality): Parallel lines cut by those other parallel produce a parallelogram with not con-
gruent adjacent sides.

3. A strip of paper folded over itself in any way, produces an isosceles triangle as common surface.
If  fold and paper edge form a 45º angle, the triangle is a straight angled one; it´s equilateral if
that angle is 60º. By means of this one can make very useful bevel squares.
The angles marked in A or B are equal, now because of symmetry now for being alternate inte-
rior angles; so AB is the base of an isosceles triangle. Moreover, sides OA and OB of that isos-
celes triangle are equal as the fold p makes evident: O → O     ;     B → A. Therefore,  ∆OAB is
isosceles.

1.3.3 THE RIGHT ANGLE

Let a strip having A in its upper edge and make the fold AD according to α.
Then produce fold AF to carry AC over AE.

Resulting angle FAD is a right one:
Symmetry in last figure makes equal the pair of α angles and the pair of β, respectively.
Straight angle in A gives:

180=+++ ββαα      ;     90=+ βα

C A B

D

1 2

A

E
B

F

C

D

A

B

3
O

p
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1.3.4 VERTICAL ANGLES

1.3.5 SUM OF THE ANGLES OF A TRIANGLE

Let´s produce the following folds in ∆ABC:
1- CD: C → C     ;     AB → AB
2- FG: C → D

As  result we have:

CDED
2

1=      ;     CAFA
2

1=      ;     CBGB
2

1=

Besides, because of the symmetry, it is:
FDFC =      ;     GDGC =

which proves that ∆AFD and ∆DGB are isosceles and therefore:
Ang.FDA = Ang.FAD     ;      Ang.GDB  = Ang.GBD

The straight angle in D can be expressed as:
180 = Ang.ADF + Ang. FDG +Ang. GDB

or its equivalent:
180 = Ang.CAB + Ang. ACB +Ang. CBA

This proves that the three angles in a triangle add up to 180º.

C A

F
EA D

DF

A

F E D

B

B C

O

a

p

b

Let a and b, lines meeting at O.
If we produce the fold p: O → O     ;     b →a
angles α will be equal, respectively, because of  symme-
try. Therefore vertical angles 2α and 2α will also be
equal

C

F E G

A D
B

F E G

B
DA
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2. HAGA´s THEOREM

Enunciation:
Let the square FIJH whose side measures one unit. If we fold vertex F over the mid-point of
JI, three right-angled triangles ∆(abc); ∆(xyz); ∆(def) are obtained in such a way that their

sides keep the proportion 3,4,5. Besides, being 2
1=x , it is also 3

2=a

3. HAGA´s THEOREM EXTENSION

3.1 For any value of x, THE PERIMETER of ∆(abc) equals the sum of perimeters of
∆(xyz) and ∆(def).
Moreover, the perimeter of ∆(abc) is equal to half the perimeter of square FIJH.

3.2 KOHJI and MITSUE FUSHIMI

If 3
1=x  , it follows that 2

1=a  ;     and if 4
1=x  ,  it´s 5

2=a

4. HAGA´s THEOREM DEMONSTRATION; likewise its extension will be demonstrated for
any value of x.

Fig. 1 is a square whose side is equal to 1. F is folded over the upper side, being x the inde-
pendent variable. By so doing, fig. 2 is produced. In Fig. 3 BA is drawn perpendicular to JI through
B, so BA and EF  are parallel. Fold BF is perpendicular to DE because DE is the perpendicular bisec-
tor of BF. Therefore ABEF is a quadrilateral having perpendicular diagonals and opposite vertices (B
and F) equidistant from the intersection point of those diagonals; moreover, opposite sides BA and
EF are parallel as said hereby. Consequently this quadrilateral is a rhomb.

J I

H F

=
c

=
x

a b y z

d

f

e

x x x

a b

c

y z

e
d

f

a b

c

y z

f
dF F

IJ

D

H

V
E

A

1 2 3

B

p
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Under these conditions AB = AF; in other words, A is a point on the parabola p which has  focus F,
directrix IJ, vertex V (VI = VF) and passes through H (because HJ = HF). According to point 1.2.4, DE
is the tangent to parabola p in A.

Fig. 4 shows the structure of parabola p; its equation is:
2

2

1
Kxy +=      ;     IV = 

2

1

As the parabola passes through H, we´ll have:
x = 1   ;   y = 1   ;   replacing:

1 = K+
2

1
    ;   

2

1=K

Resultant equation of the parabola is

2

2

1

2

1
xy += ;   ( )21

2

1
xy +=                             (1)

For the demonstrations we are after, now we already have the first motive: the parabola´s
configuration. The second motive we need is the similarity of the three triangles we are dealing
with.

Those triangles are similar because they are right angled (three vertices of the square) and
each two of them have either acute angles, equal.

Both motives will allow us to define in a direct or indirect way, the nine sides as functions of
the independent variable x, which at the same time is one of the sides.

x                                   ( )21
2

1
xy +=              22 xyz −=

                                    
( )

22

1

xy

xx
a

−

−=              
( )

22

1

xy

xy
b

−

−=              xc −=1

                                   bd −=1                         
( )

x

by
e

−= 1
                eaf −−=1

H

J

A

c

F

I

V

x
+X - X

+Y

p

B

4
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Let´s pass to demonstrations.  For x = 2
1  we have:

8

4=x
8

5=y
8

3=z

6

4=a
6

5=b
6

3=c

24

4=d
24

5=e  
24

3=f

Those values prove that respective sides keep the ratios 3, 4, 5.

It should be noted that the hypotenuses (the greater sides) are in proportion to 5. On the

other hand it has been shown that for x =  2
1  it is a = 3

2

In connection with Point 3.2, it can be checked that for the two values assigned to x, we
have:

3

1=x
9

5=y
2

1=a

4

1=x  
32

17=y
5

2=a

As the perimeter of the square amounts to 4, the second part of Point 3.1 will be demon-
strated if, once a  b  c expressed in function of x, the following hypothesis is verified:

2 = a + b + c ,  i.e., if:

2 = 
( )

( ) 222125.0

1

xx

xx

−+

−
 +  

( )( )
( ) 222

2

125.0

115.0

xx

xx

−+

−+
 + 1 – x

Developing denominators, we have:

( ) ( )224224 15.02125.05.025.025.0 xxxxxx −=−+=−++
Therefore:

( ) x
x

x

x

x −+
+
++

+
= 1

1

1

15.0
2

2

0.5 (1 + x) = x + 0.5 (1 + 2x ) – x 0.5 (1 + x)              ,,            0 = 0       which proves the theorem

In a similar way can be proved the second part of Point 3.1.
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5. COROLLARY  P

Enunciation:

•  Let´s assume that in a square whose side measures one unit, any of its four vertices is
folded over any one of its opposite sides in such a way that the image of that vertex in-
duces the distance x as shown in figs. 1 and 2 of Point 4.

•  If x takes the form x = 
n

1
, n being a natural number or a rational number greater than 1, a

will have the value a = 
1

2

+n
 (see again fig. 2 in Point 4).

Before demonstrating the  corollary, let´s see two applications of it:

•  n is a natural number. If we make, e.g., x =
13

1
, a will be a =

7

1

14

2 = . This characteristic leads to

an exact procedure to divide a segment by folding, in any number of equal parts (see Point
9.16). We have to bear in mind (see Fig 2 of Point 4) that ratio a / x is biunivocal, i.e., it makes
no difference to fix x to get a, than viceversa.

•  n is a rational number. If the square have a side of, e.g., 600 mm and we want x = 273.5 mm, we
can figure out the value of a:

x in the form  
n

1
 ends up as:  x = 

2735

6000
1

5.273

600
1 =  , therefore  a = 

1
5.273

600
2

+
= 0.6262163

600 x 0.6262163 = 375.72982 will be the mm measured by a.

DEMONSTRATION: For this purpose we´ll use the values  of x, y, a, obtained in Point 4 as
well as the simplification in the denominator of a. So we have:

a = 
( )

( ) 222125.0

1

xx

xx

−+

−
 =  

( )
( )215.0

1

x

xx

−
−

= ( )x

x

+15.0
                         (1)

If the corollary is true, it will be:    a =  
1

2

+n
= 






 +

n

n
1

15.0

1

                           (2)

Expressions (1) and  (2) are identical for 
n

x
1=  (corollary P´s statement), therefore the cor-

ollary is fulfilled.
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6. OBTENTION OF PARALLELOGRAMS

6.1 SQUARE FROM A RECTANGLE
Solution 1
Rectangle with sides in any given proportion. Square side results to be equal to the smaller
side of rectangle.

Solution 2

Square centered in rectangle. If the latter has b as base and a as height, the condition 
2

b
a ≥

must be fulfilled to enable construction.

6.2 SQUARE FROM ANOTHER SQUARE.

6.3 RHOMB FROM A RECTANGLE. Rhomb diagonals are equal to the sides of the rectangle.

6.4 RHOMB FROM A SQUARE, the rhomb being the sum of  two equilateral triangles.
Observe that ∆(ABC) is a real equilateral triangle. To trisect an angle of 45º, see Point 8.2.2.2
hereinafter.

= =

= = = =

=

=

1 2

3

4

5

6

1 2

3

4

1 B2 discard 3

1 2

discard

3

1

3 B 4

2

discard
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6.5 RHOMBOID FROM A PAPER STRIP.

Start up with the greater side AB and fold over small side AX with any slope.
The rhomboid AXYB is obtained. Observe how an isosceles trapezium associated to the
rhomboid, is produced in step 5.

1

2 3

A B

X

A B

4 5

6 7

8
A B

X Y

C

4

A

15º 60º

1

B

15º

discard

3

2



Jesús de la Peña Hernández

14

6.6 OBTENTION OF RECTANGLES WITH THEIR SIDES IN VARIOUS PROPORTIONS:

6.6.1 2:1, start up with a square whose side is one unit. ABCD is the rectangle obtained.

6.6.2 1:2  (DIN A), with BA = 1. The solution is in step 3:

In  ∆ADC, ang DAC = 45º; AD = AB = 1; 
2

AD
AC = ; 

1

2=
AC

AB

6.6.3 1:2  (envelope version)

1 2 3

A

B

C

E D

1

C

B

D

A

2 discard

B

1
A

discard

32

D
C

A B

C

A
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Let L and l be the greater and smaller side of the rectangle finally obtained in step 5.

In 2: CB = 
2

L  ; CB = CD = AD – AC ; AD = 2  ;  AC = AE = 1. therefore

12
2

−=L

In 4: FB = l ; FB = HG = AD – 2AH ; AH = HF = 
2

L  . So

l = L−2
Then,

( ) ( )
( ) 2

1222

122

2

122 =
−−

−=
−
−=
LI

L

6.6.4 DIN A FROM ANY RECTANGLE

IF AB = 1, then AE = AD = 2
ABCD ≡ DIN A
If a DIN A4 is wanted, AB should measure 210 mm.

6.6.5 DIN A FROM ANOTHER  DIN A

A4 ≡ 297 x 210 ≡ 210 2  x 210

A5 ≡ 
2

297
210 ×  ≡ 210 

2

2210× ≡ 210 
2

210×

4 5

A F

B

G

D

H

3

DA

1

B

2

E
C

discard
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6.6.6 ( )15:2 −  = ( ) 2:51+

x = tg α 2
2

1
:1 ==      ;     AB

BC

AB

x

x

x
==−=+±−=+±−=

2

15

2

41

2

111

2
tg

2α

(AB must be positive)

ABCD is the wanted rectangle because:

( )15:2
2

15
:1 −=−=

AB

CB

6.6.7 ARGENTIC RECTANGLE: GREATER SIDE = 52 + ; DIAGONAL = 53 +

1 Start up with rectangle ABCD having AB = 6 units and AD = 4 units
2 To get XY: X → X; AD → AD

3 In  square with opposite vertices AF, get EF = 
2

15 −
 the same way as AB was obtained

in Point 6.6.6
4 To get G: F→ F; XY → XY;  E → G
5 To get H: G → G; GZ → XY (by means of simultaneous folds GZ (mountain) and  GU

(valley).

A0 A3 A4 A4 A4

A5

A5

A6

α / 2α

1

C

2
D

B C

A
3

A

B

discard
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6 So we get EH = EG + 1 = 2EF + 1 = 5 . With successive folds similar to those of step 5, I
and J are obtained. Result is EI = 5  + 2 y EJ = 5  + 3

7 To get O: K → LP; M → M
8 LMNO is the wanted rectangle because LM = EI = 2 + 5    ;   MO = MK = EJ = 3 + 5 .

That makes:  LM = 4,236068     ;     MO = 5,236068     ;     MN = 3,0776835
9 Discard lower and lateral correspondent strips.
10 NOTE: the rectangle so obtained is a must to get a perfect convex regular pentagon.

6.6.8 1:3

In ∆DBC, it is:   BC = 2)2/1(1−  = 
2

3

In rectangle ABCD:    
2

3=BC      ;     
2

1=DC      ,     therefore  3=
DC

BC
 : 1

6.6.9 AURIC RECTANGLE

It is that in which the greater side is divided by the smaller one in media and extreme ratio, i.e.,
the small side is the geometric mean of the length of the greater side and the difference in
length between both sides.

A
M Z U L K B

YJIHG
FEX

N

D

O

P C

D C

B

D C

A B
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Let´s recall what is the division of a segment in media and extreme ratio.

When that division takes place, it happens that the ratio of the total segment to the great sub-
segment is the same as the ratio of the latter to the small subsegment. It´s shown in Fig. 1

Fig. 2 shows how to get an auric rectangle through folding. Its small side is taken for the great
subsegment. We´ll begin with a paper strip of adequate dimensions. Folding process and results
are as follows:

1- a´ → a. We get E.
2- D → b; E → E. We get O.
3- Fold over AO.
Till now we have constructed ∆AOD which is the same in Fig. 1: To get total segment AB
(larger side of the auric rectangle) OB should be added to hypotenuse AO, OB been equal to
small leg OD.
4- A → a; O → O. We get B´.
5- a → a; B´ → B´. We get B: AB is the greater side of the auric rectangle.
6- B´ → a´; B → B. We get C.
The sides of the auric rectangle are AB (great) and AD (small); subsegments are AC y CB.
Since Fig. 2 gets by folding the segments of Fig. 1, we´ll have:

Total segment AB is divided into the great CB
and the small AC, in such a way that:

AC

CB

CB

AB =

Or:
ACABCB ×=2

As CB = AD, we can write:
ACABAD ×=2

which is true as a consequence of the power of
point A with respect to the circumference of
center O and radius OD.

a

a´

b

A C B

B´O
D

E
1

2

3
4

5

62

A D

O

B

C

1
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AC

CB

CB

AB =      ;     ACABCB ×=2

It is pertinent to quote now that rectangle ABCD in Point 6.6.6 is an auric one (S. Turrión).
If that would be the case, we should have:

AB2 = CB (CB – AB )

expression that is equivalent to the following identity which confirms the hypothesis:






 −−×=




 −
2

15
11

2

15
2

Interlude
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6.7 DYNAMIC RECTANGLES. SQUARE ROOT  OF SUCCESSIVE NATURAL NUMBERS.

PROCEDURE 1 (Fig. 1)

Let´s start with a paper strip of length a and width one unit.

1- A → a; O → O. We get OB 2= .
2- B  → a; O → O. We get C.

3- a → a; C → C. We get D: OD ( ) 32111
222 =+=+=+= OBOC

4- D → a; O → O. We get E.

5- a → a; E → E. We get F: OF 43111 22 =+=+=+= ODOE
6- F → a; O → O. We get G.

7- a → a; G → G. We get H: OH 54111 22 =+=+=+= OFOG
... and so on.

PROCEDURE 2 (Fig. 2)

In this case foldings will be:

1- A → a; O → O. Getting OB 2=
2- A → OB; O → O.     ,,       Z
3- AO → AO; Z → Z    ,,       W

4- OW. Getting D; OD 3=
5- A → OD; O → O. Getting Y
6- AO → AO; Y → Y.      ,,       V

A B D F H

O C E G

1

3 5 7

1

a

4 6
2

2

O

A

1

B D F

a

H

2
3

Z

Y

X

W

V
U

4

5
6

7

89

10
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7- OV. Getting F; OF 4=
8- A → OF; O → O. Getting X
9- AO → AO; X → X.      ,,      : U

10- OU. Getting H; OH 5=

Justification of procedure 2 (Fig. 3)

•  Let´s go back from end to beginning.

In ∆AOH, 
γsen

OA
OH =      ;     γγ 2cos1sen −=

In ∆ION, IJIN
OI

IN −=== 1cosγ

To reach the end we should have to get the successive values BZ, ZW, WY, YV, VX, XU,
UI, IJ, etc. as functions of the unit (width of the strip). Let´s see how to do it.

•  As OI = OX = OY = OZ = OA = 1, we can draw a circumference (whose first quadrant is
shown) with center O and radius OA.

•  Power of B with respect to the circumference at  O:

)2(12 += BZBZ      ;     0122 =−+ BZBZ      ;     BZ 12
2

442 −=+±−=   (discarding

the negative value of BZ).
In the isosceles rectangled triangle BZW we have:

WZ
2

1
1

2

12

2
−=−== BZ

•  Power of W with respect to the same circumference:
)()( OYWOWYKZWKWZ +=+

( )( ) ( )1111
2

1
1 ++=−+





 − WYWYWZ

22
2

1
1

2

1
1 WYWY +=





 +





 −

Y3

O

X V

a

Z
W

A B D F H

U

K

L
M
N

I J



Jesús de la Peña Hernández

22

0
2

1
22 =−+ WYWY      ;     WY= 1

2

3 −

•  ( )VYWYLYWYWYVY −=×== 1cosα      ;     ( ) WYWYVY =+1

VY=
3

2
1−

•  Till now we have got segments BZ, WZ, WY, VY. The following stage would be to figure
out the power of V with respect to the already mentioned circumference to carry on getting
the successive stepped segments indicated above.

•  At this moment we are prepared to get OB (its straight away value is 2 ), and also OD:

OD = 
( )

3

3

2
111

1

11

1

1

1

cos1

1

sen

1
2222

=

















−−−

=
−−

=
−

=
−

=
YVLYαα

•  In a similar way we can get values of OF = 4 , OH = 5 , etc.

6.8 HOW TO GET A RECTANGLE FROM AN IRREGULAR PIECE OF PAPER.
Solution in step 4.

6.9 STELLATE RECTANGLE

As we know, to get stellate polygons we must play properly with their diagonals. So we only
will have stellate polygons from the pentagon, forward.

Nevertheless, all polygons (triangles and quadrilaterals included) may take a stellate appear-
ance, not a flat one, but volumelike. In this respect they leave off to be polygons.

A very simple solution is to fold the angles´ bisectors and the bisectors of the angles so ob-
tained. By means of this you can obtain beautiful shapes evoking architectonic forms (see Figs.
2 and 3 as an example).

d
d

e

f

d d

e

f

e e

f f

d d

1 2

34
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3

Interlude

1

2

Fig. 1 brings out figs. 2 and 3 by me-
rely changing the mountain / valley
configurations
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7 GEOMETRY IN THE PLANE. CARTESIAN PLANE. ALGEBRA.
7.1 AREA OF A RECTANGLE.

That area is expressed by the amount of unit squares contained within its surface. If the linear
unit is contained exactly an integer number of times in both sides of the rectangle, it is evident
that the area amounts to b×a =  4 ×2 = 8 unit squares.

If we consider the small side of the rectangle as the linear unit, the area of the small rectangle
left aside is equivalent to the fraction of unit square expressing the decimal part of the big side.
Therefore, in all cases the product of its base times the height defines the area of a rectangle.

7.2.1 BINOMIAL PRODUCT

( ) ( ) abxbxaxbxax +++=+×+ 42824 2

Once the paper is folded to get the figure, we can see that the second member of the expression
above relates to the sum of areas of the four correspondent rectangles.

1

b

1

a

1

1

X

X

X

b

a
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7.2.2 SQUARES´ DIFERENCE.

Let squares A and B with respective sides x, y.
Algebraically we know that:

( )( ) 22 yxyxyx −=−+
The first member is equivalent to rectangle C + D
The second, to areas C + E – B
So,

C + D = C + E – B     ;     D = E – B
Coming back to geometry from algebra, last expression is equivalent to:

( ) 2yxyyxy −=−
as the latter expression is an identity, it proves that also geometrically sum times difference is
equal to the difference of squares.

7.3 AREA OF THE OTHER PARALELOGRAMS

Let´s take the rhomboid ABCD as representative (see Point 6.5 for construction). Folding through D and
C the perpendicular to AB, we get equal triangles AED and FBC. Therefore, the area of rhomboid ABCD
is equal to that of  rectangle EDCF, i.e., b×a (base times height).

7.4      AREA OF TRAPEZIUM ABCD

1- AC (valley fold).
2- EF perpendicular to AC (AC! AC).
3- BG perpendicular to EF through B (B ! B; EF ! EF).
4- This way CG = AB is obtained.
5- Likewise, get BH = DC.
6- Thus we get the trapezium BCGH which is equal to ABCD because it has equal angles in B and C,

as well as their three associated sides.

E A F B

a

x D C yb

D D
Dx b

CC
y bC

A

B E

C D

By

x x

y
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7- Therefore, trapezium ABCD has an area half of the rhomboid ADGH.

8- So: area ABCD = 
2

1
 DG ×  IJ = 

2

ABDC +  IJ

7.5 PROBLEMS IN THE CARTESIAN PLANE

To obtain the coordinates of point P:

AB = 514 =+
!AOB is similar to !OPC

2

1==
OC

PC

x

y

P

P      ;     =Py sen 2"

sen " = 
5

1
     ;     sen 2" = 2 sen "  cos " = 

5

4

5

1
1

5

2 =−

5

4
2sen == αPy      ;     

5

8
2 == PP yx

X

To get the coordinates of point P and the area of quadrilateral OFPD .

Px = 1+AE = 1+AP sen α = 1 +4sen 2 α = 2,23

Py = ( Px -1) / tang α = 846,13
2

23,1 =×

area (OFPD) = (OFA) + (AFPD) = 5221 =×+

A B F H I

D E C G J

Y

XO O

Y

X O

Y

X

2

1

1

P

B

A

B C

P

2

2

" =ArTang 






3

2

!ABD≡AB=2senα
AP = 2 AB = 4sen α
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7.6 MAXIMA AND MINIMUMS

The value of x that will make z’ = 0 is the minimum for AB we are trying to find. It is
obvious that the maximum is ∞ (what happens when O is folded over D).

O

1

2

Y

X1

Y

O

1

2

X

Y

O X2 3

F P

D

P

O

F

Y

D XA E

B

22

22
2

)( xax

xa
y

−−
=    Then we seek the minimum of 

2

22
2

2 aax

xa
x

−
+

making

2

1

2
2

1
2



















−
+=

x
a

x
xz      and deriving, we have:
























 −

−




 −

+


















−
+=

−

2

22

1

2
2

1
2

2
21

2

2
1

22

1
'

x
a

a
xxx

a
x

x
a

x
xz

a

Y

A

y

O
X

x B D

C

In a rectangle of width a, to fold O over the edge CD in such a way that, be-
ing B within OD, the length of fold AB will be minimum. If

OAy =      ;     OBx =
we must find an x value such that it will make minimum the expres-

sion 22 yx +
∆AOB and ∆COD are similar:

CD

a

x

y =      ;     in ∆CBD:     ( )22 xaxCD −−=
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Let´s set the hypothesis that z’ = 0 when its last factor´s value is 0. As the previous fac-
tor is a square root in a denominator, we´ll have to check afterwards that this factor´s value is
not 0 for the x solution.
Therefore it should be

           0
2

21
2

1
2

2 2

2

=−




 −+





 −

a
xxx

a
x

a
x     under the condition of      

2

1
2






 −x

a
≠ 0

Simplifying last equation it is easy to see that

ax
4

3=

which in fact does not nullify either the expressions mentioned above.

Folding O over CD through a point B such that ax
4

3= we get the minimum segment

AB.
The reader can check it by himself trying successive folds to approximate AB mini-

mum.

Interlude
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7.7 RESOLUTION OF A QUADRATIC EQUATION

Let the equation
                                                               02 =++ nmxx             (1)

As it´s well known, any equation may be changed to have 1 as first coefficient: if this is not the
case, the whole equation can be divided just by that coefficient.
Let´s define in the Cartesian plane the points

P(0,a)   and   Q(b,c)
And make this folding:          P → OX   ;   Q → Q

There are two ways of folding, giving respectively points 1x  and 2x . They are the two solutions
of the proposed equation. Fig. 1 describes the process.

In both cases P has being folded over the two axes of symmetry (valley) passing through Q to
give both points x. Let´s see the grounds in fig 2.

∆POX1 and  ∆ADX1 are similar, therefore:

1

1

1

1

Dx

Ax

Ox

Px =             ;               1111 2/ AxxPxPx ×=×                                   (2)

                                                                             ABbxAx +−= 11            (3)

∆POX1 and ∆QAB are also similar, so:

                              
1x

a

c

AB =      ;     
1x

ac
AB =      ;     substituting in (3):

Q (b,c)

P (0,a)

Y

O x x X2 1

1

1 Xx

Y

Q (b,c)

P (0,a)

x
2

2

C O A B

D
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1

11 x

ac
bxAx +−=      ;     substituting in (2):

                                                   





+−=+

1
11

2
1

2 2
x

ac
bxxxa

                                                  acbxxxa 222 1
2

1
2

1
2 +−=+

                                                    ( ) 022 1
2

1 =−+− acabxx

If former development would have been made for solution 2x  instead of 1x , the same expres-
sion is reached, therefore the quadratic equation obtained can be made general:
                                                     ( ) 0222 =−+− acabxx                    (4)
Comparing equations (1) and (4) we have:
                                                bm 2−=      ;     ( )acan −= 2                 (5)
At the end, what we are after is the values of a,b,c that enables us to draw fig 1. So we have 3
unknowns and 2 relations (5) that give:

                                                
2

m
b −=      ;     





 += a

a

n
c

2

1
                (6)

To overcome this difficulty we may consider that c is a function of a, besides being also a
function of n (6).

Fig 3 shows that fixing any arbitrary value for a, we get each time different values of c, but the
same couple x. In (5) we can see that playing with values a,c  we get the same value for n
which is the given independent term in (1).

Summarising. To solve (1):
•  Assign an adequate value to a in order to have the drawing properly covered by the paper.
•  Get b,c according to (6), giving an arbitrary value to a.
•  Fold to fig 1.

By means of this, any quadratic equation with real roots (positive, negative, double, etc) can
be solved. We come across the exception of imaginary roots (negative discriminant of the
equation). In that case it is impossible to draw fig. 2.

O 2
x B

D

x 1 X

P (0,a)

Q (b,c)

Y

3

P'(0,a')

Q'(b,c')
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7.8 SQUARE ROOT OF A NUMBER

This is a particular case of Point 7.7: it´s a matter of solving a quadratic equation without lineal
term and having a negative independent term:

02 =− nx
Expressions (5) in Point 7.7 take this form:

02 =− b      ;     ( )acan −=− 2             (1)
which transform (6) to:

0=b      ;     




 +−= a

a

n
c

2

1

Let´s apply this to the following example (fig 1): we wish to find out by means of folding, the
square root of 1.600.

We´ll take arbitrarily a = 60

As a consequence we have 6.1660
60

1600

2

1 =




 +−=c

After folding A over the OX axis around C, we get as result 40±=x

                          ( )acan −=− 2  = 255.09(2×41.1 – 255.09) = - 44102.5
                      n = 44100 (the difference is due to error in screen resolution).

A(0,60)   a=60

c=16.6 C(0,16.6)

-40 0 +40 X

1

7.9 SQUARE OF A NUMBER

It´s the inverse of latter exercise.
Suppose we want to find  out the square of 210
(the small side of a DIN A4 rectangle).

We take the lower right-hand side cor-
ner over any point A on left-hand side of paper.
The ordinate of A must be greater than 210 to
enable the construction of point C.

Points A and C are obtained after fold-
ing: taking their respective ordinates a,c into (1)
of Point 7.8, it gives:

A(0,255.09)

C(0,41.1)

O (0,0) (210,0)
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7.10 PARABOLA ASSOCIATED TO THE FOLDING OF A QUADRATIC EQUATION

Point 1.2.4 explained how in folding a point over a straight line, the crease became the tangent
to a parabola whose focus was the point to be moved and its directrix was the line which re-
ceives the point. That was already proved in Point 4 when demonstrating Haga´s theorem.

Now then, in fig 1 of Point 7.8 we have reproduced the same operation, so we can complete it
now by drawing the parabola with focus F ≡ A, directrix d, vertex V (midpoint of AO) and tan-
gent CE on point E whose  abscissa is just  40.

The equation of this parabola is:

                                        2

602

1

2

60
xy

×
+=      ;     2

120

1
30 xy +=                  (1)

This equation has the same structure as (1) in Point 4: we may observe that its first term has  a
length dimension (L) whereas the coefficient of 2x  has L 1−  as dimension.

Fig 1 of present Point 7.10 makes obvious that distances from E to F and from E to d are equal
because folding line EC is the symmetry axis. Eventually the result is the pair of tangents to a
parabola from point C.

Fig 1 also shows:
∆AOE’ is similar to ∆HVC and therefore

VC
2

40

40

60 =      ;     
3

40=VC

∆VHC = ∆EHG, then:

EG = VC = 
3

40

3

130

3

40
30'' =+=+== GEGEEEyE

i.e. it is 






3

130
,40E

Let´s make now a translation of  axes from the origin to D. Equation (1) will become:

-40 0

C(0,16.6)

A(0,60)

+40 X
d

F

D E

E'

GV H

1
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2

120

1
30 xy +=      →      2

120

1
30

3

130
xy +=+     

Which for y = 0 gives

4012030
3

130 ±=




 −=x

What proves that the roots of one equation coincide with the cutting points of the curve repre-
senting that equation, and the x axis.

7.11 COMPLET EQUATION OF 3rd DEGREE (J. JUSTIN)
Let it be
                                                  023 =+++ rqtptt                  (1)

In Fig 1 we fix the points C(a,b) and D(c,d), from the coefficients of (1), as we´ll see later.
Then we shall do simultaneously these foldings:

C → OY     ;     D → OX
The gradient of the normal to crease BF is the solution of (1), i.e.,

t = tg (DGX) = tg α
With the configuration and scale of Fig 1, there is only one solution for t: there is one only way
of folding. That´s because the following conditions are fulfilled:

0
3

3 2

>− pq
     and     0

27

2792 3

<+− rpqp

So equation (1), in this case, has one real solution and two conjugate imaginary. Let´s discuss
the solution (Fig 2):

αtg

d
cOG −=

αtgabOA −=

( ) 





−=+=

αtg
2

2

1

2

1 d
cOGcxF                                          

2

a
xB =

dyF 2

1=                                                                               ( ) ( )αtg2
2

1

2

1
abOAbyB −=+=

C(a,b)

X
GO

A

B

F

Y

1

D(c,d)
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t

d
cxF 2

−=                          
2

a
xB =

                                 
2

d
yF =                                    

2

at
byB −=

On the other hand,

                                                               
FB

BF

yy

xx
t

−
−

=      , i.e.:

                                                                                                    
dtatbt

atdct
dat

b

a

t

d
c

t
−−

−−=
−−

−−
= 22

2

22

22

atdctdtatbt −−=−− 22 232

( ) ( ) 022 23 =−−+−+ dtactbdat                          (2)

Comparing equations (1) and (2), we have:
                              1=a      ;     pbd =− 2      ;     qac =−2      ;     rd −=

                              1=a       ;     
2

pr
b

−−=      ;     
2

1+= q
c        ;     rd −=

Now we have available the four values  a,b,c,d, i.e., we have the coordinates of C and D; that
enables us to fold simultaneously these points over the axes OY and OX: the folding line that
bears to t = tgα is the solution of (1). You may ease folding BF, now marking axes and points
by transparency, now mountain-folding CD previously.

7.12 COMPLETE EQUATION OF 4th DEGREE: ITS RESOLUTION
It´s not our intention to explore in detail this subject now. We´ll only say that this equation can
be transformed in a complete 3rd  degree one by a variable change and the application of Car-
dano´s transformation. Then Point 7.11 may be employed. The reader can refer to any treatise
on equations general theory.

Y

B

C(a,b)

D(c,d)

X

F

GO

A

2
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7.13 PARABOLAS ASSOCIATED TO THE FOLDING OF A COMPLETE EQUATION OF 3rd

DEGREE

Folding operation in fig 1 (Point 7.11) leads to get BF as a common tangent to these two pa-
rabolas:

PARABOLA FOCUS DIRECTRIX    TANGENCY on BF
1 D OX T1

2 C OY T2

In fig 1 of present Point 7.13 these two parabolas are shown overlapped with fig 2 (Point 7.11)

If equation
023 =+++ rqtptt

has a negative discriminant, i.e.:

27

1

27

2792

4

1
23

+




 +− rpqp
0

3

3
32

<




 − pq

We have three different forms of folding simultaneously points C and D over the correspondent
axes.

Such is the case with the following equation that will be studied in another place:
01223 =−−+ ttt

Fig 2 of present Point 7.13 shows the two parabolas and the three common tangents. These tan-
gents are the symmetry axes in the simultaneous folds that carry focuses over directrices. Last
equation has, therefore, three real roots.

F

O

A

G

B

D(c,d)

X

Y
C(a,b)

par.1par.1

par. 2

par. 2

T

T

1

2

1
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In this figure we may observe:
•  Points D, C have been obtained by calculus (Point 7.11).
•  From focuses D, C three radiating lines are cast, respectively, toward axes OX and OY.
•  Each two of these three lines are parallel (perpendicular to the same tangent). The tangent of

the angle formed by one of the rays and OX is the solution of the equation: obviously there
are three of them.

•  The three folding lines resulting from the simultaneous fold of D over OX and C over OY are
the common tangents to these two parabolas: focus D (and directrix OX) and focus C (and
directrix OY).

•  The axes of those parabolas are, of course, the perpendiculars to the directrices from the fo-
cuses.

Interlude

D

C
O

X

2
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7.14 FUNDAMENT OF ORTHOGONAL BILLIARDS GAME (H. HUZITA)

This game is an ingenious recreation of conventional billiards. In this, any ball cast against the
tableside is rebounded out in such a way that angles of incidence and reflexion are congruent
(Fig. 1).

In orthogonal billiards, this other hypothesis is set up: once the ball hits the tableside, it is al-
ways repelled in a direction normal to incidence (Fig. 2).

As we shall see, HH´s hypothesis is very useful to solve different problems (geometric as well
as algebraic). Let´s see first, how balls behave under each of the following conditions.

Play to one tableside, only
In conventional billiards (Fig. 3), when we hit the white ball B against the tableside to reach

γγα sen)sen(

ZBZV =
+

     ;     
)sen())(sen( γπγπαπ −

=
−−−

ZRZV

Equalising ZV:

                                
γ

αγ
γ

γα
sen

)sen(

sen

)sen( −=+
ZRZB      ;     developing:

                                 )(cossen)( ZBZRZBZR −=+ γα γα sencos

                                                       αγ tg
2

tg
BR

BRZB +=

Contrarily, in orthogonal billiards there may be one, two or none solutions (Fig. 4) depending
on the fact that the circumference with diameter BR will be tangent, secant or will not reach the
tableside.

1 2

red ball R, there is always one solution:
Data are  BZ; RZ; a; γ  is the un-

known.
Being ZV common in ∆ZVB and

∆ZVR, we have:3

Z

B

R

V
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Play to two tablesides
In this case we shall fix our attention only in orthogonal billiards (Fig. 5)

Being placed balls B, R as indicated, we want to know the course that ball B will take to hit ball
R after touching two sides of the table.
Solution is in (Fig. 6):
•  To draw x´ , y´ parallel to tablesides distant from them as much as B and R do to their re-

spective tablesides.
•  Produce simultaneous folds B → x´ (A is got); R → y´.
•  Folding line determines the intermediate stage in the way of B to R.
•  As that folding line is the axis of symmetry and the horizontal tableside is the media parallel

in ∆ABC, right angle D sits on that horizontal tableside. The same applies to the lower tri-
angle.

7.14.1 SQUARES AND SQUARE ROOTS (H. H.)

Let´s get the square of a (Fig. 1):
•  To start with points C (-1,0) and A (0,a).
•  To fold: C → y´ ; A → A.
•  Folding line AB brings about B, whose abscissa is the square of a.

Justification:
∆ABC being a right-angled one, its altitude OA is the proportional media between OC and OB:

22 1 aOA ×=
You may observe that in this case, the square ( 2a ) is smaller than the number ( a ) since the
latter is smaller than 1.

5
6

B

R B

C
x´

y´

D

R

A

4
B

R
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Process is the inverse if we want to get the square root of  b:
•  Start with points C (-1, 0) and B (b,0).
•  Fold: C → y´; B → B
Fold AB gives point A(0,a) such that:

21 ab =×      ;     ba =

This process reminds orthogonal billiards, just because of orthogonality, but with the addition
of this nuance: When ball C hits the tableside OY, a virtual reflection AB is produced outside
the table.

7.14.2 CUBES AND CUBIC ROOTS (H.H.)
Iterating the former process we can find out the cube of a (Fig. 1).

•  To start with points C (-1,0); A (0,a) to get B (a2,0).
•  To draw x´ such that OA´= OA.
•  To fold: A → x´; B → B.
•  Folding line BD produces OD = a3.

Justification:
∆ABD is a rectangled one, and therefore:

ODAOOB ×=2      ;     ( ) ODaaa ×== 422      ;     3aOD =
By working the opposite way as we did in former Point for the square root, we´ll reach the con-

clusion that 3 ODOA = .

= =

1

C(-1,0) O

A(0,a)

B(a ,0)2

y

x

y ´

C(-1,0) O

1
y

x

y ´

A

BD

A´ x ´
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7.14.3 THE ORTHOGONAL SPIRAL OF POWERS (H.H.)
Observing the process pursued along the two previous Points, we see that successive powers of

a can be obtained without limit, by means of folding, i.e. we can get na  and, conversely, na
1

, n
being any natural number.
It should be noted that lines y´, x´, y´´, x´´, etc. the receivers of folding points, are parallel to
the coordinate axes at a distance equal to that in between initial points and coordinate axes.
It is evident that if a <1, we have a closing orthogonal spiral, whereas the spiral opens if a >1.
The values of successive powers of a are measured along the coordinate axes: even in abscissas
and odd in ordinate. Figs. 1 and 2 show all that.

