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Preface 

This text is directed toward the sophomore through senior levels of uni- 
versity mathematics, with a tilt toward the former. It presumes that the 
student has completed at least one semester, and preferably a full year, of 
calculus. The text is a product of fourteen years of experience, on the part 
of the author, in teaching a not-too-common course to students with a very 
common need. The course is taken predominantly by sophomores and 
juniors from various fields of concentration who expect to enroll in junior- 
senior mathematics courses that include significant abstract content. It 
endeavors to provide a pathway, or bridge, to the level of mathematical 
sophistication normally desired by instructors in such courses, but generally 
not provided by the standard freshman-sophomore program. Toward this 
end, the course places strong emphasis on mathematical reasoning and ex- 
position. Stated differently, it endeavors to serve as a significant first step 
toward the goal of precise thinking and effective communication of one's 
thoughts in the language of science. 

Of central importance in any overt attempt to instill "mathematical ma- 
turity" in students is the writing and comprehension of proofs. Surely, the 
requirement that students deal seriously with mathematical proofs is the 
single factor that most strongly differentiates upper-division courses from 
the calculus sequence and other freshman-sophomore classes. Accordingly, 
the centerpiece of this text is a substantial body of material that deals 
explicitly and systematically with mathematical proof (Article 4.1, Chapters \ 5 and 6). A primary feature of this material is a recognition of and reliance 
on the student's background in mathematics (e.g., algebra, trigonometry, 
calculus, set theory) for a context in which to present proof-writing tech- 
niques. The first three chapters of the text deal with material that is impor- 
tant in its own right (sets, logic), but their major role is to lay groundwork 
for the coverage of proofs. Likewise, the material in Chapters 7 through 10 
(relations, number systems) is of independent value to any student going 
on in mathematics. It is not inaccurate, however, in the context of this 
book, to view it primarily as a vehicle by which students may develop 
further the incipient ability to read and write proofs. 
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IMPORTANT FEATURES 

Readability. The author's primary pedagogical goal in writing the text was 
to produce a book that students can read. Since many colleges and uni- 
versities in the United States do not currently have a "bridging" course in 
mathematics, it was a goal to make the book suitable for the individual 
student who might want to study it independently. Toward this end, an in- 
troduction is provided for each chapter, and for many articles within chap- 
ters, to place content in perspective and relate it to other parts of the book, 
providing both an overall point of view and specific suggestions for work- 
ing through the unit. Solved examples are distributed liberally through- 
out the text. Abstract definitions are amplified, whenever appropriate, by 
a number of concrete examples. Occasionally, the presentation of material 
is interrupted, so the author can "talk to" the reader and explain various 
mathematical "facts of life." The numerous exercises at the end of articles 
have been carefully selected and placed to illustrate and supplement ma- 
terial in the article. In addition, exercises are often used to anticipate results 
or concepts in the next article. Of course, most students who use the text 
will do so under the direction of an instructor. Both instructor and students 
reap the benefit of enhanced opportunity for efficient classroom coverage 
of material when students are able to read a text. 

Organization. In Chapter 1, we introduce basic terminology and notation 
of set theory and provide an informal study of the algebra of sets. Beyond 
this, we use set theory as a device to indicate to the student what serious 
mathematics is really about, that is, the discovery of general theorems. 
Such discovery devices as examples, pictures, analogies, and counterexam- 
ples are brought into play. Rhetorical questions are employed often in this 
chapter to instill in the student the habit of thinking aggressively, of looking 
for questions as well as answers. Also, a case is made at this stage for both 
the desirability of a systematic approach to manipulating statements (i.e., 
logic) and the necessity of abstract proof to validate our mathematical 
beliefs. 

In Chapters 2 and 3, we study logic from a concrete and common-sense 
point of view. Strong emphasis is placed on those logical principles that 
are most commonly used in everyday mathematics (i.e., tautologies of the 
propositional calculus and theorems of the predicate calculus). The goal 
of these chapters is to integrate principles of logic into the student's way 
of thinking so that they are applied correctly, though most often only 
implicitly, to the solving of mathematical problems, including the writing 
of proofs. 

In Chapter 4, we begin to some mathematics, with an emphasis on 
topics whose understanding is enhanced by a knowledge of elementary 
logic. Most important, we begin in this chapter to deal with proofs, limiting 
ourselves at this stage to theorems of set theory, including properties of 
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countably infinite collections of sets. The main emphasis here is on stan- 
dard approaches to proving set inclusion (e.g., the "choose" method) and 
set equality (e.g., mutual inclusion), but we manage also, through the many 
solved examples, to anticipate additional techniques of proof that are stud- 
ied in detail later. The chapter concludes by digressing to an optional, and 
perhaps somewhat offbeat, second look at the limit concept, directed to- 
ward an understanding of the epsilon-delta definition. 

Chapters 5 and 6 provide the text's most concentrated treatment of proof 
writing per se. The general organization of these chapters is in order of 
increasing complexity, with special emphasis on the logical structure of 
the conclusion of the proposition to be proved. In Articles 5.1, 5.2, and 
6.1, we progress from conclusions with the simplest logical structure [i.e., 
(Vx)(p(x))], to conclusions with a more complex form [i.e., (b'x)(p(x) + 
q(x))], and then to the most complex case [V followed by 31. Additional 
techniques, including induction, indirect proof, specialization, division into 
cases, and counterexample, are also studied. Solved examples and exercises 
calling for the writing of proofs are selected from set theory, intermediate 
algebra, trigonometry, elementary calculus, matrix algebra, and elementary 
analysis. Of course, instructors must gear the assignment of exercises to 
the students' background. Solved examples, toget her with starred exercises 
(whose solutions appear in the back of the book) provide numerous models 
of proofs, after which students may pattern their own attempts. An ad- 
ditional source of correctly written proofs (as well as some that were de- 
liberately written incorrectly) is a "Critique and Complete" category of 
exercise that occurs in Article 4.1 and throughout Chapter 5. 

Chapters 7 and 8 deal with the most common kinds of relations on sets, 
equivalence relations, partial orderings, and functions. Chapter 8 includes 
an introduction to cardinality of sets and a brief discussion of arbitrary 
collections of sets. Chapters 9 and 10 study the standard number systems 
encountered in undergraduate mathematics. Chapter 9 emphasizes the 
properties that distinguish the real numbers from other familiar number 
systems. Chapter 10 provides an outline of an actual construction of the 
real numbers, which would perhaps be most appropriately used in a class 
of seniors or as an independent study project for a well-motivated and 
relatively advanced student. In addition to treating material that is of con- 
siderable value in its own right, Chapters 7 through 10 provide ample 
opportunity for students to put into practice proof-writing skills acquired 
in earlier chapters. In keeping with the advancing abilities of students, 
proofs are deliberately written in an increasingly terse fashion (with less 
detailed explanation and less psychological support) in the later chapters. 
This may provide a smooth transition from this text to the "real world" of 
typical texts for standard junior-senior courses. 

Flexibility. Bridging courses in mathematics are by no means an estab- 
lished or standardized part of the undergraduate curriculum. Indeed, 
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among colleges and universities where such courses exist, the subject matter 
varies considerably. For this reason, an attempt has been made to include 
in this text a wide variety of topics and to avoid interdependence among 
topics whenever possible. Furthermore, a conscious decision was made to 
avoid any primary focus on material that is the specific content of main- 
stream junior-senior courses. 

A number of articles in Book One (1.5,2.4,3.5,4.3,6.3,6.4) are designated 
"optional." The nonoptional material in Book One (i.e., Articles 1.1 - 1.4, 
2.1-2.3, 3.1-3.4, 4.1, 4.2, 5.1-5.4, 6.1, and 6.2) constitutes what the author 
regards as the core content for achieving the objectives of a bridging course 
and for permitting passage to Book Two. Though no topics in Book Two 
have been explicitly designated as optional, they can be covered selectively 
to fit the needs of a particular course. Many different syllabi can be based 
on this text, depending on the number of available class sessions, the initial 
level of the students, and the judgment of individual instructors or curric- 
ulum committees. For example, a two-credit course focused on sets, logic, 
and proof could cover the core material from Book One. A three-credit 
course for sophomores, in which a relatively leisurely pace and strong focus 
on fundamentals is desired, might proceed: 

[Core plus 1.5, 2.4, 3.51 -+ [Ch. 71 + C8.1, 8.21 

[Core plus 2.4, 4.3, 6.1 (E - 6 proofs)] + C7.1, 7.2, 7.31 + C8.1, 8.21. 

Possibilities for three-credit courses with a more advanced or accelerated 
point of view include: 

[Core plus 1.5, 2.4, 6.31 + [Ch. 71 -, [Ch. 81 

and 

[Core plus 6.31 -+ C7.1, 7.2, 7.31 -+ [Ch. 91 -+ [lo. 11. 

A number of alternative syllabi are contained in the instructor's manual, 
available free from the publisher to instructors using the text. This manual 
also provides a list of objectives for each article, as well as commentary on 
pedagogical issues related to various portions of the text. 
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Sets 
CHAPTER 1 

The purpose of this chapter is twofold: to provide an introduction to, or 
review of, the terminology, notation, and basic properties of sets, and, 
perhaps more important, to serve as a starting point for our primary 
goal-the development of the ability to discover and prove mathematical 
theorems. The emphasis in this chapter is on discovery, with particular 
attention paid to the kinds of evidence (e.g., specific examples, pictures) that 
mathematicians use to formulate conjectures about general properties. 
These conjectures become theorems when the mathematician provides a 
rigorous proof (methods of proof start in Chapter 4). 

The information on set theory contained in this chapter is important in 
its own right, but the spirit of discovery-proceeding with caution from 
the particular to the possibly true general, which we emphasize in discussing 
sets-applies to all areas of mathematics and is indeed what much of mathe- 
matics is about! We will continue to stress its importance in later chapters, 
even as we concentrate increasingly on the mechanics of theorem-proving. 

The formal development of set theory began in 1874 with the work of 
Georg Cantor (1 845- 19 18). Since then, motivated particularly by the dis- 
covery of certain paradoxes (e.g., Russell's paradox, see Exercise lo), logi- 
cians have made formal set theory and the foundations of mathematics a 
vital area of mathematical research, and mathematicians at large have in- 
corporated the language and methods of set theory into their work, so that 
it permeates all of modern mathematics. Formal, or axiomatic, set theory is 
not normally studied until the graduate level, and appropriately so. But 
the undergraduate student of mathematics at the junior-senior level needs 
a good working knowledge of the elementary properties of sets, as well as 
facility with a number of set theoretic approaches to proving theorems. As 
stated earlier, our treatment of the latter begins in Chapter 4. Here we en- 
courage you to develop the habit of making conjectures about potential 
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theorems of set theory, as suggested by the various types of evidence you 
encounter. 

1 .  Basic Definitions and Notation 

The notion of set is a primitive, or undefined, term in mathematics, anal- 
ogous to point and line in plane geometry. Therefore, our starting point, 
rather than a formal definition, is an informal description of how the term 
"set" is generally viewed in applications to undergraduate mathematics. 

REMARK 1 A set may be thought of as a well-defined collection of objects. 
The objects in the set are called elements of the set. 

The elements of a set may be any kinds of objects at all, ranging from, 
most familiarly, numbers to names of people, varieties of flowers, or names 
of states in the United States or provinces in Canada. A set may even have 
other sets as some or all of its elements (see Exercise 9). 

We will adopt the convention that capital letters A, B, X, Y, are used to 
denote the names of sets, whereas lowercase a, b, x, y, denotes objects viewed 
as possible elements of sets. Furthermore, the expression a E A (E is the 
Greek letter "epsilon" in lower case) represents the statement "the object 
a is an element of the set A," and x 4 X represents the assertion that the 
object x is not an element of the set X. The convention about the use of 
upper- and lowercase letters may occasionally be dispensed with in the text 
when inconvenient (such as in an example in which an element of a given 
set is itself a set). However, it is especially valuable and will be adhered to 
in setting up proofs of theorems in later chapters. 

One advantage of having an informal definition of the term set is that, 
through it, we can introduce some other terminology related to sets. The 
term element is one example, and the notion well-defined is another. The 
latter term relates to the primary requirement for any such description: 
Given an object, we must be able to determine whether or not the object lies 

- 
in the described set. Here are two general methods of describing sets; as we 
will soon observe, 
method. 

METHODS OF 

well-definedness has a particular bearing on the second 

DESCRIBING SETS 

The roster method. We describe a set by listing the names of its elements, 
separated by commas, with the full list enclosed in braces. Thus A = 
(1,2,3,4) or B = (Massachusetts, Michigan, California) are sets consist- 
ing of four and three elements, respectively, described by the roster method. 
Note that 2 E A and Michigan E B, but 5 4 A and Ohio 4 B. 
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Two important facts are: (1) the order in which elements are listed is 
irrelevant and (2) an object should be listed only once in the roster, since 
listing it more than once does not change the set. As an example, the set 
{ 1, 1,2) is the same as the set {1,2) (so that the representation (1, 1,2) 
is never used) which, in turn, is the same as the set (2, 1). 

The rule, or description, method. We describe a set in terms of one or more 
properties to be satisfied by objects in the set, and by those objects only. 
Such a description is formulated in so-called set-builder notation, that is, 
in the form A = {x 1 x satisfies some property or properties), which we read 
"A is the set of all objects x such that x satisfies . . . ." Typical representa- 
tions of sets by the rule method are: 

C = {x 1 x is a natural number and x 5 100.) 

or D = {x 1 x is the name of a state in the United States beginning 
with the letter M.) 

or X = {x lx is a male citizen of the United States.) 

In all these examples the vertical line is read "such that" and the set is un- 
derstood to consist of & objects satisfying the preceding description, and 
only those objects. Thus 57 E C, whereas 126 4 C. The set D can also be 
described by the roster method, namely, as the set {Maine, Maryland, 
Massachusetts, Michigan, Minnesota, Missouri, Mississippi, Montana). 
Although it's true that Maine E D, it would be false to say that D = {Maine); 
that is, the description of D must not be misinterpreted to mean that D has 
only one element. The same is true of the set X which is a very large set, 
difficult to describe by the roster method. 

It is in connection with the description method that "well definedness" 
comes into play. The rule or rules used in describing a set must be (1) mean- 
ingful, that is, use words and/or symbols with an understood meaning 
and (2) specific and definitive, as opposed to vague and indefinite. Thus 
descriptions like G = {x(x  is a goople) or E = {xlx!* & 3) or Z = {xlx is 
a large state in the United States) do not define sets. The descriptions of 

. G and E involve nonsense symbols or words, while the description of Z 
gives a purely subjective criterion for membership. On the other hand, a set 
may be well defined even though its membership is difficult to determine or 
not immediately evident from its description (see Exercise 3). 

COMPARISON OF THE ROSTER AND RULE METHODS. 
FINITE AND INFINITE SETS 

The roster method has the obvious advantage of avoiding the problem of 
deciding well definedness. Whenever it's used (provided the objects named 
as elements have meaning), there can be no doubt as to which objects are, 
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and are not, in the set. On the other hand, if the set to be described is 
large, the roster method can be impractical or impossible to employ. Clearly 
we would want to describe the set F = {xlx is a natural number and 
x 2 lo8) by the rule method, although it's theoretically possible to list all 
the elements, whereas the set I = (x ( x  is a real number and 0 2 x 5 1) 
cannot even theoretically be described by the roster method. Until we give 
a rigorous, or mathematically correct, definition in Article 8.3, we will view 
an infinite set as one that cannot, even theoretically, be described by the 
roster method. Stated differently, the elements of an infinite set are impos- 
sible to exhaust, and so cannot be listed. A finite set, on the other hand, is one 
that is not infinite. The set F, defined earlier, is finite, whereas I is infinite 
since it has the property that, between any two distinct elements of I, there 
is another element of I. A set may fail to have this property and still be 
infinite; the set of all positive integers is infinite because, whenever n is a 
positive integer, so is n + 1. 

A widely used hybrid of the roster and rule methods is employed to de- 
scribe both finite and infinite sets. The notation Q = (1, 3, 5, . . . ,97, 99) 
or T = (10, 20, 30, 40, . . .) implicitly uses the rule method by establish- 
ing a pattern in which the elements occur. It uses the appearance of the 
roster method, with the symbol " . . . " being read "and so on" in the case 
of an infinite set such as T and " . . . , " meaning "and so on, until" for a 
finite set like Q. As with any application of the rule method, there is a 
danger of misinterpretation if too little or unclear information is given. As 
one example, the notation (1, 2, . . .) may refer to the set (1, 2, 3,4, 5, . . .) 
of all positive integers or to the set (1, 2, 4, 8, 16, . . .) of all nonnegative 
powers of 2. On the other hand, given the earlier pattern descriptions of 
Q and T, most readers would agree that 47 E Q, 2 & Q, 50 E T, 50'' E T, and 
15 # T. 

There is one other important connection between the roster method and 
the rule method. In a number of mathematical situations solving a problem 
means essentially to convert a description of a set by the rule method into 
a roster method description. In this context we often refer to the roster 
representation as the solution set of the original problem (see Exercise 1). 

UNIVERSAL SETS 

Although the idea of a "universal set" in an absolute sense, that is, a set 
containing all objects, leads to serious logical difficulties (explored in Ex- 
ercise 10) and so is not used in set theory, the concept, when applied in a 
more limited sense, has considerable value. For our purposes a universal 
set is the set of all objects under discussion in a particular setting. 

A universal set will often be specified at the start of a problem in- 
volving sets (in this text the letter U will be reserved for this purpose), 
whereas in other situations a universal set is more or less clearly, but 
implicitly, understood as background to a problem. We did the latter when 
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we pointed out that Ohio c$ B = (Massachusetts, Michigan, California} but 
did not explicitly say that 5 4 B or that Harry Jones 4 B. The implicit 
understanding was that, in the discussion involving this set B, the objects 
under consideration, or the potential elements, were states, with the uni- 
versal set U being a set of 50 elements. 

The role then of a universal set is to put some bounds on the nature of 
the objects that can be considered for membership in the sets involved in 
a given situation. 

SOME SPECIAL SETS 

In mathematics the sets of greatest interest are those whose elements are 
mathematical objects; included among these are sets whose elements are 
numbers. In this context there are certain sets of numbers that serve as a 
universal set so frequently that we assign them (widely used and recognized) 
names and symbols. 

D E F I N I T I O N  1 

Throughout this text, we will denote by: 

(a) N the set (1, 2, 3, 4, . . . )  of all positive integers (natural numbers) 

(b) Z the set {O, & 1, $2, . . . ). of all integers (signed whole numbers) 
(c) Q the set of all rational numbers (quotients of integers) 
(d)  R the set of all real numbers (the reals) 
(e) C the set of all complex numbers 

These names are commonly used in the description of sets whose elements 
are numbers. It is of vital importance, also, to realize that the universal set 
specijied in the description of a set is as important as the rest of the definition. 
For example, the set J = (x E Qlx2 2 2) is different from the set L = {x E 
R I x2 > 21, even though the descriptions of both sets use th i  same inequal- 
ity (since, e.g., $ E L, but f i  q! J). Considering these remarks, we may 
streamline the notation used in our descriptions of some sets earlier, writing 

and 

We will study the sets N, Z, Q, R, and C as number systems in Chapters 
9 and 10. 

INTERVALS 

Within the context of R as the universal set (the understanding throughout 
most of elementary and intermediate calculus), there are other special sets, 
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known as intervals, which we will frequently encounter. Intervals are de- 
scribed by widely used notation, which we will soon introduce. Before do- 
ing so, we give a definition of interval that provides our first example of an 
abstract mathematical definition of the type we will often work with later 
in the text. 

D E F I N I T I O N  2 

A set I, all of whose elements are real numbers, is called an interval if and only if, 
whenever a and b are elements of 1 and c is a real number with a < c < b, then 
c E I. 

Intervals are characterized among other sets of real numbers by the 
property of containing any number between two of its members. All in- 
tervals must do this and intervals are the only sets of real numbers that 
do this. In particular, any set of real numbers such as (0, 1,2), or Z or Q, 
which fails to have this property, is not an interval. Intervals are easy to 
recognize; indeed, we will prove in Chapter 9 that every interval in R has 
one of nine forms. 

D E F I N I T I O N  3 
Nine types of intervals are described by the following terminology and notation, in 
which a and b denote real numbers: 

I .  [ x  E Rla  5 x 5 b), a closed and boundedinterval. denoted [a, b],  

2. ( X  E Rla  < x < b ) ,  an open and bounded interval, denoted (a, b), 

3. ( x  E R ( a  5 x < b) ,  a closed-open and bounded interval, denoted [a, b), 

4. ( x  E  la < x 5 bj., an open-closed and bounded interval, denoted (a, b], 

5. ( x  E R ( a  I x ) ,  a closed and unbounded above interval, denoted [a, a), 

6. ( x  E  la < x ) ,  an open and unbounded above interval, denoted (a, a), 

7. { x  E R ( X  I b), a closed and unbounded below interval, denoted ( -  oo, b], 

8. { x  E R 1 x < b f ,  an open and unbounded below interval, denoted ( -  oo, b), 

9. R itself is an interval and is sometimes denoted ( - a ,  a ) .  

---1 

Intervals arise in a large variety of mathematical contexts and in particular 
are involved in the statement of numerous theorems of calculus. A familiar 
application of interval notation at a more elementary level is in expressing 
the solution set to inequalities encountered in elementary algebra. 

EXAMPLE 1 Assuming that the universal set is R, solve the following in- 
equalities and express each solution set in interval notation: 

(a) 7 x - 9  5 16 
(b) 12x+31<5 
(c) 2x2 + x - 28 5 0 
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Solution 
to x I 

(b) 

7x - 9 5 16 is equivalent to 7x I 25, which is equivalent 
The set of solutions is (x E Rlx I 91 = (- m, y]. 
a E R, then 1x1 < a is equivalent to -a < x < a. Hence 

)2x + 31 < 5 is equivalent to -5 < 2x + 3 < 5, or -8 < 2x < 2, or 
- 4 < x < 1, which is expressed in interval notation as (- 4, 1). 

(c) If a > 0, the quadratic inequality axZ + bx + c < 0 is satisfied by 
precisely those numbers between and including the roots of the equation 
ax2 + bx + c = 0. We find the latter by factoring 2x2 + x - 28 into 
(2x - 7)(x + 4), yielding x = $ and x = -4 as roots. Thus we arrive at 
the solution set -4 I x I z, which is expressed in interval notation as 
[-4,fJ. 

The assumption that U = R in problems like the preceding example is 
usually made implicitly, that is, without specific mention. As a final re- 
mark on intervals, bearing on notation, we observe that it is necessary to 
distinguish carefully between (0, I},  a two-element set, and [0, 11, an in- 
finite set. This remark suggests a general caveat for beginning students of 
abstract mathematics: A small difference between two notations repre- 
senting mathematical objects can understate a vast difference between the 
objects themselves. The conclusion to be drawn is that we need always to 
read and write mathematics with great care! 

THE EMPTY SET 

Certain special cases of Definition 3 lead to rather surprising facts. For 
instance, if we let a = b in (I), we see that [a, a] = (a), a singleton or 
single-element set, is an interval. If we do the same thing in (2), we arrive 
at an even less intuitive situation, namely, no real number satisfies the 
criterion for membership in the open interval (a, a), since no real number is 
simultaneously greater than and less than a. *Thus if this special case of (2) 
is to be regarded as a set, much less an interval, we must posit the existence 
of a set with no elements. This we do under the title of the empty set or 
null set, denoted either @ (a derivative of the Greek letter phi in lower case) 
or { ). The empty set is, in several senses we will discuss later in this 
chapter, at the opposite end of the spectrum from a universal set. It is an 
exception to many theorems in mathematics; that is, the hypotheses of many 
theorems must include the proviso that some or all the sets involved should 
not be empty (i.e., be nonempty), and has properties that quickly lead to 
many brain-teasing questions (e.g., Exercise 10, Article 1.3). Another justi- 
fication for the existence of an empty set, explored further in Article 1.2, is 
the desirability that the intersection of any two sets be a set. Still another 
justification is provided by examples such as Example 2. 

EXAMPLE 2 Solve the quadratic inequality 5x2 + 3x + 2 < 0, U = R. 
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Solution By completing the square, we can express 5x2 + 3x + 2 in the 
form 5(x + + (g), which is clearly positive for any real x. Thus no 
real number satisfies the given inequality; we express this by saying that 
the solution set is 0. 

RELATIONS BETWEEN SETS 

Equality. Earlier we observed that the set D = {x lx is the name of a state 
in the United States beginning with the letter M} could also be described 
by means of the roster method. This observation implied an intimate re- 
lationship between D and the set M = (Maine, Maryland, Massachusetts, 
Michigan, Minnesota, Missouri, Mississippi, Montana}, a relationship 
identical to that existing between the sets T = {x E Rlx2 - 8x + 15 = 0) 
and P = (3,5), or between the sets G = {xlx was the first president of the 
United States) and W = {George Washington}. The relationship is set 
theoretic equality. We will defer a formal definition of equality of sets until 
Chapter 4 (Definition l(a), Article 4.1), contenting ourselves at this stage 
with an informal description. 

REMARK 2 Let A and B be sets. We will regard the statement A equals B, 
denoted A = B, to mean that A and B have precisely the same elements. 

Applying the criterion of Remark 2 to the preceding examples, we have 
D = M, P = T, and G = W. Equality of sets has such a deceptively simple 
appearance that it might be questioned at first why we even bother to discuss 
it. One reason is that our informal description of set equality highlights the 
basic fact that a set is completely determined by its elements. A second rea- 
son is that sets that are indeed equal often appear, or are presented in a form, 
quite different from each other, with the burden of proof of equality on the 
reader. Many of the proofs that the reader is given or challenged to write 
later in the text are, ultimately, pmofs that two particular sets are equal. 
Such proofs are usually approached by the following alternative description 
of equality of sets: 

Sets A and B are equal if and only if every element of A is also an element 
of B and every element of B is also an element of A. (1) 

In Chapters 2 through 4, on logic and proof, we will discuss why this 
characterization of equality carries the same meaning as the criterion from 
Remark 2. As examples of properties of set equality to be discussed in detail 
later, we note that every set equals itself; given sets A and B, if A = B, then 
B = A; and given sets A, B, and C, if A = B and B = C, then A = C. These 
are called the rejexive, symmetric, and transitive properties of set theoretic 
equality, respectively. Finally, we note that A # B symbolizes the state- 
ment that sets A and B are not equal. 
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Subset. Earlier we encountered a relationship of containment between an 
object and a set. Denoted E, this relationship symbolizes membership, or 
elementhood, of the object as one of the elements in a set. There is also a 
concept of containment between sets, known as the subset relationship. 
As we did for set equality, we give an informal description of this concept 
now, with the formal definition provided in Definition l(b), Article 4.1. 

REMARK 3 Let A and B be sets. We regard the statement A is a subset of 
B, denoted A E B, to mean that every element of A is also an element 
of B. We write A $ B to denote that A is not a subset of B. FinalIy, we 
define B is a superset of A to mean A E B. 

We observed earlier that the set D of the eight states whose names begin 
with the letter M is not the same as the set S = (Maine}. A correct relation- 
ship is S s D. 

EXAMPLE 3 (a) Find all subset relationships among the sets H = (1,2, 
3), N = (2,4,6, 8, lo), and P = (1, 2, 3,. . . , 9, 10). 

(b) Find all subset relationships among the sets T = {2,4,6, . . .}, 
V = (4,8, 12;. . .}, and W = (. . . , -8, -4,0,4,8,. . .). 

Solution (a) Clearly H G P and N sz P, as you can easily see by checking, 
one by one, that all the individual elements of H and N are elements of 
P. Don't be misled by the representation of P, which contains ten ele- 
ments. Also, P $ H and P $ N (can you explain precisely why this 
is true?), whereas neither H nor N is a subset of the other (why?). 

(b) This problem is more difficult than (a) because the sets involved 
are infinite. Intuition about the connections among the underlying de- 
scriptions of these sets (e.g., V is the set of all positive integral multiples 
of 4) should lead to the conclusions V G T, V E W, T $ V, W $ V, and 
neither T nor W is a subset of the other. You should formulate an argu- 
ment justifying the latter statement. 

The five number sets designated earlier by name satisfy the subset re- 
lationships N c Z, Z c Q, Q c R, and R E C. The subset relation, like 
set theoretic equality, enjoys the reflexive and transitive properties. Put 
more directly, ev&y set is a subset of itself, and for any sets A, B, and C, if 
A E B and B c C, then A c C. The subset relation is not symmetric (try 
to formulate precisely what this statement means). Furthermore, Example 
3 illustrates the fact that, given two sets, it may very well be that neither 
is a subset of the other. The reader will note that the transitivity of the subset 
relation has consequences for the examples in the previous paragraph, 
namely, a number of additional subset relationships among the five sets listed 
there are implied. You should write down as many of those relationships 
as possible. 
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Since "element hood" and "subset" are both relationships of containment, 
it is important not to confuse the two. For instance, the set A = { I ,  2,3) 
contains {2,3) and contains 2, but in different senses. As another example, 
we note that 3 E A and (3) G A are true statements, whereas (3) E A and 
3 c A are false. Again, a basic feature of good mathematical writing is 
precision. 

There is a special danger of confusion in dealing with the subset relation- 
ship in connection with the empty set @. Consider the question whether 
@ E A and/or @ c A, where A = {1,2,3). These questions, especially 
the second, in view of the criterion given in Remark 3, are not easy to decide. 
This difficulty is one of several we meet in this chapter that highlight the need 
for a background in logic and proof. Chapters 2 through 4, providing such 
a background, discuss a more formal and precise approach to some of the 
informal "definitions" in this chapter, including that of Remark 3. 

Finally, in view of our alternative statement (1) of the criterion for set 
equality in Remark 2, the connection between the relationships "subset" 
and "equality of sets" is: A = B if and only if A r B B c A. This is a 
crucial fact that We will prove rigorously in Chapter 4 (Example 3, Article 
4.1) and use repeatedly in formulating proofs from that point through the 
remainder of the text. 

Proper subset. When we are told that A G B, the possibility that A and B 
are equal is left open. To exclude that possibility, we use the notation and 
terminology of proper subset. 

DEFINITION 4 

Let A and 6 be sets. We say that A is a proper subset of 8, denoted A c B, if 
and only if A c B, but A # B. We write A $ B to symbolize the statement that 
A is not a proper subset of B (which could mean that either A $ B or A = 6). 

EXAMPLE 4 Explore various subset and proper subset relationships among 
the sets A = (1,2, 31, B = ( l ,2,  3,4), C = (2, 3, I),  and D = (2,4, 6). 

7- 

Solution The subset relationships are A c B, C G B, A c C, and C c A. 
As for proper subset yelationships, we have A c B and C c B. Note, 
however, that A is not a proper subset of C (nor C of A) since A and C 
are equal. Finally, note that even though A and D are not equal, A is not 
a proper subset of D since A is not a subset of D. 

Some texts use the notation A c B to denote "subset," at the same time 
using A B to denote "proper subset." This is an example of a problem 
with which all mathematicians and students of mathematics must deal, 
namely, the widespread nonuniformity of mathematical notation. The best 
rule to remember is that the burden of correct interpretation rests on you! 
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POWER SET 

We suggested earlier that sets can themselves be elements of sets. One sit- 
uation in which this always happens arises in the following definition. 

DEFINITION 5 
Let A be a  set. We denote by 9 ( A ) ,  the power set of A, the set of all subsets of A. 

EXAMPLE 5 Discuss the structure of 9(A), where A = (1,2, 3,4). 

Discussion The elements of 9(A) are precisely the subsets of A. So, for 
instance, the set (2,4) is an element of 9(A). Also (11 E 9(A). Since 
A E A, then A = (1,2,3,4) E 9(A). You should list 13 other elements of 
9(A). In the event that your list falls one short of the number we've 
specified, perhaps you have not considered the question, "is @ an element 
of P(A)?" The answer clearly depends on an issue we raised, but did not 
settle, earlier, namely, whether 0 G A. You may want to look ahead 
to Article 4.1 (Example 1) for the final resolution of that problem. 

Other questions about 9(A) might easily be raised. For instance, is 
1 E 9(A)? Is (2) G 9(A)? Is (01 c_ 9(A)? You should settle these ques- 
tions and formulate similar ones. 

Exercises 

1. Express these sets via the roster method; that is list the elements in each: 

A =  { x E R I x ~ + x ~ -  1 2 ~ = 0 )  

B =  { x ~ R 1 3 / ( x +  1)+3/ (x2+x)= -2) 
C = { X E N ~ - ~ ~ < X < ' Z )  
D = {x E N 1 x is prime and divisible by 2) 

E = { x E Z ~ - ~ < X < ~ }  
F = {x(x  was or is a Republican president of the United States} 
G = {x lx is a planet in the Earth's solar system} 
H = {xlx is a month of the year) 
I = {a E R I f(x) = x/(x2 - 3x + 2) is discontinuous at x = a} 
J = {a E R I f(x) = 1x1 fails to have a derivative at x = a) 
K = {a E R I  f(x) = 3x4 + 4x3 - 12x2 has a relative maximum at x = a) 
L = { x ~ R l ( x  + 2)'12 =(7 - x)'l2 - 3) 
M = { x ~ R 1 1 2 x ~ + 2 x -  l I= Ix2-4x-61)  
N = { z E C ~ Z ~  = -1) 
O = ( z E C J Z ~  = I }  

2. Express the following sets by either interval notation (including (a) or one of the 
symbols N, Z, Q, R, or C: 

*(a) A = {XE  Rlsin 2x= 2sin xcosx) 
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B = {x E Rlsin zx = 0) 
C =  { x € R ( x 2 =  -1) (d) D = { x ~ R I x ~ - 5 x + 7 < 0 )  
E = { X E  RI10x2 - 7x - 12 2 0 )  (f) F = { x ~ R 1 ( 6 x  - 81 < 4) 
G = {X E R I ~ ~ x  - 121 < 0) (h) H = { x E R ) ~ ~ x +  13) 5 0 )  
I = {XERIX >O and cosxx =cotzx)  
J = {x E Rlsec x/(cos x + tan x) = sin x) 
K = {x E RI(2x + 7)lI2 is a real number) 
L =  { x E Q ~ x ~ + ( ~ - & ) x + ~ & = o )  
M = {z E C (ZZ* = (zI2) *(n) N =  { z ~ C ( I m ( z ) = 0 }  

(Note: If a and b are real numbers and z = a + bi, then b is called the imaginary 
part of z, denoted Im (z), z* = a - bi is called the complex conjugate of z, and lzl = 
(a2 + b2)'I2 is called the modulus of z.) 

3. (a) Which of the following descriptions of sets are well defined? 
(i) (r 1s is an American citizen on July 4, 1976) 

* ( i )  {X I x is the 21 71 st digit in the decimal expansion of J3) 
* (iii) {xlx is an honest man) 

(iv) {xlx is a month whose name in the English language ends in the letter r )  
(v) (XIX is a day in the middle of the week) 
(vi) (x (sin 2.u) 
(vii) {x E N 1 x is an integral multiple of 4) 
(viii) {x I x is an aardling} 

(ix) {xJ((x2 - 6x + 3)/(x3 + 4))1'2} 
(x) { x ~ ~ l x + y = 4 )  

I 

(b) For each of the sets in (a) that is well defined, suggest an appropriate universal 
set. 

4. Given the following "pattern" descriptions of infinite sets, list five additional ele- 
ments of each: '1 

(a) A = {I,& $, . . .) (b) B={l,2,3,5,8,13 ,...) 
*(c) C={- l ,2 ,  -4,8 ,...) (d) D = { ~ , 4 ~ , 7 n ,  1071, . . . ) 

(e) E =  { ...,. -8, -5, -2,1,4,7) (f) F = {.  . . , -8, -5, -2, 1,4,7,. . .) 

5. Given the following six sets, answer true or false to statements (a) through (n): 

(a) - ~ E A  
(c) D c C 
(e) D c C 
ts) D E E  
(i) - 6 E F 
(k )  + & F  
(m) 0 E B 

(b) 6 E B 
(d) C G D 
(f) E E D 
(h) - ~ E A  
(1) - - Y E A  
(1) 100EB 
(n) - 1 4 D 
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6. Given the following collections of sets, find in each of parts (a), (b), and (c) all 
relationships of equality, subset, and proper subset existing between pairs of them: 
(a) A={-1, ~ , ~ ) , B = ( - ~ , ~ ) , C = { ~ E R I X ~ - ~ X ~ - X + ~ = O ) , D = [ - ~ , ~ ] .  
(b) A = {0,0,  I), B = ( 0 ,  {a) ) ,  C = [O, 11, D = {{0,1), {O), {1),0, {a) 
(c) A =  {xENIIx~ s4} ,  B =  {-4, -3, -2, -1,0, 1,2,3,4),C= { x E Z ~ ) ~  1 < 5). 

7. (a) Considering the definition of interval given in Article 1.1, explain precisely 
why the set (0, 1,2) is @ an interval. 

*(b) What statement can be made about the subsets Z and Q of R, based on Defi- 
nition 2 and the assertion (from the paragraph following Definition 2) that Z 
and Q are not intervals? 

8. Considering the "definition" of subset given in Article 1.1 (cf., Remark 3), discuss 
the pros and cons of the statement 0 E {1,2,3), that is, can you see arguments 
for both the truth and falsehood of this statement? What about 521 E 0 ?  What 
about 0 G A, where A  is any set? 

9. Throughout this problem, assume the statement "0 c A  for any set A" is true: 

(a) Calculate 9(S) for: 
(i) S={l,2,3} *(ii) S = {a, b, c, d ) 
(iii) s = 0 (W S = { 0 )  
(v) s = ( 0 ,  (0)) (vi) S = P(T) where T = (1,2) 

(b) Can you list all the elements of P((1,2,3, . . .))? List ten such elements. 
(c) Can you give an example of a finite set X such that #(X) is infinite? 

"10. Suppose U were a truly universal set; that is, U contains all objects. Then, in 
particular, U would contain itself as an element, that is, U E U. This is an unusual 
situation since most sets that one encounters do not contain themselves as an ele- 
ment (e.g., the set X of all students in a mathematics class is not a student in that 
class; that is, X # X in this case.) Now consider the "set" A of all sets that are not 
elements of themselves; that is, A = {Y I Y q! Y). Discuss whether A E A or A $ A. 

1.2 Operations on Sets 
As stated earlier, sets like Z or R or (1,2, 31, consisting of numbers, are of 
greater mathematical interest than most other sets, such as the set of all 
names in a telephone book. One reason is that numbers are mathematical 
objects; that is, numbers can be combined in various mathematically in- 
teresting ways, by means of algebtaic operations, to yield other numbers. 
Among the operations on real numbers that are familiar are addition, sub- 
traction, multiplication, and division. You should also know that these 
types of operations may satisfy certain well-known properties, such as 
commutativity, associativity, and distributivity. For example, addition and 
multiplication over the real numbers both satisfy the first two properties, 
while multiplication distributes over addition. On the other hand, sub- 
traction over real numbers is neither commutative nor associative. 
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Just as there is an "algebra of numbers" based on operations such as 
addition and multiplication, there is also an algebra of sets based on several 
fundamental operations of set theory. We develop properties of set algebra 
later in this chapter; for now our goal is to introduce the operations by which 
we are able to combine sets to get another set, just as in arithmetic we add 
or multiply numbers to get a number. 

UNION AND INTERSECTION 

In the following definitions we assume that all sets mentioned are subsets 
of a universal set U .  

D E F I N I T I O N  1 

Let A and B be sets. We define a set formed from A and B, called the intersection 
of A and B, denoted A n B (read " A  intersection 8 " )  by the rule A n B = { X I  x E A 

and X E  B ) .  

Note that A n B is a set whose elements are the objects common to A  
and B; it may be thought of as the "overlap" of A  and B. 

D E F I N I T I O N  2 
Let A and B be sets. We define the union of A and 8, denoted A u B (read "A 
union B") by A v B = [ x j x  E A or x E 6). 

Again, A u B is a set and is formed from A  and B. Its elements are any 
objects in either A or B, including any object that happens to lie in both 
A  and B. (We will see in Chapter 2 that, in mathematical usage, the word 
"or" automatically includes the case "or both.") The operations of union 
and intersection are called binary operations because they are applied to 
two sets to make a third set. 

EXAMPLE 1 Let A =  {1,3,5,7,9), B =  {1,4,7, 10,13,16), and C =  
(-5, -3, -1, 1,3,5). Calculate A n  B, A u B ,  A n  C, B n  C, and 
B u ( A  n C). 

Solution A n B = (1, 7) since these two objects are common to both sets 
and are the only such objects. A u B = (1, 3,4, 5,7,9, 10, 13, 16) since 
this set results from "gathering into one set" the elements of A and B. 
Similarly, A n C = (1, 3, 5) and B n C = (1 ). To calculate B u ( A  n C), 
we use our result for A n C to arrive at {1,4, 7, 10, 13, 16) u (1, 3, 51, 
which equals (1, 3,4, 5, 7, 10, 13, 16). 

Note that, in listing the elements of A  u B, we write 1 and 7 only once 
each, although each occurs in both A  and B. As stated earlier, we never list 
an object more than once as an element of a set. Also, even though our 
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solution to Example 1 lists numbers in increasing order, this is not neces- 
sary. Observe also that the sets that result from the operation of union 
tend to be relatively large, whereas those obtained through intersection are 
relatively small. You should formulate a more exact statement of this idea, 
using one of of the concepts introduced in Article 1.1. Finally, our previous 
example introduces the use of parentheses, as in the algebra of numbers, 
to set priorities when an expression contains more than one instance of a 
set theoretic operation. In view of this can you suggest how to apply the 
operation of intersection to three sets? union also? What would you expect 
to be the intersection of the preceding three sets A, B, and C? the union? 

EXAMPLE 2 Let D = (2,4,6,8, 101, E =(-5,5), F =  [3, w),and G =  a. 
Calculate E n F, E u F, D n E, D u F, and D u G. Also, using the sets 
A and C defined in Example 1, calculate C n E and A n D. 

Solution E n F = [3, 5), whereas E u F = (-5, a). Graphing along a 
number line is perhaps the easiest way of arriving at these answers. 
D n E = (2,4), since 2 and 4 are the only elements of D that are between 
-5 and 5. D u F can perhaps be best expressed as (2) u [3, a ) .  (The 
other elements of D, besides 2, are already accounted for in F). What 
about D u G? What is the result of taking the union of a set with the 
empty set? The answer is either D u (a = D = (2,4,6,8, 10) or, 
D u 0 = {(a, 2,4,6,8, 10). Which do you think is correct? (The answer 
is in Article 1.3.) Using a set defined in Example 1, we note that C n E = 
( - 3, - 1, 1,3). The numbers - 5 and 5 are not in C n E, because they 
are not in E, an open interval. Finally, A n D = a. 0 
The intersection of A and D in Example 2 provides another justification 

for the existence of an empty set since A and D have no elements in common. 
Pairs of sets such as A and D, having no elements in common, are said to 
be disjoint. You should perform other calculations involving the sets in 
Examples 1 and 2, for instance, B n F. What about the intersection of the 
empty set with another set? In particular, what is A n a? Finally, does 
our calculation of E n F and E u F suggest any possible theorem about 
intervals? (See Article 5.2, Example 6 and Exercise 3.) 

One reason that union and intersection are of value in mathematics is 
that, like the subject of set theory itself, they provide mathematicians with 
a convenient language for expressing solutions to problems. 

EXAMPLE 3 (a) Solve the inequalities 12x + 31 2 5 and 2x2 + x - 28 > 0. 
(b) Find all real numbers that satisfy both inekpalities in (a) simulta- 
neously. 

Solution (a) If a E R, then 1x1 2 a is equivalent to "either x < -a or x 2 a. 
Hence 12x + 31 2 5 becomes "either 2x + 3 s -5 or 2x + 3 2 5," which 
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simplifies to "either x I -4 or x 2 1." The solution set is most con- 
veniently expressed (- co, -41 u [I, co). On the other hand, the qua- 
dratic inequality 2x2 + x - 28 > 0 is solved by all values of x to either 
the left of the smaller root or the right of the larger root of the corre- 
sponding quadratic equation, that is, by all values of x either less than 
-4 or greater than 3. The solution set is (- co, -4) u (z, a ) .  

(b) We find the simultaneous solutions to the two inequalities by in- 
tersecting the two solution sets we got in (a). Graphing along a number 
line, we arrive at the set ( - GO, - 4) u (z, co). 

In Article 1.3, as we develop the algebra of sets, we will discover theorems 
of set theory by which we may obtain the last answer in Example 3 system- 
atically, avoiding graphing. Although union and intersection are binary 
operations, there is nothing to prevent the two sets to which they are applied 
from being the same set, so that an expression like X n X or X u X has 
meaning. For Examples 1 and 2, calculate F n F and B u B. Does any 
general fact suggest itself? 

COMPLEMENT 

Our third operation, complement, is unary rather than binary; we obtain 
a resultant set from a single given set rather than from two such sets. The 
role of the universal set is so important in calculating complements that 
we mention it explicitly in the following definition. 

D E F I N I T I O N  3 
Let A be a subset of a universal set U. We define the complement of A, denoted A', 
by the rule A' = { x  E U I X  q! A) .  

The complement of a set consists of all objects in the universe at hand 
that are not in the given set. Clearly the complement of A is very much 
dependent on the universal set, as well as on A itself. If A = (I}, then A' 

i is one thing if U = N, something quite different if U = R, and something 
altogether different again (a singleton set in fact as opposed to an infinite 
set in the other two cases) if U = (1,2). 

EXAMPLE 4 Letting R be the universal set, calculate the complement of 
the sets A = [- 1,1], B = (-3,2], C = (- co, 01, and D = (0, co). 

Solution A' consists of all real numbers that are not between -1 and 1 
inclusive, that is, all numbers either less than - 1 [i.e., in (- co, - I)] 
or greater than 1 [i.e., in (1, a)]. In conclusion, A' = (- oo, - 1) u 
(1, a ) .  Similarly, B' =(--a, -31 u (2, oo), C' = (0, oo) = D, and D' = 
(-GO,O]=C. 0 
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What do the last two parts of Example 4 suggest about the complement 
of the complement of a set? Also, calculate C u D and C n D . . . . Are any 
general facts suggested? Next, calculate (A n B)'. The use of parentheses 
indicates that you are to perform the operation of intersection first, then 
take the complement of the resulting set. Finally, calculate A n B', where 
the lack of parentheses dictates that you first calculate the complement of 
B, and then intersect that set with A. 

EXAMPLE 5 Let U be the set of all employees of a certain company. Let 
A = { X E  U l x  is a male), B = { x  E UIX is 30 years old or less}, C = 
{ x  E U ( X  is paid $20,000 per year or less}. Describe the sets A n C, A', 
A u B', and C n B'. 

Solution A n C = { x  E U I x is a male and x  is paid $20,000 per year or less). 
We might paraphrase this by saying that A n C consists of males who 
make $20,000 per year or less. A' = { x l x  is not a male) = { x l x  is a 
female). A u B' = { x  leither x  is a male or x  is not 30 years old or less), 
that is, the set of all male employees together with all employees over 30. 
Finally, C n B' is the set of all employees over 30 years old who are paid 
$20,000 per year or less. 0 

You should describe the sets A n B', (A n B)', (A u B)', A u A', and 
C n C' in Example 5. See Exercise 12 for a mathematical example similar 
in nature to Example 5. 

SET THEORETIC DIFFERENCE 

In introducing the operation of complement, we noted that the complement 
of a set A is a relative concept, depending on the universal set as well as on 
A itself. However, for a fixed universal set U, the complement A' of A de- 
pends on A only. Our next operation on sets provides a true notion of 
"relative complement." Set theoretic diflerence, denoted B - A, is a binary 
operation that yields the complement of A relative to a set B. 

DEFINIT ION 4 
Let A and B bgsets. We define the difference B - A (read "6 minus A") by the 
rule €3 - A = ( x ) x  E 5 and x $ A) .  $ 

The difference B - A (also called the complement of A in B, or the com- 
plement of A relative to B) consists of all objects that are elements of B & 
are not elements of A. If B = U ,  then B - A = U - A = A', the ordinary 
complement of A. Thus complement is a special case of diference. Note also 
that we need not know U in order to compute B - A. 
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EXAMPLE 6 Let A = {1,3,5,7), B = {1,2,4,8,16), and C = {1,2,3,. . . , 
100). Is 1 an element of A - B? Compute A - B, B - A, B - C, and 
A - C. 

Solution Since 1 E A, there is a possibility that 1 could be in A - B. But 
the fact that 1 is also an element of B rules this out; that is, 1 4 A - B. 
In fact, to compute A - B, we simply remove from A any object that 
is also in B. Hence A - B = (3, 5, 7). Similarly, B - A = (2,4, 8, 161, 
whereas A - C = B - C = @. 0 

What general conclusions can be guessed from our calculation of A - B 
and B - A in Example 6? Do the results of calculating A - C and B - C 
suggest any possible general facts? Describe the sets C - A and C - B? 
Can you compute A - B' from the information given? 

Using the sets from Example 4, we note that A - B = [-I, -41, 
B - A = (1,2]. Calculate also A - C, C - D, C - B, A - @, and 0 - D? 
Are you willing to speculate on any further general properties of difference 
based on these results? 

SYMMETRIC DIFFERENCE 

Very often in mathematics, once a certain body of material (e.g., definitions 
and/or theorems) has been built up, the work becomes easier. New defini- 
tions can be formulated in terms of previous ones, rather than from first 
principles, and proofs of theorems are frequently shorter and less laborious 
once there are earlier theorems to justify or eliminate steps. The first exam- 
ple of this situation occurs now in the definition of our fifth operation on sets, 
symmetric diflerence. 

D E F I N I T I O N  5 
Let A and 8 be sets. We define the symmetric difference of A,and 6, de- 

noted A A 8, by the rule A A B = ( A  - B) u (B - A). 

Note that we have not defined this operation using set-builder notation. 
Rather, we have used a formula that employs previously defined set opera- 
tions. This approach has advantages and disadvantages as compared to a 
definition from first principles. Advantages include compactness and math- 
ematical elegance, which make this type of definition more pleasing to ex- 
perienced readers. The major disadvantage, however, affecting primarily 
the less experienced, is that this type of definition usually requires some 
analysis in order to be understood. In this case we must analyze carefully 
the right-hand side of the equation, the dejning rule for the operation. 

To be in A A B, an object must lie either in A - B or B - A (or both? 

1 Which objects are in both A - B and B - A?), that is, either in A but not 
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in B, or in B but not in A. Stated differently, elements of A A B are objects 
in one or the other of the sets A and B, but not in both. 

EXAMPLE 7 Let A = {2,4, 6,8, 101, B = (6, 8, 10, 121, C = (1, 3, 5, 7,9, 
111, and D = (4,6,8}. Calculate A A B, A A C, and A A D. 

Solution A - B = {2,4) and B - A = (121, so that (A - B) u (B - A) = 
A A B =  (2,4,12). Similarly, A A C =  {1,2 ,..., 11) and A A D =  
(2,101. You should calculate B AA, A A(B A C) and (A A B) A C. 
Are any possible general properties of the operation "symmetric differ- 
ence" suggested by any of these examples? 

EXAMPLE 8 Let W = (- oo, 3), X = (- 3,5], and Y = [4, oo). Compute 
W A X  and W A  Y. 

Solution W A X  =(-a, -33 u [3,5] and WA Y =(-c0,3) u [4, a). 
You should calculate X A Y.  

ORDERED PAIRS AND THE CARTESIAN PRODUCT 

The sixth and final operation on sets to be introduced in this article, carte- 
sian product of sets, differs from the preceding five in a subtle but important 
respect. If U were the universal set for sets A and B, it would again be the 
universal set for A n B, A u B, A', A - B, and A A B. Putting it differently, 
the elements of these sets are the same types of objects as those that consti- 
tute A and B themselves. This is not the case for A x B, the cartesian prod- 
uct of A and B. The elements of A x B are ordered pairs of elements from 
A and B, and thus are not ordinarily members of the universal set for A and 
B. 

Ordered pairs resemble notationally two-element sets but differ in two 
important respects. Represented by the symbol (a, b), the "ordered pair 
a comma b" differs from the set (a, b} in that the order in which the elements 
are listed makes a difference. Specifically, the ordered pairs (a, b) and (b, a) 
are different, or unequal, unless a = b, based on Definition 6. 

DEFINITION - 6 
Given ordered pairs (a, 6) and (c, d ) ,  we say that these ordered pairs are 
equal, denoted (a, b) = (c, d) ,  if and only if a = c and b = d. 

Compare this definition with the criterion for equality of the sets {a, b) 
and {c, d )  (Remark 2, Article 1 .I), and note, for example, that (2, 3) # (3,2), 
whereas {2,3} = {3,2}. A second major distinction between ordered pairs 
and two-element sets is that the same element may be used twice in an 
ordered pair. That is, the expression (a, a) is a commonly used mathematical 
symbol, but (a, a) is not (i.e., the latter is always expressed (a).) 
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DEFINITION 7 
Given sets A and B, we define the cartesian product A x B (read "A cross B," 
cartesian product is often called cross product) by the rule A x B = 
{ (a ,  b)  1 a E A, b E 6).  

Thus A x B consists of all possible distinct ordered pairs whose first ele- 
ments come from A and whose second elements come from B. An object x 
is an element of A x B if and only if there exist a E A and b E B such that 
x = (a, b). Note that there is nothing in the definition to prevent A and B 
from being the same set. 

EXAMPLE 9 Given A = ( 1,2,3) and B = (w,  x, y, z), describe A x B by 
the roster method. 

Solution A x B = ( ( 4 4 ,  (1, x), (1, y), (1,4, (294, (2, x), (2, Y), (2,z), (394, 
(3, x), (3, y), (3 ,~ ) ) .  We have chosen to list these ordered pairs by first 
pairing the number 1 with each letter, then 2, then 3. We could have used 
some other approach, such as pairing each of the three numbers in A with 
w, then with x, y, and z, respectively. Any such approach is all right as 
long as all the ordered pairs are accounted for, since the order in which 
the ordered pairs in A x B are listed is, of course, inconsequential. Note 
that (y, 2) is not an element of A x B. You should be able to name a set 
closely related to A x B that contains the ordered pair (y, 2), as well as 
list the elements of A x A and B x B. 0 

EXAMPLE 10 Describe A x B if A = B = R. Describe geometrically the 
subset I x J of R x R, where I = [3,7] and J = (-2,2). 

Solution R x R is the set of all ordered pairs of real numbers, usually pic- 
tured by a two-dimensional graph, as shown in Figure l.la, with points 
in the plane corresponding to ordered pairs. These in turn are labeled 

Figure 1 .1  (a) The x-y coordinate system; (b)  [3,7] x ( - 2,2). 
Y Y 
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with reference to two perpendicular lines, the x axis and the y axis. I x J 
is the rectangle, open above and below, closed left and right, as illustrated 
in Figure l.lb. 

For other examples, suppose that L = (xlx is a student in Math 197) 
and M = (x 1 x is a possible final grade in a course} = (A, B, C, D, E}. 
Can you describe generally what the set L x M looks like? In another vein, 
if A = (1,2,3}, can you describe A x a? 0 x A? What general results are 
suggested by this example? (See Fact 7 (49), Article 1.4.) 

Like other operations on sets, cartesian products can be combined with 
other set operations to form expressions like (A u B) x C. See Exercise 4 
for other examples. 

The cartesian product will be of particular importance in Chapters 7 and 
8 where we study relations on sets, including equivalence relations and 
functions. It should be noted that a rigorous set theoretic definition of an 
ordered pair (omitted from the preceding informal discussion) is possible 
and may be found in Exercise 10, Article 4.1. 

Finally, note that the use of (,) as notation for ordered pairs, while also 
denoting open intervals, is an example of the ambiguity in mathematical 
notation alluded to earlier. 

TOWARD MATHEMATICAL GENERALIZATION 

Throughout this article and Article 1.1 you have been encouraged to specu- 
late on possible general theorems of set theory as suggested by examples. 
For instance, you may have already conjectured that the union of two sets 
A and B is a superset of both A and B (between Examples 1 and 2), that the 
intersection of a set with its complement is the empty set (following Example 
4), or that the intersection of two intervals is always an interval (following 
Example 2). 

The mode of thinking we're trying to foster through our questions is the 
first half of a two-part process that is really the essence of mathematics! By 
looking at particular situations, the mathematician hopes to be able to for- 
mulate general conjectures that, if true, settle the question at hand about all 
other particular cases. The first step into the world of the mathematician 
is to form the intellectual habit of looking beyond the answer to the exam- 
ple at hand to possible general reasons for that answer. We will continue 
to discuss this first step, the formulation of conjectures, in Article 1.3 and 
will begin to pursue the second step, the construction of proofs that turn 
our conjectures into theorems in Chapter 4. 

But for now we consider further the types of evidence on which mathe- 
matical conjectures might be based. We have already seen one type of such 
evidence, namely, computational solutions to particular problems. As fur- 
ther examples of this approach, the fact that B n B = B, which was dis- 
cussed earlier for the particular set B = (1,4,7, 10, 13, 161, should lead 
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Figure 1.2 Graphic interpretation of the mean value theorem: 
f '<c> = [ f ( b )  - f (a)ll[rb - al .  

to the conjecture that this relationship holds for any set B. In trigonometry 
the specific facts that sin (2n) = 0, sin ( 4 4  = 0, and sin (- 3n) = 0 suggest 
a possible general theorem, namely, sin (kn) = 0 for any integer k, which, 
upon being proved, encompasses an infinite number of particular cases. In 
elementary calculus the facts that d/dx(x2) = 2x, d/dx(x3) = 3x2, and 
d/dx(x4) = 4x3, again suggest the possible formulation of a rule that includes 
these formulas and yields the answer for infinitely many similar differenti- 
ation problems. 

Another type of evidence from which mathematical conjectures are 
frequently drawn is a picture. For example, the mean value theorem of 
calculus has a lengthy and complicated statement when expressed in words 
only, but becomes simple in concept when that statement is accompanied 
by a picture, as shown in Figure 1.2. In addition, many of the applied prob- 
lems of calculus, such as "max-min" and "related rate" problems, have as 
a standard part of their approach the step "draw a picture of the physical 
situation described in the problem." 

The kind of picture most frequently used to seek out theorems, or to test 
conjectures about possible theorems, in set theory is the Venn diagram. 

VENN DIAGRAMS 

Sets pictured by Venn diagrams appear as labeled circles, inside a rectangle 
that represents the universal set U. Most often, such diagrams will involve 
one, two or three circles, with various markings used to match regions in 
the diagram with sets formed, by employing the operations described earlier, 
from the sets represented by the circles. As one example, given two sets A 
and B, the set A n B is represented by the shaded region of the diagram in 
Figure 1.3. 



1.2 OPERATIONS ON SETS 25 

Figure 1.3 Venn diagram representation 
of intersection. 

Some of the other four operations described earlier are pictured by the 
shaded regions of Venn diagrams in Figure 1.4. You should draw Venn 
diagrams to represent the sets B - A and A A B. 

Venn diagrams become more complicated when used to represent sets 
constructed from more than two given sets and/or involving more than one 

I 

(a) A U B 

Figure 1.4 (a )  Union, (b)  complement, 
and ( c )  digerence. 
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-.. 

( A  U B )  n C.is the 
crosshatched region 

Figure 1.5 A  more complicated Venn 
diagram representation. 

operation of set theory. For example, the set (A u B) n C may be repre- 
sented by the -- doubly shaded region in the Venn diagram, Figure 1.5. 

We will see in the next article how Venn diagrams can be useful for sug- 
gesting theorems of set theory; later we will encounter other interesting 
uses. In Article 1.5 they prove helpful for solving certain counting problems; 
in Article 3.5 we use them as an aid in analyzing the logical validity of 
certain kinds of arguments. 

Exercises 
In Exercises 1 through 4, let U = {1,2, 3, . . . ,9 ,  101, A  = (1, 7,9), B  = 
(3, 5,6,9, 101, and C  = (2,4, 8,9). 

1. Calculate: 

(a) B  u B  
*(c)  A  u A' 

(e) ( A u B ) n A  
(9) B' 
(i) A  - A  

*(k) A  A A  

2. Calculate: 

(a) A  n C  
(c) A  n C' 
(e) C  - B  
fs) ( A u B ) u C  
(i) A  u (B  u C )  

*(k) ( A  u B) n C  
(m) ( A  u B) u ( A  u B') 
(0) A  u (C n A') 
(9) (B  U C)' 

3. Calculate: 

(a) (A n B n C)' 

(b) C  n C  
(d) B  n B' 
(f) ( B  n C)  u C  

, fh) B" 
(1) B  - B' 

*(I) C A C '  

( A  n C)' 
A' u C' 
C n B '  
A  n ( B  n C)  
( A  n B) n C  
( A  u C )  n ( B  u C) 
( A  n C)  u ( B  n C) 
( A  n C)  u ( A  n C') 
B' u C' 

(b) A' u B' u C' 



*(c) ( A u C ) - ( A n C )  *(d)  A A  C 
(e) B A U (f) A A (B  A C )  
(g) ( A  A B) A C (h) C - (B  - A) 
(i) (C - B) - A *(j) (C - B) n (C - A) 

*(k) C - ( B  u A) (1) A A (B  u C) 

4. Calculate: 

(a) A x C (b) C x B 
(c) U x B (d) A x U 
(e) A x B ( f )  A x ( B u  C)  
(g) ( A  x B) U ( A  x C)  (h) B' x C' 
(i) ( A  n B) x C 0) ( A  x C )  n ( B  x C )  
(k) B x ( A  - C )  (1) ( B  x A) - ( B  x C) 

5. Let U = {1,2, 3 , .  . . ,9, 101, A = (2, 5, 7 ,9) ,  B = {5,7) ,  C = {2,9), and D = 
{1,4,6, 10). Calculate: 

(a) (D - C)  - B (b) D - (C - B) 
(c) A A D (d) A u D 
(e) B u ( A  - B) (f) A n ( B  u D') 
(C?) ( A  n B) u D' (h) B u (C - B) 
(i) A A C 

6. Let U = R, A = [2,9), B = (0,1], C = [- l , 4 ] .  Each of the sets described here 
is an interval. Express each in interval notation: 

*(a) A n C (b) A u C 
(c) A n B (d) A u B 
(e) ( A  u B) - C ( f )  A - C  

*(gl C - A (h) B n c 
(i) B u C *(I) C - A' 
(k) B - A (I) B - C 

7. Let U = R, A = (- a, 61, B = ( -3 ,  a), and C = (-4,  1 )  u (3,7). Calculate: 

(a) A n B (b) A u B 
*(c) A - B  *(d)  A A B 

(e) A n C (f) B n C 
(g) A U C' (h) ( A  U C)' 
(i) C - A (1) A' n C' 
(k) ( A  n B) n C *(I) ( A  A B) A C 
(m) A n (B  A C)  (n) A A (B  A C )  
(0) ( A  n B) A ( A  A C)  

8.Let U = Z ,  A={0,5,10,15 ,... ), B = (  ..., -10, -5,0), C =  { 
- 3,0,3,6,9, . . . f ,  and D = {45,90, 135, 180, . . .). Calculate: 

(a) A n B (b) B n D 
*(c) D n A' (d) ( A  u B) n C 

(e) ( A  n C)  u ( B  n C)  (f) D - A 
(9) [ (A  u B) n CI n D  (h) D n A 

*( i )  (D n A) u (D n A') (i) D n C 
(k) D n B' (I) B A D 
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9. Given U = (1, 2,3,4), A = (1, 3,4), B = (31, C = (1, 21, find all pairs of disjoint 
sets among the six sets A, A', B, B', C, C'. 

10. The solution set to each of the following inequalities can be expressed as the 
union of intervals. Find them in each case: 

(a) 13x - 231 2 4 * (b )  2x2 -4x -9620  
(c)  (x - 5)/(5 - X) < 0 (d) 14x - 171 > 0 

*(e) (3x2 - 27)/[(x - 3)(x + 3)] > 0 

11. Solve simultaneously the pairs of inequalities: 

*(a) 1x1 2 1 and x2 - 4 5 0  
(b) ) 4 x + 8 ) <  12 and x 2 + 6 x + 8 > 0  

12. Let U be the set of all functions having R as domain and range a subset of R. 
Let: 

A = { f (f is continuous at each x E R) 

B = { f 1 f is differentiable at each x E R) 

D  = { f I f is a quadratic polynomial) 

F = { f 1 f is a linear polynomial) 

(a) List all subset relationships between pairs of these six sets. 
(6) List all pairs of disjoint sets among these six sets. 
(c) Describe, as precisely as possible, the sets: 

*(i) C n E  (ii) A - B 
(iii) D  n F *(iv) A n D  
(v) A u D  (vi) C - E 
(vii) F - A (viii) F n A' 
(ix) E n F (x) B n E 

13. (a) Consider the Venn diagram displayed in Figure 1.6~. Copy this diagram 

- - 
onto a separate piece of paper four times and shade the regions corresponding to - 
the sets A n B, A' n B, A n B', and A' n B'. [Note: A Venn diagram based on two 
sets (i.e., circles) divides the rectangle representing U into four regions, which can be 
represented by the preceding four expressions. These sets are mutually disjoint; that 
is, the intersection of any two of them is the empty set, and have the totality of U 
as their union.] 
(6) Draw on a separate piece of paper a Venn diagram based on three sets, that 

is, three circles, as in Figure 1.6b. On this figure, shade the regions corresponding 
to the sets A n B n C, A n B n C', A' n B' n C, and A' n B' n C'. 

(c) In addition to the four regions shaded in (b), how many other nonover- 
lapping regions within U are induced by the three circles A, B, and C? Label each 
of those remaining regions in a manner consistent with the labeling of the four 
regions in (b). 
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(b) 
Figure 1.6 

(d) How many regions (i.e., nonoverlapping subsets of U having all of U as 
their union) should there be in a Venn diagram based on four sets A, B, C, and D? 
Can you draw a diagram with four circles in which the expected number of regions 
actually occurs? 

1.3 Algebraic Properties of Sets 

WHY AN ALGEBRA OF SETS? 

Like the rules of high school algebra [such as (a + b)(a - b) = a' - b2 for 
any real numbers a and b], which are indispensable for solving applied prob- 
lems such as "story problems," the rules of set theory are extraordinarily 
useful in dealing with any problem expressible in the language of sets. They 
are especially helpful in proving theorems and arise in proofs involving 
virtually every area of mathematics. 

Many of the laws of set theory have a structure that enables us to simplify 
considerably the form of a set. Suppose, for instance, that a problem in 
advanced high school algebra (with U = R) has a solution set of the form 
(A n B) u (A' nBB) u (A n B') u (A'n  B'), where A = (-oo,4) u (7, oo) 
and B = [- 2, 111. Calculating this set would be laborious if the problem is 
approached directly. But an identity of set theory tells us that any set of the 
preceding form equals U, the universal set, so that the solution set for the 
original problem equals R. Another instance of the usefulness of the algebra 
of sets is suggested in the paragraph following Example 6, Article 1.2, where 
we asked whether A - B' could be computed from the information given. 
The most accurate answer at that stage should have been "no," since a 
universal set must be specified if B', and thus A - B', is to be computed. 
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In that example U was not specified, nor was it totally clear from the context 
what U should be (R and Z would both have been good guesses). But, by 
being familiar with set algebra and aware of the identity A - B' = A n B 
of set theory, we can solve the problem with no further information. 

Finally, the methods of proof we will study in Chapters 4 through 6, used 
initially in this text to prove theorems about the algebra of sets, apply to 
writing proofs in all other branches of mathematics. 

ELEMENTARY PROPERTIES OF SETS 

We begin now to formulate conjectures about general properties of sets. 
Using two devices described in Article 1.2, the computational results of 
specific examples and the evidence provided by pictures, we will attempt 
to discover reasonable candidates for theorems of set theory. 

EXAMPLE 1 Let U = ( l , 2 ,3 , .  . . ,9 ,  10) and A = (1,3, 5,7,9). Compute 
A u A', A n A', (A')', A u A, and A n A. 

solution Since A' = (2,4, 6, 8, 101, then A u A' = (1,2, 3,. . . ,9, 10) = U, 
A n A'= 0, (Af)'= (2,4,6,8, lo) '= (1,3,5,7,9) =A,  and A u  A = 
{1,3,5,7,9) = A n A. 

You should repeat this example by using other subsets of U, such as 
B = {l ,2,3)  and/or C = (3,4,6,8). Also, construct five Venn diagrams, 
corresponding to the five sets A u A', A n A', (A')', A u A, and A n A, 
derived from A. Note that each diagram should contain only one circle, 
labeled A, inside the rectangle corresponding to U. After doing these ex- 
ercises, you will probably agree with Conjecture 1. 

CONJECTURE 1 
Let X  be any set with universal set U. Then: 

(a) X  u X' = U 
(b) X  n X' = 0 
(c) X" = X  
(d) X u X = X  
(e) X n X = X  . 

Let us caution that statements (a) through (e) do not assume the status 
of theorem until we provide a rigorous mathematical proof of each. Even 
with verification of specific examples and the evidence provided by pictures, 
the possibility exists of an example for which the conjectured statement is 
false. Later in this article we comment further on weaknesses of "proof" 
by Venn diagram. 
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COMMUTATIVITY AND ASSOCIATIVITY 

EXAMPLE2 L e t U = ( 1 , 2 , 3  , . . . ,  9 , l O ) , A = { 2 , 3 , 5 , 8 ) , B = ( 1 , 2 , 5 , 6 ,  
7, 101, and C = (2,3,4,9, 10). Compute(A n B) n Cand A n (B n C). 

Solution The significance of parentheses is the signal they give to perform 
the operation inside them first, then operate further with the result of 
that first computation. Thus, to compute (A n B) n C, we first com- 
pute A n B = {2, 51, and then calculate the intersection of this result 
with C = {2,3,4,9, 10) to get (2). On the other hand, A n (B n C) is 
obtained by computing B n C = (2, 10) and then intersecting this set 
with A to get (2). In this particular example A n (B n C) = (2) = 
(A n B) n C. 

To test whether the equality of A n (B n C) with (A n B) n C for the 
three particular sets given in Example 2 was accidental (i.e., dependent 
on some special property of the given sets A, B, and C), or whether this 
equation might represent a candidate for a theorem (i.e., be true for any 
three sets), we construct two Venn diagrams as shown in Figure 1.7. 

These two diagrams were drawn independently of each other and by 
two different procedures. In the first diagram we shaded horizontally the 
region corresponding to B n C and then shaded circle A vertically; in the 
second diagram we shaded the A n B region and circle C. Yet the crucial 
region in both pictures (i.e., the "crosshatched" region) is the same in both 
diagrams, namely, the region common to all three circles. These pictures 
support the case that the equality of Example 2 represents a general property. 

You should be able to formulate further conjectures, based on the sets 
A, B, and C of Example 2, by computing the sets A n B, B n A, B u C, 
C u B, A u (B u C), and (A u B) u C and by constructing Venn diagrams 
corresponding to these sets. After carrying out these exercises, you should 
be ready to state Conjecture 2. 

Figure 1.7 Venn diagrams suggesting Conjecture 2( f ). 
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C O N J E C T U R E  2 
Let X, Y, and Z be any sets. Then: 

( f)  X n ( Y n Z ) = ( X n Y ) n Z  and X u ( Y u Z ) = ( X u Y ) u Z  
(g )  X n Y = Y n X  and X u Y = Y u X  

Developing the analogy between the algebra of sets and the algebra of 
numbers, we are led to view the equations in (f), once they've been proved, 
as associative laws for intersection and union of sets and those in (g) as 
commutative laws for intersection and union. An associative law involves 
one binary operation and is the basis for our ability to apply such an op- 
eration to three or more sets, rather than just to two. Specifically, the law 
tells us to apply the operation to the objects two at a time, starting at either 
end of the expression; the result will be the same whether we work left to 
right or right to left. The upshot of the associative laws for union and in- 
tersection is that the union of three or more sets consists of all the objects 
in any of the sets, grouped together within one set, while the intersection of 
three or more sets consists of the objects common to all the sets. Com- 
mutativity says that, in computing unions and intersections of two sets, the 
order in which the two sets are listed is irrelevant. 

DISTRIBUTIVITY 

Distributivity, familiar as a property of the real numbers, has its analogy 
in set theory. Unlike commutativity and associativity, distributivity in- 
volves two operations at a time within one equation. Over the real num- 
bers, the property that a(b + c) = ab + ac for all a, b, c E R is distributivity 
of multiplication over addition. By inquiring whether intersection distrib- 
utes over union, we would be asking whether there is a general equivalent 
way of expressing A n (B u C). Motivated by the associative law (in which 
a "shift" of parentheses leads to an identity), we could be tempted to con- 
jecture (wrongly, we will soon see) that A n (B u C) = (A n B) u C for 
any three sets A, B, and C. The following example explores this possibility. 

EXAMPLE 3 With U = (1, 2, 3,. . . , 9, 10)' let A = (2, 3, 5, 81, B = (1, 2, 
5,6,7, lo), and D = (8). Compute (A n B) u D and A n (B u D). 

Solution A n B = (2, 5) so that (A n B) u D = (2, 5,8), while B u D = 
{1,2,5,6,7,8,10) so that A n (B u D) = {2,5,8). In this example 
(A n B) u D and A n (B u D) are equal. 

The result of Example 3 supports our conjecture. Do you think that 
(X n Y) u Z = X n (Y u Z) holds for any three sets X, Y, and Z? Test 
this conjecture further by using the three sets A, B and C of Example 2. 
Also note the comparison of the Venn diagrams in Figure 1.8. In this case 
the regions in the two Venn diagrams do not correspond. This should 



1.3 ALGEBRAIC PROPERTIES OF SETS 33 

(A n B ) U C i s t h e  
shaded region 

~ ' n  (B U C) is the 
crosshatched region 

Figure 1.8 Venn diagram suggesting the falsehood of the conjecture 
"A n (B u C) = (A n B) u C, for any three sets A, B, and C." 

confirm your results for the sets ( A  n B) u C ( = {2,3,4,5,9, 10)) and 
A  n (B u C )  ( = (2,3,5)), calculated from Example 2. 

Thus the conjecture of the preceding paragraph is false. This illustrates 
the danger of believing a general conclusion too readily, based on only a 
few examples, and especially, without seeing a proof. It also leaves us with 
two problems: 

1. Are there valid distributive laws of set theory? 
2. Is there anything to be learned from exploring reasons why the two sets 

( A  n B) u D and A  n ( B  u D) were equal in Example 3? 

We discuss (1) immediately while deferring consideration of (2) until Ex- 
ample 4. 

We approach the distributive laws through an example from elementary 
algebra. The problem is to solve the inequalities x2 - 6x - 7 < 0 and 
13x - 11) 2 4 simultaneously. Using elementary algebra, we solve the in- 
equalities separately to get (- 1,7), and (- a), f] v [5, a)) respectively, as 
their solution sets. The simultaneous solutions are those real numbers that 
are common to both solution sets, that is, the elements of the set (- 1,7) n 
{(- co, $1 u 15, a))], a set having the form A  n (B  u C). By graphing this 
set along a number line, we obtain the result (- 1, f] u [5,7), gotten geo- 
metrically by intersecting (- 1,7) with the intervals (- co, 9 and [5, co) 
and taking the union of the resulting sets. Put another way, the solution 
set equals ((- 1,7) n (- a), $1) v {(- 1,7) n [5, oo)); that is, it equals 
( A  n B) u ( A  n C).  

The results of this example suggest the possibility that A n (B  u C)  = 
( A  n B) u (A n C) is the distributive law we are seeking. This equation 
resembles the distributive law for real numbers, a (b + c) = a b + a . c, if 
we substitute intersection for "times" and union for "plus," and so seems 
like a plausible candidate on that basis as well. 
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To get further evidence, you should test this equation by using sets A, B, 
and C of Example 2 and also by drawing Venn diagrams. The results of 
this work should support (although of course not prove) the conjecture 
that this equation, which asserts that "intersection distributes over union," 
holds for all sets X, Y, and 2. Can you write an analogous equation 
representing the statement "union distributes over intersection?Write 
this equation out, test it with sets A, B, and C of Example 2; then test it by 
drawing Venn diagrams. After doing all this, you should be ready for Con- 
jecture 3. 

C O N J E C T U R E  3 
Let X, Y, and Z  be any sets. Then: 

(h) X  n ( Y  u Z) = (X n Y) u ( X n  Z) 
(i) X u ( Y n Z ) = ( X u Y ) n ( X u Z )  

These equations, when proved, will be known as the distributive laws of 
set theory. 

DE MORGAN'S LAWS 

Thus far, we have not looked for any properties of sets that describe how 
complementation interacts with union and intersection. We might hope to 
find a property by which we could express the complement of the union 
(X u Y)' of two sets X and Y in terms of the complements X' and Y' of 
the individual sets, and similarly for (X n Y)'. The "obvious" guesses are: 

(X u Y)' = X' u Y' and (X n Y)' = X' n Y' 

As in previous situations, you should test these equations with some ex- 
amples. Compute (X u Y)', X' u Y', (X n Y)', and X' n Y' for the pairs of 
sets A and B of Example 2; do the same for sets A and C of the same ex- 
ample. Next, construct Venn diagrams corresponding to each of the four 
sets. 

On the basis of your work, you should not only have rejected the pre- 
ceding equations, but also should have discovered two replacement equa- 
tions that seem, on the basis of this evidence, to be promising candidates 
for theorems of set theory: 

C O N J E C T U R E  4 
Let X  and Y be sets. Then: 

( j )  (X u Y)' = X' n Y' 

(k)  (X  n Y)' = X' u Y' 

These equations, when proved, will be referred to as De Morgan's laws of 
h 
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THEOREMS INVOLVING A CONDITIONAL 

As we progress in abstract mathematics, we find that the most interesting 
theorems (and many interesting theorems of set theory in particular) do 
not have so simple a form as those we have conjectured thus far. Instead of 
the form "for any pair of sets X and Y, some relationship involving X and 
Y is true," the more complex form "for every pair of sets X and Y, if 
relationship (P) involving X and Y is valid, then so is relationship (Q) in- 
volving the same two sets" occurs more often as we advance further into 
the subject. The logical structure of statements will be the topic of Chapters 
2 and 3, and so we will not be too technical at this point. Rather, we will 
begin to explore this area by using examples and, especially, by recalling 
Question (2) from the discussion following Example 3, earlier in this article. 

EXAMPLE 4 Explain why the sets A, B, and D of Example 3 satisfy the 
relationship ( A  n B) u D = A n ( B  u D). 

Discussion In the paragraphs following Example 3 we found it to be 
false that (X n Y) u Z = X n (Y u 2) for any three sets X, Y, and Z. 
Thus we are led to inquire under what circumstances the preceding 
equation will be valid, given that it is not always valid. We look for clues 
to this from sets A, B, and D of Example 3. The equation (A n B) u D = 
A n (B u D) was valid for these three particular sets. What was so spe- 
cial about them? If we try to spot relationships (e.g., equality, subset, 
etc.) between pairs of these sets, we note that D c A is the only such 
relationship. Perhaps the previous equation turned out to be valid be- 
cause D was a subset of A. Putting it differently, we are now wondering 
whether we could find a subset X of A for which (A n B) u X does not 
equal A n (B u X). We can test this by trying subsets X of {2,3,5,8) 
other than (8) (which has already been tested). 4. 

For instance, if X = (3,5), then (A n B) u X = {2,5) u (3,5) = 
(2,3,5)=(2,3,5,8)n(1,2,3,5,6,7,1O)=An(BuX). O r , i f X =  
{2,3,8), then ( A  n B) u X={2,5) u {2,3 ,8)={2,3,5 ,8)={2,3,5 ,8)  
n {1,2,3,5,6,7,8, 10) = A n (B u X).  In these two cases, in which 
X is a subset of A, the equation (A n B) u X = A n (B u X), which is 
not generally true for any three sets, holds true. We could continue 
further, trying all possible subsets X of A and comparing (A n B) u X 
with A n (B u X) .  (Do you know how many such subsets there are? 
Counting problems such as this will be the subject of Article 1.5.) If we 
were to exhaust all these cases (try a few more for your own benefit, say, 
X = (3) or X = (2,8)), we would find that the equality of (A n B) u X 
with A n (B u X) always holds. 

Suppose then we want to state this officially as a conjecture. What is 
an elegant way of saying that, for any sets A and B, there is no subset 
X of A for which (A n B) u X does not equal A n (B u X)? In par- 
ticular, we would like a formulation that avoids the double negative of 
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standing of what the issues are, based on the following discussion, which 
is essentially an answer to the aforementioned Exercise 7. 

Using Remark 3 of Article 1.1 (defining X E A by "every element of X 
is also an element of A"), we could drgue (fallaciously) that (a (1,2) 
(letting A = (1,2) for concreteness) because there are no elements in (a 
and thus no elements of 0 that are also elements of {1,2}. On the other 
hand, we could reason (correctly, it turns out) that, for a set X to fail to 
be a subset of A, there must be an element of X that is not an element of A. 
Since X = 0 has no elements, this is impossible, so that 0 cannot fail to 
be a subset of A; that is, 0 G A. 

As for the second principle, we need only emphasize that, by definition, 
0 is the set containing no elements, so that 0 E 0 must be false. If it 
were true, then, for example, {2,4,6, 8, 10) u (21 would equal {2,4,6, 8, 
10, 0) rather than the correct (2,4,6,8, 10) (recall this question from 
Example 2, Article 1.2). Other important facts to note on this basis are that 
0 # ( 0 )  (the latter set has one element, the former has none) and (a # (0) 
(even though zero does equal the number of elements in (a). Furthermore, 
whereas (ZI E (ZI is false, (21 E {(a) is true. Think of /a as an empty box 
and ((a) as a box containing an empty box. The former is empty; the lat- 
ter is not empty for it contains something, an empty box! 

With these principles in mind, you should be able to convince yourself 
that the answers to the three questions posed at the start of this section are: 

1. False (if (ZI were an element of 0 ,  it would be true) 
2. False (since ( 0 )  # (a u ( 0 ) )  
3. True (since 0 E X for any set X, then (a E 9(X)  for any set X) 

We stated earlier that (a and U are at the "opposite ends of the spectrum." 
There are a number of senses in which this statement is accurate. One is 
that the two sets are complementary, that is, 0' = U and U' = 0. Another 
is an extension of a fact we just discussed. Just as 0 is a subset of any set, 
so is U a superset of any set (i.e., any set is a subset of U). Finally, the 
empty set equals the intersection of any set with its complement, whereas 
a universal set equals the union of any two such sets. 

-- -. 

Exercises 

1. Make a list of possible theorems of set theory suggested by the answers calculated 
in Exercises 1 through 5 of Article 1.2. 

2. Let U = (1,2,3, . . . ,9, 10). Find specific subsets A, B, C ,  and/or X of U that 
contradict (i.e., disprove) the conjectures listed here. For any subsets A, B, C, and 
X of U: . '4 

(a) A - ( B - . C ) = ( A  - B) - C  *(b) ( A  - B)'= A - B1 % 

(c) A - ( B 1 u C ) = ( A u B ) - C  (d) A A B = A u B  
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(e) B u (A - B) = A 
( f )  I f A n C c B n C , t h e n A ~ B  

*(g) I fX c A, then X u (A n B) = (X u A) n B 
(h) If A x B = A x C, then B = C 

Throughout Exercises 3 through 6Jet U = {1,2,3,. . . ,9, 10). Part (a) of each 
exercise calls for some experimentation with specific subsets of U, similar to that 
required in Exercise 2. 

3. (a)  Try to find a subsets A, B, and X of U with A and B distinct (i.e., A # B) 
such that A u X = B u X and A n X = B n X. Do not try any more than five 
combinations of the three sets. 

(b) Suppose that three sets of the type described in (a) are impossible to find (i.e., 
do not exist). Can you formulate an elegant statement of a theorem asserting this 
fact? (Note: If A = B, then surely A u X = B u X and A n X = B n X for any 
set X). 

4. *(a) Try to find subsets A, B, and X of U with A and B distinct, such that 
A n X = B n X and A n X' = B n X'. Do not try any more than five com- 
binations of the three sets. 

*(b) Suppose, as in Exercise 3(b), that three sets satisfying the description in (a) do 
not exist. Fomulate a well-stated theorem to this effect (noting that if A = B, 
then A n X = B n X and A n X' = B n X' for any set X). 

5. (a) Try to find subsets A, B, and Y of U, with A and B distinct and Y nonempty 
such that A x Y = B x Y. Do not try any more than five combinations of the 
three sets. 

(b) Suppose again that three sets of the type described in (a) do not exist. For- 
mulate a theorem that states this fact. 

6. (a) Try to find subsets A and B of U such that either A c B and A n B' # 0 
or A $ B and A n B' = 0. Do not try more than five combinations of the two 
sets. 

(b) Formulate an elegantly stated theorem describing the situation that two sets 
of the type described in (a) do not exist. 

7. (a) The equation a(b + c) = ab + ac, with a, b, and c real numbers, is the state- 
ment that multiplication of real numbers distributes over addition: 

(i) Write an equation that states that addition distributes over multiplication. 
(ii) Is the equation you wrote for (i) true for all real numbers a, b, and c? (i.e., 

Does addition distribute over multiplication?) Give an example in support 
of your answer. 

*(b) Use the distributive lai(h) of Conjecture 3 to calculate the simultaneous solu- 
tions to the inequalities in Example 3, Article 1.2. [Hint: Let X = (- m, -41 
u [I, m), Y = (- m, -4), and Z = (5, a). The simultaneous solutions are the 
elements of the set X n (Y u Z).] 

8. Calculate the set of all real numbers that satisfy at least one of the following four 
pairs of inequalities simultaneously: 

(a) IX - $1 > and x2 - 9x - 22 > 0 
(b) x2 - 3x - 28 1 0 and x2 - 9x - 22 1 0 
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(b) A U B is the shaded region 

Figure 1.9 

(c) x2 - 3x - 28 > 0 and Ix - $1 5 9 
(d) Ix - $1 I and Ix - 81 > $ 

9. One way of illustrating the relationship A r B by Venn diagrams would be to 
sketch the diagram, as shown in Figure 1.9a, with the understanding that a region 
bounded by a "broken" curve is empty and so should never be "shaded in." Thus 
we represent A u B in the preceding picture as shown in Figure 1.9b. Using this 
convention, illustrate the following theorems by Venn diagrams: 

(a) If X r B, then X u (A n B) = (X u A) n B 
(b) If A s B, then A u B = B (c) If A c B, then A n B = A 
(d) If A G B, then B = A u (B - A) (e) If A c B, then A n B' = 0 
lo.  Letting U = {1,2, 3 , .  . . ,9, lo), answer T or F for each of the following: 

(a) ( 0 )  r A for every set A (b) 0 E A for every set A 
(c) 0 G A for every set A (d) (21 E 9(A) for every set A 
(e) 0 r @(A) for every set A * ( f )  ( 0 )  E @(A) for every set A 
(9) ( ( 0 ) )  c @ ( 0 )  (h) ( 0 ) u 0 = { 0 )  
0) ( 0 > n 0 = 0  *(i) 0 5 @ ( W -  0 
(k)  9({0)) = {09 { 0 )  1 (1) {{09 m ,  {{011}1 

1.4 Theorems of Set Theory 
In this article we provide a lengthy list of selected theorems of set theory. The 
statement at this point that these results are "theorems," rather than only 
conjectures, represents our assertion that the statements are indeed true 
and our promise that we will be able to prove each of them once we address 
the topic of proof writing in Chapters 4 through 6. We list them at this 
stage primarily as a convenient reference for future work, and note that, 
until proofs are actually written, we must still regard these statements as 

L 
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"conjectures." You should already have conjectured, based on earlier ex- 
ercises, a large number of potential theorems. See which of your conjec- 
tures are included in the following lists. 

FACT 1 
The following basic laws of set equality or of subsets can be proved to be theo- 
rems of set theory. For all sets X, Y, and Z in any universal set U: 

1. X = X  (reflexive property of equality) 
2. X r X  (reflexive property of 

the subset relation) 
3. If X  = Y, then Y  = X  (symmetric property of equality) 
4. X  = Y  if and only if X  c Y  and Y  G X  (includes antisymmetric 

property of subset) 
5. If X  = Y  and Y  = Z, then X  = Z  (transitive property of equality) 
6.  If X  E Y  and Y  c Z, then X  E Z  (transitive property of 

the subset relation) 
7.  0 c x  
8. X c W  

FACT 2 
The following basic properties for union and intersection can be proved to be 
theorems of set theory. For all sets X, Y, and Z in any universal set U: 

9. X u X = X  
10. X n X = X  
11. X u @ = X  
12. X n  U = X  
13. X n @ = @  
14. X u U = U  
15. X u Y = Y u X  
16. X n Y = Y n X  
17. X u ( Y u Z ) = ( X u Y ) u Z  
18. X n ( Y n Z ) = ( X n Y ) n Z  
19. X c X u  Y  
20. X n  Y G X  

FACT 3 

(idempotent law for union) 
(idempotent law for intersection) 
(identity for union) 
(identity for intersection) 

(commutative law for union) 
(commutative law for intersection) 
(asso$iative law for union) 
(associative law for intersectiorl) 

The following basic properties for set complement can be proved to be theorems 
of set theory. For all sets X, Y, and Z in any universal set U: 

21. X" = X  (law of double complementation) 
22. X U  X' = U 
23. X n  X'= @ 
24. V = @  
25. a'= U 
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FACT 4 
The following distributive laws can be proved to be theorems of set theory. For 
all sets XI Y, and Z in any universal set U: 

26. X u (Y n Z) = (X u Y) n (X u Z) (union over intersection) 
27. X n (Y u Z) = (X n Y) u (X n Z) (intersection over union) 
28. X n (Y A Z) = (X n Y) A (X n z)  (intersection over symmetric 

difference) 

FACT 5 
The following basic properties of set difference can be proved to be theorems 
of set theory. For all sets X, Y, and Z in any universal set U: 

29. X-  Y =  X n  Y '  

30. X - @ = X  
31. 0- Y = @  
32. XI- Y ' =  Y - X 
33. (X- Y) - Z = ( X - Z )  - (Y -Z )  

FACT 6 
The following De Morgan's laws can be proved to be theorems of set theory. 
For all sets XI Y, and Z in any universal set U: 

34. (X n Y)' = X' u Y' 
35. (X  u Y)' = X' n Y' 
36. X- (Y u Z) = (X- Y) n ( X -  Z) 
37. X - ( Y n Z ) = ( X - Y ) u ( X - Z )  

FACT 7 
The following miscellaneous statements of equality or a subset relationship can 
be proved to be theorems of set theory. For all sets X, Y, and Z in any universal 
set U: 

X = (X u Y) n (X u Y') 
X = (X n Y) u (X n Y') 
(X n Y) u (X' n Y) u (X n Y') u (X' n Y') = U 
X u ( Y - X ) = X u Y  
(X - Y)' = X' u Y 
X A Y = Y A X  (commutativity of symmetric difference) 
X A (Y A Z) = (X A Y) A Z (associativity of symmetric difference) 
X A X = @  
x n u = x l  
X A @ = X  
X A  Y =  ( X u  Y) - ( X n  Y)  
Y x Q J = Q J x Z = @  
( X u Y ) x Z = ( X x Z ) u ( Y x Z )  
( X n Y ) x Z = ( X x Z ) n ( Y x Z )  
( X - Y ) x Z = ( X x Z ) - ( Y x z )  
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FACT 8 
The following statements of equivalence, that is, involving "if and only if," can 
be proved to be theorems of set theory. For all sets X and Y in any universal 
set U: 

53. X c Y if and only if Y' c X' 
54. X s Y if and only if X u Y = Y 
55. X E Y if and only if X n Y = X 
56. X c Y if and only if X - Y = 0 
57. X G Y if and only if X n Y' = (21 
58. X G Y if and only if X' u Y = U 

FACT 9 
The following statements of implication, that is, involving "if .  . . then," can be 
proved to be theorems of set theory. For all sets X, Y, and Z in any universal 
set U: 

59. If X G Y and X c Z, then X G Y n Z 
60. If X G Z and Y c Z, then X u Y G Z 
61. If X G Y, then Y = X u (Y - X) 
62. If X c  Z, then X u  (Y n Z) = ( X u  Y) n Z 
63. If X n  Y = X n Z a n d  X u  Y = X u Z ,  then Y = Z  
64. If X n  Y = X n Z a n d  X'n Y = X ' n Z ,  then Y = Z  
65. If X u  Y = X u Z a n d  X'u Y = X ' u Z ,  then Y = Z  
66. If X n Y = 0, then X A Y = X u Y 
67. If X x Y = X x Z and X # 0, then Y = Z 
68. If X x Y = Y x X, X # fa, and Y # 0, then X = Y 
69. If Y x Z = 0, then Y = 0 or Z = (21 

Exercise 

Compare the list of possible theorems of set theory compiled in Exercise 1, Article 
1.3, with the theorems stated in Article 1.4. 

--_ 

1.5 Counting Properties of Finite Sets (Optional) 
At various stages of an introduction to advanced mathematics, it is impor- 
tant to be acquainted with both certain formulas for counting the number 
of elements in finite sets and methods of proof known as counting arguments. 
The latter are important, for example, in abstract algebra, with the proof 
of the famous theorem of Lagrange from group theory a case in point. 
The material in this article may be familiar to readers who have studied 
elementary probability. 
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We emphasize that the content of this article is restricted to finite sets. 
We will deal with the question of relative size of infinite sets under the 
heading "cardinality of sets" in Article 8.3. 

REMARK 1 If S is a finite set, we use the symbol n(S) to represent the num- 
ber of e1ement.s in S, where n(0) = 0 and n(S) = k (for S # @ and k a 
positive integer) if and only if k is the positive integer having the property 
that the elements in S can be matched, in a one-to-one fashion, with the 
positive integers 1, 2,. . . , k. 

It is common to describe a finite set F of unspecified elements by such 
notation as F = (x,, x,, . . . , x,),  where it is understood that the k elements 
are distinct so that n(F) = k. 

FORMULA FOR n(A u B) 

If A and B are sets, then their union contains all the elements from each 
of the two sets, combined into a single set. If A and B were disjoint, then 
clearly n(A u B) would equal n(A) + n(B). But if an object x is contained 
in both A and B, it will be counted doubly in the preceding formula, once 
as an element of A and once as an element of B, even though it represents 
a single element in A u B. To avoid this overcounting of members of 
A u B, we must subtract from n(A) + n(B) the number of elements in 
A n B. Thus we arrive at Counting Formula 1. 

C O U N T I N G  F O R M U L A  1 
If A and B are finite sets, then n(A u 6)  = n(A)  + n(B)  - n(A  n B) .  

C O R O L L A R Y  
If A and B are disjoint finite sets, then n(A  u B)  = n(A)  + n(B).  

The latter result can be viewed as a corollary (i.e., consequence) of the first 
one, since if A n B = @, then n(A n B) = n(@) = 0. A rigorous approach 
to these results would require a proof of Formula 1 from some predetermined 
set of axioms and, in particular, a proof that does not use the result of the . 

corollary. Our goal in this article is to provide an intuitive, rather than a 
rigorous development, with emphasis on uses of the formulas rather than on 
their rigorous derivation. 

EXAMPLE 1 Thirty-six students are enrolled in either abstract algebra or 
advanced calculus. The enrollment in abstract algebra is 28, whereas 
advanced calculus has 24 students. How many students are enrolled in 
both these classes? 

Solution Let A be the set of students in advanced calculus, and B the set 
of students in abstract algebra. We wish to calculate n(A n B), knowing 
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that n(A u B) = 36, n(A) = 24, and n(B) = 28. By Counting Formula 1, 
n(A n B) = n(A) + n(B) - n(A u B) = 24 + 28 - 36 = 16. 0 

In Exercise 4 we consider the problem of extending Formula 1 to the 
union of three sets, while in Exercise 3 we see an application of Venn 
diagrams to solving more complex problems of the type represented by 
Example 1. 

FUNDAMENTAL COUNTING PRINCIPLE; n ( P ( A ) )  

Suppose, at registration for the fall term at a major university, a student 
must elect 1 course from among 12 humanities courses, 1 from among 5 
physical science courses, 1 from 6 social science courses, and either Math 
105 or Computer Science 100. How many ways are there for this student 
to select a slate of four courses? 

This problem is typical of those whose solution is given by Counting 
Formula 2. 

C 0 U N T l N G F 0 R M U L A  2 (Fundamental Counting Principle). 
If an activity can be carried out in exactly n, ways (n ,  a positive integer), and for 
each of these, a second activity can be carried out in n, ways, and for each of the 
first two a third activity can be carried out in n, ways, and so on, then the total 
number of ways of carrying out k such activities in sequence is the product 
n , n 2 . .  . n,. 

This principle is often illustrated by a tree diagram. In Figure 1.10 we 
use such a diagram to illustrate the choices of a student who must choose 
one of five physical science courses and one of two mathematical science 
courses. In this case n, = 5 and n, = 2; a representative tree diagram looks 
like the one in Figure 1.10. 

The fundamental counting principle predicts that the student has a total 
of n,n, = 5 x 2 = 10 possible choices; the prediction is confirmed by the 
tree diagram, where we label the physical science courses A, B, C, D, and 
E and the mathematical science courses X and Y. 

Figure 1.10 A tree diagram illustrating all possible 
choices in a practical problem. 
AX A Y  BX B Y C X  C Y D X  D Y E X  EY 
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In the problem posed just before the statement of Counting Formula 2, 
we have n, = 12, n, = 5, n3 = 6, n, = 2, and the total number of potential 
course elections is 12 x 5 x 6 x 2 = 720. Obviously, a tree diagram to 
depict this situation would require considerable space, time, and labor. 

It should be noted that, in order to apply the fundamental principle, we 
must be able to assume that choices made at various stages of the sequence 
do not limit, or otherwise affect, the possibilities for choices at different 
stages. In real life this may not be the case. Our student at fall registration 
may find that 4 of the 12 humanities courses create a time conflict with the 
mathematics class. In such a case the assumptions of Counting Formula 
2 do not apply so that, of course, the answer of 720 that it indicates is 
incorrect. 

EXAMPLE 2 How many 5-letter "words" can be formed from the 26 letters 
of the alphabet, if there are no restrictions on the use of letters? 

Solution Since we may use letters without restrictions (in particular, the 
repeated use of a letter in the same word is allowed), we apply the fun- 
damental counting principle with k = 5 and n, = n, = n, = n, = n, = 
26. The total number of words is then 26,. 0 

EXAMPLE 3 How many 5-letter words can be formed from the vowels A, 
E, I, 0 ,  and U, if each vowel can be used exactly once in a word? 

Solution As in Example 2, k = 5, since we must perform five activities to 
form a word, namely, choose the first letter, then the second, and so on. 
But in this case n, = 5, n, = 4, n3 = 3, n, = 2, and n, = 1. The reason 
is that once we have chosen the first letter, there are only four ways of 
choosing the second. Having chosen the first two letters, we have only 
three ways of choosing the third, and so on. Thus there is a total of only 
5 x 4 x 3 x 2 x 1 = 120 words in this case. 0 

Examples 2 and 3 are representative of two classes of counting problems 
whose solutions, although a consequence of the fundamental counting prin- 
ciple, are of sufficient importance to warrant separate presentation. 

COUNTING FORMULA 3 
The number of k-object arrangements that can be constructed from a set of n 
objects, if there are no restrictions on the number of uses of each of the n objects 
within an arrangement, is given by the formula nk. 

COUNTING FORMULA 4 
The number of n-object arrangements that can be constructed from a set of n 
objects, if each object can be used only once in each arrangement, is given by 
n(n - l ) (n - 2 )  . . (3)(2)(1).  Each such arrangement is called a permutation of 
the set of n objects. 
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The rationale behind Formula 3, as illustrated in Example 2, is that 
there are k activities to be performed and n ways of doing each of them, 
thus there is a total of "n multiplied by itself k times," or nk possibilities. 

The rationale behind Formula 4, illustrated in Example 3, is that n ac- 
tivities are to be carried out, with n ways of performing the first, n - 1 ways 
of performing the second, and so on. The problem described in Formula 
4 is often called computing the number of permutations of n things taken n 
at a time, abbreviated P(n, n). There is also a convenient shorthand notation 
for the quantity involved in Formula 4. 

REMARK 2 If n is a positive integer, we denote by the term n factorial, sym- 
bolized by the notation n!, the quantity (n)(n - l)(n - 2) . . (3)(2)(1). 
Finally, we define O! = 1. 

We may summarize the conclusion of Formula 4 by the equation 
P(n, n) = n!. 

EXAMPLE 4 Consider the nine digits 1,2, . . . ,8 ,9.  (a) How many nine-digit 
sequences can be built from these nine digits if no repeated uses of digits 
is allowed? (b) How many four-digit sequences, also with no repeats, 
are possible? 

Solution (a) This solution follows directly from Counting Formula 4, let- 
ting n = 9. That is, P(9,9) = 9! = 362,880. 

(b) For this problem we must return to the fundamental counting 
principle. There are nine ways of choosing the first digit, eight of choosing 
the second, seven of choosing the third, six of choosing the fourth, and 
we stop there. Thus there are a total of 9 x 8 x 7 x 6 = 3024 ways of 
forming such a sequence. Expressed in terms of factorial notation, the 
answer could be expressed as 9! divided by S!. 0 

The problem described in Example 4(b) is one of counting the number of 
permutations of n objects (n = 9) taken r at a time (r = 4), and is denoted 
P(n, r). We may summarize the conclusion of Example 4(b) by the equation 
P(n, r) = n!/(n - r)!, 0 5 r 5 n. 

Counting formulas 3 and 4 are the basis of our ability to find counting 
formulas for three very -important situations involving finite sets, namely: 

(a) If n(A) = m, and n(B) = m,, what is n(A x B)? 
(h) If n(A) = m, what is n(P(A))? 
(c) If n(A) = m, what is the number of "k-element subsets" of A, where 

O ~ k s m .  

Discussion (a) A x B consists of all ordered pairs of the form (a, h) where 
a E A and b E B. Clearly there are m, ways of choosing the first entry 
in an ordered pair and, for each of these, there are m, ways of choosing 
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- - - ------------- - - 
a1 a2 a3 am-1 am 

Figure 1 .I 1 A device for representing pictorially the possible 
subsets of an m-element set. 

the second. By the fundamental counting principle there are m,m, ways 
of selecting a first entry, followed by a second. Thus n(A x B) = n(A)n(B). 

(b) The calculation of n(9(A)) involves our first clever (!) use of count- 
ing principles. We have a set A with m elements; we wish to count its sub- 
sets. How can we do this? We approach the problem by writing m blank 
spaces in a row, one space for each of the m objects in A, which we, in 
turn, represent by the symbols a,, a,, . . . , a,, as in Figure 1.1 1. Having 
done this, we represent a subset X of A by a string of m zeros and ones, 
where we write 1 in the kth place if a, E X and 0 in the kth place if 
a, 6 X. The string 100 - - 000 thus represents the subset {a,); the string 
1 1 1 1 1 represents A itself; the string 000 . 00 represents 0 .  Clearly 
there is a one-to-one match-up between the subsets of A and the possible 
strings of m zeros and ones. (The details of this match-up constitute the 
technical part of the argument if a very formal approach is taken. We 
do not deal with these formalities here.) Thus we have shifted the original 
problem to one covered directly by Counting Formula 3, with k = m 
and n = 2 (the two objects are the symbols 0 and 1). The answer, then, 
is nk = 2'". 

Let us check this result with some familiar examples. If A = 0, then 
m = 0, so we expect that n(9(A)) = 2' = 1. Indeed, 9(A) = {(a) which 
has one element. If A = ( 0 ,  {@} }, then n(A) = 2, so we expect n(9(A)) = 
2, = 4. In fact, 9(A) = { a ,  A, {@I, {{0))), so that theory again pre- 
dicts the actual result! One final note: The power set of a finite set 
must be finite (recall Exercise 9(c), Article 1.1). 

(c) The number of k-element subsets of an m-element set is often 
called the number of combinations of m things taken k at a time, abbre- 
viated C(m, k). We will arrive at a formula for C(m, k), in terms of fac- 
torials, by using what we already know about permutations together 
with the fundamental counting principle. Suppose, for example, we wish 
to count the number of five-letter words that can be formed from the 
letters A, B, C, D, E, F, G, and H, with no repeated letters allowed. On 
the one hand, we know that there are P(8, 5) = 8!/(8 - 5)! = 8!/3! = 
8 x 7 x 6 x 5 x 4 = 6720 such words. But we can also arrive at such 
a word by first choosing five letters in no particular order [in one of 
C(8,S) possible ways] and then counting the number of possible arrange- 
ments of those five letters [which is P(5, 5) = 5! = 1201. By the funda- 
mental counting principle, the product C(8,5) times P(5,5) should be 
the number of words, namely, P(8,5) = 6720. Hence the unknown C(8,5) 
must equal P(8, 5) divided by P(5, 5), or 8!/3!5!. For a general m and 
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k (0 5 k 5 m), this becomes C(m, k) = P(m, k)/P(k, k) = m!/(m - k)!k!. 
This is the formula for the number of k-element subsets of an m-element 
set. Let us again try a few special cases. If k = 0, then C(m, 0) = 
m!/m!O! = 1. The empty set is, of course, the only zero-element subset 
of an m-element set! If k = 1, then C(m, 1) = m!/(m - 1)!1! = m. An m- 
element set has exactly m singleton subsets! 

We summarize the results of the preceding discussion in Counting 
Formulas 5. 

COUNTING FORMULAS 5 
Let A and B be finite sets. Then: 

(a) n(A x B) = n(A)n(B) 
(b) If n(A) = m, then n(.iP(A)) = 2". 
(c) If n(A) = m, then the number of k-element subsets of A (0 I k I m) is 

given by C(m, k) = m!l(m - k)!k!. 

EXAMPLE 5 Suppose U = (1,2,3,.  . . ,9,10). How many cases are cov- 
ered by the statement of the associative law for union of sets, that is, 
A u ( B  u C) = (A u B) u C for all subsets A, B, and C of U? 

Solution. The question is one of counting the number of ways of choosing 
three particular subsets of the ten-element universal set. By Counting 
Formula 5, part (b), there are 2'' = 1024 ways of choosing the set A. Since 
repeated use of sets is clearly appropriate, there are again 2'' ways of 
selecting B and 2'' ways of taking a set C. By the fundamental counting 
principle, with k = 3 and n, = n, = n, = 21°, there are = 230 = 

(1024)3 cases of the associative law, for a universal set of ten elements. 
0 

EXAMPLE 6 A student at registration for fall term must select 4 courses 
from a total of 25 available courses. How many choices of 4 courses 
does the student have? 

Solution This problem is a direct application of Formula 5(c), with m = 
25 and k = 4. The total number of choices is C(25,4) = (25)!/(21)! 4! = 

25 x 23 x 22 = 12,650. 0 

Compare the answer to Example 6 with the answer of 720 to the problem 
that immediately preceded Counting Formula 2. There is a relationship be- 
tween the two problems. Can you explain why the answer to the second 
problem should be so much larger than the answer to the first? 

There is much more that can be done with the theory of finite counting, 
including the theory of finite probability. Some additional information is 
contained in the exercises for this article. Our primary interest in counting, 
however, is that it serve as an aid in mathematical reasoning and especially 
in the writing of certain mathematical proofs. Another purpose is that the 
answer to certain counting problems can shed light on the value of general- 
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ization in mathematics. Example 5 showed that, even when the universal 
set is relatively small, the number of cases included by a well-known theo- 
rem of set theory is quite large. An abstract proof, of course, establishes 
the truth of the theorem in all these special cases and eliminates the need 
to count, or otherwise consider, the individual cases. See Exercises 9 and 
1 l(c) for other similar examples. 

If you are interested in further exposure to this branch of mathematics, 
you should refer to texts in areas such as probability and combinatorial 
mathematics. 

Exercises 

1. Find n(A) where A = 

2. The faculty of 34 at a local college has invested its retirement contributions in 
either the stock fund or the money market fund. There are 22 with money in the 
stock fund and 27 with money in the money market fund. How many have invested 
a portion of their money in both funds? 

3. An inspection of 63 automobiles available for sale at a local dealership revealed 
that 41 had air conditioning, 31 had cruise control, and 37 had tilt wheel. Also, 27 
have both air conditioning and cruise control, 18 have cruise control and tilt wheel, 
whereas 30 have air conditioning and tilt wheel. Finally, 18 have all three options. 
How many of the cars have none of the options? (Hint: Construct a Venn diagram 
based on three circles. Insert numbers into as many of the eight regions induced 
by the three circles as the preceding data provide for.) 

4. Find a formula for n(A u B u C), analogous to the formula (Counting Formula 
1) for n(A u B). [Hint: Review the reasoning used to justify the formula for n(A u B). 
Your answer should involve n(A), n(B), n(C), and n(various intersections of these 
sets).] 

5. (a) How many committees, with at least one member, can be formed from a club 
with eight members? 

*(b) How many three-person committees can be formed from the club in part (a)? 
five-person commit tees? 

(c) How many ways are there of selecting a president, vice-president, and secretary 
from the club in part (a)? 
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8. (a) How many 5-card poker hands can be dealt from a deck of 52 cards? 
*(b) If five cards are dealt consecutively from a standard deck, how many ways are 

there to deal first an ace, second a seven, third an eight, fourth a ten, and fifth 
a face card? 

(c) How many 13-card bridge hands can be dealt from a deck of 52 cards? 

7. (a) How many sets of ten answers to ten questions on a true-false test are 
possible? 

(b) How many ways are there to respond to eight questions on a multiple-choice 
test if each question has four choices? 

(c) How many ways are there to match the first ten letters of the alphabet with 
the integers 1 through 10 on a column-matching test? 

8. (a) How many pairs of names consisting of a female name followed by a male 
name can be formed from a list of eight female and five male names? 

(b) How many automobile license plates can your state issue, using its current 
format for such plates? 

9. Suppose U = (1,2,3, . . . ,9, 10). How many particular cases are encompassed 
by the theorems: 

(a) A n (B u C) = (A n B) u (A n C) for all subsets A, B, and C of U? 
*(b) A = (A n B) u (A n B') for all subsets A, B of U? 

10. Numbers of the form C(n, k) = n!/k!(n - k)! (0 5 k 5 n) are of considerable im- 
portance. In particular, the alternative notation a, called the binomial coefficient of 
n over k (or else simply n choose k), is used to denote this quantity (the name 
comes from the binomial theorem whose statement involves binomial coefficients). 
(a) Let n = 10 and k = 0, 3, 4, 6, 7, 10, and verify for these cases the formulas: 

(b) Formula (i) of part (a) suggests that, for example, the number of three-element 
subsets of an eight-element set equals the number of five-element subsets of that 
set. Describe a general way of constructing a "one-to-one match-up" between 
the k-element subsets of an n-element set and the (n - k)-element subsets of that 
set? 

11. (a) Find a formula relating 2" to the binomial coefficients of the form 0, k = 
0,1,2,. . . , n, where n E N. [Hint: Keep in mind that 2" is the total number of 
subsets of an n-element set, whereas (I;) gives the number of k-element subsets 
of that set, for each k = 0, 1,2,. . . , n.] 

(b) Verify your formula from part (a) of this exercise for the case n = 10. 
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Figure 1.12 
* 

a 

b 

C 

(c) Let U = (1,2,3, . . . ,9, 10). Use the formula from part (a) of this exercise to 
calculate the number of specific cases encompassed by Conjecture 5, Article 1.3. 
I f X  E Y , t h e n ( Y n Z ) u X =  Y n ( Z u X ) .  

a b c  

12. Suppose we wish to construct a multiplication table, as in Figure 1.12a, based 
on ,a three-element set S = (a, b, c) . We define the "product" x * y of two elements 
in S by entering a symbol in the box corresponding to the row of x and the column 
of y. Thus Figure 1.12b indicates that a * b = c. Assuming that only the symbols 
a, b, and c may be used to fill each of the empty boxes in Figure 1.12b: 

*(a) How many possible ways are there to construct such a table? 
*(b) How many such tables can be constructed if * must be bbcommutative"; that 

is, if x * y = y * x for all elements x, y E S? 
(c) How many tables are possible if none of the symbols a, b, and c can be used 

more than once in any row? 
(d) How many tables are possible if no symbol can be used more than once in 

any row and once in any column? 

(a) 



Logic, Part I: 
The Propositional 

Calculus 
CHAPTER 2 

Consider the sentence "Mathematics is a complicated subject, and in order 
to study mathematics, we must accept the fact that many mathematical 
concepts cannot be formulated in a simple manner." In addition to ex- 
pressing ideas that are true (a reason students of junior-senior level mathe- 
matics must be well grounded in logic), this sentence provides an example 
of the object that is central to the study of logic, the statement, and, in 
particular, the compound statement. 

Statements, or declarative sentences, are basic to all human communica- 
tion, and are not specific to mathematics. But there are few areas of en- 
deavor in which precise command over the structure of statements is as 
critical as it is in mathematics (the law might be one example). Mathematics 
is full of subtleties, of fine distinctions and complicated formulations. Take, 
for example, the epsilon-delta definition of the limit of a function: Iff  is 
defined on an open interval containing a real number a, and if L is a real 
number, then we say 

L = lim f(x) if and only if, for every E > 0, there exists 6 > 0 
x-'a 

such that whenever 0 < Ix - a1 < 6, then (f(x) - L I  < E 

This definition is of crucial importance in mathematical analysis. But even 
though most students are exposed to it early in their first calculus course, 
few come to appreciate its meaning until much later, and many never do. 

Why is this definition perceived as formidable? Why, for instance, would 
it be beyond most calculus students to describe, in terms of epsilons and 
deltas, what it means for L not to equal lim f(x) as x tends to a? [Can you, 
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at this point, write a positive statement corresponding to L # lim,,, f(x)? 
If not, you will find a detailed consideration of this problem in Article 4.3.1 
One reason is that this definition contains three instances of quantijiers, 
that is, the phrases "for every" and "there exists." Another reason is that a 
major part of the definition is a conditional, that is, a statement of the form 
"if. . . then." The heavy use of quantifiers and the use of connectives (such 
as "and," "or," and "if.. . then") are part of the normal vocabulary of 
mathematicans, but these are not nearly so prevalent in everyday usage. 
Facility with this mode of expression, then, doesn't come naturally; it must 
be acquired. 

Fortunately, this ability is more science than art. Gaining it is not 
strictly a matter of experience and intuition, although both help. There 
are specific rules for dealing with compound statements, which fall under 
the heading of the propositional calculus and the predicate calculus. The 
former is about compound statements (e.g., "either 2 # 3 or 2 + 3 = 4") 
and connectives, and will be studied in this chapter. The latter studies 
open sentences, or predicates (sentences containing an unknown, as in 
"1x2 - 161 < 4" or "f is a continuous function") and the modification of 
such expressions with various combinations of the two quantifiers described 
earlier. This is the subject of Chapter 3. Many of the theorems of logic 
presented in these two chapters are the basis of theorem-proving strategies 
in mathematics we use throughout the remainder of the text. We will take 
specific note of such strategies as they arise in these two chapters. Then, 
in Chapter 4 we will focus on several immediate applications of principles 
of logic, as we begin our emphasis on the writing of proofs. 

Historically, the development of symbolic logic traces back primarily to 
the work of the nineteenth-century British mathematician George Boole, 
after whom Boolean algebra, an important branch of symbolic logic, is 
named. 

2.1 Basic Concepts of the Propositional Calculus 
Consider the assertions "sin 2n = 1" and "the function f(x) = sin x is 
periodic." From trigonometry, we know that the first is false, whereas the 
second is true. But what about sentences such as "sin 2n = 1 and the sine 
function is periodic" or "if sin 2n = 1, then the function f(x) = sin x is 
periodic"? The truth or falsehood of these compound sentences, it turns out, 
depends on the truth or falsehood of their component simple sentences and 
on characteristics of the connective involved in the compound sentence. In 
this article we begin to study the precise nature of this dependence. 