7.14.4 RESOLUTION OF A QUADRATIC EQUATION (H.H.)

First, let´s figure out the quadratic equation with roots  x1 =1 and x2 = -3

(x-1) (x+3) = 0     ;     x2+2x-3 = 0     (1)

Fig. 1 shows the folding process to get its two roots:
•  To set axes OX; OY.
•  To draw x´ distant one unit from OX. This is because the coefficient of greater degree –the

2nd- is 1.

1 o

a

aa
a

a

a

2

3

4

5
6

1

1a4

a

a5

o

a 3

a 2

a

a 7

6

2

1

y

xOA

I

x ´

x x

F

2 1
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•  Start in I (IO = 1) a series of coefficient vectors according to these criteria:
IO = 1: coefficient of x2.
OA = 2: absolute value of the x coefficient; at right angle with IO; clockwise direction be-
cause from 1st to 2nd term there is no sign change.
AF = 3: absolute value of the independent term; at right angle with OA; anticlockwise di-
rection because passing from the 2nd to the 3rd term there is sign change.
Finally we get F which is the end point of the three successive vectors.

•  To fold
I → x´     ;     F → F

As can be seen, there are two solutions:
OX1 = 1     ;     OX2 = -3

Justification:
∆IOX1; ∆FAX1 as well as ∆IOX2; FAX2 are similar, so:

AF

AX

OX

IO 1

1

=      ;     
AF

AX

OX

IO 2

2

=

To assign a value to these segments, we have to bear in mind:
•  Independent variable x is to be given the correspondent sign in the Cartesian plane.
•  Give to the rest of segments the absolute value they have in equation (1), because its sign

was already taken into account when clockwise or anticlockwise direction was assigned:
these segments (the equation coefficients) have not the dimension of the independent vari-
able though they appear overlapped with it  in the Cartesian plane.

Then it follows:

3

21 1

1

+= x

x
     ;     

3

21 2

2

−−=
−

x

x

that in both cases leads to the same result (x1; x2 been taking by  x):
x2 + 2x – 3 = 0

Yet we´ll see another example to settle sign attribution.
Let the quadratic equation with roots x1 = -1; x2 = -3

(x+1) (x+3) = 0     ;     x2 + 4x + 3 = 0                 (2)

•  Absolute values:
IO = 1: coefficient of x2

OA= 4: coefficient of x
AF= 3: independent term

•  Vectors´ sequence: IOAF (clockwise all the time because in (2) there is not signs change).
•  Fold: I → x´; F → F
•  Roots come out to be: Ox1 = -1; Ox2 = -3
Similarity of ∆IOx1 ~ ∆FAx1     ;     ∆IOx2 ~ ∆Ax2F     give:

AF

Ax

Ox

IO 1

1

=       ;     
AF

Ax

Ox

IO 2

2

=
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3

)(41 1

1

x

x

−−
=

−
     ;     

3

)(41 2

2

x

x

−−
=

−

In general: x2 + 4x + 3 = 0

7.14.5 RESOLUTION OF THE COMPLETE EQUATION OF THIRD DEGREE (H. H)

First of all we´ll recall Fig. 6 (Point 7.14) to show how the 3rd degree equation is behind it.
That figure is now completed with Fig. 1 of present Point 7.14.5

Let´s get a t expression just dependent of: balls coordinates (0,0) and (l,m) ; a angle (whose
tangent is t); the configuration of billiards table (a,b):

t

b
atybt −=+      ;     ltatm

t

btbat +−=−−
2

2

( ) ( ) 023 =+−++− battbmtal
This means that the orientation given to the ball in O in order to hit the other one placed at (l,m)
after rebounding orthogonally on both tablesides, is the only real root of the equation just ob-
tained. And that is so because the equation has a positive discriminant, according to drawing
scale.

It is important to insist that lines which receive points (0,0) and (l,m) along the folding opera-
tion, are parallel to their respective tablesides, and distant from them as much as the balls are
distant from said tablesides.

2

Y

I

X

X´
Ox

A
x12

F

αtg=t

z

b
t =

yb

za
t

+
−=

la

ym
t

−
−=

(l,m)

O(0,0)

Y

X(a,y)

1(a,b)
(z,b)
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Let´s figure out the three real roots of equation
01223 =−−+ ttt

that was already solved with a different method in Point  7.13 (Fig. 2). The vector sequence
will be: 1;1;-2;-1, as shown in present Fig. 2.

First vector starting at I will hit side y in such a way that it asks for line y´. In final folding op-
eration y´ will receive point I (see also 10.3.1, Heptagon).

On the other hand, last vector ending at F comes rebounded off side x asking, therefore, for line
x ´ to receive point F during folding operation. So the simultaneous folding will be:

I → y ´     ;     F → x ´
What happens though, is that this folding can be performed in three different ways as shown in

Fig. 3. In it, dashed lines are, as usual, folding lines, and angles a, b, g lead to the solu-
tions of the equation.
You may notice that if we introduce in Fig. 3 the transformation

x ´→ OX     ;     y ´→ OY

Y Y ´

X ´

X

I

2

F

I

X

X ´

3

Y ´
Y
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and rotate it 180º around O, Fig. 2 of  Point 7.13 is obtained. Both figures give the same results
for t:

          a = 51.2721º                   b=-23.9909º                   g = -60.9719
t1 = tg a = 1.2469            t2 = tg b = -0.445 0             t3 = tg g = -1.8019

Any of them satisfy the equation

01223 =−−+ ttt

Fig. 4 justifies the association of Fig. 3 to the 3rd degree equation:

∆IBD; ∆EGF are similar:

GE

FG

ID

BD =      ;     
1

2

2 −
=

ED

BD
              (1)

∆IBC; ∆CEF are also similar:

BD

IC

GF

EC =      ;     
BD

CDCDED +=− 2

2
            (2)

Equalising 
2

BD
 in (1) and (2):

CDED

CD

ED −
+=

−
2

1

2
     ;     

1

2

+
=

ED
CD             (3)

In ∆IBC we also have (t = tg a):
tIDBD 2tg == α      ;     Ang.BCI = 180 – 2a      ;     ( )α2180tg −= DCBD

Then:

1tg

tg2
2tg2

2 −
=−=

α
αα DC

DCt      ;     DCt =−12             (4)

In ∆EGF, Ang.FEG = a, so:

GE

GF
t =      ;     

1

2

−
=

ED
t              (5)

Expressions (3), (4), (5) form a t parametric system that will allow us to obtain the 3rd degree
equation we are after:

F

I

4

B

C G ED
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1

2
12

+
=−

ED
t      ;     

1

2
1

2 −
=+

t
ED

                                                                                  
t

ED
2

1 =−

tt

2

1

2
2

2
−

−
=      ;     ( ) ( )11 22 −−=− tttt

( )( ) ttt =+− 112      ;     tttt =−+− 123

01223 =−−+ ttt

Interlude



Jesús de la Peña Hernández

46

7.15 PROGRESSIONS

7.15.1 ARITHMETIC PROGRESSIONS
They are formed by a succession of quantities such that any of them is equal to the im-

mediate preceding one plus another constant quantity called ratio d. The progression is an in-
creasing one if d > 0 and is decreasing if d < 0.Let´s see an example of the former type.
To build it up by folding we begin with a paper strip of width d and adequate length  (see first
picture of  Fig.1). From its left end we take the progression´s first term a1. The obtention of a

square (side d) shown in the 3rd picture for the first time, is the key to get successive terms a2,
a3 and a4. It is obvious that the only limit to the number of terms is the strip length.

Last picture of Fig 1 shows how the terms of the progression do grow: it looks like a
flattened bellows. Just by counting and looking at that picture, the most important properties of
arithmetic progressions can be checked.

Last terms´ value:
( )dnaan 11 −+=      ;     daa 314 +=

Continuous equidistance between three consecutive terms:

11 −+ −=− iiii aaaa      ;      2334 aaaa −=−
One term as the arithmetic media of its preceding and following terms:

a1

d

d1a

a2

d

a3

d

a4

1

a1

a2

3a
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2
11 +− += ii

i

aa
a      ;     31

11142
3 2

2

42

2

3

2
ada

dadadaaa
a =+=+=+++=+=

Relation between term n and one of its precedent p, being i the number of terms in between the
two:

( )1++= idaa pn      ;     daa 224 +=
The sum of two equidistant terms from the extremes, is equal to the sum of these extremes:

inin aaaa −+ +=+ 11      ;     3241 aaaa +=+      (i = 1)

Sum of all of the terms of an arithmetic progression:

n
aa

S n

2
1 +=      ;     ( ) dadaaaaa

aa
S 6432224

2 111141
41 +=+++=+=+=

7.15.2 GEOMETRIC PROGRESSIONS
They are those in which each term is equal to its immediate precedent multiplied by a

constant r called ratio of the progression. Let´s see first, one of the increasing type (r > 1). Fig.
2 in point 7.14.3 is one example. In it, the first term is a1 = 1 and the ratio is a > 1.

If we wish that the first term be a1 ≠ 1 (keeping the same ratio r = a) we would have to
build an orthogonal spiral parallel to the former one beginning with a1. By so doing we get Fig.
1 of present point 7.15.2. In it, the value of each term is measured from O to the correspondent
ai. Through the similarity of the triangles shown we can also see that:

14

5 r

a

a
=      ;     

11

2 r

a

a
=

Here we have some properties that can be observed in Fig. 1:
Last term as a function of the first one and the ratio:

1
1

−= n
n raa      ;     4

112345 rarrrrarrrarraraa =×××=××=×==
Sum of the n from the first terms of a geometric progression as a function of the first, the last
and the ratio:

        
1

1

−
−

=
r

ara
S n  ;   measuring on the figure, at a graphic scale, we have:            (1)

2458.25 =a    ; 0215.24 =a    ; 8196.13 =a    ; 6378.12 =a    ; 4742.11 =a

0751.1=r    ;   9677.001 =
The value of r to be taken to the sum formula is 1.0751 / 0.9677 = 1.111

a

4a

1a 1 o
3

1 r

a2

a5
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so, it will be

2.9
1111.1

4742.1111.12458.2 =
−

−×=S

on the other hand, if we add up the 5 terms of the progression we also have:

2.9
5

1

=∑
=

=

i

i
ia

Now we shall construct, by folding, a decreasing geometric progression (r < 1). See Fig. 2.
We can get straight away points B and C  (C is the center of the square): Process to get succes-

sive points is as follows:
Fold Is got
O → B D
O → C E
O → D F
O → E G
..........................

Now we are going to see that segments AB, BC, CD, DE, EF, ....... are the terms of a decreas-
ing geometric progression.

If we assume that side of the square is one unit, then:

2=OA      ;     1=OB      ;     
2

1=BD      ;     
4

1=DF      ..............

therefore, the respective segments will measure:

12 −=AB
2

2
1

2

2 −=−= ABBC

2

1

2

2

2

1
2 −=−−−= ABBCCD

4

2

2

1

4

2 −=−= CDDE

4

1

4

2

4

1 −=−= DEEF ...........................................

O

A

B

C

D

E
F

2 G
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We may observe that odd segments succession is a geometric progression with ratio 1 / 2. Same
happens with even segments.

Let´s calculate the ratio of any two consecutive terms:

2

2

12
2

2
1

=
−

−
=

AB

BC

2

2

2

2

2

1

2
===

BC

AB

BC

CD

2

2

2
==

CD

BC

CD

DE

2

2

2
==

DE

CD

DE

EF

Therefore, 
2

2=r

Let´s figure out the sum of all the terms of this progression. Applying formula (1) and bearing
in mind that an → 0, we have:

( )
2

1
2

2

12

1
1 =

−

−−=
−

−
=

r

a
S

Which shows that such sum has equal value than the square`s diagonal, as it should be.

Interlude
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8 SQUARES / TRIANGLES / VARIOUS
8.1 SQUARE WITH HALF THE AREA OF ANOTHER ONE.
8.1.1 FOLDING SOLUTIONS

Solution 1

Produce sequentially the four folds as follows:

Solution 2

Looking at the folds it´s evident that square BCDG has half the area of square AEFH.

8.1.2 SOLUTIONS BY MEANS OF CUTS

Solution 1 (Tangran)

To build the main square using the 7 tangran figures (five right-angled isosceles triangles, one
square and one rhomboid). ∆( )1  and ( )2  are one half of the great triangle, and therefore make
up the square solution (to the right).

A B H

FE

CD

1 2
3

4
1- Fold AF.
2- H → AF; A → A. To get C.
3- EA → EA; C → C. To get CD.
4- HA → HA; C → C. To get CB.

Square ABCD has half the area of AHFE:

area AHFE = 2AH      ;     area ABCD = 2AB

22

AHAC
AB ==

area ABCD = 
2

1

2

2

=AH
 area AEFH

E

A

F

H B

D

G

= =

=

=

= =

=

=

C
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Solution 2 (very simple)

8.2 OBTENTION OF TRIANGLES
8.2.1 ISOSCELES RIGHT ANGLED TRIANGLES FROM A SQUARE

8.2.2 EQUILATERAL TRIANGLE FROM A SQUARE.

8.2.2.1   EQUAL SIDES OF TRIANGLE AND SQUARE.

Triangle ABC is the solution because AB = BC
If DC = 1

1
2

1
2

2 =




+AE

2

3

2

1
1

2

=




−=AE

( 1 )

( 2 ) ( 1 )

( 2 )

( 1 )

( 2 ) ( 1 )

( 2 )( 3 )

( 3 )( 4 )

( 4 )

✂

✂

✂

( 1 )

( 2 )

Triangles (1) and (2) are the solution.
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A version of the latter case consists in cutting the triangle out of the square:

8.2.2.2 MAXIMUM EQUILATERAL TRIANGLE (four solutions)
Solution 1

To produce the crease AB by taking corner E over the perpendicular bisector of the horizontal
sides of square: we get B and H. Do the same simmetrically to diagonal through A: we get C.
Triangle ABC is the solution.

1== AHAE

2

12

1

sen ==
AH

α      ;     º30=α      ;     ang. BAC = 60º

10352762.1
15cos

1 =>== AEAB

A

B C

A

B C

1
Fold 1 obtains point A:

C → perpendicular bisector of
BC; B → B

B

A

B C

AA

✂

B

A

C

H

FBE B

A

C

= =

=

=
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Solution 2

Solution 3

CD = 1     ;     ∆ACD, equilateral    ;     ang. ACD = 60º     ;     ang. ECD = 30º

30tg=DE      ;     
30tg

1=
EF

BF
     ;     

2

1
30tg

2

1 −=−= EDEF

30tg2

1
1

30tg
−== EF

BF      ;     º15
30tg

1
2tgtg =





−== Arc

FG

BF
ArcangBGF

Solution 4

This solution is not perfect, though very ingenious and close to perfection.

It is a matter of folding M and N, and then, over mid-point O. A perfect solution calls for a
point different from O: an undetermined point between O and M.

1=AC      ;     
2

2== ABCB      ;     º5.22=angNCB      ;     5.22tg
2

2=NB

D

BF

A

C

b
a

c

2

3

C D

b

A

D

a

A

F B

G

E

H= =

1
C

c

Folds:

1- D → GH; B → B. We get a and E.
2- B → GD; a → a. We get C and A.
3- Fold AC. We get simultaneously b

and c.

DB = EB = FB : ∆BEF, equilateral.
Then ang. EBF = 60º and CBD = 15º.
In the last figure, obtained after folding the former, and be-
cause of the symmetry, we have:
Ang. ABF = CBD =15º; ang. CBA = 90 – 30 = 60º. There-
fore ∆ABC is isosceles with an angle of 60º: it is equilateral.

A

C D

F
EB

A

F
B

G
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If we take O as the mid-point of MN, we´ll have:

( ) ==





++=





++=+= DENBANAMOA

2

2
5.22tg

2

2
2

4

3

2

1

2

2
2

4

3

2

1

2

1

= 1,0303301 ≠ 1,0352762  (which is the side of a perfect maximum equilateral triangle ac-
cording to solution 1)

M

B

A

M
N

B

A

M
N

O
D

AE

D

E

C

D

AB

O

M N

E

Interlude
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8.2.3 EQUILATERAL TRIANGLE FROM A RECTANGLE (three solutions)
Solution 1

The rectangle is a paper strip, and the solution is very useful in hexaflexagons construction.

Justification:
a=b (simmetry r)     ;     g=d (simmetry s)     ;     a=d (vertical angles). Then:

a=b=g= 60
3

180 =      ;     e=f (simmetry r)     ;     w=a=e. So:

f=w=60º and ∆ABC, equilateral triangle.

It is impossible to develop a similar construction from a square because AB is greater than the
side of the supposed square.

Solution 2

We also begin with a paper strip. The equilateral ∆ABC is the solution. The reader may recall
that in point 8.2.2.2, Solution 1, the right angle of a square was trisected.

Solution 3
Former Solution 1 made use of the whole width of the paper strip to allow the construction of a
successive and indefinite quantity of equilateral triangles. On the contrary, present Solution 3

A

B Cr

s

1 2

3

4

=

=

30 º

30 º

A

CB

30 º
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implies the following proportion between a (height) and b (base): ba
4

3≥ . If ba
4

3> , an

equilateral triangle of the envelope type (point 8.2.4) is obtained.

8.2.4 EQUILATERAL TRIANGLE OF THE ENVELOPE TYPE
It is evident that the resulting triangle (last in the process) has a side half of that in the starting
square. The reader may observe that details of folding are not specified any more; e.g. we have
obviated the description of folding in Fig. 3 as:

C → AB; D → D

7 8 9

10 11

1 2 3

456
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8.2.5 STELLATE TRIANGLE

Now is the occasion to recall point 6.9 (stellate rectangle) in which the triangle was also men-
tioned. Now, lower left figure represents a lit arquitectonic stellate triangle; the figure at its
right is the same, but unlit.

8.2.6 SQUARE / SET SQUARE

ang BAC = 45º (complementary angles bisector)
ang DAE = 60º (equilateral triangle)

ang EAC = 30º     ;     ang ACE = 60º     ;     ang ACF = 120º
ang BCF = 60º     ;     ang BCA= 60º

1
2

1

2

A

B C

D
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8.2.7 ANOTHER CURIOSITY

Right-angled triangle ABC is the result of the two successive folds.
To prove it we ought to see first that points B,E,C are in line. Ang BEC is a straight one as it is
the sum of angles in F and D, pertaining to the square. Besides, AE = AD = AF. Therefore EA
is a unique line perpendicular to BC.

On the other hand, straight angle in A gives:
( ) γαγα 221802290180 +−=+−=      ;     γα =

At the end we have that ang EAC γα −=−= 9090
ang BAC = ang EAC 90=+γ

F

B

D

E

=

=

C

A A

B

FC

A

B

C

45º

60º

=

=

A

C

B

A

C

B F

A

DC

F

E

Interlude
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8.2.8 SINGULAR POINTS IN TRIANGLES
8.2.8.1 ORTHOCENTER

It´s the intersection point of the three altitudes of a triangle. Let´s make these two folds:
1- A → A     ;     BC → BC
2- B → B     ;     AC → AC

This way, we get intersection point O: it will be the orthocenter if fold OC becomes perpen-
dicular to AB (starting hypothesis).

Demonstration 1
The six angles in O add up to 360º, and they are congruent (taken by pairs) as vertical angles.
Moreover, Ang.B = Ang.ROC once their sides are perpendicular (if the hypothesis is fulfilled);
Same applies to Angs. A and C.
Therefore it´ll be:     360 = 2A + 2B + 2C     ;     180 = A + B + C
which is true because it expresses the sum of the angles of the ∆ABC.

Demonstration 2
∆ACR and ∆BCS are similar (right-angled with Ang. C in common)
∆CBT and ∆ABR        ,,         (if the hypothesis is fulfilled)
∆BAS and ∆CAT        ,,               ,,                        ,,
From all it is born that:

BS

AR

BC

AC =      ;     
AR

CT

AB

CB =      ;     
CT

BS

CA

BA =

or its equivalent:
ARBCBSAC ×=×      ;     CTABARCB ×=×      ;     CABSCTBA ×=×

There will be orthocenter if the former three equalities hold true. And they do, because each
one of them is equivalent to twice the area of  ∆ABC.

8.2.8.2 CIRCUMCENTER
Is the center of the circumference passing through the three vertices of a triangle: it coincides
with the intersection of the three perpendicular bisectors of its sides.
Let these folds:

A → B (produces the perpendicular bisector c)
C → A (idem b)
B → C (idem  a)

If  O is the intersection of a and b, symmetry gives:
OB = OC     ;     OC = OA

hence:
OB = OA     (fold c passes through O)

A

S
2

C
R

1

B

T

O
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That is, O is equidistant from A, B, C; in consequence O is the center of the unique circumfer-
ence passing through the three vertices of the triangle.

If ∆ABC is a right-angled one, its circumcenter is placed at the mid-point of its hypotenuse.
Distances form the circumcenter to the mid-points of legs are equal to half of those legs
(Thales´ theorem). Last figure shows how the triangle can be flattened.

8.2.8.3 BARICENTER
Is the intersection point of the three medians of the sides of a triangle.

That´s the reason why it is also its center of gravity: The c.o.g. must be on each one of the me-
dians and, being unique, it has to be placed over the intersection of the three. It is easy to see
that the median divides a triangle in another two of equal area (equal bases and same height),
hence, of equal weight (in Greek, βαρος = weighty).

To get O (fig. 1), fold mid-point of each side, then mid-point / opposite vertex.
Fig. 2 demonstrates an important property of baricenter. Uniting side mid-points we

produce ∆A´B´C´ which is similar to ∆ABC (Thales´ theorem). Once demonstrated the exis-
tence of baricenter O of great ∆ABC, O is also the baricenter of small ∆A´B´C´. Because of the

similarity of those triangles, it is: OCOC
2

1
´= which proves that the baricenter is distant from a

vertex twice as much as from the mid-point of the opposite side.
This remarkable property serves to divide a segment in three equal parts. Though this

matter has its natural place when dealing with division in equal parts, I prefer to develop it now
to profit of its background.

Let segment AB (fig. 3). Mark any point C and get the baricenter O of ∆ABC. Fold re-
spective parallels to BC and AC through O: O is the mid-point of DF and GE. Being similar
∆ABC and BDF, if B´ is the mid-point of AC in the former, O will be also the mid-point of DF
in the latter. Same demonstration applies to GE. On the other hand, ∆ABC and AGE, are also
similar: D is the homologous of C´, hence D is the mid-point of AE. A similar reasoning leads
to E as the midpoint of DB. Therefore

ABEBDEAD
3

1===

C
B

a

bc

O

A

O

A

B C

A

A

B

B

C

C

A

CO
B

OB

A

C
A´

C´ B´
A

B´
O

C´

C
A´

B

F

ED

G1 2 3
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8.2.8.4 INCENTER
Is the intersection of the three bisectors of a triangle.

1- Fold the three bisectors to get I.
2- Equal distances DE and DF from a point D of a bisector BX, to corresponding sides.

(∆DEB and  ∆DBF are equal: right angled with equal angles in B and common side BD).
3- Hence, equal distances from I to the three sides. One of the most important geometric prop-

erties of origami is that radii IA1 IB1 IC1 I can be folded from the incenter to the respective
sides.

4- FUSHIMI´S THEOREM OF INCENTER: Any triangle folded through its incenter up to
their vertices and along a radius such as IB1 of fig. 3, becomes a flattened figure.

5- There it is the resultant figure.
6- Is an enlargement of  5 to justify, together with 7, the flattening process. Angles 1, 2, 3, 4

are taken in the order they have been produced, so their sum will add up to zero, for the end
falls over the beginning:

Angs. 1 –2 + 3 – 4 = 0
Angs. 1 + 3 = 2 + 4

7-  Unfolding fig. 6, it is:
Angs. 1 + 2 + 3 + 4 = 360º

Angs. (1 + 3) + (2 + 4) = 360º
Angs. 1 + 3 = 180º     ;     Angs. 2 + 4 = 180º

8.2.8.5 RUMPLED AND FLATTENED ORIGAMI
The first thing to ask is if this matter has anything at all to do with triangle singular points. The
answer is yes: it is based upon Fushimi´s theorem.

FLATTENIG CONDITION OF A FOLDED FIGURE: To fold flat a figure around a node it is
a necessary condition (but not sufficient) that the angles having their vertices on the node and
their sides being the corresponding fold lines, are supplementary taken in alternate order. The
other condition is that, when rumpling or flattening is produced, the paper will not interfere
within itself.

A

C

B B

A

C

B

A

C

B

A

B

A

B

A

C
I

1 2 3 4 5 7

X
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F

A

B
C

1

1

1
I

C

IA1B1C1

C
I

A

I

C
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1

2

3
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The square at left (white obverse and obscure reverse) was rumpled fortuitously in the hand;
before total flattening, creases were oriented to became straight lined folds; only then we ob-
tained the flat figure (to right).

The four figures shown together are solid views (to the four cardinal points) of rumpled paper
held in the hand before flattening (the drawing does not keep the same scale for all of them).

It is curious to confirm now the coincidence with Kasahara Kunihiko´s conviction re-
garding to the fact that hazard, and imagination together can force creativity: other wise, look at
the birdlike figures that rumpled folding has provided without any intention at all.

Now, let´s undo the way: if we unfold the flattened figure, the square will show up with
all the nodes and folds (mountain and valley). Then we can measure the angles around the
nodes to check that they are supplementary (taken in alternate order), according to Fushimi´s
theorem.

This theorem was demonstrated for 4 concurrent angles but it does not exist any limita-
tion: the square we are dealing with has one node of 6 vertices. Obviously, to keep angles alter-
nation, the condition is that its number must be even. If it happens to be an odd number, one of
the folds will be useless. Such is the case with some bass-relieves in certain complicated tes-
sellations.

The other necessary condition, i.e. paper not interfering within itself, was enforced
while straightening folds. Of course, it was a matter of simplification, for any crease can be
transformed in a broken line, but I wanted to avoid undesirable complications.

Last condition that rather is a consequence of the others, may be enunciated (theorem 4
of J. Justin): The difference between mountain and valley folds emerging from a node in a
flattened construction equals ±2. It can be checked in any of the six nodes within the mentioned
square.

To the four flattening conditions [(even amount of concurrent angles, supplementary
alternate angles, paper impenetrability and ±2 (mountain – valleys)], is to be added a fifth one:
the compatibility of the four.
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To fold flat around O, we have these possibilities:

Fig. 1 is an enlargement of central node O in the square at left, with its four folds ex-
tended up to the sides of the square c. In said Fig.1 point A was marked to see what will happen
to it with the different folds: v transforms A to A´; m transforms A´ to A´´; v´,  A´´ to A´´´, and
finally, v´´ gives back A´´´ to A.

This means that the product of several symmetries with respect to some axles (v, m, v´,
v´´ ) concurrent in O and making a perigon, is equivalent to a rotation of 360º around O (in this
case, concerning point A).

Let´s fix now our attention in the transformation of A to A´´. The conclusion is this: The
product of two symmetries with respect to axes (v; m) is a rotation of an angle double of that
formed by the two axes. This is because Ang. AOA´´ = AOA´ + AÓA´´ = 2Ang. vm.

As soon as we begin to fold c, O is not coplanar any more with the four points A, but
still is the center of the sphere containing them. That sphere is the same all the time: center O
and radius OA. The 4 points A, are always coplanar but situated in different attitudes according
to folding progression.

When c is folded flat, points A, A´, A´´ y  A´´´ are coincident. In any previous position
lines AA´ and A´´A´´´ meet forming a plane whose traces in c are ABA´´´ and A´B´A´´.

8.2.8.6 INCENTER AND HYPERBOLA

From the incenter theorem, Toshiyuki Meguro got at the necessary development to cre-
ate folding bases to allow the construction of different figures. It is not our intention now to go
deep into that development (see comprehensive article by Aníbal Voyer in Nº 68 of  “PA-

c

A

A´

A´´

A´´´

O

v

v´´

m

v´

1

B´

B

not flattenable
flattenable

m v v´´ v´

not flattenable

flattenable

flattenable



Jesús de la Peña Hernández

64

JARITA”, the bulletín of the AEP entitled Introduction to creation). On the contrary, we are
going to recall some of its geometric grounds.

Each side of the triangle in fig. 1 has been divided in two parts by projecting incenter I
over those sides.

Thus:
AB = a + b
BC = b + c
CA = c + a      By subtracting the two last expressions:

BC – CA = b – a
so:
                                                     b + a = AB
                                                                                       (1)
                                                     b – a = BC - CA
To fold a certain figure, say a quadruped, a previous task is to get an adequate folding

base. There exist many of them as “pre-designed”, but sometimes we will need to build one of
our own according to specific requirements.

A folding base is, at the end, a triangulation of the starting paper (usually a square), by
means of mountain and valley folds.

The requirements mentioned above may refer to figure tips, keeping due proportions:
tail, legs, snout, ears, horns, etc.

Thus, what we really know is the pair of segments a, b in side AB (fig. 1) rather than the
two other sides CA, CB; a / b must keep the tips proportion already mentioned.

Therefore, in ∆ABC we only know a, b and the expressions of system (1), i.e., side AB
and the fact that vertex C is situated on the hyperbola with focuses A and B, because the dis-
tance difference from C to B and A is a constant with the known value of  b – a (fig. 2).

Of course, the hyperbolas´s branch will pass through V (its vertex) for VB - VA = b – a.
Its center O, is the mid-point of AB.

To draw the hyperbola in the Cartesian plane OXY we´ll start up with its equation

1
2

2

2

2

=−
b

y

a

x
          (2)

such as (a ≠ a; b ≠ b):            a = VO     ;     b = VD     ;     c = AO = OD
so it´ll be                                             222 bac +=

The only thing left is to assign values to x in (2) to get the corresponding values of y

22221
baxb

a
y −=

A

B

1

C
I

B

2

A

I

C
V

O

D

X

Y

1C

3C

C2

a

b

a
c

c

b



Mathematics and Origami

65

This way we have got points on the hyperbola such as C1 C2 C3,  besides C and V.
The design of a folding base consists of finding wanted point C as the intersection of a

branch of one hyperbola (fig. 2), and another branch obtained similar way.
We must add that VD, perpendicular to AB at V is the locus of the incenters of triangles

with vertex Ci on the hyperbola. That is evident in fig. 1, but is also true for any other triangle
because AB is fixed.

8.2.8.7 FLATTENING OF A QUADRILATERAL

Point 8.2.8.4 showed how to flatten a triangle through its incenter. Now, the association
of incenter and hyperbola (point 8.2.8.6) will allow us to fold flat a quadrilateral under these
conditions:

two of its opposite vertices must be on the same branch of a hyperbola whose
focuses are the other two vertices of said quadrilateral.

Let focuses be the vertices B and C (Fig. 1), O the center of the hyperbola and OV = 2a

(a being the parameter of that hyperbola).

To obtain the other two vertices A, A´ of the quadrilateral, let´s draw the circumferences
with centers C, B, and radii CV and BV, respectively. Then, draw arbitrary cicumferences si-
multaneously tangent to the other two circles: their centers A and A´ will seat on the hyperbola
and therefore are the other pair of wanted vertices of the quadrilateral.

It is so because for any of them (e.g., A ), it is:

AB – AC = VB – VC = 2VO      for      
( )

22

VCBVVCBV
BVOBBVOV

−=+−=−=

The quadrilateral ABA´C so constructed, shows in Fig. 2 the four bisectors of its angles:
they are concurrent in I, the quadrilateral incenter.

Points A y A´ are not only points of the hyperbola: they also are the tangency points on
it, of lines AI and A´ I, for they are the bisectors of radius vectors AB, AC; A´C, A´ B. On the
other hand, in point 13.3.4 (Poncelet´s theorem) will be demonstrated that IC is the bisector of
angle A´CA.

A

B O V
C

A´

1
2

A

C

A´

B O V

I
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Thus, mountain and valley folds in Fig. 3 are what we need to get a flat-folded figure. We may
observe that the four marked angles are supplementary, for the double of their sum adds up to
360º. Fig. 4 shows the flattened quadrilateral with a view of its internal folds.

Interlude

B
I

A´

C

3
A

view along X
I

A´

A

A´

X

4

B

C

A
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8.3 VARIOUS

8.3.1 HOMOTOMIC FIGURES

                         Din A                              Pseudo Din A                            right-angled isosceles ∆

If we divide successively by 2 their respective areas, the original proportion of figures is kept.

The ratio of similarity is 2  and therefore, the ratio of areas is 2. Of course, these divisions
may be made with conventional instruments, but also by folding.

8.3.2 AREA OF A TRIANGLE

Two areas like DEFG are equivalent to ABC, so:

area ABC = AHBCAHBCEFDEDEFG ×=××=×=×
2

1

2

1

2

1
222

8.3.3 PYTHAGOREAN THEOREM

1 Isosceles right triangle.

The Tangram structure was already seen in solution 1 of Point 8.1.2. Let´s take now two equal
tangram sets, one for the hypotenuse and the other to share by the two legs; it is evident that the
square built over the hypotenuse has equal area than the sum of the squares over the two legs. It
is also clear that this explanation is valid only for an isosceles right triangle.

1 1/ 2

2

22

1 1

A

B H C D E

G F

EHD
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2 Escalen right triangle

 Tangramlike demonstration of Fig.1 is correct when cb
3

4=  ( ca
3

5= ). It shows that the width

of the central strip in square on a has equal area than the square on c.

Fig. 2 (any right triangle) shows the difficulty to divide the square on c in pieces in such a
manner to cover the central strip of square on a. Been CD = b, we can get the strip´s width h:

22

22
22 hba

c
+=      ;     

ba

c
h

+
×=

22

On the other hand, the value of h in the strip over a is:

( )bah −= 2

Equalising both values of h we get what we know as the Pythagorean enunciation: 222 bac −=
To tangram the shaded areas of square on c to fit the other shaded area is theoretically feasible
but hard to do in practice.

1

a
b

c
b

2
c

a

C

D
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3 Any scalene right triangle ABC

From ∆abc we´ll construct the exterior square with side CK = a+b. Then we fold that
square to get the interior square ABIF. If the Pythagorean theorem is fulfilled for ∆ABC, it
follows that the area of square ABIF will be equal to the sum of AKJE and EBLM.

The square of side c is made up by 4 triangles like ABC plus the central square with
side b + a – 2a = b - a.

At the same time, the square of side b is made up by said central square, two ∆ABC and
a rectangle with sides a, b – a.

Therefore, the difference between squares with sides c and b is:
4∆ABC - 2∆ABC – a (b – a)

( ) 22

2
2 aaabababa

ab =+−=−−

i.e. the difference between the square built on the hypotenuse and that constructed on the great
leg, is the square on the small leg: this is also a way of enunciating the Pythagorean theorem.

CAK

J
E

B

L
IM

F

a

b

c

Interlude
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8.3.4 PYTHAGOREAN UNITS

Demonstrations made in point 8.3.3 for the Pythagorean theorem are adequate for cutting and
folding. Now we are going to see Toshie Takahama´s demonstration by means of a rhomboidal
unit. In turn, that unit is combined with some others identical to it to form the partial surfaces
that eventually will integrate the three squares associated to the right triangle.

In the present case, folding only is used. It is a rigorously geometric construction and has an
added pedagogic value, for 36 rhomboidal units being required, it allow a very interesting
teamwork.

These observations must be made:

•  Demonstration is valid only for right triangles with their legs in the ratio 
22

1
:1

•  The pieces formed with the rhomboidal unit have a flattened-consistent structure with
flattvolumelike shape. That´s why, at the end, the initial geometric rigor is lost, but that does
not lessen its interest neither geometric nor pedagogic.

Figs.1 and 2 shows the process to get the rhomboidal unit. From them on, it follows the con-
struction of the five pieces A, B, C, D, E.

Piece A (two units)

1

2

A

C

B
D

1 2
3

4

6

5
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Piece B (two units)

Piece C (four units)

Piece D (five units)

4 A 5 6 7

5 6

7

8910

4A

9 C

10 11 12

13
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Piece E  (five units)

Therefore, the five pieces obtained are:

The square A6; the isosceles right triangles B7 and C10; D13 and E12.
In the following figure also appear those pieces to justify the Pythagorean theorem.

Algebraically we can also see:
222 IPJIJP +=      ;     ( ) IPJIWPJW +=+ 2

22

22

1
1

2

1

22

1 




+=





 +      ;     

8

1
1

8

1
1 +=+

5C 6 7 8

910

1112

A

A

B

B

C

C

D

D

E

E

F G H

I M

NP

J
W

OK

L
It can be seen in it that the

square over the hypotenuse has the
same area than the sum of those built
over the legs

It may be noted also that the
square over the great leg (one unit side)
is equal to the initial Fig.1. The rhom-
boid of the basic unit and the four fig-
ures B, C, D, E are shown now over-
lapped.

These, besides piece A are
shown after with their dimensions.
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Remarks:

•  Piece C10 is not the triangle ABC in Fig. 1. In this, BC ≠ AD (being AD= 1). There is a
small difference:

106.12
4

3 ≠==CB

That´s why in the square over the great leg, the right angle of C10 does not lie on neither of
the vertices of the square. On the contrary, that happens on the square over the hypotenuse.

•  It can be observed also that the sides of the squares are divided:
! in halves (great leg).
! in thirds (hypotenuse).

•  The Pythagorean theorem approach can be presented also as a game with these alternatives:
! Make up two different squares with the five basic pieces. The two squares over both

legs are the solution.
! Form one only square with the five pieces. The solution is the square over the hy-

potenuse.
! With 2 sets of said five pieces (total of ten), build up one only square. Fig. 3 is the

solution. In it you can also see 4 squares.

A6
B7

C10

D13
E12

I M

NP

K O

J J

O

I

G
H

I

O

L
F G

L

OK

1
2 2 2

1
1
2

2
1

1

1
2

22
1

1
2

2
1

2

1
2 2

2
1

1

2
1

2
1

3
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8.3.5 UNIT SQUARES (JEAN JOHNSON)

Begin with a square folded as indicated in figs. 1 to 6. An irregular quadrilateral with
two straight angles is obtained eventually in fig. 6.
Ask for four units like the former: then build up squares using the four pieces in each.

Without any restrain to the process, we can play with the four pieces by: making the
four pieces adjacent, overlapping or enveloping each other, turning upside down some of them,
etc. The most straightforward process leads to three squares: one to fig. 7 and two (interior and
exterior) to fig. 8.

Interlude

1 2 3

4 5 6

7 8
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9 DIVISION IN EQUAL PARTS

9.1 EVEN PARTS OF A PERIGON

Begin with an irregular piece of paper to divide the 360º of the plane in 2 n equal parts:
n = 1, straight angle.
n = 2, right angles (perpendicular rays)
n = 3, 45º angles.
n = 4, 16 angles measuring 22º 30´ each.

9.2 A SQUARE IN TWO PARTS OF EQUAL AREA

9.3 THE RIGHT ANGLE OF A SQUARE IN THREE EQUAL PARTS

The angle A is divided in three equal parts for:
∆ABC is equilateral (B lies on the perpendicular bisector of AC and AB = AC)

hence ang BAC = 60º     ;     ang DAB = 30º
ang BAE = ang EAC (symmetry) = 30º

1 2 3 4

5

0º

22º 30´

45º67º 30´90º
112º 30´

157º 30´

180º

225º

292º 30´

315º

337º 30´

360º

135º

202º 30´

247º 30´

270º

6

=
=

Any segment AB passing through the center O fulfils
the requirement.

AB determines two right trapeziums having all their
angles, respectively congruent (ang A = ang B as
alternate interior), sides CD = EF, and common side
AB; hence, both areas are equal.

E F

B

DC

A

O
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9.4 A SQUARE IN THREE EQUAL PARTS (five exact solutions)
Solution 1

Solution 2

Solution 3

Square with side one unit.
∆ABC and ∆DEC, are similar.

BCAB
4

3=

A

CE

B

D

2

1
= =

=

==
=

A

E C

H

G

1

2

3

4

F

1- Divide ang A in three equal parts to Point 9.3.
We get point E.

2- Fold A over E. Valleyfold FG is the symmetry
axle.

- ∆AFG = ∆EFG because of symmetry.
- Being ang FAG = 30º, the three angles in G

(HGF, FGE, EGC) measure 60º.
- ∆EGC is “half an equilateral triangle”, hence

AGEGGC
2

1

2

1 ==

3- AC → AC; G → G

4- G → A: ACGCHGAH
3

1===

1 2

3

4

= =A B

C

D

P
1/ 3

2 / 3

Let a square with side one unit.
∆ABD and PCD are similar.

As BDAB
2

1= , it will be CDCBPC
2

1==

As 1=+ CDBC , it is 
3

1=BC  and 
3

2=CD
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Solution 4

Solution 5

9.5 A SQUARE IN THREE EQUAL PARTS (two approximate solutions)

Solution 1

Side BC of square = 1
∆ABC, equilateral;     ang DCE = 30º     ;     ang DBC = 45º     ;     ang BDC = 105º

105sen30sen

BCDB =      ;     517638.0
105sen

30sen ==DB

...333.03660254.045cos ≠== DBBE

Practical folding process is:
•  To get point D.

A

D

CEB 1/ 3 2 / 3

1

2

3
4

5 6

ECDE
4

3

2

1 ==

3

2=EC      ;     
3

1=BE

B

E

CGDF

P

O

1 / 3

By folding, find the centers O (big square) and P
(square OBCD).

Triangles FEC and FPG are similar.

As FCFG
4

3= , it will be:

ECGCPG
4

3

4

1 === , therefore 
3

1=EC

A

E G
DF

C

H

I

1

2

3

4
Begin with a square of side one unit.

Triangles CFD and DGH, are congruent.
Triangles ADE and DGH, are similar.

As EDAE
3

1= , it will be 
12

1

4

1

3

1

3

1 =×== DGGH

3

1

12

4

4

1

12

1

4

1 ==+=+=+= GHFICFCI

Therefore it´s enough to fold the square horizontally
over C and then to fold its upper side also over C.
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•  Using D as a reference, mountain and valley fold (not flattening), to obtain a bellows con-
figuration. Then flatten after coincidence of sides and folds.

•  Unfold to see the square equally divided.

Solution2

1

2

3

A

C

D

EB

D

1 2 3

4 5 6

X

X

D

D

J J
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EFHI =      ;     
16

1

32

22
2 === HIGH

In ∆HAJ:     ang H = 45º     ;     ang A = º5.22
2

45 =      ;     ang J = 180 – 45 – 22.5 = 112.5º

5.22sen5.112sen
16

1
1

HJ=
−

     ;     HJ = 0.3883252

3370873.045cos
16

1 =+=+= HJHKGHGK

                                                     inexact result:     .....33333.0
3

1 =

9.6 A SQUARE IN THREE EQUAL PARTS (Haga´s theorem)

Beginning with a square with side one unit, the result is: 
3

1=EG      ;     
3

2=EF

Justification:

1=FH      ;     2tgArcangABH =      ;     
2

1
tgArcangBADangDBA ==

2

1
tg2tg ArcArcangHBD −=      ;     angHBDangFEB =   (perpendicular sides)

in ∆FEB:   
FE

FEB
×

=
2

1
tg   ;  

3

2

2

1
tg2tgtg2

1 =





 −

=
ArcArc

FE    ;   
3

1

3

2
1 =−=EG

G H
I

K A

BC

D

F
E

J
1=AB      ;     2=AC      ;     

16

2=CD

( ) −=+−=−=−=
2

2

2

2

2

2
FDEFEDAEAFEF

( ) 





−+−=−+−

16

2

2

2

2

2
EFCDFCEF

EFEF −=
16

2
     ;     

32

2=EF

A

B

C
C

D D

A

E E

B F H

G

= =
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9.7 A SQUARE IN THREE EQUAL PARTS (Corollary P)

This is a consequence of the fact that a / x is biunivocal (see Point 5).
The first thing is to fold BD in such a way that:

- lower side BD lies on A, mid-point of BC.
- simultaneously, D must lie on the upper side of the square.

If the square has one unit side, the result is that
3

1=FE . Justification:

- The two angles α are congruent because their sides are perpendicular.

- In ∆ACF:     
CF2

1
tg =α      ;     In ∆FED:     FE=

2
tg

α

- 

2
tg1

2
tg2

tg
2 α

α

α
−

=      ;     
21

2

2

1

FE

FE

CF −
=      ;      ( ) ( )( )FEFE

FE

FE +−
=

− 11

2

12

1

- FEFE 41 =+      ;     
3

1=FE

9.8 A SQUARE BY TRISECTING ITS DIAGONALS

The solution is also applicable to a rectangle.
-  To get A and B, the midpoints of respective sides.
-  C and D trisect the diagonal in equal parts:

•  Triangles EFB and AGH are congruent (equal and parallel legs). So EB and AH are
parallel.

•  In the pencil of rays FG-FH, FB = BH. Hence FC = CD (Thales theorem).
•  In the pencil of rays GE-GF, GA = AE. Hence CD = DG (Thales theorem)

•  That is: FC = CD = DG =
3

1
FG

•  Obtained C and D, folding of last square determines EI = IJ = JG (Thales theorem
applied to rays GE-GF)

DB

A

=

=

C C

A

F E

A

C F E

2

D

F

C C C

F F

E EA A

B B

D
DD

G

H

GJI
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9.9 TRISECTION OF ANY ANGLE ABC

∆BKL = ∆KLF (symmetry)     ;     BL = LF (symmetry)
∆BLD = ∆KLF (one side and angle, congruent)

so ∆BKL = ∆BLD, that is:     ang JBF = ang FBC
Moreover: as GI = IB     ,     HJ = JF (symmetry)
Said symmetry with respect to ED produces the right angles marked in I y J.
Then ∆HBJ = ∆FBJ, that is:      ang ABJ = ang JBF

therefore:      ang ABJ = ang JBF = ang FBC = 
3

1
 ang ABC

It is impossible to achieve that simultaneous coincidence by means of rule, square / set
square and compass, nor even by CAD. The computer can help in a try and cut process, but
that´s all. On the contrary, folding is the unique way to integrate trying, intuition and pre-
cision.

A

CDB

I

G

E

H

J

FK

L

A

E

G

I

B D C

F

J

H

AA

G

B CB C

=

=
I

We have trisected angle ABC, associated to its corresponding square. Of course, any
angle can be related to a square.

The reader may have observed that we came across the solution by simultaneously
folding under two different conditions. Something similar was shown when resolving the third
degree equation (Points 7.11; 7.14; 7.14.5). Now it is pertinent to say the following:

Process will be as follows:
1- To get two straight lines parallel to a side (e.g. BC) under
the condition to be equidistant as the figure shows. Thus we get
points G and I.
2- Produce valley fold ED such that B will lie on F (over
lower parallel) and, simultaneously, G on H (over ray BA). As
a consequence of the symmetry (axle ED), I will lie on the new
point J.
3- Rays BJ and BF trisect Ang ABC. Justification:
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9.10 TRISECTION OF ANY ANGLE  (H. HUZITA)
Let AIB = 3α the angle to trisect.

In Point 7.14.5 this equation was solved:
     01223 =−−+ ttt                (3)

Similarities and dissimilarities between (2) and (3):
•  Both are complete equations of third degree.

•  With negative discriminants (ignore in (2) the values of 
2

3
πα n= , n being a natural

number; these exceptions will be studied below).
•  Every coefficient of (3) can be expressed in the same unit.
•  (2), on the contrary, requires two different types of unit to express its coefficients:

the unit as such, like in (3), for the monomial terms of third and first degree, and the unit a
for the terms of second degree and independent.

•  Fortunately, coefficients using as unit 1 and a, alternate in (2): so, all the horizontal
vectors will be measured with a type of unit and the vertical ones, with the other.

Before proceeding, let´s solve (2) for 3α equal to 90º and 180º respectively.
Being a = tg 90º = ∞, let divide (2) by a:

013 2 =+− t      ;     
3

1=t       ;     º30
3

1
tg == Arcα

As a = tg 180º = 0, (2) becomes:

033 =− tt      ;     032 =−t      ;     3=t      ;     º603tg == Arcα

It´s evident that these particular solutions are direct:  30
3

90 =     ;    60
3

180 =

In Point 8.2.2.2 we already studied the obtention of angles of 30º and 60º by mere folding.
Let´s go on with fig. 1. If we make IC = 1, we´ll have:

DC = tg 3α = a
Therefore (fig. 2) we are able to draw the co-ordinate plane with origin at I (initial

point), abscissas measured in conventional units and ordinates measured with a as unit.
Looking at Fig.2 we have:

•  First vector will be [I → (1,0)] (which gives the axle 2,Y)
•  The second vector will be [(1,0) → (1,3a)]
•  The third is [(1,3a) → (4,3a)]

As 
α

αα
2tg1

tg2
2tg

−
= , it is:

( )
α

ααααα
2

3

tg31

tgtg3
2tg3tg

−
−=+=

Making t=αtg , we´ll have:

2

3

31

3
3tg

t

tt

−
−=α  which leads to the complete equation of third

degree:
03tg33tg3 23 =+−×− αα ttt (1)

Making α3tg=a , (1) takes the form:

033 23 =+−− atatt (2)

B

1
AC

I 2 3 4 5

a

2a

3a

4a

D

1
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•  And the forth vector: [(4,3a) → (4,4a)] (which gives the axle 2a,X)

Da

I
C

1 32 54
A

4a

2a

3a

B

Y

F

O
X

2
The only thing left now is to fold simultaneously Initial

point I over OY and Final point F over OX.
There are three solutions for t, of which, only one is ac-

ceptable. Other gives a negative angle and the third gives an
angle greater than the given one.

Fig. 3 shows the final solution to be completed with a
pleat fold of the angle α within 3α.

a D

2I 1 C 43 5
A

O

3 4a

2a

3a

F

X
B

Y
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9.11 A SQUARE IN FIVE EQUAL PARTS

Let´s begin with a square of one unit side:

ααα sen
2

1
sensen === ABPBx

2arctg21802180 −=−= βα

( ) 4.02arctg2sen
2

1 ==x      ;     
5

1
2.0

2

1 === xy      (exact solution)

9.12 OTHER INEXACT FORM OF DIVISION

•  Let C at a distance x from D, obtained according to Point 9.11.
•  Fold H over C to produce G and F.

•  In Point 9.11 it is 

2

5
1

5

2
4.0 ==== CDx ; recalling Corollary P, we shall have

7

4

2

7
2

1
2

5
2 ==
+

=AF

•  Being similar ∆AFC and ∆DGC, it is:

GD

CD

AC

AF =      ;     
GD
5

2

5

2
1

7

4

=
−

     ;     
50

21

545

372 =
××
××=GD

B

BA

C C

P

P

x x

y

= =

P

1 2 3

4
5 6

7
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•  Now then, there are publications which affirm that 
7

3=GD  without any clarification

whether that is exact or approximate.
•  We have just seen that, though with a great approximation, it does not exist accuracy: GD

measures 
50

21
 which differs from 

49

21

7

3 =

9.13 THALES´ THEOREM: DIVISION OF A RECTANGLE IN n EQUAL PARTS

In Solution 3 (Point 9.4) we saw in advance the present application. Sidney French, in
B.O.S monograph GEOMETRICAL DIVISION also develops this question which now we are
going to generalise.

It is well known that to divide in n equal parts by folding, is immediate for n equal to
the successive powers of 2: 4, 8, 16, 32 ...

For the other even values of n, e.g. 12, the operation is not immediate because each
forth has to be divided in 3 parts; for any odd value of n we need specific solutions. Somebody
could argue that for a division in 12 parts, we have already learned to divide by 3: that´s true
but complicate. This is the reason why we shall develop now a general procedure.

Let´s divide vertically in n = 12 parts the rectangle ABCD. We look for the power of  2
nearest to and greater than n. We find 16. Then we divide the rectangle horizontally in 16 parts
(fg. 1) producing only the indispensable folds. Counting 12 parts from C we get E.

Thales theorem transfers the equality of segments in CE, to DE.
Finally we fold the rectangle (fig. 2) by the perpendiculars to DC through points marked

in DE. It´s easy to see that the process is good for any value of n.

P C

x

B

x

P C

= =

C

x

A A

D D DG E G

F

H H

A B

D C D C

1 2
E
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9.14 DIVISION OF A SQUARE IN 7 EQUAL PARTS  (two approximate solutions)

Solution 1

Besides, the seven partitions obtained are not equal: there are three sets of values. From
smallest to greatest, the smallest part is the third from left, then the first and second from left
and finally, the four parts at right.

= =

A A

A AB B

C

C C

C

B B

C

30º

60º

1
2

3

4

= =

For BC = 1, in ∆ABC:
AB = tg30 = 0.5773502

4

AB
= 0.1443375

as =
7

1
 0.1428571

it can be seen that the result is very near
accuracy, but inexact.

Interlude
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Solution 2

Beginning as usual, with a square of side 1, let´s see how much precision we get: it is supposed

that 
2

HC
 be equal to 

7

1
.

Comparing the last figure of present Solution 2 with Fig 2 in Point 4 (demonstration of Haga´s
theorem), we have:

DE = x     ;     EB = z     ;     FG = GI = f
Now it is DE = x = 0.5; in Point 4 we had for this value of x:

z = 0.375 = EB     ;     f = 0.125 = FG = GI
From these data we can study ∆ABC.

ang ABC = arc tg 
fzGIEBEC

IC

−−
=

−− 1

1
 = arc tg

125.0375.01

1

−−
ang ABC = arc tg 2 = 63.434949º

ang BAC = 180 – ang ABC - 




 +

2

45
45  = 49.065051º

434949.63sensen

1 AC

BAC

z =−
     ;     AC = ( ) 7399749.0

065051.49sen

434949.63sen
375.01 =−

2831761.0
2

3
45cos =





 ×= ACCH      ;     141588.0

2
=CH

The reader can see the difference between the last value and 1428571.0
7

1 =

= =

=

=

C C

B

C

B

A A

=

=

=
=

A

=

C

B

=D E

H

G

I

F 45º=
=

1 2 3 4

5 6 7 8
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9.15 A SQUARE IN 9 EQUAL PARTS (two solutions)

An approximate solution

It is based in the assumption that CB is divided in segments CE, EG and GB keeping propor-
tions 4,2,3 respectively, that is, adding up to 9:

9324

CBGBEGCE ===

Of this, the only certain is that CGGB
2

1= :

∆ACG and GBD are similar; the sides in the small triangle are half the size of their homolo-

gous in the big one ( ACBD
2

1= ). Therefore it will be also GCGB
2

1= .

This means that folding CG in halves, CB will be divided into three parts equal to GB.
Hence, of the four ratios made equal above, the only exact is the last proportion, which, for one
unit side, ends up to be:

124226.0
93

== CBGB

We´ll see later that

1252249.0
4

=CE
     and     122228.0

2
=EG

which makes evident the inexactitude.
Justification:

α = arc tang 2 = 63.434949º     ;     α + 30 = 93.434949º     ;     α + 45 = 108.43495º
CH = AC tang 30 = tang 30 = 0.5773502

In ∆CEH:

( )30sen60sen +
=

α
CHCE

     ;     ( )30sen

60sen

+
=

α
CHCE  = 0.5008998

In ∆GBD:

( )45180sen45sen −−
=

α
BDGB

     ;     ( ) 372678.0
45sen

45sen

2

1 =
+

×=
α

GB

On the other hand,

118034.1
2

5

4

1
1 ==+=CB

EG = CB – CE – GB = 0.2444561

The supposed equalities
9324

CBGBEGCE ===  have these real values:

A C

D

H

B

= = A = = C

H

DB

A = = C

H

DB

E
F

G I

45

F

H

E

C

30
60

30
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124226.0124226.0122228.01252249.0 =≠≠
Of course, to fold horizontally the given square through points E, G, etc. is equivalent to fold
through F, I, etc. (Thales theorem).

We are not going to show the folding process that, in fact, is identical to the exact solu-
tion. The only difference between the two solutions is the position of point E.

Exact solution
It keeps the correct point G of former solution, and produces a new point E which will

be also correct if we have applied the same process that gave G. In this case, vertical HI super-
sedes diagonal BC.

9.16 DIVISION IN n PARTS AFTER COROLLARY P.

The process is absolutely general, but for a better understanding we shall apply it to a
particular case, e.g. the division of a segment in 37 equal parts. Apparently the operation may
seem complicate once we are dealing with a high prime number, but we´ll see that it is not so.
The first thing to do is to construct a square whose side is the given segment. We´ll suppose the
problem solved and recall the biunivocal ratio a / x in Corollary P (see Point 5). That is, for

n
x

1= , it is 
1

2

+
=

n
a  (see figs. 1 and 2).

Square nº 1, side AB (fig.3), has been produced.

1. We take for granted the final solution in that square nº 1: it is the point distant ABx
37

1= ,

from B.

10
6

G

E

7 8

G

E

G

E

9
G

E

11
G

G

E E

12

GE

C

DB

A =

1

G

D

G

B I

E

= AC H

5432

profile views

I

EE

G G G

E

H
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2. Then, the square is folded like in figs 1 and 2 (these operations are not shown in fig 3) to

get 
19

1

38

2 ==a

3. Copy square 1 to position 2 rotating it 90º clockwise. In that rotated square 2 appears

19

1=x . You may note that in each square, former divisions are kept (
37

1
 in this case).

4. Fold square 2 to get 
10

1

20

2 ==a

5. Copy and rotate 2 to position 3 in which appears 
10

1=x

6. Fold 3 to get 
11

2=a ; folding 
11

2
 in halves, we get 

11

1

7. Copy and rotate 3 to get 4, in which 
11

1=x  appears.

8. Fold 4 to get 
6

1

12

2 ==a

9. Copy and rotate 4 to get 5 showing 
6

1=x

21 ba

e
f

d

x c

zy

x

37
2

38
1
19 19

1

2
20

1
10

90º

90º

1

37
1

37
1

1
10

1
19

2
11

1
11

1
2

3

11
1

10
119

1

37
1

4

90º

2
12 6

1

5

90º

1
37

1
6

19
1

10
1

11
1

2
7

90º

7
1

1
19

7
1

6

10
1

1
11

37
1

6
1

A B

3
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10. Fold 5 to get 
7

2=a  which in turn produces 
7

1

11. Copy and rotate 5 to get 6 which shows 
7

1=x

12. That square 6 is set apart in fig 4, displaying
7

1=x ; by folding, we get 
4

1

8

2 ==a

13. Finally, folding over 
4

1
, we get 

2

1
 (within the ellipse).

Till now we have gone the reverse way: we began with 
37

1
 to arrive to 

2

1
. Therefore the di-

rect way will be the reverse of the reverse, beginning with 
2

1
:

1 Get 
2

1
, 

8

2

4

1 =  on the left side of  6.

2 Fold 6 in such a way that its right lower vertex lies on upper side while the lower side lies

on 
8

2=a . So we get 
7

1=x .

3. Copy 6 in 5 rotating 90º anticlockwise.

4. In 5, fold 
7

1
 to get 

7

2=a  on left side.

5. Fold square 5 in such a manner that its right lower vertex lies on upper side while lower

side lies on 
7

2=a . So we get 
6

1=x .

6. Copy 5 in 4 rotating it 90º anticlockwise.

11

10
1

371

6

6

1

1

19

7
1

1

2
8

1
4

2
1 4
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7. In 4 appears 
12

2

6

1 ==a . In said square 4 fold its right lower vertex to lie on the upper side,

while its lower side lies on 
12

2
. This way we get

11

1=x .

8. Let´s recapitulate the x values obtained till now:
Square nº         x

6 
7

1

5 
6

1

4 
11

1

9. With a similar procedure we would get:
Square nº         x

3 
10

1

2 
19

1

1 
37

1

10. The whole process is contained in the following table that exhibits the successive a / x val-
ues:

a                                   x

2

1

 ↓

8

2

4

1 =
7

1

7

1

↓

7

2

6

1

12

2

6

1 =
11

1

11

1

↓

11

2

10

1

REMARK.- One could ask: If the end of the reverse way is al-

ways 
2

1
, which is the difference, if any, from one process to

another to arrive in the direct way from that 
2

1
 to the possible

different fractions given as solution?
The answer is in the different possible combinations to

get a fraction double or half of one already obtained.

You may compare the direct way shown to reach 
37

1

with the other we need to get 
27

1
 : the latter is shown in the

following table at right.
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20

2

10

1 =
19

1

38

2

19

1 =
37

1

All this proves the need to do first the re-
verse way to get the configuration of intermediate
steps.

Of course, it is not necessary to make a
precise reverse way, nor is indispensable to fold:
it suffices to perform the table a / x just shown.
On the contrary, folding is required in the direct
way (the reverse of reverse).

a                                   x

2

1

↓

4

1

↓

16

2

8

1 =
15

1

15

1
 → 

15

2

14

1

28

2

14

1 =
27

1

Interlude



Jesús de la Peña Hernández

94

9.17 DIVISION OF A PAPER STRIP (Fujimoto´s method)

It deals with a system of successive approximations, which allows dividing the starting
object in 3, 5, 7, etc equal parts through a quick, precise and practical convergence.

For the sake of simplicity we shall show only two examples: the division in 3 and 5
parts respectively, by folding a strip of paper.

Something similar could be done to divide an angle if we start up with a wider paper
surface. In the case of a paper strip the little side of the strip is taken to lie each time on the
previous fold. If we deal with angles, it is a ray of the angle what is revolved over its vertex to
lie on the previous fold.

If a paper strip is folded from end to end, we get its two halves. Repeating the operation

over one of these halves, the 
4

1
 strip segment will appear. Continuing the same way, we´ll see

how the segments 
8

1
; 

16

1
, etc. show up. That is, fractions such as:

2

1
; 

4

1
; 

8

1
; 

16

1
; 

32

1
; ... ; 

n2

1

n being the number of folds produced.

Fujimoto´s method is an application of the 
n2

1
 procedure, to the division in an odd

number of parts. To divide in three equal parts we´ll make n = 1, i.e. the folds will take place
each time in simple halves. On the contrary, to divide in 5 equal parts we´ll make n = 2: each
fold will be made double each time.

9.17.1 DIVISION IN THREE EQUAL PARTS

Before commencing, I should like to remind the reader about the division of a segment
in three equal parts such as was treated in Point 8.2.8.3

Let AB = 1; first fold is produced at C distant x from A; x may be of any measure
though in practice, and in order to get a quicker convergence it should be as near as possible to
1 / 3. Nevertheless this is not an indispensable condition for the method by itself is highly con-
vergent. In fact, fig 1, displays x strikingly smaller than 1 / 3 just to show how well the method
works. Therefore it is:

xAC =      ;     1=AB      ;     xCB −= 1

Fold B over C to get D in such a way that:

2

1

2

xCB
CDBD

−===

BC
1

A
x

A2 C BD
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Fold A over D to get C´:
( )

( )
44

1

2

1

4

1

2

1

2
2

1
1

2

1

2
´´

xx
x

BDAD
DCAC +−=−−=

−−
=−===

Fold B over C´ to get D´:

88

1

4

1

2

1

2

44

1

2

1
1

2

´1

2

´
´´´

x

x

ACBC
DCBD −+−=






 +−−

=−===

Fold A over D´ to get C´´:

1616

1

8

1

4

1

2

1

2

88

1

4

1

2

1
1

2

´1

2

´
´´´´´

x

x

BDAD
DCAC +−+−=






 −+−−

=−===

Fold B over C´´ to get D´´:

=





 +−+−−

=−===
2

1616

1

8

1

4

1

2

1
1

2

´´1

2

´´
´´´´´´

x

ACBC
DCBD

3232

1

16

1

8

1

4

1

2

1 x−+−+−

and so on. The following step (7th fold) will give:

=´´´AC =−+−+−+− .....
22

1

2

1

2

1

2

1

2

1

2

1
6654321

x
Lim x

                       =−+−+−+− .....
22

1

2

1

2

1

2

1

2

1

2

1
7765432

x

2

1
Lim x

It may be noted that the limit of x is made up of the algebraic sum of certain powers of 2, like
j−2  (for j values from 1 to n).

Adding up the former two expressions, we´ll  have:






 +

2

1
1 Lim 

776 22

1

22

1 xx
x +−+=

2

3
Lim xxx

77767 2

3

2

1

2

1

2

1

2

1

2

1

2

1 +−=




 ++−=

A
3

C D BC´

A
4

C C´ D BD´

A
5

C C´ D D´ BC´´

6
A C C´´C´ D D´ BD´´
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Being n the number of folds, and generalising, we have:

2

3
 Lim xx

nn 2

3

2

1

2

1 +−=

Lim 
3

1

2

1

3

2 =×=x

∞→n                                             as wanted.
9.17.2 DIVISION IN 5 EQUAL PARTS

Exaggerating the position of starting point W, we have placed it at midpoint of AB.
From A we fold, first up to W and then, up to Z1. So we get C:

AB = 1     ;     AC = x

Fold B successively over C (getting Z2), and over Z2 getting D. It will be:

4

1 x
BD

−=

Similarly we get AC´:

( ) xx
BD

AC
16

1

16

1

4

1
1

4

1
1

4

1

4

1
´ +−=





 −−=−=

Here BD´ is obtained; its value is:

xx
AC

BD
64

1

64

1

16

1

4

1

16

1

16

1

4

1
1

4

1

4

´1
´ −+−=










 +−−=−=

The two following folds from A give:












 −+−−=−= x

BD
AC

64

1

64

1

16

1

4

1
1

4

1

4

´1
´´

1
A C Z

W

B
1

2
A C BZ D2

3
A D BC´ Z 3

4
A BC´ Z D´4
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xAC
256

1

256

1

64

1

16

1

4

1
´´ +−+−=

The latter expression gives us the formation law of AC j that is just the wanted limit of
x:

xAC j
88642 2

1

2

1

2

1

2

1

2

1 +−+−=

                                                                                    summing up

      =jAC
22

1
        x

1010864 2

1

2

1

2

1

2

1

2

1 +−+−

xxAC j
1010822 2

1

2

1

2

1

2

1

2

1
1 +−+=





 +

When n folds have been produced ( ∞→n ), the three last terms of the 2d member tend
to zero. Thus:






 +

22

1
1 Lim 

22

1=x      ;     Lim
5

1

54

4 =
×

=x

                                                       ∞→n
The two preceding examples do not serve to generalise the method. In fact, Fujimoto

designed a second method that is also rather complicate. The reader can realise that folding
possibilities are infinite in practice: to alternate the starting from A or B; to repeat more times
from one extremity than from the other; to play with simple, double, triple, etc. folds, and so
on.

Binary numeration solves all difficulties associated to the division in equal parts.

Interlude
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9.18 DIVISION OF A PAPER STRIP BY MEANS OF BINOMIAL NUMERATION

As we know, in binary numeration the only numbers that exist are 0 and 1. Besides, to
convert an integer of the decimal system to the binary system, we must divide the integer and
successive quotients by 2 till the moment a quotient 0 is reached (and, therefore a remainder of
1).

The resultant binary number is made up of those remainders: the first one (always 1, at
left) is the last obtained and, successively towards the right, the others up to the first produced.
Example:

On the other hand, to convert a decimal fraction to binary system it´s better to follow
the procedure shown in this example:

To convert into binary the decimal 43.42.
The first thing is to have available the successive powers of 2 (positive as well as nega-

tive).
120 = 3225 = 03125.02 5 =−

221 = 5.02 1 =− 6426 = 015625.02 6 =−

422 = 25.02 2 =− 12827 = 0078125.02 7 =−

823 = 125.02 3 =− 25628 = 00390625.02 8 =−

1624 = 0625.02 4 =− 51229 = 001953125.02 9 =−

Then subtract the greatest possible power of 2, to the given number.

With the bases above, let´s divide a paper strip in 7 equal parts. First of all we have to

convert to binary the fraction 
7

1
.

7

1
 = 0,1428571

43,42

11,42

- 1

- 0,25

- 0,125

- 0,03125

3,42

1,42

0,42

0,17

0,01375

- 2

- 32

- 8

0,045

101011,01101

101011,011

101011,01

101011,

10101

101

1

( 2

( 2

( 2

( 2

( 2

( 2

( 2 5

3

1

0

- 2

- 3

- 5

)

)

)

)

)

)

)
..................................................

Put down 52  to the left of that result; this
is the power taken into account; besides, one 1 at
right (the first digit that always appears in any
binary expression). Continue likewise. At the right
of 3,42 repeat the 1 above and add one zero (one
power of 2 has been dropped – 42 -); also add the
1 corresponding to the line we are dealing with.

It can be seen that the process would con-
tinue till the difference zero would be found, what
not always happens.

13 2
1 6 2

0 3
1

2
1
1

2
0

13 11 10 2 )
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The succession of zeros and ones defines the folding sequence that was not so clear in
Fujimoto´s method. That is gathered in the figures to follow.

The procedure is this: fold the end A over the last fold when there is a correspondence
with a 0, and end B, also over the last fold produced, if there is correspondence with an 1.

1. Fold the strip by half to get 5,0
2

1 ==AC

2. and successive: assign zeros and ones as seen.

A over C to get 25,0
4

1 ==AD

3.   A   ,,     D ,, 125,0
8

1 ==AE

4. B   ,,     E         ,,        ( ) 4375,0
16

1

2

1
1

2

1 =−=−= AEBF

5. A   ,,     F         ,,        ( ) 28125,0
32

1

4

1

2

1
1

2

1 =+−=−= BFAG

6. A   ,,    G         ,,        140625,0
64

1

8

1

4

1

2

1 =+−== AGAH

7. B   ,,    H         ,,        ( ) 4296875,0
128

1

16

1

8

1

2

1
1

2

1 =−+−=−= AHBI

8. A   ,,    I          ,,        ( ) 2851562,0
256

1

32

1

16

1

4

1

2

1
1

2

1 =+−+−=−= BIAJ

9. A   ,,    J          ,,        1425781,0
512

1

64

1

32

1

8

1

4

1

2

1 =+−+−== AJAK

10. B   ,,    K         ,,        ( ) 4287109,0
1024

1

128

1

64

1

16

1

8

1

2

1
1

2

1 =−+−+−=−= AKBL

11. A   ,,   L      ,,     ( ) 2856445,0
2048

1

256

1

128

1

32

1

16

1

4

1

2

1
1

2

1 =+−+−+−=−= BLAM

12. A   ,,   M     ,,     1428222,02222222
2

1 12986532 =+−+−+−== −−−−−−−AMAN

0,1428571
- 0,125

0,0178571
- 0,015625

0,0022321
- 0,001953125

0,000278975 0,001001001

0,001001

0,001

2
2
2
2

(2

(2

(2

- 3

- 6

- 9

0
- 1
- 2
- 3

)

)

) 1
7..............
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That is, values AE, AH, AK, AN ... tend to 
7

1
, which is also the algebraic sum of terms like

j−2  (see Point 9.17.1).
If we want to go on with the approximation process, it will be useful to note that the binary ex-

pression of 
7

1
 has a period of  001 which simplifies that process.

0,4296875

0,4375

A

0,2851562A
8

J

0,28125

6
0,140625

7

A

A
5

H

I

G

0,5A

0,25

E
3

0,125

4
A

A

2
A

D

F

1
C

B

B
0

0

1

B

B
0

B

0

B
1

B

0
B
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In the case of producing 15 folds, we would have approached 
7

1
 up to the value of

0,1428527.

0,2856445

A 0,1428222

7
1

11

12

A

N

10
A

0,1425781
9

A

K

L

= 0,1428571

0,4287109

M

B

0

0

B

1
B

B
0

Interlude
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10 REGULAR CONVEX POLYGONS WITH MORE THAN 4 SIDES

Our attention will focus on folded constructions leaving aside the classic that use rule
and compass.

It is impossible to present the whole variety of origami solutions because of lack of
space: as far as pentagon only is concerned, well overt 10 different solutions may be registered.

What we shall do is to discuss various solutions because not all of them are perfect un-
der the point of view of geometry. Origami can deal with most of them though, even with the
added handicap of folding difficulties and the accumulation of overlapped paper.

 Nevertheless we are convinced that the capacity to digest errors inherent to origami
should not impair to distinguish exact from approximate solutions; besides, some of these are
more imperfect than others.

10.1 PENTAGON
10.1.1 FROM ONE ARGENTIC RECTANGLE

Before continuing I shall indulge myself in a semantic digression. In British origami lit-
erature, the DIN A rectangle is called silver rectangle: of course I have nothing to object (see
D. Brill´s BRILLIANT ORIGAMI).

Since DIN A rectangles are well enough defined as such, I do not think they need of any

added qualification despite of their 2  singularity.
On the contrary, I do fill it necessary to name argentic rectangle that special one whose

diagonal and small side form an angle half of that of a regular convex pentagon. I like to put
together, semantically speaking, those singular rectangles: argentic and auric.

To keep alive two synonyms like silver (taken as adjective) and argentic may lead us to
confusion though we are aware that synonyms may have important differentiating nuances, as
the present case manifests.

Former discussion would be useless not to be for the fact that in the above-mentioned
publication, both silver and what I call argentic rectangles are mixed up. In it, pentagonal and
pentagonododecahedric properties are associated to the first one, what is incorrect, but do cor-
respond exclusively to the second. This is so, though the inexactitude is admited by the author
of said publication. Let´s go, anyway, to look for the solution we are interested in.

It is a perfect geometric solution produced from an argentic rectangle whose sides are

proportional to 525 +  (small side) and 52 +  (large side). See its construction in Point
6.6.7.

To give an idea of those proportions, we may say that they are equivalent to 210 (width
of DIN A4) × 289,04021.

REMARKS TO FOLDING PROCESS.
1- BF = 1, therefore:

FD = 1.3763819    ;     BD = 1.7013016    ;     Ang. DBF = g = 54º    ;    Ang. BDF = p = 36º
2- Ang. DCB = 2g = 2 × 54 = 108º (angle of convex regular pentagon).
3- Isosceles ∆ DCB is produced: Ang. CDB =  Ang. CBD = Ang. BDF = p
4- Fold D to lie on CB being HL parallel to BD. Folding operation has to be made by the rule

of thumb (it´s easy to get a good result). Its analytical development is as follows:
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2

tg BBD
CO =      ;     LBHDLH ==

                                            
HD

x
B =sen

                                                                 ( )xCO

x
B

−
=

2
cos

                                

2

tg
LH

xCO
B

−=

                         BxBCOx cos2cos2 −=      ;     
B

BCO
x

cos21

cos2

+
=

5- ∆LHG = ∆DHG by symmetry

Ang. CHG = Ang. CHL + Ang. LHG = º108
2

90
2

180 =+=−+ BB
B

K D K D

B

F
E

C

FB

D

C

B

O O

B O G D

L H

C

B G D

L

C

H

B G

L

C

H

K D

FB

L

C

H L

E

O

M

C

H

G

1 2 3

4 5

6 7 8

M

pa
ra

lel
as

x
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 6- Ang. CLM = Ang. CHG because of the symmetry with former step.
Likewise, in pentagon CLMGH, Angs. in M and G are congruent, also by symmetry.

7- A pentagon has been produced whose angles in L, C and H are congruent and have a meas-
ure of 108º; the other two angles are congruent to each other. Then, the 5 angles measure
108º: we have come across a convex regular pentagon that will have congruent its five sides.

8- Unfolding 7 we get 8 which shows the resultant pentagon CLMGH (and its symmetric).

AN INTERESTING VERIFICATION
The rhomb DHLG was formed in Fig. 5: it is made up by the two isosceles triangles

with base HG. We can see in it that GD is the pentagon diagonal and GH is one side. Recalling
the x value obtained at step 4, we´ll have:

                              B
HD

x
sen=                             

B

x
HD

sen
=

2
sen2 B

HD

GH

=                            
B

xB
GH

sen2
sen2=

Substituting values from steps 1 and 4, we have:
HD = 0,6498393     ;     GH = 0,4016228

These values satisfy the expression
( )HDGHHDGH −=2

This way it is verified that in a convex regular pentagon the diagonal is divided by the side in
mean and extreme ratio.