STATEMENTS OR PROPOSITIONS 

DEFINIT ION 1 
A statement, or proposition, is a declarative sentence that is either true or 
false, but is not both true and false. 
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The designation T(true) or F(false), one and only one of which is assignable 
to any given statement, is called the truth value of that statement. 

EXAMPLE 1 The following are statements: 

(a )  The moon is made of green cheese. 
(b )  (e")2 = e2". 
(c) 6 is a prime number. 
( d )  February 5, 1992 falls on a Wednesday. 
(e) The millionth digit in the decimal expansion of a is 6. 

Discussion Statements (a) and (c) are clearly false (i.e., have truth value F), 
whereas (b) is true. The truth values of statements (d) and (e) are not 
so evident, but are determinable; item (d), for instance, is true. In con- 
nection with (e), it is important to understand that we need not know 
specifically whether or not a statement is true in order to label it a 
statement. It is only in recent years, with the advent of high-speed com- 
puters, that it has become practical to find the answer to such questions. 

0 

EXAMPLE 2 The following are not statements: 

(a) Is equal to e2"? 
(b )  If only every day could be like this one! 
( c )  Every goople is an aardling. 
( d )  2 + 3i is less than 5 + 3i. 
(e) x > 5 .  
(f) This proposition is false. 

Discussion Items (a) and (b) fail to be statements, because they are inter- 
rogative and exclamatory sentences, respectively, rather than declarative. 
Item (c) fails, sinpe some of its words are not really words, but rather, 
nonsense collections of letters. Item (d) fails for the same reason as (c), 
but in a more subtle and purely mathematical way. We will see in 
Chapter 9 that there is no notion of "less than" or "greater than" between 
pairs of complex numbers, so a statement that one is less than another 
is meaningless. 

Item (e) is an important example. It is not a statement, but rather, 
it is an open sentence or predicate, the topic of the next chapter. It is 
neither true nor false since it contains a variable, essentially an "empty 
place" in the sentence. A predicate becomes either true or false, and thus 
a statement, when we either quantify it or substitute a specific object 
for its variable. A less clearcut example related to item (e) is a sentence 
such as x(x + 4) = x2 + 4x. Strictly speaking, this sentence is a pre- 
dicate. Yet, because it is true for any possible substitution of a real 
number for x, it is common practice to say "x(x + 4) = x2 + 4x" when 



2.1 BASIC CONCEPTS OF THE PROPOSITIONAL CALCULUS 55 

we mean "for every x, x(x + 4) = x2 + 4x," and treat the former as a 
(true) statement. You should adopt the strict point of view whenever 
this issue arises in the exercises for this article. 

Item (f) may remind you of Exercise 10, Article 1.1, since it involves 
a paradox. At first glance, it may appear to be a statement. But if it's 
true, then it must be false (Why?), and if it's false, it must be true. In 
other words, if it's either true or false, then it must be both true and 
false; but this violates the definition of "statement." 0 

Another situation worth mentioning in connection with Example 2 is 
sentences whose truth or falsehood depends on the time at which they are 
uttered. Tn the strictest sense, a sentence like "today is Monday" might 
be regarded not to be a statement, because "today" is a variable (like x in 
the inequality x > 7). The same can be said for "it is raining," and "the 
current Speaker of the U.S. House of Representatives is a Democrat." But 
often in practice, when such sentences are used in everyday discourse, there 
is a great deal of unspoken, but solidly understood, background material 
(involving implicitly either substitution or quantification) that renders the 
sentence clearly true or false, and thus "a statement when used in context." 
Therefore when you say "it is sunny outside," you are usually saying 
something that, in that specific time and place, can be confirmed or refuted. 
It is interesting to note that this problem doesn't arise in sentences with 
purely mathematical content; perhaps this can be regarded as a manifesta- 
tion of the timelessness of mathematics. 

COMPOUND STATEMENTS AND LOGICAL CONNECTIVES 

All the statements in Example 1 were simple statements not composed in 
any way of other statements. The propositional calculus is about compound 
statements consisting of two or more component statements, joined by one 
or more logical connectives. 

The propositional calculus is to statements what ordinary algebra is to 
numbers. In algebra we use variables x, y, z, etc., to represent numbers; 
in the propositional calculus we use letters in lower case, such as p, q, and 
r to represent statements. In algebra we have operations such as "plus" and 
"times" that allow us to combine numbers to get a new number; in the 
propositional calculus we have logical connectives, represented by symbols 
such as v ,  A ,  and +, by which we can combine statements to get a new 
statement. Thus if p and q are statements, then p v q and q -, p, for instance, 
will also be statements, compound statements in fact. It is important to 
realize that the truth value of a compound statement will depend on the 
truth values of its component statements only (in a manner prescribed by 
the connective involved) and not on the compound statements themselves. 
Thus to know whether a statement of the form p A q is true, we need only 
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know the truth values of p and q, and not p and q themselves. Clearly then, 
the connectives are crucial. We deal in this article with the five most 
common logical connectives, "and," "or," "not," "if . . . then," and "if and 
only if." We define each connective by specifying when a compound 
statement involving it is true. We begin with negation, conjunction, and 
disjunction. 

NEGATION, CONJUNCTION, AND DISJUNCTION 

DEFINITION 2 
Given statements p and q, we define three statements formed from p and q. 

(a) The negation (or denial) of p, denoted --p and read "not p," is true precisely 
when p is false. 

(b) The conjunction of p and 9, denoted p~ q and read "p  and q," is true 
precisely when p and q are both true. 

(c) Thedisjunction (or alternation) of p and 9, denoted p v q and read " p  or q," 
is true when one or the other or both of the statements p and 9 is (or are) true. 

If p represents the statement "5 is a prime number" (true) and q the state- 
ment "5 times 9 equals 46" (false), then the statement - p  (5 is @ a prime 
number) is false, the statement -q (5 times 9 does not equal 46) is true, and 
p A q is false (since q is false), but p v q is true (since p is true). 

Although our definition of "and" corresponds to its normal usage in 
English, the same is not true of "or." Everyday usage of or is "one or the 
other, but not both" (exclusive alternation). The alternation we've defined, 
often called the mathematical or, is inclusive, corresponding to "and/orm in 
English. 

When dealing with expressions such as -p, p A q, and p v - q, in a case 
where p and q are variables representing unknown statements with un- 
known truth values, we refer to these expressions as statement forms. A state- 
ment form becomes a statement when a specific statement is substituted 
each of its unknowns (the latter sometimes referred to as components). As it 
stands, a statement form is neither true nor false; indeed, our immediate 
interest is to determine under what truth conditions a given statement form 
is true and when it is false. The most convenient device for illustrating the 
truth values of a compound statement form under the various possible 
truth conditions is the truth table. We construct truth tables for the three 
previously defined connectives in Figure 2.1. 

These truth tables may well be thought of as the definitions of the con- 
nectives "not," "and," "or." Note that each row of a truth table specifies a 
particular combination of truth values of the component(s); hence the num- 
ber of rows equals the number of possible combinations of those truth 
values (see Exercise 2). We see tables with two and four rows in Figure 2.1; 
another situation occurs in the following example. 
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Figure 2.1 Truth tables for negation, conjunction, and disjunction. 

EXAMPLE 3 Determine under what truth conditions the statement form for 
the compound statement "Either St, sin xdx # 0 and d/dx(Zx) = ~ 2 " ~ '  
or p, sin x dx = 0 and in 6 = (In 2)(ln 3)" is true. Is the statement itself 
true or false? 

Solution Let p represent the statement "p, sin xdx = 0," so that 
''P "_. sin x dx # 0 corresponds to - p. Let q symbolize "d ld~(2~)  = 
x2"- '" and let r denote "ln 6 = (In 2)(ln 3)." The main connective in the 
given compound statement is "either . . . or." The two statements joined 
by this disjunction are themselves compound, each involving the con- 
nective "and." Specifically, the latter two statements, in symbols, have the 
form -p A q and p A r. To signify that v is the main connective, we 
use (as in the algebra of numbers) parentheses around the expressions - p A q and p A r, arriving finally at ( - p A q) v (p A r) as the symbolic 
form of the given statement. 

We must next construct a truth table for this statement form. The first 
three columns should be headed by p, q, and r, whereas the last column 
(farthest to the right) has at its head the statement form (-p A q) v (p A r) 
itself. Intermediate columns need to be provided for any compound 
statement forms that occur as components of the final statement form, 
in this case - p, -- p A q, and p A r. The number of rows is the number 
of possible truth combinations of thgcomponent statement forms p, q, 
and r. Based on Exercise 2, our table should have eight rows; based on 
the number of column headings we've noted, it requires seven columns, 
as shown in Figure 2.2. 

Note that the truth values in column 5 were obtained with reference 
to columns 2 and 4 (linked by conjunction); column 7 resulted from col- 
umns 5 and 6 (linked by disjunction). Finally, notice that the statement 
form is true in fpur of the eight cases, namely, those in which either p 
and r are both true (rows 1 and 2), or p is false and q is true (rows 3 and 
7). Only one of the eight cases, of course, corresponds to the situation 
of our original example, namely, row 6 (Why?). The original compound 
statement in this example is false. 0 
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Figure 2.2 The statement form (-p A q) v (p A r) is true in some 
cases, false in others. 

Exercises 

1. Which of the following are statements? (In some cases the best answer may be 
"a statement only if a specific context is understood."): 

(a) 4 + 3 = 7 .  (6) 5 - 7 > 0. 
*(c) All men are mortal. (d) What day is today? 

(e) What a surprise! ( f )  sin2(3z/2) + cos2(3n/2). 
(g) sin2 x + cos2 x = 1. (h) sin2(0) + cos2(0) < 1. 

*( i)  Today is not Friday. (j) x 2 + 6 x + 9 = O .  
* (k)  x2 + 6x + 9 = (x + 3)2. (I) f is continuous at a. 

(m) The day after Tuesday is Wednesday. 
(n) This book has a red cover. 
(0) Is there any real-valued function of a real variable that is continuous every- 

where and differentiable nowhere? 
/ (p) If yesterday was Wednesday, then today is Thursday. 

/' 

(q) The baseball world series champions are in the American League. 
( r )  The Baltimore Orioles are in the American League. 
(s) The president of the united States is a Republican. 

2. (a) Set up an explicit one-to-one matching between the rows of a truth table 
for a statement form in n variables, say, p,, p,, . . . , p,, and the set of all subsets 
of the set {PI, P2, . . , P,}. 

(b) On the basis of (a) and Counting Formula 5(b), Article 1.5, how many dis- 
tinct rows are there in a truth table for a statement form in n variables? 

3. Construct a truth table for each of the following statement forms: 
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4. Determine whether each of the following statements is true or false, based on 
the truth or falsehood of the component simple statements. (Note: Unlike what 
was done in Example 3, you need not construct complete truth tables. You should, 
however, express each statement in symbolic form, as we did in the first paragraph 
of the solution to Example 3.) 
(a) It is not the case that 5 is not an odd integer. 
(b) Either the derivative of a linear function is its slope or the moon is made 

of green cheese. 
(c) e = lim,,, (1 + l/x)" and l/e = lim,,, (1 - llx)" 

*(d) The sum of two even integers is even and it is not the case that the product 
of two odd integers is odd. 

(e) Either 2 # 5 and the sine function is an even function or it is not the case 
that every real number has a multiplicative inverse, that is, reciprocal. 

* ( f )  It is not the case that April, September, and Wednesday are names of 
months. 

*(g) April is not the name of a month, and September is not the name of a month, 
and Wednesday is not the name of a month. 

(h) Either April, September, or Wednesday is not the name of a month. 
(i) It is not the case that either April, September, or Wednesday is the name of 

a month. 
(j) It is not the case that either April and September are not names of a month 

or Wednesday is the name of a month. 

2.2 Tautology, Equivalence, the Conditional, 
and Biconditional 

The compound statement form ( - p  A q) v ( p  A r)  of Example 3, Article 2.1, 
turned out to be true under some truth conditions and false under others. 
We occasionally refer to such a statement form as a contingency. Statement 
forms that are always true or always false are of particular importance. 

DEFINIT ION 1 
A statement form that is true under all possible truth conditions for its com- 
ponents is called a tautology. A statement form that is false under all possible 
truth conditions for its components is called a contradiction. 

EXAMPLE 1 Show that the statement forms p v - p  and p  A - p  are, res- 
pectively, a tautology and a contradiction. 

Solution We demonstrate this by means of truth tables. Since only 
one unknown is involved in each statement form, our table will require 
only two rows. For the sake of compactness, we use a single table for 



60 LOGIC, PART I: THE PROPOSITIONAL CALCULUS Chapter 2 

Figure 2.3 The statement form p A - p  
is always false, whereas p v - p is always 
true. 

F T 

both statement forms. Column 3 of the table in Figure 2.3 consists en- 
tirely of F's and column 4 solely of T's, as claimed. 0 

Can you think of any other examples of tautologies or contradictions by 
using the three connectives -, v , and A available to us so far? (Hint: One 
occurred in Exercise 3, Article 2.1 .) Another possible idea is that we can 
always generate a contradiction if we know a tautology, by negating that 
tautology, and vice versa. What new examples are suggested by this 
comment? 

A large part of our study of statement forms concerns relationships 
among various forms. One such important relationship is given by the next 
definition. 

DEFINITION 2 
Two compound statement forms that have the same truth values as each other 
under all possible truth conditions for their components are said to be logically 
equivalent. 

EXAMPLE 2 Show that the statement forms -(pvq) and - P A  -q are 
logically equivalent. 

Solution We do this by constructing a truth table of four rows and seven 
columns, as shown in Figure 2.4, noting that the entries in the columns 

/' 
headed by - p A - q and - (p v q) are identical. 

Figure 2.4 The statement forms - p A - q and - ( p  v q) have the same 
truth values as each other, under all possible truth conditions. 
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A consequence of Example 2 is that, if one person claims 

and if another claims 

It is not the case that either {-1,O) n (0, 1) = (0) or 
(- 17 0) n (0, 1) = % 

they are both saying the same thing; thus they are either both right or both 
wrong. The first statement has the form - p A - q, whereas the second is 
structured -(p v q) (What is p? What is q?), two statement forms that we 
have seen in Example 2 to be logically equivalent or the same in a logical 
sense. Note that both are wrong in their claims since p and q are both true 
(row 1 of the table in Figure 2.4). 

The main role in mathematics of logical equivalence lies in the idea, 
implied in the previous paragraph, that two logically equivalent statement 
forms can be thought of as "the same," from the point of view of logic, and 
so are interchangeable. Thus if we must prove a statement whose form is 
p, and find it easier to prove q, where q is logically equivalent to p, then 
we may prove p by proving q. We will see numerous applications of this 
principle later in the text. 

Can you give other examples of logically equivalent statement forms 
using only three connectives -, v , and A ? Think about this question; 
then see Exercise 3, Article 2.1, and Theorem 1, Article 2.3. 

THE CONDITIONAL AND BICONDITIONAL 

Very few statements with significant mathematical content that are easily 
understandable can be formulated by using the connectives and, or, and 
not alone (see, however, Exercises 10 and 11, Article 2.3). As noted earlier 
in this chapter, most theorems have the form "if. . . then" or "if and only 
if," while every definition, by nature, admits an "if and only if" formulation. 
Thus we are led to Definition 3. 

D E F I N I T I O N  3 
Given statements p and 9, we define: 

(a) The statement p implies q, denoted p -+ 9, also read "if p, then 9," is 
true except in the case where p is true and 9 is false. Such a statement 
is called a conditional; the component statements p and 9 are called the 
premise and conclusion, respectively. 

(b) The statement p if and only if q, denoted p t, 9, also written "p i f f  9," 
is true precisely in the cases where p and q are both true or p and q are 
both false. Such 

The truth tables for 

a statement is called a biconditional. 

these two connectives are given in Figure 2.5. 
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Examples of conditionals include: 

1. If I finish my work, I go out on the town. 
2. If 2 + 2 = 5, then (0, 1) G (0, 1). 
3. If 2 + 2 = 4, then 5 is not a prime number. 

Figure 2.5 Truth tables for the conditional 
and biconditional. 

Examples of biconditionals include: 

P f-' 4 
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T 

P 
-- 

T 

T 

F 

F 

4. 3 is odd if and only if 4 is even. (true) 
5. 7 + 6 = 14 if and only if 7 times 6 equals 41. (true) 
6. A triangle has three sides if and only if a hexagon has (false) 

seven sides. 

Students generally find the conditional to be the least intuitive of all the 
connectives. One reason is that normal usage of "if. . . then" presupposes 
a causal connection between the premise and the conclusion, as in (1). Sen- 
tences such as (2) and (3) seem somehow unnatural, perhaps not even worthy 
of being regarded as statements. But in applications of the propositional 
calculus to mathematics, it is crucial that p -+ q be a statement whenever 
p and q are (with no regard for any "cause and effect" relationship) with 
its truth or falsehood totally a function of the (possibly independent) truth 
values of p and q. Thus we consider (2) to be true (since its premise is 
false, the truth value of the conclusion doesn't matter) and (3) to be false. 

Another problem many students encounter with the truth table defining 
the conditional lies in row 3. Why do we regard p + q as true when p is 
false and q is true? Consider sentence (1). Most people would (justifiably) 
regard this statement as true if, on a given evening, "I finished my work 
and went out" (row 1) or if "I did not finish my work and didn't go out" 
(row 4), and false (i.e., I lied) if "I finished my work and stayed home" 
(row 2). But what if "I don't finish and still go out"? Given the impre- 
cision with which language is used in everyday life, many would comment 
that (1) is a false statement. Looking at what this statement actually says, 
and not at any hidden meaning that is often read into such a statement, 
is this a fair comment? Not at all! The statement deals only with "what 
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I would do if I finished my work" and made no commitment otherwise; 
surely it cannot be labeled "false" in this case. Since it must have a truth 
value, the only reasonable value is true. There are other good arguments 
for the suitability of "F -, T is T." One is found in Exercise 9, Article 2.3, 
another in Example 3, Article 3.2. 

One final remark along this line is related to row 4 of the table defining 
the biconditional. When we assert that a statement such as (5) is true, we 
are in no way asserting that either of its component statements is necessarily 
true, only that the entire "if and only if" statement is true. A similar remark 
could be made in reference to row 4 of the table defining the conditional. 
The truth of a statement such as (2) does not mean that the conclusion 
("(0, 1)  E (0, 1)" in this case) is necessarily true. Indeed, the conclusion is 
false in this particular example! 

You may have noticed earlier that none of the conditional statements 
(1 through 3) seems similar to the conditionals in mathematical theorems. 
What is missing in these examples? Statements such as "if n is odd, then 
n + 1 is even" or "iff is differentiable at 2, then f is continuous at 2" or 
"x2 - 5x + 6 = 0 if and only if x = 2 or x = 3" are what we mainly have 
in mind when thinking of "if. . . then" theorems or "if and only if" theorems. 
Note, however, that the component sentences in these examples (e.g., "n is 
odd," "f is continuous at 2") are not statements, but rather, open sentences. 
Also, implicit in each of these "if. . . then" sentences is an unwritten "for 
every," that is, a quantifier. A nonmathematical example is the sentence, 
"If today is Monday, then tomorrow is Tuesday." In this statement, which 
happens to be true, the words "today" and "tomorrow" are both variables. 
In Chapter 3, where we study open sentences and quantifiers, you will see 
the "if. . . then" and "iff" connectives used in their most natural and mathe- 
matically useful setting. For now, you should focus on mastering certain 
mechanical properties of the connectives. 

Exercises 
1. Four binary connectives A ,  v ,  +, and o have been defined, each by means of 
a truth table with four rows. Show that there are exactly 16 possible definitions of 
binary connectives [recall Exercise 12(a), Article 1.51. 

2. Construct a truth table for each of the following statement forms. Label each a 
tautology, contradiction, or contingency? 
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3. Let p represent the statement "I pass the test." Let q  symbolize "I pass the course.'' 
Let r stand for "I make the dean's list." 

(a) Express as a statement in English: 
0 )  P v - q (P -+ 4)  A (4  -+ r) 
(id) - p -+ - q  * ( i v )  q ~ - r  
(v) q + P  *(v i )  q  -+ r 
(vii) - p 4 - r (viii) (p -+ r) A (r 4 p) 
Ox) - P A 4  

(b)  Express symbolically: 
(i) Passing the test will put me on the dean's list. 

*(i i) Either I pass the course or I don't make the dean's list. 
(iii) If I don't pass the course, I don't make the dean's list. 

*(iv) In order to pass the course, I must pass the test. 
(v) I passed the course, but I didn't make the dean's list. 
(vi) Passing the test is tantamount to passing the course. 

4. Determine whether each of the following statements is true or false, based on the 
truth or falsehood of the component simple statements: (As in Exercise 4, Article 2.1, 
first express each statement in symbolic form.) 

(a) If 5 is not an odd integer, then 8 is prime. 
(b)  If e = lim,, , (1 + llx)", then In e = 1. 

*(c) I f e i t h e r 2 # 5 0 r 4 + 5 = 9 , t h e n 5 2 # 2 5 .  
(d) If the moon is made of green cheese, then the derivative of a linear function 

does not equal its slope. 
(e) The sine function is even if and only if the cosine function is odd. 

* ( f )  If p, sin x dx = 0 and dldx(2") # x2"- ', then In 6 = (In 2)(ln 3). 
(g) p, sin x dx = 0 if and only if either d/dx(2xx) = x2"- ' or In 6 = (In 2)(ln 3). 

*(h) If p, sin xdx = 0, then In 6 = (In 2)(ln 3) implies that dldx(2") = x2"- '. 

2.3 Theorems of the Propositional Calculus 

The theorems of the propositional calculus are the tautologies. In an in- 
formal approach such as the one we use "proofs" of theorems are the truth 
tables by which a statement form is seen to be a tautology. The tautologies 
of primary interest for mathematics are those whose main connective is 
either the biconditional or the conditional, that is, the equivalences and the 
implications. 

If p and q are compound statement forms, then the statement form 
p ++ q is a tautology if and only if p and q have the same truth values under 
all possible truth conditions; that is, if and only if p and q are logically 
equivalent. Thus we refer to any tautology having the biconditional as its 
main connective as an 
propositional calculus 

I portant results of this 
d 

equivalence. We begin our study of theorems of the 
by focusing on important equivalences. Several im- 
type are suggested in the following example. 
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EXAMPLE 1 Find pairs of equivalent statement forms among p -+ q, 
q -) p, *q -+ -p, and -p -+ -9. 

Solution We can most efficiently deal with this problem by constructing a 
single truth table, as illustrated in Figure 2.6. A comparison of columns 
(5) through (8) shows that p -+ q and - q -+ - p are logically equivalent, 
asareq  -+pand - p +  --q, 

DEFINITION 1 

If p -+ q is a conditional, then the corresponding conditional --q -, - -p 
is called its contrapositive, q -+ p is called its converse, and - p  + - q  is 

called its inverse. 

Figure 2.6 Truth tables for the original, converse, inverse, and contrapositive of 
a conditional p -+ q. 
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The final outcome of Example 1 is that any conditional is equivalent 
to its contrapositive, but not to its converse and inverse. The converse 
and inverse of a given conditional, however, are equivalent to each other. 
[Why? What is the relationship between q -+ p and -p 4 -q? See Ex- 
ercise 4(b).] The theorem of the propositional calculus suggested by Exam- 
ple 1 is: The statement form (p -, q) - (-9 -, - p )  is a tautology. The fact 
that p -+ q is not equivalent to its converse q -+ p means that the statement 
form (p + q) - (q p) is not a tautology. This means that a statement of 
the form p -+ q can be true, even when the corresponding statement q -+ p 
is false. Can you give some examples from your mathematical experience of 
this situation? 
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F F T  

In the next example we encounter two more important equivalences; the 
statement form p t, q is equivalent to (p -+ q) A (q -, p) and the form 
p -+ (q v r) is equivalent to (p A -- q) -+ r. 
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EXAMPLE 2 Show that the following biconditionals are tautologies: 
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Solution We construct truth tables as shown in Figures 2 . 7 ~  and 2.7b: 

Figure 2.7 Truth table proofs of two important equivalences. 

In both examples the conclusion that the given biconditional statement 
is a tautology follows from the column of T's at the right of both tables. 
In Figure 2.7a we obtain the values in the final column by linking the 
fifth and sixth columns by the connective ++. In Figure 2.7b we make 
the same final step, linking columns 5 and 8. 
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form is logically equivalent to that of the original. Examples 1 and 2 pro- 
vide some specific illustrations of how this principle may be applied. Ex- 
ample 2(b), for instance, indicates that if we must prove a theorem whose 
conclusion has the form "either q or r" (with hypothesis p), we may do so 
by assuming q false (i.e., assuming - q  is true) and trying to deduce r from 
the expanded hypothesis p A - q. A practical application of this principle 
is the theorem about real numbers "if xy  = 0, then x = 0 or y = 0." We 
can approach the proof of this result by assuming that x # 0 (so that we 
now have two hypotheses to work with, xy = 0 and x # 0) and attempting 
to conclude that y must equal zero (the full proof is found in Article 6.2). 

The other two equivalences in Examples 1 and 2 are of even greater 
importance for theorem-proving. The tautology in 2(a) says that we may 
divide an "if and only if" proof into two parts, namely, "if p, then q" and 
"if q, then p," and carry out the proof by proving each of these two parts 
separately. This is the approach most often taken to prove a theorem 
whose statement involves the biconditional (Examples 9 and 10, Article 4.1, 
illustrate another approach to proving such theorems). The tautology in 
Example 1 is the basis of proof by contrapositive, a form of indirect proof. 
Instead of proving directly that q follows from p, we may instead proceed 
by assuming the conclusion q to be false and trying to show that it follows 
that p must be false. 

In summary, many logical equivalences correspond to possible strategies 
for approaching proofs of mathematical theorems. We will look in detail 
at several such methods of proof, as well as a wealth of specific proofs, in 
Chapters 4 through 6. But for now, the important idea that you should 
be beginning to sense is: The rules of the propositional calculus, a part of 
logic, are crucial to mainstream mathematics! 

Equivalents to the negation of the five connectives. Earlier we suggested a 
method of proof, proof by contrapositive, that involves assuming the nega- 
tion of a desired conclusion. Suppose we wish to use this approach to 
prove a result whose conclusion is itself a compound statement form, say 
p A q or p -, q. In the latter case, for instance, we would have to begin the 
proof by stating "suppose the conclusion p -+ q is false." At this point, 
before we could effectively use that assumption, we would need to know 
some statement involving p and q that is thereby true. Thus it would clearly 
be of value to have-at our disposal "positive" statement forms (i.e., statement 
forms in which negation is not the main connective) equivalent to the nega- 
tion of each of the five connectives, that is, equivalent to - (- p), - (p A q), 
- ( p  v q), - (p -+ q), and - (p +-+ q). In Theorem 1 we will give a list of 
tautologies of the propositional calculus whose main connective is the bi- 
conditional (i.e., equivalences); parts (b) through (f) of this theorem give 
equivalents to the negation of each of the five connectives. 

Part (b) of Theorem 1 asserts that the negation of the negation of a state- 
ment is the statement itself. Parts (c) and (d) state that the negation of 
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conjunction involves disjunction (and the negation of the original com- 
ponent statements), and vice versa. Like the two analogous theorems of 
set theory [Fact 6, (34)(35), Article 1.41, these are known as De Morgan's 
laws. To get a feeling for (e), ask yourself what must happen (i.e., What 
statement is true?) in order for the promise "if you pass this test, you will 
pass the course" to be a lie, that is, a false statement. As for (f), we can 
convince ourselves of its reasonableness by combining the first tautology 
in Example 2 with parts (c) and (e) of Theorem 1. Here is an alternative 
approach to understanding (f). Suppose your teacher had promised "you 
will pass the course if and only if you pass this test." What possibilities 
could have occurred if you conclude, after the fact, that the instructor did 
not keep the promise? 

EXAMPLE 3 Write a positive statement equivalent to the negation of "If 
rainfall is light, then the crop is disappointing and grain prices rise." 

Solution This statement has the form p + (q A r). By Theorem l(e), its 
negation has the form p A [- (q A r)] which, by (c) of Theorem 1, is equiv- 
alent to p A ( -- q v - r). This statement form may be interpreted in this 
example as "rainfall is light and (yet) either the crop is not disappointing 
or grain prices are not rising." 0 

Selected equivalences of the propositional calculus. The proof of each part 
of the following theorem consists of a truth table. Since the process of con- 
structing truth tables has been demonstrated earlier and is laborious, there 
is little to be gained from proving all parts of this theorem. A compromise 
is suggested in Exercise 2(a). 

THEOREM 1 
The following statement forms, each having the biconditional as main connec- 
tive, are all tautologies (and thus equivalences): 

(reflexive property of 
equivalence) 
(negation of negation) 
(negation of conjunction; 
De Morgan's law) 
(negation of disjunction; 
De Morgan's law) 
(negation of conditional) 
(negation of biconditional) 
(commutativity of disjunction) 
(commutativity of conjunction) 
(associativity of disjunction) 
(associativity of conjunction) 
(disjunction distributes over 
conjunction) 
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(conjunction distributes over 
disjunction) 
(biconditional law; strategy in an iff 
proof ) 
(equivalence of contrapositive) 

(strategy for deriving conclusion 

9 v r )  
(strategy for using hypothesis 

P v 9) 
(strategy for deriving conclusion 

9Ar) 
(indirect approach to using 
hypothesis p A 9) 
(strategy for using hypothesis 

P A 9) 

IMPORTANT IMPLICATIONS 

If p and q are statement forms such that the conditional p -* q is a tau- 
tology, we say that this conditional statement is an implication and that 
p logically implies q. Because this situation means that q is true under all 
truth conditions for which p is true (i.e., the truth of p "forces" q to be true), 
we say that p is a stronger statement form than q, or that q is weaker than 
p in this case. 

Note the relationship between implication and equivalence. Part (m) of 
Theorem 1 indicates that if p and q are equivalent, then each implies the 
other. On the other hand, if it is known only that p implies q, the possibility 
that p and q are equivalent is left open. In fact, the latter is true if and 
only if q implies p. The relationship between implication and equivalence 
is described in another way in (n) of Theorem 2; equivalence is stronger than 
(mere) implication. 

EXAMPLE 4 Show that p A q is a stronger statement form than p, which is, 
in turn, stronger than p v q. 

Solution We need only show that both the conditionals (p A q) -+ p and 
p -, ( p  v q) are tautologies. This conclusion should have been reached 
in Exercises 2(a, b), Article 2.2. El  

EXAMPLE 5 Show that p A (p -+ q) is a stronger statement form than q. 

Solution This means simply that the conditional [p ~ ( p  -+ q)] -, q is a 
tautology, as may be verified easily by constructing a truth table. 
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The tautology in Example 5, known as modus ponens, is a particularly 
important principle of logic, and is actually the cornerstone of the relevance 
of the implication connective to mathematical theorem-proving. We can 
conclude the truth of a desired proposition q if we can derive q as a logical 
consequence of some statement p, where p in turn is known to be true. 
Perhaps, in a particular problem, we may wish to prove q and find that q 
can be proved as a consequence of p, where p is some well-known theorem. 
In such a case we say that q is a corollary to p. On the other hand, we may 
wish to prove q where it is evident that q follows from a statement p, where 
the truth of p, however, is not known. In such a case the burden of proof 
shifts from proving q directly to trying somehow to prove p. A statement 
p in this context (assuming it can be proved) is often referred to as a lemma. 
In such proofs phrasing like "in order to prove q, it is clearly sufficient 
to prove p, where p is the statement . . ." is common. 

In Theorem 2 we provide a list of selected implications of the proposi- 
tional calculus. These statements can be verified on a selective basis [see 
Exercise 2(b)] by using truth tables. 

THEOREM 2 
The following statement forms, each having the conditional as main connective, 
are all tautologies (and hence are implications): 

(reflexive property of implication) 
(law of syllogism; transitive property 
of implication) 
(law of simplification) 
(law of addition) 
(law of detachment; modus ponens) 
(indirect proof; proof by contrapositive; 
modus tollens) 
(indirect proof; proof by contradiction; 
reductio ad absurdurn) 
(symmetric property of equivalence) 
(transitive property of equivalence) 

(law of disjunction; modus tollendo 
ponens) 

In addition to the implications stated in Theorem 2, each equivalence 
in Theorem 1 yields a new tautology if the biconditional connective is re- 
placed by the conditional in either direction (because of part (n) of Theorem 
2, which asserts formally that the biconditional is stronger than the con- 
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ditional). Furthermore, precisely three of the conditional statement forms 
in Theorem 2 can be strengthened to biconditionals, that is, remain true if 
the arrow is replaced by a double arrow. Can you determine which ones? 
(See Exercise 3.) 

MATHEMATICAL SIGNIFICANCE OF TAUTOLOGIES 
INVOLVING THE CONDITIONAL 

The significance of implication statements for mathematical theorem- 
proving was discussed before Theorem 2, in connection with modus ponens. 
Let us see, however, how this reasoning applies to actual problems from 
mathematics, with specific reference to tautologies from Theorem 2. 

Suppose, for example, we wish to prove that if a function f is differen- 
tiable at a, then lirn,,, f(x) exists. Suppose, furthermore, that we have at 
our disposal the well-known theorem of elementary calculus, "iff is dif- 
ferentiable at a, then f is continuous at a," as well as the definition "f is 
continuous at a if and only if lirn,,, f(x) exists @ equals f(a)." Since f 
is differentiable at a implies f is continuous at a by the known theorem 
(denote by p -, q), and since f is continuous at a implies lirn,,, f(x) exists 
(denote by q -+ r), we may draw the desired conclusion (which has the form 
p -+ r) by (b) of Theorem 2. 

As a second example, consider the famous proof that 4 is irrational 
(a detailed discussion of this proof is given in Article 6.2). The proof pro- 
ceeds by assuming that a is rational (denote by - p )  and deducing from 
this a logical contradiction of the form q A -q. Part (g) of Theorem 2 in- 
dicates that whenever we can deduce a contradiction from the negation of 
a statement the statement itself must be true. 

Finally, consider (j) of Theorem 2. Suppose we wish to derive a con- 
clusion r from hypotheses p and q. Suppose we are able to derive r from 
hypothesis p alone, that is, write a proof that makes no use of hypothesis 
q. By (j), if we can do this, our desired theorem is thereby also proved 
(see Exercise 7). 

The approach suggested in the previous paragraph is a logically valid 
method of proof, but it calls for a word of warning. Perhaps we are able to 
prove a theorem without using all the hypotheses given. If we can, then by 
(j), we have improved upon the result we were asked to derive; that is, we 
have proved a stronger statement than the one requested. But ordinarily, 
theorems posed to students at the junior-senior level require all the hy- 
potheses given and cannot be proved (i.e., aren't true) if a hypothesis is 
omitted. Failure to use one of the hypotheses in a proof is often a telltale 
sign that the proof is in error. Always check your proofs to see that you 
have used all the hypotheses; if you haven't, investigate further! One addi- 
tional related note: Many unsolved problems in research mathematics today 
involve "strengthening" known theorems, that is, removing some hypothesis 
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that, up to now, has been used in every known derivation of the conclusion 
of the theorem. 

ENGLISH-LANGUAGE TRANSLATIONS OF THE CONDITIONAL 
AND BICONDITIONAL CONNECTIVES 

As seen already, certain uses of the propositional calculus require that we 
translate sentences expressed in English into precise symbolic form. Since 
there are many ways of expressing an idea in English, the following list of 
translations may prove helpful. 

REMARK 1 The following three lists provide translations between English 
sentences and symbolic representation of those sentences. 

1. p + q may be interpreted in any of the following ways: 

If p, then q (q if p) 
p implies q (q is implied by p) 
Whenever p, then q (q whenever p) 
p is stronger than q (q is weaker than p) 
q unless -p ( - p unless q) 
If not q, then not p (p only if q) 
Not q implies not p (not p is implied by not q) 
p is sufficient for q (-q is sufficient for -p) 
q is necessary for p (-p is necessary for - q) 
Either not p or q. 

2. p t, q may be interpreted as: 

( a )  p is equivalent to q 
(b )  p if and only if q 
( c )  p is necessary and sufficient for q 
( d )  p implies q and q implies p 
(e) If p, then q and if q, then p 

,, - -.... 
3. The following miscellaneous correspondence's are also valid: 

Sentence Symbolic translation 

( a )  p or q or both PVq 
( b )  p or q, but not both -(p +-+ q) 
( c )  p, but not q P A  -q 
( d )  p unless q - 4 + P  

You should convince yourself of the reasonableness of these various 
i translations and representations, in particular, noting explicitly the role of 

various equivalences from Theorem 1 as justification for the translation 
(Exercise 8). 
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Exercises 
1. (a) In Exercise 3, Article 2.2, find any examples of pairs of statement forms 

[in (a)] or statements [in (b)] that are either equivalent to or negations of each 
other. 

( b )  In Exercise 4, Article 2.2, write the negation of each statement, using parts 
(b) through (f) of Theorem 1 to avoid having negation as the main connective. 
Write the converse of all except (e) and (g). 

2. (a) Prove, by using a truth table, five of the equivalences listed in Theorem 1. 
More specifically, choose one from (c) through (f), one from (g) through (I), one 
from (m) through (o), and two from (p) through (t). 

( b )  Verify, by using a truth table, three of the implications in Theorem 2, choosing 
(g) and (j) and one from among (b), (i), and (k). 

3. Determine which three of the implications in Theorem 2 are reversible, that is, 
have a converse that is also a tautology (recall remarks from the paragraph im- 
mediately following Theorem 2). 

4. (a) Write the converse, contrapositive, and inverse of each of the following 
conditionals. (Your final answer in each case should not use the "not" connec- 
tive to modify a compound statement form. Use (b) through (f) of Theorem 1 
to simplify any such expressions that occur.) 

(b) Fill in each of the blanks with one of the words original, converse, contra- 
positive, or inverse. 

(i) The converse of the converse of p -, q is the of p -, q. 
(ii) The inverse of the contrapositive of p -, q is the of p -, q. 

*(iii) The contrapositive of the converse of p + q is the of p + q. 
(iv) The converse of the inverse of p -, q is the of p -, q. 
(v) The inverse of the converse of p -, q is the of p -, q. 
(vi) The original of the converse of p -+ q is the of p -, q. 

*(vii) The contrapositive of the contrapositive of p -, q is the of 
P -, 4. 

(c) Give a concise description of the pattern emerging from the answers in (b), 
governing the effect of two successive applications of the operations original, 
contrapositive, converse, and inverse to a given statement form p -, q. 

(d) Write the converse, inverse, contrapositive, and negation of the statements: 

(i) If the economy improves, then I get a better job. 
*( i i )  I f 2 < 4 a n d 5 + 5 =  lO,thensin(n/3)=3. 

(iii) If I finish my work, I play golf unless it rains. 
(iv) Iff differentiable implies f is continuous, then f is continuous. 
(v) Iff is defined at a, then the existence of lim,,, f (x) implies f is continuous 

at a. 
(vi) If (F, +, a )  is a field, then (F, +) and (F - (01, .) are both abelian groups. 
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5. Let p, q, and r represent statements defined as follows: 

p: lines x and y lie in the same plane. 
q: lines x and y are parallel. 
r: lines x and y have no points in common. 

Express symbolically as compound statement forms in the letters p, q, and r. 

If x and y are parallel, then they have no points in common. 
Lines x and y intersect unless they are parallel. 
Lines x and y have no points in common, but they are not parallel. 
The statement "lines x and y are parallel" is stronger than the statement 
"lines x and y have no points in common." 
In order for x and y having no points in common to imply that x and y are 
parallel, it is necessary that x and y lie in the same plane. 
Whenever x and y are parallel, then x and y lie in the same plane. 
Lines x and y intersect unless they are parallel or don't lie in the same plane. 
Either x and y are parallel or x and y have points in common, but not both. 

6. According to (v) of Theorem 1, two statement forms are equivalent if and only 
if their negations are equivalent. Use this fact, together with the other parts of 
Theorem 1 [except (q) and (u)] to argue the equivalence of the statement forms: 

(a) (p v q) + r and (p + r) A (q -.+ r) [(q) of Theorem 11 
(b) (PA q) + r and P + (q + [(u) of Theorem 11 

7. (a) Give three examples of well-known corollaries to the mean value theorem 
of elementary calculus. 

(b) In each of parts (a') through (g'), one of the given compound statements p or 
q is formally stronger than the other; in fact, either p + q or q + p is an instance 
of a tautology. 

(i) Determine which of the two is stronger in each case. 
(ii) Based on your previous mathematical experience, label each of the follow- 

ing 14 statements as true or false [when each is preceded by the appropriate 
number of occurrences of the universal quantifier for every. For example, 
both sentences in (d') should be preceded by for every f and for every a]. 

(iii) Check that your answers in (ii) are consistent with your conclusions in (i). 

*(a1) p: If 0 < Ix - a1 < /?, then x # a and a - /? < x < a + /?. 
q: If 0 < Ix - a1 < /?, then a - /? < x < a + /3. 

( b ' )  p: If a, b, and x are real numbers such that ax = bx, then a = b. 
q: If a, b, and x are real numbers such that ax = bx and x # 0, then a = b. 

(c') p: Iff has a relative maximum at a and f is differentiable at a, then f '(a) = 0. 
q: Iff has relative maximum at a, then f'(a) = 0. 

(d') p: Iff is differentiable at a, then f is continuous at a. 
q: I f f  is differentiable at a and f has a relative maximum at a, then f is 

continuous at a. 
(e') p: I f f  is defined at a and lirn,,, f(x) exists and equals f(a), then f is con- 

tinuous at a. 
q: Iff is defined at a and lim,,, f(x) exists, then f is continuous at a. 

( f ' )  p: If a, b, and p are integers, if p is prime, and p divides the product ab of a 
and b, then either p divides a or p divides b. 
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q: If a, b, and p are integers and if p divides ab, then either p divides a or p 
divides 6. 

(g') [Some abstract algebra background is necessary to be able to answer (ii).] 
p: If a finite group G is cyclic, then G is abelian. 
q: If a group G (finite or infinite) is cyclic, then G is abelian. 

(a) For each of the following parts of Remark 1, determine which tautology or 
tautologies from Theorem 1 or Theorem 2 provide justification. 

0) l(e) (ii) l(f) 
(iii) l(j) (iv) 2(d) 
(v) 3(b) 

(b) Give a specific nonmathematical example to show that the tautology (p + q) t, 
(-p v q) (part (0) of Theorem 1) is intuitively reasonable. 

9. The law of syllogism, which states that [(p -+ q) A (q -+ r)] + (p -+ r) is a tautol- 
ogy, is important in logic and represents a common form of an argument in or- 
dinary discourse. Consider three possible alternative definitions for "conditionals," 
denoted +T for i = 1, 2, 3, defined by the table in Figure 2.8. The first two rows 
in each case, of course, seem reasonable and agree with the corresponding rows of 
the definition of the "honest" conditional. The last two rows may seem arbitrary, 
but actually represent all other possible definitions of a "conditional" connective. 
Show that the law of syllogism fails for all three of these possible definitions. 

10. (a) Prove that the compound statement forms p v q, p -+ q, and p t, q are each 
logically equivalent to statement forms in p and q involving the connectives not 
and and only. [Hint: See parts (c), (o), and (m) of Theorem 1.) 

(b) Based on your answers to (a), express each of the following compound state- 
ment forms in terms of - and A only: 

11. The main thrust of Exercise 10 is that the five connectives v, A ,  -, -+, and - are not all needed for the propositional calculus. Any statement form that can 
be expressed in terms of any of these five connectives has an equivalent representation 

Figure 2.8 ~ h r e e  possible, but incorrect, 
deJinitions of the conditional connective. The law 
of syllogism fails to be a tautology if-+ is deJined 
in any of these thred ways. 
I------ I I .-I 
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Figure 2.9 Truth table deJining the Shefer stroke. 

involving A and - only. [Note, however, from your answers to Exercise 1qb) that 
expressions using A and - only are lengthier and more complicated in form than 
equivalent expressions in which all five connectives may be used.)] Because of this, 
we say that the pair of connectives A and - is adequate for the propositional cal- 
culus. A kind of question that is of interest to logicians (although of no practical 
application in mainstream undergraduate mathematics) is whether there is, among 
the 16 possible binary connectives [recall Exercise 2(b), Article 2.11 any single con- 
nective that is adequate. The answer is "yes," as the following exercises demonstrate: 

We define the connective /, called the Shefer stroke, by the table in Figure 2.9. 

(a) Show that (pip) t-+ -p is a tautology. 
(b) Show that (p/q)/(q/p) +N p A q is a tautology. 
(c) Combine the results of Exercises lqa) and 1 l(a, b) to find expressions involving 

the Sheffer stroke only that are equivalent to p v q, p + q, and p t, q. Conclude 
from this that any statement form involving any of the five connectives of the 
propositional calculus has an equivalent representation that uses the Sheffer 
stroke only. [Note, however, that as in Exercise 1qb) the cost of this economy in 
number of connectives is the necessity for much lengthier, more complicated, 
and far less meaningful expressions.] 

2.4 Analysis of Arguments for 
Logical Validity, Part 1 (Optional) 

An interesting and useful application of the propositional calculus is the 
analysis of certain kinds of arguments for logical validity. An argument 
consists of a series of "given" statements, whose conjunction constitutes the 
premise of the argument (the individual statements comprising the premise 
may each be called a partial premise) and a conclusion. 

DEFINITION 1 
An argument consisting of the premise p, ~ p ,  A . . ~ p ,  and a conclusion 
9 is said to be a valid argument if and only if the statement form 
( p ,  A p2 A . . . A pn) -+ 9 is a tautology. 

The requirement of Definition 1 is that the conclusion be true in all cases 
in which each of the partial premises is true; that is, the conjunction of the 
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partial premises must logically imply the conclusion. Stated differently, 
the truth of the conclusion must "follow from" the assumed truth of all the 
premises, in order for an argument to be valid. In particular, the conclusion 
of an argument need not be true in order for an argument to be valid (see 
Exercise 5). The following example illustrates a rather standard format in 
which premise and conclusion of an argument are presented. 

EXAMPLE 1 Test the validity of the argument 

Therefore r 

Solution The statement 
premises, whereas the 

forms above the horizontal line are the partial 
one below the line is the conclusion. The issue is 

whether the conditional [p A (p -, q) A (- q v r)] -+ r is a tautology. You 
should verify, by using truth table, that the answer is "yes," so that the 
given argument is logically valid. 

In Examples 3 and 4 we discuss a method of avoiding the need to con- 
struct a truth table in order to determine whether the conditional arising 
from an argument is actually an implication. In the next example we deal 
with an argument involving specific statements in which we must first assign 
a letter to each simple statement involved and then represent symbolically 
each of the partial premises and the conclusion. As a rule, the premise ends 
and the conclusion begins with a word like "therefore," or "hence," or "thus." 

EXAMPLE 2 Express symbolically and analyze for validity the argument "If 
interest rates fall, the economy improves. If the economy improves, un- 
employment drops. In order for incumbents to win reelection, it is 
necessary that unemployment drop. Hence a sufficient condition for in- 
cumbents to win reelection is that interest rates fall." 

Solution First, we must symbolize each simple statement involved in the 
argument. We do this by 

p: interest rates fall 
q: the economy improves 

r: unemployment drops 

s: incumbents are reelected 

The partial premises, then, have the form p -+ q, q -+ r, and s -+ r [recall, 
e.g., from Remark 1, part l(i), Article 2.3, that "r is necessary for s" trans- 
lates to s -, r] .  The conclusion has the form p -, s. Hence the argument, 
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I 

in symbolic form, looks like 

Therefore p -, s 

Proceeding by either constructing a truth table or using the method de- 
scribed in Examples 3 and 4, we conclude that this argument is not logi- 
cally valid. 0 

The tautologies [p A (p -+ q)] -+ q (modus ponens), [(p -+ q) A (q -+ r)] -, 
(p -+ r) (transitivity of implication), and [p -+ (q -+ r)] - [(p A q) -, r], 
provide a method of concluding validity of an argument (or suspecting non- 
validity) that allows us to avoid writing cumbersome truth tables repeatedly. 
Modus ponens indicates that we can conclude q whenever we have p and 
p -, q. Transitivity of implication says that we can replace two hypotheses 
of the form (p -, q) and (q -, r) by the single hypothesis (p -, r), if this is 
to our advantage. The third implication says that if our conclusion has the 
form q -, r, we may add q to the list of partial premises and deduce r, rather 
that q -, r, from this expanded list. Finally, recall the significance of logical 
equivalence: A statement form may be replaced by any equivalent statement 
form. We illustrate the method in Example 3. 

EXAMPLE 3 Analyze the argument from Example 1 without using a truth 
table. 

Solution The question is whether we can validly deduce r from the assumed 
truth of each of the three partial premises p, p -+ q, and -q v r. We re- 
call first the equivalence (-q v r)  - (q -, r) [Theorem l(o), Article 2.31. 
Thus our premise becomes p A (p + q) A (q -+ r). From p A (p -+ q), we 
may conclude q, by modus ponens. From q and q -, r, we may conclude 
r, again by modus ponens, as desired. We conclude from this analysis 
that r does follow logically from the premise, so that the argument is 
indeed valid. 

An argument of the form [(p -, q) A (q -, r) A (r -+ s)] -, (p -, s) can be 
analyzed as follows. The question is whether we can derive s from p, given 
the three hypotheses. Add p to the list of partial premises and ask instead 
whether we can derive s from this expanded list. From p A (p -+ q), we get 
q. From q and q -+ r, we get r. From r A (r -, s), we get s, as desired. 

EXAMPLE 4 Analyze the argument in Example 2, without constructing a 
complete truth table. 

Solution The question is whether we can derive s from p, given hypotheses 
p + q, q -, r, and s -+ r. First, add p to the list of hypotheses. The 
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question now shifts to whether we can derive s from this expanded list. 
Well, from p and p -+ q, we get q. From q and q -, r ,  we get r. Now we 
are left with r and s r. At this point, the chain of reasoning grinds to 
a halt. We have no means of concluding s from r A (s + r )  (check if you 
wish that [r  A (s -+ r ) ]  -+ s is not a tautology). Hence we are led to 
doubt the validity of the argument. To prove that nonvalidity, we must 
come up with a combination of truth values for which the conditional 
in question is false. This we can also do without resorting to a complete 
table. 

We reason as follows: We wish to find truth values for p, q, r, and s 
such that the conjunction (p + q) A (q -+ r) A (s -+ r) of the partial 
premises is true while the conclusion p -, s is false. Clearly p must be 
true and s must be false in order for p -+ s to be false. In that case if 
p -+ q is to be true, then q must be true. But then r must be true in order 
for q -+ r to be true. Note that if s is false and r is true, the final partial 
premise s -+ r is true. Hence we have found a combination of truth 
values, namely, TTTF for p, q, r, and s, respectively, for which the premise 
of the argument is true while the conclusion is false. This proves con- 
clusively the nonvalidity of the argument. 

You will probably enjoy the exercises that follow much more if you 
employ the approach of Examples 3 and 4, rather than the boring and 
mechanical truth table approach. Also, you should use throughout these 
exercises the "strict mathematical" translation into symbols, given in 
Remark 1, Article 2.3, for such expressions as "unless," "only if," and 
"necessary." 

Exercises 

Analyze these arguments for logical validity: 

1. Good weather is necessary for a successful garden. The garden is successful. 
Therefore the weather was good. 

2. If today is Monday, then tomorrow is Tuesday. But today is not Monday. There- 
fore tomorrow is not Tuesday. 

3. Either today is Monday or today is Tuesday. But today is not Monday. There- 
fore today is Tuesday. 

*4. I will lose my job unless Smith is retained. He will be fired only if you recommend 
it. Therefore I will keep my job if you do not recommend his firing. 

5 .1 f5+7=12 , then6>8 .  I f 5 + 7 = 7 + 5 , t h e n 5 + 7 = 1 2 .  B u t 5 + 7 = 7 + 5 .  
Therefore we may conclude 6 > 8. (Hint: Recall the discussion immediately follow- 
ing Definition 1.) 

6. If the dollar is strong, then exports decrease. Unemployment will rise unless the 
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decrease in exports is halted. A drop in interest rates is necessary to weaken the 
dollar. Hence a drop in interest rates is sufficient to cause unemployment to fall. 

7. If I study all night for the abstract algebra examination, I will be tired. If I'm not 
energetic, I will not do the assignment for Fourier analysis. Therefore in order 
both to pass the exam and do the assignment, it is necessary that I not study all 
night. 

*8. Given that p -+ q is a tautology, in order for q --+ p to be a tautology, it is neces- 
sary and sufficient that p * q be a tautology. We know that p -, q is a tautology 
and that p t, q is not a tautology. Hence q -+ p is not a tautology. 

9. If Dawson did not meet James last night, then either Dawson is the murderer or 
James was out of town. If Dawson was not the murderer, then James did not meet 
Dawson last night and the murder took place in the hotel. If the murder took place 
in the hotel, then either Dawson was the murderer or James was out of town. But 
Dawson met James last night and James was not out of town. Therefore Dawson 
was the murderer. 



Logic, Part 11: 
The Predicate 

Calculus 
CHAPTER 3 

There are many kinds of statements that we wish to make in mathematics 
(and in everyday life) that cannot be symbolized and logically analyzed 
solely in terms of the propositional calculus. In addition to the external 
complexity introduced by the need to link statements by using connectives, 
there is an internal complexity in statements containing words such as "all," 
"every," and "some," which requires logical analysis beyond that afforded 
by the propositional calculus. Such an analysis is the subject of the predicate 
calculus, the topic of this chapter. 

The following example demonstrates the difficulties that can arise if only 
the propositional calculus is available to analyze statements. 

EXAMPLE 1 Let P and Q be sets, let p represent the statement "x is an 
element of P" and q the statement "x is an element of Q." Analyze, in 
terms of the propositional calculus, the statement (p -, q) v (q -, p). 

iscussion Perhaps the best place to begin the analysis is with the truth 
table for the statement form (p -, q) v (q -+ p). Before reading further, 
you should construct that table. The results may be somewhat surprising, 
for this statement form is a tautology (all possible tautologies were not 
exhausted in Chapter 2!). Hence, in particular, if we make the indicated 
substitutions for p and q, the statement form p --+ q becomes "x E P 
implies x E Q," while q -, p is "x E Q implies x E P." The disjunction 
then says "(x E P implies x E Q) or (x E Q implies x E P)" and is true, since 
any statement of the form (p -, q) v (q -, p) is true under all possible 
truth conditions. But "x E P implies x E Q x E Q implies x E P" seems 
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to be saying "either P is a subset of Q or Q is a subset of P," which would 
appear, thereby, always to be a true statement. But experience indicates 
that this is not the case [see, in particular, Example 3(b), Article 1.11. 
Our analysis apparently has led to a contradiction. 

The resolution to the paradox presented in Example 1 lies in the fact that 
the two sentences symbolized earlier by p and q are not statements, but 
rather, are open sentences or predicates, and furthermore, sentences such as 
"P is a subset of Q" have an internal structure requiring the use of quanti- 
Jiers (i.e., the expressions "for every" and "there exists") for logical accuracy. 
In particular, one of the theorems of the predicate calculus to be studied 
in this chapter provides the specific fact that will enable us to resolve the 
paradox. We will return to this question following Theorem 2 and Example 
3, Article 3.3. 

Since most definitions and theorems in mathematics employ terms such 
as "every" and "some" as well as the familiar "and," "or," and "if. . . then," 
most applications of logic to mathematics involve principles of both the 
propositional calculus and predicate calculus, applied together in a single 
setting. Armed with an understanding of the main tautologies of the prop- 
ositional calculus and main theorems of the predicate calculus, students 
who have also developed a working knowledge of their combined use (the 
subject of Chapters 4,5, and 6) will be well prepared for the rigors of junior- 
senior level mathematics and beyond! 

Basic Concepts of the Predicate Calculus 
Expressions such as "she is a doctor," "x2 - 3x - 40 = 0," and 
"A n (B u C) = (A n B) u (A n C)," known as predicates, or propositional 
functions (also known as open sentences), are the building blocks of the predi- 
cate calculus. A predicate is a declarative sentence containing one or more 
variables, or unknowns. As the preceding examples indicate, an unknown 
may be a mathematical symbol, representing a number, a set, or some other 
mathematical quantity. Additionally, it could be a pronoun, such as "he" 
or "it," or for that matter, any other word with a variable meaning, like 
"yesterday" or "tomorrow." A predicate is not a statement, since a predi- 
cate is neither true nor false. On the other hand, predicates are closely re- 
lated to statements, and our notation for them (e.g., p ( ~ )  or q(x, y), where 
x and y are unknowns) reflects that fact. In particular, there are two stan- 
dard procedures by which a predicate can be converted into a statement. 
These procedures are substitution and quantification. 

SUBSTITUTION, DOMAIN OF DISCOURSE, AND TRUTH SET 

The sentence p(x): x > 4 is an example of a predicate; in fact, it is a predicate 
in one variable. If the number 5 is substituted for x, the predicate becomes 
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a statement p(5): 5 > 4 which happens to be true. If 2 is substituted for x, 
we get p(2): 2 > 4, a false statement, but a statement nonetheless. The predi- 
cate q(x, y): tan x = tan y, an example of a propositional function in two 
variables, becomes a true statement when we substitute, for instance, 4 4  
for x and 9n/4 for y. 

Not all substitutions of specific objects for variables make a predicate 
into a statement. For one thing, if we substitute n/4 for x in q(x, y), but 
do not substitute for y, the resulting sentence q(n/4, y): tan n/4 = tan y is 
still an open sentence, neither true nor false as it stands. In fact, p(y) = 
q(n/4, y) is a propositional function in the single variable y. Thus, if we 
wish to convert a predicate into a statement by substitution, we must take 
care to substitute for each of the unknowns. 

A second problem is that if we, for example, substitute the complex num- 
ber 2 + 3i for x into the predicate p(x), we are left with a nonsense expres- -- 

~ i o n  2 + 3i > 4. The same problem would occur (even more glaringly) if 
we substituted an object other than a number, such as "John Smith" for 
x. The message of these examples is one we saw in Chapter 1, in the con- 
text of sets. Associated with each predicate p(x), there must be a universal 
set U of objects that may be substituted for the variable. For the preceding 
p(x), the set R of all real numbers would be a reasonable possibility for U, 
whereas R x R could be the universal set for q(x, y). The set U, often re- 
ferred to as the domain of discourse in the context of the predicate calculus, 
is sometimes named explicitly and sometimes must be surmised, as was the 
case with the concept of universal set in set theory. 

For each open sentence p(x), with associated domain of discourse U, the 
subset P of U defined by P = (x E U lp(x) is a true statement}, henceforth 
described simply by (xlp(x)J, is called the truth set of p(x). As examples, if 
U ,= R, the truth set of p(x): x > 4 is the interval (4, oo), whereas the subset 
((x, y) E R x Rlx E domain (tan) and y = x + nx for some integer n) is the 
truth set of q(x, y): tan x = tan y. As a matter of convention, we will adopt 
the notation that truth sets of general predicates p(x), q(x, y), r(x, y, z) are 
denoted by the corresponding uppercase letters P, Q, R, and the like. 

We can use the idea of truth set to extend many of the concepts of the 
propositional calculus to the predicate calculus. One example is provided 
in the following definition. 

DEFIN IT ION-  1 
We say that two propositional functions p(x) and q ( x )  (over a common domain 
of discourse U) are logically equivalent over U if and only if they have the same 
truth sets; that is, P = Q. 

Two predicates p(x) and q(x) may be equivalent over one domain of dis- 
course and nonequivalent over another. For example, p(x, y): x2 = y2 and 
q(x, y): x = y are equivalent over U ,  = R+ x R + ,  where R+ represents the 
set of positive real numbers but are not 'equivalent over R x R. Just as 
every propositional function determines a truth set, so is every set P the 
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truth set of some propositional function, namely, the open sentence "x E P." 
If P is the truth set of a propositional function p(x), then p(x) is logically 
equivalent (over its domain U) to the open sentence "x E P." 

We can also use the "truth set" concept to extend the applicability of 
the five logical connectives defined in Chapter 2 from propositions to prop- 
ositional functions. As one example, given propositional functions p(x) 
and q(x) over a common domain U, what meaning should we attach to the 
expression p(x) v q(x)? Having familiarity with the "or" connective from 
the propositional calculus, we read such an expression as "either p(x) or 
q(x)." The expression contains a single variable x; it seems reasonable to 
treat this "compound predicate" just as we would any predicate in one 
variable. On that basis its truth set should consist of all objects a in U such 
that the compound proposition p(a) v q(a) is true. According to Definition 
2(c), Article 2.1, this means that an object a should be in the truth set of 
the predicate p(x) v q(x) if and only if either the proposition p(a) is true or 
the proposition q(a) is true (or possibly both). Similar criteria could be ap- 
plied to the compound predicates p(x) A q(x) and - p(x). An object a should 
be in the truth set of p(x) A q(x) if and only if p(a) and q(a) are both true 
statements; an object a should be in the truth set of -p(x) if and only if 
the proposition p(a) is false. 

EXAMPLE 1 Let U = (1, 2, 3, . . . , 10). Let predicates Ax), q(x), and r(x) be 
defined over U by p(x): x is odd, q(x): 3 I x < 8, r(x): x is the square 
of an integer. Use the criteria outlined previously to describe the truth sets 
of the compound predicates -p(x), p(x) v q(x), and q(x) A r(x). 

Solution According to our criteria, an element a of U is in the truth set of 
-Ax) if and only if p(a) is false; that is, a is not odd, g, a is even. Thus 
the truth set of -p(x) is (2,4,6,8, 10). An integer a, between 1 and 10 
inclusive, is in the truth set of p(x) vq(x) if and only if either p(a) is 
true or q(a) is true; that is, either a is odd or 3 I a < 8. The truth set 
of p(x) v q(x) therefore equals (1, 3,4, 5,6,7,9). Finally, an element a of 
U is in the truth set of q(x) A r(x) if and only if q(a) and r(a) are both true; 
the truth set in this case equals (4). 0 

The results of Example. 1 suggest an important connection between the 
truth set of a compound predicate and the truth sets of its component pred- 
icates. This connection highlights, at the same time, important connec- 
tions between the algebra of logic and the algebra of sets, and more 
specifically, correspondences between the logical connectives and, or, and 
not, and the set operations intersection union, and complement, respectively. 
In particular, in Example 1, we had P = (1, 3, 5, 7,9), Q = (3,4, 5, 6,7f, 
and R = (1,4,9). Note that: 

1. The truth set of -Ax) equals (2,4,6, 8, 10) = (1, 3,5, 7,9)' = P'. 
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2. The truth set of p(x) vq(x) equals (1, 3,4, 5,6, 7 9 )  = (1, 3,5,7,9) u 
{3,4, 5, 6, 7) = P u Q. 

3. The truth set of q(x) A r(x) equals (4) = (3,4,5,6,7) n (1 ,4  9) = 
Q n R. 

These observations set the pattern for our formal approach to compound 
predicates: 

DEFINITION 2 
Let p(x) and q(x) be propositional functions over a domain of discourse 
U, with truth sets P and Q, respectively. We define the truth set of 

It is not so immediately evident how to define the truth sets of p(x) -, q(x) 
and p(x) o q(x), but consider the following. Suppose that Ax) and q(x) are 
propositional functions such that the proposition p(a) ++ q(a) is a tautology 
for every specific substitution of an element a from U for the variable x. 
For example, p(x) might be r(x) vs(x), while q(x) might be s(x) v r(x) 
[recall that (r v s) - (s v r) is a tautology]. We would certainly expect 
p(x) and q(x) to be logically equivalent (i.e., P = Q) over any domain of 
discourse. With this in mind, we recall from Article 2.3 that (p -, q) t, 
( - p v q) and (p - q) - [( - p v q) A (p v q)] are tautologies, leading to 
the next definition. 

DEFINITION 3 
Given p(x) and q(x) as in Definition 2, we define the truth set of 

(d) p(x) -* q(x), if p(x), then q(x), to be FY u Q 
(e) p(x) ++ q ( x ) ,  p(x) if and only if q(x), to be (P u Q) n (P u Q') 

It may be instructive here to test the reasonableness of Definitions 2 and 
3 (relative to the definitions of the connectives in Articles 2.1 and 2.2) by 
looking at some specific open sentences. As one instance, it should be that, 
if a is a specific element of U, and p(a) -, q(a) is a true statement (by the 
truth tabular definition of Article 2.2), then a E P' u Q, the set we have just 
designated as the truth set of p(x) -, q(x). On the other hand, if p(a) + q(a) 
is false, then a should lie outside P' u Q. The following example illustrates 
this correspondence. 

EXAMPLE 2 Let U = R and define propositional functions in one variable, 
p(x) and q(x), by p(x): 1x1 s 1 and q(x): I x - 1 I < 1. Use Definitions 2 and 
3 to calculate the truth sets of p(x) A q(x) and p(x) -, q(x). Use specific 
examples to check that these results are consistent with the truth tabular 
definitions of the connectives A and + from Chapter 2. 
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Solution We first calculate P and Q and express them in interval notation. 
The absolute value inequality lx 1 I 1 is equivalent to the two inequal- 
ities -1 5 x 5 1 so that P = [-I, I], whereas lx - 11 < 1 may be 
expressed - 1 < x - 1 < 1, so that 0 < x < 2 and Q = (0,2). By Defi- 
nition 2(iii), the truth set of p(x) A q(x) is P n Q = (0, 11. By Definition 
3(d), the truth set of p(x) -+ q(x) is P' u Q = ( - a ,  - 1) u (0, oo). 

Let us now test the reasonableness of these results. We consider first 
p(x) A q(x). Let a = 0. Since 0 $ (0, 11 = P n Q, we expect that p(0) A q(0) 
is false. This is so since q(0) is false (i.e., x = 0 does not satisfy the 
inequality lx - 1 ( < 1). Check for yourself that a = - 5 and a = 2 result 
in a truth value of "false" for p(a) A q(a). On the other hand, if we let 
a = t ,  both p($) and q(*) are true (Why?) so that p ( + ) ~  q($) is true 
(Why?). This is no surprise since E (0, 11, the truth set of p(x) A q(x). 
Try a = 1 as another example. 

Next, we consider p(x) + q(x) a more difficult case for our intuition 
to handle. We proceed mechanically, however. Let a = - 1; since 
- 1 4 (- oo, - 1) u (0, a), we expect that p(-  1) -+ q(- 1) should be 
false. This is indeed the case, since - 1 E [- 1, 11 = P [the truth set of 
fix)] so that p( - 1) is true, whereas q(- 1) is false [since - 1 $ (0,2) = Q]. 
Recall that T -+ F is the only case in the truth table for -+ which yields 
the truth value F. On the other hand, if we let a = 3, we find that p(3) + 

q(3) is true since p(3) is false (3 4 P = [- 1, 11) and q(3) is false [3 $ Q = 
(0,2)]. This result is consistent with our calculation of the truth set of 
p(x) -+ q(x) since 3 E(-a, -1) u (0, a) = P' u Q. Try a = f ,  a = $, 
and a = -f for yourself. In each case, before determining the truth 
value of fia) -* q(a) directly, make a prediction based on our calculation 
of the truth set. 

As we conclude this article, let us briefly discuss the logical direction 
of material in this chapter. Our main goals here are the "theorems of 
the predicate calculus" in Articles 3 and 4, especially Theorems 1 and 2, 
Article 3.3, and Theorems 1 and 3, Article 3.4. These are crucially im- 
portant principles of reasoning. Any serious student of mathematics at 

- the junior-senior level must have at least general familiarity with them, 
although a detailed understanding is preferable. 

For a text at this level, formal proofs of theorems of the predicate 
calculus are omitted. But although we present these theorems without 
formal proof, we do not present them in a vacuum. Specifically, through 
development of the notion of truth set in this article and in Article 3.2, 
we will be able to justify a number of theorems of the predicate calculus 
by means of corresponding theorems of set theory. The latter, of course, 
have not been formally proved, but, based on the "intuitive feel" for sets 
acquired in Chapter 1, you should be easily able to recognize them as 
true. A danger in this approach is that we may seem to be using "circular" 
reasoning, since in later chapters we will use principles of logic to prove 
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theorems of set theory. You should understand, then, that our approach 
is to accept theorems of the predicate calculus without proof. The pair- 
ing of unproved theorems of set theory with theorems of logic in Articles 
3.3 and 3.4 should not be viewed as an attempt to prove the latter, but 
only as confirmation of their plausibility. 

Exercises 
In Exercises 1 through 4, let U = (1,2, 3, . . . ,9, 10). Let propositional functions 
fix), q(x), r(x), and s(x) be defined on U by p(x): x 2 3, q(x): x 5 7, r(x): 
x > 3, and s(x): x # 3. 

1. Use the roster method to describe the truth sets P, Q, R, and S explicitly. 

2. Use Definitions 2 and 3 to find the truth sets of the following compound prop. 
ositional functions: 

3. (a) What would you expect to be the truth set of each of the following com- 
pound open sentences: 

(b) Compute each of these truth sets directly from Definitions 2 and 3 [relative 
-- to the specific predicates dx), q(x), r(x), and s(x) given before Exercise 11 and 

compare the results with your expectations from (a). 

4. (a) Calculate tfie truth sets of the following compound open sentences: 

(b) What do the results in (a) suggest about the negation of the five connectives 
in the context of propositional functions, compared to that of propositions, our 
context in Article 2.3? 
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3.2 Quantification 
It may have seemed surprising at the outset of Article 3.1 when we stated 
that the equation A n (B u C) = (A n B) u (A n C) is an open sentence 
rather than a statement. After all, we went to considerable trouble in Chap- 
ter 1 (recall Example 3, ff., Article 1.3) to convince ourselves, Short of a 
rigorous proof, that this equation is valid. So why then isn't it (strictly speak- 
ing) a statement? The answer is that the statement discussed in Chapter 1 
involves more than just the preceding equation. The law asserting that inter- 
section distributes over union states that for every set A, for every set B, 
and for every set C, the equation A n (B u C) = (A n B) u (A n C) is valid. 
The expressions preceding the equation in the previous sentence are ex- 
amples of the universal quantijer "for every," denoted by the symbol V. 
The symbolized statement corresponding to the distributive law we dis- 
cussed in Chapter 1 is 

The universal quantifier is one of two quantifiers of the predicate calculus. 
The other is the existential quantijier "there exists," denoted by the symbol 
3. A simple example of a statement involving the existential quantifier is 
(3x)(5x - 3 = 0), U = R, a true assertion that the linear equation 5x - 3 = 
0 has a real solution. 

We now give a formal definition of the two quantifiers for the case of 
open sentences in one variable. In this article and the next we will concen- 
trate on the one-variable case. Quantification of propositional functions in 
more than one variable will be considered in Article 3.4. 

DEFINITION 1 
If p(x) is a propositional function with variables x and domain of discourse U, then: 

(a) The sentence for all x, p (x ) ,  symbolized (Vx)(p(x)) ,  is a proposition that is 
true if and only if the truth set P of p(x)  equals U. 

(b) The sentence there exists x, p(x) ,  symbolized (3x)(p(x)) ,  is a proposition 
that is true if and only if the truth set P of p(x) is nonempty. 

Certain features of Definition 1 deserve amplification. First, it is impor- 
tant to understand that an expression (Vx)(p(x)) or (3x)(p(x)) is a proposi- 
tion and not a propositional function, even though it involves a variable. 
Unlike a propositional function, its truth value does not depend on the 
variable x, but only on the propositional function p(x) and the domain of 
discourse U. We might think of the variable x in a quantified predicate 
as a "dummy variable," analogous to the role played by x in the definite 
integral f ( x ) d x .  Just as the name of the dummy variable makes no dif- 
ference in a definite integral [so that Jh (x2 + x) dx = (y2 + y) dy, e.g.1, 
so the name of the dummy variable is of no consequence in a quantified pre- 
dicate [so that, e.g., (Vx)(x2 2 0) and (Vy)(y2 2 0) are the same statement]. 
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Second, notice that the statement (Vx)(p(x)) is true precisely when the 
statement ha)  is true for every possible substitution of a specific object a 
from the domain of discourse U, whereas (3x)(p(x)) is true precisely when 
p(a) is true for at least one substitution of an object a from U. Third, note 
that in translating a symbolized statement (3x)(p(x)) into English, we must 
insert the words "such that" or some equivalent formulation (e.g., "for 
which") before the translation of p(x). Finally, we note that definitions per- 
taining to situations in which quantified variables are restricted to certain 
subsets of the universal set U are presented in Exercise 7, Article 3.3. 

EXAMPLE 1 Let U = R. Then: 

(a) (3x)(x2 = 4) is true, whereas (Vx)(x2 = 4) is false. This is so be- 
cause the truth set of the open sentence p(x): x2 = 4 is P = ( - 2,2) 
which is, on the one hand, nonempty, but on the other, fails to 
equal U .  

(h) (Vx)(x2 2 0) is true, as is (3x)(x2 2 0). (Why?) 
(c) (Vx)(x2 = - 5) and (3x)(x2 = - 5) are both false, since the truth set 

of the predicate "x2 = - 5" is (ZI and U = R # 0. 
(d) Can you produce an open sentence Ax), with U = R, for which 

(Vx)(p(x)) is true, while (3x)(p(x)) is false? If not, and if no 
such predicate exists, what possible theorem of the predicate cal- 
culus is suggested? [See Theorem 2(c), Article 3.3.1 Can you think 
of a circumstance, involving a different choice of U, that might 
allow (Vx)(p(x)) to be true, while (3x)(p(x)) is false? [See Exercise 
8(b), Article 3.3.1 

ENGLISH TRANSLATIONS OF STATEMENTS 
INVOLVING QUANTIFIERS 

There are many possible English translations of quantified predicates. Since 
you will on occasion need to write a given English sentence in symbolic 
form, it is important to become familiar with these translations, some of 
which involve the phrases "for every" and "there exists" only implicitly (we 
say that such a statement involves a hidden quant$er). Consider the pred- 
icate x2 = 4 of part (a) of Example 1. Read literally, (Vx)(x2 = 4) says "for 
every x, x squared equals four." This, however, can also be expressed "for 
all real numbers x, x2 = 4," or "every (each) real number x has 4 as its 
square." Note that, in this last translation, we do not explicitly say "for 
every" and do not use any dummy variable. Similarly, (3x)(x2 = 4), which 
we read literally "there exists x such that x2 = 4," can also be expressed 
"there exists a real number x for which x2 = 4" or "there exists a number 
x whose square is 4," or finally, "some real number has 4 as its square." 
The existential quantifier is hidden in the last translation. The main point 
of these examples is that you learn to associate the universal quantifier 
with the words "every," "each," and "all," and the existential quantifier with 
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the word "some," and with sequences of words such as "there exists . . . such 
that" or "there exists . . . for which." 

The problem of appropriate English translation of quantified predicates 
becomes more difficult when dealing with compound predicates. 

EXAMPLE 2 Let U = Z. Let propositional functions p, q, r, and s be defined 
over Z by 

q(n): nisodd, Q = {  ..., -5, -3, -1,1,3,5,...} 

Analyze some compound predicates involving these open sentences. 

Discussion (a) (Vn)(-p(n)) is the statement that "every integer is not 
even" (false since P' # U), whereas -[(Vn)(p(n))] is the statement "it 
is not the case that every integer is even" (true since (Vn)(p(n)) is false). 
The symbolized statement (3n)( - p(n)) says that "some integers are not 
even" (true since P' # @). What is the translation of -[(3n)(p(n))]? 
Is this statement true or false? Do you see any connections among these 
four statements? 

(b) (3n)(r(n) A s(n)) is the statement that some integers are divisible 
by 4 @by  3 (true since R n S =  (..., -12,0, 12,24,36 ,... } #(a), 
also intepretable as "some multiples of 4 are divisible by 3" or "some 
multiples of 3 are divisible by 4." On the other hand, (3n)(p(n) A q(n)) 
("some even integers are odd )  is false since P n Q = 0, but (3n)(p(n)) A 

(3n)(q(n)) ("some integers are even and some integers are odd )  is true, 
because (3n)(p(n)) is true (P # 0 )  and (3n)(q(n)) is true (Q # 0 ) .  

(c) By (b), (3n)(r(n) A An)) symbolizes "some multiples of 4 are even." 
How would we symbolize the (intuitively true) statement "every multiple 
of 4 is even'? We might consider (Vn)(r(n) A (p(n)). But this translates to 
"every integer is divisible by 4 and is even," clearly a false statement. 
What we want to express is that an integer is even, if it is a multiple of 4. 
"If" suggests the conditional; let us try (Vn)(r(n) -, An)). This translates 
literally to "for every integer n, if n is a multiple of 4, then n is even," 
which seems to carry the same meaning as "every multiple of 4 is even." 
Another test for possible equivalence is whether (Vn)(r(n) + An)) is true, 
since we know intuitively that "every multiple of 4 is even" is true. Let 
us try some substitutions for n; suppose n = 8. Since 48) and p(8) are 
both true, so is 48) -, p(8). If n = 2, then 42) is false, p(2) is true, and so 
r(2) -, p(2) is true. If n = 3, then r(3) and p(3) are both false, thus, again, 
r(3) -+ p(3) is true. What case would make r(n) + p(n) false? We would 
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need a substitution for n that makes r(n) true (n is a multiple of 4), where- 
as p(n) is false (n is not even). Does any such integer exist? Common 
sense tells us that there is none; that is, r(n) -, p(n) is true in all cases 
that can actually occur. For this reason, (Vn)(r(n) -, p(n)) is true, in cor- 
respondence with the intuitively evident truth of "every multiple of 4 is 
even." For another approach to the truth of (Vn)(r(n) -, p(n)), calculate 
the truth set R' u P of the predicate r(n) -, p(n). Cl 

The most important conclusion to be drawn from Example 2 [speci- 
fically, part (c)] is that a statement such as "all men are mortal" is sym- 
bolized logically by the universal quantifier with an implication connective. 
Letting p(x) represent "x is a man" and q(x) stand for "x is mortal," the 
expression (Vx)(p(x) + q(x)) corresponds to "every man is mortal." This 
fact is important because many theorems in mathematics have this form, 
for example, "every differentiable function is continuous," "every cyclic 
group is abelian," (from group theory, a branch of abstract algebra) and 
"every function continuous on a closed and bounded interval attains a 
maximum on that interval." 

A second, and almost equally important, conclusion from Example 2 is 
that a statement such as "some men are mortal" is symbolized by the exis- 
tential quantifier and conjunction, specifically by (3x)(p(x)~ q(x)). Note 
that "some men are not mortal" is represented by (3x)(p(x) A -q(x)). Can 
you spot any relationship between the statements "all men are mortal" and 
"some men are not mortal"? We will discuss one in the next article (see 
Example 3, Article 3.3). 

Another important message of Example 2 [recall part (b)] is that expres- 
sions such as (Vx)(h(x)v k(x)) and (Vx)(h(x))v(Vx)(k(x)) represent dif- 
ferent statements. First, their English translations are different. Second, 
the role of the connective v in each is different. Namely, v is a con- 
nective between propositions in (Vx)(h(x)) v (Vx)(k(x)). The truth of this 
compound statement depends on the truth of the individual statements 
(Vx)(h(x)) and (Vx)(k(x)) in accordance with the truth tabular definition 
of v in Article 2.1. In the statement (Vx)(h(x) v k(x)), v is a connective 

'\\ between propositional functions, as defined in Definition 2(b), Article 3.1. 
We must look at the truth set H u K of h(x) v k(x) (and ask whether it 
equals U) to determine whether this quantified compound predicate is 
true. A third, and most crucial, difference between (Vx)(h(x) v k(x)) and 
(Vx)(h(x))v (Vx)(k(x)) is that, in some cases, it is possible for a statement 
of one form to be true, whereas the corresponding statement of the other 
form is false. Can you find predicates h(x) and k(x) such that one of 
(Vx)(h(x) v k(x)) and (Vx)(h(x)) v (Vx)(k(x)) is true, whereas the other is 
false? [see Exercise 3(e) and (f)]. Does it seem to you that the truth of one 
of these two statements forces the other to be true? Your answer to both 
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questions should be "yes." Before going on to the next article, try to decide 
which of the two preceding statement forms is "stronger" than the other. 

EXAMPLE 3 Examples involving quantifiers can shed further light on the 
definition of the conditional connective +. Consider the statement 
"every square is a rectangle," where U = the set of all quadrilaterals in 
a given plane. This statement is evidently true, and may be symbolized 
(Vx)(S(x) -P r(x)), where s(x) represents "x is a square" and r(x) 
stands for "x is a rectangle." If (Vx)(s(x) + r(x)) is true, as our in- 
tuition dictates, the conditional s(q) + r(q) must be true for every sub- 
stitution of a specific quadrilateral q for the variable x. Note, however, 
that q,, q2, and 9,  are possible substitutions, where: 

Name Physical model Description 

q, is a square and T 
a rectangle 

q2 is a rectangle but F 
not a square 

q3 is neither a 
rectangle nor a 

Hence if (Vx)(s(x) + r(x)) is a true statement, the truth tabular defini- 
tion of s(x) + r(x) must be such that s(q) -P r(q) is true in all preced- 
ing cases (which it is!). The fourth case, where s(q) is T and r(q) is F, 
cannot occur, since a physical model would have to be a square which 
is not a rectangle. The fact that s(q) + r(q) would be false in such a 
situation (by the truth tabular definition of +) has no bearing on the 

- - - - . . . truth of (Vx)(s(x) + r(x)) precisely because this situation can never occur. 
0 

Exercises 
1. Let U be the set of all problems on a comprehensive list of problems in science. 
Define four predicates over U by: 

p(x): x is a mathematics problem. 

q(x): x is difficult. (according to some well-defined criterion) 

r(x): x is easy. (according to some well-defined criterion) 
s(x): x is unsolvable. 
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Translate into an English sentence each of the following statement forms: 

2. Let U be the set of all human beings living in the year 1987. Define three pred- 
icates over U by: 

dx): x is young. 
q(x): x is male. 
r(x): x is an athlete. 

Express symbolically each of the statements: 

All athletes are young. (b) Some athletes are not young. 
Not all young people are athletes. (d) No young people are athletes. 
All young people are not athletes. 
Some young people are not athletes 
Some athletes are young males. (h) All young males are athletes. 
All athletes are young females. 
Some athletes are male and are not young. 
Some young males are not athletes. 
All athletes are either female or are young. 

Throughout Exercises 3 through 8, let U = Z, the set of all integers, and consider 
pairs h(x) and k(x) of open sentences over Z given by: 

(i) h(x): x is even k(x): x is odd 
(ii) h(x): x is an integral multiple of 4 k(x): x is a multiple of 7 
(iii) h(x): x2 2 0 k(x): - 1 I sin x I 1 
(iv) h(x): x2 I 0 k(x): Isin xl > 1 
(v) h(x): x2 2 0 k(x): x is odd 
(vi) h(x): x > 0 k(x): x < 0 

/ 3. For & of the preceding pairs (i) through (vi), use Definition 1 in combination 
with Definition 2, Article 3.1 [parts (b) and (c)] to label either true or false each of 
the following statement forms. [Suggestion: First describe the truth sets H and K 
for each of the six pairs. Then set up an 8 x 6 matrix with (a) through (h) as row 
labels, (i) through (vi) as column headings, and T s  and F's as entries.] 

(a) (Vx)(h(x) A k(x) (b) (Vx)(h(x) ) A (Vx)(k(x) 
* ( 4  (Wh(x)  A k(x)) * ( a  (W(h(x)) A (3x)(k(x)) 

(e) (W(h(x) v ( W k ( 4  f (Vx)(h(x) v k(x) 
(91 (3x)(h(x)) v (3x)(k(x)) (h) (3x)(h(x) v k(x) 

4. In each of parts (a) through (h) of Exercise 3, translate the six symbolized state- 
ment forms into English sentences corresponding to each of (i) through (vi). In each 
case (a total of 48), compare your answer of true or false in Exercise 3 with your 
intuitive judgment of truth or falsehood of your English translation. 
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5. Use your true-false answers from Exercise 3 to compare certain pairs of statement 
forms from that exercise, namely: 

(A) (a) with (b) (compare the first two rows of the matrix from Exercise 3) 

(B) (c) with (d) 

(C) (e) with (f) 

Are any general conclusions suggested by these comparisons? (Note: This exercise, 
along with Exercise 8, anticipates Theorems 1 and 2 of the next article.) 

6. In (i) through (iv) (of the list of pairs of open sentences preceding Exercise 3), use 
Definition 1, in combination with Definition 2, Article 3.1 [part (a)] to label either 
true or false each of the following statement forms. (As in Exercise 3, set up a 
matrix of T's and F's, this time of shape 4 x 4.) 

(a) (VX)( - h(x) 1 (b) - [(Vx)(h(x) 11 
(c) ( W (  - h(x) (dl - C(Wh(x))l 

7. In parts (a) through (d) of Exercise 6, translate the four symbolized forms into 
English sentences corresponding to each of (i) through (iv). In each case (a total of 
16), compare your answer of true or false in Exercise 6 with your intuitive judgment 
of the truth or falsehood of your English translation. 

8. Use your true-false answers from Exercise 6 for each of the four cases (i) through 
(iv), to compare pairs of the statement forms (a) through (d) in Exercise 6. Are any 
general conclusions suggested by these comparisons? 

9. Recall, from Definition 1, Article 3.1, that propositional functions Ax) and q(x) 
are equivalent over a common domain U if and only if P = Q. 

*(a) Write a quantified compound predicate involving arbitrary predicates p(x) and 
q(x) that should, intuitively, be a true statement precisely when p(x) and q(x) 
are equivalent. 

*(b) Write an equation involving the truth sets P and Q that must be satisfied if the 
quantified statement you wrote in (a) is true. 

*(c) Use the result of (b), together with Definition 1, Article 3.1, to state a possible 
theorem of set theory suggested by the equivalence ("precisely when") implied 
in (a). 

I/ 
10. Analogous to Definition 1, Article 3.1, we say, given propositional functions 
p(x) and q(x) over a common domain U, that p(x) implies q(x) if and only if P c Q. 

(a) Write a quantified compound predicate involving p(x) and q(x) that should, 
intuitively, be a true statement precisely when Ax) implies q(x). 

(b) Write an equation involving the truth sets P and Q that must be satisfied if the 
quantified statement you wrote in (a) is true. 

(c) Use the result of (b), together with Definition 1, to state a possible theorem 
of set theory suggested by the equivalence implied in (a). 

I 11. In the following list, (a) through (i), of propositional functions over the domain 
of discourse U = R, find all instances of pairs that are either equivalent or in which 
one implies the other: 

*(a) p(x): 1x1 5 1 *(b) q(x): - 4 < x t 4 
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(c) r(x): x2 < 25 
*(e) t (x):  3 < x < 5 

(g) u(x): x 2  I 1 
(i) y(x): 0 < 1x1 < 2 

*(d) s(x): J x  - 41 < 1 
( f )  u(x): 1x1 5 0 
(h) w(x): ( x  2 0 )  A ( x  1 0 )  

3.3 Theorems About Predicates in One Variable 
After doing the preceding exercises, you may be thinking of possible gen- 
eral relationships, involving equivalence or implication, that might exist 
between various quantified compound predicates. Some were hinted at 
rather directly in the exercises (e.g., Exercises 5 and 8). Example 1 pre- 
sents another approach to one of the pairs of statements you might have 
compared in Exercise 8. 

EXAMPLE 1 Describe in terms of truth sets the conditions under which 
the quantified compound predicates (Vx)(-p(x)) and - [(3x)(p(x))] are 
true. 

Solution By Definition 2(a), Article 3.1, the truth set of --p(x) is P'. 
By Definition l(a), Article 3.2, the universally quantified statement 
(Vx)(-p(x)) is true if and only if P' = U. On the other hand, by Defini- 
tion 2(a), Article 2.1, - [(3x)(p(x))] is true if and only if (3x)Mx)) is false. 
This in turn [by Definition l(b), Article 3.21 is the case if and only if it is 
false that P # @, that is, if and only if the statement P = is true. 0 

Example 1 indicates that a statement of the form "for every x, not p(x)" 
is true precisely when P' = U, while the corresponding statement "it is not 
the case that there exists x for which p(x)" is true precisely when P = @. 
Looking at these two conditions about truth sets, we see intuitively that 
they - are logically equivalent, that is, either both true or both false (i.e., 
P' = U if and only if P # a). Accepting this unproved statement about sets 
as true (recall the remarks in the last several paragraphs of Article 3.1), 
we must conclude, by transitivity of the biconditional, that (Vx)(-p(x)) 

// and - [3x)(p(x))] are logically equivalent statements for any propositional 
function p(x). This means that, for a given predicate Ax), either both are 
true or both are false. This conclusion is consistent with results you should 
have gotten in Eiercises 6 and 8, Article 3.2. 

Several other theorems of the predicate calculus, involving equivalence 
between pairs of quantified propositional functions of one variable, can be 
arrived at in a similar manner. In Theorem 1 we list beside each statement 
about quantified predicates a corresponding assertion about truth sets. 
Note, in each case, that the latter statement about sets, although unproved 
as yet, is intuitively believable. For further evidence to support the con- 
clusions of Theorem 1, review your answers to Exercises 3(a, b, g, h) and 
6, Article 3.2. 
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T H E 0 R E M 1 (Equivalences Involving Compound Predicates in One Variable) 
Let p(x) and q ( x )  be predicates over a domain of discourse U with truth sets 
P and Q. Then: 

Statement about quantijied Corresponding statement 
predicates about truth sets 

(a) - [ (Qx)(p(x)) ]  t+ (3x)( -- p(x)) (a') P  = U  is false t+ P' # (21 
(b) - [(3x)(p(x))]  t+ (Vx)(- -p(x))  (b') P  # (21 is false - P' = U  
(4 ( W P ( x )  A d x ) )  '+ (Qx)(P(x))  (Vx)(q(x)) 

(c') P n Q =  U o P = U a n d Q =  U  
(d) (3x)(p(x) v - ( 3 x M x ) )  v (3x)(q(x)) 

(d )  P u Q Z ( 2 1 - P f  0 o r Q Z 0  

Next, we apply the approach of Example 1 to another of the pairs of 
quantified predicates from Exercise 3 [parts (e) and (f)], Article 3.2. 

EXAMPLE 2 Describe in terms of truth sets the conditions under which the 
quantified predicates (Vx)(h(x)) v (Vx)(k(x)) and (Vx)(h(x) v k(x)) are true. 

Solution By Definition 2(b), the truth set of h(x) v k(x) is H u K. By Def- 
inition 4(a), the universally quantified statement (Vx)(h(x) v k(x)) is true 
if and only if H u K = U. On the other hand, by Definition 2(b), Article 
2.1, (Vx)(h(x)) v (Vx)(k(x)) is true if and only if either (Vx)(h(x)) is true, 
which means H = U, or (Vx)(k(x)) is true; that is, K = U. We conclude 
that (Vx)(h(x)) v (Vx)(k(x)) is true if and only if either H = U or K = U. 

0 

Let us now compare the two conditions about sets arrived at in Example 
2. Intuitively, it is clear that if either H = U or K = U, then H u K = U. 
What about the converse? Do we need either H = U or K = U in order 
to have H u K = U? The example U = R, H = Q, and K = Q' shows that 
the answer is "no." In this case the implication between the two statements 
from set theory goes in one direction only. Using transitivity of implication 
[Theorem 2(b), Article 2.31, we conclude that (Vx)(h(x)) v (Vx)(k(x)) implies 
(Vx)(h(x) v k(x)), by the argument 

(Vx)(h(x)) v (Vx)(k(x)) is true t* (H = U )  v (K = U) 
- , H u K = U  
* (Vx)(h(x) v k(x)) is true 

As in the discussion following Example 1, this argument is based on the 
assumption of a theorem from set theory that we have not, as yet, proved. 
Thus it does not constitute a proof of the logical principle in question, but 
only an arguvent that this principle is reasonable. 

Our assertion that (Vx)(h(x)) v (Vx)(k(x)) implies (Vx)(h(x) v k(x)) means 
that, for given predicates h(x) and k(x), the truth of the first statement implies 
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(or forces) that of the second. There are various other ways of expressing this 
idea. The second statement cannot be false for predicates h(x) and k(x) for 
which the first statement is true, or the second cannot be false unless the first 
is false. Recalling language introduced in Article 2.3, we say also that the first 
statement form is stronger than the second. We express this idea in symbols 
by 

This conclusion is consistent with answers you should have gotten in Ex- 
ercises 3(e, f) and 5, Article 3.2. Several other theorems of the predicate 
calculus, involving implication between pairs of quantified propositional 
functions in one variable, can be arrived at in a similar manner. We state 
Theorem 2 in a format analogous to that of Theorem 1. 

T H E 0 R E M 2 (Implications Involving Quantified Predicates in One Variable) 
Let p(x) and q(x) be predicates over a domain of discourse U with truth sets P and 
Q. In (c) we assume further that U is nonempty, while in (d) and (e), we assume 
that a is a specific element of U. Then: 

Stdtement about quantijied Corresponding statement 
predicates about truth sets 

Stronger - Weaker Stronger Weaker 

The converse of each of the statements in Theorem 2 is false; that is, specific 
propositional functions p(x) and q(x) can be found for which the weaker 
statement form is true, whereas the corresponding stronger one is false. 
Recall, for example, Article 3.2, Exercise 3, part (iv)(c, d), and part (i)(e, f). 

Theorems 1 and 2 can be used, together with previous results, to establish 
other results of the predicate calculus. 

EXAMPLE 3 Find a statement equivalent to the logical negation of 
(Vx)(p(x) --+ q(x)), in which "negation" is not a main connective. 

Solution According to (a) of Theorem 1, -- [(Vx)(p(x) -, q(x))] is equivalent 
to (3x) [ - - (p(x)  4 q(x))J. By Exercise 4(a), Article 3.1, the compound 
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predicate -(p(x) + q(x)) is equivalent to (i.e., has the same truth set as) 
Ax) A - q(x). Hence we have 

where the latter is the desired form. If p(x) represents "x is a man" and 
q(x) stands for "x is mortal," this equivalence indicates that "some men 
are not mortal" is equivalent to the negation of "all men are mortal." 

More generally, the negation of any statement of the form "every X is 
a Y" can be expressed in the form "some X's are not Y's." This logical 
principle has important implications for theorem-proving. Suppose we 
wish to use proof by contrapositive [recall Theorem l(n), Article 2.31 to 
prove a theorem whose conclusion is "every X is a Y." We would begin by 
assuming the negation of that conclusion, that is, "there exists an X that is 
not a Y." Another application of the principle occurs whenever we doubt 
the truth of a conjecture "every X is a Y" and wish to prove it false. How 
can we do this? The answer is: by showing that there exists an X that is 
not a Y. 

We conclude this article by returning to the paradox outlined in the 
introduction to this chapter. Theorem 2 provides the means to resolve 
it. Why is it not the case, for any two sets P and Q, that either P G Q 
or Q c P when, for any x, the statement [(x E P) + (x E Q)] v [(x E Q) 
+ (x E P)] is true? The answer is that "P c Q or Q G P" is symbolized in 
the predicate calculus by (Vx)((x E P) + (x E Q)) v (Vx)((x E Q) + (x E P)). 
As seen in Theorem 2(a), a statement of this form can be false even when 
the corresponding statement (Vx)[((x E P) + (x E Q)) v ((x E Q) + (x E P))] 
is true. Such is the case in this example. 

Exercises 
1. Express the logical negation of each of the following statements by a sentence 
beginning with "all" or "some," as appropriate: 

(a) All young women are athletes. 
(b) No young men are athletes. 

*(c) Some women are young athletes. 
(d) All athletes are either young or are men. 
(e) Some athletes are young men. 
( f )  If all athletes are young men, then no women are athletes. 

*(g) Either all athletes are young women or some men are athletes. 

2. (a) In parts (a) through (e) of Theorem 2, give examples different from those in 
Exercise 3, Article 3.2, of propositional functions, Ax) and q(x) over a domain 
U, for which the weaker statement form is true while the stronger one is false. 

(b) Is it possible to find such examples if we interchange the words "weaker" and 
"stronger" in (a)? 
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(c) The statement form (Vx)(p(x) v q(x)) from Theorem 2(a) asserts, when true, that 
for every substitution of an object a from a universal set U, either statement p(a) 
or statement q(a) is true. Express in your own words the "extra" condition that 
must hold if the stronger statement form (Vx)(p(x)) v (Vx)(q(x)) is also to be true. 

(d) The statement form (3x)(p(x)) ~(3x)(q(x)) from Theorem 2(b) asserts, when 
true, that there is some substitution of an object a from U such that Ha) is true 
and there is some substitution of an object b from U such that q(b) is true. What 
extra condition must hold in order that the stronger statement form (3x)(p(x) A 

q(x)) also be true? 

3. (a) Give an example of propositional functions p(x) and q(x) over a nonempty 
domain U for which (Vx)(p(x) v q(x)) is true and (Vx)(p(x)) v (Vx)(q(x)) is false, 
whereas (3x)(p(x) A q(x)) and (3x)(p(x)) A (3x)(q(x)) both have the same truth 
value. (Note: This combination did not occur in any of the examples (i) through 
(vi) of Exercise 3, Article 3.2.) 

(b) Is it possible to find p(x) and q(x) in part (a) so that (3x)(p(x) A q(x)) and 
(3x)(p(x)) A (3x)(q(x)) are both false? 

4. In Example 3 the negation of (Vx)(p(x) -, q(x)) was expressed in the equivalent 
form (3x)(p(x) A - q(x)). Note that the "not" connective does not occur as a "main 
connective"; that is, it does not modify any compound proposition or compound 
predicate in the latter form. Use a similar approach to express the negation of each 
of the following statement forms in a form in which "not" does not appear as a 
main connective: 

5. Express the negation of each of the following statement forms in a form that 
does not employ the connective "not" as a main connective: 

6. In each of (a) through (e), describe precisely what must be proved in order 
disprove the given (false) statement: 

For every function f (with domain and range both equal to R), iff '(0) = 0, 
then f has a relative maximum or minimum at x = 0. 
For every square matrix A, if A is upper triangular, then A is diagonal. 
For every curve C in R x R, if C is symmetric with respect to the x-axis, 
then C is symmetric with respect to the origin. 
For every function f ,  iff has a relative maximum or minimum at x = 0, then 
f'(0) = 0. 
For every function f ,  iff is defined at x = 0 and if both lim,+,- f(x) and 
lim,,,, f (x) exist, then f is continuous at x = 0. 
For every group G, if G is abelian, then G is cyclic. 
For every subset S of a metric space X, S is compact if and only if S is closed and 
bounded. 
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[Note: The concepts in (b) are from elementary linear algebra, (f) is from abstract 
algebra, whereas (g) would be encountered in advanced calculus or elementary to- 
pology. You need not be familiar with these definitions in order to answer the 
questions.] 

7. Frequently, in mathematics, we wish to restrict a quantified variable to a portion 
(i.e., subset A) of the domain of discourse U. A familiar example is the epsilon-delta 
definition of limit, in which epsilon and delta are both taken to be positive real 
numbers. We define (Vx E A)(p(x)) and (3x E A)(p(x)) by the rules: 

(a) Prove that -[(Vx E A)(p(x))] o (3x E A)(-Ax)). 
(b) Prove that - [(3x E A)(Ax))] * (Vx E A)(-Ax)). 

8. (Continuation of 7) (a) Consider the special case A = U of the two definitions 
in Exercise 7. Explain why (Vx E U)(p(x)) is equivalent to (Vx)(p(x)) and why 
(3x E U)(p(x)) is equivalent to (3x)(p(x)). 

(6) Consider the (even more) special case A = U = 0 in part (a). Explain why 
(Vx)(p(x)) is true whereas (3x)(p(x)) is false in this case. [Note: Theorem 2(c) 
precludes this possibility in the case of a nonempty universal set.] 

9. Frequently, in mathematics, we wish to assert not only that there exists an object 
with a certain property (existence), but that there exists only one such object (unique- 
ness). We define the statement "there exists a unique x such that Ax)," denoted 
(3! m o ) )  by 

Thus a proof of "unique existence" consists of an existence proof [often by produc- 
ing a specific object satisfying p(x)] and a uniqueness proof. The latter is often ap- 
proached by assuming that two objects both satisfy Ax) and then showing that 
those two objects are actually the same object. Or, if existence of a specific object 
b, for which p(b) is true, has been proved first, then uniqueness may be proved by 
showing that any x satisfying Ax) equals this b. Let U = R and prove: 

(a) (3!x)(7x - 5 = *(b) (3!x)(x2 + SX + 16 = 0) 
(d) -[(~!x)((x~ - 1)114 = I)] 

- - - 
(e) (3!x > 0)(x2 - 5x - 36 = 0) ( f )  -[(3!x)(x2-5x-36=0)] 

10. (Continuation of 9) Given a subset A of a universal set U, we define a complement 
B of A to be any subset B of U satisfying the equations A u B = U and A n B = 0. 
Describe precisely what must be proved in order to show that "any set has a unique 
complement." (You will be asked to prove this theorem in Article 6.3.) 

11. In each of (a) through (d), give an informal argument to support the stated theo- 
rem of the predicate calculus. Let Ax) and q(x) be predicates over a domain of dis- 
course U and let r be a proposition. Then: 
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[Hints: In (a) and (d), look at the logical negation of both sides, recalling that p is 
stronger than q if and only if -q is stronger than -p[by Theorem l(n), Article 
2.31. In (b) and (c), consider what each statement means with respect to the propo- 
sition r and the truth set Q of q(x).] 

12. Recall from Theorem l(t), Article 2.3, that [(p A q) -* r] - [(p -, r) v (q -+ r)] is 
a tautology. Let U equal the set of all real valued functions of a real variable. Let 
propositional functions in the variable f, p( f ), q( f ), and r( f )  be defined by: 

pw): f has a relative maximum at x = 0 
qu): f is differentiable at x = 0 

With these substitutions, the left side of the preceding tautology seems to say "func- 
tions that have a relative maximum at x = 0 and are differentiable at x = 0 have 
derivative zero at x = 0" (which is E e ) .  The right side would appear to represent 
"either functions that have a relative maximum at 0 have derivative zero at x = 0 
or functions that are differentiable at 0 have derivative zero at x = 0." Both of these 
are false so that their disjunction is false. Resolve this apparent contradiction. 

3.4 Quantification of Propositional 
Functions in Several Variables 

Expressions such as "d, is perpendicular to d," (U = the set of all lines in 
a given plane), "x I y" or "x + y = z" (U = R), and ''f = g 0 h" (U = the set 
of all real-valued functions of a real variable), are examples of propositional 
functions in two or more variables. If we denote "x + y = z" by the symbol 
p(x, y, z), then p(5, - 3,2) is a true statement and p(4,0, 5) is false. On the 
other hand, p(5, y, z) and (3x)(p(x, y, z)) are not statements, but rather, they 
are propositional functions in two variables, whereas p(5, y, 7) is a proposi- 
tional function in the single variable y. Each of the last three expressions, 
of course, is neither true nor false as it stands. 

Assuming that a set Ui  constitutes the domain of discourse for the ith 
of the n variables of a propositional function p(x,, x2, . . . , xn), the Cartesian 
product U ,  x U, x - - . x Un is the domain of discourse for p. In particular, 
if U is a common domain for all n variables, then Un = U x U x . . . x U 
(n times) is the domain of p, so that the truth set of any such predicate is 
a subset of Un. 

There is a greater variety of ways to make a propositional function into 
a statement, for functions of several variables, than was the case for functions 
of a single variable. We may, of course, substitute for each of the variables. 
But then again, we might substitute for all variables except one and mod- 
ify the remaining "one variable predicate" with a quantifier. Letting p(x, y, z) 
stand for the equation x + y = z and letting r(y) = p(5, y, 7), we find that 
the quantified predicate (3y)(r(y)) or (3y)(p(5, y, 7)) is the (true) assertion that 
the equation 5 + y = 7 has a real solution. Here is another example of this 
situation. 
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Figure 3.1 Graphs pertaining to Example I .  
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EXAMPLE 1 Let t(x, y) represent the inequality x S y with domain of 
discourse R x R. Describe the truth set of q(x) = t(x, 5). Determine 
whether (Vx)(q(x)) and (3x)(q(x)) are true or false. 

SOIU tion We can best describe the various truth sets by graphing. The truth 
set of t(x, y), call it T, is described in Figure 3.1~. Note that T G R x R. 
The truth set of q(x): x I 5 is necessarily a subset of R x (51, since the 
value of y has been fixed at 5. In other words, the set R x (51, better 
known as the horizontal line with equation y = 5, is the domain of dis- 
course for q(x) [see Figure 3.1 b]. The truth set is that portion of R x (5) 
that is also in T [see Figure 3. lc], namely, the set ((x, y) 1 x y, y = 5) = 
(R x (5)) n T. Since this truth set is nonempty [(3,5) is an element, e.g.1, 
then (3x)(q(x)) is true. Since it does not equal all of R x (5) [e.g., 
(7, 5) E R x (51, but is not in T and so is not in the truth set of q(x)], then 
(Vx)(q(x)) is false. 0 

MIXED QUANTIFIERS 

Another possibility for converting p(x, y, z): x + y = z into a proposition is 
to quantify all the variables, as in the statements (Vx)(Vy)(Vz)p(x, y, z), a 
false statement, and (3x)(3y)(3z)p(x, y, z), which is true. You should have no 
difficulty in recognizing the meaning of these statements; the first says that 
the given equation is true for any three real numbers, the second states that 
it is true at least once, that &Tor some three real numbers. 

The meaning may not be so obvious if we write (Vx)(3y)(Vz)p(x, y, z) 
or (3x)(3y)(Vz)p(x, y, z); these are examples of mixed quantifiers and are 
in general much more difficult to interpret than our first two examples. 
One difficulty comes in trying simply to formulate such symbolized state- 
ments into meaningful English sentences. Three keys to this are: (1) Insert 
"such that" or "having the property that" after any occurrence of 3 that is 
followed directly by V or by the predicate. (2) Insert "and" between any two 
occurrences of the same quantifier. (3) Whenever (3y) follows (Vx), read 
"to every x, there corresponds at least one y" rather than "for every x, there 
exists a y." We will explore in detail the reasons for the latter interpretation 
after Theorem 1. Thus we read (Vx)(3y)(Vz)p(x, y, z) as "to every x, there 
corresponds at least one y such that, for every z, p(x, y, z)." The more com- 
plicated expression (3~)(3w)(Vx)(Vy)(3z)pfu, w, x, y, z) is read "there exist v 
and w having the property that, to every x and y, there corresponds at least 
one z such that p(v, w, x, y, z)." 

It is in dealing with mixed quantifiers that the true nature of multiple 
quantification, namely, a series of single quantifications, becomes both ap- 
parent and important. 

EXAMPLE 2 Given a propositional function p(x, y), describe graphically 
conditions for the truth of (Vx)(3y)(p(x, y)) and (3y)(Vx)(p(x, y)). 
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Solution Let U, x U, be the domain of discourse for p(x, y), and let P G 
U, x U, be the truth set of p(x, y). Let us first examine (Vx)(3y)(p(x7 y)). 
Let r(x) represent the one-variable propositional function (3y)(p(x, y) ). 
Then an element u, E U, is in the truth set of r(x) if and only if (u,, y) E 
P; that is, p(u,, y) is true, for some y E U , .  Graphically, this means that 
the set P must meet, or have nonempty intersection with, the "verti- 
cal line" x = u,. The assertion (Vx)(r(x)), or (Vx)(3y)(p(x7 y)), therefore 
means that P must meet every vertical line. 

On the other hand, to analyze (3y)(Vx)(p(x, y)), let s(y) stand for one- 
variable propositional function (Vx)(p(x, y)). An element 24, E U, is in 
the truth set of s(y) if and only if (x, 24,) E P, that is, p(x, 24,) is true, for 
every x E U,. Graphically, this means that the set P must contain the 
"horizontal line" y = u, as a subset. The assertion (3y)(s(y)) or 
(3y)(Vx)(p(x, y)) therefore means that the truth set P of p(x, y) must contain 
some horizontal line. 

Suppose now that p(x, y) is the inequality of Example 1. Then Figure 
3.la shows that (Vx)(3y)(x I y) is true; the "upper-triangular" region T 
clearly meets every vertical line. But (3y)(Vx)(x < y) is false, because there 
is no horizontal line entirely contained in T. 

This example shows that (Vx)(3y)(p(x, y)) can be true while 
(3y)(Vx)(p(x, y)) is false. But what if (3y)(Vx)(p(x, y)) is true? Then P con- 
tains some "horizontal line" y = 24, (i.e., U, x (u,) c P). Consider an 
arbitrary "vertical line" x = u,. This line must intersect P in at least one 
point, namely (u,, u,) [i.e., (u,, u,) E ({u,} x Uz) n PI so that the statement 
(Vx)(3y)(p(x, y)) must also be true. 

Our conclusion from this discussion is expressed in the following theorem. 

T H E O R E M  1 
For any propositional function p(x, y) in two variables, 

Thus any statement of the form (3y)(Vx)(p(x, y)) is stronger than the 
-- corresponding statement (Vx)(3y)(p(x7 y)). A familiar example of t h e  first 

form is the true assertion (3x)(Vy)(x + y = y), U = R, that an additive 
identity (i.e., zero) exists for R. Note that, as Theorem 1 promises, the state- 
ment (Vy)(3x)(x + y = y)Ys also true, where we may take x = 0 to corre- 
spond to any given y. On the other hand, the proposition (Vx)(3y)(x + y = 0) 
over R, which states that every real number has an additive inverse, or nega- 
tive, has its corresponding proposition (3y)(Vx)(x + y = 0) false. For clearly 
there does not exist a single value of y that is the additive inverse of 
every x. 

A statement (Vx)(3y)(p(x, y)), when true, asserts that, for any given x, 
there is at least one corresponding y such that p(x, y) is true. As a rule, the 



3.4 QUANTIFICATION OF PROPOSITIONAL FUNCTIONS IN SEVERAL VARIABLES 105 

y whose existence is being asserted, although not necessarily being uniquely 
determined by x, depends - on x, as in the preceding example, where the 
additive inverse of x = 6 is y = - 6, the inverse of x = - 7 is y = 7, if x = n, 
then y = -n, and so on. If, in addition to (Vx)(3y)(p(x, y)), the stronger 
statement (3y)(Vx)(p(x, y)) is also true [which may or not be the case, for a 
given predicate p(x, y)], then this y does not depend on x; the object whose 
existence is being asserted need not vary as x varies. Stated differently, there 
is at least one specific value of y (y = 0 in the case of our "additive identity" 
example) that makes p(x, y) true for every x. 

An understanding of the difference, and the logical relationship, between 
the mixed quantifiers (Vx)(3y) and (3y)(Vx) is crucial to much theoretical 
work in upper-level undergraduate mathematics and is absolutely basic at 
the graduate level. A special effort should be made to understand Theorem 
1, the examples of the previous two paragraphs, and this final example. 

EXAMPLE 3 Let U be the collection of all finite subsets, including 0, of the 
set N of all positive integers. Define a propositional function s on U x U 
by s(X, Y): X G Y. Analyze the four statements: 

Discussion Statement (a) says that, for every set X in the collection U (of 
Jinite subsets of N), there corresponds some set Y in U that contains X 
as a subset. Let us try some examples: 

Given X = (1,2, 31, we could let Y = (1,2, 3,4). 
Given X = ( l ,2 , .  . . ,49,50), we could let Y = ( l ,2 , .  . . ,85,86). For 
that matter, we could let Y = X, since every set is a subset of itself. 

Given X = (2; . . . ; 999,999; 1,000,000), we may let Y = (2; . . . ; 
2,000,000). Short of a formal proof, we seem to have good reason to 
believe, from these examples, that statement (a) is true. 

Statement (b) says that, to any set Y in U, there corresponds at least 
one set X in- U that is a subset of Y. As in the previous para- 
graph, given Y = (1; 2; 3; . . .; 1,000,000), we may let X = (1; 2; 3; . . . ; 
999,999). If Y = ( l ; 2 ; .  . .; 50,0001, we may let X = (1;2;. . .; 10,000). 
Or, if Y = (1,2, 3,4), we may let X = (1). Note that, as in the previous 
paragraph, these choices of sets X, corresponding to a given set Y, are by 
no means unique. In fact, see the discussion of (d), which follows, for 
an entirely different approach. 

The relationship between statements (c) and (a) is that discussed in 
Theorem 1. Statement (c) is stronger than (a), a true statement, so that 
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(c) may be either true or false. What does (c) assert? It says that there 
is some set Y in U that contains every set X in U as a subset. Is there 
a - single finite subset of N that contains - all finite subsets of N? You are 
correct if your intuition tells you "no." 

statement (d) is related to-(b) as (c) was related to (a). Again, since 
(b) was true, (d) may be either true or false. We must now ask whether 
there exists a single finite subset of N that is a subset of every finite 
subset of N. Our answers in part (b) did not settle this question; for each 
given Y, we gave back a corresponding X that changed as Y changed. 
Was there some single subset X we could have given back in response to 
every given Y? Yes! The empty set @ fulfills this role. Unlike (c), state- 
ment (d) is true. 

To summarize, (a) and (b) are both true but differ from each other in 
a significant respect. Since (c) is false, the Y corresponding to a given X 
in (a) must depend on (or vary with) that X. There is no single Y that works 
for every given X. On the other hand, since (d) is true, then the X corre- 
sponding to a given Y in (b) need not depend on Y. There exists a specific 
set X, namely, X = @, that is a subset of every Y E  U .  

Theorem 1 has a generalization; here is a brief and informal description. 
If p is a propositional function of more than two variables, say, p = 
p(w, x, y, z), then Theorem 1 enables us to conclude (by an argument we 
omit) that a statement such as (Vw)(3x)(Vy)(Vz)p(w, x, y, z) is stronger than 
the corresponding statement (Vw)(Vy)(3x)(Vz)p(w, x, y, z). Note that the 
statements are identical except that (3x) precedes (Vy) in the first statement, 
whereas (Vy) precedes (3x) in the second. In the first statement, x depends 
on w only; in the second, x depends on both w and y. Other examples of this 
sort are found in Exercise 6, while an important application of this principle 
to mathematical analysis is contained in Exercise 7, Article 4.3. 

An analysis similar to that preceding Theorem 1 would convince us of 
the following less difficult properties, which we summarize in the next 
theorem. 

T H E O R E M  2 
Let p(x, y) be any propositional function in two variables. Then: 

(4 ( W  (VY) P(X. Y) - (VY) (WP(X.  Y) 

(b) (~x) (~Y)P(x ,  Y) ++ ( ~ Y ) ( W P ( ~ I  Y) 
(c) (Vx)(Vy)p(x, y) + (3x)(3y)p(x, y), provided that each domain U, and U, is 

nonempty. 

Theorem 2 generalizes to any finite number of variables. Parts (a) and 
(b) say essentially that if only one quantifier is involved in a statement, the 
order of quantification is of no consequence (unlike the situation with mixed 
quantifiers). Part (c) generalizes (c) of Theorem 2, Article 3.3. 
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NEGATION OF PROPOSITIONAL 
FUNCTIONS IN SEVERAL VARIABLES 

In parts (a) and (b) of Theorem 1, Article 3.3, we saw how to formulate a 
positive statement of the negation of universally and existentially quantified 
predicates in one variable. We now extend this to propositional functions 
of two variables; in particular, we look at propositions involving mixed 
quantifiers. 

EXAMPLE 4 Formulate a positive statement of the negation of 
(W(~Y)HX, Y). 

Solution We must find a quantified predicate equivalent to - [(Vx)(Iy)p(x, y)] in which negation is not a main connective. Let s(x) 
represent (3y)p(x, y). Then - [(Vx)(3y)p(x, y)] is the same as - [(Vx)(s(x))] 
which, by Theorem l(a), Article 3.3, is equivalent to (3x)(-s(x)). But - s(x) in turn is - [(3y)p(x, y)] which, by Theorem l(b), Article 3.3, is 
equivalent, for fixed x, to (Vy)(-p(x, y)). Hence our original statement - [(W(3y)p(x, y)] is equivalent to (3x)(vy)( -- p(x, Y)) .  €I 

Example 4 indicates that a statement of the form (Vx)(3y)p(x, y) is negated 
by changing V to 3,3 to V, and negating the predicate p(x, y). It is left to you 
[Exercise 5(c)J to provide an argument, similar to that given in Example 4, 
showing that the same process is used to negate (3x)(Vy)p(x, y). We sum- 
marize these facts and deal, for the record, with negations of nonmixed 
quantifiers as well in the next theorem: 

T H E O R E M  3 
For any propositional function p(x, y) in two variables: 

Like Theorem 2, Theorem 3 generalizes to propositional functions in 
any finite number of variables. To negate a statement involving the predi- 
cate p(x,, x,, . . . , x,), preceded by n quantifiers, we use the guiding rule: 

Change each universal quantifier V to 3, change each existential 
quantifier 3 to V, and negate the predicate. 

EXAMPLE 5 Express the negation of (Vw)(3~)(3y)(Vz)p(w, x, y, z )  in a form 
that does not have negation as a main connective. 

Soh tion By the preceding principle, - [(Vw)(3x)(3 y)(Vz)p(w, x, y, z)] is 
equivalent to (3w)(Vx)(V y)(3z)(- p(w, x, y, z)). 0 
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Exercises 

1. Given a propositional function p(w, x, y, z) over a domain of discourse, 
U = U, x U, x U, x U,, let a, be a specific element of U, for each i = 1,2, 3,4. 
Identify each of the following as either a "proposition" or a "propositional function 
in n variables." In the latter, determine n. 

2. Translate into an English sentence each of the following symbolized statements 
involving an arbitrary predicate p(x, y) or p(x, y, z): 

3. Write a symbolized statement equivalent to the negation of each of parts (a) 
through (h) of Exercise 2, in which the negation connective does not occur as a 
main connective (i.e., the negation connective should modify the predicate only). 

4. Let U be the set of all people living in the year 1987. Define a propositional 
function f in two variables over U (i.e., the domain off equals U x U) by f(x, y): 
x is a friend of y. Translate into a good English sentence. 

5. (Continuation of 4) (a) Express in symbols the negation of each of parts (a) 
through (h) of Exercise 4. (As usual, do not use "not" as a main connective in 
your final answer to any part). 

(b) Translate each of your symbolized statements in (a) into a good English sen- 
tence. Compare each of these translations with its corresponding translation 
in Exercise 4. 

(c) Write an argument similar to that given in Example 4 to justify (b) of 
Theorem 3. 

6. (a) A statement of the form (Vx)(3y)p(x, y) asserts, when true, that to every x 
there corresponds at le&t one y for which p(x, y) is true. Express in your own 
words the "extra" property that must hold if the stronger (by Theorem 1) state- 
ment (3y)(Vx)p(x, y) is also to be true. 

(b) In each of parts (i) through (v), use the remark preceding Theorem 2 to deter- 
mine which of the two given symbolized statements is stronger: 
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(c) In parts (ii) through (v) of (b), indicate, for each existentially quantified variable, 
all possible dependencies on universally quantified variables (e.g., in the first part 
of (i), z may depend on both x and y, whereas in the second part of (i) z may 
depend only on x. Note that you should find fewer dependencies in statements 
judged stronger in part (b) than in corresponding weaker statements). 

7. Let U = Z, the set of all integers. Given two elements m, n E Z, we say that m 
divides n if and only if there exists p E Z such that n = mp. Define a propositional 
function d on Z x Z by d(m, n): m divides n. 
(a) Translate each of the following symbolized statements into a good English 

sentence. Label each as either true or false: 

(0 
(iii) 

*(v) 
(vii) 

(ix) 
*(xi) 

(xii) 
(xiii) 

4 5 7 )  (ii) d(4, 16) 
d( 1694) (iv) W,7)  
4-8, 0) (vi) d(7, -7) 
4 - 7,7) (viii) (Vm)d(m, m) 
(Vn)d( 194 00 (Vm)d(m, 0) 
(Vm)(Vn)[d(m, n) + d(n, m)] 
(Vm)(Vn)(~~)[(d(m, n) A 44 P)) + d(m, P)] 
(Vm)(Vn)[(d(m, n) A d(n, m)) + m = n] 

(b) Suppose we now let U = N, the set of all positive integers. We wish to 
consider the four statements (Vm)(3n)d(m, n), (3n)(Vm)d(m, n), (Vn)(3m)d(m, n), and 
(3m)Pn)d(m, 4. 

(i) The statement (Vm)(3n)d(m, n) is true. In particular, for each of the following 
given values of m, give back a corresponding value of n for which d(m, n) is true: 

(A) m = 2 n = ? 
(B) m = 4  n = ? 
(C) m = 16 n = ? 
(D) m = 464 n = ? 
(E)  m=1,000,000 n =  ? 

(ii) Do you think that the statement (3n)(Vm)d(m, n) is true? Explain the connection 
between this question and your answers to (i). 
(iii) The statement (Vn)(3m)d(m, n) is true. In particular, for each of the following 
given values of n, give back a corresponding value of m for which d(m, n) is true: 

(A) n = 2 m = ? 
(B) n = 4  m = ? 
(C) n =  16 - m =  ? 
(D) n = 464 m = ? 
(E) n = 1,000,000 m = ? 

(iv) Do you think that the statement (3m)(Vn)d(m, n) is true? Explain the connec- 
tion between this question and your answers in (iii). 

(c) Reconsider part (ii) of (b) if we let U = Z, rather than U = N. 

8. (Continuation of Exercises 7 and 8, Article 3.3) Let us consider again the matter 
of the restriction of a quantified variable to a subset of the domain of discourse 
U. Let p(x, y) be a predicate with domain U, x U,, and let A c U, and B c U,. 
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Then we define 

(a) Prove that - [(Vx E A)(3y E B)p(x, y)] - (3x E A)(Vy E B)(-p(x, y)). 
(b) Prove that - [(3x E A)(Vy E B)p(x, y)] t+ (Vx E A)(3y E B)(-p(x, y)). Note: 

Parts (a) and (b) generalize, respectively, parts (a) and (b) of Theorem 3. It is 
interesting to know that Theorem 1 generalizes also, namely 

9. Translate each of the following symbolized statements into an English sentence, 
where I/ = R. Label each true or false: 

10. Express in symbolic form each of the following English sentences, where we let 
U = R and recall that Z = set of all integers, Q = set of all rational numbers. In 
each case, decide also whether the statement is true or false: 

* (a )  There is a smallest real number. 
(b) There is no smallest real number. 
(c) There is an irrational number between any two reals. 

*(d)  There is a rational number between any two irrationals. 
(e) Every real number lies between two consecutive integers. 
(f) Every positive real number has a positive square root. 
(g) There exists a smallest rational number whose square is greater than 2. 

11. Suppose p(x, y, z) and q(x, y) are propositional functions where each variable 
comes from a common nonempty domain of discourse U. One of the statement forms 

is stronger than the other. Determine which is stronger by taking the negation 
of both propositions and recalling the equivalence (p -+ q) t, ( - q  + -p). [Note: 

- 
This exercise generalizes part (d) of Exercise 11, Article 3.3. This result is related 
to Exercise 4(b, c, d), Article 5.3.1 

3.5 Analysis of Arguments for 
Logical Validity, Part I1 (Optional) 

In this article we consider methods of analyzing for logical validity argu- 
ments whose partial premises and conclusion have any of the forms: 

F. 

It 1. All p's are q's. 
2. Some p's are q's. 
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3. No p's are 9's. 
4. Some p's are not q's. 

As seen earlier in this chapter, statements of each of these four types may 
be recast, in terms of either formal logical symbolism or statements about 
the truth sets involved. We may summarize the situation as follows: 

Logical symbolism Corresponding statement (s) about truth sets 

Let us consider some examples. 

EXAMPLE 1 Analyze for logical validity the argument, "all dinosaurs are 
cold-blooded animals. All cold-blooded animals are vegetarians. There- 
fore all dinosaurs are vegetarians." 

Solution Denote by d(x), c(x), and v(x), respectively, the predicates, "x is 
a dinosaur," "x is a cold-blooded animal," and "x is a vegetarian," with 
D, C, and V representing the respective truth sets. Our argument can 
then be symbolized: 

(Vx)(d(x) + c(x)) (or D G C) 
(W(c(x) + o((4) (or c c V )  

therefore (Vx)(d(x) + v(x)) (OJ D G V) 

The validity or nonvalidity of the argument in this case "boils down" to 
the truth or falsehood of the theorem from set theory, "if D is a subset 
of C and C is a subset of V, then D is a subset of V, (for any three sets 
D, C, and V)" [recall (6) of Fact 1, Article 1.41. Assuming the truth of 
this statement, the argument is seen to be valid. 

The situation in Example 1 can also be represented on a Venn diagram, 
as shown in Figure 3.2. With three or fewer predicates involved in an 
argument, Venn diagrams can be a useful tool in deciding validity. 

EXAMPLE 2 Analyze the argument, "all violence is crime. Some violence 
is necessary. Therefore some crime is necessary." 

Solution Denote the three predicates involved in this argument by u(x), c(x), 
and n(x), with truth sets V, C, and N (refer to the solution to Example 1 
for guidance in writing out these predicates in detail). The argument 
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Figure 3.2 Venn diagram representation 
of Example I .  We symbolize the fact that 
a portion of a circle is necessarily empty, 
due to the given premises, by the dotted 
design within the region. Portions I and 4 
are empty since D is a subset of C. Since C 
is a subset of V ,  then 2 pnd 3 are empty. 
Since I and 2 are empty, we may conclude 
D is a subset of V ,  so that the argument 
is valid. 

may then be represented: 

A fairly convincing Venn diagram presentation may be given, as shown 
in Figure 3.3. Taking a more rigorous approach, we may argue first that 
there exists x such that x E V and x E N. Since this x is an element of V, 
and since V is a subset of C, then x E C. Since x E C and x E N, then 
x E C n N, so that C n N # @, the conclusion of the argument. Since 
the conclusion is thereby seen to follow from the premise, the argument 
may be deemed valid. 

EXAMPLE 3 Analyze the argument, "all professors are logical. Some men 
are logical. Some professors are overweight. Therefore either some men 
are overweight or some professors are men." 

Solution Proceeding as in Examples 1 and 2, we may symbolize this argu- 
ment in terms of truth sets: 
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Figure 3.3 The argument in Exmnpk 2, 
represented by the Venn diagram Let us 
agree that a r q w n  contained inside a 
darkened circular arc is necessarily non- 
empty. The union of regions 2 and 3 is 
nonempty, whereas 2 is empty. Hence 3 
is nonempty, so that the union of 3 and 
4 is necessarily nonempty. This is the 
conclusion of the argument, which is 
thereby did. 

Recalling the tautology [ p  -* (q v r)] cr [(p A -- q) 4 r] [Theorem I@), 
Article 2.31, we note first that we may add the equation M n 0 = 0 to 
our list of hypotheses and try to deduce the conclusion P n M # 0 from 
the expanded list. Several approaches similar to that taken in Example 2 
may be tried in an attempt to draw this conclusion. After noting that 
all these approaches fail, we will not be surprised to find that an example 
such as P = ( l , 2 ) ,  L = ( 1 , z  3,4), M = (4,5,6), and 0 = (2,3) can be 
found to show that the conclusion does not need to follow from the 
premise, that is, the argument is invalid. O 

Exercises 

Analyze these arguments for logical validity: 

1. All men are mortal. Socrates is a man. Therefore Socrates is mortal. 

2. Some students are athletes. Some athletes fail courses. Therefore some students 
fail courses. 

*3. All good citizens register to vote. Some registered voters do  community service. 
No lazy people do community service. Therefore some good citizens are not lazy. 

4. All statesmen are politicians. Some statesmen are wise. Some politicians are 
dishonest. Therefore either no politicians are wise or tlo wise people are dishonest. 

5. All pessimists are unhappy. Some happy people are healthy. Therefore some 
healthy people are not pessimists. 

6. All bigots are intolerant. Some fanatics are bigots. All fanatics hate the truth 
Therefore every lover of truth is tolerant 

q. All fields are rings. Some rings are integral domains. Some integral domains 
are not fields. Therefore some rings are not fields. 
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8. All monotonic functions are one to one. Some monotonic functions are increas- 
ing. All increasing functions have inverses. Therefore all monotonic functions have 
inverses. 

9. An argument can be valid without the conclusion's being true. If the premise is 
true, the argument is valid if and only if the conclusion is true. Hence a sufficient 
condition for an argument to be valid is that the premise and conclusion both be 
false. 



Elementarv 

of Logic 

In this chapter, we begin to apply the principles of logic developed in 
Chapters 2 and 3. In Article 4.1 for the first time we look at mathematical 
proofs, limiting our consideration at this stage to proofs of elementary prop- 
erties of sets. In Article 4.2 we introduce the notion of an infinite collection 
of sets and analyze basic properties of such collections. In Article 4.3 we 
examine in detail the epsilon-delta definition of limit. 

4.1 Applications of Logic to 
Set Theory-Some Proofs 

/-- We now take a somewhat more formal approach to the theory of sets, 
introduced informally in Chapter 1. In particular, we begin here to apply 
the principles oflogic developed in Chapters 2 and 3 to the problem of 
constructing proofs of theorems in set theory. 

Recall our informal definitions of set equality and set inclusion from 
Article 1.1 (Remarks 2 and 3). Two sets are equal if and only if they have 
precisely the same elements. Set A is a subset of set B if and only if every 
element of A is also an element of B. Using connectives and quantifiers, 
we can now restate these definitions in a more formal way. The precision 
we gain from this added formality will enable us to deal with some questions 
that were not fully resolved in the informal context of Chapter 1 (e.g., 
Example 1). 
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DEFINIT ION 1 
Let A and B be sets: 

(a) We say that A equals B (denoted A = 6) if and only if the statement 
(Vx) ( (x E A) t, (x  E B) ) is true. 

(b) We say that A is a subset of B (A G B )  if and only if the statement 
(Vx) ( (x E A) + (x  E B )  ) is true. 

PROVING SET INCLUSION 

EXAMPLE 1 Prove that 0 G A for any set A [Fact 1 (7), Article 1.41. 

Solution Let A be an arbitrary set. By definition, @ G A has the meaning 
(Vx)[(x E a )  -+ (x E A)]. But the predicate x E @ is false for any object 
x, so that the conditional (x E 0) -+ (x E A) is true for any x, regard- 
less of the truth value of the predicate x E A. Hence the statement 
(Vx)[(x E 0) -+ (X E A)] is true, so that 0 c A is true, as claimed. 

EXAMPLE 2 Prove that A c A for any set A [Fact 1 (2), Article 1.41. 

Solution Let A be an arbitrary set. By definition, A r A has the meaning 
(Vx)[(x E A) -+ (x E A)]. But the predicate (x E A) -+ (x E A) has the form 
p -+ p for any substitution of a particular object for x and so is true for 
any such substitution, since p -+ p is a tautology [Theorem 2(a), Article 
2.31. Hence the statement (Vx)[(x E A) + (x E A)] is true, as is (conse- 
quently) the statement A c A. 

EXAMPLE 3 Prove that, for any sets A and B, A = B if and only if A E B 
and B G A [Fact 1(4), Article 1.4). 

Solution The definition of A = B is (Vx)[(x E A) * (x E B)], whereas A E B 
is defined by (Vx)[(x E A) -+ (x E B)]. Therefore our theorem asserts 
that (Vx)[(x E A) - (x E B)] is logically equivalent to the conjunction 
(Vx)[(x E A) + (x E B)] A (Vx)[(x E B) -+ (x E A)]. Using the tautology 

/ ( p  - q) ++ [ ( p  -+ q) A (q -+ p)] [Theorem l(m), Article 2.31, and the 
theorem (Vx)(p(x) A q(x)) c* (Vx)(p(x)) A (Vx)(q(x)) of the predicate cal- 
culus [Theorem l ( ~ ) ,  Article 3.31, we observe (Vx)[(x E A) - (x E B)] 

* (Vx)[((x E A) -+ (x E-B)) A ((x E B) -+ (x E A))] 

++ (Vx)[(x E A) -+ (x E B)] A (Vx)[(x E B) + (x E A)], as desired. 

Each of the results in Examples 1 through 3 is an important foundational 
result in set theory. Each can be paraphrased in a form that is perhaps 
more easily remembered than the formal statement. The first states "the 
empty set is a subset of every set," the second is "every set is a subset of it- 
self," while the third has the meaning "two sets are equal if and only if each 
is a subset of the other." 
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The proofs we have given in Examples 1 through 3 make explicit reference 
to logical principles from Chapters 2 and 3. In actual practice, the style of 
proof writing that mathematicians use in proving less basic results about 
set inclusion and equality is not quite so formal. As one becomes more 
experienced in writing proofs, the underlying logical principles are used 
in a (hopefully correct, but) less explicit manner. The point of departure 
toward writing such proofs is a method of proof so widely applicable that 
its importance cannot be stressed strongly enough. It might be called the 
"elementhood" method, the "choose" method, or the "pick-a-point" method, 
Whatever it's called, the principle sets forth: 

The direct way to prove that a set A is a subset of a set B is to start by 
letting a symbol x represent an arbitrary element of A. This element, 
though generic (i.e., not a specifically identified or named element of A), 
is to remain fixed throughout the proof. The proof is carried out by 
deducing, through methods depending on the specifics of the problem 
at hand, that this x must be an element of B. 

The proofs in Examples 4 and 5, below, constitute our introduction to this 
method. 

Using the notation of Chapters 2 and 3, we can reformulate the definitions 
of the operations intersection, union, complement, and difference in terms 
of the logical connectives and quantifiers. This is the object of Exercise 1. 
Some proofs of elementary theorems of set theory are now direct conse- 
quences of corresponding theorems of the propositional calculus. 

EXAMPLE 4 Prove that, for any sets A and B, A n B E A and A S A u B 
[Fact 2, (20), (19), Article 1.4). 

Solution To prove that A n B E A by the elementhood method, we begin 
by letting x be an arbitrary element of A n B. We must prove that && 
x is an element of A. Now since x E A n B, then x E A and x E B. - 
Hence x E A, as desired, where we note that the last step makes implicit 
use of the tautology (p A q) -t p [Theorem 2(c), Article 2.31. 

To prove that A G A u B, let x E A be given. We must prove that 
x E A u B; that is, either x E A or x E B. Since x E A, the latter statement 
follows directly. (What tautology is being used in passing from the 
assumption "XE A" to the conclusion "either x E A or x E B ? )  

EXAMPLE 5 Prove that, for any sets A and B, A E (A u B) n (A u B'). 

Solution Let x be an arbitrary element of A. In order to prove that 
x E (A u B) n (A u B'), we must prove that x E A u B x E A u B'. 
Since x E A, then x E A u B, by Example 4. The same result implies that 
x E A u B' as well. Thus x E (A u B) n (A u B'), as desired. 

In Article 5.1, Exercise 4, you are to prove that, in fact, A = 
(A u B) n (A u B') for any two sets A and B. 
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Beginning students often complain that the choose method doesn't seem 
adequate to prove that every element of A is an element of B. After all, 
we appear to be starting the proof by picking only one element of A. Such 
an objection overlooks the power of universal quantification and, especially, 
the fact that the "chosen x" is arbitrarily chosen. For those of you who 
remain unconvinced, however, let us consider another way to justify the 
choose method as a means of verifying the definition of A S  BI suppose 
we show, as in the proofs in Examples 4 and 5, that if x is an arbitrarily 
chosen element of A, then x must lie in B. Then we have shown that there 
is no x in A that does not lie in B, in symbols - [(3x)((x E A) A (x $ B))]. 
But this is logically equivalent, by Theorem l(b), Article 3.3, to 
(Vx)[-((x E A) A (x # B))], which is equivalent to (Vx)[(x E A) -, (x E B)] 
[cf., Theorem l(e), Article 2.31, the latter being the definition of "A is a subset 
of B." 

As the structure of theorems to be proved becomes more complex, so 
do their proofs, as other techniques must be incorporated, along with the 
basic elementhood approach. 

EXAMPLE 6 Prove that A n (B u C) c (A n B) u C, where A, B, and C 
are arbitrary sets. 

Solution Let x E A n (B u C). To prove that x E (A n B) u C, we must 
prove that either x E A n B or x E C. Suppose x $ C. We claim this ad- 
ditional assumption forces the conclusion x E A n B. To show that x E 

A n B, we must prove that x E A a d  x E B. Now, by hypothesis, x E A 
and x E B u C. Since x E A is true by assumption, only x E B remains 
to be proved. Since x E B u C, then either x E B or x E C. Since x 4 C, 
then x E B, as desired. 

Note the approach we took (starting with "suppose x 4 C") to deduce 
a conclusion whose logical form is q v r. You will recall the tautology 
[p -+ (q v r)] * [(p A q) + r], discussed in Article 2.3 [Theorem l(p)]. To 
prove that "one or the other" of two conclusions is true, we may take the 
approach of assuming the negation of one of them and, on that basis, trying 
to prove the other. We will discuss this technique in more detail in Article 
6.2. Notice also that the argument in the last two sentences of the proof 
was based on a tautology.- Can you identify it? (If not, see the last sentence 
of the solution to Example 13.) 

EXAMPLE 7 Prove that, for any sets A, B, and C, if A G B and B G C,  
then A E C. 

Solution To prove A E C, we must verify (Vx)[(x E A) + (x E C)], based 
on the hypotheses A c B and B G C. We proceed by letting x be an 
arbitrary element of A. We must show that x E C. We may argue as 

I follows: Since x E A and A G B, then x E B. Since x E B and B r C, 
then x E C, our desired conclusion. 0 
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In addition to its basic structure, involving the choose method, the other 
important aspect of the proof in Example 7 is the conclusion "x E B from 
the statements "x E A" and "A E B." The validity of this step follows ulti- 
mately from the logical principle modus ponens, [p A (p + q)] + q [Theo- . 
rem 2(e), Article 2.31. Given that x E A is true and that the statement 
(Vy)[(y E A) -+ (y E B)] is true, from which we may conclude that the state- 
ment (x E A) + (x E B) is true for the given x, we have (x E A) A ((x E A) + 

(x E B)), and hence, by modus ponens, the conclusion x E B. 
One final remark on Example 7: This is the first theorem we've proved 

in which a conclusion of set containment (i.e., A E C) is preceded by some 
hypotheses (namely, A c B and B c C). An important rule of procedure 
in setting up a proof in such a situation is at the start of the proof to focus 
on the desired conclusion, rather than on the hypotheses. The starting point 
of our proof was to pick an arbitrary element of A, with the stated hope 
of proving that it is also an element of C. The motivation for beginning 
the proof in this manner was solely the form of the conclusion of the theo- 
rem. The hypotheses are brought into play only in the course of the proof. 
This principle will be discussed and demonstrated in much more detail in 
Article 5.2. 

PROVING SET EQUALITY 

Combining the elementhood method of proving set inclusion with the result 
of Example 3, we see that a basic way to approach a proof of set equality 
is to prove mutual inclusion. This procedure involves two distinct proofs, 
one of containment in each direction. 

EXAMPLE 8 Assuming the theorem "for all real numbers x and y, if xy = 0, 
then x = 0 or y = 0," prove that the set A = 15, -7) equals the set 
B = {x E R(x2 + 2x - 35 = 0). 

Solution To prove A = B, we prove mutual inclusion; that is, we prove 
A G B and B G A. We approach each of these proofs, in turn, by the 
choose method. 

(a) To prove A G B, let a E A be given. To prove a E B, we must 
prove that a is a real number satisfying a2  + 2a - 35 = 0. Now since 
a~ A,theneithera=5ora= -7. I f a = 5 , t h e n a ~ ~ a n d a ~ + 2 a - 3 5 =  
(5)2 + (2)(5) - 35 = 25 + 10 - 35 = 0, as required. On the other hand, 
if a =  -7, then again a E R and ~ ~ + 2 ~ - 3 5 = ( - 7 ) ~ + ( 2 ) ( - 7 ) - 3 5 = 0 .  
In either case we have a E B, as desired. 

(b) Conversely, to prove B c A, suppose x E B, so that x is a real 
number satisfying x2 + 2x - 35 = 0. But then, 0 = x2 + 2x - 35 = 
(x - 5)(x + 7) so that, by the assumed theorem, either x = 5 or x = - 7. 
Thus x E (5,7) = A, as desired. 0 

In part (a) of the proof in Example 8 we used the technique of division 
of an argument into cases. We will elaborate on this important proof 
writing technique in Article 5.3. 
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EXAMPLE 9 Given sets A and B, prove that A n B = A if and only if A E B. 

Solution Using the tautology, (p * q) * [(p + q) A (q + p)] [Theorem 
l(m), Article 2.31, we approach this proof, as we will most proofs of "iff" 
statements, by splitting the proof of a biconditional into two separate 
proofs of conditionals. That is, we will prove: 
1. I f A n B = A , t h e n A c B .  
2. If A c B, then A n B = A. 

Note that (2), in turn, is a proof of set equality that will, in its own right, 
require a proof of containment each of two directions. 

Proof of (I): To prove A G B, let x E A be given. We must prove 
x E B. Since x E A and A = A n B, then x E A n B. Since A n B c B, 
by Example 4, we conclude x E B, as desired. 

Proof of (2): To prove A n B = A, we must prove that A n B E A 
and A r A n B. The first of these was proved earlier, in Example 4, so 
we are left with only A G A n B to be derived from the hypothesis A c B. 
To prove A c A n B, let x E A. To show x E A n B, we must prove 
x E A and x E B. Since we already know x E A, this amounts to proving 
x E B. But since x E A and A E B, we have x E B, completing the proof. 

0 

Sometimes the proof of an iff statement can be carried through by using 
a string of valid biconditional statements, thereby eliminating the need to 
write two distinct proofs, as we did in Example 9. An example of this type 
of proof follows. 

EXAMPLE 10 Prove that, for any sets A, B, and C, A n (B u C )  = 
(A n B) u (A n C )  [Fact 4(27), Article 1.4-"intersection distributes over 
union'7. 

Solution Rather than proving mutual inclusion, we note that, for any object 
x, we have: 

X E A ~ ( B U C ) * ( X E A ) A ( X E B U C )  
*(XE A)A[(x E B)v(x E C)1 

-- 

* [(x E A)A(x E B)] v [(x E A)A(x E C)1 
- ( x ~ A n  B)v(xEAnC)  
- x E ( A n B ) u ( A n C )  

The third step uses the tautology p A (q v r) * (p A q) v (p A r). Supply 
justifications for the remaining steps. 0 

PROOFS INVOLVING THE EMPTY SET 

Among the proofs we have seen thus far, the only one for which the choose 
method cannot be employed, and that therefore depends entirely on the 
logical structure of the formal definition of A E B, is the proof that the 
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empty set is a subset of any set (Example 1). Surely, we cannot begin a 
proof that 0 c A by writing "let x E 0." Other theorems from Article 1.4 
whose statement involves 0 may require something other than a direct 
"containment" or "mutual inclusion" approach as well. In the next example 
we consider problems that arise when we must prove that a given set is 
empty (i.e., equals the empty set 0). 

EXAMPLE 11 Prove that, for any set A, A n A' = (21 [Fact 3(23), Article 
1.41. 

Solution Seemingly, the straightfonvard way to approach a proof that a 
set X equals (ZI is by mutual inclusion, that is, try to prove that 0 c X 
and X c 0. But in any such proof the first of these is automatically 
true (recall Example 1) and so does not need to be proved again. As 
for the second part, can we attack the problem by beginning "Let x E X. 
We will prove x E 0. . . ."? Obviously, the latter conclusion can never 
be proved, so that this approach will not work. Instead, we use another 
special method of proof, proof by contrudiction (which will be elaborated 
on in Article 6.2). To prove that a set X equals 0, we begin by sup  
posing that x E X (so that we are effectively assuming that X is non- 
empty) and showing that this supposition leads to a contradiction. In 
the case at hand, suppose that x E A n A'. Then x E A and x E A' so 
that x E A and x $ A. Since the latter statement has logical form p A - p  
(a contradiction), the supposition must be false and the desired theorem 
thereby true. 

U(AMPLE 12 Prove that, for any sets A and B, if A s B, then A n B' = f21 
[Fact 8(57), Article 1-41. 

Solution Assume A E B. Proceeding as in Example 11, let x E A n B'. 
Our goal is to reach a contradiction. Since x E A n B', then the state- 
ment (3x)[(x E A) A (x E B')l is true, as is the equivalent statement 
(3x)[(x E A)  A (x $ B)]. But the latter statement is the logical negation 
of (Vx)[(x E A) + (x E B)], which happens to be the definition of A c B. 
Hence our assumption "x E A n B"' contradicts the hypothesis A r B, 
so we must conclude A n B' = 0, as desired. 

Other proofs ihvolving 0, even for theorems not making an assertion 
that a given set is empty, can be difficult to write out, and so must be a p  
proached carefully. 

EXAMPLE 13 Prove that, for any set X, X u 0 = X [Fact 2(I I), Article 
1.41. 

Solution We will prove that X G X u 0 and X u (21 c X. For the first 
one, we note that X E X u Y is known to be true for any two sets X 
and Y (recall Example 4). In particular, if Y = 0 ,  we have X c X u 0. 
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On the other hand, suppose x E X u 0; we must prove x E X. Now, by 
our supposition, either x E X or x E 0. But x E @ is false, so we may 
conclude x E X, as desired. {Note: We have implicitly used the tau- 
tology [(p v q) A --p] -, q, Theorem 2(k), Article 2.3, in the preceding 
sentence. The tautologies of the propositional calculus are of vital 
importance for writing proofs in mathematics!) 

The technique used in the first part of the proof of Example 13 (letting 
Y = @ in the known theorem X c X u Y to conclude X c X u @) is called 
specialization, which we will focus on in Article 5.3. 

The point was made earlier that we cannot employ the choose approach 
("let x E 0'') to prove @ G A. The perceptive reader may have thought 
of the following objection to a number of the proofs presented in this article. 
In Example 4, for instance, we began the proof that A n B c A with the 
step "let x E A n B." But what if A n B = @? The argument given does 
not apply in this case; we cannot choose an element from @. More generally, 
whenever we prove a set X is a subset of a set Y by using the choose 
method, the argument applies only to the case "X nonempty." Again 
what if X is empty? The answer to this dilemma is an implicit "division 
into cases" [recall Example 8(a)] with the two cases (1) X nonempty and 
(2) X empty. In case (1) the proof proceeds by using the choose method, 
as in all our earlier examples. In case (2) the desired result follows directly 
from the result in Example 1, with no further proof required. As stated 
previously, this division into cases is "implicit." That is, since the case "X 
empty" is trivially true whenever we prove X c Y, we do not normally 
make explicit reference to it when proving set containment. 

The proofs in the exercises that follow may not be enjoyable. For very 
elementary, and seemingly obvious, theorems in mathematics, it is some- 
times difficult, or frustrating, to try to write a proof, since there often 
appears to be little or nothing to say. Two remarks may alleviate this 
problem somewhat: (1) We will give hints, for many of the exercises, of 
how you should proceed or to what example(@ you should refer. In this 
connection we note that a key step in proving many "obvious" theorems 
of set theory, such as Exercise 5, is identifying explicitly the relevant 
tautology, as we did in Examples 4, 6, 10, and 13, among others. (2) We 
promise more interesting (and less vacuous) proofs of theorems in set theory, 
as well as in other areas o f  undergraduate mathematics, in Chapter 5. 

Exercises 
We assume as axioms throughout these exercises that x E U for any object x (U 
being a universal set) and that U # fa. 

1. Formulate definitions of A n B, A u B, A', and A - B using set-builder notation 
and the logical connectives introduced in Chapters 2 and 3. 
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2. Proceed as in Examples 6 and 7 to show that, for any three sets X, Y, and Z 

*(a) If X E Y and X E 2, then X c Y n Z 
(6) If X E Z and Y E Z, then X u Y c Z. [Note: For (b), see the remarks 

following Example 8 about division of an argument into cases.] 

3. Proceed as in Example 9 to show that, for any two sets A and B, A E B if and 
only if A u B = B. (Again, keep in mind the possibility of division of an argument 
into cases.) 

4. Proceed as in Example 11 to show that, for any set X, X n 0 = 0. 
5. Follow the approach of Example 10 to prove that, for any sets A, B, and C: 

(a) A - B = A n B '  (b) A n B = B n A  
(c) A u B = B u A  (d) A n (B n C) = (A n B) n C 
(e) A u (B v C) = (A u B) u C ( f )  A u (B n C) = (A u B) n (A u C) 
(g) (A n B)' = A' u B' (h) (A u B)' = A' n B' 

6. Follow the approach of Examples 1 through 3 (relying directly on logical 
principles) to prove that 

(a) For any set A: 
(i) A r U 
(iii) A = A" 
(v) A n A = A  

(ii) A = A 
(iv) A u A = A  

(b) (i) (25' = U [Hint: Use (i) of (a) for one part of this argument.] 
(ii) U' = 0 

7. (a) Prove that if A and B are any sets such that A E B, then B' s A'. (Hint: 
Start by letting x E B' and suppose the opposite of what you need to conclude. 
Reread the solution to Example 12.) 

* (b)  Use (a), together with the fact that A = A" for any set A, to prove the con- 
verse of (a); that is, given sets A and B, if B' E A', then A E B. 

(c) Use the results in (a) and (b), together with the result of Example 3, to show 
that if A and B are any two sets, then A = B if and only if A' = B'. 

8. (a) Prove that, for any sets A and B, if A E B, then A' u B = U. [Hint: One 
approach is to use the result of Example 12, one of De Morgan's laws, and the 
fact that 0' = U.] 

(b) Prove that, for any set A, A u A' = U. [Hint: Use (a).] 

9. Prove that, for any sets A and B: 

*(a) A n B = U i f a n d o n l y i f A = U a n d B = U  
(b) A u B # (25 if and only if either A # (25 or B # 0 
(c) If A = U or B = U, then A u B = U 
(d) If A n B # a, then A # (25 and B # (25 (Note: Check the connection 

between the statements in Exercise 9 and various parts of Theorems 1 and 2, 
Article 3.3.) 

10. As suggested in Article 1.2, a set theoretic definition of the "ordered pair" concept 
exists. We may define (a, b) to be the set {{a), {a, b)), where a and b are any objects. 
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Using this definition, prove: 

(a) (a, b) = (c, d) if and only if a = c and b = d 
(b) (a, b) = (b, a) if and only if a = b 

11. (Critique and complete.) Beginning with this exercise and continuing in Chap- 
ter 5, exercises will occasionally appear under this heading. Each will consist of 
three or more parts. Parts (a) and (b) will contain complete "proofs" of theorems, 
one correct and in good form, the other having deficiencies. You are to identify 
the faulty argument and rewrite it correctly. Each of the remaining parts will con- 
tain the first several steps of a possible proof of a theorem. You should either 
complete the proof, based on the suggested steps, or else judge the approach in- 
appropriate and write a correct proof using a different approach: 

(a) THEOREM If M and N are sets, then M n (N u M') E M n  N. 

"Proof" Let x E M n (N u M'). To prove x E M n N, we must prove x E M 
and X E N .  Since x ~ M n ( N u  M') ,  then x e M  and X E N U  M' so that - 
x E M. Since x E N u M', then either x E N or x E M'. But we know already 
that x E M so that x 4 M'. Hence x E N, as desired. 

(b) THEOREM If A = { x  E N 12x4 - 5x3 - 4x2 + 3x = 0 )  and B = (31, then 
A = B. 

"Proof" Since 2(3)4 - 5(3)3 - 4(3)2 + 3(3) = 162 - 135 - 36 + 9 = 0, so that 3 
satisfies the equation defining A, we conclude A = B, as desired. 

(c) THEOREM If A, B, and C are sets with A c B, then A n C c B n C. 

Start of "Proof" Let x be an arbitrary element of A .  . . . 

(d) THEOREM If X and Y are sets, then Y E X u (Y n X'). 

Start of "Proof" Let w E Y. We must prove that either w E Xor w E Y n X'. Suppose 
w e x . .  . . 

(e) THEOREM If A and B are sets, then A n (B - A) = 0. 

Start of "Proof" We use a mutual inclusion approach. To prove A n (B - A) c 0, 
let x be an arbitrary element of A n (B - A). We must prove x E 0. . . . 

4.2 Infinite Unions and Intersections 

One of the nice applications of the language of quantifiers to set theory is 
in the definition of union and intersection of infinite collections, or families, 
of sets. In particular, we-consider in this article collections of sets indexed 
by the set N of all positive integers. 

DEFINIT ION 1 
The collection of sets d = {A,, A,, A,, . . .) = { A ~ I ~ E  N ) ,  containing a set A, 
corresponding to each positive integer i (where some universal set U contains 
each set A, in the collection) is called afamily (or collection) of sets indexed by the 
set N of all positive integers. A positive integer i used to label a set A, in the 
collection is called an index. 
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The collection d is also sometimes denoted {Ai),. or (Ai 1 i = 
1,2,3,. . .). 

EXAMPLE 1 (a) Let A, = {i) for each i = 1,2,3,. . . . Then d = 
(Ail i E N} = {(I), (21, (31, . . .} is a collection of singleton sets. Note 
that if positive integers i and j are two distinct indices, then A, n Aj = 
@. For this reason we say that this family of sets is pairwise disjoint 
(or mutually disjoint). 

(b) Let B, = (1,2,3,. . . , i j  for each i = 1, 2, 3,. . . , so that B = 
((11, (1,2), {1,2,3), . . .). In this example, for any two indices i and j, 
i < j implies Bi r Bj. For this reason B is called an increasing family 
of sets. 

(c) Let C i =  [i, GO) for each i =  1, 2, 3,. . ., so that %'= { c , l i ~ N )  
is a family of closed, unbounded intervals satisfying the condition i < j 
implies C, 2 Cj. Any family of sets indexed by N possessing this prop- 
erty is called a decreasing family of sets. In particular, a collection of 
intervals satisfying this property is called a family of nested intervals. 

(d) Let Di = [0, 1 - (lli)] for each i = 1,2, 3,. . . . Then each set Di 
in the collection 9 = {Di},,, is a closed and bounded interval. Which 
of the properties defined in (a), (b), and (c) does 9 possess? 

The reader should easily grasp the meaning of expressions such as 
A, u A, u . . u A,. [Calculate this expression in (a) of Example I] and 
B, n B, n . . . n B,. [What does this set equal in (b) of Example I?] We 
use the notation uy=, A, and r)y==, Bj, respectively, as shorthand repre- 
sentation of the preceding two sets. This notation is also suggestive of the 
next definition, in which we generalize union and intersection to certain 
types of infinite collections of sets. 

DEFINIT ION 2 
Let &' = ( A , [ i  = 1, 2, 3, . . . )  be a collection of sets indexed by N .  We define: 

(a) The union of the collection d, denoted Us, Ai (also denoted Ui, A, and 
U {Ail A, E d)) to be the set { X I  x E A, for some i E N) = {XI  3i  E N such that 
x E Ai) 

(b) The intersection of the collection d, denoted T)sl Ai (also denoted 
nip A, a-nd n {A,I A, E d)) to be the set { X I  x E A, for every i E N) = 
{ x l x ~  Ai V ~ E  N ) .  

If d is a collection of sets A,, A,, A,, . . . , with U as universal set, then 
both U,p"= Ai and n.p"=, Ai are sets and both have U as universal set. The 
former consists of all the elements in any of the sets A,, grouped together 
into one set, whereas the latter consists only of those objects common to all . 

the sets A,. Note also that the letter i, in this context, is a dummy variable 
(recall the discussion following Definition 1, Article 3.2). 
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EXAMPLE 2 Consider the collection of intervals % = (J, 1 n E N], where 
each Jn = [l/n, 23. Calculate n:=, Jn and U;=, J,. 

Solution First, note that the collection J? is an increasing family of inter- 
vals, since if i < j, then l/j  < l/i so that [lli, 21 G [llj, 21, and thus 
Ji G Jj. 

Now, to calculate J,, we must ask which real numbers are 
common to all of the intervals J,. Surely, each such number is contained 
in J, = [I, 21 and J,, in turn, is a subset of every other set in the col- 
lection (since the collection is increasing). Hence we reason that n:= J, = J ,  [note Exercise 5(a)]. 

On the other hand, to find U:=, J,, we must ask which real numbers 
are in at least one of the sets J,. Note the pattern J, = [I, 21, J, u J, = 
[i, 21, J, u J, u J, = [$, 21, and so on. Note especially that the right- 
hand end point of each such interval is fixed at 2, so that we need worry 
only about the left-hand end point. It is intuitively clear (although hard 
to prove rigorously) that every positive real number less than or equal 
to 2 will eventually fall into one of the intervals J,. Also, clearly no 
negative number is in any of the J,'s. Thus the desired union equals 
either (0,2] or [O, 21. Will zero eventually fall into an interval J, for 
some sufficiently large n? The answer is "no!" Since 0 < l/n for any 
positive integer n, no matter how large, then 0 4 [lln, 21 for any positive 
integer n. We conclude that U:', Jn = (0,2]. 

The theoretical property needed to justify the "hard to prove" statement 
in Example 2 is the so-called Archimedean property of the set N of all posi- 
tive integers. This property (in one of its many forms) states that, to any 
positive real number p, no matter how small, there corresponds a positive 
integer n such that l/n < p. This property is, among other things, the basis 
of the important fact that the infinite sequence (l/n} converges to zero in 
the real number system. We will encounter the Archimedean property 
again in Chapters 9 and 10. 

As Example 2 suggests, infinite unions and intersections behave differ- 
ently from finite unions and intersections in a variety of ways. Intuitive 
expectations should be adjusted carefully to correspond to these differences. 
Some cases in point are provided in Exercise 6. 

One general property of infinite collections of sets, whose proof is as- 
signed as Exercise 5(a), was hinted at in the solution to Example 2. Proofs 
of other general properties of infinite collections of sets constitute Exercises 
4, 5, and 7. The general approach to these proofs is outlined in the pre- 
ceding article. You should keep in mind especially the "choose" approach 
to proving inclusion and the "mutual inclusion" approach to proving equal- 
ity of sets. 
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EXAMPLE 3 Prove that if (A, 1 k = 1,2,3, . . . ) is a decreasing collection of 
sets, then U,", , A, c A,. 

Solution Let x E Ur= , A,, so that x E Aj for some positive integer j. We 
must prove x E A,. Clearly either j = 1 or j > 1. If j = 1, then x E Aj = 
A,, so x E A,, as desired. If j > 1, then Aj G A, (by the definition of 
"decreasing family") so that x E Aj c A, and x E A,, again as desired. In 
either case we have the desired conclusion x E A,, so that our theorem is 
proved. 0 

In Article 8.3 we will study cardinality of sets, a means of distinguishing 
the "relative size" of infinite sets. At that point we will consider so-called 
arbitrary collections of sets, that is, families of sets indexed by any set, not 
necessarily N. In that context we will come to recognize the kinds of collec- 
tions we have studied in this article as countably infinite collections of sets. 

Exercises 
1. Find U,"=, A, and n;", , A, for each of the collections of sets (A,[ k = 1,2,3, . . .) 
that follow: 

( 4  Ak={-k) *(b) Ak=(1 ,2 ,3  ,..., k) 
*(c) A k = ( k , k +  1 , k + 2 ,  ...) (d) A, = (k, k + 1, k + 2,. . . , 2 k )  
(4 A, = (0, ilk) (f)  A, = [O, ilk] 
(9) Ak=(-l/k,l/k) (h) Ak = [O, 1 + llk) 
(i) A, = [lO/(k + I), 101 *(I )  A,=(-m,k] 

* (k )  A, = (- m, - k) (I) A, = (0, k - 1) 
(m) A, = [Mk + 21, (k + l)l(k + 211 
(n) Ak = [O, ll(k + 2)] u [(k + l)l(k + 2), 11 

2. Label each of the collections in Exercise 1 as either increasing, decreasing, 
mutually disjoint, or none of the above. 

3. Give examples other than those in the text or in Exercise 1 of collections of sets 
1' { ~ , ( k  = 1,2, 3, . . .) that are: 

(a) Increasing 
(c) Mutually disjpint 

(b) Decreasing 
(d) None of the above 

4. Suppose that {A, I k = 1,2, 3, . . .) is an infinite collection of sets from a universal 
set U, B is a subset of U, and n is an arbitrary positive integer. Prove that: 

(a) A, c U,"=, A, [Recall Theorem 2(e), Article 3.3.1 

(b) n,", , A, c A, [Recall Theorem 2(d), Article 3.3.1 
(c) (nF= A,)' = U,"= , A; [Generalized De Morgan's law; see Theorem 

l(a), Article 3.3.1 
(d) ( u G 1  Ar)' = AA; [See Theorem l(b), Article 3.3.1 
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(e) (U;P= A,) n B = U,"=, (A, n B) [Generalized distributivitr, recaII 
Exercise 1 l(c), Article 3.3.) 

(f) (0; , A,) u B = OF=, (A, u B) [Recall Exercise 110, Article 3.3.1 

5. (a) Prove that if {A,\ k = 1,2,3, . . .) is an increasing family of sets, then (n?= A,) = A,.   dl Example 2) 
*(b) Prove that if {A,I k = 1,2,3,. . .) is a decreashg family of sets, then 

(U?= A,) = A,. 
(c) Prove that if {A, 1 k = 1,2,3, . . .) is a mutually disjoint family of sets, then 

A, = 0. 
(d) Prove or disprove: {A,lk = 1,2,3, . . .) is a mutually disjoint family of sets 

if and only if A, = 0. 
(e) Prove or disprov: If {A,l k = 1,2,3, . . .) is a family of sets, then for any pair 

of positive integers m and n: 

6. Let (A,lk = 1,2,3,. . .) be a collection of subsets of U = R: 

*(a) Suppose each A, is an open and bounded interval, that is, of the form (a, 6). 
Is it possible for A, to be an interval of another form? (Recall Definition 
3, Article 1.1.) 

(b) Suppose each A, is a closed and bounded interval, that is, of the form [a, b]. 
Is it possible for U,"=, A, to be an interval of another form? 

(c) Suppose A, = 0. Must there exist some positive integer n such that 
fl;= 1 A, = -a? 

(d) Suppose U?=, A, = U. Need it be true that V = U;, , A, for some positive 
integer n? 

7. Let (A, (k = 1,2,3, . . . ) be a family of subsets of a universal set U. According to 
Exercise 4(a), the set UP= A, contains each set in this family as a subset, whereas 
by Exercise 4(b), the set ng, A, is contained in each set in the family. 

(a) Prove that A, is the smallest subset of U having the property described 
above. Specifically, prove that if B is any subset of U having the property that 
A, c B for each k = 1,2,3,. . . , then U,"!, A, G B. (For this reason it is often 
said that U,"=, A, is the least upper bound of the given family of sets) 

*(b) Prove that ng, A, is the lurgast subset of U having the property described 

.-- - . 
above. Specifically, prove that if C is any subset of U having the property that 
C c A, for each k = 1,2,3,. . . , then C E OF=, A,. (For this reason it is often 
said that ng =, A, is the greatest lower bound of the family (A, 1 k = 1,2,3, . . -1.) 

4.3 The Limit Concept (Optional) 

In the introduction to Chapter 2 we noted that the limit concept, especially 
the epsilon-delta definition of limits, is one of the most difficult ideas for 
most students of elementary calculus. At the same time, however, we sug- 
gested that a thorough grounding in logic, especially quantification, could 
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remove much of that difficulty. We will now "deliver" on that promise. 
In this article, with the introduction to logic completed, we return to the 
limit concept with three specific goals: (1) We review and attempt to put 
into perspective a number of basic facts about limits (including the defini- 
tion and basic properties of continuity) through a number of examples that 
illustrate the three basic categories into which every limit problem falls. 
(2) We attempt to help you to appreciate the geometric meaning of the 
epsilon-delta definition. A major tool in this endeavor is a close analysis 
of the logical negation of that definition. Principles of the predicate calcu- 
lus, in turn, are indispefisable for formulating that logical negation. (3) We 
attempt, by means of the material in this article, to pave the way for the 
writing of epsilondelta proofs, a topic pursued further in Article 6.1. 

REVIEW 

In most elementary calculus classes the emphasis in the treatment of limits 
is placed on a "working knowledge" of the concept; given a function y = 

f(x) and a point x = a, it is hoped that students can learn to use intuition, 
information from the graph of the function, and certain "rules of thumb" 
to determine the value of lim,,, f (x). Seldom are students expected, at that 
level, to bring the epsilondelta definition of limit explicitly into play in 
solving a problem about limits. Before focusing on that definition, let us 
review, first, the basic rules of thumb by which students are generally ex- 
pected to handle limit problems. This, in turn, is best done by a description 
of the three categories of answer to a limit problem, namely: 

Type I: lim,,, f (x) exists and equals f (a). 
Type II: lirn,,, f(x) exists but does not equal f(a). 

Type Ill: lirn,,, f(x) does not exist. 

Note that these categories are, in a logical sense, mutually exclusive and 

/ exhaustive; that is, every problem of the form %d lim,,, f(x)" falls into 
exactly one of these three types. 

Type 1. The easikst situation to deal with (and the situation most com- 
monly seen initially in an elementary calculus class) in a limit problem is 
u lim,,, f(x) exists and equals the value off at a" If a limit problem is in 
this category, we solve it simply by plugging the specific value x = a into 
the defining rule for f(x). If lim,,, f(x) = f (a), we say that f is continuous 
at a The intuitive interpretation of "wntihuity at a" is that there is no 
"hole" in the graph at a, nor is there a "break" in the graph in the "imme- 
diate vicinity" of a. We will soon see that this intuitive description, although 
useful, oversimplifies and can mislead. 
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Many of the most familiar functions lead always to the Type I limit 
scenario and thus cause little difficulty in the context of limit problems. In 
particular, polynomial functions are continuous everywhere and rational 
functions are continuous everywhere except at those values of a that make 
their denominator zero. Also, familiar transcendental functions such as 
ex, In x, sin x, and cos x are continuous wherever defined. Other, less 
conventional, examples are: 

which is continuous everywhere 
x -  1, except at x = 0. 

which is continuous everywhere, even at 

1, x rational 
h(x) = which is continuous nowhere. 

- 1, x irrational 

x, x rational which is continuous at one point 
k(x) = 

0, x irrational ' only namely, x = 0. 

Continuity of a function f at a point a requires three things: (1) a must be 
in the domain off, often stated f is dejned at a or f (a) exists. (2) lirn,,, f (x) 
must exist. (3) The number lim,,, f (x) must be the same as the number 
f(a). We will discuss the reasons for the noncontinuity of functions such 
as the preceding f ,  h, and k, at some or all points of their domain, after our 
introduction to categories I1 and 111. 

Type IT. Under this category, we consider the possibility that lim,,, f(x) 
might exist, but have a value other than f(a). Within this category f(a) 
itself may or may not be defined. This is probably the category on which 
most students have the most tenuous hold, after their first exposure to 
limits, so we will look at it carefully. 

Graphically, this situation is characterized by an otherwise continuous 
curve with a point missing at x = a. In this situation f is said to have a 
removable discontinuity at a. The name is apt; we could "remove" the dis- 
continuity simply by redefining f at one point, or graphically, by plugging 
the hole in the curve. We now give examples to illustrate the two possi- 
bilities (1) f (a) exists and (2) f is not defined at a. 

(a) A typical example for which lim,,, f(x) and f(a) both exist, but 
are not equal, is a function defined by two rules, one rule for x = a and 
another for all other values of x; that is, x # a. For example, the function 

is not continuous at x = 2, even though lirn,,, f(x) exists (Note: This limit 
equals 7. When graphing this function, notice that the limit as x approaches 
2 is the y component of the "missing point.") and even though f (2) is defined 
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[namely, f(2) = 81. The problem is that the two values, 7 and 8, are dif- 
ferent; this f has a-removable discontinuity at x = 2. An important missing 
link in this discussion, and a question you should be thinking about, is 
"Why, according to the epsilon-delta definition of limit, does the preceding 
limit equal 7 ? ' A  careful analysis of the epsilon-delta definition, soon to 
come, provides the answer. 

(b) A typical example for which lim,,, f(x) exists, while f(a) does 
not exist, is a function defined by a rule such as 

which collapses to 0/0, and is left undefined, at x = 6. For all values of x 
except 6, f(x) equals x + 6. In fact, limXd6 (x2 - 36)/(x - 6) = limx+6 x + 6 
= 12. [Again, when graphing this function, note that the limit is the y 
component of the "missing point" (6, 12)]. Thus the limit exists even though 
f(6) is undefined. Again, we have a removable discontinuity, this time at 
x = 6. 

This category of limit problem is particularly important because, every 
time we use the definition f'(a) = lirn,,, (f(x) - f(a))/(x - a) of the deriva- 
tive, we must deal with a limit of this type. Review how to compute d/dx(x3) 
and d/dx(x4 + x2) from the definition of derivative. 

Type 111. Under this category, we consider situations in which lirn,,, f(x) 
does not exist. Once again, f may or may not be defined at a. This category 
may be divided into three subcases: 

One-sided (i.e., left- and right-hand) limits exist, but are different. For 
example, if 

we have lim,,,- f(x) = -1 # 1 = lim,,,+ f(x). Thus lirn,,, f (x )  
does not exist. (Note: an important theorem, which you should recall 
from calculus, states that lirn,,, f(x) exists if and only if lim,,,- f(x) 
and lirn,,, + f (x) both exist and are equal.] 
Infinite limits at x = a (i.e., the line x = a is a vertical asymptote to the 
curve). This occurs especially in a rational function in which the de- 
nominator tends to zero as x -+ a while the numerator approaches 
some nonzero quantity. This fact will be proved in Article 6.2, when 
we consider indirect proofs (see Exercise 16, Article 6.2.). 
The one-sided limits are not infinite. but thev do not exist as finite real 
numbers either. This is the strangest case, since it must involve rather 
wild fluctuations in the function. An example of this is f(x) = sin (llx), 
x # 0. In any interval (0, p) this function "bounces up and down" be- 
tween y = - 1 and y = 1 infinitely many times, no matter how small 
we choose the positive real number p. 
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THE EPSILON-DELTA DEFINITION AND 
ITS RELATIONSHIP TO TYPES I, 11, AND I11 

By definition 

L = lim f(x) if and only if, for every E > 0, there exists 6 > 0 such 
x - r a  

that whenever 0 < Ix - a1 < 6, then 1 f(x) - LI < E 

In this definition we assume that f is defined in an open interval containing 
a. The logical complexity of this definition is considerable. In particular, 
for a fixed value of a, this expression is a compound propositional function 
in three variables, E,  6, and x, involving the connective +, the most difficult 
connective from the point of view of intuition. Furthermore, the quantifi- 
cation of the three variables ig mixed quantification, again, the most difficult 
case intuitively. Not surprisingly, this rigorous definition was formulated 
(by the German mathematician Karl Weierstrass) a full two hundred years 
after the intuitive idea of limit had been used by both Newton and Leibniz 
in their independent invention of the derivative concept, and thereby the 
calculus itself, around 1675. Even after understanding the geometric signif- 
icance of the inequalities 0 < lx - a1 < 6 and 1 f(x) - L I  < E [the former 
determining the "interval minus one point" (a - 6, a + 6) - (a}, along the 
x axis, the latter the interval (L - E, L + E) along the y axis], we still have 
difficulty in seeing the connection bet ween the epsilon-del ta definition and 
the results obtained in actual calculations of specific limits. See Figure 4.1, 

Figure 4.1 Epsilon and delta bands. 

y = L The vertical 6  band 
a - 6 t o a + 6  

X 

from 
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which pictures the vertical "6 band" about the line x = a, and the hori- 
zontal "E band" about the line y = L, determined by these inequalities, 
respectively. 

Frequently in mathematics, a good way to get the meaning of definition- 
to figure out what it says-is to consider what it doesn't say, and more 
particularly, write out carefully its logical negation (this in addition to 
knowing at least one example that satisfies the definition and one that does 
not. At any level of mathematics, no matter how abstract, you should never 
be satisfied with your level of understanding of a definition unless you are 
familiar with at least one specific example that satisfies, and one that doesn't 
satisfy, that definition, assuming, of course, that such examples exist.). This 
is the case for the epsilon-delta definition of limit. Before proceeding, you 
should review the general rule for negating multiply quantified predicates 
(Theorem 3 and Example 5, Article 3.4) and attempt to write out the epsilon- 
delta formulation of the statement L # lirn,,, f(x). 

EXAMPLE 1 Characterize the statement L # lirn,,, f(x) in terms of epsi- 
lon and delta. 

Solution The rule for negating any quantified predicate is, "change each 
V to 3, each 3 to V, and negate the predicate." In view of this rule, and 
recalling from Chapter 2 the tautology - ( p  -* q) t, p A -4, we see that 
L # lirn,,, f(x) is expressed as 

There are two reasons for expecting that the characterization of L # 
lirn,,, f (x), given in Example 1, might be easier to grasp than its nega- 
tion (i.e., than the original epsilon-delta definition of limit). One is that 
the string of quantifiers in this statement begins with the quantifier 3 rather 
than V, thus lending greater concreteness when the definition is applied. 
Second, the connective A replaces the connective -, in the negated defini- 
tion; most readers probably concluded, in the course of Chapter 2, that A 

is, on an intuitive basis, an easier connective to work with than +. 
Let us now examine the geometric meaning of the negation of the 

definition of limit in several examples. Throughout these examples, we will 
pay particular attention to the relationship between the graph off, in the 
"immediate vicinity" of x = a, and possibilities for a value of E that can be 
chosen to prove that L # lirn,,, f (x). 

2x + 1, 
EXAMPLE 2 Consider the function f(x) = x20}. use  an 

x -1 ,  x < O  
epsilon-delta argument to prove that 1 # lim,,, f(x).  hen-prove that 
- 1 # lirn,,, f(x) and 0 # lirn,,, f(x). Finally, indicate how to gen- 
eralize these arguments to prove formally that lirn,,, f (x) does not exist. 
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Figure 4.2 The graph of y = f ( x )  in Example 2. 

Solution It is intuitively clear that lim,,, f (x) should not exist, since the 
graph of f(see Figure 4.2) has a break in the immediate vicinity of x = 
0; but how can we argue this formally in terms of epsilon and delta? 
Let us try first to show that L = 1 does not satisfy the definition of limit, 
or more precisely, does satisfy the negation of that definition. 

We must show that there exists (i.e., we must produce) a positive E, 
giving rise to a horizontal " E  band" {(x, y) 1 x E R, 1 - E < y < 1 + E )  

about the line y = 1 (see Figure 4.3) such that, for any 6, no matter how 
small, there can always be found a value of x that is within 6 of a = 0, 
but whose functional value f(x) does not lie in the given horizontal band; 
that is, f(x) is not within E of 1. Let us try E = 1, SO that we are speci- 
fying the horizontal E band {(x, y)l x E R and 0 < y < 2). Let an arbitrary 

Figure 4.3 A value of c has been chosen small enough 
so that the entire portion of the curve to the left of 
x = 0 lies outside the resulting &-band. 

I / The horizontal e band l - € < y < l + E  
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Y 

Figure 4.4 A graphic indication that 
1 # lim,,, f (x). If - 6 < x c 0, then f (x) does 
not fall between 0 and 2, no matter how small we 
choose 6. 

positive 6 be given as shown in Figure 4.4. Now, can we find a value 
of x between 0 - 6 and 0 + 6 (along the x axis) for which f(x) is 
between 0 and 2 (along the y axis)? We can indeed! Simply choose any x 
between -6 and 0, that is, any x in the left half of the interval (-6, S), 
and note that f(x) equals x - 1, which is less than - 1, and hence is not 
between 0 and 2. 

Note that the key to the preceding argument was the choice of e small 
enough so that, within any vertical 6 band about the line x = 0, no 
matter how narrow, at least part of the graph off, inside that vertical 
band, does not lie inside the horizontal e band surrounding the line 
y = 1 (y = L in general). What values of e, other than e = 1, would have 
been permissible? Surely, any positive e less than a value that is known 
to "work," as e = 1 does in the preceding argument, will also work. 
(Think about this statement for a moment and make sure you under- 
stand it.) So the question is how large a value of E will permit us to use 
successfully the preceding argument. Could we, for instance, let E = $, 
giving rise-to a n  band i f  width 5 about the line y = l? See Figure 4.5. 
Again, let an arbitrary positive 6 be chosen. Examine the picture in this 
case; it is clear from the picture that if 6 is reasonably small, say, 4, 
we cannot find a value of x within 6 of x = 0 for which f(x) lies outside 
the given E band. So e = 1 works, whereas E = $ is too large. Where is 
the dividing line between values of epsilon that work and those that 
don't? Geometric sense tells us that it is E = 2, the vertical distance 
between the proposed limit (L = 1 in this case) and the part of the graph 
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Figure 4.5 Not just any E can be used in a proof that 
L # lim,,, f(x). The E band (E = $1 - 3 < y < S is too 
wide to be us@ in proving 1 # lim f (x)  as x tends to 0. 
If 6 = i, then euery x  within 6 of x  = 0 has its 
corresponding f (x )  between -9 and 3, that is, within the 
given E band. 

whose y values do not all "lie close to" L (the part of the graph off to 
the left of x = 0 in this case). Thus, in the argument that 1 # lirn,,, f (x), 
given in the previous paragraph, we could have used as our E any specific 
positive number less than or equal to 2, rather than E = 1, with the 
same argument working. 

We next consider how that argument would have to be modified in 
order to show that - 1 # lim,,, f(x). Again, we could start by specify- 
ing E = 1 (or E equals any other specific positive number less than or 
equal to 2). This time, for an arbitrarily' chosen positive S, we can find 
values of x to the right of x = 0 whose functional value f(x) = 2x + 1, 
being greater than 1, is certainly not within distance E = 1 of the pro- 
posed limit L = - 1. Hence this value of L fails to be a limit as x 
approaches 0. 

L = 0, being halfivay between the two separate pieces of the graph, 
might be thought to serve as lirn,,, f(x). How can we use an epsilon- 
delta argument to discredit this idea? We must specify a value of E; can 
we still use any value as large as 2? See Figure 4.6. The answer is "no!" 
Since the vertical distance from L = 0 to the part of the graph on either 
side of x = 0 is 1, we must start with a specific E less than or equal to 
1, say, E = t. YOU should try to complete the argument that, for any 
positive 6, no matter how small, there can always be found a value of 
x within 6 of x = 0, whose corresponding f(x) is not within a distance 
c = $ of L = 0. Also, determine the largest value of E that can be used 
to prove that L # lirn,,, f (x), where L = 4, L = 3, L = - 5. 

Finally, if ambitious, you may want to consider the problem of argu- 
ing that L # lirn,,, f(x), where L is an arbitrary number along the y 
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(b) 

Figure 4.6 We can prow 0 # lim,,, f (x), btrt the 
specific d u e  of E we use in the proof m y  not exceed 1. 
(a) Any E > 1 is too large to be useful in proving 
0 # lim f(x) as x tends to 0; (b) E = 4 does the job. 

axis. This, of course, means that the proposed limit does not exist, as 
our intuition had indicated from the start. In approaching this prob- 
lem, you should separate the problem into three cases L 5 - 1, 
- 1 c L c 1, and L 2 1 (see Exercise 3(b)). 0 

2x + a, 
EXAMPLE 3 Let f (x)  = '1, where o is a hred positive real 

x - a ,  x < O  
number. Argue that 0 # lim,,, f (x). 

- 
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Solution This problem generalizes a part of Example 2, in which we dealt 
with the particular case a = 1. To prove that 0 # lirn,,, f(x), we must 
start by specifying a positive E. The key is how to choose this E; that 
choice quite clearly depends on a. Recalling the fourth paragraph of the 
solution to Example 2, we see that any specific positive value of E less 
than or equal to a will work. If we let E = a, for instance, then for any 
positive 6, no matter how small, there can always be found a value of 
x within 6 of 0, measured along the x axis, whose corresponding f(x) is 
a distance greater than E (or a) away from 0, measured along the y axis. 
In fact, any x on either side of x = 0, between -6 and 6 will have this 
property. 

Let us consider some implications of Example 3. The number 0 cannot 
2x + a, 

serve as lim,,, f (x), where f (x) = '"},for anyo > 0. Fur- 
x - a ,  x < O  

thermore, there is a specific connection between a and the largest value of 
E that will work in the epsilon-delta proof, namely, they're equal. If a = 
i, we have a "gap" of 1 between the two pieces of the graph, with 0 halfway 
between, and E = (or any smaller positive value of E) serves to show that 
0 # lirn,,, f(x) in this case. If a = i, the gap is 4 and E = $ can be used. 
If a = the gap is very small, namely, 2 x but still exists, and 
E = lod5 (or any specific positive number smaller than lod5) can be used 
to prove that 0 is not the limit. The same argument, with E = a, works no 
matter how small a is, and thus no matter how small the gap is between 
the two pieces of the curve, as long as a is positive. But suppose we now 
let a = O? We observe that, geometrically, the gap between the two pieces 
of the curve has now been closed completely, since we are now dealing with 

the function g(x) = {2:: 1 .  What has become of our argument 

that 0 # lirn,,, g(x)? Can we still find a positive E that works to prove this? 
As seen previously, we must have 0 < E I a, but now a = 0. The largest E 

we could use has been shrunk down to zero; that is, no positive E can be 
found to prove that 0 # lirn,,, g(x). What we are saying can be symbolized, 
in general (remember that a = 0 and L = 0 in our current example): 

Geometrically, we know that lirn,,, g(x) exists and equals zero in this 
example, since there is no longer any break in the curve in the immediate 
vicinity of x = 0. This corresponds to the fact that the preceding symbolized 
statement is logically equivalent to 

where the latter is precisely the definition of lirn,,, g(x) = L. 

I 
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Variations of the arguments used in Examples 2 and 3 are needed to 
prove that limits do not exist in other cases, as in Example 4. 

, EXAMPLE 4 Use an epsilon-delta argument to show that 1 # lim,,, h(x), 
1, x rational 

where h(x) = 
- 1, x irrational 

Solution Note first from Figure 4.7 that the graph of h consists of parts 
of the two horizontal lines y = 1 and y = - 1, each line, however, having 
infinitely many "missing points." The two pieces of the graph of this 
function near x = 0 have a. gap of 2 separating them. Thus, to prove 
1 # lirn,,, h(x), we may let E = $ (we could in fact choose any specific 
value of E less than or equal to 2), thus determining a horizontal E band 
about the line y = 1, extending from -3 to $, measured along the y 
axis. Let 6 > 0 be arbitrary. Can we find x between -6 and 6 whose 
corresponding f(x) is not between -3 and $? Yes! Simply let x be an 
irrational number between -6 and 6 (Note: It can be proved that there 
is an irrational number between any two reals). Then f(x) = - 1 $ 
(-+,$). a 

An argument similar to the preceding one can be used to show that 
lirn,,, h(x) does not exist and, more generally, that lirn,,, h(x) does not 
exist for any real number a. 

As indicated earlier, we will not focus on epsilon-delta proofs that L = 
lirn,,, f(x) until Article 6.1, but a few words about them now may be ap- 
propriate. This type of proof differs from the "negative" epsilon-delta ar- 
guments we've seen in Examples 2, 3, and 4 in that we may not specify a 

Figure 4.7 Graph pertaining to Example 4. 
1 ,  x rational 

The function h(x) = { - 1, x irrational 
cannot really be graphed. Its graph consists /--- 
of parts of two parallel lines, each with injinitely 
many missing points. Every vertical line x = k 
meets either the upper portion (k rational) or 
the lower portion (k  -irrational), but not both. 

/ 
x irrational 

y = l  

7""""' 
y = - l  
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particular E anywhere in such a proof. We must begin by letting an arbi- 
trary positive e be given. This E, although arbitrary (i.e., not a specifically 
named number, like 4 or n/3) is fixed at the start and used throughout the 
remainder of the proof. Our job in writing the proof is to determine a pos- 
itive number 6, in terms of the given E, such that every x within distance 
6 of a, other than a itself, has its corresponding f(x) lying within E of L. 
In doing this, we are determining geometrically the comparative width be- 
tween a given e band, about the line y = L and a corresponding 6 band 
about the line x = a, for which the definition of limit is satisfied. Of partic- 
ular importance is the fact that 6 depends on e; typically, 6 might be taken 
to equal e, or e/2, or the smaller of 1 and e/3. Dependence of this type, a 
consequence of the logical structure of the definition of limit, in which 3 fol- 
lows V, was highlighted in Article 3.4. 

An interesting application of this reasoning is in arguing that 
x rational 

lirn,,, k(x) = 0 = k(O), where k(x) = 
x irrational 

, so that k is 

continuous at zero. Since k is continuous at no other point, k provides us 
with an example in which continuity at a point fails to correspond to our in- 
tuitive notion of "no break in the graph in the immediate vicinity of x = a." 

FURTHER REMARKS ON THE TYPE I1 CASE 

To conclude this article, we recall the question raised in considering Type 
I1 limit problems. How does the epsilon-delta definition of limit yield the 
rule of thumb that the "y component of the missing point" serves as 

lirn,,, f (x) for a function such as f (x) = 

this rule of thumb yields the conclusion that lirn,,, f (x) = limi,, 2x + 5 = 

11, even though f(3) = 2. Hence f is not continuous at 3, in spite of the 
fact that f (3) is defined and lirn,,, f (x) exists. 

At the same time as we raise this question, let us ask another question 
about the structure of the epsilon-delta definition. Why does the defini- 

...-. tion contain the two inequalities 0 c Ix - a1 < 6 rather than just the single 
inequality (x - a1 < b? It turns out that the two questions are related to 
each other and to a statelgent about which you have probably heard or read 
concerning limits, namely, "the value of lirn,,, f(x) is in no way influenced 
by the *slue off L a ,  but is instead completely determined by the values 
of f(x), for x in the immediate vicinity of a." 

Why are we really dealing here with three pieces of the same puzzle? 
Let us begin with the second piece, the epsilon-delta definition itself. Sup- 
pose the definition of limit were formulated 

L = lirn f(x) 9 (Ve (E 0)(36 > O)(Vx)[(lx - a1 < 6) 4 ( 1  f(x) - LI < E)]. 
x- ra  
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What then would be the situation in the limit problem we proposed earlier? 
In particular, would we still have lim,,, f(x) = 11, according to  this "defini- 
tion"? Here is the reason we would not! Let E be any positive real number 
less than or equal to 9 (note that 9 is the gap between y = 2 and y = 11). 
Then, no matter how small we choose 6, the particular value x = 3 of x satis- 
fies lx - 3) < 6, since 13 - 3) = 0 c 6, whild at the same time 1 f(x) - LJ = 
1 f(3) - LI = 12 - 11 1 = 9 2 E .  This shows that L = 11 fails to satisfy this 
(incorrect) version of the definition. 

The correct epsilon-delta definition of limit requires, in order for L to 
equal lirn,,, f(x), that we be able to make all corresponding values of f(x) 
(other than f(a) itself if it exists) as close as we please to L, that is, within 
distance E of L, by considering only values of x sufficiently close to a, that 
is, within S of a (but again, not equal to a). If we omit the parenthetical parts 
of the preceding sentence, the example of the previous paragraph shows 
that limit problems we have designated "Type 11" would instead be of Type 
111, since no value of L could satisfy the epsilon-delta definition. Indeed, if 
we allow the value off at to influence the value of lirn,,, f(x), by using 
the preceding incorrect "definition" of limit, we are not only doing away 
with the category of "Type I1 limitythe most important category because 
of its role in the definition of derivative), but are simultaneously removing 
much of the subtlety that makes the limit concept interesting. 

Finally, why does the correct epsilon-delta definition of limit yield the 
rule of thumb that "L = the y component of the missing point" in a Type 
I1 example? If our characterization of the "0 < (x - a(" part of the defi- 
nition as mandating that the value of f(a) is irrelevant to the value of L 
is accepted, then the following is evident. Suppose g is a function continu- 
ous at each point of some open interval I containing a. Further suppose 

i f x ~ I , x # a  . By definition of 
either undefined or not equal to g(a), if x = a 

continuity at a, lim,,, g(x) = g(a) It stands to reason that, since f agrees 
with g everywhere except at a, and since lirn,,, f(x) is completely deter- 
mined by the values off (x) at points x close to a, and not at all by f (a), then 
lirn,,, f (x) should equal lirn,,, g(x); that is, should equal g(a). But g(a) is 
precisely the "missing point" in the graph off as shown in Figure 4.8. 

EXAMPLE 5 Compute lim,, , [(x2 - 5~ + 6)/@ - 3)] 

Solution f(x)=[(x2-5x+6)/(x-3)]isundefinedatx=3,butifx#3, 
then f(x) = [(x2 - 5x + 6)/(x - 3)] = x - 2, where we denote the latter 
function by g(x). Now g, being a linear polynomial function, is continuous 
everywhere, in particular, lirn,,, g(x) = g(3) = 3 - 2 = 1. Since f agrees 
with g everywhere except at a = 3, so that the graph of f is simply a 
line with the point (3, 1) missing, then lirn,,, f(x) = lirn,,, g(x) = 1. 

0 
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' f (a )  is undefined 

(b) 

Figure 4.8 The graphs off and g are identical, 
except for their values a t  x = a. In such a 
situation, g(a) = lim f(x) as x tends to a. 

Exercises 
1. For each of the following limit problems: 

(a) Evaluate lirn,,, f(x) or conclude that it doesn't exist. 
(b) Categorize each as Type I, I1 or 111, and decide whether f is continuous at a. 

(i) l im,+,(-4x3+5x+7) (ii) lim,, - , (x + 7)/(x - 2) 
(iii) lim,,, (x2 + 4x + 3)/(x + 3) (iv) lim,,, (x2 - 2x - 3)/(x - 3) . 
(v) lim,,, (x2 - 2x + 3)/(x - 3) (vi) lim,,, [(4 + h)2 - 16]/h 
(vii) lirn,+,(&- 2)/(x -4)  *(viii) limx+ , [( 11x1 - (*)]/(x - 3) 
(ix) 1imx+2,z sin (l/x) 

2. Evaluate lirn,,, f(x) or determine that it doesn't exist for: 
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sin x, x rational 
(d) = { 0, x irrational I a t a = O  

sin x, x rational 
= { 0, x irrational 

at a = 4 2  

3. (a) Give an epsilon-delta argument that L f lirn,,, f(x) for each of the fol- 
lowing functions. In each case, indicate the largest value (if any) of e that 
could be used in such a proof: 

1, x rational 
(ii) f (x) = ~ = ' , a = 5  

0, x irrational I 
*(M) f (x) = L = 0, a = 0, where B > 0 

2x-B, x I O  

x rational 
(jV) 

= {:: x irrational 
L = l , a = l  

(6) Argue that, for any real number L, L # lirn,,, f(x), where f(x) is the function 
given in Example 2. (See especially the last paragraph of the solution to Example 
2.) 

4. Let f be a function defined on the interval [a, a + r) for some r > 0. A real number 
L+ is said to be a right-hand limit of f(x), as x approaches a, denoted L+ = lim,,,, 
f(x), if and only if (Ve > 0)(36 > O)(Vx)[(a < x < a + 6) -r (I f(x) - L+I < e)]. Left- 
hand limit L- off at a is defined analogously; write out this definition. It is a theo- 
rem, to be proved in Article 6.1 (see Exercise 19), that lirn,,, f(x) exists if and only 

/' 
if lim,,,+ f(x) and lim,,,- f(x) both exist and are equal. Evaluate both the right- 
and left-hand limit as x tends to a for each of the following functions: 

5x + B' 
> O}, a = 0, where B > 0 

(a) = {h - 8, X 1 0 

(b) f (x) = [XI, the greatest integer less than or equal to x, a = 1 

* (d)  f (x) = tan x, a = n/2 

x rational } a = *  
= {: x irrational 
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5. *(a) Give an epsilondelta argument that &,,+ sin (l/x) # 0. 
(b) How might an argument given in (a) have to be altered to prove that 

&+o+ (A) sin (llx) # O? lim,,, + (A) sin (llx) # O? 
(c) Do you think that the kind of argumemt given in (a) a d  (b) could be used to 

prove that lim,,,+ (x sin (llx)) # O? Do you think that this one-sided limit ex- 
ists? If so, what do you think is its value? (See Exercise 13(c), Article 6.1.) 

6. Let f be a function defined on the interval [a, a + r) for some r > 0. We 
say that f is right-contimmus, or c~n~inuous jiom the right at a if and only if 
limx+, + f (x) = f (a). 

(a) Give an analogous definition of left-continuous at a 
(b) Give examples of functions f (x), g(x) such that: 

(i) f is continuous fiom the right, but not the left, at x = 6. 
(ii) g is continuous fkom the left, but not the right, at x = 3. 

(c) Suppose that lim,,, f(x) exists, but does not equal f(a) (k, f is Type 11 at a). 
Is it possible for f to be continuous from either the left or the right at a? 

(d) Using the theorem stated in Exercise 4, state and prove a theorem that relates 
right and left continuity off at a to ordinary continuity off at a 

7. A function f is said to be contimow on an open intenml I if and only iff is con- 
tinuous at each point of I. In terms of epsilons and deltas, f is continuous on I 
if and only if 

On the other hand, a function f is said to be un$onnly continuous on I if and 
only if 

(a) Explain, in terms of theorems of the predicate calculus, why uniform con- 
tinuity on I is a stronger property than continuity on I. That is, why is it true that, 
for any function f, iff is uniformly continuous on I, then f is continuous on I? 

We can give many examples of functions that are uniformly continuous on 
various intervals, for instance, f(x) = Mx + B is uniformly continuous over any 
interval, g(x) = x2 is uniformly continuous on (0,2), while h(x) = l/x is uniformly 
continuous on 11, oo). On the other hand, there are functions that are continuous, 
but not uniformly continuous, on certain intervals [i.e., the converse of the result 
in (a) is false]. For example, f(x) = x2 is not uniformly continuous on (0, p) and 
h(x) = l/x is not uniformly continuous on (0, I), even though both functions are 
continuous on those intervals. 

(b) Suppose we are writing proofs, by using epsilons and deltas, that f(x) = x2 
is continuous on the intervals (0-2) and (0, oo). Note that f is uniformly continuous 
in the first case, but not in the second. Describe the qualitative difference in the 
choice of 6, given a positive E, between these two cases. (Recall Example 3 and 
Exercises 6 and 7, Article 3.4.) 

8. Let f be defined on some open interval (a, oo) and let L be a real number. We 
say L = I&,, f(x) iff(V& > OX3N > O)(Vx)[(x > N) -, (I f(x) - LI < E)]. Geomet- 
rically, this means that any e band about the horizontal line y = L, no matter how 
narrow, contains every point on the graph off for values of x to the right of some 
number (namely, N). Note that, from the logical structure of the definition, N 
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depends on E; specifically, the smaller E is chosen, the larger will be corresponding 
values of N that can be chosen. 

(a) In the case where the graph off  is a continuous curve, what is the relation- 
ship between the line y = L and the graph off, when lirn,,, f(x) = L? 

(b) Evaluate these limits (Hint: Let x = l/t, simplify, and let t -, 0): 
(i) lim,,, (x - 3)/(x + 4) 

*( i i )  limX,,(x+6)/(x2- 10) 
*( i i i )  lirn,,, (xZ - 2x + 3)/(2x2 + 5x - 3) 

(iv) lirn,,, (xZ - 6x - 7)/(x + 2) 
(c) Write a formal definition of lirn,, -, f(x) = L. 
(d) * ( i )  Write a formal definition of lirn,,, f(x) = m. 

(ii) In a case where f is continuous in an open interval containing a, but 
not at a itself, and lim,,, f(x) = m, what is the relationship between the 
graph off and the line x = a? 
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Mathematical Proof, 

Part I: 
Elementary Methods 
CHAPTER 5 

As undergraduate students of mathematics pass through the sophomore to 
the junior level, a major change in their mathematical career occurs with 
the seemingly sudden emphasis on the need to understand and, especially, 
to write proofs. Indeed, the most common refrain heard by instructors of 
undergraduates in courses such as abstract algebra, advanced calculus, 
number theory, and linear algebra, is "I understand the material, but I can't 
do the proofs." 

From one point of view, it is not surprising that students find proof 
writing difficult. After all, mathematicians themselves spend a lifetime ab- 
sorbed in the attempt to discover and prove theorems, a pursuit involving 
the combination of expertise (sometimes genius), effort, and occasional luck, 
which is the basis of all scientific discovery. For these professionals, a 
major part of the challenge, and of the beauty of mathematics itself, ema- 
nates from what is at the core of the difficulty that most undergraduate 
students experience. Namely, there is no formula for writing proofs; writing 
even simple proofs involves a certain degree of creativity as well as uncer- 
tainty at the outset of where the process will lead. Furthermore, there is 
generally no unique correct answer to a problem calling for writing a proof. 
For an undergraduate student, then, an assignment that involves writing 
a proof is bound to produce anxiety, in contrast with the security most feel 
when working, say, to differentiate a function or find the inverse of a matrix. 
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But a case can be made that students should not view proof writing to 
be so difficult as many do. For one thing, undergraduate students are, for 
the most part, spared the difficulty that both haunts and delights research 
mathematicians, namely, lack of certainty whether the result they are trying 
to prove is actually true. Furthermore, proofs that students are asked to 
write at the sophomore-senior level are usually not "hard," from the point 
of view of their mathematical content. Finally, and most relevant to our 
work in this chapter, there are a number of underlying principles and tech- 
niques involving proof writing per se that experienced mathematicians take 
for granted. Proof writing can never be reduced to a mechanical process, 
but considerable anxiety and uncertainty can be eliminated from the 
process-indeed, much of the "mystique" can be removed from the entire 
activity of proof writing-if students are exposed to these principles and 
techniques explicitly and systematically. 

After some probing, students who utter the complaint at the end of the 
first paragraph will often remark, "I just don't know where to begin." There 
is more validity to this complaint than sometimes meets the eye, for many 
elementary proofs are essentially completed once the proper starting point 
has been found, once what has to be proved is carefully written down. This 
step usually involves the careful interpretation of a definition. This is the 
point at which problems can occur, even for students who were expert at 
writing proofs in plane geometry and in deriving trigonometric identities. 
A major difficulty in writing proofs at the postcalculus level is that, at this 
level, the logical structure of many of the definitions encountered becomes 
rather complicated. As examples, to prove that a function f is increasing 
on a interval I, we must show "for pair of numbers a, b E I, a < b 
implies f(a) < f(b)," a statement involving both the universal quantifier 
and implication arrow. To prove that an integer m divides an integer n, 
we must prove that there exists an integer p such that rt. = mp, a statement 
involving the existential quantifier. To verify the definition of limit in a 
particular case, we need to work with the epsilon-delta definition, involving 
three uses of quantifiers (two universal and one existential), and one use of 
the implication connective. Different proofs require different starting points, 
a different "setting up" according to the logical structure of the conclusion 
to be derived. In particular, as soon as either an existential quantifier or 
an implication auow occurs in a definition involved in a desired conclusion, 
the proof will involve a setting up different from anything encountered in 
plane geometry or trigonometry, or in writing the few proofs that might 
be required in elementary and intermediate calculus. 

In this chapter we will deal systematically with various techniques of 
proof, categorized largely according to different possibilities for logical struc- 
ture of definitions. Since it is fruitless to discuss such techniques in a 
vacuum, we will illustrate each category of proof by considering specific 
mathematical problems, involving concepts that either should be familiar 
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to, or can quickly be grasped by, students at the sophomore level of under- 
graduate mathematics. 

5.1 Conclusions Involving V, but Not 3 or 4. 

Proof by Transitivity 

In this article we focus on proofs of the most elementary type from a log- 
ical, or structural, point of view. Generally, theorems whose conclusion 
involves neither the existential quantifier nor implication arrow are proved 
by methods familiar to students with a strong high school mathematics 
background. Since these methods continue to be useful at every level of 
mathematics, their proper application in the context of sophomore-junior 
level university mathematics is an appropriate starting point for our study 
of theorem-proving techniques. 

Most students of mathematics are first exposed to proof writing in the 
plane geometry, intermediate algebra, and trigonometry courses that pre- 
cede the introduction to calculus. Here are typical proofs from each of the 
three courses. 

EXAMPLE 1 (Plane Geometry) Hypothesis: BC and AD are straight lines, 
AB = DC, 0 bisects BC, angle B = 90°, angle C = 90". Conclusion: A 0  = 
DO. Plan: Prove that A 0  and DO are corresponding parts of congruent 
triangles. See Figure 5.1. 

Solution 

Statements 

In A ABO and ADCO; 
AB = BC 
0 bisects BC 
Therefore BO = CO 
Angle B = 90°, angle C = 90" 
Therefore angle B = angle C 

Therefore A ABO is 
congruent to A DCO 
A 0  and DO are corresponding 
sides of triangles A ABO and 
A DCO 
Therefore A 0  = DO 

Authorities 

By hypothesis 
By hypothesis 
Definition of bisector 
By hypothesis 
Axiom "two quantities 
equal to the same quantity 
are equal to each other." 
SAS (two sides, included 
angle) 
A 0  and DO lie opposite 
equal angles. 

Corresponding sides of 
congruent triangles are 
equal. 
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Figure 5.1 Triangles ABO and DCO, jkom 
Example I ,  can be proved to be congruent. 

It is generally through plane geometry that students are introduced to 
mathematics as a deductive science. In that subject we begin with a set of 
axioms, general statements about relationships in plane geometry that are 
assumed true, and build from these a collection of theorems. Theorems are 
deduced by means of a proof, a series of statements, each of whose validity 
is based on an axiom or a previously proved theorem. In constructing 
plane geometry proofs, we gain an appreciation of the critical importance 
of the question, "What facts am I allowed to use in this proof?" This 
question continues to be important in higher level college mathematics and 
seldom, at that level, is the issue ever again as clearcut as it was in high 
school geometry, since the latter is a self-contained and generally very 
tightly constructed system. Often, when proofs are assigned in an upper- 
level mathematics course, it is a fair question to ask of the instructor whether 
a particular theorem or approach (perhaps from a previous course) may be 
assumed and used in your proof. 

EXAMPLE 2 (Intermediate Algebra) Use the associative and commutative 
laws of multiplication to prove that (ab)(cd) = [(dc)a]b for any real num- 
bers a, b, c, and d. 

Solution Assume that a, b, c, and d are real numbers. We note that: 

(ab)(cd) = (ab)(dc) (since cd = dc, by commutativity, and by the 
basic principle, "equals multiplied by equals 
yield equals") 

= (dc)(ab) (again, by commutativity, applied to the real 
numbers ab and dc) 

= [(dc)a]b (by associativity, applied to the real numbers (dc), 
a, and b) 

Usually in proofs such as the one in Example 2 students are introduced 
to a very basic, but crucial, idea: We cannot prove a general theorem (e.g., 
one involving universal quantijication over an in.nite universal set, such as 
the real numbers) by giving a particular example, or by trying to enumerate 
all cases. Note also the form of the proof given in Example 2. To prove 
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that two quantities, say, A and 2, are equal, we have provided a string of 
equations: 

beginning with A and ending with 2. This form of proof, which we refer 
to as a proof by transitivity, is the most elegant and desirable form in which 
a conclusion whose statement involves V, but not 3 or +, can be written. 
We give examples later of proofs by transitivity of conclusions asserting 
the relationships = and I between real numbers, and = and r between 
pairs of sets. 

EXAMPLE 3 (Trigonometry) Derive the identity 

(cos 2x - sin2 x)/sin 2x = *cot x - tan x, 

for any real number x, not of the form x = n42, where n is an integer. 
Use double angle formulas for sine and cosine and the definitions of cot 
and tan, in terms of sin and cos. 

Solution Let x be a real number, not of the form x = nn/2, where n is an 
integer. Then, 

(COS 2x - sin2 x)/sin 2x = [(cos2 x - sin2 x) - sin2 x]/sin 2x 
= [(cos2 x - 2 sin2 x)]/sin 2x 
= [(cos2 x - 2 sin2 x)]/2 sin x cos x 

= ((COS x/2 sin x)) - (sin xlcos x) 

=&cot x - tan x. 

In this proof, studied at a more advanced level of high school mathematics 
than the proof in Example 2, we have altered the approach taken in Example 
2 by not stating explicitly a justification for each step. This is common in 
proof writing past the elementary level. We note at the same time, however, 
that the proof has been carefully laid out, with each line representing a step 
that is clearly intelligible to those who are reasonably well-informed. If spe- 
cific reasons for individual steps are not supplied in a proof (as is customary), 
then the writer of a proof must use good judgment in providing a fair 
amount of detail; with  to^ few steps, it might not be possible to follow the 
reasoning. Also, it is often appropriate to state explicitly the justifica- 
tion for a step that is either especially important or particularly tricky to 
understand. 

On the other hand, we could have inserted into the proof of Example 
3 (between lines 3 and 4) an additional line containing the expression 

I [(cos2 x)/(2 sin x cos x)] - [(2 sin2 x)/(2 sin x cos x)] 

but chose not to do so. Surely most readers can follow the progression from 
t line 3 to line 4 in the form given; with too many steps, the proof becomes 
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cluttered and boring. There is no universally correct answer; what con- 
stitutes a proof that is both informative and pleasing to read is largely a 
matter of individual judgment and taste, both of which generally improve 
with experience in writing proofs. 

Thus far, in this article, we have focused on how a proof is to be presented. 
But knowing how to present a proof is of little value without being able 
to discover it-to find a path linking A to 2-in the first place. The next 
example highlights this issue. 

EXAMPLE 4 Prove that (1 + sin x)/cot2 x = sin x/(csc x - I), for all values 
of x where both quantities are defined. 

Solution Note first that the statement to be proved involves the universal 
quantifier ("for all") but no existential quantifier or implication arrow. 
Consequently, we wish to write a proof by transitivity, as we did in 
Examples 2 and 3. Since both expressions are rather complex, however, 
it is probably not easy to find a direct route from the expression on the 
left to that on the right. In such a situation the best procedure is to try 
to change the form of both expressions, in the hope of reducing (or ex- 
panding) both to a common third expression. Taking this approach, 
and assuming that x is a real number for which both quantities we're 
working with are defined, we find that 

(1 + sin x)/cot2 x = (1 + sin x)(tan2 x) 

= (1 + sin x)(sin2 x/cos2 x) 
= (sin2 x)(l + sin x)/(cos2 x) 

whereas 

sin x/(csc x - 1) = sin x/((l/sin x) - 1) 

= sin x/((l - sin x)/sin x) 
= sin2 x/(l - sin x) 

= (sin2 x)(l + sin x)/(l - sin x)(l + sin x) 
= (sin2 x)(l + sin x)/(l - sin2 x) 
= (sin2 x)(l + sin x)/(cos2 x) 

At this point we have essentially solved the problem, but the question 
remains how to present the proof. The easiest way, from the point of 
view of the writer, is to append to the previous arguments the conclusion 

(1 + sin x)/cot2 x = (sin2 x)(l + sin x)/(cos2 x) 
= sin x/(csc x - 1) 

whenever these expressions are all defined, so that the desired equality 
is proved. The way to present the proof, however, is to combine 
the two strings of equations into a single string, that is, to write a proof 



152 METHODS OF MATHEMATICAL PROOF, PART I Chapter 5 

by transitivity. The string should begin with (1 + sin x)/cot2 x, end with 
sin x/(csc x - I), and involve the quantity (sin2 x)(l + sin x)/(cos2 x) at 
an intermediate step. It is left to you, in Exercise 2(b), to write out such 
a presentation of this proof (see the solution to Example 6, for further 
guidance). 

Here is a form of presentation of the preceding proof that you should 
not use. 

(1 + sin x)/cot2 x = sin x/(csc x - 1) 

(1 + sin x)(tan2 x) = sin x/((l/sin x) - 1) 

(1 + sin x)(sin2 x/cos2 x) = sin2 x/(1 - sin x) 

(sin2 x)(l + sin x)/(cos2 x) = (sin2 x)(l + sin x)/(l - sin x)(l + sin x) 

(sin2 x)(l + sin x)/(cos2 x) = (sin2 x)(l + sin x)/(cos2 x) 

In this illustration we have given a series of steps that starts with the 
equation to be derived (thus effectively assuming; that which is to be 
proved) and ends with a tautology, namely, a statement that a quantity 
equals itself. This is a logically incorrect presentation of the proof, even 
though all the correct trigonometric relationships are there. 

Some proofs of equality in set theory can be carried out by a transitivity 
argument, using results proved in Article 4.1 by the choose method. 

EXAMPLE 5 Prove that X - (Y n 2) = (X - Y) u (X - Z) for any three 
subsets X, Y, and Z of a universal set U. 

Solution Let X, Y, and Z be arbitrary subsets of U. Then 

X - ( Y n Z ) = X n ( Y n Z ) '  

= X n (Y' u 2') 

= (X n Y') u (X n 2') 
= ( X -  Y ) u ( X - Z )  

Supply the justification for each of these equations. Each step depends on 
a result derived in Article 4.1. 0 

The next example is also from set theory and has a solution similar in 
approach to the solution to Example 4. Due to the complex form both quan- 
tities involved, we take the approach of converting each to a common third 
quantity. 

EXAMPLE 6 Prove that intersection distributes over symmetric difference, 
that is, for any three sets A, B, and C in a universal set U, A n (B A C) = 
(A n B) A ( A  n C). 
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Solution Before attempting a general proof of an unfamiliar theorem, you 
should always test the truth of the statement with at least one example. 
You should compute both these quantities for U = Z, A  = (2,4,5,7}, 
B  = (4,7,11,15), and C  = (7,15,23,26). Drawing relevant pictures, in 
this case Venn diagrams, can also be helpful. As to the proof, note first 
that 

A  n (B A C) = A  n [(B n C') u (B' n C)] 
= ( A n B n C ' ) u ( A n B 1 n C )  

whereas 

(A n B) A (A n C) = [(A n B) n (A n C)'] u [(A n B)' n (A n C)] 
= [(A n B) n (A' u C')] u [(A' u B') n (A n C)-J 

= [(A n B n A') u (A n B  n C')] u [(A' n A  n C) u (B' n A  n C)] 
= [ @ u ( A n B n C f ) ] u [ @ u ( B ' n A n C ) ]  

= ( A n B n C ' ) u ( A n B ' n C )  

Again, you should supply justifications for the preceding steps. 
Having changed the form of both involved quantities to a common 

third quantity, we have essentially solved the problem, but there remains 
the matter of how to present the proof. The proof may be presented 
correctly in one of two ways. Most conveniently, we may simply append 
to the two derivations, given earlier, the statement that both given 
quantities equal (A n B n C') u (A n B' n C), and so equal each other. 
Or else, more desirable from the point of view of someone with experi- 
ence (such as an instructor), the proof might be written in the form of 
a proof by transitivity, as in 

(A n B) A (A n C) = [(A n B) n (A n C)'] u [(A n B)' n (A n C)] 
= [(A n B) n (A' u C')] u [(A' u B') n ( A  n C)] 

= [(A n B  n A') u (A n B n C')] u [(A' n A  n C)  u (B' n A  n C)] 
=[@u(AnBnC')]u[@u(B'nAnC)] 
= ( A n B n C ' ) u ( A n B f  n C )  
= A  n [(B n C') u (B' n C)] 
= A n ( B A C )  

A proof by transitivity may also be appropriate for a theorem asserting 
an inequality between numbers or a subset relationship between sets, as in 
these examples. 

EXAMPLE 7 Suppose it is known that IX + yl s 1x1 + IyI for all real 
numbers x and y [see Exercise 8(a)]. Prove that lx - z1 5 Ix - yl + 
ly - zl for all real numbers x, y, and z. 
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1 solution Let x,y, and z be given. Then 
Ix - zI = (x + (-y + y) - zl 

= I(x - Y) + (Y - z)J 
5 I X  - yl + ly - z(, as desired. 

EXAMPLE 8 Assume the theorem, for any sets A, X, and Y, if X c Y, then 
A n X G A n Y. Use this fact, along with an appropriate distributive 
property, to prove that, for any three sets A, B, and C, 

A n ( B u C ) c ( A n  B ) u  C 

Solution Let A, B, and C be given sets. Then 

(A n B) u C = (A u C) n (B u C) (by distributivity) 
2 A n ( B u C )  

where the latter step follows from the fact that A c A u C and the 
theorem assumed in the statement of the example. 0 

In the discussion following Example 2 we noted a common pitfall, namely, 
trying to prove a universally quantified statement by giving a specific exam- 
ple or by enumerating cases. As with all general rules, the principle of prov- 
ing statements by a deductive general argument can be carried too far, 
being applied where it shouldn't be. In particular, suppose we wish to @&- 
prove the assertion that subtraction of real numbers is associative; that is, 
a - (b - c) = (a - b) - c for all real numbers a, b, and c. A common, but 
logically incorrect approach, is to argue 

But recall from Article 3.3 that the negation of a statement (Vx)(p(x)) is 
(3x)(-p(x)). That is, to disprove a universally quantified statement, we 
must prove that the predicatein question is false for some substitution for 
x. Generally, this is best done by producing a specific object a from U for 
which p(a) is false; such a specific object is called a counterexample to the 
statement (Vx)(p(x)). This is a situation in which proof (or actually disproof) 
by example is not only p&-rnissible, but is in fact the correct approach. We 
reemphasize: to establish that a universally quantijed predicate is false, display 
a counterexample! 

In the preceding situation we may, for instance, let a = 7, b = 4, and 
c=2 .  Then a - ( b - c ) = 7 - ( 4 - 2 ) = 7 - 2 = 5  and ( a -b ) - c=  
(7 - 4) - 2 = 3 - 2 = 1. Since 5 # 1, our goal is accomplished. 

There is one other situation in which proof by example(s) or by enumerat- 
ing cases may be a viable approach to theorem-proving. If the domain of 
discourse for a universally quantified predicate happens to be finite, it may 
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be possible, if not practical, to prove the theorem by enumerating all the 
cases. We proved theorems of the propositional calculus in this manner in 
Chapter 2. A truth table merely enumerates all the possible truth combina- 
tions (2" corresponding to n letters) for the simple statements that comprise 
a given compound statement form. Recall, in this connection, Exercises 9 
and 1 l(c), Article 1.5. We deal with another example of this type in Exer- 
cise 16. 

As we conclude this article and you begin the exercises, there are two 
general principles to keep in mind: (1) It is essential in doing any proof, 
especially proofs by transitivity, to have a clear picture of what has come 
before-that is, what axioms, previously proved theorems, or any facts that 
are taken to be "known," are available for use in the proof. (2) It is important 
to approach theorem-proving in an active way: Always have pen and paper 
in front of you. Don't waste time staring at the book; write things down in- 
stead. In particular, write down the desired conclusion and the hypothesis 
(if any) and write a list of any definitions and known relationships that may 
be relevant. Don't be discouraged if your first approach doesn't work; be 
flexible and willing to try a number of approaches. 

If the logical structure of the conclusion to be derived is more complex 
than we have considered thus far, you will still be faced with the question, 
"How do I go about starting this proof?" Read on, for forthcoming articles 
will deal directly with this question, in a variety of situations. 

Exercises 
1. Throughout this exercise, make use of the associative and commutative laws for 
addition and multiplication of real numbers, as well as the law of distributivity of 
multiplication over addition. Write explicitly the justification for each step. Prove 
that: 

(a) (a + b)2 = a2 + 2ab + b2 Va, b E R 
(6) (a + b)(a - b) = a2 - b2 Va, b E R 
(c) [a + (b + c)] + d = a + [b + (c + d)] Va, b, c, d E R 
(d) a(bc) = c(ba) Va, b, c E R 
(e) ( a b + a d ) + ( c b + c d ) = ( a + c ) ( b + d )  V a , b , c , d ~ R  
( f )  a(b + c + d) = ab + ac + ad Va, b, c, d E R 

2. (a) Use elementary trigonometric identities (e.g., double angle formulas, defini- 
tion of tan x in terms of sin x and cos x, etc.) to verify these trigonometric identities: 

cos4 x - sin4 x = cos 2x Vx E R 
4 sin3 x cos x = sin 2x - sin 2x cos x Vx E R 
sec x - sin x tan x = cos x Vx E R such that cos x # 0 
(tan x - l)/(tan x + 1) = (1 - cot x)/(l + cot x) Vx E R such that 
sin x # 0 and cos x # 0. 

Write out a complete proof by transitivity for the identity of Example 4. 
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Throughout Exercises 3 through 6, let all sets involved be subsets of a universal 
set U. Use properties of sets proved in Article 4.1 and an argument by transitivity 
in each case. 

3. Prove that for any sets A and B 

(a) A - @ = A  (b) 0 - A = @  
(c) A A 0 *(d) A A U = A' 
(e) A A A = 0  
( f )  If B = 0, then A = ( A  n B') u (A' n B) 
(g) If B = A, then U = (A' u B) n ( A  u B'). [Note: The converses of the results 

in (f) and (g) are also true; see Example 8 and Exercise l(h), Article 6.2, 
respectively.] 

4. Prove that for any sets A and B: 

(a) A = ( A  u B) n ( A  u B') 
(b) A = ( A  n B) u ( A  n B') 
(c) ( A  n B) u (A' n B) u ( A  n B') u (A' n B') = U 
(d) ( A  u B) n (A' u B) n ( A  u B') n (A' u B') = 0 
(e) A A B = B A A  

5. (a) Prove that, for any sets A, B, and C: 

(i) A - ( B u C ) = ( A - B ) n ( A - C )  
*(ii) ( A u  B ) - C = ( A - C ) u ( B - C )  

(iii) ( A  - B) - C = ( A  - C) - (B - C) 

(b) Prove that, for any sets A, B, C, and D: 

(i) A n ( B u C u D ) = ( A n  B ) u ( A n C ) u ( A n  D) 
(ii) A u (B n C n D) = ( A  u B) n ( A  u C )  n ( A  u D). (Hint: Use associativ- 

ity. These results generalize distributivity to "distributivity across three 
sets." In Article 5.4, on mathematical induction, we will see how to prove 

, 
"distributivity across any finite number of sets.") 

6. Prove that for any set A and for any collection {Bi 1 i = 1,2, . . .} of sets indexed 
by N (recall Exercise 4, Article 4.2): 

7. Use the definition of (;) from Article 1.5, together with the facts that (n + I ) !  = 
(n + l)n! (for all n E N) and O! = 1, to show that whenever each expression is de- 
fined, the given equation must hold: 

* (a)  ("3 =(A) + 6 )  - 
(b) 6: 1 )  = [(n - k)l(k + l)l(;) 
(c) a(?) = @GI:) (Suggestion: Try some specific substitutions before attempt- 

ing the proof.) 

8. The absolute value of a real number x, denoted 1x1, is defined by the rule 

It follows directly from the definition that - 1x1 ( x I 1x1 for all x E R. From this 
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it can be proved that for any real number x and positive real number a, 1x1 r a if -- 
and only if -a I x  <a .  

(a) Use these facts to conclude that Ix + yl I 1x1 + Iyl (triangle inequality) for all 
real numbers x and y. (The result was assumed and used in Example 7 of this 
article.) 

(6) Use the result in (a) to prove that (x - zl 2 1x1 - lzl for all real numbers x and z. 

(c) Use the result in (a) to prove that lx + y +.zl < 1x1 + lyl + Izl for any three real 
numbers x, y, and z. [See the Hint for Exercise 5(b).] 

9. A real-valued function f of a real variable is said to be even if and only if 
f ( - x) = f (x) for all x E R, and odd if and only if f ( - x) = - f (x) for all x E R. 

(a) Prove that iff and g are even functions with domain R, then f + g, f - g, 
fg, and f 0 g are even functions. 

* ( b )  Prove that iff and g are odd functions with domain R, then f + g, f - g, 
and f 0 g are odd, and fg is even. 

(c) Prove that iff is odd and g is even, then f 0 g and g 0 f are both even. 

lo.  Let f(x) = x - (l/x). 

(a) Prove that for all nonzero values of x, f (llx) = f ( -x) = - f (x). 
(6) Prove that for all nonzero values of x, (f 0 f 0 f)(x) = x. 

11. (a) Let f(x) = (ax + b)/(cx - a), where a, b, and c are arbitrary real numbers. 
Show that f( f(x)) = x for all x # a/c. 
(b) Suppose a, b, c, and d are real numbers satisfying the equation ad + b = bc + d. 

Define functions f and g, with domain R in each case by the rules f(x) = ax + b, 
g(x) = cx + d. Prove that f(g(x)) = g(f(x)) for all x E R. 

12. A function f is said to have an absolute maximum at a point x = a if and only 
if f(x) I f(a) for all x in the domain of f. Absolute minimum at a is defined 
analogously. 

(a) Prove, without using calculus, that f(x) = 10 - x2 has an absolute maximum 
at x = 0. 

*(b)  Prove algebraically that g(x) = 60 + 14x - 2x2 has an absolute maximum at 
x =;. 

(c) Prove algebraically that if a > 0, then f(x) = ax2 + bx + c has an absolute 
minimum at x = -b/2a. [Hint: In (b) and (c) write down carefully, in terms 
of the preceding definition, exactly what must be proved. Use the algebraic 
technique of completing the square.] 

13. Prove or disprsve, for any three sets A, B, and C: 

(a) A - (B - C) = (A - B) - C (6) (A - B)' = A' - B' 
(c) A u ( B - A ) = A u B  *(d) A n ( B  u C ) = ( A n B ) u C  

14. Prove or disprove, for any real number x: 

(a) sin 2x + 2 sin x = cos x + 1 (6) sin 2x cos x = sin x 
(c) tan2 x + 4 = 3 sin2 x + sec2 x + 3 cos2 x 

15. Prove or disprove, where m, n, and k are positive integers such that each of the 
individual quantities is defined, that rim) = c) + (r). 
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16. Let U = (1,2,3). Consider the assertion that for all subsets A, B, and C of U, 
(A A B) A C = A A (B A C); that is, the operation of symmetric difference is associa- 
tive over this particular universal set U. 

(a) How many particular cases are encompassed by this statement for the given 
universal set? 

(b) Verify that the statement is true for three such cases. 
(c) Do you believe that symmetric difference is associative in general? How would 

you go about investigating this possibility? 

17. An m x n real matrix is a rectangular array of m rows and n columns of real 
numbers, called entries. The entry in the ith row, jth column is customarily denoted 
aij and A itself may be represented 

which may, in turn, be abbreviated A = (aij), , ,. A is said to be square if m = n. 
Some readers are probably familiar with elementary matrix theory, but for those 
who may not be, we provide here some basic definitions that we use in the following 
exercises and later in this chapter. 

1. If A = (aij),, and B = (bij), . ., define A = B if and only if aij = bij for all i = 
1,2 ,..., m , a n d j = 1 , 2  ,..., n. 

2. If A = (aij), . and B = (bij), . ., define A + B by the rule A + B = (aij + bij), , .. 
If k E R, define kA = (kaij) ,... 

3. If A = (aij), , , and B = (bijln , p, define AB by the rule AB = (cij), , p, where 
Cij = xi=laikbkj. 

4. If A = (aij), , ,, define A', the transpose of A, by A' = (bij), , ,, where bij = aji 
for all i = 1,2, . . . , n, and j = 1,2,. . . , m. 

5. A square matrix A = (aij), . , is said to be symmetric if and only if A' = A and 
antisymmetric if and only if A' = -A. 

6. If A = (aij),,,, we define the determinant of A, denoted IAl, by the rule 
IAl = a1 ,a22 - a12a21- 

Throughout parts (a) through (h), assume and use the facts that when the appro- 
priate quantities are defined, matrix addition and multiplication are associative, 
matrix addition is commutative, and matrix multiplication distributes over matrix 
addition. Note that matrix multiplication is not commutative, even when both AB 
and BA are defined. Assume also that if A + B and AB are defined, then 
(A + B)' = A' + B', (AB)' = B'A' and (kA)' = kAt for any k E R. 

*(a) Prove that if A and B are m x n matrices with A' = B', then A = B. 
(b) Prove that (At)' = A for any matrix A. 
(c) Prove that if A, B, and C are matrices of the same shape, then (A + B + C)' = 

At + Bt + C'. 
(d) Prove that if the product ABC is defined, then the product C'B'At is defined 

and CtB'At = (ABC)'. 
*(e) Prove that if A and B are symmetric square matrices, then A + B is symmetric. 
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( f )  Prove that if A is any square matrix, then A + At is symmetric, whereas A - At 
is antisymmetric. 

(g) Prove that if A and B are 2 x 2 matrices, then lABl = IAl IB(. 

18. One approach to the inverse trigonometric functions is to define first the two 
functions sin-' and tan-' directly as inverses to sin, restricted to the portion 
[ - n/2,42] of its domain, and tan, restricted to ( - 11/2,71/2) respectively. That is, 
y = sin-' x if and only if sin y = x, -n/2 I x I n/2, and y = tan-' x if and only 
if tan y = x, - 4 2  < x < 42. Note that domain (sin- ') = range (sin) = [- 1, 11, 
and domain (tan- ') = range (tan) = (- co, co). 

Having done this, we may then define the other four inverse trigonometric func- 
tions cos - l, cot - ', sec - l, and csc - in terms of sin - ' and tan - '. Specifically, we 
may let 

sec - ' x = cos - '(llx) csc-I x = sin-'(llx) 

The first definition is motivated by the fact that the cosine of an acute angle equals 
the sine of its complement, so that cos (42  - sin-' x) = sin (sin-' x) = x for any 
x E [- 1, 11. The other definitions have similar trigonometric motivations. If you 
have not previously done so in your calculus class, calculate the domain and range 
of each of the preceding functions and sketch the graph of each. It can be proved, 
using the definition of inverse of a function, that sin- and tan - are odd functions; 
that is, sin- '(- x) = -sin- 'x and tan- '(- x) = -tan- 'x for all x in the respective 
domains. Use these facts to prove: 

(a) C O ~ - ~ ( - X ) = ~ - C O S - ~ X ,  -1<x11  
(b) sec-'(-x)=n-sec-'x, x~ -1 or x 2 l  
(c) csc-'(-x)=-csc-'x, XI-1  or x r l  
(d) cot-'(-x)=n-cot-'x, -co < x  < co 
For a geometric interpretation of these results, see Article 5.2, Exercise 5(c). 

19. Critique and complete (recall the instructions for this type of exercise, given 
in Exercise 11, Article 4.1): 

(a) THEOREM For any sets A, B, and C, (A n 6 )  A (A n C) = A n ( 6  A C) 

"Proof" 

( A n  6) A ( A n  C) = A  n (B  A C) 

:. [(A n B) n (A n-C) ' ]  u [(A n 6)' n (A n C)] = A n [(B n C') u (6' n C)] 

:. [(A n B) n (A' u C ) ]  u [(A' u 6') n (A n C)] = (A n 6 n C )  u (A n 6' n C) 

.'. [ (A  n B n A') u (A n B n C ) ]  u [ ( A ' n  A n C) u ( B ' n  A n C)] 
= ( A n B n C ) u ( A n B ' n C )  

.'. [ a  u (A n B n C ) ]  u [ a  u (6' n A n C)] = (A n B n C )  u (A n B' n C) 

. ' . ( A n  B n C )  u ( A n B 1 n  C ) = ( A n  B n C ) u ( A n  B ' n  C) 
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(b) THEOREM For any sets A and B, A' - B' = B - A. 

"Proof" Let A and B be arbitrary Sets. Then 

A' - B' = A' n B" [Fact 5 (29), Article 1.41 

= A' n B [Fact 3 (21), Article 1.41 

= B n A' [Fact 2 (16), Article 1.41 

= B - A [Fact 5 (29), Article 1.41 

(c) FACT If f(x) = x - (llx), then f is not an even function. (cf; Exercise 9). 

Start of "Proof" Let x be an arbitrary nonzero real number. To prove f is not even, 
we must prove that f (-x) # f (x) . . . . 

(d) THEOREM For any sets A and B, (A - 6)' = A' u 6. 

Start of "Proof" Let A and B be arbitrary sets. If (A - B)' = A' u B, then 
(AnB ' ) ' =A ' u  B . . . .  

5.2 Conclusions Involving V and +, but Not 3 
In this article we consider the problem of proving statements whose con- 
clusion has the logical form (Vx)(p(x) -, q(x)). Such proofs are common, for 
many definitions in mathematics have this logical form. Here are a few 
examples: 

EXAMPLE 1 A subset C of R x R is said to be symmetric with respect to 
the x axis (respectively, y axis and origin) if and only if, for all real 
numbers x and y, (x, y) E C implies (x, - y) E C [respectively, (- x, y) E C 
and (-x, -y) E C]. 

Observe that the logical form of the definition of x-axis symmetry in 
Example 1 is (Vx)(Vy) (Ax, y) -* q(x, y)), where Ax, y) is the predicate 
(x, y) E C and q(x, y) represents (x, - y) E C. 

EXAMPLE 2 A subset I of the set of all real numbers R is said to be an 
interval if and only if, for all a, b, c E R, if a E I, c E I, and a c b c c, 
then b E I (recall befinition 2, Article 1.1). 

EXAMPLE 3 A real-valued function y = f(x) is said to be increasing on 
an interval I if and only if, for all x, and x2 E I, if x, < x2, then 
f (XI) < f (~2)- 

EXAMPLE 4 A set A is said to be a subset of a set B (A and B both con- 
tained in a common universal set U) if and only if, for every x E U, x E A 
implies x E B [recall Definition l(b), Article 4.11. 
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EXAMPLE 5 (Some linear algebra background is helpful.) A set of vectors 
{v,, v,, . . . , vnJ in a vector space V is said to be linearly independent if 
and only if, for any n real numbers /I,, /I,, . . . , #In, if fllvl + #12v2 + - . . + 
Pnvn = 0, then #I1 = P2 = . - = Bn = 0. 

As indicated, Examples 2 and 4 were encountered earlier in the text, but 
all except possibly Example 5 should be familiar to you. Also, you should 
be able to recall other definitions from your mathematical experience that 
have this logical form. 

The problem we wish to confront now is how to go about proving a theo- 
rem in which the conclusion is of the same logical form as we have just seen 
in Examples 1 through 5, that is, the form (Vx)(p(x) -, q(x)). 

EXAMPLE 6 Use the definition in Example 2 to prove that if I, and I, are 
intervals, then I, n I, is an interval. 

Solution The questions we must ask in approaching a proof of a statement 
such as this one are. (1) "What is my desired conclusion?" (2) "According 
to the relevant definitions, what must I do in order to arrive at this con- 
clusion?" (3) "What do I have to work with? How can I bring the given 
hypotheses to bear on the problem?" Implicit in the order of these ques- 
tions is an important guiding rule, one that we had occasion to state and 
use earlier in the text, in Article 4.1, after Example 7. The rule states that, 
in setting up a proof of the type under consideration in this article, we 
should at the outset focus on the desired conclusion, not on the hypoth- 
eses. In the example at hand the desired conclusion is the statement 
that I, n I, is an interval. The proof will be "set up" strictly in terms 
of the definition of "I, n I, is an interval." The hypotheses, that is, the 
assumptions that I, and I, are intervals, will be brought in and used in 
the course of the proof. Our goal is to prove that I, n I, is an interval; 
how is this to be done? By the definition in Example 2, we must show 
that if a, b, and c are real numbers with a, c E I, n I, and a < b < c, 
then b E I, n I , .  Hence, to set up the proof, we begin by assuming that 
a, b, and c are real numbers with a < b < c and a and c both elements 
of I, n I, ("let a, b, and c be real numbers with . . ."). We must prove, 
on the basis-of these assumptions and the given hypotheses, that b E 
I, n I,. By definition of intersection, this means we must show that 
b E I ,  and b E I,. 

At this stage, the basic structure of the proof has been set; we must 
now as$ how our hypotheses can be brought to bear on the problem. 
We may reason as follows: Since I, is an interval, since a c b < c, and 
since a and c are both in I, (since I, n I, c I ,), then b E I,. An identical 
argument, with I, replacing I,, shows that b E 1,. Hence b E I, n I, and 
I, n I, is an interval, as claimed. 
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EXAMPLE 7 Prove that if M > 0, then the linear function y = f(x) = 
Mx + B is increasing on R. 