10.1.2 FROM A DIN A4 RECTANGLE

Once developed the former Point, we can see now the inexactitude of present solution. For
that purpose it´s enough to look at figs. 1 and 2 of  Point 10.1.1.

In case rectangle 1 was a DIN A4, we´ll have:

1

2
tgArcg =  = 54,73561º

and in fig. 2:
Ang. DCB = 2g = 109,47122 ≠ 108º

10.1.3 FROM A PAPER STRIP MADE OUT OF ARGENTIC RECTANGLES

Produce six adjacent argentic rectangles after fig.1. Zigzag fold its diagonals, eliminate the
small sides, mountain fold the diagonals and finally glue the end triangle equivalent to fig. 3 in
Point 10.1.1.

We obtain the “perforated” pentagon of fig.2 whose side is congruent with the diagonal of
the argentic rectangle we began with.

1 2
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10.1.4 PENTAGON WITH A PREVIOUS FOLDING

Process shown in figs. A is common to pentagon, hexagon, heptagon and octagon.

The process comprising the ten figs. B is specific for the pentagon and starts from last
fig. A. This process B leads to an imperfect pentagon.

Fig. C contains all the elements from B which are necessary to easily evaluate that im-
perfection. Since that evaluation is rather cumbersome and in order not to bore the reader, we
shall present just the final results. Taking GH as base of the pentagon, we have:

Angle in V, opposite to the base: 112,5º
Adjacent angles to the base, congruent to each other and measuring 110,395º
The other two angles are also congruent to each other, but with a value of 103,355º.
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Taking base GH as reference, the other four sides are congruent to each other and have
a length of 103,52 % of the base.

10.1.5 KNOT TYPE PENTAGON
Start with a paper strip long at least six times its width h. The pentagon is obtained just

producing a knot centred on the strip (1): as it was a string, but adequately adjusting the folds.
Do not flatten till the vertices are properly fastened. The result is a perfect convex regular pen-
tagon as we are going to see (2).

First, note in  (3), the three quadrilaterals
AXDE     ;     ABYE     ;     ABCZ

The three of them are parallelograms: They are determined by overlapping of two por-
tions of the strip, obviously, of the same width. If we recall Point1.3.2 fig.1, we´ll see that those
parallelograms have congruent opposite sides and also congruent adjacent sides.

Therefore, if ABCZ has an area S, it is:
S = BC × h = AB × h     that is     BC = AB

Consequently, the three parallelograms are congruent rhombs with all their respective
sides and angles also congruent.

As these three rhombs display some common sides, we are able to mark in pentagon (4)
sides and angles congruency:

CB = BA = AE = ED = l     ;     Ang. B = Ang. A = Ang. E

A
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From the above we can´t jump to the conclusion that the pentagon is a regular one: we
know of equalities but not of values. Last equalities are also in pentagon (5) that is not regular.

Let´s note now in (3) the four trapeziums
ABCE     ;     ABDE     ;     ACDE     ;     ABCD

Incidentally, when fig. 3 is unfolded, those four trapeziums appear as shown in fig. 6.

Trapeziums ABCE and ABDE are isosceles for both have:
•  Their parallel bases distant h from each other.
•  Big angles, congruent.
•  Skew sides and small base, congruent.
Former conditions lead to trapeziums congruency. Then their diagonals should be con-

gruent too:
AC = AD

Let´s have a look now to the trapeziums ACDE and ABCD that in turn have equal:
•  The altitude h as the distance between their parallel bases.
•  Their great bases AD = AC
•  Their small bases BC = ED
•  The small base congruent with a skew side: BC = AB = DE = AE
•  The great angle formed by the small base and one skew side:  Ang.B = Ang. E
Consequently these trapeziums are congruent with each other, and also with the other

pair of former trapeziums.
Therefore Ang. C = Ang. D, and congruent with the other four angles of the pentagon.

As CD = l, pentagon ABCDE is a regular one for all its sides and angles are, respectively, con-
gruent.
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10.2 HEXAGON
10.2.1 WITH A PREVIOUS FOLDING

The folding process that follows leads to a perfect convex regular hexagon that is also
the largest obtainable from the starting square.

In the last figure we can see the perfection of the hexagon produced (l = MN).
In ∆EBL:

Ang. BEF = º60
2

1
cos

2
cos == Arc

l

l
Arc      ;     Ang. CEF = 30º

In ∆CFE:

( )3045180sen30sen −−
= lCF

     ;     CF = NM = =
75sen2

l
 side of hexagon

CFl

CF
Arc

CFl

CF

Arc
−

=







−

=
2

tg

22

2

2tgα

30
175sen22

1
tg

75sen2
275sen2

tg =
−

=





 −

= Arc
l

l

l
Arcα º

From what was shown in corner F and because of folding symmetries, we can deduce
the perfection for the rest of the hexagon.

10.2.2 KNOT TYPE HEXAGON
Begin with two paper strips long 10 to 15 times its width. Produce two knots like in

fig.1; one of them will be as shown; the other will be alike but set upside down.
Figs. 2, 3 and 4 show flattened folds just to ease the drawing; actually, the strips are

played loose as in fig 1. Only in fig. 5 the strips should be pulled tight and flattened (see pre-
cautions in Point 10.1.5).
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If the length of the strip is great, the process is facilitated; the remaining paper (fig.5)
can be hidden within the polygon itself. This way we produce fig. 6 that is shown in its obverse
and reverse sides.

10.3 HEPTAGON
10.3.1 H. HUZITA´S SOLUTION

Let the regular heptagon of fig. 1 with radius one unit and central angle ω (ω1 = ω; ω2=
2ω; ω3= 3ω).

Being a close polygonal line, the sum of the abscissas of its seven vertices will add up to
zero:

1 + 2cos ω + 2cos 2ω + 2cos 3ω = 0          (1)

Reminding that:

ωωω
ωωωω

cos3cos43cos

1cos2sencos2cos
3

222

−=
−=−=
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and making the variable change

ωcos2=t      ;     
2

cos
t=ω           (2)

 (1) is transformed to:
01223 =−−+ ttt           (3)

Equation (3) was already “fold solved” in Point 7.14.5.
It is clear that the coefficients of (3) are:

1;    p = 1;      q = -2;     r = -1
what leads to a discriminant

∆ = 

3223

3

3

27

1

27

2792

4

1







 −+






 +− pqrpqp

that is negative, i.e., to have three real solutions for (3). In consequence, there are three
different forms of simultaneous folding of point I (initial) and F (final) on axles X´ Y´ (fig 2).

According to (3), the vectors sequence in fig. 2 is:
I;     1;     1;     -2;     -1;     F

Now we should explain how to configurate the direction of those vectors (fig. 2): if,
from one coefficient to the next there is no sign change, the advancing vector turns to the right;
if that change exists, it turns to the left.

Then (3) has three solutions in t, which correspond with other three solutions for cos ω
in (1); besides, t1 t2 t3 are, respectively, the tangents of angles α, β, γ in fig.2:

t1 = tg α     →     2cos ω1

t2 = tg β     →     2cos ω2

t3 = tg γ     →     2cos ω3

Angles ω1 ω2 ω3 correspond to the heptagon vertices having distinct abscissas.
Relating (2) with fig. 2, it is

4222

tg

2
cos 1

1

AOAOt
=

×
=== αω      (4)

If the pair of heptagon upper vertices lie on AH, when we trace 
7

360
1 =ω , OR becomes

the radius of said heptagon, and it´ll be:

OR

OA=1cosω      (5)

The consequence of equalising (4) and (5) is:
r = heptagon radius = OR = 4

Bringing r from O along OY´ we obtain vertex V.
Now we can note this:
•  OR measures 4 units; in fig. 2, first vector from I towards vertical Y, is taken as one

unit.
•  Angles α and ω1 have a different though very close mesure. This is unimportant,

anyway: 428571,51
7

360
1 ==ω  and 272558,51

7

360
cos2arctg =



=α .

The above only means that radius OR is not parallel to its associated fold, although its con-
struction is perfect.
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Something similar can be said about lines h and b which determine the other vertices of the
heptagon:

12 2cos2
2

tg ωβ === g
t

[ ]
r

g−=− 12cos ωπ                         
r

gg 2

2
=      ;     r = 4

r

g=12cos ω

                                                      13 3cos2
2

tg ωγ === a
t

                                                      [ ]
r

a−=− 13cos ωπ                        
r

aa 2

2
=      ;     r = 4

                                                      
r

a=13cos ω

That is, in the case we are discussing, we always reach 4 for the value of the heptagon
radius.

Therefore, the heptagon folding process will be as follows:
Figure 3
•  Begin with a square of paper.
•  Set on it the required quadrille centred at O, to get points I (-2,0) and F (1,-2).
•  Simultaneously fold over the respective axles: I on the ordinates and F on the ab-

scissas. And that, in the three possible ways.
•  Thus, key points A, B, C are obtained.
Figure 4
•  Get the folds: AH (through A); h (through B); b (through C).
•  Fold: V → AH; O → O to get vertex R and its symmetric.
•  Same: R → h; O → O to get both vertices on h.
•  Fold around O the latter couple of vertices, to lie on b.
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10.3.2 HEPTAGON: A QUASI-PERFECT SOLUTION
After the analysis of five different solutions, the one that is presented now is, no doubt,
the best.

The last but one figure shows the obtained heptagon; from the last one we can figure out
the value of the angles of said heptagon (the side of the given square equals 1).

Isosceles  ∆BAP has Ang. B = 22,5º

270598,0
5,22cos4

1 ==PA

In  ∆APO:

PA = 0,270598     ;     Ang. A = 22,5º     ;     
2

1=AO

P

AO

O

PA

sensen
=

O

PA

A

PO

sensen
=

180=++ POA

Solving the system:
Ang. POA = 12,764389º
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Heptagon resultant angle:

Ang. EOF = Ang. EOP = ( ) º38219,5190
2

1 =+ POA

Regular heptagon central angle: º428571,51
7

360 =

10.3.3 HEPTAGON: KNOT TYPE SOLUTION
Like all of this kind, it is a perfect one.

Recall the remark in Point 10.2.2 regarding docility and flattening of paper strip.

10.4 OCTAGON
It becomes a perfect geometrical construction as we´ll see immediately. Again, square

side AC is one unit.
In ∆AOB:

21

2

1
2

1

tg ED

ED

OA

CBOC

OA

OB
A −=

−
=−== (1)

and in ∆ABD:

ED

ED
ED

ED

DA

BD
A

−
=

−
==

2
2

1

2tg (2)

Equalising (1) and (2), and making ED = k (octagon side), it is:

k

k
k

−
=−

2
21

which leads to the following quadratic equation in k:

0242 =+− kk
whose roots are:

12 +  y 12 −

1 2
3

4 5
6
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As said at the beginning, square side is 1, so we must ignore the first root for it´s greater
than 1. Therefore, it is:

k = 12 −

Let´s see the value we get for DF:

12
2

12
21 −=




 −−=DF

i.e. DF = k what means that the octagon is coherent with the folding process.

10.5 ENNEAGON
The present solution has been chosen as the best among several others, but nevertheless
it results imperfect.

Justification (EA = 1):
In ∆OAB

GIVEN OBTAINED

8

1=AB Ang. BOA = 8,1301024º

2

1=OA

Ang. BAO = 45º
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In ∆OAC
GIVEN OBTAINED
Ang. COA = 180 – BOA OC = 0,2949878º
AC = 1 Ang. OAC = 2,3909342º

2

1=OA

In ∆EDA:

Ang. EDA = Ang. CDA = 69547,113
2

.45
45180 =−−− OACAng

In  ∆OCD:
GIVEN OBTAINED
OC = 0,2949878 OD = 0,3103317
Ang. COD = 90 – Ang. BOA = 81.869898º
Ang. ODC = 2 Ang. CDA – 180 = 47,39094º
Ang. OCD = 180 – Ang. COD – Ang. ODC = 50,739162º

Enneagon side = GH = ED = 
2

1
– OD = 0,396775

=





 +

=

2
2

tg
GH

OD

GHα  0,3899744           ;          α = 21.304515º

Value of regular enneagon central semiangle = 20º

The base GH becomes a bit greater than the other sides, which in turn are congruent to each
other. Same can be said about the angles.
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11 STELLATE POLÍGONS
As is well known, to construct a stellate regular polygon with n sides (associated to the

division of a circumference in n parts) and species p (pitch between vertices) these conditions
are required:

•  p > 1
•  p and n must be prime between themselves.

•  
2

n
p <

With the antecedent conditions, stellate polygons of 3, 4, 6, etc sides are impossible,
whereas there can be of 5,7,8, etc.

We are going to focus on the folding of pentagon and heptagon: there is only one stel-
late pentagon (n = 5; p = 2), but two heptagons (n = 7; p = 2) and (n = 7; p = 3).

As can be seen, the hexagon can´t be stellate; the only that n = 6 can produce is two op-
posite overlapped equilateral triangles. Nevertheless we shall study several solutions of what
we call hexagonal stars and also those beautiful figures known as ice crystals.

Likewise convex regular polygons, the stellate can be perfectly constructed by folding,
but we can also find more or less imperfect versions. Besides, a lot of stars are offered that, in
most of the cases are not regular polygons and, some of them, are not even flat: they may have
a bit of volume.

11.1 STELLATE PENTAGON (S. FUJIMOTO)
It is a perfect solution obtained from an argentic rectangle.

Let´s see first some relations within the convex regular pentagon and between it and the
argentic rectangle.

In fig. 1:

δβ 3
2

1=

for β and 3δ see the same arc in the circumference, the former from one of its points, and the
latter from its center. In like manner it is:

2
2

2

1 δγγε ===

Moreover:

αβ 2=      ;     and being  δβ 3
2

1= , we´ll have: γβ 23
2

1 ×=      ;     γβ 3=

The antecedent can also be observed directly:

5

3πβ =      ;     
510

2 ππγ ==      therefore:     γβ 3=

1
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In the argentic rectangle of fig. 2, and because of its own definition, angles α and γ will ap-
pear in the four corresponding right triangles. That is, in the straight angle in O containing the
media parallel of the rectangle, are occupied 2γ degrees.

Let´s figure out the difference d = 180 – 2 γ
Looking at Fig. 1 we have:

360 = 10 γ     ;     180 = 5 γ
so it is:

γγγ 325 =−=d

What means that around the center of the rectangle we can trace 10 γ angles by pleat
folding of the four we began with.

Let´s see now what is in Fig. 3. Broken line AOBC determines in O and B the β angles
of a pentagon whose diagonal is OC (Ang. OBC = Ang. BOF = 3γ).

Vertex D is the symmetric of C with respect to the bisector of ε, and E is the symmetric
of D with respect to the bisector of  Ang. OBC.

Fig. 4 shows what the resultant stellate pentagon looks like. We may note that the center
O of the rectangle becomes one of the points of the stellate pentagon.

11.2 STELLATE HEPTAGON

Begin with the convex heptagon of Fig. 1 making the partial folds of its diagonals. To
fold-stellate that polygon we would have to be able to gather the paper of triangles like KMN.
Since that is not possible in a flat single paper figure, we have to yield some gatherable paper
by reducing the size of the given heptagon while producing a twist on it.

To produce that torsion we need first to build the small heptagon of side AB (Fig. 2), in
this way:

•  Fold over each side:
- Its perpendicular bisector.
- The perpendicular bisector of half a side (in the figure, anticlockwise sequence).

•  The successive intersections of those perpendicular bisectors produce points like A,
B and, in consequence, the complete heptagon.
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Fig. 3 shows the folding lines to produce the twist, and fig. 4 is the result of the torsion
(obverse and reverse).

The rest of the process is easy to follow through Figs. 5, 6 and 7, also showing both
faces.

At Fig. 7´s obverse it can be seen the sides (discontinuous) of version n = 7; p = 2.
Likewise, in its reverse side it is shown once more the former version and also the version n=7;
p = 3 (partly hidden by the small central heptagon).

11.3 STELLATE POLYGONS: FLATTENING CONDITIONS

In connection with Figs. 2 and 3 (Point 11.2) to construct the stellate heptagon, one may
question:

The foldings at 1/2 – 1/4 to get the parallels through A, B, are they arbitrary, are they
correct under a geometric point of view, are they extensible to the rest of the stellate polygons?

Let´s explore the matter looking (Fig 1) at the polygon of n sides (length L).

1 2

B

A

K

M

N

3

4 5 6 7

r r r r

a a a a



Mathematics and Origami

119

In it, 
n

360

2

1=α  ; α2 is the central angle of that polygon ant the segments x, symmetri-

cal about the perpendicular bisector of L, determine the parallel lines to that perpendicular bi-
sector which in turn will condition the twist to flattening.

Fig. 2 is obtained by folding flat Fig. 1. To accomplish this, x has to be such that PM =
P´M (Fig. 1). Fig. 3 is the reverse side of Fig. 2.

Then it will be:

α2cos
´

x
MP =

Being 
2

L
PM =      we shall have:     

22cos

Lx =
α

     
n

L
x

360
cos

2
=                                          (1)

The relation between x and l (side of the small central polygon of n sides around which the torsion is
performed), can be found out in Fig. 2 (Point 11.2):

( )
nn

n

l

x
L

180
cos

2

2180
sen2 =−=

−

M P
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n

x
L

l
180

cos

2
−

=

Therefore (1) is the necessary condition to twist till folding flat a stellate polygon. But this is
not sufficient: Besides we need that the paper will not interfere within itself. Something similar was
already treated in Point 8.2.8.5. Two conditions must be fulfilled: docility and availability; paper has to
be docile to flattening and has to be available without any interference.

Let´s consider the aforesaid in connection with the pentagon. If we try to apply (1) to it we´ll
come across Fig. 4: paper interference makes it impossible to construct a perfect stellate pentagon (the
small imperfection can be perceived).

Conversely, if we cheat as in Fig. 5, we make the construction possible: the folds take care of that little
error and an exempt stellate pentagon (Fig. 6) is obtained jutting out another convex pentagon.

11.4 HEXAGONAL STAR

VERSION 1 (H. Honda)

It is obtained from the big hexagon of Fig. 1.
Fig. 2 is the flattened hexagon with 2 a showing the two imbricated equilateral triangles

and 2 r, the hexagon in the back.

7

The construction made for the heptagon (x = 0,5
2

L
 in

Fig.2, Point 11.2) was also a trick. One can compare that

value of x with x = 0,6235
2

L
 which is obtained for (1) in

present Point 11.3. Fig. 7, reverse side, (Point 11.3) is the

result of using x = 0,6235
2

L
; the process takes care of the

error, but you can see the difference between Figs. 7 (Points
11.2 and 11.3).

4 5

6
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VERSION 2
The construction is made out of an equilateral triangle whose center has to be deter-

mined beforehand. At the end, the figure becomes interlocked.
Thus we have a perfect result with this restrain: looking at the obverse we can see the

three complete sides of one the triangles. For the other, we must guess 1/3 of each side. Look-
ing at the figure upside down, we have the converse effect.

VERSION 3 (F. Rhom)

It is a unit construction that employs two identical units based on the equilateral trian-
gle.
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VERSION 4 (Ice crystals)

They are the design of K. Suzuki and start with a regular hexagon piece of paper. Figs. 1 to 7
are the folding process of the latter; Fig. 8 derives from it. Both, 7 and 8 are shown in obverse and re-
verse.

Suzuki plays with the translucency of folded figures to create numerous versions of the basic
ones. The shade intensity on surfaces depends upon the paper accumulated in the folds. Figs. 9 and 10
show that light and shade effect.

When Suzuki faces a geometric folded figure, he studies in it three different ones: the apparent,
that which is produced by the translucency and those existing within the interior of folds.

1 2 3 4
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unit 1
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12 TESSELLATIONS
They are decorative surfaces made out of tesserae. Though strictly speaking, these are

the small square pieces used in mosaic work, we can generalise and say that a tessellation is
composed by combined figures that produce geometric drawings or traceries like in arabesques.

Though in its source, origami had nothing to do with tessellations, we have to honour
the paperfolders devoted to this kind of work because eventually they came to the association
of both arts.

We can distinguish three dissimilar fields:
•  The first is, in fact, a tessellation. It deals with the construction of a unique flat piece of ori-

gami that, in turn, fitted with many others alike, can fill a surface as large as we wish,
showing repetitive geometrical drawings. As we can imagine it entails a double problem: to
design the unit piece and to envisage the large geometric drawing in which the unit will be
integrated. When we said a unique piece we did not mean that the unit cannot be made of
different colours or even that the paper could not have different colours in either side. If we
add that one can play with the unit by translation, turns, symmetries, revolving it upside
down, etc. we may arrive to a very much enriched kind of a puzzle.

•  The second field starts with a large tracery, all of their lines having to be mountain or valley
folded. We can guess how difficult it may be to design such a drawing in order that all par-
tial figures could be folded flat. The process requires gathering and hiding much of the
available paper: thus the flattened final figure presents a smaller size than it had the paper
we began with. Besides, the final drawing (obverse as well as reverse) has little to do with
the original.

As a matter of fact, this type of construction is not a tessellation strictly speaking for it
does not use separate pieces of tesserae. Nevertheless its traceries can be used as the guide-
lines to copy on them paper cut pieces as tessera-like units, that will fit in the great surface
and be reproduced till the infinity.

•  The third field looks more like the second rather than to the first. It has the particularity,
though, that instead of leading to a flat figure (obtainable as well) it holds a certain volume,
shaped as bas-relief that gives a splendid contrast of light and shadow (recall gypsum deco-
rative works in Arab constructions).

Let´s see some examples of each case.

CASE 1A: Forcher´s fish

Figs. 1 to 22 show the fish folding process starting from an equilateral triangle.

Fig. 23 is the fish we reach at, both, as it looks like and with its triangled surface in case we
wish to draw it on a piece of cardboard to be used as the unit of a puzzle. The side of those triangles is
1/12 of the big original triangle. It should be noted that all the angles in the fish are multiples of 30º
which is conclusive to fit the units with each others till the infinity.

1
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Fig. 24 is a sample of tessellation: it is one of the many you can construct with the fish.

We also see in the center of Fig 24 what I call a virtual tessera. To extend the tessella-
tion to the whole plane it´s necessary to play with regular hexagons sided as the small or the
great side of the irregular hexagon in Fig. 24; those regular hexagons do not produce any vir-
tual tessera in the center.

CASE 1B: Penrose´s tessellation.
This tessellation, studied by S. Turrión, is based upon two complementary tesserae

originated in Fig. 8 (Point 10.1.1). Present Fig. 1 shows a couple of each on the argentic rectangle of
said Fig. 8. Thus we can profit to the most the rectangle´s area just in case we want to cut four tesserae.
Conway named them a dart and a kite after their shapes, and they complement each other in a rhomb.

22
23 24
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The kites are symmetric with reference to EC in that Fig. 8, and the darts do as well with reference to
GL in this Fig. 1.

Their peculiar configuration is a consequence of the inherent singularity of the argentic rectan-
gle as can be seen comparing that Fig. 8 and this Fig. 1:

•  The small side of both tesserae (this Fig. 1) is the side of the pentagon in that Fig. 8. Likewise,
tesserae´s big side is the diagonal of said pentagon.

•  As studied in Point 10.1.1 (AN INTERESTING VERIFICATION), the side of a regular convex
pentagon divides its diagonal in mean and extreme ratio, i.e., big and small sides of these teserae
keep an auric proportion

•  In point 10.1.1 we also saw the value of the angles in the argentic rectangle: diagonal and sides 54º
and 36º respectively. In consequence, the three acute angles of the kite measure 72º = 180 - 2×54 =
36×2 and the obtuse angle measures 144º = 360 - 3×72 (like the angle of the convex regular deca-
gon).
The obtuse angle of the dart measures 216º, its opposite 72º and the other two, 36º.

To get the folded tesserae out of an argentic rectangle it is advisable to aim at the largest possi-
ble ones to avoid, as much as we can, paper gathering and hiding.

This Fig. 2, derived from that Fig. 8, has the folds for the kite, and this Fig. 4, derived from that
Fig. 3 shows the fold lines for the dart (mountain, continuos; valley, dashed).

Figs. 3 and 5 are, to one half scale, the obverse and reverse of both tesserae.
Fig. 6 shows the seven possible combinations forming a perigon under the condition that the

adjacent sides of two distinct tesserae have to be always of equal length.
In Fig. 7 there are two tessellations: one of them is rather simple whereas the other renders it-

self complex as it grows up. In both, some virtual tesserae can be seen. One thing is clear about
these tessellations: they give the artists the chance to develop their own ingeniousness and to the
mathematicians that of disclosing the laws of formation.
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Penrose has also designed another tessellation based as well on the argentic rectangle. It is
composed of two rhombic tesserae with like sides and angles as follows:

Rhomb A: 108º; 72º
Rhomb B: 144º; 36º

Fig. 8 shows the genesis of rhomb A from Fig. 2; in Fig. 9 we obtain the rhomb B from the kite
of  Fig. 3. Note that the sides of both rhombs are congruent.

Fig. 10 is a tessellation made out of rhombs A and B.

6
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CASE 2A: Tessellation by Chris K. Palmer.

Fig. 1 is a tracery among the many and very beautiful developed by the author. Figs. 2
(obverse) and 3 (reverse) are the result of folding flat Fig. 1. The three figures keep in the

drawing their natural proportions. To get the final figure in its protuberances, the octagons of
Fig. 1 have to be twisted (recall Point 11.2).

Corners of Fig. 1 are maintained in 2 and 3. One can note that flattening of Fig. 1 is
guaranteed after folding because: there is an even number of concurrent lines in each node; the
sum of their alternate angles add up to 180º, and finally, paper does not interfere at folding.

These three conditions are common to this type of tessellations, though there may exist
apparent exceptions in certain nodes. What happens in those cases is that one extra fold is pro-
vided to ease folding operation, but once this is over, that fold remains inoperative.

By merely translating the figures of the three big squares we can occupy the whole
plane. That is so because we are playing with fitting angles of 90º, i.e. multiples of 30º like in
1A.

CASE 2B: Tessellation by Alex Bateman

Fig. 1 shows a quadrille as guideline to start with, and all the valley folds. Fig. 2 adds the
mountain folds. In Fig. 3 the guidelines have been erased. Fig. 4 is the result of folding, twisting and
flattening Fig 3. Fig 5 is Fig 4 seen as translucent (recall version 4 of Point 11.4).

1

2

3

1 2 3
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Fig. 6 is a tessellation based on Fig.4 showing the 5 tesserae that are produced when fitting four
Figs. 4. Fig. 7 is another tessellation formed by tesserae obtained from Fig. 4. Finally, Figs. 8, 9 and 10
are, likewise, other type of tessellations made with tesserae from said Fig. 4.

CASE 3: “Mars T” by P. Taborda.

Fig. 1 is the basic tessellation with folding lines (mountain, continuous). Fig. 2 (obverse and
reverse) is Fig. 1 after folded, twisted and flattened.
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Between rigid Figs. 1 and 2 exists a continuous range of elastic configurations like the last
shown. It has been set to a fixed position to make the drawing possible.

21
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13 CONICS

As it´s well known, they are curves determinated by the intersection of a cone and a plane not
passing through its vertex. Therefore they are plane curves as shown in Figs. 1, 2 and 3.
•  Ellipse (Fig .1): The intersecting plane is oblique to the cone´s axis in such a way that a close curve

is obtained.
•  Parabola (Fig. 2): It comes out as an open curve when the intersecting plane is parallel to one of the

cone´s generatrices. In turn, that generatrix is parallel to the parabola´s axis.
•  Hyperbola (Fig. 3): It is the other open conic, with two branches. The intersection plane has to be

parallel to the cone´s axis and cuts both cone´s volumes: The two conventional cones have a com-
mon vertex and their respective generatrices lie in opposition on the same straight line; that is what
is called a complete cone. On intercepting plane of Fig. 3 we can see the asymptotes of the hyper-
bola.

REMARKS ON CONICS AND ITS DEGENERATION

If we compare how ellipse and parabola are generated (Figs. 1 and 2), we can imagine that the
second is an ellipse whose unseen vertex is the ideal point of its axis

In case we revolve the plane of Fig. 1 till a position perpendicular to the axis of the cone, its
section in it becomes a circumference: this is, therefore, an ellipse with equal axes equivalent to the
diameter of said circumference.

If the plane passes through the vertex, the ellipse degenerates to one point, the parabola to a
generatrix and the hyperbola to a couple of coplanar generatrices.

Let´s see here after the relations that can be issued between these curves and origami.

13.1 CIRCUMFERENCE
13.1.1 ITS CENTER

To obtain the center of a cut circumference given as in Fig.1, produce two cross-folds as
perpendicular as possible to each other, from edge to edge. The intersection of both folds will
be the center.

To produce it, look in Fig. 2 how point A becomes B because of the first symmetry, and
B becomes C after the second folding. Those symmetries make that OA = OB = OC. Thus we
have three points in a circumference equidistant from another interior one: this point is the
center according to circumference definition.

If the circle is not cut, but merely drawn on a piece of paper, the process is the same.
The only precaution is to have the circumference heavily marked to ease folding by transpar-
ency.
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13.1.2 A CIRCUMFERENCE AS THE ENVELOPE OF ITS OWN TANGENTS

INSCRIBED WITHIN A SQUARE
Follow the process here after:

Its foundation is in the first figure: it consists basically in rotating a given square around
its center. Thus each turned side is equidistant to the center in the same value, i.e. the apothem
length. Then we can see that each side is a tangent to the circumference, and their midpoints are
the points of tangency.

The rest of figures show the process, whereas the last one displays the situation of cir-
cumference and given square after the three folds were performed. If we go on folding, we can
approximate as much as we wish the relation circumference / envelope.

CONCENTRIC WITH ANOTHER GIVEN ONE AND INTERIOR TO IT

The solution is to fold a stellate polygon inscribed in the given circumference. The re-
sulting ring shows in its inner side a convex polygon made by the folding lines: sought circum-
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ference.

It is pertinent to recall Point 11 about stellate polygons and Point 9.1 on how to divide a
circle. Note that for a greater pitch we get a smaller circumference.

Process is as good for a given circumference cut out of a piece of paper as for other
drawn on it. Of course, first case is easier.

13.2  ORIGAMI AND PLÜCKERIAN COORDINATES

One could be disappointed when a curve is defined as the envelope of its tangents: Such
may be the case of the circumference in former Point 13.1.2, of the parabola –Point 1.2.4-, or
some other cases we shall see here after. In those cases the curve does not appear in its points,
as it is usual in Cartesian representation.

Nevertheless we must admit that origami does not play with Cartesian co-ordinates. Its
very name gives us the clue: origami, paper folding, i.e., paper (the plane) on which folds are
produced (folds are but lines –mountain or valley-).

Then we can agree to the natural representation in origami as made out of straight lines
(Plückerian co-ordinates) rather than of points (Cartesian co-ordinates). In origami the point is
normally a by-product, i.e., the intersection of two straight lines (two creases) through which,
most likely, a new straight line will pass.

What happens in practice when we deal with both, maths and origami, is that we bear a
hand to certain instruments. We may recall, e.g. Point 7.11 in which we had to set the co-ord-
inates of two points in the plane.

Once we know that Cartesian (points x,y) and Plückerian (straight lines u,v) co-
ordinates coexist, it will be good to dig out the mutual correspondence that will enable us to do
some verifications.

Fig. 1 shows the straight line t on which all its points (x,y) lie. It has a as x intercept and
b as y intercept, being its equation:

y

b

xa

a =
−

that can be transformed to

  01
11 =+−− y
b

x
a

                               (1)

   Fig. 2 is the same Fig. 1 to which has been added the normal OP with point N (u,v) such
that:

n = 16 ; p = 3 n = 16 ; p = 5
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OP
ON

1−=                              (2)

In same Fig. 2 we see:
                                                           αβ coscos yxOP +=                                   (3)

As also it is:

                                                       
ON

u=βcos      ;     
ON

v=αcos                         (4)

substituting (2) and  (4) in (3), we have:

                                                 
ON

v
y

ON

u
xOP +=      ;     01=++ vyux               (5)

(5) is the Plückerian equation of straight line t and (u,v) its covariant co-ordinates. If we
compare now (1) and (5) we have the relation between Cartesian and Plückerian equations of t:

a
u

1−=      ;     
b

v
1−=

If (5) takes the form of 0111 =++ vyux , it represents a pencil of lines in the plane with
variables (u,v) passing through the particular point (x1,y1)

Let´s find the tangential equation (i.e. in Plückerian co-ordinates) of the circumference
with center O (0,0) to which t is the tangent on P. For that it´s enough to equalise OP and the
radius r of the circumference:

rOP =      ;     r
ON

=− 1
     ;     r

vu
=

+
−

22

1
     ;     

22

2 1

vu
r

+
=      ;     

2
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vu =+
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O
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Circumference tangential equation:                     
2

22 1

r
vu =+                     (6)

       ,,       Cartesian       ,,              ,,                       222 ryx =+

In Fig. 4 we can see the circumference of center O and radius OP represented by several
tangents (ui,vi).

(6) can be verified in Fig. 3:

OA
u

1−=      ;     
OB

v
1−=

222

111

OPOBOA
=+

( ) 22

22 1

OPOBOA

OBOA =
×
+

           ;           ( )222 OBOAOPAB ×=×

OBOAOPAB ×=×     ;    
OP

OB

AO

AB =   which is true after the similarity of ∆AOB and BPO.

In case one would want to make similar checks with the rest of the conics, here we have
their Plückerian equations with respect to the origin, while keeping their characteristic pa-
rameters:

Ellipse: 12222 =+ vbua
                                                         Parabola: upv 22 =
                                                         Hyperbola: 12222 =− vbua

O A
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v Y
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13.3 ELLIPSE

13.3.1 TO FIND ITS PARAMETERS

Let loose ellipse e on paper p; it may be a CAD print. Folding process will be as fol-
lows.

1. Likewise circumference (Point 13.1.1):
A → A´     ;      B → B´
Result: axes AA´, BB´ and consequently center O.

2. C → AA´     ;      A → A
D → AA´     ;      A´ → A´
E → BB´     ;       B → B
G → BB´     ;       B´ → B´
Result: circumscript rectangle to the ellipse.

3. H → AA´     ;     B´→ B´
Result: focus F.

4. F → OA´     ;    O → O
Result: second focus F´.

Note that in the ∆B´OF obtained in step 3, it is:
22222 ´´´ OFOBaHBFB +===      ;     222 cba +=

13.3.2 THE ELLIPSE AS THE ENVELOPE OF ITS OWN TANGENTS

The given data are:
•  The measure of its half-axis a.
•  The position of its focuses F´, F on the plane.

That amounts to a given circumference with radius 2a and center F´ (director circle cd), and
the position of F inside it: distance FF´ is equivalent to 2c (Fig. 1).

Likewise, the principal circle cp (Fig. 3) is given: it has O as center and a as radius.
Here we have the folding process to get the tangents of Fig. 2:
Take any point P on the circumference, to lie on F by fold AB: AB will be the tangent to the

ellipse. Then fold F´P: the intersection point T of both folds is the tangency point.
This is the proof:

F´T + TF = F´T +TP = 2a      (ellipse condition)
So T is a point on the ellipse. For any other point of AB, e.g. S we have:

F´S + SF = F´S + SP > F´P = 2a        (∆F´SP)
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It means that any other point on AB but T, does not fulfil the condition of being on the ellipse.
Hence AB is the tangent and T its point of tangency.

Fig. 3 displays a very special straight line: it is the ellipse directrix d corresponding to focus F.
The directrix is a rather unknown line in the ellipse, though not in the parabola. Let´s look at Fig. 4 and
see certain things about it.

To start with, d is the polar of F.
This means that d is the locus of the poles of all the straight lines passing through F; e.g. P1 is

the pole of LM (polar of P1) with P1 L and P1M tangents to the ellipse.
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Under these circumstances, any line through P1 intersecting its polar and the ellipse produces a
set of four points whose harmonic cross ratio is:

(P´P´´P1P2) = -1                (1)
Let´s see the meaning of this expression. Point P1 of Fig. 4 has slid down in Fig. 5 to the X-axis

so (1) will lie on it (look the four rounded points).
Let x1 be the abscissa of the 1st point P´ in (1), x2 of P´´, x3 of P1 and x4 of P2. The cross ratio

(1) has the value:

1:
42

41

32

31 −=
−
−

−
−

xx

xx

xx

xx
        (2)

In (2) we know all the abscissas but x3 to which we assign the value x. Substituting in (2) the
known values, we have:

1: −=
−
−−

−
−−

ca

ca

xa

xa

From which we obtain the distance x between the center O of the ellipse and the directrix d:

               
c

a
x

2

=               (3)

Now we can show the folding process to construct the directrix (Fig. 6):

1- F´ (after step 3, Point 13.3.1) → Small axis of the ellipse ; O → O
Result: E.

2- EF´ → EG ; E → E.
Result: EH, hence C.

3- AC → CI ; C → C.
Result: d

Note that x in (3) is greater than the abscissa of the point symmetric to F about the el-
lipse´s vertex. These abscissas´ difference is:

( ) ( )
c

ca
caa

c

a 22 −=−+−

obviously greater than zero.
(3) can also be proved geometrically just looking at the right ∆EF´C in which OC = x.

In it we have:
OCOFOE ×= ´2      ;     cxa =2

Here it is another property of the directrix d (Fig. 7): the ratio of distances from any
point P(x,y) on the ellipse to the directrix (PE) and to its corresponding focus (r = PF), equals
the ellipse´s eccentricity (e = c / a).
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To prove it we must consider the ellipse´s peculiar equation that relates the radius vec-
tors and the Cartesian co-ordinates of one point on it, with its basic parameters:

02 =−+− ρaacx

From it we can write exax
a

c
a −=−=ρ

After (3) it is 
e

a

c

a
OC ==

2

,   hence:

x
e

a
xOCPE −=−=

And finally we´ll have:

e
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13.3.3 ELLIPSE INSCRIBED WITHIN A RECTANGLE

Let´s recall first the generation of a conic by means of projective line pencils. Fig. 1
shows the pencils V and V´ inscribed in an ellipse in such a manner that the corresponding
lines intercept in points lying on the ellipse.

In a figure like that, both line pencils are projective, i.e., when intercepted by any lines
like a and a´, produce two sets of four points (rounded in the drawing) with the same value of
their respective cross ratios.

To evaluate these cross ratios, see (2), Point 13.3.2. The difference is that the value then
found was –1 (a harmonic set), whereas now it is not; cross ratios on a and a´ have to be just of
any equal value.

It is also pertinent to recall that 5 points define a conic: the center of a projective pencil
of lines and the four extremities of those lines.

Fig. 2 is an application of that explained hereinbefore, to a rectangle circumscribing an
ellipse. The centers of line pencils will be now the ellipse´s vertices B and B´ (given). Line a
will be the half-axis OA and line a´, the segment AD.

Divide OA and AD in an equal number of parts (seven in the drawing) and fold both
line pencils. The intersection of corresponding fold lines (rounded in the drawing) are points of
the ellipse.

It´s easy to check that both cross ratios are equal:

3

4

2

3
:

1

2

7
4

7
2

7
4

7:

7
3

7
2

7
3

7 =
−
−

−
−=

−

−

−

−
≡

aa

aa

aa

aa

OA

3

4

7
4

7
2

7
4

7:

7
3

7
2

7
3

7 =
−

−

−

−
≡

bb

bb

bb

bb

AD

The verification has been made with the first four lines, but we might as well make the
set to carry on progressively.

We can get points in the other quadrants following the same procedure, or else, by
means of symmetry. Of course, the four vertices of the ellipse belong to it.
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13.3.4 ELLIPSE: PONCELET THEOREM.

This theorem is applicable to all of three conics, but here we shall prove it by means of
paper folding, for the ellipse only, and just for one of the focuses. It can be done alike for the
other one. Its enunciation is as follows (Fig. 1):

Let PT and PT´ the pair of tangents to ellipse e from the exterior point P:
1- PF´ is the bisector of Ang. T´F´T (a angles are congruent; likewise a´ are also congru-

ent).
2- Angles T´PF´ = b´ and  TPF = b are congruent.

Fig. 2 shows ellipse e and its director circle cd (Point 13.3.2) within a paper rectangle p.
We can also see three fold lines through P: PX along tangent PT´ (valley fold); PF´, valley fold
as well, and PC (mountain fold). These lines extend up to the rectangle´s boundaries.

Fig. 3 is the result of folding flat Fig.2. When unfolding Fig. 3 we get Fig. 4, in which we can
see valley fold PZ that implies these consequences:
•  Ang. CPG must measure 180º - Ang. XPF´ (see Point 8.2.8.5).
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•  New point G lies on T after flattening because:
- C → F  (symmetry about tangent on T´; Fig.1 Point 13.3.2)
- CP → PF (same symmetry)
- F´G + GC = 2a (radius of cd) = F´T + TF (T, point on the ellipse).
- Not being so, broken line CGF´ within Fig. 3 would not straighten along CGF´ when un-

folding Fig. 4.

The result is: ∆CGP = ∆FTP after coincidence of their vertices: C ≡ F; P ≡ P; G ≡ T.
This means that Ang. TPF = Ang. CPG

Hence,
Ang. TPF = Ang F´PT´ = Ang. GPC = 180º - Ang. XPF´                  (*)
Ang. CPX = Ang. XPF     (symmetry about the tangent in T´).
Ang. FPF´= 180º - (Ang. XPF + Ang. T´PF´).
Ang. GPT´= 180º - (Ang. XPC + Ang. CPG)
Ang. F´PG = Ang. T´PG + Ang. F´PT´
Ang. F´PT = Ang. F´PF + Ang. FPT

Therefore Ang. F´PG = Ang. F´PT :  it demonstrates the 1st part of Poncelet theorem.
(*)                    ,,         ,,           2nd        ,,                   ,,

Interlude
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13.4 PARABOLA

Although we already dealt with the parabola in Points 1.2.5 and 4 now we shall insist in
its properties and folding process.

As we know, the parabola is a conic whose points (P, P´, etc.) are equidistant to a point
F (the focus, situated on the axis EF of the parabola) and to a line AD (directrix).

Here it is the folding process (Fig. 1) to get a parabola as the envelope of its tangents:
•  To take a point (A, D, etc.) on the directrix.
•  To produce lines AF. DF, etc.
•  To fold the perpendicular bisectors PB, CH, etc.
•  To produce the normals to the directrix through points A, D, etc. i.e. lines AP, DP´,

etc.
•  To find the intersection points (P, P´. etc.) of these normals and previous perpen-

dicular bisectors PB, CH, etc.
•  Lines PB, P´C, etc. are the tangents to the parabola on points P, P´, etc.

It is easy to prove:
Fold line CH (perpendicular bisector of FD) is an axis of symmetry, hence P´ D = P´F.

Therefore P´ is on the parabola.
On the other hand, lying P´ on CH, this fold CH has to be a tangent. This is so because

any other of its points, e.g. P´´ is at a smaller distance to the directrix than it is to the focus: P´´I
< P´´D; in right triangle P´´ I D, a leg is smaller than the hypotenuse.

So, if P´ is the only point on CH belonging to the parabola, it is because CH is the tan-
gent to it on P´.

The process consists then in folding a given rectangle of paper in such a way that the
points of its lower side (the directrix) are taken to lie on the focus F. The folds so produced are
the tangents to the parabola (Fig. 2 also shows the rounded tangency points).

Note that the vertex V, half way in between focus and directrix, is also a point of the pa-
rabola, and the parallel VG to the directrix is the tangent to the conic on V.

1 2
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P´F

A B
V G
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13.5 HYPERBOLA

This conic is the locus of the points such that the difference of the distances from them
to another two fixed points (focuses  F, F´), is constant. See Point 8.2.8.6.

Fig. 1 shows how to get a point P of a hyperbola and its tangent TT´on it, from these
data: both focuses F, F´, its center O and its director circle cd with center F and radius 2a.

This is the folding process:
•  Bring F´ to lie on any point A of cd: folding line, TT´.
•  To produce fold AF till the intersection with TT´.
•  Result: point P on the hyperbola and its tangent TT´ on it.

Proof:
P is in the hyperbola for PF´- PF = PA – PF = FA = 2a.
Moreover, TT´is the tangent on P because any other point but P (e.g. point G) does not

fulfil the hyperbola´s condition: GF´ - GF = GA – GF > FA = 2 a  (see ∆GAF).
Fig. 2 shows how points and tangents of the lower part of right hand side branch of the

hyperbola have been obtained. P´ is the furthermost point. P´´ is also in there and belongs to the
left branch, which corresponds to focus F´. Note that the points of the left branch are produced
after the points on cd lying on its arc seen from F´ (tangent F´ T´´ is one of its limits).

Thus, there are two ways of constructing the left branch: take as many points in that
seen arc as were taken in the rest of cd for the right branch, or else, do the same construction
for circle cd´with center F´.

Fig. 3 shows the complete hyperbola (rounded points) with its two branches.
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13.6 ANOTHER CURVES

Origami deals with conics as the envelopes of their tangents; likewise we shall study
now some other curves, though not conics, under an analogous treatment.

13.6.1 LOGARITHMIC SPIRAL

Its equation in polar co-ordinates is:
ωρ mke=                           (1)

It is represented in Fig. 1 after a hexagon. We can see in it that the angles grow as an

arithmetic progression of ratio 
6

π
 whereas the radius vectors do as a geometric progression

with 
6

cos
π

 as ratio. This correspondence of arithmetic and geometric progressions brings forth

logarithms. Let´s find out the value of the constants in (1) to conclude that the spiral we get is
actually a logarithmic one. Calling a to the apothem of the hexagon we have:

Vertex r w
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5
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Vertex ρ ω

i – 1 
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6
cos 2 πia ( )

6
41

π+−i

i 




−

6
cos 1 πia ( )

6
4

π+i

Substituting in  (1) the last four values of ρ,ω, we´ll have:
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Dividing (2) by (3):

6

6
cosln

π

π







=m  = - 0.2747161 (4)

Taking (4) to (3) and assigning any value to i (e.g. i = 1), we get the other constant k:

052801.26
cosln5

×==






−

aek
π

(5)

Once we know the values of m, k in (1) we may verify that equation in its particular ap-
plication to Figs. 1,2,3. First one shows the series of tangents to the spiral; the second is the spi-
ral as envelope, and the third one is the folding process that will be as follows.

1. To produce the three diametrical folds of the hexagon (Fig. 1).
2. To fold each radii to lie on their contiguous one to get the six apothems (Fig. 1).
3. OB → OB     ;     A → A

Result: AC.
4.   OD → OD     ;     C → C

Result: CE.

1

2

3
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5. OG → OG     ;     E → E
Result: EF

6.   OI → OI     ;     F → F
Result: FH

13.6.2 CARDIOD

A BIT OF HISTORY
Fig. 1 shows the conchoid of a straight line named after Nichomedes. Curve c, in its

two branches, is determined by line r, pole P and equal segments like AB = AB´.
The Pascal´s limaçon (Fig. 2) is the conchoid of a circumference c (radius OP = r) with

respect to one of its points P, in such a way that always it is AB = AD < 2r. It also has two
branches.

The CARDIOID derives from the Pascal´s limaçon, with this condition: AB = AD = 2r.
The curve is symmetric but has only one branch. Its shape reminds that of a heart (Fig. 3).

This Fig. 3 shows the rounded points of the cardioid at the extremities of its radius vec-
tors. Being

OP = r     ;     AB = AP = A´B´ = A´B´´ = 2r
and taking into account the right triangle PAA´, the cardioid polar equation will be:

rr 2cos2 += ωρ
( )1cos2 += ωρ r

We have drawn Fig. 3 by dividing the circumference with radius OA in 8 equal parts,
what means that, as P lies on the circumference, angles ω have these values:

22,5º; 45º; 67,5º; 90º; 112,5º; 135º; 157,5º and 180º

Let´s see now how to make this construction by paper folding.
For that we shall draw (Fig. 4) a circumference with center O and radius 3r; then divide

it in 16 equal parts numbering them orderly.
Afterwards we fold the chords between points i → 2i in the circumference, as we´ll see

later. Those folded chords will be the tangents to the cardioid, and this will be the envelope of
them.

P

B´

B
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c
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OP

A
B

D
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1 → 2
2 → 4
4 → 8
8 → 16 Once we reach maximum point 16, subtract 16 (one circumference) and

join to resultant point 0; as this is equivalent to 16, it means that the series started with 1, is ex-
hausted.

Restart a new series from first undisclosed point, in this case the number 3.
3 → 6
6 → 12
12 → 24         (24 – 16 = 8)
12 → 8 From here on this series is exhausted.

5 → 10
10 → 20 (20 – 16 = 4)
10 → 4 Exhausted series.

7 → 14
14 → 28 (28 – 16 = 12)
14 → 12 Exhausted series.

9 → 18 (18 – 16 = 2)
9 → 2 Exhausted series.

11 → 22 (22 – 16 = 6)
11 → 6 Exhausted series.

13 → 26 (26 – 16 = 10)
13 → 10 Exhausted series.

15 → 30 (30 – 16 = 14)
15 → 14 Exhausted series and process.

3

OP A B
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We overlap now Fig. 3 to the figure just obtained, in order to check how the rounded
extremities of the cardioid lie in a very particular way on the respective chords 1,2; 2,4; etc.

We have to prove now that the folding process after Fig. 4 is equivalent to the geometry
in Fig. 3. To obviate a tangle of lines we outline in Fig. 5 only the elements of Fig. 4 related to
ω = 45º and ω = 292,5º.

We shall focus our reasoning in ω = 45º ; alike result would be reached for any other
value of ω. Being the proportions of the segments as shown in Fig. 6, with the marked angles in
O and A´ measuring 45º, B´ will coincide with X, bearing the consequence of 2´24´ BB ×=  and

rBA 2´´ = .
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Fig. 7 is a cardioid got after chord
folding, for a circumference divided in 28
equal parts.

13.6.3 NEPHROID

Fig. 1 shows that curve whose shape re-
minds that of a kidney. It has been obtained like
Fig. 7 in point 13.6.2, but applying to chords and
foldings a pitch of i → 3i.
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From Fig. 5 we can
also deduce that a car-
dioid is as well an epi-
cycloid generated by a
circumference with a
diameter equal to the
directrix circumferen-
ce´s (that having O as
its center).
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14 TOPOLOGIC EVOCATIONS

If we think of topology as the science of surfaces continuity, we are taken to Möbius
bands and flexagons, specially studied by Miguel Ángel Martín Monje.

14.1 MÖBIUS´ BANDS

They are paper strips very long as compared with their width, having both extremities
glued to each other.

Let´s imagine a band with red (R) obverse and white (B) reverse. We shall call disconti-
nuity limit to any of the two long sides of the rectangle for they are the borders between the red
and the white. On the contrary, we´ll assume surface continuity across the small sides for they
are stuck.

We shall study several cases. For the sake of clarity, the drawings shown are unidimen-
sional.
1. If we glue the red extremity over the white one without twisting the band (zero twists), we

get a cylindrical surface white in the convex side and red in the concave one. Now, if we
imagine an ant walking forward on the white surface without crossing the discontinuity
limits, it will give an infinity of turns over the same white surface. If we would have placed
the ant on the red surface and made a similar experiment, the ant would walk all the time on
the red surface.
SUMMARY: glue R / B, zero twists, n (even or odd) cuts (parallel to the discontinuity lim-
its and equidistant). RESULT: According to Fig.1, n independent bands, with same length
and configuration as the original, having a width of 1 / n.

2. R / B; even number of twists (Fig. 2 has two); zero cuts. There is no transition from one col-
our to the other, as in case 1. Length and width are the original.

3. R / B; 2 twists; one cut. Result in Fig. 3: two interlaced bands having each of them the same

configuration of Fig. 2.
4. Keeping the left-hand side band of Fig.3 as it is, we produce a cut in the other. Result: the

left band stands fixed whereas the other is divided in two with a length equal to each of Fig.
3; They appear interlaced between them and with the one in the left.

1

3

2
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5. Glue B / B; one twist; one cut. Result (Fig. 5): band´s length double than the original and
half width. The ant strolls successive and continuously on red and white.

6. Glue B / B; one twist; two cuts produced as an only ontinuous one. Result (Fig. 6): two in-
terlaced bands of the same width (1 / 3 of the original); one of equal length as the original,
and double length the other.

7. Glue B / B; one twist; three cuts: a) First two cuts are produced as an only continuous one

with double length than the original, thus resulting in a band with that double length and 1/4
width. b) The other cut that appears in the middle after cut a), has a length equal to that of
the original and is independent from a), produces a band of double length than the original,
width 1 / 4, interlaced with itself and with the curl a). See Fig. 7.

8. Glue B / B; three twists; one cut. Result: one band of double length, half width, and double-
interlaced with itself. (Fig. 8).

4

5

7

a)
b)

two cuts

6
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9. Glue B / B; three twists; three cuts. Result: two independent bands, both with a length dou-
ble than the original and width 1 / 4, interlaced each one with itself and both between them-
selves. See Fig. 9 where one of the bands is outlined.

After the foregoing one can imagine how many possibilities the Möbius bands
can render. Not needed to add that playing with the length, width and curvatures of the bands
we can obtain very beautiful figures.

14.2 FLEXAGONS

We can define the flexagon as a flexable polygon (not merely flexible).
The simplest one is that whose construction is described in Figs.1 to 8. It was discov-

ered by A. Stone while playing with paper strips (5 / 8 ” width) obtained after the equalisation
of English and American paper sheets. Incidentally, A. Stone was a British graduand in
mathematics at Princeton.

8

9

1 2
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One can understand why we said earlier that a flexagon is alike a Möbius band: looking
afterwards how it works, we´ll see its topological connotations observing its endless conti-
nuity of surfaces.

Here it is the folding process. Fig. 1 starts with a triangled paper strip as in Solution 1¸
Point 8.2.3. Figs. 1 and 2 show the folds to get Fig. 3; this indicates how ∆Y has to be
folded and stuck over ∆X.

In Fig. 4 we number with 1 the six triangles of the obverse, and with 2 the six of the re-
verse side. Then we produce in the same Fig. 4 three mountain and three valley folds,
bearing in mind that the seen triangles that meet, respectively, in A,B,C show paper conti-
nuity whereas this is not the case with the others. That´s why it is a must to perform the
folds as indicated.

So we reach Fig. 5 with the beginning of the operation that gets points ABC meeting at
the bottom vertex of Fig. 6. Once this operation is over, a new hexagon will appear, sur-
prisingly, with six unnumbered triangles. If we number them with a 3 (Fig. 7), we can
check that the reverse of Fig. 7 has numeration 1.

Fig. 8 is Fig. 7 after the triangles XY have been unglued and the rest developed. It
shows in its obverse and reverse the corresponding numbers in each triangle (six 1, six 2,
six 3), the X, Y triangles and vertices A, B C.

If we manipulate Fig. 7 as we did with Figs. 5, 6, we can see appear hexagons with
these combinations in obverse / reverse: 1 / 2; 1 / 3; 2 / 3.

Till now we have got a tri-hexa-flexagon: A hexagon based flexagon, with three faces
(marked with 1, with 2 and with 3). But we can introduce a certain number of variations.
For example, we can draw on each one of said three faces, three different figures having
internal symmetry within the hexagons. When manipulating that flexagon and taking into
account obverses and reverses we come across, as before, with two faces 1, two faces 2 and
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two faces 3. What is peculiar now, though, is that the two faces 1 are different to each other,
and the same applies to faces 2 and 3. Hence, now we have 6 different faces instead of the
three we had before. We still have a tri-hexa-flexagon, though. All this can be seen in Fig. 9
which, when unfolded yields Fig. 10 : Both figures evoke a kaleidoscopic vision.

Going a bit further we might say that flexagons have to be constructed but not necessar-
ily with straight paper strips, nor even have to be equilateral triangle based.

Fig. 11 (lower side) shows a strip that properly folded will yield an hexa-hexa-flexagon:
a hexagonal based flexagon with the possibility of six faces. The upper illustration is the
base for another different flexagon. Hence, tri, hexa, octo ... n-hexa-flexagons, can be con-
structed, though paper accumulation handicaps flexibility.

Looking at Figs. 8 and 10 we can see how difficult may be to define the fold lines and
its nature (mountain or valley) in order that the final result will be the wished hexagon (in
any case gluing the triangles of both extremities).  A. Stone and P. Jackson have developed
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a rather elaborate graphical process to enable the adequate folding of a given strip.
For the moment we should forget the combinatorial calculus to get the formulas leading

to a flexagon mathematical approach: Mathematicians have not yet arrived to define con-
clusions because of the great number of restrains associated to that constructive process.

As we mentioned before, the equilateral triangles that are the base for hexaflexagons,
may be superseded by squares to produce tetraflexagons. Moreover, flexagons have to be
not necessarily plane as those seen hereby: they can be solid, too.

These employ the same raw material than the others, i.e., equilateral triangles or
squares that eventually configure in combinations of cubes, parallelepipeds or tetrahedrons
instead of polygons.

Once we are about jumping from 2 to 3D, we shall exhibit a solid flexagon. These op-
tions, as well as open flexagons (enchained rectangles alike folding screens) hold off the
initial conception of a strip glued at its extremities.

The one shown in Figs. 12 to 17 is original of R. Neal. Fig. 12 is the starting plan view
with the necessary folds to get Fig. 13. From this, and forcing downwards its base on the
center, we get the total flattening of the figure with the four faces 1 as shown in Fig. 14.
These faces are indicated in Fig. 12 on their respective places: A1 for the obverse and R1
for the reverse.

The rest of forms are some of the possible resultant figures after manipulating the for-
mer.
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A1R1
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15 FROM THE 2nd TO THE 3rd DIMENSION

Everything seen up to now has a bidimensional treatment, though we would have to in-
corporate certain nuances to this assertion. For example: the paper itself is three-dimensional
(2.500 times thinner than the small side of a DIN A4); the added volume when folding flat; the
flattvolumelike of unit figures in Point 8.3.4; the volume shaped as a bas-relief of tessellations
(case 3, Point 12).

We shall begin with the latter type of figures to jump to the 3rd dimension. Thus, we
have in Fig. 1 a development which, when folded as indicated leads to the elastic 3D composi-
tion of Fig. 2.

Just because of that elasticity it allows delightful transformations. Let´s see several of
them:

As a matter of fact it is very easy to pass from the 2nd to the 3rd dimension; it suffices to
indicate in 2D that a fold has to be performed not at 180º as usual, but at any other angle speci-
fied there.

This becomes clear in the transition from Fig. 7 to 8: in Fig. 7 a rectangle receives three
cuts and then its central upper part is revolved 75º about AB. Fig. 8 is, in fact, a 3D figure.

Let us profit of that to show, again in 2D, a paradoxical figure. Fig. 11 results at the end
of process 8,9,10: In Fig.7 we made three cuts, whereas in Fig. 11 there appear to be four.

1

3

4

5

6

A B

3- Plan view of a quasi-ellipse.
4- Same of a quasi-hyperbola.
5- Face AB adapts itself to the
arc of any opposed curve (cir-
cumference, parabola, etc.).
6- Quasi-toroidal section.
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Another manner to indicate the revolving angle, is to denote on the folding line the
value of the dihedral angle to build (T. Kawasaki). By so doing, the process data are completed:
Fig. 12 shows a pair of angles on each of the hinges; the set of the first is used in Fig. 13,
whereas the second is for Fig.14 (only approximate values in this case).

It is pertinent to clarify certain things about the three latter figures.
It is evident that in node O of Fig. 12 not all the conditions of Point 8.2.8.5 to flat fold-

ing are fulfilled. The fact is that there is not such a flat folding anymore: what we have pro-
duced is, actually, a 3D form.

We said before that dihedral angles in Fig. 14 have an approximate value. There is not
other alternative: the quadrilaterals of Fig. 12 that are kept as they are in Fig. 13, have, on the
contrary in Fig. 14, their vertices subjected to compound revolutions in such a way that the
former plane figures, are not such any more. Only paper docility allows that manipulation.

The case of Fig. 15 (also by T. Kawasaki) is different though two pair of values are
shown in the hinges: first set for Fig. 16 and second for Fig. 18.
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We must clarify two things: a) Mountain or valley folds in Figs. 16, 17 and 18 not al-
ways are in correspondence with Fig. 15. The formers are represented after the perspective´s
point of view. b) Dihedral angle values in Fig. 15 do not exhibit any sign: they are supposed to
have the most significant value offered to the point of view.

Fig. 17 helps to get the two α values for those dihedral angles in Fig. 15:
Dihedral angle in OE = Ang. ACD = 2 Ang. BCD

EA = AB = BD = DE = 1     ;     
2

1=CD

∆BCD is right angled in D, and in it:

DC

BD
BCD =tg      ;     2tg. ArcBCDAng =

º47.1092tg2. === ArcACDAngα
Likewise we would obtain the same α value for the dihedral angle in OB.
Dihedral angle in OA = Ang. EAB = 90º, verifiable in Fig. 16 after the data offered by

the drawing and the programs of calculus that complement CAD. In fact, all dihedral angles
have been calculated in this way.

15

90; 90

90; 90

180; 169.1

90; 79.1 ; 119.5; 119.5
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In Fig. 18 one can see how the polyhedron angle O (DBAE) can be revolved about its
base DOE from the situation in Fig. 16 till the coincidence of B and E. Note that this can be
done freely because the affected figures are triangles instead of the quadrilaterals of Fig. 14.

Another question to add is that Figs. 12 and 15 which, of course, lead to 3D figures, also
yield subfigures 2D about the hinges with 180º value dihedral angles.

Let´s dig out now in the process 2D → 3D → 2D already seen in case 2A, Point 12.
There we played with an octagon; here we´ll do with scalene triangles. Each triad of figures

(e.g. 19,20,21) keeps that order 2D, 3D and 2D (a flat configuration).

We can note that the four figures at the beginning (19, 22, 25 and 28) are geometrically
identical: the central triangle is always the same, and it is subjected to a twist of 40º (α = 20º).

The only difference is the nature (mountain or valley) of folding lines.

Fig. 31 is a portion of Fig. 28 with some addenda. In it we can see that node A fulfils
the flattening condition of alternate angles adding up to 180º. This is so because of the configu-

= 20 º
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ration of the α angles adjacent to the sides of the triangle and for the corresponding triset of
parallel lines.

Note that in Figs. 22 and 25 all the sides of the triangles have folds of the same nature,
whereas that is not the case for Figs. 19 and 28.

Another peculiarity is this: as we said, the four figures at left are equal geometrically
speaking. The four to the right are also externally congruent (we can overlap in coincidence
their perimeters), though their internal foldings are all different.

Summarising: with α = 20º it has been possible to get flatness with any combination of
mountain / valley folds for the triangle. That is so because 0 < α ≤  30º. If 30 < α ≤ 60º, flat-
tening will only be possible when there was mountain / valley alternation in the three sides of
the triangle. If 60 < α ≤ 90º, flatness is impossible.

Former conditions apply to triangles. For the octagon mentioned before, as the sum of
all its angles is 1080º, the limits for α change from 30; 60 to 67,5; 135. In fact, for Fig.1 (case 2
A, Point 12), it is α = 67,5º and all the eight sides of the octagon are mountain fold.

In practice, all the cases we have studied till now require that the paper will be subjected

to many folds to give way to 3D from 2D. We have even considered ruled developable sur-
faces. Right-oh!, but P. Jackson and A. Yoshizawa exploit to incredible limits of beauty the
obtention of 3D forms with the minimum of folds and the paper as developable means. To the
first of the authors belongs Fig. 32 obtained by a unique fold.

31 A

In effect, rounded angle α and γ are supplementary for
both are interior to the same side of a secant, therefore α and γ
will also be supplementary.

In all the cases one can observe the fulfilment of all the
flattening conditions by all the nodes.

It should be noted that, though in all the cases flattening
is reached, continuous docility (accordion-like) operates only
in Figs. 19 and 28. On the contrary, in the rest there appears a
forced docility. To keep flat the triangle and the surfaces be-
tween parallels, the other surfaces are compelled to adopt the
form of a ruled developable surface.

32
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It is not the first time that scissors are mentioned in this book. Now, though, we are going to
use a cutter instead, and help out ourselves with a pencil.

We know that strict paperfolders forbid the use of pencil and scissors, but as this book is not
only origami but is also mathematics, we can afford certain licenses.

Basically cutting, in combination with folding and the use of geometric resources such as
revolutions, translation, symmetries, etc., will allow us to get 3D forms out of elemental 2D diagrams.
The results are figures of a sober beauty apt for architecture or sculpture. As it is common in these arts,
the light is a basic ornament of these forms. We cannot forget the contribution of R. Razani or M.
Chatani.

The process 2D → 3D reminds the infantile tale books in which, when passing a page, a new
episode appears with the princess in her garden deployed open in space; or the theatre scene, or the
wild forest full of fierce animals: all very rococo to call the reader´s attention. Where scissors are not
shown, the cut is simply indicated by a dotted line.

In Fig. 33 we have what could be the cover for square plan, e.g. of a church.

33
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Fig. 34 is the simplest we can imagine; and most fascinating.
Fig. 35 is the only example among the last five in which a piece of paper is discarded after been

cut. It could be a Picassian mask that can adopt different attitudes.

Fig. 36 is as good for furniture design as for mural decoration.

Finally, Fig. 37 is a good example of what straight lines can produce when duly organised.

16 FLATTENING: RELATION BETWEEN DIHEDRAL AND PLANE ANGLES.

During transition from a plan 2D figure to the fold-flattened one (also 2D), 3D situa-
tions are produced bearing certain dihedral angles.

It would seam reasonable to seek the relations between those angles, plane and dihedral,
but the task is not neither direct not easy. Nor even for a figure so elemental as Fig.1.

We could figure out the solution by means of a rather cumbersome program of calculus
made expressly; it would have to solve the steps given by CAD, so we have decided to employ
just CAD.

36
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Fig. 2 is the same Fig.1 transformed by revolving the latter about OX a dihedral angle of
α = 40º (corresponding to an obtuse angle of 140º). To draw Fig. 2 we have to pursue the steps
that follow.

In that revolution (Fig. 2), AB is a parallel to OX just like its image A´B´. Hence, for
any position during rotation always is AA´= BB´. Then triangles APA´ and BOB´ are congru-
ent for their three sides are, respectively, equal. This entails that Ang. APA´ = Ang. BOB´.
These angles measure the values of equal dihedral angles in (- XO) and (XO) for they are re-
spectively in normal planes to (- XO) and (XO).

Let´s seek now the other dihedral angles in OD and OE that are congruent because of
symmetry. We can see in Fig. 2 that wanted angle BCN is the measure of those dihedral angles.
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Fig. 3 is Fig.1 splitted out by translation, in two half-figures. In Fig. 4 those half-figures
appear folded to the final dihedral obtuse angles of 140º in (XO) and (- XO).

The two 3D half-figures of Fig. 4 are moved to fall in coincidence points D and points
E. Fig. 5 is the result.

To pass from Fig. 5 to final Fig. 2 we must revolve the half-figure at left an angle equal
to O´FO about DE.

Being F the mid-point of DE, angle O´FO measures the value of dihedral angle deter-
mined by planes O´DE and ODE.

With the latter revolution O´ will fall on O, and so we shall get final Fig. 2. Measuring
in said Fig. 2 we get: angle BCN = 113,329º, Ang. DOX = 123,597º, obtuse dihedral angle in
OX = 140º and Ang. O´FO = 54,4823º. Ang. (–XOX) = 180 – Ang. O´FO = 125,5177º.

Fig. 6 is Fig.2 led to total flattening.
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17 PAPER SURFACES

First of all let´s recall how plane curves may be represented in two different manners
(Point 13.3.2, ellipse): by means of points (Fig. 4) or as the envelope of their tangents (Fig.2).

If we make use of an analogy, we shall call real surfaces those in which the paper is the
set of all the infinity of straight lines contained in it as generatrices (ruled surfaces).

This group covers Figs. 23 and 26 (Point 15), as they are described there. Likewise, Fig.
32 in said Point 15, and the cones shown in Figs. 1,2 and 3 (Point13). We´ll come back on
these when dealing with quadrics.

Continuing with the analogy, we shall call virtual surfaces those that have to be guessed
as the envelope of a discrete amount of generatrices, which, in turn, are but intersections (fold-
ing lines) of paper planes.

17.1 REAL SURFACES

Let´s add some others to those already mentioned. In first place, Figs. 1,2 and 3, similar
to those designed by T. Tarnai.

Fig. 1 is the folding diagram, and Fig. 3 is the result after folding. The latter may induce
to think that all the obtained surfaces are flat (distrust of retouched pictures), but it is not so. It
is pertinent to set this clear to avoid frustration when constructing forms.

It is evident that the surface of a triangle with straight sides, does is flat. They may also
be flat other polygonal surfaces (specially quadrilaterals) when none of their sides is curved.

Nevertheless, a paper surface bounded by any curve cannot be a spatial plane surface:
the natural paper docility leads to a composition of plane triangulations and conic surfaces
made out of straight line generatrices.

The latter has been disclosed in Fig. 2; not really in all the cases but only in those most
evident in order not to entangle the figure.

The fact that those surfaces do not become flat does not lessen the forms´ beauty: they
may lead to very attractive models for stone sculptures or, with a bit more of difficulty, for steel
sheet works.

1
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Fig. 4 is the pseudotetrahedron by T. Yenn. At left we have the folding plan, in the
center the solid form, and to the right the detail of ruled surfaces. Except for the small central
equilateral triangles, all the rest is made out of ruled surfaces of cylindrical generatrices that
give the impression of embossments and depressions.

Here it is an advice to paper folders relative to curve folding: pre-fold is eased with the
finger nail pressure.

It is relevant to recall that ruled surfaces with conic and cylindrical generatrices are
alike in this sense: all have a common point and rest on a directrix. In the second case, the
common point is the ideal point of one of the lines, for, being parallel, all these lines are paral-
lel to any plane containing one of them. A physical point is, obviously, the common point of
conic generatrices.

Fig. 7 is another example. I came across it when designing paper strips made with ar-
gentic rectangles to construct the perforated pentagonal-dodecahedron. The small rectangles in

Fig. 5 are argentic ones, and the oblong at right is the unit to draw 6. Folding 6 gives 7. By the
way, in all these figures (3,4,7) nothing is said on how to close the form: a practical resource is
to provide an extra unit to act as a glued closing lapjoin.

As can be seen, Fig. 8 is an enlarged view of the corresponding rhomb of Fig. 7. Rhomb
BDFH does not exist as such because the quadrilateral is not flat. Physically is made up by:

•  two isosceles triangles AHG and CDE.
•  the cylindrical surface ABCEFG bounded by the generatrices AG and CE, and the

helix arcs AB, BC, EF, and FG. These helices are superimposed to mountain folds

5
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of Fig. 6 (lines BH, BD, FH y FD in Fig. 8): The result is that in vertices B and F
certain tensions are produced and the paper replies with a minimum of deformation.

Let´s see another example of a real surface, in this case by A. Ratner (“PAJARITA”,
special issue 1996). We begin with Fig. 2 (Point 7.15.2) to draw Fig. 9 that in turn is the folding
plan for Fig. 11.

It is advisable to produce in Fig. 9 as many valley folds as possible (horizontal seg-
ments), to reach near O (decreasing geometric progression).

Fig. 10 is deduced from Fig. 9: Triangles OAB and OA´B´ will become a pair of quasi-
cylindrical surfaces whose generatrices are the respective parallel lines to AB and A´B´.

They are not full cylindrical surfaces because though lines OA and OA´ are free to take
its curvature, OB and OB´ are restrained as open polygonal lines.

Both surfaces could be named spiroids because their directrices are not plane spirals but
helicoidals (Fig. 11)

I must say that Fig. 11 is so beautiful in reality that neither a photography nor a per-
spective can convey to the viewer the harmony it contains: it must be constructed! (what is very
easy, indeed).
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17.2 VIRTUAL SURFACES

Let´s start with Fig. 9 (Point 17.1) to get Fig.1 of present Point 17.2. Thus we have

eliminated both spiroids of Fig. 11 (Point 17.1) to facilitate folding of central part of said Fig.
9.

Present Fig. 1 may be folded flat as shown in Fig.2. But it also

A

O

A

1
O

✁ B B´

B

B´

O

2can be left free-folded in the space producing an elastic form (recall
Figs. 1 and 2, Point 15), due to alternate mountain and valley folds.
That´s why it is feasible to get a form like that of Fig. 3. In it, all
mountain generatrices are parallel to the horizontal plane (what does
not mean that they will be parallel between them).

Those generatrices in turn, rest on either open polygonals that
tend to the helicoidal spiral curves already seen in Point 17.1.

Fig. 4 shows that pair of curves in such a manner that the
virtual ruled surface determinated by those mountain fold horizontal
generatrices, is a quasi-conoid
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A conoid is a ruled surface with:
•  Its own right directrix.
•  A director plane not parallel to it.
•  Another directrix, curved or straight.

Hence, the surface of Fig. 4 is not a conoid strictly speaking for, though it has the horizontal as
director plane, it has two curved directrices instead of having, at least, one straight.

To illustrate this, Figs. 5 and 6 show a couple of conoids: The first is a coiled stairwell and the
second is the Plücker´s conoid. Both have the horizontal plane as director. The directrices of Fig. 5 are,
the vertical axis of a cylinder and a helix on its surface.

One of the directrices of Fig. 6 is a generatrix of the cylinder and the other is an ellipse on the
surface of said cylinder having one of its vertices on the straight directrix of that conoid. The genera-
trices of both conoids are outlined in Figs. 5 and 6.

A CONOID OF PAPER

Fig. 7 is a conoid obtainable by folding. It is a ruled surface whose generatrices rest at equal
intervals on the crossed diagonals of two squares. With a common side, these squares form a 90º dihe-
dral angle. The director plane, as shown in Fig. 8 is x = 0.

In Fig. 8 we can see the structure required designing a simple program of calculus that figures
out the length of mountain and valley folds. That will allow drawing the adjacent triangles of Fig. 9:
this figure is the conoid folding plan.

The inputs of that program are: the side of the square and the n parts to divide the diagonal. In

the drawing we took n = 8 and the value of the small sides of all triangles of Fig. 9 is 
n

a 2

Let us calculate the length of both, a mountain and a valley fold, e.g., for points 7 and 3: m (7)
and v (3).
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Conoids are warped (not developable) ruled surfaces (with straight generatrices). One surface is
developable when the planes tangent to it along all the points of any generatrix mix in one only tangent
plane (recall the plane tangent to a cone along, of course, of one of its generatrices).

Conversely, in a warped surface, the tangent planes to it in the different points of a generatrix,
vary: they revolve from one position to another along the generatrix.

See in Fig. 5 how two tangent planes to the conoid in any generatrix are different depending of
which extremity of the generatrix segment we consider as point of contact. Similar remark is applica-
ble to Fig. 6.

It should be made clear that the conoid in Fig. 7 is also a warped ruled surface, and therefore
Fig. 9 is but the folding plan that produces a virtual surface by gathering some of the paper.

 A TWISTED COLUMN (SALOMONICA)

To close the examples of virtual surfaces, we shall study this interesting and beautiful form af-
ter N. Nagata.

And we´ll do it beginning from the end. CAD produces the generation of the solid fig-
ure as follows:
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•  Start with a square with base AB = a and center O (Fig. 10).
•  Rotate it clockwise on its own plane around O, an angle ω.
•  Then move it vertically by the amount h.
•  Repeat successively the operation n times by rotating ω and moving h.
•  Thus we get Fig. 11 which appears with all its folds: AD (mountain), DB (valley)

and DC (mountain). Fig. 12 shows them enlarged.

Besides a solid perspective, Fig. 11, is also the clue to the fold plan of Fig. 13.