Solution Again, we focus first on the desired conclusion that f is increasing 
on R; the hypothesis M > 0 will be employed in the course of the proof. 
To prove that f is increasing, we must show that if x, and x, are real 
numbers with x, < x,, then f (x,) < f (x,). Hence we begin, or set up, the 
proof by letting real numbers x, and x, be given with x, < x,, that is, 
we are assuming that x, < x,. Now proving that f(x,) < f (x,) is clearly 
the same as proving Mx, + B < Mx, + B. What we have to work with, 
as we aim toward this conclusion, is the assumption that x, < x, and the 
hypothesis M > 0. Using elementary properties of inequalities, we note 
that since x, < x, and M > 0, then Mx, < Mx,. Then since Mx, < 
Mx,, we may conclude Mx, + B < Mx, + B, so that f(x,) < f(x,), as 
desired. 

Explanatory remarks added considerably to the length of the proof in 
Example 7. In actual practice, the style of proof you will see in most cir- 
cumstances, and should try to write, would go something like this: "To 
prove f is increasing on R, assume x, < x,. We must prove f(xl) < 
f(x,), that is, Mx, + B < Mx, + B. Sincex, < x, and M > 0, then Mx, < 
Mx,. Since Mx, < Mx,, then Mx, + B < Mx, + B, as desired." 

Before looking at another proof, let us review the strategy of the proofs 
in Examples 6 and 7. In both cases the desired conclusion had essentially 
the form (Vx)(p(x) + q(x)). Our first step in both proofs was to let a value 
of x be given for which we assume that Ax) is satisfied. This x is general, 
or arbitrarily chosen, as opposed to being a specifically identified or named 
element, but we fix this x and work with it throughout the remainder of 
the proof. Our goal was to show that q(x) is valid, using the given hypoth- 
eses-and the assbmption that p(x) is valid. You may have realized already 
that this approach is really just the choose or pick-a-point method, intro- 
duced in Article 4.1 for proofs of set theoretic inclusion, applied in a more 
general setting. A proof of a conclusion with logical form (Vx)Cp(x) -, q(x)), 
carried out by using the choose method, is an example of a direct proof. 
There are various types of direct proof; we will encounter several in the 
remainder of this chapter and in Chapter 6. In Article 6.2 we deal with in- 
direct proof. 

We return in the next two examples to proofs of set theoretic inclusion, 
but for statements of more complicated logical structure than those studied 
in Articles 4.1 and 5.1. The theorems proved in Examples 8 and 9 have 
as their conclusion a statement that one set is a subset of another. We 
noted, in Example 4, that the definition of "subset" has the logical form 
(WP(x) -, dx)). 

EXAMPLE 8 Prove that if A, X, and Y are any sets with X c Y, then 
A n X s A n Y .  
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Solution You may recall this result as one that we assumed and used in the 
solution to Example 8, Article 5.1. To prove it, we proceed, as in Ex- 
amples 6 and 7, by concentrating at the outset on the desired conclusion 

. A n X c A n Y; we use the hypothesis X E Y in the course of the 
argument. Now, how do we go about showing that one set is a subset 
of another? We saw in Article 4.1 that this is done by choosing an ar- 
bitrary element from the first set and trying to show that this object lies 
in the second set as well. In this case we begin by letting x be an element 
of A n X. We must show that this x lies in A n Y. Somewhere along the 
line, we will have to use the hypothesis X E Y. So to start, let x E A n X 
be given. To show that x E A n Y, we must prove that x E A and x E Y. 
Now since x E A n X and A n X E A, then x E A. Also, since x E 
A n X, then x E X. But X c Y, by hypothesis, so that since x E X and 
X _c Y, we must have x E Y. Since x E A and x E Y, then x E A n Y, as 
desired. 

A common error in a proof such as that in Example 8, committed even 
by students who understand the general pick-a-point approach to proving 
set inclusion, is to begin the proof in the wrong place, setting it up with 
reference to the hypothesis rather than to the conclusion. Specifically, in 
trying to prove that X E Y implies A n X c A n Y, many students will er- 
roneously write as their first step "let x E X" rather than the correct "let 
x E A n X." Also, since we have repeatedly suggested focusing on the de- 
sired conclusion rather than on the hypotheses in setting up a proof, it 
is perhaps appropriate that we emphasize that this guiding rule is not to be 
confused with the common error of beginning a proof by assuming the con- 
clusion. The latter approach, of course, is never valid. In the proof from 
Example 8 this mistaken approach would have involved starting with the 
statement "assume (or suppose) that A n X c A n Y." This is different 
from the approach we took ("let x E A n X. We must prove x E A n Y . . ."). 

Here is a slightly more complicated example from set theory. 

EXAMPLE 9 Prove that if A, B, and C are sets with A x B E A x C and 
A # 0 ,  then B E  C. 

Solution Again, we focus first on our desired conclusion. We begin the 
proof that B G C by letting x be an arbitrary element of B. Our goal is 
to prove x E C. We have at our disposal the hypotheses A = 0 and 
A x B c A x C. We must determine how to make use of these hypoth- 
eses. Think about this for a while before proceeding; for instance, what 
is the significance of the hypothesis that A is nonempty? Let us resume. 
Since A # 0 ,  then A contains at least one element, call it a. Since a E A 
and x E B, then the ordered pair (a, x) is an element of A x B. Do you 
see the next step? Since A x B c A x C, by hypothesis, and since 
(a, x) E A x B, then (a, x) must be an element of A x C. But this implies 
x E C and this is precisely what we wanted to prove. 0 
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As we did after Example 7, let us rewrite the preceding proof with ex- 
planatory comments removed. That is, let us write a version of the proof 
more closely resembling the finished product form of most proofs that 
appear in print. "Assume A, B, and C are sets with A x B c A x C and 
A # 0. To prove B c C, let x E B. We must show x E C. Since A # 0 ,  
there exists a E A, so that (a, x) E A x B. Since A x B E A x C, then 
(a, x) E A x C. Hence x E C, as desired." 

We noted in the preceding paragraph that the version of the proof given 
there corresponds to a "finished product." In practice, most mathemati- 
cians write their original proofs in two forms. The first may cover reams of 
paper and involve a number of false starts and failed attempts. More im- 
portant, this form of a successful proof will usually reveal the "discovery 
process" of the proof. The second form is the one that a mathematician 
shows to other people, a compact, cleaned-up, final, elegant kind of proof 
in which the discovery process may not be shown. In order to understand 
and communicate mathematics, you must learn to read and write proofs 
in the latter form. Most proofs contained in our "Solutions," thus far in 
the text, have more closely resembled the first form. We have tried thereby 
to expose the thought process and to emphasize common pitfalls involved 
in the formative stages of a proof. In Book I1 (Chapter 7 through 10) we 
will place much more emphasis on writing proofs in compact form only, 
with more responsibility left to you for understanding the idea behind the 
proof. 

DISPROVING CONCLUSIONS OF THE FORM (Vx)(p(x) + q(x)) 

Suppose now that we wish to disprove a statement whose logical form is 
(Vx)(p(x) -, q(x)). Recall first the discussion following Example 8 in Article 
5.1. From that discussion, it would be expected that we generally disprove 
such a statement by giving a specific counterexample rather than a general 
deductive proof. We must use logic carefully, however, to determine pre- . 
cisely what constitutes a counterexample. In Article 3.3 we saw that the 
negation of (Vx)(p(x) -, q(x)) is (3x)[- (p(x) -, q(x))]. In Article 2.3 we saw 
that - (p -, q) is logically equivalent to p A - q. Thus - [(Vx)(p(x) -+ q(x)] 
is logically equivalent to (3x)(p(x) A -- q(x)). To disprove a statement of the 
form (Vx)(p(x) + q(x)), we must show that some value of x exists for which 
p(x) is true and q(x) is false. In most elementary situations this is done by 
producing specifically such an x. Let us apply this principle to some of 
the definitions stated at the outset of this article. 

EXAMPLE 10 Write definitions of "a curve C is not symmetric with respect 
to the x axis" and "a set of vectors (v,, v,, . . . , v,) in a real vector space 
V is not linearly independent." 

Solution Recall from Example 1 that C is symmetric with respect to the 
x axis if and only if, for all real numbers x and y, (x, y) E C implies 
(x, - y) E C. Hence C is not symmetric with respect to the x axis if and 
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only if there exist real numbers x and y such that (x, y) E C, but 
(x, -Y) 4 c- 

We negate the definition of linear independence, given in Example 5, 
in a similar manner. The set (v,, v,, . . . , v,) of vectors is not linearly 
independent, and in such a case is said to be linearly dependent, if and 
only if there exist n real numbers PI, P2, . . . , fin, such that P lv l  + 
B2v2 + . . . + Bnvn = 0, but not all of the betas equal zero, that is Pj # 0 
for some j between 1 and n, inclusive. O 

EXAMPLE 1 1 Prove that the set C = ((x, x2) 1 x E R) is symmetric with 
respect to the y axis, but not to the x axis. 

Solution Note first that an ordered pair (x, y) is on the curve C if and only 
if y = x2. Thus a picture of the curve C is simply the familiar parabola 
that constitutes the graph of the quadratic function y = f(x) = x2 as il- 
lustrated in Figure 5.2. The picture certainly bears out our symmetry 
claims, but how are we to prove these claims formally? 

To show that C is symmetric with respect to the y axis, let (x, y) be 
an arbitrarily chosen element of C; we must show that (-x, y) E C. By 
definition of C, (- x, y) E C if and only if y = (- x ) ~ .  Now since (x, y) E C, 
then y = x2. Since x2 = (- x ) ~ ,  then y = (- x2), as desired. This com- 
pletes the proof of y axis symmetry. 

On'the other hand, to show that C is not symmetric with respect to 
the x axis, note that (2,4) E C since 4 = 22, but (2, -4) 4 C, since 
-4 # 22. We have given a specific counterexample to the statement 
(Vx)(Vy)[(x, y) E C -, (x, -y) E C] ,  and that's all there is to it! 

Here is another important type of problem on which the preceding dis- 
cussion has a bearing. Suppose you are asked to show that a set A is a 
proper subset of a set B. By Definition 7, Article 1.1, this means A c B 

Figure 5.2 Graph indicates y-axis symmetry, but no 
x-axis symmetry. 
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and B $ A. To prove the latter, we must prove (3x)[(x E B) A (x $ A)]. This 
is generally best done by producing a specific object x which is in B, but 
not in A [see Exercise 7(b)]. 

PROVING STATEMENTS (Vx)(p(x) * q(x)) 

The relationship between statements of the form (Vx)(p(x) * q(x)) and those 
of the form (Vx)(p(x) -, q(x)) is the same as the one we noted in Article 
4.1 between set equality A = B and set inclusion A c B. Recall that A = B 
if and only if A G B and B c A, so that, for instances where a proof by 
transitivity (cf., Article 5.1) of equality isn't possible or evident, we prove 
equality of sets by proving mutual inclusion. This kind of proof of set 
equality, then, involves two proofs, one in each direction, as in Example 9, 
Article 4.1. 

The logical basis for this approach to sets, as well as for the approach we 
wish to take now in more general situations, is the equivalence 

The first equivalence follows from the tautology 

( p  C+ q) C+ [(p -, q) A (q -, p)] [Theorem l(m), Article 2.31 

whereas the second follows from the equivalence 

(VX)[~(X) A ~(x)] ++ (vx)(r(x)) A (Vx)(s(x)) [Theorem l(c), Article 3.31 

Thus we may write a proof of equivalence by writing two proofs of implica- 
tion of the type we've been discussing thus far in this article, one in each 
direction. 

EXAMPLE 12 Let f be a real-valued function with domain R. Prove that f 
is even; that is, f (- x) = f (x) for all x E R (recall Exercise 9, Article 5.1) 
if and only if the set of points in the xy plane C = ((x, f(x)) lx E R} is 
symmetric with respect to the y axis. 

Solution Again, we must argue in two directions. Such proofs are often 
presented in the following format: 

(3) (This arrow means we are proving that i ff  is even, then C is 
symmetric.) Suppose f is even. To prove the set C = {(x, f(x))lx E R} is 
symmetric with respect to the y axis, let (x, y) E C. We must prove 
( - x, y) E C, that is, prove that y = f (- x). Now since (x, y) E C, then 
y = f (x). Since f is even, we have f (x) = f ( - x). Hence y = f (x) = 
f(-x), SO that y = f(-x), as desired.. 

(=) Conversely, suppose that C is symmetric with respect to the y 
axis. To prove f is even, let x E R be arbitrarily chosen. We must show 
that f ( - x) = f (x). By definition of C, the point (x, f (x)) E C. By the as- 
sumed symmetry, since (x, f (x)) E C, then (- x, f (x)) E C. Now, again by 
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definition of C, we know that (-x, f(-x)) E C. Since C is the graph of a 
function, and so can have no more than one y value corresponding to 
any given x value, and since both f ( x )  and f(-x) correspond to -x, 
we must have f(x) = f (- x), as desired. 0 

The proof in Example 12 is perhaps the most difficult one we have 
presented thus far, although the result itself is exceedingly plausible. Some- 
times a result can seem so "obvious" that we fail to notice that the defini- 
tions involved are distinct and that there indeed is something to be proved. 
A formal proof, in such a case, is merely a rigorous explanation of why the 
result is obvious. Since intuition can mislead, it is important, at all levels 
of mathematics, to know how to write a formal proof, if pressed, of all 
mathematical statements that we claim are true, even though we do not, in 
practice, write out every such proof. 

In this article we have stated that, for many proofs, the correct ap- 
proach-the proper "setting-up" of the argument-is a very large part of 
the "battle." Although this is true, there are, of course, many proofs that 
are more complicated and require more than just the proper technical ap- 
proach, both in terms of prior knowledge of relevant mathematics and in 
terms of facility with further proof techniques. The .= part of Example 12 
demonstrated both needs. At the very end of the proof, we had to call on 
some general knowledge about what a function is (i.e., "no x value has two 
distinct corresponding y values"). Just before that, when we noted that the 
ordered pair ( - x, f ( - x)) E C, we were implicitly using a technique of proof 
known as specialization. We knew that C consisted of all ordered pairs 
of the form (a, f(a)), where a ranges over all real numbers. Thus, in par- 
ticular, the ordered pair (- x, f (- x)) must be in C, where x is the arbitrary 
real number whose value we fixed at the start of the proof. Specialization 
is one of two very useful techniques we will focus on in the next article 
(division into cases being the other). At the end of that article, we will be 
able to handle a wider variety of problems calling for the derivation of con- 
clusions involving V and + than in the exercises that follow. 

Exercises - 

1. Let A and B be arbitrary sets. Prove: 

(a)  A n B = A if and only if A c B 
(b) If A u B = B, then A c B (The converse is also true. It will appear as an ex- 

ercise at the end of the next article.) 
(c) If C is a nonempty set such that A x C = B x C, then A = B (recall Exam- 

ple 9. Note also the connection between this exercise and Exercise 5, Article 
1.3.). 
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2. Recall (Definition 5, Article 1.1) that the power set 9(A) of a set A is the 
set of all subsets of A. Thus X E 9(A) if and only if X c A. 

*(a) Prove that, for any sets A and B, if A E B, then 9(A) G 9(B). 
(b) Prove that, for any sets A and B, 9(A n B) = 9(A) n 9(B). 

3. (a) Use the definition of interval (Example 2) to show that each of the first 
eight types of sets listed in Definition 3, Article 1.1 (e.g., [a, b], (a, GO), etc.) is an 
interval. (Note: Assume throughout this proof that if p, q, and r are any real 
numbers with p 5 q and q 5 r, then p I r.) 

(b) Prove that if {Inln = 1,2,. . .) is a collection of intervals indexed by the set 
of all positive integers, then r),"=, In is an interval. 

(c) Prove or disprove: If I, and I, are intervals, then I, u I, is an interval. See 
also Exercise 15, Article 5.3.) 

4. (a) Prove that the curve C, = {(x, IxI)Ix E R} is symmetric with respect to the 
y axis, but not to the x axis. 

(b) Prove that the curve C2 = {(x, x3)Ix E R) is symmetric with respect to the 
origin, but not to the x axis. 

(c) Let f be a real-valued function with domain R. Prove that f is odd; that 
is, f ( - x) = - f (x) for all x E R, if and only if the set C, = {(x, f (x)) 1 x E R) is 
symmetric with respect to the origin. 

5. A subset C of R x R is said to be symmetric with respect to the point (h, k) if 
and only if, whenever (x + h, y + k) E C, then (-x + h, - y + k) E C. 

(a) Prove that if C is the graph of a function y = f(x), then C is symmetric with 
respect to the point (h, k) if and only if f ( - x  + h) = 2k - f(x + h) for every x 
such that x + h is in the domain off. 

*(b)  Show that the graph of the function y = f(x) = 1 + (l/(x - 1)) is symmetric 
with respect to the point (1, 1). 

(c) Use Exercise 18, Article 5.1, to conclude that the graphs of the functions cos- ', 
tan-', and cot-' are each symmetric with respect to the point (0,71/2). 

6. A function f ,  mapping real numbers to real numbers, is said to be one to one on 
' 

an interval I if and only if, for any real numbers x, and x, in the interval I, if 
f(x,) = f (x,), then x, = x,. 

(a) Prove that f(x) = x2 is not one to one on R. 
(b) Prove that, if M # 0, then the linear function y = f(x) = Mx + B is one 

to one on R. 
(c) Prove that if f is increasing on an interval I, then f is one to one on I. 

(Hint: contrapositive) 

7. Consider the curve C, in the xy plane described parametrically by the equations 
x = cos t, y = sin t, where t is any real number; that is, C, = {(cos t, sin t)l t E R). 
Note that a point (x, y) in the xy plane is on C, if and only if there exists a real 
number t such that x = cos t and y = sin t. 

(a) Let C, be the curve ((x, y) E R x Rlx2 + y2 = 1). Use well-known properties 
of sine and cosine to prove that C, c C,. (In fact, these curves are the same; 
that is, C, = C,. We will consider the reverse inclusion in Article 6.1.) 
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(b) Let C, be the curve in the xy plane described parametrically by x = cosh t 
and y = sinh t. Use well-known properties of sinh and cosh to prove that C, = 
{(cosh t, sinh t) I t E R} is a proper subset of ((x, y) E R x R 1x2 - y2 = 1) = C,. 
(Recall the paragraph immediately following Example 11.) 

8. A curve C described by an equation F(r, 8) = 0 in polar coordinates has the 
property that a point with polar representation (r, 8) is on C if and only if an 
ordered pair either of the form (r, 0 + 2nn) or of the form (-  r, 0 + (2n + 1)n) satis- 
fies the defining equation, for some positive integer n. (For most curves, it suffices 
to consider the case n = 0.) Let curves C, and C2 in the xy plane be defined by 
C, = {(r, 8)lr = cos 0 + 1) and C, = {(r, 8)lr = cos 8 - 1). Prove that C, = C,. 

9. A subset S of the real line R is said to be convex if and only if, for all x, y E S 
and for every real number t satisfying 0 I t 5 1, the real number tx + (1 - t)y is 
an element of S. 

* (a)  Prove that [0, 11 is convex. 
(b) Prove that [O,l] u [2,3] is not convex. 
(c) Prove that if S, and S, are convex, then S, n S, is convex. 
(d) Prove that if I is an interval in R, then I is convex. [In fact, the converse 

of (d) is true as well. Its proof will be considered in Article 6.1.1 

10. (a) Suppose that T is a linearly independent subset of a vector space V and 
that S E T. Prove that S is linearly independent. 

(b) Let v,, v,, and V, be linearly independent vectors in a vector space V and let 
c be a nonzero scalar. Prove that the sets {v,, cv,, v,) and {v, + cv,, v,, v,) are 
also linearly independent. (Note: some familiarity with elementary properties of 
vector addition and scalar multiplication is needed for this proof.) 

11. A square matrix A = (aij), , is said to be a diagonal matrix if and only if, for 
all i, j = 1,2, . . . , m, i # j implies aij = 0. A is upper (respectively, lower) triangular 
if and only if i > j (respectively, i < j) implies aij = 0 for all i, j = 1,2, . . . , m. 

(a) Give examples of a: 
(i) 3 x 3 diagonal matrix 
(ii) 4 x 4 upper triangular matrix 
(iii) 3 x 3 matrix that is lower triangular and not diagonal. 

(b) Prove that an m x m diagonal matrix is necessarily upper triangular. 
(c) Prove that an m x m diagonal matrix is necessarily lower triangular. 

12. Critique and complete (recall instructions in Exercise 1 1, Article 4.1). 

(a) FACT The subset C = {(x, xS + x3) Ix E R) is symmetric with respect to the 
origin. 

"Proof" Let x = 3 and note that the point (3,270) E C, since y = 270 = 3= + 3,. 
Note also that (-3, -270) E C, since -270 = -243 - 27 = (-3)5 + (-3),. 
Since (x, y) and (-x, -y) are both on C, the desired symmetry is established. 

(b) THEOREM A linear function y = f(x) = Mx + B is increasing on R if and 
only if M > 0. 

"Proof" We may prove the desired equivalence by proving implication in each 
direction. In other words, we may prove that if M > 0, then f is increasing on R 

if f is increasing on R, then M > 0. (=>) Done in Example 7. (e) Let x, 
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and x, be real numbers such that x ,  < x,. Then M = M(x, - x , ) / ( x ,  - x , )  = 
[M(x, - x , )  + (B - B)]/(x, - x, )  = [(Mx, + B) - (Mx, + B)]/(x, - x , )  > 0, since 
Mx, + B < Mx, + 6 ,  by our assumption that f is increasing. 

(c) FACT The subset S = [O, 11 u [2, 31 of R is not an interval. 

Start of "Proof" Using the logical negation of the definition of "interval," as stated 
in Example 2, it is sufficient to show that there exist real numbers a, b, and c such 
t h a t a < b < c , a ~ S a n d c ~ S b u t  ~ E S .  

(d) THEOREM For any subsets X and Y of a universal set U, if X c Y ,  then X u 
Y = U. 

Start of "Proof" Let X and Y be sets and let w be an arbitrarily chosen element of 
X. We must prove W E  Y . .  . . 

(e) FACT [O, 21 is not a subset of [ I ,  31. 

Start of "Proof" Let x be an arbitrary element of [O, 21. We must prove x #  
[ I ,  31 . . . . 

5.3 Proof by Specialization and 
Division into Cases 

Proofs of theorems whose conclusion has the form (Vx)(p(x) -, q(x)), 
such as those contained in the preceding article, can vary greatly accord- 
ing to the specific problems encountered in adapting the assumption that 
p(x) is valid, possibly together with some given hypotheses, toward the 
desired conclusion q(x). In particular, consider these problems: 

EXAMPLE 1 Prove that if a subset C of R x R is symmetric with respect 
to both the x axis and the origin, then C is symmetric with respect to 
the y axis. 

EXAMPLE 2 Given sets A, B, and X, prove that if A n X G B n X and 
A n X' G B n X', then A G B. 

Both these statements are of the type considered in Article 5.2, since the 
conclusion of each (i.e., "C is symmetric with respect to the y axis" and 
"A is a subset of B )  has a definition of logical form (tlx)(p(x) + q(x)). 
Thus in each case we should begin the proof by focusing on that con- 
clusion and setting up the proof in terms of its definition. 

Specifically, in Example 1, we start by assuming that the ordered pair 
(x, y) is an element of C; we must prove that (- x, y) E C, using the given 
hypotheses. In Example 2 we begin by letting x be an arbitrary element 
of A. We must prove x E B. To accomplish this, we will somehow have 
to make use of the two given hypotheses, involving a third set X. Before 
reading on, think about these two examples. Can you determine how to 
complete the proof of one or both of them? Take some time now to try 
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to write out the proofs. Don't, however, become discouraged if you can't 
do them at this stage. If you can prove the symmetry property in Example 
1, then you already have an implicit grasp of a proof technique known as 
specialization. If you can handle Example 2 now, then you are able to 
deal with a proof that calls for a division into cases. 

These two methods will be useful throughout the remainder of the text. 
Regardless of the logical form of the desired conclusion of a theorem, these 
two methods are basic tools of the mathematician for adapting given 
hypotheses toward that conclusion. 

SPECIALIZATION 

Repeatedly we have stressed the fact that a general assertion (Vx)(p(x)) 
cannot be proved by verifying a particular instance p(a), where a is a specific 
element of the domain of discourse of p(x). But frequently, in deriving a 
conclusion on the basis of an assumption or hypothesis (Vx)(p(x)), we find 
that a particular case of the latter proves to be just what is needed to get the 
desired result. In such situations the special case may involve either the 
substitution of a specific constant a for the variable x (see Example 3) or 
the replacement of x by some expression involving an arbitrary quantity 
y whose value was fixed as a part of the initial setting up of the proof (see 
Example 4). 

The first exposure most students get to proofs involving the method of 
specialization is in proofs of certain theorems in trigonometry. 

EXAMPLE 3 Suppose it is known (i.e., has been assumed as an axiom or 
has already been proved) that sin (x + a) = sin x cos a + cos x sin a for 
all real numbers x and a. Prove that sin (x + (42)) = cos x, for all real 
numbers x. 

Solution Let x be an arbitrary real number. Consider the special case 
a = n/2 of the known identity. This gives 

sin (x + (42)) = sin x cos (n/2) + cos x sin (42) 
= (sin x)(O) + (cos x)(l) 
= cos x, as desired. 

EXAMPLE 4 Suppose it is known that sin x = cos ((7~12) - x) for all real 
numbers x. Use this result to prove that cos x = sin ((~12) - x) for all 
real numbers x. 

Solution Let x be an arbitrary real number. Recalling that sin x' = 
cos ((42) - x') for any real number x' is known to be true, consider the 
quantity sin ((7~12) - x). Letting x' = (42) - x in the equation of the 
previous sentence, we have sin ((7112) - X) = sin x' = cos ((42) - x') = 
cos ( ( 4 2 )  - ( ( 4 2 )  - x)) = cos x, which is precisely what we wanted to 
prove. 0 
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Note that the proof of Example 3 employed a straightforward substi- 
tution, whereas that of Example 4 was somewhat more intricate, involving 
a fairly "clever" choice of x', in terms of the arbitrary x that we chose at 
the outset of the proof. Some of the most ingenious proofs in mathematics 
involve specialization, especially in the latter form. You will often encounter 
proofs in future studies, and perhaps already have, that left you wondering; 
"How did anyone ever think of that?' The next time this occurs, try to 
notice whether the key step is, in fact, a clever application of the 
skcialization technique. We now apply this technique to Example 1. 

Solution to Example 1 We must prove that C has y-axis symmetry, given 
that it has x-axis and origin symmetry. To do this, we begin by letting 
(x, y) be an arbitrary element of C. We must prove that (-x, y) E C. 
The question is how to take advantage of our two hypotheses. Well, 
first, note that since C has x-axis symmetry, by hypothesis, and since 
(x, y) E C, by assumption, then (x, -y) E C. Now comes the tricky part. 
We have shown that (x, -y) E C and have not yet used the hypothesis 
that C is symmetric with respect to the origin. This hypothesis says that 
(-x, - y) E C whenever (x, y) E C; in particular then, since (x, - y) E C, 
we must have that (-x, - ( - y ) ) ~  C. But (-x, -(-y)) = (-x, y), so 
that ( - x, y) E C, as desired. 

The proof in Example 1 illustrates the power and generality of universal 
quantification {recall the theorem of the predicate calculus [(Vx)(p(x))] -, 
p(a), Theorem 2(d), Article 3.3). If a statement, say, of the form p(x) -+ q(x) 
is known to be true for all x, then p(a) -+ q(a) is true for any specific value 
of a, so that, if p(a) can be proved, we may conclude q(a) by the principle of 
modus ponens [Example 5 and Theorem 2(e), Article 2.31. This description 
applies to the preceding proof, letting Ax, y) represent "(x, y) E C" and 
q(x, y) stand for "(-x, -y) E C," while a is taken to be the ordered pair 
(x, - y). Other examples of applications of this technique occur in Exercises 
5(c) and 8. 

_------ 

DIVISION INTO CASES 

Often, in the course of setting up a proof, we arrive at a point where there 
is a natural division of the argument into a finite number of cases. As we 
will see, these cases must always be "exhaustive" and are often "mutually 
exclusive." As one example, it may be that, in trying to prove something 
about an integer m, there is an advantage in considering the two possibilities 
(i.e., dichotomy) m even and m odd. Or else, in dealing with a real number 
x, we might be able to use the three cases (i.e., trichotomy), x c 0, x = 0, 
and x > 0, to advantage. If we know that an object x is in the union of 
two sets A and B and are trying to derive some conclusion from this, the 
two cases x E A and x E B (which may fail to be mutually exclusive in many 
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situations), may work to our advantage. Other situations will be demon- 
strated in subsequent examples. 

In order to use "division into cases" correctly, we must keep two key 
ideas in mind. The first involves the terms "mutually exclusive" and 
"exhaustive." The former means that categories are nonoverlapping; no 
specific example falls into more than one category. The latter term means 
that categories include all possibilities; each specific example falls into at 
least one category. The cases in an argument in which the technique under 
discussion is employed must be exhaustive; often, but not always, cases are 
mutually exclusive. Thus in dealing with real numbers, we find that the 
division into rational and irrational is a valid approach, but the division 
into positive and negative is inadequate, failing to be exhaustive (zero is 
left out). A division into nonpositive and nonnegative, being overlapping 
or not mutually exclusive (since zero occurs twice), may lead to difficulties. 
The second key idea is that if an argument is going to be divided into cases, 
something should be gained in the proof through such a division. The 
argument leading to the desired conclusion under Case I should be different 
from that under Case I1 and all other cases. In particular, the argument 
within each case should contain statements that are valid for that case only. 
Indeed, any two cases for which the arguments are identical should be 
combined into a single case. 

We demonstrate some of these ideas by considering the problem pre- 
sented at the beginning of this article, under Example 2. 

Solution to Example 2 Recall we have been given sets A, B, and X satisfying 
A n X c B n X and A n X' G B n X'. In order to prove A E B, our 
desired conclusion, we began, in the discussion following Example 2, by 
letting x be an arbitrary element of A. We must prove that x E B; our 
difficulty is in determining how to make use of the given hypotheses 
and, in particular, how to involve the third set X in the argument. The 
key is to recall the elementary theorems of set theory, X u X' = U and 
X n X' = 0. Our chosen element x is either in X or in X' and may 
not be in both X and X'. Since we have no way of knowing whether 
x E X or x E X', we consider both instances, in the hope that, within 
each case, we can derive the desired conclusion. 

Case I: If x E-X, then since x E A, we have x E A n X. But A n X 
s B n X, thus since x E A n X, we may conclude x E B n X. 
Since B n X r B, this leads directly to the desired conclusion x E B. 

Case 11: If XEX',  then X E  A n X'. Since A n X ' s  B n X', then X E  

B n XI, so that x E B, again as desired. 

Note that the argument under each case concluded with the desired result 
x E B. Note also that the arguments given under the two cases differed in 
an essential way; Case I used one hypothesis exclusively whereas Case I1 

h 
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used the other. Finally, notice the relationship between the result proved 
in Example 2 and Exercise 4, Article 1.3. 

Many definitions in mathematics are structured in such a way as to 
lend themselves readily to "proof by cases" of theorems involving them. 
Look for this especially in definitions whose statement involves cases. One 
such situation is given in Example 5. 

EXAMPLE 5 Recall that the absolute value 1x1 of a real number x is defined 
by 

Prove that lxyl = 1x1 l y l  for real numbers x and y. 

Solution In proofs such as this the counting techniques introduced in 
Article 1.5 may be of value. If a proof is going to be divided into cases, 
according to certain criteria, it may be a nontrivial problem to count, 
and list systematically, all the cases [recall in particular Exercise 1 l(c) 
of Article 1 S]. In this particular instance, which is identical to counting 
the subsets of a two-element set or to listing the rows of a truth table 
based on two letters, there are exactly 22 = 4 cases, including: 

Case 11: If x 2 0  and y < 0, then xy 10 and lxyl = -(xy) = x(-y) = 

1x1 lyl. 
Note that in each of these two cases we are able to use a very brief proof 
by transitivity. Notice also that in Case I1 we use the fact that 1x1 = -x 
if x 1 0 ,  since 101 = 0 = -0. The formulation and completion of the 
other two cases are left as an exercise [Exercise 12(a)]. 0 

Sometimes in a proof the course of the argument leads to a statement 
"either p ,  or p ,  o r .  . . or p," from the given hypotheses, where the state- 
ments pi are exhaustive, but may not be mutually exclusive. In such situa- 
tions it may be appropriate to divide the argument at that stage into n 
cases and to try to derive the desired conclusion within each of those cases. 
Cases in point are Exercises 2(d) and 4(a). 

Exercises 

1 .  (a) Prove that if A, B, and X are sets with A E X and B E X ,  then A u B E X. 
(b) Prove that if A and B are sets such that A E B, then A u B = B. 

2. (a) Prove that if A, X, and Y are sets with X E Y, then A u X G A u Y.  
(b) Prove or disprove the converse of the statement in (a); that is, if A, X, and 

Y are sets with A u X G A u Y, then X E Y. (If true, this would mean that the 
o n l y w a y w e c a n h a v e A u X ~ A u  Y i s i f X ~  Y.) 
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(c) Prove or disprove the converse of the theorem proved in Example 8, Article 
5.2, namely, if A, X, and Y are sets such that A n X c A n Y, then X E Y. 

(d) Prove that if A, X, and Y are sets satisfying the properties A n X E A n Y 
and A u X c A u Y, then X G Y [recall Exercise 3(a), Article 1-31. 

(e) Use the result of (d) to prove that if A, X, and Y are sets satisfying A n X = 
A n Y and A u X = A u Y, then X = Y. 

(f) Recall from Exercise 10, Article 3.3, the definition of a complement of a set. 
Use (e) to show that if a set A has a complement, this complement is unique. 

3. Prove that if A, B, and X are sets satisfying A u X c B u X and A u X' E 
B u X', then A c B. 

4. *(a) Prove, by the choose method, that if X, A, and B are sets such that X E B, 
then X u (A n B) c (X u A) n B. (Note: The reverse inclusion is true for any 
three sets X, A, and B, that is, without the hypothesis X G B. Its proof will be 
considered in Article 6.2.) 

(b) Show by example that the converse of the theorem in (a) is false. Specifically, 
show that there exist sets X, A, and B such that X u (A n B) = (X u A) n B, 
but X is not a subset of B. 

(c) Prove that if X and B are sets, from a universal set U, satisfying the property 
X u (A n B) = (X u A) n B for. every set A from U,  then necessarily X G B. 
[Note: This result is called a partial converse of the theorem in (a). Hint: For 
the proof, use specialization.] 

(d) Is there any logical conflict between the results of (b) and (c)? Interpret these 
results in the light of Exercise 11, Article 3.4. 

(e) Prove that if X and Y are sets having the property that, for every set A (from 
the common universal set that also contains X and Y), A n X E A n Y, then 
X c Y. [This is a partial converse to the theorem in Example 8, Article 5.2. 
Recall Exercise 2(c).] 

5. (Continuation of Exercise 2, Article 5.2) 

(a) Prove that if A and B are sets, then B(A) u P(B) c 9(A u B). 
(b) Give an example to show that the reverse inclusion in (a) need not be true. 
(c) Prove that, for any sets A and B, if B(A) u B(B) = B(A u B), then either 

A E B or B E A. [Hint: Use specialization followed by division into cases. Note 
that A u B itself is an element of *A u B), since A u B c A u B.] 

(d) In view of the results from (a) and (c), what relationship exists between 
*A) u P(B) and B(A u B) for any two sets A and B, neither of which is a 
subset of the other? 

6. Prove by the chobse method (in particular, do not use distributivity) that if A 
and B are sets, then (A n B) u (A n B') = A. 

7. Use distributivity and previously proved identities involving union and inter- 
section to give a proof by transitivity (as in Article 5.1) that if A, B, and X are 
subsets of a universal set U, and: 

(a) If X E B, then X u (A n B) = (X u A) n B 
*(b) If A n X = B n X and A n X' = B n X', then A = B 

(c) I f A u X = B u X a n d A u X ' = B u X ' , t h e n A = B  
(d) I f A n X = B n X a n d A u X = B u X , t h e n A = B  
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8. (a) Prove that if a subset C of R x R is symmetric with respect to both the x  
axis and the y  axis, then it is symmetric with respect to the origin. 

(b) Prove that if a subset C of R x R is symmetric with respect to both the origin 
and the y  axis, then it is symmetric with respect to the x  axis. 

9. Assume it is known that cos ( x  - y) = cos x  cos y  + sin x  sin y  for all real num- 
bers x  and y. Use the additional facts that cos2 x  + sin2 x  = 1  for all x  E R, 
cos ( 4 2 )  = 0, sin ( 4 2 )  = 1, cos 0  = 1, sin 0 = 0, and sin ( - 4 2 )  = - 1, to prove: 

(a) cos ( ( 4 2 )  - y) = sin y  for all y  E R (This is the result we assumed in 
Example 4.) 

(b) cos ( -y )  = cqs y for all y  E R (i.e., cosine is an even function.) 
(c) cos (X  + ( 4 2 ) )  = - sin x  for all x  E R 
(d) sin ( - x )  = -sin x  for all x  E R [i.e., sine is an odd function. Hint: Use 

the results of (a) and (c).] 
(e) sin (x  + ( 4 2 ) )  = cos x  for all x  E R [Hint: Use (a).] 
(f) cos ( x  + y) = cos x  cos y  - sin x  sin y  for all x, y  E R 
(g) sin ( x  + y) = sin x  cos y  + cos x  sin y  for all x, y  E R [Hint: Use (a) and 

Example 4.1 
(h) sin (x - y) = sin x  cos y  - cos x  sin y  for all x, y  E R 
(i) sin 2x = 2  sin x  cos x  for all x  E R 

10. Use the results from Exercise 9 to prove further that: 
*(a) sin x  - sin y  = 2  cos ( (x  + y)/2) sin ( (x  - y)/2) for all x, y  E R 

(b) cos 2x = 1 - 2 sin2 x  = 2 cos2 x - 1  for a11 x  E R 
(c) cos2 x  = (1 + cos 2x)/2 for all x  E R 
(d) sin2 x  = (1 - cos 2x)/2 for all x  E R 
(e) tan (x  - y) = (tan x  - tan y) / ( l  + tan x tan y), whenever x, y  E R and x  # 

y  + [(2n + l)?c/2], for any integer n  

11. For given real numbers x  and y  we define: 

y s x  Y, y 5 x  
max(x,y)  = x v y  = and min (x, y)  = x  A y  = 

x, x l y  

Prove that, for any real numbers x, y, and Z: 

(a) X A ( Y A Z )  = ( X A Y ) A Z  
(b) ( x A y ) + ( x v y ) = x + Y  
(c) ( - x )A ( -Y )  = - ( X V Y )  
(d) ( x v y ) + z = ( x + z ) v ( y + z )  
(e) If z  > 0, then z(x v  y) = (zx) v  (zy) 

12. (a) Complete the proof from Example 5 that lxyl = 1x1 lyl for all real numbers x  
and y. 

(b) Recall from Exercise 8, Article 5.1, that ( x  + yl I 1x1 + Iyl for all x, y  E R and 
1x1 9 y  if and only if -y  I x  5 y, where x, y  E R and y  2 0. Prove that: 

(i) I x I = x v ( - x )  f o r a n y x ~ R  
*(jj) x v y = ~ ( x + y + ~ x - y l )  f o r a n y x , y ~ R  

(iii) x  A y  = f (x + y  - Ix - yl) for any x, y  E R 

(iv) ( x  v  y) - (x  A y) = lx - y l  for any x, y  E R 
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13. Let A = (aij), , , and B = (bij), , , be square matrices. Recall Exercise 11 from 
Article 5.2 and prove: 

(a) If A is diagonal, then A = At. 
(b) If A is both upper and lower triangular, then A is diagonal. [What theorem 

emerges from the combination of this fact with the results of (b) and (c) of 
Exercise 11, Article 5.2?] 

*(c) If A and B are diagonal matrices, then their product AB is a diagonal matrix. 
(d) If A and B are upper (resp., lower) triangular matrices, then their product 

AB is an upper (resp., lower) triangular matrix. 

14. Suppose that I, and I, are intervals on the real line such that I, n I, # 0. 
Prove that I, u I, is an interval. 

15. Critique and complete (instructions in Exercise 11, Article 4.1): 

(a) THEOREM For any real numbers x, y, and z, x v  ( y v z )  = ( x v  y) v z  (recall 
Exercise 11). 

"Proof" We divide the argument into the cases x < y < z and x > y > z. In the 
first case x v ( y v z )  = x v z =  z =  y v z =  ( x v y ) v z ,  so that x v ( y v z )  = 
( x v y ) v z ,  as desired. In the second case x v ( y v z ) = x v y = x = x v z =  
(x v y) v z, so that the desired result holds in this case as well. In either case we 
have the desired conclusion. 

(b) THEOREM For any positive real numbers x and y, In (xly) = In x - In y. 
[Note: Assume we already proved that (1) in (xy) = In x + In y for any positive 
real numbers x and y and (2) In 1 = 0.1 

"Proof" Let x be an arbitrary real number; we begin by using the special case 
y = l l x  in (1). By (2), we have 0 = In 1 = In ( x .  l l x )  = In x + In (l/x). Hence 
In (1/x) = -In x for any x > 0. Next, let x and y be arbitrary positive real num- 
bers. Then In (xly) = In (x . l l y )  = In x + In (l /y) = In x - In y, as desired. 

(c) THEOREM For any sets X and Y in U, if Y = X u ( Y  n XI), then X c Y. 

Start of "Proof" Let x be an arbitrary element of U. Clearly either x E: X or x E X'. 
We will divide the argument into these two cases.. . . 

(d) THEOREM If a function f, mapping reals to reals, is decreasing on an interval 
I (i.e., if x, < x, implies f(x,) > f(x,) for any x,, x, E R), then f is one to one on I. 

Start of "Proof" Assume f is decreasing on I. To show f is one to one on I, assume 
that x, and x, are elements of I such that f(x,) = f(x,). We must prove x, = x,. 
For suppose x, # x,. Then . . . . (Note: This approach anticipates indirect proof, 
to be studied in Article 6.2.) 

(e) FACT The function f(x) = ax ( a  > 0, a # 1) is one to one on R. [Note: Use the 
results of (d), and Exercise 6(c), Article 5.2, together with the derivative for- 
mula d/dx(ax) = ax In a where a > 0 and a # 1, and well-known facts about 
the significance of the sign of the first derivative.] 

Start of "Proof" We consider the sign of the derivative of the function f(x) = ax. 
Since a > O  and a # 1 ,  then either a >  1 or O <  a <  I . . . .  
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5.4 Proof by Mathematical Induction 
Proof by mathematical induction is a special method of proof, appropriate 
for use in particular situations. In this article we introduce the principle 
of mathematical induction and discuss under what circumstances and 
exactly how this important principle is applied. The following example 
gives several statements that, it turns out, are theorems that are provable 
by mathematical induction. 

EXAMPLE 1 Test the truth of each of the following statements for at least 
five particular elements of the specified universal set: 

(a)  For all positive integers n, 4 divides 5" - 1. 
(b )  1 + 2 + 3 + + n = [n(n + 1)]/2 for any n = 1,2,3,. . . . 
(c)  If n E N and n 2 5, then 4" 2 n4. 
(d)  If f,, f2, . . . , f, are n functions differentiable on R, where n is an 

arbitrary positive integer, then their sum f, + f2 + . + f, is dif- 
ferentiable on R and (d/dx)(fl + f2 + . . . + f,) = dfl/dx + df2/dx + 

. + df,/dx. 

Outline of solution It is left to you to provide most of the verifications, 
but we note, for example, that in (a), if n = 1, then 5" - 1 = 5 - 1 = 4, 
which is indeed divisible by 4. Furthermore, if n = 6, then 5" - 1 = 
56 - 1 = 15,625 - 1 = 15,624, which again is divisible by 4. In (b) we 
observe that, for n = 10, the sum 1 + 2 + 3 + . . + 10 equals 55, while 
the formula [n(n + 1)]/2 also equals 55 when 10 is substituted for n. If 
n = 100, then you can verify that both quantities equal 5,050. In (c), if 
n = 5, then 4" = 45 = 1,024 > 625 = j4, as claimed. Note that statement 
(c) says nothing about the inequality if n = 1,2, 3, or 4. You should try 
the inequality in some of these cases as well, keeping in mind, however, 
that none of these can serve as a counterexample to (c). As an illus- 
tration of (d), we may let n = 5 and consider the functions L(x) = xi 
for i = 1, 2, 3, 4, 5. For this specific situation the theorem asserts that 
(d/dx)(x + x2 + x3 + x4 + x5) = 1 + 2x + 3x2 + 4x3 + 5x4, a result that, 
although laborious to derive from the definition of derivative, is of a 
type familiar to every calculus student. 0 

What do the statements in Example 1 have in common? Compared, say, 
to the trigonometric identity "cos 2x = 2 cos2 x - 1 for all x E R," or the 
theorem of set theory "A n (B u C) = (A n B) u (A n C) for all sets A, B, 
and C," what distinguishes these statements? The answer lies in the nature 
of the particular cases used to test the truth of the statements. Choosing 
a special case of any of these statements involves choosing a positive integer 
n. The reason for this, in turn, is that each of statements (a), (b), and (d) 
contains the quantification "for all positive integers n," in symbols (Vn E N). 
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To a very large extent, theorems whose statement involves the phrase 
"for all positive integers n," are the theorems for which an induction proof 
is appropriate. As we will see later, induction proofs may be appropriate 
in a slightly more general context that includes (c) of Example 1. 

Suppose now we wish to prove a statement (Vn)(p(n)), where N is the 
domain of discourse for the predicate p(n). Denote by S the subset of N 
consisting of all positive integers for which p(n) is true. In the terminology 
of Chapter 3, S is the truth set of p(n). By definition, S is a subset of N. 
To prove our theorem, we must prove that S equals N. Clearly a criterion 
giving a general approach to proving that a subset S of N actually equals 
N should have potential for being applied to this situation. The principle 
of mathematical induction is just such a criterion. 

T H E 0 R E M 1 (Principle of Mathematical Induction) 
Let S be a subset of the set N of all positive integers satisfying the properties: 

( i) 1 E S 
(ii) For all n E N, if n E S, then n + 1 E S. 

Then S = N 

It is intuitively evident that N satisfies conditions (i) and (ii) of Theo- 
rem 1. Another way of stating Theorem 1 is that no proper subset of N 
satisfies both conditions (i.e., the only subset of N satisfying both condi- 
tions is N itself). We defer a formal proof in the text of Theorem 1 until 
Chapter 10, where we study N as a number system and consider a number 
of its properties (see also Exercise 9(d), Article 6.3). We note here, however, 
that the result is not difficult to believe. For example, assume that a subset 
S of N satisfies (i) and (ii) and suppose we wish to conclude 3 E S. To do 
this, we observe simply that 1 E S, by (i). Combining this fact with (ii), using 
specialization, we conclude that 2 = 1 + 1 E S. Since 2 E S, then, again 
using (ii), we conclude 3 = 2 + 1 E S, as desired. The same argument, in- 
volving n repetitions, can in theory be used to prove that any given positive 
integer n is in S. 

We shift our attention now away from the validity of Theorem 1 and 
toward its application. 

EXAMPLE 2 Prove that the sum of the first n odd positive integers is given 
by the formula n2, in symbols, for all n E N, 1 + 3 + 5 + . . . + (2n - 1) = n2. 

Solution Before attempting to write a proof of a statement, we find it a 
good idea to try a few cases, to see whether the result stated is reasonable. 
For example, if n = 10, the result states that 1 + 3 + 5 + . + 17 + 19 = 
100, as computation quickly verifies. You should try several other cases. 

Now for the proof, let S be the subset of N consisting of those posi- 
tive integers m for which the result is true. Our claim is that S = N. To 
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prove this, it is sufficient, by Theorem 1, to prove (i) 1 E S and (ii) for 
each m E N, if m E S, then (m + 1) E S. 

1. Clearly 1 E S, since l2 = 1 = the sum of the "first 1" odd positive 
integers. 

2. Let m E S be given. Hence 1 + 3 + . . . + (2m - 1) = m2. (The as- 
sumption m E S with which step (2) begins in every induction proof 
is often called the induction hypothesis or the inductive assumption.) 
To prove m + 1 E S, we must prove 

In the course of the latter proof in turn we must make use of the 
induction hypothesis. Note now that 

[l + 3 + 5 + . + (2m - I)] + [2(m + 1) - 11 
= [l + 3 +  5 + - . . + ( 2 m -  I)] +(2m+ 1) 
= m2 + (2m + 1) (We have just used the 

induction hypothesis.) 
= (m + I ) ~ .  

This is precisely what was needed to prove m + 1 E S, so that condition 
(ii) is verified and the proof is complete. 

EXAMPLE 3 Assume that the product rule for the derivative (fg)'(x) = 
f (x)g'(x) + f'(x)g(x) is known. Use this rule to prove that, for all positive 
integers n, if f(x) = xn, then f'(x) = nxn-'. 

Solution Every student with a calculus background is familiar with this 
rule. Since its statement involves the phrase "for all positive integers n," 
it is a candidate for proof by mathematical induction. We begin such 
a proof by letting S be the set of those positive integers m for which the 
theorem is true: If m is a positive integer, then m E S if and only if 
(d/dx)(xm) = mxm- l. To prove S = N, we must prove (1) 1 E S and (2) for 
all m E N, if m E S, then m + 1 E S. 

1. Clearly 1 E S, since (d/dx)(xl) = dxldx = 1 and lx l  - = lxO = x0 = 1. 
2. Assume m E S. To prove m + 1 E S, we must show that (d/dx)(xm+ l) = 

(m + l)xm, using the inductive assumption that (d/dx)(xm) = mxm-l. 
Now 

(d/dx)(xm + l) = (d/dx)(xm x) 
= xm(dx/dx) + x[(d/dx)(xm)] (by the product rule) 
= xm(l) + (x)(mxm- l) (by the induction 

hypothesis) 
= xm + mxm 
= (m + l)xm, as desired 0 
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Students sometimes complain that the actual induction proof seems like 
an afterthought, after a "seemingly sufficient" number of special cases of a 
statement have been verified as true. Keep in mind that no (necessarily 
finite) number of verifications of specific cases is ever enough to prove that 
a statement is true for every positive integer. Exercise 11 is a case in point. 
A second complaint often heard is that, in the course of an induction proof, 
assumption is made of what we are trying to prove when the induction hy- 
pothesis is stated. For instance, in Example 1, we wanted to prove p(n): 
1 + 3 + - . . + (2n - 1) = n2; did we not assume precisely that equation at 
the start of part (2) of the proof? The distinction lies in the use of quanti- 
fiers. Our desired result in Example 1 is (Vn)(p(n)). Our assumption is 
simply dm), where m is some fixed positive integer, our goal being to deduce 
p(m + 1) for that m. A third problem is that because part (i) of most induc- 
tion proofs is often trivial to prove, students are sometimes tempted to omit 
it or gloss over it. Exercise 10 demonstrates the dangers of such an attitude. 

CATEGORIES OF INDUCTION PROOF 

There are certain mathematical situations that lend themselves especially 
well to proof by induction. In the following paragraphs we consider three 
such situations. These three categories are by no means exhaustive. 

Summation formulas. The result in Example 2 is a simple representative of 
a large class of theorems whose proofs use the induction technique. Such 
a theorem is known as a summation formula, a formula that yields, for each 
positive integer n, the sum of n numbers of a prescribed form. Part (b) of 
Example 1 is also in this category. Formulas of this type are often said to 
be a closed form representation of the given sum. 

Summation formulas are usually expressed by means of summation no- 
tation, whereby we abbreviate a sum x ,  + x, + . . - + x, by the symbol 
==, x,. Using this notation, we may rewrite Example 2 in the form z=, (2k - 1) = n2 and Example l(b) as '&, k = [n(n + 1)]/2. The vari- 
able k in such a formula is a dummy variable (recall the discussion following 
Example 1, Article 3.2); the letters i, j, and k are the letters most commonly 
used for this purpose. As further examples, the symbol x=, (2j) rep- 
resents the sum 6 + 8 + 10 + .. . + 2n, while Cf=, (-1)' i stands for 
- l + 2 - 3 + 4 - 5 .  

Here are two more examples of induction proofs of summation formulas. 
It should be noted that the induction method is of no assistance in dis- 
covering the formula, but only for proving that a given formula actually 
represents a particular sum. 

EXAMPLE 4 Prove that, for each positive integer n, the sum E= (k/2*) is 
given by the formula 2 - [(n + 2)/2"]. (You should first "try out" the 
formula for several special cases.) 
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Solution Let S be the truth set ofp(n): x=, (k/2k) = 2 - [(n + 2)/2"]. To 
prove S = N, we need only verify (i) and (ii) of Theorem 1. 

1. 1 E S, since z;=, (k/23 = 112' = 4 = 2 - (3) = 2 - [(1 + 2)/2l]. 
2. Assume m E S. To prove m + 1 E S, we must show that Zm:: (k/2k) = 

2 - [((m + 1) + 2)/2"+']. First, we note that we can express 
x p . :  (k/2S as Cp=, (k/25 + [(m + 1)/2'+ ' 1. 

Applying the induction hypothesis, we transform the latter expression 
to 

[2 - ((m + 2)/2")] + ((m + 1)/2"+') 

which equals 

Simplifying, we get 

[2m'2 - (m + 3)]/2"+', that is, 2 - [((m + 1) + 2)/2'+'], as desired. 
0 

In the next example of an induction proof we verify a basic property of 
summation notation. 

EXAMPLE 5 Suppose n is a positive integer and x ,, x2, . . . , x,, y l, yz , . . . , yn 
are (2n) real numbers. Prove that z,, (x, + yk) = z=, xk + E,, y,. 

proof Let S be the truth set of p(n): z=, (x, + y,) = It=, xk + E=, yk. 
We claim S = N. We must verify (i) and (ii) of Theorem 1. 

1. 1 ES, since z=, (xk +yk) = x l  + y l  =Z=l xk + Y,. 
2. Assume m E S. To prove m + 1 E S, we musf show 

This follows from the string of equations, 

= [(e k = l  xk) + xm+l]  + [(e k = l  Yk) + ym+l]  

m + l  m + l  

= 1 xk + x y,, as desired. 
k = l  k = l  

You should apply justifications for each of'the preceding steps, noting 
especially where the induction hypothesis is used. 0 
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Generalization. Many theorems or axioms whose familiar statement says 
something about two objects are generalized to "any finite number" by an 
induction proof. 

EXAMPLE 6 Use induction and the distributive axiom to prove the law of 
generalized distributivity of multiplication over addition, that is, for any 
positive integer n, 

a(b, + b, + . . . + b,) = ab, + ab2 + . + ab,, 

where a, b,, . . . , b, are real numbers. 

Solution In proofs of this type induction is done on the number m of objects 
involved, in this case the number of real numbers over which we are dis- 
tributing a. Also, the "known" distributive law is simply the case m = 2, 
which is thereby known to be true. Let S be the set of those positive 
integers m such that "distributivity across m real numbers" is valid. 
Condition (i) of the induction principle says that ab, = ab,, which is 
true. For condition (ii), assume m E S. This means that a(b, + b, + . 
+ b,) = ab, + ab2 + . + ab, for any real number a and for any m real 
numbers b,, b,, . . . , b,. To show m + 1 E S, let a E R and let c,, c,, . . . , 
c,, em+, be any (m + 1) real numbers. Then 

C, + ..- + c, + em+,) 

a[(cl + c2 + + c,) + c,,,+~] 

+ c2 + . .-  + c,) + ac,+, 
(ac, + ac, + + ac,,,) + ac,,, 
ac, + ac, + + ac, + ac,, ,, as desired 

Note, finally, that generalized distributivity can be expressed by sum- 
mation notation, namely, the equation C; =, (ab,) = a z  =, b,. 0 

Notice that the step leading from line 2 to line 3 was based on the ordi- 
nary distributive law (i.e., the case n = 2 of generalized distributivity), 
whereas we went from line 3 to line 4 by means of the induction hypothesis. 
The pattern of an essentially two-step argument, using first the known case 
n = 2, followed by using the induction hypothesis, is the usual one when 
induction is used for the purpose of generalization. Note that (d) of Exam- 
ple 1 is a problem in this category, as are the two parts of Exercise 6. 

It may be appropriate, at this point, to note that the results of Examples 
5 and 6 are among a number of "basic properties of summation notation" 
that are proved by induction. These include additional results such as z,, c = nc (for any n E N and c E R) and C,, x, = z+;+i x,-, (for any 
positive integers n and i, and real numbers x,, x,, . . . , x,). Generalizations 
of these and other basic summation notation properties are the subject of 
Exercise 15. 
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The resblts in Examples 5 and 6, when combined with an elementary 
summation formula such as x;=, k = [n(n + 1)]/2 [recall Example l(b)] 
can be used to produce quick and easy (noninduction) proofs of additional 
summation properties. For example, we may prove that x;=, (4k - 5) = 
2n2 - 3n for all n E N by either an induction argument or by the argument: 

You should supply justifications for each step of this argument, and see 
Exercise 4 for similar type problems. 

Results about divisibility. If a and b are integers, we say that a divides b, 
denoted a1 b, if and only if there exists an integer n such that b = nu. In 
Article 6.1 we will verify a number of properties of divisibility, the results 
of which we assume and use for the time being. These include: 

1. ala for all a E Z  
2. V a , b , c ~ Z ,  ifalb, then albc 
3. ~ a , b , c ~ Z , i f a l b a n d a l c ,  thenal(b+c) 
4. V a , b , c ~ Z ,  ifalb and blc, then alc 

A number of properties of divisibility are valid "for all positive integers n," 
and hence lend themselves to proof by induction. The next example pre- 
sents one such property. 

' EXAMPLE 7 Prove that 6 divides 7" - 1 for all positive integers n. 

Solution Define S in the usual fashion. Note that 1 E S since 7' - 1 = 6 and 
6 divides itself. Now suppose m E S. To prove m + 1 E S, we must prove 
that 6 divides 7"" - 1, using the inductive assumption that 6 divides 
7" - 1. Now 7"" - 1 = 7(7" - 1) + 6. Since 6 divides 7" - 1, then 6 
divides 7(7" - 1) by (2). Clearly 616 [by (I)]. By (3), we have that 6 
divides the sum of 6 and 7(7" - 1). But this sum equals 7"+l - 1, so 
that 6 divides 7"" - 1, as we wished to prove. 

INDUCTIVE SETS 

Part (c) of Example 1 is a theorem that is true not for all positive integers, 
but rather, for all integers greater than or equal to a particular positive 
integer no, in this case no = 5. A slight variation in the induction principle 

, can be used to prove theorems of this type. We introduce a concept helpful 
b toward this end in Definition 1. 
I 

I 
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DEFINIT ION 1 
A subset S of the set N of all positive integers is said to be inductive if and only 
if m E S implies m + 1 E S for all positive integers m. 

Since the condition of Definition 1 is simply condition (ii) of Theorem 
1, it is clear that N itself is inductive. In fact, for any positive integer n, 
the subset (n, n + 1, n + 2, . . .) of N is also inductive. Furthermore, we 
have the following theorem. 

THEOREM 2 
Suppose S is an inductive subset of N containing a positive integer m,. 
Then S contains m for every positive integer m greater than m,: that is, 
{mo,m,+1,m,+2 , . . .  ) s S .  

Proof Consider the set T = S u (l,2, . . . , m, - 1). Clearly 1 E T and T is 
inductive (Verify the latter claim, using the technique of division into 
cases together with the fact that S is inductive). Hence, by Theorem 1, 
T = N. Choose m E N such that m > m,. We will have completed the 
proof if we can show m E S. Since T = N, then we have m E N = T = 
S u 1 2,. . . , m - 1 Since m > m,, then m q! (1,2,. . . , m, - 1) so 
that we may conclude m E S, as desired. 

The upshot of Theorem 2 is that we may prove a theorem asserting 
(Vn 2 no)(p(n)) by proving that the truth set S of p(n) satisfies (i) no E S and 
(ii) S is inductive. In fact, we may substitute for (ii) the slightly weaker 
condition (ii)': for all m E N, m E S and m 2 no together imply m + 1 E S. 

EXAMPLE 8 Prove that if n is an integer and n 2 4, then 2" <'n!. 

Solution Let S be the truth set of p(n): 2n < n!. We claim that (4, 5,6, . . . ,) E 
S. Note first that 4 E S since Z4 = 16 < 24 = 4!. Second, suppose that 
m 2 4 and m E S, so that 2'" < m!. We must prove, on the basis of these 
assumptions, that 2'"' < (m + I)!. But 2'"' = 2(2") < 2(m!) < (m + l)m! = 
(m + I)!, as desired. 

Note that the induction hypothesis was used in the step 2(2'") < 2(m!). 
0 

You may have already conjectured that every inductive subset of N has 
the form (m, m + 1, m + 2, . . .)for some positive integer m. This conjecture 
is nearly true; in order to make it true, we must insert the word nonempty 
before "inductive." The reason for this is that the empty set @ is inductive. 
The latter fact is another reason we must never neglect to verify condition 
(i) in any induction proof. If a statement p(n) with domain of discourse N 
has a truth set that is inductive [i.e., condition (ii) can be proved], it may 
still be the case that p(n) is false for all n E N, that is, S = 0 (see Exercise 
10). But if p(n) has an inductive truth set and furthermore is true for at 
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least one positive integer no, then it is true for infinitely many positive 
integers; specifically it is true for at least all positive integers m 2 no. 

In Chapter 10 we will deal with other forms of the induction principle, 
as well as with "definition by induction," in the context of a development 
of the number system of positive integers. 

Exercises 

1. Use induction to prove parts (a) through (d) of Example 1, that is, prove that 
if n E N, then: 

(a) 4 divides 5" - 1 
(c) 4" > n4, if n 2 5 

(b) z=, k = [n(n + 1)]/2 
(d) (d/dx)[x; = 1 f k ]  = x; = 1 (dfddx) 

2. Prove, by induction, that for all positive integers n: 

(a) z;= i2 = [n(n + 1)(2n + l)]/6 (b) CI; = k3 = 4(n4 + 2n3 + n2) 
(c) z= j4 = $2(n4 + (3)n3 + ($)n2 - (116)) 

3. Use induction to prove that for all positive integers n; 

(a )  x= l/j(j + 1) = n/(n + 1) 
*(b) g=, k(k + 1) = [n(n + l)(n + 2)]/3 

(c) z=l (3k2 - 3k + 1)= n3 
(d) 1 + 2 + 4 + - . + 2 " - ' = 2 " -  1 

4. Use either an induction argument, or a noninduction proof that employs pre- 
viously noted summation formulas, to prove that for all positive integers n: 

(a) E=,(2k) = n(n + 1) 
(b) 5 + 10 + 15 + ... + 5n = [5n(n + 1)]/2 
(c) Z = , ( 4 k - 3 ) = 2 n 2 - n  

:(d) z;= (3k - 2) = (3)n2 - (4)n 

5. (a) Use induction, together with the facts cos (x + y) = cos x cos y - sin x sin y 
and cos (n) = - 1, to prove that cos (nn) = (- 1)" for all n E N. 

(b) Suppose a real-valued function f having domain R has the property 
f (x + T) = f (x) for all x E R. Use induction to prove that f(x + nT) = f(x) for 
all x E R and n E N. 

(c) Prove by induction that sin (2i - 1)x = (1 - cos 2nx)/2 sin x, whenever 
x is not an integral multiple of x. 

6. (a) Assuming the truth of the triangle inequality, Ix + yl I 1x1 + lyl for all x, 
y r R, prove by induction on n the generalized triangle inequality, if x,, x2, . . . , 
xn E R, where n is a positive integer, then IE=, xkl s xi=, Ixkl. 

(b) Suppose it is known that if lim,,, f (x) and lim,,, g(x) both exist, then 
lim,,,( f + g)(x) exists and equals lim,,, f (x) + lim,,, g(x) (i.e., the limit of a sum 
is the sum of the limits, provided both limits exist). Prove by induction that if 
fl(x), f2(x), . . . , f,(x) are n functions such that lim,,, fix) exists for each i = 
1,2, . . . , n, then lim,,, (z=, fdx)) exists and equals lim,,, fdx). 
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7. (a) Prove, by induction, that 3 divides 4" - 1 for all n E N. 
(b) Prove that, for any x E Z, x - 1 divides x" - 1 for all n E N. 
(c) Prove that 5 divides 8" - 3" for all n E N. 

*(d) Prove that, for any integers x and y, x - y divides xu - y", n = 1, 2, 3, . . . 
(e) Prove that 6 divides n3 - n for all n E: N. 

8. Prove, using the modified induction approach suggested by Theorem 2; 

(a) If n 2 5, then n2 < 2" *(b) If n 2 10, then n3 < 2" 
(c) If n 2 17, then n4 < 2" (d) If n 2 9, then 4" < n! 
(e) If n 2 2, then z= (I/&) > ,h. 

9. (a) Prove that if x is a real number greater than - 1 and if n is a positive 
integer, then (1 + x)" r 1 + nx. 

(b) Prove that if n is a positive integer and 

(i) I f x > l , t h e n x n >  1 (ii) I f x < O , t h e n ~ ~ " - ~ < O  
(iii) If x # 0, then x2" > 0 (iv) If x 2 1, then x" 2 x 
(v) If 0 < a < b, then 0 < a" < b" 

(c) ..., n,thenIanI<n. 

10. Each of the following predicates over N is false for all positive integers. Verify 
in each case that the condition (Vn)(p,(n) -+ p,(n + 1)) is true: 

11. The formula n2 - n + 41 yields primes for n = 1,2,3,. . . ,40. 

(a) Verify this for five specific cases. 
(b) Prove or disprove that this formula yields a prime for all positive integers n. 

12. * (a)  Prove that the empty set 12j is inductive. 
(b) Use Theorem 2, together with the well-ordering principle for N (i.e., the axiom' 

every nonempty subset of N has a smallest element), to prove that every nonempty" 
inductive subset of N has the form (m, m + 1, m + 2, . . .) for some positive 
integer m. 

(c) ~Onclude from (b) that every inductive subset of N is either empty or infinite. 
.-- .,- - - - - - -  

13. (a) Prove, by induction on n, that if A is a set with n elements (n E N), then 
9 ( A )  has 2" elements. 

(b) Assume that h e  sum of the interior angles of a a triangle is 180". Use this 
result to prove, by induction, that the sum of the interior angles of an n-sided 
convex polygon (n 2 3) is 180" times (n - 2). 

14. Determine what is wrong with the following "proof' by induction of the "theo- 
rem": All sets in any collection of n sets are equal. 

"Proof" Let S be the set of those positive integers for which the result is true. 
Thus m E S if and only if all sets in any collection of rn sets are equal. (1 ) Clearly 
1 E S, since every set equals itself. (2) Assume m E S. To prove m + 1 E S,  
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let {A,, A,, . . . , A,,,) be a collection of m + 1 sets. We claim that A, = A, = 
. . . -  - A,,,. Now since {A,, A,, . . . , A,) is a collection of m sets, then 
A, = A, = . . = A, by the induction hypothesis. For the same reason, A, = 

-A,= A,,,. Hence we conclude A, = A ,  = . . .  =A,= A,,,, as A , = . . . -  
desired. 

15. This exercise contains a list of basic properties of summation notation and is 
included primarily as a reference. These properties are particularly relevant to 
the theoretical development of the definite integral and to series solutions of dif- 
ferential equations, as well as to proving the binomial theorem (Exercise 16). A 
feature of these formulas, not emphasized in the text's treatment of "summation," 
is the summing from an arbitrary starting point, rather than necessarily from m = 1. 
Let us assume the following as a definition: (*) z=, x, = z=, x, - Lm:: x,. 
Note that the special cases m = 1 of (c) and (e) were proved by induction on n in 
the text (Examples 5 and 6). Assume the truth of the case m = 1 in the remainder 
of the properties and use the preceding definition (*) to prove (assuming m, n E N, 
m < n, c E R, all x, E R): 

16. (a) Use induction to prove the binomial theorem: If x and y are real num- 
bers and n is a positive integer, then ( x  + y)" = s=, e ) ~ ' ' - ~ y ~ .  [Recall the result 
from Exercise 15(f) and the formula (" ') = (;) + 6") from Exercise 7(a), Article 
5.1.1 

(6) Use specialization to conclude from the result in (a) that 2" = z=, (;) (recall 
Exercise 11, Article 1.5). 

17. Critique and complete (instructions in Exercise 11, Article 4.1). 

(a) THEOREM For all positive integers n and for all real numbers x such that 
sin x # 0 (i.e., x is not an integral multiple of n), I;,, cos (2k - l ) x  = 
(sin 2nx)/2 sin x. 

"Proof" Define S in the usual manner. To prove the theorem (i.e., to prove S = N), 
we must verify (i) and (ii) of Theorem 1: 

(i) The case n = 1 is the equation cos x = sin 2x12 sin x, which is true by the 
double-angle formula for sine. 

(ii) Assume m E S. To prove m + 1 E S, we must show that 

Zm.2,' cos (2k - l ) x  = (sin 2(m + 1)x)/2 sin x 

Now Lrn:,' cos (2k - l ) x  = Lm=, cos (2k - l ) x  + cos (2m + l ) x ,  which by in- 
duction hypothesis equals [sin 2mx/2 sin x] + cos (2m + 1)x. But the latter 
quantity equals 

[sin 2mx + 2 sin x cos (2m + 1)x] /2 sin x, which equals 

[sin 2mx + 2 sin x(cos 2mx cos x - sin 2mx sin x)]/2 sin x 
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Finally, we have 

[sin 2mx + 2 sin x(cos 2mx cos x -'sin 2mx sin x)]/2 sin x 

= [sin 2mx - 2 sin2x sin 2mx + 2 sin x cos x cos 2mx]/2 sin x 

= [ ( I  - 2 sin2 x) sin 2mx + (2 sin x cos x) cos 2mx]/2 sin x 

= [cos 2x sin 2mx + sin 2% cos 2mx]/2 sin x 

= [sin (2x + 2mx)]/2 sin x 

= sin [2(m + 1)x]/2 sin x, as desired 

(b) THEOREM If n E N and x is a positive real number then x2"-I > 0. 

"Proof" Assume x2"-' > 0. Since x > 0, then x2" = x(x2"-') > 0, as desired. 

(c) THEOREM If n E N, then I;=, rk - '  = (1 - r n ) / ( l  - r), r # 1. 

Start of "Proof" The theorem is clearly true for n = 1, since r0 = 1 = (1 - r ) / ( l  - r). 
To verify condition (ii), assume the theorem true for m. To show the theorem 
true for m + 1, we must prove that E=, rk = [ ( I  - rm)/ ( l  - r) ]  + 1 . . . . 
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CHAPTER 6 

The question of what constitutes an advanced, as opposed to elementary, 
method of mathematical proof is largely subjective. In truth, the difficulty 
of a given proof depends more on the details of the particular theorem than 
on the logical structure of the conclusion of that theorem. Our criteria for 
inclusion under the "advanced" designation are based partly on experience 
with students' reaction to various kinds of proofs, and partly on the difficulty 
of the applications involved in illustrating these categories. On this basis, 
proofs involving existence, uniqueness, and various indirect methods are 
categorized in this text as advanced. Many of the exercises in this chapter 
are more difficult, and specialized, than those in Chapter 5; some may be 
appropriate primarily for those who have already had experience in junior- 
senior level courses. 

6.1 Conclusions Involving V, Followed by 3 
(Epsilon-Delta Proofs Optional) 

Many important definitions in mathematics involve the existential quantifier 
3. Such definitions are virtually nonexistent in precalculus mathematics 
and occur relatively infrequently in the standard calculus sequence. The 
best known of these is the epsilon-delta definition of limit, discussed earlier 
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in Article 4.3. But in junior-senior level mathematics, definitions involving 
3 abound. As a consequence, many of the proofs that students at that level 
are asked to understand or write are of statements whose conclusion in- 
volves the universal quantifier V followed by the existential quantifier 3. 
Proofs of this type will be the object of our study in this article. Here are 
a few important definitions that involve the quantifier 3. 

EXAMPLE 1 (Elementary Algebra) A real number x is said to be rational if 
and only if there exist integers p and q (q # 0) such that x = p/q. 

EXAMPLE 2 (Elementary Number Theory) Let m and n be integers. We say 
that m divides n, denoted mln, if and only if there exists an integer r such 
that n = mr (recall Exercise 7, Article 3.4 and Example 7, Article 5.4). 

EXAMPLE 3 (Linear Algebra) A square matrix A, ., is said to be invertible if 
and only if there exists a matrix B,. , such that AB = BA = I,, where I, 

is the n x n identity matrix, that is, I, = (dij), . ,, where dij = {k ;;;I- 
EXAMPLE 4 (Elementary Topology) Let S be a subset of the real numbers R. 

An element x E S is said to be an interior point of S if and only if there 
exists 6 > 0 such that N(x; 6) c S, where N(x; 6) represents the open in- 
terval (x - 6, x + 6) and is referred to as the 6 neighborhood of x. Note 
that N(x; 6) = {y E R I  lx - yl < 6). S is said to be an open subset of R 
if and only if each of its points is an interior point. 

EXAMPLE 5 (Advanced Calculus) An infinite sequence {x,) of real numbers 
is said to converge to the real number x, denoted x, -, x or limn,, x, = x, 
if and only if, to every positive real number e, there corresponds a positive 
integer N such that Ix, - xl < c whenever n 2 N. In symbols, x, + x o 

Before studying some proofs of statements whose conclusion involves 
the sequence (V)(3) of quantifiers, let us state some principles governing 
the approach to take to such proofs. Especially, let us review some facts 
involving dependence between quantified variables. In discussing the 
logical relationship between statements of the form (3y)(Vx)p(x, y) and 
(Vx)(3y)p(x, y) (the first of these is in general stronger than the second; re- 
call Theorem 1, Article 3.4), we saw that the sequence (Vx)(3y) of quantified 
variables in the weaker statement signals a possible dependence of y on 
x, which, however, does not occur if the corresponding stronger statement 
(3y)(Vx)p(x, y) is also true. The student may do well to review Article 3.4, 
Exercises 6 and 7, and the remark immediately preceding Theorem 2. 
The next example deals with some general situations. 
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EXAMPLE 6 Let q(x, y), r(x, y, z), and s(x, y, z) be propositional functions, 
where x, y, z come from a common domain of discourse U. Discuss the 
basic approach to a proof in each of the following cases, where P rep- 
resents a set of hypotheses throughout. 

(a) Given P, prove (Vx)(3y)q(x, y) 
(b) Given P, prove (Vx)(Qy)(3z)r(x, y, z) 
(c) Given P, prove (Vx)(3y)(3z)r(x, y, z) 
(d) Given P, prove (Vx)(3y)(Vz)[r(x, y, z) -, s(x, y, z)] 

Discussion (a) As we did repeatedly in Chapter 5, we note here that, in 
setting up a proof, we should focus on the desired conclusion, with the 
hypotheses brought into play only as the proof progresses. In the first 
case, the proof should begin "let x E U be given" or "let x be an arbitrary 
element of U," or simply "let x E U." Now what must we prove? We 
must prove that there exists a corresponding y E U such that q(x, y) is 
true; in essence, we must produce a y that, in combination with the given 
x, makes the predicate q(x, y) into a true statement. The key in every 
such proof (and here is generally where the hypotheses P are used) is to 
determine the relationship between y and x, or more accurately, the 
dependence of y on x. Proceed in such a proof with the expectation 
that the y you are looking for (which may or may not be unique-we 
will pursue that issue in Article 6.3) will be defined in terms of x, or pos- 
sibly defined in terms of some other quantity that is defined in terms of x. 
Specific examples will soon follow, starting with Example 7. After y is 
selected, the proof concludes with the (sometimes anticlimactic) verifica- 
tion that q(x, y) is true for the arbitrary x and this corresponding y. 

(b) Start the proof with the statement "let x E U and y E U be given. 
We must produce z E U such that r(x, y, z) is true." In general, it must 
be expected that z will depend on both x and y, and that the key to the 
choice of z will lie somewhere among the hypotheses P. After z, which 
often will be an expression involving x and y explicitly, is selected, the 
proof is completed by verifying r(x, y, z). 

(c) Start with "let x E U be given. We must produce y E U z E U 
such that r(x, y, z) is true." In this case the burden of proof is to produce 
two quantities, each of which should be expected to depend on the given 
x. The key to the choice of y and z must again be contained in the 
hypotheses P. 

(d) This is by far the most complicated case, arising in undergrad- 
uate mathematics almost exclusively in connection with various limit 
concepts. Such a proof should begin "let x E U be given. We must pro- 
duce y E U (with y expected to depend on x and perhaps to be defined 
in terms of x) having the property that, for any z E U, if r(x, y, z) is true, 
then s(x, y, z) is true." Especially critical in this type of proof is the 
choice of y. Once y has been designated, the proof concludes (not quite 
so anticlimactically as in parts (a)(b)(c)) by letting z be an arbitrarily 
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chosen element of U and assuming, that r(x, y, z) is true. The final step 
is to conclude from this assumption, and perhaps the hypotheses P, that 
s(x, y, z)  is true as well. 

The descriptions in Example 6 may seem vacuous and, indeed, may 
overly abstract at this point, but we predict that you will be drawn back 
to this example after studying some actual proofs of this type and especially 
in the course of attempting the exercises at the end of the article. 

We now begin to consider some specific proofs. 

EXAMPLE 7 Prove that if m, n, and p are integers such that m(n and m(p, 
then ml(n + p). 

Solution Let m, n, and p be integers satisfying the given hypotheses. Ac- 
cording to the definition of "divides," we must produce an integer q such 
that n + p = mq. The key to the choice of q lies in the hypotheses. Since 
m( n, we know that there exists an integer q, such that n = mq,. Since 
m ( p, there must exist an integer q, such that p = mq,. Let us look now 
at the situation. How are we to arrive at the desired q that will relate 
n + p to q? If we note that n + p = mq, + mq, which in turn equals 
m(q, + q,), our choice is clear. Resuming the proof now, we make the 
assertion "let q = q, + q,." Note first that since q, and q, are integers, 
then q, + q, is an integer. Second, note that we have mq = m(q, + q,) = 
mql + mq, = n + p, as desired. 0 

Here are a few observations regarding the proof in Example 7. You may 
object that, according to Example 6, we were to expect q to be defined in 
terms of m, n, and p. Instead, q turned out to be defined in terms of q, 
and q,. Is there any conflict here? No, because q, depended on n and m, 
while q, depended on p and m, so that q ultimately did depend on m, n, 
and p, as expected. Second, you should note and avoid a common error in 
a proof such as this. In writing out what is known at the start of the proof, 
it is easy, but mistaken, to write "since m(n and mlp, then there exists an 
integer q such that n = mq and p = mq." There is nothing in the hypotheses 
to indicate that the same q works for both of the pairs m, n, and m, p. 
Accordingly, the proof must be set up with two different symbols q, and q, 
being employed in the two applications of the definition of divides. Finally, 
we rewrite the proof in a "final" form: "Assume m, n, and p are integers such 
that mln and mlp. We must find an integer q such that n + p = mq. Since 
m 1 n and m 1 p, there exist integers q, and q, such that n = mq, and p = mq, . 
Let q = q, + q,. Clearly q is an integer and mq = m(q, + q,) = mq, + 
mq, = n + p, as desired." 

EXAMPLE 8 Let A and B be invertible n x n matrices. Prove that their 
product AB is again invertible. 
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Solution Let A and B be given invertible n x n matrices. We must find a 
matrix X ,  ., such that (AB)X = X(AB) = I,. Now since A is invertible, 
there exists an n x n matrix C such that AC = C A  = I,. Since B is in- 
vertible, there corresponds an n x n matrix D such that BD = DB = I,. 
We get the desired X from C and D, namely, by letting X = DC. Note 
that (AB)X = (AB)(DC) = A(BD)C = A(I,)C = AC = I,. Verify that 
X(AB) = I,. 0 

Obviously, the key to the preceding proof, once the setting-up is com- 
pleted, is the choice X = DC of X in terms of D and C. If you had never 
seen this proof before, how might you have discovered that X = DC was 
the proper choice? Back in Chapter 1 we emphasized two main methods 
of discovery that mathematicians use and that are worth recalling here. 
One was drawing a picture (a method we will use in the next example); 
the other was carrying out computations in specific examples. Assuming 
that you have some computational familiarity with matrices, you might 

look at a particular pair of invertible matrices, say A = (; :) and 

B = (-i :). Computations yield 

9 

D = ( - : ,  i), and X = ( - !  -- 8. 
After some experimentation, you might finally notice the relationship X = 
DC, and this observation should lead to the speculation that the choice 
X = DC of X will work in general. 

In the next example we use geometric motivation for our selection of the 
existentially quantified unknown, as we apply definitions from Example 4. ' EXAMPLE 9 Suppose S and T are both open subsets of R. Prove that 

S n T and S u T are both open. 

Solution We deal first with intersection. Let S and T be arbitrary open 
subsets of R. According to the definition of "open," in order to prove 
that S n T is open, we must show that each point of S n T is an interior 
point. So begin by letting x be an arbitrary point in S n T. (Note: We 
are using here, almost unconsciously, proof-writing techniques over 
which we labored hard in Article 5.2. In particular, we are setting up 
our proof in terms of the desired conclusion, not the hypotheses.) To 
prove that x is an interior point of S n T, we must produce a positive 
real number 6 such that the 6 neighborhood N(x; 6) of x is a subset of 
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S n T. The key is the choice of 6; we can go no further in the proof 
until we've decided what 6 should be. 

Now what do our hypotheses tell us? Since S is open and x E S, then 
x is an interior point of S. (Note the implicit use of "specialization." 
Every point of S is an interior point of S; hence our particular point x 
must be an interior point.) Similarly, x is an interior point of T. Using 
the definition of "interior point" twice, we see that there exist positive 
real numbers 6, and 6, such that N(x; 6,) r S and N(x; 6,) E T. Ex- 
amples 7 and 8 may have conditioned you to expect that we will define 
the desired 6 in terms of 6, and 6,. (Perhaps we should say that if you 
have already made a mental note that we will doubtless define 6 in terms 
of 6, and a,, then you're making good progress.) But the question is, 
"How to do i t? 'Let  us draw some pictures, such as those shown in 
Figure 6.1. 

Figure 6.lb illustrates the two values of 8, and 6,. Any point within 
6, of x is inside S; any point within 6, of x is inside T. We want to 
choose 6 small enough (but still positive) so that any point within 6 of x 
will be inside both S and T. Finally, then, how will we choose S? Why 
not let 6 be the smaller of 6, and d2? In symbols 6 = min (6 ,, d2)! This 
choice seems reasonable; if it is correct, we ought to be able to complete 
the proof by showing N(x; 6) c S n T. To do this, in turn, we recall 
the choose method and let y G N(x; 6). We claim that y E S n T. Now 
Ix - yl < 6 s 6, so that y E N(x; 6,) c S so y E S. Also, lx - yl < 6 s 6, 
so that y E N(x; 6,) c T. Hence y E S n T so that N(x; 6) c S n T, and 
our proof is complete. 

Figure 6.1 A picture suggests how to complete the proof that 
the intersection of two open sets is open. ( a )  A picture of a 
two-dimensional version of the situation described in Example 9. 
(6) In this case, we take 6 = a,, since 6 ,  < 6 , .  
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We deal next with union. To prove S u T is open, let x E S u T. 
To prove that x is an interior point of S u T, we must produce 6 > 0 
such that N(x; 6) c S u T. Since x is either in S or T (but we don't 
know which one), and since our hypotheses deal with properties of S 
and T individually, this proof is clearly a candidate for division into 
cases. Our strategy is to divide the proof into the two cases x E S and 
x E T, and see whether, in each case, we can arrive at the desired con- 
clusion. Now if x E S, then since S is open, there exists a positive 6, 
such that N(x; 6,) c S. But since S c S u T, we may let 6 = 6, for this 
case, noting that N(x; 6) = N(x; 6,) E S E S u T, so that x is, indeed, 
an interior point of S u T. Similarly, if x E T, then 36, > 0 such that 
N(x; 6,) E T. Letting 6 = we conclude again in this case that 
N(x; 6) = N(x; 6,) c T c S u T, as desired. 0 

The theorem that union and intersection of two open sets is open is gen- 
erally taught in a course in advanced calculus and/or elementary topology. 
If you have not already seen these proofs, then it is worth noting that their 
complexity is fairly representative of many proofs in courses at that level. 
Two final remarks: (1) You should realize now that techniques that were 
stressed individually in Chapters 4 and 5 (e.g., cases, specialization, choose) 
are beginning to be used, several at a time, in individual proofs. (2) You 
should know that examples such as 7, 8, and 9 illustrate that an important 
aspect of proof writing is the careful interpretation of definitions. 

EPSILON-DELTA PROOFS 

Let us now turn to the problem of writing epsilon-delta proofs that L = 

lirn,,, f(x). Such proofs may arise in connection with specific functions, 
as in 25 = lirn,,, x2 or Ma + B = lirn,,, (Mx + B), or may be required 
for the purpose of establishing a more general theorem, such as "if 
lirn,,, f(x) = L, and lirn,,, g(x) = L,, then lirn,,, (f(x) + g(x)) = L, + 
L, ." 

A typical epsilon-delta proof is structured as follows. Begin by letting 
E > 0 be given. The crux of the proof is to define, in terms of this E, a 6 > 0 
having the property that, whenever x is a real number satisfying the inequal- 
ities 0 < Ix - a1 < 6 (i.e., x is within 6 of a, but x # a), then its correspon- 
ding f(x) satisfies (f(x) - L I  < E [i.e., f(x) is within E of L]. The problem, 
inevitably, is how to choose 6. The key for many specific functions is to 
look for a relationship between the quantities lx - a1 and I f(x) - L I .  Note, 
in particular, that if a positive constant k can be found such that 1 f (x) - L I  5 
klx - a1 for all x within some neighborhood N(a; 6,) of a (with the pos- 
sible exception of x = a itself), then 6 = min (6 ,, ~ / k )  will do the job, 
ForifO < Ix - a1 < 6, then0 < Ix - a1 < 6, andso 1 f(x) - LI < klx - a( < 
(&/6)(1x - al) c (~/6)(6) = E, as desired. Let us look now at some examples. 
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EXAMPLE 10 Prove that lim,,, (4x + 7) = 19. 

Solution Note that f(x) = 4x + 7, a = 3, L = 19 in this problem. Let E > 0 
be given. We must produce 6 > 0 such that whenever 0 < Ix - 31 < 6, 
then 1 f(x) - LI = 14x + 7 - 191 = 14x - 121 < E. Let us look for a rela- 
tionship between lx - a1 and 1 f(x) - LI; in this case it's easy to spot since 
14x - 121 = 41x - 31 for every real number x. Hence we simply let 6 = &/4. 
Note that if 0 < (x - 31 < 6, then 1 f(x) - 191 = 14x - 121 = 41x - 31 < 
46 = 4(~/4) = E, as desired. 

Note that if f(x) is a linear function y = Mx + B, we can always use 
I M I  as the positive constant k satisfying 1 f(x) - L I  1 klx - a(. (Verify this.) 
Furthermore, this inequality is valid for all real x so that we do not need 
to deal with the neighborhood N(x; 6,) referred to prior to Example 10. 
Hence the choice of 6 in terms of E in any epsilon-delta proof involving a 
linear function is particularly simple: Just take delta to be epsilon divided 
by the absolute value of the slope! 

EXAMPLE 11 Prove that lim,,, x3 = 125. 

Solution Let E > 0 be given. Our goal is to produce 6 > 0 such that when- 
ever x satisfies 0 < Ix - 51 < 6, then f (x) satisfies (f (x) - 1251 < &; that is, 
1x3 - 1251 = (x - 51 1x2 + 5x + 251 < E. Now your first impulse, based 
on the solution to Example 10, might be to assert that 6 can be taken 
to equal &/Ix2 + 5x + 251. The problem with this suggestion is subtle, 
but crucial. The definition of limit contains the sequence of quantifiers 
(VE > 0)(36 > O)(Vx), not (VE > O)(Vx)(36 > 0). That is, the 6 we are 
charged to find may depend on E only, not on E and x! Hence we must 
take the approach outlined before Example 10. Namely, we must ask 
whether there is some neighborhood N(5; 6,) of 5 and a positive constant 
M such that lx2 + 5x + 251 s M whenever 0 < Ix - 5) < 6,. Let us try 
6, = 1; that is, suppose that 0 < Ix - 51 < 1. Then - 1 s x - 5 < 1 and 
x = 5 # 0, so that 4 1 x < 6 and x # 5. Since x 5 6, then we may con- 
clude 1x2 + 5x + 251 < 36 + 30 + 25 = 91. That is, 1x2 + 5x + 251 < 91. 
Thus our choice of 6 is dictated by the rule given just prior to Ex- 
ample 10, with 6, = 1 and k = 91; let 6 = min (1,~/91}. Then if 
0 < Ix - 5) < 6, we have both 0 < Ix - 51 < 1 so that lx2 + 5x + 251 5 
91, and 0 < lx - 51 < e/91. Hence 

A final version of this proof begins: "Let E > 0. We must find 6 > 0 such 
that if 0 i (x - 51 < 6, then Ix3 - 1251 < E.  If 0 < Ix - 51 < 1, then 
(x2 + 5x + 251 s 91. Let b = min (1, ~/91) . . . . " 



198 METHODS OF MATHEMATICAL PROOF, PART II Chapter 6 

In most theorems about general properties of limits the hypotheses in- 
clude a statement about the existence and value of one or more limits. In 
such cases the epsilon-delta proof of a conclusion about limits will often 
use in a crucial way the technique of specialization, introduced in Article 5.3. 

EXAMPLE 12 Assume that lim,,, f (x) = L, and lim,,, g(x) = L,. Prove 
that lirn,,, (f + g)(x) = L, + L,. 

Solution Let E > 0 be given; we fix this E here at the outset and note that 
we work with it throughout the remainder of the proof. We must produce 
6 > 0 such that whenever x is a real number satisfying 0 < Ix - a( < 6, 
then (f + g)(x) satisfies l(f + g)(x) - (L, + L,)I < E. Now our hy- 
potheses will tell us something about the quantities (f (x) - L, I and 
Ig(x) - L,I, and we note for future reference that the quantity we wish 
to make less than E can be related to these two quantities by the inequality 

Now precisely how can we make use of our hypotheses? Since 
lirn,,, f(x) = L,, then corresponding to any positive real number, and 
in particular to our given E, divided by 2, there is a positive 6, having 
the property that whenever 0 < Ix - a1 < dl, then 1 f(x) - L , I  < ~ / 2 .  
Similarly, there exists 6, > 0 such that whenever 0 < lx - a1 < a,, then 
Ig(x) - L,I < ~ / 2 .  Now if we can choose 6 so small as to make both 
these inequalities concerning f and g true at the same time, we will be 
very close to our final goal, due to expression (1). How shall we choose 
6? Recalling the argument in the first part of Example 9, we let 
6 = min {a1, 6,). Then if x satisfies 0 < Ix - a1 < 6, it will automatically 
satisfy both 0 < Ix - a1 < 6, and 0 < Ix - a1 < d2, so that 

I(f + g)(x) - (L, + L,)I = I(fW - Ll) + (g(x) - L2)I 

5 IfW - LlI + Ig(x) - L2I 

.-- 
< &/2 + &/2 = E, as desired. 

Note the role of specialization in the preceding proof. We have set up 
the proof that (f + g)(x) tends to L, + L,, as x tends to a, by fixing a value 
of E at the outset. Our two hypotheses, involving f and g separately, in- 
dicate that something works for any positive real number, and so we can 
conclude that this something works for the particular positive number ~ / 2 .  
Proofs of other limit theorems (e.g., Exercises 15, 18) call for similar appli- 
cations of the specialization technique. 

Students often ask why 4 2  is used in this proof and how they can ever 
be expected to think of such a "trick" in writing their own proofs. The 
first question can be answered on two levels. We use ~ / 2  (1) because there 
is no reason we shouldn't (we violate no rules in doing so) and (2) because 
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it works! The best answer we can give to the second question is that most 
students have considerable difficulty in writing epsilon-delta proofs (largely 
because of deficiencies in logical background and lack of experience in writ- 
ing any kind of proof-the very weaknesses you may be eliminating as 
you work through this text) and only begin to overcome that difficulty with 
much effort and experience. Although all the information needed to write 
proofs such as those in Exercises 12 through 19 has been provided in this 
article, do not be surprised or discouraged if you have difficulty in your 
early attempts. Finally, even after you have mastered these proofs, through 
a process of studying a number of similar proofs written by others and 
your own maturing in mathematics, keep in mind that a still higher level 
to attain is the ability to discover, on your own, original proof techniques 
(such as the use of ~ / 2 )  and perhaps, at some stage, prove theorems pre- 
viously unproved and solve mathematical problems previously unsolved. 
This pursuit is the goal of mathematical study at the graduate level; an 
undergraduate student who is able to do many of the following exercises, 
shows promise of possible success at that level. 

Exercises 
1. Use the definition in Example 1 and the ordinary rules for addition and multi- 
plication of fractions, together with the fact that Z is closed under addition and 
multiplication, to prove 

(a) If x and y are rational, then xy is rational 
(6) If x and y are rational, then x + y is rational 
(c) If x and y are rational and y # 0, then x/y is rational 

2. Use the definition in Example 2 to prove that, for any m, n, p E Z 

(a) Ifmln and nip, then m(p 
(6) Ifmlnandnlm, then n = m o r  n =  -m 
(c) mlm (d) 1Jn 
(4 m10 (f) Ifmlnandmlp,thenmlnp 
(g) 1f mln, then ml(-n) 

. 
(h) Based on your proof in (f), can you improve upon the result in (f), that is, 

state and prove a stronger theorem (due to a weaker hypothesis) than the one 
in (f)? (Note: Reread the fourth and fifth paragraphs under the heading "Math- 
ematical Significance of Tautologies Involving the Conditional," following 
Theorem 2, Article 2.3. Recall also Exercise 7, Article 2.3.) 

3. (a) Prove that if U = Z, then: 
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(b) An integer n is said to be even if and only if there exists an integer m (nec- 
essarily unique) such that n = 2m, and odd if and only if n = 2m + 1 for some 
integer m (where m again is uniquely determined by n). Assume that every integer 
is either even or odd, and not both even and odd. 

*(i) What tautology of the propositional calculus would enable us to con- 
clude, from the preceding assumption, that an integer m is even if and 
only if it is not odd? Formulate and verify, by using a truth table, such 
a tautology. 

(ii) Prove that if n is even, then n + 1 is odd, n + 2 is even, and n + 3 is odd. 
(iii) Prove that if m is even, then m2 is even. 
(iv) Prove that if m is odd, then m2 is odd. 

4. Recall from Definition 7, ff., Article 1.2, that an object x is in the cartesian prod- 
uct A x B of two sets A and B, if and only if there exist elements a E A and b E B 
such that x = (a, b). Prove that, if W, X, Y, and Z are arbitrary sets, then: 

*(a) (X u Y) x Z = (X x 2 )  v (Y x Z) 
(b) ( X n  Y )  x Z =(X x 2 )  n (Y x 2) 
(c) (X-  Y ) x z  q x  x Z ) - ( Y X Z )  
(d) if W z X and Y G 2, then W x Y c X x 2. 

[Note: The reverse inclusion in (c) is true as well. See Exercise l(e), Article 6.2.1 

5. [Continuation of Exercise 7(a), Article 5.21 Let C, = {(cos t, sin t) 1 t E R) and 
C, = ((x, y) E R x Rlx2 + y2 = 1). Recall that (x, y) E C, if and only if 3t E R such 
that x = cos t and y = sin t. 

(a) Prove that C2 E C1. [Hint: Given (x, y) E C,, let t = sin-' y. Clearly y = 
sin t. Use identities from Exercise 18, Article 5.1, to prove that x = cos t.] 

(6) Prove that C, is symmetric with respect to the x-axis and the origin. Use 
these results and Example 1, Article 5.3, to conclude that C, is symmetric with 
respect to the y axis. 

6. (Continuation of Exercise 9, Article 5.2) (a) Suppose x, y, and z are real numbers 
with x < z < y. Prove that there exists a real number t, 0 < t < 1, such that z = 
tx + (1 - t)y. (Hint: On what quantities would you expect the desired t to 
depend?) 

*(b) Prove that if S is a convex subset of R, then S is an interval. (Note: Combining 
this result with Exercise 9, Article 5.2, we conclude that a subset S of R is convex 
if and only if it is an interval.) 

7. (a) Assume that the inverse of an n x n matrix, if it exists, is unique [to be 
proved in Article 6.3, Exercise 5(a)]. Prove that if A, B, and C are invertible 
n x n matrices, then: 
(i) A- ' is invertible. 
(ii) ABC is invertible. 
(iii) The matrix cA is invertible, where c is a nonzero real number. 
(iv) If AD = AF, where D and F are arbitrary n x n matrices, possibly non- 

invertible, then D = F. (Hint: Write a proof by transitivity.) 
(b) Prove that if A is any square matrix, then A can be expressed in the form 

A = B + C, where B is a symmetric matrix and Cis antisymmetric [recall Exercise 
1 7(f), Article 5.11. 
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8. (a) Prove that 3 is an interior point of [O, 1). 
(b) Prove that 1 is not an interior point of [0, 11. 
(c) Prove that the set N of all positive integers has no interior points. Is N open 

in R. 
(d) Prove that any interval of the form (a, b), where a # b, is an open subset of R. 
(e) Prove that R is an open subset of itself. 
( f )  Prove that if S,, S,, and S, are open subsets of R, then both S, n S, n S3 

and S, u S, u S, are open subsets of R. 
(g) Use an induction argument to prove that the union and intersection of any 

finite collection of open subsets of R is an open subset of R. 
(h) Generalize one of the arguments in Example 9 to show that if (Sili = 1,2,3, . . .) 

is a family of open subsets of R, indexed by N, then Uim_, Si is open in R. Does 
the other argument in Example 9 generalize to such an infinite collection, that 
is, can we conclude that (-)El Si is necessarily open in R? 

9. Let S be a subset of R. A real number a, which may or may not lie in S, is 
said to be a point of accumulation of S if and only if every neighborhood N(a; 6) 
of a contains points of S other than a itself. This definition may be represented 
(V6 > O)(N1(a; 6) n S # a), where N1(a; 6) = N(a; 6) - {a} is called the deleted 6 
neighborhood of a. S is said to be a closed subset of R if and only if S contains 
all its points of accumulation. 

(a) Prove that 1 is a point of accumulation of (0, 1). (Thus a point of accumu- 
lation of a set need not lie in the set.) 

* (b)  Write the logical negation of the definition of point of accumulation and use 
it to prove that 2 is not a point of accumulation of (0, 1) u (2). (Thus a point 
in a set need not be a point of accumulation of that set.) 

(c) Prove that, for any p > 0, -p is not a point of accumulation of [0, 11. 
(d) Prove that 0 is a point of accumulation of the set S = (1, f, 4, . . .}. Is this set 

closed? (Note: You may assume the Archimedean property, introduced following 
Example 2, Article 4.2.) 

(e) Prove that the set N = (1,2,3, . . .} of all positive integers has no accumu- 
lation points. Is this set closed in R? 

( f )  Prove that any interval of the form [a, b], where a # b, is closed in R. 
(g) Prove that R is a closed subset of itself. 

I--- 
..-- 

4--- 

10. (Continuation of Exercises 8 and 9) (a) Give an example of a subset of R that 
is neither open nor closed. 

(b) Give an example of a subset of R that is both open and closed. 
(c) Prove that if a subset S of R is closed in R, then its complement S' is open in 

R. (The converse is true as well; it will be considered in Exercise 1 l(a), Article 6.2.) 

11. Throughout our discussion of limit in Article 4.3, whenever we considered 
lim,,, f(x), we assumed f to be a function defined in an open interval containing 
a. In the terminology of Exercise 9 this assumption implies that a is a point of 
accumulation of the domain off. Prove that if a is not a point of accumulation 
of the domain off [recall Exercise 9(b)], then L = lim,,, f(x) is true for any value 
of L (thus rendering the definition of limit worthless in that circumstance). 
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12. Use an epsilon-delta argument to prove: 

(a) lim,,,(-3x + 6) = -6 (b) lim,,, x2 + 5 = 86 
(c) lirn,,, 2x2 + 3x + 1 = 6 

13. Use an epsilon-delta argument to prove: 

(a) l i , f ( x ) = l l ,  where f(x)= 
2 ,  x = 3  

x, x rational 
*(b) lirn,,, g(x) = 0, where g(x) = 

0, x irrational 1 
(c) lim,,,+ x sin (l/x) = 0. [Note: (sin l/x( s 1 for all x > 0, so that 

lx sin 11x1 5 1x1 for all positive real numbers x (recall Exercise 5, Article 4.3).] 

14. Use an epsilon-delta argument to prove: 

(a) If f(x) = K is a constant function defined on ZR, then lirn,,, f(x) = k, for any 
a E IR. 

(b) If lirn,,, f (x) = L and K is any real number, then lirn,,, (kf (x)) = kL. 

15. Use an argument similar to the proof in Example 12 and the definitions in 
Exercises 4 and 8 of Article 4.3, to prove: 

(a) Iflim,,,+ f(x)=L; andlim,,,, g(x)= L,, thenlim,,,+ (f +g)(x)= L, + L,. 
(b) If lirn,, , f (x) = L , and lirn,, , g(x) = L,, then lirn,, , (f + g)(x) = L , + L,. 

16. (a) Prove that if lirn,,, f(x) = L where L > 0, then there exists 6 > 0 such that 
f (x) > 0 for all x E N'(a; 6). [Recall from Exercise 9 that N1(a; 6) = N(a; 6) - (a}.] 

(b) Conclude from (a) that iff is continuous at a and f(a) > 0, then there exists 
6 > 0 such that f(x) > 0 for all x E (a - 6,  a + 6). 

(c) Let f be continuous on an open interval a < x < b containing the real number 
x, and suppose f'(x,) > 0. Prove that there exists a neighborhood N(x,; 6) of x, 
such that if x E N(x,; 6) and x < x,, then f (x) < f (x,), while if x E N(x,; 6) and 
x > x,, then f(x) > f (x,). [Hint: Apply the epsilon-delta definition of limit with 
E = f '(xo)/2, using the fact that f '(x,) = lim,,,, (f (x) - f(x,))/(x - x,).] 

17. (a) (Sandwich or Pinching Theorem) Suppose that three functions f ,  g, and h 
are all defined in some neighborhood N(a; r) of a point a, and that f(x) I g(x) I 
h(x) for all values of x in this neighborhood, with the possible exception of a itself. 
Suppose furthermore that lirn,,, f (x) = lirn,,, h(x) = L. Prove, by using an 
epsilon-delta argument, that lirn,,, g(x) = L. 

(b) Use (a) to prove that lirn,,, x sin (llx) = 0. 
(c) Suppose f is a bounded function (i.e., there exists M > 0 such that I f(x)l M 

for all x E R) and g is a function satisfying lirn,,, g(x) = 0. Prove that 
lim,,, f (x)g(x) = 0. 

18. Prove that if lirn,,, f (x) = L , and lim,,, g(x) = L,, then lirn,,, (fg)(x) = 

L1L2. (Hint: Note that I(fg)(x) - LiL2I S I&)(lf ( 4  - L1I + IL1 IIdx) - L21, 
and that by using the fact that lirn,,, g(x) = L,  with E = 1, we can conclude that 
Ig(x)I < I L , ~  + 1 for all x within some deleted 6 neighborhood of a.) 
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19. Prove that lirn,,, f(x) exists if and only if both lim,,,+ f(x) and lim,,,- f(x) 
exist and are equal. 

20. (Some prior familiarity with infinite sequences beneficial in Exercises 20,21, and 
22) A real number x is said to be a limit of a sequence {x,), denoted x = lirn,,, x, 
or simply x, -r x (we also say that the sequence x, converges to x) if and only if 
VE > 0, 3 a positive integer N such that lx, - X I  < E whenever n 2 N. This means 
that any E neighborhood of x, no matter how narrow, must contain all but a finite 
number (namely, some or all of the first N, where N depends on E) of the terms in 
the sequence. The Archimedean property of the real numbers, which we assume, 
says in essence that the sequence l/n converges to 0; that is, limn,, l/n = 0 (recall 
Example 2 ff., Article 4.2). 

(a) Write the logical negation of the definition of sequential convergence; that 
is, What is true if x # lirn,,, x,? 

n even 
(b) Prove that 0 # limn,, x,, where xn = 

n > 10,000 
(c) Prove that 0 = lirn,,, x,, where x, = 

(d) Prove that, if x, -r x and k is a real number, then kx, + kx. 

n even 
(e) Prove that 0 = lirn,,, x,, where x, = 

- 1 n odd ' 

( f )  Prove that if x, + x and y, + y, then x, + yn -+ x + y [recall Exercise 15(b)]. 

21. (Continuation of 20) A real number x is said to be a cluster point of a sequence 
{x,), if and only if, for all E > 0 and for all positive integers N, there exists n 2 N 
such that Ix, - xl < E .  This means that any E neighborhood of x, no matter how 
narrow, must contain infinitely many terms of the sequence. 

(a) Write the logical negation of the definition of cluster point. 
(b) Show that 1 is not a cluster point of the sequence {x,) defined by x, = lln. 
(c) Show that + 1 and - 1 are both cluster points of the sequence (x,} defined by 

x, = (- 1)". Thus cluster points of a sequence are not necessarily unique. (We 
will see in Article 6.3 that a limit of a sequence, if it exists, & unique.) 

(d) Prove that if lim,, , x, = x, then x is a cluster point of {x,). What does this 
say about the relative strength of the properties "x is a cluster point of {x,)" 
and "x is a limit of {x,}"? 

(e) Prove that 2 is a cluster point of the sequence.{x,) defined by 

n, n # 5k for any positive integer k 

2, n = 5k for some positive integer k 

Does this sequence have any other cluster point(s)? Does it have a limit? 

22. A sequence (x,} is said to be a Cauchy, or fundamental, sequence if and only 
if, for all E > 0, there exists N E N such that m 2 N and n 2 N imply Ix, - x,l < E. 

(a) Prove that if {x,) converges, then {x,} is Cauchy. 
(6) Prove that if {x,) is Cauchy, and if x is a cluster point of {x,), then (x,} 

converges to x. 
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6.2 Indirect Proofs 
An indirect proof is a proof in which we establish the truth of a statement 
distinct from, but logically equivalent to, the desired result. Most indirect 
proofs that you might either read or have to write at the undergraduate 
level fall into one of three categories, each corresponding to an important 
tautology from the propositional calculus. 

Derivation of a conclusion involving the disjunction of two statements. 
According to the tautology [p -+ (q v r)] * [(p A - q) -, r] [Theorem 
l(p), Article 2.31, we may derive a conclusion of the form q v r from a 
hypothesis p by assuming true the negation of one part of the conclusion, 
that is, by adding -q to our list of hypotheses, and by trying, on that 
basis, to establish the truth of the other part, that is, to prove r. 
Proof by contrapositive. According to the tautology (p q) t, 
(-q -+ -p) [Theorem l(n), Article 2.3; see also Theorem 2(f), Article 
2.31, we may prove that a conclusion q follows from a hypothesis p by 
showing that the truth of the negation of q implies that the hypothesis 
is false; that is, - p  is true. 
Proof by contradiction, also known as reductio ad absurdum. Accord- 
ing to the tautology [--p -+ (q A -q)] -, p [Theorem 2(g), Article 2.31, 
we may establish p by proving that the assumption of the negation of 
p leads to a logical impossibility, that is, a contradiction. 

It is important to understand the logical basis of these approaches and 
to know how to write proofs in these forms; equally important, however, 
is the ability to recognize when an indirect approach is appropriate, as 
opposed to direct methods outlined thus far in the text. We stress at the 
outset that the methods of this article are intended to supplement, not sub- 
stitute for, direct methods. As a general rule, most mathematicians regard 
a direct proof as preferable, from the point of view of both clarity and aes- 
thetic appeal, to an indirect proof, when the former is possible. Putting it 
differently you should try to develop a sense of the situations in which an 
indirect approach (particularly contrapositive and contradiction) is the route 
to take; do not fall into a habit of overusing these methods. 

We now consider in sequence the three cases just outlined. 

DERIVATION OF CONCLUSIONS INVOLVING DISJUNCTION 

In Article 5.3 we considered the situation of a hypothesis having the form 
of a disjunction p, v p, v - . . v p, of statements. In that instance we sug- 
gested that a division of an argument into cases is often an appropriate 
and fruitful path. Now we wish to consider the situation in which the & 
sired conclusion is a disjunction. This can present difficulties, because most 
arguments in mathematics are geared toward a single conclusion at a time. 
Indeed, if our conclusion is a conjunction q, A q, A - . A q,, we most often 
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break up the proof into n separate derivations, each of which establishes 
one of the components q,, that is, we derive each component of the con- 
clusion separately [see Exercise 3(c)]. No such luxury is generally available 
when disjunction is involved in the conclusion, since the hypothesis usually 
does not need to imply any components of the conclusion, taken individually. 
(Note: Exercise 4 illustrates an exception to this statement.) A simple exam- 
ple of this difficulty occurs in the following theorem about real numbers: 

EXAMPLE 1 Assume it is known that multiplication of real numbers is asso- 
ciative, that nonzero real numbers have multiplicative inverses, and that 
a - 0  = 0 for any real number a. Prove that if x and y are real numbers 
with xy = 0, then x = 0 or y = 0. 

Discussion Our theorem involves one simple hypothesis and a conclusion 
involving the disjunction of two statements. Approaching the proof di- 
rectly, we seem to have no way of getting at the desired conclusion. In 
particular, neither specialization nor division into cases, the two methods 
of adapting a hypothesis toward a desired conclusion that we studied 
in Article 5.3, appears applicable here. We will return to this problem 
shortly. 

A more or less standard approach to problems of the type presented in 
Example 1 is to take advantage of a generalization of Theorem l(p), Article 
2.3. You may verify that, for any positive integer n, the statement form 

[P + (41 v q 2 v S .  .vqn)] ++ [(PA -ql A -q2Aa. . A  mqn-1) --t qn] 

is a tautology. We may approach the derivation of q, v q, v . . v q, from 
p by assuming as true the negation of all but one (any one) of the com- 
ponents of the conclusion, and then trying, on the basis of these additional 
assumptions, to prove that the one remaining component must be true. 
This approach has a dual advantage: (1) to replace a logically complicated 
desired conclusion by a relatively simple one and (2) to give us one or 
more additional hypotheses. Let us now return to Example 1. 

Solution to Example 1 This specific problem was alluded to in Article 2.1, 
where we suggested the approach to be carried out now. To derive the 
conclusion "either x = 0 or y = 0" from the hypothesis "xy = 0," we 
begin by assuming x # 0. We will try to use the hypothesis xy = 0 and 
the supposition x # 0 to prove that y = 0. If we can do this, our proof 
is complete, according to the tautology quoted earlier. What is the sig- 
nificance of a nonzero value for x? One fact that is true about a nonzero 
real number x but is not true about zero is that the multiplicative inverse 
(i.e., reciprocal) x-I exists. Note that, on the one hand, x-'(xy) = 
x- '(0) = 0. On the other hand, however, x- '(xy) = (x- lx)y = 1 . y = y. 
Combining these two strings of equations into a single string, we have a 
proof by transitivity, y = 1 . y = (x- lx)y = x- '(xy) = x- '(0) = 0, of the 
desired conclusion y = 0. 0 
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Note that we do not need to repeat the argument just given with the 
roles of x and y reversed; that is, we do not need to prove also that if xy = 
0 and y # 0, then x = 0. In deriving a conclusion q v r from p, we may 
assume the negation of whichever of q or r is more convenient, and try to 
derive the remaining one. Doing it both ways is n-@ necessary. 

The preceding method may be convenient for proofs of set inclusion, in 
which we are trying to prove that a set A is a subset of the union of two 
sets X and Y. In this situation our desired conclusion has the form "either 
x E X or x E Y." 

EXAMPLE 2 Prove that if A, B, and C are sets, then (A u B) n C G 

A u (B n C) [recall Exercise 4(a), Article 5.31. 

Solution Proceeding by the choose method, let x be an arbitrary element 
of (A u B) n C. To show x E A u (B n C), we must prove that either 
x E A or x E B n C. Suppose x 4 A. Our theorem will be proved if we 
can show that x E B n C, that is, x E B and x E C. Since our "new" con- 
clusion involves only conjunction, we may derive it by proving its two- 
component statements, one at a time. To show x E C, we note simply 
that since x E (A u B) n C (by assumption), then x E C. So the real 
problem, and the place where we presumably will have to use our sup- 
position x $ A, must be in proving x E B. Now since x E (A u B) n C, 
then x E A u B; that is, either x E A or x E B. But, by our supposition, 
we know x 4 A. Hence we must have x E B, as desired. 

Note that the tautology [(p v q) A --p] -* q [Theorem 2(k), Article 2.31 
was used implicitly in the second sentence from the end of the solution to 
Example 2. We will see further examples of use of the indirect technique 
of deriving a conclusion involving disjunction later in the text. 

PROOF BY CONTRAPOSITIVE 

In Articles 5.2 and 5.3 we considered the problem of deriving a conclusion 
of the form (Vx)(p(x) -+ q(x)) from a given set of hypotheses. You will re- 
call our guiding rule of focusing first on that conclusion and setting up the 
proof, by using the choose method, letting x be an arbitrary object for 
which p(x) is true. The goal then is to prove that q(x) is true for this x, 
where the hypotheses are incorporated into the proof after the initial setting- 
up is completed. 

One of the situations we wish to consider, as we study proof by contra- 
position, is a "mirror image" of the one just described. Suppose the hypo- 
thegs of our conjecture has the logical form (Vx)(p(x) -* q(x)). Suppose, in 
addition, that our desired conclusion is a simple statement. This situation 
can be difficult, if not impossible, to deal with by direct methods. 
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EXAMPLE 3 Prove that if a linear function y = f (x) = Mx + B is increasing 
on R, then M > 0. 

Discussion You may recall the proof of the converse of this result from 
Example 7, Article 5.2; a simple direct proof by the choose method suf- 
ficed. In this case, however, the hypothesis has the form 

whereas the conclusion is the simple statement M > 0. Since the con- 
clusion is a simple statement (involving no quantifiers or connectives), 
the only direct method applicable to deriving it is proof by transitivity. 
But since the hypothesis is an "if.. . then" statement and so requires 
the assumption xl < x, in order to "activate" its conclusion, it may not 
be evident how to incorporate that hypothesis into such an argument. 

Solution to Example 3 Because of the difficulty just described, we will give 
a proof by contrapositive. Suppose M < 0. Let x, = 3 and x, = 5 and 
note that x, < x,. But since M 1 0 ,  then Mx, = 3M 2 5M = Mx,, so 
that 3M + B 2 5M + B, and thus f(3) 2 f(5). We have proved the exis- 
tence of real numbers x, and x, with x, < x,, but f (x,) 2 f (x,), thus 
proving the negation of the original hypothesis. 

EXAMPLE 4 Suppose that a set A (from a universal set U) has the property 
that A c B for all B E U. Prove that A = @. 

Solution Note again the simple logical form of the conclusion, compared 
to the hypothesis which like the hypothesis in Example 3, involves both 
the universal quantifier and implication arrow, the latter as part of the 
definition of "subset." We will proceed by contraposition and begin by 
assuming A # @. To contradict the hypothesis, we must prove that 
there exists a set B E 9 ( U )  such that A $ B. We take B = 0 and note 
that since A # @, there exists an element x in A. Since B = @, then 
x 4 B. Hence A $ B, as desired. 

Proof by contrapositive can be useful in deriving results whose hypo- 
thesis, although not necessarily of the form (Vx)(p(x) -, &)), is of a more 
complicated logical structure than the conclusion. 

EXAMPLE 5 Suppose that a is a real number satisfying the property 
(Vp > O)(la( < p). Prove that a = 0. 

Solution Suppose a # 0. Then flu1 > 0. Letting p = f lal, we note that 
clearly p > 0, and also, since 1 > f, then la1 = (l)(lal) > *la1 = that is, 
(3p > O)(lal > p) so that we have (3p > O)(lal 2 p), the logical negation of 
the hypothesis. 
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The result in Example 5 is of interest in its own right, since it is an 
important tool for proving uniqueness, in connection with limits. We will 
employ it in Article 6.3. 

In some situations in which a desired conclusion is of the form 
(Vx)(p(x) -+ q(x)), the relationship between this conclusion and the hypo- 
theses may be such as to make it advantageous to prove the equivalent 
form (Vx)(-q(x) -, -p(x)) of the conclusion instead. This situation oc- 
curred in Exercise 6(c), Article 5.2, as we now demonstrate. 

EXAMPLE 6 Prove that iff is increasing on an interval I, then f is one to 
one on I. 

Solution By definition of "one to one," we must show that if x, and x, are 
real numbers with f(x,) = f(x,), then x, = x,. Our hypothesis that f 
is increasing has, however, the reverse format, namely, if x, < x,, then 
f(x,) < f(x,). Thus it is easier for us to derive the conclusion by assum- 
ing x, # x2 and trying to prove f(x,) # f(x,). A division into cases 
presents itself immediately. If x, # x,, then either x, < x,, in which case 
f ( x J  < f ( ~ 2 )  SO fha t fb , )  Z f(x2), or x, > x,, so that f(x1) > f(x2) and 
again f (x ,) # f (x,), as desired. 

We could also have deduced the result in Example 6 using a full contra- 
position argument. That is, assume f is not one to one and prove that f 
cannot be increasing. This approach is left for Exercise 5(a). 

A very common application of proof by contrapositive arises when a 
theorem of the form (p A q) -, r is known, and we are asked to prove the 
corresponding statement of the form (p A - r) -+ - q. In fact, the two state- 
ment forms are logically equivalent [Exercise 9(a)], so that the latter state- 
ment can always be proved. In specific applications a brief and routine 
argument by contrapositive is the best approach, as the next example 
demonstrates. 

EXAMPLE 7 Suppose that a subset C of R x R is symmetric with respect to 
the y axis, but not with the origin. Use the result of Exercise 8(a), Article 
5.3, to prove that C is symmetric with respect to the x axis. 

Solution Suppose C were symmetric with respect to the x axis. By the 
cited exercise, since C- is symmetric with respect to both the x axis (by 
assumption) and the y axis (by hypothesis), then C is symmetric with 
respect to the origin. This establishes the negation of the hypothesis 
"but not with the origin" and so proves the theorem. 

At the outset of this article, overzealousness in applying indirect methods 
of proof was discouraged. Proof by contrapositive is particularly subject 
to overuse. The reason for this, perhaps, is that starting a proof is often a 
difficult step, and the approach "assume the conclusion false" is an easy 

1 

1 way of at least getting started. But this approach, when used instead of a 
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readily available direct argument, can lead nowhere or to a convoluted 
argument or at best to an argument that is not so well presented as it could 
be. In Exercise 15 you are asked to examine difficulties that can arise if the 
approach of contraposition is taken to theorems proved by direct methods 
earlier in the text. 

We conclude our consideration of proof by contrapositive with a re- 
minder that such a proof always begins with the assumption of the negation 
of the desired conclusion; it is never appropriate to begin a proof by assum- 
ing the negation of one or more of the hypotheses. 

PROOF BY CONTRADICTION 

This method of proof is based on the principle "if the negation of a state- 
ment leads to a logical impossibility, the statement must be true." Actually, 
proof by contradiction has already been employed at two earlier stages of 
the text. The more recent was in the preceding section; proof by contra- 
positive can be viewed as a special instance of proof by contradiction. In 
a proof by contrapositive that p implies q, we have p as a hypothesis and 
assume - q. If we can derive - p from - q, we then have p A -- p, a contra- 
diction. An earlier instance of proof by contradiction occurred in Article 
4.1 (Example 1 I), in connection with proofs that a given set equals the 
empty set. Here is another example in this category. 

EXAMPLE 8 Prove that if A and B are sets such that (B n A') u (B' n A) = 
B, then A = (a. [Recall Exercise 3(f), Article 5.1. How is that result 
related to the one just stated?] 

Solution Assume A # a, so that there exists x such that x E A. We will 
try to arrive at a contradiction. Clearly we must find some way to 
involve the set B in the argument; indeed, if the existence of this element 
x is going to lead to a contradiction, we will have to find some way to 
relate x to B. Now what can we say about this relationship? Do we 
know x E B, for example? No, we do not; nor do we know that x 4 B. 
What we do know is that either x E B or x 4 B (i.e., x E B'). Let us divide 
the argument into cases according to those two possibilities: 

Case I: If x E B, then either x E B n A' or x E B' n A, by the equation 
B = (B n A') u (B' n A). But x 4 B' n A, since x # B', so x E B n A', 
which means x E A'. Since x E A, we have the contradiction x E 
A n A' = 0. 

Case l l :  If x E B', then since x E A, we have x E B' n A. Since B' n A s 
(B' n A) u (B n A') = B, then x E B. Thus we have x E B n B' = 0 ,  
again a contradiction. 

Since both cases lead to a contradiction, and since these two cases 
are clearly exhaustive, our assumption A # 0 must be false. We may 
conclude A = 0 ,  as desired. 
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Two classic proofs by contradiction are the proofs that f i  is irrational 
and that there exist infinitely many primes. The latter will be held off until 
the next article; proof by contradiction is one of the primary methods of 
proving existence, part of the subject of that article. We consider the former 
in the next example. 

EXAMPLE 9 Prove that f i  is irrational; that is, there do not exist integers 
p and q such that (p/q)2 = 2. 

Solution Proceeding by contradiction, we suppose that such integers exist. 
Note that if any such pair of integers exists, as we suppose, then surely 
a pair (p, q) exists having no factors in common. Now 2 = (p/q)2 = 
(p2/q2) means that 2q2 = p2. Hence p2 is even. By Exercise 6(a), p is 
even. Hence we can express p as p = 2n, where n is an integer. Hence 
2q2 = p2 = (2n)2 = 4n2, so that q2 = 2n2. This means that q2 is even so 
that q is even, again by Exercise 6(a). Hence p and q are both even; but 
this contradicts the assumption that p and q have no factors in common. 
Thus a pair of integers of the type described at the outset must not exist, 
as desired. 

Exercises 
1. Let A, B, and C be sets. Prove: 

(a) A x @ = @  
(b) If A x B = A x C, then either A = (21 or B = C 
(c) If A x B = B x A, then either A = (21, B = (21, or A = B 
(d) If A x B = (21, then either A = 0 or B = (21 

*(e) (A x C) - (B x C) c (A - B) x C [recall Exercise 4(d), Article 6.11. 
(f) If A n B' = 0 ,  then A E B [recall Example 12, Article 4.1. How is the theo- 

rem of that example related to the result of this exercise?]. 
*(g) If A' u B = U, then A r B [recall Exercise 8(a), Article 4.1 and Exercise lqc), 

Article 3.21 
(h) If (A' v B) n (A u B') = U, then A = B [recall Exercise 3(g), Article 5.1 and 

Exercise 9(c), Article 3.21. 

2. Suppose it is known that if m, a, and b are integers such that m divides ab, and 
m and a have no factors in-common, then m divides b. Suppose also that it is 
known that if m is prime, then either mla or m has no factors in common with a. 
Use these facts to prove that if p, a, and b are integers such that p is prime and 
p 1 ab, then either p divides a or p divides b. 

3. (a) Verify, by using a truth table, the tautology 

(b) (i) Prove that if A, B, C, and D are nonempty sets such that A x B c C x D, 
I then A E C B c D. 
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(ii) Prove, by the choose method, that if A, B, and C are sets, then 
A u (B n C) E (A u B) n (A u C). 

(c) Describe the general approach you would take to prove these theorems: 

(i) If a subset S of R is compact, then S is closed and bounded. 
(ii) If A and B are sets such that A u B is finite, then A is finite and B 

is finite. 
(iii) The subset 2 2  of R consisting of all even integers is closed under 

addition multiplication. 

[Note: It is not necessary to know the meaning of technical terms, such as 
"bounded," in order to do (c).] 

4. (a) Verify the tautology 

[(PI + 41b(P2 -+ q2)I -+ [(PI vp2) -, (q1 v q2)I 
(b) Use the result in Example 1 to show that if x satisfies the equation 

x2 + 2x - 35 = 0, then either x = 5 or x = -7. 
(c) Prove that if x, a, and b are real numbers satisfying the equation xu = xb, then 

either x = 0 or a = b. (Use the result of Example 1.) 

5. (a) Give a proof by contrapositive that if a function f (mapping R to R) is 
increasing, then f is one to one. 

(b) Prove that if f(x) = Mx + B is one to one, then M # 0. 

6. (a) Prove that if m is an integer such that m2 is even, then m is even. 
(b) Prove that if m is an integer such that m2 is odd, then m is odd [recall 

Exercise 3(b), Article 6.11. 

7. It is a familiar property (transitivity) of equality of real numbers that if a = b 
and b = c, then a = c. Use this property to show that iff, g, and h are real-valued 
functions of a real variable with A = (x E R I f(x) # g(x)}, B = (x E R lg(x) # h(x)), 
and C = (x E Rl f(x) # h(x)}, then C G A u B. 

*8. [Continuation of Exercise 16(c), Article 6.11 Let f be a real-valued function 
defined on an open interval (a, b). Suppose f has a relative maximum at a point 
x, E (a, b); that is, suppose there exists 6 > 0 such that f(x,) > f(x) for every 
x E ( X ~  - 6, X, + 8). Suppose finally that f '(x,) exists. Prove that f '(x,) = 0. 

9. (a) Verify, by using a truth table, that [(p A q) + r] t, [(p A -- r) + -- q] is a 
tautology. 

(b) Suppose it is known that the sum of two rational numbers is rational. Prove 
that if x is rational and x + y is irrational, then y is irrational. Can we conclude 
y is irrational if we know that x and x + y are irrational? 

*(c) Given sets A, B, and C such that A is a subset of B and A is not a subset of C. 
Prove that B is not a subset of C. 

(d) If m, n, and p are integers such that m divides n and m does not divide p, prove 
that n does not divide p. 

(e) Prove that if S ,  and S2 are subsets of R such that S, is convex and S ,  n S,  is 
not convex, then S ,  is not convex (recall Exercise 9, Article 5.2). 

10. (a) Prove or disprove: If real numbers x and y are irrational, then x + y is 
irrational? xy is irrational? 
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(b) A subset S of R is said to be closed under addition if and only if x + y E S 
whenever x E S and y E S. Suppose the subset S of R is closed under addition 
and has the further property that -x E S whenever x E S. Prove that if x E S and 
y 4: S, then x + y $ S. (Note: Z and Q both satisfy the hypotheses of this theorem.) 

(c) A subset S of R is said to be closed under multiplication if and only if xy E S 
whenever x E S and y E S. Suppose the subset S of R is closed under multipli- 
cation and has the further property that l/x E S whenever x E S and x # 0. Prove 
that if x E S, x # 0, and y 4 S, then xy 4 S. (Note: Q satisfies the hypotheses of 
this theorem.) 

*(d) Use the result of Example 9, together with the result of (c), to show that, for any 
real number x, either & + x or ,h - x is irrational. 

(e) Assume it is known that ,h is irrational whenever the positive integer n is not 
a perfect square. Use this fact to prove that & + & is irrational. 

11. (a) [Continuation of Exercise 10(c), Article 6.11 Use proof by contrapositive to 
show that if a subset S of R is open, then its complement S' is closed. 

(b) Use (a) and Exercise 8(e), Article 6.1, to show that 0 is a closed subset of R. 
*(c) Prove that 0 is an open subset of R. 

(d) Prove that (25 is an interval in R. (Hint: Using the definition from Example 2, 
Article 5.2, consider what must be the case if 0 is not an interval.) 

12. Suppose that S is a linearly dependent subset of a vector space V and that 
S E T. Prove that T is linearly dependent [recall Exercise lqa), Article 5.21. 

13. Prove that if x and y are real numbers with y I x + p for every p > 0, then y I x. 

14. Suppose {x,} and {y,} are infinite sequences of real numbers such that x, + x, 
y, -+ y, and x, < y, for all n = 1,2,3, . . . . Prove that x I y. Is it possible to prove 
x < y? (Recall Exercise 20, Article 6.1.) 

15. Each of the following theorems was proved earlier in the text (either as an exer- 
cise or example) by direct methods. For each of them, set up a proof by contra- 
positive and compare the effectiveness of this approach with that of the corresponding 
direct proof. 

(a) If m, n, and p are integers such that m In and mlp, then ml(n + p). 
*(b) If A, B, and C are sets with A E B and B G C, then A c C. 
(c) I f A , B , a n d X a r e s e t s w i t h A n X c B n X a n d A n X ' c B n X ' , t h e n A ~ B .  

16. Suppose f and g are both functions defined on an open interval containing a, 
where a is a real number. Prove that if lirn,,, f(x) = L # 0 and lirn,,, g(x) = 0, 
then lirn,,, f(x)/g(x) does not exist (recall Exercise 18, Article 6.1). 

Existence and Uniqueness (Optional) 
In this article we consider how to prove two types of mathematical theorem: 

1. Prove that a t  least one object exists satisfying a given mathematical 
property (existence). 

2. Prove that a t  most one object exists satisfying a given mathematical 
property (uniqueness). 
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You may recall the notation (3!x)(p(x)) and the accompanying formal 
definition of "unique existence" from Exercise 9, Article 3.3. Specific in- 
stances of the themes of existence and uniqueness occur in a variety of 
mathematical settings, as the following example shows. 

EXAMPLE 1 (a) Show that there is a unique real solution to the equation 
x - 5 = (existence uniqueness; see Example 2). 

(b) Show that there exists an "upper bound" for the interval [0, 11 
(existence only; see Example 7). 

(c) Show that iff is a function defined on an open interval con- 
taining a point a, then lim,,, f (x), if it exists, is unique (uniqueness only; 
see Example 5). 

(d) Show that if m and n are integers, not both zero, then they have 
a unique greatest common divisor (existence and uniqueness; see Example 
10). 

(e) Show that there exists an infinite number of primes (existence 
only; see Example 9). 

Techniques of proof pertaining to these two themes are different; yet we 
treat them in the same article because, as parts (a) and (d) of Example 1 
illustrate, the two themes often occur together as two parts of a single 
problem, one part being the "flip side" of the other. Indeed, the dual theme 
of existence and uniqueness runs through mathematics at all levels, begin- 
ning in high school algebra. Another reason for treating them together 
is that sometimes the process by which uniqueness is proved provides the 
key to the proof of existence, as in the following example. 

EXAMPLE 2 Show that both the equations 7x - 5 = 0 and x - 5 = 
have unique real solutions. 

Solution Both these equations may be approached through normal al- 
gebraic manipulations, directed toward solving the equation, namely: 

7x - 5 = 0 and x - 5  = ,/o 
* 7x = 5 * (x - 5)2 = X + 7 
* x = +  * x 2 - l O x + 2 5 = x + 7  

=> x2 - 11x + 18 = O  
* (x - 9)(x - 2) = 0 

At first glance, the second equation appears to have two solutions, but 
substitution of both candidates into the original equation reveals that 
x = 2 does not satisfy the equation, since - 3 # &. This example illus- 
trates the general fact that the process of solving an equation algebra- 
ically never proves that any number actually solves the equation, and so, 
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in particular, never proves existence of a solution. The reasoning under- 
lying the two preceding derivations is that if x  is a solution to the given 
equation, then x  must equal $ in the first case, and either 2 or 9 in the 
second. That is, these numbers are the only candidates, or possible solu- 
tions. Existence is proved in this situation only when it is verified 
substitution that at least one of the candidates is an actual solution. In 
our examples substitution of x  = $ satisfies the first equation, while 
substitution of x  = 9 satisfies the second. On the other hand, the process 
of solving an equation may prove uniqueness, as it did for our first equa- 
tion. For the second equation, it was the process of solving the equation, 
together with the results of the substitution of the two candidates, that 
led to the conclusion of uniqueness. 

In Example 2 uniqueness is proved, in the concrete setting of an explicit 
equation, by showing that only a specific "named" object (i.e., the specific 
number x = $ in the first case; the number x  = 9 in the second) may have 
the desired property, namely, of solving the equation. In more abstract set- 
tings there are three other possible approaches to a proof of uniqueness. 
The most common is: Assume x ,  and x ,  are both objects satisfying the 
property p(x) . . ; prove that x ,  = x,. Another approach may be taken 
when we are given that p(a) is true for some specific a and are asked to 
prove that a is the only such object. In such a case we proceed by letting 
x  be any object satisfying p(x) and trying to prove x = a. A third approach 
to proving uniqueness is argument by contradiction. Each of these three 
approaches will be demonstrated in the following section. 

UNIQUENESS 

Our next three examples illustrate proofs of uniqueness in an abstract set- 
ting, that is, with no knowledge of a specific object a  for which p(a) is true. 
In each proof we adopt the approach: Assume that x ,  and x ,  are objects 
such that p(xl) and p(x2) both hold, and try to prove x ,  = x,. 

EXAMPLE 3 Recall from Exercise 10, Article 3.3, that a set Y  is called a 
complement of a set X if and only if X u Y  = U and X  n Y  = @. Prove 
that every set has at most one complement. 

Solution Note first that by using the words "at most one complement" 
rather than "has a unique complement," we are completely avoiding the 
question of existence in this example [see, however, Exercise 2(a)]. We 
approach this proof as follows: Given a set X ,  suppose Y1 and Y, are both 
complements of X .  We claim Y, = Y,. Now, by our assumption, we have 

X u Y , = X u Y , = U  and X n Y , = X n Y , = @  

We could prove Y, = Y, by proving mutual inclusion through the choose 
method. Instead, we note that 
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Y, = Y, n U = Y, n (X u Y,) 

= (Y, n X) u (Y, n Y,) 

= % u (Yl n Y2) 
= Y, n Y, 

so that Y, E Y,, by Example 9, Article 4.1. A completely analogous 
argument, with the roles of Y, and Y, reversed, shows Y, E Y,, so that 
we may conclude Y, = Y,, as desired. 

EXAMPLE 4 A real number u is called a least upper bound of a set S 5 R 
if and only if (i) x I u for all x E S and (ii) To every P > 0, there cor- 
responds y E S such that y > u - 8. Prove that a subset S of R has 
at most one least upper bound. 

Solution Suppose u, and u, are both least upper bounds for S. We claim 
u, = u, and will proceed to use an argument by contrapositive to prove 
it. If u, # u,, we may assume with no loss of generality that u, < u,. 
We will apply the technique of specialization to part (ii) of the definition, 
letting #I = Hu, - 24,). Then, by (ii), there exists y E S such that y > 
u2 - Q = u2 - 3(u2 - u,) = *(ul + u,) > *(ul + ul) = ul. But y > U, 

and y E S contradicts property (i) for u,. Thus u, = u,, as desired. With 
uniqueness thus established, we often denote the least upper bound of a 
set S, when it exists, by lub S. 0 

An important property of limit of a function at a point a is that such 
limits are unique when they exist, provided that f is defined in an open in- 
terval containing a. Our general approach to proving this uniqueness is 
the same abstract one taken in Examples 3 and 4. But due to the underlying 
complexity, involving the epsilon-delta definition of limit, of the assumption 
that L, and L, both satisfy the definition of L = lim,,, f (x), we must resort 
to a different approach to prove that L, = L,. Recall from Example 5, 
Article 6.2, that if a is a real number having the property (Vp > O)(lal c p), 
then a = 0. We use this result in the next example. 

EXAMPLE 5 Prove that if L, and L, are real numbers, both satisfying the 
definition of L = lim,,, f(x), where f is defined in an open interval con- 
taining a, then L, = L,. 

Solution Using the result of Example 5, Article 6.2, we attempt to show L, = 
L, by the following approach. Let p > 0 be given; we claim IL, - L,I < p. 
If we can prove this, we may conclude L, = L,, by the cited example. 
Now since L, = lim,,, f(x), then corresponding to any positive real 
number, and in particular to our given p divided by 2, there exists 6, > 0 
such that (f(x) - L , I  < 4 2  whenever 0 < (x - a( < 6,. Similarly for L,, 
there exists 6, > 0 such that 1 f (x) - L,( < p/2 whenever 0 -c Ix - a1 < 6,. 
Now since f is defined in some open interval containing a, there exists 
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a point xo in the domain off that is within both 6, and 6 ,  distance of 
a. For this xo, we may note that 

IL, - L2I = IL, - f@O) + D o )  - L2I 
5 ILl - f(x0)l + If(x0) - L2I 
= If(x0) - ~ l l  + If(x0) - L2I 

< ~ / 2  + P/2 

= P 
We have established that, for an arbitrary p > 0, IL, - L,I i p, so that 
L, = L2, as desired. 0 

Among the exercises [Exercise 6(b)], you will be asked to mimic the 
preceding proof to show that an infinite sequence has at most one limit. 
Note also that the result of Example 5 can be derived through an indirect 
argument that is quite worthwhile. In Exercise 6(a) you are asked to provide 
such a proof. 

In the next example we illustrate the type of uniqueness proof in which 
we have to prove that a specific named object a is the only object satisfying 
a given property p(x). 

EXAMPLE 6 Show that the empty set (25 is the only set W that may have 
the property that there exist distinct sets A and B such that A x W = 
B x W. 

Solution Suppose that W is an arbitrary set such that A x W = B x W 
for some pair of distinct sets A and B. We claim W = (25. Proceeding 
indirectly, we note that if W # 0 and A x W = B x W, then by Example 
9, Article 5.2, we may conclude A = B, contradicting our assumption. 
Thus W = (25, as claimed. 

Note that to prove the theorem "(25 is the only set W having the prop- 
erty . . . ," we must verify additionally that there do indeed exist distinct 
sets A and B such that A x (25 = B x (25. (This is the existence side of 
the existence-uniqueness duality.) Of course, this is true since A x 0 = 
B x 0 = 0 for any sets A and B, so that we may, for example, let A = 

(1) and B = (2). 
Proofs of uniqueness similar in type to the one in Example 6 are found 

in Exercises 3(a, b), 4, and qc), among others. 

EXISTENCE 

There are essentially two elementary approaches to proving existence of an 
object satisfying a given property or collection of properties. One is the 
direct approach; we prove existence by producing an object of the desired 
type. In many cases we produce such an object by naming one explicitly, 
as in Examples 7 and 8. Existence proofs likely to be encountered by under- 
graduates in which this can be done are often of the easier variety. In more 
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advanced settings we often give a direct proof of existence with reference 
to some abstract axiom asserting existence. We see a demonstration of this 
approach in Example 10. 

The other approach to proving existence is indirect and based on the 
method of reductio ad absurdum. We begin such an argument with an as- 
sumption of nonexistence and try to arrive at a contradiction. This approach 
is demonstrated in Example 9. 

EXAMPLE 7 A subset S of R is said to be bounded above in R if and only 
if there exists a real number u such that x 5 u for all x E S. A number 
u with this property is called an upper bound for S. Prove that the inter- 
val [O,l] is bounded above in R. 

Solution Note that a least upper bound of S (cf., Example 4) is, by virtue 
of part (i) of its definition, an upper bound for S. Now clearly the real 
number 2 has the property that x g 2 for all x E [0,1]. In fact, any real 
number not less than 1 could be chosen as u. This is a case in which 
an object of the desired type, whose existence we have just demonstrated, 
is highly nonunique. 0 

EXAMPLE 8 Let f be a function mapping real numbers to real numbers 
and let A be a subset of the domain off. We say that a real number y 
is in the image of A under f ,  abbreviated y E f(A), if and only if there 
exists x E A such that y = f(x). Prove that 4 E f(A), where f(x) = x2 
and A = [O,4]. 

Solution To prove 4 E f (A), we must produce x E [O, 41 such that 4 = 
f (x) = x2. Since 22 = 4 and 2 E [O, 41, we let x = 2. Note that in this 
case the, object we have produced to prove existence is also unique, as 
you should verify. 0 

A famous example of an indirect proof of existence is provided in Exam- 
ple 9. 

EXAMPLE 9 Prove that there exist infinitely many primes. 

Solution If the desired result were false, we could list all the primes; suppose 
that p,, p2, . . . , p, is such a listing. We arrive at a contradiction by con- 
structing a number that is not in the list which must be prime. Namely, 
let p = (plp2 .: . p,) + 1. Clearly each pi divides the product p,p, - . p,; 
hence none of the pi can divide p. For if a certain pi divided both p and 
plp2 . . p,, then it would divide their difference, which is 1, and con- 
sequently would equal 1, a contradiction since 1 is not prime. Since p 
is not divisible by any prime, it must itself be prime, thus contradicting 
the assumption that all primes had been listed. 

Many of the more difficult and sophisticated (i.e., nonelementary) direct 
proofs of existence are based on fundamental axioms asserting existence 
that have been adopted as a part of the foundations of modern mathematics. 
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One such axiom is the least upper bound axiom for R, stated in Exercise 10. 
Another axiom is the well-ordering principle for the set N of all positive 
integers. This axiom asserts that every nonempty subset of N has a smallest 
element. One interesting and nontrivial application of the well-ordering 
principle is the proof that any pair of integers m and n, not both zero, have 
a greatest common divisor. 

EXAMPLE 10 An integer d is called a greatest common divisor of integers 
m and n if and only if (i) d 2 0, (ii) d 1 m and d 1 n, and (iii) for all c E Z, if 
c 1 m and c 1 n, then c 1 d. Prove that if m and n are integers, not both zero, 
then a greatest common divisor of m and n exists. 

Solution Consider the set S consisting of all integers of the form mx + ny, 
where x and y are integers. Clearly S must contain some positive integers 
and so, by the well-ordering principle, must contain a smallest positive 
integer, let us call it d. Since d E S, then d = mx, + ny, for some integers 
x, and y,. Our claim is that d satisfies conditions (i), (ii), and (iii) of the 
definition of greatest common divisor of m and n. 

Now property (i) is true by definition of d and (iii) is proved easily as 
follows. If c 1 m and c 1 n, then c 1 mx, and c 1 ny, so that c l(mx, + ny,) = d, 
thus cld (recall the results of Example 2 and Exercise 2, Article 6.1). 
Property (ii) is the most difficult to prove, since its proof depends on the 
well-known division algorithm for the set Z of integers (which states 
"given any integers m and d with d > 0, there exist unique integers q 
and r such that m = dq + r, with 0 5 r < d.") To prove that d lm, apply 
this theorem to the integers m and d at hand to get integers q and r such 
that m = dq + r, 0 I r < d. But then m = (mx, + ny,)q + r, so that r = 
m(l - x,q) + n(-qy,), which is the appropriate form for membership in 
S. Hence r E S; but 0 I r < d and d is the smallest positive element of 
S, so that r = 0. Hence m = dq so that d lm, as desired. An identical 
argument establishes that d 1 n. 

We conclude that this d, constructed from the set S by means of the 
well-ordering principle, is a greatest common divisor of m and n. 

-- - In Exercise 9 you are asked to show that the greatest common divisor 
of two integers is unique. If m and n are integers, not both zero, this unique 
positive integer corresponding to m and n is usually denoted by the symbol 
(m, 4. 

Study the proof in Example 10 carefully. The proof is, on the one hand, 
direct [i.e., (m, n) is derived directly from m and n, without recourse to any 
argument by indirect method] and yet is abstract, in that an actual greatest 
common divisor for the given m and n is not produced explicitly [i.e., the 
proof does not tell us how to calculate the value of (m, n) for given specific 
values of m and n.]. The crux of the proof is the idea of considering the 
set S and applying the well-ordering principle to it. Keep this approach 
in mind when doing exercises such as 9(d), 10(a), and 1 l(a). 
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The distinction between the types of existence proof given in Examples 
9 and 10 (existence of an object proved, but no rule provided in the proof 
telling us how to calculate the object in particular cases) and those in Exam- 
ples 7 and 8 is the basis of a famous controversy in mathematics that peaked 
in the early part of this century, but has recently reemerged. In brief, an 
existence proof in which we produce the object in question explicitly (we 
omit a detailed discussion of exactly what this means) is said to be a con- 
structive proof. A school of mathematicians known as intuitionists, founded 
by the Dutch mathematician L. E. J. Brouwer (1 88 1 - l966), promulgated 
the belief that the only allowable proofs of existence should be constructive 
proofs. In particular, proofs by contradiction and proofs relying on such 
axioms as the well-ordering principle (cf., Examples 9 and 10) should not 
be regarded as legitimate. The intuitionist point of view failed to gain the 
influence held by the formalist school, led by the great German mathema- 
tician David Hilbert (1862-1943), whose program provided the framework 
in which most of modern mathematics has developed. The debate still 
rages however, as you can discover for yourself by consulting the January 
1985 issue of the College Mathematics Journal. In that issue, a forum led 
by Dr. Stephen B. Maurer and entitled "The algorithmic way of life is best" 
provides ample evidence not only that mathematics is not a "closed book," 
but also that it is a developing field about whose major directions reason- 
able and well-informed people can disagree strongly. 

Exercises 

1. (a) Prove that there exists a unique negative real number x satisfying the 
equation 44- = 2. 

(b) Prove that there does not exist a real number x satisfying the equation 
J O + J 0 = 4 .  

*(c) Prove that the equation = x + 8 has a unique real solution. 

(d) Prove that the equation 4- = x + 5 has a unique real solution. 

2. (a) Recall from Example 3 the definition of a complement of a set. Prove that 
every set has at least one complement. Conclude from Example 3 that every set 
has a unique complement. 

(b) Given sets A and B from a universal set U, a subset C of U is called a com- 
plement of A relative to B (or a relative complement of A in B) if and only if A u C = 
A u B and A n C = a. Prove that, given any sets A and B, A has a unique 
relative complement in B. 

3. (a) It is an axiom (additive identity axiom) for the real number system that there 
exists a real number, denoted 0, having the property that x + 0 = 0 + x = x for 
all x E R. Prove that zero is the only real number y 
x + y = y + x = x for each real number x. 

(b) Another axiom for R (multiplicative identity axiom) 
real number, denoted 1, such that x . 1 = 1 . x = x for 
the only real number having this property. 

having the property that 

asserts the existence of a 
all x E R. Prove that 1 is 
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(c) The additive inverse axiom for R states that, corresponding to every x E R, there 
is a real number y such that x + y = y + x = 0. Prove that this y is uniquely 
determined by x. (Use the fact that, for any real numbers a, b, and c, if a = b, then 
c + a = c + b.) We denote this unique value of y by -x. 

(d) The multiplicative inverse axiom for R states that, corresponding to any non- 
zero x E R, there is a real number y such that xy = yx = 1. Prove that this y is 
uniquely determined by the given nonzero x. (Use the fact that, for any real 
numbers a, b, and c, if a = b, then ca = cb.) We denote this unique value of y 
by x-'. 

4. (a) Prove that 0 is the only real number x satisfying the statement ax = x for all 
a E R. [Assume the theorem a - 0 = 0 for all a E R. (Hint: Use specialization.)] 

*(b) Prove that 0 is the only subset X of a universal set U satisfying the state- 
ment A n X = X for all sets A s U. (Assume that A n (25 = 0 for all sets 
A c U.) 

(c) Prove that 0 is the only subset X of a universal set U satisfying the state- 
ment A u X = A for all sets A = U. (Assume that A u 0 = A for all sets 
A E U.) 

5. (a) In Example 3, Article 6.1, we defined invertibility for an n x n matrix A. 
Show that if an n x n matrix A is invertible, then an associated matrix B such 
that AB = BA = I ,  is unique. We denote this uniquely determined matrix by 
A-  I .  

(b) Prove that if A = (aij), x 2  has a,,a,, - a,,a,, # 0, then A is invertible. 

(c) Prove that the 2 x 2 matrix (i is not invertible. 

6. (a) Give an indirect proof of the uniqueness of lim,,, f(x), where f is defined 
in an open interval containing a. That is, prove that if L, satisfies the epsilon- 
delta definition of L = lim,,, f (x), and L, # L,, then L, cannot satisfy this 
definition. 

(b) Recall from Example 5, Article 6.1 the definition of x = limn,, x,. Mimic the 
proof given in Example 5 to show that a limit of a convergent sequence is unique. 

*(c) Recall from Exercise 21, Article 6.1, the definition of cluster point of a sequence. 
Prove that if the sequence {x,) converges to the real number x, then this x is the 
unique cluster point of the sequence. 

7. (a) Prove that the set {llnl n = 1,2,3, . . .) is bounded above in R. (cf., Ex- 
.. -- - ample 7). 

(b) A subset S of R is said to be bounded below in R if and only if there exists a real 
number L such that L I x for all x E S. Prove that if S is bounded above in R, 
then the set -S = {x E RI -x E S) is bounded below in R. 

*(c) Prove that if S, and S, are both bounded above in R, then S, u S, is bounded 
above in R. 

(d) A subset S of R is said to be bounded in R if and only if there exists M > 0 
such that 1x1 5 M for all x E S. Prove that S is bounded in R if and only if S is 
bounded above and bounded below in R. 

(e) Prove that if (x,) is a convergent sequence of real numbers, then the set 
{x,, x,, . . .) is a bounded set. 

8. (a) Let f (x) = sin x and A = [- n/4,7~/4]. Prove that a E f (A). 



(b) Let f be a function that maps real numbers to real numbers, and let A and B 
be subsets of the domain off. Prove that f (A n B) G f (A) n f (B): Give an ex- 
ample to show that the reverse inclusion need not hold. 

(c) Under the assumptions of (b), prove that f (A u B) = f (A) u f  (B). 
(d) Under the assumptions of (b), prove that if A z B, then f(A) z f(B). 

9. In Example 10 the well-ordering principle for the set N of all positive integers 
was introduced and used to prove the existence of a greatest common divisor (m, n) 
for any integers m and n, not both zero. 

(a) Prove that if m and n are integers, not both zero, then they have a unique 
greatest common divisor. 

(b) Use the proof in Example 10 to show that if d = (m, n), then there exist integers 
x and y such that d = mx + ny. 

(c) Use the result of (b) to show that if a, b, and c are integers such that a 1 bc and 
(a, b) = 1, then a lc (recall Exercise 2, Article 6.2 and Exercise 2, Article 6.1). 

(d) Use the well-ordering principle to prove that if S is a subset of the set N of 
all positive integers satisfying these two properties: (i) 1 E S and (ii) for all m E N, 
if m E S, then m + 1 E S; then S = N. This is known as the principle of mathe- 
matical induction (recall Article 5.4). (Hint: if S # N, then S is a proper subset 
of N so that N - S is a nonempty subset of N.) 

10. One of the basic properties of the real number system is the least upper bound 
axiom: Every nonempty subset of R that is bounded above in R has a least upper 
bound in R (cf., Examples 4 and 7). We will see in Article 9.3 that this axiom is 
one of the basic distinguishing features between the real and rational number sys- 
tems; that is, Q fails to satisfy this axiom. 

"(a) Use the least upper bound axiom to derive the Archimedean property: If 
a and b are any positive real numbers, there exists a positive integer n such 
that b < na. (Hint: Suppose the conclusion is false and consider the set S = 
{nu ( n E N) .) 

(b) Use the result in (a) to prove that the sequence {l/n) converges to zero. (Note: 
This result has previously been assumed in exercises such as Exercise 20, Article 
6.1.) 

(c) Use the result in (a) to prove that the set N of all positive integers is not 
bounded above in R. 

(d) Use the least upper bound axiom and ideas suggested by Exercise 7(b) to prove 
that a nonempty set of real numbers that is bounded below in R has a greatest 
lower bound in R. (First formulate, on the basis of the definition of "least upper 
bound," in Example 4, an appropriate definition of "greatest lower bound.") 

*(e) Recall from Exercise 9, Article 6.1, the definition of "point of accumulation of 
a set S." Show that if u = lub S and u $ S, then u is a point of accumulation of 
S. Give an example to show that lub S need not in general be a point of accumu- 
lation of S. 

11. A basic theorem of mathematical analysis asserts that iff is a function that is 
continuous on a closed and bounded interval [a, b], then f  attains both an absolute 
maximum and minimum value on that interval. The first of these means that there 
exists m E [a, b] such that f (m)  2 f (x )  for all x E [a, b]. You should formulate the 
second definition. 
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(a) Use this theorem, together with the result of Exercise 8, Article 6.2, to prove 
Rolle's theorem: Iff is continuous on [a, b], differentiable on (a, b), and if f(a) = 
f (b) = 0, then there exists a point c E (a, b) such that f '(c) = 0. 

(b) Consider the polynomial function f(x) = x4 + 3x + 1. Use Rolle's theorem to 
prove that the equation f(x) = 0 has at most one real root between a = - 2 and 
b = - 1. What theorem of elementary calculus guarantees that this equation has 
at least one root between the given values of a and b? 

(c) Use Rolle's theorem to prove the mean value theorem: If f is continuous 
on [a, b] and differentiable on (a, b), then there exists a point c E (a, b) such 
that f '(c) = (f (b) - f (a))/(b - a). [Hint: Apply Rolle's theorem to the function 
F(x) = f(x) - G(x), where G(x) is the linear function determined by the points 
(a, f(a)) and (b, f(b)). First, draw a picture and find the specific defining rule 
for G(x).] 

12. (Continuation of Exercise 11) (a) Use the mean value theorem to prove that 
iff '  is identically zero on an interval I, then f is constant on I. 

(b) Use the result in (a) to prove that iff '  = g' on an interval I, then there exists 
a constant c such that f = g + c on I. 

(c) Use the mean value theorem to prove that i f f '  exists on an open interval 
(a, b) and if f '  is bounded on that interval [i.e., there exists M > 0 such that 
I f'(x)l I M for all x E (a, b)], then f is uniformly continuous on (a, b) (recall 
Exercise 7, Article 4.3). 

13. Frequently in mathematics, rather than proving that a certain set of properties 
is satisfied uniquely by a given object, the best we can do is prove that the objects 
satisfying the given conditions fall into certain very specific categories. Theorems 
of this type are usually called classijication theorems. One example of a classification 
theorem from elementary calculus involves the notion of antiderivative, or indefinite 
integral. Recall that F is an antiderivative, or indefinite integral, of a function f 
on an interval I ,  denoted F = j f(x)dx, if and only if Ft(x) = f(x) for all x E I. 

(a)  Prove that if F and G are both indefinite integrals of a function f on an inter- 
val I, then F and G differ by some constant on I. 

(b) Prove that if y = f (x) satisfies the differential equation y' + ay = 0 for all x E R, 
then y = Ax) = ce-"" for some constant c. (Hint: Multiply the given equation 
by e"".) 

(c) Prove that there exists a unique function y = f(x) satisfying both the differ- 
ential equation y' - 3y = 0 on R and the initial condition y(0) = 5. 

//--- 

The subject of diflerential equations, from which (b) and (c) are simple examples, is 
an area of mathematics in which the dual themes of existence and uniqueness are 
particularly prominent. - 

6.4 Preview of Additional Advanced 
Methods of Proof (Optional) 

In the first part of this text we have attempted systematically t o  lay a 
foundation by which you might more easily and quickly be able to  obtain 
a measure of competence in reading and writing proofs, a n  important aspect 
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of the mathematician's craft. In all likelihood, if you are thoroughly ac- 
quainted with, and well practiced in, the methods of proof covered thus 
far, you are well along the way to a command of basic proof-writing skills. 

Several other advanced methods of proof are not covered in detail in 
this text. These methods, including counting arguments, compactness argu- 
ments, and arguments using various transfinite processes, are general in the 
sense that they have application to a wide variety of topics, yet are more 
specialized and less basic than the methods of proof on which we've fo- 
cused. Their applications are found primarily at the senior and graduate 
levels, and their very introduction requires, for proper illustration, mathe- 
matical background material that is a normal part of the junior-senior 
curriculum and is, in any case, outside the domain of this text. In the re- 
mainder of this article, however, we will preview these methods briefly. It 
is not intended that you attempt, much less master, such proofs at this 
point. Rather the purpose of this section is to heighten your awareness 
that more advanced methods of proof exist and to indicate stages of future 
study where such methods are likely to be encountered. 

The following introduction is divided into two major categories: proofs 
involving finiteness and methods based on transfinite processes. 

PROOFS INVOLVING FINITENESS 

Counting arguments. Proofs involving counting methods are especially 
prominent in relation to finite algebraic structures, particularly finite groups 
and rings. You will encounter, in almost any introductory abstract algebra 
course, results such as Lagrange's theorem ("the order of any subgroup of 
a finite group divides the order of the group"), the theorem asserting that 
"any finite integral domain is a field"; the third Sylow theorem of group 
theory (whose rather technical statement we omit); and the theorem as- 
serting that "the set of nonzero elements of the ring of integers modulo n 
that are not divisors of zero forms a group under multiplication modulo 
n," whose proofs employ counting methods. A basic counting principle 
that has relevance for several of the preceding proofs is the so-called pigeon- 
hole principle: If m objects are distributed among n places, where m > n, 
then at least one place must receive more than one object. 

Compactness arguments. Just as counting arguments occur primarily in 
relation to algebra, compactness arguments occur in the domain of analysis 
and topology. A student is likely to encounter the notion of compactness 
for the first time in a course in advanced calculus, in the form of the Heine- 
Bore1 theorem. This theorem, in its application to the real line, asserts that 
any closed and bounded interval J in R has the following property, known 
as compactness: "Any collection of open intervals that cover J has a finite 
subcollection that also covers J." This admittedly technical property is the 
theoretical basis for the proofs of a pair of theorems whose statements may 
already be familiar to you: "A continuous function on a closed and bounded 
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interval is bounded on that interval" (which has as a corollary the result 
that a continuous function on a closed and bounded interval attains an 
absolute maximum and minimum value on that interval), and "a continuous 
function on a closed and bounded interval is unvormly continuous on that 
interval." 

TRANSFINITE PROCESSES 

There exists, among the axioms of set theory that constitute what is usually 
called the foundations of modern mathematics, a collection of equivalent 
statements that, because of their logical equivalence, constitute a single 
axiom of set theory. This axiom, known in its various equivalent forms 
as the axiom of choice, the principle of transfinite induction, the Hausdorf 
maximal principle, Tukey's lemma, and perhaps most commonly, Zorn's 
lemma, is widely used in existence proofs, where the goal is to prove the 
existence of a "maximal" structure of some kind. Students are likely to 
encounter applications of this axiom for the first time at the senior or begin- 
ning graduate level. At a rather advanced stage of an introductory topology 
course, Zorn's lemma is employed in the proof of the famous theorem of 
Tychonoff, concerning the product of compact spaces. In abstract algebra 
a Zorn's lemma argument is used to show that every field has an algebra- 
ically closed extension field, while in linear algebra, the existence of a Hamel 
basis for any vector space is proved by using the same general approach. 
We note for your information the statement of Zorn's lemma: "A partially 
ordered set S having the property that every chain in S is bounded above 
in S has at least one maximal element." We mention also that this text 
provides an introduction to partially ordered sets in Article 7.4 and a brief 
consideration of the axiom of choice at the conclusion of Article 8.4. 

Those of you who are motivated by the preceding discussion to pursue 
at this stage one or more of the topics alluded to should consult, as appro- 
priate, any of a number of introductory texts in abstract algebra, topology, 
and mathematical analysis. 
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and Partial Orderings 
CHAPTER 7 

In the next two chapters we study three related, yet diverse, mathematical 
concepts. Equivalence relations and partial orderings are studied in the 
present chapter, while the topic functions/mappings is covered in Chapter 
8. You have undoubtedly had considerable experience with functions, but 
the terms "equivalence relation" and "partial ordering" are likely to be un- 
familiar. In spite of this, most of you will probably feel more "at home" 
with the latter two concepts than you might anticipate, while feeling less 
familiar than expected with the approach to functions and mappings in 
Chapter 8. An abstract treatment of functions/mappings, although dealing 
with a familiar concept, has a strikingly different emphasis from that seen 
in precalculus and elementary calculus courses. On the other hand, equiva- 
lence relations and partial orderings, even though probably new to you as 
concepts, generalize familiar mathematical relationships. 

The most basic example of an equivalence relation is the relationship 
"equals." The relationships of equality between numbers, equality between 
sets, and indeed equality between any kinds of objects, are all examples of 
equivalence relations. More generally, equivalence relations are the mathe- 
matician's way of describing situations in which two objects can, in some 
sense, be considered and treated as "the same." Viewing different objects 
as indistinguishable, from some specific vantage point, is common, both 
within and outside mathematics. As one example, high school geometry 
students with no knowledge of equivalence relations find it natural to regard 
two congruent triangles as identical in the context of Euclidean plane ge- 
ometry. At even more elementary levels, students are trained to regard pairs 
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of fractions such as $ and & as the same for purposes of calculation. In 
a nonmathematical sphere everyone is familiar with the idea that two coins 
minted for circulation are the same if and only if they are of the same denom- 
ination, for example, both pennies, both quarters, and so on, and "differ- 
ent" otherwise. Hence, although two dimes are different as physical entities 
(and may, e.g., be different when viewed through the eyes of a coin collector), 
they are the same with respect to their value as money, the criterion we 
normally have in mind when dealing with coins. This fact, in turn, affects 
our attitude toward coins; when dealing with coins purely as money, we 
care not about individual coins, but only about classes of coins (e.g., the 
class of nickels, the class of half-dollars, etc.). The primary role of an indi- 
vidual coin is that of arbitrary representative of the class containing it. 

The mathematically rigorous reason that we can "identify" distinct ob- 
jects in examples such as the preceding three is that there is an equivalence 
relation implicitly underlying each. Because we are able to regard distinct 
objects as indistinguishable by means of equivalence relations, it is possible 
to study sets of mathematical objects by dealing with subsets consisting of 
elements identified with one another by the relation, known as equivalence 
classes, rather than with individual elements. Sets of equivalence classes, 
in turn, are fundamental to some of the most important constructions in 
mathematics. In Chapter 10 we deal with the questions, "What are the 
rational numbers?" and "What are the real numbers?' using an approach 
based on equivalence classes. 

The concept of partial ordering is a generalization of the relationship 
"less than or equal to" on the set of real numbers. Whenever a partial order- 
ing on a set of objects has been defined, some idea of "relative size" of some 
or all of the objects in the set is implied. The notion of partial ordering is 
the foundation of a number of theories falling under the heading "ordered 
algebraic structures" in advanced mathematics. Our treatment gives a very 
brief introduction to such theories. 

The common thread linking the concepts of equivalence relation, partial 
ordering, and function/mapping is the notion of relation between two sets. 
We begin by focusing on that concept. 

Relations 

The concept of relation from a set A to a set B is based on the concept of 
ordered pair (x, y) and, more specifically, the idea of the cartesian product 
A x B of two sets A and B. You may wish to reread some of the relevant 
material in Article 1.2 and recall Exercise 1, Article 5.2; Exercise 4, Article 
6.1; and Exercise 1, Article 6.2. Leaving aside, as in Chapter 1, a formal 
definition of "ordered pair" (given in Exercise 10, Article 4.1), we recall here 
the criteria for equality of ordered pairs and for membership of an object 
in the cartesian product of two sets. 
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D E F I N I T I O N  1 

(a) We say that two ordered pairs of objects (a, b) and (y, z) are equal, 
denoted (a, b)  = (y, z) ,  if and only if a = y and b = z. 

(b) Given sets A  and B, we say that an object x is an element of the cartesian 
product A  x  B if and only if there exist a E A  and b  E B such that x = (a, b). 

In the following theorems we gather properties of cartesian product, 
some of which were listed as exercises earlier in the text, and provide proofs 
in selected cases. 

THEOREM 1 
Let W, X, Y, and Z  be arbitrary sets. Then: 

(a) ( X u Y ) x Z = ( X x Z ) u ( Y x Z )  
(b) ( X n Y ) x Z = ( X x Z ) n ( Y x Z )  
(c) ( X - Y ) x Z = ( X x Z ) - ( Y X Z )  
(d) ( W x X ) n ( Y x Z ) = ( W n  Y) x ( X n Z )  

(e) ( W x  X ) u ( Y x Z ) = ( W u  Y) x  ( X u Z )  
(f) If W s X a n d  Y=Z, then W x  Y s X x Z .  

Partial proof All except (f) are statements of set equality and so may be 
proved by a mutual inclusion approach. In some cases, such as (a) and 
(b), it is possible to write a string of valid biconditional statements (as 
in Example 10, Article 4.1). We will take the latter approach to prove (a). 

(a) An object a is an element of (X u Y) x Z - 
a = (x, z) for some objects x E X u Y and z E Z e 

a = (x, z) where either x E X or x E Y, and z E Z o 

a = (x, z) where either x E X and z E 2 ,  or x E Y and z E Z - 
either a E X x Z or a E Y x Z e> 

(c) We will prove that (X x 2) - (Y x 2 )  G (X - Y) x 2 ,  leaving the 
reverse inclusion to you. Suppose a E (X x Z) - (Y x 2). Since a E X x 2, 
then a = (x, z) where x E X and z E Z. To show a E (X - Y) x Z, we need 
show only that x E X - Y. We proceed indirectly. If x 4 X - Y, then since 
x E X, we would have x E X n Y, due to the theorem X = (X n Y) u 
( X n  Y ' )=(Xn Y ) u ( X -  Y ) , s o t h a t x ~ Y .  B u t t h e n x ~ Y a n d z ~ Z s o  
that a = (x, z) E Y x 2. But this contradicts the assumption a E (X x 2) - 
(Y  x 2). 0 

THEOREM 2 
Let A, B, and C be arbitrary sets. Then: 

(a) A x @ = @ x A = @  
(6) If A  x  B = A  x  C and A  # 0, then B = C. 
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(c) If A x B = B x A, A # 0, B # a, then A = B 
(d) If A x B = 0, then either A = 0 or B = 0 

Proof (a) Suppose x E A x 0 .  Then there exist objects a E A and 6 E 0 
such that x = (a, 6). But the statement "there exists 6 E 0" is false, so 
we have arrived at a contradiction. 

(b) Recall Example 9, Article 5.2. 
(c) To prove A G B, let x E A; we must prove x E B. Since B # 0 ,  

there must exist y E B. Since x E A and y E B, then (x, y) E A x B. Since 
A x B = B x A, then (x, y) E B x A. But this implies, among other 
things, that x E B, as desired. The proof is completed by proving B c A 
in an analogous fashion. 

(d) Suppose the conclusion is false; that is, suppose A # 0 and 
B # 0 .  Then there exist a E A and b E B. But then (a, 6) E A x B, con- 
tradicting the hypothesis A x B = @. 0 

Note that (a) and (d) of Theorem 2 are converses of each other. Part (b) 
may be thought of as a cancellation property; (c) states that the cartesian 
product is a highly noncommutative operation. 

D E F I N I T I O N  2 

Let A and B be sets. A relation from A to 6 is any subset R of A x B. If A = 6, we 
say that R is a relation on A. 

The concept "relation" is extraordinarily general. Examples of relations 
are very easy to come by. On the other hand, we should not expect, in the 
absence of any assumptions about specific properties of a relation, that 
many general statements, that is, theorems, can be proved about relations. 
As we will soon see, it is only when we look at specific types of relations 
that any mathematically interesting theory begins to develop. Since a rela- 
tion is among other things a set, specific relations may be described by 
either the roster method or the rule method. As was the case in describing 
general sets, a rule describing a relation must have the property that, given 
an ordered pair (x, y), we must be able to determine, by the rule, whether 
or not (x, y) lies in the relation. Relati~ns having infinitely many ordered 
pairs must, of course, be described by the rule method. A number of rela- 
tions are presented in the following examples. 

EXAMPLE 1 Let A = {1,2, 3) and B = {w,x, y,z). Then R ,  = {(l,x), 
(2, Y) ,  (3,4), R2 = ((2, w), (2, x), (2, Y), (2941, and R ,  = {(I, z), (2, 4, 
(3, z)} are relations from A to B. The set R, = {(x, I), (x, 3)) is a rela- 
tion from B to A. The entire set A x B is itself a relation from A to 
B, as is the empty set 0 .  The relation R2 may be described by the rule 
method, namely, R ,  = ( ( 2 , b ) l b ~  B} or R,  = ((a, b)la = 2 and b~ B}. 

' 

You should write a description of R,, by using the rule method. 0 
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EXAMPLE 2 Define a relation R5 on R by R5 = {(x, y) E R x R 13 < x < 8, 
-2 I y < 4). This relation may be pictured as a rectangle in the xy 
plane, open on the left and top, closed on the right and bottom, as pic- 
tured in Figure 7.1. You should draw a pictorial representation of the 
relation on R, ((x, y) 1(x2/9) + (y2/49) t 1). 

EXAMPLE 3 Define reladions R,, R,, and R, on the set H of all human 
beings living in the year 1987 by R, = {(x, y)lx is older than y or the 
same age as y}, R,  = ((x, y)l y is a biological parent of x}, and R,  = 
{(x, y)lx and y are both male or both female). 

EXAMPLE 4 Define relations R,, R,,, and R, , on Z by the rules R, = 
((m, n)lm and n are both even or both odd}, R,, = ((m, n)lm and n are 
both nonnegative}, and R, , = {(m, n) 1 m is less than or equal to n). 0 

EXAMPLE 5 Define relations R,,, R13, and R14 on Z by the rules R,, = 
{(m, n)lm divides n) (recall the paragraph preceding Example 7, Article 
5.4), R13 = ((m, n)15 divides the difference m - n of m and n), and 
R,, = ((m, n) ( m equals n). 0 

EXAMPLE 6 Let X be any finite set and let A = P(X). Define relations 
R,,, R16, and R, ,  on A by R,, = ((M, N)IM is a subset of N), R16 = 
((M, N)I M and N are disjoint), and R,, = ((M, N)I M and N have the 
same number of elements). 0 

A common way of viewing a relation is from a dynamic, rather than a 
static, point of view. Frequently, we think of a relation not primarili as a 
set of ordered pairs, but rather, as a relationship, where the relationship 
exists between precisely those pairs of objects that occur together in an 

Y Figure 7.1 Graphic representation of the 
relation R,  = {(x, y)13 < x I 8, 
-2 < y < 4). 

r----- 
I 
I 
I 
I 
I 

X 
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ordered pair contained in the relation. Using this approach, we might refer 
to R , ,  as the subset relation on the set A. We might agree to name this 
relation by the symbol c and write M c N instead of (M, N) E R , ,  to 
symbolize that the sets M and N are related by the relation. R13 is usually 
called the relation congruence modulo 5 on 2, and we customarily write 
13 r 18 mod 5, rather than (13, 18) E R,  ,. More generally, we often deal 
with a generic relation R  by using the notation x y, rather than (x, y) E R. 
Also, it is common to identify a generic relation by some symbol, such as 
--, rather than by a letter, so that x - y means the same thing as (x, y) E R. 
The relation "equality" on any set X (as in R14) can be described by either 
the symbol = or by the notation I, = ((x, x)lx E X I .  This relation is often 
referred to as the identity relation on X. 

We next consider four properties that a given relation may, or may fail 
to, possess. These properties are fundamental to the definitions of equiva- 
lence relation and partial ordering, as we will see in Articles 7.2 and 7.4. 

DEFINIT ION 3 
Let A be a set and R a relation on A. We say that: 

(a) R is reflexive on A if and only if x R x for all X E  A [in symbols, 

(Vx E A)( (x, X) E R)1. 
(b) R is symmetric if and only if, for every x, y E A, if x R y, then y R x [in symbols, 

(QXEA)(QYEA)( (X,  y) E R + (y, x ) ~ R ) l .  
(c) R is transitive if and only if, for every x, y, and z in A, if x R y and y R z, then 

x R z. 
(d) R is antisymmetric if and only if, for every x, y, E A, if x R y and y R x, then 

From the point of view of a relation R  as a set of ordered pairs, the re- 
flexive property means that R contains all pairs (x, x) where x ranges over 
all the elements of A. Dynamically, the reflexive property means "every 
element of A is related to itself." Symmetry means that whenever we "flip 
over" an ordered pair in R, the resulting ordered pair is also in R. On the 
other hand, antisymmetry says that the ordered pair (y, x) we get from flip- 
ping over an ordered pair (x, y) in R is never in R, unless x = y. Finally, 
transitivity may be regarded as a property by which ordered pairs in a rela- 
tion are "linked together*' to form new ordered pairs in the relation. We 
will occasionally refer to these properties as R, S, T, and AS, and to their 
negations as NR, NS, NT, and NAS. 

EXAMPLE 7 Consider the relation less than on R; that is, a pair (x, y) is 
an element of this relation if and only if x < y. This relation is not re- 
flexive since, for instance, it is false that 5 < 5. It is not symmetric since, 
for example, 8 < 9, whereas it is not the case that 9 < 8. The relation 
clearly is transitive since if x < y and y < z, then x < z for any real 
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numbers x, y, and z. The relation is antisymmetric, although only by 
means of a logical technicality. The question is whether the statement 
"for all x, y E R, if x < y and y c x, then x = y" is true. The answer is 
"yes" since the premise "x < y and y < x" is false for any x and y. 0 

EXAMPLE 8 Let A = {1,2,3,4). Let R be a relation on A defined by R = 

((1, I), (2,2), (3,319 (4,4), (1,2), (1,3), (1,4), (2,4)). You should check, by 
dealing with all possible cases, that R reflexive, antisymmetric, and 
transitive, and is not symmetric. 

The four properties in Definition 3 are dealt with further in the exercises 
that follow, as well as throughout the remainder of this chapter. 

D E F I N I T I O N  4 
Let R be a relation from a set A to a set 6. We define the domain of R to be 
the set dorn R = (x E A ~ X  R y for some y E 6) and the range of R by the rule 
rng R =  { Y E  B l x R y f o r  some XEA} .  

Clearly whenever R is a relation from A to B, dorn R is a subset of A and 
rng R is a subset of B. In fact, dorn R consists of those elements of A that 
are first elements of ordered pairs in R, whereas rng R comprises the ele- 
ments of B that are second elements of ordered pairs in R. 

EXAMPLE 9 Using the sets and relations defined in Example 1, we note 
that dorn R ,  = (1,2,3) = A, whereas rng R ,  = (x, y, z) G B. Also, 
dorn R, = (21, whereas rng R,  = B. Borrowing from Example 3, we 
observe that dorn R,  = H (since everyone has biological parents), but 
rng R,  c H (since not everyone & a parent). 

D E F I N I T I O N  5 
Let R be a relation from a set A to a set B. We define the relation R inverse, 
denoted R-', by the rule R-' = {(y, x) I(x, y) E R}. 

Clearly R -  is a relation from B to A; it is gotten from R by flipping 
over all the ordered pairs in R. We gather together other properties of 
R-I in the next theorem. 

T H E O R E M  3 
Let R be a nonempty relation from A to B. Then: 

(a) dorn (R- ') = rng R 
(b) rng (R-') = dorn R 
(c) R = (R-')-' 
(d) R = R-' if and only if A = B and R is symmetric 
(e) R n R-' = I, if and only i f  A = B and R is antisymmetric 



234 RELATIONS: EQUIVALENCE RELATIONS AND PARTIAL ORDERINGS Chapter 7 

Partial proof We consider the "only if" part of (e). Suppose R n R- ' = I,. 
To prove A = B, let x E A be given. Then (x, x) E I,. Since I ,  = R n R - ', 
then (x, x) E R. Since R is a relation from A to B, we must have x E B. 
Thus A G B. The fact that B G A can be proved in an identical manner. 
To show that R is antisymmetric, suppose that (x, y) E R and (y, x) E R, 
we claim x = y. Since (y, x) E R, then (x, y) E R -  ', SO that (x, y) E 

R n R- ' = I,. Hence, by definition of I,, we conclude x = y, as desired. 
Proving the remaining properties is left to you in Exercises 9 

and 10. 

Exercises 

1. (a) Prove that the cross product distributes over intersection [Theorem l(b)]. 
(6) Prove that (X - Y) x Z G (X x 2 )  - (Y x Z) for any three sets X, Y, and 2. 
(c) Prove parts (d), (e), and (f) of Theorem 1. 

2. Write down five specific ordered pairs in each of the following relations from 
Example 2 through 6 of the text: 

3. *(a) Write symbolically, using quantifiers and ordered pair notation, the defi- 
nitions of R is transitive and R is antisymmetric. [Hint: See (a) and (b) of Defi- 
nition 3.1 

*(b) Write symbolically, using quantifiers and ordered pair notation, the negation 
of each of the four parts of Definition 3. (e.g., What is the precise meaning of 
"R is not reflexive"?) 

4. Determine which of the four properties; reflexive, symmetric, antisymmetric, and 
transitive, are possessed by each of the relations R, through R17 in Examples 1 
through 6. 

5. Determine which of the four properties from Exercise 4 are satisfied by each of 
the following relations on the set R of all real numbers: 

J 

*(a) R 1 8 = { ( x , ~ ) l ~ = 1 / x )  (b) R 1 9 = { ( x , ~ ) l x 2 = ~ 2 }  
*(c) R2,= {(x,y)lIx-ylI 13 (d) R,, = {(x,y)lxf Y) 

6. (a) Show that if A is a nonempty set, then the relation R = (21 on A is symmetric 
and transitive, but not reflexive. 

(b) Give an example of a relation R # 0 on a set A which is symmetric and 
transitive, but not reflexive. 

(c) Find a flaw in the following argument, which purports to prove "a relation 
R # (21 on a set A, which is symmetric and transitive, is necessarily reflexive." 

"Proof" Let x E A. We claim (x, x) E R. Choose y E A such that (x, y) E R. Since 
R is symmetric and (x, y) E R, then (y, x) E R. Since R is transitive, and since 
both (x, y) and (y, x) are in R, we conclude (x, x) E R, as desired. 
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7. Find the domain and range of each of the following relations: 

(a) R, and R,, Example 1 (b) Rs, Example 2 
(c) R7 and R8, Example 3 (d) R ,, and R, ,, Example 4 
(e) Rls and Rl69 Example 6 (f) R ~ , = { ( ~ , Y ) E R ~ R ~ Y = & - ~ )  
ts) R22 = ((1, 5), (1,6), (2,6), (2,7), (3,7), (39% (4,8), (4,9), (5,919 (5, 10)) 

8. Find R - ' for each of the relations: 

(a) R,, Example 1 (6) Rs, Example 2 
(c) R,, Example 3 (d) R, ,, Example 4 
(e) R12 and R14, Example 5 

9. Prove (a), (b), and (c) of Theorem 3. 

10. (a) Prove that a relation R on a nonempty set A is reflexive if and only if 
I, c R. 

(b) Prove that if a reflexive relation R on nonempty set A is both symmetric and 
antisymmetric, then R = I,, the identity relation on A. 

*(c) Prove that a relation R on a set A is symmetric if and only if R = R-'. 
(d) Prove that if a nonempty relation R on a set A is antisymmetric, then 

R n R-' = I,. [This is the unproved part of (e), Theorem 3.1 
(e) Prove that if R is any nonempty relation on a set A, then the relations R n R- ' 

and R u R-' are symmetric. 

11. Given a relation R on a set A, define, for each x E A, the set [x] by the rule 
[XI = (y E Al(x, y) E R). Note that [x] consists of all elements of A to which x is 
related by the relation R. Notice also that [x] is clearly a subset of A for each 
x E A. Let A = (1,2,3,4,5). Calculate [I], [2], [3], [4], and [5] for each of the 
following relations on A: 

7.2 Equivalence Relations 
An equivalence relation is a special kind of relation on a set; whenever two 
elements x and y of a set A are related by an equivalence relation on A, 
there is some property that x and y share in common, some point of view 
from which x and y can be regarded as indistinguishable. 

EXAMPLE 1 (a) Consider the relation on R, R, ,  = {(x, y) (x2 = y2), from 
Exercise 5, Article 7.1. Two real numbers are related by R, ,  if and only 
if they have the same absolute value. We will soon see that R , ,  is an 
equivalence relation on R. 
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(b) Recall the relation R,, from Example 6, Article 7.1. Two subsets 
of a finite set X are related by R17 if and only if they have the same 
number of elements. R,, is an equivalence relation on A = 9(X). 

(c) Define a relation R2, on the set S of all students in Math 197 
in the fall semester by R2, = ((x, y)lx and y achieve the same numerical 
grade on Test # 1). R2, is an equivalence relation on S. Cl 

We now proceed to the formal definition of equivalence relation on a set 
A. Our definition uses terminology introduced in Definition 3, Article 7.1. 

D E F I N I T I O N  1 

Let A be a set and E a relation on A. We say that E is an equivalence relation 
on A if and only if E is reflexive on A, symmetric, and transitive. (RST) 

The most basic example of an equivalence relation on any set A is equal- 
 it^; that is, E = ((x, y) 1 x = y), also denoted I, = ((x, x) 1 x E A). To show 
that equality is an equivalence relation, we note that the reflexive property 
requires simply that every element of A equal itself, a true statement. Sym- 
metry states that if x = y, then y = x for any x, y E A, again true. Transi- 
tivity means that if x = y and y = z, then x = z for any elements x, y, and 
z of A, which is also true. 

At the other extreme, the whole cartesian product A x A is an equiva- 
lence relation on any set A (verify!). It is not a very useful one, however, 
since any two elements of A are related by it; certainly we will not often 
want to view all elements of a set A as indistinguishable from one another! 

Returning to Example 1 and considering, for instance, part (b), we note 
that R17 is reflexive, since every subset of X surely has the same number 
of elements as itself. It is symmetric since if X and Y have the same number 
of elements, so do Y and X. It is transitive since if X and Y have the same 
number of elements, as do Y and Z, then certainly X and Z have the same 
number of elements. You should carry out similar verifications for parts 
(a) and (c). 

For examples of relations that are not equivalence relations, you may 
refer to many of the examples R, through R2, in Article 7.1. Among these, 
only R,, R,, R, ,, R14, R1 ,, R19, R,,, R2,, and R2, are equivalence relations. 
A relation fails to be an equivalence relation as soon as it fails to possess 
one of the three defining properties. The relation < on Z (i-e., the example z) is reflexive on Z and transitive, but it is not symmetric (verify!), and 
so is not an equivalence relation on Z. 

EXAMPLE 2 Show that the relation E on A = R - (0) defined by E = 
((x, y) 1 xy > 0} is an equivalence relation on A, whereas the relation N = 

{(x, y) 1 xy < 0} satisfies only symmetry. 
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Solution To show E is reflexive, let x E A be given. Note that (x, x) E E 
means that x2 > 0, clearly a true statement. For symmetry, suppose 
x, y E R and x E y, so that xy > 0. Since xy = yx, we conclude yx > 0 
so that y E x, as desired. As to transitivity, suppose x, y, z E R, that 
x E y and y E z. To prove x E z, we need that xz > 0. We proceed by 
division into the cases x > 0 and x < 0. If x > 0, then since xy > 0, we 
have y > 0. Since y > 0 and yz > 0, then z > 0. Since x > 0 and z > 0, 
we conclude xz > 0, as desired. The argument for the case x < 0 is similar. 

The relation N is clearly symmetric, since yx = xy, so that xy < 0 
certainly implies yx < 0 for any x, y E A. It is not reflexive because, for 
instance, (5, 5) 4 N, since 52 = 25 is not less than 0. It is not transitive 
since (5, - 5) E N (Why?) and (- 5,7) E N, but (5,7) 4 N. 

EXAMPLE 3 Show that the relation "congruence modulo 5" (R,, from 
Example 5, Article 7.1) is an equivalence relation on Z. 

Solution Integers m and n are related by this relation, denoted m = n mod 5, 
if and only if 5 divides the difference m - n. You may wish to recall 
Examples 2 and 7, as well as Exercise 2, from Article 6.1. For the reflexive 
propejrty, if m E Z, then m = m mod 5, since m - m = 0 and 5 10, by (e) of 
Exercise 2 (Article 6.1). For symmetry, assume m, n E Z and m = n mod 5; 
thus 5 divides m - n. Since n - m = -(m - n), and since 5 divides 
-(m - n) by (h) of the aforementioned Exercise 2, then 5 divides n - m, 
so that n = m mod 5, as desired. To prove transitivity, suppose m, n, 
p E Z, that 5 1 (m - n) and 5 1 (n - p). We must prove 5 1 (m - p). But 
m - p = (m - n) + (n - p), and 5 divides the latter sum, by Example 7, 
Article 6.1. 0 

At first glance, the relation "congruence modulo 5" seems to be an 
exception to our earlier statement that objects related by an equivalence 
relation share something in common. The fact that - 2 is congruent to 13, 
modulo 5, seems to be saying something only about the diflerence of the two 
numbers, not about any property that the numbers might have in common. 

-- It can be proved, however, that two integers m and n are congruent modulo 
5 if and only if both yield the same remainder upon division by 5, in ac- 
cordance with the conditions of the division algorithm for Z (see Exercise 4). 

It was observed earlier that a majority of the examples R, through R2, 
in Article 7.1 are not equivalence relations. For each such relation, either 
zero, one, or two of the three conditions RST are satisfied. An interesting 
exercise is to find examples of relations corresponding to the eight possible 

I 
combinations of the three properties (e.g., R, NS, T or NR, NS, T, etc.). 

EXAMPLE 4 Give two examples, one by means of listing ordered pairs, the 
other described by a rule, of relations that are reflexive, symmetric, and 
not transitive. 
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Solution Let A =  (1,2,3) and define R,, on A by R,, = ((1, 1),(2,2), 
(3, 3), (1,2), (2, l), (1, 3), (3, 1)). R,, is clearly reflexive on A (due to the 
presence of the first three ordered pairs) and symmetric. But R,, is not 
transitive; for example, (2, 1) and (1, 3) are in R,,, but (2, 3) is not. 

For our second example, let A = R and recall from Exercise 5(c), 
Article 7.1, the relation R,, = ((x, y) E R x Rl lx - y l  5 1). For any 
x E R, lx - xl = 0 I 1, so R,, is reflexive. If x, y E R with ix - ~1 I 1, 
then ly - xl = Ix - yl I 1, so that R,, is symmetric. R,, is not transitive 
since, for example, (4, i) E R,, and (i, y) E R,,, but (2, y) 4 R,,. 

Discovering relations similar to those in Example 4, involving the other 
combinations of R, S, and T is the goal of Exercise 8. 

The most important fact to understand about equivalence relations is 
that each equivalence relation on a set A generates a unique partition of 
A, and vice versa. This correspondence is the topic of the next article. In 
the following definition, based on Exercise 11, Article 7.1, we take a first 
step toward this correspondence. 

D E F I N I T I O N  2 
Given a relation R on a set A, define for eaoh x E A the set [x] by the rule [x] = 

{YE A ~ ( x ,  y) E Rf .  The set [x] is the subset of A consisting of all elements of A to 
which x is related. If R is an equivalence relation on A, we call [x] the equiva- 
lence class determined by x and denote by the symbol A I R  the set ([x] I x E A) 
of all equivalence classes. 

EXAMPLE 5 (a) The relations R,, = ((1, l), (2,2), (3, 3), (4,4), (1,2), (2, 3), 
(3, 2), 3), (3, (4, 5), (5, 4)) and R3 2 = ((2, 21, (39 3), (47 4), (5, 5)7 (3, 419 
(4, 3), (3, 5), (5, 3), (4, 5), (5,4)) are not equivalence relations on A = 
(1, 2, 3,4, 5). Calculate P I ,  [2], [3], [4], and [5] for both relations. 

(b) The relation R,, = ((1, I), (27 2), (3,3), (4,4), (5, 5), (2951, (5, a ,  
(3, 5), (5, 3), (2, 3), (3,2)) & an equivalence relation on A = (1,2, 3,4, 5). 
Calculate AIR,,. 

/' 
,/' Solution (a) For R,,, [I] = (1, 2, 31, [2] = (2, 31, [3] = (1, 2, 31, [4] = 

(4,5), and [5] = (4). For R3,, we have [I] = (a, [2] = (21, 133 = 

{3,4,5), [4] = {3,4,!}, and [5] = (3,4, 55. 
(b) For the equivalence relation R,,, p] = (1), [4] = (41, and 

[2] = D] = [5] = {2,3,5). Thus AIR,, = ((I), {4), {2,3,5}). 0 

Note the qualitative difference between the results in (a) and those in 
(b) of Example 5. The subsets generated in (b) present a much "tidier" pic- 
ture than those in (a). Specifically, the sets [m] in (b) have the properties 
that all are nonempty, any two of them are either identical or disjoint, and 
each element of A is contained in at least one of them. The collections 

k generated by R, , and R3,  both fail to have at least one of these three prop- 
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erties. The ideas in Example 5 are the basis for both Exercise 10 and for 
our work in the next article. 

Exercises 
1. Prove that the relations R,, and R2,, from parts (a) and (c) of Example 1, are 
equivalence relations. 

2. Let A be the set of all people living in the year 1987. For each of the following 
relations S,, . . . , S,, interpret the three properties RST, and verrfy that each of the 
five is an equivalence relation (in some cases, on a specified subset of A): 

(a) S, = {(x, y)lx and y are of the same sex) 
*(b) S, = {(x, y) 1 x and y have the same biological parents) 

(c) S, = {(x, y) 1 x and y are the same weight (measured to the nearest pound)) 

(d) S ,  = {(x, y) I x and y have the same grade point average), where S, is defined 
on the set of all college seniors graduating during 1987. 

(e) S, = {(x, y)lx and y had the same number of home runs during the 1986 
season), where S, is defined on the set of all major league baseball players 
during 1986. 

3. Show that the relation R,, = {(x, y) E R x R lxy 2 0) is not an equivalence rela- 
tion on R. 

4. The division algorithm for Z states that, given any two integers m and d, where 
d > 0, there exist unique integers q and r such that m = qd + r and 0 4 r < d. The 
integer q is called the quotient and r is called the remainder. 

(a) Find q and r for: 
*(i) m = 1 7 , d = 4  (ii) m = 3, d = 5 

(iii) m = 0, d = 5 *(iv) m = -17, d = 5 
(b) Check that the integers -3 and 27 are congruent modulo 5. Given m, = -3 

and d = 5, find 4 ,  and r,. Given m, = 27 and d = 5, find 4 ,  and r,. 
*(c) Mimic (b), letting m, = 13, m, = - 17, and d = 5, noting that 13 x - 17 mod 5. 
*(d) Mimic (b), letting m, = 8, m, = - 3, and d = 5, noting that 8 is not congruent 

to - 3 modulo 5. 
(e) What conclusion do the results in (b), (c), and (d) seem to suggest? 

5. (a) Define a relation congruence modulo 9 (denoted m ,) on the set Z in a man- 
ner analogous to the definition of congruence modulo 5 (recall Example 5, 
Article 7.1). P r ~ v e  that E, is an equivalence relation on Z. 

(b) Define a relation - on R by the rule x - y if and only if x - y is an integer. 
Prove that - is an equivalence relation on R. 

(c) Define a relation x on R by the rule x x y if and only if x - y is a rational 
number. Prove that x is an equivalence relation on R. (Note: Use the facts that 
the sum of two rational numbers is rational and the negative of a rational number 
is rational.) 

6. (a) Let f be a real-valued function having domain R. Define a relation -/ on 
R by the rule x - y if and only if f (x) = f (y). Prove that - is an equivalence 
relation on R. 
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(6) Let F be the set of all real-valued functions having domain R. Define a rela- 
tion - on F by the rule f - g if and only if {XI f(x) # g(x)} is finite. Prove that - is an equivalence relation on F. (Hint: Recall Exercise 7, Article 6.2.) 

*7. Define a relation - on the set Q = Z x (Z - (0)) by the rule (m, n) - (p, q) if 
and only if mq = np. Prove that - is an equivalence relation on Q. 

8. Give two examples, one by listing ordered pairs, the other described by a rule 
(as in Example 4), of relations which are: 

(a) NR, NS, T 
(4 NR, S, T 
(e) NR, S, NT 

(6) R, NS, T 
*(d) R, NS, NT 

( f )  NR, NS, T 

9. Determine which of the three properties R, S, and T are possessed by each of 
the following relations: 

(a) L = the set of all lines in 3-space. Line 1 is related to line m if and only if 
(i) 1 equals m or 1 is parallel to m (ii) 1 is perpendicular to m 
(iii) 1 and m are coplanar (iv) 1 and m are skew 

*(v) 1 and m intersect in a point 
(6) D = the set of all triangles in a plane. Triangle X is related to triangle Y if 

and only if 
(i) X and Y are congruent (ii) X and Yare similar 

10. Calculate all equivalence classes [n], where the integer n ranges from n = - 9 
to n = 10, corresponding to the equivalence relation, congruence modulo 5. De- 
scribe the set Z /  =, of all equivalence classes. 

7.3 Equivalence Classes and Partitions 
In Example 5(b) of the previous article we observed that the collection of 
subsets [x] corresponding to a particular equivalence relation had a form 
different from that associated with the relations from part (a) of the example 
(which were not equivalence relations). In particular, we noted that the 
collection AIR,, satisfies three properties, but neither of the collections 
from (a) satisfies all these three properties. The next definition highlights 
the three properties. 

DEFINIT ION 1 - 
Let A be a set. A collection (p of subsets of A is said to be a partition of A if 
and only if: 

( i )  S # 0 for each S E 9. 
(ii) If S,, S, E (p, then either S, = S, or S, n S, = 0. 
(iii) For each a E A, there is some S E  (p such that a E S. In symbols, 

u ( S ~ E  (p) = A. 

The elements of are often referred to as cells of the partition. 
1 
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Condition (i) states that each cell is nonempty. Condition (ii) asserts that 
any two cells are either identical or disjoint (or equivalently that any two 
distinct cells are disjoint; recall from Chapter 2 that p  v q and - p  -+ q are 
equivalent). Condition (iii) requires that every element of A fall within at 
least one of the cells. The division of the real numbers into positive and 
negative numbers and zero is an example of a "three-celled" partition of 
R. Cells consisting of all rational and all irrational numbers provide a two- 
celled partition of R, whereas the odd and even integers yield a two- 
celled partition of Z. Any set A can be partitioned into a collection of sin- 
gleton cells by '$3 = { {x) 1 x E A). If A is infinite, the latter will constitute a 
partition with infinitely many cells. Another example of a partition having 
infinitely many cells is the partition v1 = ((01, (- 1, 11, (-2,2}, . . .} of 
2. Even small sets, such as A = {1,2,3,4,5), have a large number of par- 
titions, for example, {(l,5), {3,4), (2)) and {{l,2, 3, 51, (4)). Determin- 
ing the number of partitions of an n-element set is a difficult counting 
problem. 

One connection between partitions and equivalence relations lies in the 
fact that any partition Clg of a set A yields, in a canonical (i.e., standard) 
way, a corresponding equivalence relation. 

THEOREM 1 

Let A be a nonempty set and '$I a partition of A. Define a relation - on A by 
the rule x -- y if and only if there exists a cell X E '$ such that x E X and y~ X. 
Then -- is an equivalence relation on A. 

Proof We must prove that - is reflexive, symmetric, and transitive. 
(R) Let x E A be given. By (iii) of Definition 1, x lies in some cell 

of the partition. Clearly x lies in the same cell as itself so that x - x. 
(S) Given x, y E A, suppose x - y so that x and y lie in some cell of 

v .  Clearly then y and x lie in that same cell of Clg, so that y - x, as 
desired. 

(T) Given x, y, z E A, suppose that x - y and y - z. To prove x - z, 
we must show that there is some cell X E '$3 such that x E X and z E X. 
Now since x - y, then there is a cell XI of '$3 such that both x and y are 
elements of XI. Since y -- z, there is a cell X, containing both y and z. 
Since y E X1 n X2, then X1 = X,, by (ii) of Definition 1. Let X be this 
set XI (=X,) and note that x and z lie in X, as desired. 17 

Because the equivalence relation - of Theorem 1 is derived from a given 
partition 9 of A in a canonical way, we label it by the symbol Alp, and 
call it the equivalence relation determined by the partition v .  

EXAMPLE 1 Given the partition ']P = ((21, (1,3,4), (5)) of the set A = 
{1,2, 3,4, 51, list explicitly the ordered pairs in the corresponding equiva- 
lence relation Alp. 
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We have just seen that any partition of a set A leads automatically to 
a corresponding equivalence relation on A. A perhaps more surprising fact 
is that any equivalence relation on a set leads to a corresponding partition, 
whose cells are precisely the equivalence classes. [This fact, although pos- 
sibly not predicted, should not be entirely unanticipated; recall Example 
5(b) of the preceding article.] A first step toward this result is provided in 
the following lemma. 

L E M M A  
Let -- be an equivalence relation on a nonempty set A. For each X E  A, let 

[x] = (y  E A 1 x y), the equivalence class of x. Then: 

(a) [x] # 0 for each X E  A 
(6) If x, y~ A, then either [x] = [y] or [x] n [y] = 0 
(c) u ( [ x ] I x E A ) = A  

Proof (a) Given x E A, we note that x - x, since - is reflexive. Hence 
x E [XI, which is thereby nonempty. 

(b) This is the most interesting result of the three and hardest to 
prove. It asserts that two equivalence classes generated by an equiva- 
lence relation are either identical or disjoint. To conclude "either [x] = 
[y] or [XI n [y] = a," we recall the approach of Article 6.2 (particu- 
larly Examples 1 and 2); assume the negation of one of these conclu- 
sions and try to derive the other. Specifically, suppose [x] n [y] # QI, 
so that there exists z E [XI n [y]. We claim [x] = [y]; we will prove 
this by proving mutual inclusion. To show [x] G [y], suppose w E [x]. 
To conclude w E [y], we must prove y - w. Now since z E [x], we have 
x - z. Since z E [y] and w E [x], we have y - z and x - w, respectively. 
How can we piece together the three known equivalences to arrive at 
the desired one? We have y - z, x - z, and x - w; we want y - w. Note 
first that since x - z, then by symmetry, z - x. Then since y - z and 
z - x, we have y - x by transitivity. Finally, since y - x and x - w, we 
have, by transitivity, y - w, our desired result. Hence [x] c [y]. The 
reverse inclusion follows by an identical argument. 

(c) Clearly u ([x] tx E A) G A, since each equivalence class [XI is a 
subset of A. Conversely, if y E A, then y E [y], as noted in (a), so that 
y E [XI for some x E A and therefore y E u ([x] lx E A), as desired. 

Comparison of (a), (b), and (c) of Lemma 1 with requirements (i), (ii), 
and (iii) of Definition 1, leads immediately to the following theorem. 

T H E O R E M  2 
Let E be an equivalence relation on a set A. Then the collection A/E = ([x] I x  E A} 
of equivalence classes generated by E is a partition of A. 
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Additional properties of equivalence classes may be found in Exercise 4. 
Consider the equivalence relation on A = (1,2,3,4,5) given by E = 

{(I, I), (2, a ,  (3, 3)7 (4,4), (5, 5), (1, 31, (3, 11, (1, 4)7 (4, 11, (3, 41, (4,319 (2,5), 
(5,2)). Since [I] = [3] = [4] = (1,3,4) and [2] = [5] = (2, 51, the set of 
equivalence classes (which is necessarily a partition of A, by Theorem 2) 
equals ((1,3,4), (2,511. Suppose now we apply Theorem 1 to A/E and 
compute the corresponding equivalence relation A/(A/E). The result, which 
you may easily verify, is precisely the original equivalence relation E. On 
the other hand, suppose we start with a partition '$ = ((11, (2,3), (41, (5)) 
of the same A. We calculate easily that A/'$ = ((1, I), (2,2), (3, 3), (4,4), 
(5,5), (2, 3), (3,2)]. Then since [I] = (I), [2] = [3] = {2,3), [4] = {4), and 
[5] = (51, we conclude that A/(A/(IP) = ((I), (2,3), (41, (5)) = '$. 

The upshot of the two preceding examples is that the two canonical pro- 
cesses by which we go from equivalence relation E to partition A/E (AIE 
is the set of equivalence classes generated by E) and from partition '$ to 
equivalence relation A/!@ (two elements of A are related by A/'$ if and only 
if they are contained in some cell of (IP) are inverse processes. This means 
that by carrying out these two processes consecutively, we proceed either 
E -, (AIE) -, E or (IP + (A/'$) 4 '$. The next theorem formalizes these 
facts. 

T H E O R E M  3 

(a) Let E be an equivalence relation on a set A. Then A/(A/E) = E. 
(b) Let '@ be a partition of a set A. Then A/(A/q3) = 13. 

Proof We prove (a), leaving (b) as Exercise 5. We must show A/(A/E) G E 
and E c_ A/(A/E). Since E is an equivalence relation on A, then A/E is 
a partition of A (by Theorem 2) and so A/(A/E) is an equivalence relation 
on A (by Theorem 1). Let (x, y) E A/(A/E). Then there exists a cell X of 
the partition A/E such that x E X and y E X. But the cells of A/E are 
precisely the equivalence classes generated by E. Since X is therefore an 
equivalence class generated by E and since X contains both x and y, it 
follows from Exercise 4 that [x] = X = [y] so that x E y or (x, y) E E, as 
desired. Thus A/(A/E) c E. 

Conversely, suppose (x, y) E E. To show (x, y) E A/(A/E), we must 
prove that there exists a cell X of the partition A/E that contains both 
x and y. Now since x E y, then [x] = [y], by Exercise 4(c). Letting 
X = [x] (= [y]), we note that X is a cell of A/E and contains both x 
and y, as desired. Hence (x, y) E A/(A/E) and E r A/(A/E), as we wished 
to prove. 

You may have already discovered (using Exercise 10, Article 7.2) that 
the set of equivalence classes corresponding to the equivalence relation -= , 
on Z looks like ((. . . , -15, -10, -5,0, 5, 10, 15,. . .), (. . . , -14, -9, 
-4, 1,6,11,16,...], { ..., -13, -8, -3,2,7,12,17 ,... ], {..., -12, 
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-7, -2, 3, 8, 13, 18,. . .I, {. . . , -11, -6, -1,4,9, 14, 19,. . .)I, a collec- 
tion of subsets of Z, which we may now recognize as a five-celled partition 
of Z, where each cell is infinite. This may be abbreviated to Z/=, = ([O], 
[I], [a], [3], [4]), where you will note that [2], for instance, consists pre- 
cisely of those integers that yield a remainder of 2 when divided by 5, in 
accordance with the division algorithm theorem (recall Exercise 4, Article 
7.2). In Chapter 9 where we study certain algebraic structures, we will see 
that many sets of equivalence classes such as Z/=, may be equipped with 
algebraic operations resembling, or based on, ordinary addition and mul- 
tiplication of real numbers. The resulting mathematical structures, often 
called quotient structures, are the basis for many important mathematical 
constructions. Included among these is the theory of quotient groups and 
rings (topics from the area of abstract algebra), the development of the 
rational number system from the integers, and the development of the real 
number system from the rationals. We will get a taste of the latter two 
topics in Chapter 10. 

Exercises 
1. Describe the partition of the set A = {a, b, c, d, e, f) corresponding to the equiv- 
alence relations: 

2. Describe, by listing all ordered pairs, the equivalence relation on the set A = 
{a, b, c, d, e, f) corresponding to the partitions: 

3. Referring to the equivalence relations defined in Articles 7.1, 7.2, and 7.3 of the 
text, describe the partition of the appropriate set A determined by each of the 
following equivalence relations. When possible, determine explicitly the number of 
cells in each partition: 

(a) R, = {(x, y) I x and y are both male or both female), A = set of all people living 
in 1987 

* (b)  R, = {(m, n) 1 m and n are both even or both odd), A = Z 
(c) R,,={(m,n)(m=n),A=Z 
(d) R,, = {(M, N ) l n ( ~ )  = n(N)), A = a x ) ,  where X = {1,2, . . . ,9, 10) 
fe) R19 = {(x, y)lx2 = y2), A = R 
(f) The relation "congruence modulo 9" on Z, from Exercise 5(a), Article 7.2 
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(g) The equivalence relation - on R defined in Exercise 5(b), Article 7.2 
(h) The equivalence relation z on R defined in Exercise 5(c), Article 7.2 
(i) The equivalence relation - on R defined in Exercise qa), Article 7.2 

* ( j )  The equivalence relation - on F (where F is the set of all real-valued func- 
tions with domain R) defined in Exercise qb), Article 7.2 

(k)  The equivalence relation - on Z x (Z - (0)) defined in Exercise 7, Article 7.2 

4. Let E be an equivalence relation on a set A. For each x E A, let [x] represent 
the equivalence class determined by x; that is, [x] = {y E AIx E y>. Prove: 

(a) x E [XI for all x E A 
(b) For all x, y E A, y E [XI o x E y 

*(c) For all x, y E A, [x] = [y] t> x E y 

5. Prove (b) of Theorem 3: If 9 is a partition of a set A, then A/(A/9) = 9. 

6. Prove that if El and E, are both equivalence relations on a set A, then El n E, 
is an equivalence relation on A. How is the partition A/(E, n E,) related to the 
partitions A/E, and A/E,? Is the union El u E ,  of two equivalence relations on 
A necessarily an equivalence relation on A? 

7.4 Partial Orderings 

The notion of partial ordering on a set A is a generalization of the rela- 
tion "less than or equal to" on real numbers. You should review your 
answer to Exercise 4, Article 7.1, in reference to the relation R l l  = ((m, n) ( 
m I n )  on 2. On that basis, the following definition should come as no 
surprise. 

D E F I N I T I O N  1 
Let A be a set and R a relation on A. We say that R is a partial ordering on A if 
and only if R is reflexive on A, antisymmetric, and transitive. A nonempty set A, 
together with a partial ordering Ron A, is often referred to as a partially ordered 
set or poset. 

Clearly I is an example of a partial ordering on R. It is reflexive since 
every real number is less than or equal to itself. It is antisymmetric since 
the only way we can have both x I y and y 5 x is if x = y. It is transitive 
since, for any real numbers x, y, and z, if x I y and y <_ z, then x 4 z. 

Since _< is the prototype for a partial ordering, it is not uncommon to 
denote generic partial orderings by the symbol 5 rather than by a letter. 
We will often follow that convention and will sometimes use symbols I,, 
I 2 ,  and so on to denote specific examples of partial orderings. 

A poset consists of two things, a nonempty set A @ a partial ordering 
s on A. Often we will identify a poset by notation such as (A, s). Oc- 
casionally, when there is no danger of confusion about the partial ordering, 
we may refer simply to the poset A. 



246 RELATIONS: EQUIVALENCE RELATIONS AND PARTIAL ORDERINGS Chapter 7 

EXAMPLE 1 Let S be any set and let A = g(S). Let 5 ,  represent the sub- 
set relation on A; that is, M I, N if and only if M G N (recall the 
relation R , ,  from Example 6, Article 7.1). Note the interpretations of 
the three properties R, AS, T in this example. Reflexive: Every set is a 
subset of itself [true by Fact 1(2), Article 1.41. Antisymmetric: for any 
sets M and N, if M E N and N E M, then M = N [Fact 1(4), Article 1.41. 
Transitive: for any sets L, M, and N, if L E M and M E N, then L E N 
[Fact 1(6), Article 1.41. 

Hence (P(S), G) is a partially ordered set for any set S. It is often 
said that the set Y(S) is ordered by inclusion. Cl 

EXAMPLE 2 Let A be the set N u (0) of all nonnegative integers and let 
s2 represent the relation divides; that is, given m, n E A, m I, n if and 
only if m divides n (also commonly denoted mln; recall Example 5, 
Article 7.1, and the paragraph preceding Example 7, Article 5.4). To 
show that I, is a partial ordering on A, we note first that every integer 
divides itself [Exercise 2(c), Article 6.11. Second, if m 1 n and n lm, then 
(since m and n are nonnegative) we may conclude m = n. [Exercise 2(c), 
Article 6.11. Third, if m 1 n and n 1 p, then mlp [Exercise 2(a), Article 6.11 
for any m, n, p E A, so that 5, is transitive. 

Note that the relation <, of Example 2 is a different partial ordering 
on N u (0) from the ordinary "less than or equal to" on that set. For 
example, 2 5 5, but it is not the case that 2 I ,  5 since 2 does not divide 5. 

DEFINIT ION 2 
Let (A, 5) be a partially ordered set and let X be a subset of A. We say that an 
element L of A is a lower bound for X if and only if L I x for all x E X. X is said 
to be bounded below in A if X has a lower bound in A. An element U of A 
is said to be an upper bound for X if and only if x I U for all x E X. X is bounded 
above in A if and only if X has an upper bound in A. Finally, X is said to be 
bounded in A if and only if X is both bounded above and bounded below in A, 
and unbounded in A if and only if it is not bounded. 

/' 
In the poset (R, I), where 2 represents ordinary "less than or equal to," 

the subsets N, Z, and Q are all unbounded subsets, although N & bounded 
below. The subset (. . . , --6, - 3,0,3) is bounded above (by 3, or 15, or 
n, e.g.) in R, but not below. The interval (5, GO) is bounded below and not 
above, but the interval (- 3,8) is bounded. Boundedness depends on the 
poset as well as on the subset. For example, the interval (0, 11 is bounded 
below as a subset of (R, I), but not as a subset of (R+, I), where R+ rep- 
resents the set of all positive real numbers. 

A lower or upper bound for a subset X of a partially ordered set A may 
or may not be contained in X. For example, in (R, I ) ,  2 is a lower bound 

6 both for [2,3] and for (2,3]. If a lower bound L for X is also an element 
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of X, we say that L is a least element of X. Analogously, an upper bound 
U of a subset X of a poset (A, S )  is said to be a greatest element of X if 
U E X. By definition, a greatest element is an upper bound and a least 
element is a lower bound. However, a subset of a poset that is bounded 
above may or may not have a greatest element. In (R, I), ( - a ,  71 and 
(. . . , -9, -6, -3,0,3,6} both have a greatest element (7 and 6, respec- 
tively), but [4,7) and ( 1 - (l/n) 1 n E N} do not, even though the latter two 
sets are both bounded above in R. 

It is clear from a number of the preceding examples that upper and 
lower bounds of subsets of posets are not unique. Uniqueness does occur, 
however, in the situation covered by the next theorem. 

T H E O R E M  1 
Let (A, I )  be a poset and X E A. If X has a greatest (respectively, least) element, 
then that element is unique. 

Proof To prove uniqueness, we proceed, as in Article 6.3, by letting u, 
and u, be greatest elements of X. We claim that u, = u,. Since u, is 
an upper bound for X and u, E X, then u, 5 u,. Reversing the roles of 
u, and u,, we deduce u, 5 u,. By antisymmetry, we conclude u, = u,, 
as desired. The proof of uniqueness for least elements is analogous. CI 

EXAMPLE 3 Let S be any infinite set and let A = 9(S), the collection of 
all subsets of S. Order A by inclusion, as in Example 1. Let X be the 
collection of all finite subsets of S; clearly X is a subset of A. Note first 
that X is bounded above in A, namely, S itself is "greater than or equal 
to" every finite subset of S. But X has no greatest element, since there 
is no single finite subset of S that is a superset of each finite subset of S. 
On the other hand, X is bounded below in A and has a least element, 
namely, 0. 

The poset (N u (01, I,) of Example 2 has both a greatest and a least 
element. You should use Exercise 2 ((d), (e)), Article 6.1, to determine these. 

D E F I N I T I O N  3 
Let (A, 5) be a partially ordeced set, and let X be a subset of A. An element U of 
A is said to be the least upper bound of X, denoted U = lub X or U = sup X, if 
U is the least element of the set of all upper bounds of X in A. An element L E A 
is said to be the greatest lower bound of X, denoted L = glb X or L = inf X, if 
L is the greatest element of the set of all lower bounds of X. 

The expressions sup and inf are abbreviations for the Latin supremum 
and injimum, respectively. The subset X = (0, 1) of the poset (R, 5 )  has 
[I, m) as its set of upper bounds. Since 1 is clearly the least element of 
[I, a ) ,  then 1 = lub X. The set Y = (0, 11 also has [I, m) as its set of 
upper bounds, so that 1 = lub Y, also. Note that, in the first case, lub X $ X, 
whereas lub Y E  Y in the second case. 
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By Theorem 1, a lub or glb, if it exists, is unique. But a subset of a poset 
may fail to have a lub and/or a glb. For one thing, the subset may not be 
bounded above, in which case its set of all upper bounds is empty and so 
has no least element. Another possibility is that the subset might be bounded 
above, but its set of all upper bounds may fail to have a least element. This 
situation is illustrated in the following two examples. 

EXAMPLE 4 Consider the poset (Q, S )  and let X = {r E Q ( r2  S 2). X is 
clearly bounded above in Q (by 2, e.g.), but it can be proved that X has 
no least upper bound in Q (see Example 3, Article 9.3, for the details of 
a closely related example). Note that the least upper bound of X, con- 
sidered as a subset of the poset (R, <), is &, an irrational number. 

EXAMPLE 5 Let A be the collection of all subsets of N that are either finite 
or whose complement is finite, ordered by inclusion. Let X be the subset 
((21, {4), (61,. . .) of A. Then X is bounded above in A, for example, 
(2, 3,4, 5, . . .}, {2,4, 5,6, 7, . . .) and A itself are all upper bounds for 
X. But it can be shown that the collections of all upper bounds of X in A 
has no least element, so that X has no lub in A. 

The definition of lub X may be rephrased in accordance with the follow- 
ing two-part formulation. Under the assumptions in Definition 3, we say 
u = lub X if and only if: 

(i) x < u for all x E X (i.e., u is an upper bound for X), and 
(ii) for each y E A, if x 5 y for all x E X, then u y (i.e., u is "less than or 

equal to" any other upper bound of X). 

A similar reformulation of the definition of glb is left to you. 
When working in the abstract setting of an arbitrary partially ordered 

set, we can err by relying too closely on properties of the most familiar 
partial ordering, "less than or equal to, on R." For example, when working 
with this poset, we never write an expression such as "x $ y." The reason 
is that we may write instead y x, and indeed the stronger statement y < x, 
to convey this idea. We do not have this luxury in every poset, however. 
In (9(N), E), letting X =- { 1,2,3) and Y = {2,3,4), we note that neither 
X c Y nor Y E X is true. Note then that the statement X $ Y cannot be 
translated into Y r X. The same is true of the example (N u (01, s2) of 
Example 2. The falsity of 5 5, 2 does not translate into 2 l2 5. In fact, 
neither of the two integers 2 and 5 divides the other. The issue involved 
in these examples is the focus of the following definition. 

D E F I N I T I O N  4 
The partially ordered set (A, I) is said to be totally ordered (or linearly ordered 
or a chain) if and only if, for any elements x, y E A, either x I y or y I x. 
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Two elements x and y of a poset (A, I ; )  are said to be comparable if and 
only if either x I y or y I x. The integers 2 and 5 are not comparable in 
the poset (N u {0), I,), whereas 6 and 18 are comparable in this poset. 
The sets {I, 2) and {1,2,4) are comparable in (9(N), G ) ,  whereas 153)  
and {3,4) are not. We may rephrase Definition 4 by noting that a poset 
is a chain if and only if every two elements in it are comparable. Observe 
then that (A, I), where A is any subset of R and I; is ordinary "less than 
or equal to," is a totally ordered set, whereas both (9(S), E), S any set, 
and (N u (01, I,) are not totally ordered. 

If x and y are elements of a poset (A, I), we denote by x v y the element 
lub {x, y), if it exists, while glb {x, y), when it exists, is denoted by x A y. 
These are called, respectively, the join and the meet of x and y. This situation 
is not very interesting if A is totally ordered; in that case x v y is simply 
the "larger," whereas x A y is the "smaller" of x and y. But, in general, x v y 
and x A y may be elements of A other than either x or y. In several of the 
exercises you should pursue these ideas further, and in particular, calculate 
certain meets and joins for the posets discussed earlier in the article. 

Exercises 

1. Consider the poset (N u {0), I,), where I, is the relation divides of Exam- 
ple 2. 

(a) Find the greatest and least elements of this poset, if they exist. 
(b) Find upper and lower bounds for the set (4,8, 16). 

*(c) Find upper and lower bounds for the set (4,6, 10). 
(d) Find upper and lower bounds for the set (3,5,7). 
(e) Find the greatest and least elements, when they exist, for the sets in (b), (c), 

and (d). 
( f )  Give an example of an unbounded subset of this poset, if any exists. 
(g) Give a general description of m v n and m A n, where m and n are any non- 

negative integers. 

2. Answer (a) through (g) of Exercise 1 for the poset (N u (01, I), where I is 
ordinary "less than or equal to." 

3. Consider the poset (X, R) where X = {1,2,3, . . . ,9, 10) and R = {(x, x)lx E X) u 
((1, x)lx E X) u {(x, WIX E X) U {(1,3), (1, 51, (1,7), (1991, (3951, (3,7), (3,9), (5,7), 
(5,9), (7,9)). Determine (when they exist): 

(a) lub (1,395) (b) lub {2,4,6) 
(c) glb {2,4,6) (d) the least element of {2,4,6) 
(e) an upper bound for the set {3,4, 5,6,8) 

4. Let A be a poset. Let M and N be subsets of A such that lub M and Iub N both 
exist. Prove that if M E N, then lub M I lub N and glb M 2 glb N. 

5. (a) Let M and N be subsets of an arbitrary set S. Clearly M r M u N and 
N r M u N. Prove that if X is any subset of S such that M E X and N c X, 
then M u N c X. 
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(b) Let M and N be subsets of an arbitrary set S. Clearly M n N r M and 
M n N E N. Prove that if X is any subset of S such that X E M and X c N, 
then X r M n N. 

6. (a) Let A = 9(S), S any set, and order A by inclusion. Let M and N be any 
elements of A (i.e., M and N are subsets of S) 

*(i) Describe M v N, the join of M and N in the poset (A, c). 
(ii) Describe M A N, the meet of M and N in A. 

(Recall M v N = lub {M, N) and M A N  = glb {M, N).) 
(b) Assume S is infinite and let C = {M,, M,, . . .) be an infinite collection of 

subsets of S, indexed by N. Note that C is a subset of A = *S). Order the 
latter by inclusion, as in (a). Describe lub C and glb C in the poset (A, G). 

7. (a) Let A = 9(N) be ordered by inclusion. Find lub C and glb C for each of 
the following subsets C of A: 

(0 Cl = {{I}, {3), {5}, .I 
(ii) c2 = {{I}, {I,  3}, {I, 3,519 .} 

*(iii) C3 = {{I, 3, 5, 7,. . .), {3, 5,7 ,9 , .  . .), {5 ,  7,9, 11,. . . I , .  . .) 
(b) Thesubset C = {{2), (41, (61,. . .) oftheposetin(a)haslub C = {2,4,6,. . .). 

Explain why {2,4,6, . . .) is not the lub of C in the poset of Example 5. Explain 
informally why C has no lub in that poset. 

8. (a) Let S be any finite set and let A = 9(S). Define a relation R on A by the 
rule (M, N) E R if and only if n(M) I n(N), for any subsets M and N of S. Is R 
a partial ordering on A? 

(b) Recall the equivalence relation R17 on A = 9(S) (Example 6, Article 7.1) that 
identifies any two subsets of S having the same number of elements. Let X = 
AIR,,, noting that the elements of X are equivalence classes [MI of subsets of S, 
where two subsets M and N of S are in the same equivalence class if and only 
if n(M) = n(N). Define a relation I on X by the rule [MI I [N] if and only if 
n(M) I n(N). 

*(i) Prove that this relation is well defined; that is, verify that if [MI] = [M,] 
and [N = [N 2], then [M I [N - [M2] I [N,]. 

(ii) Prove that I is a partial ordering on X. 

/ (iii) Prove that I is a total ordering on X. 

/ 9. Let (X, I)  be a poset. An element m E X is said to be a maximal element of X 
if and only if, for any y E X, if m I y, then m = y. 

(a) Formulate an analogous definition of minimal element of a poset. 
(b) Prove that if a poset (X, I)  has a greatest element u, then u is the unique 

maximal element of X. State the analogous result for minimal elements. 
(c) Let S = {1,2, . . . , 10) and let X = P(S) - (0, S); that is, X consists of all 

nonempty proper subsets of S. Order X by inclusion; that is, consider the poset 
(X, E). Find five maximal elements and five minimal elements of this poset. 

(d) Consider the set X = N - (1). Order this set by "divisibility" (cf., Example 5, 
Article 7.1). How many minimal elements are contained in this poset? maximal 
elements? Answer the same question if X = N u (0). 

(e) Prove that if a poset (X, 2) is totally ordered, then any maximal element is the 
greatest element of X, whereas every minimal element is the least element. 
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10. (a) (i) Calculate the set of all equivalence relations on the set S = (1, 2, 3,4). 
(ii) Calculate the set of all partitions of S. 

Let S be any finite set and denote by ER the set of all equivalence rela- 
tions on S. Define a relation 5 on ER by the rule E, I E, if and only 
if El G E,, where E and E ,  are arbitrary elements of ER. (We often 
say that El is stronger than E, in this case.) Show that I is a partial 
ordering on ER and describe the strongest and weakest elements of the 
poset (ER, I ) .  
Let S be any finite set and denote by PAR the set of all partitions of S. 
Define a relation I on PAR by the rule P1 I P, if and only if every cell 
in P I  is a subset of some cell in P,. (We often say P I  is a rejinement of 
P, in that case.) Show that I is a partial ordering on PAR and describe 
the smallest and largest elements of the poset (PAR, I). 
Find a relationship between the statements El I E, [from (i)] and 
(S/E ,) I (S/E,) [from (ii)]. 

11. Let F be the set of all real-valued functions with domain a subset of R. Define 
a relation I on F by the rule, f I g if and only if dom f G dom g and f(x) I g(x) 
for all x E dom f ,  where f and g are arbitrary elements of F. (Note: Two functions 
are to be regarded as equal if and only if they have the same domain and the same 
function values over their common domain.) 

(a) Prove that I is a partial ordering on F. 
(b) Prove that I is not a total ordering on F. 
(c) Given functions f ,  g E F, describe the function h that serves as f v g in the 

poset (F, 5 ). Describe f A g. 



Relations, Part II: 
Functions and 

Mappings 
CHAPTER 8 

At this point you may have some preconceived ideas about functions, re- 
lating especially to the mechanics of working with functions and to vari- 
ous purposes for which functions are used. Precalculus and calculus-level 
treatment of functions, however, provide little clue to some of their uses 
in higher-level mathematics (e.g., cardinality of sets, discussed in Article 
8.3). Furthermore, introductory-level coverage is often so imprecise that 
many students do not have a clear idea of what a function is, even though 
they may know a lot about functions and, in particular, have the ability 
to "know one when they see one." In this chapter we attempt to fill some 
gaps in this area, and lay the groundwork for important areas of advanced 
mathematics. The material covered here is fundamental to courses such as 
abstract algebra, advanced calculus, and elementary topology. 

We deal first with basic issues, including a precise definition of function. 
/ Next, we take a second look at familiar ideas such as one-to-one function, 
/ composition of functions, and inverse function. Then. we launch into new 

material, including the concepts of onto mapping and one-to-one correspon- 
dence between sets, and the ideas of image and inverse image of a set under 
a mapping. We conclude the chapter with an introduction to cardinality 
of sets and a brief consideration of arbitrary collections of sets. 

8.1 Functions and Mappings 
A function can be defined as a certain kind of relation. Thus a function is, 
first of all, a set. More specifically, it is a set consisting of ordered pairs of 
objects. The additional property that distinguishes functions, among all 
relations, is specified in the following definition. 
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DEFIN IT ION 1 
A function is a relation R having the property that if ( x ,  y) E R and ( x ,  z) E 

y = z. 

Following custom, we will most often use lower-case letters f ,  g, 
so on, rather than R, to denote relations that are functions. If R 

R, then 

h, and 
is any 

relation, then by Definition 4, Article 7.1, for each x E dorn R, there exists 
at least one object y E rng R such that (x, y) E R. Iff is a function, then by 
Definition 1 for each x E dorn f,  there exists at most one object y E rng f 
such that (x, y) E f .  In other words, every element x in the domain of a 
function f has a unique corresponding y in the range off such that (x, y) E f .  

Like any other relation, and more generally like any other set, a function 
f may be described by the roster method, that is, by listing all the ordered 
pairs, or by the rule method. The former, of course, is applicable only when 
f has finitely many ordered pairs; indeed, it is practical only when f has 
a relatively small number of ordered pairs. Sometimes, the "pattern" ap- 
proach to describing a set may be used to define functions having a finite, 
but large, number of ordered pairs. 

EXAMPLE 1 The relations f ,  = ((2, 3), (3, 5), (4, 7), (5,9)), f2 = ((a, z), 
(b, Y), . . . , (Y, b), 6, a)), f3 = (( 1, I), (2,2), . . . , (100, 100)) are functions, 
whereas R, = ((1, a), (1, b), . . . , (1, z)] and R2 = ((1, 1), (1, - 1), (4,2), 
(4, - 2), (9, 3), (9, - 3)) are not functions. 

A relation described by listing all its ordered pairs is a function if and 
only if no two distinct ordered pairs in the list have the same first element. 
This criterion could be used in general as a somewhat less precise defini- 
tion of the function concept. You should determine the domain and range 
of each of the relations in Example 1 [Exercise l(a)]. Also, you should 
examine each of the relations in Example 1, Article 7.1, to determine which 
are functions [Exercise l(b)]. 

Iff is a function, then each x E dorn f can be viewed as determining a 
unique corresponding y E rng f .  For this reason we often refer to this y as 
the value of the function f at x, or simply "f of x," and write y = f(x), 
rather than (x, y) E f or x f y. In addition, when f is a function, the set 
rng f is sometimes referred to as the image off, denoted im f. 

When the rule method is used to describe a function, the rule is usually 
one that specifies a relationship between each x E dorn f and its corre- 
sponding y, such as y = f (x) = x3, y = g(x) = sin- ' x, or " y  is the biological 
father of x." Thus functions are most often described by designating the 
domain and specifying such a rule, often called the rule of correspondence. 
When a function is defined by a rule of correspondence y = f(x), the latter 
is often referred to as functional notation, in contrast to ordered pair nota- 
tion. We can express in these terms what is meant by equality of functions; 
two functions f and g are equal if and only if (1) dorn f = dorn g and 
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(2) f(x) = g(x) for all x in the common domain. You are asked to prove 
this fact in Exercise 2(a). The following example provides several functions 
defined in the manner just described. 

EXAMPLE 2 (a) Define g , by dom g, = (x E R 1 x 2 0) and g ,(x) = x2. 
(b) Define g2 by dom g2 = R and g,(x) = (x3 + 5)lI3. 
(c) Define g3 by dom g, = [4, co) and g3(x) = d m ,  where & 

represents the unique positive square root of x. 0 

The relations g,, g,, and g3 in Example 2 are all functions, whereas 
the relation R defined by the (inappropriate, but common) notation R(x) = 
+A, dom R = [0, a ) ,  is not a function (Why?). 

A common practice, in cases where the domain of a function f is a subset 
of the reals, is to describe the function by stating the rule only, with the 
understanding that the domain is the set of all real numbers for which 
the rule makes sense. With this understanding, specification of the domain 
in (b) and (c) of Example 2 is superfluous. On the other hand, part (a) of 
Example 2 requires that the domain be given explicitly, since the "squaring 
function" is otherwise assumed to have domain R, that is, g, is a different 
function from the function we designate simply as f(x) = x2. 

Because of the convention discussed in the preceding paragraph, it is 
common to think of the rule describing a function as the function. This 
interpretation can lead to difficulties, especially since it is possible to have 
a function without an explicit rule (see, e.g., Example 4, Article 8.3), but 
is consistent with the widespread and very useful practice of considering 
functions from a dynamic, rather than a static, point of view. In this con- 
text, emphasis is placed on the transformation of an independent variable 
(x, representing elements in the domain) into a dependent variable [y, given 
by the formula y = f(x), representing elements of the range]. It is impor- 
tant that you be able to pass comfortably between the ordered pair ap- 
proach and various other ways of interpreting what a function is, so that, 
for example, the function described by g(x) = x3 or "the cubing function" 
or "the function that sends (or maps) x to x3" or the function described 
by the graph in Figure 8.1, can be recognized as ((x, x3) lx E RJ.  

In the context of real-valued functions of a real variable certain catego- 
ries of function are determined with respect to the form of the defining 
rule. An algebraic function is defined by an equation in variables x and 
y involving a finite number of algebraic operations, that is, sums, differences, 
products, quotients, nth powers, and nth roots. An example is provided 
by the function y = [(x3 - 5x2 + 3x + 7)/(x4 - 3x + 2)I3l5. A function 
such as f (x) = sin (x) or g(x) = 2x, which can be shown to be nonalgebraic, 
is said to be transcendental. Important subcategories of algebraic functions, 
listed in order of decreasing generality, are rational functions, polynomial 
functions, linear functions, and the identity function. You should already 
be familiar with these categories and able to give examples of functions of 

L 
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Figure 8.1 Graph of the "cubing function." 

the type described in Exercise 3(b). It should be noted also that the identity 
function and constant functions may be considered in much wider contexts 
than that of the real numbers as domain and range. If A is any set, the 
identity function on A, denoted I,, is defined by the rule I,(x) = x for all 
x E A. If A is any set and c E A, the constant function C is defined by 
C(x) = c for all x E A. 

The alert reader may have noticed an inconsistency between our discus- 
sion thus far of the function concept and the definition of relation, given 
earlier. If, as Definition 1 states, a function f is a particular type of re- 
lation, then according to Definition 2, Article 7.1, there must be an un- 
derlying cartesian product A x B containing f as a subset, where we 
necessarily have dom f E A and rng f E B. Technically, this is true, with 
the result that, strictly speaking, we should not be able to define a function 
simply by giving a rule (or even by listing a set of ordered pairs), but rather, 
should also have to specify sets A and B. This situation has the rather dis- 
turbing consequence that the result in Exercise 2(a) becomes false. A set of 
ordered pairs satisfying the condition in Definition 1, possibly determined 
by a given domain and rule of correspondence, could correspond to many 
different functions, as we vary the sets A and B. It is a fact of mathe- 
matical life thaf we often wish to specify a function simply by giving a 
domain and rule or a rule with the domain understood, or by describing 
explicitly a set of ordered pairs, and do not wish to be entangled in a 
cartesian product. Indeed, we have proceeded this way in Examples 1 and 
2. Let us agree, then, that we may view a function as being properly defined 
by the various methods exhibited in Examples 1 and 2, even though the 
underlying cartesian product may not be identified explicitly. When this is 
done, the understanding is that an appropriate cartesian product exists but 
is irrelevant to our current application, so that in essence we don't care what 



256 RELATIONS: FUNCTIONS AND MAPPINGS Chapter 8 

it is. Furthermore, with this understanding in force, we regard two func- 
tions as equal if and only if they contain the same ordered pairs. The 
result in Exercise 2(a) follows directly from this criterion. 

There are mathematical contexts in which we do care about a cartesian 
product containing a function f as a subset. We approach this situation 
in the following paragraphs by defining the notion of a function from a set 
A to a set B, otherwise known as a mapping. 

MAPPINGS 

DEFINITION 2 
A function from a set A to a set 8, denoted f: A -+ B (also known as mapping 
from A to 8, or simply a mapping) consists of a function f, satisfying dom f = A, 
and a set B such that rng f c B. The set B is called the codomain of f. 

The notation f: A -* B from Definition 2 is usually read "f is a mapping 
from the set A to the set B," or "f is a function that maps the set A to the 
set B." In view of the discussion preceding Definition 2, the concept of 
"function from A to B or "mapping (from A to B)" differs in a subtle way 
from that of function; a mapping consists of a function plus something 
more. In order to define a mapping, we must specify along with the func- 
tion f (whose definition already determines the sets dom f and rng f )  a 
set B such that rng f r B. As an example, we might consider a constant 
mapping of R into R, given by C: R -, R, where C(x) = c, c E R; the codo- 
main R contains the range (c), as required by the definition of mapping. 
Or, a mapping could be defined by g: R -* [I, co), where g(x) = cosh x. In 
this case the codomain [I, co) not only contains the range of g as a subset, 
but in fact equals rng g. Most particularly, it is possible to have two dis- 
tinct mappings, both of which involve the same function. The mappings 
k: R -+ R and k: R + [0, a ) ,  where k(x) = x4, illustrate this situation. We 
say that mappings f: A -+ B and g: C -+ D are equal if and only iff = g 
(which implies automatically that A = C) B = D. 