We can note that all we need to draw Fig. 13 is to fix ABD (enlarged in Fig.14). Inci-
dentally, Fig. 11 is fully flattable if properly twisted.

We know the three sides of that triangle: AB is given; CAD in Fig. 11 can read BD and
DA. Then from triangle ABD we can complete Fig. 13 by extending and copying lines.
We should note two things:

•  The three central vertical lines of Fig. 13 are of no use to construct Fig. 11. Only its
bases AB and the other three are needed.

•  The projection h´ of AD over the vertical, times n, gives the altitude of the starting
paper that is greater than nh. It means that the quadrangled prism originated by Fig.
13 is contracted in its height while twisted to form Fig. 11.
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We have seen up to now that CAD allows us to draw Fig. 13 as well as Fig. 11. Then
we´ll see the analytical procedure in case CAD would not be available.

Here are the data:
•  The side of the square = a.
•  The distance between squares = h.
•  The angle turned around each time = ω.
•  Amount of turns and consequent upward moves given to the square = n. Obviously n

may be as great as we wish if the paper size can cope with it.

Let´s look again to Fig. 10 in order to get the co-ordinates of points A, B, C, D
A ≡ (0,0,0)     ;      B ≡ (a,0,0)
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Its three sides define ∆ABD. Besides, calling p to its half-perimeter, its area will be

( )( )( )ADpBDpappS −−−=         and therefore:     
a

S
h

2
´=

Once the solid form of Fig. 11 is physically completed, we can check that the shrinkage
produced by the twist is equal to ( )hhn −´ .

We should recall that h´ is the distance between horizontals in Fig. 13, and h is the same
distance taken in the space (sides DC and AB of Fig. 12, which cross each other): h´ > h.
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Once we know the co-ordinates of A, B, C, D, it is easy to obtain the length of BD and
AD:

( ) ( ) ( )222
BDBDBD zzyyxxBD −+−+−=

( ) ( ) ( )222
ADADAD zzyyxxAD −+−+−=

Fig. 11 has the structure of a screw with four threads in it.

Interlude
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18 POLYHEDRA

They are solids bounded by plane faces (polygons, obviously in number of 4 or more).
•  Their faces C are those polygons.
•  Their vertices V are the vertices of the polyhedral angles.
•  Their sides A are the intersection of two faces, forming a dihedral angle.
All polyhedra are governed by the Euler theorem that relates C, V, A. The generalised Euler

theorem should be applied to stellate regular polyhedra; we´ll see to it later on. For the rest of polyhe-
dra, here we have the Euler theorem:

C + V = A + 2
We shall not prove it now. The reader should recall a similar approach given to plane figures in

Point 1.3.1.
According to various criteria, which in turn may be related to each others, polyhedra are classi-

fied in:
Regular, irregular, pseudorregular, concave, convex, stellate, platonic, archimedean, conjugate,

etc, etc.
Regular polyhedra are the five platonic ones: all their faces are equal regular polygons. Let´s

see why there are but five.
To begin with, their faces can only be equilateral triangles, squares, or regular pentagons, hexa-

gons, etc.
It is obvious that the sum of the plane angles forming a polyhedral angle must add up to less

than 360º.
With the 60º of the angle of an equilateral triangle we can construct a polyhedral angle with a

maximum of 5 faces (6 would not form a polyhedral angle, but a perigon: 60 x 6 = 360º). Since the
trihedral is the smallest possible polyhedral angle, it follows that with equilateral triangles we´ll be
able to form polyhedral angles of 3 faces (3 * 60 = 180 < 360); of 4 faces (4 * 60 = 240 < 360); of 5
faces (5*60 = 300 < 360); and no more faces (6 * 60 = 360).

For the square: 3 * 90 = 270 < 360; 4 * 90 = 360. With the square we can construct only trihe-
dral angles.

Let´s see what happens with the regular pentagon (the value of its interior angle is
( )

º108
5

25180 =−
). We can construct a pentagonal trihedral angle, for 108 * 3 = 324 < 360; four pen-

tagonal faces are too many: 108 *4 = 432 > 360.
It is not feasible to construct a trihedral angle with hexagonal faces (120 * 3 = 360).
Therefore, with the different regular polygons we can construct:

FACE                        NUMBER OF FACES IN   POLYHEDRON´S
POLYGON               POLYHEDRAL ANGLE           NAME

EQUILATERAL ∆                      3                        TETRAHEDRON
4     OCTAHEDRON
5     ICOSAHEDRON

SQUARE                                     3                        HEXAHEDRON
PENTAGON                               3                        PENTAGON-DODECAHEDRON

The latter 5 regular polyhedra, besides the faces, have also respectively equal, sides and angles:
dihedral as well as polyhedral.

The archimedean polyhedra are obtained by truncating the polyhedral angles of the platonic. It
is well known that Archimedes dealt with 13 of them. They are a special source of inspiration for
imaginative unit folders.
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Irregular polyhedra do not openly conform with to equality conditions of regular polyhedra.
Neither do the pseudorregular, but not so openly: they may have even a regular appearance. Later on
we shall study two of these: the rhombic-dodecahedron and the trapezohedron.

As for stellate polyhedra, we shall devote special chapters only to the regular ones.
A polyhedron is named convex when the plane containing any of its faces leaves the whole

polyhedron in one of its two hemispaces. Conversely it is a concave one if its volume is scattered
within the two hemispaces. The kneading-trough we´ll see here after is one example of a concave ir-
regular polyhedron.

The conventional –and simplest- classification of polyhedra is: regular and irregular, the prism
and pyramid being part of the latter.

A prismatoid is an irregular polyhedron bounded by two polygons (bases) situated in parallel
planes, and several lateral faces shaped as triangles or trapeziums (in case their four sides were copla-
nar). If both bases have the same number of sides, the prismatoid becomes a prismoid.

If one of the bases of a prismatoid is reduced to a point, the prismatoid becomes a pyramid.
Therefore a pyramid is a polyhedron whose base may be any polygon; its lateral faces (as many as the
sides of the base) are triangles that meet at the vertex forming there a polyhedral angle.

The pyramid may be named triangular, quadrangular, etc. when its base is a triangle, a quad-
rilateral, etc. Moreover, if the base is a regular polygon and the lateral faces are congruent, we have a
regular pyramid.

A prism is like a prismoid with equal bases; the other faces (lateral) should be parallelograms;
their sides will belong to the bases or to the lateral faces.

A prism is named right if it has its lateral sides at right angles with the base; if not, it is an
oblique prism.

A prism will be triangular, quadrangular, etc. according to the polygon of its base. If such a
base consists of a regular polygon, we´ll have a regular prism. The bases of an irregular prism are
irregular polygons.

A prism is named parallelepiped if its bases are parallelograms: in other words, it will have 6
faces such that each pair of the opposite ones are equal and parallel. A right parallelepiped derives
from a right prism.

A rectangular parallelepiped is a right one whose base is a rectangle.
When a plane oblique or parallel to the base cuts a pyramid, two solids are obtained: a small,

new pyramid and a frustum.
If a prism is cut off by a plane oblique to its base we get two truncated prisms.
Two regular polyhedra are conjugate if the number of faces (or vertices) in one is equal to the

number of vertices (or faces) in the other: cube and octahedron; pentagon-dodecahedron and icosahe-
dron.

We shall show the mathematical background of the solids to be studied here on. Paperfolding
will also play its roll through folding schemes that convey to ultimate figures, also shown in perspec-
tive. Folding does not produce interlocked assemblies; on the contrary, it requires the help of glue or
sticking paper (transparent) to fix the union laps (not always shown).

18.1 A KNEADING-TROUGH

It is an example of an irregular concave polyhedron that fulfils Euler´s theorem: C = 18; V =
20; A = 36:          18 + 20 = 36 + 2

Fig. 1 is a perspective view with its two orthogonal transversal sections.
The design may be taken as a model to construct a kneading-trough made out of five equally

thick boards: the base and four lateral faces. Those are represented in the terminated figure by five
empty virtual boards of paper.
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This construction associates geometry and paperfolding, and has these characteristics:
1. It starts with a unique piece of paper.
2. That paper is not a square; instead it takes the form of the mere development of the finished

figure (Fig.2).
3. The paper should be cut.
4. Union laps, though necessary, are not shown. The construction requires the use of glue or

sticking paper.

As can be seen, origami is now present. The licenses expressed here do not affect the essence of
paperfolding. In this respect it will be good to remind that the paper used formerly for origami in west-
ern countries was rectangular shaped (D. Lister), whereas in Japan the traditional square paper is re-
lated to the ancestral square parcels of land used to cultivate rice (K. Ohashi).

The kneading-trough we are dealing with here has been inspired by the KIKUJUTSU tradi-
tional Japanese carpentry so well described by T. IWASAKI. This technique makes use of certain spe-

2
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cial graduated squares able to configure any type of angles. That craft has even assigned specific
names to some of these angles. Through a rather awkward application of those tools, the craftsmen can
cope with any wood construction such as slants, dovetails, etc.

At present, instead of appealing to the old techniques, I have preferred to use those taken as
modern nowadays. CAD, nevertheless is not a panacea. What I mean is that, for example, to figure out
the angles in the trapeziums of Fig. 2, we must know beforehand, which is the intersection line of two
planes in space. To solve problems like this, I have been forced to develop calculus programs such as
those that give the angle formed by two planes, the point of intersection of line and plane, the distance
to a plane from a point, etc.

We have to bear in mind that CAD works with points alike the 3D measuring machines; there-
fore a plane is defined by three of its points.

Fig. 3 is a dimensioned half-section of the small cut in Fig. 1. From that we can figure out the
length of the segments forming the broken line EDCBA.
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RELATION BETWEEN c AND d (Fig. 4)

βsen

a
EH =      ;     





 −−=−=

2
tg

πβaeFGEFGE      ;     ( )
EHGEd

c

−−
=− βπtg

Here are the data needed to construct the kneading-trough:
•  angles α, β, γ.
•  board thickness a.
•  bases dimensions e, b, d; height c is a function of d as seen in Fig. 4.
•  the longitudinal dimensions associated to transversal section of Fig. 3.
Let´s see now how we can draw some of the trapeziums of Fig. 2.
Fig. 5 shows, within Fig. 2, the broken line ABCDE and a pair of angles in the trapeziums, also

marked in the duplicated Fig. 1. CAD gives the value of those angles by actual measurement in Fig. 1.
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18.2 PYRAMIDS

We are going to study various regular pyramids and one irregular, using when possible,
for their construction, the Solution 1 of Point 8.2.3 to generate equilateral triangles.

18.2.1 TRIANGULAR PYRAMID

18.2.1.1   TETRAHEDRIC
Fig. 1 is the folding scheme and Fig. 2 is the obtained solid. It is evident that the result-

ing pyramid is a tetrahedron since its three lateral faces are equal and also equal to the base.

To draw Fig. 2 by means of CAD (Point 18.1 showed to which extent CAD is an origami tool
and not a mere ornament) we must know the value of the α angle in the tetrahedron (Fig. 3), for CAD
usually plays with plane revolving.

The same requirement will be put forward with other polyhedra and it will have to be satisfied
in each occasion.

In the tetrahedron of Fig. 3 we have:
•  side = l

•  altitude of one of its faces 
2

3l
h =

•  distance AB between two opposite sides:
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•  altitude of tetrahedron: distance from the pyramid´s vertex to the center of its base = H
•  dihedral angle of two faces: angle formed by two segments h meeting on the same side = α.
•  angle formed by two segments l and h meeting on the same vertex = β.
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18.2.1.2 OF TRI-RIGHT-ANGLED VERTEX
From a square of side l (Fig. 1), we get a virtual pyramid (I name so, in this case, the

pyramid lacking its base) with these characteristics (Figs. 2, 3):

•  Its base is an equilateral triangle of side l and altitude 
2

3l
h =

•  Its three equal lateral faces are isosceles right triangles. The vertices of their right angles
coincide with the pyramid´s vertex; their legs are the pyramid´s lateral sides and measure

2

l

CALCULATION OF DIHEDRAL ANGLE  α

Altitude of pyramid 4082483,0
2

3

3

2

2

22

×=





−




= ll
l

H

º735613,542tg

3

tg === Arc
h
H

Arcα

We should note that this angle α is equal to β in Fig. 3, Point 18.2.1.1.
The folds in lower triangle of Fig. 1 allow pyramid interlocking.

18.2.2 QUADRANGULAR PYRAMID

18.2.2.1 VIRTUAL QUADRANGULAR PYRAMID

It is quite defined by its vertex, the four base´s vertices, two full lateral faces and
the other two semi-full ones; it is lacking the base.

The starting rectangle, according to Fig. 1 is a DIN A4 with sides 1 (the small)

and 2  (the large). Fig. 1 shows the folds previous to final folding performed to Fig. 2:
pleat its large sides in such a way that the distance between its endpoints will be 1.

Thus we obtain the complete folding diagram of Fig. 3 and hence the pyramid of
Fig. 4. The construction requires that both pleats in the semi-full faces, will be fixed.

The final pyramid has these characteristics:
•  The side of the square of its base is 1

•  The diagonal of this square is 2

1
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•  The lateral side (see Fig. 1) is: ( )
2

3
21

2

1 2
=+

•  The pyramid´s altitude is (Fig. 5): 
2

1

2

2

2

3
22

=





−





=H

•  The dihedral angle whose side is the side of the pyramid´s base is: α = 45º (it
pertains to an isosceles right triangle)

2

1

1 2

3

6
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Fig. 2 shows, as said, how to pleat fold, at the discretion of the folder (but with a great
accuracy), the large sides of the original rectangle. Fig. 6 shows how to get the pleat angle γ:

º471221,19
2

1
tg290 =−= Arcγ

18.2.2.2 EQUILATERAL-TRIANGLE QUADRANGULAR PYRAMID

Fig. 1 is the folding diagram and Fig. 2 is the pyramid we get. In Fig. 3 we can calculate
the altitude h and dihedral angle α, the side of the equilateral triangle being the unity.

7071067,0
2

2

4

1

2

3
2

==−





=h      ;      

3

1
arccos

2

32

1
arccos ==α      ;     α = 54.735613º

(equal to the α angle in Point 18.2.1.2)

18.2.3 PENTAGONAL PYRAMID

This pyramid is also lacking its base. Its lateral faces are equilateral triangles of side l (same
as the side of the base pentagon). The apothem of said pentagon is calculated in Point 18.6.1 though
Fig. 3 makes evident its value.

Fig. 1 is the folding diagram which is worked out in two steps: in the first place we form a
hexagon; then, the upper trapezium that appears is rotated 60º around the center of the hexagon, as
shown. While performing this operation the figure is filled out to attain its pyramidal volume (Fig. 2).

2
2

108
tgl

a =      ;     º377368,37
2

3
:

2

54tg
arccos =





= llα

1

1
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18.2.4 HEXAGONAL PYRAMID

The folding process beginning in Fig. 1, is self-explanatory. Fig. 5 shows how to cut along
the solid line to get Fig. 6. After folding the latter, we obtain pyramid 7.

As said in Point 18, a hexagonal polyhedral angle must be constructed with plane angles
smaller than 60º. Fig. 9 shows a lateral face whose altitude is twice that of the equilateral triangle
having a side equal to the base hexagon (see Fig. 4). This means, in our case, that the apothem of
the pyramid is double of the base´s apothem. Bearing this in mind we can figure out angles α and β:

º60
2

1
arccos ==α            ;           º204228,32

2

3
2

2arctg2 ==
l

l

β

1
2

4

6

3

5

9
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18.2.5 RHOMBIC PYRAMID
The one to be studied now is an irregular pyramid whose base is a rhomb having its di-

agonals in the ratio 1:2 . We obtain it from a DIN A rectangle with its small side equal to1
(Fig. 1).

Folding accordingly we get the mesh-like pyramid of Fig. 2. Its base is the rhomb
ABCD whose diagonals are:

AC = 1     ;     
2

2

2
== HH

BD       therefore 2=
BD

AC

Fig. 3 shows the right angle E: 90
2

1
arctg

2

2

1
arctg180. =



















+−=EAng

On the other hand we know (Point 9.8) that HE = 
3

1
 HF, hence

5773502,0
3

3
21

3

1 ==+=HE      (Figs. 3 and 4)

Besides, folding to Fig. 1, points J and K will lie on O (Fig. 4).

Consequently 
2

1=== HKHJh    are the altitude of the pyramid;    (HD = HB) < (HA = HC)

In Fig. 4,  h = HO. Likewise, Ang. HEO (formed by a triangular lateral face and the
rhombic base) measures:

   º608660254,0arcsen
32

31
arcsenarcsen ==×==

HE

HO
AngHEO

1
AH

J OB D

C

K

H

O

C

3
H A H
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18.3 PRISMS

Let us construct an oblique equilateral triangular prism whose lateral sides form with
the base an angle β = 54,735613º (see point 18.2.2.2) having the attitude shown in Fig. 2.

Those lateral sides will measure twice the base´s side. Under these circumstances we
have the prism of Fig. 1 whose folding scheme is Fig. 3.

18.4 TRUNCATED PRISM

Let´s truncate the prism of Point 18.3 by a plane through A forming with the base an
angle twice the value of  90 – 54,735613. That angle is the same formed by two opposite lateral
faces in the quadrangular pyramid with vertex A. That plane divides the prism in two solids:
the upper one which is the above mentioned pyramid (already studied in Point 18.2.2.2), and
the lower one: the truncated prism as such (see Fig. 1).

Fig. 2 is the development to construct the truncated prism.

18.5 PRISM TORSION (obtention of PRISMOIDS)

When we studied the so-called SALOMONICA COLUMN in Point 17.2, we already
saw how to get the piling up of partial twists in a quadrangular prism. There we pointed out two
ways of construction: CAD and analytical. Both are basic in present study, but we shall stick to
the first.

3

A

2

A
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18.5.1 TRIANGULAR PRISMOID

Fig. 1 is a right prism whose bases are equilateral triangles. Fig. 2 is its folding scheme.
All five figures are not to the same scale.

Twisting 40º clockwise the upper base of Fig.1 with respect to its lower base, the alti-
tude of the prism is reduced to 70 %. By so doing (CAD) we get Fig. 3.

To draw the folding diagram of Fig.4, the only thing needed is to measure by means of
CAD the sides of the eight triangles of Fig. 3.

We must pay attention to the fact that the altitude of prismoid 3 is not available in Fig.
4, but in Fig. 3: it is the distance between the centers of its bases.

In Fig. 5 we can see, overlapped, both Figs.1 and 3 in order to clarify the process.
We may observe that the process above can be fulfilled regardless of the bases of the

prism. Actually it is better to have them to afford a more consistent solid.

Let´s consider now the problem of twist to flattening both bases on the same plane.
It is not possible to twist flat the prismoid of Fig. 3 because of the interference of its

three valley-fold diagonals. It is required that the prismoid´s altitude fulfils certain conditions,
as we shall see here after.

Let´s observe what happens in Fig. 7 that is a flattened prismoid without bases. Fig. 8 is
a meshlike version of Fig. 7 showing the twist angle to make clear the process. The vertices of
the bases are, respectively, ABC, A´B´C´.

In a folding diagram like that in Fig. 4 we see the six lateral triangles whose sides will
be named in this manner: l (side of the base´s triangle); p (the small side); g (the great side). We
can see that one of the angles adjacent to the base l is acute and the other is obtuse. The same
configuration have the triangles in Fig. 8 (for example BCC´).

Let´s see now how the paper is arranged around vertex C. Each angle will be named af-
ter the letters of the sides including the angle. Therefore:

lp – pg + gl = 60º
lp + pg + gl = 180º     (the three angles of a triangle, together)

Adding up we have: lp + lg = 120º

2

4
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This means that to fold flat an equilateral-triangle prismoid it is a must that the angles
formed by a base´s side and the valley and mountain folds adjacent to it will add up to 120º.

There follows that values lg / lp must be between the limits 30 / 90 and 0 / 120. Under
those conditions the intersection of sides g / p will determine the prismoid´s altitude that guar-
anties the folding flat of the solid.

The foresaid permits to draw the folding diagram 9 that in turn may produce the solid of
Fig. 6. In this we can measure the prismoid´s altitude and the initial torsion before folding flat.
In Fig. 7 we can measure the twist to flatten.

We should note that the various combinations of angles lg / lp convey to different forms
for flat Figs. 7 and 8: there is not a unique solution.

Hence, the process will be as follows:
•  To fix the base´s triangle with one unit as side.
•  To choose the pair of angles, e.g.: lg = 25º; lp = 95º
•  To get the development to Fig. 9
•  To draw Figs. 7 and 8 to measure the torsion angle to folding flat (in this case it

happens to be 50º).
•  Fold to 9 to get the solid of Fig. 6.
•  Refer solid 6 to a co-ordinate trihedron.
•  Measure in it the lower base´s co-ordinates and those of one of its upper base´s ver-

tices.
•  With those co-ordinates, draw Fig. 6. In it we can measure the initial altitude of the

prismoid (it comes out to be 0,48) and the initial twist angle with respect to the right
prism (equal to 7,8º).

18.5.2 QUADRANGULAR PRISMOID

Let´s start with a quadrangular right parallelepiped (Fig. 1) having A4 rectangles as lat-
eral faces. Fig.3 is its folding diagram. Fixing tight its lower base, we subject the upper one to a
clockwise twist of 90º. The result is the quadrangular prismoid of Fig. 2 with all the vertices in
a cube.

The valley sides of the prismoid meet in the center of the cube. If AB = 1 is the side of
the base´s square, we´ll have:

OA = 1     ;     AR = 2      ;     RB = 3

B

A

C

B´

A´

C´7
A´

B

B´

8

A

C

C´

9
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This indicates that RB, in Fig. 2, is the cube´s diagonal. From the center of the cube to
its 8 vertices we can adjust 6 quadrangular pyramids like the one seen in Point 18.2.2.1 (lateral

side equal to 
2

3
). Two of them are complete (those with the same bases as Fig. 1); the rest are

virtual ones.

The shrinkage produced when passing from Fig. 1 to Fig. 2 is
2

1
. The interference

between the valley-fold diagonals impedes the folding flat of the solid. The 90º twist produced
between figs. 1 and 2 is not docile (bellows-like) but in collapse mode (snap-like).

Let´s see some variations.

The development of  Fig. 4 (gl = 45º; 2  > a > 1; a = 1,2) produces a prismoid with a
natural twist from the right prism. It is docile to an extra twist (total rotation of 69º for Fig. 5).
The final prismoid altitude is h = l = 1

Fig.6 is the development of a prism such that after folding flat produces Fig. 7. The
transition from one to the other takes place in the collapse mode. The collapse is produced
around the center of Fig. 7. After the 90º rotation, upper and lower base coincide.

3

2

1

4

45
1

1,2

6 7

45
1

1
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A variant of Fig. 4 is Fig. 8 that in turn produces Fig. 9.
It is not docile but it is collapsible to a virtual right quadrangular parallelepiped (instead

of the cube of Fig. 2). The result is a prismoid with altitude 66,012 =−= ah  (a = 1,2). It has
its four valley-fold diagonals in contact.

After all seen till now, one could think that the condition to fold-flat a quadrangular
prismoid is that the angle lg = 45º. That is not true, though.

Let´s look over Fig. 10 that exhibits these conditions:
l = 1     ;    lg = 40º     ;     lp = 95º

hence:

135sen

1

40sen
=p

     ;     p = 0,909

a = p sen 95 = 0,9056

The passage from Fig. 10 to 11 is not docile but accepts collapsing to fold-flat. If we
analyse the paper arrangement around vertex A (Fig. 11), we have:

lg – gp + pl – ll = 0
Being ll = 90 and lg + gp +pl = 180 (the sum of the angles of triangle lpg), we end up

with:
lg + lp = 135

What means that the condition to fold-flat is this: the sum of the angles adjacent to l
must be 135º. Fig. 10 accomplishes that condition. Besides angle lp has to be greater than 90º.

Fig. 10 is lacking the bases to allow observing the small interior square appearing in
Fig. 11. This square may vary in size according to the chosen combination of angles.

18.5.3 PENTAGONAL PRISMOID

Up to here, the prismoids we have considered were lacking, in general, their bases and
the necessary elements (flaps, interlocks, etc.) to conform them tight. In the present occasion,
the folding diagram of Fig. 1 is an example of how to close the lateral surface of a prismoid by
pocketing (though bases are not shown either).

1

8

1,2

50,2º90º

10 11
a

95º 40º

p g

l A
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The orientation of segments gp and their folding mode (mountain or valley) are sym-
metric to those shown herebefore, because now it is put to sight the paper obverse.

The twist between bases of Fig. 2 is 30º and the resultant prismoid´s altitude is 1,76
times the pentagon side.

1

Interlude
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18.6 REGULAR POLYHEDRA

Before digging out about them, we shall analyse certain RELATIONS given within the
pentagon, the pentagon-dodecahedron and its conjugate, the icosahedron, to have them at hand
whenever necessary.

18.6.1 RELATIONS 1 (dodecahedron)

Fig. 1 shows two congruent regular pentagons rotated 36º one with respect of the other.

2
cos

α
ar

AC
−=      ;     

4
tg2

β
aAB =

In triangle GIH we have:

ϕcos
2

l
l

GI
−

=
ϕcos2

l=               being     
2

2

2
sen2

tg
l

l
l

l −
=

α

ϕ
2

54sen4=

Summarising:
l = l    ;    a = 0,6881909 l    ;     r = 0,8506508 l    ;     AC = 0,2763932 l   ;     AB = 0,4472135 l

GI = 1,248606 l     ;     FD = r – a = 0,1624599 l

In Fig. 2 we can see the relation between side and diagonal of a pentagon:

618034,1
2

sen2 == α
ld l

Fig. 3 shows the same pentagon of Fig. 2 associated with another one in which the side
is the former´s diagonal. Being similar both pentagons, we´ll have:

d

D

l

d =      ;     ===
2

sen4 2
2 α

l
l

d
D 2.618034 l

Let´s figure out the value of some singular
segments as a function of the pentagon side l.
l = side of pentagon
r = radius    ,,         ,,
a = apothem           ,,

α = 108 (see Point 11.1)     ;      72
5

360 ==β

2
2

2

4
a

l
r +=

2
sen

α
ra =

hence:

2
2
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l
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α
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Fig. 4 will allow us to find the dihedral angle ε formed by two adjacent faces of a do-
decahedron, as well as its diameter. At left we have two pentagons like those in Fig. 3 and, as-
sociated with them, segments l, d, D and A. The value of the latter is:

A = a + r = 0,6881909 l + 0,8506508 l = 1,5388417 l

The figure at right is a hemispherical section of a dodecahedron; in it, D is the diagonal
of the great pentagon at left (see Fig. 3, Point 18.6.3). To draw that section we shall start by
∆YVW whose three sides are given. In it we get ε:

A

D

22
sen =ε

     ;      ε = 116,56505 º

The figure at right is symmetric with respect to XY; points V in it are vertices of the do-
decahedron. After all that we can deduce:

•  the angle γ in the irregular hexagon with sides A, l:

180 (6 – 2 ) = 2 ε + 4 γ     ;     71748,121
4

56505,1162720 =×−=γ

•  the proof that angle VWV is a right one:

Ang. VWV = 90
2

56505,116180
71748,121

2

180 =−−=−− εγ

A
l

B d C

D

d
d

4
A

AD

V

V

l

l

A

A

W

X

YZ

O

2
d

2

l

d

3
D

A l B d C
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•  the value of VV which is the dodecahedron´s diameter; its mid-point O is, obvi-
ously, the polyhedron´s center

lllDVV 8025171,21618034,2 222 =+=+=

Hence the dodecahedron´s radius is l
VV

4012586,1
2

=

•  the proof that distance XY is equal to D

DllAlXY ==




 ×+=+= 618034,2

2

56505,116
cos5388418,121

2
cos2

ε

In the same figure we can verify that VZ = r – a has the same value as FD in Fig. 1.

18.6.2 RELATIONS 2 (icosahedron)

Let´s note in Fig. 2 how the icosahedron of Fig. 1 is constructed: it is made up, in first

place, by two domes (the upper and the lower one) same as that in Fig. 2 of Point 18.2.3; one is
rotated with respect to the other an angle of 36º (see Fig. 1, Point 18.6.1). In second place, by a
belt of 10 equilateral triangles: its upper and lower pentagonal bases coincide with the respec-
tive bases of the associated domes.

In Fig. 3 we can get the value of the dihedral angle formed by two adjacent faces of the
icosahedron: it is angle BAC, being BC the diagonal of the dome´s base pentagon and AB =
AC the altitude of one face of said icosahedron.

AC

BC
ArcBACAng

2
sen2. =

as BC = 618034,1  l (see Point 18.6.1),  and AC = 
2

3l
, the result is:

Ang. BAC = 138,18971º
Either in Figs. 1 or 2 we can see that VV, the icosahedron´s diameter is the sum of: two

domes´ altitude (h) plus the belt altitude. Fig. 3 also shows that the dome´s altitude is the verti-
cal leg of a right triangle whose other leg is the radius of its pentagonal base, and its hypote-
nuse is one side of the icosahedron.

5257311,085065081,0 222 =−= llh

Fig. 4 gives the belt´s altitude HF which is the great leg of right ∆HFD whose hypote-
nuse HD is the altitude of one face of the icosahedron; the small leg FD has the same length as
FD in Fig. 1, Point 18.6.1.
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ll
l

HF 8506508,016245991,0
2

3 22

2

=−





=

hence, the icosahedron radius will be:

( ) ll
VV

9510565,08506508,05257311,02
2

1

2
=+×=

18.6.3 RELATIONS 3 (stellate pentagon)

which leads to the new relation:
dlD 2+= (2)

From system (1) (2) we can obtain the values d,l as a function of D,L.

DL

D
d

2

2

+
=      ;     

DL

DL
l

2+
=

Recalling Point 18.6.1 we can also write:

618034,1==
L

D

l

d

Fig. 2 shows a regular dodecahedron; in it we can see that each face pentagon is homothetic to
another one with side d. Both pentagons are outlined in Fig. 3. Let´s look for the center of homothecy.
First of all we observe in Fig. 1 that the three angles in B are equal since all of them see the same
chord L (same arc of circumference) from the same point B.

1
A

E

B CL

B´
l

C´

Finally we shall study some relations associated to the stellate
pentagon; they will be of interest in connection with the regular stel-
late polyhedra.

In Fig. 1 we see two convex regular pentagons (consequently,
similar). One of them is interior with side l (and diagonal d); the other
is exterior with side L (and diagonal D). Therefore we´ll have:

D

d

L

l = (1)

thinking in similar ∆ ABC, AB´C´, this implies that

AC´ =  d = L
L

618034,0

3

108
cos2

=
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As Ang. EBC = 108, it is: Ang. ABC = 72     ;     180 – Ang. EBC = 72
Therefore, angles ABC and EBC are supplementary.
Fig. 4 adds to Fig. 3 the ∆ABC of Fig. 1, both, seated on the pentagonal face, and revolved

around BC to form ∆A´BC. Consequently A´ is the wanted center of homothecy: the vertex of two
pentagonal pyramids having parallel bases. Of course AB = A´B.

Interlude
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18.7 TETRAHEDRON
C = 4     ;     V = 4     ;     A = 6

Pyramidal TETRAHEDRON
Fig. 1 is the same obtained in Point 18.2.1.1. As a special triangular pyramid, we omit

now its folding diagram.

It is up to the folder to decide the folding mode (valley or mountain) to reach the final
target.

Bi-truncated prism TETRAHEDRON

It is configurated by the union of two equal truncated prisms like those of Point 18.4:
They are positioned crosswise, with the square faces in coincidence (Fig. 3).

 Wound up TETRAEDRON
It is similar to the latter that starts with a paper strip containing

just only four equilateral triangles; this, on the contrary, is based in a
triangulated paper strip with many more equilateral triangles.

Fig. 2 shows that strip having 14 triangles to guarantee an effec-
tive final interlock by pocketing the winding end; 8 triangles in the strip
also allow the closing of the tetrahedron, although more precariously.

2

It is evident that the result is a tetrahedron because the slope β = 54,735613 (Points
18.3, 18.4) of one of the truncated prism faces is the same as its opposite side´s which in turn
is the slope of the side of one tetrahedron (Point 18.2.1.1). In addition we should recall that the
greater side of the truncated prism is double of its bases´ side: consequently, when completed
the assembly, two sides of the truncated prism base add up to one side of the tetrahedron.

Ex-triangle TETRAHEDRON

Start with an equilateral triangle of center O (Fig. 4) and fold it as shown. The three
OAB type triangles will become the lateral faces, and the three overlapped ABC type will form
the base. To fix the assembly interlock the two last folded triangles by means of the cut lines.

4

C

A B

O

✁ ✁
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Skeletonlike TETRAHEDRON

It is made out of 4 corners as vertices (Fig. 5) and 6 cardboard rails as sides (Fig. 6); rail
ends, to 60º.

18.8 CUBE
C = 6     ;     V = 8     ;     A = 12

Perhaps it is the cube (or hexahedron) the polyhedron that has inspired more paper-
folded solutions, both in quantity and originality. Now we shall outline only some simple
though singular creations and shall also focus on some cubic questions specially related to
mathematics.

18.8.1 Ex-rectangle CUBE
We start with a folding diagram like that in Fig. 1 and end up with the cube of Fig. 2

fully closed on itself.

5
6

O

C D
h

The resultant tetrahedron will show only verti-
ces and sides (Fig. 7) and has to be fixed by gluing or
by sticking paper.

The relation between Figs. 5 and 6 is this: if l
is the side of the triangle with center O, it will be:

3

l
hCD ==

We can assign any length to the rails (of
course, the same for the six) as long as we get the
right proportion in the tetrahedron.

The rails opening to assembly will be fixed to
the dihedral angle of the tetrahedron´s faces (α angle
in Point 18.2.1)

1
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18.8.2 The CUBE of the sum of two numbers

We know that the square of a binomial r + s (Fig. 1) is (see Point 7.2.1):

( ) ( )( ) rssrsrsrsr 2222 ++=++=+
I.e., the sum of two different squares and two equal rectangles.

Let´s see now, as an analogy, what is the value of the cube of binomial a + b.
Let the cube of side a (Fig.2), and the cube of side b (Fig. 3).

Algebraically we know that

( ) ( )( )( ) abbabababababa 22333 33 +++=+++=+
that is, the cube of side a + b (Fig. 4) may be considered as made up by both cubes of

Figs. 2 and 3, three parallelepipeds same as Fig. 5 and another three like that of Fig. 6.

r s

1 r

s
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Figs. 7 to 8 show how the assembly is completed.

18.8.3 Magic CUBE, by Jeremy Shafer.

In my opinion, this is the most fascinating discovery I have come across along the
whole art of origami. The reason: it is simple, beautiful and original. Before I describe its 3D
nature, I shall indulge myself of a 2D digression.

Fig. 2 is the same Fig. 1 after 180º rotation. Both are plane and look like a tessellated
floor.

The figures appear to be composed by six hexagons plus some rhombs: two of them
white, two shady and two dark, to add up to a total of 24 rhombs. We may notice that 3 equal
size rhombs make a hexagon. This will be seen again when dealing with the aragonite’s twin
crystal.

Not with much concentration one can see 6 cubes in Fig. 1 and 7 in Fig. 2. Being con-
gruent both figures, one can actually see 6 or 7 cubes regardless of the figure we look at, but it
requires a greater concentration to see 7 cubes in Fig. 1 and 6 in Fig. 2.

Up to now we have disclosed the passage from 2D, to some virtual cubes. What offers
the Jeremy Shafer´s cube is the virtual passage from a concave tri-rectangle trihedral, to a con-
vex cube, both in the 3-D mode. Besides, it adds a prodigious virtual movement of this virtual

1 2
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cube as well as a beautiful illumination effect. The process simplicity is evident from the fold-
ing diagram of Fig. 3 that in turn produces Fig. 4.

To overcome the eventual virtual ambiguity of Fig. 4, the best is to get that figure done
and look from top, down to concave vertex O. The observer should take Fig. 4 holding by
means of his thumb and forefinger, the overhanging triangle B. It is also required that the inte-
rior faces of the trihedral be homogeneously lit and, at least, one of them would show a certain
light contrast with respect to the others.

Under these circumstances, the experiment is simple: To look intensively at O while
closing one eye. Concentrate in that vision till the moment you see that vertex O as a convex
one (it´s easy): by so doing, the trihedral will become a convex cube. If at that moment the ob-
server moves his head sideways, he will see how the solid tips clearly around vertex A. The
cube appears like a lantern, recalling that of Goya´s picture “May 3 shootings”. Besides, its
movement seems to be a matter of magic since the observer is conscious of the fact that he is –
holding tight the solid.

18.8.4 CUBE half (or double) the volume of other.

The Greek already knew that this problem could not be solved by means of a ruler and
compasses. At present we shall see three different origami based solutions: the first one is an
approximation but includes an exact version. The other two are exact and have to do with mat-
ters already dealt with before.

SOLUTION 1
It has the peculiarity that no one of both cubes is constructed, but the difference solid; a

rectangle is the base for the folding diagram.
Its inexactness is a consequence of the fact that the rectangles sides are divided into

three and four equal parts respectively for the sake of simplicity (see how Fig. 1 is designed in
Point 18.8.1). By so doing we obtain side L of the great cube. Being l = 3 / 4 L the side of the
small cube, the thickness of the difference polyhedron is L / 4.

If the volume of greater cube is double of the smaller, we´ll have:
33 2lL =      ;     llL 259921,123 =×= (wanted relation)

  llL 333333,1
3

4 == (obtained relation)

the error: 1,333333 3 = 2,3703702 ≠ 2 (indicator of double)
Fig. 1 is the folding diagram for the preceding conditions showing some diagonals and

the orthogonal segments L, l, L / 4 (or 3 / 4 L).

3 4
O O

A

B
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 Fig. 2 is the result of folding Fig. 1. In Fig. 1 we can see the relation between sides L
and l as well as the error produced in the thickness of the difference solid; that error is because l
is smaller than needed for the exact solution.

Till now we have treated the inexact solution. In case we wish to change easiness for
exactitude, all we have to do is this:

•  Start with the same paper rectangle keeping within it the 12 squares of side L.