The notion of mapping may be used to amplify concepts encountered 
earlier in the text. As one example, an infinite collection of sets (A,, A,, . . .} 
indexed by N (recall Article 4.2) may be viewed as a mapping of N into 
any set containing each of the sets in the collection as an element, such 
as P(U,"=, Ai). More generally, any infinite sequence is a mapping of N 
into some codomain (such as R or C). 

ONETO-ONE MAPPINGS 

At various earlier stages of the text (and surely at several points in your 
prior mathematical training), the notion of a one-to-one function has come 
into play (see, in particular, Exercise 6, Article 5.2). There are various ways 
of characterizing "one-to-oneness," in addition to the definition "f(x,) = 
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f (x,) implies x, = x, for all x,, x, E dorn f ." For example, the contra- 
positive of the definition states "for all x, and x,, if x, # x,, then f (x,) # 
f (x,)." A translation of this condition into plain English yields the require- 
ment that distinct x values have distinct corresponding y values. As we 
saw earlier, a set of ordered pairs is a function if and only if no two distinct 
ordered pairs have the same first element. Analogously, a function, viewed 
as a set of ordered pairs, is one to one if and only if no two distinct ordered 
pairs have the same second element. For if (x,, y) and (x,, y) are both in 
f ,  for some pair of distinct objects x, and x,, then we have y = f(x,) and 
y = f(x,) so that f (x,) = f (x,), but x, # x,, contradicting the definition of 
one to one. For real-valued functions of a real variable, the property of 
one to one is equivalent to the requirement "each horizontal line y = k 
intersects the graph of f in at most one point." (Why? Note also, in this 
context, that the definition of function requires that each vertical line meet 
the graph in at most one point.) These considerations lead to the following 
definition. 

DEFINITION 3 
A mapping f: A -, B is said to be one to one, or injective, if and only if the func- 
tion f is a one-to-one function; that is, whenever x,, x, E A with f (x , )  = f(x,), then 
x,  = x,. Such a mapping is also said to be an injection of A into B. 

The mapping k: R -, R defined by k(x) = x4 is not injective since 16 = 
k(2) = k(- 2), but any linear mapping f :  R -, R, f (x) = Mx + B, is an injec- 
tion provided M # 0. The one-to-one property of a mapping depends en- 
tirely on the "ordered pair part" of the mapping, that is, it is not affected 
by the choice of codomain. The same is not true of the companion concept 
of onto mapping, which is discussed in the next article. 

NEW FUNCTIONS FROM OLD ONES 

From precalculus courses you are probably familiar with various methods 
of constructing functions from given functions. Iff and g both map a subset 
of R into R, then the functions f + g, f - g, fg, and f/g also map sub- 
sets of R into R. The first three have domain equal to dorn f n dorn g, 
while dorn (f /g) = dorn f n dorn g n {x E R I g(x) # 0). The defining rule 
for fg, for example, is (fg)(x) = f (x)g(x) for a11 x E dorn f n dorn g, with the 
defining rules for f + g, f - g, and f/g given similarly. If k is a real number, 
kf is defined by (kf )(x) = kf (x), with dorn (kf) = dorn f. The sum, differ- 
ence, product, and quotient of functions are often referred to as operations 
on functions. 

We now wish to consider three other methods of constructing new func- 
tions and mappings from old ones, that is, three other operations on 
functions. Unlike the operations of the previous paragraph, which are 
dependent for their effectiveness on our ability to add, multiply (and so on) 
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real numbers, tbese operations are so general as to be applicable to any 
mappings. The operations are inverse, restriction, and composition of func- 
tions and mappings. 

The inverse of a function f is simply the inverse f - ' = ( ( y ,  x) 1 y = 
f(x)} of f  regarded as a relation, as defined in Article 7.1, Definition 5. 
As examples, iff = ((3, 5), (5,8), (7, 1 I), (9, 14), (1 1, 17)), then f -' = {(5, 3), 
(8,5),(11,7),(14,9),(17,11)}. If g = ( ( x , 4 ~ - 7 ) I x ~ R } ,  then g - ' =  
((4x - 7, x)lx E RJ, which, as you should verify, is the same as {(y, y/4 - 
714) 1 y E R), or ((x, x/4 - a 1 x E R}. The properties dom (f - ') = rng f, 
rng (f - ') = dom f,  and (f - ')- ' = f ,  listed in Theorem 3, Article 7.1, are, 
of course, true in the special case of a relation that happens to be a function. 

Iff maps R into R, then the graph off -' is simply the "mirror image" 
of the graph off across the line y = x (see Figure 8.2). Familiar examples 
from your calculus experience are the logarithm and exponential functions 
to various bases, the nth power and nth root functions, and the trigono- 
metric and hyperbolic functions together with their inverses. The function 
f(x) = l/x provides us 'with an unusual situation; this function is its own 
inverse as shown in Figure 8.3. 

The key question concerning inverse functions is: "Under what circum- 
stance(~) is the inverse of a function itself a function?" In order for f -' to 
be a function, it must be the case that no two distinct ordered pairs of 
elements in f - ' have the same first element. This means that, back in 

Figure 8.2 There is a spec@ relationship between the graph of 
a function and the graph of its inverse. The graphs o f f  and f - 
are symmetric with respect to the line y = x. 

y = f - l ( x )  
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Figure 8.3 Graph of a function that is its own inverse. Each point 
(x, y)  on the graph of the function y = llx has its corresponding 
point (y, x) also lying on the curve. 

f ,  it must have happened that no two distinct ordered pairs had the same 
second element. The next theorem formalizes this relationship. 

T H E O R E M  1 

Let f be a function. Then the inverse relation f - '  is a function if and only if 
f is one to one. 

Proof Assume that f - ' is a function. To prove f is one to one, choose 
xl, X, E dom f and assume f(xl) = f(x,); we must prove x, = x,. Let- 
ting y = f (x ,) = f (x,), we have that the ordered pairs (y, x,) and (y, x,) 
are both in f -' (why?). Since f -' is a function, we conclude x, = x,, 
as desired. The converse is left as an exercise [Exercise 5(a)]. 0 

Many authors express this theorem as "iff is a function, then f - exists 
(or f has an inverse) if and only if f is one to one." Since f -' always 
exists as a relation, such a formulation is, strictly speaking, inaccurate. 
What is meant by this, of course, is that f - l  exists as a function precisely 
when f is one to one. We say that f is invertible in this case. 

A second general method of creating a function from a given function 
is suggested by the difficulties that are faced in defining the inverse trigo- 
nometric functions. As you know, functions such as sin, cos, and tan, are 
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highly non-one to one and so "do not have inverses" (i.e., their inverse 
relations are not functions). The functions we know as sin-', tan-', and 
so on, then, are not actually the inverses of sin and tan, respectively, but 
rather are, inverses of restrictions of those functions to certain convenient 
subsets of their domains. 

DEFINITION 4 
Let f :  A B be a mapping and let X c A. We define a new mapping, the 
restriction of f  to X, denoted f/,, by f/,: X -* B where f/,(x) = f ( x )  for all x E X. 

Note that, given f: A -+ B and a subset X of A, a mapping g: X -+ B 
equals f/, if and only if g(x) = f (x) for all x E X. As one example, the func- 
tion g(x) = f i  is not the inverse of f(x) = x2, but rather, of the restriction 
f/,, where X = [0, oo). Similarly, tan-' is the inverse of tan/,-,,,,,,, while 
cosh- ' is the inverse of cash/,,,,,. 

An important special case of restriction is the inclusion mapping. If A is 
any set and X is a subset of A, we define the mapping i, by i, = (I,)/,; 
that is, i,: X -, A with i,(x) = x for all x E X. 

In addition to its usefulness in the definitions of certain inverse functions, 
the notion of "restriction" provides mathematicians with a notational 
convenience that proves valuable in a variety of settings in higher-level 
mathematics.. 

COMPOSITION 

Unlike inverse and restriction, composition of functions and mappings is 
a binary operation. You have encountered this operation in both precal- 
culus and elementary calculus classes and will probably recall, for instance, 
warnings from instructors to understand the difference between functions 
such as f(x) = (sin x)ex, a product of functions, and g(x) = sin (ex), a com- 
position of the sine function with the exponential function. You will also 
recall from elementary calculus that the chain rule is a rule for calculating 

/ the derivative of a composition of two functions. We now give a definition 
of composition from the "ordered pair" point of view. 

DEFINIT ION 5 
Let f  and g be functions. Consider the relation h = { (x ,  z)lthere exists y such 
that ( x ,  y )  E f  and (y ,  z) ~ g } .  The relation h is called the composite of f  and g, or 
simply g composition f ,  and is denoted h = g 0 f. 

EXAhW LE 3 Let f = ((1,3), (2,7), (3, 101, (4, 171, (5,20)3, g = ((2,6), (3,4), 
(7, lo), (17, lo), (20, lo)), and k = ((4, 3), (6, 5), (10,20)). Calculate f 0 k, 
g 0 k, and k 0 g. 

Solution Note first that f 0 k may have at most 15 ordered pairs, since it is 
clearly a subset of (dom k) x (rng f ). But, due to the fact that f and k are 



8.1 FUNCTIONS AND MAPPINGS 261 

both functions, together with the condition "there exists y . . ." in Defi- 
nition 5, it clearly has far fewer ordered pairs. For example, we may ask 
whether (6, 17) is an element o f f  0 k. Since (6,s) E k, we would need 
(5, 17) E f in order to have (6, 17) E f 0 k. Since (5, 17) 4 f ,  the answer to 
our question is "no." We may quickly list the ordered pairs in f 0 k, in 
fact, by "splicing together" ordered pairs in k and f .  Since (4,3) E k 
and (3, 10) E f ,  then (4, 10) E f 0 k. Since (6,s) E k and (5,20) E f ,  then 
(6,20) E f 0 k. Now (lo, 20) E k, but 20 4 dorn f ,  so that this ordered pair 
from k does not lead to an ordered pair in f 0 k. In fact, f 0 k = 
((4, lo), (6,20)} so that, for instance, (f 0 k)(4) = 10. Similarly, g 0 k = 

((4,4), (10, lo)), while k O g = {(2,5), (3, 3), (7,20), (17,20), (20,20)}. 

You should calculate k 0 f ,  f 0 g, and g 0 f in the preceding example. 
Also, noting-that f and k are one-to-one functions, so that f - ' and k- are 
functions, you should calculate f 0 f - l ,  f - 0 f ,  k 0 k -  ', and k- ' 0 k. Gen- 
eral conclusions from these calculations are contained in Exercise 9. Fi- 
nally, you should calculate and compare f 0 (k 0 g) and (f 0 k) 0 g. 

The definition of composition, together with the results from Example 3, 
suggest a number of observations about function composition. For in- 
stance, using standard functional notation, we see that z = (g 0 f)(x) if and 
only if y = f(x) and z = g(y) for some y. If such a y exists, we then have 
z = g(y) = g( f (x)). The equation z = g( f (x)) is the formula commonly used 
to calculate the rule of correspondence for g 0 f ,  given rules for g and for f .  
Thus if f(x) = 3x - 4 and g(x) = ex, then (g 0 f)(x) = g(f(x)) = g(3x - 4) = 
e3x - 4 for each x E R. 

Second, we note that dorn (g 0 f )  is clearly contained as a subset in 
dorn f .  That is, in order to be in dorn (g 0 f), an object x must first be 
in dorn f .  Furthermore, for each such x, the object f(x) (i.e., y) must be in 
dorn g. Indeed, x E dorn (g 0 f )  if and only if both these conditions are sat- 
isfied, so that dorn (g 0 f )  = (x 1 x E dorn f and f (x) E dorn g) [see Exercise 
8(a)l. 

Third, the results of the calculations of g 0 k and k 0 g indicate that com- 
position of functions is a noncommutative operation; that is, it is not the 
case that f 0 g = g 0 f for all functions f and g; indeed, this relationship 
seldom holds (see Exercise 3). 

Fourth, our results in Example 3 suggest the following fact. 

T H E O R E M  2 
If f and g are functions, then the composite g 0 f is a function. 

Proof To prove that g 0 f is a function, assume that the ordered pairs 
(x, z,) and (x, z,) are in g 0 f. Our claim is that z, = z,. By Definition 
5, there exists objects y, and y, such that (x, y,) E f ,  (y,, z,) E g, (x, y,) E 

f ,  and ( y , ,  z2) E g. Since f is a function, we conclude y, = y,. Let us 
denote this common value by y. Since g is a function and since both 
(y, z,) and (y, 2,) are elements of g, we conclude z, = z,, as desired. 
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In view of Theorem 2, we will dispense henceforth with ordered pair 
notation in discussing the composition of two functions, using functional 
notation instead. 

The final property of function composition suggested by the calculations 
from Example 3 is associativity, with the following precise statement: 

T H E O R E M  3 
If f ,  g, and h are functions, then f 0 (g  o h) = ( f  0 g) o h. 

Proof By Exercise 2, we may prove two functions equal by showing that 
(1) their domains are equal and (2) their values are the same at each point 
in the common domain. 

1. Let x be an element of dorn [( f 0 g) 0 h)]. Then x E dorn h and 
h(x) E dorn (f 0 g). The latter property means that h(x) E dorn g and 
g(h(x)) E dorn f .  But since x E dorn h and h(x) E dorn g, then x E 

dorn (g 0 h). Since x E dorn (g 0 h) and (g 0 h)(x) E dorn f ,  then 
x E dorn [ f 0 (g 0 h)], as desired. Hence dorn [( f 0 g) 0 h] c 
dorn [ f 0 (g 0 h)]. The proof of the reverse inclusion is completely 
analogous. 

2. Let x E dorn [( f 0 g) 0 h] ( = dorn [ f 0 (g 0 h)]). Then [( f 0 g) 0 h](x) = 

( ( f  O g)(h(x))) = f (g(h(x))) = f ((g O h)(x)) = [f O (g O h)l(x). since 
[(f 0 g) 0 h](x) = [ f 0 (g 0 h)](x) for any value of x in the common 
domain of the two functions f 0 (g 0 h) and (f 0 g) 0 h, we conclude 
that these two functions are actually the same, as desired. 0 

Suppose now that f: A + B and g: B -, C are mappings, where we make 
explicit note of the assumption that the codomain of the first mapping 
equals the domain of the second. Due to this assumption, we have that 
for any x E A = dorn f ,  f (x) E B = dorn g. From this, we may easily con- 
clude that the function g 0 f has the domain A and a range that is a subset 
of C. Therefore it is meaningful to refer to the mapping g 0 f: A + C when- 
ever we are given mappings f :  A + B and g: B --+ C. By common agree- 

/. ment among mathematicians, this is the only circumstance in which we 
/“ consider the composition of two mappings [see, however, Exercise Iqe)]. 

This situation is often pictured by diagrams such as the one in Figure 8.4. 
There are other fairly standard ways of creating new mappings from old 

ones, in addition to inverse, restriction, and composition. Several examples 
are provided in Exercises 11, 12, and 13. 

Figure 8.4 A diagrammatic view of the 
composition of mappings. 
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We conclude this article with a rather abstract result that relates the con- 
cept of one to one to the composition of mappings. This theorem, which 
states that one-to-one mappings are precisely those mappings having a sort 
of "left-cancellation" property, is typical of a number of statements that can 
be proved about mappings and on which we focus in the next article. For 
our purposes, the proofs of these theorems are as important as the results 
themselves. We will try to strike a balance between proofs detailed in the 
text and others left as exercises. You should pay particular attention to 
these proofs. 

THEOREM 4 
Let f: X -, Y be a mapping. Then f is injective if and only if for any set W and 
for any mappings g: W -+ X and h: W -+ X such that f 0 g = f 0 h, we have g = h. 

Sketch of proof - Assume f is one to one; let W be a set, and let g: W -, X 
and h: W -, X be mappings such that f 0 g = f 0 h. We claim that g = h. 
Since g and h both have domain W, we need only show g(w) = h(w) for 
all w E W. SO let w E W be given. Now, by assumption, f 0 g = f 0 h so 
that, in particular, (f 0 g)(w) = (f 0 h)(w). Hence f (g(w)) = f (h(w)). Since 
f is one to one, we conclude g(w) = h(w), as desired. 
e The proof in this direction is more difficult. We have a hypothesis 

whose form is quite complicated and a relatively simple desired conclu- 
sion, namely, "f is injective." In Article 6.2 we noted that, in such cir- 
cumstances, it is often best to try a proof by contrapositive. In such a 
proof we must begin by assuming f is not one to one. If we are to prove 
the negation of the hypothesis, we must note carefully what that negation 
says. It states that there exists a set W and mappings g: W + X and 
h: W -, X such that f 0 g = f 0 h, but g # h. We give several hints from 
here, and leave the completion of the proof as an exercise. Since f is not 
one to one, there exist distinct elemknts x,, x, E X such that f(x,) = 
f (x,). Our job is to produce a set W and distinct mappings g and h of 
W into X such that f 0 g = f 0 h. Our key hint is this: Let W = (x,, x,). 
In Exercise 10(a) you are to produce the required mappings g and h. 

0 

Exercises 

1. (a) Find the domain and range of each of the relations in Example 1. 
(6) Determine which of the relations in Example 1, Article 7.1, are functions. 
(c) Show that each of the following relations is not a function: 

(i) r ,  = {(x, y) E R  x R  14x2 + 9y2 = 108) 
*(ii) r ,  = ( ( x , y ) ~ R  x R ( x 3 y +  xy3 = 0 )  

(iii) r , = { ( x , y ) ~ R x R l y = x f  3 )  

fiv) r,= { (x ,y )eR x R l x =  lyl) 

(d) Find all functions having the set (1,2,3)  as domain and the set (w, z )  as range. 
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2. (a) Prove that two functions f and g are equal (i.e., contain precisely the same 
ordered pairs) if and only if dorn f = dorn g and f(x) = g(x) for all x in the 
common domain. 

(b) Use (a) to show that the functions f(x) = x + 4 and g(x) = (x2 - 16)/(x - 4) 
are distinct. 

3. (a) Determine the domain and range of each of the following functions: 

(i) y = x 2 + 5  
(iii) y = 
(v) y = -3/x 
(vii) y = (x - 2)/(2 - x) 
(ix) y = (x/(l - x))'I2 

(ii) y=2x2--8x+5 
(iv) y = ,I= 
(vi) y = 3 + cos x 
(viii) y = 3/(x - 5) 
(x) y = I x - 3 1 + 2  

(b) Give an example of a real-valued function of a real variable for each of the 
following categories: 

(i) Transcendental 
(ii) Algebraic, but not rational 
(iii) Rational, not a polynomial. Is your example an algebraic function? 
(iv) A polynomial. Is your example a rational function? an algebraic function? 

4. Establish whether each of the following functions is or is not one to one: 

(a) f(x) = -14x + 243 (b) C(x) = 46 
(c) g(x) = x4 + 5x2 (d) h(x) = x4 + 5x2, dom h = [0, co) 

* (e) j(x) = x3 - x (f) k(x) = l/(x2 + 2) 
(g) m(x) = x3 + x [Hint: If x, and x2 have different signs, so do m(x,) and m(x2).] 

5. (a) Prove that iff is a one-to-one function, then the relation f -' is a function. 
(b) Prove that iff: A -+ B is a one-to-one mapping, then f - I :  rng f -, A is also 

a one-to-one mapping. [Note: From (a), we know that f -' is a function. You 
must prove that dorn f -' = rng f ,  rng f -' G A, and f -' is one to one.] 

6. (a) Let A be any set and X E A. Prove that the inclusion mapping i,: X + A 
is injective. 

(b) Let f: A + B be an injective mapping and let X c A. Prove that the restric- 
tion f/,: X -, B is also injective. 

7. In each of the following examples, compute f 0 g and g 0 f, eithet by listing 
/ all the ordered pairs or by specifying domain and rule of correspondence, as 

appropriate: 

(a) f = f (2,413 (3, 6), (49% (5, lo)), g = ((4, 1% (6, 361, (8,641, (10, 100)) 
(W f = {(7, l a ,  (5, 2), (3, ll), (8, (19 2)}, g = { ( a  7), (Z5h (11,3), (8,8), (2, 1)) 
(a f = {(I, 11, (2,2), (3,3)}, g = {(I, 51, (3, ll), (4, 12)) 

f(x) = ,I-, g(x) = ex 
(e) f(x) = sin x, g(x) = x3 - 5x 
(f)  f = ( ( ~ 2 ) ~  (2,3), (3,4), (4,5), ( 5 %  (6,7)), g = {(2,4), (3,52, (4,6), 6 7 1 ,  (7,211 

8. (a) Prove formally from Definition 5 that iff  and g are functions, then x E 
dorn (g 0 f )  if and only if x E dorn f and f(x) E dorn g. 

(b) (i) Give an example of two functions f and g such that f 0 g = g 0 f .  
(ii) Give an example of two functions k and h such that k 0 h # h 0 k. 
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(c) Prove that iff and g are linear mappings of R into R, that is f(x) = Mx + B 
and g(x) = Nx + C, then f 0 g and g 0 f are both linear mappings with slope MN. 

(d) [Continuation of (c)] Determine conditions on M, N, B, and C such that 
f 0 g = g 0 f .  Give a specific example of linear mappings f and g such that 
f o s = s o f .  

(e) Consider two functions f and g, where f # (25 and g # 0. Find a condition 
involving domains and ranges of these functions that guarantees that g 0 f = 0. 

9. Let f: A -+ B be any mapping, let I, and I, be the identity mappings on A and 
B, respectively. Prove: 

(a) f . I A =  Ie0 f = f 
(6) Iff is injective, then f 0 f = I,. 

* (c )  If X E A, then f 0 i, = fl,, where i, is the inclusion mapping of X into A. 

10. (a) Complete the proof of the "if" part of Theorem 4. 
(6) Prove that if f: A -+ B and g: B -+ C are injections, the g 0 f: A -, C is an 

injection. 
(c) Prove that iff: A -+ B and g: B + C are mappings such that g 0 f: A -+ C is 

an injection, then f is an injection. 
(d) In each of the following two cases, give examples of two mappings f: A -, B 

and g: B -+ C such that: 

(i) g 0 f: A -+ C is an injection, but g is not an injection (Note: What must be 
true off in any such example?) 

(ii) f is injective, but g 0 f is not injective (Note: What must be true of g in any 
such example?) 

*(e) Suppose that f: A -+ B and g: C -+ D are mappings and assume rng f r C. 
Prove that dom (g 0 f )  = A and rng (g 0 f )  E D. 

11. Let f and g be mappings of R into R. Define new mappings f v g and f A g from 
R into R by (f v g)(x) = max { f (x), g(x)) and (f A g)(x) = min { f (x), g(x)) for each 
x E R. Give examples to show that f v g and f A g can fail to be one to one, even 
when f and g are both one to one. 

12. Let f: A -+ B and g: C -+ D be mappings: 

(a) Prove that if A n C = 0, then the relation f u g (the set theoretic union of 
f and g, regarded as sets of ordered pairs) is a mapping of A u C into B u D. 

(6) Prove that if A n C = B n D = 0 and iff and g are injective, then f u g is 
injective. 

(c) Prove that if A n C = @, then (f u g)/, = f and (f u g)/, = g. 

13. Let f: A -+ B be a mapping. A mapping g: C -+ B is said to be an extension of 
f if and only iff E g. 

*(a) Prove that if g: C -+ B is an extension off: A -+ B, then A c C. 
(6) Prove that if f: A -+ B and g: C -+ D are mappings with A n C = @, then 

f u g: A u C -+ B u D is an extension of both f and g. 
(c) Prove that if g: C -, B is an extension off: A + B, then g/, = f. 
(d) Find an extension of the mapping f(x) = (x2 - 25)/(x + 5) of R - {- 5) into 

R, whose domain is R and that is continuous on R. 
(e) Show that the mapping g: C -+ C defined by g(z) = eX(cos y + i sin y), where 

z = x + yi, is an extension of the mapping f: R -+ C given by f(x) = 8. 
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8.2 More on Functions and Mappings- 
Surjections, Bijections, 
Image, and Inverse Image 

In the preceding article we saw that the definition of mapping (or, syn- 
onymously, function from one set to another) provides for the specifica- 
tion of a codomain, possibly distinct from the range (or image) of the asso- 
ciated function. If f: A + B, then the general relationship between the 
codomain B and rng f is rng f G B. In general, we say that f maps A into 
B. In the special case, such as f :  R + [0, oo), f(x) = x2, where rng f equals 
B, we say that f maps A onto B. We formalize this condition in the following 
definition. 

DEFINITION 1 
The mapping f: A -+ 6 is said to be onto, or a function that maps A onto 6, in 
case rng f = B. We also say that such a mapping is surjective, or a surjection. 

In view of the definition of rng f, we may characterize the onto property 
as follows. The mapping f: A -+ B is onto if and only if, for every y E B, 
there exists x E A such that f (x) = y [see Exercise l(a)]. Unlike the one-to- 
one property, which depends only on the function part of a mapping, the 
onto property depends in a crucial way on the choice of codomain. In fact, 
given various mappings built on the same function, at most one of them can 
be onto. As one example, iff: R + B, f (x) = sin x, where [ - 1, 11 G B s 
R, f is onto if and only if B = [- 1, 11. In Exercise 2 you are asked to de- 
termine whether or not various given mappings are surjective. 

We suggested earlier that the injective and surjective properties of a 
mapping are, in a sense, companion properties. This fact may not be evident 
from a comparison of their definitions, but consider the following. A map- 
ping f: A+ B is one to one if and only if each y E B has at most one x E A 
such that f(x) = y, and onto if and only if each y E B has at least one x E A 
such that f(x) = y. For mappings of R into R, the one-to-one property 

/ dictates that every horizontal line meet the graph in at most one point; the 
/ - / onto property requires that every horizontal line intersect the graph in 

least one point. Recalling Theorem 4 of Article 8.1, we see another analogy 
between the injective and surjective properties in the following result. 

THEOREM 1 
Let X be a nonempty set and let f: X + Y be a mapping. Then f is surjective if 
and only if for any set Z and for any mappings g: Y -+ Z and h: y -+ Z such that 
g ~ f = h o f , w e h a v e g = h .  

Proof * Assume f maps X onto Y, let Z be a set, and let g and h be 
mappings of Y into Z such that g 0 f = h 0 f. To prove g = h, let y be 
an arbitrary element of Y. We must prove that g(y) = h(y). Since f is 
surjective, there exists x E X such that f (x) = y. Since g 0 f = h 0 f ,  by 
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assumption, then (g 0 f )(x) = (h 0 f )(x) so that g( f (x)) = h( f (x)). Since 
y = f(x), we conclude g(y) = h(y), as desired. We may express the latter 
argument in the form of a proof by transitivity by the string g(y) = 

g(f(x)) = (g O f )(x) = (h O f )(x) = h(f(4) = 4 ~ ) -  
e As in the "if" part of the proof of Theorem 4, Article 8.1, we are 

motivated by the relatively complex form of the hypothesis to attempt 
an indirect proof. Suppose f is not surjective. Our goal is to contradict 
the hypothesis by producing a set Z and distinct mappings g and h of 
Y into Z such that g 0 f = h 0 f .  Now since f is not onto, there exists 
yo E Y such that yo 4 rng f. Let xo E X  (which we have assumed to be 
nonempty) and note that yo # f(xo), since yo4rng f .  It is now time 
that we define Z, g, and h. Let Z = Y, let g: Y + Z be the identity map- 
ping, and let h: Y + Z be defined by the rule h(y) = y if y # yo and h(y) = 
f(xo) if y = yo. Since yo # f(xo), then g and h are clearly distinct map- 
pings from Y to Z. Finally, if x is any element of X, we have 
(g 0 f )(x) = g( f (x)) = f (x) = h( f (x)) = (h 0 f )(x), so that the mappings 
g 0 f and h 0 f are identical, as required. 

In the string of equations at the conclusion of the proof of Theorem 1, 
the key assertion f(x) = h( f(x)) is valid because h is the identity mapping 
except at yo. By our construction, we know f(x) does not equal yo for any 
x E X SO that our conclusion h( f (x)) = f (x) is warranted. 

Theorem 1 asserts that onto mappings are precisely the mappings with 
a sort of "right-cancellation" property, analogous to the left-cancellation 
property of one-to-one mappings derived in Theorem 4 of Article 8.1. 

In the following theorem we combine several results relating the injective 
and surjective properties to composition of mappings. As we will see, it is 
possible to view the proofs of these properties as applications of Theorem 
1 and Theorem 4, Article 8.1. 

T H E O R E M  2 
Let f: X 4 Y and g: Y Z, so that g 0 f: X -+ Z. Then: 

(a) If f and g are injective, g 0 f is injective. 
(b) If f and g are surjective, g 0 f is surjective. 
(c) If g 0 f is injective, then f is injective. 
(d) If g 0 f is surjective, then g is surjective. 

Partial proof Each of these results may be proved directly from the defini- 
tions involved. Let us consider (d). To prove g is surjective, let z E Z be 
given. We must show there exists y E Y such that g(y) = z. Now since 
g 0 f maps X onto Z, by hypothesis, then corresponding to this z (using 
specialization), there is an element x E X such that z = (g 0 f)(x). Since 
(g 0 f)(x) = g( f(x)) and since f(x) E Y, our choice of the desired y is now 
clear. Let y = f(x).  We reiterate that y E Y and note that g(y) = 
g( f(x)) = z, as desired. The proof of (d) is complete. 
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Each of the remaining results (a), (b), and (c) can be proved in a similar 
direct manner. You, in fact, may already have proved (a) and (c) in 
Exercise 10, Article 8.1. You are asked to provide a similar elementary 
(i.e., direct from the definitions involved) proof of (b) in Exercise 3(a). 
An alternative, and far more sophisticated, approach to each of the four 
results may be taken by employing our two theorems on right and left 
cancellation. The former, Theorem 1, relating to the surjective property, 
is useful for (b) and (d). The latter, Theorem 4 of Article 8.1, concerning 
injectivity, may be employed to prove (a) and (c). Let us see how such 
an argument would go by proving (c). 

Given that g 0 f is injective, we use the condition in Theorem 4, Article 
8.1, to prove f is injective. To set up such a proof, we let W be a set 
and let h and k be mappings of W into X such that f 0 h = f 0 k. We 
must prove that h = k. Now since f 0 h = f 0 k, then g 0 (f 0 h) = 
g 0 (f 0 k), where both these mappings send W to 2, as shown in Figure 
8.5. By associativity of composition (Theorem 3, Article 8.1), we may 
deduce (g 0 f )  0 h = (g 0 f )  0 k. Since g 0 f is injective, then by Theorem 
4, Article 8.1, we may "cancel" g 0 f on the left to conclude h = k, as 
desired. 

Exercise 5 requires you to give similar proofs of (a), (b), and (d) of Theo- 
rem 2. 

We next consider possible combinations of the one-to-one and onto 
properties. If f(x) = x2, then f: R + R is neither one to one nor onto, 
whereas f :  R + [0, co) is onto, but is not one to one. On the other hand, 
if g(x) = ex, then g: R + R is one to one, but is not onto. Finally, map- 
pings from R to R such as y = Mx + B (M # 0), y = sinh x, and y = x3 

Figure 8.5 A diagram helps to keep track of the sets between which 
various mappings operate. 
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are both one to one and onto. The latter combination is of sufficient im- 
portance to warrant special designation: 

DEFINITION 2 
A mapping f :  A -+ B is called a one-to-one correspondence, or a bijection, 
between A and B if and only if it is both one to one and onto. 

The two parts of the next result follow from Theorem 2. 

COROLLARY 
Let f :  X + Y and g: Y -+ Z so that g 0 f :  X -+ Z. 

(a) If f  and g are bijections, then g 0 f  is a bijection. 
(b) If g 0 f is a bijection, then f  is injective and g is surjective. 

Formal verification of (a) and (b) are left to you [Exercise 4(a)], as are 
the simple proofs of parts (a) and (b) of the next theorem. 

THEOREM 3 
Given sets A and B. 

(a) The identity mapping I,: A -+ A on A is a bijection. 
(b) If f :  A -P 6 is a bijection, so is f - ' :  B + A. 
(c) If f :  A + B is a bijection, then f - '  0 f = I, and f  0 f - '  = I,. 

Proof of (c) Since f is a one-to-one mapping of A onto B, then by (b), f -' 
is a bijection from B to A. Hence by (a) of the corollary to Theorem 2, 
f - ' 0 f is a bijection from A to A, while f 0 f - ' is a bijection from 
B to B. To show f- '  0 f = I,, let x E A; we need only show that 
(f - ' 0 f)(x) = x; that is, f - '( f (x)) = x, or the ordered pair (f (x), x) E f - ', 
which is equivalent to (x, f (x)) E f ,  evidently a true statement. To show 
f 0 f - ' = I,, let y E B. We claim that f (f - '(y)) = y. For this, we need 
only that (f - ' (y), y) E f .  The latter is true since (y, f - '(y)) E f - '. The 
proofs of parts (a) and (b) are the content of Exercise 6(a). 

The idea of a one-to-one correspondence between sets is the basis of the 
theory of cardinal numbers, a study of the "relative size" of sets. As we 
will see in Article 8.3, this theory is of primary interest in relation to infinite 
sets, providing as it does a means of distinguishing between "relatively 
small" and "relatively large" infinite sets. The starting point in our brief 
glimpse at cardinality of sets will be the concept of numerical equivalence 
of sets; in brief, two sets A and B are said to be numerically equivalent if 
and only if there exists a bijection from one to the other. In preparation 
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for Article 8.3, let us take an informal look at possibilities for injections, 
surjections, and bijections between pairs of finite sets. 

Suppose A and B are finite sets with n(A) = m and n(B) = n. Suppose 
there exists an injection f from A to B; What can we can say about the 
relationship between m and n? Every element of A is mapped to an element 
of B and there is no "doubling up." Hence B must have at least as many 
elements as A; that is, m 5 n. On the other hand, if there exists a surjection 
from A to B, then every element of B is mapped into by at least one element 
of A. Since again, there is no "doubling up" (the definition of function 
forbids it) in this direction, A must have at least as many elements as B. 
We conclude rn 2 n in this case. Finally, suppose there is a bijection f 
between A and B. Since f is injective, we have m n. Since f is surjective, 
m 2 n. The result of our informal considerations is the conclusion m = n. 
Two finite sets having rn and n elements are in one-to-one correspondence 
if and only if m = n. 

IMAGE AND INVERSE IMAGE 

D E F I N I T I O N  3 
Let f: A --+ B be a mapping, and let M c A and N c B. Then we define 

(a) The image f(M) of M under f by f(M) = {f(m) lm  E M} 
(b) The inverse image f -  ' ( N )  of IV under f by f-'(N) = {x E A1 f(x) E N) 

Image and inverse image are useful tools for expressing many ideas in ad- 
vanced mathematics; we provide several examples of their uses in the exer- 
cises (e.g., Exercise 15). But our primary goal now is to introduce you to 
the two concepts and to study a number of their elementary properties. 

Let us begin with some basic facts. Note first that f (M) and f - '(N) are 
sets; f(M) is a subset of B, whereas f - '(N) is a subset of A. Note also that 
P(N) is a separate entity from the inverse relation f - and, in particular, 
is always defined, even when the relation f - is not a function. 

Here is an important and useful fact about f(M). An element y E B is 
contained in f(M) if and only if y = f(m) for some rn E M. Hence proofs 
of theorems about f (M) usually involve the techniques studied in Article 
6.1. It is generally easier to prove theorems whose conclusion involves in- 
verse image. If x E A, we-may prove x E f - l(N) simply by proving f (x) E N. 

A few other elementary properties of image and inverse image are com- 
bined in the following result, most of whose proof is left to you in Exercise 
8(a). 

T H E O R E M  4 
Let f: A -* B. Then: 
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(c) A  = f - ' (B)  
(d) rng f  = f(A) 

(e) If M I ,  M, c A  with M ,  c M,, then f(M,) G f (M2)  
(f) If N,, N2 E B  with N, E N2, then f - ' ( N , )  c f - ' (N,)  

Partial proof (a) To prove f(@) = @, we recall the approach of Examples 
11 and 12, Article 4.1, and assume y E f(@). By definition of image, we 
may then assert there exists m E @ such that y = f(m). But the statement 
"3m E @" is a contradiction. 

(f) Let N, and N, be subsets of B with N, E N,. To prove 
f - '(N ,) G f - '(N,), suppose x E f - '(N ,). To show x E f - '(N,), we need 
only show f (x) E N,. Now since x E f - ' (N, ) ,  we have f (x) E N ,. Since 
N, E N,, we conclude f (x) E N,, as desired. 

Let us next consider an example. If f (x) = x2 maps R to R, then 
f ([ - 1, 11) = [0, 11, whereas f - '([0,4]) = [ - 2,2]. Also, f - '((9)) = 
( - 3,3), whereas f - I(( - 9)) = @. Furthermore, f (R) = [0, a), the range 
off. 

Let us compute f - ( f  ( 0  1 ) )  Now f ([0, 11) = [0, 11, so 
f -l(f([O, 11)) = f -'([O, I]) = [- 1, 11. Note that letting M = [0, 11, we 
have that f - '( f (M)) = [ - 1,1] 3 [O,1] = M in this example. On the other 
hand, f(f -I([-  1, 11)) = f([- 1, 11) = [0, 11. Letting N = [- 1, 11, we 
note that f (  f -'(N)) = [0, 11 c [- 1, 11 = N in this example. 

The results of several parts of the preceding example are suggestive of 
part of the next result. 

T H E O R E M  5 
Given a mapping f: A  -+ B. 

(a) M  G f - ' ( f ( M ) )  for any subset M  of A  
(b) f ( f - ' ( N ) )  c N  for any subset N  of B 
(c) M  = f - ' ( f ( M ) )  for each subset M  of A  if and only if f  is injective 
(d) f ( f - ' ( N ) )  = N  for each subset N  of B  if and only if f  is surjective 

Proof (a) Let x E M. To prove x E f -'(f(M)), we need only show 
f(x) E f (M). Since x E M, the latter statement is true. 

(b) Let y E f (f - '(N)). We claim y E N. Now we know there exists 
x E f - ' ( N )  such that y = f (x). Since x E f - '(N), then f (x) E N. Since 
y = f (x), we conclude y E N, as desired. 

(c) Suppose M = f - I (  f ( ~ ) )  for every subset M of A. To prove f 
injective, let x,, x, E A and suppose f (x,) = f (x,). We claim x, = x,. 
Letting M = (x,}, we note that f - '( f (M)) c M for this particular set M, 
because of our hypothesis. But f (x,) = f (x,) E f (M) so x, E f - I (  f (M)). 
Since f -'(f(M)) G M = (x,}, we have x, E (x,), so that x, = x,, as 
desired. Conversely, suppose f is injective. Let M c A and recall from 
(a) that M G f - '( f (M)). To prove equality, we need only show 
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f - '( f (M)) c M. Let x E f - '( f (M)). Then f (x) E f (M) so that f (x) = 
f(m) for some m E M. Since f is one to one, we conclude x = m. Since 
m E M and x = m, we conclude x E M, as desired. 

(d) This is left as an exercise for you [Exercise 8(c)]. 

In the example preceding Theorem 5 we noted that M is a proper sub- 
set of f - '( f (M)), while f (f - '(N)) is a proper subset of N. In view of (c) 
and (d) of Theorem 5, these conclusions are consistent with the evident fact 
that the mapping in that example is neither one to one nor onto. Also, in 
attempting the proof of the "only if" part of (d), you should keep in mind 
that the "only if" part of the proof of (c) employed a clever application of 
the specialization technique, namely, an appropriate choice M = {x,) of 
a set M. 

In our next theorem we consider how image and inverse image interact 
with the set operations of union and intersection. As we will see, inverse 
image is slightly "better behaved" than image. 

T H E O R E M  6 
Let f: A -, 6. Then: 

(a) f - ' (N ,  u N,) = f - ' (N,)  u f-'(N,) and f - . ' ( ~ ,  n N,) = f - l ( ~ , )  n f- '(N,) 
for any subsets N, and N, of 6. 

(b) f (Ml u M,) = f (M,) u f(M,) for any subsets M1 and M, of A. 
(c) f (M,  n M,) E f(M,) n f(M,) for any subsets M, and M, of A. 
(d) f(M, n M,) = f(M,) n f(M,) for any subsets MI and M, of A if and only if f  is 

injective. 

Partial proof Let us consider (c) and the "if" part of (d). The remaining 
parts are left to you in Exercise 9. For (c), let MI and M, be subsets 
of A and let y  E f(M1 n M,). Then y  = f(m) for some m E MI n M,. 
Since m~ MI, then Y E  f(M1). Since m~ M,, then Y E  f(M2). Hence 
y  E f (M ') n f (M,), as desired. 

As for (d), assume f is one to one and let y  E f (M ') n f (MJ. To 
show y  E f(Ml n M,), we must show there exists m E Ml n M2 such 
that y  = f (m). Now since y  E f (M then y  = f (m,) for some m, E MI. 
Since y  E f(M2), then y  = f(m,) for some m, E M,. Since f(ml) = y  = 
f(m,) and since f is one to one, we may conclude m, = m,. Let the de- 
sired m equal the common value of m, and m,, noting that y  = f(m) and 
m~ M1 n M, (since m =  m, E M1 and m = m , ~  M,), as desired. 

In view of (d) of Theorem 6, a mapping for which the containment in 
(c) is proper cannot be injective. You should supply an example off ,  MI, 
and M, to illustrate this case. The results in (a) through (c) of Theorem 6 
may be generalized to any finite number of sets, using an induction argu- 

b ment (Exercise 10) and also to infinite collections of sets indexed by N 
I 

(Exercise 11). 
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Exercises 
1. Use Definition 1 and the definition of rng f (Definition 4, Article 7.1) to prove 
that a mapping f: A -+ B is a surjection if and only if, for each y E B, there exists 
x E A such that y = f(x). 

2. Determine whether each of the following mappings is (i) a surjection, (ii) an in- 
jection, (iii) a bijection: 

3. (a) Use the definition of onto mapping to prove that iff maps X onto Y and 
g maps Y onto 2, then g 0 f maps X into Z [(b) of Theorem 21. 

(b) In each of the following three cases, give examples of two mappings f: A -, B 
and g: B -+ C such that: 
(i) g 0 f: A -, C is a surjection, but f is not surjective. (What must be true of 

g in any such example?) 
(ii) g is surjective, but g 0 f is not surjective. (What must be true off in any 

such example?) 
(iii) f is surjective, but g 0 f is not surjective. (What must be true of g in any 

such example?) 
*(c) Prove that iff: X -+ Y is surjective and g; Y -, 2, then g 0 f: X -, Z is a sur- 

jection if and only if g is surjective. 
(d) state and prove a result analogous to (c) for injective mappings. 

4. (a) Prove the corollary to Theorem 2. That is, prove that if f: X -+ Y and 
g: Y -, Z so that g o  f :X -, Z, then: 
(i) Iff and g are bijections, then g 0 f is a bijection. 
(ii) If g 0 f is a bijection, then f is injective and g is surjective. 

(b) In each of the following three cases, give example of mappings: f: X -, Y and 
g: Y -* Z such that: 
(i) g 0 f: X -+ Z is a bijection, but f is not onto and g is not one to one 

*(ii) f is bijective, but g 0 f is not bijective 
(iii) g is bijective, but g 0 f is not bijective 

5. (a) Use the result of Theorem 1 to give a proof of (b) of Theorem 2, different 
from the proof in Exercise 3(a). [Recall the proof of (c) Theorem 2, given in the 
text.] 

(6) Use Theorem 1 to give a proof of (d) of Theorem 2, different from the proof 
given in the text. 



274 RELATIONS: FUNCTIONS AND MAPPINGS Chapter 8 

(c) Use the result of Theorem 4, Article 8.1, to give a proof of (a) of Theorem 2, 
different from the proof in Exercise lqb), Article 8.1. 

6. (a) Prove parts (a) and (b) of Theorem 3: that is, prove that, given sets A and B: 

(i) The identity mapping I,: A -, A on A is a bijection. 
(ii) Iff: A 4 B is a bijection, then f -': B -, A is a bijection. 

(b) Prove that iff: A -, B and g: B -* C are bijections, then: 

(i) (g 0 f)-  ' is a bijection from C to A 
(ii) f - ' 0 g -  ' is a bijection from C to A 
(iij) (go f ) - ' = f  l o g - '  

(c) According to the text (see the paragraph after the proof of Theorem 3), two 
sets A and B are numerically equivalent if and only if there exists a bijection 
from one to the other. Use previously proved results in this chapter to prove 
that the relation of numerical equivalence is an equivalence relation on the col- 
lection of all subsets of any given universal set U. 

7. (a) Given f: R -+ R, f(x) = 3x - 7, calculate: 

(c) Given f: R -* R, f(x) = (x + I),, calculate: 

8. (a) Prove parts (b) through (e) of Theorem 4; that is, iff: A -, B, then: 

0) f - '(%I = % (ii) A =  f - ' ( ~ )  
(iii) rng f = f(A) 
(iv) If MI, M, E A and M, G M,, then f(M,) G f(M,) 

(b) (i) Give an example of a mapping f: A -, B and subsets MI, and M, of A 
such that MI c M,, but f(M,) = f(M,). 

(ii) Prove that iff: A -, B is one to one, then for any subsets MI and M, of 
A, if f(M,) = f(M,), we may conclude MI = M,. 

(c) Prove (d) of Theorem 5; that is, given a mapping f: A -, B, f (f - '(N)) = 
N for each subset N of B if and only iff is an onto mapping. 

9. (a) Prove (a) of Theorem 6; that is, iff: A -* B, then: 

* ( I )  f-'(N, u N,)= f- ' (NJu f-'(N,)foranysubsets N, and N,ofB 
(ii) f - '(N, n N,) = f - '(N ,) n f - '(N,) for any subsets N, and N, of B 
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(6) Prove (b) of Theorem 6; that is, iff: A -, B, then f (MI u M,) = f (MI) u f (M,) 
for any subsets M, and M, of A. 

(c) Prove the "only if" part of (d) of Theorem 6; that is, iff: A -+ B has the prop- 
erty that f(M1 n M,) = f(M,) n f(M,) for any subsets MI  and M, of A, then 
f is injective. 

10. Let f: A -+ B, let k be a positive integer. Let MI, M,,  . . . , Mk and N,, N,, . . . , 
Nk be k subsets of A and B, respectively. Use induction (recall Example 6, Article 
5.4) to prove: 

11. Let f: A -+ B. Let ( M , J ~  = 1,2, 3,. . .) and (Nklk = 1, 2, 3,. . .} beinfinitecol- 
lections, indexed by N, of subsets of A and B, respectively (recall Article 4.2). Prove: 

12. Let f: A -+ B, X c A, and Y G B. Prove that: 

*(a) f (f - '(Y)) = Y if and only if Y c rng f .  Is this result consistent with the result 
in (d) of Theorem 5? 

(b) f - '( f(X)) = X if and only if the restriction off to the subset f - '( f(X)) of 
A is one to one. Is this result consistent with the result in (c) of Theorem 5? 

13. Let f: A -+ B, let M G A, and N c B. Prove: 

(a) f- ' (B- N)= A - f-'(N) 
(6) f(M) c N if and only if M E f -'(N) 
(c) Iff is a bijection, then f (M) = N if and only if M = f - '(N) 

14. Let f: A -+ B, let MI, M, E A, and N,, N, c B. Prove: 

(a) f -1(N1-N2)=f- ' (N1)-f -1(N2)  
(b) f (M, ) - f (M, )c f (M,  -M,) 

*(c) Iff is one to one, then f(M ,) - f (M,) = f(M1 - M,). 

15. (a) Prove that iff and g are functions, then dom (g 0 f )  = dom f n f - '(dorn g) 
[recall Exercise 8(a), Article 8.11. 

(b) Prove that iff: R -+ R, if a, L E K, and if lim,,, f(x) = L, then to every E > 0, 
there corresponds 6 > 0 such that (a - 6, a + 6) - (a) c f -'((L - E, L + E)). 
(c) Supposel: R -+ R and that f is continuous at a E R. Prove that the inverse 
image of every E neighborhood (f (a) - E, f (a) + E )  of f (a) contains as a subset 
some 6 neighborhood (a - 6, a + 6) of a. 

16. Image and inverse image of sets under a mapping can be used to define the 
so-called induced set functions. Suppose f: A -+ B. We define the function from 
*A) to 9(B), Sf: P(A) -* P(B), by the rule SAX) = f(X), where X is any subset 
of A; that is, X is any element of P(A). We define the mapping Sf - ,: 9 ( B )  + *A) 
by the rule Sf- ,(Y) = f -'(Y), for any subset Y of B. 

(a) Prove that Sf -, is a function, even if f is not one to one (i.e., even if the 
relation f - ' is not a function). 
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(b) Prove that iff is one to one, then Sf is one to one [recall Exercise 8(b)(ii)]. 
(c) Prove that iff is onto, then Sf is onto [recall Exercise 8(c)]. 
(d) Prove that iff is onto, then Sf - is one to one. 
(e) Prove that iff is one to one, then Sf - is onto [recall (c) of Theorem 51. 
( f )  Conclude from (b) through (e) that iff is a bijection, then Sf and Sf - are both 

bijections and (Sf)- ' = Sf - l .  

(g) Suppose f: A -, B and g: A B satisfy Sf = S,. Prove that f = g. 

17. Let A and B be sets and let R be a relation from A to B; that is, R s A x B. 
Define mappings p,: R -, A and p,: R -+ B by p,(a, b) = a and p,(a, b) = b for all 
a E A, b E B. The mappings p, and p, are called the projections of R onto A and 
B, respectively. 

(a) Give examples to show that: 
(i) Neither p, nor p, need be one to one 
(ii) Neither p, nor p, need be onto 

(b) Find a condition on R that guarantees that p, is one to one. Prove your 
assertion. 

(c) Find a condition on R that guarantees that p ,  and p, are both one to one. 
Prove your assertion. 

(d) Find a condition on R that guarantees that p, is onto. Prove your assertion. 
(e) Find a condition on R that guarantees that p, is onto. Prove your assertion. 

18. (This exercise anticipates the proof of the Schroeder-Bernstein theorem in the 
next article.) Consider the sets A = N and B = (5, 10, 15, 19,22, 25,28, 31, 34,. . .). 
Define mappings f: A -+ B and g: B -, A by f(1) = 5, f (2) = 10, f (3) = 15, d5) = 3, 

6a+10,  aeven, a # 2  
g(10) = 2, g(15) = 1, and f(a) = with 

3 a +  4, aodd, 
(b + 2)/3, b even, b # 10 

g(b)= {(b - 4V3, bodd, b f 5, b # 15 

(a) Prove f is a one-to-one mapping of A into, but not onto B, and that g is a 
one-to-one mapping of B into, but not onto, A. 

(b) The following process is called tracing the ancestry of an element of B. Con- 
sider the element 70 of B. We illustrate the process by tracing the ancestry of 70. 
We begin by looking for an element a of A such that 70 = f(a). We note that 10 
does the job; that is, f(10) = 70. We continue by focusing now on the element 
10 of A and seeking an element b E B such that 10 = g(b). This time, b = 28 is 
chosen since 10 = g(28). We attempt to continue the process by looking at the 
element 28 of B, but at this point, our attempt fails since 28 4 im f .  Thus the 
process of tracing the ancestry of the element 70 of B terminates, and we say that 
70 has an even number of ancestors (two, to be exact, 10 and 28). We may trace 
the ancestry of an element of A in a similar manner. You should trace the 
ancestry of the element 14 of A. 

(c) (i) Find three elements of A having an odd number of ancestors and three 
having an even number of ancestors. 

(ii) Find three elements of B having an odd number of ancestors and three 
having an even number of ancestors. 

(iii) Find an element of A for which the process of tracing the ancestry never 
terminates. We say that such an element has inJinite ancestry. Find such 
an element in B. 
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(d) Suppose a E A - im g or b E B - im f. What is the appropriate conclusion 
about ancestry in both these cases? 

(e) Suppose an element a E A has an odd number of ancestors. What must be true 
of the element f (a) of B? Formulate three additional analogous statements. 

( f )  Use the preceding mappings f and g to create a bijection between A and B. 

8.3 Cardinal Number of a Set 
This article might be considered an extension of Chapter 1, especially Article 
1.5, because we return to the topic of sets and, in particular, to questions 
related to the of a set. As you will soon see, however, the flavor of 
the material in this article differs greatly from that in Chapter 1 for two 
principal reasons: (1) Unlike the earlier treatment, we set down in this article 
rigorous definitions of finite set and infinite set. (2) Then we focus on the 
infinite set category. You may recall that, in Article 1.5, we developed for- 
mulas for counting the elements of finite sets. Implicit in this study was 
the understanding that two finite sets can, in many cases, be distinguished 
from each other (i.e., can be established to be different sets) purely on the 
basis of their differing number of elements. Any thought you may have 
given at that stage to infinite sets was probably with an equally certain, 
although again only implicit, assumption that there is no way of differen- 
tiating the sizes of infinite sets. This assumption is incorrect! Indeed, the 
single most important idea of this article is that relative sizes of inJinite sets 
can be distinguished in a mathematically satisfying and useful way. As one 
example, we will see that the familiar sets N, Z, and Q can be distinguished 
from R and C with respect to "size," but N and Q, for instance, cannot be 
so differentiated! The existence of different levels of infinity rests on the 
theory of infinite cardinal numbers, the creation of which (by Georg Cantor) 
inspired the development of much of modern set theory and formal logic. 

The theory of infinite cardinal numbers is not only a fundamental tool 
in modern mathematics at the graduate and research levels, but since its 
creation in the late nineteenth century, has been widely celebrated as 
both an example of the creative genius of the human mind and a prime 
example of the aesthetic appeal of mathematics at its finest! Much of the 
theory is beyond both the level and intent of this text; hence our objective 
is limited to giving you some idea about the theory, and providing in the 
process a foundation for possible further study. 

NUMERICAL EQUIVALENCE OF SETS 

We begin our consideration of cardinality of sets by restating formally a 
definition alluded to in Article 8.2. 

DEFINIT ION 1 
Let A and B be sets. We say that A and B are numerically equivalent, denoted 
A r 8, if and only i f  there exists a one-to-one mapping f: A -+ B of A onto B. 
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Justification for the name "numerical equivalence" is provided by the 
following result. 

T H E O R E M  1 
z is an equivalence relation on the collection of all subsets of any given universal 
set U. 

Proof (Reflexive) Let A be any set. Clearly A z A, since I,: A -, A is one 
to one and onto, by Exercise 6(a)(i), Article 8.2. 

(Symmetric) Assume that A and B are sets with A z B. Let f: A -P B 
be a bijection. Then f -': B + A is a bijection, by Exercise 6(a)(ii), Ar- 
ticle 8.2, so that B r A. 

(Transitive) Suppose A, B, and C are sets with A z B and B s C. 
Let f :  A + B and g: B + C be bijections. We must provide a bijection 
h: A + C. Let h = g 0 f. By (a) of the corollary to Theorem 2, Article 
8.2, h is a bijection. Hence A z C, as desired. Cl 

In view of Theorem 1, we know from Article 7.3 that any collection of 
sets is partitioned into equivalence classes, with any two sets in the same 
class numerically equivalent and two sets in different classes numerically 
nonequivalent. Let us agree to say that two numerically equivalent sets 
have the same cardinal number. In subsequent paragraphs we will see that 
a cardinal number is essentially a symbol associated with sets in an equiva- 
lence class of numerically equivalent sets. Before developing this idea, let 
us look at some examples to illustrate numerical equivalence. 

EXAMPLE 1 Let A = (1,2,3,4} and X = (a, b, c, d}. The mapping f :  
A + X given by f(1) = c, f (2) = a, f (3) = d, f(4) = b, is clearly a bijection 
between A and X, so that A r X. 0 

Note that the function f in Example 1 is by no means the only bijection 
between A and X; in fact (recalling the topic of permutations from Article 
IS), there are as many bijections between A and X as there are arrange- 
ments of the letters a, b, c, and d; that is, P(4,4) = 4! = 24. 

EXAMPLE 2 Let B = (1,2, 3) and X = (a, b, c, d}. Then there are precisely 
P(4,3) = 4! = 24 one-to-one mappings of B into X. One example is 
f (1) = a, f (2) = b, f (3) = c. Clearly none of these mappings is onto. No 
bijection exists between B and X, so that B $ X. 0 

You should verify (by an indirect argument) that the sets A and B in 
the preceding examples are not numerically equivalent. (What conclusion 
could we derive if it were true that B r A?) This result is satisfying to our 
intuition since B, after all, is a proper subset of A and, surely, it would seem, 
no set should be in one-to-one correspondence with a proper subset of itself. 
If you agree with the statement following "surely" you will be enlightened, 
although perhaps slightly disoriented, by the next result. 
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EXAMPLE 3 Prove that the set N of all positive integers is in one-to-one 
correspondence with 2N, the set of all positive even integers. 

Solution The mapping f: N -, 2N given by f(n) = 2n is clearly a bijection 
between N and 2N. First, f is one to one, because if f(n,) = f(n,), then 
2n, = 2n2 so that n, = n,. Second, f is onto, because if m is an arbitrary 
element of 2N, then m is an even integer so that m = 2n for some n E N. 
Clearly m = 2n = f (n), so that m E rng f .  Since m was arbitrarily chosen 
from 2N, we conclude rng f = 2N, as desired. Cl 

Example 3 shows that a set can be in one-to-one correspondence with 
a proper subset of itself. Focusing for the moment on this phenomenon, 
we notice that the example in which it occurred was one in which both 
sets involved were infinite, unlike the sets in Examples 1 and 2. In fact, 
the underlined property can be taken as the formal definition of an infinite 
set. 

DEFINITION 2 
A set A is said to be infinite if and only if there exists a proper subset B of A such 
that B z A. A set that is not infinite is said to be finite. 

It can be proved (we do not do so in this text) that a nonempty set A is 
finite if and only if A is numerically equivalent to the set F,, = (1,2,3, . . . , n} 
for some positive integer n. It is easy to show that 0 is finite, and you are 
asked to do so in Exercise 2(a). It can be proved furthermore that, for 
positive integers m and n, F ,  z F,  if and only if m = n. Thus we may asso- 
ciate with each finite set A a unique nonnegative integer n(A), called the 
number of elements in A. If n(A) = k, we say that A hasjnite cardinal num- 
ber k. We usually denote a generic finite set A having k elements by such 
notation as A = (a,, a,, . . . , a,}. 

In Examples 1 and 2, A and X were both sets with four elements and 
were numerically equivalent. All sets in the equivalence class they share 
have cardinal number 4. The set B from Example 2 lies in a different equiv- 
alence class from A and X and has the cardinal number 3. Once again, 
the cardinal number of a finite set is simply the number of elements in that 
set, in the usual sense. Two finite sets with same number of elements, in 
the usual sense, have the same cardinal number; two finite sets with different 
numbers of elements, in the usual sense, have different cardinal numbers. 

As seen thus far, the relation of numerical equivalence between sets is 
applicable to any two sets, finite or infinite, and in addition, agrees with 
the familiar "same number of elements as" relation in the finite case. Let 
us reflect for a moment on why this relation "seems right" as a measure of 
the comparative sizes of infinite sets. Why, to begin with, is it difficult to 
measure the size of an infinite set? The answer lies in a realization of what 
we actually do when counting the elements of a finite set S. Using the set 
N as our point of reference, we associate with each element of S a unique 
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positive integer, starting with 1 and ending with some n. We then designate 
n by a symbol such as n(S) or #(S) and call it the number of elements in 
S. For a finite set T, we might go through the same process and arrive at 
a positive integer m. We then answer the question whether S and T are 
the same size by asking whether n equals m. 

The problem, of course, in dealing with infinite sets is that we never ex- 
haust the elements; there is no positive integer m we can associate with 
such a set. So how can we reasonably compare the size of two such sets? 
The answer lies in considering how the sizes of finite sets might be com- 
pared if no set N is available. Imagine living in a situation, be it a primitive 
culture today or perhaps in a prehistoric time, in which systems of naming 
(possibly any but the smallest) counting numbers do not exist. How could 
we then determine, for instance, whether we have more pegs or more holes 
in a Peg-Board? With luck, the most intelligent or creative among us might 
think of putting pegs into holes until the supply of one or the other is ex- 
hausted. In so doing, we are clearly setting up a one-to-one mapping be- 
tween pegs and holes. Only if both pegs and holes run out simultaneously, 
could that mapping be onto and would we then judge the two sets to be 
of the same size, that is, numerically equivalent. We would not, at this 
stage, have in mind any measure of the common size of the two sets (with 
counting numbers unavailable); rather, we would have only the knowledge 
that the two sets are the same size. 

The genius of Cantor consisted partially in his realization that this 2 
proach does not depend on exhausting the elements in the set for its effec- 
tiveness. Given any two sets, both infinite, one finite and one infinite, or 
both finite, we can ask whether they are numerically equivalent, that is, 
can we discover a one-to-one correspondence between them or prove that 
none exists? This is not to say that the question will be easy to answer in 
all cases, or that we won't run into surprises and challenges to our intuition 
once this genie is out of the bottle. One such surprise is the possibility of 
a one-to-one correspondence between a set S and one of its proper subsets 
P. This is (by our formal definition as well as by intuition) out of the ques- 
tion in the finite case. In that case, as we try to match elements in P with 
those in S, we will clearly run out of elements in P, so that our mapping 
is doomed to fail to be onto. This "running out of elements" is precisely 
what will not happen in the infinite case. Clearly the inclusion mapping 
i,: P --+ S is not the desired one-to-one correspondence (never onto when 
P is a proper subset of S), but some other mapping may be. Realizing this 
possibility, we must rise above the limitations on our intuition imposed by 
overexposure to the simplest and most familiar case, that is, finite sets. 

Returning to Example 3, we find a more bizarre situation than this 
example suggests. You should verify that the sets S = {n21n E NJ = 
(1,4,9,16,25, . . . ) (of all perfect squares) and M = lo6 N = {lo6, 2 x lo6, 
3 x lo6, . . .) (of all integral multiples of "one million") are in one-to-one 

I correspondence with N. As sparsely distributed as these sets may be within 
4 
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N, they have just as many elements as N! In fact, it can be proved that N 
is numerically equivalent to any infinite subset of itself. More surprises 
are in store in the following theorems. When Cantor established the car- 
dinality relationships between N and Q (the same cardinal number) and 
between N and R (different cardinal numbers), so unexpected were these 
types of conclusions and so innovative was his approach that his results 
did not immediately win wide acceptance among mathematicians. Yet his 
extraordinarily clever arguments are not really that difficult to follow. In 
addition, the arguments in Theorems 3 and 4 illustrate the possibilities 
for both aesthetic appeal and monumental power that are inherent in the 
method of proof by contradiction. 

T H E O R E M  2 
N is numerically equivalent to Q, in symbols N z 0. 

Proof We wish to define a one-to-one mapping of N onto Q. To define 
a bijection between N and any set X, it is sufficient to create a scheme 
in which we "line up" the elements of X in such a manner that every 
element of X is accounted for. We then associate with each element of 
X the positive integer corresponding to its place on the list, noting that 
the place of any given element of X can be determined (if in no simpler 
way) by "counting" through the list until we arrive at that element (thus 
our use of the term countably injnite, see Definition 3). 

The problem then for a given set X we believe to be equivalent to N 
is to find such a scheme. In the case X = Q an ingenious scheme was 
developed by Cantor. We first show that N is equivalent to Q+, the 
positive rationals, by lining up the positive rationals according to the 
sum of their numerator and denominator. One picture (or actually two) 
is worth a thousand words at this stage. Note that repeats clearly occur 
in the array in Figure 8.6a. In counting through the array of positive 

Figure 8.6 The idea behind the proof that Q 
is countable is a systematic "lining up" of the 
positive rationals, as pictured. 
1 1  1 1  L . . .  
1 2 3 4 5  

1 1  2 2 2  . . .  
1 2 3 4 5  

2 2 . 3  2 2 . . .  
1 2 3 4 5  . . .  
. . .  . . .  

(a) 



282 RELATIONS: FUNCTIONS AND MAPPINGS Chapter 8 

0 f ( i )  - f ( i )  f ( 2 )  - f ( 2 )  f i 3 )  - f ( 3 )  f ( 4 )  

Figure 8.7 Write down an explicit rule defining the 
correspondence pictured here. 

rationals, lined up as in Figure 8.6a, we simply skip over any quotient 
of integers corresponding to a rational number that has already been 
accounted for. Thus we have f (1) = 1, f (2) = 3, f (3) = 2, f (4) = 4, f (5) = 
3, f(6) = i, and so on. Note that we have skipped over $ in defining 
f(5), since $ = 1, and 1 has already been accounted for, having been first 
in the array. 

With the equivalence of N and Q+ established, we may conclude 
N E Q by showing Q+ z Q (What property of z is the key to this con- 
clusion?). This we may do as follows. Let Q + = { f (1), f (2), f (3), . . . } 
and let us set up the correspondence in Figure 8.7. This mapping is 
clearly onto since every nonzero rational number is either equal to or 
is the negative of a positive rational number. 

At this point, you may think you have figured out all there is to know 
about the equivalence classes induced by numerical equivalence. First, we 
know already that there are equivalence classes (consisting of all the n ele- 
ment subsets of U) corresponding to each positive integer n. We should 
represent each such class by the appropriate n and call n the cardinal num- 
ber of any set in its class. Second, based on Theorem 2, you may be ready 
to conclude that any two infinite sets are numerically equivalent, and in 
particular, are equivalent to N, as we have just witnessed for Q. We might 
then say that all such sets have cardinal number oo and be done with it, 

/ secure in the belief that the list 1,2,3, . . . , oo accounts for all possible 
equivalence classes of numerically equivalent sets, or in other words, all 
possible cardinal numbers. Those who believe all of this are only half-right. 
The statements about finite sets are correct, as we had seen earlier; every- 
thing else ("Second, you may . . .") is a gross oversimplification. Assuming 
U is sufficiently large, there are infinite sets in U with cardinality different 
from that of N. A familiar example of such a set is provided in our next 
result. 

T H E O R E M  3 
The open unit interval (0, 1) is not numerically equivalent to N. 

Proof (Cantor) In fact, we will show that every one-to-one mapping of N 
into (0, 1) must fail to be onto; that is, every listing of the elements of 
(0, 1) must leave out some element of (0, 1). It is a known fact that every 
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element x in (0, 1) can be represented by a decimal expansion, say, x = 
d,d,d, . . . . We can guarantee that each such expansion is uniquely 
determined by x if we agree to dispense with the usual convention in- 
volving infinite strings of nines. It is normally understood that any ter- 
minating decimal (like .168) is also represented by a decimal involving 
an infinite string of nines (.I67999 . . . in this case), thus providing a 
situation in which two different decimal expansions correspond to the 
same number. We hereby, and for the course of the current proof, 
disallow that understanding by outlawing the use of decimals ending in 
an infinite string of nines. 

So, let us assume that the elements of (0, 1) have been listed in se- 
quence x,, x,, x,, . . . , where 

We now proceed to construct a decimal corresponding to a real number 
between 0 and 1 that cannot possibly be on the list. Let us denote this 
number y = .b,b,b, .. . , where b, = 4, if a,, # 4 and b, = 7, if a,, = 4. 
Clearly y # x,, because the decimal expansion of y differs from that of 
x, in the first place. In general, let bi = 4, if a,, # 4 and b, = 7, if a,, = 4. 
Note that, for each i = 1,2,3, . . . , we have y # xi, because the decimal 
expansion of y differs from that of xi in the ith place. We have con- 
structed a new decimal, different from any of those listed, contradicting 
the assumption that a listing of all such decimals is possible. 

And so we see that there are at least two levels of infinite cardinality, 
or two infinite cardinal numbers. It can be proved (see Exercise 1) that 
(0, 1) r R, so that the "level of infinity" uncovered in Theorem 3 is actually 
that of the real number system. Following convention, let us now agree 
to denote the cardinal number of N (and of Z, Q+,  and Q) by the symbol 
KO (pronounced "aleph-null"; "aleph" is the first letter of the Hebrew al- 
phabet). The cardinal number of R [and of (0, l )  and C] is denoted by c 
and is called the cardinal number of the continuum. We introduce some 
standard terminology in the following definition. 

DEFINITION 3 
A set that is numerically equivalent to N is said to be countably infinite or de- 
numerable. Any set that is either finite or countably infinite is said to be count- 
able. An infinite set that is not countable is said to be uncountable. 

The sets {1,2,3,. . . , 100), N, Z, Q+,  and Q are all countable sets; the 
latter four are countably infinite. The sets R, C, and (0, I), and indeed any 
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interval on the real line (see Exercise 1) are uncountable, and in fact have 
the cardinal number c. 

There are two remaining questions about cardinality that we wish'to 
address in some detail. First, is there any relationship of order between 
the two infinite cardinal numbers KO and c, similar to the relation < existing 
between any two finite cardinal numbers? We have seen that N and (0, 1) 
have different cardinal numbers, KO and c, respectively. Is one of these sets 
of a "higher" or "larger" level of infinity than the other? The answer is not 
totally clear if we rely solely on our intuition. N seems larger in the sense 
that it is unbounded, whereas (0,l) is bounded. On the other hand, between 
any two elements of (0, 1) lies another element of (0, I), a statement not 
true for N. In this sense (0, 1) seems larger. To "muddy the waters" fur- 
ther, keep in mind that Q r N and Q (0, l), even though Q differs from 
N and resembles (0, 1) in containing, between any two of its members, an- 
other of its members. Clearly this problem calls for some clear and rigor- 
ous thinking. 

Second, we wish to ask whether there are other infinite cardinal numbers 
besides KO and c. Our starting point in dealing with both these problems 
is the following definition. 

DEFINIT ION 4 

(a) Let A and B be sets. We write A 5 B and say the cardinal number of A 
is less than or equal to the cardinal number of 6, if and only if there 
exists a one-to-one mapping f: A + B. 

(6) We write A < B if and only if A 5 B, but A $ B. In this case we say that 
the cardinal number of A is (strictly) less than the cardinal number of 6. 

Note that A 5 B if and only if A is numerically equivalent to a subset 
of B (namely, im f), including possibly B itself. Stated differently, the rela- 
tionship A 5 B between two sets leaves open the possibility that A r B, 
analogous to the connection between the relations I and = on the real 
numbers. On the other hand, A < B means that there exists a one-to-one 
mapping of A into B, but no such mapping of A onto B. 

Only (b) of Definition 4 is needed to settle the question whether KO and 
c are the only infinite cardinal numbers. An immediate consequence of the 
following result is that there are infinitely many infinite cardinal numbers. 

T H E 0 R E M 4 (Cantor's theorem) 
Let S be any set. Then S < B(S) .  

Proof First, the mapping x -, {x) is clearly a one-to-one mapping of S 
into 9(S), so that S 5 9(S). We must still show that there is no one- 
to-one mapping of S onto 9 ( 9 .  For suppose f: S -+ 9(S) were such a 
mapping. Now, for each x E S, f(x) E 9(S), so that f(x) E S. Thus for 
each x E S, we may consider whether x E f (x). Surely we may say that 
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either x E f(x) or x 4 f(x) for each x E S. Consider the set N = 
(x E S 1 x 4 f (x)}. Clearly N E S so N E 9(S). Since f is assumed to be 
onto, there exists x, E S such that f (x,) = N. Now either x, E N or 
x, & N. If x, E N, then x, & f(x,) = N, so x, 4 N, a contradiction. If 
x, # N, then x, E f(x0) = N, again a contradiction. Our assumption of 
the existence of a one-to-one mapping of S onto 9(S) leads to a contra- 
diction, so that no such mapping exists, and our desired conclusion 
S < 9(S) is established. 0 

Note that N < 9(N) < 9(P(N)) <. . and so forth. The same can be 
said of R, 9(R), 9(9(R)), and so on. The existence of infinitely many dis- 
tinct infinite cardinal numbers is established. 

We now wish to get at the relationship between KO and c. Our first 
result (Theorem 5) will probably come as no surprise to you; first, we prove 
a more general fact, from which our theorem follows immediately. 

LEMMA 
If A and B are sets with A E B, then A <_ 6. 

Proof Clearly the inclusion mapping i,: A + B is a one-to-one mapping 
of A into B. 

THEOREM 5 
N 5 R. 

Since R z (0, I), we may conclude from Theorem 5 [by way of Exer- 
cise 6(c)] that N 5 (0, 1) also. Viewing the relation 5 between sets as a 
relation between the cardinal numbers of those sets, we may rephrase Theo- 
rem 5 as KO < c [again, see Exercise 6(c)]. 

Actually, there is much more we can say about the relationship between 
KO and c. First, as a result of Theorems 3 and 5, we may conclude KO < c. 
Second, and quite remarkably, we can prove that P(N) s R, a result often 
expressed in terms of cardinal numbers by the equation 2'0 = c. (Note: If 
A and B are sets with cardinal numbers a and B, we denote by aS the car- 
dinal number of the set of all mappings from B into A. Hence 2'0 is the 
cardinal number of the set of all mappings of N into (0, I}, clearly numeri- 
cally equivalent to the collection of all subsets of N.) An important tool 
in the derivation of this result is a theorem that is both very famous and 
highly important in its own right. The Schroeder-Bernstein theorem states 
essentially that .< is an antisymmetric relation between cardinal numbers. 

T  H E  0 R  E  M 6 (Schroeder-Bernstein) 
Given sets A and 8, if A I B and B 5 A, then A r B. 

Proof Our hypotheses yield the existence of injections f: A -, B and 
g: B -* A. We must use these mappings somehow to produce a bijection 
h: A -, B. The technique is more complicated than you might suspect 
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(although if you worked through Exercise 18, Article 8.2, you should 
find it familiar). Consider an element a E A. This element may be, or 
may fail to be, in the image of g. If it is, let b be the element of B such 
that a = g(b). Now focus on this b, in connection with the injection f .  
Again, we may have either b E im f or b 4 im f. If the former, let a, E A 
have the property that b = f(a,). Note then that a = g(b) = g(f(a,)). If 
we continue this process (a process often referred to as "tracing the an- 
cestry" of a), we find that one of three mutually exclusive possibilities 
must occur: 

1. The process terminates with either no ancestor for a or an ancestor 
of a lying in A which is not in the image of g, that is, with an even 
number of ancestors for a. Let us say that a E AA in this case. 

2. The process terminates with an ancestor of a lying in B which is not 
in the image off ,  so that a has an odd number of ancestors. Let 
us say that a E A, in this case. 

3. The process does not terminate; we denote this circumstance of 
infinite ancestry for a by writing a E A,. 

Clearly the sets A,, A,, and A, are mutually disjoint subsets of A 
whose union equals A; that is, the sets constitute a partition of A having 
at most three cells. Also, we can partition B in a totally analogous man- 
ner, into subsets BA, BB, and B, (an element b E BA, e.g., has an odd 
number of ancestors). Note now that f maps AA onto BA and A, onto 
B, in a one-to-one fashion, while g restricted to B, is a bijection onto 
A, [see Exercise 7(b)]. Hence we may arrive at the desired bijection h 
in the following manner: 

Again, for readers familiar with Article 7.4, the results of Exercise qa), 
combined with Theorem 6, enable us to conclude that 5 is a partial-ordering 
relation between cardinal numbers. 

The Schroeder-Bernstein theorem is extremely useful for proving numeri- 
cal equivalence of sets. As one example, suppose it is known that any open 
interval (a, b) in R is numerically equivalent to R (see Exercise 1). We may 
prove easily, using Schroeder-Bernstein, that any subset X of R containing 
an open interval is also numerically equivalent to R [note Exercise 7(a)], 
no matter how complicated the structure of X might be. 

Let us now apply the Schroeder-Bernstein theorem to the problem stated 
immediately before Theorem 6. 

T H E O R E M  7 
R is numerically equivalent to the power set of N. In terms of cardinal numbers, 
we have 2N0 = C. 
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Proof Since (0, 1) z R, by Exercise 1, we may just as well prove that (0, 1) 
9(N). We will show that (0,l) 5 9(N) and P(N) 11 (0,l) and appeal to 
Schroeder-Bemstein. To define a one-to-one mapping f of (0, 1) into 
P(N), let .b, b2b3 . . . be the binary expansion of a given x E (0, I), so that 
each bi is either 0 or 1. As before; that is, in the proof of Theorem 3, 
we outlaw the use of an infinite string of 1's in a binary representation, 
in order to guarantee uniqueness. Now define f by the rule f(x) = 
(n E N 1 b, = 1). By the uniqueness of binary representation, we conclude 
that f is a one-to-one mapping of (0,l) into 9(N). To prove 9 0  I<_ (0, I), 
let A G N. We must associate with A in a one-to-one fashion an element 
of (0, 1). Using standard decimal representation of numbers in (0, I), 
with the (by now familiar) eschewing of infinite strings of nines, we decree 
that g(A) = .xlx2x3. . . , where xi = 4 if i E A and xi = 7 if i 4 A. Clearly 
g maps 9(N) into (0, 1). Furthermore, by uniqueness of decimal repre- 
sentation, if g(A) = g(B), where g(B) = .y,y2y, . . . , then xi = yi = either 
4 or 7 for all i E N, so that i E A if and only if i E B; that is, A = B. 
Hence g is one to one and the proof is complete. 0 

Before concluding our coverage of cardinality of sets, we allude briefly 
to one of the most famous (and, until recently, unsolved) problems in mod- 
em mathematics. In the continuum hypothesis Cantor conjectured that there 
is no infinite cardinal number properly between KO and c; that is, no set 
X exists such that N < X < P(N). Only in 1963 was it proved by the 
logician Paul Cohen that this proposition is undecidable on the basis of 
the usual axioms of formal set theory; that is, the proposition can neither 
be proved nor disproved in that context. This may give you some idea of 
the kinds of research problems Cantor's theory has led to in modern times, 
as well as indicating the level of difficulty involved in dealing with those 
problems. Actually, there are many other, relatively elementary, questions 
on cardinality of sets whose answers are known, but whose solutions (i.e., 
proofs) we choose not to deal with in this text. We conclude this article, 
presenting, without proof and with only brief commentary, a list of addi- 
tional theorems about cardinality. 

1. Results about finite and infinite sets (several of these may be proved 
by mathematical induction): 

(a) A set X is finite if and only if X z F, for some n E N. 
(b) F, r F, if and only if m = n, for any m, n E N. 
(c) F, I F, if and only if m I n, for any m, n E N. 
(d) Every subset of a finite set is finite. 
(e) If A and B are finite sets, then A u B is finite. 
(f) If A,, A,, . . . , A, are finite sets, then U;=, A, is finite. 
(g )  If A is infinite and B is finite, then A - B is infinite. 



288 RELATIONS: FUNCTIONS AND MAPPINGS Chapter 8 

2. Results about countably infinite sets: 

(a )  If n E N, then n < KO. 
(b)  If A  is a countably infinite set and B c A, then B is countable. 
(c )  KO is the smallest infinite cardinal number; that is, if A  is an infi- 

nite set such that A  .< N, then A r N, so that A  is countably 
infinite. 

( d )  If ( A ,  1 d E I) is a collection of countably infinite sets, indexed by a 
countably infinite set I (such as I = N), then U,, ,A,  is countably 
infinite (notation discussed in Article 8.4). 

(e)  If A  and B are nonempty sets with A  countable and f: A  -+ B a 
mapping of A  onto B, then B is countable. 

(f) If A and B are countable sets, then A  x B is countable. 
(g) I A,, A , , .  . ., A, are countable sets (where  EN), then A ,  x 

A, x . x A, is countable. 

3. The proofs of these results depend on the axiom of choice (axiom dis- 
cussed in Article 8.4): 

(a)  Any two cardinal numbers are comparable (recall Definition 4, 
Article 7.4), that is, given two sets A  and B, either A  .< B or B .< A. 

(b) Any infinite set has a countably infinite subset. 

Exercises 
1. Use Definition 1, that is, the definiton of numerical equivalence, to prove: 

(a) R r (0, oo) 
(b) (- n/2,42) r R 

* (c) (0, 1) z (7, 13) 
(d) (a, b) r (c, d), where a, b, c, and d are real with a # b and c # d 
(e) (0, 1)  R 
(f) (a, b) r R, where a, b E R and a # b 
(g) (09 11 = [A a). 

2. *(a) Use Definition 2 to prove that (21 is a finite set. 
(6) Use Definition 2 to prove that if S is any infinite set and S r T, then T is 

infinite. 
(c) Conclude from (b) that any subset of a finite set is finite. 
(d) Conclude from (b) that if A and B are infinite sets, then A u B is infinite. 
(e) Prove that if A is an infinite set and B is a set satisfying B z A, then B is infinite. 
(f) Prove by mathematical induction that the set F, = (1,2,3, . . . , n) is finite, for 

any positive integer n. 

3. (a) Prove that if A is finite and x $ A, then A u {x) is finite. 
(b) Conclude from (a) that if A is infinite and x E A, then A - {x) is infinite. 
(c) Prove by induction that if A is finite and x,, x,, . . . , x, are all not elements of 

A (where n E N), then A u (x,, x,, . . . , x,) is finite. 
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4. (a) Prove that the set Z of all integers is countably infinite (recall Figure 8.7). 
(b) Prove that N x N is a countably infinite set (recall Figure 8.6). 
(c) Prove that if S is any countably infinite set, then S x S is countably infinite. 
(d) Prove by induction that if {S,, S,, . . . , S,) (where n E N) is a collection of n 

countably infinite sets, then S1 x S2 x - - - x S, is countably infinite. 

5. (a) Prove that if A, and A, are countably infinite sets, then A, u A, is count- 
ably infinite. (Hint: Using notation such as A, = {a,,, a,,, a,,,. . .) and A, = 
{a,,, a,,, . . .), develop a scheme for listing the elements of A, u A, system- 
atically.) 

(b) Prove that if {Ail i = 1,2,3,  . . .) is a countable collection of sets, each of which 
is countably infinite, then Ug, Ai is countably infinite. (This result is usually 
paraphrased "a countable union of countable sets is countable.") 

6. (a) Prove that the relation 5 , from Definition 4(a), is a reflexive and transitive 
relation on the collection of all subsets of any given universal set U. Is < an anti- 
symmetric relation on this collection? 

(b) Prove that the relation <, from Definition 4(b), is transitive and not reflexive. 
*(c) Prove that if A,, A,, B,, and B, are sets satisfying A, < B,, A, E A,, and 

B2 z B1, then A, 5 B,. Explain the significance of this result, relative to the two 
paragraphs immediately following Theorem 5. In particular, explain in exactly 
what sense 5 can be regarded as an antisymmetric relation, in view of the 
Schroeder-Bernstein theorem. 

7. (a) Use the Schroeder-Bernstein theorem to prove that if a, b, c, d E R with a # b 
and c # d, then (a, b) z [c, dl .  

(b) Verify the following details from the proof of the Schroeder-Bernstein theorem: 

(i) The three sets A,, A,, and A, are pairwise disjoint and have union A. 
(ii) The mapping f/AA is a one-to-one mapping of AA onto BA. 
(iii) The mapping f/A, is a one-to-one mapping of A, onto B,. 
(iv) The mapping g/BB is a one-to-one mapping of BB onto A,. 
(v) The mapping h, defined in the proof, is a bijection between A and B. 

(c) Prove that if a subset S of R contains a nonempty open interval as a subset, 
then s r R. 

8.4 Arbitrary Collections of Sets 

We now return briefly to infinite collections of sets. Recall the treatment, 
in Article 4.2, of infinite collections indexed by N, including the union and 
intersection of such collections. After studying cardinal numbers, we now 
have a different way of characterizing the condition "indexed by N." First, 
recall the role of N as an indexing set. I t  essentially provides a means of 
labeling the sets in the collection, of keeping track of and, in a sense, 
counting them. Now if each set in an infinite collection can be matched 
in a one-to-one fashion with a positive integer, then the collection must 
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contain only a countable number of sets. Thus the collections of sets con- 
sidered in Article 4.2 were countably infinite collections only. Consider, 
however, the collection consisting of all intervals of the form [r, a), where 
r is an arbitrary real number. Since R is uncountable, this collection clearly 
contains an uncountable number of sets and so represents for us a mathe- 
matical object different from (although conceptually similar to) those stud- 
ied in Article 4.2. All circumstances involving an infinite collection of sets 
indexed by a set of unknown cardinality (possibly KO, c, 2" or any other 
infinite cardinal number) are encapsulated under the heading arbitrary 
collections of sets, or collections of sets indexed by an arbitrary indexing set. 

DEFINITION 1 
Let I be an arbitrary set. The collection of sets d = {A, l l  E I), containing a set A, 
corresponding to each element I E I (where some universal set U contains each 
set A, in the collection) is called a family (or collection) of sets indexed by I. 

An arbitrary collection of sets may also be viewed as a mapping f: I + 

U, where f(i2) = A, for each i2 E I, and where U is a set containing each 
A, as an element. Clearly, countably infinite collections of sets are a special 
case of arbitrary collections. As with all generalizations, you must be care- 
ful in dealing with arbitrary collections not to attribute to them character- 
istics that are particular to the special (i.e., countable) case. For example, 
we cannot in general talk about "increasing" or "decreasing" families of 
sets [recall Example l(b, c), Article 4.21, since there may be no notion of 
"less than" in the indexing set. On the other hand, the idea of "pairwise 
disjoint" [Example l(a), Article 4.21 does carry over to arbitrary collections 
(Exercise 3); as do the concepts of union and intersection. 

DEFINITION 2 
= (A, I I  E I) is a collection of sets indexed by the arbitrary set I, we define: 

The union of the collection d, denoted U,,, A, (also denoted U (A,I 
1 E I)), to be the set, {x lx  E A, for some 1 E I); that is, ( ~ ( 3 1 ,  E I such that x E 

A,). 
The intersection of the collection d, denoted n,, , A, (also denoted 
n {A, I I  E I)), to be the set, (x lx  E A, for every 1 E I); that is, (xlx E A,V1 E I). 

With reference to terminology introduced earlier in this article, note that 
we dealt in Article 4.2 with countable unions and countable intersections, the 
preceding definition introduces arbitrary unions and arbitrary intersections. 

From the point of view of the undergraduate student of mathematics, 
the primary importance of arbitrary collections, including arbitrary unions 
and intersections, lies in the formulation of statements and execution of 
proofs of theorems involving arbitrary collections. The main difficulty for 
most students is adapting to the notational requirements of arbitrary col- 
lections, and especially, avoiding the temptation to represent all collections 
of sets as if they were countable collections. 
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EXAMPLE 1 Let f :  X -, Y. Prove that the image under f of the intersec- 
tion of any collection of subsets of X is a subset of the intersection of 
the images under f of the sets in the collection. 

Solution Our first problem is to formulate in symbols the statement to be 
proved. Let d represent the given collection of subsets of X. An in- 
correct approach is to write d = (A,, A,, A,, . . . ) and to represent the 
desired conclusion f ( n g ,  A,) E f(Ai); this notation assumes the 
collection to be countably infinite, which it may or may not be. Instead, 
we write d = (A, I A E I}, where I is an arbitrary set. We must prove 
fen,., A,) n,., f ( ~ 3  ~ e t  y E f c n , . ,  A,).  hen y =m for some 
x E n, , , A,. Since y = f(x) and x E A, for all A E I, then y E f(A3 for 
all A E I; that is, y E n,, , f(A,), as desired. 

Another important definition involving arbitrary collections of sets is a 
generalization of the notion of the cartesian product of a finite number of 
sets. 

DEFINITION 3 
Let {A , I I  E I) be an arbitrary collection of sets. We define the direct product 
HAG, A, of the sets in the collection to be the set of all mappings f: I -r U, ., A, 
such that f ( A )  E AA for each A E I. 

If I is a finite set, say, I = (1,2, . . . , n), then each element of the direct 
product is essentially an n tuple (a,, a,, . . . , a,), where each ai E A,, corre- 
sponding to the familiar cartesian product in that special case. Each func- 
tion of the type noted in Definition 3 is called a choice function, since 
defining it amounts to "choosing" an element from each of the sets A, in 
the collection. Clearly if one of the sets in the collection is empty, no choice 
function exists. It may seem self-evident that a choice function always exists 
for an arbitrary collection of nonempty sets, but in fact this statement, like 
the continuum hypothesis, can neither be proved nor disproved on the basis 
of the usual axioms of set theory. It is common (although not uncontro- 
versial) in modern-day mathematics to assume it as an axiom; the proofs of 
many important theorems at the graduate and research levels depend on 
this so-called axiom of choice. To recapitulate, the axiom of choice states 
that if (A, I A E I)- is a family of nonempty sets, then n,, , A, is nonempty. 
Stated differently, there exists a choice function, that is, a mapping f from 
I into U,,, A, such that f(A) E A* for each A E I. 

Exercises 
1. Let d = ( ~ ~ 1 1  E I }  be a collection of subsets of a set X and let B G X. Prove: 
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2. Suppose at = (A$ E I )  is a collection of sets and J  c I. Prove: 

3. Suppose at = (A$ E I )  is a pairwise disjoint collection of sets; that is, for any 
A, ~ E I  with I # p, we have A, n A, = (a. Prove that n,,, A,  = (a. 

4. Let f: X -r Y be a mapping. Let d = { A ,  1 A E I )  and 461 = {B ,  I p E J )  be collec- 
tions of subsets of X and Y, respectively. Prove: 

5. Let d = {A , (A  E I )  be a collection of subsets of a set X. Suppose the indexing 
set I  is empty. Prove, in this case, that: 
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CHAPTER 9 

Throughout most precalculus and elementary calculus courses, as well as 
in several earlier portions of this text, a basic assumption is that a mathema- 
tical object called the real numbers is familiar to students. Indeed, we would 
guess that most students would respond "somewhat familiar," if not "very 
familiar," to a multiple-choice question asking for a rating of their familiar- 
ity with the real number system R. If this guess is accurate, before reading 
further you might engage in an interesting exercise by trying to write an 
explanation of why R is familiar. In fact, you should at this point pause 
to write down all that you actually know about R. 

Assuming you have spent some time on this exercise, let us speculate 
on your answers. Various algebraic properties of R probably came to mind, 
such as "anything times zero equals zero, . . . the product of a positive with 
a negative real number is negative, . . . and . . . a nonzero factor can be can- 
celed from both sides of an equation." On another level, you may have 
focused on the representation of R as the set of points on a line. Theorems 
such as "between any two real numbers lies a third real number . . . and . . . 
there is no largest real number" suggest themselves in this context. Or else, 
you may have alluded to the role of the rational numbers within R and the 
existence of real numbers, such as a, that are not rational. 

Any number of other responses are, of course, possible and of equal value 
to those just suggested. But consider the following: How many of these 
responses, as well as the ones you gave, apply equally well to the question, 

- 
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"Write down what you know about the rational number system, . . . the in- 
tegers,. . . the complex numbers"? As one example, the three algebraic 
properties listed previously are just as true, when applied to Z or Q, as 
they are about R. The question that begins to arise when we begin to 
list descriptive properties of R is, "What properties characterize R?" 
Stated differently, "What description can we give of R that, among other 
things, distinguishes it from its familiar subsets N, Z, and Q and its super- 
set C?'Answering that question is the goal of this chapter. In the course 
of developing this answer we will justify the use of the real numbers, as 
opposed to, say, the rationals, as the "universal set" for calculus of a single 
variable, by showing that properties specific to R are crucial for the proofs 
of certain basic theorems of calculus. 

A more direct, and more open-ended question, in line with the preceding 
paragraph, is, "What are the real numbers?" In this text we provide two 
types of answer. As indicated, the material in this chapter provides a 
descriptive answer. In Chapter 10 we will give a constructive answer. With 
the positive integers as our starting point, we "build" first the integers, 
then the rationals, then the reals, using a process based on equivalence 
relations and equivalence classes, a process of considerable importance in 
a number of areas of upper-level mathematics. 

9.1 Fields 
We can answer descriptively the question, "What are the real numbers?" 
in just a few sentences. To do so, however, we must use terms that require 
the better part of this chapter for their definition and elaboration. An 
important theorem of advanced mathematics states that there is at most 
one complete ordered Jield. Accepting the truth of that theorem (whose 
proof is beyond the scope of this text), and assuming the existence of a 
"complete ordered field," we give it the name "the real numbers." The 
real numbers are the unique complete ordered field! Now we only need 
to answer the questions: "What is a field? What is an ordered field? 
What does it mean for an ordered field to be complete?" This article is 
dedicated to answering the first question. 

The definition of field requires first that we define binary operation on 
a set. 

DEFINIT ION 1 
Given a nonempty set S, we define a binary operation *on S to be any mapping of 
S x S into S. We denote by a * b the value of the function * at the ordered pair 

(a, b). 

EXAMPLE 1 Familiar operations include addition and multiplication on 
the set Z of integers, union and intersection on the collection of all 
subsets of any given universal set U ,  addition of n-dimensional vectors, 
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multiplication of n x n matrices, and composition of mappings from a 
given set X into itself. An operation may be defined on a finite set; this 
is customarily done by means of a finite "multiplication table" such as 
the one in Figure 9.1. 

A set, having one or more (usually one or two) operations, constitutes 
what is known as an algebraic structure. A Jield is an algebraic structure 
with two operations. 

Figure 9.1 Typical table used to specify a 
particular jnite algebraic structure. What is the 
relationship between this table and a table 
in Figure 9.2a? 

* 

a 

c 

DEFINIT ION 2 
Afield (F, +, .) consists of a nonempty set F, together with two binary operations 
on F, denoted by the symbols " +" (plus) and ". " (times), satisfying the following 
11 axioms: 

I .  If a, b E F, then a + b E F (additive closure) 

2. If a, 6, c E F, then 
( a + b ) + c = a + ( b + c )  (addition is associative) 

3. If a, b, E F, then a + b = b + a (addition is commutative) 
4. There exists an element in F, 

denoted "0" and called 
the zero, or zero element, 
of the field, satisfying 
a + O = O + a = a ,  
for all a E F (additive identity axiom) 

5. To each a E F, there corresponds an 
element b E F having the property that 
a + b = b + a = 0. The element 6, 
which can be shown to be uniquely 
determined by a (see Theorem I ) ,  is 
denoted -a  and called minus a 

6. I f a , b ~ F , t h e n a b ~  F 

a 

a 

b b c  

c 

7. If a, 6, c, E F, then (ab)c = a(bc) 
8. If a, b E F, then ab = ba 
9. There exists a nonzero element in F 

denoted "1" and called the unity of 

(additive inverse axiom) 
(multiplicative closure) 
(Note the convention of 
writing ab for a . 6.) 
(multiplication is associative) 
(multiplication is commutative) 

b 

a 

C 

a 

b 
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10. 

I 

I I .  

the field, satisfying 1 . a = a for 
all a E F 
To each a E F, there corresponds an 
an element b E F having the property 
that ab = ba = 1 .  The element b, 
which can be shown to be uniquely 
determined by a (see Theorem I ) ,  is 
denoted a-' and called the reciprocal 
of a 
If a,  b, c E F, then a(b + c) = ab + ac 

(multiplicative identity axiom) 

(multiplicative inverse axiom) 
(multiplication distributes over 
addition) 

Since 1 # 0 in a field, any field must contain at least two elements. Also, 
Axioms 1 and 6 are, strictly speaking, not necessary, due to the definition 
of binary operation (Definition I), which already forces closure. We include 
them, nonetheless, for the sake of emphasis. 

The set of real numbers, with the usual operations of addition and multi- 
plication, constitutes a field, by its definition as the (unique) complete 
ordered field and our assumption in this chapter that such an object exists. 
Therefore the fact that addition and multiplication of real numbers satisfy 
the field axioms, a fact that is familiar to any high school algebra student, 
is dictated by the definition of R; in particular, it is not something that has 
to (or can) be proved. All other familiar properties of R are either additional 
axioms involved in the definition of "complete ordered field (to be studied 
later in the chapter) or are theorems that can be proved from the axioms 
for a complete ordered field. R is often thought of as the prototypical field, 
and the borrowing of real number notation, for example, +, ., 0, 1, -a, and 
so on, to denote aspects of general fields, bears this out. But the concept 
of abstract, or generic, field is much more general than just the real numbers, 
as the following examples show. 

EXAMPLE 2 (Q, +, .) and (C, +, .) are both fields. Looking at some key 
axioms, we note that the rational numbers 011 and 111 are the additive 
and multiplicative identities in Q, whereas 0 + Oi and 1 + Oi play those 
roles, respectively, in-C. If a/b is a nonzero rational, then b/a is its 
multiplicative inverse; if a + bi is a nonzero complex number, then 
(a - bi)/ (a2 + b2) is its multiplicative inverse. Since Q is a subset of R 
and is itself a field under the two operations "inherited" from R, Q is 
said to be a subfield of R. Properties of Q and C will be discussed in 
some detail later, C in Article 9.4 and Q in Chapter 10. Cl 

EXAMPLE 3 The substructures (N, +, a) and (Z, +, .) of the real number 
field fail to be fields. For example, N fails to satisfy Axiom 4, among 
others, whereas Z violates Axiom 10. You should determine which of 
the field axioms are satisfied by these two algebraic structures. Cl 
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EXAMPLE 4 For those familiar with a little matrix theory, the set of all 
2 x 2 matrices, with operations of ordinary matrix addition and multi- 
plication, provides us with an algebraic structure satisfying a number 
of the field axioms. The additive part of this structure, in fact, satisfies 

field axioms 1 through 5, with ( i) being the additive identity and 

( 1:) the additive inverse of the matrix ( :). Furthermore, 

matrix m~it i~l icat ion distributes over addition, is associative, and has 

an identity, namely, ( ) The structure fails to be a field on two 

counts: Matrix multiplication is noncommutative and not every 2 x 2 
matrix has a multiplicative inverse. In fact, the matrices having inverses 
are precisely those with nonzero determinant ad - bc. 

EXAMPLE 5 For any positive integer m, denote by Z, the set of symbols 
(0, 1,2, . . . , m - 1). We define operations "plus" and "times" on such 
sets as follows: if a, b E Z,, we calculate the "sum" a + b, in Z,, by com- 
puting the ordinary sum of a and b; that is, their sum in Z, and writing 
down the remainder (necessarily an integer between 0 and m - 1, in- 
clusive. Recall the "division algorithm for Z," stated in the solution to 
Example 10, Article 6.3) upon division of that ordinary sum by m. Thus 
in Z,, 7 + 7 = 6, 2 + 7 = 1, and 4 + 4 = 0. The calculation of the 
"product" in Z, is totally analogous, replacing "ordinary sum" by 
"ordinary product." Thus, in Z,, we have 7 - 7 = 1,2 7 = 6, and 4 4 = 
0. You should construct the complete "addition" and "multiplication" 
tables for Z, and use them to check the various field axioms. We recom- 
mend special attention to the associative, identity, and inverse axioms, 
as well as distributivity of multiplication over addition (the fact that 
the latter works in all cases is rather remarkable). In the course of doing 
this you should discover that (Z,, +, -) is not a field. 

We list in Figure 9.2 complete addition and multiplication tables for 
(Z,, +, 0 )  and (Z,, +, 9). Both structures satisfy all field axioms except 
possibly Axiom 10, the multiplicative inverse axiom. Now (Z,, +, a )  

satisfies Axiom 10 also, and so is a field. The criterion determining 
whether a structure (Z,, +, .) is a field is suggested by Exercise 2, Article 
6.2. Such a structure satisfies Axiom 10, and so is a field, if and only if 
m is prime. Structures (Z,, +, -) are called the integers modulo m. 

EXAMPLE 6 Consider the set of those real numbers having the form 
a + b&, where a and b are rational. Let us denote this subset of R 
(and superset of Q (Why?)) by Q(&). Exercise 11 calls for you to pro- 
vide portions of the proof that Q(&) is a field, under the ordinary 
addition and multiplication it inherits from R. 
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Figure 9.2 (a )  Tables defining the field of integers modulo 3; (b )  tables 
defining the algebraic structure, the integers modulo 4.  

EXAMPLE 7 Denote by R[x] the set of all polynomials in a single vari- 
able x having real coefficients. Endow R[x] with the operations of or- 
dinary polynomial addition and multiplication. It can be shown that 
(R[x], + , . ) fails to be a field only in that it violates Axiom 10. Fur- 
thermore, there is a field associated with R[x] in a canonical way (ac- 
tually a field that can be constructed from R[x], by means of standard 
type of construction that we will study in Chapter 10). This associated 
field is denoted R(x) and may be thought of as consisting of the rational 
functions, that is, quotients of polynomials with real coefficients. 

Here is an important distinction between the role of R in this chapter 
and that of the structures presented in Examples 2 through 7. Under our 
approach here, where we assume a complete ordered field exists, R is defined 

- to be a field. Hence the 11 field properties are axioms for R, in particular, 
there is no question in this chapter of proving or verifying any of these 
properties for R. On the other hand, each of these structures is defined 
independently of the field concept. The fact that each is or is not a field is 
a theorem, that is, each of the field axioms must be verified or demonstrated 
to be false for each of those examples. In Chapter 10, where we drop the 
aforementioned existence assumption and outline a proof of the existence 
of a complete ordered field, the approach is to construct a mathematical 
object and prove it is a complete ordered field. In that approach the role 
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of R is analogous to that of our other examples of fields now; in particular, 
we must verify (i.e., prove) the 11 field properties for R in that approach. 

We now wish to prove some elementary theorems about fields. Any 
theorem we can prove about fields in general is, of course, true in any of the 
specific examples of fields considered in Examples 1 through 7. On the other 
hand, there are familiar properties of the real number field that do not 
appear in our list of general field theorems, agd indeed, are not true in an 
arbitrary field. Several such results are found in Articles 9.2 and 9.3. An 
analysis of their proofs reveals that they depend for their validity on prop- 
erties of R other than pure field properties, and so are true in less generality 
than the theorems we are about to state. In particular, some may fail to 
hold in our various specific examples of fields. 

Throughout the following discussion we use freely the basic principles 
"equals added to (respectively, multiplied by) equals yield equals." In 
symbols, if (F, +, .) is a field with x, y, z E F and if x = y, then x + z = 
y + z and xz = yz. An easy consequence of Axiom 4 and this property is 
additive cancellation, namely, if a, b, c E F and a + b = a + c, then b = c 
(see Exercise 1). 

T H E O R E M  1 
Let (F, +, .) be a field. Then the additive and multiplicative identities of F are 
unique. The additive and multiplicative inverses of a given element x E F (x # 0 in 
the multiplicative case) are uniquely determined by x. 

Proof First, suppose 0 and 0' are both additive identities for F. Then 
0 = 0 + 0' = 0', where the first equation uses the fact that 0' is an addi- 
tive identity, with the second using that property in reference to 0. Thus 
0 = 0' and the uniqueness of the additive identity is established. Second, 
suppose y and z are both additive inverses for a given x E F. Then 
y=O+y= (y+x )+y= (z+x )+y=z+ (x+y )=z+O=z ,so tha t  
y = z, and the uniqueness of additive inverses is proved. The key step 
(y + x) + y = (z + x) + y in the preceding sequence follows from the 
assumption y + x = 0 = z + x. 

The arguments in the multiplicative case are identical to those just 
given and are left as an exercise (Exercise 2). 

T H E O R E M  -2 
Let(F,+;) b e a f i e l d a n d x ~ F .  T h e n x . O = O . x = O .  

Proof We claim first that x 0 + x 0 = x 0 + 0. This follows from the 
sequence of steps x - 0  + 0 = x 0 = x . (0 + 0) = x 0 + x 0. By ad- 
ditive cancellation, we conclude 0 = x - 0. The equation 0 = 0 . x follows 
immediately from Axiom 8. 

T H E O R E M  3 
Let (F, +, . )  be a field and x E F. Then ( - l ) x  = -x. 
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Proof By the uniqueness of the additive inverse -x of a field element x 
(Theorem I), we need only show that (- l)x behaves as -x is defined 
to behave, namely, x + ( - l)x = 0. But 

x + (-l)x = l(x) + (-l)x 

= [1 + (- l)]x 
= O s x  
= 0 

A result such as Theorem 3, 
unremarkable as our familiarity 

(Axiom 9) 
(Axiom 11) 
(Axiom 5) 
(Theorem 2) 

in a general field, is not so mundane or 
with its application to R would have us 

believe. Let us apply this result in the field Z, of integers modulo 7. The 
theorem says that, in any field, the product of the additive inverse of the 
multiplicative identity with any element equals the additive inverse of that 
element. Let x = 5 in Z,. Note that in Z,, - 5 = 2 and - 1 = 6. Hence 
our theorem boils down to the equation (6) . (5) = 2. A quick check of the 
Z, multiplication table indicates that this equation is true, as Theorem 3 
predicts. 

C O R O L L A R Y  
Let ( F ,  +, .) be a field with x, y e  F. Then: 

Proof (a) Using Theorem 3, we note the equations x(- y) = x[(- l)y] = 

[(x)( - l)]y = ( - l)(xy) = - (xy). We may prove - (xy) = ( - x)y in a 
similar manner. 

(b) Our claim is that x is the additive inverse of -x. By uniqueness 
of the additive inverse (Theorem I), we need show only that (-x) + x = 
0. But this holds since -x is the additive inverse of x. 

(c) (-x)(-y)= -[(x)(-y)].= -[-(xy)]=xy. The first two 
equalities follow from (a), the third from (b). 

Theorem 2 stated that, in a field, the product of any element with the 
additive identity zero equals zero. The following result indicates that the 
only way a product of two field elements can be zero is if one of the elements 
is zero. 

T H E O R E M  4 
Let (F ,  +, .) be a field with x, y E: F. If xy = 0, then either x = 0 or y = 0. 

Proof We have seen both our general approach to this proof and this 
specific proof earlier in the text (recall Example 1, Article 6.2). Given 
xy = 0, suppose x # 0. We will try to conclude on this basis that y = 0. 
Since x # 0, then x-I exists, by Axiom 10. Hence y = l(y) = 
(x-lx)y = x-l(xy) = x-l(O) = 0, as desired. 
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Analogs to the familiar subtraction and division operations from R 
exist in an arbitrary field. 

D E F I N I T I O N  3 
Let (F, +, .) be a field with x, y, E F. We define: 

(a) The difference x -  y (x minus y) by the rule x -  y =  x + (-y) 
(b) The quotient x/y (x divided by y) by the rule x/y = xy- ', where y # 0 

The restriction "division by nonzero divisors only" results from the fact 
that 0-' does not exist in any field (a consequence of Theorem 2, see 
Exercise 3). Subtraction and division in a field have properties that are 
familiar from experience with real numbers. Several such properties are 
grouped together in the following theorem. 

T H E O R E M  5 
Let (F, +, .) be a field with w, x, y, z E F. Then: 

If w # 0, then w - I  = l / w  
If x # 0,  then (w/x)-' = x/w 
x = y if and only if x - y = 0 
x/y = 1 if and only if x = y and y # 0 
w - ( X - y ) = ( w - x ) + y  
- w - x =  - ( w + x )  
If x # 0 and y # 0, then xwlxy = w/y 
If x # 0 and z # 0,  then (wlx) + (y/z) = (wz + xy)/(xz) 
If x # 0 and z # 0, then (wlx) . (y/z) = wylxz 

Partial proof (g) By the definition of a quotient, xwlxy = (xw)(xy)-' = 
(xw)(x- l y - I) = (xx- l)(wy - l) = wy - ' = wly. The step (xw)(xy)- ' = 
(xw)(x- 'y - ') follows from Exercise 6(a). 

(h) By (g), (wlx) + (yl4 = (wzlxz) + (xylxz) = (wz + xy)l(xz). The 
final equality follows from Exercise 8(a). The remaining parts of the 
proof are left as exercises. 

Part (c) of Theorem 5 can be combined with Theorem 4 to provide a 
proof of the multiplicative cancellation property of a field. This proof is left 
as an exercise [Exercise 8(d)]. 

T H E O R E M  6 
If (F, +, .) is a field, if x, y, z E F with xy = xz and x # 0,  then y = z. 

Let us test parts of Theorem 5, using the field Z,. In (b), let w = 3 and 
x = 4. Then x- ' = 2, whereas w -I = 5. Hence w/x = wx- ' = (3)(2) = 6, 
so that (w/x)- l = (6)- ' = 6. On the other hand, x/w = xw - ' = (4)(5) = 6. 
Hence (w/x)- ' = 6 = xlw, as predicted by (b) of Theorem 5. In (e), let w = 1, 
x = 5 ,  and y = 6 .  Then x - y = x + ( - y ) = 5 + ( - 6 ) = 5 + 1 = 6 ,  so 
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w - ( x - y ) =  1 - 6 =  1 + ( -6 )=  1 + 1 =2.  Ontheotherhand,w-x= 
w + ( - x ) =  1 +(-5)= 1 + 2 = 3 , s o ( w - x ) + y = 3 + 6 = 2 .  Again,the 
result predicted by a part of Theorem 5 is borne out in the example Z,, 
as w - (x - y) = 2 = (w - x) + y when w = 1, x = 5, and y = 6. 

A brief look at the nonfield Z, shows that Axiom 10 (the multiplicative 
inverse axiom; the only field axiom that Z, fails to satisfy) must be crucial 
for the proof of both Theorems 4 and 6. In Z,, 3 . 2  = 0, whereas neither 
3 nor 2 equals 0. Hence the conclusion of Theorem 4 fails in Z,. Of course, 
there is no inconsistency, since the hypothesis of Theorem 4 also fails in Z,. 
Also, in Z,, we have 2 - 4  = 2 . 1 (both equal 2), but 4 # 1. Cancellation of 
nonzero factors, the subject of Theorem 6, does not work in the nonfield Z,. 

D E F I N I T I O N  4 

Let F be a field and x E F. If n is a positive integer, we define x" recursively by 
x1 = x and x" = (x"-')x. If n = 0, we define x" = x0 = 1. If x # O  and n is a 
negative integer, we define x" = (xW1)-". 

Earlier in the text (e.g., Remark 2, Article 1.5), we avoided recursive def- 
inition, and would have defined xn (n E N) informally as "x times x times 
x . . (n times)." By now, you should be mathematically mature enough to 
prefer a precise and formal approach. Recursive definition is discussed in 
detail in Article 10.1. 

Properties such as xmxn = xm +", xmym = (xy)", and x - " = (xm)- l, where 
m and n are positive integers and x and y are elements of an arbitrary field, 
familiar from high school algebra as laws of exponents in the real number 
system, are valid in the context of an arbitrary field as well. 

Exercises 
1. Verify the additive cancellation property of a field; that is, if x, y, z E F ( F  a field), 
i f x + z = y + z , t h e n x = y .  

2. (a) Prove that the multiplicative identity (i.e., unity) 1 of a field is unique. 
* (b)  Prove that the multiplicative inverse x-' of an element x in a field F  is 

uniquely determined by x. 

3. Prove that the zero element of a field necessarily has no multiplicative inverse. 
(Note: Axiom 10 allows only as how 0 need not have a multiplicative inverse.) 

4. (a) (i) Construction addition and multiplication tables for the structure Z, of 
integers modulo 8. 

(ii) Verify five instances of the distributive law (multiplication over addi- 
tion, as in Axiom 11 of the definition of field) in Z,. How many pos- 
sible instances of distributivity are there for Z,? 

(iii) Show that Z, fails to satisfy Axiom 10 of the definition of field. 
(iv) Show that the equation (- l)a = -a is valid for each a E Z,, even 

though Z, is not a field. Is there any inconsistency between this con- 
clusion and the result of Theorem 3? 
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(b) (i) Construct addition and multiplication tables for the field Z, of integers 
modulo 7. 

(ii) Find all solutions in Z, of the equation x3 + x2 - 2x = 0. 

5. (a) Prove that the zero and unity elements in a field equal their own additive and 
multiplicative inverses, respectively. That is, prove that - 0 = 0 and 1 - ' = 1. 

*(b) Prove or disprove: In any field F, if x E F and x = x- ', then x = 1. 
*(c) Prove or disprove: In any field F, if x E F and x = - x, then x = 0. 

(d) Let m be a positive integer. Give an example of a field F and an element 
x E F such that mx = 0 (where we define mx recursively by 1 x = x and mx = 
(m - 1)x + x if m > 1; recall Definition 4) but x # 0. 

6. (a) Prove that if F is a field and if x and y are nonzero elements of F (so that 
xy # 0; recall Theorem 4), then (x y) - ' = x - ' y - '. 

(b) Prove that if x is a nonzero element of a field F, then (x-')-' = x. 

7. (a) Prove that if F is a field and x E F satisfies x2 = x, then either x = 0 or 
x =  1. 

(b) Prove that if F is a field and x E F satisfies x2 = 1, then x = f 1. Does this 
result hold true in the structure Z8? 

8. (a) Prove that if x, y, z E F (F a field) with z # 0, then (xlz) + (ylz) = (x + y)/z. 
(b) Show that if a, b, c, and d are elements of F (F a field), then (a + b)(c + d) = 

ac + ad + bc + bd. 
(c) Prove parts (a) through (f) and (i) of Theorem 5. 
(d) Prove Theorem 6. 

9. (a) Prove, in a field F, if a, b, c, x E F and a # 0, then ax + b = c if and only 
if x = (c - b)a- l .  Hence a linear equation in one variable with coefficients in a 
field F has a unique solution in F. 

(b) Prove that if F is a field and a, b E F, then a2 = b2 if and only if a = b or 
a =  -b. 

(c) Give an example in the structure Z8 of a linear equation ax + b = c that has: 

(i) no solution x in Z, (ii) more than one solution in Z, 

(d) Find an example of elements a, b E Z, such that a2 = b2, but a # b and a # - b. 

10. Prove or disprove, in an arbitrary field F: 

*(a) If a E F, then there corresponds x E F such that x2 = a (such an element x 
would be called a square root of the field element a). 

(b) If x, y E F and x2 + y2 = 0, then x = y = 0. 

11. Verify field axibms 7, 10, and 11 for the field ~ [ a ] .  

9.2 ORDERED FIELDS 
We saw in Article 9.1 that R is a field and is thereby distinguishable from 
its subsets N and Z. But the theory of general fields fails to provide a means 
of differentiating between R and either Q or C. Like the reals, the rational 
and complex number systems are themselves fields. 
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In the previous article, there was a lack of any reference to ordering of 
elements in an arbitrary field. The familiar fact that any two distinct real 
numbers a and b satisfy either a < b or a > b is the basis of substantial 
portions of the algebra of the real numbers that we learn in high school. 
As we will soon see, this part of the theory of the real number field does 
not carry over to an arbitrary field, but only to a class of fields known as 
orderedfields. The theory of ordered fields will provide a way of distinguish- 
ing R, as well as Q, from C. 

DEFINIT ION 1 
An ordered field (F, 8 )  consists of a field (F, +, .), together with a nonempty 
subset 9 of F satisfying: 

(a) For all x, Y E  F, if x, Y E  9 ,  then x + y e  9 
(b) F o r a l l x , y ~ F ,  i f x , y € P , t h e n x y € 9  
(c) For any x E F, one and only one of the following three statements is true: 

(i) XEB 
(ii) - x E 9 
(iii) x = 0 

The subset 9 is called the positive part of the ordered field (F, S) ,  and an ele- 
ment x E 8 is called a positive element of F. If - x E 8 ,  x is said to be a negative 
element of (F, 9 ) .  

Conditions (a) and (b) state that 9 is closed under the addition and 
multiplication operations of the field F. Condition (c) is called trichotomy. 
When there is no danger of ambiguity, we sometimes refer simply to the 
ordered field F, rather than the ordered field (F, 9). 

Our first theorem about ordered fields is not only important in its own 
right, but contains all that is needed to show that the complex number field 
does not admit an ordering, that is, cannot possibly be ordered. Remember, 
R is, by definition, an ordered field. 

THEOREM 1 
Let (F ,  9 )  be an ordered field. Then: 

(a) 1 E 9 
(b) If X E ~ ,  then x - ' E ~  

(c) If x E F and x # 0, then x2 E 9 

Proof (a) Since 1 # 0, then either 1 E 9 or - 1 E 9 ,  by (c) of Definition 1. 
Suppose - 1 E 9 and let a E 9. Then (- l)a E 9 by (b) of Definition 1. 
But (- l)a = -a by Theorem 3, Article 9.1, so that -a E 9. But a E 9 
and -a E 9 contradicts (c) of Definition 1. 

(b) Assume x ~ 9  SO that x # O  and x-' #O.  If x - ' # 9 ,  then 
- x- ' E 9 by (c) of Definition 1. But then, (x)(- x- ') = - (XX- ') = 
- 1 E 9 ,  a contradiction since 1 E 9 ,  by (a). 
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(c) Let x be a nonzero element of the ordered field F. Then either 
x E 9 or -x E 8. If x E 9 ,  then x2 = (x)(x) E 9 by (b) of Definition 1. 
If - x E 9 then, for the same reason, ( - x)( - x) E 9. But (- x)( - x) = 
x2, by the corollary to Theorem 3, Article 9.1, so that, again, x2 E 8 ,  as 
desired. 

Only slight knowledge of algebraic properties of C (which we won't cover 
in detail until Article 9.4) is required to observe now that no ordering of 
C is possible. For if C were ordered, with positive part 9 ,  we would neces- 
sarily have i2 E 9, by (c) of Theorem 1. But i2 = - 1 and - 1 E 9 contradicts 
(a) of Theorem 1. The following result is established. 

COROLLARY 
The field C of complex numbers does not admit an ordering. 

Other examples of fields from Article 9.1 also prove to be nonorder- 
able. It is impossible, for instance, to order Z,, because if 9 is the posi- 
tive part of Z,, then 1 E 9 SO that 1 + 1 + . . + 1 (7 times) = 0 E 9, as 
well. But 0 E 9 contradicts (c) of Definition 1 [see Exercise l(c)]. 

On the other hand, in addition to the ordered fields R and Q, the 
field described in Example 6, Article 9.1, is ordered by the ordering in- 
herited from R. Also, we may order the field in Example 7, Article 9.1, 
by an ordering based on the sign of the lead coefficient of a polynomial 
(see Example 1, Article 10.3 for details). 

We next show that the ordering in an ordered field gives rise to a total 
ordering of the elements of that field, in the sense of Definition 4, Article 
7.4. 

DEFINIT ION 2 
Let F be an ordered field with positive part 9. We define a relation "less 
than," denoted < , on F by the rule x < y (x is less than y, or xis strlctfy less than y) 
if and only if y - x E 8, for any x, y E F. We also write y > x in case x c y. 

THEOREM 2 
In an ordered field (F, 9): 

(a) x < x is false for any x E F. 
(b) If x < y ahd y < z, then x < z, for any x, y, z E F. 
(c) x > 0 if and only if x E 9, whereas x < 0 if and only if - x  E 9. 
(d) Given any x E F, precisely one of the three possibilities, x > 0, x < 0, or x = 0 

obtains. 
(e) Given any x, Y E  F, precisely one of the three possibilities, x > y, x < y, or 

x = y obtains. 

Partial proof We leave (a) and (e) as exercises (see Exercise 2). For (b), as- 
sume x < y and y < z; to show x < z, we must prove z - x E 9. Now, 
by our assumptions, we have y - x E 9 and z - y E 9. By (a) of 
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Definition 1, (z - y) + (y - x) E 9. But (z - y) + (y - x) = 
z + ( - y + y ) - x = z - x , s o z - x ~ 9 , a s d e s i r e d .  

For (c) and (d), we note, by Definition 2 (using specialization), 0 < x if 
and only if x - 0 E 9, that is, x E 9. Similarly, x < 0 if and only if 
0 - x E @ that is, -x E 9. Hence (d) follows directly from (c) of Def- 
inition 1. Cl 

Part (c) of Theorem 2 confirms that the positive part of the real number 
field corresponds to our usual notion of positive real number, that is, a 
number greater than zero, or graphically, a number to the right of zero on 
the real number line. 

The relation "less than," in an ordered field, leads in a natural way, to 
an associated partial ordering relation on F. 

DEFINIT ION 3 
Let F be an ordered field. We define a relation "less than or equal to," denoted 
I, by the rule x I y (x is less than or equal to y) if and only if either x < y or 
x = y. 

THEOREM 3 
In an ordered field F: 

(a) I is a partial ordering on F ,  so that ( F ,  I) is a poset. 

(6) I is a total ordering on F. 

Proof (a) Clearly x I x for any x E F, since x = x, so that the relation 
I is reflexive. For antisymmetry, assume x, y E F with x 5 y and y I x. 
If x # y, then x < y and y < x. But this contradicts (e) of Theorem 2. 
Hence I is antisymmetric. Finally, if x, y, z E F with x I y and y I z, 
an analysis of all the logical possibilities for cases [e.g., x = y and y < z; 
you should determine how many cases there are and verify each one, see 
Exercise 3(a)] leads to the desired conclusion x I z, so that 5 is 
transitive. 

(b) Let x, y E F be given. We must prove that either x I y or y 5 x. 
Suppose x I y is false. Then it is not the case that either x < y or x = y; 
that is, x is not less than y and x is not equal to y. By (e) of Theorem 2, 
we have y < x, which implies y I x. El 

The proof of the transitivity of I in (a) of Theorem 3 suggests a fact 
that is worth noting. By the definition of < in an ordered field, many prop- 
erties of that relation are best proved by arguments involving division into 
cases [e.g., Exercise 3(b)(iii)]. (Recall Article 5.3.) 

A number of properties that are familiar from the algebra of inequalities 
involving real numbers carry over to an arbitrary ordered field. 
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THEOREM 4 
Let a, b, x, and y be elements of an ordered field F: 

(a) If x < y, then a + x < a + y 
(b) If a < b and x < y, then a + x < b + y 
(c) If x < y and a > 0, then ax < ay 
(d) If x < y and a < 0, then ax > ay 

Partial proof We leave (a) and (c) as exercises [see Exercise 3(b)]. For (b), 
assume a < b and x < y. To prove a + x < b + y, we must show that 
(b + y) - (a + x) E 9. Now, by assumption, b - a E 9 and y - x E 9. 
Hence (b - a) + (y - x) E 9 by (a) of Definition 1. But we have the 
equation (b - a) + (y - x) = (b + y) - (a + x) (Verify!) so that the latter 
element of F is in 9, as desired. 

To prove (d), suppose x < y and a < 0. To prove ax > ay, we must 
show that ax - ay E 9. By assumption, y - x E 9 and -a E 9. Hence 
( - a)(y - x) E 9 by (a) of Definition 1. But ( - a)(y - x) = ax - ay 
(Verify!) so that the latter is contained in 9, as we wished to show. 

We next consider extensions of the notion of absolute value of a real num- 
ber and distance between two real numbers to the context of an arbitrary 
ordered field. 

DEFINIT ION 4 
Let F be an ordered field. If x E F, we define the absolute value of x, denoted 
1x1, by the rule 

We issue the usual caveat that in a general ordered field, as in the familiar 
ordered field R, we must be careful to avoid false conclusions such as " - x 
is negative for any x E F' and ''1 -x( = x for any x E F." A number of 
properties of absolute value are contained in the exercises (see Exercise 6); 
several that are especially familiar are listed in the following theorem. 

THEOREM 5 
Let F be an ordered field with x, y E F. Then: 

Proof (a) If x > 0, then 1x1 = x > 0. If x < 0, then 1x1 = -x z 0. If x = 0, 
then 1x1 = x = 0. If x # 0, then either x > 0 or x < 0 so that 1x1 # 0, from 
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the first two sentences of this proof. Hence 1x1 = 0 implies x = 0, so that 
the conclusion "1x1 = 0 e x = 0" is justified. 

(b) There are six distinct cases to check. For example, if x is pos- 
itive and y is negative, then xy is negative [Exercise 4(a)(ii)J so that 
lxyl = (x)(- y) = - xy. However 1x1 = x and (yl = - y so that 1x1 1 y( = 
(x)(-y) = -(xy) also. Formulation and verification of the other five 
cases are left as an exercise [Exercise 4(a)(iii)J. 

(c) Our approach assumes the result of Exercise 4(b)(ii) and uses (b) 
of this theorem. Namely, we note 

Ix + yI2 = I @  + Y)~I  [follows immediately from (b)] 

= (x + Y ) ~  [from Theorem l(c) and 
Definition 41 

= x2 + 2xy + y2 

s x2 + 2lxyl + y2 [from Exercise S(a)(iii)] 

Since lx + yI2 5 (1x1 + 1~1)~.  and since both lx + yl and 1x1 + lyl are 
nonnegative, we conclude, from Exercise 4(b)(ii), that lx + yl 5 1x1 + lyl, 
as desired. 

(d) 1x1 = ly + (x - y)l 5 lyl + I X  - yl, where the inequality follows 
from (c). Hence 1x1 - lyl 2 IX - yl, as desired. 

Note the following discussion about the proof of Theorem 5(c). In an 
arbitrary field we need to be careful when using the symbol "2" to represent 
1 + 1 (and 2x for x + x for any x E F, etc.), since it is possible that 1 + 1 = 0. 
This is indeed the case in the field 2,. However, in an ordered field, 1 + 1 
cannot equal zero, so that 2 = 1 + 1 must represent a nonzero, and, in fact, 
a positive field element. In particular, 4 = 2-I has got to exist in any 
ordered field (cf. Exercise 8). 

The concept of absolute value in an arbitrary ordered field provides us 
with a notion of distance between field elements, in a manner totally analo- 
gous to the way we calculate distances between real numbers along a number 
line. 

D E F I N I T I O N  5 
Let F be an ordered field. If x, Y E  F, we define the distance between x and y, 
denoted d(x, y), by the rule d(x, y) = Ix - yI. 

Note that d is a mapping from F x F into F. 
it is left as an exercise to prove [see Exercise 7(a)], 
erties listed in Theorem 6. 

It is easy to show, and 
that d satisfies the prop- 



9.2 ORDERED FIELDS 309 

T H E O R E M  6 
Let F be an ordered field with x, y, ZE F. Then: 

We conclude this article with the reminder that the concept of ordered 
field has now given us the ability to distinguish between R and C. But R 
and Q are both ordered fields; what we need next is an abstract property of 
ordered fields that is satisfied by one, but not the other. Completeness in 
an ordered field, the subject of the next article, is just such a property. 

Exercises 
1. Suppose (F, 9 )  is an ordered field. Prove: 

*(a) If x E F, x # 0, and n E N, then x2" E 9 
(b) If a, b E 9 ,  then alb E 9 
(c) If x E 9 and n E N, then nx E 9. (Note: If F is any field, if x E F, and n E N, we 

define the quantity nx recursively by the rules 1 . x = x and nx = (n - l)x + x if 
n > 1.) 

2. Suppose (F, 9 )  is an ordered field. Prove: 

(a) x < x is false for any x E F (< is irreflexive) 
(b) x<y i f andon ly i fy -x>O 
(c) Given any x, y E F, precisely one of the three possibilities x < y, x = y, or x > y 

is true. 

3. Suppose (F, 9 )  is an ordered field. 

(a) Prove that if x, y, z E F with x 2 y and y I z, then x I z [recall Theorem 3(a)]. 
(b) Prove that if a, x, y E F, then: 

(i) x < y implies a + x < a + y (ii) x < y and a > 0 imply ax < ay 
(iii) x I y implies a + x I a + y (iv) x I y and a 2 0 imply ax I ay 

*(v) x l y  and a I 0 imply ax 2 ay 
(c) Prove that if a, b, x, y E F, then: 

(i) a I x arid b < y imply a + b < x + y 
(ii) a 5 x and b 5 y imply a + b I x + y 
(iii) 0 5 a < x and 0 I b < y imply ab < xy 
(iv) 0 5 a I x and 0 I b < y imply ab < xy 
(v) 0 I a I x and 0 I b I y imply ab I xy 

4. Let (F, 9 )  be an ordered field. 

(a) (i) Prove that the product of two negative elements is positive. 
(ii) Prove that the product of a positive and a negative element is negative. 
(iii) Verify the remaining cases of the proof of Theorem 5. 
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(6) *(i) Prove that if a,  b E F with a 2 0 and b 2 0 ,  then a < b if and only if 
a2 < b2.  

(ii) Prove that if a,  b E F with a 2 0 and b 2 0 ,  then a I b if and only if 
a2  I b2.  

5. (a) Let F be an ordered field with x E F. Prove: 

(6) Suppose F is an ordered field with x,  a E F.  

(i) Prove that if a 2 0 ,  then 1x1 I a if and only if - a  I x I a.  
(ii) Prove that if a 2 0 ,  x I a ,  and - x  I a,  then 1x1 I a.  

6. (a) Suppose F is an ordered field with x,  y E F: 

(i) Prove that 11x1 - l y l l  I I X  - ~1 [Hint: Use (d) of Theorem 5 and (ii) of part 
(b) of Exercise 5.1 

(ii) Prove that if y # 0, then Illy1 = l / l y l .  
*(iii) Prove that if y # 0 ,  then Ix/yl = Ixl/lyl. 

(iv) Prove that ( x  - yl I 1x1 + l y ( .  

(6) Suppose F is an ordered field, n E N, and x , ,  x, ,  . . . , x,  E F.  Prove that 
1x1 + x ,  + - - - + x.1 I lxll + lx21 + - - . + lx.1. 

7. (a) Prove Theorem 6. 
(6) Prove that if F is an ordered field with x,  y, z E F, then d(x,  y) = d(x - z, y - z). 

8. (a) Prove that if F is an ordered field, if x,  y E F with x < y, then a(x + y) E F 
and x < 3(x  + y )  < y. 

(6) Conclude from (a) that an ordered field must contain an infinite number of 
elements. 

9.3 Completeness in an Ordered Field 
Thus far, we have isolated R from N, Z, and C by means of abstract prop- 
erties. It remains only for us to find a property by which the ordered 
fields R and Q can be distinguished from each other. Now any ordered 
field is infinite and has the property that between any two distinct elements 
there is a third element (recall Exercise 8, Article 9.2); indeed, it is a familiar 
fact that R and Q both have these properties. Thus rational numbers, like 
real numbers, occur arbitrarily close to one another. Yet, the key to the 
difference between the two fields is discovered by looking at them on a 
microscopic level. In particular, a difference between R and Q begins to 
surface when we consider an element of R - Q such as n. The infinite 
sequence 3.1, 3.14, 3.14 1, 3.14 1 5,3.14159, . . . , consisting of successive deci- 
mal approximations to n, has two properties of immediate interest: (1) Each 
member is strictly less than n. (2) For any positive integer n, the nth number 
in this sequence differs from n by less than lo-", so that any real number 
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less than n, no matter how close to n, is less than some number in the 
sequence. Stated differently, .n is the smallest real number greater than 
each number in the sequence. 

Because of these two properties (to be formalized later in Definitions 1 
and 3), we say that the real number n is the least upper bound in R of the 
given infinite set of real numbers. Note, however, a third significant prop- 
erty of the given sequence; each of its members is not only real, but ra- 
tional as well. Now suppose we try to find a rational number that is the 
"least upper bound in Q" of this infinite set of rational numbers. Your 
intuition may suggest that no such rational number exists; indeed, none 
does (see Example 3, for a rigorous treatment of a similar example). 

The preceding example is at the heart of the theoretical difference between 
R and Q. Let us begin now to take a more systematic approach. 

DEFINITION 1 
Let F be an ordered field. A subset S of F is said to be bounded above in F if and 
only if there exists an element u E F such that x 5 u for all x E S. Any such field 
element u is called an upper bound of S in F. 

In the ordered field R the interval (0, 1) is bounded above by 1, as well 
as by any real number larger than 1. The same is true of the interval [0, 11. 
In the ordered field Q the subset S = {x E Qlx2 5 3) is bounded above by 
rational numbers such as 1.8, 1.74, and 1.733. The real number f i  is 
not an upper bound of S in Q, because f i  $ Q. Clearly f i  is an upper 
bound in R for the subset I = {x E R 1x2 5 3) of R. 

The concepts bounded below and bounded in an ordered field are defined 
in a manner analogous to Definition 1. Specifically, we have Definition 2. 

DEFINIT ION 2 
A subset S of an ordered field F is said to be bounded below in F if and only if there 
exists an element I E  F such that 15 x for all x E S. Any such field element I is 
called a lower bound of S in F. S is said to be bounded in F if and only if there 
exists b E F such that 1x1 I b for all x E S. 

It is easy to show that a subset of an ordered field F is bounded in F if 
and only if it is bounded both above and below in F (see Exercise 2). The 
subset (- 5, GO) of R is bounded below but not above in R, whereas (-6,171 
is a bounded subset of the ordered field R. 

There. is, as you may have noticed, a similarity between Definition 1, 
above, and Definition 2 of Article 7.4. The relationship is that every ordered 
field is a partially ordered set, and indeed, a totally ordered set (recall 
Theorem 3, Article 9.2), so that the theory developed in Article 7.4 applies 
to ordered fields. The following definition is analogous to, and consistent 
with, Definition 3, Article 7.4. It is, however, designed to take more direct 
advantage of the additional knowledge we gain about a totally ordered set 
from the fact that it is also an ordered field. 
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DEFINIT ION 3 
Let F be an ordered field and S c F. An element u of F is said to be a least 
upper bound for S in F, denoted u = lub, S (or most often u = lub S when there 
is no possibility of confusion about the underlying ordered field) if and only if: 

(a) x I u for all x E S 
(b) For all E > 0 (E an element of F), there exists x E S such that x > u - E 

Condition (a) asserts that u is an upper bound of S in F, whereas (b) states 
that no element of F smaller than u is an upper bound of S. The concept 
of greatest lower bound, denoted glb, S or simply glb S, is defined in a 
similar manner. You are asked to write out this definition in Exercise 3(a). 
Also, it is easy to show that lub's and glb's, as defined in the context of 
an ordered field, are unique whenever they exist [see Exercise 3(b)], so that 
we may correctly refer to t& lub and the glb of S (also known, incidentally, 
as sup S and inf S, respectively). 

EXAMPLE 1 Use the definitions of lub and glb to show that the subset 
S = {n + (- l)"/n 1 n E NJ of the ordered field R is not bounded above in 
R, but is bounded below with 0 = glb S. 

Solution For each positive integer n, we have n - 1 5 n + ( - l)"/n. Since 
the set {n - 1 In E N} is clearly not bounded above, we conclude the 
same for S, by Exercise 4(a). Also, 0 is clearly a lower bound for S, 
since n + (- l)"/n equals zero when n = 1 and is clearly greater than 1 
if n 2 2. Finally, 0 is the greatest lower bound of S, because for any 
E > 0, there exists x E S such that x < 0 + E, namely, take x equal to 0. 

0 

EXAMPLE 2 Prove that (- a, 21 has least upper bound in R equal to 2. 

Solution By definition, S = (-a, 21 = {x E Rlx s 2). Since x s 2 for all 
x E S, then 2 is an upper bound for S. To show that 2 is the least upper 
bound of S, let c > 0 be given. Then x = 2 - (~12) is clearly an element 
of S, and furthermore, x = 2 - (812) > 2 - E. 

It is clear that, in an ordered field, any subset having a least upper bound 
in the field is bounded above in that field. Thus the set S in Example 1 
has no least upper bound in F = R. But what about the converse? That 
is, suppose we know that a nonempty subset S of an ordered field F is 
bounded above in F. Can we conclude that S has a least upper bound in 
F? In Example 2 that conclusion was warranted. Consider, however, the 
following example. 

EXAMPLE 3 Show that the subset S = {x E Q lx2 c 31 of the ordered field 
Q has no least upper bound in Q. 
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Solution Suppose there is a rational number u such that u = lubQ S. If 
u exists, then either u2 < 3, u2 > 3, or u2 = 3. Now if u2 < 3, the ra- 
tional number x = u + [(3 - u2)/7] is clearly greater than u and [it can 
be proved-see Exercise 7(a)] satisfies x2 < 3; thus x E S. The facts x E 

S and x > u contradict the assumption that u is an upper bound of S. 
Hence u2 < 3 must be false. On the other hand, if u2 > 3, we can prove 
that the rational number y = (u2 + 3)/2u is less than u and is an upper 
bound for S in Q [see Exercise 7(b)-prove this by showing y2 > 31. 
This contradicts the assumption that u is a least upper bound for S. 
Since it is false that either u2 < 3 or u2 > 3, we must conclude u2 = 3. 
But it can be proved, in a manner analogous to the proof in Example 
9, Article 6.2, that no rational number satisfies this equation. Our con- 
clusion is that S, although nonempty and bounded above in Q, has no 
least upper bound in Q. 0 

With the result of Example 3, we are on the verge of a precise formulation 
of the theoretical difference between Q and R. 

D E F I N I T I O N  4 
An ordered field F is said to be complete if and only if every nonempty subset of F 
that is bounded above in F has a least upper bound in F. Otherwise F is said to 
be incomplete. 

By its definition, the ordered field R is complete. By Example 3, Q is 
an incomplete ordered field. 

Let us review once again the criteria by which we are now able to 
differentiate in an abstract way among the familiar structures N, Z, Q, R, 
and C, where each is equipped with the operations of addition and mul- 
tiplication. As we've repeatedly stressed, (R, +, .) is, by definition, a com- 
plete ordered field (we now know what this means). At this point we assume 
that a complete ordered field exists (we pursue this matter further in Article 
10.3) and remind you that at most one complete ordered field can exist. 
The structure (Q, +, .) of rationals is an ordered field, but it is incomplete. 
The complex numbers (C, +, .) constitute a field (see Article 9.4), but a field 
that cannot be ordered. The integers (Z, + , -) and positive integers (N, + , -) 
each violates one or more of the field axioms; that is, each fails to be a field. 

SOME CONSEQUENCES OF THE 
COMPLETENESS PROPERTY OF R 

A number of important theorems about the real numbers and about func- 
tions of a real variable depend on the completeness property of R for their 
validity. Suc results are generally stated and used, but not proved, in ele- P. mentary and intermediate calculus courses. The purpose of the material 
that follows is to expose you to the theoretical foundation of several familiar 
properties. 
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DEFINIT ION 5 
An ordered field F is said to be Archimedean ordered if and only if for all a E F 
and b > 0, there exists a positive integer n such that nb > a. 

In other words, if an ordered field is Archimedean ordered, then regard- 
less of how small b is and how large a is, a sufficient number of repeated 
additions b to itself will exceed a. See Article 10.3, Example 1 for an ex- 
ample of a non-Archimedean ordered field. 

THEOREM 1 
A complete ordered field F is necessarily Archimedean ordered. 

Proof Let a E F and b > 0 be given. Proceeding indirectly, suppose that 
nb 5 a for all positive integers n, and consider the subset S = { n b  1 n E N} 
of F. Clearly S is nonempty, since b E S, and S is bounded above, by a. 
Hence, by the completeness property, S has a least upper bound in F, 
call it u. Now u - b is less than u, so u - b is not an upper bound 
of S. Hence there is a positive integer n' such that u - b < n'b. Thus 
(n' + 1) b > u. Since n' + 1 E N, this contradicts the fact that u is an 
upper bound of S. Hence our initial assumption nb I a for all n E N 
must be incorrect; we are forced to accept the statement nb > a for some 
n E N, the desired conclusion. 

COROLLARY 1 \ 

The real number field is Archimedean ordered. 

For those who are familiar with the notion of a convergent sequence of 
real numbers, note the following fact. 

COROLLARY 2 
The sequence {llnl n = 1,2, 3, . . .) converges to zero in R. 

Proof Let E > 0 be given. We must show that there exists n E N such that 
l/n < e, that is, 1 < ne. Since R is Archimedean ordered, by Theorem 
1, we may let a = 1 and b = E in Definition 5 to obtain the desired 
conclusion. 

Thus we have a rigorous derivation of the fact that the familiar and 
important sequence ( l / n j  tends to zero in R. When the topic of infinite 
sequences is covered in second or third semester calculus, this fact is gen- 
erally taken for granted and then used as the basis for deriving convergence 
properties of a large number of other sequences. Thus Corollary 2 fills a 
significant gap in the calculus experience of most students. 

The result of Corollary 2 can also be used to derive another familiar 
fact about R, namely between any two reals, there is a rational number. 
This property, which intuitively may seem inconsistent with our discovery, 
in Article 8.3, that Q has "fewer" elements than R, is often described by the 

i statement "Q is dense in R." Its proof follows easily from Corollary 2 if 
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we are willing to assume that any real number falls between two consecu- 
tive integers. We assume the latter property for now, justifying it rigorously 
in Chapter 10, where we study both the integers and the real numbers in 
greater detail. 

T H E O R E M  2 
If a and bare real numbers with a < b, then there exists a rational number q such 
that a < q < b. 

Proof Given a, b E R with a < b, note that b - a > 0 so that, by Corol- 
lary 2, there exists a positive integer n such that l/n < b - a. By the 
assumed property of integers, there must exist an integer m such that 
m - 1 I an < m, so that (m - l)/n 2 a < mln. Hence we have that the 
rational number m/n is greater than a. Furthermore, since (m - l)/n 5 a, 
we have mln I a + lln. But a + l/n < b so we conclude m/n < b. Let- 
ting q = m/n, we note that q is rational and a < q < b, as desired. 

THE INTERMEDIATE VALUE THEOREM 

The following theorem is familiar to every student of elementary calculus. 

T H E 0 R E M 3 (Intermediate Value Theorem) 
If f is continuous on the closed and bounded interval [a, b], with f(a) < f(b) (so 
that a # b), and if yo is any real number with f(a) < yo < f(b), then there exists 
xo E (a, b) such that f(xo) = yo. y 

This theorem states that the graph of a function continuous on a closed 
and bounded interval [a, b] must pass through every horizontal line y = 
yo, where f (a) < yo < f (b), as opposed to possibly "jumping over" any such 
line. Perhaps more than any other property of continuity, and surely more 
than the formal definition, this result corresponds to our intuitive under- 
standing of a continuous function as one whose graph has no "breaks" and 
no "missing points," as shown in Figure 9.3. (You may also want to review 

Figure 9.3 Graphic view of the intermediate value theorem. 
Since g is continuous on [a, b], and g(a) < yo < g(b), the 
line y = yo must intersect the graph of g. 
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parts of Article 4.3 at this stage.) Furthermore, this theorem is the basis 
of important properties of the real number system, such as the existence 
of a real nth root of any positive real number a, where n E N (see Exer- 
cise 9). The proof of the intermediate value theorem, however, may not be 
familiar to you. As we will soon see, the "IVT" is a consequence of the 
completeness of R. In preparation for the proof, we state and prove the 
following lemma. 

L E M M A  
Suppose the function y = f ( x )  is continuous on an interval I containing the real 
number x,, and that c and dare real numbers such that c < f (x,)  < d. Then there 
exists a positive real number 6 such that c < f ( x )  < d for all x E (x ,  - 6,  
x, + 6 )  n I. 

Proof [Recall Exercise 16(b), Article 6.1.1 The proof uses the technique 
of specialization as well as the definition of continuity at a point. We 
separate the proof into two cases, according as x, either is or is not an 
endpoint of the interval I. Applying the definition of continuity at a 
point to the latter case, we have that, to any E > 0, there corresponds 
6 > 0 such that f(x,) - E < f(x) < f(x0) + E when x E (x, - 6, X, + a), 
where 6 may be chosen so small that the interval (x, - 6, xo + 6) is a 
subset of I. In particular, letting E equal the smaller of d - f(x,) and 
f (x,) - c, we may assert that a positive number 6 exists such that f(x,) - 
( f  (xo) - 4 < f ( ~ 0 )  - < f ( 4  < f ( ~ 0 )  + E < f ( ~ 0 )  + (d - f ( ~ 0 ) )  for any 
x between x, - 6 and x, + 6. From this, we conclude that c < f(x) < d 
whenever x E (x, - 6, x0 + a), as desired. 

The cases in which x, is either a left- or right-hand endpoint of I are 
left to the reader in Exercise 10. 

Proof of theorem Define a subset S of [a, b] by the rule S = (x E 
[a, b] 1 f (x) < yo). Note that S is nonempty, since a E S, and S is bounded 
above in R, by b. Hence, by the completeness property of R, S has a 
least upper bound in R, call it x,. Note that x, E [a, b] (Why?). We 
claim that f(x,) = yo; our approach is to prove that each of the other 
two possibilities f(xo) < yo and f(x,) > yo leads to a contradiction. 

Now if f(x,) < yo, then necessarily x, < b and we may conclude from 
the lemma that there exists 6 > 0 such that x, + 6 < b and f(x) < yo for 
any x E [x,, X, + 6). In particular, there exists x' E (x,, b] such that 
f(x') < yo. Since x' E S (Why?) and x' > x,, we have a contradiction of 
the fact that x, is an upper bound of S. 

On the other hand, if f(x,) > yo, then x, cannot equal a and, again 
using the lemma, we note that a positive 6 exists with a < x, - 6 such 
that f (x) > yo for any x E (x, - 6, x,]. In particular, there is no element 
of S greater than x, - 6, a violation of condition (b) of Definition 3 and 
thus a contradiction of the fact that x, is the least upper bound of S. 

Hence f(x,) = yo, as desired. Since f (a) < yo < f(b), we have x, # a 
and xo # b, so that x, E (a, b), as claimed. 
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The abstract definition of "interval" given earlier in the text (Definition 
3, Article 1.1) makes possible a brief and rather nice proof that the image 
of an interval under a continuous function is again an interval. This con- 
sequence of the intermediate value theorem also provides us with a fairly 
typical example of the use of the concept of image, introduced in Article 
8.2, in formulating a theorem. 

COROLLARY 
Suppose the function y =  f ( x )  is continuous on an interval I. Then f(l) is an 
interval. 

Proof If f is constant on I, then f(I) is a singleton set, which is an 
interval. So assume f is not constant on I, and let y,,  y, E f(I) with 
y, < y,. Let yo be given such that y, < yo < y,; we must prove yo E 

f (I); that is, yo = f (x,) for some x, E I. Now since y,, y, E f (I), there 
must exist x,, x, E I such that y, = f (x,) and y, = f (x,). Since f (x,) < 
yo < f(x,) and f is continuous on the closed interval determined by x, 
and x,, there must exist, by the intermediate value theorem, x, strictly 
between x, and x, such that yo = f (x,). Since x,, x, E I, since x, is 
between x, and x,, and since I is an interval, we have x, E I, as required. 

We indicated, just prior to Definition 4 of Article 1.1, that the intervals 
on the real line are precisely the subsets of R having one of nine possible 
forms (e.g., [a, b], (- co, b), etc.). In Exercise 3(a), Article 5.2 you were asked 
to prove that any set having one of these forms satisfies the definition of 
interval. We propose now to prove the converse; that is, any subset of R 
satisfying the definition of interval must have one of these forms. 

THEOREM 4 
If a subset I of R is an interval, then I has one of the nine forms listed in 
Definition 3, Article 1.1; that is, I has one of the nine forms [a, b] ,  (a,  b), [a,  b), 
(a,  b] ,  ( - m ,  b), ( - m ,  bl, (a, co), [a,  a), or (---a a)). 

Proof Assume I c R and I is an interval. Consider the four possibilities, I 
is bounded, I is bounded above only, I is bounded below only, and I is 
bounded neither above nor below. Clearly one and only one of these 
four possibilities is true for I. Suppose, for instance, that I is bounded 
above, but not below. By the completeness of R, we may let b = lub I 
and take note of the fact that, necessarily, either b E I or b 4 I. 
Our claim is that I = ( - oo, b ] in the first case and I = ( - oo, b) in the sec- 
ond. Suppose first that b E I. To show that I = (- co, b], we use a mu- 
tual inclusion approach and start by letting x E I. Since b is an upper 
bound for I, then x 5 b so that x E (-a, b]. Thus I E (- co, b]. Con- 
versely, suppose x E (- oo, b]. If x = b, then x E I since we've assumed 
b E I. If x < b, then since b = lub I, we may invoke condition (b) of the 
definition of least upper bound to produce c E I such that x < c < b. 
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Also, since I is not bounded below, there exists d E I such that d < x. 
Hence d < x < c, d E I, and c E I. Since I is an interval, we have x E I, 
so that (- oo, b] s I, and (- GO, b] = I, as desired. 

In Exercise 8 you should handle the subcase b & I, as well as the re- 
maining three cases described at the start of the proof. 

The preceding material should suffice to convince you of the importance 
of the completeness property of R and especially of its relevance to material 
encountered in previous calculus courses. The least upper bound property 
has additional important applications to calculus, the most familiar one 
probably being the so-called extreme value theorem: A function continuous 
on a closed and bounded interval attains an absolute maximum and mini- 
mum value on that interval. This result is the basis for part of the approach 
to applied "max-min" problems taught in most first-semester calculus 
courses. Its proof is based on a very technical property of R known as the 
Heine-Bore1 theorem. The latter, in turn, follows, in a nontrivial fashion, 
from the completeness property of R. The details, including the proof, of the 
Heine-Bore1 theorem and its consequences are a standard part of a course 
in advanced calculus; we omit them from this text. 

Exercises 
1. Use the definitions of lub and glb in the ordered field R to prove: 

(a) b = lub [a, b], where a, b E R, a < b 
(b) a = glb (a, a), where a E R 
(c) 1 = lub{ l / n ln~N) ;  O = g l b { l / n ( n ~ N )  
(d) 1 = glbN 

*(e) 3 = glb ((3,4) u (6)); 6 = lub ((3,4) u (6)) 

2. Prove that a subset S of an ordered field F is bounded in F if and only if it is 
bounded both above and below in F.  

3. (a) Formulate a definition of 1 = glb, S, analogous to Definition 3. 
(b) Prove that a least upper bound of a subset of an ordered field F, if it exists, 

is unique. 

4. (a) Suppose that a subset S of an ordered field F is not bounded above in F .  
Let T be a subset of F satisfying the property that, for each x E S, there exists 
y E T such that x < y. Piove that T is not bounded above in F .  

(b) Suppose S and T are subsets of a complete ordered field F ,  both bounded 
above in F, satisfying the property that for all x E S, there exists y E T such that 
x < y. Prove lub S I lub T. 

*(c) Suppose S and T are subsets of a complete ordered field F, both bounded 
above in F, such that S G T. Prove that lub S < lub T. 

5. Let S be a subset of an ordered field F such that u = lub S. 

(a) Prove that -u  = glb T, where T = { - x, x E S). 
(b) Prove that if v E F and v is an upper bound for S, then u I v. 
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*6. Prove that, in a complete ordered field F, any nonempty subset S of F that is 
bounded below in F has a greatest lower bound in F. 

7. Complete the solution to Example 3 by proving: 

(a) If u is a real number such that u2 < 3, then (u + [(3 - ~ ~ ) / 7 ] ) ~  < 3. 
(b) If u is a real number with u2 > 3, then: 

(i) (u2 + 3)/2u < u, and 
(ii) [(u2 + 3)/2uI2 > 3. Conclude that (u2 + 3)/2u is an upper bound in Q 

for the set S of Example 3. 

8. Suppose a subset I of R is an interval. Prove: 

(a) If I is bounded above, but not below, and if b = lub I 4 I, then I = (- oo, b). 
(6) If I is bounded, then I has one of the forms (a, b), [a, b), (a, b], or [a, b], for 

some a, b E R. 
(c) If I is bounded below, but not above, then I has one of the forms [a, a )  or (a, oo). 
(d) If I is bounded neither above nor below, then I = ( - a ,  a). 

9. Use the intermediate value theorem to prove that if y is a positive real number 
and n E N, then there exists a positive real number x such that x" = y. 

10. Verify the lemma following the statement of Theorem 3 for the cases: 

(a) x, is the left endpoint of the interval I. [Note: The continuity off on an 
interval having x, as its left endpoint means that the limit, as x approaches xo 
from the right, of f(x), equals f(x,). In other words, to any E > 0, there corre- 
sponds 6 > 0 such that f(xo) - E < f(x) < f (x,) + E whenever x E [x,, xo + a)]. 

(b) x, is the right endpoint of the interval I. 

9.4 Properties of the Complex Number Field 
We conclude this chapter with a brief introduction to properties of the field 
C of complex numbers. This important mathematical structure is often 
cited as an example of an "invented number system." Such a description 
is historically accurate. We can trace the origin of complex numbers to 
distinguished "inventors," the German mathematician Karl Gauss (1777- 
1855) and the Irish mathematician and physicist William Hamilton (1 805- 
1865). It is accurate in another sense as well, if we interpret the word "in- 
vented" to carry a meaning such as "contrived" or "concocted," as opposed 
to "occurring naturally." One way to view the complex numbers is as a 
product of the resourcefulness of man, a creation designed to solve a prob- 
lem that, in the traditional context, has no solution. The problem we refer 
to is the quadratic equation x2 + 1 = 0, and the "traditional context" is 
the real number system. As you undoubtedly know, the complex numbers 
+ i  are solutions to this equation, whereas no real number satisfies it. 
Indeed, complex numbers enable us to solve easily any quadratic equation 
with real coefficients, and, in fact, enable us, in principle, to find a solu- 
tion to any polynomial equation with complex coefficients (see Theorem 7). 
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We interject at this point only one discordant note into the rather "tidy" 
view, just presented, of the complex numbers as "cooked up," in contrast 
to the "more natural" real numbers. We will see in Chapter 10 that the 
various numbers systems studied throughout this chapter, including 2, Q, 
and R, can all be regarded as invented, in exactly the same mathematical 
sense as described earlier in reference to C. Once this fact is accepted, 
it becomes possible to regard complex numbers to be just as "real" as 
numbers in the system we designate by that name. 

BASIC DEFINITIONS AND PROPERTIES 

D E F I N I T I O N  1 
The complex number system (C, + , a )  consists of a set C ,  comprising all ordered 
pairs of real numbers (x, y), together with two operations, + and ., where we 
specify: 

(a) Two complex numbers (x,, y,), and (x2, y,) areequal if and onlyif x, = x2and 
Y1 = Y2. 

(6) Thesum of two complex numbers (x,, y,) and (x,, y,) is the complex number 
(x, + x2, Y, + ~ 2 ) .  

(c) The product of two complex numbers (x,, y,) and (x2, y,) is the complex 
number ( ~ 1 x 2  - YlY2, XlY2 + ~ 1 ~ 2 ) .  

Complex numbers are most often denoted by the letters z and w, with 
subscripts as necessary. Furthermore, the notation x + yi is customarily 
used in place of the ordered pair notation (x, y). Thus - 2 + 3i corresponds 
to (-2,3), 5 = 5 + Oi corresponds to (5, O), and i = 0 + l i  corresponds to 
(0, 1). According to (c) of Definition 1, the product of (0, 1) with (0, 1) equals 
((O)(O) - (l)(l), (O)(l) + (l)(O)) = (- 1 0 )  In the alternative notation this 
translates to the equation i2 = - 1. This rule, in turn, can be used along 
with ordinary high school algebra to provide a practical method of multi- 
plying complex numbers. 

EXAMPLE 1 Calculate the product z1z2, where z1 = 3 - 7i and 2, = 
-4 + 6i. 

Solution The product z,z2 = (3 - 7i)(-4 + 6i) equals (3)(-4) + 
(-7)(i)(6)(i) + (-7)(i)('--4) + (3)(6)(i) = (- 12) + (-42i2) + (28i) + 
(1%) = (-12 + 42) + (28 + 18)i = 30 + 46i. 0 

The equation i2 = - 1 can be rephrased i = g. We can calculate 
easily, using the methods of Example 1, that (ri)2 = r2i2 = - r2 SO that we 
have the equation ri = 4 7  for any real number r. This equation provides 
us with the interpretation "complex roots" (no doubt familiar to you) of a 
negative value of the quadratic discriminant b2 - 4ac, in applying the 
quadratic formula. The following example illustrates this. 
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EXAMPLE 2 Use the quadratic formula to find the solution(s) to the 
equation 5x2 + 2x + 1 = 0. 

Solution The quadratic formula yields roots (&)[-2 f J(z2) - (4)(5)(1)], 
which simplifies to ( - *) & (&)Jx, which equals ( -# )f (3)i. 

Recall that equation i2 = - 1 was our basis, in Article 9.2, for cohcluding 
that the complex number field cannot be ordered. In the next definition we 
resume our introduction of notation associated with C. 

DEFINIT ION 2 
Let z = x + yi be a complex number. We call the real number x the rdal part 
of z, denoted Re(z), while the real number y is called the imaginary part of z, 
denoted Im (z). 

Note that any complex number z can be expressed z = Re(z) + Im (z)i, 
Notice also that both the real and imaginary parts of a complex number 
z are real numbers. We can reexpress (a) and (b) of Definition 1 easily in 
terms of real and imaginary parts. For (a), two complex numbers are equal 
if and only if their respective real and imaginary parts are equal. For (b), 
the sum of two complex numbers is the complex number whose real (resp., 
imaginary) part is the sum of the real (resp., imaginary) parts of the given 
numbers. A complex number z such that Re (z) = 0 is said to be purely 
imaginary (or just imaginary). If Im (z) = 0, we say that the complex number 
z is real. It is left for you to verify (Exercise 6) that if the complex numbers 
z, and z2 are real with real parts x, and x, respectively, then the sum and 
product of z, and 2, in C equal the sum and product, respectively, of x, 
and x2 in R. Thus complex numbers that are real, in the sense just defined, 
behave algebraically just like real numbers, so that we may regard R and the 
subset (z E C (Im (z) = 0) of C as, for all intents and purposes, identical. It 
is in this precise sense that R may be thought of as a subset of C. 

We now state the property of the complex number system that provides 
its closest link to the number systems R and Q. 

THEOREM 1 
The complex number system (C, +, a )  is a field. 

Outline of proof Verification of field axioms 1 through 3, 6 through 8, and 
11 are left to you in Exercise 7(a). For Axioms 4 and 9, we note that the 
complex numbers 0 = 0 + Oi and 1 = 1 + Oi serve as additive and multi- 
plicative identities, respectively. For example, if z = x + yi E C, then 
z 1 = (x + yi)(l + Oi) = ((x)(l) - (y)(O)) + ((y)(l) + (x)(O))(i) = x + yi = 
z, as required. You may complete the formal verification of Axiom 4, 
as well as show that -2 = -x - yi is the additive inverse of z = x + yi, 
that is, Axiom 5. For Axiom 10, we note that if z = x + yi # 0, then the 
complex number (x - yi)/(x2 + y2) serves as the multiplicative inverse of 
z, and so may be denoted z- '. The details of this as well are left to you. 

0 
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Because C satisfies the multiplicative inverse axiom, it is possible to de- 
fine division by a nonzero complex number, namely, if z, and z2 E C with 
z2 # 0, we define zl/z2 to be z,z;'. For example, if z, = 2 - 3i and z2 = 
5 + i, then zl/z2 = (2 - 3i)/(5 + i) = (2 - 3i)[(5 - i)/26] = (7 - 17i)/26 = 
& - (3)i. As a further example, if z, = 1 and z2 = i, then zl/z2 = l/i = 
( l ) ( i )  = ( 1 - 1  = i .  Note that i has the unusual property that its 
multiplicative and additive inverses are identical. Verification of various 
properties involving division of complex numbers is part of Exercise 7(b). 

COMPLEX CONJUGATE AND MODULUS 

The formula z- = (x - yi)/(x2 + y2), for the multiplicative inverse of a 
nonzero complex number z = x + yi, contains two important quantities 
related to z. If z = x + yi is represented by one arrow in Figure 9.4(a), 
the quantity x - yi is represented by the other. Note the symmetry with 
respect to the y (or imaginary) axis. The real number (x2 + y2) represents 
the square of the common length of both arrows [see Theorem 2(f), and 
Figure 9.4(b)]. These two quantities, which may be calculated for any com- 
plex number z, are of sufficient importance to warrant formal designation. 

D E F I N I T I O N  3 
Let z = x + yi be a complex number. We define: 

(a) The complex conjugate of z, denoted z*, by the rule z* = x - yi 
(b) The modulus of z, denoted Izl, by the rule Izl = (x2 + y2)lI2 

Figure 9.4 Complex conjugate and modulus of a complex number z. 

y (imaginary axis) 

y (imaginary axis) 
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An immediate consequence of Definition 3 and the formula (x + yi) - ' = 
(X - yi)/(x2 + y2) is the equation z-I = z*/(z12, for any nonzero complex 
number z. Since this implies zz*/lz12 = 1, we have also zz* = 1zI2 for any 
complex number z, so that, in particular, the product zz* (a product of two 
complex numbers) is always a nonnegative @ number. This fact is the 
basis of a familiar algebraic technique, illustrated in the following example. 

EXAMPLE 3 Express 1/(6 + 8i) in the form x + yi. 
Solution The technique is multiplication by the complex conjugate of 

the denominator divided by itself. Specifically, we have that 1/(6 + 8i) 
= [1/(6 + 8i)][(6 - 8i)/(6 - 8i)] = (6 - 8i)/(36 + 64) = (3150) - (2/25)i. 
What are we actually doing when we apply this technique? The original 
problem could be rephrased, "find z- ' ,  where z = 6 + 8i." By the for- 
mulas developed following Definition 3, z -  ' = z*/1zI2 = z*/zz*, a formula 
corresponding precisely to the algebraic technique. 

We are now ready to state formally several properties involving Re (z), 
Im (z), z*, and lzl. 

THEOREM 2 
Let z be a complex number. Then: 

z +  z* = 2 Re (z), so that Re (z) = (&)(z+ z*) 
z - z* = 2i  Im (z), so that Im (z) = (i/2.)(z* - z) 
zz* = lz12 

IzI 2 0; IzI = 0 if and only if z = 0 
z** = z 

14 = IzI 
z = z* if and only if z is real 
- z  = z* if and only if z is imaginary 
Im (iz) = Re (z) 
Re (iz) = - Im (z) 

Partial proof (a) Let z = x + yi. Then z + z* = (x + yi) + (x - yi) = 
2x = 2 Re (z). The conclusion Re (z) = (+)(z + z*) follows immediately. 

(h) Assume z* = -2, where z = x + yi. This means that x - yi = 
-x - yi, so that 2x = 0 and hence x = 0, thus proving that z is purely 
imaginary. The converse is left to you. 

(i) If z =-x + yi, then iz = xi + yi2 = - y + xi. Hence Im (iz) = x = 
Re (2). 

The remaining portions of the theorem are left as exercises (see 
Exercise 8). 

THEOREM 3 
Let z, and z, be complex numbers. Then: 
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Partial proof (e) If z2 = x + yi # 0, then z;' = (x - yi)/(x2 + y2), so 
that (z, ')* = (x + yi)/(x2 + y2). On the other hand, z2 = x - yi, so that 
(2:)-' = (x + yi)/(x2 + y2), as well. Hence we have (zT1)* = (x + yi)/ 
(x2 + y2) = ( ~ 2 ) -  ', as desired. 

(f) If z2 # 0, then (zl/z2)* = (z, z;')* = [by (d)] (z:)(zil)* = 

[by (e)l (z:)(z:) - ' = z:/z: 
(h) If z, = x + yi # 0, then z;' = (x - yi)/(x2 + y2), so that P;'l = 

{[x2/(x2 + y2)2] + [y2/(x2 + y2)2])112 = [(x2 + y2)/(x2 + y2) Ill2 = 
1/(x2 + y2)lI2 = 1/1z21. 

The remaining portions of the proof are left to you in Exercise 9. 0 

POLAR FORM AND DEMOIVRE'S THEOREM 

Let r and 8 be polar coordinates of the ordered pair (x, y), where x # 0, 
y # 0, and r > 0. Then we may represent the complex number x + yi in the 
form r(cos 8 + i sin 8). This representation is called a polar form of x + yi. 
Note that r is uniquely determined by x and y, and the stipulation that r 
be positive. Specifically, if z = r(cos 8 + i sin 8), then lzl = (r2 cos2 8 + 
r2 sin2 8)'12 = [r2(cos2 8 + sin2 8)]'12 = = r; that is, r is simply the 
modulus of z. Unfortunately, the situation is not so simple for 8, as the 
following example indicates. 

EXAMPLE 4 Describe all possible polar representations of z = 2 + 2 a i .  

Solution Note first that r = IzI = [(2)' + (2fi)']'12 = f i  = 4. Thus we 
may express z as z = 4(4 + i&2) = 4(cos n/3 + i sin rr/3). Hence r = 4, 
8 = 7113 provides one polar representation of z. The periodicity of cos 
and sin, both of period 2n, dictates that r = 4 and 8, = 4 3  + 2kn, where 
k is any integer, provide infinitely many additional (and, in fact, all possi- 
ble) polar representations of z. 0 

Given a nonzero complex number z = x + yi, any number 8 such that 
z = r cos 8 + ir sin 8 is called an argument of z, denoted arg z. Any nonzero 
complex number has infinitely many values of arg z. The unique value of 
arg z such that - n < arg z I n is called the principal value of arg z. Hence 
the principal value of arg z in Example 4 is n/3; some other values are 
- 5 4 3 ,  743, and 131r/3. 



9.4 PROPERTIES OF THE COMPLEX NUMBER FIELD 325 

The primary use of the polar form is in connection with multiplication of 
complex numbers. The reason this form is of value in complex multiplica- 
tion is that we may calculate polar form of a product of two complex num- 
bers, expressed in polar form, by adding the arguments (and multiplying 
the moduli). We approach this important fact and some of its consequences 
by using Definition 4. 

DEFINIT ION 4 
If z is any complex number x + yi, we define the complex exponential eZ by 
the rule eZ = eX(cos y + i sin y). 

If z is purely imaginary, so that x = 0, ez equals eiy which has the value 
cos y + i sin y. Hence ex+" = eX(cos y + i sin y) = exeiy for any x, y E R, a 
result consistent with a familiar property of the ordinary (real) exponential 
function. The complex-valued function f (z) = ez is an extension of the real 
exponential function, in that if the complex number z is real, then 
ez = ex(cos 0 + i sin 0) = e" (recall Exercise 13, Article 8.1). Other proper- 
ties of the real exponential shared by ez are listed in the next theorem. 

THEOREM 4 
The complex exponential eZ has these properties: 

(a) If z = 0, then e" = 1 (i.e., e0 = 1) 
(b) @+"=eZew f o r a n y w , z ~ C  
(c) (eZ)" = en" for any n E N and z E C 
(d) e-z = 1 I@ for any z E C 

The proof of Theorem 4, which should not be difficult, given the following 
result, is left as an exercise (Exercise 10). 

L E M M A  
If X, y E R, then ei(x+y) = eixeiy. 

The special case eiY, y E R, of the complex exponential, is the case of 
primary interest for our purposes, and this lemma focuses on its most 
important property. Note that any nonzero complex number can be ex- 
pressed z = reio, where r = 1 . ~ 1  > 0 and leiBI = 1. 

Proof of lemma -ei(X + Y) = cos (x + y) + i sin (x + y) = (cos x cos y - 
sin x sin y) + i(sin x cos y + cos x sin y) = (cos x + i sin x)(cos y + 
i sin y) = eixeiy. 

THEOREM 5 

(a) If z, = r,eiel and z2 = r2eie2, then z1z2 = rlr,ei(e1+e2) 
(b) If z = and n E N, then 2' = reine 

Proof (a) z, z2 = (r, eiB1)(r2eio2) = rl r2eiB1eie2 - - rrr2ei(B1 +02), where the last 
step follows from the lemma. 



326 PROPERTIES OF NUMBER SYSTEMS Chapter 9 

(b) The proof proceeds by induction on n. The case n = 1 is evident. 
If the conclusion is true for m, then zm+' = zm . z = (rmeid)(reie) = 
rm + e i(m + l)', as required. 0 

The special case r = 1 of Theorem 5(b) is known as deMoivre's theorem. 
It has an important application; using it we can calculate the n complex 
nth roots of any given complex number. 

THEOREM 6 
If z = rei6, then the n complex numbers r11nei[(6 + 2k")1n1, k = 0, 1, . . . , n - I, are 
the n distinct complex nth roots of z. 

such w is an nth root of z. The n values of w are clearly distinct, for if 
ei[(e+2kn)ln] = ei[(e+2hr)/n], then (8 + 2kn)ln = (8 + 2hn)ln + 2mn, for some 
integer m. Hence 8 + 2kn = 8 + 2hn + 2mnn, so that k - h = mn. But 
k - h cannot be an integral multiple of n since both are between 0 and 
n - 1, inclusive. Finally, all nth roots of z have this form. For if w = 
seiX satisfies wn = z = reie, then wn = sneinx = rei0. Hence s = r'ln and 
einx - - eie so that nx = 8 + 2kn and x = (8 + 2kn)ln. There are only n 
such roots because if m E N, we can express m, using the division algo- 
rithm, in the form m = nq + r, where q, r E N and 0 I r < n. Then 
ei[(e + 2 m W n I  = ei[(e + 2(nq + r)n)lnl = ei[(B/n) + (2nqrrIn) + (2rxln)l = ei[(B + 2rx)/n], where 
r is one of the integers 0, 1,2,.  . . , n - 1. Cl 

Theorem 6 is particularly useful, and relatively easy to apply, for com- 
puting nth roots of complex numbers that are either real or purely imagi- 
nary. In particular, if z is real, we may take arg z = 0 if z > 0 and arg z = n 
if z < 0. 

EXAMPLE 5 Find the four 4th roots of z = 16. 

Solution Express z in polar form with r = 16 and 8 = 0. Then r1I4 = 2 and 
the four 4th roots have the form 2eir(e+2k")141, k = 0, 1, 2, 3, that is, 2e0, 
2ei("12) , 2ei* , and 2ei(3"/2), or in simplified form, 2, 2i, -2, and -2i. 
Note from Figure 9.5 that the roots are equally spaced about a circle 
of radius 2 in the complex plane. 

We conclude this article by stating formally a property of C alluded to 
earlier. The proof requires results from the area of complex analysis and 
is encountered in any introductory complex variables course. 

T H E 0 R E M 7 (Fundamental Theorem of Algebra) 
Any polynomial c, + c,z + c2z2 + . . . + c n f  (c, E C, cn # 0) of degree n with 
complex coefficients has at least one zero (i.e., root) in C. 
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(Imaginary axis) 
I 

Figure 9.5 Graphic view of the four complex 
4th roots of z = 16. 

Exercises 
1. Express each of the following complex numbers in the form x + yi: 

(a) 6(4 - i) - 3(2 + 2i) 
(c) (2 + i)(2 - i) 
(e) (1 - i)4 

*(g) (4A4 - 9) - (4/(4 + 0) 

(b) - l/i 
(d) (2 - i)/(2 + i) 
(f) i 1 6 + i 6 + i 5  

2. Given z, = 5 - 3i, z2 = 4 + 5i, and z, = 2i, calculate: 

3. Find all z E C satisfying the equation: 

*(a) (4 + 3i)z + (7 + 4i) = 6 
(c) z* - z = 4i 
(e) z + (412) = 0 
(g) z 2 - 4 z +  1 3 = 0  

(b) z + z* = 4i 
(d) z + z* = 12 
(f) z 2 + 1 2 1 = o  

4. Use polar form z = reie of a complex number z = x + yi (and Theorem 5(a), in 
particular) to calculate the product z1z2 and the quotient z1/z2, where 2, = 3 - 3i 
and z2 = 2 3  + 2i. 

5. Use Theorem 6 and the method of Example 5 to find: 

(a) The four complex 4th roots of z = - 16 
(b) The three complex cubed roots of z = 8i 

6. Prove that if the complex numbers z, and z2 are both real, then: 

(a) zl + z2 = Re@,) + Re(z2) *(b) zlz2 = Re(z,) Re(z2) 
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7. (a) Prove, in detail, that (C, +, .) is a field. 
(b) Explain, on the basis of (a) and material in Article 9.1, why each of the 

following is a theorem in C: 

z . O = O f o r a n y z ~ C  
(-1)z = -z for any z E C 
(z,)(-z2) = -(zlz2) for any z,, 2, E C 
(-z,)(-z,) = (z,z2) for any z,, 2, E C 
If z,z2 = 0, then either 2, = 0 or 2, = 0 for any z,, 2, E C 
If wz, = wz2 and w # 0, then 2, = z, for any w, z,, z2 E C 
l/(zlz2) = (l/z,)(l/z2) for any z,, z2 E C, z1 # 0 and 2, # 0 
l/(l/z) = z for any z E C, z # 0 

8. Verify parts (b) through (g), and (j) of Theorem 2. 

9. (a) Verify parts (a) through (d), (g), and (i) of Theorem 3. 
(b) Prove part (j) of Theorem 3, the triangle inequality for complex numbers. 

[Hint: Prove that 12, + z2I2 I ()zl) + 1 ~ ~ 1 ) ~  and use Exercise 4(b)(ii), Article 9.2, 
noting that Re (z) 5 lzl for any z E C.] 

10. (a) Use the result of the lemma following the statement of Theorem 4 to 
verify parts (a) through (d) of that theorem. 

(b) Prove that ciu = - 1. 



Construction of the 
Number Svstems of 

CHAPTER 10 

In Chapter 9 we studied the number systems N, 2, Q, R, and C from a 
descriptive point of view. For most applications requiring knowledge of 
elementary properties of the real numbers and associated number systems, 
the material in that chapter provides adequate information. There is, how- 
ever, a totally different approach to the real numbers, a constructive ap- 
proach, by which we literally build the real number system from more basic 
number systems. An in-depth study of this approach is a formidable and 
lengthy project, and is not necessarily appropriate for all sophomore and 
junior mathematics students. An understanding of the general structure 
and of a number of crucial details of this approach, though, probably @ 
worthwhile and well within the capability of those who have successfully 
progressed through the preceding chapters of this text. We propose to 
present such a general outline in this final chapter. 

For reasons philosophical and historical, as well as mathematical, every 
serious student of abstract mathematics should be at least generally familiar 
with an approach to constructing the reals. Whether one uses the approach 
of Dedekind cuts or (as we do) Cauchy sequences to pass from the rationals 
to the reals, the general approach is the same. The reals are constructed 
from the rationals, which, in turn, have been constructed from the integers, 
with the latter having been built from the positive integers. Tlie starting 
point for all these constructions is an axiomatic description of the natural 
number system such as the axiomatization of Peano. 
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Philosophically, knowledge of this construction provides insight into the 
famous remark of Dedekind to the effect that the positive integers are a 
creation of God while all else is the work of man. It also provides back- 
ground information to support the statement, in Article 9.4, that the com- 
plex numbers are no less "real" than the real numbers. 

Historically, this construction emanates from a time, the late nineteenth 
century, when the modern idea of the real numbers as a concrete object 
(i.e., the unique complete ordered field) had not developed fully. The posi- 
tive integers were generally regarded as the "base in reality" for mathema- 
tical analysis, and the prevalent view was that a number system such as 
the reals had to be built from them in an explicit way in order to be credited 
with "existence." Modern mathematics, of course, is perfectly happy to as- 
sume existence of the reals as an axiom (our approach in Chapter 9), as 
long as it is understood precisely how the system of real numbers is defined. 

The construction of the reals, however, is not to be regarded by students 
purely as an historical curiosity. It involves a wealth of mathematical ideas 
that are important and useful for the study of mathematics today, many 
of which are probably new to you. Two main ideas are: (1) the role of the 
axiomatic approach in abstract mathematics (Article 1) and (2) the impor- 
tance of equivalence classes (recall Chapter 7) in mathematical constructions 
(Articles 2 and 3), and thus the value of equivalence classes as a tool in 
existence proofs. Students taking courses in formal logic or non-Euclidean 
geometry will receive extensive exposure to (I), while students learning 
about quotient structures in an abstract algebra course will become familiar 
with several key examples of (2). Additional important topics arising in this 
chapter are recursive definition, the well-ordering principle, well-definedness 
of an algebraic operation, and Cauchy sequence, among others. 

As indicated earlier, many of the proofs are omitted from this chapter. 
Students who are particularly interested in the ideas presented here may 
wish to "work through" the material, filling in missing proofs. Those who 
elect only to "read through" the chapter should find the experience profitable 
as well, due both to expanding their general knowledge about relationships 
among number systems and to exposure to the topics just mentioned. 

10.1 An Axiomatization for the 
System of Positive Integers 

In this article we take our first steps toward replacing the ad hoc axiom 
of Chapter 9, "a complete ordered field exists," with basic assumptions that 
are more intuitive and, in a sense, believable. We start with a two-part 
axiom, based on the celebrated five postulates of Guiseppe Peano, published 
in 1889. At first glance, this axiom appears to have bearing on the system 
of positive integers only, but as we will see in Articles 10.2 and 10.3, its 
assumption leads to the construction of the systems of integers and rationals 
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and yields ultimately to the existence of a complete ordered field (ie., the 
reals) as a theorem. 

As we begin this development, we should be mindful of what must be 
expected from any successful axiomatization of N; the 11 field axioms (recall 
Definition 2, Article 9.1) are a helpful guide in this direction. Of these 
axioms, the system of positive integers, as we know it intuitively, should 
satisfy all except three: the additive identity, the additive inverse, and the 
multiplicative inverse axioms (i.e., field axioms 4, 5, and 10). Thus our ini- 
tial assumptions must be of a character that we are able to derive from them 
as theorems such familiar arithmetic properties as commutativity of addi- 
tion and distributivity of multiplication over addition and, beyond these, 
properties such as multiplicative cancellation. There are also familiar prop- 
erties of N involving order that must be derivable as theorems if our 
axiomatization is to be satisfactory. 

As indicated earlier, our point of departure is a single two-part axiom. 

A X I O M  1 
There exists a set N and a mapping a: N -+ N satisfying: 

(a) a is one to one, but not onto. In particular, there exists an element of N, 
which we denote by the symbol 1, such that 1 4 im (a). 

(b) If S is a subset of N satisfying the properties: 

(I) 1 E S, and 

(11) for all m E N, if m E S, then o(m) E S, 

then S = N. 

The mapping m + o(m) from (a) of the axiom is called a successor func- 
tion and may be thought of (in the interest of developing a sense of familiarity 
with the set N) as sending any positive integer to "the next" positive integer; 
for this reason, the image o(m) of an element m E N is called the successor 
of m. We refrain at this stage from writing a(m) = m + 1, because there is 
not as yet any operation of addition available to us. Condition (b) of Axiom 
1 is known as the induction postulate and should remind you of the principle 
of mathematical induction, the basis of our work in Article 5.4. 

Let us begin bx noting, for the record, several immediate consequences 
of Axiom 1. The set N is nonempty since 1 E N; in fact, N must be infinite 
since a is a one-to-one mapping of N into a proper subset of itself, namely, 
N - (1) (recall Definition 2, Article 8.3). The stipulation that a is a one- 
to-one mapping means of course that if m, n E N with o(m) = o(n), then 
m = n. This was the fourth original postulate of Peano. The requirement 
that 1 4 im (a) means that 1 is not the successor of any element of N. 

No doubt you have already noticed the absence of algebraic operations 
from the definition of N. Clearly a major obstacle to the plan to prove as 
theorems the familiar arithmetic properties of N is the need to create from 
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Axiom 1 the operations of addition and multiplication. The theorem by 
which we will bring these operations into being is indeed the most impor- 
tant and difficult in this article (see Theorems 3 and 4). Therefore, before 
tackling this problem, let us first get our bearings by proving a few prelimi- 
nary results. An important aspect of "getting our bearings" in the current 
context is an early appreciation of the preponderance here of proof by in- 
duction. Considering what there is to work with at this stage, namely, parts 
(a) and (b) of Axiom 1, it should not be surprising that induction proofs are 
so prominent; yet it will probably take some time to get used to this fact. 

T H E O R E M  1 
a(n) # n for all n E N; that is, the mapping a has no fixed points. 

Proof Let S = (n E Nlo(n) # n). We will attempt to prove S = N by 
verifying (I) and (11) of (b) of Axiom 1. (I) Clearly 1 E S. We cannot have 
1 = a(1) since 1 4 im (a). (11) Assume m E S; we claim a(m) E S; that is, 
o(m) # a(o(m)). For if the latter equation were valid, then by the one- 
to-one property of the mapping a, we could conclude m = a(m), con- 
tradicting the induction hypothesis. 

T H E O R E M  2 
im (a )  = N - {I);  that is, 1 is the only element of N that is not the successor of 
some element of N. 

Proof Our strategy is as follows. Let S = im (a) u (1). If we can prove 
S = N, then by elementary set theory, we have N - (1) = S - (1) = 
(im (a) u (1 )) n ( 1 )' = im (a), as desired. Note that the last equality 
depends on the fact that 1 4 im (a). Hence we claim S = N; we turn to 
(b) of Axiom 1 to support this claim. Clearly 1 E S, by our definition of 
S. So suppose m E S; we claim a(m) E S. Now since m E S, then either 
m = 1 or m E im (a). If m = 1, then a(m) = o(1) E im (a) G S, so that 
a(m) E S, as desired, in this case. If m E im (a), then m = a(mf) for some 
mf E N. Hence a(m) = o(o(mf)) so that a(m) E im (a), as desired. By (b) 
of Axiom 1, we conclude S = N. The result now follows from the argu- 
ment given at the outset. 

The next result is the centerpiece of the development of N, for in it we 
prove the existence and uniqueness of an operation on N corresponding 
to our intuitive idea of addition. As we will see, the definition of multipli- 
cation is formulated in an analogous fashion. Our problem is somehow 
to "get at" an operation of addition. Let us first stop to realize what kind 
of mathematical object addition is; addition on the positive integers is a 
mapping s (for sum) of N x N into N, satisfying certain properties. For the 

I sake of simplicity, let us fix a positive integer m and try to create a mapping 
in one independent variable. Such a mapping might be denoted s,: N -, N 

/ 



10.1 AN AXlOMATlZATlON FOR THE SYSTEM OF POSITIVE INTEGERS 333 

and called "addition to m." Intuitively, our goal is that s,(n) should equal 
m + n for any n E N, but, of course, + is exactly what we're trying to define. 
We have no tools at our disposal by which to define s,(n) explicitly. What 
we have is a successor function and an induction property; the proposed 
solution is to define s,(n) inductively (or recursively). What this means is 
that we define s,(n) explicitly for n = 1; then, assuming that s,(n) has been 
defined for an arbitrary n E N, we define s,(o(n)) in terms of s,(n). We must 
do two things to carry out this program successfully: (1) come up with rea- 
sonable definitions of s,(l) and s,(a(n)), the latter assuming that s,(n) has 
been defined and (2) prove existence and uniqueness of a mapping satisfying 
the properties specified in our definition. Let us deal with the first problem 
immediately. Experience tells us that we want s,(l) to equal m + 1. For- 
tunately, we can formulate this idea in language available to us, namely, 
s,(l) = o(m). Now suppose that s,(n) has been defined; for familiarity sake, 
let us denote its value by m + n. How then should we define s,(a(n))? That 
is, what is the value of m + (n + I)? Why not (m + n) + l? That is, s,(o(n)) = 

o(s,(n)). These definitions are used in the following important theorem. 

T H E O R E M  3 
If m E N, then there exists a unique mapping s,: N -+ N satisfying 

(i) sm( l )  = a(m), and 

(ii) sm(a(n)) = a(s,(n)) for each n E N. 

Proof (Existence) The proof is quite abstract and makes use, at several 
stages, of the induction postulate. Let m be an arbitrary positive inte- 
ger. We begin by considering the collection of all subsets r, of N x N 
satisfying the properties (i)' (1, a(m)) E r,, and (ii)' (n, p) E r ,  implies 
(o(n), o(p)) E r, for each n, p E N. Note that (i)' and (ii)' are simply (i) 
and (ii), with functional notation replaced by the more general ordered 
pair notation, appropriate for a relation that may not be a function. 
Note also that this collection is nonempty, since N x N itself satisfies 
(i)' and (ii)'. Let s, equal the set theoretic intersection of all relations on 
N satisfying (i)' and (ii)'. It is easy to show [with verification left to you 
in Exercise 2(a)] that s, satisfies (i)' and (ii)', and furthermore, is a subset 
of any relation on N satisfying (i)' and (ii)'. For the latter reason, we 
say that s, is the smallest relation on N satisfying (i)' and (ii)'; this prop- 
erty of s, will be a key later in the proof. We claim now that this s, is 
the desired mapping of N into N. Since s, is known to satisfy (i)' and 
(ii)', we need only verify that s, actually is a mapping on N. In other 
words, we must verify: 

dom (s,) = N; that is, for any n E N, there exists p E N such that 
(n, p) E S,, and 
s, is a function; that is, if n, p, q E N with (n, p) E S, and (n, q) E s,, 
then p = q. 
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We channel our efforts now toward verifying (a) and (b), relying heavily 
on the induction postulate in both proofs. 

X = ( n ~ N l ( n , p ) ~ s ,  for some P E N ) .  We claim X = N: 

1 E X, since (1, a(m)) E s,, by (i)'. 
If n E X, then (n, p) E S, for some p E N, so that (a(n), a(p)) E s,, 
by (ii)', and so a(n) E X. By the induction postulate, we con- 
clude X = N, as desired. 

We first show 1 E Y. We know that (1, a(m)) E s,. Now 
suppose (1, p) E s,, where p E N. If p # a(m), then the set 
s, - ((1, p)) is a proper subset of s, containing the ordered 
pair (1, a(m)); that is, satisfying (i)'. Furthermore, if (n, q) E 

s, - ((1, p)), then (n, q) E S, and so (o(n), o(q)) E s,. Also, 
(a@), 44)) # (1, p), since 1 4 im (a). Hence (49, ~ ( q ) )  E S, - 
((1, p)). Thus s, - ((1, p)), a proper subset of s,, is a subset 
of N x N satisfying both (i)' and (ii)', contradicting the fact 
that s, is the smallest such subset. We conclude p = a(m). 
We next suppose that n E Y, where n is an arbitrary element 
of N. We must prove that o(n) E Y. By the result in (a), 
we know that (n, y) E S, for some y E N. Hence our assump- 
tion n E Y means that (n, y) E S, for exactly one y E N. Now 
from (ii)' and the assumption (n, y) E S, follows the fact that 
(o(n), a(y)) E s,. Hence we must prove only that if (a(n), t) E s, 
for some t E N, then t = o(y). To do this, let us suppose there 
is an element t E N, t # a(y), such that (a(n), t) E s,. As in the 
proof of (a), consider the set s, - ((a(n), t)). Again, as in (a), 
note that since 1 4 im (a), then a(n) # 1 so that s, - ((~(n), t)) 
is a proper subset of s, containing the ordered pair (1, a(m)), 
so that (i)' is satisfied by s, - ((a(n), t)). To verify that s, - 
((~(n), t)) satisfies (ii)', suppose that p E N and that (p, x) E 

s, - ((a(n), t)); we must show that (o(p), o(x)) E s, - 
((a(n), t)). Since (a(p), o(x)) E S, by (ii)', the only issue is 
whether (a@), a(x)) equals (a(n), t); we claim, of course, that 
it does not. There are two cases to consider, p = n and p # n. 
In the first case the desired inequality is valid, since there is 
only one y E N such that (n, y) E s,. For this y, (a(n), a(y)) E 
s,, by (ii)', and does not equal (a(n), t), since t # a(y). As to 
the second case, if p # n, then (o(p), a(x)) E S, and a(p) # a(n), 
since a is one to one. Hence (a(p), a@)) # (a(n), t) and so 
(o(p), o(x)) E S, - {(~(n), t)), again, as desired. Therefore s, - 
((~(n), t)) satisfies (ii)', and again, we have a contradiction of 
the fact that s, is the smallest subset of N x N satisfying both 
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(i)' and (ii)'. Thus the inductive step (11) is proved and we 
conclude, by induction, that Y = N; that is, s, is a function. 
With this, existence is established. 

(Uniqueness) Suppose r, is any mapping from N to N satisfying prop- 
erties (i) and (ii). Since r,  is a relation on N satisfying (i) and (ii) and 
since s, is the intersection of all such relations, then necessarily s, is a 
subset of r,. We claim that, in fact, r, is a subset of s,, so that s, equals 
r,. Let (x, y) E r,. Since x E N and dom (s,) = N, there exists z E N such 
that (x, z) E s,. Since s, c r,, then (x, z) E r,. Since (x, y) E r,, (x, Z) E r,, 
and r ,  is a function, we may conclude y = z, so that (x, y) = (x, z) and 
(x, y) E s,, as required. 

With a mapping s,: N -, N determined uniquely by each positive integer 
m, we are now in a position to define the desired "sum function" s. 

DEFINITION 1 
If m, n E N, we define the sum s(m, n )  of m and n by the rule s(m, n) = s,(n). 
Following normal usage, we frequently denote s(m, n )  by the symbol m + n. 

By Theorem 3, each function s, is uniquely determined by a given m E N 
and properties (i) and (ii) of that theorem. For a given m, the value s,(n) 
is uniquely determined by n E N, since each s, is a function. Hence each 
pair (m, n) of positive integers determines uniquely a corresponding number 
s(m, n). Furthermore, it is clear that each such value s(m, n) is contained in 
N. The following statement summarizes these two properties. 

C O R O L L A R Y  

(a) + is a function on N x N and so constitutes a well-defined operation on 
N; that is, if a, a', b, b' E N with a = a' and b = b', then a + b = a' + b'. 

(b) N is closed under the operation +; that is, if a, b E N, then a + b E N. 

Part (a) of the corollary is the assertion that "equals added to equals 
yield equals," a particular case of which is the result "y = z implies 
x + y = x + z for any x, y, z E N." The property in (b) is called closure 
under addition. - 

Before dealing with other properties of addition, let us first define the 
multiplication operation. Our approach will be to look closer at what we 
actually did in Theorem 3, when we formulated addition. It is not hard to 
see that Theorem 3 is a special case of the much more abstract-appearing 
result we are about to state. What is only slightly more difficult is the 
verification [left as an exercise in Exercise 2(b)] that a proof essentially 
identical to the proof of Theorem 3 works in this more general case as 
well. 
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T H E 0 R E  M 4 (Principle of Inductive Definition) 
Let f: N -, N be an arbitrary mapping and let a E N be given. Then there exists 
a mapping cp of N into N, uniquely determined by f and a, such that: 

(i) q ( l )  = a, and 

(ii) cp(a(n)) = f(rp(n)) for all n E N 

A function cp, defined as in Theorem 4, is said to have been defined by 
induction or recursively. As we suggested just before stating Theorem 4, the 
"sum to m" function s, was defined by induction. In that case, for a given 
m E N, we had a = dm) and f (p) = a(p) for each p E N. Other familiar 
functions with domain N may be defined formally in a recursive manner, 
among these factorial, nth power, and the nth Fibonacci number (see Exercise 
1). The inductive definition of "product with m," denoted p,,,, is most ger- 
mane to our current considerations. 

DEFINIT ION 2 
For a fixed m E N, we defined the function "product with m, "denoted p,, in- 
ductively by the rules p,(l) = m and p,(a(n)) = p,(n) + m, for any n E N. Given 
two positive integers m and n, we define their product p(m, n) (usually denoted 
m - n or simply mn) by the rule p(m, n) = p,(n). 

Note that multiplication by m is defined by applying Theorem 4 with a = 
m and f(p) = p + m. You should formulate closure and well-definedness 
statements for the product, analogous to those stated for the sum in the 
corollary to Theorem 3. 

With addition and multiplication now defined, we turn to properties of 
these operations. As we work toward these properties, it will prove useful to 
have at our disposal translations of the defining properties from functional 
to operational notation. For this purpose, we note that the addition and 
multiplication operations are defined by the equations (for all m, n E N): 

m + l = a ( m )  

m + ( n +  l ) = ( m + n ) +  1 

m . l = m  

m.(n + 1) = mn + m 

THEOREM 5 
Let n, p, 9 E N. Then: 

(a) (n + P) + 9 = n + (P + 9) 
(b) n + p = p + n  
(c) n + p + n  
(d) If n + q = p + q, then n = p 

(addition is associative) 
(addition is commutative) 
(there is no additive identity in N) 
(additive cancellation) 



10.1 AN AXlOMATlZATlON FOR THE SYSTEM OF POSITIVE INTEGERS 337 

Partial proof (a) Given n, p E N, denote by S,, the set (q E Nl(n + p) + 
q = n + (p + q)]. It is left to you [Exercise 2(a)] to verify conditions (I) 
and (11) of the induction postulate and conclude thereby that S,, = N. 

(b) This proof is more difficult than the proof of associativity. Recall 
that o(m) = m + 1 for all m E N, by (1). We need as a lemma the fact the 
a(m) = 1 + m for any m E N; note that this is a special case of the desired 
result. Assuming that you have supplied the straightforward induction 
verification [Exercise 2(b)], we approach the desired result by using 
another induction. For n E N, let Sn = (p E Nl n + p = p + n). Using 
this lemma, we observe that 1 E S,, since n + 1 = a(n) = 1 + n. For (11), 
assume p E S,, SO that n + p = p + n. We must prove o(p) = p + 1 E S,; 
that is, n + (p + 1) = (p + 1) + n. Now 

n + (p + 1) = (n + p) + 1 [by (211 
= (p + n) + 1 (by induction hypothesis and well- 

definedness (wd) of " + ") 
= P + (n + 1) [by (211 
= p + (1 + n) (by the lemma) 

= (P + 1) + n [by (211 

(c) Given p E N, let S, = (n E ~ l n  + p # n). Note first that 1 E S,, 
since 1 + p = o(p) # 1, since 1 # im (a). Next, assume n E S,, so that 
n + p # n. To show a(n) = n + 1 E S,, we must prove that (n + 1) + 
p # n + 1; that is, o(n) + p # ~ ( n ) .  Now if o(n) + p = o(n), then we 
would have o(n) = o(n) + p = o(n + p) and, by the one-to-one property 
of o, n = n + p, a contradiction. 

(d) Given n , p ~ N ,  let Sn! = ( q ~ N l n  + q = P  + q implies n = p } .  
Note first that 1 E Snp since if n + 1 = p + 1, then o(n) = o(p) so that 
n = p, by the one-to-oneness of cr. Now suppose q E S,,, so that n = p 
whenever n + q = p + q. To show o(q) = q + 1 E S,,, assume that 
n + (q + 1) = p + (q + 1). We must show that n = p. In that case 
we have (n + q) + 1 = n + (q + 1) = p d- (q + 1) = (p + q) + 1, so that 
o(n + q) = a(p + q). By the one-to-one property oflo, we have n + q = 
p + q. By the induction hypothesis, we conclude n = p, as desired. 0 

Property (d) of Theorem 5 might be called "right-additive" cancellation. 
Note that combining (d) with (b), the commutative pr~perty of addition, 
yields easily a corresponding "left-additive" cancellation property [see Ex- 
ercise 2(c)], 

Our next goal is to begin to consider algebraic properties involving 
multiplication. We begin by giving a proof of the only field property that 
involves addition and multiplication together. 

T H E O R E M  6 
Let n, p, q E N. Then n(p + q) = np + nq. (distributivity) 
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Proof For n, p E N, let Snp = {q E N ( n ( ~  + q) = np + nq}. First, we have 
1 E Snp, because 

n(p + 1) = np + n [by (411 
= np + n . 1 [by (3) and wd of addition] 

Second, assume q E S,,, so that n(p + q) = np + nq. We must prove 
q + 1 E Snp; to do this, we need to show n(p + (q + 1)) = np + n(q + 1). 
Now: 

n(p + (q + 1)) = n((p + q) + 1)) [by (2) and wd of multiplication] 

= n(p + q) + n [by (411 
= (np + nq) + n (by induction hypothesis and wd 

of addition) 

= np + (nq + n) [by Theorem 5(a)] 

= np + n(q + 1) [by (4) and wd of addition] 

We next consider properties of multiplication, some of which correspond 
to additive properties in Theorem 5. 

T H E O R E M  7 
Let n, p, q E N. Then: 

(a) (np)q = n(pq) (multiplication is associative) 
(b) n - 1  = l - n = n  (multiplicative identity) 

(c) nP=Pn (multiplication is commutative) 
(d) If p # 1, then pq  # 1 for all q E N (positive integers # 1 do not 

have reciprocals in N) 

(e) If nq = pq, then n = p (multiplicative cancellation) 

Proof Parts (b), (c) and (e) are left as exercises (see Exercise 4). We now 
consider the proof of (a). Given n, p E N; denote by Snp the set {q E 
N l(np)q = n(pq)}. Note first that 1 E S.,, since (np) . 1 = np = n(p I), 
where the latter step follows from (3) and the well-definedness of the 
multiplication operation. Next, assume q E S,,, so that (np)q = n(pq). 
To prove q + 1 E Snp, we must show that (np)(q + 1) = n(p(q + 1)). Now: 

n(p(q + 1)) = n(pq + p). [by (4) and wd of multiplication] 

= n(pq) + np (by Theorem 6) 

= (np)q + np (by induction hypothesis and wd of 
addition) 

= (np)(q + 1) [by (411 
As for (d), assume p E N and p # 1, and let S, = (q E Nlpq # 1). We 

prove S,, = N by induction. Namely, 1 E S,, since p . 1 = p # 1. Also, 
if we assume q E S,, SO that pq # 1 then pq = a(x) for some x E N. We 
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must show that p(q + 1) # 1. Now p(q + 1) = pq + p = p + pq = p + 
o(x) = a(p + x), where p + x E N, by additive closure. Hence p(q + 1) E 
im (a). Since 1 4 im (a), we conclude 1 # p(q + I), as desired. 0 

ORDERING PROPERTIES OF N 

We now consider properties of N having to do with the ordering of positive 
integers. Our starting point is the following definition. 

D E F I N I T I O N  3 
Let a, b E N. We say that a < b (a  is less than b) if and only if there exists c E N 
such that a + c = b. 

A number of facts related to Definition 3 present themselves immediately. 
We collect some of them in the following theorem, whose proof is left to 
you in Exercise 5(a). 

T H E O R E M  8 
Let a, b, c E N. Then: 

(a) a < 4 a )  
(b) a < a + b  

(c) If a < b and b < c, then a < c (transitivity) 

(d) If a < b, then a # b 
(e) If a # 1, then 1 < a  
(f) If a < 6, then there exists a unique x E N such that a + x = b 
(g) If a < b, then a + c < b +  c 
(h) If a < b, then ac < bc 

The uniqueness in part (I) of   he or em 8 is suggestive of the subtraction 
operation, as defined in Definition 4. 

D E F I N I T I O N  4 
If a, b E N with a < b, we denote by b - a ( b  minus a) the unique positive integer 
x such that a + x = b. 

We emphasize-that b - a is defined in N if and only if a < b. We collect 
other properties in Theorem 9. 

T H E O R E M  9 
Let a, b, c E N with a < b < c. Then: 

(a) a + ( b - a ) = b  
(6) ( c  - b) + a = c - (6  - a) 
(c) ( c  + b) - a = c + ( b  - a) 
(d) c(b - a) = cb - ca 
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Partial proof We prove (b), with the others for you to verify in Exercise 
5(b). To prove that (c - b) + a = c - (b - a), we need only show that 
(c - b) + a added to b - a yields c. Note that [(c - b) + a] + (b - a) 
= (C - b) + [a + (b - a)] = (c - b) + b = b + (c - b) = c, as desired. 

0 

We conclude our discussion of the "less than" relation on N by proving 
the important trichotomy property. 

T H E O R E M  10 
Given a, b E N, exactly one of the three statements a < b, a = b, and a > b is true. 

Proof Given  EN, let S a =  {b~Nle i the r  a < b  or a = b  or a > b J .  We 
first show that S, = N by induction; then we show that at most one of the 
three relationships holds for any pair of positive integers. For the induc- 
tion proof, note first that 1 E S, since if a # 1, then a = a(x) = 1 + x 
for some x E N, so that 1 < a. Second, assume b E S, so that either a < b 
or a = b or a > b. We must prove that a(b) E S,; that is, either a < o(b), 
a = ~ ( b ) ,  or a > a(b). Now if a < b, then since b < a(b), we have (by the 
transitivity of <) that a < a(b). If a = b, then since b < ~ ( b ) ,  we have 
a < a(b). If a > b, then either a = o(b) or a # ~ ( b ) .  In the first case the 
desired result follows immediately. If a # a(b), then a = b + x for some 
x E N, x # 1. Since x # 1, then x = a(y) for some y E N. Hence a = 
b + x = b + a(y) = a(b + y) = a(b) + y so that a(b) < a. Thus S, = N 
and we may be certain that at least one of the three relationships must 
be true for any a, b E N. We next show that at most one of the relation- 
ships may hold between a given a and b. Note first that if either a < b 
or b < a, then a # b, by Theorem 8(d). Thus we have only the possibility 
"a < b and b < a" to eliminate. If both relationships hold, then there 
exist x, y E N such that a = b + x and b = a + y. Hence a = b + x = 
(a + y) + x = a + (y + x) = a + z, where z = x + y E N, by closure. 
This contradicts (c) of Theorem 5. 0 

WELL-ORDERING OF N 

In (e) of Theorem 8 we observed informally that 1 is the smallest element 
of N [see Exercise 7(g)]. 1n fact, N satisfies a stronger property involving 
the idea of a smallest element, the well-ordering principle. Note first that 
if S c N, an element a E N is said to be a smallest (or least) element of S 
if and only if a E S and, for all x E N, x E S implies either a = x or a < x. 
The well-ordering principle (WOP) for N states that every nonempty subset 
of N has a least element. This property is an extremely useful theoretical 
tool for proving existence; you may recall, for instance, Example 10, Article 
6.3. It turns out that WOP is equivalent to the induction postulate. We 
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prove this fact and, for good measure, introduce another form of the in- 
duction postulate in the next theorem. 

THEOREM 1 1  
The following three statements about the set N are equivalent: 

(a) The induction postulate (IP) 
(b) The well-ordering principle (WOP) 

(c) The second induction principle (IP2). Any set S of positive integers satis- 
fying (i) 1 E S and (ii) for any m E N, k E S for each k E (1, 2, . . . , m) implies 
m + 1 E S, equals N. 

Proof (a) =. (b) If (b) is false, then there is a nonempty subset S of N having 
no smallest element. Hence if a positive integer m has the property that 
m < s for all s E S, we must have m q! S. Let M be the set of all such 
positive integers (i.e., M = (m E N 1 m < s V s E S}); clearly M n S = 0. 
We claim that M = N. In support of this claim, note first that 1 E M. 
Since 1 is the smallest element of N and 1 4 S (otherwise 1 would be the 
smallest element of S), then surely 1 < s for all s E S. Second, suppose 
m E M, so that m < s for all s E S. Then m + 1 < s for all s E S, by 
Exercise 7(f). If m + 1 E S, then m + 1 would be the smallest element of 
S. Hence m + 1 q! S and we may assert m + 1 < s for all s E S. Hence 
m + 1 E M, so that we may conclude M = N. Since M n S = /21 and 
M = N, S must be empty, contradicting the initial assumption that S is 
nonempty. 

(b) (c) Assume S satisfies (i) and (ii) of (c). If S # N, then N - S 
is nonempty. By WOP, N - S has a smallest element , call it so. Note 
that so # 1, by (i). For all positive integers k such that k I so - 1, we 
have k E S. Hence so E S, by (ii), contradicting the fact that so E N - S. 
Hence N - S is empty and S = N, as desired. 

(c) * (a) Let S be a subset of N satisfying the properties 1 E S and 
m E S implies m + 1 E S for all m E N. We must prove S = N. Now 
suppose that for each k E N such that k 5 m, we have k E S. Then 
surely m E S so that, by our assumption, m + 1 E S. Hence S satisfies (ii) 
of (c). Since S satisfies (i) of (c), by our assumption, we may conclude, 
by (c), that S = N. 0 

Note that the induction postulate [(a) in Theorem 11 and (b) of Axiom 
11 is the same as the principle of mathematical induction we used exten- 
sively in Article 5.4. (We, now know that a(m) and m + 1 are synonymous.) 
Our approach in this article has been to assume this property as one of the 
axioms defining N. Theorem 11 shows, among other things, that the well- 
ordering principle could just as well be assumed as an axiom for N, in which 
case IP could be proved as a theorem. Many texts adopt this approach; 
in Exercise 8, you are asked to write a proof deriving IP directly from WOP. 
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The second induction principle IP2 [(c) of Theorem 111 is occasionally 
useful in writing a more streamlined induction proof than would be possible 
with only IP at our disposal [see Exercise 8(b)]. An example of this follows. 

EXAMPLE 1 Given n E N, we define the nth Fibonacci number f, by the 
rules fl = f2 = 1  and f,+, =f, +f,+, when n 2 1. Use IP2 to prove 
that f, E N for each n E N. 

Solution Let S = {n E ~ l f ,  EN}. We claim S = N, and will use IP2 to 
prove it. Clearly 1  E S since fl = 1 E N. Suppose now that m IS N 
and that k E S for each k = l ,2 , .  . . , m. We claim m + 1 E S; that is, 
fm+ , E N. But fm+ = fm- + fm, the sum of two positive integers by the 
induction hypothesis, and thus a positive integer, by closure. 

Exercises 
1. Give a formal definition by induction for each of the following quantities, defined 
informally here. In each case n E N. 

(a) n factorial, denoted n!, equal to the product n(n - l)(n - 2) - - (3)(2)(1) 
*(b)  nth power of x, where x E R, denoted xO, equal to the product (x)(x) - . . (x), n 

times 
(c) The sum of n copies of a real number a, denoted nu, equal to a + a + - - + a, n 

times 
(d) The union of n sets, XI, X,, . . . , X,, equal to XI u X, u . - - u X, 
(e) Composition of n functions with domain R and range a subset of R, de- 

noted f , o f , - ,  O ~ , - , O . . . O  f 2 0  fl, where ( f ,o f , - ,  ~ f , - ~ o - . . o  f 2 0  fl)(x)= 
(f,(f,- df , -2  . . . (f2(fl(~))) . -9 )  for all x E R 

( f )  The nth Fibonacci number f,, where the first two Fibonacci numbers are 
defined to equal 1, and where all other Fibonacci numbers equal the sum of the 
two preceding such numbers. 

2. (a) (This exercise relates to the proof of Theorem 3.) Consider the collec- 
tion 6 of all relations r, on N (i.e., each r, is a subset of N x N) satisfying 
(i)' (1, o(m)) E I,, and (ii)' (n, p) E r, implies (~(n), a(p)) E r, for any n, p E N. 
Let s, = n {r,(r, E 6). Prove that 

(i) s, satisfies (i)' and (ii)' 
(ii) If c E a, then s, c c [i.e., s, is the "smallest" relation on N satisfying (i)', (ii)'] 

(b) Prove Theorem 4. (Mimic the proof, given in the text, of Theorem 3.) 

3. This exercise relates to the proof of Theorem 5. 

(a) Prove Theorem 5(a); that is, addition on N is associative. 
*(b) Prove that 4m) = 1 + m = sl(m) for any m E N. [This is the lemma used in 

the proof of Theorem 5(b).] 
(c) Prove the "left-additive cancellation" property of N, that is, prove that if 

n, p, q E N with q + n = q + p, then n = p. 
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4. This exercise relates to the proof of Theorem 7. 

(a) Prove Theorem 7(b); that is, 1 . n = n 1 = n for all n E N. 
(6) Prove Theorem 7(c); that is, multiplication on N is commutative. 
(c) Prove Theorem 7(e); that is, multiplicative cancellation on N. 

5. (a) Prove Theorem 8. 
(b) Prove Theorem 9, parts (a), (c), and (d). 

6. Assume a, b, c, d E N. Prove: 

*(a) If a + c < b + c, then a < b 
(b) If ac < bc, then a < b. [No te  the relationship between the results in (a) and 

(b) and parts (g) and (h) of Theorem 8. Hint for the proof: Use Theorem 10, that 
is, trichotomy.] 

(c) If a < b and c < d, then a + c < b + d 
(d) If a < b and c < d, then ac < bd 

7. Define a relation 5 on N by the rule a _< b if and only if either a < b or a = b. 
Prove that, given a, b E N: 

(a) a I a (i.e., I is a reflexive relation on N) 
(6) a < b if and only if a I b and a # b 
(c) If a 5 b and b 5 a, then a = b (i.e., I is an antisymmetric relation on N) 
(d) If a _( b and b 5 c, then a I c (i.e., I is a transitive relation on N) 
(e) Either a I b or b I a 
( f )  If b < a, then b + 1 I a 
(g) 1 is the least element of N 

[Note: If you have read Article 7.4, you will recognize that (N, I)  is a partially 
ordered set, or poset, by parts (a), (c), and (d), and indeed is a totally ordered set, 
due to (e).] 

8. *(a) Write a direct proof of the principle of mathematical induction (IP) from 
the well-ordering principle. 

(b) Use IP2 to prove that any set X of n real numbers has a smallest element. 

10.2 Development of the Integers 
and Rational Numbers 

THE INTEGERS 

As noted in Article 10.1, the system N of positive integers satisfies all the 
field axioms except the additive identity, additive inverse, and multiplicative 
inverse properties. We will soon see that we can construct from N, by 
means of equivalence classes, the number system Z of all integers, including 
negative integers and zero. If the mathematical object about to be con- 
structed corresponds to the integers, as we know them intuitively, we should 
expect the additive deficiencies of N to be remedied in Z. 

As suggested earlier, it is at this point that equivalence classes begin to 
assume a crucial role. We begin our development by considering the set 
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N x N of all ordered pairs of positive integers. Define a relation - on this 
set by the rule (m, n) - (p, q) if and only if m + q = n + p. On an intuitive 
basis we are identifying any two ordered pairs in which the corresponding 
quantities "first component minus second component" are equal, but our 
definition is such that only arithmetic in N is involved. Our first task is 
to prove Theorem 1. 

THEOREM 1 - is an equivalence relation on N x N. 

Proof (Reflexive) Given m, n E N. Then (m, n) - (m, n) since m + n = n + m. 
(Symmetric) Assume (m, n) - (p, q) so that m + q = n + p. The state- 

ment (p, q) - (m, n) means p + n = q + m, obviously equivalent to the 
assumed property. 

(Transitive) Assume (m, n) - (p, q) and (p, q) - (r, s). Then m + q = 
n + p and p + s = q + r. To prove (m, n) - (r, s), we must verify m + s 
= n + r. Adding the two assumed equations yields (m + q) + (p + s) = 
(n + p) + (q + r), which may be rewritten in the form (m + s) + (p + q) 
= (n + r) + (p + q). Using additive cancellation in N [recall Theorem 
5(d), Article 10.11, we conclude m + s = n + r, as desired. 

Denote by Z the set of all equivalence classes induced on N x N by the 
equivalence relation -. Note that the elements of Z are of the form [(a, b)], 
where (c, d) E [(a, b)] if and only if a + d = b + c. For the sake of your 
intuition, we note that [(7,4)] will correspond to the integer 3, [(5,5)] to 
0, and [(3,4)] to - 1. We propose now to introduce algebraic structure 
on Z by defining operations of addition and multiplication. 

D E F I N I T I O N  1 
Given elements [(m, n) ]  and [ (p ,  q ) ]  of 2, we define: 

Several examples should be checked to convince you that the preceding 
definitions are reasonable. For instance, the product of [(7,4)] with [(5, 3)] 
equals [(35 + 12,20 + 21)] = [(47,41)], corresponding to the fact that the 
product of 3 and 2 is 6. Having formulated these definitions of addition 
and multiplication of equivalence classes of ordered pairs, we now come 
face to face with an issue that will be quite familiar to you by the end of 
the chapter, namely, well-dejnedness of an algebraic operation. Suppose 
we wish to use Definition l(a) to add two elements of Z, that is, to add two 
equivalence classes of ordered pairs of positive integers. According to the 
definition of addition, we should choose an arbitrary ordered pair (often 
referred to in this context as a representative) from each of the two classes, 
add those two ordered pairs by (a) of Definition 1, and then locate the 
equivalence class containing the resulting ordered pair. The problem now 
is this. Suppose I carry out the procedure just described and arrive at an 
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answer. Suppose you come along and carry out the same procedure, select- 
ing, however, representatives different from the ones I used (which you are 
perfectly free to do!). Is the answer you obtain necessarily the same as 
mine, assuming, of course, that we both calculate correctly? Note, by the 
way, what it means for our answers to be "the same." We need not arrive 
at identical ordered pairs as the sum; rather, we need only arrive at ordered 
pairs that come from the same equivalence class, that is, equivalent ordered 
pairs. If the operation of addition on Z, as defined previously, is to "make 
sense," if it is to be well defined, the answer to the preceding question had 
better be "yes." Fortunately, such is the case, with the analogous fact for 
multiplication also holding true. We formalize these results in our next 
theorem. 

T H E O R E M  2 
Let a, b, c, d, a', b', c', and d' be elements of N with (a, b) - (a', b') and (c, d) - 
(c', d'). Then: 

(a) (a + c, b + d) - (a' + c', b' + d') 
(b) (ac + bd, ad + bc) - (a'c' + b'd', a'd' + b'c') 

Proof (a) To show that (a + c, b + d) - (a' + c', b' + d'), we need to 
prove that (a + c) + (b' + d') = (b + d) + (a' + c'). Our assumptions 
that (a, b) - (a', b') and (c, d) - (c', d') yield the equations a + b' = b + a' 
and c + d' =d  + c'. Adding these equations and regrouping, by using 
additive associativity and commutativity, we obtain the desired result. 

(b) Left to the reader (see Exercise 1). 

With the proof of Theorem 2, we now know that + and . are "honest" 
operations on the set Z. The main questions now about the system (Z, +, 0 )  

are: (1) What are its algebraic properties? and (2) How is it related to the 
system (N, +, a), from which it was constructed? We will address question 
(2) first. Experience tells us we should expect Z to contain N as a proper 
subset. Let us examine the precise sense in which this turns out to be true. 

Let n E N and [(p, q)] E Z. Let us agree to say that n is associated with 
[(p, q)] if and only if n + q = p (automatically implying that p > q). Sup- 
pose n is associated with [(p, q)] and let (r, s) be an arbitrary element of 
N x N. Then it is easy to verify that n is associated with the integer [(r, s)] 
if and only if (r, s)-E [ (p ,  q)]; that is, if and only if (r, s) - (p, q). (Proof: Sup- 
pose n + q = p and n + s = r. We claim that (p, q) - (r, s); that is, p + s = 
q + r. But p + n + s = n + q + r so, by additive cancellation, the desired 
result holds. Conversely, suppose that n + q = p and (p, q) - (r, s), so that 
p + s = q + r. We claim n + s = r. But (n + q) + (p + s) = p + (q + r), so 
that, regrouping, we get (n + s) + (q + p) = r + (q + p), so that n + s = r, 
as desired.) Noting that any positive integer n is surely associated with the 
integer [(n + 1, I)], we conclude that each n E N is associated with a unique 
equivalence class in Z, a class we will denote by [n], so that the mapping 
n -, [n] of N into Z is well defined. Furthermore, this mapping is one to 
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one (Verify!) and is not onto. In fact, an equivalence class [(p, q)] in Z is 
in the image of this mapping if and only if p > q. Finally, this mapping 
preserves the operations of addition and multiplication, that is, [n,] + 
[n,] = [n, + n,] and [n,][n,] = [nln2] for any positive integers n, and 
n,. Stated differently, if n, is associated with [(p,, q,)] and n, is associated 
with [(p,, q,)], then n, + n, is associated with [(p, + p,, q, + q,)] and 
n,n2 is associated with [(p,p, + q,q,, p,q2 + q,p,)]. The proofs of these 
facts are left to you in Exercise 2(c). 

Thus we may think of Z as containing a proper subset; let us call it 
Z +  = {[(p, q)]lp E N, q E N, p > q}, which is, for all intents and purposes, 
identical to N. (If you study abstract algebra later, you will come to rec- 
ognize that we have established here an isomorphism between N and Z'.) 
It is in this technical sense that N may be regarded as a subset of the system 
Z that we have constructed. 

As to properties of Z, you should verify that a number of properties of 
N, proved for N in Article 10.1 and listed in Exercise 3, "carry over" to Z. 
In addition, Z has desirable properties that N fails to possess, including 
Theorem 3. 

THEOREM 3 

There exists a unique integer a having the property that x + a = a + x = x 
for all x E 2. We denote this integer by the symbol "0" and call it the zero 
element or additive identity of Z. 
To each x E Z, there corresponds a uniquely determined y E Z such that 
x + y = y + x = 0. We denote this integer by the symbol - x  and call it 
the additive inverse of x. 

(a) Let a = [(I, I)], and let x = [(p, q)] be an arbitrary integer. 
Then x + a = [(I + p, 1 + q)], which clearly equals [(p, q)], so that 
x + a = x, as desired. It is left to you to establish the facts that a + x = x 
and that a is unique. 

(b) Let x = [(p, q)] be an arbitrary integer. Consider the integer 
y = [(q, p)] and note that x + y = [(p + q, q + p)] = [(I, l)] = 0. Again, 
you should verify that y + x = 0 and that this y is the only integer 
satisfying x + y = y + x = 0. 0 

With Exercise 3 and Theorem 3, we see that the integers satisfy all but 
possibly one of the 11 field axioms. It is worth noting here that because 
(Z, +, -) is an algebraic structure with two operations satisfying field axioms 
1 through 7 and 11, it is an example of what algebraists call a ring. In fact, 
because Z satisfies Axiom 8, it is a commutative ring, and since it satisfies 
Axiom 9, it is a ring with unity. We will note an additional, and highly 
important, property of Z, in Theorem 5(b). Also, we will address the ques- 
tion of Axiom 10, multiplicative inverses in Z, following the proof of Theo- 
rem 6. You will recall that, given a, b E N, the equation a + x = b does not 
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need to have a solution in N. In fact, a solution exists in N if and only 
if a c b. This situation is improved upon in Z. 

THEOREM 4 
Let a, b E 2. Then there exists a unique integer x such that a + x = b. This x, 
which is given by the formula x = b + (-a), is denoted b - a and is called b 
minus a. 

Proof Note first that a + x =  a + ( b +  (-a)) =(a+(-a))  + b = O +  b 
= b. Hence x = b + (-a) is a solution. Furthermore, if b = a + x, 
then ( - a ) + b =  - a + ( a + x ) = ( - a + a ) + x = O + x = x ,  so that 
b + (-a) is the only solution. 0 

Note that the use of the symbol b - a in Theorem 4 is consistent with its 
use for N in Article 10.1 (recall Definition 3). The difference, of course, is 
that b - a exists in Z for any integers a and b, whereas in N, b - a exists, 
for positive integers a and b, if and only if a < b. We describe this situation 
by saying that Z is closed under the operation of subtraction, whereas N fails 
to be closed under subtraction. 

The integer 0, introduced in Theorem 3, has additional properties of in- 
terest, including Theorem 5. 

THEOREM 5 

For any XEZ,  x . 0  = 0 
For any x, ~ E Z ,  if xy = 0, then either x =  0 or y =  0 
For a n y x , y , z ~ Z ,  if xy=xzand x#O, then y = z  

(a) Let x = [(p, q)] be an arbitrary element of Z. Recalling that 
[(I, I)], we note that x - 0  = [(p, q)] . [(I, I)] = [(p + q, q + p)] = - - 

[(I, 1)J = 0, as claimed. 
(b) Let x = [(p, q)] and y = [(r, s)] be integers and suppose xy = 0. 

That, is, suppose 0 = [(I, l)] = [(pr + qs, ps + qr)]. Suppose further- 
more that x # 0; that is, p # q. We claim y = 0; that is, r = s. Assume, 
with no loss of generality, that p > q. From xy = 0, we have ps + qr = 
pr + qs. Using algebraic properties of N, we arrive at the equation 
(p - 4)s = (p - q)r. Since p > q, we have p - q E N so that we may use 
multiplicative cancellation in N [recall Theorem 7(e), Article 10.11 to 
cancel p - q and arrive at the desired conclusion s = r. 

(c) If xy = xz, then xy - xz = 0 [by Exercise 4(b)(ii)]. Hence 0 = 
xy - xz = x(y - z). Since x # 0, then by (b), we must have y - z = 0, 
or y = z. O 

A consequence of Theorem 5(a) is that 0 cannot possibly have a multi- 
plicative inverse in Z. Because the ring Z satisfies the property in Theorem 
5(b) (often referred to as "having no zero divisors"), Z is an example of 
what algebraists call an integral domain. We will soon see that all other 
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integers except 1 and - 1 also fail to have multiplicative inverses in Z. We 
next introduce an order relation in Z. 

D E F I N I T I O N  2 
Let x = [(a, b)] and y = [(c, d)] be integers. We say that x < y in case 
a + d < b + c .  

In Exercise 4(a) you are asked to verify that the relation < is well de- 
fined. Our intuitive expectation of the inequality [(a, b)] < [(c, d)] is that 
a - b be less than c - d. The definition we have given amounts to the 
same thing, and furthermore, involves positive integers a + d and b + c, so 
that we may take advantage of the "less than" relation already defined on N. 

Note that if x E Z, x = [(a, b)], then x > 0 if and only if a > b, x = 0 
if and only if a = b, and x < 0 if and only if a < b. Furthermore, x > 0 if 
and only if - x < 0. Denoting again by Z + the subset {[(p, q) J 1 p E N, 
q E N, p > q )  of Z, we can easily show that Z +  is closed under both ad- 
dition and multiplication. 

Once again, many properties of less than in N carry over to Z. A number 
of such properties are listed in Exercise 3. We have, in addition, a number 
of other properties of Z contained in Exercises 4 and 5, as well as in the 
following theorem. 

THEOREM 6 
Let x, y, zeZ: 

(a) If x < y and z >  0, then x z <  yz 
(b) If x < y and z < 0, then xz > yz 
(c) If x z  < yz and z > 0, then x < y 
(d) If xz < yz and z < 0, then x > y 

Proof (a) Let x = [(a, b)], y = [(c, d)], z = [(e, f)], where all variables in 
parentheses represent positive integers. By hypotheses, a + d < b + c 
and f < e. To show xz < yz, we note that xz = [(ae + bf, af + be)] and 
yz = [(ce + df, cf + de)], so that the inequality ae + bf + cf + de < 
af + be + ce + df must be derived. This inequality may be rewrit- 
ten as (b + c)f + (a + d)e < (b + c)e + (a + d)f, which is equivalent to 
(b + c)(f - e) + (a + d)(e - f )  < 0 or [(b + c)-(a + d)](f - e) < 0. 
But the latter inequality is true since f - e < 0 and (b + c) - (a + d) > 0. 

The proofs of (b), (c), and (d) are similar and are left to you [Exercise 
WI. 0 

THE RATIONALS 

In Theorem 7(d), Article 10.1, we showed that positive integers not equal to 
1 do not have multiplicative inverses in N. A similar result can be estab- 
lished in 2. Suppose x is an integer not equal to + 1. If x = 0, then x 
has no multiplicative inverse, by Theorem 5(a). If x is positive and y is an 
integer such that xy = 1, then y must be positive (since 1 > 0) and we have 

b 
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a contradiction of Theorem 7(d). If x is negative and xy = 1 for some y E Z, 
then necessarily y is negative. But then -x and -y are both positive in- 
tegers not equal to 1 and ( - x)( - y) = xy = 1, again, contradicting Theorem 
7(d). We conclude that the system (Z, +, .) of integers fails to satisfy the 
multiplicative inverse property and, in fact, that all integers not equal to + 1 
fail to have multiplicative inverses. It is primarily for this reason that we 
wish to expand Z to a system Q, the rationals, in which the favorable prop- 
erties of Z are retained and the algebraic shortcoming just illustrated is 
remedied. 

The construction of Q from Z is very similar to the construction of Z 
from N, just accomplished. You will recall that the elements of Z are 
equivalence classes of ordered pairs of positive integers; elements of Q will 
soon be seen to be equivalence classes of certain ordered pairs of integers. 
Once constructed, Z was proved to contain a substructure Z+ "isomorphic 
to" N (so that, essentially, N E Z). We will see that Q contains a substruc- 
ture isomorphic to Z, so that, for all intents and purposes, Z is a subset 
of Q. As indicated earlier, the primary advantage of Z, compared to N, is 
that it makes up for algebraic deficiencies of N (i.e., lack of additive identity 
and inverse properties). The corresponding primary advantage of Q is to 
make up for the lack of multiplicative inverses of most nonzero elements 
of Z. 

Because of all this familiarity, we will provide in the text only the bare 
outlines of the construction of Q, leaving the details to you. To start, we 
consider the set of all ordered pairs of integers (x, y) such that y # 0, in 
symbols, Z x (Z - (0)). For the sake of familiarity, you should think of 
(x, y) as the fraction x/y. Define a relation a on this set by the rule 
(x, y) z (w, z)  if and only if xz = yw. It is easy to verify that x is an equiv- 
alence relation on Z x (Z - (0)). Denote by Q the set of all equivalence 
classes corresponding to w ,  denoting the equivalence class determined by 
an ordered pair (x, y) by the symbol [[(x, y)]]. Note that if a, b, x, y E Z 
with b # 0 and y # 0, we have (a, b) E [[(x, y)]] if and only if ay = bx; as 
a specific example, we have (1,2) E [[(7, 14)]]. 

Next, we define operations of addition and multiplication on Q. Guided 
by familiar rules of arithmetic, we are led to formulate the following 
definition. 

DEFINIT ION-  3 
Let r = [[(w, x)]] and s = [[(y, z)]] be elements of Q. We define: 

(a) The sum r + s of r and s by the rule r + s = [ [ (wz + xy, xz)]], and 
(b) The product rs by rs = [[(wy, xz)]] 

Clearly our goal at this stage should be to prove that the set Q, endowed 
with the two operations just defined, satisfies a number of familiar algebraic 
properties. Of primary interest should be the multiplicative inverse axiom 
(Axiom 10 of the field axioms) if, as we expect, Q is to prove to be a field. 
But before attempting to prove any such properties, we must address an 
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issue that must always be attended to whenever we define algebraic op- 
erations on a set whose elements are equivalence classes-prove that the 
operations are well defined. It is left to you to formulate the meaning 
of this statement (using Theorem 2 as a guide) and write out the proofs 
(Exercise 7). 

Once it has been verified that addition and multiplication, as described 
in Definition 3, are legitimate operations, it remains to show that (Q, +, -) is 
a field. To do this, you should verify the 11 field axioms. It should be noted 
that [[(0, I)]] and [[(I, I)]] are additive and multiplicative identities for Q, 
respectively, while [[(-a, b)]] and [[(b, a)]] are, respectively, the additive 
and multiplicative inverses of a given [[(a, b)]] E Q, with the assumption 
of a nonzero value of a made in the multiplicative case. 

After verifying the 11 axioms, you might next look to Article 9.1, where 
number of general field properties are proved, for additional algebraic prop- 
erties of Q. 

Let us consider next how Z might be regarded as a subset of Q. Given 
integers x, a, and b, with b # 0, we say that x is associated with the rational 
number [[(a, b)]] if and only if xb = a. You should verify that if x is as- 
sociated with [[(a, b)]], then x is also associated with a rational number 
[[(c, d)]] if and only if (c, d) E [[(a, b)]]. That is, an integer is associated 
with at most one rational number. Note also that a rational number 
[[(a, b)]] has an integer n associated with it if and only if b divides a, in 
the sense of Example 2, Article 6.1. Noting that any integer x is surely as- 
sociated with the rational number [[(x, I)]], we conclude that any integer 
x is associated with a unique equivalence class in Q, a class we will denote 
by [[x]], so that the mapping x + [[x]] of Z into Q is well defined. Fur- 
thermore, this mapping is one to one and not onto (you should supply a 
precise description of the subset of Q constituting the image of this map- 
ping). Finally, the mapping preserves both addition and multiplication; 
that is, [[xi]] + Kx2II = [[XI + x2II and [[xIII . CCX~II = CCXIXJI for 
any integers x, and x,. Thus the image of the mapping x 4 [[x]] is asub- 
set of Q (closed under addition and multiplication, as you can verify; see 
Exercise 8), which, for all intents and purpbses, is identical to Z. ~ e & e  Z 
may be regarded as a subset of Q in exactly the same sense in which we 
previously observed N to be a subset of Z (recall the lengthy discussion 
between Theorems 2 and 3, earlier in this article). 

We are left with the final problem of defining an ordering on Q. Before 
addressing this matter, let us first make a remark pertaining to generaliza- 
tion of the part of the construction of Q we've seen thus far. Recall that 
the (Z, +, .) is a particular example of an algebraic structure known as an 
integral domain, that is, a commutative ring with unity having no zero di- 
visors (recall the discussions following Theorems 3 and 5). From a course 
in abstract algebra you will learn that the process of passing from integers 
to quotients of integers can be generalized. In fact, any integral domain D 
can be "embedded" in a unique smallest field F containing D as a subdo- 
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main; this F is called the field of quotients of D. Viewed in this more general 
context, the field of rationals is the field of quotients of the integral domain 
of integers. 

Finally, let us deal with the issue of order in Q. We do this by noting 
that the subset Q+ of Q defined by Q+ = ([[(a, b)]] la, b E Z, ab > 0) sat- 
isfies the properties of 9, the positive part of an ordered field, in Defini- 
tion 1, Article 9.2. Once again, verification of this fact is left to you in Ex- 
ercise 9. 

With this, all the properties of ordered fields listed in Article 9.2 can 
now be seen as valid in Q. We remind you of the deficiency in Q, discussed 
in Article 9.3 (recall Example 3 of that article), that causes us to carry our 
construction beyond Q. The ordered field (Q, +, .) is incomplete, in the 
sense of Definition 4, Article 9.3. In Article 10.3 we will outline a con- 
struction of a complete ordered field, the real numbers R, that can be built 
from Q using equivalence classes of Cauchy sequences. As in the two 
constructions of this article, well-definedness of operations will be an im- 
portant issue; analogous to those two constructions we will see that R 
contains a substructure that is essentially identical to Q. 

Exercises 
*I. Prove Theorem 2(b); that is, prove that the operation of multiplication on Z, as 

defined in Definition l(b), is well defined. 

2. This exercise relates to the "embedding" of N in Z, outlined in the text following 
the proof of Theorem 2. 

(a) Prove that the mapping n -, [n] of N into Z is one to one. 
(b) Prove that the mapping of N into Z described in (a) is not onto. Prove, 

in addition, that an equivalence class [(p, q)] is in the image of this mapping if 
and only if p > q. 

(c) Prove that the mapping described in (a) "preserves the operations" of addition 
and multiplication in N; that is [nl] + [n,] = [n, + n,] and [nr][n2] = [nlnz] 
for any positive integers n, and n,. 

*(d) Prove that the subset Z+  = {[(p, q)] 1 p E N, q E N, p > q} is closed under 
addition and multiplication. 

3. Verify the following algebraic properties for Z: 

(a) Closure, associativity, and commutativity for addition 
(b) Additive cancellation 

* (c) Distributivity of multiplication over addition 
(d) Closure, associativity, commutativity and identity for multiplication 
(e) (i) F o r a l l a ~ Z , ( - l ) a =  -a 

(ii) For a l l a , b~Z ,a ( -b )=  -(ab)=(-a)b 
(iii) For all a e Z ,  -(-a)=a 
(iv) Fora l la ,b~Z, ( -a ) ( -b)=ab  

( f )  The results of Theorem 9, Article 10.1, generalized to Z (dropping, however, 
any assumptions about order relationships between integers a, b, and c). 
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4. (a) Prove that the relation < from Definition 2 is well defined. That is, prove 
that if (a, b) - (a', b') and (c, d) - (c', d'), where all the variables involved repre- 
sent positive integers, then a + d < b + c if and only if a' + d' < b' + c'. 

(b) In Z, prove that: 

(i) 1 > 0 
*(ii) If x E Z, x = [(a, b)], then x > 0 if and only if a > b, x < 0 if and only if 

a < b a n d x = O i f a n d o n l y i f a = b  
(iii) If X E Z ,  then x > 0 if and only if -x < 0 
(iv) I f x , y ~ Z ,  thenx<yi fand  onlyif - y <  -x 
(v) If x, y E Z, then x < y if and only if y - x > 0; x = y if and only if 

y - x = o  

5. (a) Generalize part (c) of Theorem 8, Article 10.1, to Z; that is, prove that the 
relation <, defined on Z in Definition 2, is transitive. 