•  Increase l from 3 / 4 of L up to L
3 2

1
 i.e., from 0,75 L to 0,7937005 L.

•  To obtain L
3 2

1
, use any of solutions 2 or 3 and transport its value to Fig. 3 as a paper

folded segment.

3

L

2L 3l = 

1

L

l

3
4 L
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•  Once Fig. 3 is folded we get a solid similar to that of Fig. 2; this is shown in Fig. 4 gather-
ing to itself the cube of side l: This cube has obviously the same volume as the solid ob-
tained from Fig. 3, and just half of the cube of side L.

SOLUTION 2

It is based on the orthogonal spiral of powers by H Huzita, as disclosed in Point
7.14.3. It is a matter of finding segment l such that its relation to another given segment

L will be 3 2=
l

L
. The process is as follows:

•  To set a co-ordinates system XY (Fig.1) fixing in it points O (origin) and F (final) at dis-
tances d,a to the co-ordinates origin, respectively. Condition:  a = d / 2.

•  To have available a pair of papers V,W (Fig. 2) with right angles.
•  By try and error (a maximum of three attempts will be enough) get (Fig. 3):

To lie a side of V on O in such a way that the vertex of its right angle will rest on axle
X. The other side of V will intersect axle Y in a point where we shall position the vertex of
right angle W.

One of the sides of W will lie on the latter side of V, and the other must pass through F.
If that would not be the case, try out a new configuration: it is easy because the process is
fast convergent. Eventually, we get an orthogonal broken line starting at O and ending at F.
It has its two right angles lying on both co-ordinate axles (Fig.  4).

F

O

a

1

d

V

W
X

Y 2

L

Y

XF

O
V

W

3 4

F a

Y

X
d

O

l

b

c
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That Fig. 4 gives:
acb =2    ;   bdc =2

     bdab 24 =    ;   323 2adab ==    ;   2
3

=






a

b
  ;  2,123 ==

a

b
59921

        224 cab =

Said Fig. 4 shows as well how to get l, the small ube side: to take L (greater ube side)
along axle Y, and then producing a parallel to the hypotenuse a,b as indicated.

The only problem left is how to transport a segment by means of origami. The process

was already suggested in Points 1.1 and 1.2. Fig.6 shows the piece of paper p in which segment
AB to be transported, has being produced. Then cut another paper p´ and fold it to (Fig. 5). Af-
terwards, make Fig. 5 to coincide with Fig. 6 producing in p´ a normal fold in front of B.

Fig. 7 shows how p´ incorporates segment AB ready for transport (e.g. to Fig. 3 of SO-
LUTION 1)

SOLUTION 3

The Greek were already mentioned in connection with this problem. We can add
now that Hipocrates of Chios (430 B.C.) proved that its solution is associated to the intersection
of two parabolas.

In Point 1.2.4 we saw how a parabola is produced by paperfolding. Now we shall jump
straight away to the wanted solution.

As before, let l be the side of a given cube and L the wanted side of another cube whose
volume is double of the former´s.

Let the equations of two parabolas
lyx =2

lxy 22 =

From Fig. 1 it is evident that both pass through the origin O. L is given by the abscissa
of the other point of intersection.

Solving the former system, we have:

lx
l

x
2

2

4

=      ;     33 2lx =      ;     lx 3 2=      ;     Lx =

p´
p

A B

p´

A B

5 6 7
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Fig. 1 also shows both parabolas with their foci and directrices respectively equidistant
from the co-ordinate origin.

18.8.5 A laminar CUBE.
I give this name to a cube made out of sheets, and determined by its center and

sides respectively: in consequence it is only materialised by the center, vertices, sides
and diagonals. The sheets form some pyramids alike to those studied in Point 18.2.2.1:

they are leant against to each other.

In that Point we saw how the length of the pyramid lateral side was 
2

3
 . Now

it´s clear that the double of that side is equal to the cube´s diagonal 3111 222 =++

18.8.6 Diophantine CUBES
The Greek mathematician Diophantus will give us back up for teamwork with

paperfolding.
The question is this: How to find 4 cubes whose sides will be represented by 4

consecutive natural numbers in such a manner that the greater cube will have a volume
equal to the sum of the other three.

O
F´

F

d

d´

1

l 4

2
l

2
3

l

Y

X

x

y

2

2

= ly

= 2lx
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If x is the side of the smaller cube, the imposed condition will be expressed:

( ) ( ) ( )3333 321 +=++++ xxxx
developing and simplifying this expression, we get the following third degree

incomplete equation:
0963 =−− xx

We can resolve this equation in three different ways:
•  Through conventional algebraic means.
•  By paperfolding (see Point 7.11 for a resultant values of a = 1, b = 0; c = -6;

d = -9).
•  Applying a diophantine criterion.

The latter consists in outlining the condition, implicit in the original approach, that the
solution must be a positive integer. As the smaller number of this kind is 1, we can produce a
table with the successive values of x from 1 on, relating them to those taken by both members
of equation 963 += xx which is the same established before.

x x3       6x + 9 ∆

1 1 15 -14
2 8 21 -13
3 27 27 0
4 64 33 31
5 125 39 86
6 216 45 171
......................................................

We can also see in the table how the difference between both members of the equation
evolves. From x = 1 up to 3 the difference decreases to zero (which denotes that x = 3 is the
solution), whereas from x = 3 on, the difference increases: this means that there are no more
solutions. The reader can check that 3 is also the result obtained by folding according to Point
7.11.

The exercise will consist then in the construction of small cubes (Point 18.8.1) of side 1
up to a quantity of 432 (teamwork). With half of the total we shall construct cube 6 and with
the other half, cubes 3, 4 and 5. Once the four big cubes 3, 4, 5 and 6 have being built by using
all the small ones, we can verify that the original condition has being fulfilled:

3333 6543 =++      ;     2161256427 =++
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18.9 OCTAHEDRON
C = 8     ;     V = 6     ;     A = 12

18.9.1 Bipyramidal OCTAEDRON

18.9.2 Wound up OCTAHEDRON

Start with a triangulated paper strip of 26 equilateral triangles (most likely we shall have
to join several individual strips). Every crease has to be docile to mountain as well as to va-

18.9.3 Ex-tetrahedron OCTAHEDRON

2

3

3
×= l

a      ;     8164965,0
36

3

4

3
llH =−=

According to (Fig. 1) it is made out
of two opposed equal quadrangular pyra-
mids (see Point 18.2.2.2).

lley fold indistinctly. Start from one end of the
strip to get an octahedron like that shown in Fig.
1 which lacks two opposite faces. Continue
winding the strip over the octahedron till the
moment the last triangle can be pocked into the
corresponding slot. Less than 26 triangles may
lead to a precarious structure; with more than 26
we face a problematic construction because of
paper accumulation.

Fig.1shows an octahedron built from a tetrahe-
dron whose 4 vertices have been flattened out by pleat
folding. Fig. 3 is the tetrahedron folding diagram in-
cluding the fold lines needed to get Fig. 1.

To be able to draw Fig. 1 we have to get the
value of H, the distance between two opposite faces of
an octahedron (see Fig. 2).

Fig. 4 is a view of the tetrahedron before its
vertices have been flattened out.
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18.9.4  OCTAHEDRON made of two interlocked domes

Start with a square (Fig. 1) and divide the perigon at O, in 12 angles of 30º. Divide in
halves the four angles type AOF. Fold all the lines with the exception of the four segments type
OE. Cut as shown.

By so doing we get a quadrangular pyramid shaped as a dome (in fact a half-
octahedron). Repeat to get a second dome.

2 l

a

H

a

l 3
2

3

1
E F A C

O

B

A B

C

2

✁

✁

✁

✁
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18.9.5 Skeletonlike OCTAHEDRON

Folding angle of profile 3 is 109,47123º, twice as much as angle α in Point
18.2.2.2.

18.10 Perforated PENTAGONAL-DODECAHEDRON
C = 12     ;     V = 20     ;     A = 30

To optimise paper use, start with an argentic rectangle close in size to an A4, and follow
up this process:

1- To divide both sides of that argentic rectangle in 10 equal parts to get 100 small
argentic rectangles like the one outlined in Fig. 1.

2- Zigzag draw the diagonals of those 100 rectangles and then clear out their small
sides. (Recall Point 10.1.3).

The bases of those pyramids are
shown in Fig. 2 (Figs. 1 and 2 are not to
the same scale); in it we can see 4 cuts in-
dicated by dotted lines. Finally place one
base against the other, turn around and
interlock both domes (Fig. 3).

C

O

AFE
2

B
h h

3
O

B

Fig. 1 is the finished octahedron (inter-
nal folds of corners are not shown for the sake
of simplicity). It has a structure similar to that
of the tetrahedron in Fig. 7, Point 18.7: to con-
struct this octahedron we require 6 paper cor-
ners for the vertices (Fig. 2), and 12 cardboard
profiles for the sides (Fig. 3).

Vertices should be glued for fixing in
areas such as OAF and also where Figs. 2 and
3 meet. The crease of Fig. 3 will lie under OC
in the assembly.

Profiles to Fig. 3 may have any length
(as long as all of them are equal) but they
should keep the right proportion with the cor-
ners.
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3- All the diagonals will be mountain fold except those affected by a module
change (see later). Therefore these diagonals should be pre-folded within the
great rectangle in order to ease the process.

4- Cut 10 strips; join them in such a way that two extreme diagonals will overlap
keeping all the diagonals as mountain folds. Hence we have produced a strip
made out of 90 isosceles triangles.

5- To facilitate the process, begin with half of the joined strips, wind up the poly-
hedron and add new strips when needed.

6- The diagonals in the strip will become the sides of the polyhedron, and the bases
of the isosceles triangles will be the diagonals of its pentagonal faces.

7- From one extremity of the great strip, build an enclosed module having 5 + 5
bases of the corresponding isosceles triangles. Glue the module´s beginning and
end to each other making sure that first and last diagonal coincide. In Fig. 2 we
can see that module showing those bases set off. It has the vertices ABCDE
common with the corresponding ones in Fig. 3.

8- Each one of the modules is a part of the dodecahedron and is determined by two
sections parallel to the base of the polyhedron: that base changes as the paper
strip is wound around.

✂

✂

1
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9- To continue with a second module, turn over the strip twice on a pair of succes-
sive diagonals. When constructing the new module we can observe the coinci-
dence of some diagonals of first and second module: glue them to fix the struc-
ture.

10- Turn over again the strip twice to construct a third module. Glue also as before
the coincident diagonals. The obtention of last module requires to double-turn
over the strip, twice.

11- As the process progresses, add new sections to the main strip, to reach the end.
In the meantime we can observe the appearance of the small, hollow pentagons
centered within the pentagonal faces of the polyhedron. Eventually, discard the
left over piece of strip. Fig. 3 shows how the interior of the dodecahedron is put
in shade to avoid the details of inner foldings.

18.11 ICOSAHEDRON
C = 20     ;     V = 12     ;     A = 30

Begin with an A 4 rectangle (Fig.1) dividing it horizontally in 8 equal parts; discard the
two upper portions. Triangulate according to (Fig.2) discarding also the right hand side shown

in (Fig. 3). Fig. 4 shows, outlined, the 10 triangles forming the icosahedron´s belt, and, in
shadow, the 5 + 5 triangles that eventually will make up the two opposite domes (recall Point
18.6.2)

Folding to Fig. 5 we get the icosahedron 6 that must be duly fixed.

1 2 3

✁

4 5
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18.12 STELLATE REGULAR POLIHEDRA

To try to explain them we shall apply to the stellate polygons (Point11).
Then we said that the species was the indicator of the number of turns to give around

the circumference to end up at the starting vertex after all the sides were generated.
We considered as vertices those lying on the circumference, and not the interior inter-

sections of sides.
A convex regular polyhedron can be inscribed within a sphere in such a manner that if

the polyhedron is projected from the center over the sphere, we get on this sphere a network of
spherical polygons covering, without any overlapping at all, the whole spherical surface.

One stellate regular polyhedron can also be inscribed in one sphere, but if we try to
project its faces on it, we observe that the spherical polygons obtained do overlap each other
with the consequence that the sphere is covered by them more than once.

The amount of times ε that the sphere is covered upon after that projection, is the spe-
cies of the stellate regular polyhedron; ε is a function of the number of its faces, vertices and
sides, and also of the species e of its faces (whether they are convex or stellate polygons), and
of the species E of the polyhedral vertices (likewise they may be convex or stellate).

This fact led Euler to enunciate his generalised theorem that is expressed:

2

AEVCe −+=ε

We can note that this theorem is an extension of that disclosed in Point 18 for the con-
vex polyhedra.

We may recall that regarding stellate polygons, neither triangle, square or hexagon
could produce this kind of polygons. Likewise in the case of the convex regular stellate polyhe-
dra, only the convex regular dodecahedron and icosahedron can generate them.

Even so, and because of internal restrains, we end up with only four types of stellate
regular polyhedra. From here on, we shall study them in detail just assigning an identification
number to each of them. The reason is not to lead the reader to confusion because of the fact
that initial and final configurations may be equal or different with regard to the number of
faces, in several cases. Therefore, out of the five platonic polyhedra, we only get four stellate
regular polyhedra.

18.12.1 STELLATE REGULAR POLYHEDRON nº 1

•  We start with a dodecahedron of side BC = L (Fig. 1)
•  Having a pentagonal face as base, we build one stellate pyramid with H as vertex.
•  H is the center of homothety represented by A´ in Fig. 4, Point 18.6.3.
•  Let´s figure out the faces of the stellate polyhedral angle determined by H and the

stellate pentagon of one face (Fig. 1).

From Points 18.6.3 and 18.6.1 we infer:

BH=1,618034L ; L
L

L
L

D

d
Ll 381966,0

618034,1

618034,0 ===  (side of the small pentagon within the

 stellate one)
LLOD 3249196,0381966,08506508,0 =×=      (radius of former pentagon)

LOB 8506508,0=      (radius of pentagon with side L)

LOBBHOH 3763819,122 =−=    ;     OE = 0,6881909 L  (apothem of pentagon with side L)
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LODOHHD 4142135,122 =+=      (curiously HD = L2 )

LDCBD 618034,0==      (equal value than AC´, Point 18.6.3)

With the information gathered till now (the three sides HB, BD, DH of the triangles
forming the lateral faces) we are in the position to construct stellate pyramids with H as vertex
and a stellate pentagonal base. These pyramids can be placed on the faces of a convex dodeca-
hedron that in turn will be used as the auxiliary structure needed to build the wanted stellate
icosahedron.

Fig. 2 shows, besides the triangles with bases DB and DC, and H as upper vertex, the
triangles BD´H´ and D´CH´ associated to the other facial pentagon having also BC as a side.
We can note in it that those mentioned triangles intersect in the interior of the dodecahedron
taken as auxiliary structure. So we ought to find out the length of segments type DF and FC.
Fig. 3 will help us for the former and Fig 4 for the latter.

To make up Fig. 3 we should draw ∆HOD (right triangle whose legs we know) and
segment OE. Producing HE we get Ang. OEO´ = 116,56505º (ε in Point 18.6.1). The bisector
of Ang. OEO´ passes through the center of the dodecahedron, therefore the pyramid in H` will
be the symmetric of pyramid H with respect to the plane formed by the side through E, i.e. BC,
and said center.

Coming back to Fig. 3, ∆EDF is determined because
DE = OE – OD = 0,3632713 L    ;     Ang. E = 116,56505 / 2 = 58,282525

Ang. D = 
OD

OH
arctg  = arctg 4,2360692 = 76,717478º

from what we get that Ang. F = 45º and hence Ang. HFH´ = 90º. Consequently:

45sen282525,58sen

DEDF =      ;     DF = 0,3632713 L L437016,0
7071067,0

8506508,0 =

HF = HD + DF = 1,4142135 L + 0,437016 L = 1,8512296 L

Now we can make up Fig. 4 drawing in first place ∆HDC whose three sides we know:

HD = 2 L     ;     HC = BH     ;     DC = BD
Then we shall produce HD to get vertex F (DF being also known). This way we get
∆HFC: with 10 of these triangles we construct the polyhedral angle in H over one face
of the auxiliary dodecahedron. Extending the operation to its 12 faces we get the com-
plete stellate polyhedron we are looking for.
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As we can note, the auxiliary dodecahedron has enable us to draw Figs. 1, 2, 3, 4 but it
does not allow the materialisation of the stellate polyhedron because of the above mentioned
interference.

Fig. 5 is the folding diagram for the polyhedral angle in H (only the lateral closing lap
joint is shown). Segments type DC are kept as an indication of the stellate pentagons pertaining
to the auxiliary dodecahedron. While assembling the 12 elements to Fig. 5, all the dihedral an-
gles will appear automatically. Fig. 6 is the finished stellate polyhedron.

This polyhedron has 12 Vertices (V = 12), one for each face of the auxiliary dodecahe-
dron: all of them are stellate polyhedral angles; moreover, they are pentagonal, i.e. with E = 2
(a stallate pentagon has also species 2).

Out of each vertex start 5 sides making a total of 60125 =× ; but since each side is

common to 2 vertices, we´ll have: 30
2

60 ==A ; 30 sides in the end.

F

3

O

H

D E

O´

H´

H

D

F

C

4

5

D

C

F
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Let´s compute the faces. From each vertex start 5 equilateral triangles common, in turn,

to 3 vertices; therefore 20
3

125 =×
 faces: C = 20. These 20 faces are equilateral triangles, con-

sequently convex with species e = 1.
Summarising, the obtained polyhedron has:

C = 20     ;     e = 1     ;     V = 12     ;     E = 2     ;     A = 30
Euler´s theorem for stellate polyhedra gives its species ε:

7
2

30122120

2
=−×+×=−+= AEVCeε

Therefore, polyhedron nº 1 is an icosahedron (C = 20) with triangular faces, of 7th spe-
cies (ε = 7), and 12 pentahedral angles (V = 12) of 2d species (E = 2).

Interlude
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18.12.2 STELLATE REGULAR POLYHEDRON nº 2

The auxiliary starting polyhedron is, in this case, a convex icosahedron with side AB =
L (fig. 1); ABH is one of its facial equilateral triangles; the pentagon of center O is the base of
its upper dome (Point 18.6.2). ABDH are some of its vertices.

OA = 0,8506508 L     (r in Point 18.6.1)
OH = 0,525731 L       (h in Point 18.6.2)
OC = 0,3249196 L     (OD in Point 18.12.1)

HC = 22 OHOC + = 0,618034 L (what shows that HC = CB = CA, Point 18.6.3).
Fig. 2 is the folding diagram for trihedron in C, ABH (closing lap join is shown).
Fig.3 is the folding diagram (with no lap joints at all) of dome in H (Fig. 1), plus the 5

triangles associated to it (Point 18.6.2). Of course, that Fig. 3 does not develop equilateral tri-
angles, but the trihedral angles to Fig. 2.

Two assemblies like that obtained with Fig.3, set in opposition, give what appears to be
an icosahedron. But it is worthwhile to analyse it closely to see what it is like, actually, the
stellate polyhedron we have got (Fig.4).

This stellate polyhedron nº 2 has 12 vertices, as the starting icosahedron; we have to ig-
nore the concave vertices of sank trihedrals because they do not lie on the sphere of reference.
Therefore we have 12 vertices composed by stellate pentahedral angles (V = 12); i.e. they have
species E = 2: we may recall (Point 11) that the species of a stellate pentagon is also 2.

H H

C
BA

2

C

A

H

B

3
H

H
H H

H
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The faces are planes concurrent in the vertices, i.e. convex pentagons. These pentagons
have species e = 1 (they are not stellate).

5 of those planes pass through each vertex: 5 × 12 = 60. But as each one of these 60
planes is common to 5 vertices, we end up with 12 faces (60 : 5). C = 12.

Number of sides: 5 per vertex; making a total of 5 × 12 = 60 sides. The sides of the sunk
trihedral must be ignored. But as each side is common to a pair of vertices, the result will be 30
sides (60 : 2). A = 30.

Summary. The polyhedron we have obtained has these features:
C = 12     ;     e = 1     ;     V = 12     ;     E = 2     ;     A = 30

The species ε for this polyhedron nº 2, according to Euler´s general theorem is:

3
2

30122112

2
=−×+×=−+= AEVCeε

Therefore what we have got is a dodecahedron (C = 12); stellate of 3rd species (ε = 3);
with 1st species (e = 1) convex pentagonal faces; having V = 12 stellate pentahedral angles, i.e.
of 2nd species (E = 2).

Fig. 5 is another view of the dome in H to make it clearer.

18.12.3 STELLATE REGULAR POLIHEDRON nº 3

It is similar to nº 1 (Point 18.12.1). The difference consists in the dissimilitude of their
polyhedral angles; though in both cases they are pentahedral, in nº 1 they are stellate whereas in
nº 3 they are convex (E = 1). We start with an auxiliary convex dodecahedron for nº3 as we did
for nº 1.

∆BCH in Fig. 1 is the same as the one equally named in Fig.1, Point 18.12.1. Present
Fig. 1 is the folding diagram of the pentagonal pyramid (only one lap joint is shown) to be set
on each face of the auxiliary dodecahedron; therefore we need 12 of these pyramids to get
polyhedron nº 3.

Fig. 2 is the complete polyhedron nº 3. One can see that it has 12 vertices (V = 12) be-
ing  E = 1 as said before.

5 stellate pentagons start from each vertex, i.e. of e = 2.
There are 5 × 12 = 60 faces, each of them common to 5 vertices; therefore they produce

60 / 5 = 12 faces: C = 12.
In turn, from each vertex start 5 sides, each of them common to two vertices, which

gives 5 × 12 / 2 = 30; i.e., A = 30.
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The species ε according to Euler is:

3
2

30121212

2
=−×+×=−+= AEVCeε

To resume: polyhedron nº 3 has:
ε = 3     ;     C = 12     ;     e = 2     ;     V = 12     ;     E = 1     ;     A = 30

What means that we have got a dodecahedron (C = 12) with stellate faces (e = 2) and
convex pentahedral angles (E = 1); its species is ε = 3.

We shall raise now the following exercise: Let´s consider polyhedron nº 3 not as a stel-
late one, but as a mere irregular polyhedron in order to apply to it Euler´s basic theorem. In that
case we shall have:

Faces: C = 5 × 12 = 60
Vertices: we shall add to the 12 extreme points, the vertices of the 12 pyramid´s bases,

i.e. the 20 vertices of the auxiliary dodecahedron. V = 12 + 20 = 32.
Sides: The stellate polyhedron had 30 sides, but in the polyhedron we are considering

now, each one of them produces 3: one on the base of the pyramid and two lateral sides of an-
other two pyramids, hence: A = 30 × 3 = 90

Applying Euler´s basic theorem we have:
C + V = A + 2     ;     60 + 32 = 90 + 2

18.12.4 STELLATE REGULAR POLYHEDRON nº 4

The starting auxiliary polyhedron is the icosahedron shown in Fig. 1 as a wirework ver-
sion. In it we can see the outlined triangular face ABC that is homothetic to triangle A´B´C´
(dashed line). The sides of this triangle are the diagonals of the pentagons that in turn have as
side the icosahedron´s side L.

That homothety with center at H, is segregated in Fig. 2 where one can see how seg-
ments AA´; BB´; CC´ are also sides of the icosahedron.

Consequently, to construct the wanted polyhedron nº 4, all we need is 20 pyramids like
HABC (Fig. 2), to set on the faces of the auxiliary icosahedron.

Let´s figure out the lateral side HB in the pyramid HABC (Fig. 2):

618034,1
´´´ ==

BC

CB

HB

HB
     (Point 18.6.1)

618034,1618034,1

´ LHBHB
HB

+==      hence:     HB = 1,618034 L

H

B
C

1
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This means that the pyramid´s lateral side HB has equal length than the pentagon´s di-
agonal B´C´ (see Fig. 1), which reminds what happened to the pyramids of polyhedron nº 3.

Fig. 3 is the folding diagram to get 4 pyramids according to Fig. 2. We need 5 blocks
like that of Fig. 3 to construct polyhedron nº 4. It happens, though, that the configurations of

Figs. 1 and 3 are not fully compatible despite of the obvious fact that 4 × 5 = 20. At the end of
the building process we require to split out the last Fig. 3 in use to get a pair of leant against to
each other pyramids and, in addition, two more isolated ones.

3

H
B

C

A

A

✂
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Finally we get polihedron nº 4 as shown in Fig. 4. To draw it we have used a very sim-
ple contrivance: each pyramid is symmetric to other adjacent to it, with respect to the plane
formed by the base´s side they have in common and the center of the icosahedron.

In the polyhedron nº 4 we can see 20 vertices (V = 20) made of trihedral angles, i.e. of
species E = 1 (obviously a trihedral angle cannot be stellate).

Out of its vertices start 3 faces that are stellate pentagons (e = 2): 3 × 20 = 60 planes.
But as each of those planes are common to 5 vertices, we´ll have: 60 / 5 = 12 faces (C = 12).

As far as the sides is concerned, since 3 of them start out of each vertex, and being each

of them common to 2 vertices, the result is 30
2

203 =×=A ; (A = 30).

Summary: The regular stellate polyhedron nº 4 is a dodecahedron (C = 12) with stellate
pentagonal faces (e = 2); 20 vertices (V = 20) which are convex polyhedral (E = 1) having a
trihedral configuration; the resultant polyhedron has species ε = 7:

7
2

30201212

2
=−×+×=−+= AEVCeε

Interlude
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18.13 PSEUDORREGULAR POLIHEDRA

All their faces are equal (as in the regular polyhedra), or symmetrical; they are not
regular, though: they are irregular polygons. We are going to consider two examples with a
common octahedric base.

Another common feature is that they represent the crystalline structure (regular system)
of some nesosilicates type Me2Me3(SiO4)3: Me may be Al, Fe, Mg, Cr.

18.13.1 RHOMBIC-DODECAHEDRON

In the Cosmo Caixa Museum at Alcobendas, Madrid, one can see a perfect example of a
green garnet (there exist garnets of different colours) crystallised as a rhombic-dodecahedron.

It is shown in Fig.1 and has the following characteristics:
V = 14; there are two groups of vertices: 6 acute polyhedral angles (4 faces) corre-

sponding to the acute angles of the rhombic faces (and in direct relation to the 6 vertices of the
basic octahedron). Besides, 8 obtuse polyhedral angles (3 faces) corresponding to the obtuse
angles of the rhombic faces and closely related to the 8 faces of the basic octahedron.

C = 12; the 12 faces are equal rhombs with diagonals in the ratio of 2 . All the dihedral
angles formed by the faces are also equal. This leads to what could be named a regular rhombic
dodecahedron. On the other hand, if large to small rhombic diagonals´ ratio is different from

2  but smaller than 3 , we get the so-called irregular rhombic-dodecahedron: 10 equal basic
faces plus 2, also equal to each other, but consisting in rhombs different from the other 10. This
will hold true as long as the dihedral angles of those 10 faces will have the value of








sAltitudeRHOMB

agonalsGreaterDiRHOMB

´2

´
arcsen2 .

A = 24; all the sides are equal to the rhomb sides. Therefore a side has one extremity on
an acute vertex and the other on an obtuse one.

C + V = A + 2     ;     12 + 14 = 24 + 2

In Fig. 1, ABCDE are the viewed acute vertices of the rhombic-dodecahedron; F and G
are obtuse vertices. Those 5 acute vertices have being segregated into Fig. 2 to set on the start-
ing octahedron. Fig. 3 is the clue to understand the relation between the rhombic-dodecahedron

and 2 , and hence, with the DIN A rectangle. As we can see, Fig. 3 is Fig. 2 after adding to it
the sides in F and G of Fig. 1. By means of that we have constructed the triangular pyramids F
ABE and G ABD. The former is cut by the plane EFH (normal to diagonal AB): in it is repre-
sented the altitude FO of said pyramid. Fig. 4 is a partial enlargement of Fig. 3 to allow calcu-
lation of angle in H.
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To figure out that angle, let´s set up first the hypothesis that a rhombic face has L as the

great diagonal and L / 2  as the small one. In that case, we can write (Figs. 3 and 4):

º26439,35
6

223
arccos

22
:

3

1

2

3
arccosarccos. =




 ×=






×
=





= LL

FH

OH
HAng

If the hypothesis holds true, the half-rhombs AFB and AGB (Fig. 3) will be coplanar,
i.e., Ang. FHG = 180º.

Recalling (Point 18.9.5), that the dihedral angle between faces of an octahedron (in this
case that of side AB in Fig. 2) measures 109,47123º, mentioned angle Ang. FHG will measure:

109,47123 + 2 × 35,26439 = 180
what proves that the hypothesis is true.

Finally, let´s construct a paper rhombic-dodecahedron by three different methods. In all
the cases we shall use rhombs obtained from DIN A rectangles. Fig. 5 shows how to fold one of

those rectangles to get a rhomb whose diagonals keep the ratio 2 . Fig. 6 is the disposition to
be given to the 12 rhombs that will form the polyhedron. Fig.7 suggests a modular solution
with interlocked rhombs.

Recall Point 18.9.4 to perform that interlocking. Fig. 5 is a module and we need 4
groups of 3 interlocked modules like the one in Fig. 7. Then interlock the 4 groups with each
other.

Before proposing the third method, we shall figure out the value of the dihedral formed
by two rhombic-dodecahedron´s faces. Fig. 8 is the same Fig. 1 after its side FB has been cut
by a plane normal to it through G (Fig. 1). So, in Fig. 8 A´E´ is equal to the diagonal AE (par-
allels between parallels) and A´J = E´J (altitudes of two adjacent rhombs); therefore, Ang.
A´JE´ measures the wanted dihedral.

5 6

7
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If we assume that the dimension of a rhomb´s small diagonal is 1, the great will measure

2  and the side

8660254,0
2

2

2

1
22

=





+







On the other hand the rhomb´s altitude is equal to its area divided by its base (a side)

8164965,0
8660254,02

21
´ =

×
×=JA

Hence the measure of angle A´JE´ will be:

º1208164965,0:
2

2
arcsen2´´. =





=JEAAng

We must say that Fig. 5 is not the only way to get a “DIN A” rhomb. Another procedure
was already disclosed in Fig. 1, Point 18.2.5: one is as good as the other, but we have to bear in
mind that starting from rectangles of the same size, we end up with distinct, tough similar,

rhombs: 2  is the ratio of similarity.
Carrying on with Point 18.2.5, we saw there that 60º was the angle formed by the base

of the pyramid and one of its lateral faces. It means that if we join together two of those pyra-
mids by setting in common two lateral faces, the rhombic bases will form an angle of 120º in
the new figure.

In consequence, that new figure holds two rhombic faces of a rhombic-dodecahedron
since we got to know that 120º is also the angle formed by two faces of this polyhedron. Be-
sides, the common vertices of those two pyramids coincide with the center of the rhombic-
dodecahedron: of course, the radii of the rhombic-dodecahedron are different depending
whether we join its center with an acute or an obtuse vertex. It happened in the rhombic pyra-
mid as regards to its lateral sides.

Fig. 9 shows the 4 pyramids with center O (that of the rhombic-dodecahedron) associ-
ated to the acute vertex C of Fig. 1. At left we can see in shade the only seen rhomb.

To construct the polyhedron we ought to have 12 pyramids, which, in turn, are obtained
this way:

From Fig. 10 we get an acute vertex formed by 4 rhombic faces: it is shown in Fig. 9.
Folding Fig. 11 we get two more pyramids; it´s a matter of redoing this folding four

times to complete the 12 pyramids we need.
Two comments: first, the two triangles forming the facial rhombs seem to be equilateral

but they are not; second, the rhombic-dodecahedron obtained in the last process is more con-
sistent than the others since its interior is reinforced by 12 pyramids.
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TRAPEZOHEDRON

It is a pseudorregular polyhedron with 24 trapezoid shaped faces, 26 vertices and 48
sides (half of them large and half small). So it fulfils Euler´s theorem: 24 + 26 = 48 + 2.

It is also a form under which the pyrite (iron disulphide S2Fe) crystallises.
Out of the 26 vertices, 18 are equidistantly inscribed on the three orthogonal maximum

circles of a sphere. That sphere circumscribes an octahedron whose 6 vertices are among the
18 mentioned above. These 18 vertices are equidistant from the center of the polyhedron: that
distance R is greater than the other 8 vertices´; these 8 vertices are associated to the 8 faces of
the octahedron.

The dihedrals formed by the polyhedron´s faces are all equal (regardeless of the length
of  their sides) and its measure is 138,118º.

The polyhedron is shown in Fig. 1; we can see in it the section EAFGB that has been
segregated and taken into Fig.2: it is integrated there within one of the 8 co-ordinate trihe-
drals. It follows that the polyhedron results inscribed in a sphere of radius R = OE = OF = OG
= OA = OB. Let´s determine the face AEBP as a function of R; if R = 1, RA = 1 and  RP =
0,9473.

∆AHB and AHO in Fig. 2 are congruent for they are both isosceles right triangles with a
leg in common. Therefore, their hypotenuses will be equal: AB = AO = R = 1.

10

11
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2

1

2
==== AB

DACDAC

Thus we have settled ∆CDI which is homothetic to ∆EFG. Let´s find now the center of
homothety P.

As 2=FE  and the angle in A of a regular octagon measures 135º, we can write:

7653668,0

2

135
sen

2

2

==AE

The ratio of homothety being expressed by:

CP

EP

CD

FE =      ;     
CP

CPEC +=22      ;     
122 −

= EC
CP

5794708,022 =−= ACAEEC      ;     hence                         CP = 0,3169231
With the information gathered till now we can draw Fig. 3 that is a face of the trapezo-

hedron: we know its two diagonals and the intercepts of both of them. The sides of the trape-
zohedron are AE (already known) and AP whose value is:

5919799,022 =+= CPACAP

Fig. 4 is the folding diagram of one of the 8 sections that make up the whole trapezohe-
dron (recall Fig. 2).

We must say that the trapezoid of Fig. 3 does not enjoy the auric proportion seen in the
Penrose tesserae (case 1B, Point 12).

3 4
E
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18.14 MACLES

In crystallography are so named the twinned crystals oriented in such a way that one can
overlap the other if properly moved, rotated or subjected to a symmetry. The last two opera-
tions have as reference what are called macles´ planes or axles. As a matter of fact, macles are
steps in a crystal growing process.

18.14.1 TETRAHEDRIC MACLE

It is shown in Fig. 1. In it, two equal tetrahedra inter-penetrate each other: one is the
ABCD; of the other we can see its vertices XYZ.

It seems to be a stellate polyhedron, but is not (see Point 18.12). One of the tetrahedra
may become the other under this process: to get its symmetric with respect to one of its faces,
to move 1 / 2 of its altitude and rotate it 60º.

The macle´s folding diagram is not shown for we consider it made up of a big tetrahe-
dron and four small ones centred on the faces of the big; the small tetrahedra have a side half of
the big´s. See Point18.2.1 to construct a tetrahedron: it is obvious that the paper strip width to
produce the big tetrahedron is double than the one needed for the small ones.

The macle has 4 × 2 = 8 vertices belonging, in turn, to a cube (Fig. 2). If L is the side of
the big tetrahedron, the cube´s side is the distance between two opposite sides of that big tetra-

hedron: its value is 
2

2L
 (see Point 18.2.1.1).

The blende, zinc sulphide (SZn), crystallises in the cubic system, tetrahedric mode,
polysynthetic macles.

18.14.2 MADE OF CUBES

Figs. 1 and 2 show the aspect of a multiple macle of these characteristics:
•  Big cube of side AB = L.

•  Small cubes with sides 
2

L
.

•  Their relative position is such that section ABC is an equilateral triangle.
The conditions that follow define the small emergent cube whose folding diagram is Fig. 3:
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! AD = 
2

L
 = 0,7071067 L is the side of square ADBF.

! Triangles BCD, ADC and ABD are isosceles, congruent and right-angled (Point 18.2.1.2);

their three sides are given: hypotenuse CA = L, and both legs AD = 
2

L
.

! Triangles CDG and GFE are similar: all their angles are, respectively, equal:

FE

GF

DG

CD =      ;     DG = GF     ;     
4

2

2
4

22

L
L

L

CD

DG
FE ===  = 0,3535533 L

! Triangles BFE and AFE and properly defined: the former is right angled in F; BF = 
2

L
;

4

2
LFE = , hence

4

10

4

2

2

22

L
LL

BE =





+





=  = 0,7905694 L

! With all that information we can draw Fig. 3 which is the folding diagram of the cube
emerging through the dihedral of side AB.
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! Revolving that emerging cube 180º around side AB, and moving it, we get another small
emerging cube; this is shown at bottom left of Fig. 1 before its association to the big cube
by coincidence at H.

! Fig. 4 shows how a further growth of upper small cube will determine the appearance of
that cube through the face BHI.

! We have chosen a simple macle in order to ease the construction. To fold the big cube, see
Point 18.8.1.

! The fluorite, consisting of calcium fluoride (CaF2) occurs in beautiful twin cubic crystals
of various morphologies.

18.14.3 ARAGONITE

Calcium carbonate (CaCO3) discovered in Molina de Aragón, Spain. It crystallises in
macles of hexagonal aspect, though it consists in orthorhombic crystals, see Fig. 1. Fig. 2 is the
macle´s folding diagram.

18.14.4 CUBE-OCTAHEDRIC MACLE

✁

2
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Fig. 1 shows an example made out of one octahedron of side L to Fig.1 (Point 18.9.1)
plus 8 tri-right-angled vertex pyramids (Point 18.2.1.2), centered on the corresponding faces of
the octahedron. Fig. 3 evidences those pyramids associated to the reference cube (the interior of
the cube appears in shade to set off those pyramids on its vertices). From the figures we can

deduce the measure of cube´s side: 
2

L
.

The galena, lead sulphide (PbS), among a great variety of combinations (cubes, octahe-
dra, rhombic-dodecahedra), occurs in macles of tabular aspect frequently with the shapes of
octahedra and hexahedra.

18.14.5 PYRITOHEDRON nº 1

The pyrite crystallises in the regular system mainly in shape of cubes, pentagonal-
dodecahedra or in combinations of both of them. At least 25 different shapes are known.