(b) Generalize Theorem 10, Article 10.1, to Z; that is, prove the trichotomy prop- 
erty for the relation < on Z. 

(c) Prove parts (b)(c)(d) of Theorem 6. 
(d) Generalize parts (a)(b)(c) of Exercise 6, Article 10.1, to Z [adding, however, 

whatever additional hypotheses might be necessary in (b)]. 

6. (a) Prove that there is no integer x such that 0 < x < 1. [Hint: Apply the well- 
ordering principle to the set {x E ZIO < x < 1) under the assumption that this 
set is nonempty. Keep in mind the result in Theorem 6(a).] 

(b) Prove that there is no integer between x and x + 1, for any integer x. [Hint: 
Use an argument by cases, approaching the case x > 0 by induction.) 

7. Prove that the operations of addition and multiplication on Q, from Definition 3, 
are well defined. 

8. Prove that the mapping x -* [[x]] of Z into Q, defined in the discussion follow- 
ing Definition 3 (see the fourth paragraph following Definition 3) is one to one, not 
onto, and preserves the operations of addition and multiplication. Prove that the 
image of this mapping, a proper subset of Q, is closed under the operations of ad- 
dition and multiplication in Q. 

9. Prove that the subset Q+  of Q, defined by Q +  = {[[(a, b)]] la, b E Z, ab > 0) 
satisfies the conditions of Definition 1, Article 9.2, for the positive part of an ordered 
field. 

10. Using Articles 9.1 and 9.2, make a list of algebraic and order properties that are 
valid in the structure (Q, +, -), by virtue of the fact that this structure is an ordered 
field. 

10.3 Outline of the Construction of the Reals 
We now deal with the problem of constructing R from Q. The difficulties 
in presenting this material are pedagogical as well as mathematical. As 
has happened at  several previous stages of the text (e.g., Articles 6.4 and 8.3), 
we have a situation in which the details of the mathematics we would like 
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to present are, in all likelihood, slightly beyond the level of experience 
of most readers. Specifically, a full understanding of the construction of 
R from Q, by using equivalence classes of Cauchy sequences, requires 
experience and well-developed facility in working with properties of 
sequences, and especially a working knowledge of the definitions of con- 
vergent sequence and Cauchy sequence. In truth, most students who are 
ever going to go through all the details of this construction should probably 
do so after their course in advanced calculus. 

For these reasons, we place even less emphasis in this article than before 
on providing full proofs of most theorems. For the more readily acces- 
sible arguments, we strike a balance between proofs given in the text and 
those left as exercises. In the case of a number of either very detailed 
and lengthy or quite technical proofs, we give only an outline or some dis- 
cussion of the proof. If highly motivated, you may take this as a challenge 
to your proof-writing ability, whereas if you are more casual in your ap- 
proach, then you should only try to follow the main lines of the development. 

So let us begin our sketch of the construction of R; we start with some 
heuristics. Think of a familiar irrational number such as z. A familiar 
characteristic of this number is its nonterrninating, nonrepeating decimal 
expansion that begins 3.141 59. One way to think of the number n, using 
rational numbers only, is as the limit of the sequence x, = 3.1, x, = 3.14, 
x, = 3.141, and so on. This example illustrates the idea of an irrational 
number as the limit of a sequence of rational numbers, and so introduces 
us to the basic idea behind the construction of the reals from the rationals 
by way of sequences. But, of course, the rules of the game do not permit 
us to work back from a known irrational number to a sequence of rationals. 
We must proceed outward from the rational number system, with no a priori 
knowledge of any other type of number. The idea that should motivate 
us, however, is this. It seems from the preceding example that there are 
sequences of rationals that "want to" converge but have nothing to converge 
to in the system Q. Theorem 1, one of the few we prove in this article, 
gives us an initial handle on precisely which sequences of rationals "seem 
to want" to converge. First, let us formulate a definition of a convergent 
sequence of rational numbers. 

DEFINITION 1 
A sequence iqnj of rational numbers is 
ber q, denoted q, -+ 9, if and only if, to 
corresponds a positive integer N such 
n 2 N. 

THEOREM 1 

said to converge to the rational num- 
every positive rational number E ,  there 
that (q, - ql < E whenever n E N with 

I f  (q,) is a convergent sequence of rational numbers, then {q,,) satisfies the 
condition: To every positive rational number 8, there corresponds a positive in- 
teger N such that 19, - q,l < E whenever m, n E N with m, n > N. 
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Proof Let E be an arbitrary positive rational number. We must prove that 
there exists a positive integer N such that, for any m, n E N with m, n 2 
N, we have Iq, - qnl < E. According to the hypothesis of convergence, 
say to a rational number q, we may assert that, corresponding to the 
given E, divided by 2, there is a positive integer No such that, for any 
integers m and n greater than or equal to No, we have both Iq, - ql < 
€12 and lqn - ql < 612. Letting the desired N equal this No, we note 
thatlqm - 4.1 = I(qm - 4) + (q - qn)l 14, - 41 + 14 - 4.1 < 812 + 612 = 
E, whenever m, n E N with m, n 2 N, as desired. 

DEFINIT ION 2 
A sequence of rational numbers satisfying the property derived in Theorem 1 
is called a Cauchy sequence of rational numbers. 

Intuitively, Cauchy sequences are sequences whose terms "eventually'' 
all become closer and closer to one another (in comparison to a convergent 
sequence, whose terms eventually all become arbitrarily close to a particular 
number). Theorem 1 tells us that any sequence of rational numbers that 
converges to a rational number must have this Cauchy property. The ex- 
ample given earlier, involving n, provides a clue that there are Cauchy 
sequences of rationals that do not converge to rationals. It suggests, fur- 
thermore, that if sequences of rationals are going to converge to something 
outside Q (something that doesn't exist in our discussion as yet, but that 
it is our goal to construct), then the only sequences that "have a prayer" 
of doing so are Cauchy sequences. 

Hence we are motivated to begin our construction by considering the 
collection Ci of all Cauchy sequences of rational numbers. We make O: into 
an algebraic structure by defining operations of addition and multiplication 
in componentwise fashion. That is, the nth term of the sum (respectively, 
product) of two sequences in 6 is the sum (respectively, product) of the 
respective nth terms. In order for these operations on 6 to be meaningful, 
we need to be certain that the result of combining two elements of Ci is an 
element of & (we are, of course, referring here to the issue of closure). 
Toward this end, we have Theorem 2. 

THEOREM 2 
If {an}  and {b,} are cauchy sequences of rationals, so are the sequences 
{a,  + b,}, {anbn} and {-a,). Also, any constant sequence is Cauchy, including 
the sequences { O , O ,  0 ,  . . .) and (1, 1, 1, . . .}. 

We begin here to give only comments on proofs, rather than the proofs 
themselves, of most theorems. In reference to Theorem 2 we note that a 
necessary lemma for proving closure under multiplication is the fact that 
every Cauchy sequence of rationals is bounded in Q [see Exercise l(a)J. 
That is, if {q,) is Cauchy, then there exists a rational number B such 
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that lq,l < B for all n E N. We remark also that once Theorem 2 is known, 
it is relatively easy to see that the algebraic structure (6, +,.) satisfies all 
except possibly Axiom 10 of the axioms for a field. In fact, it is clear that 
Axiom 10 is not satisfied, because (l/n) E 6,  while the only possible candi- 
date for its multiplicative inverse, namely, in), is not in 6. Sequences con- 
taining some (but not all) zero terms also present difficulties, in connection 
with Axiom 10. Any such sequence is not the additive identity sequence (all 
of whose terms are zero), but its product with any other sequence clearly 
will not equal the multiplicative identity sequence (a constant sequence of 
l's), and so any such sequence fails to have a multiplicative inverse in 6. 
Hence it is clear that the structure (6, + , - ) is not itself a candidate for the 
complete ordered field that we seek. 

There is another difficulty with the structure 6 ,  yet another reason that 
(6, +, .) cannot be the structure we are seeking. This problem, however, 
turns out to be part of the solution, since it suggests how we might build 
another structure from 6. If we have it in mind to identify irrational num- 
bers with Cauchy sequences of rationals that do not converge to rationals 
(this, indeed, is our basic premise), then we must note the following. Clearly 
there may be many distinct Cauchy sequences that "seem to want" to con- 
verge to the same (irrational) number. Consider, for example, our sequence 
of decimal approximations to n, described at the outset of this article. We 
may easily generate a countably infinite number of different, but "equiv- 
alent" Cauchy sequences, one in fact for each positive integer n, by chang- 
ing the nth term of the given sequence and leaving all other terms 
unchanged. If our original Cauchy sequence seemed to want to converge to 
n, then surely all these new sequences, each of which differs from the original 
in only a single term, must seem to want to converge to .n also. The answer 
to this problem, which amazingly turns out to be the solution to our other 
problems as well, is to define an equivalence relation on 6 and to deal with 
equivalence classes of Cauchy sequences, rather than with Cauchy sequences 
themselves. Denoting by R this collection of equivalence classes of Cauchy 
sequences, we announce at this (admittedly premature) stage that this R is 
going to turn out to be the underlying set for the real number field! Let us 
now proceed with a careful outline of the details. 

DEFINITION 3 
A sequence {zn}'of rational numbers is said to be a null sequence if and only if to 
every positive rational number E,  there corresponds a positive integer N such that 
1z.I < E whenever n E N with n 2 N. 

In other words, a null sequence of rationals is simply a sequence of 
rationals that converges to zero; the sequence (l/n) is a familiar example. 
We now apply the concept of null sequence to aid in formulating the desired 
equivalence relation on a. The idea is this: If two sequences of rationals 
seem to want to converge to the same number (whether or not rational), 
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what should be true about the componentwise difference of the two se- 
quences? Those of you whose immediate reaction is "null sequence" are 
"right on the money"! We now have a way of characterizing, in a manner 
that operates entirely within Q, our intuitive, but vague, idea of two se- 
quences of rationals seeming to want to converge to the same number (pos- 
sibly not rational). We formalize this in Definition 4. 

DEFINIT ION 4 
Define a relation -- on the set 6 of all Cauchy sequences of rational numbers, 
by the rule {a,) -- (6,)  if and only if the sequence {a, - 6,) of componentwise 
differences is a null sequence. 

THEOREM 3 
The relation -- is an equivalence relation on 6. 

As indicated earlier, we denote by R the collection of all equivalence 
classes generated on & by -. Also, we denote by [a,] the equivalence class 
determined by the sequence {a,}.  The proof of Theorem 3 is an easy exer- 
cise [see Exercise 2(a)] for anyone with any experience whatsoever in work- 
ing with sequences. Recalling the process used in Article 10.2 to construct 
Z from N and Q from Z, the next step should be evident; it is time to 
define operations of addition and multiplication on R. 

DEFINIT ION 5 
We define operations of "addition" and "multiplication," denoted + and respec- 
tively, on R, as follows. Let [a,] and [b,] be elements of R. Then we define: 

(a) Thesum[a,]+[b,]tobe[a,+b,],and 
(6) The product [a,][b,] to be [a,b,]. 

If we have done our job well thus far in this chapter, you should be at 
least one move ahead of the discussion at this stage and thinking about 
what must clearly be the next step. We must prove that + and -, as defined 
in Definition 5, are well-defined operations. That is, we must show that if 
[a,] = [a;] and [b,] = [b:], then [a, + b,] = [a; + K ]  and [a&,] = [aLK].  
More specifically, we need the following result. 

THEOREM 4 
Let [a,], [b,], [a;],  and [b;] be elements of R. Then if {a, - a;) and {b, - 6;) 
are null sequences, we have: 

(a) { (a ,  + 6,) - (a; + g)) is a null sequence, and 
(6) {a,b, - a;%) is a null sequence. 

The proof of Theorem 4, which we again do not include in the text, 
should be a reasonable exercise [see Exercise 2(b)] for those who are at- 
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tempting to fill in the proofs; (b) is by far the less routine and we include 
hints for the proof in the statement of the exercise. 

At this point we have constructed the object we've been looking for, but 
we are far from finished. In fact, there are four major steps remaining. You 
should stop for a moment and think through what those four steps are. 
Let us now resume and begin to present, with most details omitted, the 
four steps. 

THEOREM 5 
The system (R, +, - )  is a field. 

Remarks on the proof Most parts of the verification of Theorem 5 (i.e., all 
field axioms except the multiplicative inverse axiom) are routine and are 
left to you in Exercise 3(a). We do note, however, in reference to Axiom 
4, that the additive identity for R is the equivalence class consisting of all 
the null sequences of rational numbers [you should verify in Exercise 3(b) 
that the collection of all null sequences does indeed constitute an equiv- 
alence class]. This fact is important in understanding why the multi- 
plicative inverse axiom is satisfied in R. Suppose [a,], for instance, is a 
nonzero equivalence class in R. We claim that [a,] has a multiplicative 
inverse [b,] in R. That is, there exists a Cauchy sequence (b,) such that 
[anbn] = [I], in other words, such that (1 - anbn) is a null sequence. 
The fact that [a,] is nonzero means that (a,) is not a null sequence. 
This means that there exists a positive rational E such that infinitely many 
terms of the sequence are 2 E in absolute value. In symbols, 3~ > 0 
(E rational) such that, for any N E N, there exists n E N such that n > N 
and lanlz E. Combining this with the fact that {a,) is Cauchy, we can 
prove that there exists a positive integer No such that la,l > ~ / 2  for all 
m E N such that m > No. An immediate consequence of this fact is that 
a, # 0 for all but (at most) finitely many terms of the sequence, specifi- 
cally, a, # 0 whenever rn > No. We are now ready to define the sequence 
(b,). Let b, = 0 if n I No and let b, = l/a, if n 2 No. Clearly the prod- 
uct sequence (anbn) has values 0 for n 5 No and 1 for n > No, so that 
the sequence (1 - a,b,), having all terms beyond the Noth equal to zero, 
is clearly a null sequence, as desired. One final remark about this verifi- 
cation: We must, of course, prove specifically that the sequence (b,), as 
we've defined it, determines an equivalence class in R. For this we need 
that (b,) is Cauchy. You should be able to fill in this detail [see Exercise 
3(c)], if you wish to do so. 0 

So (R, +, a) is a field, modulo, of course, verification of all the details of 
Theorem 5. Before addressing the matters of ordering and completeness, 
let us consider in exactly what sense Q can be regarded as a subset of R. 
We say that a rational number q is associated with the real number [q,] if 
and only if the sequence {q, - q )  is null. Note that if q is associated with 
the equivalence class containing the sequence {q,), then q is associated with 
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the real number [qb] if and only if (q, - qb) is a null sequence; that is, 
(q,) is equivalent to (4;). Noting that any rational q is surely associated 
with the real number [q] = [(q, q, 4,. . .)I, we conclude that each rational 
number is associated with a unique equivalence class in R, so that the 
mapping q -t [q] is well defined. You should be familiar by now with the 
litany of details that should be verified, in reference to the mapping q -, [q]. 
This mapping is one to one, not onto, and preserves addition and multipli- 
cation; its image is a subset of R that is closed under addition and multi- 
plication (see Exercise 4). 

We deal next with the matter of ordering. In order that (R, +, .) be 
established to be an ordered field, we must specify the subset of R that will 
serve as 9 ,  the positive part of R. It turns out that the definition of 9 is 
not especially intuitive. Recall, from the discussion of the proof of Theorem 
5, that any nonnull Cauchy sequence has the property that the set of all 
terms of the sequence, after some specific term, is "bounded away" from 
zero by some specific positive rational number (el2 in the context of that 
discussion). More formally, if (a,) is a nonnull Cauchy sequence of ratio- 
nals, then there exists a positive rational number E and a positive integer 
N such that la,l >_ E for all n > N. This provides the idea for the correct 
definition of positivity in R. 

DEFINITION 6 
An element [a,] of R is said to be positive if and only if there exists a positive 
rational number E and a positive integer N such that a, 2 E for all n 2 N. 

As usual, we must worry about well-definedness. Specifically, we should 
verify that if (a,) and (a:) are equivalent Cauchy sequences, then (a,) satis- 
fies the property in Definition 6 if and only if {a;) does (see Exercise 5). 
Following this, we need to verify that the set 9 of all positive elements 
satisfies the requirements of Definition 1, Article 9.2. This done, the con- 
clusion that (R, +, .) is an ordered field is justified. 

The final step is the verification of completeness. This is technically the 
most complicated part of the entire development, and we continue here to 
omit most of the details of the proof. Let us, however, look for a moment 
at the main lines of the argument. As we have learned to do, we begin by 
asking ourselves, "What must we prove?" The answer to this question, of 
course, is contained in the definition of completeness. We must let X be a 
nonempty subset of R that is bounded above in R. We must show that X 
has a least upper bound in R; that is, we must prove existence of a real 
number 1 satisfying the two defining properties of the least upper bound 
in an ordered field (recall Definition 4, Article 9.3). Now the fact that X is 
bounded above in R means that there exists a real number [a,] such that 
every element [x,] of X satisfies [x,] [a,]; that is, [a, - x,] is positive in 
the sense of Definition 6. It follows that there is an integer [k] (i.e., the 
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equivalence class containing the constant sequence with all terms equal to 
the integer k) such that [x,] I [k] for all [x,] E X. This k is an upper bound 
in R for X; our goal is to produce a least upper bound for X. Such an 
object, being an element of R, may be determined by specifying a Cauchy 
sequence (4,) of rationals with appropriate properties. The following 
procedure can be shown to yield such a sequence. For each positive in- 
teger m, let t, be the smallest integer such that the real (in fact, rational) 
number determined by the constant sequence {tm/2", t,/2", tm/2", . . .) is 
an upper bound for X. The fact that such an integer exists, for each m E N, 
depends on the well-ordering principle for N; the existence of the integer 
upper bound [k], alluded to earlier, comes into play in this verification. 
Next, define a sequence (q,) by letting q, = tn/2" for each n E N; let 1 = [q,]. 
It can be proved that (q,} is a Cauchy sequence of rationals, so that 
I CE R. Finally, it can be shown that 1 satisfies the two conditions required 
to conclude that 1 is the least upper bound for the given X. Subject to 
rigorous verification of all the details just outlined, we are able to conclude 
Theorem 6. 

THEOREM 6 
The ordered field (R, +, - )  is complete. 

In fact, much more can be proved in reference to the real number field, 
including a theorem asserting uniqueness of a complete ordered field. Spe- 
cifically, it can be shown that any complete ordered field must be order iso- 
morphic to (i.e., for all intents and purposes in an algebraic sense, the same 
as) R. As indicated earlier, we will not pursue uniqueness of a complete 
ordered field in this text. 

Recalling that Q turned out to be the "smallest" field containing Z, you 
may wonder whether R has that same relationship to Q. The answer is 
"no." The subset Q[*] = (a + b d  1 a, b E Q] is a field (under the usual 
operations of addition and multiplication inherited from R) properly con- 
tained in R and properly containing Q. The structure of fields such as 
Q[-1, known as subfields of R, is commonly studied in the portion of 
an introductory abstract algebra course devoted to field theory. 

Having fought your way through the outlined construction of R, and 
also being familiar with the manner in which the complex number field is 
built from R (recall Article 9.4), you may wish to spend a few moments 
comparing the two constructions. Such a comparison should remove any 
doubt that such descriptive terms as "real" and "imaginary," in reference 
to these number systems, are anything other than historical accidents. 

Finally, it may be recalled, from Definition 5 and Theorem 1, Article 
9.3, that the real number field is Archimedean ordered. Basically, this means 
that, given any positive real numbers a and b with a c b, a sufficient num- 
ber of additions of a to itself will eventually exceed b. When this concept 
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was introduced, in Article 9.3, we promised to provide an example of a non- 
Archimedean ordered field. Such a field is presented in our concluding 
example. 

EXAMPLE 1 Consider the algebraic structure REX] of all polynomials in the 
single indeterminate x with real coefficients. It can be proved that (R[x], 
+, a )  is an integral domain (recall terminology introduced in Article 
10.2), under the operations of ordinary addition and multiplication of 
polynomials. Hence we may use the construction described in Article 
10.2 (in building Q from Z) to pass from R[x] to R(x), the field af quo- 
tients of R[x], which turns out to be representable as the familiar col- 
lection of all rational functions in x with real coefficients. We may 
introduce an ordering in R[x] by calling a polynomial positive if the 
coefficient of its highest-degree term is positive. This ordering may be 
extended to R(x) by declaring a rational function p(x)/q(x) to be posi- 
tive in case the product p(x)q(x) is a positive polynomial. This ordering 
on R(x) is non-Archimedean, since, for example, no finite number of 
additions of the constant polynomial 1 to itself will ever exceed the posi- 
tive polynomial x. 0 

Exercises 

1. This exercise relates to the proof of Theorem 2. 

*(a) Prove that every Cauchy sequence of rational numbers is bounded. 
(b) Prove that if (a,) and {b,) are Cauchy sequences of rational numbers, then 

{a, + b,) and { -a , )  are also Cauchy sequences. Prove also that any constant 
sequence of rationals is Cauchy. 

(c) Use the result in (a) to prove that if {a,) and {b,) are Cauchy sequences of 
rationals, then {a,b,) is Cauchy. (Note: For any positive integers m and n, 
ambm - a&, = a,bm - a,bm + anbm - a,b,. Use the boundedness of both se- 
quences and the triangle inequality.) 

2. (a) Prove Theorem 3; that is, prove that relation - defined as 6 is an equiva- 
lence relation. 

(b) Prove Theorem 4(a); that is, prove that addition on R is a well-defined 
operation. 

(c) Prove Theorem 4(b); that is, prove that multiplication on R is well defined. 
(Note: Follow the hints given for Exercise l(c).] 

3. (a) Verify, in detail, all field axioms, except Axiom 10, for the structure (R, + , -). 
(b) Prove that the collection of all null sequences of rational numbers constitutes 

an equivalence class in R, by using the two steps: 

(i) Any two null sequences are equivalent. 
(ii) Any sequence equivalent to a null sequence is itself null. 

(c) Prove that the sequence {b,), defined in the verification of Axiom 10 for 
(R, +, -), (cf., Remarks on the proof of Theorem 5), is a Cauchy sequence. (Hint: 
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You need to use both the fact that {a,) is Cauchy and the fact that {a,) is 
eventually bounded away from zero.) 

4. Prove that the mapping q -+ [q] of Q into R, defined in the paragraph follow- 
ing the proof of Theorem 5, is one to one, not onto, and preserves addition and 
multiplication in Q. Prove also that the image of this mapping, a proper subset of 
R, is closed under addition and multiplication. 

5. Prove that the definition of positivity in R, given in Definition 6, is well defined 
(see the precise formulation of well-definedness in this context following Definition 
6). 

6. Prove that any real number x lies between two consecutive integers; that is, prove 
that, given x E R, there corresponds an integer n such that n - 1 < x < n. (Hints: 
First, use the Archimedean property of R to prove that x must necessarily lie 
between two integers, say, m and p. Having accomplished this, use the well-ordering 
principle for N to show that x lies between two consecutive integers in the set 
{m,m + 1, .  . . , m + (p - m)).) 



Answers and 
Solutions to 

Selected Exercises 

Article 1.1 
1.(b) B = { - 2 )  ( i ) = { l , 2  (m) M={-5, -1 , (1&@)/3) .  
2. (4 R (4 [-0, $1 (4 C (n) R. 
3. (a) (i) well defined (ii) not well defined. 
4. (c) - 16, 32, - 64, 128, - 256. 
7. (b) for Z,  we may say that there exist real numbers a, b, and c such that 

a E Z,  c E Z,  and a < c < b, but b 4 Z. The same characterization may be 
used for Q, replacing Z by Q. The statement is clearly true in both cases. 

9. (a) (ii) wj') = (0, {a), {b),  {c) ,  {dl ,  {a, b), {a, c), {a, d) ,  {b, c) ,  {b, d) ,  {c, d ) ,  
{a, b, c) ,  (a, b, d ) ,  {a, c, d ) ,  {b, c, d) ,  S). 

10. If A E A = { Y  (Y  q! Y ) ,  then, by definition of A, we have A q! A, a contradiction. 
On the other hand, if A 4 A, then, again, by definition of A, it must not be the 
case that A 4 A; that is, A E A, again, a contradiction. The discovery, in 1901, 
of this paradox by the British mathematician and philosopher, Bertrand 
Russell, had devastating effects in the mathematical world and brought about 
essential changes of direction in the developing field of set theory. 

Article 1.2 
I .  (c) A u A' = u ( k )  A n A = 0 ( 1 )  c n c = u. 
2. (b) (d)  ( A  n C)' = (1,2,  3,4, 5,6,7,8, 10) = A' u C' (k )  (n) ( A  u B) n 

C = ( 9 )  = ( A  n C)  u (B n C). 
3. (c) ( d )  ( A  u C)  - ( A  n C)  = (1,2,4,7,8) = A A C. ( j )  ( k )  (C - B) n 

(C - A) = {2,4,8) = C - (B  u A). 
4. (f) A x ( B  u C) = { ( I ,  21, (1,3), (L41, (1,5), (1,6), ( L g ) ,  (1,9), (1, 1% (7,2), 

(7,3), (7,4), (7,5), (7,6), (7,Q (7,9), (7, lo), (9,2), (9,3), (9,4), (9,5), (9,6), 
(9,819 (9,9), (9910)). 
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6 . ( a ) ( j ) A n C = [ 2 , 4 ] = C - A ' ,  ( f ) A - C = ( 4 , 9 ) ,  
(g) C - A =  [ - l , 2 )  

7. (c) A -  B = ( - a ,  -31 ( d )  A A  B=(-GO,  -31 ~ ( 6 ,  a)  
( I )  ( A A  B ) A C = ( - m ,  -41 u ( - 3 ,  l ) u ( 3 , 6 ]  u [7, a). 

8. (c) D n A' = 0 ( i )  (D n A)  u (D n A') = D. 
l O . ( b ) ( - a , - 6 ] u [ 8 , m )  ( e ) ( - a , - 3 ) u ( - 3 , 3 ) u ( 3 , a ) .  
11. (a) [-2, -11 u [ I ,  21. 
12. (c) ( i )  C n E = { f 1 f is the function f ( x )  = x2 + 3x with domain R )  

(iu) A n D = D. 

Article 1.3 
2. (b) Let A = (2, 3, 10) and B = (1, 3, 8, 10). Then (1, 3,4, 5,6,7,8,9, 10) = 

(2)' = ( A  - B)' # A - B' = (3,  10). (g) Let X = {4,7), A = {1,4,7,9) ,  
B = {2,4,6,9). Then X G A, but X u ( A  n B) = {4,7,9)  # {4,9)  = 
(X  u A)  n B. 

4. (a) For example, we might try A = {3,4, 5, 8, lo ) ,  B = {1,4,5,9), and 
X = {2,5,6,7). Then A n X = ( 5 )  = B n X ,  but A n X' = {3,4,8,10) # 
(1, 5,9)  = B n X'. Or else, we could let A = {6,8,9), B = {2,6,8, 101, and 
X = {1,2,9,10). Then A n X' = {6,8) = B n X', but A n X = (91, whereas 
B n X = (2, 10). The example seems to indicate that if A and B are distinct 
and A n X = B n X ,  then A n X' can't equal B n X', and vice versa. 
(b) An elegant formulation of the idea described informally in (a) is this: 
"For any sets A, B, and X ,  if A n X = B n X and A n X' = B n X', then 
A = B." I f  this conversion is not intuitively evident to you, you will learn 
logical principles in Chapters 2 and 3, by which you will be able to make 
such conversions yourself systematically. 

7. (b) X n ( Y  u 2) = (X  n Y )  u (X n Z )  = (-a,  -4) u (712, a). 
l O . ( f ) T r u e  (j)True. 

Article 1.5 
1. ( i )  1 (m) 32 (n) 2 ( p )  4. 
5. (b) 56 three-person committees and 56 five-person committees. 
6. (b) 4 x 4 x 4 x 4 x 12 = 3072. 
9. (b) There are 2'' = 1024 possible choices for both A and B, for a combined 

total of (1024)2 = 1,048,576. 
12. (a) 3' = 19,683 (b) 36 = 729. 

Article 2.1 
1. (c) a statement ( i )  a statement only in a specific context (k) not a 

statement. 
4. (d) p: the sum of two even integers is even (true), q: the product of two odd 

integers is odd (true); p A - q is false. (f) (g) p: April is the name of a month 
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(true), q: September is the name of a month (true), r: Wednesday is the name 
of a month (false); in (f ), -(p A q A r) is true; in (g), - p A - q A - r is false. 

Article 2.2 
3. (a) (iu) I pass the course and (still) do not make the dean's list. (vi) If I 

pass the course, then I make the dean's list. (b) (ii) q v -r (-q -+ -r is 
also a correct representation) (iu) q -+ p (-p -+ - q is also a correct 
representation). 

4. (c) p: 2 = 5 (false), q: 4 + 5 = 9 (true), r: 52 = 25 (true); (- p v q) -+ - r is false. 
(f) (h) p: S"_, sin x dx = 0 (true), q: dldx(2") = x2"- ' (false), r: In 6 = (In 2)(ln 3) 
(false); in (f), (p A -q) -+ r is false; in (h), p -+ (r -+ q) is true. 

Article 2.3 
4. (a) (i) converse: r -+ (p A q); contrapositive: -r -+ (-p v -q); inverse: 

( - p v - q) -+ - r. (b) (iii) inverse (uii) original. (d) (ii) converse: If 
sin (43) = 4, then 2 < 4 and 5 + 5 = 10; inverse: If either 2 2 4 or 5 + 5 # 10, 
then sin (7113) # 4; contrapositive: If sin (43) # 4, then either 2 2 4 or 
5 + 5 # 10; negation: 2 < 4 and 5 + 5 = 10, but sin (7113) # 3. 

5. (b) -q-+ -r (e ) ( r -+q) -+p .  
7. (b) (i) In (a'), p is stronger than q, due to its stronger conclusion; in (b'), p is 

stronger than q, due to its weaker hypothesis. (ii) In (a'), p and q are both 
true; in (b'), p is false and q is true. (iii) Our answers to (ii) are consistent 
with our answers to (i). The fact that p is stronger than q, in (a') and (b') 
excludes only the possibility "p true-q false." 

10. (b) (ii) -pv -qvr.  

Article 2.4 
4. p: I keep my job, q: Smith is retained, r: You recommend Smith's firing. The 

argument has the form [( - q -+ - p) A ( - q -+ r)] -+ ( - r -+ p), an invalid 
argument (consider the case: r false, p false, and q true). 

8. A: p -+ q is a tautology, B: q + p is a tautology, C: p - q is a tautology. The 
argument has the form [(A -+ (B o C)) A (A A - C)] -+ - B, a valid argument. 

Article 3.1 

2. (g) (4,563 7) (k)  U ( 1 )  0 (4 U. 
4. (a) (i) both equal (1, 2, 3,8,9, 10). 
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Article 3.2 
1. (d) All easy problems are solvable. (i) Some unsolvable problems are not 

mathematics problems. 
2- (4 (3x)(p(x) A - W )  (0 W M x )  -, (2-44 A - 4 w .  
3. (c) (i) F (ii) T (iii) T (iu) F (v) T (vi) F (d) (i) T 

(ii) T (iii) T (iv) F (v) T (vi) T. 
9. (a) (Vx)(p(x) - q(x)) (b) P = Q (c) P = Q if and only if 

(P' u Q) n (P u Q') = U, for any sets P and Q. 
11. (a) (b) (d) (e) p implies q; s and t are equivalent. 

Article 3.3 
1. (c) All women are either not young or not athletes. (g) Some athletes are 

either not young or are men and no men are athletes. 
4. ( 4  ( 3 4  -2-44 A -- q(4) (4 ( 3 4  (PW A - dx)) v t -- 2-4~) A dx) 1. 
5. (4  ( 3 m o )  A - q(x) A - 44) .  
6. (d) Prove that there exists a function f such that f has a relative maximum or 

minimum at x = 0, but f (0) does not equal zero. 
9. (b) O =  x2 + 8x + 16 = (x + 4)2. Hence ifx2 + 8x + 16 = 0, then x = -4, so 

that there is at most one solution. Substituting -4 for x in x2 + 8x + 16 yields 
(-4)2 + 8(-4) + 16 = 0, so that, in fact, there is exactly one solution, x = -4, 
as desired. 

Article 3.4 
1. (b) proposition (f) propositional function of two variables. 
2. (e) There exists x such that, for every y and z, fix, y, z). 
4. (c) Everyone has someone to whom they are a friend, who is not a friend in 

return. (g) Everyone is his own friend. 
7. (a) (v) - 8 divides 0 (true) (xi) For any integers m and n, if m divides n, 

then n divides m (false). 
9. (b) There exists a real number x such that xy = x for every real number y 

(true-let x = 0). (g) To every positive real number p, there corresponds 
at least one positive integer n such that lln < p. 

lo .  (a) (3x)(Vy)(x I y) (false). (d) (Vx E Q')(Vy E Q')(3z E Q')(x < z < y) (true). 

Article 3.5 
3. dx): x is a good citizen, q(x): x registers to vote, r(x): x does community service, 

$x); x is lazy; the argument has the form: P E Q, Q n R # 0, R n S = 0, 
therefore P n S' # @. This is invalid, as demonstrated by the substitutions 
U = ( 1 , 2 , 3 , 4 , 5 ) , P = ( l , 2 ) , Q = ( l , 2 , 3 ) , R = ( 3 , 4 ) , S = { l , 2 , 5 ) .  
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7. Hx): X is a field, q(x): X is a ring, r(x): X is an integral domain; this argument 
has the form: P E Q, Q n R # 0 ,  R n P' # 0 ,  therefore Q n P' # 0 .  The 
argument is invalid. Let U = {1,2, 3,4, 51, P = {1,2}, Q = {1,2}, 
R = (2, 3,4}. 

Article 4.1 
2. (a) Proof Assume X c Y and X c 2. To prove X E Y n Z, let x be an 

arbitrary element of X. We must prove x E Y n Z;  that is, x E Y and x E Z. 
Now since x E X and X E Y, we have x E Y. Similarly, since x E X and 
X c 2, we have x E Z. Hence x E Y and x E Z SO x E Y n Z, as desired. 

7. (b) Proof Assume B' E A'. We must prove A s B. Now, by 7(a), since 
B' G A', then A" E B". But since A = A" and B = B [by Exercise 6(a)(iii)], 
this leads to A G B, our desired conclusion. 

9. (a) Proof =+ Assume A n B = U. We must prove A = U and B = U. For 
the first of these, note that A E U is always true so that we need only establish 
the reverse containment U G A. To do this, let x E U. Since U = A n B, then 
x E A n B. Since x E A n.B, then x E A and x E B so that, in particular, x E A. 
An identical argument verifies that U E B, so that U = B, as well. -= Assume 
A = U and B = U. To prove A n B = U, let x E U; we must show x E A n B; 
that is, x E A and x E B. Now since x E U and U = A, then x E A. Since x E U 
and U = B, then x E B. Hence x E A and x E B, as desired. 
(Note: An alternative presentation of the argument is "assume A = U and 
B = U. Then A n B = U n U = U.") 

Article 4.2 
1. and 2. (b) union = N, intersection = (1) = A,; increasing. (c) union = 

N = A,, intersection = 0 ;  decreasing. (j) union = R, intersection = 
(- GO, 11 = A,; increasing. (k) union = (- GO, - 1) = A,, intersection = @; 
decreasing. 

5. (b) Proof Assume {A,) k = 1,2,. . .} is a decreasing family. We may prove 
the desired equality by proving mutual inclusion, where we note that 2 
follows immediately from Exercise 4(a). To prove E, let x be an arbitrary 
element of u,"=, A,; we must prove x E A,. Now since x E u,"= , A,, then 
x E Aj for some j E N. 1fj = 1, we are finished. If j > 1, then A, c A,, by 
the "decreasing" hypothesis. In that case x E Aj and Aj c A, together imply 
x E A,, our desired conclusion. 

5. (e) (i) Proof Let x E n,"!, A,. To prove x E ng, A,, we must prove x E A, 
for every h 2 n. So assume h E N and h 2 n. Since m < n I h, we have 
h > m. Since x E ngrn A,., then x E A, for every k 2 m; in particular x E A,. 
Since h was an arbitrarily chosen integer greater than or equal to m, we 
have established x E n,"=, A,, as desired. 

6. (a) Yes. Let A, = (0, 1 + llk) for each k = 1,2, . . . . Then nr=, A, = (0, 11. 
Note that this is not possible in a finite collection of sets. 
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7. (b) Proof Assume C is a set satisfying C E A, for each k = 1,2,3, . . . . To 
prove C c ng, A,, let x E C and let j be an arbitrary positive integer; we 
must prove x E Aj. Since C c A, for each k = 1,2,3,. . . , then, in particular, 
C E Aj. Since x E C and C c Aj, we have x E Aj. Since j was arbitrarily 
chosen, we have x E n ~ =  A,, as desired. 0 

Article 4.3 

1. (a) (b) (iii) lirn,,, f(x) = = 4. Type I (i.e., continuous) at a = 3. 
(uiii) lirn,,, f (x) = lirn,,, ((3 - x)/3x)(l/(x - 3)) = lirn,,, (-$x) = -$. Type 
I1 (i.e., not continuous) at a = 3 since f is not defined at 3. 

2. (a) lirn,, , f (x) does not exist since lirn,, , - f (x) = 9 # 1 = lim,, , + f (x). 
(b) lirn,,, f(x) = lirn,,, (2x - 5) = 1. 

3. (a) (iii) Let E be any specific positive real number less than or equal to B (i.e., 
B is the largest value of E that could be used), say, E = B/2. Let 6 be an 
arbitrary positive real number. Then, for any nonzero x between -6 and 
6,wehaveeitherO<x<6and f (x)=5x+B>B>B/2 ,ore l se  - 6 < x < O  
and f(x) = 2x - B < - B < - B/2. In either case f(x) is not within a distance 
of E = B/2 of L = 0. Surely then, corresponding to the given (specific) E and 
an arbitrarily chosen positive 6, there can always be found x such that 
0 -c 1x1 c 6, whereas 1 f(x)l 2 E. 

4. (d) The graph of the tangent function tells us that lim,,(,,,,- = m, whereas 
limx,(r,2)+ = - m. 

5. (a) Let E = 3 and let 6 > 0 be given. Corresponding to this arbitrarily chosen 
6, there clearly exists a positive integer n such that both 2/(4n + 1)n and 
2/(4n + 3)n are less than 6. If x = 2/(4n + 1)n, then l/x = (4n + 1)71/2 so that 
sin (l/x) = sin [(4n + 1)71/2] = 1. If x = 2/(4n + 3)n, then l/x = (4n + 3)42 so 
that sin (llx) = sin [(4n + 3)n/2] = - 1. We conclude that, in any 
neighborhood of a = 0 (no matter how narrow), there exist values of x for 
which sin (l/x) = 1 and sin (llx) = - 1. Thus it is impossible, given an E 

neighborhood of L = 0 with E < 1, to find a 6 neighborhood about a = 0 
such that all positive values of x within that neighborhood have their 
corresponding f(x) within E of L = 0. 

8. (b) (ii) lirn,,, (x + 6)/(x2 - 10) = lirn,,, ((llt) + 6)/((l/t2) - 10) = 
lirn,,, ((6t + l)/t)(t2/(1 - lot2)) = lim,,, (6t2 + t)/(l - lot2) = 011 = 0. 
(iii) lirn,,, (x2 - 2x + 3)/(2x2 + 5x - 3) = lirn,,, [(I - (3/x) + 
(3/x2)]/[(2 + (SIX) - (3/x2)] = (1 - 0 + 0)/(2 + 0 - 0) = 4. 
(d) (i) lirn,,, f(x) = m if and only if, corresponding to any M > 0, there 
exists 6 > 0 such that, whenever 0 < Ix - a1 < 6, then f(x) 2 M. 

Article 5.1 
2. (a) (i) Proof Let x be an arbitrary real number. Then, cos4 x - sin4 x = 

(cos2 x - sin2 x)(cos2 x + sin2 x) = (cos2 x - sin2 x)(l) = cos2 x - sin2 x = 
cos 2x. 0 
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3. (d )  Proof Let A be an arbitrary subset of U. Then, A A U = ( A  - U )  u 
(U - A)  = (25 u A' = A'. 

5. (a) (ii) Proof Let A, B, and C be arbitrary sets. Then ( A  u B) - C = 
( A  u B) n C' = ( A  n C') u ( B  n C') = (A - C )  u ( B  - C). 

7. (a) Proof Assume n, k E N with k I n. Then (,lf ,) + C;) = 
[n!/((k - l)!(n - k - I ) ! ) ]  + [n!/k!(n - k)!] = 
[kn! + (n - k + l)n!]/[k!(n - k + I ) ! ]  = n!(k + n - k + l)/k!(n - k + I ) !  = 
(n + l)n!/k!(n + 1 - k)! = (n + l)!/k!(n + 1 - k)! = (n + l)!/k!(n + 1 - k)! = 
("tl). 

9. (b) Proof Assume f and g are odd functions. To show f + g is odd, we 
must show that ( f  + g)(-x) = -( f + g)(x) for all x E R. So let x E R be 
arbitrarily chosen. Then ( f  + g)( - x )  = f ( - x )  + g( - x )  = - f ( x )  + 
( - (g(x)))  = -( f ( x )  + g(x)), as desired. Similarly, ( f  - g)( - x )  = f ( - x )  - 
g(- x )  = - f ( x )  - ( - g(x)) = - ( f ( x )  - g(x)) = - (( f - g)(x)), as desired. Also, 
( f  O g)( - 4 = f (d - x ) )  = f ( - d x ) )  = -f  (g(x)) = - ( f  O g)(x). Finally, 
(fg)( - x )  = f ( - x)g( - 4 = ( -f ( X I ) (  - d x ) )  = f (x)g(x) = (fg)(x), so that fg is 
even, as claimed. 

12. (b) Proof Rewrite 60 + 14x - 2x2 in the form -2(x2 - 7 x  + y) + 
(60 + 9) = -2(x - $I2 + (y). Clearly this expression assumes its maximum 
value of at x = 3. 0 

13. (d )  We show the statement is false by displaying a counterexample. Let 
U = { 1 , 2 , 3 , 4 , 5 ) , A = { 1 , 2 , 5 ) , B = { 3 , 4 ) , C = { 1 , 2 , 4 ) .  ThenAn 
(B  u C )  = {1,2), whereas ( A  n B) u C = (1,2,4). 

17. (a) Proof Given A = (aij), ,, and B = (bij), . ., to prove A = B, we need 
only show that aij = bij for all i, j satisfying 1 I i I m, 1 I j 5 n. So 
choose arbitrary integers h and k satisfying 1 5 h I m, 1 I k I n. Now 
A' = (cji), x m  and B' = (dji),, . ,, where cji = aij and dji = bij for all i, j with 
1 I i 5 m, 1 I j I n. Since A' = B', we know that ckh = dkh. Hence 
ahk = ckh = dkh = bhk, and we have a, = b,, as desired. 
(e) Proof Let A and B be arbitrary symmetric square matrices, so that 
A = A' and B = B'. To prove A + B is symmetric, we need only show 
( A  + B)'= A + B. But ( A  + B)'= At+ Bt= A + B. 

Article 5.2 

2. (a) Proof Let A and B be sets such that A c B. To prove @(A) G @(B), 
let X be an arbitrary element of B(A). To prove X E S(B) ,  we must show 
X c B. Now since X E @(A), we know X c A. Since X E A and A E B, then 
X c B (by Example 7,  Article 4.1), our desired conclusion. 

5. (b) Apply the criterion in (a) with h = k = 1, f (x )  = 1 + ( l / ( x  - 1)). Assume 
x # 1, x # 0. Then f ( - x  + 1) = 1 + ( l / ( ( - x  + 1) - 1)) = 1 - (llx) = 
2 - [ l  + ( ( l / ( x  + 1) - I ) ) ]  = 2 - f ( x  + 1). 

9. (a) Proof To prove [O,l] is convex, let x, y E [0, 11 and let t be a real 
number satisfying 0 I; t 5 1. Then t x  2 0, 1 - t 2 0, and y 2 0, so that 
t x  + (1 - t)y 2 0. Also, since 0 I x I. 1, then t x  I t and since 0 I y < 1, then 
(1 - t)y I 1 - t. Hence t x  + (1 - t)y I t + (1 - t )  = 1. Thus 
0 5 t x  + (1 - t)y I; 1, as desired. 
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Article 5.3 
(a) Proof Let X, A, and B be sets such that X c B. To prove 
X u (A n B) E (X u A) n B, let x E X u (A n B). To prove x E (X u A) n B, 
we must prove x E (X u A) and x E B. Since x E X u (A r\ B), then either 
x E X or x E A n B. We divide the argument into cases. Case I: If x E X, 
then x E X  u A since X G X u A. Since X c B and X E X ,  then x E B, so 
that our desired conclusion holds in this case. Case II:  If x E A n B, then 
x E A so that x E X u A. Furthermore, x E A n B implies x E: B. Again, we 
have our desired conclusion in this case. Since these cases are exhaustive, 
our theorem is proved. 
(b) Proof Let A, B, and X be arbitrary sets. Then A = A n U = 
A n (X u X') = (A n X) u (A n X') = (B n X) u (B n X') = 

B n ( X u X ' ) = B n U = B .  
(a) Proof Let x, y E R. Let x' = (x + y)/2 and y' = (x - y)/2. By Exercise 
9(g, h), using specialization, we have sin (x' + y') - sin (x' - y') = 2 cos x' cos y'. 
Resubstituting, this becomes sin x - sin y = 2 cos ((x + y)/2) sin ((x - y)/2), as 
desired. 0 
(6) (ii) Proof Let x, y E R and consider the cases x < y, x = y, and x > y. If 
x c y, then (+)(x + y + Ix - yl) = (&(x + y + y - x) = (4)(2y) = y = x v y. 
If x = y, then (&x + y + Ix - yl) = (i)(x + x) = (#(2x) = x = x v y. If 
x > y, then (i)(x + y + Ix - y() = @)(x + y + x - y) = (4)(2x)=n = x = x v y. 0 
(c) Proof Given diagonal matrices A and B, to prove AB = C = (cijln is 
diagonal, we must prove that if i # j, then cij = 0. So let i and j be arbitrary, 
distinct integers between 1 and n, inclusive; note that cij = z=, aikbkj. 
Now since i # j, then for each k = 1,2, . . . , n, either k # i or k # j. If k # i, 
then a& = 0 (since A is diagonal), whereas if k # j, then bkj = 0 (since B is 
diagonal). In either case we have that the product aikbkj = 0, so that the sum 
used to compute cij is the sum of n zeros and so equals zero, as desired. 

Article 5.4 

3. (b) Proof Define S in the usual manner. (i) Clearly 1 E S since (1)(2) = 

2 = (1)(2)(3)/3. (ii) Assume m E S. To prove m + 1 E S, note that 
Lm2f k(k + 1) = z=, k(k + 1) + (m + l)(m + 2) = ($)dm + l)(m + 2) + 
(m + l)(m + 2) = (i)[m(m + l)(m + 2) + 3(m + l)(m + 2)] = 
(+)(m + l)(m + 2)(m + 3), as desired. 0. 

7. (d) Proof Define S in the usual manner. (i) 1 E S since x - y divides 
x - y. (ii) Assume m E S. To prove m + 1 E S, we must prove x - y 
divides xm+' -y"+' .  Now xm+' - ym+' = x(xm - y") + (xym - ym+') = 
x(xm - ym) + y"(x - y). Since x - y divides xm - ym (by induction hypothesis), 
then x - y divides x(xm - y"). Also, x - y clearly divides ym(x - y). Hence 
x - y divides the indicated sum, so that x - y divides xm+' - y"+', as 
required. O 

8. (b) Proof Let S = (n E N 1 n 2 10 and n3 < 2"). Clearly 10 E S, since 
I 1000 < 1024. So assume m E S. To prove m + 1 E S, we must prove 
(m + < 2m+1. Now (m + = m3 + 3m2 + 3m + 1. Since m 2 10, then 
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3m2 + 3m + 1 < 3m2 + 3mZ + 3m2 = 9m2 < m(m2) = m3. Hence 
m3 + 3m2 + 3m + 1 < m3 + m3 c 2" + 2" = 2(2") = 2"+', as required. 

12. (a) Proof "If m E 0, then m + 1 E 0'' is true since "m E 0'' is false for any 
mEN. 

Article 6.1 
(b) (i) [ - (p o q)] t, Cp t, - q]. You should verify, by using the truth 
table, that this statement form is a tautology. 
(a) Proof Let X, Y, and Z be sets. We establish equality by proving mutual 
inclusion. Let t E (X u Y) x Z. Then t = (p, q) where p E X u Y and q E Z. 
Now p E X u Y means either p E X or p E Y. In the case p E X, we have 
t = ( p , q ) ~ X  x Z c ( X  x Z ) u ( Y  x 2). I f p ~  Y, t h e n t = ( p , q ) ~  Y x Z E  
(X x Z) u (Y x 2). These two cases are exhaustive and, in either case, we 
have t E (X x Z) u (Y x Z), as desired. Conversely, suppose 
t E (X x Z) u (Y x Z), so that either t E (X x 2) (in which case t = (x, 2,) 
where x E X and z, E Z) or t E (Y x Z) [so that t = (y, z,) where y E Y and 
2, E Z]. In the first case t = (x, z,) where x E X E X u Y and 2, E Z. In 
the second case t = (y, z,) where y E Y E X u Y and z, E Z. In either case 
t E (X u Y) x Z, as desired. 
(b) Proof Assume S is a convex subset of R. To prove S is an interval, 
suppose x, y, and z are real numbers with x < y c z, x E S, and z E S. We 
must prove y E S. Now, by (a), there must exist a real number t, with 
0 c t < 1, such that z = tx + (1 - t)y. Since S is convex, then for any x, z E S 
and t E (0, l), we may conclude tx + (1 - t)y E S. Hence z = tx + (1 - t)y E S, 
as desired. 0 
(b) A real number a is not a point of accumulation of S if and only if 36 > 0 
such that N1(a; 6) n S = 0; in other words, there exists a 6 neighborhood 
of the point a containing no points of S other than, possibly, a itself. To 
prove that 2 is not a point of accumulation of S = (0, 1) u (21, let 6 = 3 
(or any other specific positive real number less than 1). Clearly 
N(2,i) = ($, 5) contains no points of S, other than 2 itself, as required. 
(b) Proof Let e > 0 be given. We must produce 6 > 0 such that, whenever 
0 c 1x1 c 6, then (g(x)( < E. Let 6 = E. Suppose now that x is a real number 
satisfying 0 < 1x1 < 6. If x is irrational, then Ig(x)l = 0 < e. If x is rational, 
then lg(x)I = 1x1 < 6 < E, SO that lg(x)l c e. In either case we have the 
desired conclusion. 0 

Article 6.2 
1. (e) Proof Let A, B, and C be sets. Let t E (A x C) - (B x C). To prove 

t E (A - B) x C, we must prove that there exist x E A - B and y E C such 
that t = (x, y). Now t E (A x C) - (B x C) means t E A x C so 3x E A, y E C 
such that t = (x, y). We will be finished if we can prove x 4 B, so that 
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8. 

9. 

10. 

11. 

I S .  

x E A - B. To do this, suppose x were an element of B. Then we would have 
t = (x, y) E B x C, contradicting the fact that t E (A x C) - (B x C). Hence 
x 4 B, so x E A - B and t E (A - B) x C, as desired. 0 
(g) Proof Let A and B be subsets of U such that A' u B = U. To prove 
A ,c B, let x E A. Hence x 4 A'. If x 4 B, then x 4 A' u B. This contradicts 
the hypothesis A' u B = U (which says that every element of U is either in B 
or in A'). 0 
Proof Suppose f'(x,) # 0. Then since f'(x,) exists, we may assert that either 
f'(xo) > 0 or f' (x,) < 0. Iff' (x,) > 0, then by Exercise lqc), Article 6.1, 
there exists a neighborhood N(xo; 6) such that if x E N(x,; 6) and x < x,, then 
f (x) < f(xo) and if x E N(xo; 6) and x > x,, then f (x) > f (x,). This contradicts 
the hypothesis that f has a relative maximum at x,. A similar argument 
can be formulated to reach a contradiction in the case f'(x,) < 0. 
(c) Proof If B were a subset of C, we would have A G B and B c C, so that 
A E C, contradicting part of the hypothesis. Cl 
(d) Proof If not, then both ,h + x and a - x are rational, so that their 
sum 2& is rational. But by (c), since 2 E Q and q! Q, 2& q! Q, so that 
we have a contradiction. 0 
(c) Proof If 0 is not open, then 3x E 0 and 6 > 0 such that N(x; 6) is not 
a subset of 0. But the statement "3x E @" is false, so we have a 
contradiction. 
(b) Proof Assume A, B, and C are sets with A c B and 3 c C. If A $ C, 
then there exists an element x E A such that x $ C. Now this x is either in B 
or not in B. If x E B, then the fact that x E B, but x 4 C contradicts B E C. 
If x 4 B, then the fact that x e A, but x 4 B contradicts the fact that A E B. 
In either case we arrive at a contradiction, so that our assumption A $ C must 
be incorrect, as desired. (Compare this proof with the proof in Example 7, 
Article 4.1.) 

Article 6.3 
I. (c) proof J(4x+ 36) = x + 8 -4x + 36 = ( x +  812 = x2 + 16x+ 64 - 

x2 + 12x + 28 = 0 * x = -6 f 2,h. Hence -6 + 2 , h  and -6 - 2 a  are 
the only possible solutions. Substitution shows that only - 6 + 2& is an 
actual solution. (Note: In substituting, we must compare 2 + 2 3  with 
2J- (equal, since both are positive and both have square 12 + 8 &) 
and 2 - 2 & with 2 Js [negatives of each other since both have 
square 12 - 8&, but 2 -  2 ,h<O, whereas ~ J ~ > o I .  

4. (b) Proof First, note that X = 0 satisfies the statement A n X = X for all 
sets A in U. For uniqueness, suppose X is any set satisfying "A n X = X for 
all subsets A of U." In particular (using specialization), letting A = 0, we 
have 0 n X = X. But again, it is known that 0 = 0 n X so that we have 
0 = 0 n X = X, so that X = 0 ,  our desired conclusion. 0 

6. (c) Proof First, it is clear that if x, + x, then x is a cluster point of {x,). 
In detail, let E > 0 and N E N be given; we must produce m > N such that 
Ix, - X I  < E. Now since x, -* x, then corresponding to this e, there exists a 
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positive integer M, such that Ix, - x) < E whenever n 2 M. Hence, for the 
desired m, simply choose a positive integer larger than both N and M, and note 
that Ix,,, - XI < e, as desired. For uniqueness, suppose x' is another cluster 
point of {x,). Let e > 0 be given. We will show Ix - x'l < e, so that x = x', 
by Example 5, Article 6.2. Since x, -* x, then corresponding to this E, divided 
by 2, 3N E N such that Ix, - xl < ~ / 2  whenever n 2 N. Since x' is a cluster 
point of (x,), then corresponding again to ~ / 2  a& the preceding N, there 
exists p 2 N such that Ix, - x'l < ~12. Note that (x, - xl < ~ / 2  since p 2 N. 
Hence I X  - x'I = IX - xP + xP - x'I I IX - xPI + IxP - x'I < 612 + 812 = E, as 
desired. 

7. (c) Proof Assume S, and S, are both bounded above in R. To prove that 
S, u S, is bounded above in R, we must show that there exists M E R such 
that x I M for all x E S1 u S,. Now we know that 3M, E R such that 
x r; M, for all x E S1 and 3M2 E R such that x 5 M, for all x E S,. Let 
M = max {MI, M,). If x E S1 u S,, then either x E S1 (in which case 
x r; M, 5 M, as desired), or else x E S, (so that x I M, r; M, again, as 
desired). 

10. (a) See the proof of Theorem 1, Article 9.3. 
(e) Proof Assume u = lub S and u # S. We must show that every 
neighborhood N(u; E )  of u contains a point of S other than u itself. So let 
E > 0 be given. By (ii) of the definition of lub, there exists y E S such that 
y > u - E, SO that u - E < y I u and y E N(u; E). Clearly u # y since u q! S and 
YES. 0 
For the example, let S = [I, 21 u (3). Then 3 = lub S, but 3 is clearly not a 
point of accumulation of S. 

Article 7.1 
2. (a) R, contains the ordered pairs (4, -$), (8, -2), (g, O), (4,3, and (n, n), 

among many others. 
3. (a) R is transitive if and only if 

(Vx)(Vy)(Vz)[((x, y) E R A (y, z) E R) ((x, z) E R)]; R is antisymmetric if and 
only if (Vx)(Vy)[((x, y) E R A (y, x) E R) (x = y)]. (b) R is not reflexive on 
A if and only if (3x E A)(& x) 4 R); R is not symmetric if and only if 
(3x)(3y)[(x, y) E R A (y, x) & R]; R is not transitive if and only if 
(3x)(3y)(3z)[(x, y) E R A (y, z) E R A (x, z) 4 R]; R is not antisymmetric if and 
only if (34(3y)[(x, Y) E R A (Y, x) E R A (x Z Y)]. 

5. (a) R,, is symmetric only (if y = llx, then x = l/y). It is not reflexive (2 # $, 
e.g.), not transitive (since 3 = l/(j) and (i) = 3, but 3 # i), and clearly not 
antisymmetric. (b) R,, is reflexive (since Ix - xl = 0 S 1 for any x E R), 
symmetric (following from the fact that Ix - yl = ly - XI), not transitive (since, 
e.g., 12.5 - 21 r; 1 and 13.2 - 2.5) s 1, but 13.2 - 2) > I), and not antisymmetric 
[since (3,2) and (2,3) are both in R,,, but 3 # 2). 

10. (c) Proof =+ Assume R is symmetric. We prove R = R- ' by mutual inclusion. 
First, let (x, y) E R. By symmetry, (y, x) E R so that (x, y) E R - ' and R G R - '. 
The reverse inclusion is proved in an identical manner. C= Conversely, suppose 
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R = R-l. To prove R is symmetric, let (x, y) E R. Then (y, x) E R-' = R, so 
(y, x) E R, as desired. 0 

11. (c) [I] = {1,3), [2] = (2,3), [3] = (1,Z 31, [4] = (51, [5] = (4). 

Article 7.2 
2. (b) S, is an equivalence relation. It is reflexive since everyone has the same 

biological parents as himself or herself. It is symmetric: If x and y have the 
same biological parents, so do y and x. It is transitive, for if x and y have the 
same biological parents and y and z have the same biological parents, then 
x and z have the same biological parents. 

4 . ( a ) ( i ) q = 4 , r = l  ( i u ) q = - 4 , r = 3  (c )Form1=13andd=5,we  
have q, = 2 and r, = 3. For m, = - 17, d = 5, we have q2 = -4 and r2 = 3. 
Note that r, = 3 = r,, not unexpected since m, and m, are congruent modulo 
5 in this case. For m, = 8 and d = 5, we have 4, = 1 and r, = 3. For 
m2 = -3, d = 5, we have 4, = - 1 and r, = 2. Note that r, = 3, r, = 2, so 
r, # r,, as we expect in this case, since this m, and m, are not congruent 
modulo 5. 

7. Proof (Reflexive) Let m, n E Q, with n # 0. Clearly (m, n) - (m, n), since 
mn = nm. (Symmetric) Let m, n, p, q E Q, with n # 0 and q # 0, and assume 
(m, n) - (p, q), SO that mq = np. To prove (p, q) - (111) n), we need only show 
pn = qm, clearly true since pn = np = mq = qm, using commutativity. 
(Transitive) Assume m, n, p, q, r, s E Q, with n # 0, q # 0, s # 0, with 
(m, n) - (p, q) and (p, q) - (r, s). To prove (m, n) - (r, s), we must prove 
ms = nr. By our assumptions, we have mq = np and ps = qr. Multiplying 
the first equation by s and the second by n, we get mqs = nps = nqr, so that 
msq = nrq. Since q # 0, we may cancel it to get ms = nr, as required. 

8. (d) Ordered pair example for (R, NS, NT): Let S = (1,2,3), R, = 
{(1,1), (2921, (3,3), (1, a, (2,3), (3,219 (1931, (391)). Rl is clearly (R, NS) and is 
also (NT) since (2, 3) E R, and (3, 1) E R,, but (2, 1) & R,. Rule example for 
(R, NS, N T): Let S = R - (0) and R, = ((x, y) ( y # 2x1. Now R, is reflexive 
since x E S implies x # 0 so that x # 2x. R, is not symmetric since (6,3) E R,, 
but (3,6) 4 R,. Finally, R, is not transitive, because (6,3) E R, and (3, 12) E R,, 
but (6, 12) & R,. 

9. (a) (0) NR, S, NT 

Article 7.3 

1. <c) A/& = ({a, b), (G e), (d,f))  
2. (b) Al92 = {(a, 4 (b, b), (c, c), ( 4  4, (e, 4, (f ,  f ), (c, 4, (4 4, (c, f 1, ( f  4, 

(d, f ), ( f  9 4 ) -  
3. (b) S = ((odd integers), {even integers)), a two-celled partition of Z. 

( j )  The partition has infinitely many cells. The cell containing a function 
y = f(x) contains precisely those functions whose functional values differ from 
those off at only a finite number of points. 



374 ANSWERS AND SOLUTIONS TO SELECTED EXERCISES 

4. (c) Proof Assume [x] = [y]. Then y E [x], so that x E y. Conversely, 
suppose x E y and let w E [y]. Then y E w. Since x E y, we have x E w, so that 
w E [x] and [y] G [x]. The reverse inclusion is proved in identical fashion. 

Article 7.4 
1. (c) 2 is a lower bound and 60 an upper bound for {4,6, lo), which has 

neither a greatest nor a least element. 
6. (a) M v N is simply the union M u N, by Exercise 5(a). 
7. (a) (iii) lub C, = {1,3,5,7,. . .), which is also the greatest element of C,. 

Also, glb C, = 0. Note that C, has no least element. 
8. (b) (i) Proof Given the hypotheses [MI] = [M,] and [N,] = [N,], suppose 

[Ml] 5 [N1 1. Then n(M,) = n(M,) I n(N,)  = n(N2), so that n(M2) I n(N,), as 
desired. The implication = follows in a similar manner. 

Article 8.1 
1. (c) (ii) r, is not a function since the ordered pair (0, y) E r,, for any y E R. 
4. (e) j is not one to one since j(0) = j(1) = j(- 1) = 0. 
9. (c) Proof Note first that f is a mapping of A into B, and ix is a 

mapping of X into A, so that f 0 i, is a mapping of X into B. By definition 
of restriction, f/, is a mapping of X into B, also. Hence f 0 ix and f/, have 
the same domain and codomain. To prove equality of mappings, we need 
only prove that (f 0 i,)(x) = (f/,)(x), for each x E X. Letting x be an 
arbitrary element of X, we note that (f 0 i,)(x) = f(i&)) = f(x) = (f/,)(x), as 
desired. 0 

10. (e) Proof By definition of composition, dorn (g 0 f )  = {x E dorn f I f (x) E dorn 9). 
Since dorn f = A and dorn g = C, this translates to {x lx E A and f (x) E C). 
Since mg f r C, we have that x E A implies f (x) E C, so that {x 1 x E A 
and f (x) E C) = {X ( x E A) = A. Hence dorn (g 0 f )  = A, as desired. Suppose 
now that z E mg (g 0 f), so that z = (g 0 f)(x) for some x E A. Hence 
z = g( f (x)) for some x E A. Since f (x) E rng f and rng f E C, then f (x) E C 
and z = g(c) for some e E C [namely; c = f (x)]. Since g maps C into D, 
then z = g(c) E D. Hence mg (g 0 f )  E D. 

13. (a) Proof If g: C + B is an extension off: A + B, then f E g, by definition. 
To prove A c C, let a be an arbitrary element of A. Since A = dorn f ,  
then (a, f (a)) E f. Since f E g, we have (a, f (a)) E g, so that a E dorn g. 
Since C = dorn g, we conclude a E C, as desired. 0 

Article 8.2 
2. (b) Since f (x) = (x2 - x - 12)/(x - 4) = x + 3, for all x E dorn f ,  then f is 

clearly injective [recall Exercise qb), Article 5.21. However, since 7 4 irn f ,  
then im f c R, so that f is not surjective, and hence is not bijective. 
(k) tan-' is defined as the inverse of the tangent function, restricted to 
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(-n/2, d2). The latter is one to one over that interval and has range R. 
Hence tan-' is one to one, but since its image equals (-42, n/2) c 
[- 42,n/2], the mapping f: R -, [- n/2,n/2] is not onto. 
(c) Proof => Suppose g 0 f: X -, Z is a surjection. Then g is surjective, 
by Theorem 2(d). (: Conversely, suppose g is surjective. Then f and g 
are both surjective so that g 0 f is surjective, by Theorem 2(a). 0 
(b) (ii) Define f: R -, R by f(x) = 2x - 3 and g: R -, R by g(x) = sin x. 
Note that f is clearly bijective. But the mapping g 0 f: R -, R, (g 0 f)(x) = 
sin (2x - 3) has range [- 1, 11, a proper subset of the range R, and so is 
not surjective, and consequently is not bijective. 
(a) (iii) Given f: R -, R, f(x) = 3x - 7, we have f - I([- 7,2]) = [O,3]. 
(b) (iv) f - '((e, 0)) = {A, C, D, E, G, H). (c) (iii) x E f - '([ - 1, 11) - 
- 1 1 ( x + 1 ) 2 5 1 ~ 0 5 ( x + 1 ) 2 5 1 ~ - l ~ ~ + 1 ~ 1 C S . - 2 5 x 5 0 .  
Hence f -'(I- 1, 1)) = [-2,0]. 
(a) (i) Proof Let x E f - '(N, u N,). Then f (x) E N, u N,, that is, either 
f ( x ) ~  N1 or f ( x ) ~  N,. If f ( x ) ~ .  N1, then X E  f-'(NJ c f-'(N1) u f-'(N,), 
so x E f - '(NJ u f - '(N,), as desired. Similarly, iff (x) E N,, then 
x E f -'(N,) c f-'(N,) u f -'(N,), so x E f -'(N1) u f -'(N2), again, as 
desired. Conversely, suppose x E f -'(Nl) u f - '(N,). Then either 
x E f -'(N1) or x E fA1(N2). If x E f -'(N1), then f(x) E N1 c Nl u N2 so 
that x E f -'(N1 u N,). An identical argument leads to the same conclusion 
[ i . e . ,x~f - ' (N~ u N2) ] i nca sex~  f-'(N,). 
(a) Proof => Assume f (f - '(Y)) = Y and let y E Y. To prove y E rng f, we 
must prove y = f (x) for some x E A. Now y E Y = f (f - '(Y)) so 
y E f (f - '(Y)); that is, y = f (x) for some x E f - l(Y). But f - '(Y) c A and so 
y = f(x) for some x E A, as desired. Conversely, assume y E mg f. Since we 
know f( f - '(Y)) c Y in general [by using Theorem 5(a)], we need only 
prove Y G f (f - '(9). So let y E Y. To show y E f (f - ' (Y)) ,  we must show 
y = f (x) for some x E f -'(Y). Now y E Y and Y E mg f means 
y E mg f,  SO that y = f (x) for some x E A. Now f (x) = y E Y so f (x) E Y so 
that this x, in fact, is contained in f - '(Y).  Hence y = f(x) for some 
x E f -'(Y), as required. As to the consistency between this result and 
Theorem 5(d), note that f (f - '(Y)) = Y for all subsets Y of B CS. Y c mg f 
for all subsets Y of B - B c rng f - B = mg f CS. f is onto. 
(c) Proof Assume f is one to one. If (b) has been proved, we need only 
prove f (M - M,) G f (M,) - f(M,) in order to establish equality. Hence 
let y E f (M - M,). Then y = f (x) for some x E MI - M,.  To prove 
y E f (M - f (M,), we must show that y E f (MI), but y 4 f (M,). Now since 
y = f (x), where x E M1 - M2 E MI, we know that y E f (M Proceeding 
indirectly, suppose y E f (M,). Then y = f (m) for some m E M,. Hence we 
have y = f(x) = f(m), where m E M2 and x E MI - M2 so that x 4 M,. Thus 
x # m. But f(x) = f(m) and x # m contradicts the one-to-one property 
off. 

Article 8.3 
1. (c) Proof The mapping f: (0, 1) -, (7,13) given by f(x) = 6x + 7 is clearly a 

one-to-one mapping of (0, 1) onto (7, 13). 
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2. (a) Proof Suppose 0 is not finite, that is, 0 is infinite. Then there exists 
a proper subset X of (25 such that X E 0. But the statement X c 0 implies 
3x E 0 such that x E 0X. The statement "3x E (21" is a contradiction. O 

6. (c) Proof By the hypotheses, there exists a one-to-one mapping f of A, onto 
B, and there exist bijections g and h of A, onto A, and B, onto B,, 
respectively. We must produce a one-to-one mapping F of A, onto B,. To 
do this, let F = k-' 0 f 0 g. Clearly F is a mapping from A, into B,. Since 
h-', f ,  and g are all one to one, F is one to one [recall Theorem 2(a), 
Article 8.21, as required. 0 
This result says that the relation 5 is a well-defined relation on equivalence 
classes of sets identified with one another by the equivalence relation r. 
Viewing < as a relation on equivalence classes of sets, rather than on sets, 
Schroeder-Bernstein says that if [A] 5 [B] and if [B] < [A], then [A] = [B], 
the requirement for antisymmetry. 

Article 8.4 
1. (c) Proof x ~ ~ n ( U , , , ~ , ) o x ~ B a n d x ~ ~ , , , ~ , o x ~ ~ a n d x ~ ~ ,  

for some A E I o [this step follows from the logical principle stated in Exercise 
I l ( c ) , A r t i c l e 3 . 3 ] x ~ B n A , f o r s o m e I ~ I o x ~ ~ , ~ , ( B n A , ) .  

4. (b) Proof x E f - '(B,) if and only if f(x) E n, ., B, 9 f(x) E n, ,, B, for all 
~ E J O X E  f-l(B,)for a l l p ~ ~ - x i  n,., f-'(B,). 0 

Article 9.1 
2. (b) Proof Suppose y and z are both multiplicative inverses of a nonzero 

x E F. Then y = 1 . y = (yx)y = (zx)y = z(xy) = z - 1 = z, so that y = z, as 
required. 

5. (b) False; in the field (R, +, -), - 1 = (- I)-', but - 1 # 1. (c) False; in 
the field Z,, 1 = - 1, since 1 + 1 = 0. 

10. (a) False; a = 2 has no square root in the field (Q, +, .). Also, in the field 
(Z,, +, a), 0, 1, 2, and 4 are the only squares. 

Article 9.2 
1. (a) Proof We proceed by induction on n. Let S consist of precisely those 

positive integers for which the desired result is true. We claim S = N. 
(i) 1 E S since x E F, x # 0, implies x2 E 9 ,  by Theorem l(c). (ii) Assume 
m E S. To prove m + 1 E S, let x E S, x # 0; we must show x ~ ( ~ + ' )  E 9 .  NOW 
x ~ ( ~ + ~ )  = xZm+, = x ~ ~ x ~ ,  where we note that xZm E 9 by induction hypothesis, 
whereas x2 E 9 by Theorem l(c). Hence the product is in 9 ,  by (b) of 
Definition 1. 0 

3. (b) (v) Proof Assume x, y, a E F with x I y and a I 0. To prove ax 2 ay, 
we must prove that either ax - ay E 9 or ax = ay. By hypothesis, we have 
that either y -  x ~ 9  or y =  x and either - a ~ 9  or a =O. Now i fa  = O  or 
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y = x, then clearly ax = ay. So assume y - x E 8 and -a E 8. Then the 
product (y - x)(-a) E 9. But (y - x)(-a) = (-a)(y) + (-a)(-x) = ax - ay, 
so ax - ay E 8 ,  as desired. 

4. (b) (i) Proof Let a, b E F with a 2 0, b 2 0. Then a2 < b2 - 0 < b2 - a2 - 
0 < (b - a)(b + a) - b - a > 0. The last step follows since b + a > 0, by (a) 
of Definition 1, since, necessarily, either a > 0 or b > 0 (otherwise a = 0 and 
b = 0, contradicting a2 < b2). 

5. (a) (ii) Proof The result is clearly true if x = 0, so assume x # 0. Then 
JxI2 = Ix21, by Theorem 5(b) (using specialization, with x = y). But x2 > 0, by 
Theorem l(c), so that lx21 = x2, by Definition 4. Hence Ix12 = x2, as 
desired. 

6. (a) (iii) Proof Given x, y E F with y # 0, we have Ixlyl = Ix(l/y)l [by 
Theorem 5(b)] = Ixl(l/lyl) [by (ii) of this exercise] = Ixl/lyl. 

Article 9.3 
1. (e) Proof Let S = (3,4) u (6). To prove 3 = glb S, note first that 3 I x for 

all x E S. For if x = 6, then 3 < 6 = x, whereas if x E (3,4), then 3 < x < 4 so 
that, in particular, 3 I x. For part (b) of Definition 3, let E > 0 be given. Let 
k = min (3, ~12). Then, 3 < 3 + k < 4 so that y = 3 + k E S and 
y = 3 + k I 3 + ~ / 2  < 3 + E, as required. To prove 6 = lub S, note first that if 
x E S, then either 3 < x < 4 (so that x < 6) or x = 6. Hence x I 6 for all x E S, 
so that (a) of Definition 3 is satisfied. For (b) of Definition 3, let E > 0 be given. 
Then 6 E S and 6 - E < 6, as desired. 

4. (c) Proof Let y = lub T; then t I y for all t E T. Since S G T, then s I y 
for all s E S. Now let x = lub S. If x > y, then E = x - y > 0 and, by (b) of 
Definition 3, there must exist s' E S such that s' > s - E. But then 
s' > x - E = x - (X - y) = y. But s' E S and s' > y contradicts our earlier 
conclusion that s I y for all s E S. Hence our supposition x > y must be false, 
so that x I y; that is, lub S I lub T, as desired. 

6. Proof Let S be a nonempty subset of F which is bounded below in F, say, by 
B. Then B I x for all x E S. Consider the set T = ( - x 1 x E S}. Letting y E T, 
wenote that y =  -xfor s o m e x ~ S ,  SO that y =  - X I  -Bfor a l lye  T; that 
is, - B is an upper bound for T. By completeness of F, T has a least upper 
bound in F, call it u. Now -u E F, since F is a field, and by Exercise 5(a), 
- u = glb ( - x 1 x E T}. But clearly { - x 1 x E T} = S (you should verify this), 
so that - u  = g!b S and S has the greatest lower bound in F. 

Article 9.4 
1. (g) 8i/17 (i-e., x = 0, y = A). 
3. (a) z = (-8) + (-E)i. 
6. (b) Proof Let z1 = x1 + yli, 2, = x, + y2i. Since z1 and z ,  are both real, then 

y1 = y2 = 0. Now z1z2 = (xl + yli)(x2 + y2i) = (x1x2 - yly2) + (xlyZ - x2y1)i = 
(xlxZ - (0 0)) + (xl - 0  - x2 0)i = xlxZ = Re (2,) Re (z,). 
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Article 10.1 
1. (b) x1 =x;  x n =  x(9-') ifn > 1. 
3. (b) Proof Let S = {m~Nlo(m) = 1 + m). Clearly 1 ES, since when m = 1, 

then dm) = m + 1 = 1 + 1 = 1 + m. Next, assume p E S SO that 4p)  = 1 + p. 
We must prove that 4p)  = p + 1 E S; that is, (p + 1) + 1 = 1 + (p + 1). But 
(p + 1) + 1 = (1 + p) + 1 (by induction hypothesis and well-definedness of 
addition) = 1 + (p + 1) (by associativity). 

6. (a) Proof Given a, b, c E N with a + c < b + c. Suppose that a < b is false. 
Then, by Theorem 10, we must have b < a or b = a. If b < a, then b + c < a + c, 
by Theorem 8(g), whereas if b = a, then b + c = a + c, by the well-definedness 
of addition. The conclusion in either of these cases contradicts the hypothesis 
a + c < b + c .  0 

8. (a) Proof Let S be a subset of N satisfying (i) 1 E S and (ii) for all m E N, 
if m E S, then m + 1 E S; we claim S = N. For if not, then N - S # 0, and 
so, by the well-ordering principle, N - S contains a least element, call it m,. 
Now clearly m, > 1, since 1 E S (by (i)) and m, E N - S, so that m, - 1 E N. 
Since m, - 1 < m, and m, is the least element of N - S, then m, - 1 E S. 
Hence, by (ii), m, = (m, - 1) + 1 E S, contradicting the fact that 
 EN-S. 

Article 10.2 
1. Proof Assume (a, b) - (a', b') and (c, d) - (c', d'), where all symbols represent 

elements of N. To show (ac + bd, ad + bc) - (a'c' + b'd', a'd' + b'c'), we must 
prove that ac + bd + a'd' + b'c' = ad + bc + arc' + b'd'. We use the following 
two lemmas, whose simple proofs are left to you. Lemma I: If (a, b) - (a', b'), 
then a < a' o b < b'. Lemma 2: If (a, b) - (a', b'), and a < a', then 
a' - a = b' - b. Assume without loss of generality that c < c', so that d < d' 
by Lemma 1. Then ac + bd + a'd' + b'c' = ac + b'c' + a'd' + bd = (a + b')c + 
(a' + b)d + b'(cl - c) + al(d' - d) = (a' + b)c + (a + b')d + b'(d' - d) + 
al(c' - c) = bc + ad + b'd' + a'c' = ad + bc + arc' + b'd', as desired. The second 
equality in the preceding string follows by adding b'c + a'd to both sides and 
using additive cancellation [Theorem 5(d), Article 10.11. 

2. (d) Proof Let [(p, q)] and [(r, s)] be elements of Z+,  so that p > q and r > s. 
We claim that [(p, q)] + [(r, s)] E Z+ and [(p, q)] - [(r, s)] E Z+; that is, 
p + r > q + s and pr + qs > ps + qr, respectively. The former is true, by 
Exercise 6, Article 10.1. For the latter, we note that pr + qs = ps + qr + 
(p - q)(r - s), where (p - q)(r - s) E N, by (b) of the corollary to Theorem 3, 
Article 10.1, since p - q E N and r - s E N (because p > q and r > s). Hence, 
by Definition 2, Article 10.1, we conclude pr + qs > ps + qr, as desired. 
(c) Proof Let x = [(p, q)], y = [(r, s)], and z = [(t, u)]. Then x(y + z) = 
[(P, q)] [(r + t, s + 41 = [(Ar + t) + q(s + 4, As + u) + q(r + t))] = 
[(pr + 4s) + (pt + qu), (PS + qr) + (PU + qt)] = [(pr + qs, PS + qr)] + 
[(pt + qu, pu + qt)] = xy + xz, as desired. 
(b) (ii) Proof Given x = [(a, b)], assume x > 0; that is, [(I, I)] < [(a, b)] so 
that, by Definition 2, we have 1 + b < 1 + a. By Exercise qa), Article 10.1, we 
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have b < a or a > b, as desired. The converse follows by reversing each of the 
preceding steps. Next, we note that x < 0 o [(a, b)] < [(I ,  I ) ]  o a + 1 < 
b + 1 o a < b, where the final step follows from Exercise qa),  Article 10.1, and 
Theorem 8(g), Article 10.1. Finally, x = 0 - [(a, b)] = [ ( I ,  l ) ]  e a + 1 = 
b + 1 9 a = b. Note that the last equivalence follows from the well-definedness 
of addition (in the direction e) and additive cancellation (for *). 0 

Article 10.3 
1. (a) Proof Let {p,: rn = 1,2, . . .) be a Cauchy sequence of rational numbers. ' 

Corresponding to the positive rational number 1, there exists a positive integer 
N such that Ip, - pNl < 1, whenever m 2 N. Since 1x1 - lyl I lx  - yl for any 
x and y, we have lpml - lpNl I lpm - pNI < 1, SO that Ip,( I 1 + (pNl for all 
m 2 N .  Letting B = max(lpll, lp,J,. . . , I P , - ~ ( ,  1 + (pNl), we have lpml < B, as 
desired. 0 
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well-defined, 330, 344-345, 350, 358 

Algebraic structure, 295 
of integers modulo m, 297 
of polynomials in one variable, 298, 360 
of 2 x 2 matrices, 297 

Alternation, 56. See also Disjunction 
exclusive, 56, 59 

Analysis of arguments, 76-80, 110-114 
Ancestor, 276,286 
Antisymmetric 

in definition of partial ordering, 245 
matrix, 158, 200 
property of a relation, 232 

Arbitrary collection of sets, 127,252,289,290 
Arbitrary intersection, 290 
Arbitrary union, 290 
Archimedean 

ordered field, 3 14, 359 
property, 126,201,221 

Argument@) 
analysis of, 76-80, 110- 114 
compactness, 223 
counting, 42,223 
logical, 76 
valid, 76-80, 110- 114 

Argument of a complex number, 324 
principal value of, 324 

Associative property 
of addition, 15, 295, 336 
of composition of functions, 262 
of conjunction, 68 
of disjunction, 68 
of intersection, 32, 40, 123 
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Associative property (continued) 
of multiplication, 15, 295, 338 
of subtraction (invalidity of), 154 
of symmetric difference, 41, 158 
of union, 32, 40, 123 

Axiom, 149,298 
additive identity, 219 . 
additive inverse, 220 
based on Peano's Postulates, 331 
least upper bound, 218,221 
multiplicative identity, 219 
multiplicative inverse, 220 
of choice, 224,288, 291 

Band 
delta, 132 
epsilon, 132 

Biconditional 
between predicates, 85 
connective, 61 
English language translation of the, 72 
law, 69 
stronger than the conditional, 70 

Bijection, 269, 273, 274 
Binary operation, 16, 294 
Binomial coefficient, 50, 156, 157 
Binomial theorem, 188 
Boole, George, 53 
Boolean algebra, 53 
Bound 

lower, 246, 31 1 
upper, 246,3 1 1 

Bounded 
above, 21 7,220,246, 3 1 1 
below, 220,246, 3 1 1 
function, 202 
interval, 8 
set, 21 1,220 
subset of a metric space, 99 
subset of a poset, 246 
subset of an ordered field, 3 11 

Brouwer, L. E. J., 219 

Calculus, 24, 132 
advanced, 146, 191 
elementary, 128 
predicate, 53, 81-1 14 
propositional, 53-80 

Cancellation 
additive, 299, 336, 342 
in composition of functions, 263, 266, 

267,268 
multiplicative, 301, 338, 343 

Cantor, Georg, 3,277, 280,281,287 
Cantor's theorem, 284 
Cardinal number(s), 277 

comparability of, 288 
less than, between, 284 
less than or equal to, between, 284 
of the continuum, 283 
same, 278 

Cardinality, 127, 252, 277-289 
Cartesian product, 21, 22, 228, 229 
Cauchy sequence(s), 203, 329, 330, 353, 354 

equivalence classes of, 356 
equivalence of, 356 

Cells of a partition, 240 
Chain in a poset, 248 
Chain rule, 260 
Choice 

axiom of, 224, 288, 291 
function, 29 1 

Choose method, 117 
Circular reasoning, 86 
Classification theorem, 222 
Closed 

form of a summation formula, 181 
interval, 8 
subset of a metric space, 99 
set, 201, 211, 212 

Closure 
of addition, 212, 295 
of multiplication, 212, 295 
of subtraction, 347 

Cluster point of a sequence, 203, 220 
Condomain of a mapping, 256 
Cohen, Paul, 287 
Collection of sets 

arbitrary, 127, 252, 289, 290 
arbitrary intersection of, 290 
arbitrary union of, 290 
countably infinite, 127, 290 
decreasing, 125, 290 
direct product of, 291 
increasing, 125, 290 
indexed by an arbitrary set, 290 
indexed by N, 124 
infinite, 1 15 
infinite (countably) intersection of, 125 
infinite (countably) union of, 125 
mutually disjoint, 125, 290, 292 
pairwise disjoint, see Mutually disjoint 

sets 
College Mathematics Journal, 219 
Combinations, 47 
Commutative property 

of addition, 15, 295, 336 
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of composition (invalidity of), 261 
of conjunction, 68 
of disjunction, 68 
of intersection, 32,40, 123 
of multiplication, 15, 295, 338, 343 
of symmetric difference, 41 
of union, 32,40, 123 

Commutative ring, 346 
Compact 

set, 211, 223 
subset of a metric space, 99 

Comparable 
cardinal numbers, 288 
elements in a poset, 249 

Complement of a set, 18, 25, 100, 175, 214, 
219 

relative, 19, 219 
Complete ordered field, 294, 296, 313, 359 
Complex conjugate, 14, 322 
Complex exponential, 325 
Complex number(s), 7, 296, 319-328 

argument of, 324 
complex conjugate of, 14, 322 
equality of, 320 
field of, 296, 321 
imaginary part of, 14, 321 
modulus of, 14, 322 
non-orderability of, 54, 304-305 
nth root of, 326 
polar form, 324 
product of, 320 
real part of, 14, 321 
sum of, 320 

Component of a statement form, 56 
Composite of functions, 260 
Composition 

associativity of, 262 
left cancellation property of, 263, 268 
noncommutativity of, 261 
of functions, 252, 258, 260 
of mappings, 258, 262 
right cancellation property of, 266, 267, 

268 
Compound statement, 52, 53, 55 
Conclusion 

error of assuming, 163 
of a conditional statement form, 61 
of an argument, 76 

Conditional, 53 
between predicates, 85 
connective, 61 
English language translation of the, 72 
theorems involving, 35 
weaker than the biconditional, 70 

Conditional statement form 
conclusion of, 61 
contrapositive of, 65, 73 
converse of, 65, 73 
inverse of, 65, 73 
premise of, 61 

Congruence modulo, 232,237,239 
equivalence classes generated by, 243, 244 

Congruent triangles, 148,227,240 
Conjecture, 23, 30-36 

disproving, 154, 164 
methods of arriving at, 23-24 

Conjunction, 56 
commutative property of, 68 
associative property of, 68 
between predicates, 85 

Connective, 53. See also Logical 
connective(s) 

Constant function, 255 
Construction of the reals, 352-361 
Contingency, 59,63 
Continuous 

at a point, 74, 129 
left, 144 
on an open interval, 144 
right, 144 
uniformly, 144, 223 

Continuum 
cardinal number of the, 283 
hypothesis, 287 

Contradiction, 59, 63 
proof by, 121,204,209,210 

Contrapositive, 65, 73 
proof by, 67,204,205 

Convergent sequence, 191, 203, 353 
Converse, 65, 73 

partial, 175 
Convex set, 169,200,211 
Coordinate system, 22-23 
Coplanar lines, 240 
Corollary, 70 
Countable intersection, 125, 290 
Countable set, 283 
Countable union, 125, 290 
Countably infinite collection of sets, 127,290 
Countably infinite set, 281, 283, 289 
Counterexample, 154, 164 
Counting arguments, 42,223 
Counting properties of sets, 42-51 
Critique and complete, 124, 159, 169, 177, 

188 
Cross product of sets, 22. See also 

Cartesian product 
Cyclic group, 75, 99 
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Decreasing collection of sets, 125, 290 
Dedekind, Richard, 330 
Dedekind cuts, 329 
Definitionfs), 1 15 

inductive, 333, 336. See also Recursive 
definition 

informal, 4 
recursive, 302,309,330,333, 335, 336, 342 
role of, in proof-writing, 196 

Deleted neighborhood, 201 
Delta band, 132 
DeMoivre's theorem, 324, 326 
DeMorgan's laws 

generalized, 127 
logic, 68 
sets, 34, 41, 123, 152 

Denial, 56. See also Negation 
Denumerable set, 283 
Dependence 

in logic, 105, 106, 109, 191-193 
linear, 165,212 

Dependent variable, 254 
Derivative, 24, 99, 101, 131, 141, 178, 180 
Description method, 5 
Detachment, 70 
Determinant of a 2 x 2 matrix, 158,220 
Diagonal matrix, 99,169,177 
Difference 

in a field, 301 
set theoretic, 19, 25 

Differentiable function, 71, 74, 101 
Differential equations, 222 
Direct product of a collection of sets, 291 
Direct proof, 162 
Discovery, 3, 164 
Disjoint sets, 17, 28 
Disjunction, 56 

associative property of, 68 
between predicates, 85 
commutative of, 68 
law of, 70 
proofs of conclusions involving, 204-206 

Distance, in an ordered field, 308 
Distributive property 

generalized, 28, 183 
of addition over multiplication 

(invalidity of), 38 
of conjunction over disjunction, 69 
of disjunction over conjunction, 69 
of intersection over symmetric difference, 

41, 152, 159 
of intersection over union, 32,41, 120 
of multiplication over addition, 15, 321, 

296, 337 
of union over intersection, 32,41 

Divides, 109, 147, 191, 193, 199, 210, 211, 
23 1,246,249 

Divisibility 
induction proofs involving, 184, 187 
ordered by, 231,250 

Division algorithm for 2, 218, 237, 239, 244 
quotient, 239 
remainder, 239 

Division into cases, 119, 167, 170, 172-177 
Domain 

of a function, 253 
of a relation, 233 

Domain of discourse, 83 
Dummy variable, 88,125 
Dynamieview 

of a function, 254 
of a relation, 231 

Element, 4 
Elementary methods of proof, 146-189 
Elementhood method, 117. See also 

Choose method 
Empty set, 9, 36-37 

as a universal set, 100 
as an indexing set, 292 
is inductive, 187 
proofs involving, 120-122 

English language translations 
of logical connectives, 72 
of quantified predicates, 89-93, 108, 110 

Entries of a matrix, 158 
Epsilon band, 132 
Epsilon-delta definition of limit, 52, 1 15, 

132 
meaning of, 132-140 
negation of, 133 

Epsilon-delta proof(s), 196- 199, 202 
negative, 139 
specialization in, 198 

Equality 
as an equivalence relation, 227 
of complex numbers, 320 
of functions, 253, 264 
of mappings, 256 
of ordered pairs, 21, 123,229 

Equality of sets, 10, 15, 116 
reflexive property of, 10,40 
symmetric property of, 10,40 
transitive property of, 10,40, 211 

Equivalence@), 64 
involving predicates in one variable, 96 
list of, 68 
mathematical significance of, 66-67 
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Equivalence class, 228, 238, 240 
representative of, 228, 344 

Equivalence classes of Cauchy sequences, 
356 

product of, 356 
sum of, 356 

Equivalence of Cauchy sequences, 356 
Equivalence relation, 227, 235, 236 

determined by a partition, 241 
Exclusive alternation, 56, 59 
Exhaustive cases, 172, 173 
Existence 

proofs of, 212, 216-222 
Existential quantifier, 88 
Exponential function, 258 

complex, 325 
Exponential to the base a, 177 
Extension of a mapping, 265 
Extreme value theorem, 318 
Even function, 59, 157, 166 
Even integer, 59, 200, 211 

Factorial, 46 
recursive definition of, 336, 342 

Family of sets, 124: See also Collection of 
sets 

Fibonacci number, 336, 342 
Field, 114, 294, 295 

complete ordered, 294,296, 313 
of complex numbers, 296, 321 
of integers modulo p (p prime), 297 
of quotients, 351 
of rational numbers, 296 
of real numbers, 294, 296 
ordered, 294, 303, 304 
sub-, 296, 359 

Final form of a proof, 162, 164, 197 
Finite set, 5, 6, 211, 279, 288 
Fixed point of a mapping, 332 
Formalist school, 219 
Function(s), 227, 252, 253 

absolute maximum and minimum of, 157 
algebraic, 254, 264 
bounded, 202 
choice, 291 
composition of, 252, 258, 260 
constant, 255 
continuous at a point, 129 
continuous on an open interval, 144 
dependent variable of, 254 
derivative of, 24, 131, 141, 178, 180, 211 
differentiable at a point, 71, 74 
domain of, 253 

dynamic view of, 254 
equality of, 253, 264 
even, 59, 157, 166 
exponential, 258 
from a set A to a set B, 256. See also 

Mapping 
greatest integer, 143 
hyperbolic, 258 
identity, 254, 255 
image of, 253 
image of a set under, 217,252,270-275, 

29 1 
increasing, 147, 160, 208, 21 1 
independent variable of, 254 
induced set, 275 
inverse, 252, 258 
inverse image of a set under, 252,270-275 
invertible, 259 
limit of, 52, 115, 128-145 
linear, 254 
logarithm, 258 
nth power, 258 
nth root, 258 
odd, 157 
one-to-one, 168, 208,211,252,256 
operations on, 257 
polynomial, 254, 264 
propositional, 82. See also Predicate 
range of, 253 
rational, 254, 264 
relative maximum of, 21 1 
rule of correspondence defining, 253 
static view of, 254 
successor, 331 
transcendental, 254,264 
trigonometric, 258 
uniformly continuous on an open interval, 

144,223 
Functional notation, 253 
Fundamental counting principle, 44 
Fundamental sequence, see Cauchy 

sequence 

Gauss, Karl Friedrich, 319 
Generalization, 23-24, 106 

induction proofs involving, 183 
Generalized DeMorgan's law, 127 
Generalized distributivit y, 1 83 
Generalized triangle inequality, 186 
Geometry, 148 
Greatest common divisor, 213, 221 
Greatest element of a poset, 247 
Greatest integer function, 143 
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Greatest lower bound 
in a poset, 247 
in an ordered field, 3 12, 3 18 
of a set of real numbers, 221 
of an infinite collection of sets, 128 

Group 
abelian, 75, 99 
cyclic, 75, 99 

Group theory, 42 

Hamel basis, 224 
Hamilton, William, 3 19 
Hausdorff maximal principle, 224 
Heine-Borel theorem, 223,3 18 
Hidden quantifier, 89 
Hilbert, David, 219 
Hyperbolic function, 258 

Idempotent property 
of intersection, 40, 123 
of union, 40, 123 

Identity 
additive, 104, 219, 295, 336, 346, 350 
for intersection, 40 
for union, 40,121 
function, 254, 255 
multiplicative, 219, 296, 338, 350 
relation, 232 

If and only if, 12,61. See also Biconditional 
Image 

inverse, 252, 270-275 
of a function, 253 
of an interval under a continuous 

function, 317 
of a set under a function, 217, 252, 

270-275,291 
Imaginary number, 321 
Imaginary part of a complex number, 14, 

32 1 
Implication(s), 64, 69 

involving predicates in one variable, 97 
list of, 70 
mathematical significance of, 7 1-72 

Implies, 61. See also Conditional 
between predicates, 94 

Inclusion 
mapping, 260,264,280 
ordered by, 246 

Incomplete ordered field, 313 
Increasing 

collection of sets, 125, 290 
function, 147, 160, 208, 211 

Independent variable, 254 

I 

Index, 124 
Indexed 

by an arbitrary set, 289,290 
by N, 124 
by the empty set, 292 

Indirect proof, 67, 162,204 
Induced set functions, 275 
Induction 

hypothesis, 180 
postulate, 331, 341, 343 
principle of mathematical, 179,221 
principle of transfinite, 224 
proof by, 178-189 
proofs involving divisibility, 184, 187 
proofs involving generalization, 183 
proofs involving summation, 181, 186, 

188 
second principle, 341,342,343 
transfinite, 224 

Inductive assumption. See Induction 
hypothesis 

Inductive 
definition, 333, 336. See also Recursive 

definition 
set, 185 

Infimum, 247 
Infinite collection of sets, 115 

greatest lower bound of, 128 
least upper bound of, 128 

Infinite intersection, 125 - 128 
Infinite limit, 131 
Infinite set, 5, 6,279,288 

countably, 283, 289 
Infinite union, 125- 128 
Injection, 257, 265. See also Injective 

mapping 
Injective mapping, 257, 264,267, 271-273 
Integer(s), 7, 296, 343-348 

even, 59,200,211 
modulo m, 297 
odd, 59,200,211 
positive, 7, 296, 330-343 

Integral domain, 114, 347 
field of quotients of, 351 

Interior point, 191,201 
Intermediate value theorem, 3 15 
Intersection, 16 

arbitrary, 290 
associative property of, 3540, 123 
commutative property of, 3540, 123 
countable, 125, 290 
idempotent property of, 40, 123 
identity for, 40 
infinite, 125-128 
of intervals, 161, 168 
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Interval(s), 7, 15, 160, 168 
bounded, 8 
closed, 8 
continuous image of, 317 
convexity of, 169, 200 
intersection of, 161, 168 
nested, 125 
open, 8 
unbounded, 8 
union of, 168, 177 

Into mapping, 266 
Intuitionist school, 219 
Inverse 

additive, 104,220,295,346,350 
image of a set under a function, 252, 

270-275 
multiplicative, 220, 296, 338, 350 
of a conditional statement form, 65, 73 
of a function, 252, 258 
of a mapping, 269,274 
of a matrix, 200, 220 
of a relation, 233 
trigonometric functions, 159 

Invertible 
function, 259 
matrix, 191, 193,200,220 

Irrational number, 110,21 1,212,353 
Irreflexive relation, 309 
Isomorphism, 346 

Join of two elements in a poset, 249, 250 

Lagrange's theorem, 42,223 
Law of 

addition, 70 
detachment, 70 
disjunction, 70 
double complementation, 40, 123 
simplification, 70 
syllogism, 70, 75 

Least element 
in a poset, 247 
of a subset of N, 340 

Least upper bound 
axiom, 218, 221 
in a poset, 247 
in an ordered field, 312 
of a set of real numbers, 215,3 1 1 
of an infinite collection of sets, 128 

Ldt cancellation property of composition, 
263,268 

Lef't continuous, 144 

Left-hand limit, 143, 202, 203 
Lcibniz, Gottfried Wilhelm von, 132 
Lemma, 70 

Tukey's, 224 
Zorn's, 224 

Less than 
between cardinal numbers, 284 
in an ordered field, 305 
on R, 232 

Less than or equal to 
as a relation, 231, 245, 246 
between cardinal numbers, 284 
in an ordered field, 306 
on R, 231 

Limit 
at infinity, 144 
epsilondelta definition of, 52, 1 15, 132 
infinite, 131 
left-hand, 143, 202, 203 
of a function, 52, 1 15, 128, 145, 186 
of a sequence, 191,203 
one-sided, 131,202 
right-hand, 143,202,203 
types I, 11,111, 129-132 
uniqueness of, 21 3, 21 5, 220 

Linear algebra, 100, 146, 161 
Liliear function, 254 
Linearly dependent set of vectors, 165,212 
Linearly independent set of vectors, 161 
Linearly ordered set, 248 
Logarithm function, 258 
Logic, 52-1 14 
Logical argument, 76 

conclusion of, 76 
partial premise of, 76 
premise of, 76 

Logical connective(s), 55 
alternation, 56 
biconditional, 61 
conditional, 53, 61 
conjunction, 56 
denial, 56 
disjunction, 56 
in predicates, 84-85 
translation into English of, 72 

Logical equivalence 
between predicates, 83,94 
of statement forms, 60 
proving, 166 
statement of, 42 

Logical implication 
between predicates, 94 
between statement forms, 69 
statement of, 42 

Logically equivalent, 60 . 
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Logically implies, 69. See also Implication(s) 
Lower bound, 246,3 1 1 
Lower triangular matrix, 169, 177 

Mapping(s), 252, 256 
codomain of, 256 
composition of, 258, 262 
equality of, 256 
extension of, 265 
fixed point of, 332 
image of a set under, 252,270-275,291 
inclusion, 260, 264, 280 
injective, 257,264,267,271-273 
into, 266 
inverse image of a set under, 252, 

270-275 
inverse of, 269,274 
one-to-one, 257 
onto, 252, 257, 266 
projection, 276 
restriction of, 258, 260 
surjective, 266,267, 271, 273 

Mathematical generalization, 23 -24, 106 
Mathematical induction, 178 - 179. See 

also Induction 
Mathematical or, 56 
Mathematical proof, 115. See also Proof 
Matrices 

algebraic structure of 2 x 2,297 
Matrix, 158 

antisymmetric, 158,200 
determinant of, 158 
diagonal, 99, 169, 177 
entries of, 158 
inverse of, 200,200 
invertible, 191, 193, 200, 220 
lower triangular, 169, 177 
square, 158, 177 
symmetric, 158, 200 
transpose of, 158 
upper triangular, 99, 169, 177 

Maurer, Stephen B., 219 - 
Maximal element in a poset, 250 
Maximum of two real numbers, 176 
Mean value theorem, 24,222 
Meet of two elements in a poset, 249, 250 
Metric space, 99 
Minimal element in a poset, 250 
Minimum of two real numbers, 176 
Mixed quantifiers, 103 
Modulus of a complex number, 14, 322 
Modus ponens, 70, 78, 119, 172 

Modus tollendo ponens, 70 
Modus tollens, 70 
Multiplication 

associative property of, 15, 295,338 
cancellation property of, 301, 338, 343 
closure property of, 212,295 
commutative property of, 15,295, 338, 

343 
in Q, 349 
in R, 356 
in Z, 344 
of complex numbers, 320 
of equivalence classes of Cauchy 

sequences, 356 
recursive definition of, 336 
table, 50 

Multiplicative identity, 219, 296, 338, 350 
Multiplicative inverse, 220, 296, 338, 350 
Mutual inclusion, 1 19 
Mutually disjoint 

collection of sets, 125, 290, 292 
sets, 28 

Mutually exclusive cases, 172, 173 

Natural numbers, 5, 7. See also Positive 
integers 

Necessary, 72 
Negation, 56 

as "main connective," 67,73, 97,99, 108 
of a predicate, 85 
of predicates in several variables, 107 
of the five connectives, 67, 68 

Negative element in an ordered field, 304 
Neighborhood, 191,202 

deleted, 201, 202 
Nested intervals, 125 
Newton, Isaac, 132 
Nonempty set, 9 
nth power function, 258 
nth root function, 258 
nth root of complex numbers, 326 
Null sequence, 355, 360 
Number of elements in a finite set, 43 
Number systems, 293-361 

complex numbers, 7,296,319-328 
construction of, 329-361 
natural numbers, 5, 7. See also Positive 

integers 
positive integers, 7, 296, 330-343 
properties of, 293-328 
rational numbers, 7, 296, 348-352 
real numbers, 7,293-294, 352-361 

Number theory, 146, 191 
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Numerical equivalence, 269, 288 
of a set with its power set (invalidity of), 

284 
of N with Q, 281 
of N with (0, 1) [invalidity of], 282 
of R with the power set of N, 286 

Odd 
function, 157 
integer, 59, 200, 211 

One-sided limit, 131, 202 
Oneto-one 

correspondence, 252,269 
function, 168, 208, 21 1, 252, 256 
mapping, 257 

Onto mapping, 252, 257, 266 
Open 

interval, 8 
sentence, 53, 54, 82. See also Predicate 
set, 191, 194, 201 

Operation(s), 294 
algebraic, 15 
binary, 16, 294 
on functions, 257 
on sets, 15-23 

Ordered by divisibility, 231, 250 
Ordered by inclusion, 246 
Ordered field, 294, 303, 304 

absolute value in, 307 
Archimedean, 314,359 
completeness in, 309, 310, 359. See also 

Complete ordered field 
distance in, 308 
greatest lower bound in, 312, 318 
incomplete, 3 13 
least upper bound in, 312 
less than in, 305 
less than or equal to in, 306 
negative element of, 304 
positive part of, 304 
positive element of, 304, 358 
triangle inequality in, 307 

Ordered pair(s), 21, 123, 228 
equality of, 21, 123,229 

Ordering properties of the positive integers, 
339-340 

Ordering in Q, 351 
Ordering in R, 358 
Ordering in Z, 348 

Pairwise disjoint, 125. See also Mutually 
disj o h  t 

Parallel lines, 240 
Parametrically described curve, 168 
Partial converse, 175 
Partially ordered set, 245 

chain in, 248 
greatest element of, 247 
greatest lower bound in, 247 
join of two elements in, 249, 250 
least element of, 247 
least upper bound in, 249,250 
linearly ordered, 248 
maximal element of, 250 
meet of two elements in, 249, 250 
minimal element of, 250 
totally ordered, 248 

Partial ordering, 227,245 
Partial premise, 76 
Partition, 240 

cells of, 240 
determined by an equivalence relation, 

242 
Pattern method, 6, 14, 253 
Peano, Giuseppe, 329 
Perpendicular lines, 101, 240 
Permutation, 45 

of n things taken n at a time, 46 
of n things taken r at a time, 46 

Pick-a-point method, 117. See also Choose 
method 

Pictures, 24 
Pigeon-hole principle, 223 
Pinching theorem, see Sandwich theorem 
Plane geometry, 148 
Point of accumulation, 201, 221 
Polar coordinates, 169 
Polar form of complex numbers, 324 
Pol ynomial(s) 

algebraic structure of, 298, 360 
function, 254, 264 

Poset, 245. See also Partially ordered set 
Positive element in an ordered field, 304, 

358 
Positive integers, 7, 296, 330-343 

ordering properties of, 339-340 
Positive part of an ordered field, 304 
Power set, 13, 168, 175 

cardinality of, 286 
number of elements in, 48, 187 

Predicate calculus, 53, 8 1- 1 14 
theorems of, 95-101, 104, 106, 107 

Predicate+), 53, 82 
containing logical connectives, 84-85 
in one variable, 82 
in several variables, 101 
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Predicate(s) (continued) 
logical equivalence between, 83,94 
logical implication between, 94 

Premise 
of a conditional statement form, 61 
of an argument, 76 
partial, 76 

Preserving an operation, 346 
Prime integer, 74, 2 1 7 
Principal value of the argument of a 

complex number, 324 
Principle 

pigeon hole, 223 
of inductive definition, 336 
of mathematical induction, 179 
of transfinite induction, 224 
second induction, 341, 342, 343 
well-ordering, 187, 218, 221, 330, 340, 

341,343 
Projection mappings, 276 
Proof, 149 

advanced methods, 190-224 
by choose method, 1 17, 162 
by contradiction, 121, 204, 209, 210 
by contrapositive, 67, 204, 205 
by division into cases, 119, 170, 172-177 
by enumerating cases, 154 
by example, 154 
by induction, 178- 189 
by mutual inclusion, 119 
by specialization, 122, 167, 170, 171-172, 

174-177, 179, 198,220 
by transitivity, 148, 150 
by truth table, 64 
by Venn diagram, 30 
direct, 162 
elementary methods, 146- 189 
epsilon-delta, 196- 199, 202 
final form of, 162, 164, 197 
in set theory, 115-124 
indirect, 67, 162, 204 
involving the empty set, 120-122 
mathematical, 115 
of conclusion involving disjunction, 

204-206 
of equivalence, 166 
of existence, 212, 216-222 
of uniqueness, 21 2, 214-216,219-222 

Proper subset, 12, 15, 165, 169 
Proposition, 53. See also Statement 
Propositional calculus, 53-80 

theorems of, 64-76 
Propositional function, 52. See also 

Predicate 
Purely imaginary number, 32 1 

Quantification, 88-95 
Quantifier@), 53, 82 

existential, 88 
hidden, 89 
mixed, 103 
universal, 88 

Quotient(s), 239 
field of, 351 
in a field, 301 

Quotient structure, 244 

Range 
of a function, 253 
of a relation, 233 

Rational function, 254, 264 
Rational(s), 7, 110 

construction of, 348-352 
field of, 296 
number(s), 191, 199, 21 1 

Real number(s), 7, 110 
construction of, 352-361 
familiarity of, 293 
field of, 294, 296 
ordering of, 358 

Real part of a complex number, 14, 321 
Recursive definition, 302, 309, 330, 333, 

335,336,342 
of addition, 335 
of factorial, 336, 342 
of Fibonacci number, 336, 342 
of multiplication, 336 
of nth power, 336, 342 

Reductio ad absurdum, 70, 204 
Reflexive 

in definition of equivalence relation, 236 
in definition of partial ordering, 245 
property of a relation, 232 
property of logical equivalence, 68 
property of set equality, 10, 40 
property of the subset relation, l l , 4 0  

Relation(s), 227-292 
antisymmetric, 232 
between sets, 228, 230 
congruence modulo, 232, 237,239, 243 
divides, 231, 246, 249 
domain of, 233 
dynamic view of, 23 1 
equivalence, 227, 235, 236 
identity, 232 
inverse of, 233 
irreflexive, 309 
less than, 232 
less than or equal to, 231, 245, 246 
on a set, 230 
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partial ordering, 227,245 
range of, 233 
reflexive, 232 
static view of, 231 
subset, 232,246 
symmetric, 232 
transitive, 232 
well-defined, 250 

Relative complement, 19, 219 
Relative maximum of a function, 74, 99, 

101,211 
Relative minimum of a function, 99 
Remainder, 239 
Removable discontinuity, 130 
Representative of an equivalence class, 

228, 344 
Restriction of a mapping, 258, 260 
Right cancellation property of composition, 

266,267,268 
Right continuous, 144 
Right-hand limit, 143,202 
Ring, 1 16, 346 

commutative, 346 
with unity, 346 

Rolle's theorem, 22 1 
Roster method, 4 
Rule method, 5 
Rule of correspondence, 253 
Russell's Paradox, 3, 15 

Sandwich theorem, 202 
Schroeder-Bernstein theorem, 276, 285, 289 
Second induction principle, 341, 342, 343 
Sequence 

Cauchy, 203,329, 330, 353,354 
cluster point of, 203, 220 
convergent, 191,203, 353 
limit of, 191, 203 
null, 355, 360 

Set(s), 3-51 
algebra of, 16, 29 
bounded, 21 1,220; 246,3 1 1 
bounded above, 217,220,246,311 
bounded below, 220,246, 31 1 
cardinality of, 127, 252, 277-289 
cartesian product of, 22, 228, 229 
closed, 201, 211, 212 
compact, 211,223 
complement of, 18,25 
convex, 169,200, 21 1 
countable, 283 
countably infinite, 281, 283, 289 
cross product of, 22 

denumerable, 283 
description method of defining, 5 
difference of, 19, 25 
disjoint, 17, 28 
element of, 4 
empty, 9, 36-37, 120-122 
equality of, 10, 15, 116 
finite, 5, 6, 211, 279, 288 
inductive, 185 
infinite, 5, 6, 279, 288 
intersection of, 16 
linearly ordered, 248 
mutually disjoint, 28 
nonempty, 9 
number of elements of a finite, 43 
numerically equivalent, 269, 288 
open, 191, 194, 201 
operations on, 15-23 
partially ordered, 245 
partition of, 240 
pattern method of defining, 6, 14 
power, 13 
proper subset of, 12, 165, 169 
relations between, 228, 230 
relative complement of, 19 
roster method of defining, 4 
rule method of defining, 5 
singleton, 9 
subset of, 11, 116, 160, 211, 231 
superset of, 11 
symmetric difference of, 20 
totally ordered, 248 
truth, 82, 83, 87 
uncountable, 283 
union of, 16, 25 
universal, 6, 36-37 
well defined, 4, 14 

Set-builder notation, 5 
Sheffer stroke, 76 
Similar triangles, 240 
Simple statement, 55 
Simplification, see Law of simplification 
Singleton set, 9 
Skew lines, 240 
Solution set, 6 
Specialization, 122, 167, 170, 171-172, 

174-177, 179, 198,220 
Square matrix, 158, 177 
Square root, 110, 303 
Statement, 52, 53 

compound, 52, 55 
of equivalence, 42. See also Logical 

equivalence 
of implication, 42. See also Logical 

implication 
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Statement (continued) 
simple, 55 
truth value of, 54 

Statement form(s), 56 
biconditional, 61 
component of, 56 
conditional, 61 
contingency, 59,63 
contradiction, 59 
logically equivalent, 60 
stronger, 69, 74, 97, 104, 108 
tautology, 59 
weaker, 69 

Static view 
of a function, 254 
of a relation, 231 

Story problems, 29 
Stronger statement form, 69, 74,97, 104, 

108 
Subfield, 296, 359 
Subset, 11,15, 116,160,211,231 

proper, 12, 15, 165, 169 
Subset relation, 232, 246 

reflexive property of, 11,40 
transitive property of, 11,40, 118 

Substitution, 82 
Subtraction 

closure under, 347 
in a field, 301 
in N, 339 
invalidity of associative property, 154 

Successor function, 331 
Sufficient, 72 
Summation 

closed form of, 181 
formulas, 181,186 
induction proofs involving, 18 1 
notation, 181 
properties, 188 

Superset, 11 
Supremum, 247 
Surjection, 266, 273. See also Surjective 

mapping 
Surjective mapping, 266, 267, 271, 273 
Syllogism, see Law of Syllogism 
Sylow theorem (third), 223 
Symmetric 

in definition of equivalence relation, 236 
matrix, 158,200 
property of a relation, 232 
property of set equality, 1440  

Symmetric difference, 20 
associative property of, 41, 158 
commutative property of, 41 

Symmetry 
negation of definition of, 164 
with respect to the origin, 99, 160, 168, 

208 
with respect to the x axis, 99, 160, 165, 

168,208 
with respect to the y axis, 160, 165, 166, 

168,208 
with respect to an arbitrary point, 168 

Tautology(ies), 59, 63 
lists of, 68-69, 70 
with the conditional as main connective, 

see Implication(s) 
with the biconditional as main 

connective, see Equivalence(s) 
Theorem(s), 40, 149, 298 

binomial, 188 
Cantor's, 284 
classification, 222 
deMoivre's, 324, 326 
extreme value, 318 
Heine-Borel, 223, 3 18 
intermediate value, 315 
involving a conditional, 36 
Lagrange's, 42,223 
mean value, 24,222 
of set theory, 39-42 
of the predicate calculus, 95-101, 104, 

106,107 
of the propositional calculus, 64-76 
Rolle's, 221 
sandwich, 202 
Schroeder-Bernstein, 276, 285, 289 
third Sylow, 223 
Tychonoff, 224 

Topology, 100, 191 
Totally ordered set, 248 
Tracing ancestry, 276,286 
Transcendental function, 254 
Transfinite induction, 224 
Transfinite processes, 224 
Transitive 

in definition of equivalence relation, 
236 

in definition of partial ordering, 245 
property of a relation, 232 
property of set equality, 10,40, 21 1 
property of the subset relation, 11, 40, 

118 
Translation into English 

of connectives, 72 
of statements involving quantifiers, 89 

Transpose of a matrix, 158 
Tree diagram, 44 



INDEX 395 

Triangle inequality, 153, 157 
generalized, 186 
in an ordered field, 307 

Trichotomy, 304,340 
Trigonometric functions, 258 

inverse, 159 
Trigonometric identities, 155, 176 
Trigonometry, 150 
Truth set, 82,83 
Truth table, 56 

proof by, 64 
Truth value, 54 
Tukey's lemma, 224 
Tychonoff s theorem, 224 
Type I, 11, I11 limits, 129-132, 142 

Unbounded interval, 8 
Uncountable set, 283 
Undecidable proposition, 287 
Uniformly continuous, 144, 223 
Union, 16, 25 

arbitrary, 290 
associative property of, 32,40, 123 
commutative property of, 32,40, 123 
countable, 125, 290 
idempotent property of, 40, 123 
identity for, 40, 121 
infinite, 125- 128 
of intervals, 168, 177 

Uniqueness, 100 
of identities and inverses in a field, 299 
of the limit, 213, 215,220 
proofs of, 212,214-216,219-222 

Universal quantifier, 88 
Universal set, 6, 36-37 
Unknown 

in a predicate, 82 
in a statement form, 56 

Upper bound, 246,3 1 1 
Upper triangular matrix, 99, 169, 177 

Valid argument, 76-80, 110-1 14 
Variable, 82 

dependent, 254 
dummy, 88, 125 
in a predicate, 82, 88 
independent, 254 

Vector space, 161 
Venn diagram(s), 24, 28, 30 

in logic, 111-113 
"proof by," 30, 36 
use in counting, 49 

Weaker statement form, 69 
Weierstrass, Karl, 132 
Well defined 

operation, 330, 344-345, 350, 358 
relation, 250 
set, 4, 14 

Well ordering principle, 187, 218, 221, 330, 
340,341,343 

Zorn's lemma, 224 
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