The first we are going to deal with is shown in Fig. 1 and is the result of chamfering the
sides of a pentagonal-dodecahedron like the one in Fig. 2. Discarded wedge shaped chamfers
are represented in Fig. 3. One can see that the chamfer may be performed in many ways, but in
this occasion we have chosen that which produces in the wedge an oblique section like the tri-
angle ABC of Fig. 1 (Point18.6.1).

If we look at present Fig. 1 we´ll see that it consists in 18 faces: 12 equal irregular
hexagons coincident with the faces of the polyhedron of Fig. 2, and 6 equal rectangles, which
are the bases of the respective wedges.
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Those 6 rectangles are centered on the faces of a cube as can be seen in Fig. 4. Each pair
of opposite rectangles is homothetic and determines two planes parallel to the sides l in Fig. 4
right, Point 18.6.1; l is the pentagon´s side of the dodecahedron in Fig. 2.

The distance between those planes is the side AB of the cube in present Fig. 4. We can
figure it out from Fig. 5 that is an enlarged detail of said Fig. 4 right.

==




 −×−= )1.6.18(

2
90cos2 verPuntoFDDAB

ε

ll 3416407,2
2

56505,116
90cos1624599,02618034,2 =










 −×−=

After what we have seen, it is evident the coexistence in the macle of a hexahedron and
a pentagonal-dodecahedron.

Before drafting the pyritohedron´s folding diagram (Fig. 7), we shall dig out on how the
wedge of Fig. 3 is constructed; see enlarged Fig. 6:

CD = l = side of the pentagonal-dodecahedron.
Ang. ECD = Ang. ECF = Ang. FCD = 108º
CE = CF = DG = AC (Point 18.6.1) = 0,2763932 l
EG parallel to CD

Now we can draw Fig. 8 that is the folding diagram for a hemi-pyritohedron; we require
two of them to be mounted in opposition. As each produces 4 rectangles and we only need a
total of 6, eventually we must discard 2 of those rectangles.

Previous to Fig. 8 we have drawn Fig. 7 which is one hemi-dodecahedron´s folding dia-
gram including the lines needed to transform the dodecahedron into a pyritohedron. In Fig. 8
have disappeared the lines of Fig. 7 not needed anymore. Note the required pleat fold of Fig. 8.
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18.14.6 PYRITOHEDRON nº 2

This pyritohedric macle consists in a couple of pentagonal-dodechedra keeping the fol-
lowing relations (Fig. 1):

Each pentagonal base (upper and lower) is in parallel planes. One polyhedron becomes
the other by rotating the former 36º around the axis determined by the centers of those bases
(see Point 18.6.1). By so doing we may see how the second polyhedron emerges through the
first one´s faces.

Fig. 1 shows in blank the first polyhedron whereas the second looms up: remark in
shade what is partially seen of one of the 10 lateral pentagonal faces of that second polyhedron.

At the end, what looms up out of the first dodecahedron are 10 wedges (actually, trun-
cated triangular prisms) like those of Fig. 6, Point 18.14.5. We are using now the wedges then
discarded.

7 8

D2 G
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1
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Present Fig. 2 is the folding diagram of the wedge, once we have available all the in-
formation needed (see Point 18.14.5). To note that the three angles in D are pentagonal of 108º.

18.14.7 THE IRON CROSS

Also known as IRON ROSE, is a complement macle. The pyrite often crystallises in
that mode.

To study it we shall start with the pentagonal-dodecahedron of Fig.1 to be associated to
Point 18.6.1: here, AB will be what was called there great diagonal D; obviously, BC is the side
l of the polyhedron, and CD is one of the facial pentagon´s diagonals then named d.

In Point 18.6.1 we saw that D – d = l, which is the peculiar property we are going now
to take advantage of. It will permit us to draw Fig. 2 that consists of a set of trirrectangular
crosses of these characteristics:
•  Its center O coincides with the dodecahedron´s.
•  The great arms type AB have the measure of AB  (Fig. 1; the great diagonal AB mentioned

before).
•  The segments type DC measure as much as the diagonal DC of Fig. 1; they will determine a

cube type CDCD (see Fig. 3).
•  The small crosses type BCCCCC have their arms made by segments half of the side BC in

Fig. 1.
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•  Joining the extremities of the small crosses and its center B to the vertices of the mentioned
cube, we get the macle as can be seen in Figs. 3 or 4.

•  In both Figs. 3 and 4 we can observe the shaded pentagonal faces forming both dodecahe-
dra, direct and inverse.

Fig. 5 is the folding diagram pertaining to one of the 6 bodies to be attached to the re-
spective faces of the cube already mentioned.

Every triangle in Fig. 5 is determined:
CA = CD = l, is the side of the original polyhedron.
AD = 1,618034 l, is the facial pentagon´s diagonal: it will be the side of the starting

cube to be previously constructed.
CB = l / 2
AB = 1,248606 l (GI of Point 18.6.1; see also DB in Fig. 3).
To finish, we must insist that to materialise the Iron Cross, the starting polyhedron we

want is a cube with faces CDCD rather than a dodecahedron.
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19 ROUND BODIES

Strictly speaking they are the cylinder, cone and sphere. We shall construct them by
means of interlocking (fix them with adhesive tape if needed, the cylinder in particular). Just
only a paper flexion is required to get cylinder and cone.

Cylinder and cone bases will be virtual (intersections between each other or with the
plane of reference). The sphere will be in the laminar mode to Donovan A. Johnson´s design,
hence, virtual (recall Point 18.8.5 as an analogy).

We shall associate the three bodies to form a geometric set. Fig.1 is a section of that set
whose characteristics are based on the fact that the laminar sphere has R as radius.

Here we have those characteristics:
•  The sphere rests on the reference plane: it looks like flattened in a value b.
•  A well-fit cylinder that in turn rests on the plane of reference too, will cover the

sphere.
•  An inverted cone, whose vertex coincides with the sphere´s center, is tangent to the

three trirrectangular circles defining the sphere. Besides, it intercepts the cylinder
just at its upper base. The cone base is situated at a distance R / 2 over the mentioned
cylinder´s upper base.

SPHERE
As said, its radius is R and will consist in three circles also of radius R (Fig. 2).

It is required to perform the cuts and folds as indicated and then to introduce circles b
and c into the a. We must recall that circle b should take a square shape to go into circle
a. Finally undo the foldings and dress the set. Three circles that intersect each other in a
trirrectangular mode define that spherical set.

CYLINDER
Fig. 3 is the cylinder development with the indicated dimensions.

CONE
Idem cylinder (Fig. 4).

R

b

plane of referenceH

a

R´
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1
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The relations between the magnitudes we have to play with are disclosed below. We
need them to construct the round bodies set.

a b c

✁ 2

✁3

a + H

2 R

✁

4 2 R´

g
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•  H is the altitude of a tetrahedron of side R (see the tetrahedron with vertices OAB in Point
18.13.2); its value is:

RRH 8164965,0
3

2 ==      (see Point 18.2.1.1)

•  Therefore, flattening b is:
RHRb 1835035,0=−=

•  Cone´s semiangle γ is the complement of angle β as calculated in Point 18.2.1.1:
º26439,3573561,5490 =−=γ

•  An angle of 54,73561º is also formed by any of the three circles defining the sphere, and the
reference plane. The sphere seats on this plane through the dashed circle shown in Fig. 6.

•  In order to have the cylinder just reaching the cone surface, the cone´s altitude a up to the
upper base of the cylinder will be:

RR
R

a 4142135,12
tg

===
γ

•  The radius of the cone´s exterior base has to be:

R
R

aR 3535534,1tg
2

´ =




 += γ

•  Cone generatrix is:

R
R

g 3444232,2
sen

´ ==
γ

•  The developed angle of the conic surface is (Fig. 4):

º8461,207
180´2´2 =×==

g

R
radians

g

Rπε

•  Total altitude of cylinder:
RHa 2307101,2=+

•  The circumference length of cylinder base is:
RR 2831853,62 =π
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Fig. 5 is the final set as seen from the outside. Fig. 6 represents the sphere with its seat-
ing circle as explained above. Fig. 7 shows the cone with its three generatrices that are the lines
of tangency to the three circles of the sphere: they are, in turn, three sides of the above-
mentioned tetrahedron. Finally, Fig. 8 has in it all the lines required for full representation; as
we can see, there are many of them: that is the reason why it has been decomposed in the pre-
vious figures.

20 PAPER FLEXIBILITY
It seems reasonable to touch upon this matter, for it is inseparable from origami. I do

dare say that along this book we only have dealt with paper flexibility, strictly speaking, but in
three occasions: while studying Möbius bands (Point 14.1), and in former Point 19 when con-
structing the cylinder and the cone.

The Spanish word for origami (paperfolding) is papiroflexia but in my opinion it would
be worthwhile coining the Spanish neologism papiroplegia, which is closer to folding than to
flexing. Of course I am aware that the flexia (flexing) is always previous to the plegia (folding),
but at the same time it seems a misuse to take the latter for the former indistinctly.
Note: The English suffix plegia (with a totally different meaning) exists in Spanish spelled as
plejia.

20.1 HOOKE´S LAW

These preliminary considerations have led me to disclose, elementally though rigor-
ously, the flexibility of a piece of paper. Therefore I have decided to approach the study of its
modulus of elasticity, the Young´s Modulus E that we find in Hooke´s law. It is well known
that this law is the fundamental of materials resistance.

The first thing that came to my mind was to support a sheet of paper on the respective
edges of two books to allow it to flex freely as a beam resting on both extremities and subjected
to its own weight. Next, I should apply all the measurable data to the differential equation of
the elastic line in order to get E.

Soon I realised though, how problematic it was that configuration. My research con-
veyed me to the “Handbook of pulp and paper technology” where I could find an improved set-
up of my experiment: instead of having a beam resting on both extremities, the beam was
somehow embedded and left to be freely projected in the cantilever mode; look to Figs. 1 and 2
to see surmounted the difficulties inherent to double resting.
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The resolution of the already mentioned differential equation bears on the formula that
gives the maximum sagita (at its free end) of a cantilever beam that has embedded the other end
and is subjected to a uniform load along its entire length:

zEI

ql
f

8

4

=      ;      from which we get E:     
fI

ql
E

z8

4

=

with:
l, free paper length in mm.
q, kilograms / mm as paper´s unitary own weight along the l dimension.
Iz, the momentum of inertia of the paper beam section with respect to its axis z, ex-

pressed in mm4 (see in Fig. 3 the section of the paper sheet).
f, the paper´s free flexing sagita expressed in mm.

Figs. 1 and 2 show the approach of both experiments, in accordance with each of the
axes of the Din A4 rectangular paper.

We have to take into consideration that, in any piece of paper it is predominant the di-
rection in which that paper has been rolled: i.e. the paper is an anisotropic material because it
has different molecular orientation and therefore different mechanical behaviour depending on
the rolling direction. Hence, we shall have two different E values.

Let´s see how q and Iz have been obtained, since they are not shown in Figs. 1 and 2.
To obtain the paper thickness (Fig. 3) we took 900 grams of A4 sheets that came out to

be in a quantity of 181 with a pile height of 20 mm; hence mme 11,0
181

20 == .

At the same time we´ll have:

mmKgq /103677979,2
210181

9,0 5
1

−×=
×

=

mmKgq /106742006,1
297181

9,0 5
2

−×=
×

=

According to Fig. 3, the momentum of inertia of that paper section is:

12

3be
I z =

Therefore:

4
3

1 0329422,0
12

11,0297
mmI z =×=      ;     4

3

2 0232925,0
12

11,0210
mmI z =×=

Obviously, the value of sagitas is:

mmf 3628641 =−=      ;      mmf 4024642 =−=
Substituting values we have:

b

3
y axis

ez axis
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22
54

1 /020.23/19922,230
360329422,08

103677979,298
cmKgmmKgE ==

××
××=

−

22
54

2 /420.72/20347,724
400232925,08

106742006,1134
cmKgmmKgE ==

××
××=

−

Here there are several E values corresponding to different materials to be compared:
MATERIAL     E (Kg / cm2 )

Pine 96.000
Holm oak 108.000
Beech 180.000
Lead 50.000
Glass 700.000
Forged iron 2.000.000

20.2 THE π NUMBER

The construction of a cylinder (Point 19) profiting of paper flexibility will help us to fo-
cus closely on the π number.

Then we saw how, to properly dress the cylinder, it was required to interlock and glue
the lap joints, besides adjusting inside it a cone and a sphere.

The reason was that under those conditions, the cylinder does not yield spontaneously a
circular section because of the discontinuity of paper flexibility in the vicinity of the lap joints.
The best way to lessen that effect is to construct a tube by wrapping up the paper around itself
with as many layers as possible: the greater the number of layers, the higher the cylindrical
(circular) precision.

Fig. 1 shows a tube obtained by rolling a paper three times around itself, plus an arc
AB. Since the circumference length is πd, we should divide that length by its diameter to get π.
The process asks for these precautions:
•  Make sure that edge e is properly fixed on the tube´s outer surface (use glue, an adhesive

tape, etc.).
•  Every layer of paper must seat tight against each other as well as the remains AB over the

last one.
•  To know the paper thickness. For copying paper we take a = 0,11 mm (see Point 20.1).
•  To know also the paper´s initial development. In our case it is A´B = 297 mm since we start

with a DIN A4 rectangle.
•  To measure the exterior tube diameter with the greatest possible accuracy. We know how

difficult it is to reach a certain precision because of the inherent cylindrical inaccuracy asso-
ciated to a reduced number of layers, and also due to the scarce resolution of a measuring

e

i B

A´
A

1
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ruler. That´s why we recommend to perform several measures and then to get the mean
value. The best of all is to roll the paper in as many layers as possible and then to measure
the outer diameter by means of a calliper fitted up with a vernier (and of course, to obtain
the mean value of several measures).

•  To measure also the remains AB. This can be easily done by using a small piece of paper
introduced underneath it, and then rectified. What matters, as was recommended earlier is
that part AB, as well as the rest of the layers will be tight fixed without any play at all.

•  To take into consideration that length A´B – AB equals n circumferences of which, the
outer one has d as diameter, being d – 2a, d – 4a, etc. the successive diameters of the others.

Therefore we can write:
( ) ( ) ( ) ( )[ ]andadadaddABBA 12.....642´ −−+−+−+−+=− πππππ

( )[ ]anaaand

ABBA

1.....322

´

−++++−
−=π

At the denominator´s subtrahend we can find the sum of all the terms of an arithmetic
progression whose value is (Point7.15.1):

( )
2

1 nna −

Therefore:

( )nnand

ABBA

1

´

−−
−=π

In our case we take for given:
A´B = 297     ;     AB = 13,5     ;     n = 4    ;     d = 23     ;     a = 0,11     with this result:

( ) 1264,3
41411,0234

5,13297 =
−−×

−=π      (1)

Comparing that result with the π value displayed in a pocket calculator (* 3,1415927)
we could be tempted to feel a sort of frustration; nevertheless, there is not any reason for dis-
couragement.
•  Most likely, it is when measuring d where we introduce the main error: note that if we had

taken 22,643 instead of 23 mm, the resulting value for π would have been *.
•  The purpose of the experiment is to offer the order of magnitude of π. To obtain it very

close to exactitude is highly difficult because it is an irrational number.
•  In that respect we have to admit that the big error is in expression (1) which takes the form

of

9068

28350=π           (2)

•  The latter expression represents a rational number (what π is not) which, in turn, might take
three different configurations: an integer, in the event of exact division (it´s not our case),
and a periodic or mixed-periodic fraction. The expression (2) belongs to one of the latter
two.

•  The man is in search of π over 4.000 years. By Euclid’s time it was well known that the
value of π should be confined between 3 and 4. The reason: 3 is the ratio between an in-
scribed hexagon´s perimeter and its diameter; on the other hand 4 is the ratio between a cir-
cumscribed square´s perimeter and its diameter.

•  Modern computers have made it possible to get π with more than 100.000 significative dig-
its. It is a matter of time and memory applied to develop series such as ASN (x) (in turn
obtained as an inversion of the sine series), in spite of its slow convergence. Or the series of
the ATN(x). In any case, series development is the procedure to add significative figures to
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an irrational number by means of the addition of rational summands which looks rather
contradictory, but in line with our experiment.

To finish, and in accordance with the Euclidean inequality 3 < π < 4, we shall now con-
sider the circumference as the limit of n sides polygons´ perimeters: first, as the lower limit of a
circumscribed polygon, and second, as the upper limit of an inscribed one when n tends to in-
finity.

In Fig. 2 we find that AB is the side of an inscribed polygon of n sides and CD is that of
a circumscribed one; in both cases the radius of the circumference is r = OA = OB and the cen-

tral angle is 2α, being 
n2

360=α . Therefore we´ll have:

αsen2rAB =      ;     αtg2rCD =
As 2πr is the length of the circumference, it will be:

n
rnr

n
rn

2

360
tg22

2

360
sen2 << π      ;      

n
n

n
n

2

360
tg

2

360
sen << π

Let´s see how this inequation looks for different polygons.
n = 10 3,0901699 < π < 3,2491970
n = 50 3,1395260 < π < 3,1457334
n = 100          3,1410759 < π < 3,1426266
n = 1.000    3,1415875 < π < 3,1416030
n = 10.000    3,1415926 < π < 3,1415928
n = 50.000    3,1415927 < π < 3,1415927

(n = 50.000 produces overflow in a calculator screen)

Having all previous considerations in sight, it does not look so discouraging the result
that may be obtained for π by means of a rolled paper tube.

2
A

B
C

D

O
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21 QUADRICS

They are conic generated surfaces (see Point 13). That generation is associated always
to a combination of conics in the role of directrices and generatrices, respectively.

They have several variants; among them we find the round bodies (Point 19) that may
be considered as degenerated quadrics. The basic quadrics are the ellipsoid, the hyperboloid
and the paraboloid. From here on we shall study:

•  Two types of ellipsoid, both interlocked laminar: the elliptic one, strictly speaking,
and the other, also elliptic but deformable and made up of cyclic sections.

•  The revolution ruled hyperboloid, considered as a virtual surface (see Point 17).
•  The hyperbolic paraboloid, also in two versions: a virtual surface and as a deform-

able interlocked laminar construction.

21.1 ELLIPTIC ELLIPSOID

Fig.1 shows the wire-work version of the ellipsoid where one can see the three ellipses
with vertices A, B; A, C; B, C that intersect orthogonally at the quadric center.

Note that the three axes have different length, hence the resultant ellipsoid is an elliptic
one. Had two of the axes been equal to each other, one out of the three ellipses would had be-
come a circumference and therefore the quadric would be an ellipsoid of revolution.

The ellipsoid generation takes place when the ellipses with vertices AC and BC act as
directrices, and a horizontal one, acting as generatrix, moves in a parallel direction resting on
the other two. The latter is shown in different positions: a centered one and two others symmet-
ric to it.

Fig. 2 is a laminar vision of the paper-constructed ellipsoid. It consists in a total of 9 el-
lipses: the three main ones, two parallel to plane AB and four parallel to plane BC. The three
horizontal ellipses have to be made in halves to permit assembly. Fig. 3 has all the ellipses or
half-ellipses needed to build up the ellipsoid.
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21.2 CYCLIC SECTIONS DEFORMABLE ELLIPSOID (CYCLIC ELLIPSOID)

Cyclic sections of an ellipsoid are those produced in it by planes whose intersections are
circumferences.

Fig. 1 shows the horizontal main elliptical section of the ellipsoid with its horizontal
axes a = OA; b = OB. Let the steps to give, in order to get the third half-axis c, being c > b:

1. To draw any tangent t; its point of contact will be the umbilical point U.
2. To trace any secant 11 parallel to t, outside OA.
3. Within segment OU, divide OV in n equal parts. We have made n = 3 for the sake of

simplicity.
4. To find the figure that is homothetic to OVU11 with center O and ratio 1.
5. To divide OV´ in three equal parts as done for segment OV.
6. Through these intersection points (besides O and V´), draw parallels to t within the

ellipse.
7. Fig. 2 shows two pencils of parallel secants: the one obtained in step 6, plus its

symmetric with respect to axis OX.

3

✁
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Now then, the 7 + 7 secants just obtained, are the intercepts in the main ellipse of plane
XY, produced by the circles (the cyclic sections) parallel both, to axis OZ and to t (or to its
symmetrical with respect to OX).

The plane tangent at U, as well as the three others, will produce cyclic sections of radius
zero.

If CC´ is the trace of the cyclic section through the ellipsoid center, it means that CC´ is
the diameter of a circumference whose points are all on the ellipsoid surface. Therefore OC is
the radius equivalent to the half-axis c we are after: c = OC.

To obtain the 14 cyclic sections it´s enough to get the 4 corresponding to OV since the
rest are equal or symmetrical.

To get rid of confusion when interlocking the circles between each other, Fig. 3 shows
the traces of both pencils of planes: the circles should bear the corresponding number.

1

O A

B

x

y

t

U

1
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Fig. 4 shows what circle 14 looks like: CC´ is its diameter and it has the slits required to
interlock the other 5 circles that intersect it. Same figure depicts also circles 12, 13 and 11. The
dashed lines represent cuts.

As said earlier, all the other circles come out of the just mentioned four ones: pencil 1
has the slits in its lower side, and pencil 2 in the upper one. We can observe that, looking at cir-
cles of Fig. 4.

We shall proceed with the construction process of the ellipsoid using all 14 circles, but
at the same time we´ll advice that circles 11, 21, 16 and 26 may be ignored. These four circles
are intercepted only by one circle (see Fig. 3), what means that they will not rest properly fixed,
with the consequence of palling on the ellipsoidal vision of the whole assembly. Conversely, its
omission does not lessen that vision´s quality.

Fig. 5 shows the ellipsoid´s deformation effect manifested in its horizontal main plane.
If keeping O in place, axis a is shortened by passing A1 to A2, axis b grows from OB1 to

OB2. Third axis OC is always kept in its dimension, but cyclic planes´orientation changes from
OC1 to OC2.
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The spatial figure tends to collapse into the plane XZ as seen in Fig. 6: all the circles
taking part in it appear surrounded by a new ellipse. The shortening of axis a requires an effort
similar to that needed to actuate against a compression spring.
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That´s why the resultant figure requires a sort of frame to stay steady with a certain de-
gree of deformation.

If the produced deformation implies that both pencils in Fig. 2 become orthogonal, the
result is a sphere.

Fig. 7 is a wire-work view of the ellipsoid with its 14 cyclic circles. Fig. 8 is a perspec-
tive; in it, those cyclic circles look like ellipses just because of that perspective effect. In return
of that deformation we can gaze at the peculiar aspect of a hive-like structure.

14

C ´ O C

13 12

11

6

X

Z

Interlude

8



Mathematics and Origami

247

21.3 HYPERBOLOID

The quadric we are going to construct now is a warped hyperboloid of revolution, a one-
sheet ruled surface.

Fig. 1 is its folding diagram. The whole figure is triangulated; both, upper and lower
trapeziums serve to self-pocket the hyperboloid.

Note that this yperboloid structure reminds so much that of the pentagonal prismoid
seen in Point 18.5.3. Now, though, we shall tend to augment the number of sides toward in-
finity.

Paper materialisation of this hyperboloid is not something easy or spontaneously stable,
but yields an attractive result when achieved.

The optimal solution (self-stable) asks for these requirements:
•  A paper both, resistant and docile, to guarantee that the generatrices will not col-

lapse, whereas the folds may be easily produced.
•  To fix with an adhesive tape, mountain as well as valley fold´s settlements in the vi-

cinity of upper and lower polygons.
•  * To pocket both polygons within the trapeziums to fasten the figure and hide the

adhesive tape. That pocketing should apply to the perfect coupling of every four
mountain / valley lines that coincide in the upper and lower polygonal vertices.

•  Also to pocket the figure laterally: that constrains to have an extra pair of triangles
(an extra parallelogram).

Most likely, it will be rather difficult to meet all those requirements (skill and patience
to be added); that´s why I propose a practical advice:

•  To use normal paper.
•  Start with Fig. 1; the trapeziums will only serve to the purpose of reinforcing the up-

per and lower perimeter.
•  To glue both extreme rhomboids to close the hyperboloid.

1 B C

A



Jesús de la Peña Hernández

248

•  To apply into both bases two opposed fine cardboard cones in order to conform the
figure.

•  Those cones will work as the coupling used in lathing: they adapt themselves to the
natural shape of the quadric while allowing rotation to get its extreme position.
Meanwhile the hyperboloid surface remains visible, and its stability may be guaran-
teed adding the adequate weight to the inside of the upper cone (e.g. a necklace,
some loose beads, a little chain, etc.).

•  We have to stick rigorously to demand * and pre-conform the hyperboloid according
to the need of a good coupling of the overlapped folds.

As already pointed out, the main form in Fig. 1 is ∆ABC that appears replicated in Figs.
3 and 4, though unnamed in the latter.

Angle in B must be obtuse (108º in our case) to produce an insinuated hyperboloid in its
natural form (Fig. 3).

The base BC is the side of the upper and lower polygons that, in the limit, represent two
circumferences (recall the end of Point 20.2). Sides AB and AC are, respectively, the moun-
tain and valley fold creases.

∆ABC is represented in Fig. 2 in connection with those two circumferences. It is essen-
tial to decide what the inclination of plane ABC will be with respect to the horizontal, for it
determines the altitude of the hyperboloid. In our case we have taken 80º for that angle, as
well in Fig. 2 as in Fig. 3. By so doing we get the so-called natural form of Fig. 3.

The hyperboloid we have just fabricated has 21 triangles with base AB (plus an extra
one for lateral closing). Therefore, starting with Fig. 2 we get Fig. 3 by rotating successively

said ∆ABC around O, the value of the revolving angle being º142857.17
21

360 = . This contriv-

ance permits to draw the figure and shows that the hyperboloid is a quadric of revolution.
Fig. 4 derives from Fig. 5; in this, ∆ABC forms with the horizontal an angle of 50º in-

stead of 80º. To achieve that, the hyperboloid has to be revolved with the help of the cones re-
ferred to above, till the limit of torsion possibility.

We may observe then, two quite different sorts of rotation: the immaterial turning of
∆ABC around the hyperboloid axis, and that of torsion, up to the possible limit. Fig. 3 is the
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paper hyperboloid showing its generatrices, whereas Fig. 4 is a wire-work vision. Note that
the hyperbolas which are just visible laterally in Fig. 3, are heavily marked in Fig. 4.

It is recommended that the conic angle of the auxiliary cones will be close to that of the
asymptotic cones not shown in Fig. 4. Fig. 6 shows both cones with the traces left in them by
the hyperboloid, as well as the transversal section and development (to a different graphic
scale). See Point 19 on how to construct a cone.

If the starting ∆ABC has sides AB = 95; AC = 99,3658; BC = 12, the resulting cones
will have these measures: generatrix = 65; altitude = 41,5331; conic angle = 100,57º. Thus the
radius of the cone base is 50 against 40,2570 which is the extreme radius of the hyperboloid.
This bears the consequence that both cones surpass the hyperboloid as can be seen in Fig. 7,
in which the superposition of hyperboloid and lower cone is simplified.

Let´s see now some geometric questions with regard to the hyperboloid we have just
constructed. We could be interested, e.g., in the parameters of the outlined hyperbola of Fig.
4, from the measures of ∆ABC and its inclination of 50º.

In the first place we should recall Point 17.2 (a conoid of paper) on ruled warped sur-
faces. Here we are in front of one of them; therefore Fig. 1 is not the unfolding of the hyper-
boloid surface, since it is undevelopable (it rather is a virtual surface consisting in straight
generatrices): Fig. 1 is only the folding diagram that enables its construction.

When forming Fig. 4, in fact we have got two hyperboloids: one showing to the outside
the mountain generatrices (convex paper from the exterior); the other exhibiting another set of
generatrices, also mountain fold and also convex, but in this case, as seen from the interior of
the hyperboloid: they are the valley creases of Fig. 1. For the time being we shall refer only to
the former hyperboloid; the other set of generatrices has served just as ancillary to facilitate
the hyperboloid construction.

A one-sheet ruled hyperboloid of revolution can be generated this way (Fig. 8): let the
hyperbola h in a vertical plane with one focus at F, be the directrix curve, and a horizontal cir-
cumference c moving vertically and resting on h, be the generatrix (of course adopting the di-
ameter that corresponds to each position). The locus of the centers of these circumferences is
the vertical axis OZ that is also the axis of the hyperboloid and of the hyperbola.

The minimum radius of the generatrix circumference occurs when it rests on the hyper-
bola´s vertices; then it receives the name of neck circumference.

Conversely, rotating the directrix hyperbola h around axis OZ (Fig. 10) can also gener-
ate the hyperboloid: then, all the former circumferences (the neck one included) will rest on
those various hyperbolas.

Here it is the equation of a hyperbola like that of Fig. 9 (two symmetrical branches, see
Point 8.2.8.6):

6
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1
2

2
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     ;      222 bac +=           (1)

hence, the equation of a hyperboloid of revolution (Fig. 8) is:

1
2

2

2

22

=−+
b

z

a

yx
          (2)

To get a and b we should have two points (x1y1z1) (x2y2z2) as given on the hyperboloid,
then to substitute their co-ordinates in (2) and finally solve the resultant system of two equa-
tions with two unknowns (a and b).

If we make
2

1
2

1 yxA +=      ;     2
1zB =      ;     2

2
2

2 yxC +=      ;     2
2zD =

we get:

( ) ( )
DB

CABDBA
a

−
−−−=      ;      

( ) ( )
CA

CABDBA
b

−
−−−=           ( 3 )

¿Which pair of points could we chose? To answer we should recall that the hyperboloid
is a ruled surface and therefore all its generatrices (mountain folds) are straight lines resting
on it; in consequence, any point of these lines belong to the hyperboloid.

Off hand we have points B and A in ∆ABC, but they induce division by zero in (3) be-
cause of the symmetry with respect to the co-ordinate plane Z = 0 that obviously contains the
center of the hyperboloid.

Then we may keep A and look for another point in AB: the intersection point of AB
with a horizontal plane distinct from the hyperboloid bases. The operation is easy when the
program INTERPR.BAS that yields the intersection point of a plane and a straight line, helps
CAD. By so doing we get

a = 24,2384     ;     b = 26,5738
Substituting these values in (1) we obtain c which in turn determines the position of fo-

cus F in the hyperbola of Fig. 9                                   9676,3522 =+= bac
Only to add that to draw the hyperbolas of Figs. 8 and 9 we have to give values to x,

take them to (1), obtain the corresponding z and then carry both (x,z) to the drawing.

asymptote
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From that drawing we get the angle of the hyperboloid´s asymptotic cone as

º7369,84arctg2 ==
b

aα

Note that the angle is smaller than that of the cones in Fig. 6 (100,57º). This has being
designed purposely to elude that the vertices of both cones will get in contact before their sur-
faces do on the hyperboloid bases.

To finish, let´s set forth the question of what the tangent plane on a point of the hyper-
boloid will be.

For that we shall do some simple changes in equation (2):
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Finally we get equations (5) and (6) that mean:
•  The four of them are equations of planes.
•  Either pair (5) or (6) represent the intersection lines of each of those two planes.
•  Equations (5) are parametric in u, and (6) in v, what means that for each value of u

we get a straight line (5) and for values v the right line we obtain is (6).
•  Do not mix up lines u, v with the plückerian co-ordinates of Point 13.2. If we de-

velop equations (5) and (6) (what we shall not do), we would arrive to the asymp-
totic or hiperboloidal co-ordinates that define parametrically the hyperboloids.

•  Getting a new generatrix for each value of u recalls what was said earlier when each
rotation of an angle of 17,142857º yielded, also, another generatrix.

•  Generatrices v are the symmetric of u with respect to a plane containing the hyper-
boloid axis and the mid-point of a generatrix u. This way, Fig. 11 has been drawn
from Fig. 4.

•  Note that to get Fig. 11 as a paper construction, it suffices to begin with a Fig. 1
changed in such a way that the mountain / valley crease would be symmetric with
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respect to the vertical. I leave to the ingenious paper-folders the task of getting a pa-
per hyperboloid containing both, u and v generatrices.

•  All the u generatrices cross to each other; the same happens to the v ones. A genera-
trix u is parallel to the diametrically opposite v as can be easily imagined looking at
the paper constructed hyperboloid.

•  Any straight-line v intersects all the lines u it comes across between its two ends.
•  As any two lines u / v intersect in one point, this point will belong to the hyperboloid

and also to the plane formed by those two lines. In consequence, that plane will be
tangent to the hyperboloid in the afore-said u / v intersection point.

•  That plane of tangency (Fig. 12), paradoxically does intersect the hyperboloid. It is
nothing extraordinary, though. Fig. 13 shows an antecedent: the tangent to a curve in
one of its inflexion points, cuts the curve, too.

13

Interlude
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21.4 HYPERBOLIC PARABOLOID

It is a quadric (a second order surface associated to one or various conics), that may be
generated this way (Fig.1):

•  Begin with parabolas p and q that in turn may have equal or different parameters.
•  They will have in common vertices and axes (OZ), while their foci are at either side

of the common vertex.
•  Their planes are at 90º.
•  One of the parabolas, e.g. the p, will be the directrix; hence q will be the generatrix.
•  Under these conditions, the hyperbolic paraboloid is generated when q moves par-

allel to itself while resting all the time its vertex on p.
•  Both parabolas p and q are the main sections of the paraboloid. Their common axis

is also the axis of the paraboloid and the common vertex is its vertex too.

As can be seen, the hyperbolic paraboloid is an unlimited surface. In Figs. 1,2 and asso-
ciates is shown confined to a 90º sector (ECD of Fig. 2) of one of its two halves (the hyperbolic
paraboloid, like the parabola, has bilateral symmetry). To facilitate the representation we have
made p = q. Note that the altitude a in Fig. 1 is equal to FC in Fig. 2.

If we express as a vectorial relation the genesis of the hyperbolic paraboloid described
before (generatrix moving in parallel resting on the directrix), we get the equation of the
paraboloid:

z
q

y

p

x
2

22

=−

From now on we shall stick to the p = q simplification announced before. Hence, the
equation of our paraboloid becomes:

pzyx 222 =−           (1)
This equation is referred to a set of co-ordinate axes like those in Fig. 1 but having its

origin at V.
To properly justify the construction of the hyperbolic paraboloid we are dealing with,

we shall cut it with several very special planes: they are vertical (i.e. parallel to axis Z) and par-
allel to each other:
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λpyx 2=+           and          µpyx 2=−           (2)

When assigning values to parameters λ or µ we get different planes that are vertical
(without z) and parallel to each other within either pencil of planes λ or µ because variables x,y
have equal coefficients, again, within both pencils.

The intersection of the hyperbolic paraboloid (1) with the planes (2) are straight lines
whose equations are:

λpyx 2=+ z
p

yx
µ

=+

     λ system     µ system (3)

z
p

yx
λ

=− µpyx 2=−

In turn, the first equation of λ system in (3) represents a secant vertical plane like A1AP1

that is a vertical one. The second equation represents a plane such as VP1P2 through the origin
(it lacks of the independent term).

Hence, plane A1AP1 intersects the hyperbolic paraboloid along AP1 that is one of the
straight lines composing it. That´s why we can say that the hyperbolic paraboloid is a ruled sur-
face as seen in Fig. 2.

Till now, all the cuts have been done according to the vertical λ system. Something
alike happens with the parallel planes of the µ system (see Fig.2).

Summarising:
•  Through every point P3 of the hyperbolic paraboloid (Fig. 2) pass two straight gen-

eratrices belonging to the λ and µ systems respectively.
•  Two generatrices of the same system cross to each other.
•  Two generatrices of different systems meet at a point on the paraboloid.
•  All the generatrices of the λ system (such as AP1) are parallel to BCD. Something

analogous happens with system µ.

21.4.1 LAMINAR VERSION

Fig. 3 shows all the elements needed to construct a hyperbolic paraboloid by means of
their interlocking. The required slits will be performed from top to mid-point in Fig. 3.1, and
from the bottom to the mid-point in the trapeziums. Two corresponding cuts are shown as a
reference (see both pairs of scissors).

Note that each trapezium is duplicated: one is for the λ system, and the other (turned
over), is for the µ one. We can count 16 trapeziums besides the double rectangle of Fig. 3.2.

The trapeziums have vertical lap joints to interlock them and, in some cases, also hori-
zontal ones just to produce, whenever possible, a certain stiffness at the base of the secant
planes.

The secant planes to the hyperbolic paraboloid of Fig. 2 are: BP1V on parabola p; the
two perpendicular planes produced by Fig. 3.2 whose intersects are VP4 (parallel to CD) and
VP5 (parallel to EC); the two viewed trapeziums BDCF and ECF; the rest of 16 trapeziums.

P4VP5 is a horizontal right angle coincident with the half-asymptotes of a hyperbola
produced in the hyperbolic paraboloid when cut by a horizontal plane through V.

Fig. 4 shows the general appearance of the paraboloid though it lacks of some details.
The construction may not turn out to be perfect because of the interference between slits and
paper thickness. This handicap can be obviated when fine cardboard is used in connection with
wider slits. Anyhow, the figure, which is a beautiful one, resembles once more a wasp hive.
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21.4.2 PAPER-FOLDED VERSION

To start with a square of paper, pleat-folded to Fig. 1. The result is a collapsed flat fig-
ure in which the square´s diagonals end up in coincidence with its sides.

The unfolding of this figure yields a complete hyperbolic paraboloid with equal pa-
rabolas both, generatrix and directrix, though in each case their parameters differ depending on
the degree of unfolding (Fig. 2).

Because of its shape, the hyperbolic paraboloid is familiarly called the saddle. If we
suppose it set on horseback (Fig. 3) and cut by planes, we get the following conics (remind that
the horse also has bilateral symmetry):

Parabolas:
•  The planes parallel to the symmetry plane of the horse.
•  The vertical planes that in turn are perpendicular to the aforesaid horse plane.
Hyperbolas:
•  The planes parallel to the ground. This circumstance determines the adjective “hy-

perbolic” added to the noun paraboloid.

1
2

3
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